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This thesis is dedicated to the memory of
Carl Sagan whose book "Shadows of Forgotten .Ancestors" ,
co-authored with his wife Ann Druyan, aroused my interest

in the biological world.

"When we no longer look at an organic being as a savage looks at a ship,
as something wholly beyond his comprehension; when we regard every pro­
duction of nature as one which has had a long history; when we contem­
plate every complex structure and instinct as the summing up of many
contrivances, each useful to the possessor, in the same way as any great
mechanical invention is the s1Jmming up of the labour, the experience, the
reason~ and even the blunders of numero'US workmen: when we thus view
each organic being, how far more interesting-I speak from experience-does
the study of natural history becomel"

CHARLES D.A.RvV1N,
The Origin of Species

(appearing in "Shadows of Forgotten Ancestors")
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Abstract

Randamly constructed networks of N elements governed by piecewise linear differ­

ential equatians have been proposed as madels far neural and genetic netwarks. In

this model an element is labelled "on" if it is above a threshold, and "off" other­

wise. The logical state of the network at any time is thus a Boolean vector. For

each element, there is a rule (truth table) specified by the values of K input elements

that determines whether it will switch its state (from 1 to a or from a to 1) at sorne

future time. Parameter p biases the output state of each automata and influences the

global dynamics of the system. Discrete switching network analogues of the piecewise

linear differential equations show a transition from ordered to disordered dynamics

as p and K are varied. The transition is analyzed in continuous switching networks.

Previous studies of these networks have demonstrated the existence of steady state,

periodic, and chaotic attractors. Numericai studies analyze the dynamics of a ran­

domly chosen ensemble of networks as a function of lV, K, and p. Theoretical insight

ioto the change in dynamics is gained through the derivation of a wlarkov process for

the number of clements at time t that are approaching their threshold. Analysis of

this j\.Iarkov model yields a critical relation between p and [( that separates ordered

dynamics from deterministic chaos.
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Résumé

Des réseaux aléatoires de N éléments régis par des équations différentielles linéaires

par morceaux ont été proposés comme modèles de résealLx génétiques et neurologiques.

Dans ce modèle, un élément est actif (ON) s'il dépasse un seuil, inactif (OFF) s'il lui

est inférieur. L'état logique du réseau est ainsi, en tout temps, un vecteur booléen.

Pour chaque élément, une table de vérité spécifiée par les valeurs de K éléments

d'entrée détermine si cet état est modifié (passant de 0 à 1 ou de 1 à 0) dans le

futur. Un paramètre p biaise la sortie de chaque automate et influence la dynamique

globale du système. Les analogues discrets des équations différentielles linéaires par

morceau..x montrent une transition d'un état ordonné à un état désordonné lorsque

les paramètres p et K varient. Cette transition est étudiée dans les résalLX conti­

nus. Des études antérieures de ces réseaux avaient mis en évidence l'existence d'états

stationnaires, d'attracteurs périodiques de même que d'attracteurs chaotiques. Des

simulations numériques permettent de cOIIlprendre l'influence des paramètres lV, K et

p sur un ensemble aléatoire de réseaux. Ces changements dynamiques sont interprétés

a l'aide d'un processus de ~Iarkov décrivant le nombre d'éléments approchant leur

seuil. Une analyse de ce modèle markovien montre un lien critique entre les valeurs des

paramètres p et K séparant les zones de dynamique ordonnée des régions chaotiques.
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Abbreviations and Symbols

K =number of inputs to each element

N =number of elements in the network

p =probability of having a 1(0) in the output of a mIe table

JYi =Boolean representation of element i

Ii =continuous, rea! number representation of element i

~'( =lV-dimensionai vector of the Boolean configuration of the system

Ai == randomly chosen Boolean function

:rCi ) == K -dimensional vector of the inputs to an element

ttr =length of the transient before an attractor is reached

T =period of a limit cycle
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1

Introduction and Review

1.1 Introduction

Logical switching networks are dynamical systems that evolve in discrete time steps.

They are composed of elements that assume discrete values and each element changes

its state according ta a Iogical function of the values of its inputs. The idea that com­

plex biological control systems could be modeled as logical switching networks was

first developed by McCulloch and Pitts in 1943 [1]. NlcCulloch and Pitts introduced

the concept of the "formaI neuron' as a binary threshold element. They demonstrated

that a collection of these elements, "a neural network', could act as a universal Turing

machine [2]. In 1969, Kauffman introduced a logical switching model of the regu­

latory genetic circuits which gives fise ta cellular differentiation during embryonic

development [3]. The state of activity of a gene is 0 or l, corresponding to a gene

being repressed or expressed. The state of a gene at a given time step is a Boolean

function of the values of K input genes at the previous time step. Elenlents are

updated synchronously. There are 2K possible combinations of K Boolean elements

and thus 22K possible Boolean functions for updating the state of a given gene. The

unknown nature of the complex interactions taking place in a genome led Kauffman

to assume that these could be modeled by randomly chosen functions of randomly

selected genes. These choices are then kept fixed for the evolution of the system. For

N elements, there are 2N possible states which implies that the trajectory of a sys­

tem through state space eventually becomes periodic within a ma.ximum of 2N time

steps. Relevant observables in such a randomly constructed dynamical system are the

1



are the number of cycles and their length. Kauffman proposed this model for cel­

lular differentiation by interpreting the different cycles as different cell types and

cycle lengths as cell cycle times [3, 4, 5]. Early numerical results indicated that for

K = 2, the length and number of cycles ""J -IN. This relationship did oot hold for

other values of K. Kauffman argued that K =2 networks are biologically significant

because the oumber of cell types and cell cycle times of eukaryotic organisms is pro­

portional to the square root of the number of genes in their DNA., over a wide range

of phyla [3}. The Kauffman model has attracted a great amount of attention from

theoretical physicists [6-19]. Concepts from statistical mechanics useful in the study

of phase transitions and critical phenomena were employed ta understand the qualita­

tive change in global dynamics as parameters are varied. The tirst effort was made in

the context of a modified version of the model which was more accessible to analytic

study than the original mode!. This was the 'annealed' Kauffman model, where the

inputs and Boolean rules are no longer "hard-wired' or "quenched', but are re-selected

at each time step. Analytical work related the convergence or divergence of different

initial configurations to the change in global dynamics [7]. The second major effort

identified the percentage of frozen elements as an order parameter. Changes in this

quantity were correlated with the change in the global dynamics [11).

