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Abstract

The discipline of automated theorem proving encompasses techniques which
allow us to find a justification of a logical statement expressing an assertion
in some domain of knowledge. Beside obvious importance for mathematics,
many of the tasks traditionally associated with human intellect can be solved
through application of these techniques. Methods based on Robinson’s res-
olution form one of the cornerstones of automated theorem proving. The
efficiency of these methods, however, is less than admissible for many inter-
esting domains of mathematics. By studying the underlining axioms of the
domain it is often possible to find some computational shortcut. This thesis
overviews available generic methods and then considers possible refinements
aimed at theorems in Euclidian geometry formulated on the Tarskian axiom

system.



Résumé

La discipline de démonstration automatique de théorémes entoure des tech-
niques ce qui laissent trouver une justification d'une phrase logique expri-
mant une affirmation dans un certain domaine de la connaissance. Prés
de I'importance évidente pour des mathématiques, plusieurs des taches qui
sont traditionnellement associées a l'intellect humain peuvent étre résolues
par 'application de ces techniques. Les méthodes basées sur la résolution
de Robinson sont parmi les plus importantes pour le démonstration au-
tomatique de théorémes. L'efficacité de ces méthodes, cependant, est moins
qu’admissible pour beaucoup de domaines intéressants des mathématiques.
En étudiant les axiomes soulignants du domaine, il est souvent possible
de trouver certain accélération de calcul. Cette thése fait une revue de
méthodes principales pour démontrer des théorémes et alors considére les
améliorations possibles pour les théorémes dans la géométrie euclidienne

formulée sur le systeme d’axiome de Tarski.
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Chapter 1

Introduction

Formal logic occupies an important place in the foundations of modern math-
ematics. It is used for reconstructing and analyzing mathematical proofs in
a formal manner. One of the main tasks of formal logic is to provide efficient
means to justify a theorem (i.e.: a conclusion) of some premises by a proce-
dure carried out manually or, in a modern setting, by a computing device.
Beside logic’s importance for mathematics, many of the tasks traditionally
associated with human intellect can be expressed as applications of formal
logic and particularly of theorem proving. As a consequence, a mechanical
procedure to prove theorems implemented and carried out by a computer
can serve as an instrument to solve multiple mathematical as well as applied
problems and tasks.

The desire to find a general decision procedure to prove theorems dates
back at least to Leibniz (1646-1716), most probably going as far back as
Aristotle’s logic of syllogisms. The stronger interest to this subject emerged
in the last century with the work of Boole on algebra of logic. The advances
began truly in earnest, however, only around the beginning of this century
with the axiomatizations for arithmetic and projective geometry by Peano,
discovery of paradoxes of set theory and later with contributions by Hilbert
and his school of logic.



As a consequence of early successes, Hilbert proposed a program for for-
malization of all of mathematics with axiomatized logic serving as a common
base to demonstrate consistency of particular theories. These hopes were
soon dashed, however, by Gdidel's incompleteness results. The second of
Gaodel’s incompleteness theorems states that in any consistent formal theory
containing arithmetic, the sentence asserting the consistency of the theory
itself is not provable within that theory.

Despite Godel’s discovery, by 1930s a very important theorem was proven
hy Herbrand apening a way for actual mechanical methods to prove theo-
rems. Few years later Gentzen defined a natural notion of formal proofs
which is closer to mathematical deduction than the Hilbert-type systems.
Both Herbrand and Gentzen investigated the structure of mathematical
proofs, whereas Godel results were directed at provability [Le97].

In 1936 Church and Turing, strengthening Godel’s results, independently
showed that, in fact, there cannot be a general decision procedure to check
validity of formulas of first-order logic and thus any imaginable proof pro-
cedure for this logic has a weaker power — it can only show validity of
formulas which are indeed vaiid. That result was demonstrated earlier in
Godel’s completeness theorem which stated that any valid formula is prov-
able. Church-Turing result however demonstrated that for invalid formulas
the proof procedure may not terminate [Me64)], [CL73].

With the invention of digital computers the interest for mechanical proce-
dures to prove theorems was regained again and implementations for various
mechanical methods started to emerge. By 1960 Herbrand’s procedure was
implemented by Gilmore and later a more efficient algorithm was introduced
by Davis and Putnam. By 1965 a major contribution by Robinson gave a
significantly more efficient algorithm. Since that time, many refinements
and distinct methods appeared. Automated provers which were initially ca-
pable to prove only simple theorems grew in sophistication to the degree
when some open mathematical problems were solved with their help, such



as recent (1996) prove by Argonne National Lab’s prover EQP the theorem
that every Robbins algebra is in fact a Boolean algebra [Mc97].

Mechanical theorem proving methods also branched into multiple ap-
plied areas such as program verification, circuit design, expert systems and
databases [Sa98).

Current advances in computer technologies, especially that in parallel ar-
chitectures and fast networks connecting multiple microcomputers, promise
greater efficiency of implementations for mechanical theorem provers in the
future and hence these techniques will undoubtedly find even more uses then
there are today.

We begin the thesis by reviewing principles of propositional and predi-
cate logic. Whereas it is the latter which is of practical interest, the former
allows us to formulate many concepts in a much more intuitive form. Chap-
ter 3 is dedicated to fundamental principals of automated theorem proving.
It is shown that there is a semantic and deductive approaches. A version
of Herbrand’s theorem is discussed and a procedure of semantic tree build-
ing is introduced. Further we turn to the deductive method of resolution
and demonstrate that its completeness is implied by Herbrand’s theorem.
Whereas these procedures can do the job, they suffer from computational
inefficiency. The rest of the thesis discusses various ways how to improve
performance of resolution based theorem provers. Particularly, Chapter 4
details multiple general strategies. Although these, properly implemented,
may give a considerable performance improvement, it is possible to go even
further by concentrating on one class of theorems and exploiting special
properties of their common axioms. Thus, Chapter 5 discusses specialized
approaches for theorems in Fuclidian geometry, more particularly those us-
ing axiom system formulated by Tarski. This class of theorems was chosen
as it is quite representative of relatively difficult theorems one would want
to proof automatically. Their difficulty comes from relatively high number
of clauses, heavy use of equality predicate as well as of highly flexible ax-



ioms describing behavior of such predicates as equidistance, betweenness and
colinearity. Several approaches will be proposed and heuristic observations
made for efficient proving of geometry theorems.

Most of the observations and results which will be presented were ob-
tained from experiments with GLIDFE (Geometry Linear Iterative Deepening
Engine) theorem prover written by the author and based on the experience
of TGTP (The Great Theorem Prover) theorem prover by Professor M. New-
born [Ne97]. GLIDE prover incorporates some special refinements aimed at
theorems with equality and more particularly at geometry theorems. The
implementation and results of experiments (including performance compar-
isons with two popular provers) will be described in Chapter 5.



Chapter 2

Logic calculi

As the name “theorem proving” suggests, the primary interest of this disci-
pline is giving a justification to logical sentences expressing theorems. Ax-
iomatic method, allowing to solve this problem, has received a wide accep-
tance in mathematics. With this method we first formulate a system of laws
which we accept without a proof for some domain. These laws are called
azioms. Other laws, the theorems, can then be proven to be consequences
of the axioms and thus valid (on the assumption that the axioms were).

Formalisms to express the axiom systems are referred to as logic calculi
(such as propositional calculus or predicate calculus).

The logic calculi could be expressed as axiom systems themselves (with
the help of logic axioms) and they are used as foundations to build axiom
systems for other, particular domains which can then be treated as single
formulas within the axiom system of a logic calculus. [Me64], [Sh67].

Thus, a logic calculus can be formulated to consist of a language, used
to construct formulas and a way to define a theorem. This can be done with
the help of logic azioms and the rules of inference.

A language consists of symbols. Any finite sequence of symbols is-called
an erpression in that language. The meaningful expressions of the language
are called well-formed formulas or simply formulas. Axioms must be formu-



las in the language of the logic calculus.

Rules of inference state under what conditions one formula, called the
conclusion of the rule, can be inferred from other formulas called the hy-
potheses.

The theorems of an axiom system are either axioms or the conclusions
of the inference rules whose hypotheses were theorems themselves.

A proof of a theorem is a finite sequence of formulas ending with the
theorem being proven. The formulas in the sequence can either be axioms
or the conclusions of some inference rules (hence theorems themselves) whose
hypotheses precede that formula in the proof.

Beside such purely syntactic or deductive treatment of logic, a semantic
or model-theoretic approach is also possible. With it, we directly define the
meaning of certain elements of the language (e.g.: that of logical connectives
(see Section 2.1) and enable interpretation of formulas. We will then verify
validity of formulas based on the result of interpretations.

From the semantic view-point a formula will be valid if it will be consid-
ered true under all possible interpretations.

Both deductive and semantic approaches will serve as foundation for
different mechanical procedures to prove theorems.

Particular logic calculi differ primarily in their language and hence in
the formulas which can be expressed by the calculus. As a result, different
logic calculi have different power to describe particular domains.

2.1 Propositional calculus

The propositional or sentential calculus is a formalism to express relatively
simple axiom systems. It deals with declarative sentences, the propositions,
which can be either true or false but not both. The true or false assigned
to a proposition is called the truth value of the proposition.

The language of the propositional calculus consists of a countably infinite
set of symbols (i.e.:. {4, B,C,...}) representing basic (or atomic) proposi-

6



tions augmented by a pair of parentheses and a small finite set of logical
connectives (i.e.: {—-,V,A,=,<}). The latter are used to express propo-
sitions where several atomic propositions are connected into a compound

sentence.

Definition 1 A formula of propositional calculus is:
e an atomic proposition.
o If A is a formula, then so is (-A).

o If A and B are formulas then so are (AN B), (AV B), (A = B),
(A & B).

Clearly, some expressions are not formulas (e.g.: (< AV)). Although,
the expressions A A B or A V —B are also not formulas in a strict sence,
it is customary to allow neglecting parentheses. Possible confusion can be
avoided by instituting precedence ordering “>" upon the connectives of how

tightly they bind symbols in the formula:
> A> Ve
thus, “~" has the highest binding priority and “<” the lowest.

Example 1 The formula A = ~B A C will mean (A = ((-~B) AC)) when

using the precedence ordering of the connectives given above.

2.1.1 Semantics of propositional calculus

Let’s consider the semantic side of propositional calculus.

An assignment of truth values to individual propositions or atoms of a
formula is called an interpretation of that formula.

The truth value of a compound proposition depends on the truth val-
ues of the atomic propositions it consists of and the defined meaning of

the logic connectives. The meaning of “~" negation, “A” conjunction, “V”

7



disjunction, “=" implication and “<" equivalence connectives is defined as

follows:

o —Ais true if A is false. It is false if A is true.
e AA B is true if both A and B are true. It is false otherwise.

e AV B is true if either A or B is true. It is false if both A and B are
false.

e A= Bis false if A is true and B is false. It is true otherwise.

e A& Bistrue if A and B have the same truth values. It is false if A
and B have different truth values.

The meanings of the connectives can be conveniently represented by a
truth table (see Table 2.1).

A B | ~-a |arnB|AvB|a=>B|AeB
true | true || false | true true true true
true | false || false | false | true false Sfalse

false | true true | false | true true false
false | false || true | false | false | true true

Table 2.1: Truth table of the connectives.

Whereas the meanings of negation, conjunction and disjunction have a
clear and intuitive parallel with the everyday life, ! that of implication and
equivalence is less obvious. Implication connective attempts to capture the
meaning of casuality of the type ’if ... then ...’ . Thus the sentence A = B
cannot be true when A is true but B is false. Similarly, the equivalence

! Natural languages posses two notions of disjunction: “inclusive or” — A or B or both
and “exclusive or" — A or B but not both. Our meaning of disjunction coinsides with
inclusive or, whereas the exclusive or can be modeled as (AV B) A ~(A A B).

8



connective attempts to capture the meaning of casuality of the type ’if and

’

only if ...then ... . Although it is arguable to what extend implication
and equivalence connectives capture the sense of the everyday life they are
certainly convenient in the formal sense to express relationships between
propositions.

A formula is true under an interpretation if it is evaluated to the logical
value of true in that interpretation.

A formula which is true under all interpretations is called valid or a
tautology. A formula which is false under all interpretations is called incon-
sistent, unsatisfiable or a contradiction. A formula which is true under some
interpretations is called consistent or satisfiable.

An interpretation of a formula, under which that formula is true is called
a model of the formula. An interpretation of a formula, under which that
formula is false is called a countermodel of the formula.

Two formulas are said to be logically equivalent if and only if they have
the same truth values under all interpretations. We will denote logical equiv-
alence of formulas A and B by A = B.

We can establish whether or not two formulas are logically equivalent by
analyzing their truth tables. The truth tables essentially list truth values
under all possible interpretations and thus if the truth tables will match, the
formulas must be logically equivalent. Knowing pairs of logically equivalent
formulas enable various transformations which preserve logical properties.

Using the technique of truth tables, it is not hard to verify that the
following equivalence laws hold. Thus for any formulas A, B and C we

have:

Double negation law: -(-A4) = A
Commutative laws: AVB = BVA
AANB = BAA
Associative laws: ((AVB)vC) = (Av(BvC(C))
((AAB)AC) = (AA(BAQ))

9



Distributive laws: (AV (BAC)) = ((AVB)A(AV())

(AABVC)) = ((AAB)V(AAD))
De Morgan’s laws: —-(AVB) = -AA-B
~(AAB) = -AV-B

For instance, the logical equivalence of formulas in the De Morgan’s laws
can be verified by the following truth tables (see Table 2.2).

A B [ ~(AVB)|-AA-B| ~(AAB) | ~AV-B
true | true false false false false
true | false false false true true

false | true Jalse false true true
false | false true true true true

Table 2.2: Truth tables validating de Morgan'’s laws.

In many situation it is convenient to exclude from formulas implication
and equivalence connectives. This can be achieved by the means of the
following equivalence laws expressing formulas with implication and equiva-
lence by logically equivalent formulas employing only negation, conjunction
and disjunction.

A=B=-AVB

A B=(~AVB)A(AV-B)

The above can be verified by constructing the appropriate truth tables (see
Table 2.3).

Given formulas F, F,,..., F, and a formula G, G is said to be a logical
consequence of F1, Fs, ..., F, if for any interpretation under which F; A F; A
... A F, is true, G is also true. If that is the case, F1,F>,... F, are called
postulates, premises or arioms of G. If the postulates are valid formulas

then their logical consequence must be valid also. Clearly, a tautology is a

10



A | B |~(A=B)|-AVB || A& B[ (-AVB)A(AV-B)
true | true true true true true
true | false Sfalse Jalse false false
false | true true true false false
false | false true true true true

Table 2.3: Meaning of implication and equivalence connectives.

formula which is a logical consequence of an empty set of formulas. We will
denote a logical consequence of G from F\, F,,...,F,as Iy, F5, ..., F, = G.

Theorem 1 (Deduction theorem) Given formulas F\, F»,...,F, and a
formula G, G is a logical consequence of F\,F,, ... ,F, if and only if (F1 A
FaA...AF,) = G is a valid formula.

Proof. Suppose Fi,F,,...,F, = G, i.e.: G is a logical consequence of
F\, F,,...,F,. Let I be some interpretation. F; A FoA...A Fy, can either be
true or false in that interpretation. If it is true, G must also be true (as it
is assumed to be a logical consequence) and hence, by the truth table of the
implication connective (FiAFoA.. . AF,) = Gistrue. H F{AFA.. AF, is
false, by the truth table (Fy AF; A...A F,) = G must still be true whatever
the logical value of G is.

Conversely, assume (Fy A Fo A ... A F,) = G to be valid. But, by the
truth table, for it to be valid when G is true, F; A F> A ... A F; must also
be true. O

The deduction theorem allows us to formulate the following easy corol-

lary:

Corollary 1 (Contradiction corollary). Given formulas F\, F,...,F,
and a formula G, G is a logical consequence of Fy, Fs,... Fy, if and only if
FyAFRA ...\ F, A G is unsatisfiable.

11



Proof. By the deduction theorem, (F} AFo A... A F,) = G is a valid
formula when G is a logical consequence of Fy,F,,..., F,. Hence, ~((F, A
Fy A ... A F,) = G) should be inconsistent. But, based on the equivalence
laws established for the propositional calculus ~((Fi A Fo A ... A Fy) =
G) is equivalent to —(—~(F; A F; A ... A F,;) V G) which is equivalent to
(FiANFoA...AF, AG). a

Deduction theorem and contradiction corollary demonstrate an approach
to mechanical theorem proving. They show that proving a fact that some
formula is a logical consequence of a finite set of formulas is equivalent
to showing validity or unsatisfiability in propositional calculus of another
related formula. This, of course, enables to formalize an axiom system for
some particular domain as a set of formulas A,, Ag,..., A, and further prove
a theorem T in that domain by showing validity in propositional calculus of
Ay NAa A ... A A, = T or unsatisfiability of A; A Ao A ... A A, AT

2.1.2 Deductive treatment of propositional calculus

Beside the purely semantic treatment presented in the previous section, we
can also build a deductive system for propositional logic where we will show
if a formula is valid by demonstrating that it can be derived from the logic
axioms by applying the inference rules.

Although the propositional logic surrenders completely to the method
of truth tables which allows us to establish validity and inconsistency of
formulas and hence by the deduction theorem also whether a formula is
logically implied by other formulas, it may, however, be relatively costly.
Indeed, we need to evaluate 2" interpretations for a formula of n atoms.
For some formulas deductive strategy may, perhaps, present a less costly
alternative.

Thus, alternatively to the semantic definition for a valid formula, we may

give a deductive one.

12



Definition 2 For any formulas A, B and C a valid formula is:

e One of the azioms:

(Al) (A= (B=>A))
(A2) (A=>B=0C)=>{(A=B)=>(A=0)))
(A3) ((~A = -B)= (B = A))

e A conclusion of modus ponens inference rule:

A,(A= B)
B
which states that formula B 1is valid if formulas A and (A = B) were

valid.

It should be noted that the above axioms do not belong to the language of
propositional calculus. They are implicitly quantifying over all subformulas
A, B and C and thus every axiom actually describes an infinite number of
valid formulas.

The recursive definition above, known as Frege-Lukasiewicz deductive
system [Bu98|, enumerates all formulas which are valid under propositional
calculus. By showing that the axioms are true under all interpretations and
by demonstrating that modus ponens inference rule preserves validity it is
possible to show that every deductively derived theorem is a tautology. We
can also demonstrate that every tautology can be deductively derived and
hence semantic and deductive definitions can be shown to be equivalent.

The axiomatization presented above uses only negation and implication
connectives. We can further define other connectives as follows: (A A B)
to mean —(A = -B), (A V B) to mean ~A = B and (A ¢ B) to mean
(A= B)A(B=> A).

Example 2 Show validity of F = F.
From A1l where A is F and B is (F = F) and from A2 where A is F,

13



B is (F = F) and C is F by modus ponens obtain:

(F= (F=F)=F), E=EF=F=FH)->
, ((F = (F = F)) = (F = F)))
(F=(F=F))=(F=F))

From the obtained formula and from Al where A is F and B is F by modus

ponens obtain:

(F=(F=F))=(F=F),(F=(F=>F))
F=F

which is the sought formula now proven to be valid.

Other axiomatizations based on different sets of connectives are also
possible (e.g.: Hilbert and Ackerman axiomatization based on negation and
disjunction [Me64]). However, using deductive systems of this type (known
as Hilbert-type) on practice is rather inconvenient, since the proofs become
quite long even for simple theorems. Most practical implementations opt for
either Gentzen-type deductive systems (see Section 2.2) or resolution based
deductive systems (see Section 3.2) which are more attractive to employ in

an automated theorem prover [Le97).

2.2 First-order predicate calculus

Propositional calculus is not expressive enough to describe many axiom sys-
tems. It is often necessary to consider the internal structure of the propo-
sitions which is not possible in the propositional logic. For this purpose,
in the predicate calculus we use atoms built from predicates of functions
and quantified variables instead of simple propositions. The functions and
the quantified variables express some objects whereas the predicates express
objects’ qualities. Thus, the predicate calculus is convenient to obtain for-
malizations of common axiom systems of mathematics which usually operate

with some set of objects.
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The set U of all objects is called the universe. The functions and the
predicates operate in the universe.

If A and B are sets, a mapping from A to B is an assignment of an object
in B to each object in A. A mapping from a set of n-tuples of objects in
a set A into a set B is called an n-ary function from A to B. A subset of
n-tuples in A is called an n-ary predicate in A.

Semantically, we can consider a predicate as a mapping of n-tuples in a
set 4 into the set of truth values {true, false}. Thus, if an n-tuple belongs
to the subset defined by the predicate, we describe such a situation with the
mapping into the truth value of true, otherwise the result is described by
the truth value of false.

Members of the universe of an axiom system are referred to as individ-
uals. The functions from the universe to the universe are called individual
functions and predicates in the universe - individual predicates. A O-ary in-
dividual function always maps into the same individual. Thus, we call 0-ary
functions as constants. Constants are used to refer to particular individu-
als. A binary predicate of equality is of special importance for many axiom
systems and thus often occupies a special place among predicates.

With the logical connectives employed in propositional calculus, we can
express complex facts about multiple propositions. We cannot, however,
express even a simple general law which is true for multiple objects. For
that purpose we introduce into the language of predicate calculus additional
logical symbols describing individual variables and their quantifiers. Two
quantifiers are used: the universal quantifier “v” and the ezistential quan-
tifier “3". The former allows us to express formulas which are true for any
individual z and the latter formulas which are true for some individual z.
A quantifier of a variable precede a formula with that variable occurring
(e.g.: (Vz)F(z)). The formula immediately following the quantifier is in the
quantifiers scope. An occurrence of a variable is called bounded if it is in
a scope of a quantifier of that variable. Other occurrences of variables are
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called free.
Definition 3 4 term is:

e A variable.

e Ifty,...,t, are terms, and f an n-ary function, then f(t;,...,tn) is
a term. (Since the constants are 0-ary functions, any constant g() is

also a term).
A term that does not contain any variables is called a ground term.

Definition 4 A formula of predicate calculus is:

e Ifty,...,t, are terms and P an n-ary predicate, then P(t,...,t,) is

an atomic formula.
e If A is a formula, then so is (—A).

e If A and B are formulas, then so are (AAB), (AV B), (A = B),
(A< B).

o If A[z] is a formula and z is a free variable occurring in that formula
then (Vz)A[z) and (3z)A[z] are formulas.

The language of first-order predicate calculus is defined to be a language
in which the formulas are of the syntax as described above. The name -
first-order refers to what is allowed to be quantified in the language. It is
possible to define other languages, called higher-order languages, where, for
instance, predicates and functions are allowed to be quantified.

It should be noted that formula definition given above also enumerates
formulas with free variables remaining. Since it is hard to assign any reason-
able meaning to such formulas we will assume that all interpretations treat
free variables as if they are universally quantified by default.

We will use the same convention of logic connectives precedence and the
same definition of semantic meaning of the connectives as established in
Section 2.1.
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2.2.1 Semantics of predicate calculus

An interpretation of a formula F in the first-order predicate calculus consists
of a non-empty subset of the universe individuals D (called the domain of
the interpretation), and an assignment of values to each function symbol
and predicate in the following way: Each n-ary function symbol is assigned
a mapping from n-tuples in D into D (hence each constant is assigned a
single element in D). Each n-ary predicate symbol is assigned a subset of
n-tuples in D.

The concepts of validity, satisfiability and contradiction are the same as
that in the propositional logic.

Example 3 Somewhat informally, the formula (Vz)(P(z)) in the interpre-
tation over domain D = {a(), b(),c()} where P = {(a()), (¢())} is false, since
P(b()) is false (it is not in the subset describing the predicate P), and thus
(Vz)(P(x)) ts not true for all x € D.

The equivalence laws demonstrating pairs of equivalent propositional
formulas are also true in the predicate logic and they can be augmented
by the equivalence laws for the formulas having quantifiers. We introduce
scoping rules for quantifiers in the following way:

(Qz)(F(z] v G) = (Qz)(Fz]) VG

(Qz)F[z] A G = (Qz)(Flz]) AG

where Q is any quantifier, F[z] is a term containing quantified variable z,
and G is a term which does not depend on z. Clearly, a term which does
not depend on a variable can be brought out of the scope of that variable’s
quantifier without compromising validity properties. In general we can bring
the quantifiers in front of the terms by proper variable renaming. Thus

assuming that new, distinct variable y is introduced:

(@12)F(z] V (Q22)H(z] = (Q12)(Q2y)(F(z] v H[y])
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(Quz) Flz] A (Qz)H[z] = (Q12)(Q2y)(F[z] A H[y])

We additionally introduce laws for negation of quantifiers:
—((Vz)F(z]) = (3z)(~F[z])

~((3z)F(z]) = (Vz)(-F([z])

These laws can be easily proven. Let I be some interpretation over some
domain D. If —((Vz)F|z]) is true in I, then (Vz)F[z] is false in 7, which
means that there exists at least one element of D for which F[z] is false.
Therefore (3z)(—~F|[z]) is true. The other law can be proven in a similar
way.

The deduction and contradiction theorems which were true for the propo-
sitional calculus can also be shown to be true for the first-order predicate
calculus. However, whereas for propositional logic any formula had only a
finite number of interpretations (2" where n is the number of distinct atoms
in that formula), in predicate logic there is a potentially infinite number of
interpretations for formulas due to the fact that the universe is infinite and
thus there may be an infinite number of interpretation domains.

