
INFORMAnON Ta USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quailly of this reproduction is dependent upon the quality of the

copy submltted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough. substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages. these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize malerials (e.g., maps. drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from 18ft to right in squal sections with small overlaps.

Photographs induded in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6- x 9- black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contad UMI direcUy to arder.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

SQO-S21-Q600

•

•

•

Resolution Based Techniques

for Autornated Proving of

Theorems in

Tarskian-Euclidian Geornetry

Sergei Savchenko
School of Computer Science

McGill University, lVlontreal

October 1999

A Thesis Submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements of the degree of

Master of S~i~nce in Computer Science

Copyright ©1999 Sergei Savchenko

I~I
National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 welington Street
Ottawa ON K1A 0N4
canada

Bibliothèque nationale
du canada
Acquisitions et
services bibliographiques

395. rue Welington
0IIawa ON K1A 0N4
Canada

The author bas granted a non­
exclusive licence alIowing the
National Library of Canada to
reproduce, loan, distribute or sen
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
MaY be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64447-2

Canadl

•

•

•

Abstract

The discipline of automated theorem proving encompasses techniques which

allow us to find a justification of a logical statement expressing an assertion

in some domain of knowledge. Beside obvious importance for mathematics,

many of the tasles traditionally associated with human intellect can be solved

through application of these techniques. Methods based on Robinson's res­

olution form one of the comerstones of automated theorem proving. The

efficiency of these methods, however, is less than admissible for many inter­

esting domains of mathematics. By studying the underlining axioms of the

domain it is often possible to find some computational shortcut. This thesis

overviews available generic methods and then considers possible retinements

aimed at theorems in Euclidian geometry formulated on the Tarskian axiom

system.

i

•

•

•

Résumé

La discipline de démonstration automatique de théorèmes entoure des tech­

niques ce qui laissent trouver une justification d'une phrase logique expri­

mant une affirmation dans un certain domaine de la connaissance. Près

de l'importance évidente pour des mathématiques, plusieurs des tâches qui

sont traditionnellement associées à l'intellect humain peuvent être résolues

par l'application de ces techniques. Les méthodes basées sur la résolution

de Robinson sont parmi les plus importantes pour le démonstration au­

tomatique de théorèmes. L'efficacité de ces méthodes, cependant, est moins

qu'admissible pour beaucoup de domaines intéressants des mathématiques.

En étudiant les axiomes soulignants du domaine, il est souvent possible

de trouver certain accélération de calcul. Cette thèse fait une revue de

méthodes principales pour démontrer des théorèmes et alors considère les

améliorations possibles pour les théorémes dans la géométrie euclidienne

formulée sur le système d'axiome de Tarski.

ii

•

•

Contents

List of Figures

List of Tables

Acknowledgements

1 Introduction

2 Logic calculi

2.1 Propositional calculus

2.1.1 Semantics of propositional calculus .

2.1.2 Deductive treatment of propositional calculus .

2.2 First-order predicate calculus .

2.2.1 Semantics of predicate calculus

2.2.2 Deductive treatment of predicate calculus

2.2.3 Normal forms of formulas of predicate calculus

3 Fondamental proving procedures

3.1 Herbrand's theorem .

3.1.1 Semantic trees . . .

3.1.2 The method of Davis and Putnam

vi

vii

viii

1

5

6

7

12

14

17

18

22

27

28

29

31

•

3.2 Robinson's resolution principle 33

3.2.1 Resolution principle for propositional calculus . 33

iü

•
3.2.2 Resolution principle for predicate calculus 34

4 Methods for performance improvement 40
4.1 Deletion strategies 41

4.1.1 Pure literai elimination . . 41
4.1.2 Elimination of tautologies 41
4.1.3 Subsumption 42

4.2 Restriction strategies . . . 44

4.2.1 Linear refinments . 44

4.2.2 Set-of-support 47

4.2.3 Semantic resolution 47

4.2.4 Hyperresolution. . . . 50

4.2.5 Clause ordering and locking . . 50

4.2.6 Model elimination .. 51
4.2.7 Weigbting heuristics 53

4.3 Specialization strategies . . 53• 4.3.1 Sets of Hom clauses 54

4.3.2 Theorems with equality 54

4.4 Retention strategies 58

4.4.1 Hash tables 58

4.4.2 Discrimination trees 60

5 Approaches for theorems in geometry 62

5.1 Formai systems for geometry 63

5.1.1 Tarski-Quaife axiom system . . 65

5.1.2 Alternative and additional axioms 69

5.2 Refinements 72

5.2.1 Generic refinements 72

5.2.2 Approaches for re8exivities 73

5.2.3 Approaches for identities 76

5.2.4 Approaches for symmetries 80

iv

•

•
5.3

5.2.5 Approaches for transitivities .

5.2.6 Heuristics...........

Experiments with implementation

5.3.1 GLIDE theorem prover

5.3.2 Experiments .

82

83

84

85

90

•

•

6 Conclusions

Bibliography

A EXaBlples of GLIDE's proofs

A.l Annotated proofof Q58W2A.THM .

A.2 Proof of QI4DIOC.THM .

A.3 Proof of Q21B2.THM .

A.4 Proof of Q31E3.THM .

A.5 Proof of Q3812B.THM

Index

v

110

112

116

116

121

123

125

127

130

•
List of Figures

3.1 A semantic tree for an atom set A. 30

3.2 Lifting 36
3.3 A semantic tree for a clause set C. 39

4.1 Transformiog a proof ioto linear form (case A) 45

4.2 Transformiog a proof ioto linear form (case B) 46

4.3 Irrelevance of electron's order in a clash 49

• 4.4 A discrimination tree for a term set T. . . 61

5.1 Outer five-segment axiom.. 66

5.2 Inner Pasch axiom. . . 67

5.3 Euclid's axiom. . . . 69

5.4 Outer Pasch axiom. 70

5.5 P before transformation 78

5.6 P arter transformation 79

•
vi

•
List of Tables

2.1 Truth table of the connectives.

2.2 Truth tables validating de Morgan's laws.

2.3 Meaning of implication and equivalence connectives.

8

10

Il

•

•

5.1 GLIDE's results on Quaife's set. 96

5.2 Resolution rules used to praye theorems of Quaife's set. 98

5.3 Comparison of SPASS, OTTER and GLIDE on QuaiCe's set. 100

5.4 GLIDE's results on TPTP's set. 104

5.5 Comparison oC SPASS, OTTER and GLIDE on TPTP's set.. 107

vii

•

•

•

Ackno'W"ledgements

l'd like to express my profound gratitude to professor Monroe Newborn, my

thesis supervisor, for introducing me to the subject, suggesting the topic

and giving many valuable advises.

1 am deeply indebted to my parents Nikolay Savchenko and Yanna

Laevski for their support and advises which greatly motivated me through­

out the life and in this undertaking in particular.

l'd like to thank professor Prakash Panangaden and professor Lorie Hen­

dren for giving me an opportunity to teach introductory Computer Science

courses which proved to be a tremendously valuable experience.

Thanks to the extemal reviewer, professor Bruce Spencer, for his valu­

able comments.

Many thanks ta the faculty, staff and students of McGill University,

School of Computer Science for crea~ing sucb an excellent environment for

studies and researcb.

viii

•

•

•

Chapter 1

Introduction

Formallagic oecupies an important place in the foundations ofmodern math­

ematics. It is used for reconstrueting and analyzing mathematical proofs in

a formaI manner. One of the main tasks of formallogic is to provide efficient

means ta justify a theorem (Le.: a conclusion) of some premises by a proce­

dure carried out manually or, in a modem setting, by a computing device.

Beside lagic's importance for mathematics, many of the tasks traditionally

associated with human intellect can be expressed as applications of formai

logie and particularly of theorem proving. As a consequence, a mechanicaI

procedure to prave theorems implemented and carried out by a computer

can serve as an instrument ta solve multiple mathematical as weIl as applied

problems and tasks.

The desire to find a general decision procedure to prove theorems dates

back at least to Leibniz (1646-1716), most probably going as far back as

Aristotle's logic of syllogisms. The stronger interest to this subject emerged

in the last century with the work of Boole on algebra of logic. The advances

began truly in earnest, however, only around the beginning of this century

with the axiomatizations for arithmetic and projective geometry by Peano,

discovery of paradoxes of set theory and later with contributions by Hilbert

and bis school of logic.

1

•

•

•

As a consequence of early successes, Hilbert proposed a program for for­

malization ofall of mathematics with axiomatized logic serving as a common

base to demonstrate consistency of particular theories. These hopes were

saon dashed, however, by GOdel's iDcompleteness results. The second of

GOdel's incompleteness theorems states that in any consistent formai theory

containing arithmetic, the sentence asserting the consistency of the theory

itself is not provable within that theory.

Despite GOdel's discovery, by 19308 a very important theorem was proven

hy H'prhr=tnf'i nppning a way for actual mechanical methods ta prove thec:r

rems. Few years later Gentzen defined a natura! notion of formai proofs

which is doser to mathematicaI deduction than the Hilbert-type systems.

Both Herbrand and Gentzen investigated the structure of mathematical

proofs, whereas GOdel results were directed at provability [Le97].

In 1936 Church and Turing, strengthening GOdel's results, independently

showed that, in fact, there cannot be a general decision procedure to check

validity of fonnulas of mst-order logjc and thus any imagjnable proof pro­

cedure for this logjc has a weaker power - it cao only show validity of

formulas which are indeed valid. That result was demonstrated earlier in

GOdel's completeness theorem which stated that any valid formula is prov­

able. Church-Turing result however demonstrated that for invalid formulas

the proof procedure may not terminate [Me64], [CL73].

With the invention ofdigital computers the interest for mechanical proce­

dures to prove theorems was regained &gain and implementations for various

mechanical methods started to emerge. By 1960 Herbrand's procedure was

implemented by Gilmore and later a more efficient algorithm was introduced

by Davis and Putnam. By 1965 a major contribution by Robinson gave a

significantly more efficient algorithme Since that time, many refinements

and distinct methods appeared. Automated provers which were initially ca­

pable to prove only simple theorems grew in sophistication to the degree

when some open mathematical problems were solved with their help, sucb

2

•

•

•

as recent (1996) prove by Argonne National Lab '8 proyer EQP the theorem

that every Robbins a1gebra is in fact a Boolean algebra [Mc97].

Mechanîcal theorem proving methods also branched into multiple ap­

plied areas such as program verification, circuit design, expert systems and

databases [Sa9S].

Cunent advances in computer technologies, especiaUy that in parallel ar­

chitectures and fast networks connecting multiple microcomputers, promise

greater efficiency of implementations for mechanical theorem proyers in the

future and hence these techniques will undoubtedly find even more uses then

there are today.

We begin the thesis by reviewing principles of propositional and predi­

cate logic. Whereas it is the latter which is of practical interest, the former

allows us to formulate many concepts in a much more intuitive form. Chap­

ter 3 is dedicated to fundamental principals of automated theorem proving.

It is shown that there is a semantic and deductive approaches. A version

of Herbrand's theorem is discussed and a procedure of semantic tree build­

ing is introduced. Further we turn to the deductive method of resolution

and demonstrate that its completeness is implied by Herbrand's theorem.

Whereas these procedures cao do the job, they suffer from computational

inefficiency. The rest of the thesis discusses various ways how to improve

performance of resolution based theorem proyers. Particularly, Chapter 4

details multiple general strategies. Although these, properly implemented,

may give a considerable performance improvement, it is possible to go even

further by concentrating on one c1ass of theorems and exploiting special

properties of their common axioms. Thus, Chapter 5 discusses specialized

approaches for theorems in Euclidian geometry, more particularly those us­

ing axiom system formulated by Tarski. This class of theorems was chosen

as it is quite representative of relatively difficult theorems one would want

ta proof automaticaIly. Their difficulty comes from relatively high number

of clauses, heavy use of equality predicate as weIl as of highly flexible ax-

3

•

•

•

ioms describing behavior of sucb predicates as equidistance, betweenness and

colinearity. Several approaches will be proposed and heuristic observations

made for efficient proving of geometry theorems.

Most of the observations and results which will be presented were ob­

tained from experiments with GLIDE (Geometry Linear Iterative Deepening

Engine) theorem proyer written by the author and based on the experience

of TGTP (The Great Theorem ProYer) theorem proyer by Professor M. New­

born [Ne97]. GLIDE proyer incorporates sorne special refinements aimed at

theorems with equality and more particularly at geometry theorems. The

implementation and results of experiments (including performance compar­

isons with two popular proyers) will be described in Chapter 5.

4

•

•

•

Chapter 2

Logic calculi

As the name "theorem proving" suggests, the primary interest of this disci­

pline is giving a justification ta logical sentences expressing theorems. Ax­

iomatic method, allowing to solve this problem, has received a wide accep­

tance in mathematics. With this method we first formulate a system of laws

which we accept without a proof for sorne domaine These laws are called

azïoms. Other laws, the theorems, can then be proven to be consequences

of the axioms and thus valid (on the assumption that the axioms were).

Formalisms ta express the axiom systems are referred ta as logie ealeuli

(sucb as propositional caleulus or predicate calculus).

The logic calculi could be expressed as axiom systems themselves (with

the help of lagie axioms) and they are used as foundations to build axiom

systems for other, particular domains which can then be treated as single

fonnulas within the axiom system of a logic calculus. (Me64], (Sh67].

Thus, a logic calculus can be fonnulated ta consist of a language, used

ta construct fonnulas and a way ta define a theorem. This can be done with

the help of lagie axioms and the rules of inference.

A language consists of symbols. Any finite sequence of symbols iS'called

an expression in that language. The meaningful expressions of the language

are called well-formed formulas or simply formulas. Axioms must be formu-

5

•

•

•

las in the language of the logic calculus.

Rules of inference state under what conditions one formula, called the

conclusion of the mie, can he inferred from other formulas called the hy­

potheses.

The theorems of an axiom system are either axioms or the conclusions

of the inference rules whose hypotheses were theorems themselves.

A proof of a theorem is a finite sequence of formulas ending with the

theorem heing proven. The formulas in the sequence cao either be axioms

or the conclusions of some inference rules (hence theorems themselves) whose

hypotheses precede that formula in the proof.

Beside sucb purely syntactic or deductive treatment of logic, a semantic

or model·theoretic approach is also possible. With it, we directly define the

meaning of certain elements of the language (e.g.: that of logical connectives

(see Section 2.1) and enable interpretation of fonnulas. We will then verify

validity of fonnulas base<! on the result of interpretations.

From the semantic view-point a formula will be valid if it will he consid·

ered troe under all possible interpretations.

Both deductive and semantic approaches will serve as foundation for

different mechanical procedures to prove theorems.

Particular lagic calculi differ primarily in their language and hence in

the formulas which cao be expressed by the calculus. As a result, different

logic calculi have different power to describe particular domains.

2.1 Propositional calculus

The propositional or sentential calculus is a formalism to express relatively

simple axiom systems. It deals with declarative sentences, the propositions,

whicb cao be either true or false but not bath. The true or false assigned

to a proposition is called the troth value of the proposition.

The language of the propositional calculus consists of a countably infinite

set of symbols (i.e.: {A, B, C, ...}) representing basic (or atomic) proposi-

6

•

•

•

tions augmented by a pair of parentheses and a small finite set of logicaI

connectives (Le.: {-', V 1 A, =>, <=>}). The latter are used to express propo­

sitions where severa! atomic propositions are connected into a compound

sentence.

Definition 1 A formula of propositional calculus is:

• an atomic proposition.

• If A is a formula, then so is (..,A).

• If A and B are formulas then so are (A A B), (A V B), (A ~ B),

(A ** B).

Clearly, some expressions are not formulas (e.g.: (** AV)). Although,

the expressions A A B or A V -,B are a1so not fonnulas in a strict sence,

it is customary to allow neglecting parentheses. Possible confusion can be

avoided by instituting precedence ordering "~" upon the connectives of how

tightly they bind sYmbols in the formula:

thus, "-," has the highest binding priority and "<::>" the lowest.

Example 1 The formula A ~ ...,B A C will mean (A => «..,B) 1\ C)) when

using the precedence ordering of the connectives given above.

2.1.1 Semantics of propositional calculus

Let's consider the semantic side of propositional calculus.

An assignment of truth values to individual propositions or atoms of a

formula is called an interpretation of that formula.

The truth value of a compound proposition depends on the truth val­

ues of the atomic propositions it consists of and the defined meaning of

the logic connectives. The meaning of "..," negation, "A" conjunction, "V"

7

• disjunction, "~" implication and "<=>" equivalence connectives is defined as

follows:

• ...,A is true if A is f aise. It is f aise if A is true.

• A A B is true if both A and B are true. It is f aise otherwise.

• A V B is true if either A or B is true. It is /alse if both A and B are

false.

• A ~ B is f aise if A is true and B is f aise. It is true otherwise.

• A <=> B is true if A and B have the same truth values. It is f aise if A

and B have different truth values.

The meanings of the connectives cao be conveniently represented by a

truth table (see Table ~.1).

B ~..,A IAABIAVBIA~BIA<=>BIA

true true false true true true true

true false false false true false false

false true true false true true false

false false true false false true true

•
Table 2.1: Truth table of the connectives.

Whereas the meanings of negation, conjunction and disjunction have a

clear and intuitive parallel with the everyday life, 1 that of implication and

equivalence is less obvious. Implication connective attempts to capture the

meaning of casuality of the type 'if ... then ... '. Thus the sentence A => B

cannot be true when A is true but B is f aise. Similarly, the equivalence

•

1Natural languages passes two notions of disjunction: "inclusive or" - A or B or bath

and "exclusive or" - A or B but Dot both. Our meaning of disjunction coinsides with

inclusive or, whereas the exclusive or cao be modeled as (.4 V B) 1\ -,(A 1\ B).

8

•

•

connective attempts to capture the meaning of casuality of the type 'if and

only if ... then ... '. Although it is arguable to what extend implication

and equivalence connectives capture the sense of the everyday life they are

certainly convenient in the formal sense to express relationships between

propositions.

A formula is true under an interpretation if it is evaluated to the logical

value of true in that interpretation.

A formula which is true under aIl interpretations is called valid or a

tautology. A formula which is faIse under aIl interpretations is called incon­

sistent, unsatisfiable or a contradiction. A formula which is true under some

interpretations is called consistent or satisfiable.

An interpretation of a formula, under which that formula is true is called

a model of the formula. An interpretation of a formula, under which that

formula is faIse is called a countermodel of the formula.

Two formulas are said to be logically equivalent if and ooly if they have

the same truth values under aIl interpretations. We will denote logica1 equiv­

alence of formulas A and B by A =B.

We cao establish whether or not two formulas are logically equivalent by

analyzing their truth tables. The truth tables essentially list truth values

under aIl possible interpretations and thus if the truth tables will match, the

formulas must be logically equivalent. Knowing pairs of logically equivalent

formulas enable various transformations which preserve 10gica1 properties.

Using the technique of truth tables, it is not hard to verify that the

following equivalence laws hold. Thus for any formulas A, B and C we

have:

•

Double negation law:,(....,A)

Commutative laws: A V B ­

AAB ­

Associative laws: «A V B) V C)

«AAB)AC)

9

_ A

BvA

BI\A

_ (AV(BVC»

_ (A A (B 1\ C))

•
Distributive laws: (A V (B A C»

(A 1\ (B V C»

De Morgan's laws: ...,(A V B) _

...,(AAB) _

«A V B) A (AvC»

«A 1\ B) V (AAC»

•

•

For instance, the logical equivalence of formulas in the De Morgan's laws

can be verified by the following truth tables (see Table 2.2).

true true false false false false

true false false false true true

false true false false true true

false false true true true true

Table 2.2: Truth tables validating de Morgan's laws.

In many situation it is cODvenient to exclude from formulas implication

and equivalence connectives. This cao be achieved by the means of the

fol1owing equivalence laws expressing formulas with implication and equiva­

lence by logically equivalent formulas employing ooly negation, conjunction

and disjunction.

A~B=...,AvB

The above can be verified by constructing the appropriate truth tables (see

Table 2.3).

Given formulas F ll F2' ... ' Fn and a formula G, G is said to be a logical

consequence of Fl, F2, ... ,Fn if for any interpretation under which F l 1\ F2 1\

... 1\ Fn is true, G is aIso true. If that is the case, F l , F2' ... Fn are called

postulates, premises or azioms of G. If the postulates are valid formulas

then their logical consequence must he valid aIso. Clearly, a tautology is a

10

•

•

•

true true true true true true

true false false false fa/se false

false true true true fa/se false

fa/se false troue true true true

Table 2.3: Meaning of implication and equivalence connectives.

formula which is a logjcal consequence of an empty set of formulas. We will

denote a logical consequence of G from FI, F21 ... , Fn as FI, F2, ... ,Fn F= G.

Theorem 1 (Deduction theorem) Given formulas FI, F2, ... ,Fn and a

formula G, G is a logical consequence of FI ,F2 , ••• ,Fn if and only if (FI/\

F2 /\ ••• /\ Fn) =*' G is a vaUd formula.

Proof· Suppose FI, F2'·" 1 FR F G, Le.: G is a logical consequence of

FI, F21 .. . ,FR' Let 1 be some interpretation. FI /\ F2 A ... A Fn can either be

true or faIse in that interpretation. H it is true, G must aIso be true (as it

is assumed to be a logical consequence) and hence, by the truth table of the

implication connective (FI /\ F2 A ... A Fn) =*' G is true. H FI A F2/\ . .. A Fn is

faIse, by the truth table (FI /\ F2 /\ • .• /\ FR) =*' G must still be true whatever

the logical value of G is.

Conversely, assume (FI /\ F2 A .•. /\ Fn) => G ta be valid. But, by the

truth table, for it to be valid when G is true, FI A F2 A ... /\ Fn must also

be true. 0

The deduction theorem allows us to formulate the following easy corol­

lary:

Corollary 1 (Contradiction corollary). Given formulas FI, F2,··· ,Fn

and a formula G, G is a logical consequence of FI, F2" .. Fn if and only if

FI A F2 /\ ••• A FR A ...,G is unsatisfiable.

11

•

•

•

Praof· By the deduction theorem, (FI A F2 /\ •.• /\ Fn) ~ G is a valid

formula when G is a logical consequence of FI, F2 , ••• , Fn. Hence, -, ((FI /\

F2 /\ ••• /\ Fn) ~ G) should be inconsistent. But, based on the equivalence

laws established for the propositional caleulus ...,(FI /\ F2 /\ ... /\ Fn) ~

G) is equivalent ta -,(-,(FI /\ F2 /\ .•• /\ Fn) V G) which is equivalent to

(FI /\ F2 /\ ... /\ Fn /\ -'G). 0

Deduction theorem and contradiction eorollary demonstrate an approach

to mechanical theorem proving. They show that proving a fact that sorne

fonnula is a logical consequence of a finite set of formulas is equivalent

to showing validity or unsatisfiability in propositional calculus of another

related fonnula. This, of course, enables to formalize an axiom system for

some particular domain as a set of formulas Al, A2, ... ,An and further prove

a theorem T in that domain by showing validity in propositional calculus of

Al /\ A2 /\ ... /\ An => T or unsatisfiability of Al " A2 /\ ••• /\ An /\ -,T.

2.1.2 Deductive treatment of propositional calculus

Beside the purely semantic treatment presented in the previons section, we

cau aIso build a deductive system for propositionallogic where we will show

if a formula is valid by demonstrating that it cau be derived from the logic

axioms by applying the inference rules.

Although the propositional logie su.nenders completely to the method

of truth tables which allows us ta establish validity and inconsistency of

formulas and hence by the deduction theorem also whether a formula is

logically implied by other formulas, it may, bowever, be relatively costly.

Indeed, we need to evaluate 2n interpretations for a formula of n atoms.

For some formulas deductive strategy may, perhaps, present a less costly

alternative.

Thus, alternatively to the semantic definition for a valid formula, we may

give a deductive one.

12

•

•

•

Definition 2 For any fonnulas A, Band C a valid formula is:

• One of the axioms:

(Al) (A =* (B => A»

(A2) «A => (B => C» => «A => B) => (A => e)))

(A3) «..,A => ...,B) => (B => A»

• A conclusion of modus ponens inference ru/e:

A,(A => B)
B

which states that formula B is valid if formulas A and (A => B) were

valide

It should be noted that the above axioms do not belong to the language of

propositional calcuIus. They are implicitly quantifying over aU subformulas

A, B and C and thus every axiom actuaUy describes an infinite number of

valid formulas.

The recursive definition above, known as Frege-Lukasiewicz deductive

system [Bu98], enumerates ail formulas which are valid under propositional

calculus. By showing that the axioms are true under ail interpretations and

by demonstrating that modus ponens inference rule preserves validity it is

possible to show that every deductively derived theorem is a tautology. We

cao aIso demonstrate that every tautology cao be deductively derived and

hence semantic and deductive definitions cao be shown to be equivalent.

The axiomatization presented above uses ooly negatioo and implication

connectives. We cao further define other connectives as follows: (A /\ B)

to mean ..,(A => ...,B), (A V B) to mean ...,A => B and (A <=> B) to mean

(A => B) /\ (B => A).

Example 2 Show validity of F => F.

From Al where A is F and B is (F => F) and /rom A2 where A is F,

13

•

•

•

B is (F ~ F) and C is F by modus ponens obtain:

(F =* «F ~ F) ~ F», «F ~ «F ~ F) =* F)) ~
«F ~ (F ~ F» =* (F ~ F»)

«F ~ (F ~ F» =* (F ~ F»

From the obtained formula and /rom Al where A is F and B is F by modus

ponens obtain:

(F ~ CF ==> F» ~ (F ~ F), (F ~ (F =* F))
F~F

which is the sought formula now proven to be valide

Other axiomatizations based on different sets of connectives are also

possible (e.g.: Hilbert and Ackerman axiomatization based on negation and

disjunction (Me64]). However, using deductive systems of this type (known

as Hilbert-type) on practice is rather inconvenient, since the proofs become

quite long even for simple theorems. Most practical implementations opt for

either Gentzen-type deductive systems (see Section 2.2) or resolution based

deductive systems (see Section 3.2) which are more attractive to employ in

an automated theorem proyer (Le97].

2.2 First-order predicate calculus

Propositional calculus is not expressive enough to describe many axiom sys­

tems. It is often necessary to consider the internaI structure of the propo­

sitions which is not possible in the propositional logic. For this purpose,

in the predicate calculus we use atoms built from predicates of Junctions

and quantified variables instead of simple propositions. The functions and

the quantified variables express some objects whereas the predicates express

objects' qualities. Thus, the predicate calculus is convenient to obtain for­

malizations ofcommon axiom systems of mathematics which usually operate

with some set of objects.

14

•

•

•

The set U of aIl objects is called the universe. The functions and the

predicates operate in the universe.

liA and B are sets, a mapping from A to 8 is an assignment of an object

in B ta each abject in Â. A mapping from a set of n-tuples of objects in

a set A into a set 8 is called an n-ary function from A to B. A subset of

n-tuples in A is called an n-ary predicate in A.

SemanticaIly, we can consider a predicate as a mapping of n-tuples in a

set A into the set of truth values {true, f alse}. Thus, if an n-tuple belongs

to the subset defined by the predicate, we describe sucb a situation with the

mapping into the truth value of true, otherwise the result is described by

the truth value of false.

Members of the universe of an axiom system are referred to as individ­

uals. The functions from the universe to the universe are called individual

funetions and predicates in the universe - individual pret1icates. A o-ary in­

dividual function always maps into the same individual. Thus, we call o-ary
functions as constants. Constants are used to refer to particular individu­

ais. A binary predicate of equality is of special importance for many axiom

systems and thus often occupies a special place among predicates.