Binary variables and synchronous updating used in discrete random Boolean net­

works (RBNs) are an idealization of more biologjcally realistic continuous differential

equations where the state of activity of a given gene is a continuous variable and

time is continuous. In 1975, Glass introduced coupled piecewise linear differential

equations as a continuous version of the Kauffman model [20]. The logical structure

and connectivity in the continuous model is constructed in an identical manner as in

the discrete systems. However, in this model, the state of a gene is represented by

a rea! number, Xi, with a corresponding coarse grained Boolean variable "'~i that is

defined as follows:

•

•
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Xi = 0 when Xi < 0;

Xi = l when Xi > O.
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}(i = 1 when Xi > O.

3
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In general, only one element crosses its threshold at a time [20). The Boolean

configuration of the system (Le. the state of the N discrete Boolean variables,

{...-Yi(t); i = 1,2, ..., lV}) can therefore only change by one element at a time so that the

evolution of the discrete configuration can be mapped onto flows along the edges of

an N-dimensional hypercube [20]. The asymptotic dynamics are steady states, limit

cycles, quasiperiodicity, and deterministic chaos [21, 22, 23].

There is a parameter in addition to N and K that affect the dynamics of bath

the discrete and continuous systems: the bias towards 1 or 0 in the output of the

rule table of each element, designated as p. Recent work on continuous networks has

demonstrated chaotic dynamics [21, 22, 23, 24], but the transition from steady state

and limit cycle dynamics to chaos has not been studied.

This present wark analyzes the dependence of the proportion of chaotic attractors

in an ensemble of continuous networks on p, K, and JV. The thesis is organized as

follows. In the introductory chapter, results from studies of discrete and continuous

RBNs which have direct relevance ta this current study are reviewed. Chapter 2 is

based on the manuscript "Ordered and Disordered Dynamics in Random Networks"

which describes the transition from steady state and limit cycle dynamics ta deter­

ministic chaos as p is tuned. This manuscript was written with my supervisor Leon

Glass and was published in Europhysics Letters, 41 (6), pp. 599-604 (1998). It can­

tains the results of numerical simulations and theoretical predictions of dynamics in

continuous RBNs as a function of p, K, and N. These results are summarized and

discussed in Chapter 3, along with future directions for this work.
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1.2 Discrete Switching Networks

1.2.1 Definition of Madel

4

•

In the Kauffman model, the genome or network is represented as N genes or elements

that can have one of two values at a given time t: ..Yj(t) = 0, 1; i = 1,2, ... , lV.

..~ gene is dormant if "Yi (t) = 0 and is active if Xi (t) = 1. The state of the ith

element of the network at time step t + 1 is determined by a randomly chosen Boolean

function, Ai("Y(i)(t)), of the state of K randomly chosen input elements at time t,

..tY(i)(t) = {.X"jdi) (t), "Yh(i) (t), ..., "Yùdi)(t)}. There are 2K possible combinations of

the values of the K inputs and 22K possible Boolean functions. The number of

possible rule combinations in a network is therefore 2Nx2K
• There are ( ~ ) ways

of choosing the K inputs for each elernent, and thus N ( ~ ) ways of constructing

the connection topology of the network. The number of possible realizations of a

network '" N ( ~ ) 2Nx2K
• Even for modest values of N and K, this number is

astronomically large. Previous work has analyzed dynamical properties of networks

(Le. number of cycles, median cycle length, etc.) for fixed values of lV and K by

sampling random networks with fi.xed lV and K [3]. These networks can generate

widely varying dynamical properties which necessitates studying a large sampling of

networks.

The time evolution of each site is given by

(1.1)

•

As the variables in this network take on only discrete values, the number of configu­

rations in state space il) finite and implies that the dynamicaI evolution of this system

must eventually become periodic. An asymptotic periodic orbit is designated as a

cycle and the transient time until the trajectory reaches a cycle is designated as ttr.

Since the number of states available for the system to explore increases exponentially

with N, it is possible to have very long transients and cycles. There can aIso exist a
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~'i(t+l)1
0 0 0 1

0 0 1 0

0 1 0 0

a 1 1 a
1 0 a 1

1 0 1 a
1 1 a 1

1 1 1 1

Table L.l: Typical rule table of an element for K =3 and p=O.5.

5
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large number of different attractors. Initial configurations that lead to a particular

attractor are said to belong to the basin of attraction of that particular attractor.

In this modeI, the probability of choosing a 1 in the output of a mIe table for each

element is p. In the original Kauffman model, p =0.5. A typical rule table for f< = 3

and p = 0.5 is shawn in Table 1.1. The influence that p has on the dynamics of the

system can be easily seen in the extreme case of p = 1, where the rule table of each

element would contain aIl 1's. In this case, each element of the network would be

fixed to 1 (i.e. a steady state attractor) after one time step. In general, increasing p

affects the dynamics by giving elements an increased tendency to be fixed ta 1.

The relevant questions ta ask about the properties of such a randomly constructed

dynamical system are, for given values of lV, K, and p:

• What is the average or median number of attractors?

• What are the expected numbers of steady states and cycles?

• What is the expected length of the transients and the periods of cycles?

• How many initial configurations belong to the basin of attraction of a particular

attractor?
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• Are the properties of attractors and transients dependent on whether one is

averaging over different initial configurations of a given network or averaging

over different networks?

• How are the dynamics of a network related ta the structure of the network?

1.2.2 Results

The earliest work of Kauffman [3, 4, 5} attacked some of these questions numerically.