2.2.2 Deductive treatment of predicate calculus

Besides a purely semantic treatment, similarly to the propositional calculus,
it is possible to give a deductive system for predicate calculus. Also as
was the case with propositional logic, many different axiomatizations are
possible most of which fall into two categories of either Gentzen or Hilbert
style. The former systems are given for formulas in sequent notation and
usually contain few axioms but multiple inference rules [SJ97]. The latter
systems have multiple axioms yet relatively few inference rules [Me64].
Let’s consider a Gentzen-type axiomatization. These are often known as
sequent calculi since they operate on sentences essentially expressing logical
implication of a set of formulas from another set of formulas. Thus a sequent
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is a sentence of the type
FrEA

where I' and A are finite sets of formulas: G,,...,Gy and Dy,..., D, re-
spectively. Semantically, a sequent I' = A holds if every interpretation I
which makes all formulas of I" true, also makes at least one formula from
A also true. The equivalent deductive definition of the valid sequent is as
follows:

Definition 5 For any formulas A, B, and sets of formulas T and A, a
valid sequent is:
o The aziom: A= A

e Assuming that the hypotheses of the inference rules are valid sequents

the conclusions are valid sequents:

LA BEA 'EA,4),T EA,B)

T,AABEA TEAAANB
(I'yAEA),(T,BEA) F'E=A,AB
I'AVBEA F'=AAVEB
(T'E=A,A),(T,B = A) I',AEAB
rA=BEA F'=AA=B
TEAA rLAEA
T,-AFA TEA -4
T, A{z|t},(Vz)A = A T A, Alz]
T, (V) AE A TE 3, (Vz)Afz]
[A[lz] E A T E= A, A{z|t}, (3z)Alz]
T,EnARFA TE A, (30)Afz]

Sequent calculi allow expressing an axiomatization for some particular
domain as a set of sequents and to further build proofs using the inference
rules. The proofs found in a sequent calculus are usually quite intuitive
for human readers, however, mechanical procedures to find proofs are both
complex in implementation and relatively inefficient.
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Whereas using sequent calculi on practice in a mechanical procedure is
problematic, Hilbert-type deductive systems in unmodified form are hardly
usable at all. These remain to be theoretical devices used to obtain a more
practical types of deductive systems.

The following Hilbert-type deductive system uses five axioms and two
inference rules. It can be shown that both deductive systems recursively
enumerate all tautologies of the first-order predicate calculus and are thus

equivalent.

Definition 6 For any formulas A, B and C, a valid formula is:

e One of the azioms:
(A= (B=A4))

(A= (B=0)=>((A=>B)=(A4=0))
(A= -B)= (B = A4))
(Vz)Alz] = Af]

where  is a variable, A[z] a formula containing x and t some term.
(Vz)(A = Biz]) = (A = (Vz)Blz])

where B[z] is a formula containing a variable z and A a formula where

z does not occur.

e A conclusion of modus ponens inference rule:

A, (A= B)
B

which states that formula B is valid if formulas A and (A = B) were
valid.

e A conclusion of generalization inference rule:

A
(Vz)A

which states that formula (Vz)A is valid if formula A was valid.
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It should be underlined again that, as was the case with axiomatization
for propositional calculus, the above axioms (both in Gentzen and Hilbert-
type systems) do not belong to the language of first-order predicate calculus.
They are implicitly quantifying over all subformulas A, B and C and thus
every axiom actually describes an infinite number of valid formulas.

With the Hilbert-type deductive system described, we can build an axiom
system for some particular domain as a set of formulas A;, A;,..., A, and
further prove a theorem T in that domain by showing validity in first-order
predicate calculus of a formula A; AA; A... A A, = T or unsatisfiability of

a formula A; AAaA...AA, AT

Many such axiomatizations require the notion of eguality of individuals.
This can be achieved by introducing an equality predicate: “Equal”. 2 The
behavior of equality can be described by the following five axioms:

(Vz)(Equal(z, 7))

(Vz)(Vy)(Equal(z,y) = Equal(y,z))
(Vz)(Vy)(Vz)(Equal(z,y) A Equal(y, z) = Equal(z, z))

(VPHVYEy ... 29, y1 ---yn )(Equal(z1,y1) A ... A Equal(za.yn)) = (P{z).,---, za) = P(y1,---» ¥n))

(VINVZL .. .Zn 1 ---Un)(Equal(z1,y1) A -.. A Equal(za.yn)) = Equal(f(z1.--.., zZn). f(y1:-- yn))

The first-order predicate calculus with equality predicate defined? is known
as first-order predicate calculus with equality.

An axiom system formulated in the language of first-order predicate
calculus for some particular domain is called a first-order theory.

A first-order theory is said to be inconsistent if every formula of the
theory is a theorem. Otherwise the theory is called consistent. Clearly,

?We will denote the equality predicate in the prefix notation Equal(z,y) used for all
other predicates, as opposed to infix notation (z = y) which is at times used in the

literature.
3Equality substitutivity axioms represented here are of higher order since they quantify

over all individual predicates and function. What it implies is that every predicate and
function needs its own first-order substitutivity axiom
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from an inconsistent theory we can deduce both a fact A and its negation
- A being both valid.

A theory is called decidable if there exists a procedure (an algorithm)
to test whether or not formulas are true in that theory. A theory is called
complete if it is consistent and decidable.

As shown by Church, first-order predicate calculus itself is undecidable,
that is, there is no general decision procedure to test validity of formulas
in first-order predicate calculus. However there are decision procedures to
demonstrate validity of formulas which are indeed valid. Such procedures,
however, may not terminate for invalid formulas.

Only in recent years the attention turned to the complexity of deci-
sion problems. Although it appears that once a problem is shown to be
decidable using a decision procedure on practice is a trivial matter, many
decidable decision problems appear to be intractable in a sense that they
require exponential (or worse) number of execution steps. For instance, al-
though testing satisfiability of formulas of propositional logic is a decidable
problem it appears that any algorithm to compute satisfying interpretations
needs exponential number of execution steps in the worst case. Although
this result has not been proven yet, the strong conjecture is that the class
of problems solvable in non-deterministic polynomial time (N P) (to which
propositional satisfiability belongs) is distinct from the class of tractable
problems solvable in polynomial time (P).

2.2.3 Normal forms of formulas of predicate calculus

The deductive systems described before suffer from complexity. This makes
them fairly inefficient for use on practice in a mechanical theorem prover.
The complexity comes from the richness of the underlining language. If we
can somehow restrict this richness and allow only formulas of a particu-
lar form (assuming that any formula can be transformed into such form),

perhaps a simpler deductive system can be build. This is indeed the case.
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The Robinson’s resolution (see Section 3.2) is such a system operating on
formulas in clause form which is closely related to conjunctive normal form.
The formula in conjunctive normal form is such that it is a chain of
conjuncted clauses which are chains of disjuncted literals, such as ((AV BV
-C)A(AVC)A(DV-A)) where each literal is either an atomic formula or
its negation.
To transfer a formula into conjunctive normal form we use the following

procedure which involves multiple invocations of the equivalence laws:

e Use the definitions of implication and equivalence to obtain formulas

having only the connectives of negation, conjunction and disjunction.

e Use De Morgan’s laws and the double negation law to bring the nega-

tions immediately before the atoms.

e Repeatedly use the distributive laws to distribute conjunctions over

disjunctions.

Since the procedure uses equivalence laws only, the validity properties of
the resulting formulas are the same as that of the argument formulas.

Example 4 Transform —(A A (B = C)) into conjunctive normal form.

Firstly, eliminate implication and equivalence connectives:
~(AAN(B=>C))=-~(AA(-BVC(C))

Bring the negation before the atoms:
-(AA(=BVC))=-AV~(~BVC)

~AV ~(=BVC)=-AV (B A-C)

Distribute conjunctions over disjunctions:

~AV(BA-C)=(~AVB)A(~AV -C)
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This procedure works for both propositional and predicate logic. How-
ever, presence of quantifiers in the predicate logic requires special treatment.
A formula of first-order predicate calculus is said to be in prenez normal form
if all quantifiers precede the reminder of the formula containing the terms.
The preceding quantifiers are called the prefiz of the formula whereas the
reminder of the formula is called the matriz.

The following procedure which uses the equivalence laws for quantifiers

can be employed to obtain formulas in the prenex normal form:

e Use the definitions of implication and equivalence to obtain formulas
having only the functions of negation, conjunction and disjunction.

e Use De Morgan’s laws, the double negation law, and the laws for quan-
tifier negation to bring the negations immediately before the atoms.

e Use the quantifier scoping laws and variables renaming to bring the
quantifiers in front of the matrix.

A prenex form can be combined with conjunctive normal form so that a
formula is first transformed into the prenex form and further the matrix is
transformed into the conjunctive normal form.

Maost proof procedures operate on formulas in even simpler form, referred
to as the standard or Skolem normal form which represents quantifiers im-
plicitly rather then explicitly.

To transfer a formula into the standard form the following procedure is

used:

e Transfer a formula into prenex form.

e Transfer the matrix of the resulting formula into conjunctive normal

form.

¢ Eliminate existential quantifiers by substituting existentially quanti-

fied variables for Skolem functions or constants in the following way:

24



Let (Q-z,) be the leftmost existential quantifier in the prefix of a for-
mula: (Q12,)(Q222) ... (QnT,) we replace all occurrences of z, in the
matrix by a new function symbol of r —~ 1 variables: f(z,...,zZ,_1)
and remove (Q,z,) from the prefix.

¢ Eliminate universal quantifiers by assuming that all remaining vari-
ables are quantified universally.

A formula transferred into the standard normal form can be represented

as a set of clauses, where each clause is a disjunction of literals.

Theorem 2 (Standard form completeness) Let F' be a a formula in
standard form derived from formula F. F is inconsistent if and only if F'

is tnconsistent.

Proof. Without loss of generality, let's assume that a formula F is
already in prenex form. Let Q, be the first existential quantifier. Thus a
formula F = (Q1z1)...(Qrzy) - - - (@nzn) M|z, . - ., zy] is transformed into

F'=(z1)... VZr1 ) (Qr+1Tr1) - - - (Quzn)M([z1 ... f(Z1y.--,Tr—1) - - - Tn)

where f is a Skolem function. We must show that F is inconsistent if and
only if F' is inconsistent.

Suppose F is inconsistent. If F' is consistent there is an interpretation
I such that F' is true in I. That would imply that for all z,,...,z,_; there

is an element (for instance f(zi,...,Zr—1)) such that

(Qr+lxr+l) ... (ann)M[zld sevy f(zls .. szr-l)i R yzn]

is true. Thus F must be true and hence F' is inconsistent if so is F'.
Suppose F' is inconsistent. If F is consistent there is an interpretation

I such that F is true in I. That would imply that for all z,,...,z,-, there

exists an z, such that (Qr41Zr41)--. (Qnzn)M|z1,...,Zs,...,Zy] is true.

We extend the interpretation I to include a mapping f from z,,...,Zr1
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to z, and denote the extended interpretation I’. However that would mean
that F’ must be true in I'. Thus F must be inconsistent if so is F’. O

The standard form completeness theorem demonstrates that we can use
standard forms of formulas as opposed to formulas themselves in proof pro-
cedures. Since formulas in standard form have a much simpler structure,

this can be exploited to obtain a simpler and more efficient algorithms.
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Chapter 3

Fundamental proving

procedures

The mechanical procedures to prove theorems for particular domains rely on
the techniques allowing to show validity or unsatisfiability of other related
formulas in a logic calculus. Many of the procedures show unsatisfiability
for sets of clauses and thus before such methods are applied, the original
formulas representing the axioms and the theorem must be normalized. Al-
though the approaches involving normal forms are quite efficient, another
direction of automated reasoning is that of pursuing natural deduction on
essentially unnormalized formulas. These approaches are often based on
Gentzen-type axiom systems (see Section 2.2.2) and operate with larger
sets of rules of inference. One often cited advantage of that approach is
that the derived proofs are more meaningful for human readers. However
the efficiency of natural deduction is often inferior to the procedures oper-
ating with normalized formulas, which remain the mainstream direction for
practical automated theorem proving. Most of these procedures implicitly
or explicitly rely upon Herbrand’s theorem which allows us to express the
semantic meaning of formulas by convenient enumeration of its appropriate

(and not all possible) interpretations.
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3.1 Herbrand’s theorem

A formula F is valid if and only if the negation of that formula -F is
unsatisfiable. Any formula can be expressed by a logically equivalent set of
clauses S. A set S of clauses is unsatisfiable if and only if it is false under
all interpretations over all domains. However, checking mechanically this
fact over all domains is impossible since there is an infinite number of such
domains. Alternatively, we can attempt to find a single special domain H
such that S is unsatisfiable if and only if it is false under all interpretations
over this particular domain. Such a domain indeed exists and it is known
as Herbrand universe. ‘

Let Hg be the set of all constants appearing in S. (If there is no constants
in & we choose gy = {a()})- Fori =0,1,... Let H; be the union of #;_; and
the set of all terms of the form fn(t1,.-.,¢,) where ¢; € H; fori=0,...,n
and f, is any n-ary function occurring in S. Each #; is called i-level constant
set of S and Ho is called the Herbrand universe of S.

We can, thus, define interpretations over the domain Ho,, called #-
interpretations as follows: Given a set of clauses S An interpretation I*
is said to be an H-interpretation of S if it satisfies the following: I maps
constants to themselves. If f is an n-ary function and A,, ..., A, are elements
of H in I, f assigns a function mapping (hy,...,ks) (an n-tuple in Ho)
into f(hy,...,hn), an element in Ho.

Any interpretation I over some domain D, should have a corresponding
‘H-interpretation I* (thus over the Herbrand universe) which satisfies the
following. If hy,...,h, are elements of H, every h; can be mapped to some
d; in D. The same truth value assigned to P(d,,...,d,) in I should be
assigned to P(hy,...,h,) in I*. If an interpretation I over some domain D
satisfies a set S then any of the H-interpretations I* corresponding to I also
satisfy S.

Theorem 3 (Herbrand unsatisfiability) A set S of clauses is unsatisfi-

able if and only if S is false under all H-interpretations of S.

28



Proof. Clearly, if S is unsatisfiable it must be false under all interpre-
tations which includes all H-interpretations.

Assume S is false under all H-interpretations. Suppose § is satisfiable.
Then there is an interpretation I over some D such that S is true. But
we can construct I* — an H-interpretation corresponding to I which by the
assumption was false. Since S should have the same truth value under I*
and I, S must be unsatisfiable. O

Herbrand unsatisfiability theorem demonstrates that a task of finding
the unsatisfiability of a set of clauses can be done by checking only the in-
terpretations over the Herbrand universe of that set of clauses. Thus the
task of checking unsatisfiability of some formula in first-order predicate cal-
culus is reduced to finding the clause set of its standard form and essentially
propositional task of listing H-interpretations.

3.1.1 Semantic trees

Even though we only need to consider the H-interpretatons to check un-
satisfiability, it is also true that Herbrand universe of a formula containing
functions other then constants is infinite and thus there may be an infinite
number of H-interpretations which are infinite in length. However, Her-
brand universe has a particular structure which can be exploited using the
notion of a semantic tree which allows us to express unsatisfiability of a set
S in a finite manner. Semantic trees where proposed by Robinson in 1968
and refined by Kowalski and Hayes in 1969.

Given a set S of clauses, let A be the atom set of S. A semantic tree for
S is a tree (see Figure 3.1), where every edge is labelled with a finite set of

atoms or atom negations from A in such a way that:

e For each node N, there are finitely many immediate edges Ei,...,E,
from N, and the disjunction of all atoms attached to E;,..., E, is a
tautology.
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e For each node N, let I(N) (called the partial interpretation) be the
union of all the sets of atoms attached to the edges connecting the root
of the tree with the node N. I(N) may not contain a complementary
pair (an atom and its negation).

KA={PlaP27"-} \

NRI(N) =-P,-P,

. )

Figure 3.1: A semantic tree for an atom set A.

A semantic tree in which every path from the root node down the tree
contains every atom or a negated atom of the set .4 is referred to as a
complete semantic tree. It can be seen that a complete semantic tree of
a Herbrand universe of a clause set S corresponds to exhaustive survey of
all possible H-interpretations. Since the Herbrand universe may well be
an infinite set with the corresponding infinite complete semantic tree the
following notion is crucial: A node N is called a faslure node if I(N) falsifies
some ground instance of a clause in S and there is no other failure nodes on
the path from N to the root of the tree.

A semantic tree is closed if and only if its every branch terminates in a
failure node.
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Theorem 4 (Herbrand’s theorem) A set of clauses is unsatisfiable if

and only if its every complete semantic tree is closed.

Proof. Suppose S in unsatisfiable. Let T" be a complete semantic tree
for S. Every branch of 7 represents an interpretation which must be false
if S is unsatisfiable, but then every branch will terminate in a failure node
and T will be closed. Conversely if every H-interpretation of S is false, S is

unsatisfiable. O

Herbrand’s theorem thus suggests a procedure to check unsatisfiability of
formulas in first-order predicate calculus: attempt to build a closed semantic
tree for a clause set. This theorem is also important in showing completeness

of other proof procedures such as that of resolution principle.

3.1.2 The method of Davis and Putnam

Implementations of early mechanical proof procedures based on Herbrand’s
theorem such as the one done by Gilmore tended to be inefficient even for
proving simple theorems. In 1960 Davis and Putnam introduced a procedure
for testing unsatisfiability of a set of ground clauses whose efficiency was
considerably better compared with implementations of earlier procedures
[Lo78].

Davis and Putnam’s procedure for testing unsatisfiability of a set of

clauses S can be expressed as the following four rules:
e The Tautology Rule: Remove all clauses which are tautologies.

e One Literal Rule: If there is a unit ground clause L in S, obtain S’
from S by deleting those ground clauses in S which contain L. If S’
is empty, S is satisfiable. If S’ is not empty, obtain a set $” from &’
by deleting occurrences of —L in all clauses.

e Pure-Literal Rule: A literal L is said to be pure if ~L doesn’t occur
anywhere in the set. Obtain S’ by deleting clauses containing L.
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o Splitting Rule: If it is possible to represent the set S in the following
form:

(AiVLD)A ... A(ARVL)A(B1V-L)A...A(BoV-L)AR

obtain two sets S; = A)A...AA,ARand S; = B A...AB, AR.
S is unsatisfiable if both S; and S, are unsatisfiable (That is S; V S,
is unsatisfiable.

Theorem 5 (Soundness of Davis-Putnam procedure) If the original
set S was unsatisfiable, the set resulting after application of any rule will

also be unsatisfiable.

Proof. Clearly, the Tautology Rule doesn’t violate the satisfiability
properties. Since a tautology is satisfied by any interpretation, the original
set S is unsatisfiable if and only if the set resulted after removal of tautologies
is unsatisfiable.

For the One Literal Rule, suppose S” is unsatisfiable. Assume S to be
satisfiable, then there is a model M of S containing literal L. For S, M
must satisfy all the clauses that contained ~L (since —L is falsified in M)
therefore M should satisfy S"”. Conversely, suppose S is unsatisfiable. If S"
is satisfiable, then there is a model M” of S”. But then the union of M"
and L would be a model of S which contradicts the assumption that S is
unsatisfiable.

For the Pure Literal Rule, suppose S’ is unsatisfiable, then S must be
unsatisfiable since the clauses of S’ form a subset with respect to clauses in
S. Conversely, suppose S is unsatisfiable. If S’ is satisfiable, then there is a
model M of S’ which doesn’t include L or —~L but that would mean that the
union of M and L is a model of S which was assumed not to have a model.

For the Splitting Rule. Suppose S is unsatisfiable. Assume S, is sat-
isfiable. Then there is a model M of S;. But that would imply that the
union of M and —L can satisfy all clauses of S which was assumed to be
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unsatisfiable. Conversely, assume S; V S; to be unsatisfiable. If S is satis-
fiable there should be a model M for S. If this model contains L it should
have been satisfied in order to satisfy S. But thus S; would be satisfiable.
If M contains —L it can satisfy S;. Since M has to contain either L or —L,
S1 V &, should be satisfiable which contradicts the assumption. =]

Although Davis-Putnam procedure is quite efficient, it is inherently a
propositional method, necessarily requiring a set S to be a set of ground

clauses.

3.2 Robinson’s resolution principle

The resolution principle was proposed by Robinson in 1965 and constituted a
major break-through for practical automated theorem proving [Ro65]. This
proof procedure is applied to a set of clauses (not necessarily ground clauses
as is the case with Davis-Putnam procedure) to find logically implied resol-

vents.

3.2.1 Resolution principle for propositional calculus

Applied to propositional logic, the resolution principle is essentially an ex-
tension of Davis-Putnam’s one literal rule and is an inference rule which
can be formulated similarly to the Cut rule ! often added into Gentzen-type

deductive systems
(A= B),(B=C)

A=C
The conclusion of this inference is referred to as a binary resolvent.

!Cut rule formulated in Gentzen-type deductive systems as

(r‘lw'A *= A)?(r2 # A3v A)
I,T2 EA,A2

is unnecessary there. It can be shown that it is redundant with respect to other inference

rules.
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Theorem 6 (Soundness of resolution) A binary resolvent C = C, v C,
is a logical consequence of its hypotheses: Hy = LV C; and H, = -L Vv C,.

Proof. Let H, and H, be true in some interpretation I. Assume C is
false in I, Either L or -L must be true in I. Without loss of generality,
assume L is false, then C; must have been true and not a unit clause. But
that would imply that C, v C; , i.e. C is true in I. O

A refutation is a proof ending with a contradiction. Clearly, since the
resolution is shown to be sound, finding a refutation from a set of clauses
S, demonstrates unsatisfiability of S. Combined with the result of Contra-
diction theorem this suggests a mechanical proof procedure: negating the
theorem to be proven and generating resolutions from the obtained clause
set until the refutation is obtained.

3.2.2 Resolution principle for predicate calculus

Necessity to consider the internal structure of the atoms and presence of
quantified variables complicates resolution in first-order predicate calculus.

A substitution is a finite set of the form 6 = {t;|v,,...,tn|vn} where
every v; is a variable and every t; is a term not containing v;. When all ¢;
do not contain variables, @ is called a ground substitution. A substitution
with no elements is called an empty substitution.

An expression L6 obtained from a substitution @ by replacing in L all
occurrences of the variables by terms specified by the substitution @ is called
an instance. An instance which does not contain any quantified variables is
called a ground instance. Clearly, two substitutions a and 8 can be combined
by composition a o 8. The composition of substitutions is associative (that
is: (aofB)oy = ao(Bov)). The empty substitution ¢ is both left and right
identity (that is: a =ecoca=ao¢).

A substitution 8 is called a unifier for a set of literals £ = {L,,...,L,}
if and only if L} = L = ... = L,08. The set {L;,...,L,} is then said to
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be unifiable. A unifier o for a set L is said to be the most general unifier if
and only if for each unifier 8 of that set there is a substitution v such that
0 =004.

To unify a set of terms:
e Start from the first symbols in the terms.

e If the symbols are the same (either functions or variables), advance to
the following symbols. If the symbols are different unification fails.

e If the current symbols are: v; and t; - a variable and a term not
containing v; add {v;|t;} to the unifier. Otherwise, if the term ¢; does
contain v;, unification fails.

e Rewrite the terms so that all substituted variables are replaced by the

respective terms.
e Repeat previous two steps till the last symbol.

If two or more literals of the same sign (either all positive or negated)
of a clause C have a most general unifier # then C@ with only one of the
unified literals remaining is called a factor. If C8 is a unit clause it is called
a unit factor.

If C, and C; are two clauses so that L; and —~L, are two literals in C,
and C; respectively and L, and —~L; have a most general unifier 6 then
(C16 — L18) v (C26 — ~L260) (where minus has the syntactic meaning of “not
containing” )} is called a binary resolvent.

Thus, for the first-order predicate calculus, the resolution inference rule
can be formulated as follows: 2. If proper most general unifiers exist, from

*Different authors present resolution deductive systems in a slightly different form.
The above definition originating in [CL73] presents a single inference rules combining
both resolution and factoring. It is equally possible to give a deductive system where
resolution and factoring are treated as different rules. The way resolution is defined may
have implications on completeness of some refinements of resolution. Overview of different

formulations appears in [Le97].

35



C) and C; infer: A binary resolvent of C; and Ca, or A binary resolvent of
C) and a factor of C3, or A binary resolvent of a factor of C; and C», or A
binary resolvent of a factor of C; and a factor of C»

Lemma 1 (Lifting Lemma). If C] and C) are instances of C, and C»
respectively, and if C' is a resolvent of C| and C5, then there is a resolvent
C of C, and C3 such that C' is an instance of C (see Figure 3.2).

- p

Ci=...Liv...vL.. Co=...~L3V...V-LP...
Ci=...VLiV... Cy=...vaLhv...
\C’/

- /

Figure 3.2: Lifting

Proof. Let C' = (C10 — L6) v (C36 — ~L}8) where 0 is the most general
unifier of L] and —Lj.

Take the literals Li,..., L and -~L2,...,~L$ in C; and C; which fac-
tored into L} and —L), during the trausition from C;, C; into C}, C; and
find their most general unifiers ; and ;. After unification, literals in each
group become: L} = Li~; = ... = Ly, and L} = L}vy; = ... = L'y, which
are thus literals in the factors C] and C). Let v = 71 U 72 Since clauses C
and C» can be, without loss of generality, chosen with disjoined variable
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sets: Ly = Liy=...=L]yand L) = L}y = ... = LPy. Thus Cyv = C!
and Cyy = Cj.

Since L] and L) unify with 6, and these are instances of L} and L3
respectively, L} and L} should also have a most general unifier ¢ which is
more general or equal to a unifier -y o . Thus there exists some A so that
ocol=<yo08.

Thus the resolvent of C; and C5 is

C = (Cio — Lio) V (Cyo — L30)
but C’ is an instance of C since (somewhat informally)
CA=((C1 — L)V (Ca - L))r o A=

((Cr = LY V (C2— L))yo 8 = ((Cry — Liv) V (Covy — LE))0 =
((Cy =LY Vv(C,—Ly))e=C

and so C’ is an instance of C. O

Theorem 7 (Completeness of Resolution Principle) A set S of first-
order clauses is unsatisfiable if and only if there is a refutation of S.

