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This thesis is dedicated to the memory of
Carl Sagan whose book “Shadows of Forgotten Ancestors”,
co-authored with his wife Ann Druyan, aroused my interest
in the biological world.

“When we no longer look at an organic being as a savage looks at a ship,
as something wholly beyond his comprehension; when we regard every pro-
duction of nature as one which has had a long history; when we contem-
plate every compler structure and instinct as the summing up of many
contrivances, each useful to the possessor, in the same way as any great
mechanical invention is the summing up of the labour, the ezperience, the
reason. and even the blunders of numerous workmen: when we thus view
each organic being, how far more interesting—I speak from erperience-does
the study of natural history become!”

CHARLES DARWIN,
The Origin of Species
(appearing in “Shadows of Forgotten Ancestors”)
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Randomly constructed networks of N elements governed by piecewise linear differ-
ential equations have been proposed as models for neural and genetic networks. In
this model an element is labelled “on” if it is above a threshold, and “off” other-
wise. The logical state of the network at any time is thus a Boolean vector. For
each element, there is a rule (truth table) specified by the values of K input elements
that determines whether it will switch its state (from 1 to 0 or from 0 to 1) at some
future time. Parameter p biases the output state of each automata and influences the
global dynamics of the system. Discrete switching network analogues of the piecewise
linear differential equations show a transition from ordered to disordered dynamics
as p and K are varied. The transition is analyzed in continuous switching networks.
Previous studies of these networks have demonstrated the existence of steady state,
periodic, and chaotic attractors. Numerical studies analyze the dynamics of a ran-
domly chosen ensemble of networks as a function of .V, K, and p. Theoretical insight
into the change in dynamics is gained through the derivation of a Markov process for
the number of elements at time ¢ that are approaching their threshold. Analysis of
this Markov model yields a critical relation between p and A that separates ordered
dynamics from deterministic chaos.

iv



Résumé

1

Des réseaux aléatoires de V éléments régis par des équations différentielles linéaires
par morceaux ont été proposés comme modeles de réseaux génétiques et neurologiques.
Dans ce modele, un élément est actif (ON) s’il dépasse un seuil, inactif (OFF) s'il lui
est inférieur. L’état logique du réseau est ainsi, en tout temps, un vecteur booléen.
Pour chaque élément, une table de vérité spécifiée par les valeurs de K éléments
d’entrée détermine si cet état est modifié (passant de 0 & 1 ou de 1 4 0) dans le
futur. Un parameétre p biaise la sortie de chaque automate et influence la dynamique
globale du systeme. Les analogues discrets des équations différentielles linéaires par
morceaux montrent une transition d'un état ordonné a un état désordonné lorsque
les parametres p et K varient. Cette transition est étudiée dans les résaux conti-
nus. Des études antérieures de ces réseaux avaient mis en évidence ['existence d’états
stationnaires, d’attracteurs périodiques de méme que d’attracteurs chaotiques. Des
simulations numériques permettent de comprendre 'influence des parametres N, A et
p sur un ensemble aléatoire de réseaux. Ces changements dynamiques sont interprétés
a l'aide d'un processus de Markov décrivant le nombre d’éléments approchant leur
seuil. Une analyse de ce modéle markovien montre un lien critique entre les valeurs des
parameétres p et K séparant les zones de dynamique ordonnée des régions chaotiques.
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K = number of inputs to each element

N = number of elements in the network

p = probability of having a 1(0) in the output of a rule table

X; = Boolean representation of element ¢

I; = continuous, real number representation of element i

X = N-dimensional vector of the Boolean configuration of the system
A; = randomly chosen Boolean function

X = K-dimensional vector of the inputs to an element

t;» = length of the transient before an attractor is reached

T = period of a limit cycle
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Introduction and Review

1.1 Introduction

Logical switching networks are dynamical systems that evolve in discrete time steps.
They are composed of elements that assume discrete values and each element changes
its state according to a logical function of the values of its inputs. The idea that com-
plex biological control systems could be modeled as logical switching networks was
first developed by McCulloch and Pitts in 1943 [1]. McCulloch and Pitts introduced
the concept of the ‘formal neuron’ as a binary threshold element. They demonstrated
that a collection of these elements, ‘a neural network’, could act as a universal Turing
machine [2]. In 1969, Kauffman introduced a logical switching model of the regu-
latory genetic circuits which gives rise to cellular differentiation during embryonic
development [3]. The state of activity of a gene is 0 or 1, corresponding to a gene
being repressed or expressed. The state of a gene at a given time step is a Boolean
function of the values of K input genes at the previous time step. Elements are
updated synchronously. There are 2% possible combinations of K Boolean elements
and thus 22° possible Boolean functions for updating the state of a given gene. The
unknown nature of the complex interactions taking place in a genome led Kauffman
to assume that these could be modeled by randomly chosen functions of randomly
selected genes. These choices are then kept fixed for the evolution of the system. For
N elements, there are 2V possible states which implies that the trajectory of a sys-
tem through state space eventually becomes periodic within a maximum of 2V time

steps. Relevant observables in such a randomly constructed dynamical system are the
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are the number of cycles and their length. Kauffman proposed this model for cel-
lular differentiation by interpreting the different cycles as different cell types and
cycle lengths as cell cycle times [3, 4, 5]. Early numerical results indicated that for
K = 2, the length and number of cycles ~ V/N. This relationship did not hold for
other values of K. Kauffman argued that K = 2 networks are biologically significant
because the number of cell types and cell cycle times of eukaryotic organisms is pro-
portional to the square root of the number of genes in their DNA, over a wide range
of phyla [3]. The Kauffman model has attracted a great amount of attention from
theoretical physicists [6-19]. Concepts from statistical mechanics useful in the study
of phase transitions and critical phenomena were employed to understand the qualita-
tive change in global dynamics as parameters are varied. The first effort was made in
the context of a modified version of the model which was more accessible to analytic
study than the original model. This was the ‘annealed’ Kauffman model, where the
inputs and Boolean rules are no longer ‘hard-wired’ or ‘quenched’, but are re-selected
at each time step. Analytical work related the convergence or divergence of different
initial configurations to the change in global dynamics [7]. The second major effort
identified the percentage of frozen elements as an order parameter. Changes in this
quantity were correlated with the change in the global dynamics [11].