He found that the number and median cycle length of the attractors were proportional

ta VN for K = 2, p = 0.5 networks. Log-log plots of the median cycle length and

median number of cycles are shawn in Figure 1.1 [3]. For networks with K = N,

1000------------------,

.. 100
JI

~,.
~

! 10

-L.

_11I/I--­.....-

n- li:. of ne'

••

Figure 1.1: Median cycle length and number of cycles as a function of N for networks with
K = 2. Adapted !rom [4].

the expected cycle length is 2N/2. Kauffman argued that the short cycle lengths and

small number of attractors in K = 2 networks had a biological significance sinee there

are a smaIl number of cells (attractors) even though the number of genes (N) is large.



Similar order to that in K = 2 networks was found in networks with larger K when

certain biases are introduced into the construction of the functions given in the truth

tables (Equation 1.1). These biases are effected by the tuning of the p parameter.

Ta put Kauffman's observations on a firm theoretical foundation, theoretical physi­

cists have focused on: i) demonstrating the existence of a transition in dynamics

analogous to order-disorder transitions in statistical physics and identifying the pa­

rameter values where the transition accurs [7, 8, Il] ii) studying properties of the

model at the biologically relevant ~transition' point. Since the focus of this thesis is

on identifying the transition in continuous networks and not specifically on the prop­

erties of the network at the transition, 1 will outline approaches taken on identifying

the transition in discrete networks but will ooly briefly mention the efforts to study

properties of discrete networks at the transition.

The Hamming distance H between two different configurations of lV elements

is defined as the number of positions in the network that contain different values.

For example, (000111) and (110011) have a Hamming distance of 3 between them.

Derrida and Pomeau analyzed the evolution of the Hamming distance for different

values of K and p for a pair of different configurations of the same network [7]. They

introduced a variant of the original Kauffman model in which the connections and

updating rules of each element are chosen randomly at each time step. This is called

the annealed approximation. If the normalized overlap, NNH, at time t is a12(t), then

the fraction of elements that will have aIl K of their inputs at the same value in

both configurations 1 and 2 is, on average, (a12(t)JK. This will force these elements

to have identical values in both configurations at the next time step. There is also a

contribution to the overlap a12(t) from elements that are in different states between

the two configurations. The time evolution of the overlap between two configurations

as a function of K and p is [7]:

•

•
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(1.2)

As t ~ 00 and N --+ 00, this recursion relation has a stable attractive fixed point

a12 = 1 (differing configurations become identical) when p > Pc given by [7]
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Figure 1.2: Plot of Equation 1.3 in p-K space. This 'critical Une' separates ordered from
disordered behaviour in the limit that lV ~ 00.

1
Pc(l - Pc) = 21(' (1.3)

•

For p greater than the value given by this expression, the system would typically

lie in what is referred to as the 'ordered' regime where steady states exist and the

length of cycles "J /il while for p less than this value the system would be in the

'chaotic' regime where the length of cycles "J eN. While the term ordered may he

appropriate for describing steady state and periodic dynamics, the term chaotic is gen­

erally reserved for describing, among other criteria, aperiodic behaviour. Although

the improper use of the term 'chaotic' abounds in the literature related to Kauff­

man netwarks and cellular automata which both exclude the passibility of aperiodic

dynamics, the term chaotic will be used here only to describe dynamics which are

aperiodic. The graph of Equation 1.3 in p - K space (shawn in Figure 1.2) is called

the 'criticalline', in analogy with a phase transition at a 'critical point' in the statis­

tical mechanical context. For p < Pc the a12 = 1 solution becomes unstable and a new
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~i(t+l)1
0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Table 1.2: If .-1 is frozen to a value of 0, then element i will aIso be frozen at the next time step.

9

•

•

fi..'"(ed point emerges with al:! < 1 such that the Hamming distance between two con­

figurations would approach a non-zero steady state value. In the original Kauffman

model the configuration of a system at time t is correlated with the choice of logieal

funetions and inputs for eaeh element. These correlations do not exist in the annealed

approximation and thus results from the two models would match only when these

correlations become negligible in the original Kauffman model. It is argued in [7] that

these correlations vanish in the limit lV --+0 00.

The concept of a 'stable core' of elements [11] \Vas introduced as an order parameter

for random Boolean networks and provided a microscopie explanation of the different

behaviours in the network. There is a non-zero probability of having a constant

function of an O's or 1's in the rule table of a given element which decreases rapidly

as K is increased. This probability is equal to p2
K + (1 - p)2

K
• These elements

become 'frozen' to 0 or 1 after the first time step regardless of their initial values.

If one or more frozen elements are inputs ta other elements then there is a non-zero

probability that these elements will become frozen after the second time step. This

process is repeated for subsequent time steps with a larger percentage of elements

in the network being frozen and able ta propagate their ~freezing effects' ta elements

that they are inputs ta. Flyvberg expresses the fraction of frozen elements as this
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recursive sum [11]

set + 1) = É( ~ ) s(t)K-i(l - s(t))ipj.
;=0 J

(1.4)

This expression assumes that each element can be an input to another element ooly

once. Therefore this approximation only becomes valid as N ~ 00. The steady state

solution of this equation is round by setting s(t + 1) = s(t) and is displayed in Figure

1.4 for K = 3 as a function of p [11]. The effect that p bas on this quantity and hence

0.15,
....-=::::;;..__-'- .....1

0.50

s 05

,

Figure 1.3: Steady state solution of recursion relation for the fraction of frozen elements in
a network as a function of p. In this example, K =3. Adapted from [14].

..

on the dynamics is dramatic. Stability analysis of this expression yielded the same

critical relation between p and K that was round in the annealed approximation,

Equation 1.3.