Proof. Let’s suppose S is unsatisfiable and A = {A;, A2,...} is the
atom set of S. Let T be a complete semantic tree of S. By Herbrand’s
theorem T is closed.

Use the following procedure to find a false clause for every node of T other
than the failure nodes which must already have associated false clauses since
T is closed. Let’s suppose that N; and N3 are neighbors with a common
parent N and there are two ground instances C] and C; of C; and C3 false in
I(Ny) and I(N,) respectively, but both C] and C% are not false in N. Since
Ny and N; are neighbors in the complete semantic tree, C] must contain a
literal L4 and Cj a literal =L, 41 hence, by resolution, we can produce a
clause C' = (C] — L}) V (C} — —~L5) which is false in N since both C] and
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Cj; are false in N. By Lifting lemma if the ground instances C] and C} are
resolvable so should be the clauses C; and C; from the set S.

Using this strategy of folding up the semantic tree, an empty clause can
eventually be found for the root node, since at every step we reduce the
number of nodes in the tree.

Conversely, suppose a refutation exists. Assume S is satisfiable, therefore
having a model. Since the empty clause is logically implied by S, M should
satisfy the empty clause which is a contradiction. O

The procedure used in the proof above can be illustrated by the following
example:

Example 5 Given a set of clauses: C = {A(z) Vv =B(a()), ~A(z), B(z)}
build a semantic tree and construct corresponding resolution-refutation. The
Herbrand universe of C is U = {a()}. The ground atom set is thus A =
{A(a()), B(a())}-

A closed semantic tree can be constructed for this clause set (see Fig-
ure 3.3).

From the semantic tree, using the strategy outlined in the proof of com-
pleteness theorem, obtaining the resolution-refutation proof.

Since clauses A(a()) V ~B(a()) and B(a()) fail in the neighboring nodes
of the tree, there must be a resolution of their corresponding clauses from

the set C. Indeed
A(z) v ~B(a()) and B(z) resolve to A(z)

Thus clause A(x) must be false in the node above the two failure nodes
considered.

Since clauses —~A(a()) and A(z) now fail in the neighboring nodes of
the tree, they must resolve. These clauses indeed resolve to a contradiction

which is assigned to the root of the tree.
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(A= {A@e()), Ba()} C={A(z)V-B(a(),~A(z), B(z)} \

A(a()) v ~B(a()) | | B(a())

Figure 3.3: A semantic tree for a clause set C.

The completeness theorem shows that if a set of clauses is unsatisfiable,
. there must exist a resolution-refutation proof and thus it suggests a proof

strategy: generating all possible resolvents in an attempt to find a refutation.
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Chapter 4

Methods for performance

improvement

Although, Herbrand'’s theorem, Davis-Putnam method and Robinson’s reso-
lution provide mechanical procedures to automatically prove theorems, such
procedures, it is strongly believed, inherently require an exponential (or
worse) number of execution steps. Although, it appears, that there cannot
be a faster prove procedure in the algorithm complexity sense, for the ac-
tual computer implementations to be practical it is necessary to improve
performance wherever possible.

An unsophisticated procedure may apply inference rules to the clauses
in all possible ways thus often generating redundant or even useless clauses.
In many situations, there are refinements available which reduce the number
of resolution steps. A refinement is called complete if it gives a procedure
which finds a proof whenever the original procedure was finding one. Some
efficient or necessary refinements used on practice may be, however, incom-
plete and in some cases do not find a proof even when one exists. For
instance, all implementations limit the number of retained clauses, size of
the retained clauses and allocated proof time. Although such restrictions

lead to incompleteness, there is hardly any alternative to using them on
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practice.
The following sections briefly overview some popular strategy to improve

resolution based procedures.

4.1 Deletion strategies

In the course of finding a proof, a clause is often produced which is irrelevant
for the proof procedure. In other words, the procedure is capable of finding
the proof even if such clause was never considered. In many situations, irrel-
evant clauses can be safely deleted since the completeness properties would
not suffer as a result, yet the efficiency of the prover can be considerably im-
proved since the deleted clause will not be used to produce other inferences
{Lo78].

4.1.1 Pure literal elimination

Recalling that a literal L is said to be pure if ~L does not occur anywhere in
the clause set, we can eliminate all clauses containing L from the set which
we want to show unsatisfiable. This exactly constitutes the pure literal rule
of the Davis-Putnam procedure which was shown to preserve unsatisfiability.
In the case of first-order logic if there does not exist a substitution é such
that L@ is the same as some other literal =L (not counting the sign) then L
is pure and can be discarded.

Intuitively, a pure literal does not have a counterpart with which it can be
resolved and thus clauses with such literals are irrelevant for the procedure.
Although the removal of such clauses can be done at any time, it is most

natural to perform this operation as a pre-processing step.

4.1.2 Elimination of tautologies

In the course of trying to derive a contradiction from a set of clauses, a
clause may be produced which is a tautology (a valid formula being a log-
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ical consequence of an empty set of clauses). Such a clause can be safely
discarded in the basic resolution-refutation procedure. Let’s suppose that
we want to show T'A Fj A...A F, to be unsatisfiable where T is a tautology.
Since a tautology is true under any interpretation, for TAF) A...AF, to be
unsatisfiable, F1 A F) A ... A F, must be unsatisfiable and thus elimination
of T mustn’t affect completeness.

Some procedures, such as lock resolution (see Section 4.2.5) perform-
ing clause ordering, however, require preservation of tautologies to remain
complete as they put restrictions on essentially which subsets need to be
demonstrated unsatisfiable for showing unsatisfiability of the entire set.

One class of tautologies, which is easy to detect, are clauses of the type
Lv LV F. Since L must either be true or false in any interpretation Z,
LV -LVF will be true whenever L is true, but it will also be true whenever
L is false (since ~L will be true in that case).

It may also be fruitful to try detecting other types of tautologies, for
instance in theorems with equality a clause Equal(t,t) V F will be true
under any interpretation due to reflexivity of equality. Depending on the
proof procedure and whether equality axioms are represented explicitly or
not it may be possible to discard these equational tautologies as well (see
Section 4.3.2).

4.1.3 Subsumption

A clause B subsumes clause C if and only if B = C is a valid formula
(Hence C is a logical consequence of B and is true whenever B is true). The
subsumed clause C can be eliminated in some instances when we have the
clause B, since B is, in a sense, a more general clause. In other instances,
subsumed clauses cannot be eliminated, for example, if factoring is used as
a distinct rule and not part of binary resolution, the binary factors pro-
duced are subsumed by their parents but their elimination will destroy the

completeness of resolution-refutation procedure.
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A clause B 0-subsumes clause C, if and only if there exists a substitution
6 such that B is contained in C (in the syntactic sense) and thus the number
of literals of B# does not exceed the number of literals in C. A derived clause
0-subsumed by another retained clause may be eliminated by the resolution
refutation procedure without loss of completeness. Thus 6-subsumtion is
often referred to simply as subsumption in the framework of the resolution-
refutation. Intuitively, the subsumed clause C has more literals then the
subsuming clause B, thus whenever B is true C must also be true regardless
of the interpretation for the remaining literals of C which are not common
to B and C. Moreover, since the substitution Bf was contained in C, C is,
less general then B.

The underlining apparatus necessary to compute subsumptions is basi-
cally that of one-directional unification also referred to as matching. Thus,
the implementation of subsumption procedure can reuse some fundamental
algorithms, such as unification, already implemented to handle resolution.

For many procedures we can differentiate forward subsumption where
newly produced clause is eliminated if it is subsumed by a previously deduced
clause and backward subsumption (more properly referred to as backward
subsumtion with replacement) when a test is made if a previously deduced
clause is subsumed by a newly produced clause and, in the case when it is
true, the old clause is substituted by the new one.

Computations of subsumptions are undoubtedly helpful in reducing the
search space, however such computations are quite costly and may slow
down the prover to unacceptable degree. Several alternatives are available to
avoid this problem. We can either attempt to speed up unification, opt for a
weaker variant of subsumption or both. Efficient indexing techniques such as
discrimination-trees are available for example for forward unit subsumption,
a weaker version of general #-subsumption where the subsumer is a unit
clause (see Section 4.4) [Ta98]. Similarly, it is relatively inexpensive to

compute 0-subsumptions where 6 is an empty substitution. The latter is
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referred to as simple subsumption [Ne97].

4.2 Restriction strategies

Although the deletion strategy can often discard some irrelevant clauses,
execution time has already been spent on producing them and running the
deletion procedure. The restriction strategies work to prevent generation of
some redundant clauses thus narrowing the search space. Some strategies
also restructure the search in a more convenient way for practical implemen-

tations.

4.2.1 Linear refinments

Linear refinements constrain resolution so that a newly obtained clause is
always used to produce the next clause of the deduction either by factoring or
binary resolution against some earlier clause or a base clause. This approach
was first introduced by Loveland in 1970 and independently by Luckham also
in 1970. The simple shape of the deductions produced by linear procedures
is a definite advantage for practical implementations which can essentially
rely upon depth-first search. Thus, with a linear procedure, deductions up
to a certain depth are explored one at a time as opposed to computing
them all for each given depth before proceeding deeper using breadth-first
search procedure. The latter method is often referred to as level saturation
technigye. It appears, that no successful implementation can rely exclusively
on breadth-first search due to its excessive memory demands nor on depth-
first search as the latter may pursue unfruitful deduction for long time.
Combinations of the two are more promising such as iteratively-deepcning
depth-first search which explores the tree in a depth-first fashion up to given
depth limit N before restarting the search for a deeper limit of N + 1. This
search combines low memory demand of depth-first search and fairness of
breadth-first search and although iteration NV + 1 repeats entirely all work
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of iteration N, due to exponential nature of the search space, it is only a
fraction of work of the deeper iteration.

Basic linear resolution is complete. This fact can be shown by demon-
strating a procedure to transform a proof of an arbitrary form into linear
form. Such a procedure works by selecting some linear path in the tree
representing a proof and pushing the clauses off the path onto the path (see
Figure 4.1 and Figure 4.2).

[FAVBVIL,| [-BVvLs] [AVL,| [-AVBVL,]

AN N\ /

|AVL,| [-AV L,V L] [-BV LV L,;| [-BVLs|

N\ / \

[ZVIzvis]

\ \

NG _/

Figure 4.1: Transforming a proof into linear form (case A)

As Figures 4.1 and 4.2 illustrate, there are two cases to consider: a clause
violating linear constraint is a binary resolvent of some clauses (case A) or
it is a factor of some binary resolvent (case B) [Ne97]. Thus, if there exists
a proof of some arbitrary form this constructive procedure finds some linear

proof which thus exists.

The linear refinement can be constrained even further. Linear-merge
refinement, in order to produce a new clause, uses previously deduced clause

together with either a “base” clause from the original set C or a merge clause
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4 \
|AVL,| [-AVvBvVL,]|

-AVBVLy| |~AV-BV L]

\\ \ / FB\\L<LJ [FAV-BVE]

|[AVL| [~AV LV Ls|

\\ / I-AV\L1 v Lg{le

|L1VL2VL3 \ \\

\\ LLIVL2\1\<;\3]

Figure 4.2: Transforming a proof into linear form (case B)

o 4

(that is a factor of a binary resolvent) obtained anywhere along the deduction
line. This is a more restrictive strategy compared with simple linear strategy
which can use either a base clause or any other clause obtained on the
deduction line previously. Linear-merge strategy can also be shown to be
complete by demonstrating a procedure which given a linear proof constructs
a linear-merge proof.

A linear-unit refinement constrains the linear search to necessarily use
a unit clause (one literal clause) as one of the arguments for binary resolu-
tion. This restriction, although quite efficient, leads to incompleteness. For
instance from the following unsatisfiable set of clauses we cannot deduce a

contradiction using this strategy:
C={PVvQ,Pv-Q,-PVvQ,-PV-Q}

Since there is no unit clauses, no resolutions can be performed at all.
A linear-base refinement, also referred to as input refinement, constrains

the binary resolution to necessarily use a base clause from the original set
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C as one argument for the binary resolution. This refinement also leads to
incompleteness. Unit refinement and base clause refinement can be shown
equivalent in a sense that any theorem provable by one method can be proven
by the other method.

Muitiple other restrictions, to be considered further, can be used to aug-
ment linear resolution which remains one of the more important techniques

for practical implementations.

4.2.2 Set-of-support

The set-of-support refinement or negated conclusion refinement was first pro-
posed by Wos, Robinson and Carson in 1965. The important observation
underlining this strategy is that with most resolution-refutation methods to
prove a theorem T" we are attempting to show that -7 is unsatisfiable. Since
the conjunction of all axioms is satisfiable (or at least assumed to be so), we
may want to avoid producing deductions coming entirely from the clauses
representing the axioms since a contradiction cannot be produced from such
a set.

Thus a subset A of set of clauses C is called a set-of-support if C — N
is satisfiable. A set-of-support resolution is a resolution of two clauses so
that not both are in S — N. It is not difficult to show that this restriction
is complete.

This strategy can be used to augment the linear resolution refinement.
Although, it may appear that set-of-support strategy cannot worsen the
performance, it is not always so. In some situations lemmas produced by
resolving clauses representing axioms lead to shorter proofs, and these will
not be obtained with set-of-support refinement.

4.2.3 Semantic resolution

Semantic resolution was first introduced by Slagle in 1967. It generalizes
Robinson’s hyperresolution (see Section 4.2.4) (1965) and the set-of-support
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strategy (see Section {.2.2) proposed by Wos, Robinson and Carson (1965).

Semantic resolution uses an arbitrary interpretation Z to subdivide the
clause set into two subsets based on clauses’ truth value in that interpre-
tation and prohibits resolutions of clauses coming entirely from the same
subset. It additionally uses an arbitrary lexicographical ordering of predi-
cate symbols to limit the possible resolutions.

Given an interpretation 7 and the ordering of predicates P, a finite set
of clauses is called a semantic P — I clash, if and only if the £ clauses (called
the electrons) and the N clause (called the nucleus) satisfy the following

conditions:
e The electrons are false in Z.

e For each 1 = 1,...,n there is a binary resolvent or a binary factor of
R; or R;_, and &; and assuming that R, = N.

e The literal which is resolved upon in every predicate is the largest
according to ordering P among all literals of that electron.

e R, (called the P — I resolvent) is false in Z.

Example 6 If
S={~AvCVB,~AVB,~CV -A,-B}
and
I={AB,C}
with ordering P such that
A»B>»>C

then —~A is a P — I resolvent of P — I clash {(~C Vv -A,-B,~AVCV B}

It is important that the order of electrons does not matter in the clash so
that the same P — I resolvent will be produced for any ordering of the elec-
trons. As Figure 4.3 illustrates ~A was produced in both cases of resolving

the shown clash.

48



- R

t-AvCcvB| [-B] |-AvCvVv B] [=CvVv-A|
|mAve] [=Cv-A] [-AvB| |[-B]

\/ N/

[=4]

- y,

Figure 4.3: Irrelevance of electron’s order in a clash

This property is important as it allowed to never explicitly generate the
intermediate clauses ~AV—B and ~AV C which, as this example illustrates,
may well be different and depend on the chosen order of binary resolutions.

A proof is called a P — I proof if its every clause is either a base clause
or a P ~ I resolvent.

The restrictions of the semantic resolution can be shown to be complete.
Any interpretation can be used for clause subdivision and since unsatisfiable
sets of clauses do not have models, the subdivision using any interpretation
will produce two non-empty subsets of clauses. Intuitively, the semantic res-
olutions guide the procedure towards locating a contradiction since the P—1T
resolvents must be false in the selected interpretation and the contradiction
is false in any interpretation.

The semantic resolution strategy generalizes over the strategies of hy-
perresolution and the strategy of set-of-support which are obtained when

particular interpretations are used.
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4.2.4 Hyperresolution

Let’s suppose that in a semantic resolution procedure (see Section 4.2.3)
the interpretation Z is such that every literal in it is negated. If such an
interpretation is used, all electrons and all P — I resolvents must contain
only non-negative literals.

A positive hyperresolution is a special case of P — I resolution when all
literals in the interpretation Z are negative (hence all electrons have only
positive literals).

Similarly, if Z contains only non-negative literals, the electrons and P— 1
resolvents will contain only negative literals.

Thus, negative hyperresolution is a special case of P — I resolution when
all literals in the interpretation Z are positive (hence all electrons have only
negative literals).

4.2.5 Clause ordering and locking

Ordering of literals helps to limit the number of possible resolutions. Seman-
tic resolution generally rely upon ordering of literals when constructing the
clashes. Although straightforward in the propositional case, the situation is
more complex in the case of theorems in first order predicate calculus. Since
same predicates may well be applied to different terms, the literal ordering
in the propositional sense become ambiguous. As a consequence for seman-
tic resolution, clashes may resolve not to a unique clause but to multiple
clauses.

One approach to ordering is to consider clauses as a sequences of dis-
juncted literals rather than sets of disjuncted literals. Thus, each literal’s
order corresponds to its place in the clause, resolution is allowed for the
biggest literal only and the binary resolvents are obtained by concatenation
of sequences of literals representing the ordered clauses and further delet-
ing the literals resolved upon. This method, although potentially efficient,

leads to incompleteness when used in conjunction with the semantic resolu-
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tion procedure. It can also be used in a linear procedure so that we always
resolve the least literal in the clause most recently deduced.

Lock resolution is a further refinement of linear resolution-refutation pro-
cedure where we assign to each literal an integer representing literal’s order.
Different occurrences of the same literal will have different order. Resolution
is permitted on literals of lowest order. The main difference with the pre-
vious ordering is that the literals in the resolvent inherit their order indices
from the parent clauses. A merged literal in a factor takes upon the lesser
order index of the two literals which were merged together. Lock resolu-
tion appears to be an efficient refinment which is complete when used in a
basic resolution-refutation procedure. It is incompatible however with the

tautology deletion strategy. Using these together destroys the completeness
property.

4.2.6 Model elimination

Model elimination procedure not only restricts the linear resolution proce-
dure, but also changes some basic aspects of resolution. This method was
first proposed by Loveland in 1968 [Lo78] and it is essentially equivalent to
the SL resolution procedure proposed by Kowalski and Kuehner in 1971.
This procedure also uses the concept of ordered clauses additionally main-
taining information on the previously resolved literals which allows us to
restrict binary resolutions so that its one argument is always a base-clause.
The information on the resolved literals which it maintains roughly corre-
sponds to the information contained in merge clauses obtained before on the
deduction line with which it was also necessary to resolve in linear-merge re-
finement to preserve completeness. In fact, it can be shown that every model
elimination deduction can be transformed into linear-merge deduction and
thus demonstrate that model-elimination procedure is complete.

The information on the resolved literal is preserved in the ordered clause
as a bracketed literal. For instance if PV Q is resolved against -Q V R (the
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last literal in the first clause must be resolved upon) we normally obtain

P VvV R as an ordered resolvent. For this procedure however we want to

preserve the literal Q and hence we represent the resolvent as: PV [Q] V R.
Model elimination procedure operates with three inference rules:

e Extension: Performs ordered binary resolution with retention of the
resolved literal as a bracketed literal.

e Reduction: If the last literal in the ordered clause unifies with some
bracketed literal it is deleted.

¢ Factorization: Performs ordered factoring (so that the last occur-
rence of the literal to be merged is deleted from the clause).

Additionally, all bracketed literals which are at the tail of the clause, not
followed by an unbracketed literal, are deleted after every step.

For instance, the set of ordered clauses given in the following example
can be shown unsatisfiable by model-elimination procedure. As with any
strategy maintaining ordered clauses, we start with the first clause attempt-
ing to resolve its last literal and continue at each consecutive step to resolve

the last literal of the clause obtained at the previous step.

Example 7 Base clauses: 1: PV Q, 2: Pv-Q, 3: -PVQ, 4: -PV -Q

Proof:
5: Pv[QJVP eztension of 1 with 2.
6: P factoring of 5, deletion of tailing literal.
7. [Plv@Q eztension of 6 with 3
8: [P]Vv[Q]V ~P eztension of 7 with 4
9: ] Reduction of 8, deletion of tailing literals

The procedures involving the clause trees [HS96], where we also main-
tain the information on the resolved literals as internal nodes of a tree rep-

resenting a clause, are, in many respects similar to the model-elimination

procedure.
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4.2.7 Weighting heuristics

Beside strict restriction strategies, there exist numerous heuristic strategies
which seem to improve the efficiency of the prover on practice but are not
guaranteed to do so.

One of the more popular strategies of this type is that of unit prefer-
ence. With this strategy we are not required to always take a unit clause
as one of the arguments for binary resolution (which was the case with unit
refinement) but we would simply prioritize this kind of resolutions. Since
the contradiction is a clause of length zero and since unit resolutions al-
ways decrease the size of clauses such strategy appears to be very helpful on
practice.

Generalizing on unit preference, we can introduce a weighting strategy
so that clauses of lesser weight are prioritized by the resolution. A popular
weighting criteria is the number of literals in a clause. Similarly to the unit
preference, shorter clauses have probably more potential on practice to lead
to the contradiction.

Linear procedures employing iteratively-deepening depth-first search can
be modified to look beyond the current depth limit if there are resolutions
which decrease the weight of the current clause. This extended search method
may help to avoid extra iterations by pursuing chains of resolutions likely
to lead to the contradiction even when it is beyond current depth limit.

4.3 Specialization strategies

Some important subclasses of theorems admit special refinements allowing
for efficient implementations. Some of these refinements may sacrifice com-
pleteness in the general case but can be shown complete for some class of

theorems.
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4.3.1 Sets of Horn clauses

Linear-unit refinement is a constrained version of linear resolution (see Sec-
tion 4.2.1) which demands that one of the arguments for the binary resolu-
tion be a unit clause. Although incomplete for derivation of a contradiction
from an arbitrary set of clauses, this refinement is complete for a subset
thereof, namely any set of Horn clauses. A Horn clause is a disjunction of
literals such that it contains at most one positive literal.

Although, not all formulas can be represented as Horn clauses, many
problems can be formulated using the latter since a Horn clause represents
an implication of a conjunction of literals which is a natural representation
of logic statements for many situations. Naturally the following implication
of a conjunction

(FIANFAN..ANFR)=>G

if normalised will be transformed first into
~(FLAFA...AF)VG

and finally into a Horn clause
~FiV-FV...V-F,VG

Linear-unit refinement is equivalent in strength to linear-base refinement
which demands that one of the arguments of binary resolution be a base-
clause. Thus linear-base refinement is also complete in the case of a set of
Horn clauses.

The Prolog programming language relies on Horn clauses for representa-
tion of theorems and its implementations commonly use base-clause refine-

ments for solving problems [St88].

4.3.2 Theorems with equality

Equality predicate is an inherent part of theorems in various areas of math-

ematics. A single predicate of equality, a single function of succession and a
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constant zero can formalize the number theory. The properties of equality
namely: reflexivity, symmetry, transitivity and substitutability allow specific
refinements reducing the number and the complexity of general resolution-
refutation [CL73].

Although the theorems with equality can be solved by regular meth-
ods, the four properties of equality would have to be represented by axioms.
Thus, the following three axioms would have to be added to represent re-
flexivity, symmetry and transitivity:

Equal(z, T)

Equal(z,y) = Equal(y, z)
Equal(z,y) A Equal(y, z) = Equal(z, z)

To insure substutivity, however, every function and every predicate em-
ployed will have to have a clause per every unit of its arity such as the
following example of substitutivity axiom for a binary function f(z,y):

Equal(z,y) = Equal(f(z,2), f(y, z))

Equal(z,y) = Equal(f(z,z), f(2,9))

This is a consequence of the fact that substitutivity axioms in its original
form were of higher order and quantified over all individual predicates and
all individual functions. This necessary approach increases considerably the
number of axioms and causes generation of many useless clauses by the
proving procedure.

To remedy this situation special inference rules treating the equality
internally can be introduced. One of such rules is paramodulation first de-
scribed by Robinson and Wos in 1969. Use of this inference rule allows us
to avoid introducing equality axioms and it considerably shortens lengths
of deductions by taking advantage of the properties of eqguality, particularly

substitutivity.

55



From the theoretical perspective such inference rules as paramodulation
restrict consideration to a subset of all interpretations (In this particular
case to the set of E-interpretations, that is all interpretations of the equal-
ity theory — these which satisfy the reflexivity, transitivity, symmetry and
substitutivity axioms).

The paramodulation inference rule can be described as follows.

Let L[t]VF, and Equal(r, s)VF, be two clauses where t, r, s are terms and
L[t] is a literal depending on term ¢. If t and r have a most general unifier
6 then from L[t] v F) and Equal(r,s) V F; we can infer: L[s0]V F,8 Vv F»0.
The inferred clause is called a binary paramodulant from Equal(r,s) Vv F;
into L[t] V Fy.

Example 8 The clause Equal(a(),b()) V R(b()) can be paramodulated into
P(z)VvQ(z) directly producing: P(b())VQ(b())V R(b()) without any interme-
diate clauses which would have to be produced by unrefined binary resolution

tn this case.

Using both resolution and paramodulation creates a complete strategy
for theorems with equality.

It must be noted that introducing paramodulation inference rule alone
does not allow to discard all equality axioms. Particularly, the axiom of
reflexivity: Equal(z,z) must still be preserved to retain completeness. This
axiom allows us to resolve with some other negative equality literal whose
terms of equality may be made the same under some substitution. It is
possible to augment paramodulation inference rule with another one, often
called identity assertion allowing to perform inferences as described above
and then discard all equality axioms and preserve completeness.