Binary variables and synchronous updating used in discrete random Boolean net-
works (RBNs) are an idealization of more biologically realistic continuous differential
equations where the state of activity of a given gene is a continuous variable and
time is continuous. In 1975, Glass introduced coupled piecewise linear differential
equations as a continuous version of the Kauffman model [20]. The logical structure
and connectivity in the continuous model is constructed in an identical manner as in
the discrete systems. However, in this model, the state of a gene is represented by
a real number, z;, with a corresponding coarse grained Boolean variable .X; that is

defined as follows:

Xi =0 when z; <0;

Xi; =1 when z; > 0.
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X; =1 when z; > 0.

In general, only one element crosses its threshold at a time [20]. The Boolean
configuration of the system (i.e. the state of the N discrete Boolean variables,
{Xi(t);i=1,2,...,, N}) can therefore only change by one element at a time so that the
evolution of the discrete configuration can be mapped onto flows along the edges of
an N-dimensional hypercube [20]. The asymptotic dynamics are steady states, limit
cycles, quasiperiodicity, and deterministic chaos (21, 22, 23].

There is a parameter in addition to N and K that affect the dynamics of both
the discrete and continuous systems: the bias towards 1 or 0 in the output of the
rule table of each element, designated as p. Recent work on continuous networks has
demonstrated chaotic dynamics [21, 22, 23, 24|, but the transition from steady state
and limit cycle dynamics to chaos has not been studied.

This present work analyzes the dependence of the proportion of chaotic attractors
in an ensemble of continuous networks on p, K, and N. The thesis is organized as
follows. In the introductory chapter, results from studies of discrete and continuous
RBNs which have direct relevance to this current study are reviewed. Chapter 2 is
based on the manuscript “Ordered and Disordered Dynamics in Random Networks”
which describes the transition from steady state and limit cycle dynamics to deter-
ministic chaos as p is tuned. This manuscript was written with my supervisor Leon
Glass and was published in Europhysics Letters, 41 (6), pp. 599-604 (1998). It con-
tains the results of numerical simulations and theoretical predictions of dynamics in
continuous RBNs as a function of p, K, and N. These results are summarized and

discussed in Chapter 3, along with future directions for this work.
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1.2 Discrete Switching Networks

1.2.1 Definition of Model

In the Kauffman model, the genome or network is represented as NV genes or elements
that can have one of two values at a given time t: X;(t) = 0,1; : = 1,2,..., V.
A gene is dormant if X;(t) = 0 and is active if X;(t) = 1. The state of the "
element of the network at time step ¢t +1 is determined by a randomly chosen Boolean
function, A,-(J_(‘(,-)(t)), of the state of K randomly chosen input elements at time ¢,
X = {X5i(®), Xi@ @), s Xy (t)}. There are 2X possible combinations of
the values of the K inputs and 22" possible Boolean functions. The number of

. .. . . oK N
possible rule combinations in a network is therefore 2% x2¥  There are ( ) ways
K

of choosing the K inputs for each element, and thus NV kK ways of constructing

the connection topology of the network. The number of possible realizations of a
N

K 9K . . \
oNx2¥  Bven for modest values of N and K, this number is

network ~ N
astronomically large. Previous work has analyzed dynamical properties of networks
(i.e. number of cycles, median cycle length, etc.) for fixed values of N and K by
sampling random networks with fixed V and K [3]. These networks can generate
widely varying dynamical properties which necessitates studying a large sampling of
networks.

The time evolution of each site is given by
Xi(t+1) = M(Xy(8);i=1,..., N (1.1)

As the variables in this network take on only discrete values, the number of configu-
rations in state space is finite and implies that the dynamical evolution of this system
must eventually become periodic. An asymptotic periodic orbit is designated as a
cycle and the transient time until the trajectory reaches a cycle is designated as t,.
Since the number of states available for the system to explore increases exponentially

with N, it is possible to have very long transients and cycles. There can also exist a
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A|lBiC|it+1)
0/0}0 1
0j]0]1 0
0110 0
0|11 0
1010 1
1(0{1 0
11110 1
1[1]1 1

Table 1.1: Typical rule table of an element for A'=3 and p=0.5.

large number of different attractors. Initial configurations that lead to a particular
attractor are said to belong to the basin of attraction of that particular attractor.

In this model, the probability of choosing a 1 in the output of a rule table for each
element is p. In the original Kauffman model, p = 0.5. A typical rule table for A =3
and p = 0.5 is shown in Table 1.1. The influence that p has on the dynamics of the
system can be easily seen in the extreme case of p = 1, where the rule table of each
element would contain all 1's. In this case, each element of the network would be
fixed to 1 (i.e. a steady state attractor) after one time step. In general, increasing p
affects the dynamics by giving elements an increased tendency to be fixed to 1.

The relevant questions to ask about the properties of such a randomly constructed

dynamical system are, for given values of NV, K, and p:

e What is the average or median number of attractors?
e What are the expected numbers of steady states and cycles?
e What is the expected length of the transients and the periods of cycles?

e How many initial configurations belong to the basin of attraction of a particular

attractor?
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e Are the properties of attractors and transients dependent on whether one is
averaging over different initial configurations of a given network or averaging

over different networks?

e How are the dynamics of a network related to the structure of the network?