With the logical connectives employed in propositional calculus, we cao

express complex facts about multiple propositions. We cannot, however,

express even a simple general law which is true for multiple objects. For

that purpose we introduce into the language of predicate calculus additional

logical symbols describing individual variables and their quantifiers. Two

quantifiers are used: the universal quantifier UV" and the existential quan­

tifier "3". The former allows us to express formulas which are true for any

individual x and the latter formulas which are true for some individual x.

A quantifier of a variable precede a formula with that variable occurring

(e.g.: (V'x)F(x». The formula immediately following the quantifier is in the

quantifiers scope. An occurrence of a variable is ca1led bounded if it is in

a scope of a quantifier of that variable. Other occurrences of variables are

15

•

•

•

called free.

Definition 3 A term is:

• A variable.

• If tl,···, tn are terms, and f an n-ary junction, then I(tl, . .. ,tn) is

a term. (Since the constants are O-ary junctions, any constant gO is

also a term).

A term that does not contain any variables is called a ground term.

Definition 4 A formula of pret1icate calculus is:

• If tI,··., tn are terms and P an n-ary predicate, then P(tl, ... ,tn) is

an atomic formula.

• If A is a formula, then sa is (-,A).

• If A and B are formulas, then so are (A 1\ B), (A V B), (A ~ B),

(A *> B).

• Il A[x] is a formula and x is a free variable occurring in that formula

then (Vx)A[x] and (3x)A[x] are formulas.

The language of fust-order predicate calculus is defined to be a language

in which the fonnulas are of the syntax as described above. The name ­

first-order refers to what is allowed to be quantified in the language. It is

possible to define other languages, called higher-order languages, where, for

instance, predicates and functions are allowed to be quantified.

It should be noted that formula definition given above also enumerates

formulas with Cree variables remaining. Since it is hard to assign any reason­

able meaning to such formulas we will assume that all interpretations treat

Cree variables as if they are universally quantified by default.

We will use the same convention of logic connectives precedence and the

same definition of semantic meaning of the connectives as established in

Section 2.1.

16

•

•

•

2.2.1 Semantics of predicate calculus

An interpretation of a formula F in the first-order predicate calculus consists

of a non-empty subset of the universe individuals V (called the domain of

the interpretation) , and an assignment of values to each function symbol

and predicate in the following way: Each n-ary function symbol is assigned

a mapping from n-tuples in 'D into 'D (hence each constant is assigned a

single element in 'D). Each n-ary predicate symbol is assigned a subset of

n-tuples in 'D.

The concepts of validity, satisfiability and contradiction are the same as

that in the propositional logic.

Example 3 Somewhat infonnally, the formula (V'x)(P(x» in the interpre­

tation over domain 1) = {aO, bO, cO} where P = {(aO), (cO)} is Jalse, since

P(bO) is Jalse (it is not in the subset describing the predicate P), and thus

(V'x)(P(x» is not true Jor ail x E 'D.

The equivalence laws demonstrating pairs of equivalent propositional

fonnulas are also true in the predicate logic and they can be augmented

by the equivalence laws for the formulas having quantifiers. We introduce

scoping ruIes for quantifiers in the folIowing way:

(Qx)(F[x] V G) =(Qx)(F[x]) V G

(Qx)F[x] 1\ G =(Qx)(F[xJ) 1\ G

where Q is any quantifier, F[x] is a term containing quantified variable x,

and G is a term which does not depend on x. Clearly, a term which does

not depend on a variable cau be brought out of the scope of that variable's

quantifier without compromising validity properties. In general we can bring

the quantifiers in front of the terms by proper variable renaming. Thus

assuming that new, distinct variable y is introduced:

17

•

•

•

We additionally introduce laws for negation of quantifiers:

....,«Vx)F[x]) =(3x)(....,F[x])

....,«3x)F[x]) = (Vx)(....,F[x])

These laws can he easily proven. Let 1 he some interpretation over some

domain 'D. H,«V'x)F[x]) is true in I, then (V'x)F[x] is faIse in l, which

means that there exists at leut one element of 1) for which F[x] is faIse.

Therefore (3x)(""'F[x]) is true. The other law can he proven in a similar

way.

The deduction and contradiction theorems which were true for the propo­

sitional calculus can also be shown to be true for the first-order predicate

calculus. However, whereas for propositiooal logic any formula had only a

finite nomber of interpretations (2R where n is the number of distinct atoms

in that formula), in predicate logic there is a potentially infinite nomber of

interpretations for formulas due to the fact that the universe is infinite and

thus there may he an infinite number of interpretation domains.

2.2.2 Deductive treatment of predicate calculus

Besides a purely semantic treatment, similarly to the propositional calculus,

it is possible ta give a deductive system for predicate calculus. Also as

was the case with propositional logic, many düferent axiomatizations are

possible most of which falI into two categories of either Gentzen or Hilbert

style. The former systems are given for formulas in sequent notation and

usually contain few axioms but multiple inference rules [SJ97]. The latter

systems have multiple axioms yet relatively few inference rules [Me64].

Let's consider a Gentzen-type axiomatizatioD. These are oCten known as

sequent calculi since they operate on sentences essentially expressing logjcal

implication of a set of formulas from another set of formulas. Thus a sequent

18

• is a sentence of the type

where r and ~ are finite sets of formulas: G I , ... , Gn and Dl, ... , Dm re­

spectively. Semantically, a sequent r F ~ holds if every interpretation l

which makes all formulas of r true, also makes at least one formula from

~ also true. The equivalent deductive definition of the valid sequent is as

follows:

Definition 5 For any formu.las A, B, and sets of formulas r and ~, a

valid sequent is:

• The axiom: A t= A

• Assuming that the hypotheses of the inference mies are vaUd sequents

the conclusions are valid sequents:

(r t= ~,A), (r t= ~,B)

r t= ~,AAB
r t= ~,A,B

rF~,AvB

r,A F ~,B

r t= ~,A ~ B

r,A t=~

r t= ~,...,A

r t= ~,A[x]

r t= ~,(V'x)A[x]

r t= ~, A{xlt}, (3x)A[x]
r t= ~, (3x)A[x]

r,A,B~~

r,AABF~

cr, A F ~), (r,B t= ~)

r,AV B F ~

(r I=~,A), (r,B F ~)

r,A~BF~

r F~,A
r,-,A F ~

r, A{xlt}, (V'x)A t= ~
r, (V'x)A F ~

r, A[x] t= ~
r, (3x)A F ~

•

•

Sequent calculi allow expressing an axiomatization for some particular

domain as a set of sequents and to further build proofs using the inference

rules. The proofs found in a sequent calculus are usually quite intuitive

for human readers, however, mechanical procedures to find proofs are both

complex in implementation and relatively inefficient.

19

•

•

•

Whereas using sequent calculi on practice in a mechanical procedure is

problematic, Hilbert-type deductive systems in unmodified form are hardly

usable at ail. These remain to be theoretical devices used to obtain a more

practical types of deductive systems.

The following Hilbert-type deductive system uses five axioms and two

inference rules. It can be shown that both deductive systems recursively

enumerate ail tautologies of the first-order predicate calculus and are thus

equivalent.

Definition 6 For any formulas A, Band C, a vaUd formula is:

• One of the axioms:

{A => (B => A»

«A ~ (B => C» => «A => B) => (A => C»)

«...,A => ~B) => (B => A)

{Vx)A[xJ => A[t]

where x is a variable, A[x] a formula containing x and t sorne term.

(Vx)(A => B[x]) => (A => (Vx)B[x])

where B[xJ is a formula containing a variable x and A a formula where

x does not occur.

• A conclusion of modus ponens inference rule:

A, (A => B)
B

which states that formula B is vaUd if formulas A and (A ~ B) were

valid.

• A conclusion of generalization inference role:

A
(Vx)A

which states that formula ('v'x)A is valid if formula A was vaUd.

20

•

•

•

It should be underlined again that, as was the case with axiomatization

for propositional calculus, the above axioms (both in Gentzen and Hilbert­

type systems) do not belong to the language of firgt-order predicate calculus.

They are implicitly quantifying over aU subformulas A, B and C and thus

every axiom actuaUy describes an infinite number of valid formulas.

With the Hilbert-type deductive system described, we can build an axiom

system for some particular domain as a set of formulas AlI A2"'" An and

further prove a theorem Tin that domain by showing validity in first-order

predicate calculus of a formula Al 1\ A2 1\ ... 1\ An :::::? T or unsatisfiability of

a formula Al 1\ A 2 1\ .•. 1\ An 1\ ...,T.
Many sucb axiomatizations require the notion of equality of individuals.

This cao he achieved by introducing an equality predicate: "Equal". 2 The
behavior of equality can be described by the following five axioms:

(Vx)(Equal(x, x»

(Vx)(Vy)(Equal(z,y} => Equal(y, x»

(Vx)(Vy)(Vz) (Equal(x, y)" Equal(y, z) => Etp.tal(x, z»

(VP)(V~l ... ~~.III .•. 11..)(Equol(Zl.lIJ} 1\ ••• 1\ Eq"GI(~... ...» ~ (P(Zl.··· .z..) ~ P(Jfl • ...• If.. »

The first-order predicate calculus with equality predicate defined3 is known

as jirst-orrler predicate calculus with equality.

An axiom system formulated in the language of first-order predicate

calculus for some particular domain is called a jirst-order theory.

A first-order theory is said to be inconsistent if every formula of the

theory is a theorem. Otherwise the theory is called consistent. Clearly,

2We will denote the equality predicate in the prefix notation Equal(z, y) used for all

other predicates, as oPPosed to infix notation (z = y) which is at times used in the

literature.
3 Equality substitutivity axioms represented here are of higher order since they quantify

over all individual predicates and function. What it implies is that every predicate and

function needs its own first-order substitutivity axiom

21

•

•

•

from an inconsistent theory we can deduce both a fact A and its negation

...,A being bath valide

A theory is called decidable if there exists a procedure (an algorithm)

ta test whet~er or not fonnulas are true in that theory. A theory is called

complete if it is consistent and decidable.

As shown by Church, first-order predicate calculus itself is undecidable,

that is, there is no general decision procedure to test validity of formulas

in fust-arder predicate calcnlus. However there are decision procedures ta

demonstrate validity of fonnulas which are indeed valid. Sucb procedures,

however, may not terminate for invalid formulas.

Qnly in recent years the attention turned to the complexity of deci­

sion problems. Although it appears that once a problem is shown ta be

decidable using a decision procedure on practice is a trivial matter, many

decidable decision problems appear to be intractable in a sense that they

require exponential (or worse) number of execution steps. For instance, a1­

though testing satisfiability of formulas of propositional logic is a decidable

problem it appears that any a1gorithm to compute satisfying interpretations

needs exponential number of execution steps in the worst case. Although

this result has not been proven yet, the strong conjecture is that the class

of problems solvable in non-deterministic polynomial time (NP) (to which

propositional satisfiability belongs) is distinct frOID the class of tractable

problems solvable in polYnomial time (P).

2.2.3 Normal forms of formulas of predicate calculus

The deductive systems described before suffer from complexity. This makes

them fairly inefficient for use on practice in a mechanical theorem proyer.

The complexity cames from the richness of the underlining language. If we

cao somehow restrict this richness and allow oo1y formulas of a particu­

lar form (8SSuming that any formula cao he transformed into sncb form) ,

perhaps a simpler deductive system cao be build. This is indeed the case.

22

•

•

•

The Robinson's resolution (see Section 3.2) is such a system operating on

formulas in clause form which is closely related to conjunctive nonnal forme

The formula in conjunctive nonnal fonn is snch that it is a chain of

conjuncted clauses which are chains of disjuncted literais, sucb as ({A V B V

-.C) A (A V C) A (D V -.A» where each literaI is either an atomic formula or

its negation.

To transfer a formula into conjunctive normal form we use the foUowing

procedure which involves multiple invocations of the equivalence laws:

• Use the definitions of implication and equivalence to obtain formulas

having only the connectives of negation, conjunction and disjunction.

• Use De Morgan's laws and the double negation law ta bring the nega­

tions immediately before the atoms.

• Repeatedly use the distributive laws to distribute conjunctions over

disjonctions.

Sînce the procedure uses equivalence laws only, the validity properties of

the resulting formulas are the same as that of the argument formulas.

Example 4 Transform -.(A A (B => C» into conjunctive nonnal form.

Firstly, eliminate implication and equivalence connectives:

..,(A A (B => C» = ..,(A A (-.B V C))

Bring the negation before the atoms:

-.A V -.(-.B V C) == -.A V (B A -.C)

Distribute conjunctions over disjunctions:

-.A V (B A -.C) =(-.A V B) A (-.A V -.C)

23

•

•

•

This procedure works for both propositional and predicate logic. How­

ever, presence of quantifiers in the predicate logic requires special treatment.

A fonnula of first-order predicate calculus is said to be in prenex normalform

if all quantifiers precede the reminder of the formula containing the terms.

The preceding quantifiers are called the prefix of the fonnula whereas the

reminder of the formula is called the matrix.

The following procedure which uses the equivalence laws for quantifiers

cau be employed to obtain formulas in the prenex normal farm:

• Use the definitions of implication and equivalence to obtain formulas

having only the functions of negation, conjunction and disjunction.

• Use De Morgan's laws, the double negation law, and the laws for quan­

tifier oegation to bring the negations immediately before the atoms.

• Use the quantifier scoping laws and variables renaming to bring the

quantifiers in front of the matrix.

A prenex form cao be combined with conjunctive normal form sa that a

formula is first transformed into the prenex fonn and further the matrix is

transformed into the conjunctive normal form.

Most proof procedures operate on formulas in even simpler form, referred

ta as the standard or Skolem normal form which represents quantifiers im­

plicitly rather then explicitly.

Ta transfer a formula into the standard form the following procedure is

used:

• Transfer a formula into prenex fonn.

• Transfer the matrix of the resulting formula ioto conjunctive normal

Corm.

• Eliminate existential quantifiers by substituting existentiaUy quanti­

fied variables for Skolem functions or constants in the following way:

24

•

•

•

Let (Q,.xr) he the leftmost existential quantifier in the prefix of a for­

mula: (QIXt} (Q2X2) .•• (Qnxn) we replace all occurrences of Xr in the

matrix by a new function symbol of r - 1 variables: !(XI, ... , Xr-l)

and remove (Qrzr) from the prefix.

• Eliminate universal quantifiers by assuming that ail remaining vari­

ables are quantified universally.

A formula transferred into the standard normal form can be represented

as a set of clauses, where each clause is a disjunction of literais.

TheoreDl 2 (Standard forln cODlpleteness) Let F' be a a formula in

standard form derived /rom formula F. F is inconsistent if and only if F'

is inconsistent.

Praof. Without loss of generality, let 's assume that a formula F is

already in prenex form. Let Qr he the tirst existential quantifier. Thus a

formula F = (Qlxd ... (Q,.x,.) ... (QnXn)M[XII". ,xn] is transformed into

where f is a Skolem function. We must show that F is inconsistent if and

only if F' is inconsistent.

Suppose F is inconsistent. H F' is consistent there is an interpretation

J sucb that F' is true in J. That would imply that for ail Xli •.• 1 X,.-1 there

is an element (for instance f(Xl, ... 1 X,.-I» sucb that

is true. Thus F must be true and hence F' is inconsistent if 50 is F.

Suppose F' is inconsistent. If F is consistent there is an interpretation

J such that F is true in J. That would imply that for all XI, 1 X,.-1 there

exists an Xr sucb that 19r+lxr+d ... (Qnxn)M[xll'.' ,Z,., ,Xn] is true.

We extend the interpretation J to include a mapping f from XI, ••• ,Zr-l

25

o

•

•

•

to X r and denote the extended interpretation l'. However that would mean

that F' must be true in l'. Thus F must be inconsistent if sa is F'.

The standard form completeness theorem demonstrates that we can use

standard forms of formulas as opposed to formulas themselves in proof pro­

cedures. Sînce formulas in standard form have a mucb simpler structure,

this can be exploited to obtain a simpler and more efficient algorithms.

26

•

•

•

Chapter 3

FundalDental proving

procedures

The mechanical procedures to prove theorems for particular domains rely on

the techniques allowing to show validity or unsatisfiability of other related

formulas in a logic calculus. Many of the procedures show unsatisfiability

for sets of clauses and thus before such methods are applied, the original

formulas representing the axioms and the theorem must be normalized. AI­

though the approaches involving normal forms are quite efficient, another

direction of automated reasoning is that of pursuing natural deduction on

essentially unnormalized formulas. These approaches are often based on

Gentzen-type axiom systems (see Section !.!!.!!) and operate with larger

sets of rules of inference. One often cited advantage of that approach is

that the derived proofs are more meaningful for human readers. However

the efficiency of natural deduction is often inferior to the procedures oper­

ating with Dormalized formulas, which remain the mainstream direction for

practical automated theorem proving. Most of these procedures implicitly

or explicitly rely upon Herbrand's theorem which al!ows us to express the

semantic meaning of formulas by convenient enumeration of its appropriate

(and not aIl possible) interpretations.

27

•

•

•

3.1 Herbrand's theorem

A formula F is valid if and only if the negation of that formula ...,F is

unsatisfiable. Any Cormula cao he expressed by a logicallyequivalent set of

clauses S. A set S of clauses is unsatisfiable if and ooly if it is faIse under

all interpretations over all domains. However, checking mechanically this

fact over all domains is impossible sinee there is an infinite number oC sucb

domains. Alternatively, we cao attempt to 6nd a single special domain 11.

sucb that S is unsatisfiable if and ooly if it is faIse under all interpretations

over this partieular domain. Sucb a domain indeed exists and it is known

as Herbrand universe.

Let 1/.0 he the set of all constants appearing in S. (H there is no constants

in S we cboose 11.0 = {aO}). For i = 0,1, ... Let 1/.i be the union oC1-I.i-l and

the set of aIl terms of the form In(t17"" tn) where fi E 1I.i for i = 0, ... ,n

and ln is any n-ary funetion occurring in S. Each 1I.i is ealled i-level constant

set of S and 11.00 is called the Herbrand universe of S.

We caD, thus, define interpretations over the domain 11.00 , called 11.­

interpretations as follows: Given a set of clauses S An interpretation 1*

is said to he an 1-I.-interpretation of S if it satisfies the following: 1 maps

constants ta themselves. If1 is an n-ary function and hl,"" hn are elements

of 1-1.00 in l, 1 assigns a function mapping (hl, ... , hn) (an n-tuple in 1/.00)

into 1(h17 ••• , hn), an element in 11.00 ,

Any interpretation lover sorne domain 'D, should have a corresponding

1I.-interpretation 1* (thus over the Herbrand universe) which satis6es the

following. If hl,"" hn are elements of 1t, every hi cao be mapped ta some

tlï in V. The same truth value assigned to P(dl , .• . , dn) in 1 should be

assigned to P(hl , ... ,hn) in 1*. If an interpretation [over some damain V

satisfies a set S then any of the 1I.-interpretations [* corresponding ta 1 also

satisfy S.

Theorem 3 (Herbrand unsatisftability) A set S 01 clauses is unsatisfi­

able il and only il S is lalse under a1l1l.-interpretations 01 S.

28

•

•

•

PraoJ. Clearly, if S is unsatisfiahle it must be false under all interpre-

tations which includes all1l-interpretations.

Assume S is false under all1l-interpretations. Suppose S is satisfiable.

Then there is an interpretation lover some 'D such that S is true. But

we cao construct 1* - an 1l-ioterpretation corresponding to 1 which by the

assomption was false. Since S should have the same truth value under 1*

and l, S must be unsatisfiable. 0

Herbrand unsatisfiability theorem demonstrates that a task of finding

the unsatisfiability of a set of clauses can be done by checking only the in­

terpretations over the Herbrand universe of that set of clauses. Thus the

task of checking unsatisfiability of some formula in first-order predicate cal­

culus is reduced to finding the clause set of its standard form and essentially

propositional task of listing tl-interpretations.

3.1.1 Semantic trees

Even though we only need to consider the 1l-interpretatons to check un­

satisfiability, it is also true that Herbrand universe of a fonnula containing

functions other then constants is infinite and thus there may be an infinite

number of 1l-interpretations which are infinite in length. However, Her­

brand universe has a particular structure which can he exploited using the

notion of a semantic tree which allows us to express unsatisfiability of a set

S in a finite manner. Semantic trees where proposed by Robinson in 1968

and refined by Kowalski and Hayes in 1969.

Given a set S of clauses, let .A he the atom set of S. A semantic tree for

S is a tree (see Figure 3.1), where every edge is labelled with a finite set of

atoms or atom negations from A in such a way that:

• For each node N, there are finitely many immediate edges El, ... , En

from N, and the disjunction of all atoms attached to El,.'" En is a

tautology.

29

•
• For each node N, let l(N) (called the partial interpretation) be the

union of all the sets of atoms attached to the edges connecting the root

of the tree with the node N. l(N) may not contain a complementary

pair (an atom and its negation).

A = {Pl, P2 , .•• }

•
o

o

o

o

o

o

o

o

o

o

o

•

Figure 3.1: A semantic tree for an atom set A.

A semantic tree in which every path from the root node down the tree

contains every atom or a negated atom of the set A is referred ta as a

complete semantic tree. It can be seen that a complete semantic tree of

a Herbrand UDiverse of a clause set S corresponds to exhaustive survey of

all possible 1i-interpretations. Since the Herbrand universe may weIl be

an infinite set with the corresponding infinite complete semantic tree the

following notion is crucial: Anode N is called a lailure node if l(N) falsifies

sorne ground instance of a clause in S and there is no other failure nodes on

the path from N to the root of the tree.

A semantic tree is closed if and ooly if its every branch terminates in a

fallure Dode.

30

o

•

•

•

Theorem 4 (Herbrand's theorem) A set of clauses is unsatisfiable if

and only if its e1Jery complete semantic tree is closed.

Praof. Suppose S in unsatisfiable. Let T be a complete semantic tree

for S. Every branch of T represents an interpretation which must he false

if S is unsatisfiable, but then every branch will terminate in a fallure Dode

and T will be closed. Conversely if every 1l-interpretation of S is false, S is

unsatisfiable.

Herbrand's theorem thus suggests a procedure ta check unsatisfiability of

formulas in fUst-order predicate calculus: attempt to build a closed semantic

tree for a clause set. This theorem is also important in showing completeness

of other proof procedures sncb as that of resolution principle.

3.1.2 The method of Davis and Putnam

Implementations of early mechanical proof procedures based 00 Herhrand's

theorem sucb as the one done by Gilmore tended ta be inefficient eveD for

proving simple theorems. In 1960 Davis and Putnam introdnced a procedure

for testing unsatisfiability of a set of ground clauses whose efficieDcy was

considerably better compared with implementations of earlier procedures

[Lo78].

Davis and Putnam's procedure for testing unsatisfiability of a set of

clauses S cao be expressed as the following four rules:

• The Tautology Rule: Remove ail clauses which are tautologies.

• One Literai Rule: H there is a unit ground clause LinS, obtaio S'

from S by deleting those ground clauses in S which contain L. If Si

is empty, S is satisfiable. If Si is Dot empty, obtain a set Sil from S'

by deleting occurrences of ...,L in ail clauses.

• Pure-Literal Rule: A literai L is said ta be pure if...,L doesn't occur

anywhere in the set. Obtain S' by deleting clauses containing L.

31

•

•

•

• Splîtting Rule: H it is possible to represent the set 8 in the following

fonn:

(Al V L) /\ ... /\ (Am V L) /\ (BI V ...,L) /\ ... /\ (Bn V ...,L) /\ R

obtain two sets 8 1 = Al /\ . " 1\ Am /\ R and 82 = BI /\ ... /\ B n /\ R.

8 is unsatisfiable if both SI and 82 are unsatisfiable (That is 8 1 V 8 2

is unsatisfiable.

Theorem 5 (Soundness of Davis-Putnam procedure) If the original

set 8 was unsatisfiable, the set resulting after application of any rule will

also he unsatisfiable.

Praof· Clearly, the Tautology Rule doeso't violate the satisfiability

properties. Sioce a tautology is satisfied by any interpretatioo, the original

set 8 is unsatisfiable ifand on1y if the set resulted after removal of tautologies

is unsatisfiable.

For the Ooe Literai Rule, suppose 5" is unsatisfiable. Assume 5 to he

satisfiable, then there is a model M of S eootaining literai L. For 5", M

must satisfy all the clauses that eontained ...,L (sinee ...,L is falsified in M)

therefore M should satisfy 5". Conversely, suppose 5 is unsatisfiable. H S"

is satisfiable, then there is a model Mil of 5". But then the union of M"

and L would be a model of 5 which eontradiets the assumption that 5 is

unsatisfiable.

For the Pure Literai Rule, suppose S' is unsatisfiable, then 8 must he

unsatisfiable sinee the clauses of S' form a subset with respect to clauses in

5. Conversely, suppose 8 is unsatisfiable. H S' is satisfiable, then there is a

model M of S' which doesn't include L or ...,L but that would mean that the

union of M and L is a model of 8 which was assumed oot to have a model.

For the Splitting Rule. Suppose 5 is unsatisfiable. Assume SI is 8at­

isfiable. Then there is a model M of 51. But that would imply that the

union of M and ...,L cao satisfy all clauses of 8 which was assumed ta he

32

(A => B), (B => C)
A=>C

The conclusion of this inference is referred to as a binary resolvent.

l Cut rule fannulated in Gentzen-type deductive systems as

•

•

•

unsatisfiable. Conversely, assume SI V 82 to be unsatisfiable. If S is satis­

fiable there should be a model M for S. H this model contains L it should

have been satisfied in order to satisfy 8. But thus 82 would be satisfiable.

If M contains ...,L it can satisfy SI. Sïnce M has to contain either L or ...,L,

8 1 V 8 2 shouId be satisfiable which contradicts the assumption. 0

Although Davis-Putnam procedure is quite efficient, it is inherently a

prQPositional method, necessarily requiring a set S ta he a set of ground

clauses.

3.2 Robinson's resolution principle

The resolution principle was proposed by Robinson in 1965 and constituted a

major break-through for practical automated theorem proving [Ro6S]. This

proof procedure is applied to a set of clauses (not necessarily ground clauses

as is the case with Davis-Putnam procedure) to find logically implied resol­

vents.

3.2.1 Resolution principle for propositional calculus

Applied to propositional logic, the resolution principle is essentially an ex­

tension of Davis-Putnam's one literai rule and is an inference ruIe which

can he formuIated similarly to the Cut ruIe 1 often added inta Gentzen-type

deductive systems

(rl, A F '-\), (r2 F '-\2, A)
rl,r2 F '-\1,~2

is unnecessary there. It can be shawn that it is redundant with respect ta other inference

rules.

33

•

•

•

Theorem 6 (Soundness of resolution) A binary resolvent C = Cl V C2

is a logical consequence of its hypotheses: Hl = L V Cl and H 2 = ~L V C2.

Proof. Let Hl and H2 be true in some interpretation J. Assume C is

false in J, Either L or -.L must be true in J. Without loss of generality,

assume L is false, then Cl must have been true and not a unit clause. But

that would imply that Cl V C2 , i.e. C is true in J. 0

A refutation is a proof ending with a contradiction. Clearly, since the

resolution is shawn to be sound, finding a refutation from a set of clauses

S, demonstrates unsatisfiability of S. Combined with the result of Contra­

diction theorem this suggests a mechanical proof procedure: negating the

theorem to be proven and generating resolutions from the obtained. clause

set until the refutatioD is obtained.

3.2.2 Resolution principle for predicate calculus

Necessity to consider the internai structure of the atoms and presence of

quantified variables complicates resolution in first-order predicate calculus.

A substitution is a finite set of the form 6 = {trlvr, ... , tnlvn } where

every Vi is a variable and every ti is a term Dot containing Vi. When alI ti

do not contain variables, 8 is called a ground substitution. A substitution

with no elements is called an empty substitution.

