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L'ETRANGER

« Qui aimes-tu le mieux, homme énigmatique, dis ?
ton pére, ta mére, ta seeur ou ton frére ?

—Je n’ai ni pére, ni mére, ni sceur, ni frére.

— Tes amis ?

- Vous vous/,gfgfi\igz la d’une parole dont le sens mf_}'est resté jusqu'a
ce jour inconnu.”

—-Ta pam’él- ?

— J'ignore sous quelle latitude elle est située.

— La beauté ?

—~Je l'aimerais volontiers, déesse et immortelle. .
—L'or? B

— Je le hais comme vous halssez Dieu.

— Eh ! qu’aimes-tu donc, extraordinaire étranger 7

—J'aime les nuages... les nuages qui passent... la-bas... la-bas...
les merveilleux nuages ! »

Charles Baudelaire,
tiré du SPLEEN DE PARIS
{Petits Poémes en Prose, I)
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ABSTRACT — RESUME

RADIATION TRANSPORT IN SCALE INVARIANT OPTICAL MEDIA

We focus primarily on the bulk response to external illumination of conservatively
scattering thick inhomogeneous media (or simply “clouds™) which are exactly or statistically
scale invariant; these radiative properties are compared to those of homogeneous media with
the same shapes and masses. Also considered are the ensemble-average responses of
multifractal distributions of optical thicknesses and the closely related spatially averaged
responses g(btaincd within the “independent pixel” approximation to inhomogeneous
transfer. In all cases, the nonlinearity of the radiation/density field coupling induces
systematic and specific variability effects. Generally speaking, the details of the scattering
process and of the boundary shape affect only prefactors whereas “anomalous” scaling
exponents are found for extreme forms of internal variability which, moreover, are different
for different physical transport mocels (e.g., kinetic versus diffusion approaches) Finally,
detailed numerical computauons ofﬂrachauon flows inside a log-normal muluﬁ'actal illustrate
the basic inhomogeneous transport mechanism of “channeling.”

TRANSPORT DU RAYONNEMENT EN MILIEU O;_’T!QUE INVARIANT D’ ECHELLE

On érudie principalement les réponses globales a I'illumination externe de milieux
optiques hétérogénes épais qui sont exactement ou bien statistiquemém invariants d'échelle;
ces propriétés radiatives sont comparées @ celles de milieux homogénes de méme forme et
masse. Aussi considére-t-on les réponses moyennes pour des distributions multifractales
d'épaisseurs optiques, celles-ci sont ét'riﬁterhenr liées aux réponses obtenues dans
I'approximation au transport hétérogéne \par les “pixels indépendanss.” Dans tous les cas de -
figure, la nature non-linfaire du cwp[age entre les champs radiatifs et de densité induit des
effets de variabilité systématiques et spécifiques. En général, les détails de la fonction de

. phase ou de la forme précise du milieu n mﬂuencenr que les préchteurs alors que I' exposant

caractéristique devient “anormal” pour les formes extrémes d i__:étérbgénéité; il dépend alors
également du choix de modéle physique du transport (e.g., méthodes cinétiques versus

diffusives}. Finalement, le mécanisme élémentaire de transport hétérogéne (“channeling” )
“est illustré par des calculs numériques détaillés du champ radiatif @ Uintérieur d'un
multifractal typique. | |
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PRELUDE

“f...] the greatest sculptures can be viewed—indeed, should be viewed—from ail
distances since new aspects of beaury will be revealed in every scale.”
e Henry Moore's answer to S. Chandrasekhar’s question as to
7 ‘how should one view sculptures: from afar or nearby?’

My first encounter with radiative transfer happened, as a matter of course, during my
astronomically oriented M.Sc. at U. of Montreal, in *77-'79. It was a little bit like a love-at-
first-sight and I somehow incorporated its non-equi'iibrium features into my life-style: 1
subsequently took a (seemingly) random watk through (mainly) teaching-related jobs through
the early '80s. At mid-decade, my professional hfc was becoming a little fuzzy, at least that
much was clear about it! By then I was then casﬂy convinced that I should geophysically

“recycle” my astrophysical experience.! 'I'hls,‘-.appcaled to my environmentally friendly
political ideas and lead me (almost) straight to:;the Ph.D. program at McGill. Over five
academic years, spanning '86 to '91, I was invoibed in research into atmospheric scattering
but, under numerous influences, the focus of my research project considerably shifted after the
first two of those years. It started off with a compulsive investigation of all the angular details
on radiances emerging from completely homogéncous models of thin (hazy) atmospheres,?
possibly overlaying ground with a discontinuity m albedo at a specific scale;34 this work was

specifically targeting direct applications to the remote sensing of air quality, and a qualified ™

success was achicved. It ended with an extremely crude treatment of fluxesS only inside very

i

! This is by no means uncommon and I'm beginning to view ccrtain (radiation-related) aspects of geophysics as
"apphed" aSIrOphysu:s or maybe astrophysics as a school for atmospheric radiation scicntists, At the '92
spnng meeung of AGU (in Montreal), I happened on three ex-comrades-in-arms from the struggle for

survival in (pure) astrophysics, lost for a decade! It was as pleasurable as unexpecled. Counting myself,
there were three early drop-outs from the Ph.D, program in (astro)physics at U. of Montreal, all of which are
now somchow involved in atmospheric radiation. Interestingly, we work in three quite distinct “spheres:”
M.C. now studies aurora borealis in the ionosphere, D.T. monitors stratospheric ozone depletion, and A.D,

is involved with Lroposphenc (turbulence dominated) cloud systems; J.-P. A, actually pursued his
astrophysical career but is now considering a move. !

2 Royer, A., N. O'Niell, A. B. Davis and L. Hubert,, “Comparison of Radiative Transfer Modcls used to

Determnine Atimospheric Parameters from Space,” SJ’.I.E Proceedings, 928, 118-135, 1988,

3 Davis, A. B., and A. Royer, “Effet de I'environnement du 2 1a diffusion atmosphérique sur unc cible de petites
dnmensrons, Proceedings of the 11th. Canadian Rematc Sensing Symposium, Canadian Aeronautics and
Spacc Institute, June 22-25, Waterloo (Ont.), Canada, 1988.

4 Royer, A., A. B. Davis, and N. O'Niell, “Analyse des Effets Atmosphériques dans les Images HRV de
SPOT,” Canadian Journal of Remote Sensing, 14, 80-91, 1989,

5 O'Niell, N., A. Royer, L. Hubent, J. R. Miller, J. Frecmanue. G. L. Austin and A. B. Davis, Critical
Evaluanan of Atmospheric Pollutant Parameterization from Satellite Imagery, Report for the Ontasio
Ministry of Environment, Toronto (Ont), Project #349-G, April 1989. )
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vii

inhomogencous models of thick (cloudy) atmospheres, (implicitly) overlaying absorbing
ground; this work lead to very sirong conclusions on the theoretical aspects but with only
potential applications to satellite imagery interpretation at present (and, on the longer run, to
the improvement of radiation treatment in climate prediction). In short, a complete turnabout

in topic, methodology, etc. The overall trend being a constant move towards the most basic

physical principles (i.e., theory)—but it is now timely to reverse that trend. No attempt has
been made in this thesis to reunify the two phases of the project as described in the above. Is
there any point? We already know that the number of “interesting” problems in atmospheric

" radiation is infinite and, clearly, both of the above topics belong to the more restricted class of

—

.J‘/,r‘

(currently) “important” problems. At any rate, the experience is gained, the publications are
there to bear witness to this and I fully acknowledge the (moral and financial) support from my
previous supervisors/collaborators at CARTEL (Université de Sherbrooke).

I will therefore concentrate only on the work carried out during calendar years '88 to i
(circa) '91.5. Interestingly, and in spite of the obviously desirable restriction in focus, thetk
present thesis suffered much the same fate as the research project itself: a complete turnabout.’
The opening remarks of the first draft—a naive attempt to expose both radiative transfer and
multifractals on their common ground (viz., probability measures in phase space)}—eventually
evolved into the last appendix of the final version! Apart from the articles on which a majority
of chapters are based, the writing exercise took a half year full time, starting with a skeleton
made of this (published) and other (unpublished) material. Maj(;;' cuts were made, gfet there
remains a certain amount of partial overlapping and, in a couple of instanccs, outright
redundancy (going from cenain portions of the appendices to some parts of the chapters). The
final structure was adopted relanvcly late on, and the’ mtncate internal cross-referencing was
carefully monitored, yet some minof errors may have survwed there is little doubt that the

whole volume would gain in coherence from a complete ovcrhauhng. However, in the .

meantime, I have come to subscyibe entirely to an aphonsm {found in a margin note) of Shaun
Lovejoy’s, my thesis advisor (\and mentor-in-all-things-multifractal), ‘[...] research is an
ongoing process which still hasn't achieved the status of solid “knowledge.” [...]* which I
understand as ‘imperfection is our lot (and in fact this,keeps us going).’ Conscquchtly, it

would be borderline dishonest to rewrite the thesis in‘text-book style. . It must be said that ~ -
Shaun's proofreading of all the major sections of this thcsw, all of his suggestions and all of

the subscqucnt discussions proved extrcmcly vatuable in evexy rcspecr.

= !/l\

6 We will sce (sect. 3.1} that DA "rad:anccs are akin 10 Omem:Sphencal) fluxes and, at any rate; use the same
physical units, C 0 ‘
L N
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A comment on the final structure and adopted style is in order. Thcrc has been a
dellberatc effort to make the thesis as self-contained as possible.! This was perceived as
particularly important because poiential readers can be attracted either from the statistical
physics and/or multifractal community with little or no knowledge of radiation transport
(especially in the atmospheric context) ... or vice-versa. Indecd, very little cross-fertilization
has happened as yet. The net result of this choice is that a large amount of background

;matcnal to be reviewed accumulated and this was finally compllcd into the various appendices

(which collecnvely rival the main part of the thesis, chap. 2-6, in terms of sheer volume). For

guldance, the followmg flow-chart illustrates the connections between the vanous chapters and
appendices.