More recent works have examined properties of the networks along the 'criticalline'

Equation 1.3. The scaling behavior of transients and cycles along this 'criticalline' at

K = 2 and p=O.5 was examined more carefully [13, 14]. It was round that the power

law relationship between N and the median lengths of transients and limit cycles



persists over ten orders of magnitude. In the context of the annealed approximation,

the closing probabilities for trajectories were studied at K = 4, p = 0.7887 (from

Equation 1.3) [16}. Good agreement was found between the stochastic ~Iarkovian

model for the evolution of the overlap and the average period of a limit cycle. However,

they also found that the distribution of cycle lengths decays much slower in the

original model than in the annealed approximation, an effect that becomes more

significant with increasing lV. This suggests a possible contradiction of the predicted

agreement between the annealed and original model as LV ~ 00 [7].

The critical relation between p and K derived here for discrete networks may

have sorne bearing on characterizing the dynamics in the continuous networks. The

derivation in the annealed approximation that led ta the expression for criticality

depends on the synchronous updating in the Kauffman network and therefore the

applicability of this approach ta the continuous networks is limited. Also, numerical

studies did not investigate the sharpness of this transition as a function of ~V, K,

and p. The concept of the "frozen core' as a source of arder in these networks derives

directly from the rule tables for each element and should, in principle, be independent

of the updating procedure. The applicability of this approach or similar approaches

ta the asynchronously updated continuous networks has yet ta be investigated.

•

•
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1.3 Continuous Switching Networks

1.3.1 Definition of Model

12

•

•

In the continuous version of the Kauffman net, the biologically unrealistic constraint

of clocked, synchronous updating is dropped and the state of activity of the elements

is updated asynchronously: the element that crosses its threshold first is the only

one whose Boolean value is changed. The nonlinear sigmoidal response function of

a given gene to its inputs is approximated as a step function, resulting in a set of

piecewise linear differential equations. As in the discrete case, the model consists of lV

elements, but here their values are continuous and are represented by a real number,

Xi; i = 1,2, ... , lV, with a corresponding Boolean variable ..Xi that is defined as follows

[20} :

..'(t =awhen :Ii < 0;

..Yi = 1 when Xi 2: O.

The analogous lV dimensional differential equation of Equation 1.2 is

~i = Ài(Xit (j), Xi.(j), ... , Xi... (j)) - ,(X7i))Xi' i = 1, ... , N. (1.5)

where Ài(~'(il (j), .Xiz(jL ... ,"Xil((j)) is a scalar whose sign is negative (positive) if the

corresponding logica! variable Ai (~'(i l (j), "\"i2 (j), ... , ~'(i1( (j)) is a (1). The variable

,(",X(i») is without index i because the inhibitory rates are assumed to be the same

for each element, and, for simplicity, 7 = ;(..i) = 1. The }.i are piecewise constant

functions whose values may change for particular ·i when the variables Xi cross their

thresholds. The number of elements N correspond to the dimension of phase space.

The thresholds divide phase space into 2N orthants for an iV-dimensiona! system such

that the region of phase space {Xl > 0, X2 < 0, , X N > O} maps ta the Boolean state

(10 1), and the the region {Xl> 0, X2 < 0, , XN < a} maps ta the Boolean state

(10 0). The steady state solution of Equation 1.5 within a particular region of phase



space, ~ = 0; i = 1, ... , lV, is the focal point that the system evolves to until crossing

into a different orthant of phase space. The focal point is given by !( ..Y) = [fI, ..., fN]

and for each element is equal to fi(.X:(i)) = Ài(.X"Ci)}. 1t changes when the threshold

of an element is crossed, unless the system has evolved to a steady state attractor.

The solution of Equation 1.5 can be found through analytic integration. Expressed

in terms of fi = fi(.X:(i)), the solution in region ..Y. is

•
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(1.6)

•

where Xi(Ü) is the initial value of element i upon entering a given region. When

the time evolution of one variable is plotted against the time evolution of another

variable, straight Hnes are produced within each orthant since the exponential time

dependence in Equation 1.6 drops out when the slope is calculated. The slope of these

straight Hne trajectories changes discontinuously at each exit wall. The position of a

focal point of a region relative to other regions of phase space determine which regions

can he entered, and most importantly, which region is entered first, or equivalently,

which variable crosses its threshold first. A representative phase space trajectory

is shown in Figure 1.4 for a 2-dimensional cyelic attractor [25]. The values of each

variable at a threshold crossing can be calculated such that trajectories are given

an analytic expression. Ir the jth element crosses its threshold, implying Xj(t·)=O,

then the transit time t* through that region of phase space can be solved by setting

Equation 1.6 equal ta zero for the lh element. This transit time t* can then he

substituted back into Equation 1.6 for the other variables 50 that their values at the

exit wall of that region when element j crosses its threshold can be expressed as

where C € ~n x n. The vector d- € ~n is transposed and has aIl components equal to

zero except for Cj = -1/ fj. Equation 1.8 is known as a fractional linear map and•

or, in vector representation, [25},

X-:. = kÏ(x) = C~(O) .
1 +éx(O) '

(1.7)

(1.8)
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Figure 1.4: Phase space portrait of an N = 2 network after a few iterations. This particular
flow is that of a cyc1ic attractor where all trajectories converge ta a stable limit cycle.
Adapted from [25].

transitions from region to region are computed as a composition of fractionallinear

maps [23). The composition of two fractionallinear maps remains a fractionallinear

map and allows significant analysis of the evolution of the system through phase

space.

1.3.2 Results

The original work of Glass focused on identifying steady states and limit cycles and

prewcting their existence ba8ed on the logical structure of the network [20]. This was

aided through the mapping of the Boolean configuration of the system, .f((t), anto

the vertices of an N·dimensional hypercube; and the evolution of the system outo

flows along the edges of this objecta When elements are restricted from being inputs



ta themselves, flows in phase space can be represented on a hypercube in which each

edge is directed in only one of the two possible directions. A flow along the edges of

a hypercube for a particular 4-dimensional system is shawn in Figure 1.5 [23}.•
1: Introduction and Review
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Figure 1.5: Hypercube mapping of the flow of a trajectory for K = 3. Edges with bold face
arrows represent allowed transition from one state to an adjacent state. Adapted from (23).
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Glass defined a hypercube with a particular orientation of directed edges as astate

transition diagram. Two systems whose state transition diagrams can he superim­

posed upon each other under a symmetry operation of the N-cube (e.g. rotation or

refiection about a particular axis or vertex of the hypercube) are said to belong to

the same equivalence class. Glass studied properties of these equivalence classes ta

cODnect the properties of various steady states and limit cycles with the geometric

structure of flows on the hypercube. In particular, it was shawn for N ~ 3 that a

cyclic attractor on the hypercube implies a unique stable limit cycle in the associated

piecewise linear differential equations when the focal points are ±1 [25}.