An expression L8 obtained. from a substitution 8 by replacing in L ail

occurrences of the variables by terms specified by the substitution 8 is called

an instance. An instance which does not contain any quantified variables is

called. a ground instance. Clearly, two substitutions Ct and {3 can be combined

by composition a 0 {3. The composition of substitutions is associative (that

is: (a 0 (3) 0 'Y = a 0 ({3 0 'Y)). The empty substitution E is both left and right

identity (that is: Ct = E 0 Ct = a 0 E).

A substitution 8 is called a unifier for a set of literais L, = {LI, . .. , Ln}

if and only if L.8 = L28 = ... = Ln8. The set {Lb ... , Ln} is then said ta

34

•

•

•

be unifiable. A unifier u for a set L. is said ta be the most general unifier if

and only if for each unifier 9 of that set there is a substitution "(sucb that

9 = U 0 "(.

Ta unify a set of terms:

• Start from the first symbols in the terms.

• If the symbols are the same (either functions or variables), advance to

the following symbols. If the symbols are different unification fails.

• If the current symbols are: 'Vi and tj - a variable and a term not

containing 'Vi add {viltj} to the unifier. Otherwise, if the term fj does

contain 'Vi, unification fails.

• Rewrite the terms 50 that ail substituted variables are replaced by the

respective terms.

• Repeat previous two steps till the 188t symbol.

If two or more literais of the same sign (either ail positive or negated)

of a clause G have a most general unifier 8 then C9 with only one of the

unified literais remaining is called a factor. H G9 is a unit clause it is called

a unit factor.

If Cl and G2 are two clauses 50 that LI and -Œ2 are two literais in Cl

and C2 respectively and LI and -,L2 have a most general unifier 8 then

(GI 8 - L18) V (G28 - -,L28) (where minus has the syntactic meaniog of "not

containing") is called a binary resol'Vent.

Thus, for the fust-order predicate calculus, the resolution inference rule

can be formulated as follows: 2. fi proper wost general unifiers exist, from

2Different authors present resolution deductive systems in a slightly different fonn.

The above definition originating in [CL73] presents a single inference rules combining

both resolution and factoring. It is equally p05Sible to give a deductive system where

resolution and factoring are treated as dift'erent rules. The way resolution is defined may

have implications on completeness of some refinements of resolution. Overview of different

formulations appears in [Le97].

35

•

•

•

Cl and C2 infer: A binary resolvent of Cl and C2' or A binary resolvent of

Cl and a factor of C2, or A binary resolvent of a factor of Cl and C2 , or A

binary resolvent of a factor of Cl and a factor of C2

Lemma 1 (Lifting Lemma). If C~ and C~ are instances of Cl and C2

respectively, and if C'is a resolvent of Cl and C~, then there is a resolvent

C of Cl and C2 such that C'is an instance of C (see Figure 3.2).

Cl = ... Li V ... V L{ ...

C

Ci = ... V L~ V . . . C2= ... V -,L~ V •.•

~~
c'

Figure 3.2: Lifting

Praol. Let C' = (Cl (J - Li (J) V (Ci(J - -,L2(J) where (J is the most general

unifier of Li and """'IL;.

Take the literais Li, ... ,L{ and -,L~, ... , -,L~ in Cl and C2 which fac­

tored into Li and -,L2 during the transition from CI, C2 into Ci, C2 and

find their mast general unifiers 'YI and 'Y2. After unification, literais in each

group hecome: Li = Li1'l = ... = L{ 'YI and L 2= L~1'2 = ... = L~1'2 which

are thus literais in the factors Cl and C2. Let l' = 'YI U 1'2 Since clauses Cl

and C2 can he, without loss of generality, chosen with disjoined variable

36

•
sets: L~ = Li7 = ... = L{"Y and L2= L~'"'(= .. , = L'r7. Thus Cl"Y = Cf
and C2"Y = C2.

Since Li and L2 unify with 8, and these are instances of Li and Li

respectively, Li and L~ should also have a most general unifier (T which is

more general or equal ta a unifier "Y 0 8. Thus there exists some À sa that

(T 0 À = 'Y 0 8.

Thus the resolvent of Cl and C2 is

but C' is an instance of C since (somewhat informally)

•

CÀ = «Cl - LD V (C2 - L2»)u 0 À =

«Cl - Li) V (C2 - Li»'Y 0 8 = «CI '"'(- Li"Y) V (C2"y - L2"Y»8 =

«C{ - LD V (C~ - L~))8 = C'

and sa C'is an instance of C . o

•

Theorem 7 (Completeness of Resolution Principle) A set S of first­

order clauses is unsatisfiable if and only if there is a refutation 01 s.

Prao/. Let's suppose S is unsatisfiable and A = {Al, A2""} is the

atom set of S. Let T be a complete semantic tree of S. By Herbrand's

theorem T is closed.

Use the following procedure to find a faIse clause for every node ofT other

than the failure nodes which must aIready have associated faIse clauses since

T is c1osed. Let's suppose that NI and N2 are neighbors with a common

parent N and there are two ground instances Ci and C2of Cl and C2 false in

[(Nd and I(N2) respectively, but bath C{ and C~ are not false in N. Since

NI and N2 are neighbors in the complete semantic tree, C{ must contain a

literai Ln+l and C~ a literai ...,Ln+l hence, by resolution, we can produce a

clause C' = (C{ - Li) V (C2- ...,L2) which is false in N since bath Ci and

37

•

•

•

C~ are faIse in N. By Lifting lemma if the ground instances Cf and C2are

resolvable sa should be the clauses Cl and C2 from the set S.

Using this strategy of folding up the semantic tree, an empty clause can

eventually be found for the root node, since at every step we reduce the

number of nodes in the tree.

Conversely, suppose a refutation exists. Assume S is satisfiable, therefore

having a model. Since the empty clause is logically implied by S, M should

satisfy the empty clause which is a contradiction. 0

The procedure used in the proof above cao he illustrated by the following

example:

Example 5 Given a set of clauses: C = {A(x) V -,B{aO), -,A(x), B(x)}

build a semantic tree and construct corresponding resolution-refutation. The

Herbrand universe of C is U = {aO}. The ground atom set is thus A =
{A{aO), B(aO)}·

A closed semantie tree can be construeted for this clause set (see Fig­

ure 3.3).

From the semantie tree, using the strategy outlined in the praof of com­

pleteness theorem, ohtaining the resolution-refutation praof.

Binee clauses A(a{» V -,B(aO> and B(aO) fail in the neighboring nodes

of the tree, there must be a resolution of their corresponding clauses from

the set C. Indeed

A(x) V ...,B(aO) and B(x) resolve to A(x)

Thus clause A{x) must he false in the node ahove the two failure nodes

eonsidered.

Sinee clauses ...,A(aO) and A(x) now fail in the neighboring nodes of

the tree, they must resolve. These clauses indeed resolve to a contradiction

whieh is assigned to the root of the tree.

38

•

•

•

A = {A(aO), B(aOH C = {A(x) v -,B(aO), -,A(x), B(x)}

-,B(aO)

Figure 3.3: A semantic tree for a clause set C.

The completeness theorem shows that if a set of clauses is unsatisfiable,

there must exist a resolution-refutation proof and thus it suggests a proof

strategy: generating all possible resolvents in an attempt to find a refutation.

39

•

•

•

Chapter 4

Methods for performance

improvernent

Although, Herbrand's theorem, Davis-Putnam method and Robinson's res~

lution provide mechanical procedures ta automatically prove theorems, sucb

procedures, it is strongly believed, inherently require an exponential (or

worse) number of execution steps. Although, it appears, that there cannot

be a faster prove procedure in the a1gorithm complexity sense, for the ac­

tuai computer implementations ta be practical it is necessary to improve

performance wherever possible.

An unsophisticated procedure may apply inference rules ta the clauses

in al1 possible ways thus often generating redundant or even useless clauses.

In many situatioDS, there are refinements available which reduce the number

of resolution steps. A refinement is called complete if it gives a procedure

which finds a proof whenever the original procedure was finding one. Some

efficient or necessary refinements used on practice may be, however, incom­

pIete and in some cases do not find a proof even when one exists. For

instance, ail implementations limit the number of retained clauses, size of

the retained clauses and aIlocated proof time. Although sucb restrictions

lead to incompleteness, there is hardly any alternative to using them on

40

•

•

•

practice.

The following sections briefly overview some popular strategy to improve

resolution hased procedures.

4.1 Deletion strategies

In the course of finding a proof, a clause is often produced whicb is irrelevant

for the prooe procedure. In other words, the procedure is capable of finding

the prooe even if sucb clause was never considered. In many situations, irreI­

evant clauses can be safely deleted since the completeness properties would

not suffer as a resu1t, yet the efficiency of the proyer can be considerably im­

proved since the deleted clause will not he used to produce other inferences

[L078].

4.1.1 Pure literai elimination

Recalliog that a literai L is said to he pure if...,L does not occur anywhere in

the clause set, we can eliminate all clauses cootaining L from the set whicb

we want to show unsatisfiable. This exactly constitutes the pure literai rule

of the Davis-Putnam procedure which was shawn to preserve unsatisfiability.

In the case of fust-order Iogic if there does oot exist a substitution (J sucb

that L8 is the same as some other literai ...,L (oot counting the sign) then L

is pure and cao be discarded.

IntuitiveIy, a pure literai does not have a counterpart with which it cao be

resoived and thus clauses with sncb literais are irrelevant for the procedure.

Although the removal of sucb clauses cao be done at any time, it is most

natural to perform this operation as a pre-processing step.

4.1.2 Elimination of tautologies

In the course of trying to derive a contradiction from a set of clauses, a

clause may he produced which is a tautology (a valid formula being a log-

41

•

•

•

ical consequence of an empty set of clauses). Sucb a clause can he safely

discarded in the hasic resolution-refutation procedure. Let's suppose that

we want to show T A FI 1\ ... /\ Fn to he unsatisfiable where T is a tautology.

Since a tautology is true under 80y interpretation, for T 1\ FI 1\ ... /\ Fn to be

unsatisfiable, FI 1\ FI /\ ... 1\ Fn must he unsatisfiable and thus elimination

of T mustn't affect completeness.

Sorne procedures, sucb as lock resolution (aee Section 4.2.5) perform­

ing clause ordering, however, require preservation of tautologies ta remain

complete as they put restrictions on essentially which subsets need to be

demonstrated unsatisfiable for showing unsatisfiability of the entire set.

One class of tautologies, whicb is easy ta detect, are clauses of the type

Lv ...,L V F. Since L must either be true or faIse in any interpretation I,

Lv ...,L V F will he true whenever L is true, but it will aIso be true whenever

L is faIse (since ...,L will be true in that case).

It may aIso he fruitful to try detecting other types of tautologies, for

instance in theorems with equality a clause Equal(t, t) V F will he true

under any interpretation due to reflexivity of equality. Depending on the

proof procedure and whether equality axioms are represented explicitlyor

not it may be possible to discard these equational tautologies as well (see

Section 4.3.2).

4.1.3 Subsumption

A clause B subsumes clause C if and only if B => C is a valid formula

(Hence C is a logical consequence of B and is true whenever B is true). The

suhsumed clause C cao be eliminated in some instances when we have the

clause B, since Bis, in a sense, a more general clause. In other instances,

subsumed clauses cannot be eliminated, for example, if factoring is used as

a distinct ruIe and not part of binary resolution, the binary factors pr~

duced are subsumed by their parents but their elimination will destroy the

completeness of resolution-refutation procedure.

42

•

•

•

A clause B 8-subsumes clause C, if and only if there exists a substitution

8 sucb that BD is contained in C (in the syntactic sense) and thus the number

of literais of BD does not exceed the number of literais in C. A derived clause

8-subsumed by another retained clause may be eliminated by the resolution

refutation procedure without loss of completeness. Thus 8-subsumtion is

often referred to simply as subsumption in the framework of the resolution­

refutation. Intuitively, the subsumed clause C bas more literaIs then the

subsuming clause B, thus whenever B is true C must aIso be true regardless

of the interpretation for the remaining literais of C which are not common

to Band C. Moreover, since the substitution B8 was contained in C, C is,

less general then B.

The underlining apparatus necessary to compute subsumptions is basi­

cally that of one-directional unification aIso referred to as matching. Thus,

the implementation of subsumption procedure can reuse some fondamental

algorithms, such as unification, already implemented to handle r~olution.

For many procedures we can differentiate Jorward subsumption where

newly produced clause is eliminated if it is subsumed by a previously deduced

clause and backward subsumption (more properly referred ta as backward

subsumtion with replacement) when a test is made if a previously deduced

clause is subsumed by a newly produced clause and, in the case when it is

true, the old clause is substituted by the new one.

Computations of subsumptions are undoubtedly helpful in reducing the

search space, however sucb computations are quite costly and may slow

down the proyer to unacceptable degree. Severa! alternatives are available to

avoid this problem. We can either attempt to speed up unification, opt for a

weaker variant of subsumption or both. Efficient indexing techniques sucb as

discrimination-trees are available for example for forward unit subsumption,

a weaker version of general 8-subsumption where the subsumer is a unit

clause (see Section -1.4) [Th9S]. Simîlarly, it is relatively inexpensive to

compute 9-subsumptions where 9 is an empty substitution. The latter is

43

•

•

•

referred to as simple subsumption [Ne97].

4.2 Restriction strategies

Although the deletion strategy can often discard some irrelevant clauses,

execution time has already been spent on producing them and running the

deletion procedure. The restriction strategies work to prevent generation of

sorne redundant clauses thus narrowing the search space. Sorne strategies

aIso restructure the searcb in a more convenient way for practical implemen­

tations.

4.2.1 Linear refinments

Lineo.r refinements constrain resolution so that a newly obtained clause is

always used to produce the next clause of the deduction either by factoring or

binary resolution agai~t some earlier clause or a base clause. This approach

was first introduced by Loveland in 1970 and independently by Luckham also

in 1970. The simple shape of the deductions produced by linear procedures

is a definite advantage for practical implementations which can essentially

rely upon depth-first seo.rch. Thus, with a linear procedure, deductions up

ta a certain depth are explored one at a time as opposed ta computing

them all for each given depth before proceeding deeper using breadth-first

search procedure. The latter method is often referred to as level saturation

techniqVe. It appears, that no successful implementation can rely exclusively

on breadth-first search due to its excessive memory demands Dor on depth­

first search as the latter may pursue unfruitful deduction for long time.

Combinations of the two are more promising such as iteratively-deepcning

depth-first search which explores the tree in a depth-first fashion up ta given

depth limit N before restarting the search for a deeper limit of N + 1. This

searcb combines low memory demand of depth-6rst search and fairness of

breadth-6rst search and although iteration N + 1 repeats entirely all work

44

•
of iteration N, due to exponential nature of the search space, it is only a

fraction of work of the deeper iteration.

Basic linear resolution is complete. This fact can he shown by demon­

strating a procedure ta transform a proof of an arhitrary form into linear

forme Sucb a procedure works by selecting some linear path in the tree

representing a proof and pushing the clauses off the path onto the path (see

Figure 4.1 and Figure 4.2).

•

"\
1A V LI 1 I...,A V B V L 2 1

~/
1...,8 V LI V L2 1 I...,B V L31

~ /
ILl V L2 V L31

~

•

Figure 4.1: Transforming a proof into Iinear form (case A)

As Figures 4.1 and 4.2 illustrate, there are two cases ta consider: a clause

violating Iinear constraint is a binary resolvent of some clauses (case A) or

it is a factor of sorne hinary resolvent (case B) [Ne97]. Thus, if there exists

a proof of some arbitrary Corm this constructive procedure finds some linear

proof whicb thus exists.

The linear refinement can he constrained even further. Linear-merge

refinement, in order to produce a new clause, uses previously deduced clause

together with either a "base" clause from the original set C or a merge clause

45

•

•

•

Figure 4.2: Transforming a proof into linear fonn (case B)

(that is a factor of a binary resolvent) obtained anywhere along the deduction

line. This is a more restrictive strategy compared with simple linear strategy

which can use either a base clause or any other clause obtained on the

deduction line previously. Linear-merge strategy can also be shown ta be

complete by demonstrating a procedure which gjven a linear proof constructs

a linear-merge proof.

A linear-unit refinement constrains the linear search to necessarily use

a unit clause (one literai clause) as one of the arguments for binary resolu­

tian. This restriction, although quite efficient, leads ta incompleteness. For

instance !rom the following unsatisfiable set of clauses we cannat deduce a

contradiction using this strategy:

C = {PVQ,PV...,Q,...,PvQ,...,Pv...,Q}

Since there is no unit clauses, no resolutions cao he performed at all.

A linear-base refinement, also referred to as input refinement, constrains

the binary resolution ta necessarily use a base clause from the original set

46

•

•

•

C as one argument for the binary resolution. This refinement also leads to

incompleteness. Unit refinement and base clause refinement can be shown

equivalent in a sense that any theorem provable by one method can he proven

by the other method.

Multiple other restrictions, to be considered further, can be used to aug­

ment linear resolution which remains one of the more important techniques

for practical implementations.

4.2.2 Set-oC-support

The set-ol-support refinement or negated conclusion refinement was first pro­

posed by Wos, Robinson and Carson in 1965. The important observation

underlining this strategy is that with most resolution-refutation methods to

prove a theorem T we are attempting to show that ...,T is unsatisfiable. Since

the conjunction of ail axioms is satisfiable (or at least assumed to be 50), we

May want to avoid producing deductions coming entirely from the clauses

representing the axioms since a contradiction cannot he produced frOID sucb

a set.

Thus a subset N of set of clauses C is called a set-ol-support if C - N

is satisfiable. A set-of-support resolution is a resolution of two clauses 50

that not both are in S - N. It is not difficult ta show that this restriction

is complete.

This strategy cao be used ta augment the linear resolution refinement.

Although, it May appear that set-of-support strategy cannot worsen the

performance, it is not always 80. In some situations lemmas produced by

resolving clauses representing axioms lead to shorter proofs, and these will

not be obtained with set-of-support refinement.

4.2.3 Semantic resolution

Semantic resolution was first introduced by Slagle in 1967. It generalizes

Robinson's hyperresolution (see Section 4.!J.4) (1965) and the set-of-support

47

•

•

•

strategy (see Section 4.2.2) proposed by Wos, Robinson and Carson (1965).

Semantic resolution uses an arbitrary interpretation l to subdivide the

clause set into two subsets based on clauses' truth value in that interpre­

tation and prohibits resolutions of clauses coming entirely from the same

subset. It additionally uses an arbitrary lexicographical ordering of predi­

cate symbols to limit the possible resolutions.

Given an interpretation Z and the ordering of predicates P, a finite set

of clauses is called a semantic P - 1 clash, ifand ooly if the E clauses (called

the electrons) and the N clause (called the nucleus) satisfy the following

conditions:

• The electrons are false in I.

• For each i = 1, ... , n there is a binary resolvent or a binary factor of

R.ï or R.ï-l and Ei and assuming that RI = N.

• The literai which is resolved upon in every predicate is the largest

according to ordering P among all literais of that electron.

• Rn (called the P - 1 resolvent) is false in Z.

Example 6 If

s = {...,A V C V B, -.A V B, -.C V -,A, -.B}

and

Z = {A,B,C}

with ordering P such that

A~B~C

then ...,A is a P - 1 resolvent of P - 1 clash {-.C V ...,A,B, ...,A V C V B}

It is important that the order of electrons does not matter in the clash so

that the same P - 1 resolvent will be produced for any ordering of the elec­

trons. As Figure 4.3 illustrates ...,A was produced in both cases of resolving

the shown clash.

48

•

•

•

Figure 4.3: Irrelevance of electron's arder in a clash

This property is important as it allowed to never explicitly generate the

intennediate clauses -.AVB and -.A V C which, as this example illustrates,

may weil he different and depend on the chosen order of binary resolutions.

A praof is ealled a P - 1 prao! if its every clause is either a base clause

or a P - 1 resolvent.

The restrictions of the semantic resolution can be shown to be complete.

Any interpretation can be used for clause subdivision and since unsatisfiable

sets of clauses do not have models, the subdivision using any interpretation

will produee two non-empty subsets of clauses. Intuitively, the semantic res­

olutions guide the procedure towards locating a contradiction sinee the P-I

resolvents must be faIse in the selected interpretation and the contradiction

is false in any interpretation.

The semantic resolution strategy generalizes over the strategies of hy­

perresolution and the strategy of set-of-support which are obtained when

particular interpretations are used.

49

•

•

•

4.2.4 Hyperresolution

Let's suppose that in a semantic resolution procedure (see Section 4.2.3)

the interpretation l is sucb that every literai in it is negated. If such an

interpretation is used, ail electrons and all P - 1 resolvents must contain

ooly non-negative literais.

A positive hyperresolution is a special case of P - 1 resolution when all

literais in the interpretation l are negative (hence all electroDS have ooly

positive literais).

Similarly, if l contains ooly non-negative literais, the electrons and P - 1

resolvents will contain ooly negative literais.

Thus, negative hyperresolution is a special case of P - 1 resolution when

all literais in the interpretation l are positive (hence all electrons have ooly

negative literais).

4.2.5 Clause ordering and locking

Ordering of literais helps to limit the number of possible resolutions. Seman­

tic resolution generally rely upon ordering of literais when constructing the

clashes. Although straightforward in the propositional case, the situation is

more complex in the case of theorems in first order predicate ca1culus. Since

same predicates may weil be applied to different terms, the literai ordering

in the propositional sense become ambiguous. As a consequence for seman­

tic resolution, clashes may resolve Dot to a unique clause but to multiple

clauses.

One approach to ordering is to consider clauses as a sequences of dis­

juncted literais rather than sets of disjuncted literais. Thus, each literal's

order corresponds to its place in the clause, resolution is allowed for the

biggest literai ooly and the binary resolvents are obtained by concatenation

of sequences of literais representing the ordered clauses and further delet­

ing the literais resolved upon. This method, although potentially efficient,

leads to incompleteness when used in conjonction with the semantic resolu-

50

•

•

•

tian procedure. It can aIso be used in a linear procedure so that we always

resolve the least literal in the clause most recently deduced.

Lode resolution is a further refinement of linear resolution-refutation pr<r

cedure where we assign ta each literai an integer representing literal's arder.

Different occurrences of the same literal will have different arder. Resolution

is permitted on literais of lowest arder. The main difference with the pre­

vious ordering is that the literais in the resolvent inherit their order indices

from the parent clauses. A merged literai in a factor takes upon the lesser

order index of the two literais which were merged together. Lock resolu­

tion appears to be an efficient refinment which is complete when used in a

basic resolution-refutation procedure. It is incompatible however with the

tautology deletion strategy. Using these together destroys the completeness

property.

4.2.6 Model elimination

Model elimination procedure not only restricts the linear resolution proce­

dure, but aIso changes some basic aspects of resolution. This method was

tirst proposed by Loveland in 1968 [Lo78] and it is essentially equivalent ta

the SL resolution procedure proposed by Kowalski and Kuehner in 1971.

This procedure also uses the concept of ordered clauses additionally main­

taining information on the previously resolved literais which alIows us ta

restrict binary resolutions so that its one argument is always a base-clause.

The information on the resolved literais which it maintains roughly corre­

sponds to the information contained in merge clauses obtained before on the

deduction Hne with which it was also necessary to resolve in linear-merge re­

finement ta preserve completeness. In fact, it can he shown that every model

elimination deduction can be transformed ioto linear-merge deductioD and

thus demonstrate that model-elimination procedure is complete.

The information on the resolved literai is preserved in the ordered clause

as a bracketed literai. For instance if P V Q is resolved against ~Q V R (the

51

extension of 1 with 2.

factoring of 5, deletion of tailing literaI.

extension of 6 with :1

extension of 7 with -4
Reduction of 8, deletion of tailing literaIs

•

•

•

last literaI in the first clause must be resolved upon) we normally obtain

P V R as an ordered resolvent. For this procedure however we want to

preserve the literai Q and hence we represent the resolvent as: P V [Q] V R.

Model elimination procedure operates with three inference rules:

• Extension: Performs ordered binary resolution with retention of the

resolved literai as a bracketed literai.

• Reduction: If the last literai in the ordered clause unifies with sorne

bracketed literai it is deleted.

• Factorization: Performs ordered factoring (so that the last occur­

rence of the literai to be merged is deleted from the clause).

Additionally, ail bracketed literais which are at the tail of the clause, not

followed by an unbracketed literai, are deleted after every step.

For instance, the set of ordered clauses given in the following example

can be shown unsatisfiable by model-elimination procedure. As with any

strategy maintaining ordered clauses, we start with the first clause attempt­

ing to resolve its last literaI and continue at each consecutive step to resolve

the last literai of the clause obtained at the previous step.

Example 7 Base clauses: 1: P V Q, ~: P V -.Q, 3: -.P V Q, 4: -.P V -,Q

Praof:

5: PV[Q] V P

6: P

7: [Pl V Q
8: [Pl V [Q] V -.P

9: 0
The procedures involving the clause trees [H896], where we a1so main­

tain the information on the resolved literais as internaI nodes of a tree rep­

resenting a clause, are, in many respects similar to the model-elimination

procedure.

52

•

•

•

4.2.7 Weighting heuristics

Beside strict restriction strategies, there ex.ist numerous heuristic strategies

which seem ta improve the efficiency of the proyer on practice but are not

guaranteed ta do 50.

One of the more popular strategies of this type is that of unit prefer­

ence. With this strategy we are not required ta always take a unit clause

as one of the arguments for binary resolution (which was the case with unit

refinement) but we would simply prioritize this kind of resolutions. Since

the contradiction is a clause of length zero and since unit resolutions al­

ways decrease the size of clauses such strategy appears to he very helpful on

practice.

Generalizing on unit preference, we can introduce a weighting strategy

sa that clauses of lesser weight are prioritized by the resolution. A popular

weighting criteria is the number of literais in a clause. Similarly ta the unit

preference, shorter clauses have probably more potential on practice ta lead

ta the contradiction.

Linear procedures employing iteratively-deepening depth-first search cao

be modified ta look beyond the current depth limit if there are resolutions

which decrease the weight of the current clause. This extended search method

may help ta avoid extra iterations by pursuing chains of resolutions likely

ta Iead ta the contradiction even when it is beyond current depth limite

4.3 Specialization strategies

Some important subclasses of theorems admit special refinements aIIowing

for efficient implementations. Some of these refinements may sacrifice com­

pleteness in the general case but cao be shawn complete for sorne class of

theorems.

53

•

•

•

4.3.1 Sets of Horn clauses

Linear-unit refinement is a constrained version of linear resolution (see Sec­

tion 4.2.1) which demands that one of the arguments for the binary resolu­

tion be a unit clause. Although incomplete for derivation of a contradiction

from an arbitrary set of clauses, this refinement is complete for a subset

thereof, namely 30y set of Hom clauses. A Horn clause is a disjunction of

literais such that it contains at most one positive literai.

Although, not all formulas can be represented as Hom clauses, many

problems c30 be formulated using the latter since a Hom clause represents

an implication of a conjunction of literais which is a naturaI representation

of logic statements for m30Y situations. Naturally the following implication

of a conjunction

if normalised will he transfonned first into

and finally ioto a Horn clause

Linear-unit refinement is equivalent in strength ta linear-base refinement

which demands that one of the arguments of binary resolution be a hase­

clause. Thus linear-hase refinement is also complete in the case of a set of

Hom clauses.

The Prolog programming language relies on Horn clauses for representa­

tian of theorems and its implementations commonly use base-clause refine­

ments for solving prohlems [St88l.