EF *
& 2 i ‘Numerical Approaches
(<) R | i
?. . / “ “
L -7 ,/f,-’
*g D/ 3 'B| 7
& > 3 §’
I by
J <
2) E
g .
* i C
L ‘ 1 — }
Analytical Approaches
Flow chat illustration of the inter-dependencies amongst the varions parts of shis thesis, Notice the two “entry

points:” respectively, kinetic theory (i.e., molecular chaos and additive processes) by above and multifractals
(i e., multiplicative chaos and turbulent hydrodynamical processes) by below. Interestingly, these “points™ are
in fact conceptually rnuch closer thar they seem since both formalisms rely hcavnly on probability and measure
theory applied 10 phas\. spaces, The key is o

A: CA transfer (gencral theory) 2: Diffusion (basic inhomogeneity effects)

B: CA and DA transfer (computational aspects)  3: DA transfer and IPs (gencral theory)

C: Fractals and multifractals in turbulence - 4: Universal radialive scaling, trivial and anomalous-
D: Diffusion (general theory) 5: Multifractal direct, planc-parallel or IP transmittancics
E: CA transfer (kinetic theory foundations) 6: Numerical DA transfer through a typical multifractal

~

1To some extent, ths is true also of each individual chapter. In many cases, “Imroduclbry'Not.cs are provided

_»~  and most of the abbreviations are redefined locally when nceded. The better kown abbrcv:auons (r/l h.s.,
. wr.t, mfp., pdf eln)archowcver nowhere speeled out v, )
8 | o | _ (,. . -
X : . i ~ i S ‘ o



ix

A generic equation 1dennficanon/rcfcrcncc would read “(c.n)” where “c” is the chapter
number and “n" the equation’s order of occurence in the chapter (sometimes s and/or letters
are appended) whereas reference to the contents of sub-section “p” of sect. “‘s” of chap, “¢”
reads “§c.s.p” (no further sub-divisions are used). Funhcnﬁore. fogtnotes are collected at the
end of each chapter which makes them less disruptive to the rcgf‘iﬁg. In my opinion, this is
the best place for them since they are used to convey information deemed “non-vital” to the
problem at hand. This information can range from the odd note of historical interest to a
clarification, from extra evidence for some result (even a short proof) to an application of a

- result. Finally, a specialized bibliography is provided for each chapter, some repetitions will

therefore be noticed. _

The thesis will be overviewed in the course of the Introduction, so*(after our stance on
redundancy) we shall not repeat the process here; we point out only that, to use a double
musical metaphor, it goes crescendo and makes use of a leir-motiv. By this we wish to
express the fact that it starts, in chap. 2, with rather weak (pp) disorder where diffusion is zif;\_r
valid model for radiation transport (with one counter-example at the very end, viz., singular
percolating binary mixtures). Chap. 3 is an “interlude,” no particular inhomogeneous cloud
model is studied since a general purpose transport model takes center stage, namely, discrete
angle transfer which is presented as the basic tool we need 1o cope with the upcoming extreme
forms of variability. Sect. 4.1 elaborates on the “theme” of homogeneous horizontally
bounded media but, all of a sudden (sf), 2 very intermitient but deterministic monofractal
model is introduced in sect. 4.2, Sect. 4.3-4 “recapimléte" the material and an explanation.of
anomalous scaling from first principles is proposed. This concludes the first “movement.” In
the second, chap. 5 and 6, the focus is on randomn multifractals, using respectively analytical
and numerical (solo) “instruments.” The variability “volume” can hardly be pumped up
beyond the level attained in chap. 6 with the introduction of the (fff) multifractal mode! with
Gaussian generators. Indeed, it is classified by Schertzer and Lovejoy [Physica A, in press]
as the ‘wildest’ and ‘hardest’ of all (universal multifractals). And the reassuring thing about it
all is that we can still recognize the “light-motif” introduced from the outset, namely radiative
“channeling.” Of course, the symphony is patently unfinished. This is of course not a fatal
flaw in itself——-famous precedents exist—but many quacks will doubtless be heard as the

“measures” " go by and thc “scales" unfold until the ﬁna] harmonically unresolvcd chord is
struck.

The opening quote was borrowed from Chandrasekhar’s Truth and Beauty - Aesthetics
and Motivations in Science [U. of Chicago Press, 1987]. It was originally intended as a
juxtaposition of a symbol of radiative transfer (Chandrasekhar’s query) and one of scale -
invariant stuctures (Moorc on sculpture). However, the way I read it now is that interesting
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sculpture is not scale invariant (at least in a trivial Way) ... and this contrasts markedly with
our opinion of cloud models, especially from the point of view of radiation. Understandably,
the encounter of the famous physicist and sculptor happened at the inauguration of the latter's
work that marks the site of the first controled fusion experiment , in front of the Enrico Fermi
Institute on the U. of Chicago campus. In this remarkable piece of art~—at oncéheavy and
buoyant, threatening and attractive—Moore used a relatively dark material (bronze) to define
not so much an outer shape but empty internal spaces, cavities through which bright skylight
would shine; adults invariably see skulls and/or atomic mushrooms in this abstract creation
but the artist envisaged children playing with/in it [I owe all of this to Prof. Chandrasekhar
himself]. Icannot imagine a more true and beautiful metaphor for clouds in general and our
fractal models in particular: at once massive and transparent, unconventional yet necessary.

A.D.
. Monureal,
14th of February (revised 10th of May) 1992.



bE CONTRIBUTIONS TO ORIGINAL SCHOLARSHIP

This thesis is made up of a main part (ch. 2-6) followed by an extensive appendix
section; on p. viii, there is a tentative graphical display of the next level of internal structure.
This way of organizing it makes the separation of the original-—but not necessarily highly
original—contributions from the prerequisite, background and otherwise ancillary—but not
necessarily readily avaivable—material relatively easy. There are only a few exceptions worth
mentioning,

On the one hand, the non-original parts of the main section are as follows. Firstly, and
most importantly, Shaun Lovejoy must receive full credit for the basic radiative scaling ansatz
expressed in eq. (0.1). In sect. 2.1 and §2.3.4, previously existing transport results have
been quoted and thea simply adapted to the radiation problem; the important result in
§§2.3.1-2 on transmittance being boosted by any form of inhomogeneity was more-or-less
known but not readily explained in terms of “channeling.” The contents of §3.2.1 and §3.3.1
" on the basic formulation of “DA(d,2d)" transfer basically reproduce (and, to some extent,
were even “lifted” from) previous collaborative work by S.L. and Philip Gabriel (PhD, McGill
*88). In the other parts of chap. 3 related to their work on DA fundamentals, there has been at
the very least substantial clarification. Finally, P.G.’s continuous angle Monte Carlo results ~
for homogeneous cubes are used in fig. 4.2b. :

On the other hand, some CA work that is original (to the best of our knowlcdge) has
been embedded in the appendices because of the logical connections. More precisely, §A.2.3
on the nonlinearly induced necessity of non-exponential average propagation kernels in the
kinetic theory of random media and their relation to characteristic functionals, §A.3.3 on the
transfer (or any other so-called “linear transport™) equation as an “x-gradient/u-anisotropy™
balance with a role for p(x), and §A.4.2-3 where the various definitions of (overall) albedo
are clearly spelled out for horizontally bounded media and the issue of “terminator pathology”
is risen (in connection with the reexamination of our previous results on homogeneous squares
and cubes). On a more technical note, a new two-dimensional “Henyey/Greenstein-like”
model phase function is described in egs. (A.21b) and (B.5) while, in sect. B.2, we address
the “thick cell” problem that arises in all numerical techniques based on finite differencing

when applied to extremely variable media. Finally, sections D.2-3 are also new; they
" respectively comment cxtcnsively on King, Radke and Hobbs’ [J, Armos. Sci., 41, 894-907,
1990] recent in situ cloud radiance obscrvations, on the one hand, and provide an
interpretation of the standard “transport” m.f.p, rescaling in terms of correlated random walks
in space that map onto uncorrelated ones on the unit sphere, on the other hand.
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MANUSCRIPTS AND AUTHORSHIP?

The faculty of Graduate Studies and Research of McGill University requires that the
following text from the Guidelines concerning thesis preparation be cited in full in the
introductory sections of any thesis to which it applies.

The candidate has the option, subject to the approval of the Department, of including as
part of the thesis the text, or duplicated published text (sce bclowj, of an original paper, or
papers. In this case the thesis must still conform to all other requirements explained in
Guidelines Concemning Thesis Preparation. Additional material (procedural and design data as
well as description of equipment) must be provided in sufficient detail (e.g. in appendices) to
allow a clear and precise judgement to be made of the importance and originality of the
research reported. The thesis should be more than a mere collection of manuscripts published
or to be published. It must include a general abstract, a full introduction and literature review
and a final overall conclusion. Connecting texts which provide logical bridges between
different manuscripts are iisually desirable in the interests of cohesion.

It is acceptable for theses o include as chapters authentic copies of papers already
published, provided these are duplicated clearly on regulation thesis stationery and bound-as
an integral part of the thesis. Photographs or other materials which do not duplicate well must
be included in their original form. In such instances. connecting texts are mandatory and
supplementary explanatory material is almost always necessary.

The incluéi_pn of manuscripts co-authored by the candidate and others is acceptable but
the candidate is required to make an cxplicit statement on who contributed to such work and to
what extent, and supervisors must attest to the accuracy of the claims, e.g. before the Oral
Committee. Since the task of the Examiners is made more difficult in these cases, it is in the
candidate's interest to make the responsibilities of authors perfectly clear. Candidates
following this option must inform the Department before it submits the thesis for review.