1.2.2 Results

The earliest work of Kauffman (3, 4, 5] attacked some of these questions numerically.
He found that the number and median cycle length of the attractors were proportional
to VN for K = 2, p = 0.5 networks. Log-log plots of the median cycle length and

median number of cycles are shown in Figure 1.1 [3]. For networks with K = N,

LR B A

¥ A
2 iy : Q

,-o""4 : :

s - s f °
St o
° -
S °/
LI
] L1l L1 1 1 i)
10 100 1000 10000 1000000 0 100
ns size of net .Size of net

Figure 1.1: Median cycle length and number of cycles as a function of N for networks with
K =2. Adapted from [4].

the expected cycle length is 2¥/2, Kauffman argued that the short cycle lengths and
small number of attractors in K = 2 networks had a biological significance since there

are a small number of cells (attractors) even though the number of genes (N) is large.

1000

-



1: Introduction and Review 7

Similar order to that in K = 2 networks was found in networks with larger K when
certain biases are introduced into the construction of the functions given in the truth
tables (Equation 1.1). These biases are effected by the tuning of the p parameter.

To put Kauffman’s observations on a firm theoretical foundation, theoretical physi-
cists have focused on: i) demonstrating the existence of a transition in dynamics
analogous to order-disorder transitions in statistical physics and identifying the pa-
rameter values where the transition occurs [7, 8, 11} ii) studying properties of the
model at the biologically relevant ‘transition’ point. Since the focus of this thesis is
on identifying the transition in continuous networks and not specifically on the prop-
erties of the network at the transition, I will outline approaches taken on identifying
the transition in discrete networks but will only briefly mention the efforts to study
properties of discrete networks at the transition.

The Hamming distance H between two different configurations of N elements
is defined as the number of positions in the network that contain different values.
For example, (000111) and (110011) have a Hamming distance of 3 between them.
Derrida and Pomeau analyzed the evolution of the Hamming distance for different
values of A" and p for a pair of different configurations of the same network [7]. They
introduced a variant of the original Kauffman model in which the connections and
updating rules of each element are chosen randomly at each time step. This is called
the annealed approximation. If the normalized overlap, L;,i, at time t is ajo(t), then
the fraction of elements that will have all K of their inputs at the same value in
both configurations 1 and 2 is, on average, [a12(t)]*. This will force these elements
to have identical values in both configurations at the next time step. There is also a
contribution to the overlap a;2(t) from elements that are in different states between
the two configurations. The time evolution of the overlap between two configurations

as a function of K and p is [7]:

aa(t + 1) = [a()]* + [p® + (1 — p)* {1 - [a12(8)]¥}. (1.2)

Ast = oo and N — oo, this recursion relation has a stable attractive fixed point

a1z = 1 (differing configurations become identical) when p > p, given by (7]
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Figure 1.2: Plot of Equation 1.3 in p-K space. This ‘critical line’ separates ordered from
disordered behaviour in the limit that N — oo.
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2K

For p greater than the value given by this expression, the system would typically

pe(l = pc) = (1.3)

lie in what is referred to as the ‘ordered’ regime where steady states exist and the
length of cycles ~ /N while for p less than this value the system would be in the
‘chaotic’ regime where the length of cycles ~ e¥. While the term ordered may be
appropriate for describing steady state and periodic dynamics, the term chaotic is gen-
erally reserved for describing, among other criteria, aperiodic behaviour. Although
the improper use of the term ‘chaotic’ abounds in the literature related to Kauff-
man networks and cellular automata which both exclude the possibility of aperiodic
dynamics, the term chaotic will be used here only to describe dynamics which are
aperiodic. The graph of Equation 1.3 in p — K space (shown in Figure 1.2) is called
the ‘critical line’, in analogy with a phase transition at a ‘critical point’ in the statis-

tical mechanical context. For p < p. the a2 = 1 solution becomes unstable and a new
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AlBlC|it+1)
0ja]0 1
ojo|1| 1
o|1]of 1
0[1(1 1
1100 1
11011 0
11110 1
111 o

Table 1.2: If A is frozen to a value of 0, then element i will also be frozen at the next time step.

fixed point emerges with a;» < 1 such that the Hamming distance between two con-
figurations would approach a non-zero steady state value. In the original Kauffman
model the configuration of a system at time ¢ is correlated with the choice of logical
functions and inputs for each element. These correlations do not exist in the annealed
approximation and thus results from the two models would match only when these
correlations become negligible in the original Kauffman model. It is argued in [7] that
these correlations vanish in the limit .V — oo.

The concept of a ‘stable core’ of elements [11] was introduced as an order parameter
for random Boolean networks and provided a microscopic explanation of the different
behaviours in the network. There is a non-zero probability of having a constant
function of all 0’s or 1's in the rule table of a given element which decreases rapidly
as K is increased. This probability is equal to p?* + (1 — p)2“. These elements
become ‘frozen’ to 0 or 1 after the first time step regardless of their initial values.
If one or more frozen elements are inputs to other elements then there is a non-zero
probability that these elements will become frozen after the second time step. This
process is repeated for subsequent time steps with a larger percentage of elements

in the network being frozen and able to propagate their ‘freezing effects’ to elements

that they are inputs to. Flyvberg expresses the fraction of frozen elements as this
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recursive sum [11]

K

s(t+1) =) ( K ) s(t)¥73(1 — s(t))’p;. (1.4)
J

=0

This expression assumes that each element can be an input to another element only
once. Therefore this approximation oaly becomes valid as N — oo. The steady state
solution of this equation is found by setting s(t + 1) = s(t) and is displayed in Figure
1.4 for K = 3 as a function of p [11]. The effect that p has on this quantity and hence

Figure 1.3: Steady state solution of recursion relation for the fraction of frozen elements in
a network as a function of p. In this example, K = 3. Adapted from [14].

on the dynamics is dramatic. Stability analysis of this expression yielded the same
critical relation between p and K that was found in the annealed approximation,
Equation 1.3.