4.3.2 Theorems with equality

Equality predicate is an inherent part of theorems in varions areas of math­

ematics. A single predicate of equality, a single fonction of succession and a

54

•

•

•

constant zero can formalize the number theory. The properties of equality

namely: re8exivity, symmetry, transitivity and substitutability allow specifie

refinements redueing the number and the complexity of general resolution­

refutation [CL73].

Although the theorems with equality can be solved by regular meth­

ods, the four properties of equality would have to he represented by axioms.

Thus, the following three axioms would have to he added to represent re­

flexivity, symmetry and transitivity:

Equal(x,x)

Equal(x, y) ~ Equal(y, x)

Equal(x, y) /\ Equal(y, z) ~ Equal(x, z)

To insure substutivity, however, every function and every predicate em­

ployed will have to have a clause per every unit of its arity sucb as the

following example of substitutivity axiom for a binary function f(x, y):

Equal(x, y) ~ Equal(f(x, z),!(y, z»
Equal(x, y) ~ Equal(f(z, x),!(z, y»

This is a consequence of the fact that substitutivity axioms in its original

form were of higher order and quantified over ail individual predicates and

all individual functions. This necessary approach increases considerahly the

number ofaxioms and causes generation of many useless clauses by the

proving procedure.

To remedy this situation special inference rules treating the equality

internally cao be introduced. One of sucb rules is paramodulation first de­

scribed by Robinson and Wos in 1969. Use of this inference rule allows us

ta avoid introducing equality axioms and it considerably shortens lengths

of deductions by taking advantage of the properties of equality, particularly

substitutivity.

55

•

•

•

From the theoretical perspective sucb inference rules as paramoduIation

restrict consideration to a subset of all interpretations (In this particular

case to the set of E-interpretations, that is all interpretations of the equal­

ity theory - these whicb satisfy the reflexivity, transitivity, symmetry and

substitutivity axioms).

The paramodulation inference rule cao he described as follows.

Let L[t] VFI and Equal(r, s) VF2 he two clauses where t, r, sare terms and

L[t] is a literai depending on term t. If t and r have a most generaI unifier

(J then from L[t] V FI and Equal(r, s) V F2 we cao infer: L[s(J] V Fl 8 V F2(J.

The inferred clause is called a binary paramodulant from Equal (T, s) V F2

into L[t] V FI'

Example 8 The clause Equal(aO, bO) V R(bO) can he pammodulated into

P(x)VQ(x) directly protlucing: P(bO)VQ(bO)V R(bO) without any interme­

diate clauses which would have to he produced by unrefined binary resolution

in this case.

Using both resolution and paramoduIation creates a complete strategy

for theorems with equality.

It must he noted that introducing paramodulation inference rule alone

does not aIlow ta discard aIl equality axioms. Particularly, the axiom of

refiexivity: Equal(x, x) must still he preserved to retain completeness. This

axiom allows us ta resolve with some other negative equality literai whose

tenns of equaIity may he made the same under some substitution. It is

possible to augment paramodulation inference rule with another one, often

called identity assertion allowing to perform inferences as descrihed above

and then discard ail equality axioms and preserve completeness.

The paramodulation inference rule cao be further refined aod restricted

along very similar lines with that of binary resolution. For instance, beside

discarding tautologies of the type Lv...,L we cao also now discard equational

tautologies of the type Equal(t, t). Furthermore, hyperresolution (in a some­

what weaker form) and linear strategies cao be extended with paramodu-

56

•

•

•

lation. The former is referred to as hyperparamodulation. This strategy is

using an ordering P of the predicate symboIs and demands that the two

clauses to he resolved are positive and the literais paramodulated upon con­

tain the largest predicate symbol according to the ordering 1'. AIso possible

are strategies of linear-merge, linear-unit and linear-base paramodulation.

In many cases, the equality theorems lead to complex clauses which

represent essentially the same information as previously retained clauses

but in a more involved way. Somewhat Iike subsumption, the demodulation

procedure uses unit equality clauses referred to as demodulators to rewrite

derived clauses into simpler forme Consider the foUowing example.

Example 9 Greater(sum(OO,x),y) can he simplified into more meaningful

Greater(x, y) in the presence of a demodulator Equal(sum(OO, x), x).

For a unit equality clause to hecome a demodulator we must insure that

the transformation it will cause is simplifying. The criteria for that is that

left term of equality is longer then the right term of equality and that every

variable that occurs in the right term must also occur in the left terme

Combining multiple refinements allows for efficient strategies to handle

theorems with equality which are very common in multiple areas of math­

ematics. Multiple theorems can even be stated as pure equality theorems

which ooly have the equality predicate. These equational theorems cao be

proven by demodulation alone used as a rewrite rule without involving bi­

nary resolution directly [Mc94].

It must be noted that especially for linear procedures, introduction

of paramodulation does not guarantee improved performance in ail cases.

Paramodulation tends to shorten the deductions 50 that it can produce

an inference in one step whereas without it such an inference could only

be produced through one or several resolutions with equality axioms. AI­

though this may indeed lead to a shorter proof it also has an undesirable

effect of increasing the fan-out of the search space, 50 that it grows consid-

57

•

•

•

erably already at relatively shallow depth. This may cause proof procedures

(especially these based on linear refinements) to actually slow down.

4.4 Retention strategies

A linear proof procedure examines the search space in a depth-first fashion.

Thus, clauses generated on one path will be discarded during backtracking.

Some of those clauses may be very promising and should perhaps be retained.

Obvious candidates for retention are unit clauses, since a resolution with a

unit clause always shortens the length of a current clause, and demodulators

- simplifying unit equalities whicb allow ta reduce the length of matching

terms in clauses encountered elsewhere.

Since there may be a large number of such clauses to retain, and, what's

more important, a newly derived clause may have to be checked against

ail retained clauses, it becomes important to consider efficient storage and

retrieval data structures. Among sucb efficient means of clause retention

are the hash tables and various indexing techniques sucb as discrimination

trees.

4.4.1 Hasb tables

A hash table is an array each cell of which may contain a hash code of some

element sa that the index of the element in the hash table is determined by its

hashcode. Hashcodes are computed in sucb a way sa that different elements

hopefully receive different codes. With sucb a data structure checking if a

certain literai is retained by the table is essentially an array look up - an

0(1) operation.

On obtaining a unit clause, its hash code is computed and inserted ioto

the hash table. It is assumed that the sign of unit 's literai does oot affect

the hashcode, yet is recorded as perhaps an additiooal bit. This procedure

immediately allows us to fiod unit contradictions: if sucb a code already

58

•

•

•

exists in the table and the sign is opposite - a contradiction is found.

Retention of units in a table aIIows us to potentially reduce number of

literais in the clause to be generated elsewhere in the search. When a new

clause is infered, we can compute the hash code for its every literai and

perform hash table look ups. Ha hash table hit results and the sign of the

element stored in the table is different, the cunent literai cao be deleted as

it would have resolved with the unit clause stored in the table. H the sign is

the sarne, however, the unit clause stored in the table subsumes the current

clause and thus, all literais with the exception of the current one cao be

discarded from the current clause.

It must be notOO that by storing only a hashcode for a unit clause we

lose ail the information on the structure and the history of the unit clause

itself. Rence, it becomes more difficult to restore the entire proof (we may

have to restart the search to find some unit clauses which were stored in

the hash table and contributed in the refutation). We must aiso verify the

proofs, elements of which used hash table look ups. Due to potential of hash

errors when different literais got the same hashcodes, some obtained proofs

may be invalide

What's worse, however, is that by losing the structure of the unit clauses,

these cao only be used to resolve in the cases with an empty substitution

when unit's literaI exactly matches some literai in the current clause. This,

of course, is only a tiny fraction of ail possible resolutions whose substitution

is not empty. To partly relieve this problem, for every unit clause, we can

also retain certain number of its variants where variables were substituted

by some constants. This is likely ta result in a higher hit ratio, yet it a1s0

increases the load of the hash table.

Beside the use of hash tables for unit resolution and unit subsumption,

there are multiple other aspects of theorem proyers where this data structure

can be employed. For instance it can be usOO to reduce search redundancy.

Since it is expensive (aIthough sorne times necessary in the framework of the

59

•

•

•

linear refinements) to search the same clause multiple times if we arrived to

it by different path, we may hash all clauses found and not research a clause

which causes a hash table hit, i.e. a clause which was searched before.

4.4.2 Discrimination trees

A discrimination-tree index is a trie like data structure that represents col­

lectively the structure of ail terms inserted into the index. A downward

path in this tree frOID the root to the lea! describes the structure of a single

terme It can serve as a pre-filter to unification or matching, thus allowing ta

retain unit clauses for unit resolution, unit subsumers or left terms of unit

equalities for demodulation [Mc93].

The discrimination tree look up traverses and backtracks through bath

the query term and the tree and finds the terms which have a potential ta

unify or match with the query terme

Every Dode in the tree, with the exception of its root, is labeled with

either a functor, a constant or a special symbol "*" ta describe any variable.

if two terms have some common prefix, their paths in the tree will be the

same for the length of the prefix.

In the discrimination tree represented in Figure 4.4 the tenns g(bO, aO),

and g(bO, cO), are represented hy a common path 9 - bO descrihing common

prefix at which point the paths for the two terms branch ending with aO in

one case and with cO in the other.

Thus, with this method, it is possible to compress structure of many

similar terms into a relatively compact data structure which also enables

fast querying to determine all terms which has a potential to unify.

As it was mentioned, any variable is represented in the tree by a special

symbol "*". Thus, during querying process any corresponding subterm in

the query term will he accepted. For instance, the term f(x, x) is represented

in the tree by a path 1-*-* but this will a1so be a representatioD for I(x, y),

60

•

*

n

aO

~
f 9

/1 ~
* l\ aO

* aO cO

*

T=
{f(x),

f(n(aO)),
g(x,x),

g(bO, aO),
g(bO, cO),
g(aO, x)}

•
Figure 4.4: A discrimination tree for a term set T.

and obviously some terms (e.g. f (aO, bO» which may unify with the latter

will not unify with the former.

A refinement of the basic discrimination tree called variable-containing

discrimination tree does represent explicit information on variables, and thus

allows precise queries. This, however, incurs additional complexity of the

data structure and the querying algorithm.

The use of the discrimination tree in a theorem proyer is similar ta that

of a hash table. The advantage however is that since the entire structure of

the term is represented, we do not have ta store any additional variants of

the term where constants were substituted for certain variables.

•
61

•
Chapter 5

Approaches for theoreOls

geometry

•
ID

•

•

Refinements outlined in Chapter 4, if properly applied, should aIlow us ta

considerably improve the performance of resolution based theorem proyers.

The majority of those refinements were generic and applicable to any theo.

rem. Some, however, exploited certain knowledge of the underlining axiom

system to find some computational shortcuts. For instance, knowledge of

behavior of the equality predicate which possesses the properties of reflex­

ivity, symmetry, transitivity and substitutivity allows us to formulate the

inference rule of paramodulation with the internaI knowledge of the ahove

properties and delete now unnecessary axioms to describe them. This strat­

egy allows the proyer to make relatively complex inferences in one step and

Dot to produce many of often useless intermediate inferences thus potentially

speeding up the search.

Other classes of theorems may henefit from such specializatioo strategies

arising out of special properties of their common axioms. One of the oldest

domains in mathematics (if Dot the oldest), where tms may he of interest, is

Euclidian geometry. It also sa happens that theorems in Euc1idian geometry

are relatively difficult to prove automatically and many generic refinements,

62

•

•

•

which help in other domains, do not seem to he strong enough in this case

(As will be ohserved in section 5.3.2 when describing experiments with two

popular proyers, many relatively simple (in mathematical terms) theorems

were oot proven).

By considering the set ofaxioms it is possible to devise refinements

specifically aimed at geometry theorems. Thus, in this chapter we first

overview formalizations for Euclidian geometry. Then, multiple refinements

will he proposed. Since automated theorem proving is inherently a practical

subject where the value of a method should be decided by its performance

in practice, these refinements were implemeoted in GLIDE theorem prover.

The prover and the experiments carried out will be described to show how

the proposed methods farerl against generic strategies.

5.1 FormaI systems for geometry

Planar geometry holds the distinction of being one of the earliest domains

to be formalized. The system of multiple axioms was put forward by Euclid

in bis "Elements". In many respects this was the beginning ofaxiomatic

method itself. The axioms were:

• A straight Line may be drawn from any point to any other point

• A finite straight line cao be extended continuously in a straight line

• A circle may be described with any center and any radius

• AIl right angles are equal to one another

• If a straight line meets two other straight lines so as to malte the SUIn

of the two interior angles on one side of the traversai less than two

right angles, the other straight lines, extended indefinitely, will meet

00 that side of the traversai [8B91]

63

•

•

•

These five basic axioms were used to derive new theorems in a sequential

manner, 50 that for the first theorem only axioms were used whereas proofs

of following theorems could use previously proven theorems as welle

In the beginning of this century, with the advances in formallogic, the

need reemerged to find formai foundations for different domains of mathe­

maties, the axiom systems had to be expressed as formulas in languages of

logic.

An axiomatization for geometry was proposed by Hilbert. It operated

on the universe containing points, lines and planes and had predicates to

express relations of these individuals.

In 1926 Alfred Tarski proposed a much more compact formalization for

Euclidian geometry. It described the universe containing only points and

had ooly two essential predicates besides that of equality: equidistance and

betweenness.

Over the years, the latter system was successfully applied to the needs

of automated theorem proving. A slightly modified Tarskian axiom system

was described by McCharen et al. in [Mü76] and later Quaife made some

further modifications in his work [Qu89].

Hilbert's system was also used in automated theorem proving research,

for instance in [Be92J.

Besides, resolution based strategies, other approacbes to prove geometry

theorems were also developed sncb as the algebraic method of Wu described

in [Ch88]. This latter method is very powerful and with its help it is often

possible to prove theorems too difficult for resolution based proyers. How­

ever, this approach is not very general and can cope ooly with theorems

which can be expressed as equations (i.e. it cannat handle inequalities).

Special refinements were aIso considered over the years for subdomains

of geometry, for instance McCune and Padmanaghan describe a resolution

rule for reasaning about cubic curves in [MP96].

64

•

•

•

Tarski axiomatization was chosen for the purposes of this work due to its

popularity, simplicity and convenience as weil as because of a large amount

of available test theorems based on this system.

5.1.1 Tarski-Quaife axiom system

Quaife's edition of Tarski axiom system [Qu89], beside the predicate ofequal­

ity, is also using two other main predicates: equidistance and betweenness

which will he further denoted as D and B respectively.

Equidistance predicate assumes four arguments - two pairs ofpoints, and

it expresses the fact that the distance between points of the first pair is the

same as distance between points of the other pair. Predicate of betweenness

expects three arguments and it represents the fact that the point described

by its middle argument is on the line segment between points described by

its outer arguments.

The predicate of equidistance is reftezive 1:

D(x,y,y,x)

This means that the distance from point x to point y is the same as distance

from point y back to point x. It is transitive:

....,D(x, y, z, v) V -,D(z, v, 'Il, w) V D(x, y, u, w)

Equidistance possesses property of identity:

-,D(x, y, z, z) V Equal(x, y)

Meaning that if for two pairs of points with equal distances, one pair is

trivial (distance from the point to itself) the other pair should be trivial as

a consequence.

The predicate of betweenness also possesses property of identity:

....,B(x, y, x) V Equal(x, y)

lTarski axiom system is shown here in c1ausual form.

65

•

•

•

Meaning that if some point is between another point and that same point

again, all three points must in fact be the very same one.

With the aid of equidistance and betweenness predicates, it is possible

to describe more complex axioms. The following one is known as the Outer

five-segments axiom and it asserts relationships of similar triangles on the

plane:

-,D(x, y, x', yi) V -'D(y, z, yi, z') V -'D(x, v, x', Vi) V -'D(y, v, yi, v')v

V-,B(x, y, z) V -,B(x' , yi, Z/) V Equal(x, y) V D(z, v, Zl, Vi)

The meaning of this axiom is depicted in Figure 5.1.

v

y

v'

r~%J
y'

Figure 5.1: Outer five-segment axiom.

Beside predicates ofequidistance and betweenness this axiom system also

uses several fonctions. AU of these fonction actually arise during Skolemisa­

tion process (see Section 2.12.3), when existentially quantified variables are

substituted by new constants or function. Since axioms described here are

66

•

•

aIready in normalized, c1ausual form, fonctions appear instead of existen­

tially quantified variable to describe existence of sorne points which depend

on sorne other points.

One of the function used for this purpose is the Extension function, to he

denoted as ext(x, y, u, v). This function maps its four arguments, interpreted

as points, to a point. The first pair of arguments of extension function

descrihes a segment and the second pair specifies the distance by which the

segment is to he extended ta arrive ta the point specified by th€ extension

function. The following axiom (known as the Segment construction axiom

descrihes the main property of extension function:

B(x, y, ext(x, y, w, v»

D(y, ext(x, y, w, v), w, v)

Another function used is, what's known as, the lnner Pasch function, used

to describe existence of an intersection point of two segments as shown in

Figure 5.2.

w

u

Figure 5.2: Inner Pasch axiome

y

•

The main property of inner Pasch point is represented hy the following

axiom:

-,B(u,v,w) V -,B(y,x,w) V B(v,ip(u,v,w,x,y),y)

67

•

•

•

~B(u,v,w) v ~B(y,x,w) v B(x,ip(u,v,w,x,y),u)

Existence of three points not all on the same tine is described by the Lower

dimension axiom using the fol1owing three clauses:

.....B(plO,P20,P30)

~BCP20,P30,PIO)

.....B(pJO,PIO,P2o)

Another important geometric property is expressed by the Upper dimension

axiom which says that if three points are equidistant to two other distinct

points, aU three must be on the same tine. This axiom is expressed by the

following single clause:

.....D(x, w, x, v) VD(y, w, y, v) VD(z, w, z, v)V

VB(x,y,z) V B(y,z,x) V B(z,x,y) V Equal(w,v)

Existence of a single line paraUel to the given line and passing through a
point not on the second line is expressed by Euclid's axiom2 • In Tarskian
axiom system this axiom is described with the help of two special functions,
denoted as eucl(X,y,z,v,w) and euc2(X,y,z,v,w). These two points repre­
sent existence of a line passing through them. Three clauses are required to
express the axiom:

-,B(u, w, y) V -,B(v, w, x) V Equal(u, w) V B(u, v, eUCl (u, v, w, x, y»

-,B(u,w,y) v -,B(v,w,z) v Equal(u,w) v B(u,X,euc2(U,V,W,x,y})

-,B(u, w, y) v -,B{v, w, x) v Equal(u, w) v B(eucl(U, v, w, x, y), y, euc2(U, v, w, x, y»

The meaning of the above clauses is depicted in Figure 5.3.

2 Euclid's axiom in this formulation is equivalent to traditional fifth Euc1id's axiom

which has a special distinction in geometry. Assertion of this axiom accompanied by the

other four Euc1id's axioms describe Euc1idian geometry whereas its negation accompanied

with the other four describe a hyperbolic or Lobachevski geometry where at least two

distinct lines exist which are parallel to a given line and pass through a point Dot on the

second line.

68

•

•

•

u

/4':~
eUC2(U,V,W,x,y) y eUCI(U,V,W,x,y)

Figure 5.3: Euclid's axiom.

Finally, Weakened continuity aziom expresses the fact that any segment
joining two points one inside, one outside a given circle, intersects the circle.
the Continuity function denoted as cnt(x,y,z,u,v,w) describes the inter­
section point. Two clauses are used to describe this axiom:

-.D(u, v, u, vdV-.D(u, x, u, xl)v-.B(u, v, :.;)V-.B(v, w,x)vB(Vl, cnt(u, v, VI, w,X, :.;d,xd

-.D(u, v, u, vdV-.D(u, x, U, Xl)V-.B(u, v, x)V-.B(v, w, xlvD(u, w, u, cnt(u, v, Vl, w, x,:.;d)

Beside the axioms described above, since equality predicate was used, we

also require axioms to describe equality: its reftexivity, symmetry, transi­

tivity and its substitutivity with respect to predicates of equidistance and

betweenness as weIl as all functions used: extension, inner Pasch, Euclid's

fonctions and the continuity function.

5.1.2 Alternative and additional axioms

Quaife's edition of Tarski axiom system differs somewhat from earlier ver­

sions of this axiom system. McCharen et al (M076] describe a slightly

different system which had additional axioms for transitivity and connec­

tivity of betweenness. The axioms to describe these properties were later

found to be dependent on other axioms. McCharen's et al axiomatisation

69

•
represented Pasch axiom in outer rather than in inner form:

-,B(x, w, v) V -,B(y, v, z) V B(x, op(w, x, y, z, v), y)

-,B(x,w,v) V -,B(y,v,z) V B(z,w,op(w,x,y,z,v)

It is not hard to see from Figure 5.4 that this axiom is very closely related

ta the inner Pasch axiom and describe the same geometric property.

y

•
z

•

Figure 5.4: Outer Pasch axiom.

There is aIso a minor change in formulations of Euclid's axïom.

Both Quaife's and McCharen's et al systems weaken the continuity ax­

iom which is, however, admissible for the purposes of elementary geometry.

For Many purposes these two versions of Tarski axiom system are virtually

indistinguishable.

Additional properties of equidistance and betweenness can be derived

from the described axioms. For instance symmetry of equidistance and

symmetry of betweenness:

-,B(x, y, z) V B(z, y, x)

-,D(x, y, z, y) V D(z, y, x, y)

70

•

•

•

It may be beneficial ta add these theorems into the set of base clauses since

they may, at times, (earl ta a shorter proof. It should be noted, however, that

there are eight different equidistance congruences and adding seven clauses

ta describe thema1l may he overly costly in tenns of increased amount of

resolvents.

The situation is similar with reflexivity of betweenness:

B(x,x, y)

B(x, y, y)

As weil as additional reftexivities for equidistance:

D(x,y,x,y)

D(x,x, y,y)

These clauses can also he used to augment the hase clauses.

It is also convenient to add a predicate of colinearity (denoted G) ta

simplify the task of descrihing theorems. If this is done, it is necessary ta

specify the properties of this predicate. Most commonly this is achieved by

denoting its relationship to the predicate of hetweenness, since betweenness

describes a case of colinearity.

Thus, if three points are colinear, there are three different possibilities

for their betweenness:

-.G(x,y,z) V B(x,y,z) V B(y,z,x) V B(z,x,y)

At the same time if a point is between two other points, a1l three are colinear:

-,B(x, y, z) V G(x, y, z)

-,B(x, y, z) V G(y, z, x)

-,B(x, y, z) V G(z, x, y)

It should be noted that if colinearity predicate is added, it will also be nec­

essary to describe additional equality substitution axioms for this predicate.

71

•

•

•

5.2 Refinements

The difficulty of theorems based on Tarskian-Euclidian axiom system cornes

from relatively heavy use of equality, quite a large number of clauses~ length

of the clauses and also from the nature of predicates and functions involved.

For instance, predicate of equidistance admits eight different orders of its

arguments to describe the very same situation. Indeed D(aO,bO,cO,dO)
is the same as D(bO,aO,cO,dO> or D(cO,dO,aO,bO) etc. Imagining that

only this potentially results in seven different inferences for every equidis­

tance literaI in the current clause, the difficulty of a brute force search be­

cornes obvious.

The refinements of resolution work ta delete unnecessary inferences and

to prevent some inferences from occurring. By examining the underlining

axiom system it may be possible ta 6nd refinements ta improve performance

of the general methods.

5.2.1 Generic refinements

Since Tarskian axiom system uses the equality predicate, employing refine­

ments for first-order logic with equality should be beneficial. Particularly,

introduction of the inference role of paramodulation allows us ta delete

axioms describing symmetry, transitivity and substitutivity of equality. Ad­

ditional inference rule of identity assertion permits ta also delete equality

reflexivityaxiom (see Section 4.3.2). Three clauses are required to describe

reflexivity, symmetry and transitivity, one clause for each property. As ta

substitutivity, one clause is needed for each unit of arity of every predi­

cate and every function. Predicates of betweenness and equidistance have

arities of 3 and 4 respectively. F\mctions of inner Pasch, first and second

Euclid, extension and continuity have arities of 5, 5, 5, 4 and 6 respectively.

Thus, with this refinement aIone, we can reduce the set of base clauses by

35 clauses. Although this may soom like a considerable benefit, unrestricted

paramodulation may, at times, generate the number of inferences rivaling

72

•

•

•

what would have been produced by binary resolution with the equality ax­

ioms remaining.

The use of unit clause retention for unit resolution and unit subsumption

may worsen performance only due to the added cost of storing and querying

literaIs in the data structure. Assuming the use of a data structure with

inexpensive complexity for both above operations, gained benefits should

greatly exceed the incurred cost.

Adding mechanisms for non-unit subsumption is always more problem­

atic due to the high cost. From practical experience, cheep versions of non­

unit subsumption sucb as s-subsumption contribute to better performance

and incur only a reasonable priee.

As to many other possible refinements of resolution such as semantic or

lock resolution it is unclear to what degree these may help in the case of

geometry theorems.

Sorne of the generic refinements, mentioned above, were employed when

testing specialized geometry refinements to be described in following sec­

tions. The testing results will be described in Section 5.3.2.

5.2.2 Approaches for refiexivities

Both main geometric predicates of Tarskian axiom system: equidistance

and betweenness as weIl as auxillary predicate of colinearity are reflexive.

Quaife's version of Tarskian system included the following axiom for reflex­

ivity of equidistance:

D(x,y, y,x)

Beside this one, there are two easy corollaries which may also have been

added to the set of base clauses: Ordinary reftezivity: D(x, y, x, y) and

Trivial reftexivity: D(x, x, y, y).

For a single reflexivity clause D(x, y, y, x) to be removed and complete­

ness maintained, the foUowing inference rule can be introduced:

H a clause C bas a negative equidistance literai ...,D(tl, t2, t3, t4), and

73

•

•

•

this literal's first and last arguments unify with Ct whereas its second and

third arguments unify with /3, i.e. (tla = t4Ct) and (t2/3 = t3(3), iufer

Ca 0 /3 - ~D(tr, t2, t3, t4)a 0 {3 from c.
We will refer to this ruIe as Equidistance assertion, and the inference of

this rule as Equidistance assertant.

1t is not hard to show that introduction of this mIe permits us to discard

the equidistance reflexivity clause while maintaining completeness.

Theorem 8 (Completeness of equidistance assertion) If a clause set

S has a resolution proo! P, then the clause set S - {D(x,y,y,x)} will have

a resolution-equidistance assertion prao! P'.

Prao!. To obtain P' from P we will use the following procedure: Traverse

aU inferences of P. H D (x, y, y, x) is not among the parents of the current

inference, it will also be available on S - {D(x, y, y, x)}, thus transfer this

inference into P'.

H D{x, y, y, x) is indeed one of the parents of the current inference, the

second parent C must have contained a negative literaI ~D{tb t2, ta, t4), and

D(x, y, y, x) must have unmed with -,D(tlt t2, ta, t4} with some substitution

8.

Let's consider the structure of 8. Variable x must have unified with ti

and at the same time it must have unified with t4. Similarly, variable y must

have unified with t2 and at the same time with ta. Since x and y are just

variables, {til t4} and {t2' ta} must unify on their own.

Let's suppose that the most general unifier of {t l, t4} is called Ct and that

of {t2, ta} is called (3.

The resolvent of D(x, y, y, x) and C is c8--.D(tr, t2, ta, t4)8 but because

C does not contain variables x and y this would be the same as C Ct 0 {3 ­

-.D(tl, t2, ta, t4)ao{3 which is exactly an equidistance assertant of C and cao

thus be transfered into P'. 0

Equidistance assertion considered here is easily extendible to accommo-

74

•

•

•

date ordinary and trivial re8exivities.

