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ABSTRACT

The current work applies various drag decomposition methods in an adjoint-
based aerodynamic shape optimization framework. In this thesis, the numerical
solver based on the Reynolds-averaged Navier-Stokes (RANS) equations is briefly
described. The drag decomposition methods, including a novel correction to the
induced drag based on an objective vortex sensor, are presented and applied for
the drag breakdown in inviscid and viscous flows. The adjoint-based optimization
framework is described; particularly, the adjoint principle, the Radial Basis Function
(RBF) mesh deformation scheme, and the optimization strategy. Special emphasis is
also put on the implementation of the various decomposed drag components. Finally,
the proposed approach is applied for the unconstrained and constrained drag mini-
mization of several geometries, namely the DPW-W1 wing, the CRM isolated wing,
and a pair of NACA 0012 profile wings, in subsonic-transonic inviscid and viscous

flows.

v



ABREGE

Ce travail applique plusieurs méthodes de décomposition de trainée a l'intérieur
d’un systeme basé sur la méthode adjointe pour l'optimization aérodynamique de
géométrie. Dans cette these, le solveur numérique basé sur les équations moyennes de
Navier-Stokes (RANS) est brievement présenté. Les méthodes de décomposition de
tralnée, incluant une nouvelle correction de trainée induite se basant sur un détecteur
de vortex, sont présentées et appliquées a des écoulements visqueux et non-visqueux.
Le systeme d’optimization a méthode adjointe est aussi décrit; plus particulierement
le principle adjoint, la méthode de déformation de maillage a fonctions basiques
radiale(RBF) et la stratégie d’optimization. Une emphase spéciale est donnée a
I'implémentation des plusieurs composantes de trainée. Finalement, I’approche pro-
posée est appliquée pour la reduction de trainée non-constrainte et contrainte pour

quelques géométries a l'intérieur d’écoulement visqueux et non-visqueux.
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CHAPTER 1
Introduction

Rising fuel prices and environmental concerns demand multiple strategies to im-
prove fuel efficiency in the aviation industry. To this end, drag prediction and mini-
mization remain important topics in the engineering and aerospace science commu-
nities. The advent of Computational Fluid Dynamics (CFD) as a mature and widely
accepted analysis tool combined with more robust numerical optimization methods
have assisted designers to increase the aerodynamic performance and improve their
understanding of the design space.

CFD drag prediction methods can be summarily divided into two approaches:
near-field, and far-field. Surface integration of pressure and skin friction, also known
as the near-field method, is typically used to predict drag and lift forces from CFD
computations. This method only allows distinction between the mechanical compo-
nents of drag, namely pressure and skin friction drags. However, the far-field drag
decomposition methods, described in [41, 15, 37, 44], allow for phenomenological
breakdown of the drag components (induced, wave, profile), as well as the estima-
tion of spurious drag. This latter feature reduces the drag prediction dependency on
mesh resolution when compared to the near-field approach.

The series of CFD Drag Prediction Workshops [5] held by The American Institute
of Aeronautics and Astronautics (ATAA) serves as a forum where academic and

industry leaders compare tools for aircraft force and moment prediction. The last



workshop, the 5th [2], was held on June 2012 and had over 22 participating teams or
organizations. The geometry studied in the workshop is the Common Research Model
(CRM) which is representative of a modern transonic commercial transport airplane
[3]. Comparison of the participants’ continuum near-field drag estimates shows a
standard deviation of 5.3 drag counts at the finest grid level, which corresponds to
~ 2% of the total drag (1 drag count corresponds to Cp = 0.0001) [29]. This large
discrepancy further emphasises the difficulty of the aerospace community to measure
drag accurately using CFD. Furthermore, at the medium grid level, total drag values
are scattered by more than 25 drag counts (i.e. ~ 10% of total drag); where the
medium grid level represents a typical grid size used for design studies. Employing
the far-field drag decomposition approach, Ueno et al. [41] and Hue et al. [21]
demonstrated that spurious drag can account for 9 drag counts at the coarser grid
level, and 4 drag counts at the medium grid level. Hence the large sensitivity to grid
size and quality raises concerns on the application of CFD for aircraft design.
Aerodynamic shape optimizations are often performed using the near-field drag
prediction method on coarse to medium meshes due to the need to simulate a large
number of cases for trade-studies. The presences of a significant amount of spurious
drag may pollute the optimization process by influencing the design towards an
artificial optimum. In fact, Yamazaki et al. [46] demonstrated through the use of
the drag decomposition that final optimum aircraft shapes were influenced by the

presence of spurious drag within an aerodynamic design optimization study.



Therefore, an optimization process strictly based on the physical components
of drag would remove the influence of the spurious drag contribution, thus, reduc-
ing mesh dependency. More meaningful designs could potentially be obtained at a
substantially lower computational expense. Furthermore, the efficiency of the aero-
dynamic shape optimization could be enhanced by assigning design variables best
suited for each phenomenological component of drag. Such approach could represent
an innovative design tool capable of exploring radically new designs, and allowing
high-fidelity optimization to be used in earlier phases of the design.

Aerodynamic optimization of drag components has been notably investigated.
Recently, Ning et al. [36] used low-fidelity models to perform conceptual studies
of non-planar wings. In the study, the induced and profile drags were estimated
using the panel method with strip theory in addition to approximations for weight,
and stall speed. The author pointed out that the work could be expanded to yield
additional insights: such proposed extensions include considerations for high-fidelity
modelling of transonic drag rise, and airfoil section design.

Hicken et al. [20] used inviscid CFD for the aerodynamic shape optimization of
non-planar wings in subsonic flow. Near-field drag was used to drive the optimization;
winglets and box-wing designs were investigated. The conclusions were limited to
the inviscid subsonic assumption, and thus did not consider viscous and turbulent
effects as well as transonic effects on drag.

Yamazaki et al. [45] used the far-field drag decomposition method and a genetic
algorithm to explore tradeoffs between the wave and induced drags for the design

of airfoils, planform shape, and winglets. The use of physical components of drag



allowed the author to investigate drag-reduction mechanisms. However, a major
drawback of this approach is the large number of computationally costly high-fidelity
CFD simulations required by the genetic algorithm to reach an optimum solution.
Therefore in this work, we propose to employ a gradient based method together
with the far-field drag decomposition approach for the aerodynamic design of air-
craft wings. However, a challenge with gradient-based optimization methods is the
high cost associated with the evaluation of the sensitivity of the objective function
with respect to the design parameters. For problems where the number of design pa-
rameters outweigh the number of objective functions by a large margin, the adjoint
approach provides an efficient technique to evaluate gradients at a relatively low cost.
A major aspect of the work presented in this thesis relates to the derivation of the
gradients (a.k.a. sensitivities) of various far-field drag components using the adjoint
approach and their implementation into a gradient-based optimization framework.
The sensitivities of the various drag components obtained through the adjoint-
based approach could also be used to deepen the understanding of the impact of
various design parameters, such as wing planform and winglet design parameters, on
the aerodynamic components of drag. Exhaustive studies on the response of each
drag component could be performed, and their sensitivities used by designers to gain

insights on the design space.



1.1 Contribution and Thesis Overview

The goal of the current work is to develop and demonstrate gradient-based op-
timization through the adjoint approach using various decomposed components of
drag. The main contributions presented in this thesis are: the definition and val-
idation of a @Q-criterion based correction to induced drag, and the derivation and
implementation of the discrete adjoint solver terms for the far-field drag components
in a high-fidelity adjoint-based optimization framework.

The following chapters are structured as follows. Chapter 2 describes the flow gov-
erning equations and the various drag decomposition techniques. Chapter 3 presents
the adjoint-based optimization framework. Chapter 4 demonstrates drag decom-
position validations. Chapter 5 presents optimization results performed with the
proposed approach, and finally Chapter 6 summarizes the main conclusions of the

thesis and proposes future work.



CHAPTER 2
The Governing Equations and Drag Decomposition

The governing equations and numerical discretization employed in the flow solver
are described in the first section of this chapter. In the following section, different
drag decomposition techniques are discussed along with their implementation.

2.1 The Governing Equations

The conservative form of the 3D compressible Reynolds-averaged Navier-Stokes

equations (RANS) in Cartesian coordinates xy, 2, and x3 are described, using Ein-

stein notation, by
8w 8fl 8fv7i

E + E)x, - 8@ =0 in V, (21)

where the state vector w, inviscid flux vector f; and viscous flux vector f, ; are defined

as,
_ P _ _ P ] | 0 ]

pu1 pu;ty + poii Tij0i1

W= puy |, fi=| puus+pds |, fi= 7032

pu3 puU3 + pos3 73 0i3
| pE ] | pEu; +pu; | | T+ k:g—i |

The density, velocities, Kronecker delta function, the total energy, and viscous stresses

are respectively denoted as p, w;, 0;;, E, and 7;;. The total energy is given by



E=c+ %(uluz) The pressure p is determined by the equation of state

p= = | £~ 0.

where 7 is the ratio of specific heats. Steady state solutions are considered in this
study. For the inviscid solutions presented in this thesis, the viscous fluxes are set to
zero assuming adiabatic surfaces, and negligible viscous stresses; the Euler equations
are thus solved.

2.1.1 Numerical Discretization

Eq. (2.1) can be represented in semi-discrete form as,

V%—V: +R(w)=0 inD, (2.2)

where V is the volume, R(w) is the residual comprised of the convective and dissi-
pative fluxes, and D is the computational domain. The RANS solver used for this
study uses a cell-centered finite volume numerical scheme with the Jameson-Schmidt-
Turkel (JST) [26] or enthalpy-based convective upwind and split pressure (H-CUSP)
[24] dissipation, and a five-stage modified Runge-Kutta with local time-stepping.
Turbulent viscosity is computed with either Menter’s two equations k-w shear stress
transport (SST) [34] or the Baldwin-Lomax [6] turbulence model. Residual averaging
and multigrid techniques are used to accelerate the convergence.