More recent works have examined properties of the networks along the ‘critical line’
Equation 1.3. The scaling behavior of transients and cycles along this ‘critical line’ at
K =2 and p=0.5 was examined more carefully [13, 14]. It was found that the power
law relationship between N and the median lengths of transients and limit cycles
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persists over ten orders of magnitude. In the context of the annealed approximation,
the closing probabilities for trajectories were studied at K = 4, p = 0.7887 (from
Equation 1.3) [16]. Good agreement was found between the stochastic Markovian
model for the evolution of the overlap and the average period of a limit cycle. However,
they also found that the distribution of cycle lengths decays much slower in the
original model than in the annealed approximation, an effect that becomes more
significant with increasing V. This suggests a possible contradiction of the predicted
agreement between the annealed and original model as N — oo [7].

The critical relation between p and K derived here for discrete networks may
have some bearing on characterizing the dynamics in the continuous networks. The
derivation in the annealed approximation that led to the expression for criticality
depends on the synchronous updating in the Kauffman network and therefore the
applicability of this approach to the continuous networks is limited. Also, numerical
studies did not investigate the sharpness of this transition as a function of V, K,
and p. The concept of the ‘frozen core’ as a source of order in these networks derives
directly from the rule tables for each element and should, in principle, be independent
of the updating procedure. The applicability of this approach or similar approaches

to the asynchronously updated continuous networks has yet to be investigated.
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1.3 Continuous Switching Networks

1.3.1 Definition of Model

In the continuous version of the Kauffman net, the biologically unrealistic constraint
of clocked, synchronous updating is dropped and the state of activity of the elements
is updated asynchronously: the element that crosses its threshold first is the only
one whose Boolean value is changed. The nonlinear sigmoidal response function of
a given gene to its inputs is approximated as a step function, resulting in a set of
piecewise linear differential equations. As in the discrete case, the model consists of N
elements, but here their values are continuous and are represented by a real number,
z;;1=1,2,..., N, with a corresponding Boolean variable X; that is defined as follows

[20] :

X, =0 when z; < 0;

X.=1whenr; >0.

The analogous N dimensional differential equation of Equation 1.2 is

Bt X)Xl X)) = 1 (Gi)eni = Lo N (13)
where A;(.X;, (4), X6, (4), - . ., Xi, (4)) is a scalar whose sign is negative (positive) if the
corresponding logical variable A;(X;i(j), Xi2(4),...,Xii(j)) is 0 (1). The variable
7(}(-(',-)) is without index i because the inhibitory rates are assumed to be the same
for each element, and, for simplicity, ¥ = 7(X) = 1. The J\; are piecewise constant
functions whose values may change for particular i when the variables z; cross their
thresholds. The number of elements /N correspond to the dimension of phase space.
The thresholds divide phase space into 2V orthants for an N-dimensional system such
that the region of phase space {z; > 0,73 <0, ...,zy > 0} maps to the Boolean state
(10...1), and the the region {z; > 0,z, < 0,...,zy < 0} maps to the Boolean state

(10...0). The steady state solution of Equation 1.5 within a particular region of phase



1: Introduction and Review 13

space, %’* =0;2=1,...,, N, is the focal point that the system evolves to until crossing

into a different orthant of phase space. The focal point is given by f(X) = [f1s-es fN]
and for each element is equal to f,-(X.(‘,-)) = ,\i(lY-(',-)). It changes when the threshold
of an element is crossed, unless the system has evolved to a steady state attractor.
The solution of Equation 1.5 can be found through analytic integration. Expressed

in terms of f; = f,~(X-(.,~)), the solution in region X is

.‘I:,‘(t) = f; + (-’L’{(O) - fi)e‘, (16)

where z;(0) is the initial value of element i upon entering a given region. When
the time evolution of one variable is plotted against the time evolution of another
variable, straight lines are produced within each orthant since the exponential time
dependence in Equation 1.6 drops out when the slope is calculated. The slope of these
straight line trajectories changes discontinuously at each exit wall. The position of a
focal point of a region relative to other regions of phase space determine which regions
can be entered, and most importantly, which region is entered first, or equivalently,
which variable crosses its threshold first. A representative phase space trajectory
is shown in Figure 1.4 for a 2-dimensional cyclic attractor [25]. The values of each
variable at a threshold crossing can be calculated such that trajectories are given
an analytic expression. If the j** element crosses its threshold, implying x;(t*)=0,
then the transit time ¢* through that region of phase space can be solved by setting
Equation 1.6 equal to zero for the j** element. This transit time t* can then be
substituted back into Equation 1.6 for the other variables so that their values at the
exit wall of that region when element j crosses its threshold can be expressed as

z; = Tl0) = Ui/ 3)z;(0), (1.7)

1+z;(0)/(-f;)

or, in vector representation, [25],

3 = %0

* = M(%) = = ; 1.8
(@) 1 + ¢t£(0) (18)

where C € R* * *_ The vector ¢ € R" is transposed and has all components equal to

zero except for ¢; = —1/f;. Equation 1.8 is known as a fractional linear map and
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Figure 1.4: Phase space portrait of an N = 2 network after a few iterations. This particular
flow is that of a cyclic attractor where all trajectories converge to a stable limit cycle.
Adapted from [25].

transitions from region to region are computed as a composition of fractional linear
maps [23]. The composition of two fractional linear maps remains a fractional linear
map and allows significant analysis of the evolution of the system through phase

space.

1.3.2 Results

The original work of Glass focused on identifying steady states and limit cycles and
predicting their existence based on the logical structure of the network [20]. This was
aided through the mapping of the Boolean configuration of the system, X’(t), onto
the vertices of an NN-dimensional hypercube; and the evolution of the system onto

flows along the edges of this object. When elements are restricted from being inputs
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to themselves, flows in phase space can be represented on a hypercube in which each
edge is directed in only one of the two possible directions. A flow along the edges of

a hypercube for a particular 4-dimensional system is shown in Figure 1.5 [23].

o110

Figure 1.5: Hypercube mapping of the flow of a trajectory for & = 3. Edges with bold face
arrows represent allowed transition from one state to an adjacent state. Adapted from [23].