The predieate of betweenness is also refiexive. Although this property

is not directly represented by the axioms of Tarskian system, it is easily

derivable from other axioms. There are two possible re8exivities:

B(x,x,y)

B(x,y,y)

An inference rule ealled Betweenness assertion, along the lines of equidis­

tanee assertion ean be introdueed here.

H a clause C has a negative betweenness literaI: ~B(tlt t2, t3), and this

literal's first and second arguments unify with a, i.e. (tla = t2a), infer

Ca - ~B(tb t2, t3)a from C.

The above only aceounts for B(x, x, y), but is easily extendihle to aceo­

modateB(x, y, y).

It is not hard to see that eompleteness will not suifer if this inferenee

rule is used and betweenness reflexivity clause (or clauses) are disearded.

The proof of eompleteness is similar to an analogous proof for equidis­

tance.

In a sÏInilar manner, we cao also introduce assertion of eolinearity. Ob­

viously, sinee two distinct points define a Hne, if of three points any two are,

in fact, the same, sucb three points must he eolinear:

CCx, x, y)

C(x,y,x)

C(y,x,x)

Introduction of these inference rules bas severa! advantages. It allows us

to discard up to eight clauses which were describing refiexivities. This is

actually a relatively small advantage sinee the introduced inference ruIes

mimic resolution with these clauses with a very similar cost. More of an

75

•

•

•

advantage results when sorne of the refiexivities were absent from the set

of base clauses. This may well happen since re8exivity of hetweenness is

derivable from other clauses. Deriving and then applying re8exivity may

lengthen the proof oo1y by a few steps yet every step often cames at a very

high and increasing cast.

A weaker version of geometry assertion (i.e. ofequidistance, betweenness

and colinearity assertion) where all substitutions are empty cao he used

along with described above general version. For instance, if a clause is

encountered which contains a literal-,D(tt, t2, fI, t2), it can he immediately

removed. This cao be done as a post-processing on a clause before it has been

used to produce new inferences. It is not difficult to see that completeness

will not be sacrificed.

An easy extension to sucb weaker version of geometry assertion should

allow us to easily find geometric tautologies. For instance, if a clause is en­

countered which contains a positive literai D(t}, t2, t2, tIl, this clause would

have been subsumed by equidistance re8exivity axiom and, thus, may be

discarded.

5.2.3 Approaches for identities

Both main geometric predicates of Tarskian axiom system have identity.

The identity for equidistance was expressed by the following axiom:

....,D(x, y, z, z) V Equal(x, y)

An easy corollary results when the symmetry of equidistance is taken into

account:

....,D(x, x, y, z) V Equal(y, z)

For a single identity axiom,D(x, y, z, z) V Equal(x, y) to be removed and

completeness maintained the following inference ruIe cao he introduced:

If a clause C has a positive equidistance literai: D(tb t2, t3, t4), and this

literal's third and forth arguments unify with a, i.e. (t3a = t4a), infer

76

•

•

•

Co: - D(tb t2, t3, t4)O: + Equal(t3, t4)a from C, where "-" has a syntactic

meaning of "not containing" and "+" has a syntactic meaning of "includiog" .

We will refer to this mIe as Equidistance identification, and the inference

of this rule as Equidistance identifier.

Example 10 Given a clause D(aO, J(bO), x, kO) V A(x) using equidistance

assertion and since x and kO uni/y, we can infer equidistance identifier

Equal(aO, j(bO» V A(kO).

It is oot hard ta show that the introduction of this rule allows us to

discard equidistance identity clause while maintaining completeness.

Theorem 9 (Completeness ofequidistance identification) If a clause

set S has a resolution proof P, then the clause set S - {-,D(x, y, z, z) V

Equal(x, y)} will have a resolution-equidistance identification proof P'.

Proof. To obtain P' from P we will use the following procedure: Traverse

ail inferences of P. H-,D(x,y,z,z) V Equal(x,y) is not among the parents

of the current inference, it will aIso be available on S - {-,D(x, y, z, z) V

Equal(x, y)}, thus transfer this inference into P'.

If ..,D(x, y, z, z) V Equal(x, y) is indeed one of the parents of the current

inference, there are two cases to consider.

First case accurs if the second parent C had a positive equidistance literai

D(tl, t2, t3, t4) which resolved with equidistance literai of identity axiom with

substitution 9.

If that's the case, variable z must have unified with t3 and at the same

time with t4. Sinee z is just a variable t3 and t4 must have unified on their

own.

Let's calI the mast generaI unifier of {t3' t4} as 0:.

The resolvent of C and -,D(x, y, z, z) V Equal(x, y) is obtained as C9 ­

-,D(t17 t2, t3' t4)9 + Equal(x, y)9 but sinee x, y and z are variables it will be

the same as Ca--,D(tI, t2, t3, t4)a+Equal(t1 , t2)a which is an equidistance

identifier of C and which cao, thus, be transfered iota P'

77

•

•

•

Second case occurs if the second parent C had a negative equality literai

-.Equal(ml, m2} which resolved with equality literai of identity axiom with

substitution 'Y (see Figure 5.5).

\\
-,D(x,y,z,z) V Equal(x, y}

1A V -.D(ml, m2, z, z) 1

o
o

o

1A'.8 V -.D(mi, m2, z, z).811 D(ft, t2, t3, t4) V B 1

\\ /
1A'.8'Y V B'Y 1

\\

Figure 5.5: P before transformation

li that is the case, the structure of the proof P cao he rearranged as

depicted in Figure 5.6. Since in the original proof P, a negative equality

literaI of the current clause resolves with the equality literaI of the equidis­

tance identity axiom, negative equidistance literaI will appear in the infer­

ence. This literaI must eventually resolve with some positive equidistance

literaI further aIong the way (see Figure 5.5).

It is not hard to see that it is possible to rearrange the order of resolutions

sa that the resolution with equidistance literai of identity axiom occurs first

(see Figure 5.6)

By applying this transformation we obtain a resolution which can be

easily substituted by equidistance identification and transferred iota P' 0

78

•

•

•

1A v -,Equal(mr, m2) Il Ba V Equal(tl, t2)a 1

\\ /
1A"Y V B"Y 1

o
o

o

Figure 5.6: P after transformation

Equidistance identification considered here can he extended to aIso ac­

comodate second identity of equidistance axiom:

-,D(x, x, y, z) V Equal(y, z)

The identity of betweenness was described by the followiog axiom:

-,B(x, y, x) V Equal(x, y)

Obviously enough, consideration for symmetry of hetweenness does oot re­

suIt in another distinct case of identity axiom.

We cao introduce a resolution rule of Betweenness identification similar

ta that of equidistance identification.

Thus, if a clause C has a positive betweenness literai: B(tl, t2, t3), and

this literaI's first and third argumeots unify with a, i.e. (tla = t3a), infer

Ca-B(tll t2, t3)a+Equal(tl, t2)a from C, where "-" has a syotactic mean­

iog of "not containing" and "+" has a syntactic meaning of "including".

79

•

•

It can be shawn that discarding of betweenness identity axiom while

introducing betweenness identification preserves completeness of a proving

procedure. The proof of this fact is similar ta the one considered for equidis­

tance identification.

The advantages of these inference ruIes are similar to that of equidistance

and betweenness assertion. Additional advantage is that out of two possible

ways to resolve with the clauses representing identity axioms ooly one will

remain, thus some irrelevant inferences will not he made.

5.2.4 Approaches for symmetries

Both main geometric predieates of Tarskian axiom system as weIl as an

auxillary predicate of colinearity are symmetric. The axioms to describe

symmetries are not explicitly present in the axiom system but are easily

derivable.

There are eight different eongruencies for equidistance, sinee the order

inside both pairs of arguments does not matter as weIl as the order among

the pairs themselves. This potentially induces seven different clauses to

deseribe symmetries of equidistance:

...,D(x, y, u, v) V D(y, x, u, v)

...,D(x,y,u,v) V D(y,x,v,u)

...,D(x,y,u,v) V D(v,u,x,y)

...,D(x, y, u, v) V D(x, y, v, u)

...,D(x,y,u,v) V D(u,v,x,y)

...,D(x,y,u,v) V D(u,v,y,x)

...,D(x,y,u,v) V D(v,u,y,x)

There is also a symmetry between outer arguments of betweenness:

...,B(x, y, z) V B(z, y, x)

Since order of arguments does not matter for the colinearity predieate, there

is six different congruences and as many as live clauses to deseribe them:

•
...,C(x, y, z) V CCx, z, y)

80

...,C(x, y, z) V C(y, x, z)

• -,C(x, y, z) V C(y, z, x),C(x, y, z) V C (z, y, x)

•

•

-,C(x, y, z) V C(z, x, y)

It is prohibitively expensive to allow each equidistance literai to appear in

eight different fortns, colinearity in six and even to allowevery betweenness

literai ta assume two different shapes.

One straightforward approach to help with clause retention using hash

tables is to make hashcodes of geometric predicates independent from sym­

metries.

Assuming that we have a function hc(t) allowing ta compute the hash­

code for term t, the symmetry independent hashcode for a betweenness

predicate B(t}, t2, t3) cao be computed as function of (hc(td + hC(t3» and

hc(t2» where + denotes arithmetic addition. Since arithmetic addition is

. symmetric, the resulting code will be independent of the order of ti and t3.

Similarly for the predicate of equidistance D(tI, t2, t3, t4), the hashcode

cao be computed as a function of «hc(td +hC(t2»œ(hc(t3) +hC(t4») where

e denotes bitwise exclusive-or. Sïnce both addition and bitwise exclusive

or are symmetric this will produce the same hashcode for all symmetric

equidistances.

Any symmetric function, of course,' will suit the above, not just addition

or exclusive or.

The hashcode of colinearity predicate C(tl, t2' t3) cao be computed sim­

ply as a function of (hC(tl) + hC(t2) + hC(t3». Thus, the order of arguments

will not matter at all.

Although modifying the retention mechanism to account for symmetries

is very important for overaIl performance, we may also want to modify the

inference rules 50 that the clauses describing symmetries become unness­

esary.

Since every equidistance literai has eight different congruences, ail de­

scribing the same geometric situation, when two equidistance literais are

resolved upon there are as many as 64 ways of performing the unification

81

•

•

•

if symmetry is also taken into account. Of these only eight are actually

distinct and hence there can he up to eight potentially different resolvents.

If completeness is to be maintained ail these must be searched.

Thus, we can modify the resolution and unification algorithms sa that

when two equidistance or betweenness predicates are attempted for unifica­

tion symmetries are considered intemally.

If completeness is not sought, we can weaken the above and stop when

first way of unifying is found and search only one obtained resolvent. From

practical experience, this approach appears to be beneficial when proving

many elementary geometry theorems.

5.2.5 Approaches for transitivities

Both geometric predicates of Tarskian axiom system are transitive. Al­

though a simple enough inference rule with the internai knowledge of tran­

sitivity is not obvions, one practical observation should be made.

Many theorems include several versions of equidistance transitivity ax­

iom, some of which involve symmetries.

For instance whereas regular equidistance transitivity is expressed as

...,D(x,y,z,v) V ...,D(z,v,u,w) V D(x,y,u,w)

very often another version will aIso appear:

...,D(x,y,z,v) V ...,D(x,y,u,w) V D(z,v,u,w)

This is done to minimize the impact of the absence of symmetry axioms,

which are derivable from other clauses.

If symmetries are handled by the refinements discussed in the previons

section, extra transitivity axioms will not serve any meaningful purpose and

should he discarded.

82

•

•

•

5.2.6 lIeuristics

Whereas previous sections described refinements which had some observable

foundation in the structure ofaxioOlS, this section describes heuristics which

are based on less precise observations.

Some of the longer axioms of Tarskian axiomatization are very rarely

used in the proofs ofelementary geometry theorems. For instance, the axiom

of elementary continuity is used extremely rarely. This axiom however helps

to produce a very considerable number of inferences (or rather does Dot

help in doing so). Thus, one simple heuristic is to discard one or severa!

long clauses from the set.

Constants are very important to geometric reasoning. Thus a possible

heuristic is to search grounded clauses only, the ones which do not have

any variables. This heuristic does not soom to help in all cases hut in a

few instances of difficult theorems, it helped to find a proof in a just a

few seconds whereas the search considering ungrounded clauses takes many

times longer.

As hypotheses of many theorems, clauses representing equalities of some

constants are often given. Such equalities can he treated as demodulators to

simplify other clauses. Whereas using demodulation for every inferred clause

as a post-processing step is relatively expensive, it often helps to demodulate

every hase clause before the start of the search using demodulators found

among other base clauses which will a1so include equalities ofsome constants.

The following incomplete heuristic often contributes ta faster praofs.

The geometric assertion can he applied only to very short clauses, either

with a single literai or two literais. This reduces somewhat the numher of

inferences yet does not soom to prevent discovery of most proofs.

83

•

•

•

5.3 Experiments with implementation

GLIDE (Geometry Linear Iterative Deepening Engine) is a theorem proyer

for first arder pred.icate calculus. It incorporates refinements aimed at the­

orems with equality and theorems in Tarskian geometry.

The proyer is implemented in C and should compile and run on most

UNIX machines. The source code along with sets of test theorems are avail­

able from author's web page:

http://www.cs.mcgill.ca/-sa'Vs

GLIDE recognizes two input formats of theorems, the one supported hy

TGTP prover3 and another one used by TPTP (Thousands of Prohlems

for Theorem Proyers) library.4 Two sets of Lex/Yacc based parsers were

built and the selected theorem fonnat must he specified at compile time as

makefile's parameter.

The run-time options specifying which strategies and refinements ta use

can be chosen by modifying GLIDE's configuration file.

Severa! sets of theorems were used in experiments. General strategies

and, ta sorne extend, equality refinements were tested using 84 theorems of

Stickel's test set. In some settings, GLIDE is capable of solving all of these

theorems with the time limit of 900 seconds per theorem.

Geometry refinements were tested on 66 theorems originating in Quaife's

work [Qu89] as weil as on 165 problems from geometry section ofTPTP. The

latter set incorporates the former in a somewhat modified forme

The experiments were performed on a LINUX machine with 233Mhz

AMD-K6 CPU, 512K L2 cache and 32M of main RAM.

The fol1owing sections describe the structure of the proyer and the ex­

periments that were done.

3TGTP was developed by ProCessor M. Newbom at McGill University.
4TPTP library is maintained by G. Sutcliffe and C. Suttner and it contains sets of

theorems from various areas of mathematics.

84

•

•

•

5.3.1 GLIDE theorem prover

The main search strategy implemented in GLIDE uses iteratively deepening

depth first search to look for a linear refutation proof. Although in many

other implementations, sorted strategies are often preferred to linear strate­

gies, the latter are nonetheless quite attractive and interesting as the search

space is explored in a more structured manner and thus performance is more

stable compared with sarted strategies which invariably use a version of a

best first search in a space where "best" is often poorly definable. Some

advantages of sorted strategies are nevertheless exploited in GLIDE by the

virtue of using extended search strategy sa that the prover looks beyond cur­

rent maximum iteration depth if it is ea.sy to reduce the number of literais

in the current clause. Since the contradiction is a clause of zero length, this

heuristic prefers clauses which have a potential to lead to a contradiction.

Use of a hash table to retain unit clauses and of a shallow tree to retain

demodulators affects the structure of proofs found which may actually be

non-linear but consist of multiple proof lines. One of the proof lines leads

to the contradiction and others ta unit clauses or demodulators which were

used to obtain inferences on other tines.

When and if contradiction is found, the main proof line is printed. If

sorne inferences on this line used resolutions with unit clauses retained by

the hash table or were demodulated., the search is restarted to find the lines

leading towards these units and demodulators. If these tines themselves used

unit clauses from the hash table or demodulators the process is repeated.

Beside restoring the proof, verification is also done to insure that no hashing

errors occurred during the search.

When a theorem is read, clause retention timits are automatically com­

puted (unless these were preset in the configuration file). These ioclude the

limit on number of literais, the limit on number of variables and the limit

on number of terms a clause could have to remain searchable.

Further, a simplification routine is called (when appropriate options

85

•

•

•

are set). Basic simplification attempts to delete clauses with pure literaIs,

clauses subsumed by other clauses. It substitutes two clauses with a single

resolvent by this resolvent. Similarly, if sorne resolvent or factor subsumes

its parent, the routine substitutes this resolvent or factor for the parent. If

equality or geometry refinements will be used, it is possible at this stage to

remove all equality and some geometry axioms.

The main loop of the prover controIs maximum iterative deepening. If

the search ends before time limit expires having explored all inferences at

maximum depth, the clause retention limits and maximum iterative depth

are increased and the search is restarted.

The routine controlling which clauses from the base set are to be searched

is called from the main loop. This routine decides, based on the options,

which clauses must he searched. For instance if linear negated conclusion

(set of support) refinement is switched on, only clauses from the negated con­

clusion will he considered for searching at tms, first level (see Section 4.2.1).

Each clause selected is passed to the searching routine. This routine

does the foUowing:

• Checks if a clause is a contradiction. If that 's the case, the proof line

is printed and additional searches made to find ail additional lines

leading towards used unit clauses and demodulators.

• Checks if the time limit has heen reached. If so, the prover terminates.

• The depth of the clause is compared with the current maximum search

depth. If the extended search is allowed, a flag will be set so that to

limit possible inferences further on.

• Decides if a clause is worth pursuing. Depending on the options se­

lected the following tests May be made:

Hash table is checked to see if this clause has heen searched before.

Normally, this is only done for clauses in the extended region, but

86

•

•

•

cao optionally be done Cor every clause.

- Test is made ta see iC the current clause is s-subsumed by some

base clause or the clause on the line leading towards the current

clause.

- Test is made to see iC the current clause is subsumed by some unit

base clause or unit clause on the !ine leading towards the current

clause.

- Altematively, a test can be made to check iC a clause is subsumed

(6-subsumed) by any base clause or any clause on the line learling

towards this clause.

The clause searched beCore or subsumed will not be searched any fur­

ther.

• The hash code oC the current clause is stored into the hash table.

• H an appropriate option is selected, a test is made to find out iC the

current clause back s-subsumes some base clause or a clause on the

line leading toward the current clause.

• Depending OD the options selected, the inferences are made. The Col­

lowing inference rules are available:

- Binary factoring

- Binary resolution

- Identity assertion

- Paramodulation

- Geometry assertion

- Geometry identification

H geometry refinements are enabled, special symmetry invariant hash­

ing and unification will he used for geometry predicates.

87

•

•

•

For inference ruIes requiring two hypotheses, the current clause is used

as one and any base clause or any clause on the line leading toward

the current clause may be used as the other. Some options may put

restriction as to which clause can be used as the other parent. If tinear

base refinement is enabled, only the base clause cao be chosen. If linear

merge refinement is enabled, only base clauses or merge clauses on the

line towards the current clause cao be cbosen (see Section 4.2.1). H

the extended search flag was switcbed on earlier, further restrictions

will be imposed: only those resolution which will reduce the number

of the literais in the current clause will be allowed.

• AlI clauses inferred are post-processed.

- The clauses whose parameters exceed retention limits are dis­

carded.

- Equality literais are oriented 50 that the left side of equality be­

comes heavier (see Section 4.3.2).

- Simple tautologies sucb as L V -,L, eqqational tautologies sucb

as Equal(t, t) and geometric tautologies such as D(tb t2, tl, t2),

B(tl, tt, t2) or C(tl' tit t2) etc. are detected in the inferred clauses

and sucb clauses are discarded.

Simple factorings (sucb as LvL substitued by L), simple identity

assertions (deleting literais of the type -,Equal(t, t», and simple

geometric assertions (deleting liteals of the type -,D(tb t2, tl, t2),

-,B(tb tb t2) or -'C(tl, tb t2) etc.) are performed.

A test is made to see if any literai of the inferred clause can

be resolved with a unit clause stored in the hash table. At this

point, it may aIso be determined that the clause is subsumed

by the unit clause in the hash table and thus that it should be

discarded. It should be notOO that variable numbering local to

88

•

•

•

each literaI is used to obtain literai hashcodes indepeodent from

literai's position in the clause.

- If an appropriate option is selected, aIl inferred clauses are de­

modulatOO.

- If an appropriate option is selected, a test is made to check if

sorne inferrOO clause is s-subsumed by another clause inferred at

this level.

• Unit clauses are inserted iota the hash table along with some variants

where variables were substitutOO by constants. The same hash table

is used for both clause hashcodes (Cor determination if the clause was

searched beCore) and unit clause hashcodes (for unit resolutions). An

attrihute stored together with every item describes the type of the

item, the depth where it was discoverOO etc. Probing is used Cor colli­

sion resolution. Insertion of unit clauses is prioritized when a collision

does occur.

• Unit clauses which were determined to be demodulators are stored in

demodulator's shaUow troo. This data structure may he considered as

the few tirst levels of the discrimination tree (see Section 4.4.2) where

tirst letters of the left tenn of equality are indexed. Every leaf contains

an array of demodulators aU sharing the same short prefix. This allows

to speed up the demodulation so that ooly some demodulators are

considered when matching a term.

• Clauses are sortOO according ta their number of literais (Bucketing is

used, thus the cost is quite smaU).

• The inferred clauses are searched recursively starting from the shortest

ones.

It should be notOO that virtuaUy aU steps outlined above cao be switched

on and off by modifying GLIDE's configuration file. A large number of

89

•

•

•

different search strategies may be obtained by modifying the options.

H a contradiction is found, the proof is printed which may induce addi­

tionaI searches ta find how some unit clauses and demodulators were pro­

duced. The hashing errors will be reported. Sïnce the hashcodes are 64 bits

long, this allows for 264 unique codes. Considering the fact that ooly from

10 to 30 thousand clauses are searched per second with typical search times

from 1 ta 900 seconds, hashing errors are very unlikely.

Since a lot of difl'erent inference steps are taken, the printaut of the

proof, may be somewhat diflicult ta read. Appendix A brieflyannotates an

example of a proof.

5.3.2 Experiments

Although multiple sets of theorems were used ta test GLIDE, the results

on two sets of geometry theorems will be described here. The first set

origjnating in Quaife's article [Qu89] contains 66 geometry theorems, some

of which are quite difficult. The second set is taken from the TPTP problem

library and contains 165 geometry theorems. Of these only four are in

Hilbert geometry whereas the remaining ones are in Tarskian geometry with

some using McCharen et al axioms and others Quaife's axioms. The second

set includes the first one ta a large extend, yet the fonnulation of theorems

often differs.

GLIDE's results for four different strategies will he shawn for bath sets.

Also, the results of OTTEJl:S and SPAS~ theorem proyers will he compared

with GLIDE's performance.

Table 5.1 shows the results obtained on Quaife's set. Please note that

GLIDE's result with zero resolutions indicates the situation when a unit

50TTER theorem prover was written by William MeCune at Argonne National Labs

[Me94].
6SPASS theorem prover was developed by Christoph Weidenbach, Bijan ACshorde1 t Uwe

Brahm
t

Christian Cohrs, Thorsten Engel, Georg Jung, EDDO Keen, Christian Theobalt

and Dalibor Topie primarily at Max-Planck-Institut für Informatik.

90

•

•

•

confiict was located during pre-processing before the actual search.

Results for four different strategies are shown in the later tables. For

each strategy, first column indicates the iteration at which the proof was

found and the time taken to find a contradiction.

The iteration nomber is not equivalent to the depth of the proof since

extended search strategy was used and also due to non-linear nature of the

proofs found. It is convenient nonetheless for comparing performance of

strategies.

The second column of Table 5.1 gives total nomber of inferences searched,

inc1uding during additional searches to restore the proof. The refinements

used are indicated above each column.

The experiment depicted in first columns was done using only refined

linear strategy. Eight theorems remained unproven after 900 seconds of

search time per theorem.

The second experiment additionally used refinements for equality. Six

theorems weren't proven. H compared with the first experiment, in 26 cases

search with equality refinements actually took much longer whereas only in

12 cases there was any significant improvement (including proving a theorem

previously unproven).

The third experiment used both equality and geometry refinements. Four

theorems weren't proven. There appears fair improvement compared with

the second experiment. This is seen in 35 cases, whereas in 8 cases perfor­

mance has deteriorated somewhat.

Some quite dramatic effects of the introduced refinements are especially

easy to see in the proofs of simple theorems. For example Q03Dl. THM

expresses the theorem that equidistance is symmetric for its first pair of

arguments. The proof obtained in the run where geometry refinements were

not available was four resolutions deep. A slightly edited listing of this

proof is provided below (for annotated example of actual GLIDE listing

please refer ta AppendixA).

91

•

•

•

1 D(a,b,b,a)

2 -D(a,b.c,d) 1 -D(a,b,e,f) 1 D(c.d,e,f)

19 -D(a.b.c,d) 1 D{c,d,a,b)

20 D{a{),b().c().d(»

21 -D(b().a{),c(),d{» NC

22(21a,19b) -D(c(),d(),b(),a(» NC

23(22a.2c) -D(a,b.c(),d{» 1 -D(a,b,b(),a(» NC

24(23b.1a) -D(a(),b(),c(),d(» NC

25{24a,20a) •

In the listing above, base clauses used in the proof are given first followed

by the praof line where for each clause the way of producing it is indicated.

For instance, the clause 22 was obtained by resolving the tirst literai (letter

a indicates the first literai) of the clause 21 with the second literai (letter b)

of the clause 19.

To derive the symmetry of tirst argument pair of equidistance, the proof

used already available symmetry between argument pairs of equidistance

(clause 19) as well as transitivity (clause 2) and reflexivity (clause 1) of

equidistance.

Sïnce one of the geometry retinements explicitly makes the resolution of

equidistance predicates invariant with respect to all symmetries, the proof

of the same theorem when the geometry retinements were available is only

a single resolution deep.

15 D(a(),b().c(),d(»

16 -D(b(),a(),c().d{» NC

17 (16a,15a) •

It is much more difficult to precisely see the effects of geometry retine­

ments when analyzing more complex proofs. The proofs may look signifi­

cantly difFerent and it may not he possible ta, for instance, see the spots

92

•

•

•

where severa! resolutions were replaced by an application of a new resolution

rule. As there are always very large numbers of different proofs for the same

theorem, even a minor change of a search strategy is likely to cause finding

a distinctly different proof. However, the general observation is that the

proofs involving geometry refinements practically always (and as expected)

involve less steps. The proof may often be found on an earlier iteration.

Moreover, since many clauses describing the axioms can be discarded before

the search which uses geometry refinements, sucb a search often requires less

inferences. The latter fact can be observed in the resuIts of the experiments.

The usefulness of the refinements cau be aiso verified by examining how

often these were used in the found proofs. Table 5.2 lists the resolution Iules

which were used in the proofs of the theorems of Quaife's set when the ge­

ometry and equality refinements were available. Please note that DISTANCE,

BETWEEN and COLlNEAR appearing in that table indicate the use of resolution

rules of either geometry assertion or identification for respective predicates

whereas UNIF_D, UBIF_B and UNIF_C indicate the use of symmetry invari­

ant unification in binary resolution of respective geometric predicates. As

it can be seen, the refinements were used in almost 70% of ail proofs. This

percentage is even higher if we consider on1y difficult theorems.

Finally, the last experiment used some equality refinements, notably

orientation of equality literai, identity assertion (but not paramodulation)

combined with all geometry refinements. On1y three theorems were not

solved. This strategy is the best if compared with all the other ones. It

defeats the first strategy in 48 cases and on1y looses in 2. It similarly defeats

strategies two and three.

One of the reasons why the last strategy appears to be the best is due to

the way the theorems in this set are formulated. AlI substituitivity axioms

are missing, yet many other axioms appear in severa! different forms. This is

one reason why paramodulation performed so poorly. Since paramodulation

models substitutivity, it was doing the work weaker strategies did not even

93

•

•

•

have to do explicitly. Second reason is that paramodulation tends to produce

inferences earlier in the search tree thus increasing the fan-out. Although

the resulting proofs will he shorter, it still may be necessary to look at a

larger number of inferences in order to find a prooe.