Studying these piecewise linear equations in the context of neural networks, Lewis



and Glass found numerical evidence for the existence of a chaotic attractor in a 6­

dimensional network [21, 22]. .A.. 5-dimensional Poincaré section that the soLution

trajectory of their system crossed repeatedly was projected on to a particular 2­

dimensional plane. In this way, a density histogram of the values of a particular

element was plotted for long times. Neighboring trajectories diverged over time and

the corresponding density histograms were invariant with successive iterations. This

represented numerical evidence for the existence of t,vo features commonly found in

many chaotic systems: ergodicity and a unique invariant density [21].

A particular four dimensional network was discovered, from a search of many

thousands, that displayed chaotic dynamics. Nlestl [23) demonstrated that it is not

possible to have chaos in 3-dimensions, impLying that this example existed in the

lowest dimension possible. During iteration, the dynamics follows the solid edges in

Figure 1.5.

A Poincaré section was chosen at the 'wall' separating vertices (0011) and 1011.

Numerical studies demonstrated that the dynamics could be described by a strange

attractor (Le. fractal structure).

Further analysis was carried out for evaluating the Lyapunov exponent which is

a measure of the divergence of trajectories in phase space. As described in Section

1.3.1, the trajectory of the system through phase space can be analytically expressed

as the composition of fractional linear maps. The Jacobian of this fractional linear

map after one iteration is

•

•
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JL = 8AtI
I
:&

ai
where NI = lVÏ(X) is as defined in Equation 1.8. With

8lvI ~ aN! ~.r = -lxn - 1 ••• -lxOai aÏ

16

(1.9)

(1.l0)

•
representing the product of the Jacobians after n iterations of the fractional linear

map. With UO representing an initial perturbation, the Lyapunov exponents are

expressed as

(1.11)



There are at most N distinct Lyapunov exponents, where N is the dimension of the

system. Using analytical methods described in [23J, the lower bound on the largest

Lyapunov exponent in this system is found to be 0.31, verifying the numerical evidence

for sensitive dependence on initial conditions and chaotic dynamics. The Lyapunov

exponent, related to the rate of convergence/divergence of nearby trajectories, \Vas

calculated using this technique. 1t was approximately equal to 0.45, indicating chaotic

dynamics since it was positive. Nlestl et al found that chaotic attractors are rare in low

dimensions, but ubiquitous in high-dimensional networks with a moderate number of

inputs (l''J 10) [24].

vVhile the existence of steady states, limit cycles, and deterministic chaos has been

demonstrated in these continuous networks, there has been little investigation into

the mechanisms which determine which kind of dynamics predominate. There has

been analytical studies of the transition from steady state to limit cycle dynamics as

a function of the biasing parameter p in the discrete networks, but there bas not been

a systematic analysis of the dynamics as a function of p in the continuous networks.

This work is an attempt ta fiB this void.

•

•

•
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Ordered and Disordered Dynamics in Random Networks

Genetic networks have been modeled by random Boolean networks in which time is

discrete and each element computes a Boolean function based on the values of inputs

ta that element [3]. Since the number of human genes is of the order of 100,000, and

each gene is idealized as either on (1) or off (0), the state space for the human gene

activity is huge. An order-disorder transition has been described for random Boolean

networks in the limit that the number of variables, iV -+ 00, as a function of the

number of inputs per variable, K, and the probability, p, that the truth table for a

given element will have a bias for being 1 [7, 10, Il, 13, 15, 16,26]. The order-disorder

boundary is given by
1

K c = )' (2.1)2pc(1 - Pc .

where K c and Pc represent the values of K and p on the boundary [7, Il, 16]. Kauff­

man has argued that for a network ta be biologically meaningful, it should have rela­

tively few attractors, and the cycle length of attraetors should be eomparatively short

[3]. In real biologieal systems there are not clocking devices to generate synchronous

updating and theoretical models are more appropriately fonnulated as continuons dif­

ferential equations [20, 23, 24, 27, 28, 29, 30]. Here we present numerical evidence for

an order-disorder transition in differential equation analogues of the discrete switch­

ing networks. We also present a probabilistic model of the dynamies, in which we

show that (2.1) aIso applies to the continuons equations.

First consider a logical network consisting of lV binary variables, ~"(i = 0, l, 'i =

1, ~ ~ ~,N. Since we consider the networks as models of genes, Xi represents the activity

of gene î. In other contexts, logieal variables may represents spins or voltages. The

18
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network is updated by means of the dynamical equation

i = 1, ... , lV,

19

(2.2)

where Ai (.X"il (j), J'Yi:! (j), ... , "YiK (j)) E {a, 1} and K is the number of inputs. Nlore

compactly, we have

X(j + 1) = A(X(j)), i = 1, ... , lV, (2.3)

Thus, for any state X(j), A is a truth table determining X(j + 1).

The logical structure of Eq. (2.2) can be captured by a differential equation [20].

Ta a continuous variable Xi (t), we associate a discrete variable ..Yi (t),

where Ài(..Yi1 (j), .X"i :! (j), ... , }(il\ (j)) is a scalar whose sign is negative (positive) if the

corresponding logical variable Ai(..Y'il(j),"Yi2(j), ... , ..Y'iK(j)) is 0 (1).

For each variable, the temporal evolution is governed by a first order piecewise

linear differential equation. Let {t 17 t2' ••• , tk h denote the switch limes when any

variable of the netwark crosses O. The solution of Eq. (2.5) for each variable Xi for

tj < t < tj +b is

•
For any logical netwark, we define an analogous differential equation,

i = 1, ... , ~V.