The paramodulation inference rule can be further refined and restricted
along very similar lines with that of binary resolution. For instance, beside
discarding tautologies of the type LV —L we can also now discard equational
tautologies of the type Equal(t,t). Furthermore, hyperresolution (in a some-
what weaker form) and linear strategies can be extended with paramodu-
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lation. The former is referred to as hyperparamodulation. This strategy is
using an ordering P of the predicate symbols and demands that the two
clauses to be resolved are positive and the literals paramodulated upon con-
tain the largest predicate symbol according to the ordering P. Also possible
are strategies of linear-merge, linear-unit and linear-base paramodulation.

In many cases, the equality theorems lead to complex clauses which
represent essentially the same information as previously retained clauses
but in a more involved way. Somewhat like subsumption, the demodulation
procedure uses unit equality clauses referred to as demodulators to rewrite
derived clauses into simpler form. Consider the following example.

Example 9 Greater(sum(0(),z),y) can be simplified into more meaningful
Greater(z,y) in the presence of a demodulator Equal(sum(0(),z),z).

For a unit equality clause to become a demodulator we must insure that
the transformation it will cause is simplifying. The criteria for that is that
left term of equality is longer then the right term of equality and that every
variable that occurs in the right term must also occur in the left term.

Combining multiple refinements allows for efficient strategies to handle
theorems with equality which are very common in multiple areas of math-
ematics. Multiple theorems can even be stated as pure equality theorems
which only have the equality predicate. These equational theorems can be
proven by demodulation alone used as a rewrite rule without involving bi-
nary resolution directly [Mc94].

It must be noted that especially for linear procedures, introduction
of paramodulation does not guarantee improved performance in all cases.
Paramodulation tends to shorten the deductions so that it can produce
an inference in one step whereas without it such an inference could only
be produced through one or several resolutions with equality axioms. Al-
though this may indeed lead to a shorter proof it also has an undesirable

effect of increasing the fan-out of the search space, so that it grows consid-
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erably already at relatively shallow depth. This may cause proof procedures
(especially these based on linear refinements) to actually slow down.

4.4 Retention strategies

A linear proof procedure examines the search space in a depth-first fashion.
Thus, clauses generated on one path will be discarded during backtracking.
Some of those clauses may be very promising and should perhaps be retained.
Obvious candidates for retention are unit clauses, since a resolution with a
unit clause always shortens the length of a current clause, and demodulators
~ simplifying unit equalities which allow to reduce the length of matching
terms in clauses encountered elsewhere.

Since there may be a large number of such clauses to retain, and, what’s
more important, a newly derived clause may have to be checked against
all retained clauses, it becomes important to consider efficient storage and
retrieval data structures. Among such efficient means of clause retention
are the hash tables and various indexing techniques such as discrimination

trees.

4.4.1 Hash tables

A hash table is an array each cell of which may contain a hash code of some
element so that the index of the element in the hash table is determined by its
hashcode. Hashcodes are computed in such a way so that different elements
hopefully receive different codes. With such a data structure checking if a
certain literal is retained by the table is essentially an array look up - an
O(1) operation.

On obtaining a unit clause, its hash code is computed and inserted into
the hash table. It is assumed that the sign of unit’s literal does not affect
the hashcode, yet is recorded as perhaps an additional bit. This procedure
immediately allows us to find unit contradictions: if such a code already
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exists in the table and the sign is opposite - a contradiction is found.

Retention of units in a table allows us to potentially reduce number of
literals in the clause to be generated elsewhere in the search. When a new
clause is infered, we can compute the hash code for its every literal and
perform hash table look ups. If a hash table hit results and the sign of the
element stored in the table is different, the current literal can be deleted as
it would have resolved with the unit clause stored in the table. If the sign is
the same, however, the unit clause stored in the table subsumes the current
clause and thus, all literals with the exception of the current one can be
discarded from the current clause.

It must be noted that by storing only a hashcode for a unit clause we
lose all the information on the structure and the history of the unit clause
itself. Hence, it becomes more difficult to restore the entire proof (we may
have to restart the search to find some unit clauses which were stored in
the hash table and contributed in the refutation). We must aiso verify the
proofs, elements of which used hash table look ups. Due to potential of hash
errors when different literals got the same hashcodes, some obtained proofs
may be invalid.

What'’s worse, however, is that by losing the structure of the unit clauses,
these can only be used to resolve in the cases with an empty substitution
when unit’s literal exactly matches some literal in the current clause. This,
of course, is only a tiny fraction of all possible resolutions whose substitution
is not empty. To partly relieve this problem, for every unit clause, we can
also retain certain number of its variants where variables were substituted
by some constants. This is likely to result in a higher hit ratio, yet it also
increases the load of the hash table.

Beside the use of hash tables for unit resolution and unit subsumption,
there are multiple other aspects of theorem provers where this data structure
can be employed. For instance it can be used to reduce search redundancy.

Since it is expensive (although some times necessary in the framework of the
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linear refinements) to search the same clause multiple times if we arrived to
it by different path, we may hash all clauses found and not research a clause
which causes a hash table hit, i.e. a clause which was searched before.

4.4.2 Discrimination trees

A discrimination-tree index is a trie like data structure that represents col-
lectively the structure of all terms inserted into the index. A downward
path in this tree from the root to the leaf describes the structure of a single
term. It can serve as a pre-filter to unification or matching, thus allowing to
retain unit clauses for unit resolution, unit subsumers or left terms of unit
equalities for demodulation [Mc93].

The discrimination tree lIook up traverses and backtracks through both
the query term and the tree and finds the terms which have a potential to
unify or match with the query term.

Every node in the tree, with the exception of its root, is labeled with
either a functor, a constant or a special symbol “+” to describe any variable.
if two terms have some common prefix, their paths in the tree will be the

same for the length of the prefix.

In the discrimination tree represented in Figure 4.4 the terms g(b(), a()),
and g(b(), (), are represented by a common path g —b() describing common
prefix at which point the paths for the two terms branch ending with a() in
one case and with ¢() in the other.

Thus, with this method, it is possible to compress structure of many
similar terms into a relatively compact data structure which also enables
fast querying to determine all terms which has a potential to unify.

As it was mentioned, any variable is represented in the tree by a special
symbol “s”. Thus, during querying process any corresponding subterm in
the query term will be accepted. For instance, the term f(z, z) is represented
in the tree by a path f —+— = but this will also be a representation for f(z,y),
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Figure 4.4: A discrimination tree for a term set 7.

and obviously some terms (e.g. f(a(),b())) which may unify with the latter
will not unify with the former.

A refinement of the basic discrimination tree called variable-containing
discrimination tree does represent explicit information on variables, and thus
allows precise queries. This, however, incurs additional complexity of the
data structure and the querying algorithm.

The use of the discrimination tree in a theorem prover is similar to that
of a hash table. The advantage however is that since the entire structure of
the term is represented, we do not have to store any additional variants of

the term where constants were substituted for certain variables.
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Chapter 5

Approaches for theorems in

geometry

Refinements outlined in Chapter 4, if properly applied, should allow us to
considerably improve the performance of resolution based theorem provers.
The majority of those refinements were generic and applicable to any theo-
rem. Some, however, exploited certain knowledge of the underlining axiom
system to find some computational shortcuts. For instance, knowledge of
behavior of the equality predicate which possesses the properties of reflex-
ivity, symmetry, transitivity and substitutivity allows us to formulate the
inference rule of paramodulation with the internal knowledge of the above
properties and delete now unnecessary axioms to describe them. This strat-
egy allows the prover to make relatively complex inferences in one step and
not to produce many of often useless intermediate inferences thus potentially
speeding up the search.

Other classes of theorems may benefit from such specialization strategies
arising out of special properties of their common axioms. One of the oldest
domains in mathematics (if not the oldest), where this may be of interest, is
Euclidian geometry. It also so happens that theorems in Euclidian geometry
are relatively difficult to prove automatically and many generic refinements,
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which help in other domains, do not seem to be strong enough in this case
(As will be observed in section 5.3.2 when describing experiments with two
popular provers, many relatively simple (in mathematical terms) theorems
were not proven).

By considering the set of axioms it is possible to devise refinements
specifically aimed at geometry theorems. Thus, in this chapter we first
overview formalizations for Euclidian geometry. Then, multiple refinements
will be proposed. Since automated theorem proving is inherently a practical
subject where the value of a method should be decided by its performance
in practice, these refinements were implemented in GLIDE theorem prover.
The prover and the experiments carried out will be described to show how

the proposed methods fared against generic strategies.

5.1 Formal systems for geometry

Planar geometry holds the distinction of being one of the earliest domains
to be formalized. The system of multiple axioms was put forward by Euclid
in his “Elements”. In many respects this was the beginning of axiomatic

method itself. The axioms were:
e A straight line may be drawn from any point to any other point
e A finite straight line can be extended continuously in a straight line

A circle may be described with any center and any radius

All right angles are equal to one another

If a straight line meets two other straight lines so as to make the sum
of the two interior angles on one side of the traversal less than two
right angles, the other straight lines, extended indefinitely, will meet
on that side of the traversal [BB91]
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These five basic axioms were used to derive new theorems in a sequential
manner, so that for the first theorem only axioms were used whereas proofs
of following theorems could use previously proven theorems as well.

In the beginning of this century, with the advances in formal logic, the
need reemerged to find formal foundations for different domains of mathe-
matics, the axiom systems had to be expressed as formulas in languages of
logic.

An axiomatization for geometry was proposed by Hilbert. It operated
on the universe containing points, lines and planes and had predicates to
express relations of these individuals.

In 1926 Alfred Tarski proposed a much more compact formalization for
Euclidian geometry. It described the universe containing only points and
had only two essential predicates besides that of equality: equidistance and
betweenness.

Over the years, the latter system was successfully applied to the needs
of automated theorem proving. A slightly modified Tarskian axiom system
was described by McCharen et al. in [MO76] and later Quaife made some
further modifications in his work [Qu89].

Hilbert’s system was also used in automated theorem proving research,
for instance in [Be92].

Besides, resolution based strategies, other approaches to prove geometry
theorems were also developed such as the algebraic method of Wu described
in [Ch88]. This latter method is very powerful and with its help it is often
possible to prove theorems too difficult for resolution based provers. How-
ever, this approach is not very general and can cope only with theorems
which can be expressed as equations (i.e. it cannot handle inequalities).

Special refinements were also considered over the years for subdomains
of geometry, for instance McCune and Padmanaghan describe a resolution

rule for reasoning about cubic curves in [MP96].
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Tarski axiomatization was chosen for the purposes of this work due to its
popularity, simplicity and convenience as well as because of a large amount

of available test theorems based on this system.

5.1.1 Tarski-Quaife axiom system

Quaife’s edition of Tarski axiom system [Qu89], beside the predicate of equal-
ity, is also using two other main predicates: equidistance and betweenness
which will be further denoted as D and B respectively.

Equidistance predicate assumes four arguments - two pairs of points, and
it expresses the fact that the distance between points of the first pair is the
same as distance between points of the other pair. Predicate of betweenness
expects three arguments and it represents the fact that the point described
by its middle argument is on the line segment between points described by
its outer arguments.

The predicate of equidistance is reflezive 1:

D(:L', Y.Y, r)

This means that the distance from point z to point y is the same as distance

from point y back to point z. It is transitive:
-D(z,y, z,v) V ~D(z,v,u,w) V D(z,y, u,w)
Equidistance possesses property of identity:
-D(z,y,2,2z) V Equal(z,y)

Meaning that if for two pairs of points with equal distances, one pair is
trivial (distance from the point to itself) the other pair should be trivial as
a consequence.

The predicate of betweenness also possesses property of identity:

-B(z,y,z) V Equal(z,y)

!Tarski axiom system is shown here in clausual form.
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Meaning that if some point is between another point and that same point
again, all three points must in fact be the very same one.

With the aid of equidistance and betweenness predicates, it is possible
to describe more complex axioms. The following one is known as the Outer
five-segments aziom and it asserts relationships of similar triangles on the

plane:
-D(z,y,7',y') V-D(y, z,¥, ') V ~D(z,v,2’,v') V =-D(y, v,9,v")V

v-B(z,y,2) V-B(z',v',2') V Equal(z,y) V D(z,v,2',v")

The meaning of this axiom is depicted in Figure 5.1.

- v D

- J

Figure 5.1: Outer five-segment axiom.

Beside predicates of equidistance and betweenness this axiom system also
uses several functions. All of these function actually arise during Skolemisa-
tion process (see Section 2.2.8), when existentially quantified variables are

substituted by new constants or function. Since axioms described here are
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already in normalized, clausual form, functions appear instead of existen-
tially quantified variable to describe existence of some points which depend
on some other points.

One of the function used for this purpose is the Eztension function, to be
denoted as ext(z, y, u,v). This function maps its four arguments, interpreted
as points, to a point. The first pair of arguments of extension function
describes a segment and the second pair specifies the distance by which the
segment is to be extended to arrive to the point specified by the extension
function. The following axiom (known as the Segment construction aziom

describes the main property of extension function:
B(z,y,ezt(z,y, w,v))

D(y, ext(z,y, w,v), w,v)

Another function used is, what’s known as, the /nner Pasch function, used

to describe existence of an intersection point of two segments as shown in

Figure 5.2.

Figure 5.2: Inner Pasch axiom.

The main property of inner Pasch point is represented by the following
axiom:
-B(u,v,w) V -~B(y, z,w) V B{v, ip(u,v,w, T,y),y)

67



—-B(u,v,w) V ~B(y, z,w) V B(z,ip(u,v,w, z,y), u)

Existence of three points not all on the same line is described by the Lower
dimension axiom using the following three clauses:

=B(p10),p20),p3())

_'B(P2()1P3()1Pl())
_'B(Ps():Pl ()am())

Another important geometric property is expressed by the Upper dimension
axiom which says that if three points are equidistant to two other distinct
points, all three must be on the same line. This axiom is expressed by the
following single clause:

—‘D(za w, T, ‘U) Vv ﬁl)(yv w,y, ‘U) v "'D(Z, w, =z, ”)V

VB(z,y,z) V B(y,z,z) V B(2,z,y) V Equal(w, v)

Existence of a single line parallel to the given line and passing through a
point not on the second line is expressed by Euclid’s axiom?. In Tarskian
axiom system this axiom is described with the help of two special functions,
denoted as euc,(z,y, z, v,w) and euca(z,y, 2,v,w). These two points repre-
sent existence of a line passing through them. Three clauses are required to
express the axiom:

-B(u,w,y) V -B(v,w,z) V Equal(u,w) V B(u, v, euc; (u,v,w, 2,y))
-B(u,w,y) V-B(v,w,z) V Equal(u,w) vV B(u, z,eucy(u,v,w,z,¥y)})
-B(u,w,y) V-~B(v,w,z) V Equal(u, w) V B(euc, (4,v, w, z,y), y, euce (u, v, w, z,y))

The meaning of the above clauses is depicted in Figure 5.3.

2Euclid’s axiom in this formulation is equivalent to traditional fifth Euclid’s axiom
which has a special distinction in geometry. Assertion of this axiom accompanied by the
other four Euclid’s axioms describe Euclidian geometry whereas its negation accompanied
with the other four describe a hyperbolic or Lobachevski geometry where at least two
distinct lines exist which are parallel to a given line and pass through a point not on the

second line.
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T /\ v
eucz(u, v,w,Zz, y) y eucl(u,v, w,z, y)

\_ ),

Figure 5.3: Euclid’s axiom.

Finally, Weakened continuity aziom expresses the fact that any segment
Jjoining two points one inside, one outside a given circle, intersects the circle.
the Continuity function denoted as cnt(z,y, z,u,v,w) describes the inter-
section point. Two clauses are used to describe this axiom:

=D(u,v,u,v1)V-D(u, z,u,z1)V-B(u,v,z) V-B(v,w, 1)V B(v1, cnt(u, v, v1,w,z, 1), T,)
=D(u,v,u,n1)V-D(u,z,u,z,)V-B(u,v,z)V-B(v,w, )VD(u, w, u,cnt(u, v, v1, w, z,11))

Beside the axioms described above, since equality predicate was used, we
also require axioms to describe equality: its reflexivity, symmetry, transi-
tivity and its substitutivity with respect to predicates of equidistance and
betweenness as well as all functions used: extension, inner Pasch, Euclid’s

functions and the continuity function.

5.1.2 Alternative and additional axioms

Quaife’s edition of Tarski axiom system differs somewhat from earlier ver-
sions of this axiom system. McCharen et al [MO76] describe a slightly
different system which had additional axioms for transitivity and connec-
tivity of betweenness. The axioms to describe these properties were later

found to be dependent on other axioms. McCharen’s et al axiomatisation
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represented Pasch axiom in outer rather than in inner form:
-B(z,w,v) V-B(y,v,z) V B(z,op(w, z,y, z,v), y)

-B(z,w,v) V-B(y,v,2) V B(z,w, op(w, z,y, z,v)

It is not hard to see from Figure 5.4 that this axiom is very closely related

to the inner Pasch axiom and describe the same geometric property.

S )

op(wi I,Yy,=2, ‘U) v

T Z

- Y,

Figure 5.4: Outer Pasch axiom.

There is also a minor change in formulations of Euclid’s axiom.

Both Quaife’s and McCharen’s et al systems weaken the continuity ax-
iom which is, however, admissible for the purposes of elementary geometry.
For many purposes these two versions of Tarski axiom system are virtually
indistinguishable.

Additional properties of equidistance and betweenness can be derived
from the described axioms. For instance symmetry of equidistance and

symmetry of betweenness:
-B(z,y,z) V B(z,y, T)

-D(z,y,2,y) V D(z2,y,Z,v)
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It may be beneficial to add these theorems into the set of base clauses since
they may, at times, lead to a shorter proof. It should be noted, however, that
there are eight different equidistance congruences and adding seven clauses
to describe them all may be overly costly in terms of increased amount of
resolvents.

The situation is similar with reflexivity of betweenness:

B(z,z,y)

B(z,y,y)

As well as additional reflexivities for equidistance:
D(z,y,z,y)

D(z,z,y,y)

These clauses can also be used to augment the base clauses.

It is also convenient to add a predicate of colinearity (denoted C) to
simplify the task of describing theorems. If this is done, it is necessary to
specify the properties of this predicate. Most commonly this is achieved by
denoting its relationship to the predicate of betweenness, since betweenness
describes a case of colinearity.

Thus, if three points are colinear, there are three different possibilities

for their betweenness:
-~C(z,y,2) V B(z,y,2) V B(y,z,z) V B(z,2,9)
At the same time if a point is between two other points, all three are colinear:
-B(z,y,z) VC(z,y,z)
-B(z,y,2) V C(y, 2z, x)
-B(z,y,2) V C(z,2,y)

It should be noted that if colinearity predicate is added, it will also be nec-
essary to describe additional equality substitution axioms for this predicate.
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5.2 Refinements

The difficulty of theorems based on Tarskian-Euclidian axiom system comes
from relatively heavy use of equality, quite a large number of clauses, length
of the clauses and also from the nature of predicates and functions involved.
For instance, predicate of equidistance admits eight different orders of its
arguments to describe the very same situation. Indeed D(a(),b().c(),d())
is the same as D(b(),a(), c(),d()) or D(c(),d(),a(),b()) etc. Imagining that
only this potentially results in seven different inferences for every equidis-
tance literal in the current clause, the difficulty of a brute force search be-
comes obvious.

The refinements of resolution work to delete unnecessary inferences and
to prevent some inferences from occurring. By examining the underlining
axiom system it may be possible to find refinements to improve performance
of the general methods.

5.2.1 Generic refinements

Since Tarskian axiom system uses the equality predicate, employing refine-
ments for first-order logic with equality should be beneficial. Particularly,
introduction of the inference rule of paramodulation allows us to delete
axioms describing symmetry, transitivity and substitutivity of equality. Ad-
ditional inference rule of identity assertion permits to also delete equality
reflexivity axiom (see Section 4.3.2). Three clauses are required to describe
reflexivity, symmetry and transitivity, one clause for each property. As to
substitutivity, one clause is needed for each unit of arity of every predi-
cate and every function. Predicates of betweenness and equidistance have
arities of 3 and 4 respectively. Functions of inner Pasch, first and second
Euclid, extension and continuity have arities of 5, 5, 5, 4 and 6 respectively.
Thus, with this refinement alone, we can reduce the set of base clauses by
35 clauses. Although this may seem like a considerable benefit, unrestricted

paramodulation may, at times, generate the number of inferences rivaling

72



what would have been produced by binary resolution with the equality ax-
ioms remaining.

The use of unit clause retention for unit resolution and unit subsumption
may worsen performance only due to the added cost of storing and querying
literals in the data structure. Assuming the use of a data structure with
inexpensive complexity for both above operations, gained benefits should
greatly exceed the incurred cost.

Adding mechanisms for non-unit subsumption is always more problem-
atic due to the high cost. From practical experience, cheep versions of non-
unit subsumption such as s-subsumption contribute to better performance
and incur only a reasonable price.

As to many other possible refinements of resolution such as semantic or
lock resolution it is unclear to what degree these may help in the case of
geometry theorems.

Some of the generic refinements, mentioned above, were employed when
testing specialized geometry refinements to be described in following sec-
tions. The testing results will be described in Section 5.3.2.

5.2.2 Approaches for reflexivities

Both main geometric predicates of Tarskian axiom system: equidistance
and betweenness as well as auxillary predicate of colinearity are reflexive.
Quaife’s version of Tarskian system included the following axiom for reflex-
ivity of equidistance:

D(z,y,y,)

Beside this one, there are two easy corollaries which may also have been
added to the set of base clauses: Ordinary reflezivity: D(z,y,z,y) and
Trivial reflexivity: D(z,z,Y,Y)-

For a single reflexivity clause D(z,y,y,z) to be removed and complete-
ness maintained, the following inference rule can be introduced:

If a clause C has a negative equidistance literal —~D(t,, t2,%3,t4), and
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this literal’s first and last arguments unify with a whereas its second and
third arguments unify with 8, i.e. (t;ja = t4a) and (t,8 = t38), infer
Cao 8 —-D(t,ts,t3,t4)x o B from C.

We will refer to this rule as Equidistance assertion, and the inference of
this rule as Equidistance assertant.

It is not hard to show that introduction of this rule permits us to discard

the equidistance reflexivity clause while maintaining completeness.

Theorem 8 (Completeness of equidistance assertion) If a clause set
S has a resolution proof P, then the clause set S — {D(z,y,y,z)} will have

a resolution-equidistance assertion proof P'.

Proof. To obtain P’ from P we will use the following procedure: Traverse
all inferences of P. If D(z,y,y,z) is not among the parents of the current
inference, it will also be available on S — {D(z,y,y,z)}, thus transfer this
inference into P'.

If D(z,y,y,z) is indeed one of the parents of the current inference, the
second parent C must have contained a negative literal ~D(t,, t5, t3,£4), and
D(z,y,y,z) must have unified with ~D(t,, £2, £3,t4) with some substitution
6.

Let’s consider the structure of 8. Variable z must have unified with ¢,
and at the same time it must have unified with ¢4. Similarly, variable y must
have unified with £, and at the same time with ¢3. Since z and y are just
variables, {¢),t4} and {t2,¢3} must unify on their own.

Let’s suppose that the most general unifier of {¢;,¢4} is called « and that
of {t2,t3} is called .

The resolvent of D(z, y,y, z) and C is C8——-D(1y,t2,t3,t4)8 but because
C does not contain variables z and y this would be the same as Cao 8 —
~D(t, t2, t3,t4)ao B which is exactly an equidistance assertant of C and can
thus be transfered into P’'. O

Equidistance assertion considered here is easily extendible to accommo-
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date ordinary and trivial reflexivities.

The predicate of betweenness is also reflexive. Although this property
is not directly represented by the axioms of Tarskian system, it is easily
derivable from other axioms. There are two possible reflexivities:

B(z,z,y)

B(z,y,y)

An inference rule called Betweenness assertion, along the lines of equidis-
tance assertion can be introduced here.

If a clause C has a negative betweenness literal: ~B(t,, t2,t3), and this
literal’s first and second arguments unify with a, i.e. ({a = tza), infer
Ca — -B(t,ts,t3)x from C.

The above only accounts for B(z, z,y), but is easily extendible to acco-
modate B(z,y,y).

It is not hard to see that completeness will not suffer if this inference
rule is used and betweenness reflexivity clause (or clauses) are discarded.

The proof of completeness is similar to an analogous proof for equidis-
tance.

In a similar manner, we can also introduce assertion of colinearity. Ob-
viously, since two distinct points define a line, if of three points any two are,
in fact, the same, such three points must be colinear:

C(z,z,y)
C(z,y,z)

C(y,z,z)

Introduction of these inference rules has several advantages. It allows us
to discard up to eight clauses which were describing reflexivities. This is
actually a relatively small advantage since the introduced inference rules

mimic resolution with these clauses with a very similar cost. More of an
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advantage results when some of the reflexivities were absent from the set
of base clauses. This may well happen since reflexivity of betweenness is
derivable from other clauses. Deriving and then applying reflexivity may
lengthen the proof only by a few steps yet every step often comes at a very
high and increasing cost.

A weaker version of geometry assertion (i.e. of equidistance, betweenness
and colinearity assertion) where all substitutions are empty can be used
along with described above general version. For instance, if a clause is
encountered which contains a literal -D(t,, t2, ¢, t2), it can be immediately
removed. This can be done as a post-processing on a clause before it has been
used to produce new inferences. It is not difficult to see that completeness
will not be sacrificed.

An easy extension to such weaker version of geometry assertion should
allow us to easily find geometric tautologies. For instance, if a clause is en-
countered which contains a positive literal D(¢;,t5,¢2,%;), this clause would
have been subsumed by equidistance reflexivity axiom and, thus, may be
discarded.