Table 5.3 shows results obtained by running SPASS 1.0 and OTTER 3.0

proyers in their automated modes and running GLIDE using the best ge­

ometry strategy.

It must be mentioned that Quaife's article [Qu89] descrihes proving aIl

theorems from this set using an earller version of OTTER. However, sorne of

it was done by using different strategies for different theorems. Performance

of GLIDE can aIso he improved by using different strategies for different

theorems.

When given 900 seconds per theorem and running in automated mode

SPASS was unable to prove 20 of the 66 theorems whereas OTTER failed

in 18 cases. GLIDE, when using geometry refinements, cannot find a proof

for only three theorems. It can he argued that both SPASS and OTTER

were operating in automated mode and that by fine-tuning the strategies a

better performance cao he ohtained. One of the purposes of this comparison,

however, is to demonstrate that proving some of the geometry theorems by

using hest available provers May Dot he completely obvious or easy and that

specialized strategies for geometry May be necessary.

It is very diflicult to compare details of the performance statistics of two

different provers. For instance, comparing the depth of the ohtained proofs

and total number of resolutions performed May Dot he meaningful due to

signfficant differences of search strategies. For instance GLIDE does consid­

erably more inferences per second then either of the two other provers. The

complexity of the inferences, however, is different, and 50 are the rules deter­

mining which inferences to count. Both OTTER and SPASS immediately

discard many inferences without counting them as searched.

When comparing rough measures of performance: the time required ta

94

•

•

•

find a proof and the total number of proofs round, GLIDE with its geometry

strategies appears ta he doing reasonably weIl.

95

•
Table 5.1: GLIDE's results on Quaife's set.

Name Il dIt Il dIt eq Il dIt. 1 eq seo Il dIt. low eq Keo

•

•

QOIDl.THM 1/0 7 1/0 23 1/0 16 1/1 8
Q02D2.THM 1/0 25 1/0 33 1/0 0 1/0 0

Q03D3.THM 1/0 21 1/0 33 1/0 0 1/0 0
QO-4D4.THM 1/0 1032 1/1 1605 1/0 a 1/0 0

Q05D5.THM 1/0 394 1/1 283 1/0 26 1/0 22
Q06El.THM 1/0 23 1/1 4'7 1/0 1713 1/1 608

Q07BO.THM 1/0 386 1/1 3576 1/1 845 1/0 ln

Q08R2.THM 1/0 1573 1/0 4440 1/1 4750 1/1 30

Q09R3.THM 1/1 4893 1/1 4082 2/2 25232 1/1 694

QI0R4.THM 1/1 27381 1/2 29109 1/2 18675 1/1 3131

QUD7.THM 1/1 285 1/1 1005 1/0 30 1/0 21

Q12D8.THM 2/7 274357 2/13 383822 2/31 884083 2/2 25308

Q13D9.THM 1/1 260 1/1 221 1/2 69575 1/2 8342

Ql-4DI0A.THM 1/0 421 1/0 3287 1/0 484 1/1 271

Q14DI0B.THM 1/13 288916 1/15 299657 1/30 552352 1/3 33819

QI4DI0C.THM 2/12 504248 2/11 300454 1/2 53354 2/7 109253

Q15RS.THM 1/5 116796 1/6 110798 1/1 574 1/3 29757

QI6R6.THM 2/10 475421 2/7 204103 111 1217 1/3 32949

Ql7T3.THM 111 16 1/1 42 1/1 27 111 5

Q18Bl.THM 111 5285 1/1 1613 111 8351 111 1940

Q19Tl.THM 2/9 376317 1/4 107777 1/1 0 1/0 0

Q20T2.THM 111 85 1/1 104 1/1 28 1/1 6

Q21B2.THM ·1- · 2/792 18259304 2/196 4243999 1/4 61896

Q22B3.THM 1'5 96831 1/5 129928 1/0 1044 111 397

Q23T6.THM 1/4 92629 1/6 128797 1/4 64230 1/2 8336

Q24Bot.THM 2/13 307407 1/3 53680 1/2 33249 1/3 42297

Q25B5.THM 2/14 343353 2/11 315282 1/1 3747 2/3 70311

Q26B6.THM 1/6 137498 1/7 192839 1/5 98065 1/2 13991

Q27B7.THM 2/24 732509 1/11 329064 1/1 1764 1/1 490

Q28B8.THM 1'1 5428 1/1 12273 111 6151 1/1 3660

Q29B9.THM 1/1 6879 1/1 13006 1/2 6975 1/1 4033

Q30E2.THM 1/2 34961 1/1 1463 111 1630 1/2 13476

Q31E3.THM -,. · 2/179 2451144 111 302 1/2 6864

Q32BI0.THM 1/50 779460 -/- . 111 1037 1/1 394

Q33Dll.THM 1/8 149631 1/23 512642 1/31 6..1205 1/4 54494

Q34D12.THM .,. - -/- . -1· - -/- -
Q35D13.THM 1/2 14402 1/2 13543 1/1 1877 1/1 507

Q36D14.THM 1/10 208069 1/21 458232 1/38 5n708 1/8 72307

Q37DlS.THM 1/7 1331593 1/19 404258 1/25 469382 1/3 44492

Q3812A.THM 1/2 7918 2/247 4637558 1/7 731615 1/2 6118

Q3812B.THM -1- ./- - -1- - 3/558 4126011

Q3812C.THM 1/8 126541 1/20 364351 1/23 256750 111 46861

Q3913.THM 1/5 50415 1/48 873797 1/60 996328 1/3 18158

Q401-4.THM .,. - 1/132 2224129 1/274 38418153 1/659 1848224

Q41Bl1.THM 3/172 3637913 2/535 11906002 1/31 546983 1/2 11826

Q42B12.THM -/- · ./- - -1- - -/- -

96

•

•

•

Q43B13.THM 1/4 120770 1/17 630461 1/24 437930 1/3 46446

Q44T7.THM 2/115 2677383 1/47 1807250 1/3 33351 1/6 82670

Q45T9.THM 1/76 1728321 1/129 3695868 1/16 387766 1/4 21083

Q46B14.THM 1/2 1831 III 4127 1/2 5587 1/2 1120

Q47T8.THM 2/119 2813371 1/46 1370541 1/83 1471267 1/6 49426

Q48B15.THM 111 171 III 172 1/2 3680 1/2 3948

Q49C2.THM 2/124 3280571 1/54 2009342 111 1982 III 1799

Q5OTI0.THM -1- - -1- - 1/2 362 1/2 209

Q51T11.THM 111 18 1/2 81 1/2 120 1/2 1

Q52C3.THM III 1641 1/11 170614 1/2 0 1/2 0

Q53C4.THM 1/14 375381 1/50 3489724 1/54 961348 1/2 3600

Q54T12.THM 2/125 3217479 1/66 3917873 1/18 310461 1/5 41232

Q55C5.THM 2/134 8249844 2/337 2019&C79 1/58 2076422 115 51377

Q56T13.THM 1/14 296366 1/24 568236 1/37 673146 1/3 16397

Q57WIA.THM 1/80 5255363 1/183 18433142 1/6 104416 1/11 208418

Q57WIB.THM 1/54 3179806 1/159 11581025 1/6 208080 1/24 471562

Q57WIC.THM 1/55 2203318 1/135 8953915 1/90 4094155 1/18 370248

Q58W2A.THM 1/18 397767 1/64 1292125 1/17 369095 1/7 59232

Q58W2B.THM 1/22 1051096 1/60 1219633 1/63 1791712 1/7 74572

Q59W3.THM -1- - -1· - -1- -1- -

97

•
Table 5.2: Resolution rules used to prove theorems of Quaife's set.

•

•

Name

QOIDl.THM
Q02D2.THM

Q03D3.THM

Q04D4.THM

Q05D5.THM
Q06El.THM
Q07BO.THM
Q08R2.THM

Q09R3.THM
QIOR4.THM

QllD7.THM
Q12D8.THM

Q13D9.THM

Q14DIOA.THM

Q14DIOB.THM
Q14DIOC.THM

Q15R5.THM

Q16R6.THM

Ql7T3.THM

Q18Bl.THM
Q19Tl.THM

Q20T2.THM
Q2182.THM
Q22B3.THM
Q23T6.THM

Q2484.THM
Q25B5.THM

Q26B6.THM

Q27B7.THM

Q28B8.THM

Q2989.THM
Q30E2.THM

Q31E3.THM

Q32BIO.THM
Q33Dll.THM

Q35D13.THM

Q36D14.THM

Rules

DISTANCE

UllIF_D

URIF_D

BINRES UlIIF_D

BIDES

BIDES FACTOR DISTAICE BETWEEN

PAJWtOD

BIDES PAUMOD

PlIWfOD DISTAICE

BINRES FACTOR PAlWtOD DISTOCE BETWEEN UBIF_D

BIllES DISTBCE .

BIllES PlRlMOD UBIF_D

BIIIRES FACTOR DISTlllCE BETVEEN UlfIF_D

BIllES PlIWIOD

BIllES

BInES ASSEIlT DISTlllCE DElfOD DIF_D UBIF_B

BIIIlES DISTlJICE BETVEEN

BIIfRES PlR.lMOD DIIF_B

BETWEEH

BIDES PA!WtOD BETWEErl DElfOD

URIF_B

BETWEEN

BInES PlIWIOD BETWEEII

BlNllES UNIF_B

BIIIlES UNIF_B

BIIIlES PARAMOD UlIF_B

BIIRES PlRl!OD BETVEEN UJlIF_B

BURES

BINRES PARAHOD URIF_B

BIDES PlJW(OD

BInES PlJW(OD

BIIIJLES PlIWIOD BETWEEII

BINRES PlIWtOD DISTlJICE

BIDES UNIF_B

BIIIRES FACTOR PlRAMOD BETWEEN UNIF_D

BIIIlES FACTOR

BInES DISTAICE URIF_D

98

•

•

•

Q37D15.THM

Q3812A.THM

Q3812C.THM

Q3913.THM

Q4014.THM

Q41Bll.THM

Q43B13.THM

Q44T7.THM

Q4ST9.THM

Q46B14.THM

Q4TrS.THM

Q4SB15.THM

Q49C2.THM

QSOTIO.THM

QSITll.THM

Q52C3.THM

Q53C4.THM

Q54T12.THM

Q5SC5.THM

Q56T13.THM

Q57WIA.THM

Q57WIB.THM

Q57WIC.THM

Q58W2A.THM

Q58W2B.THM

BIDES FACTOR. P&JWIOD 8ETWEER UNIF_D
BIIRES PARAMOD
BIIILES FACTOR.
BIIRES PAlWUJD
BIDES PARAMOD

BIDES DISTDCE 8ETVEEl1 nIF_D
BIIUS PAJWIOD BETVEEI nIF_B

BIllES PARAMOD UlIF_B
BIllES PARAMOD UlIF_B

BIllES
BIllES

BIllES FACTOR. UlIF_D
BIllES UlIF_B UlIF_C

BIDES FACTOR. UlIF_B UXIF_C

BIDES Pl1WIOD
BIllES DDIOD

BIDES
BIllES FACTOR. BE'rVEEII UIIIF_B

BIllES PlR.AKQD UlIF_C
BIllES PARAMOD UlIF_C

BIllES DISTDCE BETWEEI UlIF_D UlIF_B
BIllES DISTDCE BE'I'WEEIf UlIF_D UlIF_B

BIDES DISTDCE BETVEEI RIF_B
BIllES FACTOR. PlR.lMOD DISTDCE BETWEEI DEMOD UlIF_D
BIllES FACTOR. PARAMOD DISTDCE BETVEEN DEMOD UlIF_D

99

•
Table 5.3: Comparison of SPASS, OTTER and GLIDE on Quaife's set.

Name \1 dIt 1 SPASS 1\ dIt 1 OTTER 1\ dIt 1 GLIDE 1

•

•

QOIOl.THM 3/0 2 2/0 55 1/1 8

Q0202.THM 3/0 18 1/0 85 1/0 a
Q0303.THM 3/0 23 1/1 88 1/0 a
Q040".THM 4/0 27 6/2 1716 1/0 a
Q0505.THM "/0 224 2/3 1786 1/0 22

Q06El.THM 2/0 10 1/0 268 1/1 608

Q07BO.THM 2/0 7 1/0 364 1/0 177

Q08R2.THM 3/0 14 1/0 45 1/1 30

Q09R3.THM 5/0 9 4/0 45 1/1 694

QI0R4.THM 4/0 40 6/2 1999 1/1 3131

QU07.THM 2/0 32 2/0 427 1/0 21

Q1208.THM -/- - 19/697 66540 2/2 25308

Q1309.THM -/- - 2/5 437T 1/2 8342

QI4010A.THM 4/47T 9901 0/1 1033 1/1 271

Q14010B.THM -/- - -1- . 1/3 33819

QI4010C.THM -/- - -/- - 2/T 109253

Q15R5.THM 4/0 408 -/- - 1/3 29757

Q18R6.THM -/- - -/- - 1/3 32949

Ql7T3.THM 2/0 4 1/1 161 III 5

Q18Bl.THM 4/0 21 4/0 171 1/1 1940

Ql9Tl.THM 7{2oo 8976 4{187 18696 1/0 0

.Q2OT2.THM 2/0 6 1/0 82 1/1 6

Q21B2.THM 7/58 5682 6/200 33563 1/4 61896

Q2283.THM 3/0 79 3/1 743 l/t 397

Q23T6.THM 4/0 439 2/5 4146 1/2 8336

Q24B4.THM 8/179 7845 6/234 35374 1/3 42297

Q25B5.THM 4/0 600 4/1 981 2/3 70311

Q28B6.THM -/- - 3/11 5379 1/2 13991

Q27B7.THM 7/1 1079 4/2 1650 1/1 490

Q28B8.THM 5/7 1915 3/1 985 1/1 3660

Q29B9.THM 4/0 622 3/1 1003 1/1 4053

Q30E2.THM 4/0 25 22{14 5529 1/2 13476

Q31E3.THM -/- - -/- - 1/2 6864

Q32BI0.THM 4/1 908 -/- A 1/1 394

Q33Dll.THM -/- A 4/24 12084 1/4 54494

Q34D12.THM -/- - -/- - -1- -
Q35D13.THM -/- - 2/3 5784 1/1 507

Q36D14.THM -/- - 2/13 8634 1/8 72307

Q37DlS.THM -/- 6/21 14668 1/3 44492

Q3812A.THM 4/0 630 3/1 5070 1/2 6118

Q3812B.THM -/- - -/- A 3/558 4726011

Q3812C.THM 5{592 15584 -/- A 1/7 46861

Q3913.THM 5/122 7646 4/75 17353 1/3 18158

Q4014.THM 5/147 6282 -1- - 1/659 L848224

Q41Bll.THM -/- - -{- - 1/2 11826

Q42B12.THM -/- - -/- - -/-

100

•

•

•

Q43B13.THM 4/53 4198 3/55 16434 1/3 46446

Q44T7.THM -/- - 5/204 36192 1/6 82670

Q45T9.THM 9/67 4257 4/855 116321 1/4 21083

Q46B14.THM 7/63 4322 0/1 1030 1/2 1120

Q47T8.THM 6/62 4187 -/- - 1/6 49426

Q48B15.THM 4/10 2206 3/4 7572 1/2 3948

Q49C2.THM 5/0 407 -/- - 1/1 1799

Q50TI0.THM 5/58 4200 -/- - 1/2 209

Q51Tll.THM 2/0 6 0/1 514 1/2 1

Q52C3.THM 4/0 36 4/0 778 1/2 0

Q53C4.THM 6/532 13871 -/- - 1/2 3600

Q54T12.THM 8/90 6074 -/- - 1/5 41232

Q55C5.THM 10/68 5252 6/26 11004 1/5 51377

Q56T13.THM 8/100 7329 5/26 10368 1/3 16397

Q57WIA.THM -/- - 6/140 29207 1/11 208418

Q57WIB.THM -/- - 9/224 45063 1/24 471562

Q57WIC.THM -1- - 6/232 45500 1/18 370248

Q58W2A.THM 5/0 483 9/20 12883 1/7 59232

Q58W2B.THM 7/0 311 8/29 12976 1/7 74572

Q59W3.THM -1- - -1- - -1- -

101

•

•

•

Table 5.4 shows results obtained by GLIDE on TPTP's geometry theo­

rems.

The comparative performance of strategies is similar ta that shawn on

Quaife's set. The weakest strategy failed ta find a proof in roughly half (80

out of 165) of aIl cases. When equality refinements are available only three

more proofs are additionally found and the performance worsens or improves

in roughly the same number of cases. Sïnce aIl axioms of substitutivity of

equality are available in this set, introduction of paramodulation has a better

impact here compared with Quaife's set.

When geometry refinements become available, a fair performance im­

provement can be observed. Instead of failing on half of theorems, no proof

is obtained in one third of the cases (54 out of 165). We cao aIso note that

many theorems were proven faster than before. Qnly in a few instances it is

oot so, with the mast dramatic example perhaps being GE0077-4.p. This

example, however, only validates the general rule since this is one of rare

theorems in Hilbert geometry and thus our geometry refinements were quite

useless.

The strategy where geometry refinements are employed but some equal­

ity refioements (i.e. paramodulation) are not available allows ta find the

proof in three more cases leaving the number of unproven theorems at 51.

This strategy again appears to be the best, however, the performance dif­

ference with the strategy where paramodulation was used appears to be less

severe than in Quaife's set. This is probably due ta the absence of equality

substituitivity axioms in the latter set.

102

•

•

•

Table 5.5 shows the results obtained by running SPASS 1.0 and OT­

TER 3.0 provers in their automated modes and running GLIDE using the

best geometry strategy.

The comparative pedormance is similar to that seen on Quaife's set. In

this case, both SPASS and OTTER outpedonn GLIDE when the latter does

not use geometry refinements, yet show weaker performance compared with

GLIDE's refined strategy. Thus, SPASS cannot prove 64 out of 165 theorems

whereas OTTER fails in 78 out of 165 cases. Without the refinements

GLIDE fails in 80 out of 165 cases, however, with the refinements the number

of unproven theorems drops to 51.

103

•
Table 5.4: GLIDE's results on TPTP's set.

Name Il dIt Il dIt 1 eq Il dIt 1 eq 1410 Il dIt low eq Ileo

•

•

GEOOOI-I.p -1- - -1- - 1/0 0 1/0 0

GEOOOl-2.p -1- - -1- . 110 0 1{0 0

GEOOOI-3.p -{- - -{- - I{O 0 1{1 0

GEOOOI-4.p -1- - -1- - 1{0 4 1{1 4

GEOOO2-1.p -{- - -{- - 1{1 12 1{0 8

GEOOO2-2.p -{- - -{- - 1{1 6 1/0 5

GEOOO2-3.p 1{1 21 1{1 28 1{1 20 1{0 7

GEOOO2-4.p 2{1 8248 2{1 8248 1{0 8 1{0 4

GEOOO3-1.p 2/2 16905 2{3 36551 1{0 10 1{1 6

GEOOO3-2.p 2{1 8803 2{1 8287 1{0 6 1{1 5

GEOOO3-3.p 1{1 16 1{1 28 1{0 19 1{1 6

GEOOO4-1.p 3{540 17996750 2{13 284355 1{3 64932 2{16 269465

GEOOO4-2.p -{- - -{- - -{- - -{- -
GEOOO5-1.p -{- - 2/17 327884 1/5 170570 2/21 348959

GEOOO5-2.p -1- - -1- - -/- - -1- -
GE0006-1.p -{- 0 -/- 0 1{1 14014 1/1 4508

GE0006-2.p -{- -/- - -/- - -/- -
GE0006-3.p 1/1 604 1/1 233 1/1 176 1/0 748

GEOOO7-1.p -1- - -/- - 1/1 10974 111 8185

GEOOO7-2.p -{- - -/- - -/- - -{- .
GEOOO7-3.p 2{70 1911254 1/11 656494 1/4 109949 1{15 163260

GEOOO8-l.p -/- - -{- - -/- - -{- -
GE0008-2.p -/- - -/- - -/- - -{- -
GE0008-3.p 2{81 2691530 1{47 1211861 1/23 694563 1{3 19412

GEOOO9-1.p -/- - -/- - -/- - -/- -
GE0009-2.p -1- - -/- - -/- - -{- -
GE0009-3.p 2{83 2222369 1/26 1422754 1/4 52165 1{5 69318

GEOOID-1.p -/- - -/- - 1/1 0 1{0 0

GEOOID-2.p -/- - -1- - 1/1 0 1/0 0

GE001D-3.p -/- - -{- - 1/2 0 1/1 0

GE0011-1.p -/- - -/- - 1/0 7 1/1 la
GEOO11-2.p 1/0 31 1/1 22 1/0 4 1/1 17

GEOO11-3.p 1/1 39 1/2 72 1/1 78 1/2 60

GEOO11-4.p 1/0 32 1/1 22 1/0 19 1/0 23

GEOO11-5.p 1/0 31 1/0 19 1/0 16 1/0 22

GEOO12-1.p -{- - -1- - -/- - -{- -
GEOO12-2.p -{- - -/- - -/- - -{- -
GEOO12-3.p -{- . -/- - -/- - -/- -
GEOOl3-1.p -{- 0 -/- - -/- - -/- 0

GEOOl3-2.p ./- - -/- - -/- - -/- -
GEOOl3-3.p 1/4 36019 1/49 2216204 1/12 449859 1/2 7451

GEOO14-2.p 1{0 7 1/0 23 1/0 16 1/1 8

GEOOl5-2.p 1{1 38 1/0 46 1/0 0 1/0 0

GEOOl5-3.p 1{1 25 1/0 33 1/0 0 1/1 0

GEOOl6-2.p 111 23 1/1 31 1/0 0 1{1 0

GEOOl6-3.p 1{0 21 1{1 33 1/0 0 1{1 0

GEOO11-2.p 1{0 810 1{1 987 1/1 0 1/1 0

GEOO17-3.p 1{0 133 1/0 105 1/1 0 1{0 0

GEOOl8-2.p 1/0 36 1{0 44 1/1 a 1/0 0

104

•

•

•

GEOOl8-3.p III 167 1/0 139 III 0 1/0 0

GEOOl9-2.p 1/1 23 1/0 31 III a 1/0 0
GEOOl9-3.p 1/1 16 1/1 28 1/0 0 1/0 0
GEOO2G-2.p 1/0 780 1/1 959 1/0 0 1/1 0

GE002G-3.p 1/0 63 1/1 57 1/0 0 1/1 0

CEOO21-2.p 1/0 63 1/0 71 1/0 0 1/1 0

GE0021-3.p III 73 1/0 67 1/0 0 1/1 0

GEOO22-2.p 1/1 959 III 1090 1/0 26 1/0 22

GE0022-3.p 1/1 394 1/1 283 1/1 26 1/0 22

GEOO24-2.p 1/0 2319 1/1 1511 1/1 24 111 26

GE0024-3.p III 285 1/0 1005 111 30 1/1 21

GEOO25-2.p 3/33 1457792 2/12 416996 2/22 808358 2/2 16212

GEOO25-3.p 2/10 361113 2/14 438149 2/7 163247 2/3 46135

OE0026-2.p 2/3 74368 2/2 58970 1/1 36035 111 3052

GE0026-3.p 1/1 1485 1/0 221 1/2 69575 1/2 8342

GEOO27-2.p 2/2 50803 2/2 43467 1/2 26055 1/1 2119

GE0027-3.p 110 43 1/1 3287 1/1 484 III 283

GEOO28-2.p -/- - -/- - 2/206 4963288 2/7 130536

GE0028-3.p 1/7 120709 1/13 271638 1/31 522089 1/3 30366

GEOO'l9-2.p -/- - -/- - 1/6 234867 1/0 2241

GE0029-3.p 2/21 646730 1/14 312374 1/1 2961 111 1745

GE003G-2.p 1/2 45672 1/2 43433 1/2 20109 111 5110

GEOO3G-3.p 1/8 149750 1/23 494585 1/30 628523 1/4 54220

-GEOO31-2.p -1- - -/- - -/- - -1- -
GEOO31-3.p -1- - -/- - -/- - -1- -
GE0032-2.p -/- - -/- - -/- - -1- -
GE0032-3.p 1/2 14402 1/2 131543 1/1 1877 1/1 507

GEOO33-2.p -1- - -/- - -/- - -1- -
GE0033-3.p 1/11 211123 1/22 4593815 1/39 585595 1/7 73141

GE0034-2.p -1- - -1- - -/- - -1- -
GE0034-3.p 1111 200055 1/21 449707 1/25 471919 1/4 45908

GEOO35-2.p 1/0 143 1/0 39 1/1 1724 1/0 623

GE0035-3.p 1/0 398 1/0 47 1/1 1?l3 1/0 612

GEOO36-2.p -/- - -/- - 2/1 2364 2/0 2170

GEOO36-3.p 1/1 12429 III 540 1/1 303 1/1 5112

GEOO37-2.p -/- - -1- - 2/180 3981797 2/30 558999

GE0037-3.p -/- - 2/137 3357675 1/1 302 1/2 9408

GEOO38-2.p 1/0 373 1/1 734 1/1 1024 1/0 212

GEOO38-3.p 1/1 463 1/1 31550 1/1 1027 110 229

GEOO39-2.p 2/1 13857 2/1 6815 2/0 4065 III 567

GEOO39-3.p 1/1 2793 1/1 712 1/1 5616 III 2223

GE004G-2.p -/- - -/- - -/- - -1- -
GEOO4G-3.p -/- - -/- - -/- - -/- -
OE0041-2.p -/- - -1- - -/- - -/- -
GE0041-3.p 1/2 42813 1/2 47492 1/1 483 III 237

GE0042-2.p -/- - -/- - -1- - -1- -
OE0042-3.p -j. . -/- - -/- - -1- -
GE0043-2.p -/- - -/- - -/- - -j. -
GEOO43-3.p -/- - -1- - -/- - -1- -
GE0044-2.p -/- - -/- - -1- - -1- -
OE0044-3.p -/- - -/- - -/- - 3/253 5250862

GE0045-2.p -/- - -/- - -/- - -j. -
GEOO45-3.p 2/12 444547 1/3 99099 1/2 12868 1/1 1816

GE0046-2.p -/- - -/- - -/- - -1- -
GEOO46-3.p 2/25 650574 2/192 5902932 1/2 19035 2/5 136946

GEOO47-2.p -/- - -/- - -/- - -1- -
GE0047-3.p 1/1 3663 1/1 5607 1/1 2722 III 1791

GE0048-2.p -/- - -/- - 1/1 55 110 11

105

•

•

•

GEOO48-3.p 1/3 22473 1/217 3718431 1/2 1037 1/1 394
GEOO49-2.p -/- - 3/390 9975075 3/198 8735042 2/1 11674
GEO«M9-3.p 1/194 fW62964 1/217 8396135 1/60 1375085 1/8 64535
GEOO5D-2.p -/- - -/- - -/- - -1- -
GE005D-3.p -/- - -/- - -/- - -/- -
GE0051-2.p -1- - + - -/- - -/-
GE0051-3.p 1/3 58085 1/7 128644 1/6 139835 1/2 8317
GE0052-2.p -/- - + - -/- - -/- -
GEOO52-3.p 1/3 36683 1/4 119395 1/4 49673 1/3 12414
GE0053-2.p -/- - -/- - 2/46 1776190 3/283 7265791

GE0053-3.p 1/2 3117 1/2 172 1/2 3670 1/2 3946
GEOO54-2.p 1/0 269 1/0 671 1/0 497 1/0 134

GE0054-3.p 1/0 7 1/1 29 1/0 19 1/1 7

GE0055-2.p 1/0 303 1/1 1272 1{1 2504 1{1 122

OEOO55-3.p 1/1 619 1/2 16134 1/2 13390 1{1 93

OEOO56-2.p 1/1 2517 1/0 67 1/0 1995 1/0 748

GEOO56-3.p 1/1 379 1/1 22 1/1 1130 1/1 16

OEOO57·2.p 1{0 1394 1/1 72 1/1 1955 1/1 920

GE0057-3.p 1/1 357 1/1 22 1/1 1130 1/0 15

GEOO58-2.p 1/1 4148 2/3 30599 2/6 127958 1/0 1036

GEOO58-3.p 1/2 28272 1/2 29811 1{2 18675 1/1 3302

GEOO59-2.p 3/47 1409378 -1- - -/- - 3/37 652867

GEOO59-3.p 1/7 128572 1/6 110798 1/1 574 1/3 32381

GEOCN5O-2.p -/- - -/- - -/- - -/- -
OEOOfiI-2.p -/- - -1- - -{- - -1- -
OEOOfil-3.p -/- - -{- - -/- - -/- -
GE0062-2.p -/- - -1- - -/- - -/- -
OE00fi2-3.p 1/7 88512 1/46 1492818 1/90 1425088 1/19 305599

OE0063-2.p -/- - -/- - -/- - -/- -
GEOOfi3-3.p -/- - -/- - -/- - 1/43 480011

GEOO84-2.p -{- - -1- - 1/0 6 1/0 6

GEOO84-3.p 1/1 37 1/2 85 1/2 51 1/2 6

GEOOfi5-2.p -/- - -1- - 1/1 13 1/1 16

GE0085-3.p 1/2 183 1/2 206 1/2 181 1/2 68

GE0066-2.p -J. - -/- - 1{0 20 1/0 26

GEOQ86..3.p 1/2 318 1/2 323 111 306 111 125

GE0067-2.p 3/136 8670861 3/4 213130 1/0 0 1/0 0

GE00fi7-3.p 1/1 2382 1/5 74335 1/2 0 1/2 0

GE0088-2.p -/- - -/- - 3/338 26451437 2/5 168954

GE0068-3.p 1/70 3080605 1/147 10235134 1/54 948038 1/3 5820

GEOO69-2.p -/- - -/- - -/- - -/- -
GEOO89-3.p 2/57 3562602 2/146 10051613 1/18 662438 1/2 8220

GE007D-2.p -/- - -/- - -/- - -/- -
GEOO7D-3.p -1- - -1- - -/- - -/- -
GEOO71-2.p -/- - -1- - -/- -/- -
GEOO71-3.p -1- - -/- - -/- -/- -
GE0072-2.p -J. - -/- - -/- -/- -
GE0072-3.p -1- - -1- - -/- -/- -
GE0073-1.p -1- - 2/110 2277026 1/11 434553 2/80 1532115

GE0073-2.p -1- - -/- - -/- - -/- -
GEOOT3-3.p -/- - -/- - -/- - -/- -
GE0074-2.p -/- . -/- - -/- . -/- -
GE0075-2.p -/- - -/- - 1/1 16 1/0 8

GEOO76-4.p -/- - -/- - -1- - -1- -
GE0077-4.p 1/1 17424 1/202 3673531 1/204 3673531 1/1 12318

GEOO78-4.p -/- - -{- - -/- - -/- -
GEOO78-5.p -/- - -1- - -/- - -/- -
GE0079-1.p 0/0 0 0/0 0 0/0 0 0/0 0

106

•
Table 5.5: Comparison of SPASS, OTTER and GLIDE on TPTP's set.