(2.4)

(2.5)

•

Depending on the particular network, Eq. (2.5) can display steady states, limit

cycles, quasiperiodicity or chaos [20, 23, 27, 28, 29, 30]. Although the origin of chaos in

one particular four-dimensional network has been analyzed [23], no general methods

have yet been developed to determine whether chaotic dynamics exists in any given

equation without integrating it. Chaos is the usual behavior in these networks for

lV = 64, 9 $ K $ 25, p = 0.5 [24].



In carrying out the computations, we have made severa! additiona! assumptions

concerning the structure of the equations. (i) There is no self-input or reciprocal input.

This means that i cannot be an input to itself, and if i is an input to k, k is not also

an input to i. These assumptions eliminate the possibility of asymptotic approach ta

stable steady states in the neighbarhaad of threshold axes Xi = 0 [20,29, 30}. If these

assumptions are nat made, the techniques for analysis of the dynamics based on the

symbolic dynamics described below fail. (ii) vVe set Ài in Eq. (2.5) ta be in the range

-1± ! .01 1 or 1± 1 .01 1· Thp focal points of individual elements are given a small

perturbaton away from 1 or -1 that is sorne fraction of the initial value of each element.

This ensures that the situation where twa variables cross their threshald at the same

tirne does not arise. Ta determine the effect that this arbitrary perturbation has on

the classification of the attractars of netwarks, the strength of this perturbation is

varied arnong -0.0001,-0.001,-0.01,-0.1,+0.1, +0.01,+0.001,+0.0001 of the initial value

of each element for K = 6, lV =50, and p =0.75. The results indicate no systematic

variation above the expected statistical noise levei of v'no'~fnets. or 10% for this case

of 100 networks. (iii) In the truth tables we assume that for a given value of p, half

the variables of the network have entries that are biased towards 1 and half are biased

towards O.

Although the piecewise-linear nature of Eq. (2.5) facilitates the speed and accuracy

of numerical integration over other integration techniques, numerical studies never­

theless grow large rapidly. Consequently, we focus on the order-disorder transition

for Iimited regions of parameter space. The system was simulated using a source code

written in FORTRAN. Equations 2.5 were integrated frarn random initial conditions.

The random number generator employed was obtained from Numerical Recipes. The

mIe tables and the connection topology are randomly constructed for the specified

values of N, K, and p. The code was compiled and ron on a PC with an Intel Pen­

tium processor. The operating system used was Redhat Linu."C and the version of

FORTRAN used was FORTRi\N 77. For each network, we investigated one initial

condition and classified the dynamics after a transient of 120,000 switch times. The

•
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typical length of time ta evolve the system for this many time steps is a function of

IV, K, and p. For N rv 100, K "" ID, and p = 0.5, it would take "-1 5 hours to run 50

networks for 120,000 switch times. The dynamics can be classified by using symbolic

dynamics, keeping track of the variable that switches as a function of time. Provided

the network does not reach a steady state during the course of the integration, we

generate a sequence of integers denoting the label of the variable that switches at

each consecutive switch time. "vVe search for periodicities in this sequence of integers,

searching for periodicities up ta length 3000. vVhen a periodic sequence is identified~

additional sequences of integers are examined to verify periodicity.

Given the restrictions on the equations mentioned above, if the symbolic sequence

is periodic, in the differential equation there is a stable limit cycle oscillation [20].

If the sequence is not periodic, then in the differential equation, there can either be

quasiperiodic dynamics or chaotic dynamics. Ta identify quasiperiodic dynamics, we

need ta keep track of the exact switching times of all the variables of the network.

However, pilot investigations of severa! hundred randomly constructed networks failed

to identify quasiperiodic dynamics. Consequently, to simplify the analysis we lump

quasiperiodic rhythms together with chaotic networks, where we expect that the

incidence of quasiperiodic dynamics is negligible (less than 1%).

Figure 2.1 illustrates typical dynamics for a single variable in a network with

lV = 50, K = 8. The same connection matrh: was assumed for p incremented in

from 0.95 ta 0.50 in steps of 0.05, although anly three values, p = 0.5, 0.8, 0.85 are

displayed. When p = 0.75 the network evolves to a steady state (not shawn). In

Fig. 2.1(a) and 2.1(b), the symbolic transition sequences corresponding to the time

series do Dot show periodicities. The Lyapunov number, which cao he evaluated

numerically using techniques in Ott [24, 31], is positive for panels (a) and (b) and

negative for panel (c). Based on the above, the dynamics are deterministic chaos in

panels (a) and (b) and periodic in panel (c). The length of the limit cycle displayed

in (c) is 24 threshold crossings and the period is 3.744 time units. Based on the above

data it follows that lowering p cloes not always cause a single network ta tend toward

•
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chaotic behaviour. This network went from periodic dynamics to a steady state to

deterministic chaos as p was lowered.

Figure 2.2 shows the numbers of networks displaying steady states, limit cycles,

and chaos for K = 8 and N = 50 panel (a), N = 100 panel (bL and N = 200

panel (c), for 50 different randomly generated networks for p E [0.5,1.0] incremented

in steps of 0.02. As p increases the number of chaotic networks decreases and the

number of networks displaying steady states increases. The values of p associated

with limit cydes are centered in an increasingly narrow range ék" lV increases. Thp

width-half-max of the limit cycle region is designated by 'W, and the midpoint of the

limit cycle region is considered to he the critical value of p for that particular value

of 1V. With additional system sizes simulated, a scaling relation of the form 'W "J iV-&

could he found for the width-half-max. Extrapolating to lV ~ 00 we would find

that the width-half-ma.~goes to zero. Since the total number of orthants of phase

space that are visited during the simulations is a tiny fraction of the 2N orthants

of phase space, we cannot exclude the possibility that networks classified as chaotic

will eventually reach a stable steady state or limit cycle if the integration times are

extended.