=

TA footnote referenced in the same way as this one will be placed at the beginning of chapters 2 through 6. 1t
quotes the related publications and roughly describes the responsibility of this author w.r.t. his co-authors
within the project related to the topic of that chaper, viewed as a scparate entity.
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*Letter #7 in Rainer-Maria Rilke, Briefe an einem jungen Dichter, Insél Lelpzlg. 1929. {Traducuon frangaise | _
par B. Grasset ¢t R, Biemel, Leitres d un Jeune Poéte, Bemard Grasset, Paris, 1937.} Rilke gives cxamples

of some-of the “difficull” things that poets “do:" solitude, death, and love. He also defines “difficulty” by its

converse, which is to adopr. casy (convcnnona]) solutions (attitudes) in the face of adversxty
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seulement agréable mais utile. En plus de m' avoir encouragé d entreprendre ce programme de
doctorat, ils m’ ont proposé un sujet aussi intéressant que difficile sur les aérosols, en relation
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ainsi que des étonnants fréres Gadjandra et Ravi. Et que dire du café quotidien,
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1 “Kem" is (also) “nucleus” in german.
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veine, je veux exprimer ma reconnaissance a J.-F, Royer et J.-L. Bringuier du CNRM
(Toulouse), ainsi que M. Menguzzi du CERFACS (Toulouse, également) qui m’a fait valoir
simplement et sans complexes les mérites du super-calcul, During the final stages of this
project (1991-92), T had the opportunity to make some very stimulating visits and I want to
thank all the people who made them happen and become the encouraging events I now
rcmcmb:,r W. Wiscombe, R. Cahalan, A. Marshak, W, Ridgway, and S.-C. Tsay of NASA
(Goddard Space Flight Center); D. Steenbergen and H. Barker of AES (at Downsview), as
well as L. Garand (at Dorval) and J.-P. Blanchet (now at UQAM); R. Pierrchumbert and H.
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merci & Nelly et @ Daniel pour leur chaleureux accueil & Paris et @ Georges-Henri, s:mplement -

d étre Id au bon endroit et au bon moment (d savoir, ici et mamrenanr) Last but far from least, '
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I want to express (in my usual clumsy way) the deep gratitude I feel towards the women with
whom I shared, over the past five or so years, moments of ecstatic joy and others of intense
pain. Que ce soit de prés ou de loin—et le plus souvent, ¢’ était les deux @ la fois, sur des
plans différents—, dans I'aventure du quotidien ou dans I aventure sans lendemain, vos
générosités sont si manifestes et ma soif si grande. C’est avec un sentiment de tendresse que
Je vous dédie ce travail avant de céder de nouveau la plume au poéte “écorché vif" ...

toujours en prose mais cette fois en bien meilleure forme (psychique s'entend, et pour des
raisons évidentes).

LA SOUPE ET LES NUAGES

Ma petite folle bien-aimée me donnait @ diner, et par la fenétre
ouverte de la salle @ manger je contemplais les mouvantes
architectures que Dieu fait avec les vapeurs, les merveilleuses
constructions de U'impalpable. Et je me disais, d travers ma
contemplation : « — Toutes ces fantasmagories sont presque au{:{)
belles que les yeux de ma bien-aimée, la petite folle aux ye;ﬁ
verts. » ; | )

Et tout d coup je regus un violent coup de poing dans le dos, et
J'entendis une 5;\1dixi‘r.'.;_uque et charmante, une voix hystérique et
comme enrauée\par I'eau-de-vie, la voix de ma chére petite
bien-aimée, qui disait : « — Allez-vous bientét manger volre soupe,
s...b... de marchand de nuages ? » '

- Charles Baudelaire,
tiré du SPLEEN DE PARIS
{Petits Poémes en Prose, XLIV)

(Q.'.
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Chapter Zero

'

INTRODUCTION

0.1. Theoretical and Observational Motivations
0.1.1. Repatriation of Radiative Transfer (Back Into the Realm of Theoretical Physics)

This thesis is concerned with the transport of radiation through inhomogeneous
distributions of scattering material that are invariant under scale changing operations.
Rewording this with our prime application in mind, we can say that this thesis is about what
happens to sunlight when it encounters a cloud (deck), in terms of reflection, transmission,

~and (in some cases) absorption. We will be looking at clouds as members of families of

objects that can be transformed into one another using zooms, i.e., we will model them with
simple gcometrical shapes and homogeneous (that is, no) internal structure, as well as their
far more interesting and realistic {ractal and multifractal counterparts. We will seek
characterizations of the radiative properties of these “scaling” families of optical media as a
whole; in short, we are interested in the expo'nents related to the radiation transport. This
focus on the scaling exponents for the radiative properties of the cloud lamilies allows us to
scparate radiatively “important” and “unimportant” factors: an “important” factor must be able
to affect an exponent. In this respect, we follow the tradition established in the study of
nonlinear dynamical systems where the prefé_rred terms are “relevant” and “irrelevant,” also
used in statistical physics. |

Before proceeding to the scale invariant media, we must clarify what we mean by
radiation * ‘transport” and “scattering.” At the most rigorous level, these concepts should be
approached using classical or quantum EM theory and we have indeed learned (in our
standard curriculum) that any inhomogeneity in density (hence permeability) scatters waves
into all directions, usually in a reialively éomplicated pattern (cf. Mie theory for plane waves
impinging on spheres). In this wave-theoretical framework, multiple scattering th'eory is
extremely difficult, even for scalar waves. Spurred in part by the. technologically (even
tactically) important problem of }ropagatlon of EM waves through turbulence, steady
progress has been made, usually at the expense of some appro_xnmatlon such as small
scattering angles. This is of course an ongoing and‘fa.écinating area of fescarchl‘ but, from
our point of Viéw, it applies only to the very_ fine structure of the “direct” beam, as induced by
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coherence effects.? Fortunately, there are many circumstances where the effects of coherence
can be disregarded: we simply add scattcred energy fluxes as soon as a large number of
randomly distributed discrete scattering centers is considered. However, this is reasonable
only if the typical distances between these entities are large w.r.L. their typical size and w.r.L.
the wavelength of intcrest, otherwise characteristically wave-like localization phenomena will
occur. Apgain fortunately, there is an ad foc theoretical framework for the description of
radiation transport in this intermediate density regime where the wave-like behaviour is not of
interest as such; it is of importance only to compule the given scattering and/or absorption
cross-sections. This theory is known as “radiative transfer” and it uses macroscopically
defined fields that model the fluxes of radiant encrgy propagating in gecometrically defined
beams into the various directions.

The connection between radiative transfer and mainstream optics is stilt unclear; in
§1.3.1 (and more so in app. [F), we briefly describe the major problems and refer to the
relatively small literature on the subject. In sharp contrast to this conceptually uncomfortable
situation, radiative transfer is formally identical to neutron transport theory as modelled by a
Boltzmann equaiion with a linear collision kernel (rather than a diffusion equation): the word
“neutron” can be replaced loosely? by “photon,” sce app. E for further details (including a
mapping of transfer concepts onto those of Markov chain theory). Following a very large
community of researchers, we will adopt radiative transfer as our hi.‘ghcsl level of physical
theory for the matler-radiation interaction that we intend to investigate. Curiously, relatively
{few members of this large community would define themselves as “pure” physicists, more
likely as astrophysicists (either observationally or theoretically inclined), as geophysicists
(e.g., specializing in remote sensing, meteorology or climate), as engineers or as applicd
physicists (most probably working on neutron and/or plasma déviccs) and, in a few cascs, as
applied mathematicians (usually working with one of the above). Apart from the uncertain

_ position of radiative transfer in the overall structure of theoretical physics, there are many

reasons why the physics community per se has shown little interest in the subject.

First of all, we must recognize that Chandrasckhar [1950] carried radiative transfer
theory to a very high degree of perfection. However, his rcsults apply only to highly
symmetrical systems, usually made of homogencous plane-parallel scattering media. This
brings us to the point where we must make a realistic (and sobering) assessment of the status
of the theory of inhomogeneous radiative transfer. (Ndlice that in the above—and throughout
this thesis—we do not take “radiative transfer” to be synonymous with “radiation transport,”
as used in the title; see sect. 1.3 below for the technical distinction.) The most general

problem of inhomogenebus radiative transfer through arbitrarily shaped, arbitrarily structured
optical media, with arbitrarily complicated phase functions (i.e., differential scattering



cross-scctions), and arbitrarily distributed sources seems to be fundamentally intractable,
analytically speaking. Several general numerical approaches have been developed [e.g.,4
Cannon, 1970; Stephens, 1986] that go beyond straightforward Monte Carlo simulation
which, in turn, can always be used as a calibration’ tool; however, there will always be
practical (CPU time and RAM capacity) limitations in numerical work. This is a rather
frustrating state of affairs, given the fundamental importance of radiative (and/or neutron)
transfer to our understanding of the structure and evolution of macroscopic systems ranging
in size from laser-fused droplets of heavy water to the Universe as a whole with, in between,
Tokamaks, A- and H-bombs, single clouds, planetary atmospheres, stars and interstellar
clouds, to mention but a few applications. Indeed, radiation—all frequencies combined—is
often an active component in the dynamics of these natural or man-made systems. Morecover,
radiation is an extremely useful diagnostic tool—virtually the only one available in
astronomy—for extracting, without interference, information on the state of the system.
However, in order to convert-such remotely sensed data into physically meaningful
information, we nced to know (or, more likely, make an assumption on) the structure of the
system viewed as an oplical medium. And the real worid is obviously made of very
inhomogeneous matcrial structures that create, destroy, or simply scatter radiation.

The above situation basically explains why radiative transfer has become more of an
engincer’s than a physicist’s topic: the practical applications are pressing (in particular,
coming from the civilian and military nuclear industries) and the kind of breakthroughs
(insights) that the pure scientist thrives on are few and far between. Even in the applications
to both metcorological and astrophysical problems, radiative transfer plays a central role yet it
has become a sub-topic that the dedicated dynamicist has little time to cope with. We believe
this situation can be remedied by applying three complementary measures; _

1- The general radiative transport problem does not have to be posed in terms thalt attempt
to make it as close as possible to reality (i.e., there is no absolute necessity to work in
three spatial dimensions with complicated scattering kernels). This is especially true if
we wanl to learn (understand in depth). something aboul the inhomogeneity aspects of
the problem, if only because we will soon be confronted with our analytical or
numerical limitations anyway.

2- Our attitude w.r.t. the kind of inhomogeneity to be studied need not be one of
compulsively trying to accommodate the most general case (at least, right away)

/)' because, again in a learning process, a few well chosen but specific examples are often
& enough to anticipate the general principles, to provide guidelines for future research at
the very least. ' ' :

-
A
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3- Possibly most importantly, we need to take an objective way of deciding (in fact,
learning) what is physically important and wh~tis not. This is a necessary step if we
want to rethink the basic theory, claborate alternative models of radiation-matier
interaction that target the most important radiative features of the most relevant types of
media. In tumn, such alternative, more focused theory should lead to improved tools for
dynamical modelling as well as for diagno§_iic applications.