The reader is referred to the work of Nadarajah [35] and Walther [42] for a more

thorough description of the numerical discretization.



2.2 Drag Decomposition

This section summarizes the near-field and far-field drag decomposition methods.
Alternative formulations of the far-field drag are discussed.
2.2.1 Near-Field Method

Conservation of momentum can be applied on the surface of an aircraft to deter-

mine the near-field drag,

D = // [—png + Taany + Tayny + Ty — p(u — Uso)(u - n)]dS. (2.3)
Sbody
where n is the normal vector with components, n,, n,, and n., 7 is the shear stress
tensor, p the pressure, and u is the velocity vector.
The fifth term reduces to zero due to the no-slip boundary condition (u-n = 0)
thus reducing the expression to the integration of pressure and skin friction on the

surface of the aircraft only.

Dnp = // [—pNy + Tuay + TuyNy + Toan]dS, (2.4)
Shody
The components (pressure and skin friction) from Eq. (2.4) may be physically
interpreted as the mechanical components of drag. This approach is typically used for
drag prediction and minimization due to its simplicity and ease of implementation.
2.2.2 Far-Field Method
As the near-field approach expresses the forces acting on the solid body by the

surrounding fluid, the far-field approach formulates the opposite and equal forces -



(a) Body Forces

_pﬁ

ds

(b) Surface Element

Figure 2-1: Schematic of near-field integration

i.e. the forces acting on the surrounding fluid by the solid body - through Newton’s

third law.



While there are several variations of the final expression for far-field drag com-
ponents, they are all based on the conservation of momentum on a closed surface

(Sff.ext) surrounding the aircraft,

D= // [—png + TaaNy + Tayny + Tooy — p(u — Uss) (w0 - m)]dS, (2.5)
Sff—ext

where Sg oyt is chosen to be far enough from the aircraft surface, and the viscous

stresses are assumed negligible. An arbitrary control volume is depicted on Figure
2-2(a).

A further step is taken to decompose Eq. (2.5) into the various aerodynamic

components of drag (induced, wave, and viscous drag), and a spurious drag compo-

nent introduced by the artificial dissipation associated with the numerical scheme

and the grid coarseness,

D = Dipduced T Pwave + Dyjiscous + P spurious-

The decomposition is achieved by introducing the notion of thermodynamic re-
versible, and irreversible processes. In this section, alternative expressions for these
components are briefly presented. The reader is referred to cited publications [15,
16, 28, 33, 37| for more thorough derivations.
Viscous, Wave, and Spurious Drag
From a thermodynamic point of view, the viscous, wave, and spurious drags
are associated with irreversible processes occurring inside the domain such as shock

waves, viscous and artificial dissipation respectively.
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(a) Far-field Surfaces

(b) & — y slice

Figure 2-2: Schematic of far-field integration
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By reformulating Eq. (2.5) in terms of thermodynamic variables, Destarac [15]

expressed the sum of irreversible drag components as,

Dwave + Dyigcous + Dspurious =~ // [pAT(u - n)]dS, (2.6)
Sﬂ—ext

where the irreversible momentum deficit, Aw, is defined as,

y—1

_ 2 as\ 7 2AH

After approximating Eq. (2.6) and considering only the leading order term, or by

applying a small perturbation as described by [28, 37] to Eq. (2.5), the sum of the

irreversible components of drag can be alternatively expressed as net entropy fluxes

W‘14§o / / (%) p(u-n)dS + O(A?).

Sff—ext

inside the domain,

Dwave + Dyigcous + D spurious — Das =

(2.8)
To decompose the various wrreversible components of drag, the surface integra-
tion on Sg ot may be transformed into a volume integration through the Gauss’s

divergent theorem,

Dwave + Dyiscous + Dspurious = // [pAu(u-n)]dS = _// V.p(Au)udV.
Sff—ext v

(2.9)
Then, the integral over the volume from Eq. (2.9) can then be sub-divided

into regions associated with the various irreversible processes. The shock detection

12



function from Lovely et al. [31] was used to determine the shock region:

> 1. (2.10)

A sensor based on turbulent viscosity is used to determine the boundary-layer
and wake regions, [37]

e
Tviscous = 1+ o > KpiKin, (2.11)

l

where p; and u; are the laminar and turbulent viscosities respectively. The cutoff
constant, ky;, is set to 1.1: such value allows to limit integration to the viscous turbu-
lent region where p; > ;. Ueno et al. [41] studied the effects of the cutoff constant
on the viscous drag for the CRM case and determined that a cutoff value between
0.1 and 10 was providing equivalent results. The spurious drag is thus estimated by
the region of the domain neither associated with shock or viscous regions.
Induced Drag

One approach to express the induced drag is to simply remove the total irre-

versible drag (Eq. (2.6)) from the net momentum balance on Sg_oyt. The induced

drag, or total reversible drag, is thus obtained,

D= - // [Pt — Une — AT)(u- 1) + (p — poc)naldS, (2.12)
Sff—ext
where n, is the z-component of the normal vector n. The z-,y-,and z-components
of the velocity vector u are u, v, and w respectively.
Alternatively, one may consider Sg_..¢ to be defined as shown in Fig. 2-3, where

the upstream (Sg_,,) and lateral (Sg.),¢) boundaries are far from the solid body

13



where u — Uy, v & w — 0 and p — ps. Then, by applying small perturbation
theory [28], an expression for induced drag that only involves integration on the

downstream plane (Sg_q) is obtained,

Poo// v? 4 w?)ds — 22 // (1 — MZ)(u—Ux)’dS + O(A®).  (2.13)

Giles et al. [16] extended Maskell’s contribution [33] and showed that the in-
tegration over the whole crossflow plane can be reduced to an integration over the
wake region, claiming to reduce the error introduced by large computational elements

away from the wake region,

/ (1Q)dS + O(A?), (2.14)
Wake
where 1 and ( are respectively the stream function and the z-component of vorticity
on the wake plane.
Correction to Induced Drag for Tip Vortex Dissipation
Any large vortex will dissipate downstream by the combined effects of the numer-
ical scheme and coarseness of the grid prior to reaching Sg_ ¢ causing drag to shift
from induced drag to irreversible drag. In order to minimize this spurious effect and
obtain a more accurate estimation of induced drag, we propose a novel correction

based on the net irreversible drag produced inside the vortex region by employing

14



Sff-Iat \\\\\\\\

Figure 2-3: Schematic of far-field integration for crossflow plane integration

the Q-criterion [19] to define the tip vortex region.

Svortex

The surface of integration, Syrtex, is obtained through the Q-criterion,

[ —1S*] >0, (2.16)

N | —

Q=

where €2 and S are the vorticity and strain tensors, respectively.
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Lift
Following a similar methodology than for drag, the lift can be alternatively ob-

tained from a wake plane integration as [28],

Luoe = poUie [ [ (w105, (2.17)

SWake

2.2.3 Numerical Implementation

The following various far-field drag components were implemented as a post-
processing step in the flow solver:

1. Wave, viscous and spurious drag as per net entropy flux formulation (Eq. (2.9))

2. Wave, viscous and spurious drag as per Destarac’s momentum deficit formula-

tion (Eq. (2.6))

3. Induced drag as per total reversible drag formulation (Eq. (2.12))

4. Induced drag as per Maskell’s crossflow plane formulation (Eq. (2.14))

5. Induced drag as per total reversible drag formulation with the addition of Q-

criterion based correction (Eq. (2.15))

While items 1, 2, 3, and 5 are relatively straightforward to implement - only the
net flux of state variables across predetermined mesh elements is required; however
the discretization and implementation of Maskell’s induced drag (item 4) is more
demanding. The latter requires a plane slicing algorithm and a tailored Poisson’s
equation solver to determine the stream function (0) on the crossflow plane (Eq.
(2.14)).

The numerical implementation proposed by Giles et al. [16] was used for the

results presented in this thesis. This approach requires the interpolation of the
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structured grid on the crossflow plane to build a 2D unstructured mesh based on a
marching cube algorithm [30]. Then, using Green’s analytical function, the Maskell’s

induced drag can be evaluated using the following discrete summation,

D; = %pm%:;rargdaﬁ, (2.18)

1

dajp = — 75— . log[(y; — ys)® + (2 — 28)°] —log[(y; — ys)? + (2 + 28)°].  (2.19)

The « and § loops in Eq. (2.18) denote looping over the triangular cell element
centroid. The j summation of Eq. (2.19) is performed over the three nodes of the

triangular cell . The circulation I'; around a triangular mesh element is defined as,

3
L= ) (@ Ay+w'Az) =) (0" Ay + " Az);, (2.20)
edges Jj=1

where 7" and w* are the average velocity components on the edge of a cell element.

The superscript * denotes the crossflow velocity components defined as,

v" = wcosa —usina,

wt = w,

where u, v, w are the velocity components. The discrete expression for circulation
described in Eq. (2.20) echoes the Green’s theorem stating that the area integral of

the vorticity is equal to the circulation around the boundary of an arbitrary area C,
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/ CdA = j{u-dS. (2.21)
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CHAPTER 3
Optimization Framework

This chapter discusses the adjoint approach, the mesh movement scheme, and the
optimization strategy. These components contribute to the optimization framework
used for the results presented in later chapters.

3.1 Sensitivity Analysis via the Adjoint Approach

The adjoint approach, introduced by Pironneau [39] to study elliptical partial
differential equations and extended to transonic flow by Jameson [25], procures the
gradient of any objective function independently of the number of design variables by
solving the adjoint system. A gradient-based optimization based on this approach
is thus more efficient when compared to methods relying on more classical means
of computing those sensitivities (i.e. finite-difference and complex step). The gain
is particularly sensible when high-fidelity models are used. Designers have explored
several combinations of objective functions and constraints to seek for the best aero-
dynamic efficiency allowed in prescribed design spaces. The following presents details
on the derivation of the adjoint based sensitivities.