Glass defined a hypercube with a particular orientation of directed edges as a state
transition diagram. Two systems whose state transition diagrams can be superim-
posed upon each other under a symmetry operation of the N-cube (e.g. rotation or
reflection about a particular axis or vertex of the hypercube) are said to belong to
the same equivalence class. Glass studied properties of these equivalence classes to
connect the properties of various steady states and limit cycles with the geometric
structure of flows on the hypercube. In particular, it was shown for N > 3 that a
cyclic attractor on the hypercube implies a unique stable limit cycle in the associated
piecewise linear differential equations when the focal points are +1 [25].

Studying these piecewise linear equations in the context of neural networks, Lewis
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and Glass found numerical evidence for the existence of a chaotic attractor in a 6-
dimensional network [21, 22]. A 5-dimensional Poincaré section that the solution
trajectory of their system crossed repeatedly was projected on to a particular 2-
dimensional plane. In this way, a density histogram of the values of a particular
element was plotted for long times. Neighboring trajectories diverged over time and
the corresponding density histograms were invariant with successive iterations. This
represented numerical evidence for the existence of two features commonly found in
many chaotic systems: ergodicity and a unique invariant density [21].

A particular four dimensional network was discovered, from a search of many
thousands, that displayed chaotic dynamics. Mestl [23] demonstrated that it is not
possible to have chaos in 3-dimensions, implying that this example existed in the
lowest dimension possible. During iteration, the dynamics follows the solid edges in
Figure 1.5.

A Poincaré section was chosen at the ‘wall’ separating vertices (0011) and 1011.
Numerical studies demonstrated that the dynamics could be described by a strange
attractor (i.e. fractal structure).

Further analysis was carried out for evaluating the Lyapunov exponent which is
a measure of the divergence of trajectories in phase space. As described in Section
1.3.1, the trajectory of the system through phase space can be analytically expressed
as the composition of fractional linear maps. The Jacobian of this fractional linear

map after one iteration is

Ji= M 0 (1.9)
oz
where M = M(Z) is as defined in Equation 1.8. With
oM, - oM, -
- n—-1...2""|p0 1.10
7= oz " (1.10)

representing the product of the Jacobians after n iterations of the fractional linear
map. With ud representing an initial perturbation, the Lyapunov exponents are
expressed as

h = (2, @) = lim ~In(|lJ" - @O)). (1.11)

n—oo n



1: Introduction and Review 17

There are at most N distinct Lyapunov exponents, where N is the dimension of the
system. Using analytical methods described in [23], the lower bound on the largest
Lyapunov exponent in this system is found to be 0.31, verifying the numerical evidence
for sensitive dependence on initial conditions and chaotic dynamics. The Lyapunov
exponent, related to the rate of convergence/divergence of nearby trajectories, was
calculated using this technique. It was approximately equal to 0.45, indicating chaotic
dynamics since it was positive. Mestl et al found that chaotic attractors are rare in low
dimensions, but ubiquitous in high-dimensional networks with a moderate number of
inputs (~ 10) [24].

While the existence of steady states, limit cycles, and deterministic chaos has been
demonstrated in these continuous networks, there has been little investigation into
the mechanisms which determine which kind of dynamics predominate. There has
been analytical studies of the transition from steady state to limit cycle dynamics as
a function of the biasing parameter p in the discrete networks, but there has not been
a systematic analysis of the dynamics as a function of p in the continuous networks.

This work is an attempt to fill this void.



2

Ordered and Disordered Dynamics in Random Networks

Genetic networks have been modeled by random Boolean networks in which time is
discrete and each element computes a Boolean function based on the values of inputs
to that element [3|. Since the number of human genes is of the order of 100,000, and
each gene is idealized as either on (1) or off (0), the state space for the human gene
activity is huge. An order-disorder transition has been described for random Boolean
networks in the limit that the number of variables, NV — oo, as a function of the
number of inputs per variable, K, and the probability, p, that the truth table for a
given element will have a bias for being 1 7, 10, 11, 13, 15, 16, 26]. The order-disorder

boundary is given by
1
K= 77—,
2p(1 ~ pe)

where K. and p, represent the values of K and p on the boundary [7, 11, 16]. Kauff-

(2.1)

man has argued that for a network to be biologically meaningful, it should have rela-
tively few attractors, and the cycle length of attractors should be comparatively short
[3]. In real biological systems there are not clocking devices to generate synchronous
updating and theoretical models are more appropriately formulated as continuous dif-
ferential equations [20, 23, 24, 27, 28, 29, 30|. Here we present numerical evidence for
an order-disorder transition in differential equation analogues of the discrete switch-
ing networks. We also present a probabilistic model of the dynamics, in which we
show that (2.1) also applies to the continuous equations.

First consider a logical network consisting of N binary variables, X; = 0,1, i =
1,..., N. Since we consider the networks as models of genes, X represents the activity

of gene 7. In other contexts, logical variables may represents spins or voltages. The

18
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network is updated by means of the dynamical equation
Xi(j+1) ‘—'Ai(Xil(j)aXiz(j)v-""Yik(j))v i= 17---,1V1 (22)

where A;(X; (5), Xia (7). -, Xin (4)) € {0,1} and K is the number of inputs. More

compactly, we have
XG+1)=AX(3G), i=1,...,N, (2.3)

Thus, for any state X(j), A is a truth table determining X(j + 1).
The logical structure of Eq. (2.2) can be captured by a differential equation [20].

To a continuous variable z;(t), we associate a discrete variable X|(t),
Xi(t) =0 if z;(t) < 0; otherwise X;(t)=1. (2.4)

For any logical network, we define an analogous differential equation,

d.’l?,' , g . . . =
Tit_ =-I;+ /\i(‘\il(J)s-Yiz(J)t .- 'v'YiK(J))3 i=1...,VN, (20)

where (X, (§), Xi.(7), .- ., Xi, (7)) is a scalar whose sign is negative (positive) if the
corresponding logical variable A;(X;1(j), Xi2(j), .- ., X (7)) is 0 (1).