Accordingly, we will (1) systcmatically scck;'ways of simplifying the general radiation
transport problem, (2) systematically collect examples that are represZitative of: broad
categories of media, and (3) systematically use scaling relations to define radiatively important

" exponents,

0.1.2. Some Current Problems in Terrestrial Amospheric Radiation

So we cannot solve the most general radiative transfer problem, lct alonc in the inverse
direction where one extracts physical infogjmalion on a system-simply by measuring its
radiative propertics. Focussing only on lcrréstrial clouds and sunlight, we arc nevertheless
compelled o interpret our satellite imagch! quantitatively, and we are still committed to
constantly improve our weather forccasliﬁJg skills, in particular, by using remotely sensed
data (at the level of the initialization of the numerical model). Unsurprisingly, major
atmospheric radiation problems more- or less directly related to clouds abound. Here is a
short line-up where the visible-, near IR- and thermal IR spectral regions cach take center
stage: ' ,"" ;

a- Wiscombe e al. [1984] summarlze in their cloud “albedo pai"adox“ what kind of
problem can arise when ideas based on unrealistic modcls are applicd to reality. Stated
simply, the paradox is that optical thicknesses oblained from seemingly reasonable
liquid water content (LWC);proﬁlcs, based on actual field measurements, can reach the
hundreds, even for clouqé of moderate geometrical thickness. However, in order to
obtain consistency betw’éen the value of the planctary albedo (=0.3), and the globally

«. averaged cloud cover’ (50%), the latter cannot have a mean albedo greater than =0.5

\[Paltndge and Platt, 1980] This last value is achieved by homogcneous non-absorbing
plane -parallel clouds at optical thicknesses of order 10 only.® Accordmg to the same
models, the obscwed optical thicknesses lead to albedoes in excess of 0.9, a value very
rarely observed. Conversely, the optical thicknesses deduced from satellite
observations‘,'are too small when the same models are used [Twomey and Cocks,
1982]. We will sec that this paradox vanishes once we leave the very artificial case of
homogencous plane-parallel models. Alternative explanations {c.g., Fouquart et al.,
1990] call for an amount of absorption that scems to be unsubstantiated, at least at™
strictly visible wavelengths (=0.5um) [e.g., King et al., 1990]. In our opinion, the




e

considerable spread in the observed (apparent) absorptance bears witness more (o the
presence of internal variability than to the difficully in conducting simultaneous
reflectance and transmittance measurements, which is already considerable.

b- At any rate, much of the attention has now shifted towards the cloud “absorption

anomaly” which has been recently reviewed by Stephens and Tsay [1990]. In the
cnergetically important near-IR (that contains one half of the solar irradiance at the top
of the atmosphere), there are known and well-understood sources of (true) absorption.

i There are also reasons lo belicve that there might be some more, poorly understood
ii sources of absorption such as H»0 dimers or a water vapor continuum formed by the
il extended “wings” of very remote but numerous spectral bands. Whatever the
* absorption situation is, scattering is also very much present and, given the systematic

(and cventually quite strong) inhomogenecity cffects that we observe in the
non-absorbing cases, it is unclear whether we are witnessing truly enhanced absorption
or just more variability effects, or (worse) a combination of the both. Obviously, the

" implications on the radiative budget are totally different in the two extreme cases.

Finally, we are acutely conscious of the fact that continuous input of (inhomogeneously
distributed) solar radiation is quite literally “driving” the dynamics of the atmosphere on
all meteorogically defined “scales,” from the “micro-" (e.g., slope breeze, convectional
instability) to the “synoptic” (e.g., Hadley cells).” Simultaneously, the closely related
problem of climate prediction has all of a sudden become a major concern for policy
makers; these newcomers to atmospheric science are trying very hard to balance
cconomic and political pressures exerted respectively by the typical lobby, representing
an industry that still needs fossil {uels (to generate profit), and their constituents,
ordinary (voting) people concerned with runaway greenhouse effects and that now
demand action, not (more) hot air. Understandably, the politicians want reliable
predictions about the climatic effects of human activity but all that they can get for the
moment is scientifically sound statements about the uncertainties of climate modelling,
It is indeed notorious that climate models are very sensitive to their treatment of cloud
backscatter, especially in the visible/near-IR [Ramanathan et al., 1983]. It is still
uncIear whether, 1€ clouds will tend to counter-balance or enhance the warming effect
of the "a592§ greenhouse gases that are themselves active in the thermal IR; there are

‘semi-empirical as well as theoretical indications that both can happen at different

latitudes [Ramanalhan et al., 1989]. The only real consensus 1< that the uncertainties,
on the cloud-factor in particular, are so large that the rellabnhty—-—even the feasibility—of
climate modelling is highly questionable " The ceptics have tumed to data analysis and

o
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‘the believers need, amongst other things, better cloud-radiation interaction
parameterizations.

We should also mention the problems related to the dependence of albedo and “cloud amount”
on satellite resolution which are to be expected in scaling cloud and/or radiation ficlds [s2e
Gabriel e al., 1988; and references therein]. In response to the challenges posed by these
atmospheric radiation problems, we advocate the use a combination of simplified transport
models and idealized cloud models (ihe latter are only required, for the moment, o not be of
the homogeneous plane-parallel type). We are aware of the fact that this attitude is in
complete opposition to the usual approach in theoretical radiative transfer studies which is to

_postulate an unrealistically homogenecous and symmetric (ﬁsually planc-parallel) cloud model

and then to use ever more sophisticated transport schemes. This attitude could be partially
justified in times when detailed quantitative information on internal cloud structure was
largely inaccessible, but this is no longer the case: for examples of LWC variability, sce Tsay
and Jayaweera [1984), Stephens and Platt [1987], or Durouré and Guillemet [1990].

0.2. A Survey of the Literature from the Scaling Viewpoint, followed by our

Main Results

0.2.1. Inhonpg:_zefow}jqdmnon Transpori (Theoretical and/or Computational Approaches)

For reasons tentatively described in the above, there are very few specifically mdiative
transfer studies in the traditional pZy. SICS literature, However, transport problems in general
have always generated cons:derablc mtercst in the physics community; a well studied
example that is quite relevant to our concern with basic effects of inhomogeneity is the
question of diffusion in percolating binary mixtures. This subject has a sub-literature all of its
own and we will not even attempt to review it here, rather in §§D.6.2-3 we describe the main
results of importancé‘ to us (viz., used for radiative purposes in §2.3.4) and thereabouts
references are given that contain adequate bibliographical surveys. For the moment, we will
focus almost entirely on geo- and astrophysical publications.

For some time, the term “inhomogeneous™ atmosphere in the radiative transfer literature
was synonymous with a vertically stratified system of almosphenc layers which, can be
described within the context of plane-parallel geometry; sce Lcnoble‘ll977] for an cxtenswc
review. There is no doubt that stratification is present in the atmosphere, but ignoring
horizontal variability is a very extreme assumption: if strictly applicable, the variability of
(visible) satellite imagery would be due only to the random spatial distribution of surfacc.
albedo?® and the delermmlsuc variation of illumination geometry. This simple fact has created
the need to better understand “multidimensional radiative transfer.” In the circumstances, this

expression is rather unfortunate since we want to avoid all possible confusion with the
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concept of “multiple (fractal) dimensions.” This is especially important given the key role of
the fatter in transfer phenomena and we therefore prefer to use the expressions like “higher-
dimensional transfer” or “horizontally inhomogeneous media” (when the directional bearings
have been made clcar) to characterize this broad field of research. In the upcoming
discussion, we will exclude from the outset work on “inhomogeneous” atmospheres where
variability is confined only to the vertical; for the purposes of this study, these stratified
media exhibit plane-parallel (or one-dimensional) behaviour. Furthermore, in this succinct
review, we will mainly be concerned with the simplest of boundary conditions (BCs) that
define the so-called “ailbedo”™ problem. In essence, these BCs describe the sources and sinks
for the (generally conservative) multiple scattering problem: namely, external® illumination
from above (usually by a uniform collimated beam) and absorbingl® ground below.
Alternatively, we can say that such BCs provide a “forcing” of the flow of radiant energy
through the medium. There is a basic dichotomy in the literature which is important to respect
(sce scct. 0.3 on our main results): horizontally finite cloud models versus their horizontally
extended counterparts, !l We start with the former. .

There as been a sustained interest in treating clouds as simple geometrical shapes
(usually cubes or cylinders) while maintaining internal homogeneity. See, for example,
McKee and Cox [1974], Davies [1976, 1978], Barkstrom and Arduini [1977], Busygin et al.
[1977], Cogley [1981], Welch and Zdunkowski [1981a], Preisendorfer and Stephens
[1984], Slephens' and Preisendorfer [1984] for various approaches; see also Crosbie and
Dougherty [1985] who compound the difficulties, using laser beam-like illumination -
conditions in cylindrical media. The basic motivation is always to understand the basic
radiative effects of imposing an outer horizonlal scale on a system; we approach this
essentially homogeneous problem from the scaling point of view in sect, 2.2 and 4.1 of this
thesis where we reevaluvate the findings of Gabrel [1988], Gabriel et al. {1990} and Davis e?
al. (1989, 1990a). Before leaving this artificial class of internally homogeneous cloud
models, we must note the conspicuous absence of fractal (nowhere rectiﬁablé) boundary
shapes, either deterministic (like the von Koch curve) or random (like fractional Brownian
motion); this contrasts sharply with the fact that these surfaces actually “grow” very much
like (convective) clouds do, i.e., by “budding” (as in cauliflower).12

Regularly striated systems (one-dimensional horizontal variability at one specific scale,