Name Il dIt. 1 SPASS Il dIt. laTTER Il dIt. 1 GLIDE 1

•

•

GEOOOI-I.p 7/0 135 6/840 34541 110 0
GEOOOI-2.p 6/0 III -1- - 1/0 0
GEOOOI-3.p 6/6 2085 4/189 17872 111 0
GEOOOI-4.p -1- - 4/249 208798 1{1 4
GEOOO2-l.p 6{1 531 6/187 19552 1{0 8
GEOOO2-2.p 6{1 404 6/227 19671 1{0 5
GEOOO2-3.p 2{0 6 1{0 57 I{O 7

GEOOO2-4.p 11{1 405 8/1 259 1{0 4
GEOOO3-I.p 3{0 11 210 577 1{1 6
GEOOO3-2.p 3{0 la 2{0 556 1{1 5
GEOOO3-3.p 2{0 4 110 161 1{1 6
GEOOO4-I.p -{- - 13/270 63149 2{16 269465

GEOOO4-2.p -1- - -{- - -{- ·
GEOOO5-I.p -1- - 18/269 63124 2/21 348959

GEOOO5-2.p -{- - -1- - -{- ·
GE0006-1.p 12{3 665 -1- - III 4508

GE0006-2.p D{1 386 -{- - -1- -
GE0006-3.p 4/0 73 2/5 4308 1{0 748

GEOOO7-l.p 12/20 2059 -{- - 1{1 8185

GEOOO7-2.p -{- - -1- - -{- -
GEOOO7-3.p -{- - 5/71 US274 1/15 163260

GE0008-1.p -{- - -1- - -{- -
GE0008-2.p -1- - -1- - -{- -
GEOOO8-3.p 9/21 2539 -1- - 1{3 19412

GEOOO9-I.p -{- - -1- - -{- -
GE0009-2.p .{- - -1- - .{- -
GE0009-3.p 5/101 5808 -1- - 1/5 69378

GEOOIo-l.p 15{2 691 -1- - 1{0 0

GEOOIo-2.p 10/1 477 -1- - 110 a
GEOOIo-3.p 5{0 413 -1- - 1{1 0

GEOOll-l.p 7{1 581 -1- - 1{1 18

GEOOl1-2.p 2{0 1 0/0 55 111 17

GEOOII-3.p 210 6 0/1 391 1/2 60

GEOOI1-4.p 210 1 0/0 55 1/0 23

GEOOII-5.p 210 1 0/0 34 lIa 22

GEOO12-l.p -{- - -1- - -1- ·
GEOOI2-2.p -{- - -1- - .{- -
GEOOI2-3.p -1- - -1- - -1- -
GEOOI3-I.p -{- - -1- - -{- -
GEOOl3-2.p -{- - -1- - -1- -
GEOOl3-3.p 12/151 12468 5/25 5642 1/2 7451

GEOO14-2.p 3{0 2 2/0 55 1{1 8

GEOO15-2.p 4{0 54 3/0 274 110 a
GEOOl5-3.p 3{0 22 1/0 87 1/1 0

GEOOl6-2.p 3{0 22 1/0 63 1/1 0

GEOOl6-3.p 3{0 24 1/0 88 III a
GEOO17-2.p 5{0 58 4/1 807 III 0

GEOO17-3.p 3{0 43 2/0 619 1{0 0

GEOO18-2.p 4{0 57 2/1 610 1{0 0

107

•

•

•

GEOOl8-3.p 4/0 62 2/1 818 1/0 0
GEOOl9-2.p 3/0 22 1/0 65 110 0

GEOOl9-3.p 2/0 12 1/0 9. 110 0
GEOO2Q.2.p 5/0 61 4/1 803 111 0
GE0020-3.p 2/0 12 2/0 612 111 0
GEOO21-2.p 6/0 64 2/1 607 111 0
GEOO21-3.p 3/0 50 2/1 809 111 0
GE0022-2.p 6/0 101 "/2 1703 1/0 22

GE0022-3.p 3/0 65 2/3 1786 1/0 22

GE0024-2.p 3/0 9 2/1 555 111 26

GE0024-3.p 2/0 32 2/0 ..27 111 21
GE0025-2.p 9/333 7.... 1 22/681 39110 2/2 16212
GE0025-3.p -1- - 19/753 74545 2/3 ..6135

GE0026-2.p 7/260 7070 4/2 1800 111 3052
GE002&'3.p -/- - 215 3662 1/2 8342
GE0027-2.p -/- - 6/435 20055 111 2119
GE0027-3.p 4/0 70 0/0 1033 1/1 283

GE0028-2.p -/- - -1- - 2/7 130536

GE0028-3.p -/- - -1- - 1/3 30366

GEOO29-2.p -/- - -1- - 1/0 2241
GEOO29-3.p -/- - -1- - 111 1745

GEOO30.2.p 10/493 12113 6/23 5758 111 5110

GEOO30-3.p -/- - 4/19 10110 11. 54220
GEOO31-2.p -/- - -1- - -1- -
GEOO31-3.p -/- - -1- - -1- -
GE0032-2.p -/- - -1- - -1- -
GE0032-3.p -/- - 2/3 4856 111 507

GEOO33-2.p -/- - -1- - -1- -
GE0033-3.p "/0 5..8 2/12 8396 1/7 13141

GE0034-2.p -/- - -/- - -1- -
GE003.-3.p -/- - 6/19 14..30 1/4 45908

GE0035-2.p 2/0 9 1/1 259 1/0 623

GEOO35-3.p 2/0 10 1/0 268 1/0 612

GE0036-2.p 5/0 20 16/59 7609 210 2170

GE0036-3.p 4/0 25 22/13 5531 111 5112

GE0037-2.p 12/0 304 -1- - 2/30 558999

GE0037-3.p -/- -1- - 1/2 9408

GEOO38-2.p 2/0 5 111 497 1/0 212

GEOO38-3.p 2/0 7 1/0 364 110 229

GE0039-2.p 4/0 30 6/5 2166 111 567

GEOO39-3.p 4/0 29 4/0 132 111 2223

GEOO40-2.p 5/0 100 7/514 22679 -1- -
GEOO"0-3.p 5/0 161 6/232 33651 -1- -
GE0041-2.p 9/6 1355 -/- - -1- -
GE0041-3.p 3/0 229 3/1 660 111 237

GE0042-2.p 1/4 1182 -1- - -1- -
GE0042-3.p 5/0 110 6/2..6 34477 -/- -
GEOO43-2.p 9/4 1042 -/- - -/- -
GEOO43-3.p 8/472 12836 7/331 48451 -/- .
GE0044-2.p -/- - -1- - -/- -
GEOO4..-3.p -/- - 7/131 19394 3/253 5250862

GEOO45-2.p -/- - -1- - -/- -
GEOO45-3.p 7/9 2486 4/2 1462 1/1 1816

GEOO4&.2.p -/- - -1- - -1- -
GEOO46-3.p 11/0 358 6/1 1236 215 136946

GE0047-2.p -/- - -/- - -1- -
GEOO47-3.p 5/0 252 3/1 851 III 1791

GEOO48-2.p 8/0 306 -1- - 1/0 11

108

•

•

•

GE0048-3.p 4/18 3122 -/- - 1/1 394

GE0049-2.p -/- - ./- - 2/1 11674
GE0049-3.p -/- - -/- - 1/8 64535
GEOOSo-2.p -/- - -/- - -/.
GEOOSG--3.p -/. - -/- - -/- -
GEOOSl-2.p -/- - -/- - -/- -
GE0051-3.p 4/0 292 3/28 10992 1/2 8317
GE0052-2.p -/- - -/- - -/- -
GE0052-3.p 3/0 286 3/20 10100 1/3 12414
GE0053-2.p -/- - -/- - 3/283 7265791

GE0053-3.p 8/1 787 3/3 5713 1/2 3946
GE0054-2.p 2/0 5 2/0 51 1/0 134

GE0054-3.p 2/0 4 2/0 45 1/1 7

GE0055-2.p 2/0 7 2/0 51 1/1 122
GE0055-3.p 2/0 23 2/0 45 1/1 93

GE0056-2.p 3/0 17 3/4 1558 1/0 748

GE0056-3.p 2/0 14 2/0 45 1/1 16

GE0057-2.p 3/0 13 3/1 479 1/1 920

GE0057.3.p 2/0 13 2/0 45 1/0 15

GE0058-2.p 6/0 50 9/5 2024 1/0 1036
GE0058-3.p 4/0 41 7/2 1999 111 3302
GEOO59-2.p 6/0 79 -/- - 3/37 652867

GE0059-3.p 4/0 408 -/- - 1/3 32381
GE0060-2.p -/- - -1- · -1- -
GE0061-2.p -1- - -/. - -1- -
GE0061-3.p -1- - -/- - -1- -
GE0062-2.p -/- - -/- - -1- -
GE0062-3.p 8/416 15239 6/267 31031 1/19 305599

GE0063-2.p ./- - -1- - ·1- -
GE0063-3.p 5/142 6546 -1- - 1/43 480011

GEOO64-2.p 6/0 165 -/- - lIa 6

GE0064-3.p 2/0 72 2/1 1009 1/2 6

GE0065-2.p 6/0 155 -/- - III 16

GEOO6S-3.p 2/0 72 2/1 1008 1/2 68

GE0066-2.p 6/0 165 -/- - 1/0 26

GE0066-3.p 2/0 72 2/1 1007 1/1 125

GE0067-2.p 6/0 17 7/0 801 1/0 0

GE0067-3.p 4/0 36 4/1 602 1/2 0

GE0068-2.p -/- - -1- - 2/5 168954

GE0068-3.p 5/0 543 -/- - 1/3 5820

GE0069-2.p -/- - -1- - -/. -
GE0069-3.p 8/5 2189 6/24 7709 1/2 8220

GE007G--2.p .,. - -/- · -/- -
GE007o-3.p -/- - -/- - -/- ·
GE0071-2.p -/- - -1- - -/- -
GE0071-3.p -/- - -/- - -/- -
GE0072-2.p -/- - -1- · -1- -
GEOO72-3.p -/- - -/0 - -/- -
GE0073-l.p -1- - -/- - 2/80 1532115

GE0073-2.p -1- - -1- - -/- -
GE0073-3.p -/- - -/- - -/- -
GEOO74-2.p -1- - -/0 · -1- -
GEOO75-2.p -1- - -1- · 1/0 8

GE0076-4.p 18/0 374 -1- · -/- -
GE0077-4.p 10/9 2775 -/0 · 1/1 12318

GE0078-4.p .,. - -1- · -/. ·
GE0078-5.p .,. - -/- - -/- ·
GE0079-1.p 2/0 4 2/0 2 S/O 0

109

•

•

•

Chapter 6

Conclusions

Simple refinement for theorems in Tarskian-Euclidian geometry which were

outlined in Chapter 5 do seem to help ta improve efficiency of the resolution

based proyers.

The experiments which were carried out show that the number of UD­

proven theorems is rOOuced by a significant percentage (from 30% to 50%)

and the theorems which were proven before usually take less time to he

solved when geometry refinements are available.

It should he notOO that the refinements proposed require ooly minor

knowledge of the axiom system. They cao also be applied in domains with

similar types ofaxioms. After ail, properties of reflexivity, symmetry and

identity are very common. Thus, these refinements are quite generic and

even the decision whether they should be employed for a particular theorem

cao he easily automated. It is indeed Dot hard to discover identity or reflex­

ivity axioms and apply special resolution ruIes to predicates which possess

these properties.

The experiments performed also allow us to make the following quite

interesting observations:

• Using paramoduIation may slow down significantlya prover which is

using a linear search strategy. Since paramodulation tends to inter

110

•

•

•

in one step what would have taken several binary resolutions, many

inferences appear earlier in the troo, considerably increasing its fan­

out. Although paramodulation potentially shortens the path towards

the contradiction, it may still increase the number of clauses we have

ta look at before it is found.

• Inexpensive versions of subsumption, particularely combination of s­

subsumption and unit subsumpition often account for as many as 80

to 90% of all subsumptions. Hence, introduction of a very expensive

8-subsumption may not bring considerable gain.

• Back s-subsumption does not soom to help in the greater majority of

situations.

• Use of variable ordering local to every literal ta produce hashcodes

independent from literal's position in the clause does help, but not ta

the degree hoped.

• Demodulation of all base clauses before the search by demodulators

found among the base clauses seems to help significantly in a nomber

of instances.

• Although geometry identification inference rule does not reduce the

number of literais in the current clause, it seems to help when this

ruIe is used in the extended region.

• Symmetry invariant unification appears to be very useful. Although

for complex predicates there may be several distinct ways of symmetry

invariant unification for two literais, pursuing ooly one and discarding

the rest does not soom to worsen the search strategy.

As possible future extension of this work it could be interesting, beside

finding refinements based on the properties of predicates, to also consider

what properties of geometric fonctions may be used to build refinements.

III

•

•

•

It is also interesting ta try some sorted strategies together with geome­

try refinements as well as ta experiment with discrimination trees used for

retention of unit clauses and to compare its performance against that of the

hash table.

Since constants are often of great importance for geometric reasoning

it is interesting to combine few levels of semantic splitting with the use of

resolution in the leals.

As a final remark, it must be mentioned that automated theorem proving

does have multiple applications in the areas sucb as expert system, hard­

ware and software verification, logical databases etc. Efficient techniques ta

prove theorems could translate inta superior application programs in many

different fields.

112

•

•

•

Bibliography

[AL91} O.L. Astrachan, D.W. Loveland: METEOR: High performance the­

orem provers using mooel elimination. in Automated Reasoning.

R.S. Boyer editor, Kluwer Academie Press (1991)

[AS92} O.L. Astrachan, M. Stickel: Caching and lemmazing in model elim­

ination theorem proving. CADE-ll, Springer-Verlag (1992)

[BB91} E.J. Borowski, J.M. Borwein: Dictionary of Mathematics. Harper

(1991)

[Be92} D. Beoanav: Recognising Unnecessary Clauses in Resolution Based

Systems. Jomna! of Automated Reasoning 9(1):43-76 (1992)

[Bu98} S.N. Burris: Logic for mathematics and computer science. Preotice

Hall (1998)

[CL73] C.L. Chang, R.C.T. Lee: Symbolic logic and mechanical theorem

proving. Academie Press (I973)

[Ch88] S.C. Chou: MechaniCtJI Geometry Theorem Proving. D. Reidel

(1988)

[He73] H. Hermes: Introduction to mathematiCtJI lagic. Sprioger-Verlag

(1973)

113

•

•

•

[HS96] J.O. Horton, B. Spencer: Clause trees: A toolfor understanding and

implementing resolution in automated reasoning. Technical report,

University of New Brunswick (1996)

[Le97] A. Leitsch: The resolution calculus. Springer-Verlag (1997)

[L078] D.W. Loveland: Automated theorem proving: A logical basis. North­

HoUand (1978)

[MO76] J.O. MeCharen, R.A Overbeek, L.A. Wos: Problems and Experi­

ments for and with Automated Theorem Proving Programs. IEEE

Transactions on Computers C-25(8):773-782 (1976)

[Me93] W. McCune: Ezperiments wïth discrimination-tree indexing and

path indexing for term retrieval. Journal of Automated Reasoning

9:147-167 (1993)

[Me94] W. MeCune: Otter 9.0 reference manual and guide. Argonne Na­

tional Laboratory (1994)

[Me97] W. MeCune: 33 Basic test problems: A practical efJaluation of sorne

paramodulation strategies. in A utomated reasoning and its applica­

tions. MIT Press (1997)

[MP96] W. McCune, R. Padmanabhan: Automated Deduction in Equational

Logic and Cubic CUnJes. Springer Verlag (1996)

[Me64] E. Mendelson: Introduction to mathematicallogic. D. Van Nostrand

(1964)

[Ne97] M. Newborn: The great theorem profJer. Newborn Software (1997)

[Ni95] H. de Nivelle: Ordering refinements of resolution. PhD thesis, Delft

University of Technology (1995)

[Qu89] A. Quaife: Automated DefJelopment of Tarski 's Geometry. Journal

of Automated Reasoning 5(1):97-118 (1989)

114

•

•

•

[Ro65] J.A. Robinson: A Maehine-oriented logie based on resolution prin­

ciple Journal of the ACM 12:23-41 1965

[Sa98] S. Savchenko: Theorem proving and database querying. Dr. Dobbs

Journal, 8 (1998)

(Sh67] J.R. Shoenfield: Mathematicallogic. Addison-Wesley (1967)

[SJ97] R. Socher-Ambrosius, P.Johann: Duduction Systems. Springer­

Verlag (1997)

(St88] M. Stickel: A Prolog technology theorem prover: implementation

by an extended Prolog compiler. Journal of Automated Reasoning

4:353-380 (1988)

[Ta98] T. Tammet: Towards efficient subsumption. CADE-15, pp. 427-441,

Springer-Verlag (1998)

115

•
Appendix A

ExaDlples of GLIDE's proofs

These proofs were obtained for theorems of Quaife's set using bath equality

and geometry refinements.

The foUowing shows an example of GLIDE's proof. The theorem comes

from Quaife's set [Qu89] and can be considered as relatively diflicult. Some

brief annotations will be given below (line numbers on the left were inserted

to facilitate the annotation).

•
A.1 Annotated proof of Q58W2A.THM

•

001 GLIDE r7 lug li9i for CQ58W2&.THM)
002
003 PC .qua! D B C)

004 FC Ez~ ip P pl p2 euel euc2 con~ R iD. • b e de)
005 CC P pl p2 • b c de)
006 oC N(Q58W2A. THM) t900 06/9 SB SEII 5GH Ll(30) LM LF U El PI PF DB Gl GI
007 HU HE SFS sru ses L7 V16 t9)
C08 sC La PO B3 FO RO 02 CC-3.2))

009 SC LO PO BD Fa RD 00 CCO.O))

010 E(122 112)
011 G(112 89)

012
013 • L(Dl T18 R(120243.15745,48.6518) U(10678,15248.87629)
014 C(76130-0,9890S) S(15059.0,O.0) G(106147,14118) V14601)

116

•

•

•

015

018 Proof:
017

018 810 -Bxyz -Buyv equalzy Bzveuc2xuyvz BF
019 835 -Bxyz -Byzu Buu equalyz BF
020 885 Buc
021 [DO] 8DII86(85.) B.e. (-equal.c]
022 188 -equalcl& IC
023 L89(88&<-10c) -.qualza -Bzdy -8z4u Bzu.uc2zzduy IC 8F
024 L90(89••364) -Bzely -Izelu Bzueuc2zzcluy -8vaz -Buv Bvzv NC BF
026 LF9O(90b) -Bzely Bzyeuc2zzelyy -Bzaz -Bam Bzzu IC
026 L92(9Od.85&) -B.ds B.z.uc2.edzz -By•• By•• IC
027 (Hl] L893(92c) B••• <-Ba.a> le
028 [82] LlM(93.) • <.qual_> Ne
029

030 884 .qD&1.c

031 RO .qual.c
032

033 B86 S-c
034 [DO] P86 S-c
035 RDMl(86a) 1&.. [-eqD&1.c]
036

037 130 -Bxyz -eqU&1zz Buyz
038 131 -Bxyz -Byzz equalzy BF

039 886 lbed

040 888 -.qualda le
041 L89(88a<-31c) -.qualz. -Izely -Bclzy IC IF
042 L90(89b.30c) -.qualz. -Bdzy -Bzely -.qualzy NC IF
043 L891C90c) -.qualz& -Bdzy -equ&lely IC BF
044 (H3] R2(91b.8k) -.qule. <-.qualdb> Ne 8F
046

046 • L(01 123 R(150763.20641.96.7176) U(17846.19468.113240)
047 C(97979-0.126266) S(19666.0.0.0) G{139214.18818) Y14639
048 835 -Bxyz -Byzu Buu equlyz IF
049 847 -Bxyz -Buvv -Ozyuv -Ozzuv Dyzvv BF

060 881 O.bcel
051 [DOJ B0Il81(81.) O.bad [-equal.c]

062 888 -.qualcl& IC
053 L89(88.,364> -Bzad -lady Izely IC
054 L90(89c.47a) -Bxad -lady -Bzuv -Dxclzu -Ozyzv Dclyuv NC BF
056 LD91(iOcI) -Izad -Bady -Bdzz -Ozydz Ddyzz NC BF

066 LF91(91c) -Baclx -Oazcl& Ddx.. Ne
067 (84J L93(91b.81.) Dclb.. <-Dclb&a> IC

117

•

•

•

068 RD3(83a) equaldb IfC

059

060 • L(Dl 125 &(164135,22823.144.7361) U(23232,20884.124e67)

061 C(10749S-0.136381) S(21806.0,O,0) G(154122.20409) V14763

062 183 Dacbc:l

063 (DO] P83 Dacbcl

064 RDM4(83a) Daabc:l (-equalac]

065

066 Re.olu~ion rule. u.ed:

067 ----------------------
068 lIBRES FACTO& PAR.AttOD DISTAIfCE 8ETWEE11 DEIIOD OIIIF_D

068

070 U.ed clau.e.:

071 ------------
072 BD 8zyEnxyzu

073 B1 D%Enyzzuzu

074 B2 -Dxyzu -Dyvuv -Dsizj -Dyiuj -Bzyv -Bzuv equalxy Dvivj IF

075 B3 -Izyz -Iuvz lyiPZ'fZVUu IF

076 B4 -Izyz -Iuvz Ivipxyzvuz IF

077 16 -Bpplp2

078 B6 -Bplp2p

078 17 -Bp2ppl

OSO BS -Oxyxz -Duyuz -Dvyvz equalyz Bov Buvx Ivxu IF

081 li -Izyz -Iuyv equalxy lzueuc1xuyvz BF

082 >110 -Izyz -Iuyv equalzy bveuc2zuyvz IF

083 lU -Bzyz -Iuyv equalzy leuc1xuyvzzeuc2zuyvz IF

OS4 B12 -Dxyu -Dxuzv -Izyu -Iyvu Bzcon~zyzvuvv IF

085 813(0•• la) -Dzyzz -Dxuxv -Izyu -Byvu -equalcon~zyzvuvi Dzvxi IF

085 114 -Dxyzu -Dzuvv Dzyvv IF

087 B16 equalxEz~yzzz

088 B16 -equalzEnyzuv Iyzx

089 B17 equalRzyEnzyzy

OSlO B18 IxyRzy

Oi1 B19 Dxayxyz
Oi2 B20 -equalxy equalyllzy

093 B21 equalzAzz

DM 122 -equalzRyx equal.yx

Oi6 B23 -Dzyzu -Dyvuv -Ixyv -Izuv Dzvzv IF

OH 124 -Izyz -Izyu -Dyzyu equalzy equalzu IF

Oi7 126 -Bxyz equalxy equalzEnzyyz

088 126 -Dzyzu equalEx~vvzyEx~vvzuequalvv

08i 127 equa1EGZYXY~XYYX equalzJ

100 B28 DzyzRayzx

118

•

•

•

101 12g equalxRRzyy
102 >130 -Izyz -equalu Buyz
103 >131 -Izyz -Iyzz .qualxy IF
104 132 -Izyz -Iuy .qualyz IF
105 133 -Izyz -Iyuz Izyu IF
106 134 -Izyz -Izzu Byzu IF
107 >135 -Izyz -Iyzu Ixzu .qualyz IF
108 836 -Izyz -8yzu Izyu .qualyz IF
109 837 -I%yz -Iyuz 8xuz IF
110 138 -Izyz -8zzu Ixyu IF
111 839 -.qualpp1
112 840 -.qualplp2
113 141 -.qualpp2
114 842 -.quabEnyzpp1
115 843 D~yxppl~uzppl

116 844 -Ixyz -8un -Bou 8vipvipnuvz%yzz lyipvipnuVZ%JZV IF
117 845 -Izyz -Dzuu -Dyzyu equaby ecpalzu IF
118 146 -Oxyzu -Uxvzv -Dxizj -Dvivj -Izyv -Izuv Dyiuj IF
11g >147 -Izyz -BI1VY -Dxyuv -Dzzuv o,.z.v IF
120 148 -Dxyzu -Dyvuv -D%izj -Dvivj -Izyv -Izuv Dyiuj IF
121 149 -Ixyz -Dxyzu -Dzyzu .qualyu PF
122 150 equaliuxyzuEnEz1:yzpplzzu
123 151 OxyziDazuzy
124 852 -Bzyz -Dxzuv luiuuVZJV
126 163 -Izyz -D%zuv DyziDauVZJV
126 164 -Ixyz equalyiDazzzy
127 165 -Oxyzu .qualill8Vvzyiuvvzu
128 166 -Dxyzu -Dyvuv -Dzvzv -Izyv lzuv IF
12g 167 -Ixyz -Izyu .qualxy Izzu lzuz IF
130 B68 -Izyz -Izyu .qualzy Iyzu lyuz IF
131 869 -Ixyz -Iuyz .qualyz lzuy Buxy IF
132 160 -Izyz -Inz 8zyu lzuy IF
133 161 -Izyz -Izuz lyuz Buyz IF
134 862 -Izyz -Iyuv -Izvz lxuz IF
135 863 -Izyz -Dzyzz equalyz
136 164 -Ixyz Czyz
137 B66 -Ixyz CZ%J
138 866 -Izyz Cyzz
13g 167 -Czyz Izyz 8yzx Izzy IF
140 868 -Izyz Czyz
141 B69 -Izyz Czzy
142 B70 -Ixyz Cyzz
143 B71 -Cpp1p2

119

•

•

•

144 872(2&.3a) -Ozxyz -Dzuzy -Dzuyv Cyzv IF
145 873 -equalxy Cuy

148 874 -Dzyzu -Dyvuv -Ozvzv -Cxyv Czuv IF
147 875 ·Czyz ·Czyu Czzu equalxy 8F

148 878 -Czyz ·Czyu Cyzu equalxy 8F

148 877 -Czyz ·Cuyz Cuxz equalzy BF

160 878 ·Czyz -Cuyz CUy equalzy IF

151 878 -Czyz -Czyu ·Cxyv Czuv equalxy 8F

152 B80 ·Ozyzu -Oyzu -Ouyu -Czyz -Bzvz ·Byvu equalxy equa1ux 8F

153 >881 Oabed

154 882 Dbeda

165 >883 Oaebcl

156 >B84 equalae
157 >B86 8aee

158 >888 8bed

158 B87 -equalab IC

180 >B88 -equalda IC

In the above proof, lines 3-5 show statistics of the predicates, functions

and constants employed in the theorem. Lines 6-7 show which options are

enabled. Further, lines 8-11 display the output of simplification routines.