Consider an objective function, I(w,x,), to be minimized, where w is the vector
of the conservative flow variables, and x,, are the geometry control points that define

the surface. The residual of the flow solver, which is a function of the conservative
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flow variables, w, and control points, x,, equals to zero for a well converged solution,
R(w,x,) = 0. (3.1)

The gradient of the objective function, I(w,x,), with respect to the control points,

X,, is obtained by defining the Lagrangian function
L(w,x,, %) = I(w,x,) + " R(w,x,). (3.2)

The sensitivity of the Lagrangian function with respect to the design variable vector

can be expanded as,

ow dx, 0x,dx,

ﬂ B ﬂdw ol dx, +¢T OR dw OR dx,
dx, Owdx, 0x,dx, ’

where the volume mesh points, x,(xs(x,)), and the surface mesh points, x;, are func-
tions of the geometry control points, x,. To eliminate the flow variable sensitivities,

we may, 1% rewrite the expression as

(3.3)

dx, ow ow | dx, 00X, Y 0%, dX,

ar o1 | R pdw 4O L OR X, | dx,
dx,’

dx,,

where i
Xs

is the mesh sensitivity. Finally, one may solve for the Lagrange multipliers

(") such that the first term of the right hand side of Eq. (3.3) is zero,

oI OR
[@_w + ’/’Ta_w] = 0. (3.4)

The adjoint system of equations (Eq. (3.4)) are derived by hand and solved with the
same five-stage modified Runge-Kutta scheme as that employed for the flow solver.

The discrete adjoint approach is used [35] for the results hereby presented. The
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gradient expression finally simplifies to

dL [az OR dxv] dx, (35)

dx, |0x, + Ox, dxs | dx,

The final formulation of the gradient shown in Eq. (3.5) thus only depends on

the adjoint solution (i.e. the Lagrange multipliers 1/)T), the sensitivity of the resid-

ual with respect to the volume mesh points(g%), the mesh sensitivities (ZZ), and

the parametrization sensitivities (%) The latter three sensitivities are relatively
cheap to obtain as they are typically determined either analytically or through an
automatic-differentiation procedure. Therefore, the only significantly costly term to
evaluate is the adjoint solution which cost is comparable to a flow solution.

An important feature of the adjoint approach is that the cost of gradient evalu-
ation is practically independent of the number of design variables. This is a consid-
erable advantage over finite-difference or complex step approaches for which cost is
proportional to the number of design variables.

3.2 Radial Basis Functions (RBFs) Mesh Mover

A meaningful optimization calls for an efficient and robust mesh deformation
scheme to ensure mesh quality is maintained during the optimization process. In
this study, a mesh deformation scheme based on Radial Basis Functions (RBFs) is
employed. This scheme has demonstrated large deformations while maintaining grid
orthogonality at the surface [40]. Figure 3—1 shows RBF points on the surface mesh
of the Common Research Model (CRM) geometry defined by the Fourth ATAA Drag
Prediction Workshop [3]. Figure 3-2 shows ensuing planform deformation to the

initial grid.
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Figure 3—1: RBF points on baseline CRM geometry for a structured grid

RBF's are used in many applications to interpolate scattered data. They can
be used in statistics, fluid-structure interactions, neural networks, and in this case
mesh deformation. General theory of RBFs can be found in the books Radial basis
functions [11] and Scattered data approximation [43].

The displacement of a volume mesh point located at x using the RBF interpo-

lating function is defined as,

Nyp

s(x) = Zamﬁ(llx—xnll), (3.6)

where N,, is the number of RBF points, a; are coefficients, and ||x — x,,|| is the
Euclidean distance between point, x, and the RBF point, x,,. The coefficients are
solved to satisfy the condition that the interpolating function recovers the known dis-
placement at the RBF points x,.. The basis function used in this study corresponds

to Wendland’s C? [14].
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(a) Initial and deformed geometry

(b) Sample mesh

Figure 3-2: Example of planform deformation for CRM geometry: initial (blue) and
deformed (red)

Eq. (3.6), can be conveniently expressed as matrices when considering the entire
set of mesh points. First, the coefficients, «; from Eq. (3.6), must be solved for x,y

and z coordinates such that the known displacements at the RBF points, Ax,., are
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recovered

Ax, = Ma, (3.7)

and the displacements of the volume mesh points Ax, can then be expressed as

Ax, = Aa = AM 'Ax,, (3.8)
qulT'l ¢7'17'2 e valrl valrg
where M = ¢r2r1 ? A= ¢v2r1 ’ and
NrpXNrp ' ) Nyp X Nrp

Gu,r; Tepresents ¢(||x,, — x,,||/SR), the basis function between volume point v; and
RBF point r;, N,, is the number of volume points, SR is the support radius, and
Ax, is the vector of RBF point displacements. An RBF interpolating function must
be solved for every coordinate direction, x, y, and z.

The final gradient expression as presented in Eq. (3.5), requires the mesh sensi-

dx,,
dxs *

tivity term, For the RBF mesh deformation scheme employed; Eq. (3.5) can be

expanded to,
dL ol 7 OR dx, dx, | dx;

dx, B 0x, Ox, dx, dx, | dx,

(3.9)

dxy
dx,

represents the RBF mesh sensitivity, while 4 is a Nypx Ny

In the above equation, dx.

matrix that maps the designated RBF surface mesh points to all grid points on the

surface. In block form it can be represented as

dx, Iy,
= , (3.10)

0
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where Iy, , is an identity matrix of size

N,

Tp-*

Lastly,

dxs
dxp

is the sensitivity of the

surface grid points to each control point and is a vector of length, Nj.

The mesh sensitivities can be derived from Eq. (3.8). Then, the gradient of Eq.

(3.9) is simply expressed in each coordinate direction as,

dL oI + OR dx, | dx

— — AM 1= 2 3.11
dx, O0X,4 ¥ 0x, dx, | dx,’ (3.11)
aL o1 LoR . _.dx |dy,

— — AM™! 3.12
iy, |y, ¥ o™ x|y, (3.12)
dL  [oI  LOR~_ . dAZ, dx, |dz

- - Y, i e 3.13
dz, 0z ¥ 0z, dAz, dx, | dz,’ (3.13)
Z,

where the term is due to a scaling in the spanwise z-direction to constraint the

Zy

points along the symmetry-plane. The reader is referred to Walther [42] for a more
thorough description on RBF mesh deformation and its implementation within the
structured multiblock flow solver and adjoint based framework used in this thesis.
3.2.1 Application to the Aerodynamic Components of Drag

The derivation of the discrete adjoint source terms and gradient contributions
associated with the different components of drag were derived and implemented to
the adjoint and gradient computation following the methodology of Nadarajah [35].
To this end, the derivatives with respect to discrete flow state variables, and the

discrete mesh points are evaluated for the discrete form of each drag components

presented in Chapter 2.2, and implemented into the discrete adjoint solver.
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3.3 Optimization Strategies

The following general optimization problem may be considered,

min  I(x,) w.r.t.x, € ®" (3.14)
subject to  ¢j(x4) =0,j=1,....,m4 (3.15)
Cj(x4) > 0,7 =1,...,mq, (3.16)

where I is the objective function, x, the design variables, ¢; the equality constraints,
and ¢; the inequality constraints. A sequential-quadratic programming (SQP) op-
timization framework is employed to solve the optimization problems presented in
this thesis. A considerable advantage of such framework is that, by introducing a
Lagrangian function (L(Xs,A) = I(xs) — ATc(x,)), the constraints can be directly
included into the design problem. Taking the derivatives of the Lagrangian function,

the first-order Karush-Kuhn-Tucker (KKT) conditions can be expressed as,

OL VI(x,) — A(x,)')A
Fr(Xa, A) = 8;: = o) = Alxe) =0, (3.17)
N c(Xa)

where A(x,)" = Ve(x,). The SQP framework described in Gill et al. [17] is used
to solve the first-order KKT conditions. The search direction and step length are

respectively determined through a quasi-newton Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method and a general linesearch technique. The SNOPT [18] software pack-

age has been employed.
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CHAPTER 4
Drag Decomposition Validation

This chapter presents the application of the various drag decomposition alterna-
tives presented in Chapter 2. Mesh refinement studies are performed on different
geometries at various flow conditions; the drag decomposition alternatives are com-
pared and discussed.

4.1 DPW-W1 Wing

In this section, the implementations of Kusunose’s irreversible drag components
(Eq. (2.8)) and Maskell’s inviscid drag formulation (Eq. (2.14)) are used and com-
pared to drag calculations using the near-field method. The influence of key pa-
rameters of the drag decomposition (shock margin, and wake plane location) is first
studied. Then, drag polars of the DPW-WT1 isolated wing configuration are presented
to investigate the validity of the drag decomposition techniques. Aerodynamic shape
optimization will be performed on the same geometry in Section 5.2.

A set of three structured C-grid’s were used: coarse (192 x 32 x 32), medium
(192 x 48 x 48), and fine (256 x 48 x 64). The DPW-W1, a test case from the Third
ATAA Drag Prediction Workshop [4], is available in the public domain. Reference
quantities are S..; = 290.322mm?, C,.; = 197.556mm?, X,.; = 154.245mm? and
semispan b/2 = 762.0mm. The flow conditions proposed by the workshop are at a
Mach of 0.76 (M = 0.76) and lift coefficient of 0.500 (C, = 0.500).
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In Figure 4-1, the coefficient of pressure on the upper surface along with the
associated shock region volume (Vipoer) obtained from Eq. (2.10) are presented for
the fine grid. As expected, the shock region volume follows closely the strong shock
observed at the upper surface of the wing.

Figure 4-2 depicts a sample residual convergence of the flow solver; convergence
level approaching machine accuracy (107!) is obtained. A similar level of conver-
gence is obtained for all conditions studied in this section.