- often specified by a sine wave) have always attracted some attention if only because, like our -

inhomogeneous atmosphere, they offer no outer scale in the horizontal. This can:be done
either by assigning some purely horizontal variation in optical density (which is easier to
approach anal'yti'cally) or by modulating periodically the upper (or lowe_rj surface of an
otherwise homogeneous medium (if a'pieceWisé linear profile is used, this type of medium is



easily treated by Monte Carlo techniques). Sce Weinman and Swartztrauber [1968], van
Blerkom [1971], Romanova [1975], Davies [1976], Wendling [1977], Romanova and
Tarabukhina {1981], Stephens [1986, 1988a] and Cahalan [1989] for a varicty of examples
and techniques of solution. By using a multifractal cascade to model the horizontally variable
optical thickness, the last author in fact leaves the realm of smooth, deterministic profiles. It
is also important o note that Stephens [ibid.] offers a much more general formalism but his
examples exhibit (deterministic) one-dimensional variability in the horizontal only since this
allows him to use an inhomogeneous variant of the “adding/doubling” technique which has
proved to be very expedient in plane-parallel applications. ' )
In order to simulate horizontally extended cloud fields more realistically, Busygin et al.
[1977], Aida [1977], Gube et al. [1980], Davies [1984], Kite [1987] (with a comment by
Rawlins [1990]), Crétel et al. [1989], Barker and Davies [1992a; and other references
therein] have arranged the above mentioned homogeneous cloud shapes into periodic or
random two-dimensional arrays, with or without clustering, with or without distributed sizes
and, when distributed, there is usually a characteristic (or very rcprcscnlauvc mean) size
involved. In step with current observational {indings (see below), the last authors use
random scaling geometry to define the clustering properties of their clouds; for comparison,
they also allow the individual cloudy cells to be of different optical thicknesses, as naturally
dictated by their truncated additive model (briefly described in sect. C.2). These purely
numerical investigations can be contrasted with the approach that consists of ensemble
averaging the (analytical paramelerized, or tabulated) radiative responses associated with the
simple homogeneous cloud geomemes in an attempt to model the cffect of spatial variability.
More precisely, one argues that lhe ensemble averages can be interpreted as spatial averages if
one neglects all (net) effects of radiative interaction from cell-to-cell, or cloud-to-cloud
(depending on whether one is thinkihg of a single variable cloud model, or a model for a field
of clouds). See, e.g., Busygin et al. [1973], Mullaama et al. [1975}, Ronnholm et al.
[1580], Welch and Zdunkowski [1981b], and Stephens ez al. [1991 and (more) refercnces
therein] for some examples.!3 In essence, this last approach is very close to what we will
come to call “independent pixels.” This expression is due to Cahalan {1989] who applies the
technique numerically to a (definitely spatial) multi fractal distribution of optical thickness in
an ef] forl to mimic his results {or the albedo field obiained by Monte Carlo simulation (and
therefore with horizontal fluxes fully accounted for). For a general discussion of the idea, we
refer the reader to sect. 3.3. Davis ef al. [1991a, or chap. 5] obtain analytical results for
multifractals in general, Scherizer and Lovejoy’s [1984] “a-model” in particular; a

“microcanonical” version of the latier was in fact used, with specific parameter values, by
Cahalan [ibid.).
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All of the above media have horizontal as well as vertical variations in their radiation
ficlds, the latter being largely driven by boundary conditions. Up until now however, the
only systems with density gradients in both the vertical and (at least one of the) horizontal
direclions are those homogeneous ones with a non-planar surface: for instance, collections of
spheres [e.g., Davies, 1984] or else slabs supplemented with periodic “turrets” on top [e.g.,
van Blgrkom, 1971; Davies, 1976]. At any rate, relatively little attention has been paid to
systems with bone fide “internal” inhomogeneity (density fluctuating in all directions).14 We
also note that, within this more general framework, the standard distinction between the one-
or two-dimensional cloud array problems (discussed above) and the problems of internal
variability (discussed below) is in fact quite artificial since the former can be viewed as a
special sub-class of the latter where density is either finite and constant on some given set or
null on its complement.

Turning to internally variable media, we find, on the one hand, that Mosher [1979] and
Welch [1983] have adopted a deterministic approach to cloud structure respectively built from
a (relatively small) number of elementary “blocks” and controlled by the numerical integration
of the fluid dynamical equations (at necessarily very moderate Reynolds numbers). On the
other hand, Avaste and Vaynikko [1974], Glazov and Titov [1979], Titov [1979, 1980;
1990], and Boissé [1990] have developed analytically a mean field theory applicable to media
with two possible values of the density and a spatial distribution generated by a Poissonian
(cxponentially decorrelating) process. These last idealized media are well approximated by
white noise on a grid if the lattice constant is identified with the integral correlation length;
such media have been investigated numerically by Welch et al. [1980] although they allowed
for a contiriuous (rather than a binary) distribution of density values. Stephens [1988b] also
develops an analytical mean field approach based on Reynolds averaging of the transfer
cquations and the subsequent application of different closures to a two-flux approximation.

All of these authors report relatively small but systematic effects of internal variability

-on the overall radiative properties of their models; their direction is dictated by the -

nonlinearity of the radiation-scattering material coupling and it appears to depend onlyl> on

~ the choice of radiative property to be monitored (i.e., albedo decreases and transmittance

increases). The smallness of the observed differences w.r.t. homogeneity is partly due to the

>fact that the cloud models are usually taken as qLiite thin, i.e., not dominated by (effectively

isotropic) scattering-which-means an overall smaller nonlinear coupling between the radiation
and density ficlds. Itis also partly due to the relative weakness of the variability of the media. .
In sharp contrast to this situation, the multiplicative cascade models presented in app. C are

~designed specifically to mimic the very singular features of exiremely high Reynolds number

flows: they are characterized by a huge variability (implying, in parlicular, a very wide range
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of values), the possibility of diverging statistical moments, a hcavy concentration of the
“activity” onto very sparse (fractal) sets, hence a correspondingly high degree of
intermittancy, and yét long-range (algebraically decaying) correlations. We will return to their
radiative properties after an observational justification of their introduction.
0.2.2. Fractal and Multifractal Aspects of the Atmosphere (Observations and Simulations)
There are many theorctical reasons, as well as considerable empirical evidence
supporting the idea that, over wide ranges in scale, the statistical properties of clouds are
invariant under scale changing operations. Scale invariant (or simply “scaling”) systems are
associated with power law behaviour and complex fractal structures arise naturatly since over
the corresponding range, the system has no characteristic size. Theoretically, we expect
atmospheric ficlds, incfuding clouds, to be scaling since the governing dynamical equations
have no characteristic length between the outer (planclary) scale and the inner (viscous) scale.
Furthermore, the radiative transfer equation introduces no intrinsic scale either since we
expect the optical density field itsell to obey scale independent spatial statistics. In the
following we shall consider observationally based motivations, focussing only on cloud
structure and/or radiation fields. In particular, we will leave aside the growing literature on
the scaling properties of rain, wind, temperature, and other atmospheric fields in spite of the
fact that many of these quantities are clearly related physically to cloudiness); see Scherizer
and Lovejoy [1991] for a broader survey.
~ Empirical (aircraft) energy spectra of cloud liquid waler content, such as those oblained
By King et al. {1981}, are scaling (power-law) in form and broadly support the idea that, at
least over wide ranges in scale, clouds (as revealed by satellite images) are {ractal [Lovcjoy,
1982; Rhys and Waldvogel, 1986; Kuo et al., 1988; Welch ef al., 1988a,b; Lee, 1989;
Stze and Smith, 1989; Cahalan and Joseph, 1989; Yano and Takeuchi, 1991]. For
reviews, see Lovejoy and Schertzer [1986, 1990] or Schertzer and Lovejoy {1988]. Ludwig
and Nitz [1986] extend scaling analysis techniques to lidar probings of smoke blumcs, as do
Durouré and Guillemet [1990] to in siti cloud LWC probings, followed by Malinowski and
Zawadski {1991]. There have been some reports of scale breaking [Cahalan and Snider,
1989], but these may well be due to the use of monofractal rather than multifractal analysis
techniques; sece Lovejoy and Schertzer [ibid.] for a discussion of this difference as well as a
critical reevaluation of previous analyses. In any case, systemalic studies of scaling and its
limits in the atmosphere still have not been undertaken and the basic issues are still open.
The very least that can be said is that cloud scaling is fairly complex. in this regard,
Gabriel et al. [1988] analyzed several IR and VIS channel images captured by GOES, over
ranges f rom 810512 km; lhey found that the intense and weak rcglons have different scalmg
exponents ie., the clouds (and the underlaymg ground) are “multifractal.” . Schertzer and



11

Lovejoy [1987] show theoretically that under fairly general circumstances the entire
multifractal spectrum or (co)dimension function, can itself be characterized by three
parameters which define multifractal “universality classes.” Unlike fractal dimensions which
provide purcly geometric characterizations of sets, these parameters characterize the
dynamical generator of the process. Lovejoy and Schertzer [1990] refine the analysis of
Gabricl et al. [ibid.] and estimate the three parameters for IR and VIS (cloud and/or ground
surface) radiances which are respectively translated into albedoes and brightness
temperatures). The same type of dataset is reanalyzed!? by Tessier e? al. [1992] and
compared with other types of satellite imagery. A further complexity in the scaling is
empirically discussed in Lovejoy et al. [1987] (in connection with radar rain fields) showing
that the appropriate scale changing operator is not simply a zoom (self-similarity), but
involves stratification as well and a new “elliptical” dimension must be introduced; this is not
unexpected in prcséhce of a gravitational field and the ensuing convective activity [Schertzer
and Lovejoy, 1985]. Moreover, Lovejoy and Schertzer [1985] argue that the relevant scaling
should also involve differential rotation due to the presence of Coriolis forces and they
illustrate their ideas with quite convincing'simulations. This aspect of “generalized scale
invariance” (or GSI) has now been validated empirically by scaling cloud “texture” analyses
[Pﬂug et al., 1991; Lovejoy et al., 1992). In summary, multiple scaling and anisotropy are
N llkely to be fundamental ingredients of realistic cloud models.
0.2.3. Radiation Transport in Fractals and Muldtifractals (Including Results in this Ihesw)
We now resume our discussion of theoretical/computational (rather than empirical)
radiativé transfer studies at the point where we left it at the end of §0.2.1, viz., in search for
cloud models with strong inhomogeneity effi ects, large enough to explain the cloud “albedo
paradox” described in §0.1.2 above at any rate. This challenge is met by Gabriel et al. [1986)
who obtain numerical results for a random monofractal cascade model—a so called
“B-model” (see sect. C.2y—that develops in all three dimensions of space.1® In comparison,
Cahalan [1989] uses only one (horizontal) direction to déve!op His random multifractal -
cascade model—of the type known as an “a-model” (see sect. C. 3)—w11h interesting effects
induced by this very strong structural anisotropy {Davis ef al., 1991a; also sect. 5.4 of the
present thesis]. It is important to realize that both of these models are generated by a
multiplicative cascade procedure and are therefore very intermittent and smgular in nature as
- well as highly correlated, even the monofractal one.19 R : '
. Lovejoy et-al. [1989] and Gabriel et al. [1990], on the one hand and Davis ef al.
[1989 1990a; or sect. 4.2 of this thesis], on the other hand, study a deterministic |