5.2.3 Approaches for identities

Both main geometric predicates of Tarskian axiom system have identity.
The identity for equidistance was expressed by the following axiom:

-D(z,y,z2,2) V Equal(z,y)

An easy corollary results when the symmetry of equidistance is taken into
account:
-D(z,z,y,2) V Equal(y, z)

For a single identity axiom -D(z,y, 2, z) V Equal(z,y) to be removed and
completeness maintained the following inference rule can be introduced:

If a clause C has a positive equidistance literal: D(¢;,t2,t3,t4), and this
literal’s third and forth arguments unify with a, i.e. (t3a = tsa), infer
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Ca — D(t,,ta,13,t4)a + Equal(t3,t4)a from C, where “-” has a syntactic
meaning of “not containing” and “+” has a syntactic meaning of “including”.

We will refer to this rule as Equidistance identification, and the inference
of this rule as Eguidistance identifier.

Example 10 Given a clause D{(a(), f(b()),z,k()) V A(z) using equidistance

assertion and since r and k() unify, we can infer equidistance identifier

Equal(a(), £(5())) V A(k()).

It is not hard to show that the introduction of this rule allows us to

discard equidistance identity clause while maintaining completeness.

Theorem 9 (Completeness of equidistance identification) If a clause
set S has a resolution proof P, then the clause set S — {—~D(z,y,z,z) V
Equal(z,y)} will have a resolution-equidistance identification proof P'.

Proof. To obtain P’ from P we will use the following procedure: Traverse
all inferences of P. If -D(z,y, 2, z) V Equal(z,y) is not among the parents
of the current inference, it will also be available on S — {-D(z,y,z2,2) V
Equal(z,y)}, thus transfer this inference into P'.

If -D(z,y, 2,2) V Equal(z,y) is indeed one of the parents of the current
inference, there are two cases to consider.

First case occurs if the second parent C had a positive equidistance literal
D(t,, to, t3, t4) which resolved with equidistance literal of identity axiom with
substitution 6.

If that’s the case, variable z must have unified with ¢3 and at the same
time with t4. Since z is just a variable ¢3 and ¢4 must have unified on their
own.

Let’s call the most general unifier of {t3,%4} as a.

The resolvent of C and -D(z,y, 2, 2) V Equal(z,y) is obtained as C8 —
-D(t,,t2,1t3,t4)0 + Equal(z,y)0 but since z,y and 2 are variables it will be
the same as Ca—-D(t,, t,, t3,t4)a+ Equal(t,, t2)a which is an equidistance
identifier of C and which can, thus, be transfered into P’
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Second case occurs if the second parent C had a negative equality literal
- Equal(m;, m3) which resolved with equality literal of identity axiom with
substitution vy (see Figure 5.5).

4 \\ ™

AV ~Equal(m,,m3) || =~D(z,y, z,2) V Equal(z,y)

\\ /

AV -D(m;,my, 2, z)

-]
o
o

A'ﬂv—'D(ml,mg, sz)ﬁ D(th 2, t3, t‘l) VB

N/

A'ByV By

N N Y

Figure 5.5: P before transformation

If that is the case, the structure of the proof P can be rearranged as
depicted in Figure 5.6. Since in the original proof P, a negative equality
literal of the current clause resolves with the equality literal of the equidis-
tance identity axiom, negative equidistance literal will appear in the infer-
ence. This literal must eventually resolve with some positive equidistance
literal further along the way (see Figure 5.5).

It is not hard to see that it is possible to rearrange the order of resolutions
so that the resolution with equidistance literal of identity axiom occurs first
(see Figure 5.6)

By applying this transformation we obtain a resolution which can be
easily substituted by equidistance identification and transferred into P'
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"'D(l', Yy, 2, Z) VE'qual(:r:, y) D(t17t21t31 t4) VB

\ \

AV —=Egqual(m;,mz) || BaV Equal(t;, t2)a

N

-]

g N y,

Figure 5.6: P after transformation

Equidistance identification considered here can be extended to also ac-

comodate second identity of equidistance axiom:
-D(z,z,y,2) V Equal(y, z)
The identity of betweenness was described by the following axiom:
-B(z,y,z) V Equal(z,y)

Obviously enough, consideration for symmetry of betweenness does not re-
sult in another distinct case of identity axiom.

We can introduce a resolution rule of Betweenness identification similar
to that of equidistance identification.

Thus, if a clause C has a positive betweenness literal: B(t;,¢s,t3), and
this literal’s first and third arguments unify with a, i.e. ({;a = tza), infer
Ca— B(t,t,t3)a+ Equal(tl, t2)a from C, where “-” has a syntactic mean-

ing of “not containing” and “+” has a syntactic meaning of “including”.
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It can be shown that discarding of betweenness identity axiom while
introducing betweenness identification preserves completeness of a proving
procedure. The proof of this fact is similar to the one considered for equidis-
tance identification.

The advantages of these inference rules are similar to that of equidistance
and betweenness assertion. Additional advantage is that out of two possible
ways to resolve with the clauses representing identity axioms only one will

remain, thus some irrelevant inferences will not be made.

5.2.4 Approaches for symmetries

Both main geometric predicates of Tarskian axiom system as well as an
auxillary predicate of colinearity are symmetric. The axioms to describe
symmetries are not explicitly present in the axiom system but are easily
derivable.

There are eight different congruencies for equidistance, since the order
inside both pairs of arguments does not matter as well as the order among
the pairs themselves. This potentially induces seven different clauses to

describe symmetries of equidistance:
-D(z,y,u,v) V D(y, z,u,v) -D(z,y,u,v) V D(z,y,v,u)
-D(z,y,u,v) V D(y,z,v,u) -D(z,y,u,v) V D(u,v,z,y)
-D(z,y,u,v) V D(v,u,z,y) -D(z,y,u,v) V D(u,v,y,T)
-D(z,y,u,v) V D(v,u,y,z)
There is also a symmetry between outer arguments of betweenness:
-B(z,y,2z) V B(z,y,%)

Since order of arguments does not matter for the colinearity predicate, there
is six different congruences and as many as five clauses to describe them:

-C(z,y,2) VC(z,2,y) -C(z,y,2) VC(y,x, 2)
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~C(z,y,z) V C(y, 2, ) -C(z,y,2) vC(z,y,z)
-C(z,y,2) VC(z,z,y)

It is prohibitively expensive to allow each equidistance literal to appear in
eight different forms, colinearity in six and even to allow every betweenness
literal to assume two different shapes.

One straightforward approach to help with clause retention using hash
tables is to make hashcodes of geometric predicates independent from sym-
metries.

Assuming that we have a function hc(t) allowing to compute the hash-
code for term t, the symmetry independent hashcode for a betweenness
predicate B(t;,%2,¢3) can be computed as function of (hc(¢;) + hc(t3)) and
hc(t2)) where + denotes arithmetic addition. Since arithmetic addition is
symmetric, the resulting code will be independent of the order of ¢; and ¢3.

Similarly for the predicate of equidistance D(¢,,t,,t3,%4), the hashcode
can be computed as a function of ((hc(t;) + he(t2)) ® (he(tsz) + he(ts))) where
@ denotes bitwise exclusive-or. Since both addition and bitwise exclusive
or are symmetric this will produce the same hashcode for all symmetric
equidistances.

Any symmetric function, of course, will suit the above, not just addition
or exclusive or.

The hashcode of colinearity predicate C(t;,t2,¢3) can be computed sim-
ply as a function of (hc(t1) + he(tz) + he(ts)). Thus, the order of arguments
will not matter at all.

Although modifying the retention mechanism to account for symmetries
is very important for overall performance, we may also want to modify the
inference rules so that the clauses describing symmetries become unness-
esary.

Since every equidistance literal has eight different congruences, all de-
scribing the same geometric situation, when two equidistance literals are

resolved upon there are as many as 64 ways of performing the unification
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if symmetry is also taken into account. Of these only eight are actually
distinct and hence there can be up to eight potentially different resolvents.

If completeness is to be maintained all these must be searched.

Thus, we can modify the resolution and unification algorithms so that
when two equidistance or betweenness predicates are attempted for unifica-
tion symmetries are considered internally.

If completeness is not sought, we can weaken the above and stop when
first way of unifying is found and search only one obtained resolvent. From
practical experience, this approach appears to be beneficial when proving

many elementary geometry theorems.

5.2.5 Approaches for transitivities

Both geometric predicates of Tarskian axiom system are tramsitive. Al-
though a simple enough inference rule with the internal knowledge of tran-
sitivity is not obvious, one practical observation should be made.

Many theorems include several versions of equidistance transitivity ax-
iom, some of which involve symmetries.

For instance whereas regular equidistance transitivity is expressed as
-D(z,y,z,v) V-D(z,v,u,w) V D(z,y, u, w)
very often another version will also appear:
-D(z,y,2,v) V-D(z,y,u,w) V D(z,v,u,w)

This is done to minimize the impact of the absence of symmetry axioms,
which are derivable from other clauses.

If symmetries are handled by the refinements discussed in the previous
section, extra transitivity axioms will not serve any meaningful purpose and
should be discarded.
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5.2.6 Heuristics

Whereas previous sections described refinements which had some observable
foundation in the structure of axioms, this section describes heuristics which
are based on less precise observations.

Some of the longer axioms of Tarskian axiomatization are very rarely
used in the proofs of elementary geometry theorems. For instance, the axiom
of elementary continuity is used extremely rarely. This axiom however helps
to produce a very considerable number of inferences (or rather does not
help in doing so). Thus, one simple heuristic is to discard one or several
long clauses from the set.

Constants are very important to geometric reasoning. Thus a possible
heuristic is to search grounded clauses only, the ones which do not have
any variables. This heuristic does not seem to help in all cases but in a
few instances of difficult theorems, it helped to find a proof in a just a
few seconds whereas the search considering ungrounded clauses takes many
times longer.

As hypotheses of many theorems, clauses representing equalities of some
constants are often given. Such equalities can be treated as demodulators to
simplify other clauses. Whereas using demodulation for every inferred clause
as a post-processing step is relatively expensive, it often helps to demodulate
every base clause before the start of the search using demodulators found
among other base clauses which will also include equalities of some constants.

The following incomplete heuristic often contributes to faster proofs.
The geometric assertion can be applied only to very short clauses, either
with a single literal or two literals. This reduces somewhat the number of

inferences yet does not seem to prevent discovery of most proofs.
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5.3 Experiments with implementation

GLIDE (Geometry Linear Iterative Deepening Engine) is a theorem prover
for first order predicate calculus. It incorporates refinements aimed at the-
orems with equality and theorems in Tarskian geometry.

The prover is implemented in C and should compile and run on most
UNIX machines. The source code along with sets of test theorems are avail-

able from author’s web page:
http://www.cs.mcgill.ca/” savs

GLIDE recognizes two input formats of theorems, the one supported by
TGTP prover® and another one used by TPTP (Thousands of Problems
for Theorem Provers) library.* Two sets of Lex/Yacc based parsers were
built and the selected theorem format must be specified at compile time as
makefile’s parameter.

The run-time options specifying which strategies and refinements to use
can be chosen by madifying GLIDE’s configuration file.

Several sets of theorems were used in experiments. General strategies
and, to some extend, equality refinements were tested using 84 theorems of
Stickel’s test set. In some settings, GLIDE is capable of solving all of these
theorems with the time limit of 900 seconds per theorem.

Geometry refinements were tested on 66 theorems originating in Quaife’s
work [Qu89] as well as on 165 problems from geometry section of TPTP. The
latter set incorporates the former in a somewhat modified form.

The experiments were performed on a LINUX machine with 233Mhz
AMD-K6 CPU, 512K L2 cache and 32M of main RAM.

The following sections describe the structure of the prover and the ex-

periments that were done.

3TGTP was developed by Professor M. Newborn at McGill University.
‘TPTP library is maintained by G. Sutcliffe and C. Suttner and it contains sets of

theorems from various areas of mathematics.
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5.3.1 GLIDE theorem prover

The main search strategy implemented in GLIDE uses iteratively deepening
depth first search to look for a linear refutation proof. Although in many
other implementations, sorted strategies are often preferred to linear strate-
gies, the latter are nonetheless quite attractive and interesting as the search
space is explored in a more structured manner and thus performance is more
stable compared with sorted strategies which invariably use a version of a
best first search in a space where “best” is often poorly definable. Some
advantages of sorted strategies are nevertheless exploited in GLIDE by the
virtue of using extended search strategy so that the prover looks beyond cur-
rent maximum iteration depth if it is easy to reduce the number of literals
in the current clause. Since the contradiction is a clause of zero length, this
heuristic prefers clauses which have a potential to lead to a contradiction.

Use of a hash table to retain unit clauses and of a shallow tree to retain
demodulators affects the structure of proofs found which may actually be
non-linear but consist of multiple proof lines. One of the proof lines leads
to the contradiction and others to unit clauses or demodulators which were
used to obtain inferences on other lines.

When and if contradiction is found, the main proof line is printed. If
some inferences on this line used resolutions with unit clauses retained by
the hash table or were demodulated, the search is restarted to find the lines
leading towards these units and demodulators. If these lines themselves used
unit clauses from the hash table or demodulators the process is repeated.
Beside restoring the proof, verification is also done to insure that no hashing
errors occurred during the search.

When a theorem is read, clause retention limits are automatically com-
puted (unless these were preset in the configuration file). These include the
limit on number of literals, the limit on number of variables and the limit
on number of terms a clause could have to remain searchable.

Further, a simplification routine is called (when appropriate options
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are set). Basic simplification attempts to delete clauses with pure literals,
clauses subsumed by other clauses. It substitutes two clauses with a single
resolvent by this resolvent. Similarly, if some resolvent or factor subsumes
its parent, the routine substitutes this resolvent or factor for the parent. If
equality or geometry refinements will be used, it is possible at this stage to
remove all equality and some geometry axioms.

The main loop of the prover controls maximum iterative deepening. If
the search ends before time limit expires having explored all inferences at
maximum depth, the clause retention limits and maximum iterative depth
are increased and the search is restarted.

The routine controlling which clauses from the base set are to be searched
is called from the main loop. This routine decides, based on the options,
which clauses must be searched. For instance if linear negated conclusion
(set of support) refinement is switched on, only clauses from the negated con-
clusion will be considered for searching at this, first level (see Section 4.2.1).

Each clause selected is passed to the searching routine. This routine

does the following:

e Checks if a clause is a contradiction. If that’s the case, the proof line
is printed and additional searches made to find all additional lines
leading towards used unit clauses and demodulators.

e Checks if the time limit has been reached. If so, the prover terminates.

e The depth of the clause is compared with the current maximum search
depth. If the extended search is allowed, a flag will be set so that to

limit possible inferences further on.

e Decides if a clause is worth pursuing. Depending on the options se-

lected the following tests may be made:

— Hash table is checked to see if this clause has been searched before.
Normally, this is only done for clauses in the extended region, but
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can optionally be done for every clause.

— Test is made to see if the current clause is s-subsumed by some
base clause or the clause on the line leading towards the current

clause.

— Test is made to see if the current clause is subsumed by some unit
base clause or unit clause on the line leading towards the current

clause.

— Alternatively, a test can be made to check if a clause is subsumed
(6-subsumed) by any base clause or any clause on the line leading

towards this clause.

The clause searched before or subsumed will not be searched any fur-
ther.

¢ The hash code of the current clause is stored into the hash table.

e If an appropriate option is selected, a test is made to find out if the
current clause back s-subsumes some base clause or a clause on the

line leading toward the current clause.

e Depending on the options selected, the inferences are made. The fol-

lowing inference rules are available:

— Binary factoring

— Binary resolution
— Identity assertion
— Paramodulation

— Geometry assertion

— Geometry identification

If geometry refinements are enabled, special symmetry invariant hash-
ing and unification will be used for geometry predicates.
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For inference rules requiring two hypotheses, the current clause is used
as one and any base clause or any clause on the line leading toward
the current clause may be used as the other. Some options may put
restriction as to which clause can be used as the other parent. If linear
base refinement is enabled, only the base clause can be chosen. If linear
merge refinement is enabled, only base clauses or merge clauses on the
line towards the current clause can be chosen (see Section 4.2.1). If
the extended search flag was switched on earlier, further restrictions
will be imposed: only those resolution which will reduce the number
of the literals in the current clause will be allowed.

e All clauses inferred are post-processed.

— The clauses whose parameters exceed retention limits are dis-
carded.

— Equality literals are oriented so that the left side of equality be-

comes heavier (see Section 4.3.2).

— Simple tautologies such as L vV -~L, equational tautologies such
as Fqual(t,t) and geometric tautologies such as D(t,,t), t,£2),
B(t;, t1,t2) or C(t;,¢t;,1t2) etc. are detected in the inferred clauses
and such clauses are discarded.

— Simple factorings (such as LV L substitued by L), simple identity
assertions (deleting literals of the type ~Egqual(t,t)), and simple
geometric assertions (deleting liteals of the type ~D(¢,, t2, t1,t2),
-B(t, t;,t3) or ~C(t;,t;,t2) etc.) are performed.

— A test is made to see if any literal of the inferred clause can
be resolved with a unit clause stored in the hash table. At this
point, it may also be determined that the clause is subsumed
by the unit clause in the hash table and thus that it should be
discarded. It should be noted that variable numbering local to
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each literal is used to obtain literal hashcodes independent from

literal’s position in the clause.

— If an appropriate option is selected, all inferred clauses are de-
modulated.

— If an appropriate option is selected, a test is made to check if
some inferred clause is s-subsumed by another clause inferred at
this level.

e Unit clauses are inserted into the hash table along with some variants
where variables were substituted by constants. The same hash table
is used for both clause hashcodes (for determination if the clause was
searched before) and unit clause hashcodes (for unit resolutions). An
attribute stored together with every item describes the type of the
item, the depth where it was discovered etc. Probing is used for colli-
sion resolution. Insertion of unit clauses is prioritized when a collision

does occur.

e Unit clauses which were determined to be demodulators are stored in
demodulator’s shallow tree. This data structure may be considered as
the few first levels of the discrimination tree (see Section 4.4.2) where
first letters of the left term of equality are indexed. Every leaf contains
an array of demodulators all sharing the same short prefix. This allows
to speed up the demodulation so that only some demodulators are
considered when matching a term.

e Clauses are sorted according to their number of literals (Bucketing is
used, thus the cost is quite small).

e The inferred clauses are searched recursively starting from the shortest

ones.

It should be noted that virtually all steps outlined above can be switched
on and off by modifying GLIDE’s configuration file. A large number of
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different search strategies may be obtained by modifying the options.

If a contradiction is found, the proof is printed which may induce addi-
tional searches to find how some unit clauses and demodulators were pro-
duced. The hashing errors will be reported. Since the hashcodes are 64 bits
long, this allows for 264 unique codes. Considering the fact that only from
10 to 30 thousand clauses are searched per second with typical search times
from 1 to 900 seconds, hashing errors are very unlikely.

Since a lot of different inference steps are taken, the printout of the
proof, may be somewhat difficult to read. Appendix A briefly annotates an

example of a proof.

5.3.2 Experiments

Although multiple sets of theorems were used to test GLIDE, the results
on two sets of geometry theorems will be described here. The first set
originating in Quaife’s article [Qu89)] contains 66 geometry theorems, some
of which are quite difficult. The second set is taken from the TPTP problem
library and contains 165 geometry theorems. Of these only four are in
Hilbert geometry whereas the remaining ones are in Tarskian geometry with
some using McCharen et al axioms and others Quaife’s axioms. The second
set includes the first one to a large extend, yet the formulation of theorems
often differs.

GLIDE’s results for four different strategies will be shown for both sets.
Also, the results of OTTER® and SPASS® theorem provers will be compared
with GLIDE’s performance.

Table 5.1 shows the results obtained on Quaife’s set. Please note that

GLIDE’s result with zero resolutions indicates the situation when a unit

SOTTER theorem prover was written by William McCune at Argonne National Labs

[Mc94].
SSPASS theorem prover was developed by Christoph Weidenbach, Bijan Afshordel, Uwe

Brahm, Christian Cohrs, Thorsten Engel, Georg Jung, Enno Keen, Christian Theobalt
and Dalibor Topic primarily at Max-Planck-Institut fiir Informatik.
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conflict was located during pre-processing before the actual search.

Results for four different strategies are shown in the later tables. For
each strategy, first column indicates the iteration at which the proof was
found and the time taken to find a contradiction.

The iteration number is not equivalent to the depth of the proof since
extended search strategy was used and also due to non-linear nature of the
proofs found. It is convenient nonetheless for comparing performance of
strategies.

The second column of Table 5.1 gives total number of inferences searched,
including during additional searches to restore the proof. The refinements
used are indicated above each column.

The experiment depicted in first columns was done using only refined
linear strategy. Eight theorems remained unproven after 900 seconds of
search time per theorem.

The second experiment additionally used refinements for equality. Six
theorems weren’t proven. If compared with the first experiment, in 26 cases
search with equality refinements actually took much longer whereas only in
12 cases there was any significant improvement (including proving a theorem
previously unproven).

The third experiment used both equality and geometry refinements. Four
theorems weren’t proven. There appears fair improvement compared with
the second experiment. This is seen in 35 cases, whereas in 8 cases perfor-
mance has deteriorated somewhat.

Some quite dramatic effects of the introduced refinements are especially
easy to see in the proofs of simple theorems. For example Q03D1.THM
expresses the theorem that equidistance is symmetric for its first pair of
arguments. The proof obtained in the run where geometry refinements were
not available was four resolutions deep. A slightly edited listing of this
proof is provided below (for annotated example of actual GLIDE listing
please refer to AppendixA).
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1 D(a,b,b,a)

2 “D(a,b,c,d) | “D(a,b,e,f) | D(c,d,e,f)
19 “D(a,b,c,d) | D(c,d,a,b)
20 D(a),b(),c(},d())
21 "D(0),a(),c(),d()) NC

22(21a,19b) “D(c(),d(),b(),a()) NC

23(22a,2¢) “D(a,b,c(),d()) | “D(a,b,b(),a()) NC
24(23b,1a) “D(a(),b(),c(),d()) NC
25(24a,20a) #

In the listing above, base clauses used in the proof are given first followed
by the proof line where for each clause the way of producing it is indicated.
For instance, the clause 22 was obtained by resolving the first literal (letter
a indicates the first literal) of the clause 21 with the second literal (letter b)
of the clause 19.

To derive the symmetry of first argument pair of equidistance, the proof
used already available symmetry between argument pairs of equidistance
(clause 19) as well as transitivity (clause 2) and reflexivity (clause 1) of
equidistance.

Since one of the geometry refinements explicitly makes the resolution of
equidistance predicates invariant with respect to all symmetries, the proof
of the same theorem when the geometry refinements were available is only

a single resolution deep.

15 D(a(),b0),c0),d0))
16 “D(b(),a(),c(),d()) NC

17 (16a,15a) #

It is much more difficult to precisely see the effects of geometry refine-
ments when analyzing more complex proofs. The proofs may look signifi-

cantly different and it may not be possible to, for instance, see the spots
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where several resolutions were replaced by an application of a new resolution
rule. As there are always very large numbers of different proofs for the same
theorem, even a minor change of a search strategy is likely to cause finding
a distinctly different proof. However, the general observation is that the
proofs involving geometry refinements practically always (and as expected)
involve less steps. The proof may often be found on an earlier iteration.
Moreover, since many clauses describing the axioms can be discarded before
the search which uses geometry refinements, such a search often requires less
inferences. The latter fact can be observed in the results of the experiments.

The usefulness of the refinements can be also verified by examining how
often these were used in the found proofs. Table 5.2 lists the resolution rules
which were used in the proofs of the theorems of Quaife’s set when the ge-
ometry and equality refinements were available. Please note that DISTANCE,
BETWEEN and COLINEAR appearing in that table indicate the use of resolution
rules of either geometry assertion or identification for respective predicates
whereas UNIF_D, UNIF_B and UNIF_C indicate the use of symmetry invari-
ant unification in binary resolution of respective geometric predicates. As
it can be seen, the refinements were used in almost 70% of all proofs. This
percentage is even higher if we consider only difficult theorems.

Finally, the last experiment used some equality refinements, notably
orientation of equality literal, identity assertion (but not paramodulation)
combined with all geometry refinements. Only three theorems were not
solved. This strategy is the best if compared with all the other ones. It
defeats the first strategy in 48 cases and only looses in 2. It similarly defeats
strategies two and three.

One of the reasons why the last strategy appears to be the best is due to
the way the theorems in this set are formulated. All substituitivity axioms
are missing, yet many other axioms appear in several different forms. This is
one reason why paramodulation performed so poorly. Since paramodulation

models substitutivity, it was doing the work weaker strategies did not even

93



have to do explicitly. Second reason is that paramodulation tends to produce
inferences earlier in the search tree thus increasing the fan-out. Although
the resulting proofs will be shorter, it still may be necessary to look at a
larger number of inferences in order to find a proof.

Table 5.3 shows results obtained by running SPASS 1.0 and OTTER 3.0
provers in their automated modes and running GLIDE using the best ge-
ometry strategy.

It must be mentioned that Quaife’s article [Qu89] describes proving all
theorems from this set using an earlier version of OTTER. However, some of
it was done by using different strategies for different theorems. Performance
of GLIDE can also be improved by using different strategies for different
theorems.

When given 900 seconds per theorem and running in automated mode
SPASS was unable to prove 20 of the 66 theorems whereas OTTER failed
in 18 cases. GLIDE, when using geometry refinements, cannot find a proof
for only three theorems. It can be argued that both SPASS and OTTER
were operating in automated mode and that by fine-tuning the strategies a
better performance can be obtained. One of the purposes of this comparison,
however, is to demonstrate that proving some of the geometry theorems by
using best available provers may not be completely obvious or easy and that
specialized strategies for geometry may be necessary.

It is very difficult to compare details of the performance statistics of two
different provers. For instance, comparing the depth of the obtained proofs
and total number of resolutions performed may not be meaningful due to
significant differences of search strategies. For instance GLIDE does consid-
erably more inferences per second then either of the two other provers. The
complexity of the inferences, however, is different, and so are the rules deter-
mining which inferences to count. Both OTTER and SPASS immediately
discard many inferences without counting them as searched.