4.1.1 Shock margin

While the shock detection function effectively locates shocks in the domain, it
does not always capture all the entropy generated by the shock itself as well as all of
the variations, or oscillations, in the CFD solution at the shock vicinity inherent in
the flow solver. An extension of the original shock region, obtained where fgnocr > 1,
is studied in this section.

The strategy employed consists of extending the shock region in the streamwise
and vertical directions at the boundaries by a certain number of cells, denoted as the
shock margin. A similar strategy is presented in Ueno et al. [41]. Figure 4-3 shows
the wave drag for shock margin varying from 0 (the original shock region) to 12 for
the three levels of grid at C, = 0.500 and M = 0.76.

The wave drag initially drops and stabilizes around 8 drag counts (1 drag count
Cp = 0.0001) when a shock margin of 6 is reached. Results presented in the next
sections are for a shock margin of 8 to allow for some additional extent in the case

where stronger shocks might be present.
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(a) Pressure distribution

(b) Shock region (‘/shock: for fshock > 1)

Figure 4-1: DPW-W1 at M = 0.76 and C'p, = 0.500 for fine grid

4.1.2 Location of the wake survey plane
The induced drag is computed on a plane located aft of the model and perpendic-

ular to the freestream flow direction. To be physically consistent, the downstream
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Figure 4-2: DPW-W1 at M = 0.76 and C7, = 0.500: Residual convergence of flow
solver for medium grid (||R,||; depicted)

boundary of the volume integration must be comprised of the same wake survey
plane. As the wake survey plane is moved aft, a shift from induced drag to entropy
drag is typically observed as trailing vortices dissipate downstream due to numeri-
cal diffusion [13, 22, 41]. Figure 4-4 shows the induced drag (Cp,_,), entropy drag
(Cp,.), and total drag (Cp, , + Cp,,) from the far-field drag decomposition as a
function of the wake survey location. The plane aft position, x,qke, is normalized
with the tip chord of the wing, cy,.

For the medium and fine grids, induced drag is consistently shifted to entropy
drag up to a wake plane location of Zyqake/ctip = 2.5. This is shown by their sum,
the total drag shown on Figure 4-4(b), remaining constant over the interval while
induced drag is diminishing by more than 1 drag count. Results for the coarser grid

are less consistent; the total drag drops by more than 2 drag counts over the studied
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Figure 4-3: DPW-W1 wave drag with respect to shock margin at M = 0.76 and
Cr, =0.50

plane locations. This behaviour may be attributed to the poor resolution of the flow
features at the wake obtained with the coarse grid.

Figure 4-4(b) also shows that as the grid is refined, the difference between total
drag from the far-field method and the near-field drag (shown with the dotted lines)
is reduced; the fine grid showing a total drag difference of less than a drag count
over the studied range of wake plane locations. The fine grid allows the flow features
to be more accurately resolved downstream, thus allowing valid drag measurements
at farther wake plane locations. A wake survey plane location corresponding to

Twake/Ctip = 2 1s employed in the later sections.
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Figure 4-4: DPW-W1 drag components versus wake survey plane station
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4.1.3 Drag polars

In Figure 4-5(a), the results from the far-field drag decomposition method are
shown along with total drag from the near-field method. A good agreement between
the wave and induced drags for the coarse, medium, and fine grids is observed. Wave
drag differs by less than 1 drag count over the grids studied. The induced drag
only differs by ~3 counts between the coarse and the fine grid level; the maximum
difference is observed at the largest lift coefficient. The spurious drag reduces with
mesh resolution.

As highlighted in Figure 4-5(b), a difference of up to 15 drag counts between
the fine and coarse meshes is observed for the near-field method. The far-field ap-
proach is much less mesh dependent as the sum of the physical drag components

(wave+induced) only shows a difference of 3 counts.

33



] ; ; % ; ; Cp,, coarse
& - (), medium
O 4f oy e Tt o fine i
v
¥V (p coarse
: ‘ o : e -e (, medium

B—8 (), fine

Lift Coefficient

¥V (), coarse
02 W M oyl le-e ¢ medum ||

B8 (), fine

 m N : : : : v-v ¢p,,,, coarse
0.1f-F - TOME gy e .
: : : : : o -8 C,,Ww_ medium
‘.'. —a CDW,,,‘. fine
0 0 L \' L L L L L L L
o 20 40 60 80 100 120 140 160 180 200
Drag coefficient (counts)
(a) Drag decomposition results
0.6 T T T T T T T T T
LY
O e T D S S B .

Lift Coefficient
o
w
T

Cp,, coarse
0.2 ... Yo ® -® (, medium i
." 8 (, fine
ol 4. ) VI . ¥V (C,+Cp  coarse
I. ® @ (),+Cp medium
- ‘ ‘ ‘ ‘ B8 (,+C, fine
v

i i 1 I I n n n
0'00 20 40 60 80 100 120 140 160 180 200

Drag coefficient (counts)

(b) Total drag results

Figure 4-5: Drag polars for DPW-W1 wing at M = 0.76
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4.2 NACA 0012 Wing

This case represents the most complete of all discussed in this chapter. A thor-
ough grid refinement study is performed at subsonic and transonic conditions. The
three formulations of far-field induced drag are compared: Maskell’s (Eq. (2.14)),
Destarac’s (Eq. (2.12)) and @Q-criterion corrected induced drag (Eq. (2.15)). Sec-
tions 5.3 & 5.4 present aerodynamic shape optimizations for the same geometry and
conditions studied in this section.

The baseline geometry is a rectangular wing that uses a NACA 0012-modified
profile to have a sharp trailing edge. The description of the geometry can be found
on the AIAA Aerodynamics Design Optimization Discussion Group (ADODG) case
3 [1]. The actual semispan length of the wing is 3.06¢ where ¢ is the chord; the wing
is rectangular over a semispan of 3.0c and enclosed by a wing-tip cap over the last
0.06¢. The wing-tip is comprised of a simple surface revolution based on the modified
NACA 0012 profile. The reference semi-span area and semispan length are defined
as 3c¢? and 3c respectively.

A set of inviscid grid refinements comprising of 4 levels - supercoarse (baseline),
coarse (x2° refinement), medium (x3?), and fine (x4?) - were used to discretize the
flow domain. The grids were generated using the ICEM-CFD [23] meshing software.
The grids are described in Table 4-1. A C' — O blocking topology is employed and
the grids are refined up to 2 chords downstream to allow proper resolution of the

trailing vortices.
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Table 4-1: Grid Dimensions for NACA 0012-modified Wing (in root-chord units)

Level Blocks Grid Size Spacing Far-Field
(Nodes)  Off-wall Surface* Distance
Supercoarse | 116 256,940 0.002 0.037 30
Coarse 116 1.82 M 0.001 0.019 30
Medium 116 5.89 M 0.00067  0.013 30
Fine 116 13.67 M 0.0005 0.009 30

* Estimated with = \/Swet/Ns, where Syet and Ny are the wing wetted area and
number of surface nodes respectively.

Figure 4-6 shows the structured grid elements on the wing surface and symmetry

plane for the supercoarse grid. Particular attention was given to produce a smooth

mesh at the wing-tip cap to ensure proper resolution of the wing-tip vortices.

(T
i
“‘\“t‘““m

Figure 4-6: NACA 0012 Wing - Supercoarse Grid (enclosed top-right: zoom at wing-
tip cap)

4.2.1 Inviscid Fully Subsonic - M = 0.50
Inviscid subsonic flow is first studied to investigate the various induced drag

formulations; the only physical component of drag at such condition being induced
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drag. The intent of this case is to observe and comment on any difference between
the various formulations of far-field induced drag.

Figure 4-7 depicts the flow residual convergence for the 4 grid levels at M = 0.50
and Cp = 0.375. Convergence level approaches machine accuracy (107'¢) for all

grids. Similar levels of convergence are reached for all flow conditions studied.
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Figure 4-7: Untwisted NACA 0012-modified Wing: Residual convergence of flow
solver on 4 grid levels at M = 0.50 and C, = 0.375 (|| R,||1 depicted)

Figure 4-8 shows the tip vortex and the lift distribution yielded by the coarse
and fine grids at M = 0.50 and Cp = 0.375 corresponding to the flow condition
of ADODG case 3 [1]. While little discrepancy is qualitatively observed in Figure
4-8, there is a significant variation in near-field drag between the two grid levels (~4
drag counts). Figure 4-9 shows the volume generated by the Q-Criterion sensor;

as expected, the vortex sensor appropriately captures the tip vortex (Figures 4-8(a)
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(b) Tip Vortex for Fine Grid
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Figure 4-8: Untwisted NACA 0012-modified Wing at M = 0.50 and C'p = 0.375 -
Coarse and Fine Grids

38



& 4-8(b) for 3D streamlines at the wing tip). At this point, it may be important
to re-emphasise that the @)-Criterion correction to the induced drag measures the
irreversible drag generated inside the vortex volume and reassigns it to the induced
drag. The assumption made is that the dissipation of the tip vortices, an irreversible
process, is essentially due to numerical effects. For inviscid condition such as the one

studied here, this assumption is particularly correct as viscous dissipation is absent.

Figure 4-9: NACA 0012 Wing - Sample @-Criterion volume on Medium Grid for
M =0.50 Cr, =0.375

The drag polars for the far-field drag components, and near-field drag are depicted
in Figure 4-10(a). The implementation of Destarac’s irreversible drag components
(Eq. (2.6)) is employed. The various alternatives for induced drag - Destarac’s Cp,,
crossflow plane integration Cp,_,,, and Destarac’s with Q-Criterion correction Cp, -
are shown in Figure 4-10(b). Figure 4-10(a) shows the spurious drag diminishing
with grid refinements down to <1 drag count at the medium grid level. Spurious
drag with the supercoarse grid exhibits non-trivial behaviour at low lift coefficient:
the spurious drag measured is negative. The near-field drag yields similar negative

drag values at low lift coefficient for the same grid. Considering that the wing is
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symmetrical and, hence, drag should approach zero at zero lift, such behaviour is
most likely attributable to numerical errors. All far-field induced drag formulations,
on the other hand, consistently produce zero drag at zero lift condition.