“monofractal model with, respectively, innovative analyucal (renormallzatlon) and standard =~ -

" numerical (Monte Carlo) approaches, Thexr rcsults are. somewhat d:fferent and the -
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discrepancy is explained by Lovejoy et al. [1990] in terms of the adopted methodology. At
any rate, these studies are the first to define and to illustrate “anomalous” radiative scaling
with reasonably strong numerical evidence of “universal” (phase function independent)
behaviour, A detailed discussion of this phenomencn is conducted in chap. 4, on both
computational and theoretical grounds. For the moment, we simply let “F” denote some
appropriately normalized bulk radiative response to the external illumination, e.g., total
transmittance (which is simply the mean flux through the system expressed in units of
incident flux). We also let “1” represent some non-dimensionalized measure of the total mass
(or LWC) of the cloud model. For this last parameter, optical thickness—vertically integrated
cross-section per unit of volume—is a convenient choice, provided that it is spatially averaged
horizontally in inhomogeneous situations. If the scattering is conservative, if the cloud’s
structure is scale invariant, and if it is optically thick enough (i.e., we require T » 1), then we
can confidently anticipate an asymptotic regime with algebraic (or “scaling”) behaviour:
|Fr-Fool = hp TVF (0.1)
where vr is the universal scaling exponent associated with response F and kg, a (phase
function dependent) prefactor, Naturally, if the cloud model is stochastic, we should be
considering ensemble-averaged F's and 1’s; in sect. 1.4, we will offer an alternative
parameterization of the basic radiative scaling relation in eq. (0.1) that incorporates this
possibility, in a “mean field” sense. We will see many applications of such relations
throughout this thesis, mainly in chap. 2, 4 and 5.
As a first example, consider transmittance (F=T) which we will often use in practice.
The thick cloud limit (T..) is naturally 0 and the “standard,” or “normal,” or “wivial” scaling
exponent, associated with homogeneous plane-parallel slabs,20 is vp = 1 while an
“anomalous” scaling is characterized by vt < 1 hence much higher transmittancies at a given
1 and this generically explains the cloud “albedo paradox.” As customary, the signs in eq.
(0.1) are chosen in such a way that the parameters remain positive. Nevertheless, we can
define a similar thin cloud—-we should say “haze”™—limit (Fy) for t«1, in which case we
expect to find a linear response (ve=-1); this is a well-known fact for thm homogeneous
systems2] but we present arguments for its generalization to the most extreme cases of
multifractal variability [Davis et al., 1991a; or sect. 5.1-2 of this thesis]. Physically
speaking, linear response means that the light particlesi suffer at most a single scattering
“within the medium. " In contrast, the non-linear'rcgimc described above and where the
anomalous scaling can eventually be observed is associated with a predominance of highly
scattered photons. In fact we can take the multiplicity of scattering as a (stochastic) measure
- of the non-linearity of the co-lplmg between the radiation and density fields which is of course
dcﬁned however less intuitively, by the equations of rachauon transport t}wmselves In thls
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connection, we argue (in scct. 4.4) that “t» 1" is a necessary but not a sufficient condition to
obtain strong nonlinear effects such as the anomalous scaling described in eq. (0.1). Indeed,
muitifractal examples of infinitely massive clouds with no scattering whatsoever are provided
in sect. 5.4, :

The idca of anomalous scaling exponents and universality in transport phenomena is
adapted from the abundant statistical physics literature on conductance (or diffusion) in
disordered media, a brief summary of which is presented in app. D (and the results therein are
adapted o the radiative problem in chap. 2). The real novelty here is to operate within the
theoretical framework of radiative transfer: an exact kinetic theory {and ballistic random
walks), not its hydrodynamical limit (and diffusive random walks). Lovejoy et al. [ibid.;
also sect, 3.5) present a similarity-based argument for the universality within the framework
of “discrete angle” transfer. Davis et al. [1991a, or chap. 5] have since defined and evaluated
“mean field” and/or “independent pixel” exponents for multifractal media; in essence, these
last exponents capture the statistical scaling effects of nonlinearity that are already present in
one-dimensional transfer or, equivalently, do not cal] for horizontal fluxes.

Finally, Davis et al. [1991b, also chap. 6 (and app. B, for the numerical technicali‘figg\;)] ,
lcave aside the determination of new exponents to have a closer look at how radiaiion flows
through a typical multifractal density field with various overall optical masses. Having been
carefully validated (ata considerable computational cost), these last results first of all set a
precedent against which tentative improvements in numerical transfer schemes can be
evaluated; the challenge for approaches based on finite differencing (rather than direct Monte
Carlo simulation) is to cope with the very thick cells that naturally arise in any multifractal
type of optical medium. Beyond the numerics, these simulations serve as illustrations of the
higher-dimensional aspects of the nonlinear radiation/density field coupling (traceable to
Cannon’s [1970] concept of radiative “channeling”) that are at work in particular. when
anomalous scaling is obtained (sect. 4.3—4). In spite of the very arbitrary choice of internal
structure, many specific f eatures of the numerical experiment compare quite favorably with
the corrcspondmg observations in real clouds. These quantitative successes are very
encouraging for the future of scale invariant cloud modelling. Also encouraging is the fact
that our numerical multifractal results in no way conflict with the qualitative understanding of
inhomogeneous radiation transport that we develop in chap. 2 with the help of d;ffusmn
theory apphed to far less realistic but analyncally tractable mcdla

0.3. A Detalled Overvnew ol’ thls Thesns

First of all, we have systematically colIected radlatmn transport theones that are general - - R

cnough to accommodate any given mhomogeneous scattenng optical medlum More
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precisely, cach of these physical models for matter-radiation interaction can be used, for
instance, to predict an albedo (or reflectance) and/or an overall flux (or total transmittance),
the remainder, if any, yielding absorptance. We restrict oursclves to “general purpose”
transport theories—they can be applied to an arbitrary medium—they are thercfore readily
compared quantitatively, simply by kecping the same medium. We have clarified the inter-
connections between these theories and organized them in a hicrarchy. By order of increasing

“ease of manipulation,” we have: continuous angle (CA) transfer, discrete angle (DA)

transfer, diffuston theory, and “independent pixels” (IPs). For the moment, let it simply be
said that

CA transfer is the standard kinetic-type “linear transport” theory, completely equivalent
to neutron transport theory (and reviewed in app. A).

DA transfer is a special simplifying choicc of the “phase function” (scattering kernel) in
its CA counterpart (full details to be found in chap. 3).

diffusion theory is known as “Eddinglon’s approximation” in the radiative literature,
and the “hydrodynamic limit” in statistical physics (reviewed in app. D).

IPs means that the medium is somehow divided into columns that exchange no radiant
energy with one another (see sect. 3.4 for specifics).

We better describe, contrast and inter-relate of all of the above approaches in sect. 1.3 (and
the above-mentioned sections of the thesis give all the necessary technicalities).
0 3.1. General Theory of Inhomogeneous Radiation Transport (App. A and D, Chap. 2-3)

Within the most general framework (i.e, CA transfer), we have

established that photon free paths are always longer on average in inhomogeneous
situations than in ho(mogeneous ones (with the corresponding average density).
proposed and explmted a new model phase function that is the two-dimensional
counterpart of the celebratéd | Henyey~Grccnste1n phase function.

interpreted the radiative transfer equation for (the important case of) conscrvative and
isotropic multiple scattering as a detailed balance between spatial gradients and
directional anisotropies in the radiation field, with (relatively minor) role for density.
enumerated and contrasted the various definitions in existence for albedo (versus
transmitlance and, possibly, absorptance) for the case of horizontally bounded media
(i.e., “isolated” clouds). Also, the IP approach is shown to be largely irrelevant to
these horizontally bounded cases. '7 | | ;
related the “transport” mf .p. rescaling to the statistics of corrclaled random walks in
space, viewed as images of their uncorrelated counterparts in direction-space.

Focusing primarily on conservative scattering, several analytically-based results have been
obtained using the three simpler theoretical frameworks in the hierarchy (DAs, diffusion, and
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IPs), often further simplifying the problem at the level of the boundary conditions (this last
procedure poses no major problem for horizontally extended media, at least in the case of
weak enough variability). These results include:
» gencralized similarity refations for DA transfer, where a single phase function parameter
is vziricd, rather than al! at once as in the standard theory;
« total transmittance is always increasing when going from IPs to DAs to diffusion, for a
given mediuin;
+ the average transmittance of an ensemble of media with various masses (or optical
thicknesses) and given structure is always less than the transmittance of the medium
with the average mass (due to the convexity of transmittance w.r.t, mass and Jensen’s
inequality);
+ the prcVious statement also applies to any IP transmittance, as compared to the
corresponding mean density transmittance; y
« the homogeneous distribution always yields the smallest transmittance, for a given total
mass. In particular, we find (honzontally) homogeneous plane-parallel media to be
extremal w.r.t. the the decrease of transmission, equivalently, increase of albedo.
The threc last results and the one in the above concerning free. paths (hence direct
transmittance) were previously known but, in our opinion, not well éxplained.- We have
underscored the fundamental role of the nonlinear coupling that exists between the radiation _
and density fields. Furthermore, higher dimensionality is essential to the last result and it is
shown {o be directly related to Cannon’s [1970] “channeling” (see §1.5.1 for a discussion of
the author’s original definition) and Slephené’ [1986] “mode-coupling” (see §1.5.2 for an
explanation of this pafaphrasing of the author’s original analysis). In essence, the authors
have used these expressions to describe the basic effects of inhomogeneneity on the flow of
radiant energy, respectively in physical and Fourier spaces. This basic fact is illustrated with
a novel (closed-form) analytical solution for homogeneous and hollow spheres. The
conditions of its extension to CA transfer are also discussed: normal, isotropic or othenvise
quite symmetric illumination geometry seems to _be required.