For each variable, the temporal evolution is governed by a first order piecewise
linear differential equation. Let {t,ta,... ¢}, denote the switch times when any
variable of the network crosses 0. The solution of Eq. (2.5) for each variable r; for

t]' <t< tj+[, is
zilt) = zi(t;) €77+ M( X (1), X (), - -0 X (1)) (1 — e787)), (2.6)

Depending on the particular network, Eq. (2.5) can display steady states, limit
cycles, quasiperiodicity or chaos [20, 23, 27, 28, 29, 30]. Although the origin of chaos in
one particular four-dimensional network has been analyzed (23], no general methods
have yet been developed to determine whether chaotic dynamics exists in any given
equation without integrating it. Chaos is the usual behavior in these networks for

N=64,9<K <25 p=05[24]
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In carrying out the computations, we have made several additional assumptions
concerning the structure of the equations. (i) There is no self-input or reciprocal input.
This means that ¢ cannot be an input to itself, and if 7 is an input to &, k is not also
an input to i. These assumptions eliminate the possibility of asymptotic approach to
stable steady states in the neighborhood of threshold axes z; = 0 [20, 29, 30]. If these
assumptions are not made, the techniques for analysis of the dynamics based on the
symbolic dynamics described below fail. (ii) We set A; in Eq. (2.5) to be in the range
-1+ | .01 | or 1£ | .01 |. The focal points of individual elements are given a small
perturbaton away from 1 or -1 that is some fraction of the initial value of each element.
This ensures that the situation where two variables cross their threshold at the same
time does not arise. To determine the effect that this arbitrary perturbation has on
the classification of the attractors of networks, the strength of this perturbation is
varied among -0.0001,-0.001,-0.01,-0.1,+0.1, +0.01,+0.001,4+0.0001 of the initial value
of each element for K =6, .V = 350, and p = 0.75. The results indicate no systematic
variation above the expected statistical noise level of —\/n_TalfnT or 10% for this case
of 100 networks. (iii) In the truth tables we assume that for a given value of p, half
the variables of the network have entries that are biased towards 1 and half are biased
towards 0.

Although the piecewise-linear nature of Eq. (2.3) facilitates the speed and accuracy
of numerical integration over other integration techniques, numerical studies never-
theless grow large rapidly. Consequently, we focus on the order-disorder transition
for limited regions of parameter space. The system was simulated using a source code
written in FORTRAN. Equations 2.5 were integrated from random initial conditions.
The random number generator employed was obtained from Numerical Recipes. The
rule tables and the connection topology are randomly constructed for the specified
values of N, K, and p. The code was compiled and run on a PC with an Intel Pen-
tium processor. The operating system used was Redhat Linux and the version of
FORTRAN used was FORTRAN 77. For each network, we investigated one initial

condition and classified the dynamics after a transient of 120,000 switch times. The
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typical length of time to evolve the system for this many time steps is a function of
N, K, and p. For N ~ 100, K ~ 10, and p = 0.3, it would take ~ 5 hours to run 50
networks for 120,000 switch times. The dynamics can be classified by using symbolic
dynamics, keeping track of the variable that switches as a function of time. Provided
the network does not reach a steady state during the course of the integration, we
generate a sequence of integers denoting the label of the variable that switches at
each consecutive switch time. We search for periodicities in this sequence of integers,
searching for periodicities up to length 3000. When a periodic sequence is identified,
additional sequences of integers are examined to verify periodicity.

Given the restrictions on the equations mentioned above, if the symbolic sequence
is periodic, in the differential equation there is a stable limit cycle oscillation [20].
If the sequence is not periodic, then in the differential equation, there can either be
quasiperiodic dynamics or chaotic dynamics. To identify quasiperiodic dynamics, we
need to keep track of the exact switching times of all the variables of the network.
However, pilot investigations of several hundred randomly constructed networks failed
to identify quasiperiodic dynamics. Consequently, to simplify the analysis we lump
quasiperiodic rhythms together with chaotic networks, where we expect that the
incidence of quasiperiodic dynamics is negligible (less than 1%).

Figure 2.1 illustrates typical dynamics for a single variable in a network with
N = 50, K = 8. The same connection matrix was assumed for p incremented in
from 0.95 to 0.50 in steps of 0.05, although only three values, p = 0.5, 0.8, 0.85 are
displayed. When p = 0.75 the network evolves to a steady state (not shown). In
Fig. 2.1(a) and 2.1(b), the symbolic transition sequences corresponding to the time
series do not show periodicities. The Lyapunov number, which can be evaluated
numerically using techniques in Ott [24, 31], is positive for panels (a) and (b) and
negative for panel (c). Based on the above, the dynamics are deterministic chaos in
panels (a) and (b) and periodic in panel (c). The length of the limit cycle displayed
in (c) is 24 threshold crossings and the period is 3.744 time units. Based on the above

data it follows that lowering p does not always cause a single network to tend toward
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chaotic behaviour. This network went from periodic dynamics to a steady state to
deterministic chaos as p was lowered.

Figure 2.2 shows the numbers of networks displaying steady states, limit cycles,
and chaos for K = 8 and N = 50 panel (a), N = 100 panel (b), and N = 200
panel (c), for 50 different randomly generated networks for p € {0.5,1.0] incremented
in steps of 0.02. As p increases the number of chaotic networks decreases and the
number of networks displaying steady states increases. The values of p associated
with limit cycles are centered in an increasingly narrow range as NV increases. The
width-half-max of the limit cycle region is designated by w, and the midpoint of the
limit cycle region is considered to be the critical value of p for that particular value
of N. With additional system sizes simulated, a scaling relation of the form w ~ N9
could be found for the width-half-max. Extrapolating to N — oo we would find
that the width-half-max goes to zero. Since the total number of orthants of phase
space that are visited during the simulations is a tiny fraction of the 2V orthants
of phase space, we cannot exclude the possibility that networks classified as chaotic
will eventually reach a stable steady state or limit cycle if the integration times are
extended.