Figure 4-11(a) compares drag polars for Cp, , and Cp,,. The near-field drag
shows a large variation with mesh sizing while the Cp,_,, varies by less than 2 drag
counts. At the medium grid level, both polars for the medium grid are very similar
(less than 1 count difference).

The mesh refinement for drag and span efficiency e at C, = 0.375 are shown on
Figure 4-11(b). The span efficiency is defined as,

S

= 4.1
WAROD’ ( )

e

where AR is the wing aspect ratio. Considering that the rectangular wing hereby
studied does not produce an elliptical lift distribution (see Figure 4-8(c)), its span
efficiency is expected to be below 1.0, the theoretical optimum for planar wings.
All formulations of the induced drag show a reduced mesh dependency over tra-
ditional near-field drag (~2 counts variations for induced drag formulations versus
~10 counts variation for the near-field drag). Moreover, the novel Q-criterion based
correction allows for more consistent grid refinement convergence; by the medium
grid both, Cp, , and Cp,,., differ by less than 1 drag count. From the 3 induced
drag formulations studied, the Q-criterion based induced drag is the only to produce
a span efficiency value below 1.0 (at ~0.98). It thus appears that the Cp, ,, and

Cp, may still be underpredicting drag even at the fine grid level.
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Figure 4-10: Drag Polars for NACA 0012-modified Wing at M = 0.50 (Part I)
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Results at M = 0.50 thus suggest that Cp, , is the most accurate and least mesh
dependent of the three far-field induced drag formulations hereby studied.
4.2.2 Inviscid Transonic - M = 0.70

Using the same set of grids, a similar exercise was performed at a transonic
speed, thus adding wave drag to the physical drag breakdown. One induced drag
formulation, Cp,_,, is presented in this section for simplicity. Results are shown on
Figures 4-12 and 4-13.

As presented in Section 4.1, the region defined by the shock detection function
presented in Eq. (2.10) typically fails to capture all the generated entropy and any
numerical oscillation at the vicinity of the shock. Again, a strategy similar to Ueno et
al. [41] was used to extend the shock region originally defined by the shock detection
function. This allows for a more consistent wave drag calculation, as shown by
Figure 4-12(a), for a shock region extension of 5 or more. An extension to the shock
region corresponding to 6 cells was selected for wave drag values presented in Figures
4-12(b), 4-13(a), and 4-13(b), and the optimization results presented in Section 5.4.

Figure 4-12(b) shows the near-field drag along with the far-field components of
drag. The spurious drag again diminishes with grid refinements to below 1 drag count
at the medium grid level. Wave drag (shown in pink) rises sharply for C greater
than 0.3 as the larger angle-of-attack accelerates the flow on the upper surface of the
wing and creates a shock wave (pressure contours for C;, = 0.36 are shown in Section
5.4). Wave drag differs by less than 1 drag count between the coarse and medium

grids. As it was the case at M = 0.50, Cp,_, shows very little mesh dependency (~
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1 drag count). The near-field drag on the other hand varies by approximately 5 drag
counts between the coarse and medium grids.

Figure 4-13(a) compares the drag polars of the sum of non-spurious far-field drag
components (i.e. Cp, , + Cp,) and the near-field drag. Figure 4-13(b) shows the
grid convergence for the total drag and the span efficiency at an angle-of-attack of
3.5%; such angle-of-attack produces a lift coefficient approaching C7, = 0.375 studied
in Section 4.2.1. As it was observed at M = 0.50, the far-field method is shown to be
much less mesh dependent. The span efficiency calculated with respect to Cp,_,, is
very similar to that obtained at M = 0.50 (i.e. 0.98) which is expected considering
that span efficiency is theoretically independent of Mach and lift condition.

The implementation of the far-field drag decomposition is hereby shown effec-
tive in inviscid transonic conditions. Moreover, it is shown to be much less mesh

dependent than the near-field approach.
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4.3 CRM Isolated Wing - M = 0.84 C}, = 0.500

The CRM isolated wing geometry is described by ADODG case 4 [1]. This ge-
ometry corresponds to the isolated wing of the CRM wing-fuselage geometry defined
by the Fourth ATAA Drag Prediction Workshop [3]. A pair of grids with a C' — O
blocking topology was generated - with 837k and 6.19M nodes - to discretize the flow
domain. The grids were generated using the ICEM-CFD [23] meshing tool. Fully
viscous flow is studied.

Figure 4-14 shows a comparison of the pressure coefficient distribution for both
grids. Little discrepancy is observed and the shock location is very similar for both
grids, indicating that the resolution of the coarse grid may be sufficient for optimiza-
tion purposes (design studies are carried on the coarse grid in Section 5.5). Figure
4-17 depicts flow residual convergence on the coarse grid; residual convergence down
to ~ 1077 is observed.

Pressure coefficient contours and flow streamlines for the medium grid solution
are depicted on Figure 4-15. A strong shock is observed on the upper surface of the
wing; the shock spans from the wing root to about 2/3 of its span. Surface streamlines
show no significant zone of separation, and the streamlines at the rounded wing-tip
cap demonstrate proper resolution of the tip vortices.

A shock extension of 5 was used based on the shock extension sensitivity high-
lighted in Figure 4-16(a). Figure 4-18 shows sample viscous and shock regions for
a shock extension of 5 on the coarse mesh. The drag values obtained are compared
to published results from Lyu et al. [32] (MDO Lab at the University of Michigan),

and Carrier et al. [12] (ONERA, France). The coarse and medium grids provided by
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Figure 4-15: Contours of coefficient of pressure and Streamlines on the CRM wing
geometry for M = 0.85 and C, = 0.500 for Medium grid

the MDO Lab at University of Michigan were also solved using McGill University’s
Computational Aerodynamics Group solver (U.Michigan Grids/McGill Solver). Car-
rier et al. [12] provided decomposed components of drag using ONERA’s ff72 drag
decomposition tool. Several drag components are compared in Table 4-2. More work
will be done to validate the implementation of the far-field drag components in vis-
cous flow. Supplemental cases will be studied including the full CRM wing-fuselage

configuration where more detailed mesh refinement studies will be performed.
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Figure 4-17: CRM wing geometry for M = 0.85 and C'p, = 0.500: Residual conver-
gence of flow solver for coarse grid (||R,||; depicted)

Figure 4-18: Sample Viiscous, Vsnoer (for shock extension of 5), and wake integration
plane on the CRM wing geometry for M = 0.85 and C, = 0.500 - Coarse grid

Table 4-2: CRM Wing Geometry Drag Components (in counts)

| Cpye Cp, Cp, Cp, Cbp, |
Coarse 2189 1570 62.0 96.4 189
Medium 207.8 149.2 585 97.6 14.6
ONERA [12] | 205.0 145.3 59.7 95.9 8.5
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CHAPTER 5
Optimization Results

Adjoint-based optimization using the far-field drag decomposition method is
demonstrated on increasingly complex optimization cases in this chapter; several
of the cases hereby presented refer to Bisson et al. [7, 8, 9, 10]. The main objective
is to demonstrate the effectiveness of the employment of the drag decomposition ap-
proach for shape optimization. To this end, the effectiveness of the approach is also
compared to optimizations driven by the standard near-field drag. Cases studied
are increasingly complex. Their progression attempts to; first, minimize each drag
component in isolated conditions and, second, perform optimization in conditions
where different physical components are produced.

Particular attention is given to ADODG case 3 [1] as it represents a benchmark
case of the aerodynamic shape optimization community. Furthermore, several in-
duced drag formulations are presented in this thesis (including the novel Q-criterion)
and this case allows the study of their relative performance in an adjoint-based opti-
mization framework. Sensitivity of the optimization process with respect to the grid
sizing is also discussed. Finally, ADODG case 4 (viscous) is presented for near-field
drag driven optimization only, but future work will expand the investigation to the

far-field drag components.
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Table 5-1: NACA 0012 swept wing planform parameters

Sref ALE Croot A b/2
1.506m? 30° 0.8059m 0.562 1.1963m

5.1 NACA 0012 Swept Wing Wave Drag Minimization
For a simple NACA 0012 profile wing at zero-lift inviscid condition, unconstrained
aerodynamic surface optimization was conducted. The optimization problem is posed

as,
minimize Cp wrt. z € R",

where the near-field drag (Cp, ), or the wave drag (Cp,,) from Kusunose’s formu-
lation (Eq. (2.8)) are used as the objective functions. The focus of this case is to
explore the ability of the proposed approach for a simple shock mitigation problem: a
more complex shock mitigation problem follows in Section 5.4. Given the simplicity
of the optimization problem posed, a simple steepest descent optimization strategy
is employed in this section.
5.1.1 Geometry and Parametrization

A uniformly tapered and sweptback wing using the NACA 0012 airfoil cross-
section was used as the initial geometry. The planform reference parameters are
defined in Table 5-1.

The wing surface is parametrized using a set of 14 B-spline control points in the
streamwise direction and 12 B-spline control points in the spanwise direction (i.e.,
14 x 12 control points). The set of control points is depicted on Figure 5-1. The

parametrization and associated sensitivities are obtained using CAD engine pyPSG
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[27]. The computations are performed over a structured C-grid of 198 x 48 x 48. For
Mach 0.83 (where a moderate strength shock is observed on the wing) and zero-lift
condition (i.e., at @ = 0.0°), a shock across the wing span is produced (see Figure
5-4). In the absence of lift, the only components of drag for the case studied are

wave and spurious drags.
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Figure 5-1: NACA0012 Swept Wing: Control points (black) of B-Spline parametriza-
tion
5.1.2 Results

Residual convergence of the flow and adjoint solvers is depicted on Figure 5-2;
where both figures demonstrate convergence levels approaching machine accuracy
(10719).