Finally, all of the above results seem to generalize (when necessary) to every case of
extreme variability and/or (numerical) application of exact boundary conditions to be
mentioned in the following. In parucuIar this indicates that “channeling/mdde-coupling” is

-still at' work on a per realization basis in the case of stochasuc cloud models. Notice that pure
' internal vanablhty (hence * ‘channeling”™) and pure stochasllcny (hence Jensen S. mequallty)
‘both enhance the overall and/or average transmitiance, so it is conceptually important to

_consider them separately, at least at this pomt in tlme smce we are still trymg to posuwely o
E ldenufy the basic mechamsms at work
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0.3.2. Normal and Anomalous Radiative Scaling Exponents (Chap. 4-5)

In the following, we use the scaling parameterization defined in eq. (0.1).
Homogeneous Squares, Cubes, Ete,: Contrary to previous claims concerning the
scaling of albedo, these media prove, upon closer examination, to be in the same class
as other types of horizontally bounded media (e.g., spheres), especially if the albedo is
properly defined. Of course, this scaling is “normal” (vg = vy = 1), i.e., cloud sides
are asymptotically unimportant, This scaling is indeed found to be “universal” (phase
function independent) and is the same for both transfer and diffusion theories; recall
that IPs are (applicable but) irrelevant here. However, if the apparently simple hyper-
cubical media are used, then the beginning of the asymptotic regime is already large in
two dimensions and it is pushed to still higher sizes in higher dimensionalities.

Binary Mixtures on a Grid: In general, the scaling is normal; in the interesting but very
special case where an exactly “percolating” fraction of the cells are totally empty (i.e.,
the “RSN” limit in conductance studies), “anomalous” scaling does occur (vt < 1) but
only for diffusion, not for transfer, nor IPs.

Deterministic Monofractal _Cascade Field: In this case, we find strong numerical
evidence of anomalous scaling for transfer theory t0o and it is shown to be universal in
general. Furthermore, the exponents associated with the various transport theories are
all different. |

The Transition from Normal to Anomalous Scaling: These two last results can be
explained from first principles, reckoning on the structure of the basic diffusion and
transfer equations and the key roles played by singular density values and long-range
correlations in conjimction with our understanding of the radiative “channeling”
process. In particular, these arguments make clear that the previous result is very likely
to be true for otherwise “multiplicative” (i.e., random and/or multifractal) cascade fields
too, but doubtful for all “additive” models.

Random Multifractal Distributions: - Analytically estimated exponents for ensemble
averaged total plane-parallel ransmittance show that the (mean field) radiative scaling
can be either normal (homogeneous-like) or anomalous (inhomogeneous-like),
depending on whether the small scale limit makes the ¢loud ever thinner or ever thicker.
The same applies to direct transmittance which is normally exponential w.r.t. optical
thickness (formally, viq = oo) and for which we find v4 < oo, in the thick cloud case.
These results can all be interpreted in terms of IP calculations, at least within a specially

restricted class of cascade models (that still contains most cases used in the cloud
radiation literature). - , ' : -
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0.3.3. Numerical Simulation of Transfer Through a Typical Multifractal (Chap. 6, App. B)

Up until now, we have concentrated on spatially unresolved or ensemble averaged
responses to external illumination. We now turn to fully resolved radiation fields associated
with a specific realization of a random multiplicative cascade sporting Gaussian generators
(with standard deviation ¢ = VIn2 = 0.83 and centered at it = -G%/2, which guarantees that
the ensemble average is unit, cf. §C.3.2). After 10 discrete cascade steps with a dividing
ratio of 2, this yields an extremely variable log-normally distributed density field on a
1024X1024 grid; the spatial average is =1.5 but the max-to-min ratio is =1011 over the
whole field and ratios in the range 2—4 are not rare going from one cell to the next. Finaily,
the whole field is modulated by a numerical factor k = 2K, with k = -7(+1)-3, which at
once keeps the average cell.relatively thin and the whole cloud relatively thick. This defines a
highly non-trivial problem in computational transfer, bearing in mind that we want to see the
internal radiation fields in full detail.

« The purely numerical aspects are considerably simplified by opting for an isotropic DA
phase function; the problem is then approached in two totally independent ways in

- order to make sure that the results are reliable (i.e., physical). We can live with
unbiased random numerical errors of known magnitude (as in the Monte Carlo
method), but we must avoid at all costs contamination by systematic biases (to which
finite difference methods are prone, especially in presence of very thick cells). Apart
from a straightforward Monte Carlo simulation, a simple finite differencing scheme
(follbwdd-by relaxation of the sparsely coupled system of difference equations) is used
but with the utmost care. The final results of the two methods compare is very
satisfactorily. So, on the one hand, we now have an extremely inhomogeneous
benchmark medium w.r.t. which different codes can be compared and, on the other
hand, we have truly physical results to discuss in the following.

* As expected from the above, the visualizations of the internal radiation fields show
“channeling” at work (on all scales observable to the eye), as demonstrated by the way
the horizontal and vertical (net) ﬂuxés‘"iht_erplay.

» As expected on general grounds, the component of the radiation field that vanishes
when di_ffusion is a good approximation to transfer becomes very small in the thickest
rggions"and./or clouds. This is qu'it‘e interesting because very diffusion-like radiance

 distributions were recently observed in real cloud decks [King ef al., 1990]. '

» As observed in real clouds, we find scaling pbwer_spec_tra for the albedo field, with
roughly the same exponent, for all but the smallest scales that are contaminated by
Monte Carlo noise (at the expected level). Ty |
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Again as with real clouds, comparing the albedo, transmittance and incident flux for
each column, one can define an “apparent” absorptance field with roughly the observed
range of values (even though not all are positive since the spatial average must
identically vanish}.

Also as observed in real clouds, we find smoother albedo ficlds for the thicker clouds
(it naturally saturates) but, simultaneously with this more “homogencous planc-parallel”
appearance, we find stronger “channeling” effects (i.e., greater differences with the
homogeneous plane-parallel prediction for the same total optical mass).

Finally, another predicted effect of “channcling” shows up in the oﬁé'ifﬁf:scg\llcring
decompositions of the overall albedo and transmittance. Namely, we ﬁnd‘}l'owcr
reflectance values when compared with the homogeneous case (of cqual overall mass)
but only for two and more scatterings. In contrast to this higher transmittance values,
even at no scattering at all (directly transmitted light). Interestingly, saturation occurs at
roughly the same order-of-scattering as in the equivalent homogeneous case. In short,
the distributions are displaced towards much lower orders and considerably broadened.

The above results on a single realization of a stochastic cloud model clearly point, on the one
hand, to the necessity of improving our numerical techniques in order to reduce the
computational costs involved since we eventually want to obtain accurate ensemble-averages
and, on the other hand, to the necessity of improving the cloud model itselfl using Nature as a
guide. Finally, we must refine our procedures {or comparing CA and DA quantitics and
explicitly define the appropriate (vectorial, n-point, cross-correlating) scale invariant statistics
to quantify the occurrence of “channeling” events in both computerized and in situ radiation
experiments. )
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IFor successive reviews of the problem of wave propagation through random media, see Chernov [1960], Tatarski
[1561], Frisch [1968}), Radio Science [1975], Ishimaru (1978}, Chow e! al, (1981}, and Sornelte [1989]; this last
author covers the regimes when the {homogeneous, “equivalent medium™) diffusion equation should be used as well
as the onset of (classical) localization phenomena, also summarized by Anderson [1985] himself. Very interesting
pioneer work by Bourret [1962, 1964, 1965, 1966] shows, in particular, that stochastic classical systems where
propagation occurs are equivalent to second quantized systems (and the characteristic non-commutation arises
beause of the same kind of nonlinearity that we encounter in §A.2.3 lor direct transmittance).

" 2This occurs on scales too small for us ta model with radiative transfer, even in theory, due to the necessity of
“coarse-graining” of the wave felds (see sect. E.3).

JHere. the expression “photon” is not to be understood in the strict QED sense of a single quantum of a given mode
of the EM field if only because no coherence effects can be modeled by transfer as such,

4we will often return to these two remarkable papers that not only present innovative numerical techniques but,
more importantly, give qualitative but precious insight into the basic processes of inhomogencous transfer.

SIndeed, the Monte Carlo method has no systematic bias due (o spatial discretization, its only problem is the
presence of an intrinsic statistical noise (which is fortunately well understood, see sect. B.1). It therefore provides
a bottom line point of reference in terms of accuracy and efficiency: any viable alternative must be faster and/or
more precise.

60ne can use radiant energy conservation R+TO=01 in conjunction with, e.g., the diffusion result RTO=0r/2y (see
sect. D.4) where T is the optical thickness and xO=1/(1-g) is the “extrapolation length” parameter; according to
Deimcuumns C1 drop size distribution at .45 pm, we can take gD-ElO 85 I'or the phase function’s “asymmetry
factor.”