When comparing rough measures of performance: the time required to
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find a proof and the total number of proofs found, GLIDE with its geometry
strategies appears to be doing reasonably well.
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Table 5.1: GLIDE'’s results on Quaife’s set.

| Name r d/t d/t eq d/e eq S‘Lu d/c low eq geo
QO0IDL.THM 1/0 7 1/0 23 1/0 16 || 1/t 8
QO02D2.THM 1/0 25 1/0 33 1/0 0 1/0 0
QO03D3.THM 1/0 21 1/0 a3 1/0 1] 1/0 0
QO4DA.THM 1/0 1032 /1 1605 1/0 0 1/0 0
QOSDS. THM 1/0 394 1/1 283 1/0 26 1/0 22
QOU6EL.THM 1/0 23 1/1 4 1/0 1713 1/1 608
QO7B0.THM 1/0 386 1/1 3576 /1 845 1/0 177
QO8R2.THM 1/0 1573 1/0 4440 /1 4750 1/1 30
QO9R3.THM 11 4893 1/1 4082 2/2 25232 121 694
QI10R4.THM 11 27381 1/2 29109 1/2 18675 1/1 3131
Q11D7.THM 1/1 285 1/1 100S /0 a0 1/0 21
Q12D8. THM 2/7 274357 2/13 383822 2/31 884083 I 2/2 25308
Q13D9. THM 1/1 260 1/1 221 1/2 69575 1/2 8342
QI14D10A.THM 1/0 421 1/0 3287 1/0 484 1/t T
Ql4D10B.THM 1/13 288916 1/15 299657 1/30 552352 1/3 33819
Q14D10C. THM 2/12 504248 2/11 300454 172 $3354 2/7 109253
Q1L5RS.THM 1/5 116796 1/6 110798 171 574 1/3 29757
QI16R6.THM 2/10 475421 2/7 204103 11 1217 1/3 32949
QL7T3.THM 1/1 16 1/1 42 1/1 27 1/1 ]
Q18BL.THM 1/1 5285 1/1 1613 1/1 8351 1/1 1940
QIST1.THM 2/9 376317 1/4 107777 1/1 )] 1/0 o
Q20T2. THM /1 85 1/1 104 1/1 28 1/1 6
Q21B2.THM -/- - 2/792 | 18259304 2/196 | 4243999 1/4 61896
Q22B3.THM 1/3 96831 1/5 129928 1/0 1044 1/1 397
Q23T6.THM 1/4 92629 1/6 128797 /4 64230 1/2 8336
Q24B4.THM 2/13 307407 1/3 53680 1/2 33249 1/3 42297
Q25B5.THM 2/14 343353 2/11 315282 1 3747 2/3 70311
Q26B6.THM 1/6 137498 1/7 192839 /s 98065 1/2 13991
Q27B7.THM 2/24 732509 1/11 329064 1/1 1764 1/1 490
Q28B8.THM 1/1 5428 t/1 12273 /1 6151 1/1 3660
Q29B9.THM 1/1 6879 1/1 13006 1/2 6975 /1 4053
Q30E2.THM 1/2 34961 /1 1463 /1 1630 172 13476
Q31E3.THM -/- - 2/179 2451144 1/1 302 1/2 6864
Q32B10.THM 1/50 779460 -/- - 1/1 1037 1/1 394
Q33D11.THM 1/8 149631 1/23 512642 1/31 641205 1/4 54494
Q34D12.THM -/- - -/- - -/- - i -/- -
Q35D13. THM 1/2 14402 1/2 13543 1/1 1877 1/1 507
Q36D14.THM 1/10 208069 1/21 458232 1/38 ST7708 1/8 72307
Q37D15. THM 1/7 133593 1/19 404258 1/25 469382 1/3 44492
Q38I2A.THM 1/2 7918 2/247 4637558 /7 73165 1/2 6118
Q38I12B.THM -/- - -/- - -f- - 3/858 4726011
Q38I12C.THM i/8 126541 1/20 364351 1723 256750 /7 46861
Q3913.THM 1/5 50415 1/48 873797 1/60 996328 1/3 18158
Q4014.THM -/~ - 1/132 2224129 1/274 | 3841853 1/659 1848224
Q41B11.THM a/s172 | 3e3r91a 2/535 { 11906002 1/31 546983 1/2 11826
Q42B12.THM -/- - -/~ - -/~ - -/- -
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Q43B13.THM 1/4 120770 /1?7 630461 1/24 437930 1/3 46446
Q44T7.THM 2/115 2677383 1747 1807250 1/3 333s1 1/6 82670
Q4ST9.THM 1/76 1728321 1/129 3695868 1/16 387766 1/4 21083
Q46B14.THM 1/2 1831 /1 4127 1/2 5587 172 1120
Q47T8.THM 2/119 | 2813371 1/46 1370541 1/83 | 1471267 1/6 49426
Q48B15.THM 11 171 | 941 172 1/2 3680 1/2 3948
Q49C2.THM 2/124 3280571 1/54 2009342 1/1 1982 1/1 1799
Q50T10.THM -/- - -/- - /2 362 172 209
QSIT11.THM 1/1 18 1/2 81 1/2 120 1/2 1
QS52C3.THM 1/1 1641 /11 170614 1/2 0 1/2 0
QS3C4.THM 1/14 375381 1/50 3489724 1/54 961348 1/2 3600
Q54T12.THM 2/128 | 3217479 1/66 3917873 1/18 310461 1/5 41232
Q55CS. THM 2/134 | 8249844 2/337 | 20196479 1/58 | 2076422 1/5 51377
QS6T13.THM 1/14 296366 1724 568236 1/37 6873146 1/3 16387
QSTWIA.THM 1/80 5255363 1/183 | 18433142 1/6 104416 1/11 208418
QSTWI1B.THM 1/54 3179806 1/159 | 11581025 1/6 208080 1724 | 471562
QS7WIC.THM 1/55 2203318 1/135 8953915 1/90 | 4094155 1718 | 370248
QS8W2A.THM 1/18 397767 1/64 1292125 117 369095 177 59232
Q58W2B.THM 1/22 1051096 1/60 1219633 1/63 | 1791712 /7 74572
QS9W3.THM -/- - -/- - -/- - -/- -
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Table 5.2: Resolution rules used to prove theorems of Quaife’s set.

[ Name || Rules ]
QO01D1.THM DISTANCE
Q02D2.THM UNIF_D
QO03D3.THM UNIF_D
Q04D4.THM BINRES UNIF_D
QO05D5.THM BINRES
QO6E1.THM BINRES FACTOR DISTANCE BETWEEN
QO07B0.THM PARAMOD
QOSR2.THM BINRES PARAMOD
QO9R3.THM PARAMOD DISTANCE
Q10R4.THM BINRES FACTOR PARAMOD DISTANCE BETWEEN UNIF_D
Q11D7.THM BINRES DISTANCE .
Q12D8.THM BINRES PARAMOD UNIF_D
Q13D9.THM BINRES FACTOR DISTANCE BETWEEN UNIF_D
Q14D10A.THM BINRES PARAMOD
Q14D10B.THM BINRES
Q14D10C.THM BINRES ASSERT DISTANCE DEMOD UNIF_D UNIF_B
Q15R5.THM "BINRES DISTANCE BETWEEN
Q16R6.THM BINRES PARAMOD UNIF_B
Q17T3.THM BETWEEN
Q18B1.THM BINRES PARAMOD BETWEEN DEMOD
QI9T1.THM UNIF_B
Q20T2.THM BETWEEN
Q21B2.THM BINRES PARAMOD BETWEEN
Q22B3.THM BINRES UNIF_B
Q23T6.THM BINRES UNIF_B
Q24B4.THM BINRES PARAMOD UNIF_B
Q25B5.THM BINRES PARAMOD BETWEEN UNIF_B
Q26B6.THM BINRES
Q27B7.THM BINRES PARAMOD UNIF_B
Q28B8.THM BINRES PARAMOD
Q29B9.THM BINRES PARAMOD
Q30E2.THM BINRES PARAMOD BETWEEN
Q31E3.THM BINRES PARAMOD DISTANCE
Q32B10.THM BINRES UNIF_B
Q33D11.THM BINRES FACTOR PARAMOD BETWEEN UNIF_D
Q35D13.THM BINRES FACTOR
Q36D14.THM BINRES DISTANCE URIF_D
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Q37D15.THM BINRES FACTOR PARAMOD BETWEEN UNIF_D
Q3812A.THM BINRES PARAMOD

Q3812C.THM BINRES FACTOR

Q3913.THM BINRES PARAMOD

Q4014.THM BINRES PARAMOD

Q41B11.THM BINRES DISTANCE BETWEEN UNIF_D
Q43B13.THM BINRES PARAMOD BETWEEN UNIF_B
Q44T7.THM BINRES PARAMOD UNIF_B

Q45T9.THM BINRES PARAMOD UNIF_B

Q46B14.THM BINRES

Q47T8.THM BINRES

Q48B15.THM BINRES FACTOR UNIF_D

Q49C2.THM BINRES UNIF_B UNIF_C

Q50T10.THM BINRES FACTOR UNIF_B UNIF_C
QSIT11.THM BINRES PARAMOD

Q52C3.THM BINRES DEMOD

Q53C4.THM BINRES

Q54T12.THM BINRES FACTOR BETWEEN UNIF_B
Q55C5.THM BINRES PARAMOD UNIF_C

Q56T13.THM BINRES PARAMOD UNIF_C

Q57WI1A.THM BINRES DISTANCE BETWEEN UNIF_D UNIF_B
Q57W1B.THM BINRES DISTANCE BETWEEN UNIF_D UNIF_B
Q57W1C.THM BINRES DISTANCE BETWEEN UNIF_B
Q58W2A.THM || BINRES FACTOR PARAMOD DISTANCE BETWEEN DEMOD UNIF_D
Q58W2B.THM [L BINRES FACTOR PARAMOD DISTANCE BETWEEN DEMOD UNIF_D
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Table 5.3: Comparison of SPASS, OTTER and GLIDE on Quaife’s set.

| Name ][ d/t SPASS d/t OTTER d/t GLIDE
QOID1.THM 3/0 2 2/0 55 /1 8
QO02D2.THM 3/0 18 1/0 85 1/0 (]
QO03D3.THM 3/0 23 /1 a8 1/0 0
QO04D4.THM 4/0 2?7 6/2 1716 1/0 1]
QOSDS. THM 4/0 224 2/3 1786 1/0 22
QOSE1.THM 2/0 10 1/0 268 1/1 608
QO7BO.THM 2/0 7 1/0 364 1/0 177
QOSR2.THM 3/0 14 1/0 45 11 30
QO9R3.THM 5/0 9 4/0 45 1/1 694
Ql0R4.THM 4/0 40 6/2 1999 1/1 3131
QL1D?.THM 2/0 32 2/0 427 1/0 21
QL12D8.THM -/~ - 19/697 66540 2/2 25308
QL3D9.THM -/- - 2/5 4377 1/2 8342
Q14D10A.THM 4/477 9901 0/1 1033 1/1 271
Ql4D10B. THM -/- - -/- . 1/3 33819
Q14D10C.THM -/- - -/- - 2/7 109253
Q15RS.THM 4/0 408 -/- - 1/3 20757
Q16R6.THM -/- - -/- - 1/3 32949
Q17T3.THM 2/0 4 1/1 161 1/t 5
Q18B1.THM 4/0 21 4/0 171 1/1 1940
QI9T1.THM ?7/200 8976 4/187 18696 1/0 0
.Q20T2. THM 2/0 6 i/0 82 /1 6
Q21B2.THM ?/58 5682 6/200 33563 1/4 61896
Q22B3.THM 3/0 79 3/1 743 in 397
Q23T6.THM 4/0 438 2/5 4146 1/2 8336
Q24B4.THM 8/179 7845 6/234 35374 1/3 42297
Q25B5.THM 4/0 600 41 981 2/3 70311
Q26B6. THM -/- - 3/11 379 1/2 13991
Q27B?.THM 7/1 1079 4/2 1650 /1 490
Q28BS.THM 5/7 1915 a/1 985 1/1 3660
Q29B9.THM 4/0 622 3/1 1003 1/1 4053
Q30E2.THM 4/0 25 22/14 5529 1/2 13476
Q31E3.THM -/- - -/- - 1/2 6864
Q32B10.THM 4/1 908 -/- - 1/t 394
Q33D11.THM -/- - 4/24 12084 1/4 54494
Q34D12.THM -/- - -/- - -/- -
Q3sD13.THM -/~ - 2/3 5784 1/1 507
Q36D14.THM -/- - 2/13 8634 1/8 72307
Q37D15.THM -/- - 6/21 14668 1/3 44492
Q3812A.THM 4/0 630 3/1 5070 1/2 6118
Q38I2B. THM -f- - -/- - 3/558 | 4726011
Q3812C.THM 5/592 15584 -/- - 1/7 46861
Q3913. THM 5/122 7646 4775 17353 1/3 18158
Q4014. THM 5/147 6282 -/ - 1/659 1848224
Q41B11.THM -/~ - -/- - 1/2 11826
Q42B12.THM -/- - /- - -/- .
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Q43B13.THM 4/53 4198 3/55 16434 1/3 46446
Q44T7.THM -/- - 5/204 36192 1/6 82670
Q45T9.THM 9/67 4257 4/855 | 116321 1/4 21083
Q46B14.THM 7/63 4322 0/1 1030 1/2 1120
Q47T8.THM 6/62 4187 -/- - 1/6 49426
Q48B1S. THM 4/10 2206 3/4 7572 1/2 3948
Q49C2.THM s/0 407 -/- - 1/1 1799
QSOT10.THM 5/58 4200 -/- - 172 209
Q51T11.THM 2/0 6 o/l 514 1/2 1
Q52C3.THM 4/0 36 4/0 778 1/2 (i}
QS53C4.THM 6/532 | 13871 -/- - 1/2 3600
QS54T12.THM 8/90 6074 -/- - 1/5 41232
QS5C5.THM 10/68 5252 6/26 11004 1/% 51377
Q56T13.THM 8/100 7329 5/26 10368 1/3 16397
Q57W1A.THM -/- - 6/140 29207 1/11 | 208418
QS57W1B.THM -/- - 9/224 45063 1/24 | 471562
QSTWI1C.THM -/ - 6/232 45500 1718 | 370248
QS8W2A .THM 5/0 483 9/20 12883 1/7 $9232
QS58W2B.THM 7/0 317 8/29 12976 1/7 74572
QS9IWI.THM -/- - -/- - -/- -
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Table 5.4 shows results obtained by GLIDE on TPTP’s geometry theo-
rems.

The comparative performance of strategies is similar to that shown on
Quaife’s set. The weakest strategy failed to find a proof in roughly half (80
out of 165) of all cases. When equality refinements are available only three
more proofs are additionally found and the performance worsens or improves
in roughly the same number of cases. Since all axioms of substitutivity of
equality are available in this set, introduction of paramodulation has a better
impact here compared with Quaife’s set.

When geometry refinements become available, a fair performance im-
provement can be observed. Instead of failing on half of theorems, no proof
is obtained in one third of the cases (54 out of 165). We can also note that
many theorems were proven faster than before. Only in a few instances it is
not so, with the most dramatic example perhaps being GEO077-4.p. This
example, however, only validates the general rule since this is one of rare
theorems in Hilbert geometry and thus our geometry refinements were quite
useless.

The strategy where geometry refinements are employed but some equal-
ity refinements (i.e. paramodulation) are not available allows to find the
proof in three more cases leaving the number of unproven theorems at 51.
This strategy again appears to be the best, however, the performance dif-
ference with the strategy where paramodulation was used appears to be less
severe than in Quaife’s set. This is probably due to the absence of equality

substituitivity axioms in the latter set.
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Table 5.5 shows the results obtained by running SPASS 1.0 and OT-
TER 3.0 provers in their automated modes and running GLIDE using the
best geometry strategy.

The comparative performance is similar to that seen on Quaife’s set. In
this case, both SPASS and OTTER outperform GLIDE when the latter does
not use geometry refinements, yet show weaker performance compared with
GLIDE'’s refined strategy. Thus, SPASS cannot prove 64 out of 165 theorems
whereas OTTER fails in 78 out of 165 cases. Without the refinements
GLIDE fails in 80 out of 165 cases, however, with the refinements the number

of unproven theorems drops to 51.
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Table 5.4: GLIDE’s results on TPTP’s set.

Name d/t I dre eq d/t eqageo || d/e low eq geo |
[ GEQOOI-1.p || /- - T -r- - 1/0 o || t/0 o
GEQO001-2.p -/- - -/- . 1/0 0 1/0 o
GEO001-3.p -/- - -/- - 1/0 0 1/1 0
GEOO001-4.p -/- - -/- - 1/0 4 1/1 4
GEO002-1.p -/- - -/- - 1/1 12 1/0 8
GEO002-2.p ~/- - -/~ - in 6 1/0 s
GEO0002-3.p 1/1 21 1/1 28 1/1 20 1/0 7
GEO002-4.p 2/1 8248 2/1 8248 1/0 8 1/0 4
GEO003-1.p 2/2 16905 2/3 36551 1/0 10 1/1 6
GEO003-2.p 2/1 8803 2/1 8287 1/0 6 1/1 s
GEO0003-3.p /1 16 1/1 28 1/0 19 /1 6
GEO004-1.p || 3/540 | 17996750 2/13 | 284355 1/3 64932 2/16 269465
GEOO004-2.p -/- - -/- - e - -/- -
GEO00s-1.p -/- - 2/17 | 327884 1/5 170570 || 2/21 348959
GEQO005-2.p -/- - -/~ - -/- - -/ -
GEO006-1.p -/- - ~/- - 1/1 14014 /1 4508
GEOOG06-2.p -/- - -/- - -/- - -/- .
GEO006-3.p 1/1 604 i1 233 1/1 176 1/0 748
GEO007-1.p -/~ - -/- - 1/1 10974 1/1 8185
GEO007-2.p -/- - -f- - -/- - -/- .
GEO007-3.p 2/70 1977254 1717 | 656494 1/4 109949 1/15 163260
GEOOQ08-1.p -/- - -/- - -/- - -/- .
GEOO008-2.p -/- - -/- - -/- - -/- .
GEO008-3.p 2/87 2691530 1/47 | 1218867 1/23 | 694563 1/3 19412
GEO009-1.p -/- - -/- - -/- . -/- .
GE0009-2.p -/- - -/- R -/- . 2 -
GEO0009-3.p 2/83 2222369 1/26 | 1422754 1/4 52165 1/5 69378
GEOO010-1.p -/- - -/- - 1/1 0 1/0 0
GEOO010-2.p -/- - -/- - /1 0 1/0 0
GEOO010-3.p -/- - -/- - 1/2 0 1/1 0
GEOO11-1.p -/- - -/ - 1/0 7 1/1 13
GEOO11-2.p 1/0 31 1/1 22 1/0 4 1/1 17
GEOO011-3.p /1 39 1/2 72 111 78 1/2 60
GEOO11-4.p 1/0 32 1/1 22 1/0 19 1/0 23
GEOO11-5.p 1/0 31 1/0 19 1/0 16 1/0 22
GEOO012-1.p -/- - -/- - -/- - -f- -
GEOO012-2.p -/- - -/- - -/ - -/- -
GEOO012-3.p -/- - -/- - -/- . -/- -
GEOO13-1.p -/- - -/- - -/- - -/- -
GEOO013-2.p -/- - -/- - -/- - -/- R
GEQ013-3.p 1/4 36079 1749 | 2216204 1/12 | 449859 1/2 7451
GEOO14-2.p 1/0 7 1/0 23 1/0 16 1/1 8
GEO015-2.p 1/1 38 1/0 46 1/0 0 1/0 ()
GEO015-3.p 1/1 25 1/0 33 1/0 o 1/1 0
GEOO016-2.p 11 23 /1 3 1/0 [ 1/1 0
GEO016-3.p 1/0 21 /1 33 1/0 o i/1 0
GEQO017-2.p 1/0 810 1/1 987 in [\ 1/1 [}
GEOO017-3.p 1/0 133 1/0 108 1/1 [} 1/0 o
GEQO18-2.p 1/0 36 1/0 44 1/1 [ 1/0 0
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GEOO018-3.p /1 167 1/0 139 1/1 [) 1/0 0
GEO019-2.p /1 23 1/0 31 1/1 0 1/0 a
GEO019-3.p 1/1 16 1/1 28 1/0 4] 1/0 0
GEO0020-2.p 1/0 780 1/1 959 1/0 0 /1 0
GEO0020-3.p 1/0 63 1/1 57 1/0 0 1/1 0
GEQ021-2.p 1/0 63 1/0 71 1/0 [} 1/1 0
GEOQ021-3.p 1/1 73 1/0 67 1/0 0 1/1 1}
GEO0022-2.p 1/1 959 171 1090 1/0 26 1/0 22
GEO0022-3.p 1/1 394 1/1 283 1/1 26 1/0 22
GEOQ024-2.p 1/0 2319 1/1 1511 /1 24 /1 26
GEO0024-3.p 1/1 285 1/0 1005 1/t 30 1/1 21
GEO0025-2.p 3/33 | 1457792 2/12 416996 2/22 808358 2/2 16212
GEOQ025-3.p 2/10 361113 2/14 438149 2/7 163247 2/3 46135
GE0026-2.p 2/3 74368 2/2 58970 1/1 36035 I/1 3052
GEOQ026-3.p 1/1 1485 1/0 221 172 69575 1/2 8342
GEO0027-2.p 2/2 50803 2/2 43467 1/2 26055 /1 2119
GEO0027-3.p 1/0 43 11 3287 /1 484 1/1 283
GEQ028-2.p -/ - -f/- - 2/206 4963288 2/7 130536
GEO0028-3.p 7 120709 1/13 271638 1/31 522089 /3 30366
GEO029-2.p -/- - -/- - 1/6 234867 1/0 2241
GEO0029-3.p 2/21 646730 1/14 312374 1/1 2961 1/1 1745
GEO030-2.p 1/2 45672 1/2 43433 1/2 20109 1/1 5110
GEO0030-3.p 1/8 149750 1/23 494585 1/30 628523 1/4 54220
_ GEQO031-2.p -/~ - -/- - -/- - -/- .
GEO031-3.p -/- - -/- - -/- - -/- -
GEO0032-2.p -/- - -/- - -/- - -1- -
GEO0032-3.p 1/2 14402 1/2 13543 1/1 1877 1/1 507
GE0033-2.p -/- - -/- - -/- - -/- -
GEO0033-3.p /11 211123 1/22 459385 1/39 585595 /7 73141
GEO034-2.p -/- - -/~ - -/- - -/- -
GEQ034-3.p 111 200055 /21 449707 1/2% 471919 1/4 45908
GEO0035-2.p 1/0 143 1/0 a9 1/1 1724 1/0 623
GEO0035-3.p 1/0 398 1/0 a I i 1713 1/0 612
GEO0036-2.p -/- - -/~ - 2/1 2364 2/0 2170
GEO036-3.p 1/1 12429 1/1 540 1/1 303 1/1 5112
GEO037-2.p -/- - -/- - 2/180 | 3981797 2/30 558999
GEO0037-3.p -/- - 2/137 | 335767S 1/ 302 1/2 9408
GEO038-2.p 1/0 3713 1/1 734 /1 1024 1/0 212
GEO038-3.p /1 463 121 3550 /1 1027 1/0 229
GEO0039-2.p 2/1 13857 2/1 6815 2/0 4065 1/1 567
GEQ039-3.p 1/1 2793 1/1 712 1/1 5616 1/1 2223
GEQ040-2.p -/~ - -/~ - -/- - -/- -
GEO0040-3.p -/- - -/- - -/- - -/- -
GEO041-2.p -/- - -/- - -/- - -/- -
GEOQ041-3.p 1/2 42813 1/2 47492 1/1 483 1/1 237
GEOQ042-2.p -/- - -/~ - -/- - -/- -
GEO042-3.p -/~ - -/- - -/- - -/- -
GEO043-2.p -/- - -/- - -/- - -/- -
GEO043-3.p -/- - -/- - -/- - -/- -
GEO044-2.p -/- - -/~ - -/- - -/- -
GEOQ44-3.p -/- - -/- - -/- - 37253 | 5250862
GEO045-2.p -/- - -/- - -/- - -/- -
GEO045-3.p 2/12 444547 1/3 99099 1/2 12668 1/1 1816
GEO046-2.p -/- - -/- - -/- - -/- -
GEO046-3.p 2/25 650574 2/192 | 5902032 1/2 19035 2/5 136946
GEOQ047-2.p -/- c - -/- - -/- - -/- -
GEO047-3.p /1 3663 1/1 5607 1/1 2722 /1 1791
GEQ048-2.p -/- - -/- - I w1 1] 1/0 11
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GEQ048-3.p 1/3 22473 17217 | 3718431 1/2 1037 1/1 394
GEO049-2.p -/- - 3/390 | 9975075 3/198 8735042 2/1 11674
GEOQ049-3.p 1/194 | 6462964 1/217 | 8396135 1/60 1375085 1/8 64535
GEO00s0-2.p -/- - - - -/- - -/- R
GEO0050-3.p -/~ - -/- . -/- - -/- .
GEO051-2.p -/~ - /- - -/~ - -/- -
GEOQO051-3.p 1/3 58085 1/7 128644 1/6 139835 1/2 8317
GE0052-2.p -/- - v - -/- . -/ -
GEO0052-3.p 1/3 36683 /4 119395 1/4 49673 1/3 12414
GEO0G53-2.p -/- - -/- - 2/46 1776190 3/283 | 7265791
GEO053-3.p 1/2 3z 1/2 172 1/2 3670 172 3946
GEO054-2.p 1/0 269 1/0 671 1/0 497 1/0 134
GEO054-3.p 1/0 7 1/1 29 1/0 19 11 7
GEO0S5-2.p 1/0 303 1921 1272 1/1 2504 /1 122
GEO055-3.p /1 619 1/2 16134 1/2 13390 1/1 93
GEOO0S6-2.p /1 2517 1/0 67 1/0 1995 1/0 748
GEOQ0S6-3.p 1/3 379 11 22 1/1 1130 1/1 16
GEOQO057-2.p 1/0 1394 it 72 11 1955 171 920
GEOQO0S7-3.p /1 357 /1 22 1/1 1130 1/0 15
GEO058-2.p 1/1 4148 2/3 30599 2/6 127958 1/0 1036
GEO058-3.p 1/2 28272 1/2 29811 172 18675 11 3302
GEO0059-2.p 3/47 1400378 -/~ - -/- - 3737 652867
GEO0059-3.p /7 128572 /6 110798 1/1 74 1/3 32381
GEO060-2.p -/- - -/~ - -/ - -/ -
GEQ061-2.p -/- - -f- - -/- - -/- -
GEO061-3.p -/- - -/- - -/- - -/- -
GEQ062-2.p -/- - -/ - -/- . -/~ .
GEO0062-3.p /7 88512 1/46 1492618 1/90 1425068 1/19 305599
GEO063-2.p -/ - -/- - -/- . -/~ -
GEO063-3.p -/- - -/- . -/- - 1/43 480011
GEO064-2.p -/- - -/- - 1/0 6 1/0 6
GE0Q064-3.p /1 37 1/2 8s 1/2 s1 1/2 6
GEO065-2.p -/- - -/- - 11 13 /1 16
GEO063-3.p 1/2 183 1/2 206 1/2 181 1/2 68
GEO066-2.p -/- - -/- - 1/0 20 1/0 26
GEQU066-3.p 1/2 318 1/2 323 1/1 306 1/1 125
GEO067-2.p || 3/136 | 8670661 3/4 213130 1/0 0 1/0 o
GEQ067-3.p 1/1 2382 1/5 74335 1/2 0 1/2 0
GEO068-2.p -/- - -/- - 3/336 | 26451437 2/8 168954
GEO068-3.p 1/70 3080605 1/147 | 10235134 1/54 948038 1/3 5820
GEO069-2.p -/- - /- - -f- - E -
GEO069-3.p 2/87 3562602 2/146 | 10051613 1/18 662438 1/2 8220
GEOQO070-2.p -/- - -/- - -/- - -/~ -
GEOQ70-3.p -/- - -/- - -/- - -/- -
GEO071-2.p -/- - -/- - -/~ - -/- -
GEO071-3.p -/- - -/- - -/- - -/- -
GEQO072-2.p -/ - -/ - -/~ - -/- -
GEO072-3.p -/- - -/~ - -/- - -/- -
GEQ073-1.p -/- - 2/110 | 2277026 1/11 434553 2/80 1532115
GEO073-2.p o/~ - -/ - -/ . -/- -
GEO073-3.p -/- - -/- - -/ . -/ .
GEOQ074-2.p -/- - -/- - -/- . -/- -
GEOQ075-2.p -/- - -/- - 1/1 16 1/0 8
GEQ076-4.p -/- . -/- - -/- . -/- -
GEOQ077-4.p 11 17424 1/202 | 3673531 1/204 3673531 1/1 12318
GEO078-4.p -1- - -/- - -/ - -/- -
GEOQ078-8.p -/- . -/~ - -/- - -/- -
GEO079-1.p 0/0 0 0/0 0 0/0 0 0/0
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Table 5.5: Comparison of SPASS, OTTER and GLIDE on TPTP’s set.