Since the only physical component of drag acting is wave drag, the two approaches
are expected to produce similar results. Table 5-2 shows the initial and final drag
coefficients. The optimization driven by the wave drag fully removes the wave drag
Cp, and produces a total drag Cp,, within 1 drag count of that produced by the
optimization driven by the near-field drag. The evolution of near-field and wave
drags through the design iterations are depicted on Figure 5-3. It should be noted

that, for this particular case, the number of design iterations corresponds to the
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Figure 5-2: NACA 0012 Swept Wing: Residual convergence of flow and adjoint
solvers

number of function evaluations, since a fixed step length was employed. The green
curves denote optimization driven by the near-field drag while the blue curves rep-
resent optimization driven by the wave drag. The wave drag approach appears to
outperform slightly the near-field by approximately 1 drag count on both measures
of drag (Cp,, and Cp,). Both optimizations were assumed terminated within 17
design iterations.

The initial and final pressure contours are shown on Figure 5-4. Both meth-
ods successfully removed the pressure discontinuity. Interestingly, each approach
produced a slightly different pressure contour while both produce similar final drag
values. The reason why the two approaches did not yield the exact same design is
yet to be determined and will be as part of a future work.

By definition, the adjoint solution represents the sensitivities of the objective

function with respect to perturbations in the residual. Figure 5-5 shows the contour
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Figure 5-3: NACA 0012 Swept Wing: Drag components versus function evaluations
for adjoint-based optimization with near-field drag and wave drag objective functions

Table 5-2: NACA0012 Swept Wing optimization results for M = 0.83 and C7, = 0.00

CDNF CDAS CDw
Initial Geometry | 0.0022 0.0022 0.0008
Near-Field Design | 0.0016 0.0016 0.0001

Wave Drag Design | 0.0015 0.0015 0.0000

at 84.8% semi-span of the fifth adjoint solution (15 which related to the conservation
of energy) at the first iteration when the wave drag is the objective function. The
variation of the adjoint solution is localized at the shock region boundaries demon-
strating that the optimization will search for design changes that affects the flow in
this region. The adjoint solution does not present any significant variation inside

and well outside of the shock region.

56



INITIAL DESIGN NEAR-FIELD DESIGN MID-FIELD (WAVE) DESIGN

33.3% Semi-Span 82.9% Semi-Span

-05F

0
o
o

""""""" Initial Design
0.5¢ 05} ——— Near-Field Design osh

Mid-Field Design

L L L L L L L L L L L L L L
01 015 0.2 0.2)? 03 035 04 02 0.25 0.1)3( 035 04 0.3 0.35 ><0.4 0.45 05

Figure 5-4: NACA 0012 Swept Wing: Comparison of pressure contours at M = 0.83
and C';, = 0.0 for adjoint-based optimization with near-field drag and wave drag
objective functions

For the wave drag optimization results presented in this thesis, the adjoint and
gradient source terms were obtained by linearising the surface integration over the
shock volume defined in Eq. (2.6). However, the linearisation did not explicitly con-
sider the shock detection function that defines the shock volume. It was preliminary
assumed that such simplification would have a insignificant effect on the gradient
accuracy. For future work, an effort to include the linearisation of the shock detec-

tion function in the adjoint and gradient derivations will be considered which could
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potentially lead to more accurate gradients. A possible alternative is to define an
expression for wave drag that includes the shock detection function. If implemented,
the assumption made as part of this work may be verified.

Nevertheless, this section demonstrates the effectiveness of the proposed approach
for shock mitigation in inviscid flow; while sections 5.4 and 5.5 demonstrate more
complex cases where this case is repeated in inviscid and viscous flows with the
addition of constraints. Industrial relevant cases will be considered as part of future

work.

Figure 5-5: NACA 0012 Swept Wing: 5 adjoint contour at 84.8% semi-span for
wave drag as objective function
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Figure 5-6: DPW-W1 wing B-spline parametrization

5.2 DPW-W1 Wing Induced Drag Minimization
This section shows the induced drag minimization in both subsonic and transonic
conditions. The constrained optimization problem examined in this section is posed

as,

minimize Cpwrt zeR”

subject to 1CL = ClLpyyge,| <0.005,

where x denotes the design variables. Optimization driven by near-field coefficients
(Cpyps CLyp) and far-field coefficients (Cp,—w, Cr,,,.) are compared. This case
is the only in this chapter that presents a drag minimization optimization problem
driven by Maskell’s induced drag formulation (Eq. 2.14).
5.2.1 Geometry and Parametrization

The DPW-W1 wing was used as the initial geometry, and parametrized with
18 x 16 B-spline control points. Drag decomposition for the initial geometry was
assessed in Section 4.1. Each spanwise set of control points is free to rotate about
the fixed trailing edge, i.e. the design variables are the effective angles-of-attack at

each of the 16 spanwise set of control points.
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The medium grid presented in Section 4.1 is used as it provides the best com-
promise between accuracy and computational cost. Figure 5-7 depicts a sample
convergence plot of the adjoint solver residual for a transonic condition presented in

Section 5.2.3: final residual approaches machine accuracy (107'6).

10

10-1 L

10-3 L

10-5 L

10-7 L

1, -Residual

10-11 L

10-13 L

1078 i i i i
0 200 400 600 800 1000

Iterations

Figure 5-7: DPW-W1 at M = 0.76 and C;, = 0.500: Sample residual convergence
of adjoint solver for medium grid (|| Ry, ||1 depicted)

5.2.2 Optimization Results for Subsonic Condition

In this subsection, a Mach number of 0.60 at C7,,, ., = 0.400 was used yielding
subsonic flow throughout the domain. Therefore, the only physical component of
drag is induced drag effectively meaning that the near-field drag and the induced
drag driven optimizations are expected to yield similar designs.

Figure 5-8 shows the evolution of lift and near-field drag coefficients for both
approaches. The lift coefficient is maintained well within the prescribed bounds for

the induced drag approach, while the bound is active for the near-field approach.
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Cpyp 1s reduced by 1 to 2 drag counts. The relative improvement of the span
efficiency e, defined in Eq. (5.1), with respect to the span efficiency of the initial
geometry e, was used to evaluate the effectiveness of the different approaches.

Cr

T TARC,’ (5-1)

e

where, AR = b?/S,¢; is the aspect ratio, and b the span. The near-field drag Cp,,.
and induced drag Cp,_, are separately employed to evaluate the span efficiency. The
relative improvement of span efficiency e through the design iterations is shown by the
upper and lower plots of Figure 5-10(b). The green curves denote the optimization
driven by near-field drag, while the blue curves depict the optimization driven by
induced drag. A 2.5% increase in span efficiency is achieved for both optimization
approaches.

The trends for the upper and lower curves of Figure 5-10(b) are similar. This is
an expected behaviour since the only physical component of drag in subsonic flow
is induced drag. Relying on Cp, , to compute the relative improvement in span
efficiency is most notably useful in transonic conditions. In these conditions, the
usage of Cp, , is inappropriate for span efficiency considerations due to the fact that
an amount of wave drag is produced by shock waves.

The span loadings presented on Figure 5-10(a) show that the geometries produced
by both approaches (near-field drag and induced drag minimizations) compare well
against the theoretical elliptical lift distribution from lifting-line theory.

Figure 5-11 shows iso-surfaces of the third and fourth adjoint solutions (corre-

sponding to the vertical and spanwise momentum equations respectively) at the first
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Figure 5-8: DPW-W1 at M = 0.60 at Cp,,,,., = 0.400 - Cp and Cp,, with respect
to design cycle (major iterations steps)

iteration with the induced drag as the objective function. Both figures show that a
perturbation to the tip geometry, results in variations to the surrounding flowfield,
and has the largest effect on Maskell’s induced drag. This behaviour is expected as
the vortices produced at the wing tip are typically stronger.

In conclusion, in subsonic condition, the induced drag driven optimization has
shown similar effectiveness to that demonstrated by the near-field drag. The resulting
designs for both approaches are very similar in terms of span efficiency and lift

distribution.
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Figure 5-9: DPW-W1 M = 0.60 at Cf,,,., = 0.400 - wing pressure coefficient for
initial and final designs
5.2.3 Optimization Results for Transonic Conditions

For the same geometry, constrained optimization of induced drag has been applied
to several transonic conditions, presented in Figures 5-12(a) & 5-12(b), to show the
isolated effects of the induced drag driven optimization in transonic condition. The
objective of this section is to highlight the ability of the proposed approach to threat
each phenomenological component of drag independently, i.e. for this specific case, to
minimize the induced drag without regard to the strength and location of the shock
waves produced. While it may not have industrial need for the design of an aircraft
wing, the ability of the drag decomposition approach to determine how the various
aspects of the wing contribute towards the total drag coefficient may be insightful
for designers.

Figure 5-13 shows the evolution of lift and the variation of the drag components
(ACp,p, and ACp,_, expressed with respect to initial geometry) through the major
iteration steps. Lift is maintained within the bounds, and the objective function

(Cp,_,) is reduced for all conditions; up to 5 counts reduction is observed at M = 0.80
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Figure 5-11: DPW-W1 wing 3 and )4 iso-surfaces for M = 0.60, and C, = 0.400
with induced drag as objective function

& Cp = 0.400. It should be noted that the variation to the total near-field drag
(ACp,, which comprises the sum of induced, wave and spurious drags) does not
necessarily equal the induced drag reduction. In fact at M = 0.76 & Cp, = 0.500,
the induced drag decreases by more than 3 drag counts while the near-field drag
slightly increases. This can be explained by the wave drag rising on the final design
as a collateral effect of the induced drag driven optimization. This further shows the
ability of the proposed method to threat each phenomenological component of drag
independently.