Figure 2.3 shows the number of networks displaying deterministic chaos for 1V = 50

and K =6 panel (a), K = 8 panel (h) when 320,000 switch times are followed before

classifying the dynamics. For a given value of p the fraction of chaotic networks is

higher for K = 8 than for K = 6. The number of chaotic networks approaches °
(corresponding to the critical value of p) at a Lower value of p for K = 6 than for

K =8.

Figure 2.4 iUustrates the variation in the numbers of steady states, limit cycles,

and chaotic dynamics for N = 50, K = 6 , as a function of the length of the transient.

As the transient length is increased, the number of networks that pass the critenon

for chaotic dynamics decreases. For higher values of p almost aU the networks are

in steady states or cycles and the Length of the transient before this behavior is

estahlished is short. However, for p = 0.5, increasing the transient from 80,000 to

•
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320,000 transitions led to changes in identification of chaotic networks - the fraction

of chaotic attractors decreased from .90 to .80. These results illustrate the problems

of numerical analysis. Even for the comparatively small N = 50 networks, the state

space is huge, and there may be weak attraction to sparsely scattered steady states or

limit cycles. Thus, these methods cannot exclude the possibility that for any network

classified as chaotic, an attractor would be found had the numerical simulation been

arbitrarily long.

vVe no\v characterize the dynamics in Eq. (2.5). Let j designate the time interval

(tj, tj+d, in Eq. (2.6) ..A.t any given time in the interval j, the state in the continuous

equation is mapped to the logical state X(j). The distance between two logical states

is the number of variables in which the activities differ. vVe calI the distance between

X(j) and X(j + 1), determined from Eq. (2.2), the outflow dimension, h(j), of X(j).

The outflow dimension is a measure of the number of different variables that have the

potential to cross a at the next switch time of the network (20]. If h(j) = 0, then the

system will approach a steady state.

Using methods similar to those developed in earlier work by Derrida and others

[7, 26, 15], we compute the mean value of h. Denote the number of variables in

logical state Ci, and with truth table entry {3 in time interval j by JVa{j(j), where

Ci, f3 E {O, l}. If NOl (j) = lV10 (j) = 0, there is a fixed point. If this is not the case

there will eventually be a transition to a new state. The probability that there will he

a transition of a variable from state 0 to state 1 is Po-+ t = lVOl (j)/(lVodj) + iVlO (j)),

and the probability there will be a transition of a variable from state 1 to state 0 is

P1-+O = lVLQ(j)/(lVodj) + lVlO (j)).

The expected number of inputs from the switching variable to variables in state

(a, (3) is pNQP ' where p = KIN. Now assume that there is a transition of a variable

from 0 -7 1 at switch time t j +1• We adopt a probabilistic approach to determine

Nap(j + 1). Consider first the value of Noo(j + 1). This may be different from Noo(j)

if inputs fram the variable that changed its state have inputs ta variables in Non that

leads to a change to NOl, or inputs to variables in NOl that leads ta changes ta state

•
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Noo . Thus, we find that,

lVOO (j + 1) = lVoo (j) - p(l - p)lVoo (j) + pplVodj).

24

•

li there is a transition of a variable from 1 ~ 0 at time ti' then the above expression

would be changed ta

lVOO(j + 1) = iVoo(j) + 1 - pel - p)lVoo (j) + ppNodj).

In similar fashion, by weighting the respective transition probabilities, we are led to

the following system of equations for lVQ {j(j + 1).

lVOO (j + 1) = lVoo (j) + Pl -+O - p(l - p)lVoo(j) + PlnVol (j)

lVOl (j + 1) = iVOl(j) - PO-+ l + p(l - p)lVoo(j) - pplVodj) (2.7)

iVlO(j + 1) = NLO(j) - P l-+O - p(l - p)lVlQ(j) + pplVll (j)

lVU (j + 1) = lVll (j) + PO-+ l + p(l - p)JVlQ(j) - ppiVl1 (j)

At steady state, we have lVa/.i(j + 1) =Na,;(j) = l.V~137 where the asterisk represents

the steady state value. Substituting this relation in Eq. (2. i), we find that lV;l = J.Vio·

Substituting this result in the Eq. (2.7), we find

-~ = -p(I- p)Noo + ppN~o'

-~ =p(I - p)N~o - fYPN~l'

(2.8)

Using the conservation condition, lVôo + 2JVio + lVil = iV, we have three simultaneous

equations. Solving these equations and recalling that at steady state, the mean

outflow dimension, h* is given by Nio + N;l = 2Nio, we compute

(2.9)

•
In Fig. 2.5(a), we compare the theoretical estimates from Eq. (2.9) (solid curve)

with the numerical computations for lV =50, 100, 200. The theoretical estimate lies

consistently above the numerically computed values, but shows a similar functional

dependence on p. When h* = 0, we recover Eq. (2.1). In Fig. 2.5(b), we plot the



fraction of chaotic networks as a function of h*. The transition occurs approximately

in the range 0 < h* < 20 for aU values of lV considered. The results in Figure 2.5

provide a challenge for further theoretical analysis.

These results have connections with the extensive studies carried out on the dis­

crete time and discrete state space switching networks [7, 10, Il, 26, 16, 13, 15J. In

contrast to the earlier work, in which aIl finite networks must eventually cycle in the

limit t ~ 00 and which do not therefore admit deterministic chaos, in Eq. (2.5) de­

terministic chaos is possible [23. 24]. At the moment. there are no general techniques

to assert deterministic chaos in any given network, and it is possible that eventually

networks identified as chaotic here will reach limit cycles or steady states. Neverthe­

less, the extremely long transient behavior would appear to render these architectures

improbable for the highly constrained dynamics in real biological systems. [0 the con­

tinuous equations, the criticalline (2.1) defines the Hne at which h- = a and almost

aIl networks with p ~ Pc display steady states. Thus, the continuous equations show

transitions in dynamics even for finite lV. As the value of p is varied from 0.5, there

is Cl. transition from chaotic dyoamics to steady states, with an intervening zone of

periodic dynamics that becomes increasingly narrow as 2V increases.