Figure 2.3 shows the number of networks displaying deterministic chaos for N = 50
and K = 6 panel (a), K = 8 panel (b) when 320,000 switch times are followed before
classifying the dynamics. For a given value of p the fraction of chaotic networks is
higher for K = 8 than for K = 6. The number of chaotic networks approaches 0
(corresponding to the critical value of p) at a lower value of p for K = 6 than for
K=28.

Figure 2.4 illustrates the variation in the numbers of steady states, limit cycles,
and chaotic dynamics for N = 50, K = 6, as a function of the length of the transient.
As the transient length is increased, the number of networks that pass the criterion
for chaotic dynamics decreases. For higher values of p almost all the networks are
in steady states or cycles and the length of the transient before this behavior is

established is short. However, for p = 0.5, increasing the transient from 80,000 to
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320,000 transitions led to changes in identification of chaotic networks - the fraction
of chaotic attractors decreased from .90 to .80. These results illustrate the problems
of numerical analysis. Even for the comparatively small N = 50 networks, the state
space is huge, and there may be weak attraction to sparsely scattered steady states or
limit cycles. Thus, these methods cannot exclude the possibility that for any network
classified as chaotic, an attractor would be found had the numerical simulation been
arbitrarily long.

We now characterize the dynamics in Eq. (2.5). Let j designate the time interval
(tj,tj+1), in Eq. (2.6). At any given time in the interval j, the state in the continuous
equation is mapped to the logical state X(j). The distance between two logical states
is the number of variables in which the activities differ. We call the distance between
X(j) and X(j + 1), determined from Eq. (2.2), the outflow dimension, h(j), of X(j).
The outflow dimension is a measure of the number of different variables that have the
potential to cross 0 at the next switch time of the network [20]. If h(j) =0, then the
system will approach a steady state.

Using methods similar to those developed in earlier work by Derrida and others
[7, 26, 15], we compute the mean value of A. Denote the number of variables in
logical state @, and with truth table entry 3 in time interval j by Na4(j), where
a,f € {0,1}. If Noi(j) = Nyo(j) = 0, there is a fixed point. If this is not the case
there will eventually be a transition to a new state. The probability that there will be
a transition of a variable from state 0 to state 1 is P,y = Noi(J)/(No1(J) + N1o(4)),
and the probability there will be a transition of a variable from state 1 to state 0 is
Piog = No(7)/(No1(7) + Nio(5))-

The expected number of inputs from the switching variable to variables in state
(e, B) is pNyg, where p = K/N. Now assume that there is a transition of a variable
from 0 — 1 at switch time ¢;.,. We adopt a probabilistic approach to determine
Nag(7 + 1). Consider first the value of Ngo(j + 1). This may be different from Ngo(j)
if inputs from the variable that changed its state have inputs to variables in Ngg that

leads to a change to Ny, or inputs to variables in /Vp, that leads to changes to state
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Ngg. Thus, we find that,

Noo(5 +1) = Naa(j) = p(1 = p)Nao(5) + ppNo1(j)-

If there is a transition of a variable from 1 — 0 at time ¢;, then the above expression

would be changed to

Noo(J + 1) = Ngo(g) + 1 = p(1 = p) Noo () + ppNo1 (7).

In similar fashion, by weighting the respective transition probabilities, we are led to

the following system of equations for Nag(j + 1).

Noo(j + 1) = Noo(j) + Piso — (1 = p)Noo(4) + ppNor ()
Not(j + 1) = N (j) = Post + p(1 = p)Noo(j) — ppNor () (2.
Nw(j + 1) = Nio(J) = Piao = p(1 = p)N1o(4) + ppNu(J)
Nu(G+ 1) = Nu(j) + P + (1 = p)Nio(4) — ppN ()

[AW]
~
~

At steady state, we have Nygz(j+1) = Nog(j) = N4, where the asterisk represents
the steady state value. Substituting this relation in Eq. (2.7), we find that Vj; = NJ.
Substituting this result in the Eq. (2.7}, we find

l\.’)lt—‘mlv—-

= —p(1 — p)Ngy + ppNyy, (2.8)

= p(1 ~ p)Ny — ppN},.

Using the conservation condition, Ng; + 2N, + NJ, = N, we have three simultaneous
equations. Solving these equations and recalling that at steady state, the mean
outflow dimension, h* is given by Ny, + Ng, = 2N}, we compute
ML+ oKkp - 2kpY). (2.9)
N K
In Fig. 2.5(a), we compare the theoretical estimates from Eq. (2.9) (solid curve)
with the numerical computations for N = 50, 100, 200. The theoretical estimate lies

consistently above the numerically computed values, but shows a similar functional

dependence on p. When h* = 0, we recover Eq. (2.1). In Fig. 2.5(b), we plot the
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fraction of chaotic networks as a function of 4*. The transition occurs approximately
in the range 0 < h* < 20 for all values of N considered. The results in Figure 2.5
provide a challenge for further theoretical analysis.

These results have connections with the extensive studies carried out on the dis-
crete time and discrete state space switching networks (7, 10, 11, 26, 16, 13, 15]. In
contrast to the earlier work, in which all finite networks must eventually cycle in the
limit ¢ — oo and which do not therefore admit deterministic chaos, in Eq. (2.5) de-
terministic chaos is possible [23. 24]. At the moment. there are no general techniques
to assert deterministic chaos in any given network, and it is possible that eventually
networks identified as chaotic here will reach limit cycles or steady states. Neverthe-
less, the extremely long transient behavior would appear to render these architectures
improbable for the highly constrained dynamics in real biological systems. [n the con-
tinuous equations, the critical line (2.1) defines the line at which A* = 0 and almost
all networks with p > p. display steady states. Thus, the continuous equations show
transitions in dynamics even for finite V. As the value of p is varied from 0.5, there
is a transition from chaotic dynamics to steady states, with an intervening zone of

periodic dynamics that becomes increasingly narrow as N increases.
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Figures

(53}

. Time series for a typical variable in a network with N = 50, K = 8. (a) p = 0.5,

(b) p=0.8, (c) p = 0.85. In panels (a) and (b), the time series satisfy our tests

for chaos and in (c) the dynamics are periodic.