Figure 5-14(a) shows the span loading from the final geometries obtained for all
conditions studied in this section. The relative improvement of the span efficiency
e through the design iterations is shown on Figure 5-14(b) for each condition. The
final span loadings approached the theoretical elliptical lift distribution, and the span

efficiency e is improved by nearly 2.5% to 3.0% for all studied conditions.
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Figure 5-12: DPW-W1 wing initial conditions at subsonic and transonic conditions
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Figure 5-13: DPW-W1 wing - Optimization evolution subsonic and transonic con-
ditions with induced drag as objective function
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5.3 Twist Optimization of the NACA 0012 Wing in Subsonic Inviscid
Flow

To further assess the effectiveness of the proposed approach for induced drag
minimization, the following optimization problem, based on the ADODG case 3 [1],

was posed as,

minimize Cpyp or Cp, or C’DFQ
w.r.t. ¥

subject to: |C'L, — 0.3750] < 0.0001,

where Cp, ., Cp,, Cp,_,, and Cp, are the near-field drag, Destarac’s induced drag,
Destarac’s induced drag with Q-criterion based correction, and the lift coefficients
respectively. The design variable is the twist distribution, ~, about the trailing
edge of the wing. The Mach number is fixed at 0.50, and the fluxes were evaluated
through the JST scheme. The optimization is considered converged when the SNOPT
optimality condition reaches 107% while the design satisfies the lift constraint. A
mesh refinement study was performed in detail for the same geometry in the previous

chapter (Section 4.2).
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5.3.1 Parametrization
The parametrization method used for this particular case relies on a support

spline defined as,

72 (1)
| Scal(t)

where P(t) represents the vector of position (z,y,z), angular rotation about the
spanwise axis (7,), and scaling factor (Scal). This parameterization method was
found particularly interesting to perform large planform deformation of wings using
a limited set of design variables. Figure 5-15 shows an arbitrary deformation of
the Onera M6 wing using such a parameterization; where all 5 dimensions of 4
equally spaced control points along a support spline located at the trailing edge were
arbitrary varied.

Top View

Figure 5-15: Sample deformation on the Onera M6 wing for an arbitrary modification
to support spline control points in all 5 dimensions
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For the particular optimization case presented in this section, only the ~,(t)
dimension is modified through the optimizations and the support spline is placed at
the trailing edge of the NACA 0012 rectangular wing; effectively, the design space
is the twist distribution along the trailing edge. The spline is parameterized using

Bernstein basis functions [38].

Figure 5-16: Baseline NACA 0012-modified Wing Geometry and Parametrization
Spline (Red)

A total of 18 control points are distributed along the trailing edge of the baseline
geometry. The control points are clustered near the tip where the largest twist is
expected. Figure 5-16 shows the baseline wing along with the support spline and
the control points distribution.

The rate of change of twist at the tip was implicitly constrained by attaching
the last two control points, located at z = {3.0,3.06}, to a single design variable as
employed by Hicken et al. [20]. This limits the modifications to the wing-tip cap
thus preventing exploitation of nonphysical separation effects.

5.3.2 Results - Coarse Grid
A sample adjoint residual convergence is depicted on Figure 5-17. The achieved

convergence level is not as good than for the previous cases: the residual stalls at
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10~ approximately. The reason for the premature stalling of the adjoint residual
is believed to be attributable to the resolution of the flow at the wing-tip trailing
edge. This region was particularly challenging for the numerical solver; the maximum

residual was localized to that region.

10

= ('}, =0.3750 - Coarse Grid

10°

10"

102 F

¥, -Residual

10—4 L

10° F

6 i i i i i i i i
1o 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Iterations

Figure 5-17: NACA 0012-modified Wing at M = 0.50 and C, = 0.375: Sample
residual convergence of adjoint solver for the coarse grid (|| Ry, ||1 depicted)

The constrained optimizations for Cp, ., Cp,, and Cp,_, were first performed on
the coarse grid described in Table 4-1. Figure 5-18 shows the SNOPT optimality
condition and the lift coefficient as a function of the major iterations. It should be
noted that for all results presented in this section the number of major iterations
matches the number of function evaluations.

For Cp, and Cp,_,, driven designs, the optimality condition drops below 10~ thus
satisfying the prescribed convergence criteria. For Cp, ., SNOPT fails to bring the

optimality below the predetermined threshold; however, any further function calls

72



10 ! ! ! !
--------- R :
S 5| by - - i |
= 10 Tl N :
) ~.o N ~ :
= -p‘ . ~ .
'g e \‘ \\ :
N
8 R
z N ‘
E N
= ",
o 10 | Sois. |
8 o <
- <
: ~
7 i i i i
107, 1 2 3 4 5
Major iterations
(a) Optimality
: : : ¢ — Final Geometry - C;, Design
0.3754 e AR frosereneeeneeee S e Final Geometry - ¢, Design
B--B  Final Geometry - C;,  Design
0.3752f oo oo G ;
. : : : :
6“0.3750;'_:'_'_'_'_;' o }-"."““"-‘.'.' I T
r v~ < . P . .
X e e -~
S =TT : !-s - [ 1
= b SERV ST
0.3748f oo b G R :
0.3746[ R R — e — :
i i i i i
0 1 2 3 4 5 6

Major Iterations

(b) Lift w.r.t. to function calls
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Table 5-3: Drag, Lift and Span Efficiency of the Untwisted and Optimized
NACA 0012-modified Wings - Coarse Grid Optimization
.. Optimized  Optimized Optimized
Initial w.r.t Cp w.r.t Cp, wrt
NF I i Cp, o
Cr 0.37498 | 0.37490 0.37492 0.37493
Cpyp [counts] 85.5 84.4 84.4 84.4
Cp, [counts] 74.2 73.7 73.6 73.7
Cp,_, [counts] 76.2 75.0 75.0 75.0
ewrt. Cp,, [%] | 87.28 88.35 88.32 88.35
ewrt. Cp, [%] | 100.60 | 101.13 101.27 101.14
ewrt. Cp,_, [%] | 97.93 99.42 99.39 99.42

saw a very slight variation to the twist distribution (in the order of 0.0001° ensuing
variation to the objective function in the order of 0.05 drag counts), the optimization
for Cp,, was assumed practically terminated.

Figures 5-19 shows the drag coefficients, and span efficiencies with respect to the
major iterations. The green, purple, and blue curves depict Cp,, driven design,
Cp, driven design, and Cp,_,, driven design respectively. All three approaches yield
very similar convergence rates, and final drag values. It should be noted that all
three designs produce a span efficiency approaching the theoretical optimum of 1.0
(at ~ 0.995) when span efficiency is expressed with Cp,_,,.

The final lift and twist distributions for the different approaches are depicted on
Figure 5-20. The designs for Cp, . and Cp,_, produce very similar twist distributions
while the design for Cp, yields a lower twist at the tip.

The final span efficiency, lift and drag coefficient values are tabulated in Table
5-3. Table 54 shows the initial and final sectional lift and twist at specific spanwise

stations.
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Table 5-4: Twist and Sectional Lift of the Optimized NACA 0012-modified Wings -
Coarse Grid Designs

77‘ 0.0 0.2 0.4 0.6 0.8 0.9 1.0 ‘

Chy, Opt. | 04897 0.4135 0.2420 -0.0790 -0.6134 -1.0947 -1.7212
v[] Cp Opt. | 04912 0.4153 0.1990 -0.1840 -0.6672 -0.9242 -1.1750
Cp, o Opt. | 0.4975 04210 0.2204 -0.1191 -0.6226 -1.0446 -1.5830
Chy, Opt. | 0.1582 0.1551 0.1452 0.1267 0.0944 0.0502 0.0366
2C,/b Cp, Opt. | 0.1585 0.1552 0.1447 0.1258 0.0946 0.0518 0.0381
Cp, , Opt. | 0.1585 0.1552 0.1450 0.1263 0.0945 0.0506 0.0370

At the coarse grid level, all three approaches are practically shown equivalent;
final designs and convergence rates are similar. The proposed approach was thus

shown effective at performing wing planform optimization for both Cp,, and Cp,_,,.
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5.3.3 Results - Supercoarse Grid

This subsection studies the same optimization problem and applies the same three
approaches as presented in the previous subsection but, this time, using the super-
coarse grid to discretize the domain. The objective is to assess the mesh dependency
of each approach, and determine if any procures a relative advantage over the others.

The SNOPT optimality condition along with the lift coefficient throughout the
major iterations are depicted (Figure 5-21). The lift is again shown within prede-
termined bounds for all three approaches. Optimizations for Cp,, and Cp, , are
shown to converge to the convergence threshold. The optimization driven by Cp,
shows a great reduction in optimality condition but fails to fully satisfy the conver-
gence threshold. As for the case of Cp,, on the coarse grid, the optimization was
determined converged as any ensuing modifications to the twist distribution are very
minor and have a negligible impact on the objective function and lift constraint.

Figure 5-22 shows the evolution of each drag components, and span efficiencies
through the major design iterations. As it was the case with the coarse grid results, all
three approaches exhibit similar convergence rate and final drag and span efficiency
values.