_ Name d/t SPASS d/t E_rga;_ﬂ d/t | GLIDE
GEO001-1.p 7/0 135 6/840 | 34541 || 170 o
GEO001-2.p 6/0 111 e - 1/0 o
GEO0001-3.p 6/6 2085 4/189 17872 /1 o
GEO001-4.p -/- - 4/249 | 208798 /1 4
GEO0002-1.p 6/1 531 6/187 19552 1/0 8
GE0002-2.p 6/1 404 6/227 19671 1/0 s
GE0002-3.p 2/0 6 1/0 s7 1/0 7
GEO0002-4.p 11/1 405 8/1 259 1/0 4
GEO003-1.p 3/0 1 2/0 577 /1 6
GEO0003-2.p 3/0 10 2/0 556 11 5
GE0003-3.p 2/0 4 1/0 161 Y31 6
GEO004-1.p /- - 137270 | 63149 2/16 | 269465
GEO004-2.p -/- - /- - -/~ -
GEO005-1.p -/- - 18/269 | 63124 2/21 | 348950
GEO0005-2.p -/- - -/- - -/- -
GEO006-1.p 12/3 665 -/~ . 11 4508
GEO006-2.p /1 386 -/- - -/- -
GEO006-3.p || 4/0 73 2/5 4308 1/0 748
GEO0007-1.p 12/20 2059 /- - 1”1 8185
GEQ007-2.p -/- - -/- - -f- -
GEO0007-3.p -/- - s/71 16274 1/15 | 163260
GEO008-1.p -/- - -/- - -/- -
GEO008-2.p /- - -/- - /- -
GEO008-3.p 9/21 2539 -/- . 1/3 | 1s4a12
GEO0009-1.p /- - -~ . A .
GEO009-2.p -/- - -/- - -/- -
GEO009-3.p || s/101 5808 -/- - 1/5 | e93rs
GEOO010-1.p 15/2 691 -/- - 1/0 °
GEO010-2.p 10/1 417 -/- - 1/0 0
GE0010-3.p 5/0 a3 -/- - /1 o
GEOO11-1.p 71 s81 -/- - /1 18
GEO011-2.p 2/0 1 0/0 ss 11 17
GEO011-3.p 2/0 6 0/1 391 1/2 60
GEOO011-4.p 2/0 1 0/0 55 1/0 23
GEOO11-5.p 2/0 1 0/0 34 1/0 22
GEOO012-1.p -/- - /- - -/- .
GEO0012-2.p -/- - -/- - /- -
GEO0012-3.p -/- - -/- - o/~ -
GEO013-1.p -/- - -/- . -/ .
GEOO013-2.p -/- - -/- . -/- -
GEO013-3.p || 12/151 | 12468 5/28 5642 1/2 7451
GEO014-2.p 3/0 2 2/0 55 11 8
GEO015-2.p 4/0 54 3/0 274 1/0
GEO015-3.p 3/0 22 1/0 87 1”1 0
GEO0016-2.p a/o 22 1/0 63 1/1 °
GEO016-3.p 3/0 24 1/0 88 11 o
GEO017-2.p 5/0 58 41 807 /1 °
GEO017-3.p 3/0 43 2/0 619 1/0 o
GEO018-2.p 4/0 57 2/ 610 1/0 0
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GEOO018-3.p 4/0 62 2/1 818 1/0 0
GEO019-2.p 3/0 22 1/0 65 1/0 o
GEQO019-3.p 2/0 12 1/0 94 1/0 1}
GEO020-2.p 5/0 61 4/1 803 1/1 o
GEO020-3.p 2/0 12 2/0 612 1/1 1}
GEO021-2.p 6/0 64 2/1 607 1/1 0
GEO0021-3.p 3/0 %0 2/1 809 1/1 o
GEQ022-2.p 6/0 101 4/2 1703 1/0 22
GEO0022-3.p 3/0 65 2/3 1786 1/0 22
GEO024-2.p 3/0 9 2/1 555 1/1 26
GE0024-3.p 2/0 32 2/0 427 1/1 21
GEO0025-2.p 9/333 7441 22/687 | 39710 2/2 16212
GEO0025-3.p -/- - 19/753 | 74545 2/3 46135
GEO0026-2.p 7/260 7070 4/2 1800 1/1 3052
GEO0026-3.p -/- - 2/5 3662 1/2 8342
GEOQ027-2.p -/- - 6/435 2008S 1/1 2119
GEO027-3.p 4/0 70 0/0 1033 1/ 283
GEO0028-2.p -/- - -/- - 2/7 130536
GEO0028-3.p -/- - -/- - 1/3 30366
GEO0Q029-2.p -/~ - -/- - 1/0 2241
GEO029-3.p -/- - -/- - /1 1748
GEO030-2.p 10/493 12113 6/23 5758 /1 5110
GEO@30-3.p -/- - 4/19 10110 1/4 54220
GEO@31-2.p -/- - -/- - -f- .
GEO031-3.p -/- - -/- - -/- -
GEO032-2.p -/- - -/- - R -
GEO032-3.p /- - 2/3 4856 1/1 507
GEO033-2.p -/- - -/~ - -/- -
GEO0033-3.p 4/0 548 2/12 8396 /7 73141
GEOQ034-2.p -/- - -/- - -/- -
GEQ034-3.p -/- - 6/19 14430 1/4 45908
GEO0035-2.p 2/0 9 1/1 289 1/0 623
GEO0035-3.p 2/0 10 1/0 268 1/0 612
GEO0036-2.p 5/0 20 16/%9 7609 2/0 2170
GEO036-3.p 4/0 25 22/13 5531 1/1 5112
GEO0037-2.p 12/0 304 -/- - 2/30 558999
GEOQO037-3.p -/- - -/~ - 1/2 9408
GEO038-2.p 2/0 s 11 497 1/0 212
GEQ038-3.p 2/0 7 1/0 364 1/0 229
GEO039-2.p 4/0 30 6/5 2166 1/1 567
GEO0039-3.p 4/0 29 4/0 132 1/1 2223
GEO040-2.p s/0 100 7/514 22679 -/- -
GEO040-3.p 5/0 161 6/232 33651 -/- -
GEOO041-2.p 9/6 1355 -/- - -/- -
GEOO041-3.p 3/0 229 3/1 660 1/1 237
GEOO042-2.p 7/4 1182 -/- - -/- -
GEO042-3.p 5/0 170 6/246 34477 -/- -
GEO043-2.p 9/4 1042 -/- - -/- -
GEO043-3.p 8/472 12836 7/331 48451 -/- -
GEO044-2.p -/~ - -/~ - -/- -
GEOU044-3.p -/- - 7/131 19394 3/253 | 5250862
GEO045-2.p -/- - -/- - -/- R
GEO045-3.p 7/9 2486 4/2 1462 /1 1816
GEO046-2.p -/- - -/- - -/- -
GEOQ46-3.p 11/0 358 6/1 1236 2/s 136946
GEO047-2.p -/~ - -/- - -/- -
GEOQG47-3.p 5/0 252 3/1 851 /1 1791
GEOQOQ48-2.p 8/0 306 -/- - 1/0 11
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GEO048-3.p 4/18 3122 -/- - 1/1 394
GEQO049-2.p -/- - -/~ - 2/1 11674
GEQ049-3.p -/- - -1- - 1/8 64535
GEQ050-2.p -/- - -/~ - A -
GEO030-3.p -/- - -f- - -/- -
GEOO051-2.p -/- - -/- - -/- -
GEOO051-3.p 4/0 292 3/28 10992 1/2 8317
GEO0S2-2.p -/- - -/- . /- .
GEO052-3.p 3/0 286 3/20 10100 1/3 12414
GEO053-2.p -/- - -/- - 3/283 | 7265791
GEO053-3.p 8/1 787 3/3 $713 1/2 3946
GEQ054-2.p 2/0 s 2/0 51 1/0 134
GEO054-3.p 2/0 4 2/0 45 1/1 7
GEO055-2.p 2/0 7 2/0 51 /1 122
GE0055-3.p 2/0 23 2/0 45 1921 93
GEO056-2.p 3/0 17 3/4 1558 1/0 748
GEO056-3.p 2/0 14 2/0 45 1/1 16
GEO057-2.p 3/0 13 3/1 479 1/1 920
GEO057-3.p 2/0 13 2/0 45 1/0 15
GEO058-2.p 6/0 50 /5 2024 1/0 1036
GEO058-3.p 4/0 41 7/2 1999 1/1 3302
GEO059-2.p 6/0 79 -/- - 3/37 652867
GEQ059-3.p 4/0 408 -/- - 1/3 32381
GEO060-2.p -/- - -/- . /- -
GEQO061-2.p -/~ - -/~ - -/- -
GEO061.3.p -/- - -1 - -/- -
GEO0062-2.p -/- - -/- - -/- -
GEO062-3.p || 8/416 | 15239 6/267 | 31031 1/19 305599
GEOQU063-2.p -/- - -/- - -/~ -
GEO063-3.p 5/142 | 6546 -/~ - 1/43 480011
GEOU064-2.p ( 6/0 165 -/- - /0 6
GEO064-3.p 2/0 72 2/1 1009 1/2 6
GEOQ06S-2.p 6/0 165 -/- - 1/1 16
GEO065-3.p 2/0 72 2/1 1008 1/2 1]
GEOQ066-2.p 6/0 165 -/- - 1/0 26
GEO066-3.p 2/0 72 2/1 1007 1/1 125
GEO067-2.p 6/0 17 7/0 801 1/0 0
GEO067-3.p 4/0 36 4/1 602 1/2 0
GEO068-2.p -/- - -/- - 2/5 168954
GEO068-3.p 5/0 543 -/- - 1/3 5820
GEO069-2.p -/- - -/~ - -/- -
GEOQ069-3.p 8/5 2189 6/24 7709 1/2 8220
GEO070-2.p /- - -/- - -/- -
GEO070-3.p -/- - -/- - -/- -
GEOO071-2.p -/- - -/- - /- -
GEOO071-3.p -/- - -/- - -/- -
GEO072-2.p -/- - -/- N -/ -
GEO072-3.p -/- - -/~ - -/- -
GEO073-1.p -/- - -/- - 2/80 1532115
GEO073-2.p -/- - -/- - -/- -
GEO073-3.p -/- - -/- - -/- -
GEOO074-2.p -/- - -/~ . -/- -
GEO075-2.p -/- - -/~ - 1/0 8
GEO076-4.p 18/0 374 -/- - -/- -
GEO077-4.p 10/9 2778 ~/- - 1/1 12318
GEO078-4.p -/- - -/- - -/ -
GEOO078-5.p -/- - -/- - -1- -
GEO079-1.p 2/0 4 2/0 2 $/0 0
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Chapter 6

Conclusions

Simple refinement for theorems in Tarskian-Euclidian geometry which were
outlined in Chapter 5 do seem to help to improve efficiency of the resolution
based provers.

The experiments which were carried out show that the number of un-
proven theorems is reduced by a significant percentage (from 30% to 50%)
and the theorems which were proven before usually take less time to be
solved when geometry refinements are available.

It should be noted that the refinements proposed require only minor
knowledge of the axiom system. They can also be applied in domains with
similar types of axioms. After all, properties of reflexivity, symmetry and
identity are very common. Thus, these refinements are quite generic and
even the decision whether they should be employed for a particular theorem
can be easily automated. It is indeed not hard to discover identity or reflex-
ivity axioms and apply special resolution rules to predicates which possess
these properties.

The experiments performed also allow us to make the following quite

interesting observations:

e Using paramodulation may slow down significantly a prover which is
using a linear search strategy. Since paramodulation tends to infer
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in one step what would have taken several binary resolutions, many
inferences appear earlier in the tree, considerably increasing its fan-
out. Although paramodulation potentially shortens the path towards
the contradiction, it may still increase the number of clauses we have

to look at before it is found.

® Inexpensive versions of subsumption, particularely combination of s-
subsumption and unit subsumpition often account for as many as 80
to 90% of all subsumptions. Hence, introduction of a very expensive

6-subsumption may not bring considerable gain.

e Back s-subsumption does not seem to help in the greater majority of

situations.

e Use of variable ordering local to every literal to produce hashcodes
independent from literal’s position in the clause does help, but not to
the degree hoped.

e Demodulation of all base clauses before the search by demodulators
found among the base clauses seems to help significantly in a number

of instances.

e Although geometry identification inference rule does not reduce the
number of literals in the current clause, it seems to help when this

rule is used in the extended region.

e Symmetry invariant unification appears to be very useful. Although
for complex predicates there may be several distinct ways of symmetry
invariant unification for two literals, pursuing only one and discarding

the rest does not seem to worsen the search strategy.

As possible future extension of this work it could be interesting, beside
finding refinements based on the properties of predicates, to also consider

what properties of geometric functions may be used to build refinements.
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It is also interesting to try some sorted strategies together with geome-
try refinements as well as to experiment with discrimination trees used for
retention of unit clauses and to compare its performance against that of the
hash table.

Since constants are often of great importance for geometric reasoning
it is interesting to combine few levels of semantic splitting with the use of
resolution in the leafs.

As a final remark, it must be mentioned that automated theorem proving
does have multiple applications in the areas such as expert system, hard-
ware and software verification, logical databases etc. Efficient techniques to
prove theorems could translate into superior application programs in many
different fields.
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Appendix A
Examples of GLIDE’s proofs

These proofs were obtained for theorems of Quaife’s set using both equality
and geometry refinements.

A.1 Annotated proof of Q58W2A. THM

The following shows an example of GLIDE's proof. The theorem comes
from Quaife’s set [Qu89] and can be considered as relatively difficult. Some
brief annotations will be given below (line numbers on the left were inserted

to facilitate the annotation).

001 GLIDE r7 Aug 1999 for (Q58W2A.THM)

002

003 P(equal DBC)

004 F(Ext ip p P1 P2 eucl euc2 cont R ins abcde )
005 Cc(ppilp2abcde)

006 O0( N(Q58W2A.THM) TS00 D6/9 SB SEH SGH LN(30) LM LF LX EA PI PF DB GA GI
007 HU HE SFS SFU SCS L7 V16 T9 )

¢08 S( LO PO B3 FO RO 02 C(-3,2) )

008 S( LO PO BO FO RO 00 C(0,0) )

010 E( 122 112 )

011 G( 112 89 )

012
013 8 L( D1 T18 R(120243,15745,48,6518) U(10578,15248,87629)
014 C(76130-0,98905) $(15059,0,0,0) G(106147,14118) V14601 )
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015
016
017
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
086
057

B10 “Bxyz “Buyv equalxy Bxveuc2xuyvz BF
835 “Bxyz "Byzu Bxzu equalyz BF
B85 Baec
(D0] BDMB5(85a) Baea [~equalac)
B88 “equalda NC
L89(88a<-10c) ~“equalxa “Bxdy “Bzdu Bxueuc2xzduy NC BF
L90(8%9a,356d) ~“Bxdy “Bzdu Bxueuc2xzduy ~“Bvax ~Baxw Bvxw NC BF
LF90(90b) “Bxdy Bxyeuc2xxdyy ~“Bzax “Baxu Bzxu NC
L92(90d,85a) “Bedx Bexeucleedxx “Byae Byea NC
[H1] LB93(92c) Baea <“Basa> NC
(H2] LBS4(93a) 8 <equalas> NC

B84 equalac
RO equalac

B85 Baec
[D0] P8BS Baec
RDM1(86a) Basa [“equalac]

B30 “Bxyz “equalxz Buyz
B31 “Bzyz “Byxz equalzy BF
B86 Bbed
B88 “equalda KC
189(88ac<~31c) “equalxa “Bxdy “Bdxy NC BF
L90(89b,30c) “equalxa “Bdxy “Bzdy “equalzy NC BF
LB91(90¢c) “equalxa “Bdxy “equaldy NC BF
[H3] R2(91b,86a) “egualea <“equaldb> NC BF

8 L({ D1 T23 R(150763,20641,96,7175) U(17846,19468,113240)
C(97979-0,125265) S(19666,0,0,0) G(139214,18818) V14639 )
B35 “Bxyz “Byzu Bxzu equalyz BF
B47 “Bxyz “Buvw “Dxyuv ~“Dxzuw Dyzvv BF
B81 Dabed
[D0) BDMB1(81a) Dabad [“equalac]
B88 ~“equalda NC
L89(88a,35d) “Bxad ~“Bady Bxdy NC
L90(89c,47a) “Bxad “Bady ~“Bzuv “Dxdzu “Dxyzv Ddyuv NC BF
LD91(90d) “Bxad ~“Bady ~“Bdxz “Dxydz Ddyxz NC BF
LF91(91c) “Badx “Daxda Ddxaa NC
fH4] L93(91b,81a) Ddbaa < Ddbaa> KC
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0568 RD3(93a) equaldb NC

059
060 8 L( D1 T25 R(164136,22923,144,7361) U(23232,20984,124967)
061 C(107496-0,136391) S(21806,0,0,0) G(154122,20409) V14763 )

062 B8B83 Dacbd

063  (DO) P83 Dacdd

064 RDM4(83a) Daabd {“equalac]
06S

066  Resolution rules used:
067
068 BINRES FACTOR PARAMOD DISTANCE BETWEEN DEMOD UNIF_D

069

070 Used clauses:

071 ——m——eecceee-

072  BO BxyExtxyzu

073 Bl DxExtyxzuzu

074 B2 “Dxyzu “Dyvuv ~“Dxizj “Dyiuj “Bxyv “Bzuv equalxy Dviwj BF
075 B3 “Bxyz ~Buvz Byipxyzvuu BF

076 B4 “Bxyz “Buvz Bvipxyzvux BF

077 BS “Bpplp2

078  B6 "Bplp2p

079 B7 “Bp2pp1

080 B8 “Dxyxz “Duyuz -Dvyvz equalyz Bxuv Buvx Bvxu BF

081 B9 ~“Bxyz “Buyv equalxy Bxueuclxuyvz BF

082 >B10 °“Bxyz “Buyv equalxy Bxveuc2ruyvz BF

083 Bil "Bxyz ~“Buyv equalxy Beuclzuyvzzeuc2zuyvz BF

084 B12 “Dxyxz “Dxuxv ~Bxyu “Bywu Bzcontxyzwuvv BF

o8s B13(0a,1a) “Dxyxz “Dxuxv “Bxyu “Bywu “equalcontxyzwuvi Dxwvxi BF
086 B14 “Dxyzu “Dzuvw Dxyvv BF

087 B15 equalxExtyxzz

o8ss B16 “equalxExtyzuv Byzx

089 B17 equalRxyExtxyxy

080 B18 BxyRxy

091 B19 DxRyxyx

092 B20 “equalxy equalyRxy

093  B21 equalxRxx

094 B22 “equalxRyx equalyx

098 B23 “Dxyzu “Dyvuwv ~“Bxyv “Bzuv Dxvzv BF

096 B24 “Bxyz “Bxyu “Dyzyu equalxy equalzu BF

097 B25 “Bxyz equalxy equalzExtxyyz

098 B26 "Dxyzu equalExtvuxyExtvwzu equalvv

099 B27 equalExtxyxyExtxyyx equalxy

100 B28 DxyxzRRyxx
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101 B29 equalxRRxyy

102 >B30 “Bxyz “equalxz Buyz

103  >B31 “Bxyz “Byxz equalxy BF

104 B32 “Bxyz “Bxzy equalyz BF

106 B33 “Bxyz “Byuz Bxyu BF

106 B34 "Bxyz “Bxzu Byzu BF

107 >B35 “Bxyz “Byzu Bxzu equalyz BF

108 B36 "Bxyz “Byzu Bxyu equalyz BF

109 B37 “Bxyz “Byuz Bxuz BF

110  B38 “Bxyz "Bxzu Bxyu BF

111 B39 “equalppl

112 B40 “equalpip2

113 B41 ~“equalpp2

114  B42 ~equalxExtyxppl

1156 B43 DxExtyxpplzExtuzppl

116 B44 “Bxyz “Buvz “Bzwu Bwipvipxwuvzxyzz Byipvipxwuvzxyzv BF
117  B4S “Bxyz “Dxzzu "Dyzyu equalxy equalzu BF
118 B46 “Dxyzu “Dxvzv ~Dxizj ~Dvivj ~Bxyv ~Bzuw Dyiuj BF
119 >B47 “Bxyz “Buvw “Dxyuv “Dxzuv Dyzvw BF
120 B48 “Dxyzu “Dyvuv ~Dxizj “Dvivj ~Bxyv “Bzuw Dyiuj BF
121 B49 “Bxyz “Dxyxu ~Dzyzu equalyu RF

122 BS0 equalinszyzuExtExtyxpplxzu

123 BS1 Dxyzrinszuxy

124 852 “Bxyz “Dxzuv Buinsuvzyv

125 B63 “Bxyz “Dxzuv Dyzinsuvxyv

126 BS4 "Bxyz equalyinsxzxy

127 BS6 “Dxyzu equalimsvwxyinsvuzu

128 B66 “Dxyzu “Dyvuv “Dxvzw “Bxyv Bzuwv BF
129 B57 ~“Bxyz “Bxyu equalxy Bxzu Bxuz BF
130 BS8 “Bxyz “Bxyu equalxy Byzu Byuz BF
131 B59 “Bxyz “Buyz equalyz Bxuy Buxy BF
132 B60 “Bxyz “Bxuz Bxyu Bxuy BF

133 B61 “Bxyz “Bxuz Byuz Buyz BF

134 B62 “Bxyz “Byuv “Bxvz Bxuz BF

135 B63 “Bxyz “Dxyxz equalyz

136 B84 “Bxyz Cxyz

137 B6S “Bxyz Czxy

138 B66 ~“Bxyz Cyzx

139 B87 “Cxyz Bxyz Byzx Bzxy BF

140 B68 ~“Bxyz Czyx

141 B88 “Bxyz Cxzy

142 B70 “Bxyz Cyxz

143 871 “Cppilp2
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144 B72(2a,3a) “Dxxyz “Dxuzv “Dxuyv Cyzv BF
145 B73 “equalxy Cxzy

146 B74 “Dxyzu “Dyvuv “Dxvzw ~“Cxyv Czuw BF
147 B7S “Cxyz “Cxyu Cxzu equalxy BF

148 B76 “Cxyz “Cxyu Cyzu equalxy BF

149 B77 “Cxyz “Cuyz Cuxz equalzy BF

150 B78 “Cxyz “Cuyz Cuxy equalzy BF

151 B79 “Cxyz “Cxyu "Cxyv Czuv equalxy BF
152 B80 “Dxyzu “Dyzux “Dxzyu ~Cxyz ~Bxvz ~“Byvu equalxy equalux BF
153 >B81 Dabecd

154 B82 Dbcda

155 >B83 Dacbd

156 >B84 equalac

157 >B85 Baec

168 >B86 Bbed

159 B87 “equalab NC

160 >B88 “equalda NC

In the above proof, lines 3-5 show statistics of the predicates, functions
and constants employed in the theorem. Lines 6-7 show which options are
enabled. Further, lines 8-11 display the output of simplification routines.
Lines 13-14 show the search statistics. Since this line is prefixed with a
symbol “#” it indicates that the proof was found. One such line is printed
every iteration. The details are given as to how many inferences were per-
formed, how many unit clauses were retained and resolved etc. The last
entry on line 14 also indicates the average search speed.