•
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1. Time series for a typical variable in a network with lV = 50, K = 8. (a) p = 0.5,

(h) p = 0.8, (c) p = 0.85. In panels (a) and (b), the time series satisfy our tests

for chaos and in (c) the dynamics are periodic.
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2. Variation in the number of networks displaying steady states (circles), limit

cycles (squares), and chaos (diamonds) for K = 8, as a function of p, (a)

~V = 50, (b) ~V = 100, (c) ~V =200. A single initial condition was sclectcd for

each of 50 different networks for each value of p. Networks were iterated for

120,000 s,vitch times.

3. Fraction of chaotic networks for 320,000 iterations as a function of p for lV = 50

when (a) K = 6, (b) K = 8. The fraction of chaotic networks approaches zero

at a greater value of p for K =8 than for K =6.

4. Variation in the numbers of chaotic attractors for J.V = SO, K = 6, as a function

of the length of the transient. The circles designate a transient length of 10,000

iterations; squares correspond ta 80,000 iterations; and diamonds correspond to

320,000 iterations. As the transient length is increased, the number of networks

that pass the criterion for chaotic dynamics decreases.

s. (a) Normalized mean outflow dimension, h* / N, as a function of p for lV = 50

(triangles), lV = 100 (asterisks), lV = 200 (plus signs) compared with the theo­

retical result from Eq. (2.9). For each network, the value of h was averaged over

3000 switch times following a transient of 120,000 switch times. (b) Fraction of

chaotic networks as a function of h· for lV =50 (triangles), N = 100 (asterisks),

lV = 200 (plus signs).
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Figure 2.3
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Discussion and Conclusion

The order-disorder transition demonstrated in discrete logical switching networks as

the biasing parameter p is tuned is also found in continuous analogues of the discrete

networks. Simulation results for K 2:: 6 and lV ~ 50 show that when p ~ 1.0, all of

the randomly selected networks reach a steady state. As p is lowered, the number

of steady state attractors decrease and the number of periodic and chaotic attractors

increase. When p approaches 0.5, the fraction of chaotic attractors approaches 1.

When lV is increased, the range of p over which the transition from steady state

ta chaos occurs becomes narrower. Periodic dynamics ooly exist in this narrowing

transition region. 1 speculate that the width of this transition region goes to zero as

lV ~ 00. Thus, in the current context, the felicitous phrase "edge of chaos", which

is sometimes used to characterize parameter values near the criticalline, refers to a

set of parameter values where stable limit cycle oscillations predominate. The value

of p where this transition occurs increases as K increases.

A. probabilistic model for the dynamics was used to predict qualitative features of

the system and to identify the transition point. The average number of elements that

can cross their threshold at a given switch time, h*, is the mean dimension of the

subspace admitting outflows during the integration of the equations. This quantity

was computed from a Markovian model for the dynamics. Changes in h* correlate

with changes in the proportion of steady state, periodic, and chaotic attractors. When

the expression for h· is set equal ta zero, indicating the onset of steady state dynamics,

a relation between p and K corresponding to this transition is found. The critical

relation between p and K is identical to Equation 1.3, the baundary in p - K space

32



between ordered and disordered dynamics in discrete switching networks.

One aspect that requires further analysis is the effects of iteration time. It shows

that when p is near 0.5, the number of networks that reach steady state or periodic

attractors increases as the number of iterations is increased. The fraction of chaotic

networks as the length of the transient is increased does not approach a constant value

and therefore it is not possible to estimate a lower limit on the fraction of chaotic

networks. Numerical investigations of this issue of convergence of the number of

chaotic attractors requires a great amount of computer time and therefore analytical

methods need to be employed to solve this problem.

If the state of a gene is determined by the value of just one of its inputs, regardless

of the values of the other inputs, this Boolean function is said to be canalizing. These

functions can serve the biologically important role of making the state of a gene

robust against changes or perturbations of the non-canalizing input genes. Studies of

eukaryotic gene regulation suggest that there exists a bias in gene interactions toward

canalizing functions [32). The percentage of canalizing functions dramatically affect

the dynamics of discrete switching networks [4, 5). l have recently demonstrated a

transition from ordered to chaotic dynamics in continuons networks, similar to the

transition that occurs as p is varied, as the percentage of canalizing inputs is lowered.

The late physicist John Von Neuman stated that the understanding of complex sys­

tems composed of many interacting parts would advance from studying the detailed

mechanisms and interactions between elementary units and also the integration of

the interacting components ioto a functioning whole. The merging of insights from

these two approaches may soon pravide a deep and comprehensive understanding

of how gene networks really work. It has recentIy become possible ta make large

scale measurements of the level of gene expression over time such that predictions

from theoretical models can be compared to experiments [33]. From this time series

data it would be possible to infer the structure of the gene network [34]. Kauffman!s

assumption of a randomly constructed network was made in the face of the over­

whelming complexity of unknown gene interactions. It is now becoming possible to

•
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unravel the exact nature of interactions between genes. Knowledge of the structure

of gene networks, whether inferred or found by direct observation, could have great

impact on the understanding of embryonic development.

Whether in the study of model gene or neural networks, spin systems, or turbulent

fiow, the problem central to the study of complex dynamical systems composed of

many interacting components is this: given the properties of the microscopie compo­

nents and their interactions, predict the macroscopic global dynamics of the system.

While this task has been accomplished for systems that faIl under the purview of

equilibrium statistical mechanics, for most systems of interest that pervade our non­

equilibrium world, few inroads have been made. In the context of continuous gene

networks, the little progress made on this front has been restricted to low dimensional

networks [20, 35, 23]. No techniques exist to predict the dynamics of a high dimen­

sional network based on its logicai structure and connective topology. Insights into

the relation between the structure of these networks and their dyanamics will ulti­

mately provide a deep understanding into the fundamental mechanisms responsible

for the development and maintenance of living organisms.
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