However, a significant difference is observed on the twist distribution. Figure
5-23(b) shows a difference of approximately 1.0° at the tip between the three ap-
proaches. It should be noted that the final twist distribution for Cp, differs by up
to ~ 1.0° from the final design obtained with the coarse grid. Designs for Cp,, and

Cp,

_, are more consistent with the designs obtained on the coarse grid; they differ

by less than 0.4° and 0.2° respectively. This further suggests that an optimization for
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induced drag with the novel Q-criterion based correction (Cp,_,) or the near-field
drag (Cp,,) has a reduced mesh dependency as the final design produced on the
supercoarse grid better approaches that obtained on the coarse grid. It appears that
the strong tip vortex produced on the simple rectangular grid hereby studied may
have a large influence on the optimization process, most particularly for C'p, driven
optimization. A broader range of geometries, where some may produce weaker tip
vortices (such as winglets, and/or tapered wings), will have to be studied to fur-
ther conclude on the relative mesh dependency of each approach for induced drag
minimization.
5.4 Transonic Optimization of the NACA 0012 Wing in Inviscid Flow
As Section 5.2.3 shows the ability of the proposed approach to minimize the
induced drag without regard to the strength and location of a shock wave, this
section investigates the ability of the proposed approach to minimize wave drag
without regard to the induced drag. Again, the objective here is to look at the
capability of the proposed approach to threat each phenomenological component of
drag independently which can be particularly insightful for aircraft designers.
Shock mitigation using the proposed approach in inviscid lifting condition is stud-

ied in this section. The optimization problem is posed as,

minimize Cpyr or Cp,

subject to: |Cp —Cyp, | <0.001,

a=3.5°

where Cp, ., Cp,, and (', are the near-field drag, wave drag, and the lift coeflicients

respectively. The Mach number is fixed at 0.70 and the angle-of-attack is set to 3.5°
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corresponding to the conditions shown in Figure 4-13(b) of Chapter 4. The coarse
grid described in Section 4-1 is employed.

5.4.1 Parametrization

Figure 5-24: NACAO0012-modified Wing with FFD parametrization - lattice box with
10 x 3 x 5 control points (blue) shown.

A free-form deformation (FFD) approach using trivariate Bernstein polynomial
[38] is used to parametrize the wing deformation. Figure 5-24 shows the FFD lattice
box with a total of 150 control points employed for the optimizations. The leading,
trailing edges along with the wing root, and tip are kept stationary by fixing the
FFD control points at the edges, while the vertical displacement of the 72 interior

control points served as design variables.
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Table 5-5: NACA 0012-modified Wing at M = 0.70 and o = 3.5° - Optimization

results (drag values shown in counts)

| C. Cpyy Cp.y Cb, |
Initial geometry 0.359 894 70.0 13.7
Cp,p Design - Constrained Opt. | 0.358 77.7  68.8 1.3
Cp,, Design - Constrained Opt. | 0.359 80.9  69.5 2.1

5.4.2 Results

Figure 5-25 shows the optimality condition and C}, versus major iteration steps
for the two optimization cases. The optimality condition is shown to drop by approx-
imately an order of magnitude for both objective functions, and the lift is maintained
between predetermined bounds.

The evolutions of Cp, ., Cp,, Cp and e w.r.t. Cp,_, through the major it-

i~
eration steps are depicted on Figure 5-25. The green curves denote optimization
driven by the near-field drag while the purple curves demonstrate the optimization
driven by the wave drag. The initial and final lift distributions are also depicted
on the same figure. The final lift and drag coefficients are shown in Table 5-5. All
optimization cases are able to reduce the wave drag from 13.7 to ~ 2 drag counts or
below.

Figure 5-27 shows the pressure coefficients and wing cross-sections at various
spanwise stations for the initial and optimized geometries. The optimizations for
Cp,, and Cp,, failed to remove the shocks completely, but achieved final wave drag
counts of 1.3 and 2.1, respectively. The same problem will be studied using addi-

tional FFD control points and/or a different parametrization method to assess if the

inability to mitigate the shock entirely is associated to the parametrization employed.
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The wave drag approach reduces the wave drag by more than 10 drag counts
while very slightly altering the induced drag (< 0.2 count). Furthermore, the wave
drag approach does not significantly modify the lift distribution. The near-field ap-
proach on the other hand successfully reduces the wave drag, but also significantly
reduces the induced drag by altering the lift distribution. The ability of the pro-
posed approach to minimize wave drag without regard to induced drag in an inviscid
transonic lifting condition is thus observed: the near-field approach does not have

this capability.

5.5 Wave Drag Minimization of CRM Wing in Viscous Conditions
Finally, shock mitigation in viscous flow is studied over the CRM wing geometry

in this section. The optimization problem is posed as,

minimize Cb,_nr

subject to: |C, — 0.500] < 0.0005
Cy > —0.17

VFinal 2 V;nitiah

where Cp, . denotes the near-field pressure drag, C'ys the pitching moment, and V'
the interior volume of the wing. The Mach number is fixed at 0.85 corresponding to
the conditions shown in Section 4.3. This optimization problem represents the most
complex case investigated as part of this thesis and the most representative of an

actual aircraft wing design. While only the near-field pressure drag is used as the
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Figure 5-25: Constrained Optimization for NACA 0012-modified Wing at M = 0.70
and a = 3.5° - Coarse Grid (Part I)
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objective function - i.e. no far-field drag components are used - the present case is
shown as a possible future application of the approach presented in this thesis.

5.5.1 Parameterization

Figure 5-28: Baseline CRM Wing Geometry and FFD parametrization - lattice box
with 10 x 3 x 5 control points (blue) shown.

The vertical displacement of FFD control points are used as the design variable.
The lattice box of the FFD parametrization has been analytically mapped to fit the
CRM wing contour as depicted on Figure 5-28. As for the transonic optimization
of the NACA 0012 wing shown in the previous section, the control points at the
outer edges for the FFD lattice box has been fixed to limit the displacement at the
wing root, and tip and at the leading and trailing edges. The results presented are
based on the FFD parameterization with a total of 168 design variables stationed at

7 spanwise locations.
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Initial Pressure Contour

Optimized Pressure Contour

Figure 5-29: CRM Wing at M = 0.85 and C7, = 0.500 - Pressure Contour of Initial
and Final Design

5.5.2 Results
Figure 529 depicts the initial and final pressure contours. The primary shock
strength is severely weakened if not eliminated for much of the span locations. The

spanwise pressure coefficient distributions is shown in Figure 5-31, where this is
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further illustrated. The shock wave at the wing root is weakened but not removed.
At all span stations, the pressure distribution in the lower surface is adjusted to
ensure that the lift coefficient is within the constraint limits. Figure 5-32 depicts the
changes to the airfoil surface at the same six specified spanwise stations. The volume
constraint is satisfied through an increase in the rearward chord-wise thickness to
compensate for the reduction in the forward region to decelerate the flow to reduce
the drag coefficients. Volume was maintained at 0.01%, while the bounds on both
lift and the pitching moment constraints were set at 0.5%.

Figures 5-30(a) through 5-30(c) demonstrate the evolution of the aerodynamic

performance values as a function of the function values.

For the first 44 function calls the drag coefficient reduced by 4 counts from the
initial 218.9 counts, while the lift and the pitching moment constraints were held
within the bounds. The skin friction coefficient increased by half a count. A further
reduction to 211.5 counts was achieved after 56 function calls. The lift coefficient at
this stage was violated to 0.8%; while the pitching moment constraint moved to the
upper bound. Reasons for the violation will be further investigated as part of future
work. The optimality condition reduced by only an order of magnitude after the 56

function calls.
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Figure 5-31: CRM Wing at M = 0.85 and C, = 0.500 - Coefficient of pressure of
initial and final designs at specified spanwise locations
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Figure 5-32: CRM Wing at M = 0.85 and C, = 0.500 - Section airfoil geometry of
initial and final designs at specified spanwise locations
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CHAPTER 6
Conclusions

The motivation behind this work is to provide an efficient and robust numerical
optimization tool to assist designers to increase the aerodynamic performance of
aircraft and improve their understanding of the design space. The novel contributions
of this work are the linearization and implementation of the adjoint-based gradient
of the far-field drag components in an efficient optimization framework along with a
novel @Q-criterion based correction to induced drag.

Various drag decomposition methods and their implementation in a numerical
flow solver are validated on several geometries and conditions ranging from inviscid
subsonic flow to viscous transonic flow. The far-field methods are shown effective
and less mesh dependent than the near-field method. Induced drag calculations using
the Q-criterion based correction is shown to be more accurate than the uncorrected
induced drag formulations, most particularly at coarser grid levels.

Adjoint-based aerodynamic shape optimizations based on the far-field drag com-
ponents are presented and shown effective for increasingly complex cases. When ap-
plied for induced drag minimization, the proposed approach yielded span efficiency
improvements of up to 3.0% on the DPW-W1 wing and the NACA 0012 rectangular
wing. Wave drag minimization produced drag reduction of up to 16 drag counts,
comparable to the more traditional near-field approach, on NACA 0012 based wings.

Adjoint-based optimization using the novel @Q-criterion based correction to induced
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drag was shown to be less mesh dependent than the near-field drag, then other more
traditional formulations of far-field induced drag.

Furthermore, the ability of the proposed approach to threat each phenomenologi-
cal components of drag independently is highlighted on two constrained optimization
cases in transonic lifting conditions. While the near-field may be sufficient for the de-
sign of an aircraft wing, the ability of the drag decomposition approach to determine
how the various aspects of the wing contribute towards the total drag coefficient may
be insightful for designers. The proposed framework may potentially allow assign-
ing design variables best suited for each phenomenological component of drag, thus
potentially providing a more efficient design tool.

6.1 Future Work

Several opportunities to extend and /or refine the aerodynamic optimization frame-
work presented in this work are identified, namely:

1. Linearization of shock and viscous sensors. Derive a complete lineariza-
tion of the wave and viscous drag components. This will increase the accuracy
of the adjoint-based gradients.

2. Application of the framework to viscous simulations. Extend the vis-
cous optimization presented in this thesis to drag minimization employing the
far-field drag components. Investigate the dependency of the optimization on
mesh size and quality in viscous flows.

3. Application of the framework for various geometries and associated
parameterization. Apply the drag decomposition approach for more com-

plex industrial cases to further demonstrate the capabilities of the proposed

96



approach. A possible application is to the design of winglets, and to the opti-
mization of the CRM wing-fuselage configuration.

. Mesh adaptation based on decomposed drag components. The adjoint-
based sensitivities could be used as part of a mesh adaptation scheme, and

coupled with the optimization framework could lead to more robust designs.
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