Lines 13-14 show the search statistics. Since this line is prefixed with a

symbol "#" it ïndicates that the proof was found. One such line is printed

every iteration. The details are given as to how many inferences were per­

formed, how many unit clauses were retained and resolved etc. The last

entry on line 14 also indicates the average search speed.

The main line of the proof is printed next. The clauses are prefixed by

indicators describing how and from which other clauses the current clause

was derived. For instance, prefix "B" indicates a base clause, whereas "L"

indicates a clause on the search Une. Note that some inferences have two

parents and others have one. Binary resolvent needs two parents whose

numbers are thus given separated bya comma (e.g. line 24). Paramodulants

also need two parents which are given separated by an arrow (e.g. line 23).

This indicates "into" clause and "from" clause. Other clauses were produced

by unary inference rules. The second letter in front of the clause indicates

which unary inference rule was used (e.g. Une 25 shows a factor). When

120

•

•

indicating the parent, its clause number is given as weIl as the letter to

specify which literaI was involved.

Some of the literals are taken into brackets. This indicates a literaI

resolved by a unit clause retained in a hash table or a demodulator which

was used to simplify the current clause. A bracketed letter in front of the

clause enumerates ail sucb instances (e.g. line 28). For every snch instance a

separate proof line will follow. Note that researched clause, ending auxiliary

proof line, will always he prefixed with an "R" (e.g. line 31) whereas the

places where sucb were used dift'erentiate demodulators denoted by "0" (e.g.

line 21) and hash table resolutions denoted by "8" (e.g. line 27).

Some special symbols also follow clauses. For instance "Ne" indicates

that this clause has at least one ancestor !rom the negated conclusion.

Note that the tenns themselves are printed without parentheses. This

is done to compact the output. We can nevertheless tell variables from con­

stants since the fonner use letters starting from 'x'. We cao also distinguish

the subterms by knowing arities of all functions.

Alter the praof, a list of resolution rules which were used in the proof is

given (lines 66-68) followed hy a list of base clauses where the clauses which

were actually used in the proof are pointed.

A.2 Proof of Q14DI0C.THM

•

CLIDE r7 Aus 1999 for CQ14D10C.tHM)

P(.quaI D B C)
F(Ex~ ip P pl p2 euel .ue2 eOD~ & • b)

C(P pl p2 • b)
O(NCQl4Dl0C. TIlH) 1900 D8/9 SB SEII SOR LI(30) LM LF LI EA PI PF D8 GA

CI HU HE SFS SFU SCS L7 V18 T9)

S(LO PO 80 FO RD 02 C(O,2))
S(LO PO 80 FO RD 00 CCO,O))
E(50 40)

GC 40 27)
• LC Dl T3 &C11743,2421,48,597) U(89O,2298,10394) C(8047-0,12851)

5(2205.0,0,0) C(16067.1631) Vl048S)

121

•

•

•

Proof:

D2 -.qua1EnababEnabba

D3 -.quaJ.sy -.qualyz .qualzz BF

525(2a.3a) -.q~ababz -.q~abba BF

[DO) B0M2S(25a) -.qualRabz -.quaJ.zEnabba [-.qualAzyEnxyxy] BF

(H1) LA27(25a) • <-.qualbbEnabba> BF

B17 equalbyEnxyzy

RO .qualJLxyEnzyzy

BO BzyEnxyzu

Bl DzEnyzzuzu

82 -Dzyzu -Dyvuv -Ozizj -Dyiuj -Szyv -Bzuv .qualzy Dvivj BF

B19 DzJlyzyz

B26 - .qualab le
L27(26a.2c) -Oabzy -Obzyu -Davzv -Obvyv -Babz -Bzyu hwv le SF

LD28(27c) -Dabzy -Obzyu -Dbzya -Sabz -Szyu Dzzua le BF

L29(28c1.0a) -Oabzy -DbEnabzuyv -Obzya -Bzyv DEztabzuzva le BF

UO(29b .1a) -Dabzy -Dbzya -Bzyz OEnabyzzza IC BF

LD31 (30cl) -Oabzy -Obzya -Bzya equalEnabyaz IC BF

(82.83] Rl(31b.19a) .qualEnabbaRab C-OabAabb> <-BRabba> NC BF

• L(Dl T4 &(19197.4029.60,1041) U<1778.3628.17785) C(139aO-O.21424)

S(3626,O,O.0) G(26927.2100) V13338)

B18 BzyR.zy

R3 BzyR.zy

B19 DzRyzyz

R2 DzRyxyx

BINRES lSSER.T DISTlICE DEMDD UNIF_0 UNIF_B

U••d clalUl•• :

>BO BzyEztxyzu

>Bl OxEnyzzuzu
>B2 -Dzyzu -Oyvuv -Dzizj -Dyiuj -Bzyv -Bzuv .qualzy Dvivj IF

83 -Bzyz -Buvz Byipzyzvuu BF

B4 -Bzyz -Buvz Bvipzyzyux BF

122

15 -lpplp2
IS -lp1p2p
17 -lp2pp1
18 -Dzyzz ·Duyuz -nvyvz equalyz lzuv luvs Ivzu IF
Il -Ixyz ·Iuyv equalzy Ineuc:lzuyvz IF
110 -8zyz -Iuyv equalzy Ineuc:2zuyvz IF
8U -8xyz -Iuyv equalxy BeUc:1xuyvzzeuc:2zuyvz IF
812 -Dxyxz -Dzuxv -Bzyu .Syvu 8ZCOD~syzvu.VV 8F
B13(0.,l.) -Dxyxz -Druzv -Bzyu -Byvu ·equaleoDtxyzvuvi Dzvxi IF
814 ·Dzyzu -Dzuvv Dxyvv BF

B15 equaldnyxzz
816 ·.qualdnyzuv Byzx

>817 equalRxyEnxyxy
>818 BxyRxy

>819 DzJLyxyx

B20 -equalxy equalyllzy

821 equalxllu
822 -equaldyx equalyx
823 -Dzyzu -Dyvuv -8xyv -Izuv Dzvzv IF

824 -Bxyz -Izyu -Dyzyu .qual.xy equalzu IF
>B25(2.,3.) -.qu~ababx -equaldnabba 8F
>826 -equalab NC

•

• A.3 Proof of Q21B2.THM

•

GLIDE r7 lug 1889 ror CQ2112.~)

P(equal D 8 C)
F(En ip P pl p2 eue1 eue2 C:OD~ & • b c)

CC P pl p2 • b c:)
O(N(Q21B2.~) noo D6/S SB SElf SGH LN(30) LM LF LX EA PI PF DB Gl

GI HU HE SFS SFU SCS L7 V16 T9)
S(LO PO 10 FO &0 Dl CCO,l))
S(LO PO BO FO Ra DO CCO,O))

E(60 50)
G(50 34)
L(Dl T10 &(84171,10143,474,6130) UC11278,l7686,66614) CC64401-0,86854)

SC8841,7,O,O) G(88S86,15632) V20423)
• LC D2 f200 &(1762936,276436.4373.151332) U(193iO.38168I,1610721)

C(1010699-0.1562649) 5C247667.44,O,O) G(1744298,255958) V20926

Proof:

123

•

•

•

B3 -Bxyz -Iuvz Iyipzyzvuu BF
130 -Bxyz -.qual.zz Buyz
B31 Babe
B32 lbae
133 -.qualab le

LB34(30e) -Iryz -.qualzz .qmalzy
L36(3e<-34e) -Izyz -Iuvz Byvu -Bivipzyzvu -.qualiipzyzvu IF

LB3t5(36d) -Ixyz -Iuvz Byvu -.qualvipzyzvu BF
L37(36a.31a) -Brye Bbn -.qualzipabeyz

L38(37a.32a) Bbzb -.qualzipabeab
LB39(38a) .qualbz -.qualzipabeab

(HO) L40(39a.33a) • <-.qualaipabeab> Ne

B4 -Bxyz -Buvz Bvipzyzvux BF
B31 Babe
B32 Bbae
L34(32a.4b) -Brye laipzycabz

L36(34a.31a) Baip.beaba
RIO (36a> .qualaipabcab

• L(Dl 1203 &(1781776.279579.4413.162764) U(20980.385263.1631704)
C(10250eO-O.1686766) 5(261664.44.0.0> 0(1766818.268549) V20906

BlliRES PAIWIOD BEtWEEN

U••d clau••• :

BO Bry~ryzu

Bl OzEz~yzzuzu

B2 -Dzyzu -Dyvuv -Dzizj -Dyiuj -Bryv -Bzuv equalzy Dvivj BF
>B3 -Bxyz -Buvz Byipzyzvuu IF
>B4 -Bxyz -Buvz Bvipzyzvuz IF

B5 -Bpplp2
B6 -Bplp2p
B7 -Bp2pp1
B8 -Dzyzz -Duyuz -Dvyvz equalyz Bzuv Buvz Bvzu BF
B9 -Bzyz -Buyv .qualzy lzueuc1zuyvz IF
Bl0 -Ixyz -Iuyv .qualzy Bzveuc2zuyvz IF
B11 -Ixyz -Iuyv .qualry B.uclzuyvzzeue2zuyvz IF
112 -Oryzz -Ozuzv -Izyu -Byvu Bzeoa~zyzvuYV BF

124

B13COa.la) .Dzyu ·Dxuxv ·Bxyu ·Byvu ·equaleoll1:zyz1rUvi Dxvxi BF

B14 ·Dxyzu ·Dzuvv Dxyvv BF

B15 eqaa1%Extyxzz

B16 ·equalsEnyzuv Byzx

B17 equalAxyEnxyxy

B18 BxyRxy

B19 DxR.yxyx

B20 ·equalxy equa.lyRxy

B21 equaJ.xRzx

B22 -equaldyx equalyx

B23 .nxyzu ·Dyvuv ·Bxyv ·Bzuv Dxvzv BF

B24 ·Bxyz ·Bxyu .Dyzyu equalxy equal.zu BF

B25 ·Bxyz equalxy equa1zEz1:xyyz

B26 .Oxyzu equalEz1:vvxyEx1:vvzu equa!vv
B27 eqlJ&1Enxyxy~xyyx equaUy

B28 DxyxIUlyzz

B29 equalzJULxyy

>B30 ·Bxyz .equalxz Buyz

>B31 Babe

>B32 Bbae

>B33 ·equa!ab le

•

• A.4 Proof of Q31E3.THM

•

GLIDE r7 lug 1899 for CQ31E3.THM)

PC equa! D B C)

FC Ex1: ip P pl p2 euel eue2 con1: R b a d e

CC P pl p2 b a de)

OC N(Q31E3.TlDO 'NOO 06/9 SB SElf SGH LN(30) LM LF LX El PI PF DB Gl

GI HU HE SFS sn ses L7 V16 122)
SC LO PO B2 FO al 00 CC-2.1))

SC LO PO BO FO ao 00 CCO,O))

E(69 69)

GC 68 43)

• L(Dl Tl a(37.0,243,O) U(1153,4.38) CC25-0.3) S(15,O.0.0) G(lS,S) V302)

Proof:

Bl DxEx1:yxzuzu

814 ·Dxyzu ·Dzuvv Dxyvv BF

00 BxyExuyzu

125

•

•

•

01 .qualbEnabppl -DbEnabpp1dE.x~cdppl -labEz'tabppl Ne
542(Oa.la) .qualbEnabppl -DbEz'tabpp1dEncdpp1 Ne
L43(la<-42a) Dbbppl -DbEnabpp1c1Eûcdppl Ne
L44(43b.14c) Dbbpp1 -DbEnabpplzy -DzydEncdpp1 le

L4S(44b.1a) Dbbpp1 -DppldEncdpp1 le
L46(46b.la) Dbbpp1 Ne

[HOJ LD47(46a) • <.qualppl> Ne

B39 -equalppl

RO -.qualppl

Re.olu~ioD rule. u••d:

IINRES PARAMOD DI5TliCE

10 IxyEx1:xyzu

>11 DsEnyxzuzu

82 -Dxyzu -Dyvuv -Dxizj -Dyiuj -Ixyv -Izuv .qualxy Dvivj BF

83 -Ixyz -Suvz Byipxyzvuu IF

B4 -Ixyz -Buvz Bvipxyzvux BF

15 -lpp1p2

16 -Sp1p2p

17 -lp2ppl

88 -Dzyxz -OUyuz -Dvyvz .qualyz lzuv luvx 8vxu BF

89 -Ixyz -Iuyv .qualxy lzu.uc1zuyvz IF

810 -Ixyz -Iuyv equalxy Ixveuc2zuyvz IF

III -Sxyz -Iuyv .qualxy leuclxuyvzzeuc2zuyvz BF

112 -Dxyzz -Dzuxv -Bxyu -Iyvu 8zcoDtxyzvuVV BF

B13 -Dxyzz -Dzuxv -Bxyu -Byvu OxvzcoDtxyzvuV BF

>B14 -Dxyzu -Dzuvv Dxyvv 8F

115 .qual~yxzz

B16 -equalzE%tyzuv Byzx

117 equalRxyEx1:xyxy

118 IxyRxy

819 DxRyxyx

B20 -.qualxy equalyRxy

821 .qualxRxx

B22 -.qualxRyx .qualyx

123 -Dxyzu -Dyvuv -Bxyv -Bzuv Dxvzv HF

B24 -Ixyz -Ixyu -Dyzyu equalxy equalzu IF

125 -Ixyz equalxy equalzEx~xyyz

126

•
128 -Dzyzu .qualExtvnyEnvvzu .quùvv

127 .qualEnxyxyEnzyp .qualzy
128 DzyzJUlyzz

129 .qualxRRzyy
130 -Izyz -.q,ualzz luyz

831 -Izyz -Byxz .qualxy 8F
132 -Izyz -Ixzy .qualyz 8F
133 -Izyz -Iyuz Ixyu IF
134 -Izyz -Bzzu Iyzu BF
B35 -Bzyz -Byzu Ixzu .qualyz IF
136 -Izyz -Iyzu Izyu equalyz IF
137 -8zyz -Byuz lzuz IF
B38 -Bzyz -8zzu Izyu IF

>B39 -.qualppl
840 -.qualplp2
141 -.qualpp2

>842(0••1.) .qualbEx~.bppl -DbEn.bppl~cdpp1 le

CLIDE r7 lUS 1999 for (Q38I2B.THM)

P(.qual D 8 e)
F(~ ip P pl p2 .uc1 .uc2 COD~ iDa 8 • b cd.)
C(P pl p2 • b cd.)
O(NCQ3812B.THM) 1900 De/9 SI SEL SGR LN(30) LM LF LX DEA DB UGl GI

HU HE SFS SFU ses L7 V18 T16)
S(LO PO 83 FO RO 00 C(-3,O))

SC LO PO 10 FO RO 00 C(O.O))
E(85 83)

G(83 87)

L(Dl Tl16 8(811178.43027,0.0) U(3603319 ,27662 ,1050910)

C(381144-1789990,3iOOll) 5(4901.8.0,0) G(O,96870) V8270)

O(N(Q3812B. THM) T900 De/9 SB SEL SGR LN LM LF LI DEl DB UCA CI

HU HE SFS SFU SCS L7 V16 T16)

L(D2 T279 R(1960592 ,137092.0 ,0) U(4001468,87866,1346962)
C(1369638-3262692,430828) $(21671,8.0.0) G(0.180e73) Y8069)

• L(03 T562 8(3362210.277637.0.0) U(5169800,145336,1726460)
C(2741408-6790385.464736) S(56811,8.0.0) C(O,331116) V7047)

•
A.5 Proof of Q3812B.THM

•
Proof:

127

•

•

•

BO BxyEnzyzu

B28 - equalzEnyzuv Byzz

B36 -Bxyz -Bxyu -Dyzyu equalxy equalzu BF

B48 -Bxyz -Byzu Bxyu equalyz IF

B64 -equalzEnyzpp1

B62 equaliauyzuEnEnyxpp1uu

B66 -Bdia.deabe NC

L67(66a.28b) -equal.Endia.deabzy IC

L68C67a.3Se) -Ixye -BzyEndiDadeabzu -Oyey~diaadeabzu equalxy NC
L69C68b.48c) -Bzy. -DyeyEndiDadeabzu .qualxy -Bzyv -ByvEndiDad.abzu

equalyv IC BF

L70(6N.28b) -Bzye -DyeyEx'CdiJI.deabzu equa).xy -ByvExtdinad.abzu .qualyv

- .qualvExtzyvi NC

L71(70a.Oa) -Dz.zE.ztdiDadeabyz eq~.zuvx -BxvEx'Cctiaact.abyz equalxv

-equalvEnEnezuvxij NC
(HO] L72(71c.Oa) -DdedEx'CdiDade.bzy .qualEnedzud

-equaliDad••bEnEn.dzudvv <equaldiaact••b> NC

L73(72b.64.) -DdedEndiDad••bzy - .qual.iDadeabEnEnedpplclzu IC

(Hl] L74(73b,62a) • (-DcledEndiJlad••bzy> IC

BO BzyEnzyzu

814 -equal.zy -.qualyz equalzz BF

B15 -equalzy -Bzzu Byzu

B27 equalzEnyzzz

B66 -&diD.cteabe NC
L67{66a,15e) -equalxd -BziD.deabe IC

L68(67a.14e) -Izinadeabe -equaldy -equalyz NC IF

L69(68a.Oa) -equald% -equalzEn.iaact.abyz NC
RO(69b,27a) -.qualdiD.deeb NC

BO IzyEztzyzu

Il OzE.ztyzzuzu

B26 -Ozyzu -Dzuvv Ozyvv IF

B35 -Ozyzu -Oyvuv -Bxyv -Bzuv Ozvzv BF

B63 DxyziJI.zuzy

B64 Bebe

B65 Oacde

L67{36e,26a) -Dzyzu -Oyvuv -Bxyv -Izuv -Ozvij Dzvij BF

L68(67c.Oa) -Oxyzu -DyEnzyvvui -Bzui -Dzijk OxEx'Czyvvjk BF

L69(68b.1a) -Ozyzu -Bzuv -Dzvvi OzE.ztxyuvvi IF

L70(68b,84a) -Oxyab -Oaczu OxEx'Czybczu 8F

L71(70a.63a) -Oacxy DzExtziDazuabbezy

R1(71a.65a) OzEx'Czin.zyabbcd.

128

•

•

•

• LC Dl te19 RC4007534.311774.0.0) UCS3052e3.1ee028.1g20g55)

C(30234ge-5792975.804921) SCS0870.1e.0.0) GCO.40e703) V7634)

U.ecl clau.e.:

>10 BxyEnzyzu

>11 DzEnyzzuzu
12 -Ozyzu -Dyvuv -Dxizj -Dyiuj -Bxyv -Bzuv equalxy Dvivj IF

13 -Bxyz -Iuvz Iyipxyzvuu IF

14 -Bxyz -Iuvz Ivipxyzvux IF

15 -lpplp2

16 -lplp2p

B7 -lp2ppl

18 -Ozyxz -Duyuz -Dvyvz equalyz lxuv luvx Ivzu BF

19 -Ixyz -Buyv equalzy lxueuclxuyvz IF

110 -Bxyz -Iuyv equalzy Ixveuc2xuyvz IF

III -Bxyz -Iuyv eq,ualxy Beue1zuyvzzeuc2xuyvz IF

112 -Dxyxz -Dxuxv -Ixyu -Iyvu Bzcolltxyzvuvv IF

113 -OXyu -Dxuxv -Bxyu -Iyvu Onxcoauyzvuv IF

:>114 -eetualzy -.qualyz equalxz BF

:>115 -.qualxy -Buu Iyzu

B16 -equalzy -Izxu Izyu

B17 -equalxy -Izux 8zuy

818 -equalxy -Duuv Dyzuv

8Uil -eetualzy -Dzxuv Dzyuv

820 -equalxy -Dzuxv Dzuyv

821 -.qualxy -Dzuvx Dzuvy

822 - equalxy equaliD..uuviD.yzuv

823 -.qualxy equal.iIl.zxuviD.zyuv

824 - equalxy equalill.zuxvill.zuyv

825 -equalxy equalia.zuvxiD.zuvy

:>B26 -Dxyzu -Dzuvv Dxyvv IF

:>B27 equalzEnyzzz

>B28 -equalxEnyzuv Byzx

129 equalRxyExtxyxy

B30 8xyRxy

831 DxRyxyx

832 -.qualxy equalyRxy

129

•

•

•

133 .qualxRu

134 -.qual2Ryx .qualyx

>135 -Dxyzu -Dyvuv -Ixyv -Izuv Dxvzv IF

>136 -Ixyz -Ixyu -Dyzyu .qualzy .qualzu IF

137 -Ixyz .qualxy equalzEnxyyz

138 -Dxyzu equalEnVV%JEnvvzu .qualvv

139 equalEnzyxyEdzyyx .qualzy

140 DxydIlyu

141 equal.xRRxyy

B42 -Bxyz -equalzz luyz

143 -Ixyz -Byu .qualxy IF

144 -Ixyz -Iuy .qualyz IF

145 -Ixyz -Iyuz Bzyu IF

146 -Ixyz -Bzzu Byzu IF

B47 -Bsyz -Byzu Buu .qualyz IF

>148 -Isyz -Byzu Bzyu equalyz BF

B49 -Isyz -Byuz lxuz IF

160 -Ixyz -Bzzu Ixyu IF

151 -.qualppl

152 -.qualplp2

153 -.qualpp2

>154 -.q~yzppl

155 DzEz'tyzpplzEnuzppl

156 -Ixyz -Buvz -Ixvu Ivipvipxvuvzxyzz Byipvipxvuvzxyzv IF

157 -Ixyz -Dxzzu -Dyzyu .qualxy equalzu BF

158 -Dxyzu -Dzvzv -Dxizj -Dvivj -Ixyv -Izuv Dyiui IF

159 -Isyz -Iun -Dxyuv -Dxzuv Dyzvv IF

leo -Dxyzu -Dyvuv -Dxizi -Dvivj -Bxyv -Bzuv Dyiui IF

lel -Ixyz -Oxyxu -Dzyzu .qualyu IF

>162 .qualiDlXyzuEnEnyxpplXZ11

>163 DsyziDazuy

>164 labe

>165 Dacd.

>le6 -BeliD.d••.,. NC

130

•

•

•

Index

8 subsumption, 43

Lukasiewicz, 13

Ackerman, 14

Aristotle, 1

axiom, 5

backward subsumption, 43

betweenness, 4, 65

binary resolvent, 35

Boole, 1

bounded variable, 15

breadth-mst search, 44

Church, 2

clause form, 23

colinearity, 4

complete refinement, 40

complete tbeory, 22

conjunction connective, 7

conjunctive normal form, 23

consistent formula, 9

consistent theory, 21

constant, 15

contradiction, 9

countermodel, 9

131

Davis, 2

De Morgan's law, 10

decidable tbeory, 22

demodulator,57

depth-first search, 44

discrimination-tree,60

disjonction connective, 8

domain of interpretation, 17

empty substitution, 34

EQP, 3

equality, 15, 21

equidistance, 4, 65

equivalence connective, 8

Euclid, 63

Euclidian geometry, 3

existential quantifier, 15

extended searcb, 53

factor, 35

failure node, 30

formula, 5

forward subsumption, 43

free variable, 16

Frege, 13

functioD, 15

• GOdel, 2 linear-unit refinement, 46

generalization, 20 LINUX, 84

Gentzen,2 Lobachevski, 68

Gilmore,2 logic calculus, 5

GLIDE, 4, 84 logical consequence, 10

ground instance, 34 logical equivalence, 9

ground substitution, 34 Loveland,44

ground term, 16 Luckham, 44

H-interpretation, 28 mapping,15

Herbrand, 2 matching, 43

Herbrand universe, 28 matrix of a formula, 24

Hilbert, 1, 14 merge clause, 45

Horn clause, 54 model, 9

hyperbolic, 68 modus ponens, 13, 20

hyperresolution, 50 most general unifier, 35

• identity assertion, 56 negation connective, 7

implication connective, 8
OTTER,90

inconsistent formula, 9

inconsistent theory, 21 P-I clash, 48
individual, 15 paramodulation, 55

instance, 34 partial interpretation, 30

interpretation, 7, 17 Peano, 1
iterative deepening, 44 predicate, 15

language, 5
predicate calculus, 5

prefix of a formula, 24
Leibniz, 1

prenex normal Corm, 24
level saturation, 44

propositional calculus, 5, 6
linear refinement, 44

pure literai, 41
linear-base refinement, 46

Putnam,2
linear-merge refinement, 45

132

•

•

.-

•

quantifier, 15

refinement,40

refutation, 34

Robinson, 2

rules of inference, 5

satisfiable fonnula, 9

semantic tree, 29

sentential calculus, 6

sequent, 18

set-of-support refinement, 47

simple subsumption, 44

Skolem normal form, 24

Slagle,47

SPASS,90

standard fonn, 24

substitution, 34

subsumption, 42

Tarski, 3

tautology, 9

TGTP,4

theorem,5

TPTP,84

trie, 60

true formula, 9

truth table, 8

truth value, 6

Turing, 2

unifiable set, 35

unifier, 34

133

unit factor, 35

unit preference, 53

universal quantifier, 15

universe, 15

UNIX, 84

unsatis6able formula, 9

valid formula, 9

variable, 15

well-formed formula, 5

Wos, 47

Wu, 64