The main line of the proof is printed next. The clauses are prefixed by
indicators describing how and from which other clauses the current clause
was derived. For instance, prefix “B” indicates a base clause, whereas “L”
indicates a clause on the search line. Note that some inferences have two
parents and others have one. Binary resolvent needs two parents whose
numbers are thus given separated by a comma (e.g. line 24). Paramodulants
also need two parents which are given separated by an arrow (e.g. line 23).
This indicates “into” clause and “from” clause. Other clauses were produced
by unary inference rules. The second letter in front of the clause indicates
which unary inference rule was used (e.g. line 25 shows a factor). When
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indicating the parent, its clause number is given as well as the letter to
specify which literal was involved.

Some of the literals are taken into brackets. This indicates a literal
resolved by a unit clause retained in a hash table or a demodulator which
was used to simplify the current clause. A bracketed letter in front of the
clause enumerates all such instances (e.g. line 28). For every such instance a
separate proof line will follow. Note that researched clause, ending auxiliary
proof line, will always be prefixed with an “R” (e.g. line 31) whereas the
places where such were used differentiate demodulators denoted by “D” (e.g.
line 21) and hash table resolutions denoted by “H” (e.g. line 27).

Some special symbols also follow clauses. For instance “NC” indicates
that this clause has at least one ancestor from the negated conclusion.

Note that the terms themselves are printed without parentheses. This
is done to compact the output. We can nevertheless tell variables from con-
stants since the former use letters starting from 'x’. We can also distinguish
the subterms by knowing arities of all functions.

After the proof, a list of resolution rules which were used in the proof is
given (lines 66-68) followed by a list of base clauses where the clauses which
were actually used in the proof are pointed.

A.2 Proof of Q14D10C.THM
GLIDE r7 Aug 1999 for (Q14D10C.THM)

P( equal DB C )

F( Ext ip p pl p2 eucl euc2 cont R a b))

C(pplp2abd)

0( N(Q14D10C.THM) T900 D6/9 SB SEH SGH LN(30) LM LF LX EA PI PF DB GA

GI HU HE SFS SFU SCS L7 V16 T9 )

S( Lo PO BO FO RO 02 C(0,2) )

S( LO PO BO FO RO 00 C(0,0) )

E( 50 40 )

G( 40 27 )

8 L( D1 T3 R(11743,2421,48,597) U(890,2296,10394) C(8047-0,12851)
$(2205,0,0,0) G(15067,15631) V10465 )
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02 ~“equalExtababExtabba

03 “equalxy “equalyz equalxz BF
$25(2a,3a) “equalExtababx ~“equalxExtabba BF

(DO] BDM25(25a) ~equalRabx “equalxExtabba [~equalRxyExtxyxy] BF
[H1] LA27(25a) # <“equalRabExtabba> BF

B17 equalRxyExtxyxy
RO equalRxyExtxyxy

BO BxyExtxyzu
Bl DxExtyxzuzu
B2 “Dxyzu “Dyvuv “Dxizj “Dyiuj ~“Bxyv “Bzuwv equalxy Dvivj BF
B19 DxRyxyx
B26 “equalab NC
L27(26a,2g) ~Dabxy “Dbzyu “Davxw “Dbvyw ~Babz ~Bxyu Dzvuw NC BF
LD28(27c) “Dabxy "Dbzyu “Dbxya ~“Babz “Bxyu Dzxua NC BF
L29(28d,0a) “Dabxy “DbExtabzuyv ~“Dbxya ~Bxyv DExtabzuxva NC BF
L30(29b,1a) “Dabxy “Dbxya ~Bxyz DExtabyzxza NC BF
LD31(30d) ~“Dabxy “Dbxya “Bxya equalExtabyax AC BF
[H2,H3] R1(31b,19a) equalExtabbaRab <~DabRabb> <~BRabba> NC BF

8 L( D1 T4 R(19197,4029,60,1041) U(1778,3628,17785) C(13980~0,21424)
$(3626,0,0,0) G(26927,2100) V13338 )

B18 BxyRxy

R3 BxyRxy

B19 DxRyxyx
R2 DxRyxyx

Resolution rules used:

BINRES ASSERT DISTANCE DEMOD UNIF_D UNIF_B

Used clauses:

>B1 DxExtyxzuzu

>B2 “Dxyzu “Dyvuv “Dxizj “Dyiuj ~Bxyv ~“Bzuv equalxy Dviwj BF
B3 “Bxyz ~Buvz Byipxyzvuu BF

B4 “Bxyz “Buvz Bvipxyzvux BF
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BS “Bpplp2

Bé ~“Bpilp2p

B7 “Bp2ppl

B8 “Dxyxz “Duyuz “Dvyvz equalyz Bxuv Buvx Bvxu BF
B9 “Bxyz “Buyv equalxy Bxueucixuyvz BF

B10 “Bxyz "Buyv equalxy Bxveuc2zuyvz BF

Billi “Bxyz “Buyv equalxy Beucixuyvzzeuc2zuyvz BF
B12 "Dxyxz “Dxuxv “Bxyu “Bywvu Bzcontxyzwuvv BF
B13(0a,1a) “Dxyxz “Dxuxv “Bxyu “Byvu “equalcontxyzwuvi Dxwxi BF
B14 “Dxyzu ~Dzuvw Dxyvw BF

B1S equalxExtyxzz

Bi6 “equalxExtyzuv Byzx
>B17 equalRxyExtxyxy
>B18 BxyRxy
>B19 DxRyxyx

B20 “equalxy equalyRxy

B21 equalxRxx

B22 “equalxRyx equalyx

B23 “Dxyzu “Dyvuv “Bxyv “Bzuw Dxvzw BF

B24 “Bxyz “Bxyu “Dyzyu equalxy equalzu BF
>B25(2a,3a) “equalExtababx “equalxExtabba BF
>B26 “equalab NC

A.3 Proof of Q21B2.THM

GLIDE r7 Aug 1999 for (Q21B2.THM)

P( equal DB C )

F( Ext ip p pl p2 eucl euc2 cont Rabc )

CCpplp2abc)

0C N(Q21B2.THM) T90C D6/9 SB SEH SGH LK(30) LM LF LX EA PI PF DB GA
GI HU HE SFS SFU SCS L7 V16 T9 )

S( LO PO BO FO RO 01 C(0,1) )

S( LO PO BO FO RO 00 C(0,0) )

E( 60 50 )

G( 50 34 )

L{ DI T10 R(84171,10143,474,5130) U(11278,17586,66694) C(54401-0,85854)
S(8841,7,0,0) G(88886,15632) V20423 )

8¢ L( D2 T200 R(1752935,276436,4373,151332) U(19390,381689,1610721)

C(1010599-0, 1562649) S(247667,44,0,0) G(1744298,255958) V20926 )

Proof:
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B3 “Bxyz ~“Buvz Byipxyzvuu BF
B30 “Bxyz “equalxz Buyz
B31 Babc
B32 Bbac
B33 “equalabd NC
LB34(30c) ~“Bxyz "equalxz equalzy
L35(3c<-34c) ~Bxyz “Buvz Bywu ~Bivipxyzwvu “equaliipxyzvu BF
LB36(35d) “Bxyz “Buvz Bywu ~“equalvipxyzvu BF
L37(36a,31a) “Bxyc Bbzx “equalzipabeyx
L38(37a,32a) Bbxb “equalxipabcab
LB39(38a) equalbx “equalxipabcab
[HO] L40(39a,33a) & <“equalaipabcab> NC

B4 “Bxyz “Buvz Bvipxyzvux BF

B31 Babc

B32 Bbac

L34(32a,4b) “Bxyc Baipxycabx
L35(34a,31a) Baipabcaba
RBO(35a) equalaipabcab

8 L( D2 T203 R(1781775,279679,4413,152764) U(20980,385263,1631704)
C(1025060-0,1585765) S(261564,44,0,0) G(1766819,2685649) V20806 )

Resolution rules used:

BINRES PARAMOD BETWEEN

Used clauses:

BO BxyExtxyzu

Bl DxExtyxzuzu

B2 “Dxyzu “Dyvuv ~Dxizj °“Dyiuj “Bxyv ~“Bzuv equalxy Dviwvj BF
>B3 “Bxyz "Buvz Byipxyzvuu BF

>B4 “Bxyz ~“Buvz Bvipxyzvux BF

BS “Bpplp2

B6 “Bpip2p

B7 “Bp2ppil

B8 “Dxyxz ~Duyuz °“Dvyvz equalyz Bxuv Buvx Bvxu BF
B9 “Bxyz “Buyv equalxy Bxueucixuyvz BF

B10 “Bxyz “Buyv equalxy Bxveuc2xuyvz BF

Bll "Bxyz ~Buyv equalxy Beuclxuyvzzeuc2xuyvz BF
B12 “Dxyxz “Dxuxv “Bxyu “Bywu Bzcoatxyzwuvv BF
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B13(0a,1a) “Dxyxz “Dxuxv “Bxyu "Bywu “equalcontxyzwuvi Dxwxi BF
B14 “Dxyzu ~Dzuvw Dxyvw BF

B15 equalxExtyxzz

B16 “equalxExtyzuv Byzx

B17 equalRxyExtxyxy

B18 BxyRxy

B19 DxRyxyx

B20 “equalxy equalyRxy

B21 equalxRxx

B22 ~“equalxRyx equalyx

B23 “Dxyzu ~“Dyvuw “Bxyv “Bzuw Dxvzv BF
B24 “Bxyz ~Bxyu “Dyzyu equalxy equalzu BF
B25 “Bxyz equalxy equalzExtxyyz

B26 “Dxyzu equalExtvwxyExtvuzu equalvw
B27 equalExtxyxyExtxyyx equalxy

B28 DxyxRRyxx

B29 equalxRRxyy

>B30 “Bxyz “equalxz Buyz

>B31 Babe

>B32 Bbac

>B33 “equalab NC

A.4 Proof of Q31E3. THM

GLIDE r7 Aug 1999 for (Q31E3.THM)

P( equal D B C )
F( Ext ip p p1 p2 eucl euc2 cont Rbadc )
C(pplp2badc)
0( N(Q31E3.THM) T900 D6/9 SB SEH SGH LN(30) LM LF LX EA PI PF DB GA
GI HU HE SFS SFU SCS L7 V16 T122 )
S( LO PO B2 FO R1 00 C(-2,1) )
S( LO PO BO FO RO 00 C(0,0) )
EC €69 59 )
G( 59 43 )
s L( D1 T1 R(37,0,243,0) U(1153,4,38) C(25-0,3) S(15,0,0,0) G(16,6) V302 )

m———-

B1 DxExtyxzuzu
B14 “Dxyzu “Dzuvw Dxyvw BF
00 BxyExtxyzu
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01 equalbExtabppl °“DbExtabppidExtcdppl “BabExtabppi NC
542(0a,1a) equalbExtabppi “DbExtabppidExtcdppi NC
L43(1a<-42a) Dbbppl “DbExtabppidExtcdppl NC
L44(43b,14c) Dbbppl “DbExtabppixy ~DxydExtcdppi NC
L45(44b,1a) Dbbppl “DppidExtcdppl NC
L46(45b,1a) Dbbppl NC
[HO] LD47(46a) & <equalppi> NC

B39 ~equalppl
RO “equalppl

Resolution rules used:

BINRES PARAMOD DISTANCE

Used clauses:

BO BxyExtxyzu

>B1 DxExtyxzuzu

B2 “Dxyzu “Dyvuw “Dxizj ~Dyiuj ~Bxyv ~Bzuv equalxy Dviwj BF
B3 “Bxyz ~Buvz Byipxyzvuu BF

B4 "Bxyz “Buvz Bvipxyzvux BF

BS ~Bpplp2

B6 “Bplp2p

87 ~“Bp2ppl

B8 “Dxyxz ~Duyuz “Dvyvz equalyz Bxuv Buvx Bvzu BF
B9 “Bxyz “Buyv equalxy Bxueucixuyvz BF

B10 “Bxyz ~“Buyv equalxy Bxveuc2xuyvz BF

B11 “Bxyz “Buyv equalxy Beucixuyvzzeuc2xuyvz BF
B12 “Dxyxz “Dxuxv “Bxyu “Bywu Bzcontxyzwuvv BF
813 “Dxyxz “Dxuxv “Bxyu “Bywu Dxwxcontxyzwuv BF
>B14 “Dxyzu “Dzuvwv Dxyvw BF

815 equalxExtyxzz

B16 “equalxExtyzuv Byzx

B17 equalRxyExtxyxy

B18 BxyRxy

B19 DxRyxyx

B20 “equalxy equalyRxy

B21 equalxRxx

B22 “equalxRyx equalyx

B23 ~“Dxyzu ~“Dyvuv “Bxyv “Bzuw Dxvzwv BF

B24 “Bxyz ~Bxyu “Dyzyu equalxy equalzu BF

B25 “Bxyz equalxy equalzExtxyyz
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B26 “Dxyzu equalExtvvxyExtvwzu equalvv
B27 equalExtxyxyExtxyyx equalxy

B28 DxyxRRyxx

B29 equalxRRxyy

B30 “Bxyz “equalxz Buyz

B31 “Bxyz “Byxz equalxy BF

B32 “Bxyz “Bxzy equalyz BF

B33 “Bxyz “Byuz Bxyu BF

B34 “Bxyz “Bxzu Byzu BF

B35 “Bxyz “Byzu Bxzu equalyz BF

B36 “Bxyz “Byzu Bxyu equalyz BF

B37 “Bxyz "Byuz Bxuz BF

B38 “Bxyz “Bxzu Bxyu BF
>B39 “equalppl

B40 “equalpip2

B4l “equalpp2
>B42(0a,la) equalbExtabppl ~“DbExtabppldExtcdppl NC

A.5 Proof of Q38I12B. THM
GLIDE r7 Aug 1999 for (Q3SI2B.THM)

P( equal D B C )

F( Ext ip p p1 p2 eucl euc2 cont ins Rabcde)

CCpplp2abdbcde)

0( K(Q3BI2B.THM) T900 DE/9 SB SEL SGH LN(30) LM LF LX UEA DB UGA GI
HU HE SFS SFU SCS L7 V16 T15 )

S( Lo PO B3 FO RO 00 C(-3,0) )

S( LO PO BO FO RO 00 C(0.0) )

E( 85 83 )

G( 83 67)

L( Dt T115 R(811178,43027,0,0) U(3503319,27552,1050910)
C(381144-1789990,390011) S(4901,8,0,0) G(0,96870) V8270 )

0( N(Q38I2B.THM) T900 D6/9 SB SEL SGH LN LM LF LX UEA DB UGA GI
HU HE SFS SFU SCS L7 V16 TiS )

L( D2 T279 R(1950592,137092,0,0) U(4001458,67866,1346962)
C(1359536-3252592,430628) 5(27671,8,0,0) G(0,160973) V8069 )

8 L( D3 T562 R(3352210,277537,0,0) U(5159800,146336,1726450)

C(2741408-5790385,454735) S(56611,8,0,0) G(0,331115) V7047 )

Proof:

-
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BO BxyExtxyzu
B28 ~“equalxExtyzuv Byzx
B36 “Bxyz “Bxyu “Dyzyu equalxy equalzu BF
B48 “Bxyz “Byzu Bxyu equalyz BF
B54 “equalxExtyxppil
B62 equalinsxyzuExtExtyxpplxzu
866 “Bdinsdeabe NC
L67(66a,28b) ~“equaleExtdinsdeabxy NC
L68(67a,36e) ~Bxye “BxyExtdinsdeabzu “DyeyExtdinsdeabzu equalxy NC
L69(68b,48c) ~Bxye “DyeyExtdinsdeabzu equalxy “Bxyv “ByvExtdinsdeabzu
equalyv NC BF
L70(69d,28b) “Bxye ~DyeyExtdinsdeabzu equalxy ~ByvExtdinsdeabzu squalyv
“equalvExtxywi NC
L71(70a,0a) ~“DxexExtdinsdeabyz equalExtexuvx “BxvExtdinsdeabyz equalxv
“equalvExtExtexuvxij NC
[HO] L72(71c,0a) ~DdedExtdinsdeabxy equalExtedzud
“equalinsdeabExtExtedzudvv <equaldinsdead> NC
L73(72b,54a) “DdedExtdinsdeabxy ~equalinsdeabExtExtedppidzu NC
[H1] L74(73b,62a) 8 <"DdedExtdinsdeabxy> NC

BO BxyExtxyzu

Bl4 “equalxy “equalyz equalxz BF

B15 "equalxy ~“Bxzu Byzu

B27 equalxExtyxzz

B66 ~“Bdinsdeabe KC

L67(66a,15¢c) ~“equalxd “Bxinsdeabe NC
L68(67a,14c) ~“Bxinsdeabe “equaldy “equalyx NC BF
L69(68a,0a) “equaldx “equalzExteinsdeabyz NC

RO(69b,27a) “equaldinsdeab NC

BO BxyExtxyzu
Bl DxExtyxzuzu
B26 ~“Dxyzu ~“Dzuvw Dxyvw BF
B35S “Dxyzu “Dyvuw ~“Bxyv ~“Bzuv Dxvzw BF
B63 Dxyzinszuxy
B64 Babc
B6S Dacde
L67(35¢,26a) “Dxyzu “Dyvuv “Bxyv ~“Bzuw “Dzwij Dxvij BF
L68(67c,0a) “Dxyzu ~“DyExtxyvwui “Bzui ~Dzijk DxExtxyvwjk BF
L69(68b,1a) “Dxyzu °“Bzuv ~“Dzvwi DxExtxyuvwi BF
L70(68b,64a) ~“Dxyab ~Daczu DxExtxybczu BF
L71(70a,63a) ~“Dacxy DzExtzinszuabbcxy
R1(71a,65a) DxExtxinsxyabbcde
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8 L( D1 T619 R(4007534,311774,0,0) U(6305263,166028,1920955)
C(3023496-5792975,804921) S(60870,16,0,0) G(0,406703} V7634 )

Resolution rules used:

BINRES UNIF_D

Used clauses:

>B0 BxyExtxyzu

>B1 DxExtyxzzuzu

B2 “Dxyzu “Dyvuw “Dxizj “Dyiuj “Bzyv “Bzuw equalxy Dviwj BF
B3 “Bxyz “Buvz Byipxyzvuu BF

B4 “Bxyz “Buvz Bvipxyzvux BF

B5 “Bpplp2

B6 “Bplp2p

B7 “Bp2ppl

B8 “Dxyxzz “Duyuz “Dvyvz equalyz Bxuv Buvx Bvzu BF
B9 “Bxyz “Buyv equalxy Bxueuclzuyvz BF

B10 “Bxyz “Buyv equalxy Bxveuc2xuyvz BF

B1l “Bxyz “Buyv equalxy Beuclzuyvzzeuc2xuyvz BF
B12 “Dxyxz “Dxuxv “Bxyu “Bywu Bzcoentzyzwuvv BF
B13 “Dxyxz “Dxuxv “Bxyu “Bywu Dxwxcomtxyzwuv BF
>B14 “equalxy “equalyz equalxz BF
5>B15 “equalxy “Bxzu Byzu

B16 “equalxy “Bzxu Bzyu

B17 “equalxy ~“Bzux Bzuy

B18 “equalxy “Dxzuv Dyzuv

B19 “equalxy ~Dzxuv Dzyuv

B20 “equalxy “Dzuxv Dzuyv

B21 “equalxy “Dzuvx Dzuvy

B22 “equalxy equalinsxzuvinsyzuv

B23 “equalxy squalinszxuvinszyuv

B24 “equalxy equalinszuxvinszuyv

B25 “equalxy equalinszuvxinszuvy

>B26 “Dxyzu “Dzuvw Dxyvw BF

>B27 equalxExtyxzz

>B28 “equalxExtyzuv Byzx

B29 equalRxyExtxyxy

B30 BxyRxy

B31 DxRyxyx

B32 ~“equalxy squalyRxy
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B33 equalxRxx

B34 “equalxRyx equalyx

>B35 "Dxyzu “Dyvuwv “Bxyv ~Bzuw Dxvzw BF
>B36 “Bxyz “Bxyu “Dyzyu equalxy equalzu BF
B37 “Bxyz equalxy equalzExtxyyz

B38 “Dxyzu equalExtvuxyExtvwzu equalvw
B39 equalExtxyxyExtxyyx equalxy

B40 DxyxRRyxx

B41 equalxRRxyy

B42 “Bxyz “equalxz Buyz

B43 “Bxyz “Byxz equalxy BF

B44 “Bxyz ~“Bxzy equalyz BF

B45 “Bxyz “Byuz Bxyu BF

B46 “Bxyz "Bxzu Byzu BF

B47 “Bxyz “Byzu Bxzu equalyz BF

>B48 “Bxyz “Byzu Bxyu equalyz BF

B49 “Bxyz ~“Byuz Bxuz BF

B50 “Bxyz “Bxzu Bxyu BF

BS1 “equalppl

B52 “equalpip2

B53 “equalpp2

>B54 “equalxExtyxppil

. B6S DxExtyxpplzExtuzppl
BS6 “Bxyz “Buvz “Bxwu Bvwipvipxwuvzxyzz Byipvipxwuvzxyzv BF

BS7 “Bxyz “Dxzzu ~Dyzyu equalxy equalzu BF

B58 “Dxyzu “Dxvzv ~Dxizj “Dviwj “Bxyv “Bzuwv Dyiuj BF
BS9 “Bxyz “Buvw “Dxyuv “Dxzuw Dyzvw BF

B6C “Dxyzu “Dyvuvw “Dxizj ~Dviwj “Bxyv “Bzuv Dyiuj BF
B61 “Bxyz “Dxyxu “Dzyzu equalyu BF

>B62 equalinsxyzuExtExtyxpplxzu

>B63 Dxyzinszuxy

>B64 Babc

>B65 Dacde

>B66 “Bdinsdeabe NC
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8 subsumption, 43
Lukasiewicz, 13

Ackerman, 14
Aristotle, 1

axiom, 5

backward subsumption, 43
betweenness, 4, 65

binary resolvent, 35
Boole, 1

bounded variable, 15
breadth-first search, 44

Church, 2

clause form, 23
colinearity, 4

complete refinement, 40
complete theory, 22
conjunction connective, 7
conjunctive normal form, 23
consistent formula, 9
consistent theory, 21
constant, 15
contradiction, 9

countermodel, 9
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Davis, 2

De Morgan’s law, 10
decidable theory, 22
demodulator, 57

depth-first search, 44
discrimination-tree, 60
disjunction connective, 8
domain of interpretation, 17

empty substitution, 34
EQP, 3

equality, 15, 21
equidistance, 4, 65
equivalence connective, 8
Euclid, 63

Euclidian geometry, 3
existential quantifier, 15
extended search, 53

factor, 35

failure node, 30
formula, 5

forward subsumption, 43
free variable, 16

Frege, 13

function, 15



Gaodel, 2
generalization, 20
Gentzen, 2

Gilmore, 2

GLIDE, 4, 84

ground instance, 34
ground substitution, 34
ground term, 16

H-interpretation, 28
Herbrand, 2

Herbrand universe, 28
Hilbert, 1, 14

Horn clause, 54
hyperbolic, 68
hyperresolution, 50

identity assertion, 56
implication connective, 8
inconsistent formula, 9
inconsistent theory, 21
individual, 15

instance, 34
interpretation, 7, 17
iterative deepening, 44

language, 5

Leibniz, 1

level saturation, 44
linear refinement, 44

linear-base refinement, 46

linear-merge refinement, 45
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linear-unit refinement, 46
LINUX, 84

Lobachevski, 68

logic calculus, 5

logical consequence, 10
logical equivalence, 9
Loveland, 44

Luckham, 44

mapping, 15

matching, 43

matrix of a formula, 24
merge clause, 45
model, 9

modus ponens, 13, 20
most general unifier, 35

negation connective, 7
OTTER, 90

P-I clash, 48
paramodulation, 55
partial interpretation, 30
Peano, 1

predicate, 15

predicate calculus, 5
prefix of a formula, 24
prenex normal form, 24
propositional calculus, 5, 6
pure literal, 41

Putnam, 2



quantifier, 15

refinement, 40
refutation, 34
Robinson, 2

rules of inference, 5

satisfiable formula, 9
semantic tree, 29
sentential calculus, 6
sequent, 18
set-of-support refinement, 47
simple subsumption, 44
Skolem normal form, 24
Slagle, 47

SPASS, 90

standard form, 24
substitution, 34

subsumption, 42

Tarski, 3
tautology, 9
TGTP, 4
theorem, 5
TPTP, 84
trie, 60

true formula, 9
truth table, 8
truth value, 6
Turing, 2

unifiable set, 35
unifier, 34
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unit factor, 35

unit preference, 53
universal quantifier, 15
universe, 15

UNIX, 84

unsatisfiable formula, 9

valid formula, 9

variable, 15

well-formed formula, 5
Wos, 47
Wu, 64