. Variation in the number of networks displaying steady states (circles), limit

cycles (squares), and chaos (diamonds) for K = 8, as a function of p, (a)
N =530, (b) ¥ =100, (¢c) N =200. A single initial condition was sclected for
each of 50 different networks for each value of p. Networks were iterated for

120,000 switch times.

Fraction of chaotic networks for 320,000 iterations as a function of p for N = 50
when (a) K = 6, (b) K = 8. The fraction of chaotic networks approaches zero

at a greater value of p for K = 8 than for K = 6.

Variation in the numbers of chaotic attractors for .V = 50, K’ = 6, as a function
of the length of the transient. The circles designate a transient length of 10,000
iterations; squares correspond to 80,000 iterations; and diamonds correspond to
320,000 iterations. As the transient length is increased, the number of networks

that pass the criterion for chaotic dynamics decreases.

. (a) Normalized mean outflow dimension, 2*/N, as a function of p for ¥ = 50

(triangles), N = 100 (asterisks), NV = 200 (plus signs) compared with the theo-
retical result from Eq. (2.9). For each network, the value of h was averaged over
3000 switch times following a transient of 120,000 switch times. (b) Fraction of
chaotic networks as a function of h* for N = 50 (triangles), NV = 100 (asterisks),
N = 200 (plus signs).
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Figure 2.3
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Figure 2.4
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Figure 2.5
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Discussion and Conclusion

The order-disorder transition demonstrated in discrete logical switching networks as
the biasing parameter p is tuned is also found in continuous analogues of the discrete
networks. Simulation results for K > 6 and N > 50 show that when p = 1.0, all of
the randomly selected networks reach a steady state. As p is lowered, the number
of steady state attractors decrease and the number of periodic and chaotic attractors
increase. When p approaches 0.5, the fraction of chaotic attractors approaches 1.
When N is increased, the range of p over which the transition from steady state
to chaos occurs becomes narrower. Periodic dynamics only exist in this narrowing
transition region. I speculate that the width of this transition region goes to zero as
N — oco. Thus, in the current context, the felicitous phrase “edge of chaos”, which
is sometimes used to characterize parameter values near the critical line, refers to a
set of parameter values where stable limit cycle oscillations predominate. The value
of p where this transition occurs increases as K increases.

A probabilistic model for the dynamics was used to predict qualitative features of
the system and to identify the transition point. The average number of elements that
can cross their threshold at a given switch time, A*, is the mean dimension of the
subspace admitting outflows during the integration of the equations. This quantity
was computed from a Markovian model for the dynamics. Changes in A* correlate
with changes in the proportion of steady state, periodic, and chaotic attractors. When
the expression for h* is set equal to zero, indicating the onset of steady state dynamics,
a relation between p and K corresponding to this transition is found. The critical

relation between p and K is identical to Equation 1.3, the boundary in p — K space

32
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between ordered and disordered dynamics in discrete switching networks.

One aspect that requires further analysis is the effects of iteration time. It shows
that when p is near 0.5, the number of networks that reach steady state or periodic
attractors increases as the number of iterations is increased. The fraction of chaotic
networks as the length of the transient is increased does not approach a constant value
and therefore it is not possible to estimate a lower limit on the fraction of chaotic
networks. Numerical investigations of this issue of convergence of the number of
chaotic attractors requires a great amount of computer time and therefore analvtical
methods need to be employed to solve this problem.

If the state of a gene is determined by the value of just one of its inputs, regardless
of the values of the other inputs, this Boolean function is said to be canalizing. These
functions can serve the biologically important role of making the state of a gene
robust against changes or perturbations of the non-canalizing input genes. Studies of
eukaryotic gene regulation suggest that there exists a bias in gene interactions toward
canalizing functions [32]. The percentage of canalizing functions dramatically affect
the dynamics of discrete switching networks [4, 5]. I have recently demonstrated a
transition from ordered to chaotic dynamics in continuous networks, similar to the
transition that occurs as p is varied, as the percentage of canalizing inputs is lowered.

The late physicist John Von Neuman stated that the understanding of complex sys-
tems composed of many interacting parts would advance from studying the detailed
mechanisms and interactions between elementary units and also the integration of
the interacting components into a functioning whole. The merging of insights from
these two approaches may soon provide a deep and comprehensive understanding
of how gene networks really work. It has recently become possible to make large
scale measurements of the level of gene expression over time such that predictions
from theoretical models can be compared to experiments [33]. From this time series
data it would be possible to infer the structure of the gene network [34]. Kauffman's
assumption of a randomly constructed network was made in the face of the over-

whelming complexity of unknown gene interactions. It is now becoming possible to
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unravel the exact nature of interactions between genes. Knowledge of the structure
of gene networks, whether inferred or found by direct observation, could have great
impact on the understanding of embryonic development.

Whether in the study of model gene or neural networks, spin systems, or turbulent
flow, the problem central to the study of complex dynamical systems composed of
many interacting components is this: given the properties of the microscopic compo-
nents and their interactions, predict the macroscopic global dynamics of the system.
While this task has been accomplished for systems that fall under the purview of
equilibrium statistical mechanics, for most systems of interest that pervade our non-
equilibrium world, few inroads have been made. In the context of continuous gene
networks, the little progress made on this front has been restricted to low dimensional
networks [20, 35, 23]. No techniques exist to predict the dynamics of a high dimen-
sional network based on its logical structure and connective topology. Insights into
the relation between the structure of these networks and their dyanamics will ulti-
mately provide a deep understanding into the fundamental mechanisms responsible

for the development and maintenance of living organisms.
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