7In essence, solar radiation is fueling the atmospheric engine but the lhermodyr.amics are complex, very poorly .
understood since the solar radiation field can in no way be considered even close to thermal equilibrium with the
system; sce Essex [1984; and references therein] for some of the fundamental consequences.

slncidcntally. inhomogeneous ground reflectance under a homogeneous plane-parallel atmesphere is sufficient to
generale horizontal gradients everywhere in the radiation field; this problem has imporiant implications in the
fteld of remote sensing of the environment and many authors, including Malkevich [1960), Otterman and Fraser
[1979], Diner and Martonchik {1984)], Kaufman and Fraser [1983], and Stephens [1988a] have studied it for
differcnt configurations with different methodologies. The same remark applies to non-uniform illumination of
the upper boundary. Consider, lor instance, the “scarch-light” problem where an initially very narrow pencil of
radiation impinges on a scattering atmosphere (this is of importance, in particular, to lidar sounding of the
atmosphere); see Lenoble [1985] for a review and many references, also Crosbie and Koewing [1979] for a sine-
wave illumination’ pattern as well as Weinman and Masutani {1987] for the problem of an isotropic point source.
Tanré et al. [1981] make an interesling combination of these Iwo types of transfer problems with horizontal
gradients driven by only boundary conditions: they use reciprocity to model the “adjacency effect” of
inhomogeneous ground using “search-light” problem responses,

IFor completeness, we should mention the work of several geaphysicists and many more astrophysicists concerned
with the effects of spatial variability (in more than one direction) of internal (thermal) sources for continuum or
otherwise “coherent” transfer, going back at least to Giovanelli [1959]. More recently, we have for example
Harshvardan ef al, [1981), Crosbie and Schrencker [1984], Preisendorfer and Stephens [1984)], Stephens and
Preisendorfer [1984], and Stephens (1986). For cases (mainly of astrophysical interest) with a frequency

redistribution function that models spectral line (or “incoherent™) transfer, see Jones and Skumanich [1980; and
references therein].

1050me authors. obviously pressed to simulate “typical” remote sensing and radiation budget situations, have

starled to investigate (numerically) “broken” cloudiness overlaying homogeneous Lambertian [e.g., Welch and
Wielicki, .1988) or otherwise [Barker and Davies, 1992b] reflecting ground.

IThis is an important difference (the media have totally different kinds of support) even though it can be described
in terms of BCs in the case of horizontally periodic media. It is important not to think of this dichotomy as a

x qut;auon of BCs bccause bone ﬁde BC dif fcrcnces (e.g., m:xcd" versus more standard) normally tend to be quite -
~Tinor,

lecc however Mullaama er al. [1975] who model the dllrecuonal effects of cloud top * roughness" by assuming it .to
be a random Lambertian surface (no multiple seau:_gnh is involved).

131 particular, the whole mini-literature on “Markavian” media in one dimension only (rewewed and quoted, e.g.,
by Boissé [1990]) enter this calegory because none of the fundamentally higher-dimensional effects that interest
us primazily can-occur.  However, other non-trivial effects on the internal fields have. been by studied quite =
ngorous[y in this type of med:um using the ana!yucal methods developed for trealmg slochasuc ODEs (rewewed L
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in particular, by van Kampen {1976]). The main groups involved in this rescarch elfort are situated at either
Lawrence Livermore National Laboratory or the (french) Cormunission & ! 'E‘nergie Alomique and one can only
wonder how far the higher-dimensional transport—possibly classified, probably mainly numerical—-
investigations have been carried out in these prestigious institutions,

14This is largely due to the fact that some of the techniques used in computational transfer become more involved
when density gradients are apt to appear in any direction.

1511 more sophisticated (continuous angle) transfer theory is used, then;illumination conditions also play a role,
though mainly in the optically thin regime.

17These lasi“authors prefer, for methodological reasons, to study the {finite difference) Laplacian of the albedo field
in absolute value or else its absolute gradient; lhey point out that the main universal parameter (called the Lévy
index) is indeed invariant under such operations for simulated cascade fields bul here they find, quite
understandably, rather different universal parameters than those obtained for the albedo field itself. See sect. C.3-
5 for brief descriptions of the different anatysis techniques employed by the various authors.

18This numerical experiment is described in full detail by Gabriel [1988] while thé main results of are also reported
by Davis et al. [1990a).

194 priori, such is not the case of the additive models recently proposed by Barker and Davies [1992a], In order to
obtain interesting cloud fields (the authors take the individual clouds to be homogencous), they must use a

truncation, a “zero-crossing set,” 1o restore intermillancy into the system (see sect. C.2-4 for a discussion of
similar models used in turbulence theory).

20These media have the fol]""c')’wing two-flux—equivalently, diffusion—Itransmittance; TO=D1/(1+bt) and RO=£11-T,

where bl~0(1-g) is as BC/phase function (g is the asymmelry [actor), up to an O(1) numerical factor. So
TO=O( /byt ! for T, hence vr = vg = 1 in the (thick) cloud limit,

21The abave yields RO=00bv/(1+bt) and TO=0O1-R. So RO~ bt for t«1, i.¢., a linecar response, hence (formally)
viO=ClvgO=0-1 in the [imit of “thin clouds” (a somewhat self-contradictory expression).

.
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Chapter One

TECHNICAL PRELIMINARIES,
DEFINITIONS AND CONYENTIONS

Succinet Overview of this Thesis: We are primarily concerned with the effects of
spatial variability on the radiative properties of clouds in the visible part of the EM spectrum
(wavelengths =0.5 pm; where absorption is negligible) associated with BCs that describe
collimated illumination of the (top) boundary. We will be comparing the predictions of
dif ferent radiation transport theories when applied to various inhomogencous cloud models
(in particular, of the scale invariant type), and find that systematic differences arise from one
theory to another, on the one hand, and w.r.t. the very special case of homogeneity, on the
other hand, In agreement with Cannon [1970], we view “channeling” as one! of the basic
mechanism underlying inhomogeneous radiative transport in presence of multiplé scattering,
In tiie { ollowing, we will define as precisely as possible the terms underlined in the above
(respectively, sect. 1.4, 1.3, 1.2, 1.1, and 1.5), right after setting our bearings (sect. 1.0}.

1.0. Orientation Conventions

* As nientioned above, there is generally a privileged direction in our radiation transport
problems: that of the incoming radiance. This will allow us to define a “top” (hence a
“bottom™) as well as a vertical direction :(hence horizontal planes). We will sometimes need to
differentiate the vertical and 1llum1nanon directions; in such cases however, the geomelry of
the cloud must have some very obvious amsotropy (e.g., the infinite horizontal extension
obtained by periodic replication of a finite unit cell). When axes become necessary, we will -
lake the z-axis as vertical, oriented downwards (i.e., following the incoming flux) and -
coordinates originating at cloud top; this choice is common practice, but not universal, in
radiative studies. We will orient the coordinates on our unit sphere, i.e., (propagation)
direction space, using the same convention: that is, its “north pole” is at nadir (in the
direction of the positive z- axls) Th;s <Tast choice is by no means universal in the radiative
literature, it however seems to be more consistent with the kinetic theory foundations of
radiative transfer (detailed i in app. E): there is no reason to reorient the axes when gomg from |
the position part to velocity part of the photon’s phase space.
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1.1. (Optical) “Medium,” or (Cloud) “Model”

For the purposes of radiation studies (at visible wavelengths), we view a “cloud” as a
distribution of scatterers within a given region (M) of d-dimensional space (R9). This
distribution is best described mathematically as a density function of position (x) in M (or,
more simply, a density “field"): say, p(x) with x&€M. The pair {p(:),M} constitute what we
will call the (optical) medium or cloud model and it obviously has two basic attributes: a
“support” M (equivalently, a “shape” or “boundary” dM, in standard topological notation)
and a “structure” described by the non-negative function p(*).

The “support” can be either infinite, semi-infinite, or bounded. Infinite media must
necessarily be invested with internal sources and, in such cases, we are generally interested in
the temporal evolution of a sudden burst of radiant energy and the ensuing random walk
statistics of the energy carriers (that we will somewhat abusively call “photons,” sce app. E
and B). The semi-infinite medium can be steadily illuminated at the boundary that lies at finitc
range and we can ask about its reflection {or “albedo”)} properties. Bounded media come in
two categories: vertically bounded (and, implicitly, horizontally unbounded), and
horizontally bounded (and, again implicitly, vertically bounded too). In practice, members of
the former class are usually made of an infinite number of replicas of a given member of the
latter class laying one next to the other (the horizontal projection of M must then be a shape
that tiles J9-1) and the radiation flows freely from one unit cell to the next.2 Notice that this
arrangement could provide the kind of anisotropy needed to define a *“vertical” independently
of illumination. We will sometimes talk about “cyclic” (versus “open™) honizontal BCs. This
is however somewhat misleading since the difference is one of support, not one of BCs at
all—in the sense of, say, using the Dirichlet-type versus the mixed-type or a simple change of
illumination ar{'gle. This possible source of confusion must be clarified from the outset
because we are interested in separating the radiatively important and unimportant factors and,
with a few subtleties to be explored further on, “support” and “BCs” are in different

~ categories (respectively, important and unimportant3).

Th{‘f' “structure” of the medium can be either homogeneous (constant p) or
inhomogéneous (variable p). Itis normal practice to require M to be convex and almost
everywhere smooth (see app. A) which is not a limitation within the framework of

‘inhomogeneous-media because of the option of using null density values. " In fact, we can

embed a homogeneous medium with an almost nowhere differentiable hence (or otherwisc)
non-convex boundary in a fegion with an outer smooth and convex boundary. containing
complementary empty and filled sub-regions; Wwe thus create a special class of
inhomogencous media that, as it turns out, can teach us something (give us hints) about

(
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variability effects in general (see chap. 2 for details). Bone fide inhomogeneous media can be
cither deterministic or stochastic. In the former case, some (hopefully) simple rule for
constructing the medium is sufficient (see sect. 4.2 for an example). In the latter case, all of
its n-point statistics should, in principle, be specified; the better known 2-point statistic is the
auto-correlation function (see sect. 4.4 for details). In practice however, a set of rules that
precisely describes the role of randomness is sufficient (see app. C, chap. 2 and chap. 6 for
examples); one can always determine the said statistics from the rules anyway (at least
numerically). When dealing with stochastic cloud models we will be interested in ensemble-
average radiative or structural properties; we will denote such averages (over the “disorder™)
by angular brackets: <->. Stochastic, deterministic and even homogeneous (but somehow
asymmetrical) media all fequire spatial averages to be taken, for instance, to obtain total mass
or bulk responses; we denote these averages with bars: ©. We will meet yet another kind of
stochasticity in sect. 1.3 below which is more fundamental since already present in
homogeneous (or otherwise deterministic) optical systems.

_ Independently of the deterministic/stochastic dichotomy, inhomogeneous media come in
many flavors ranging from regular, “smoothly varying” (differentiable) p-fields to their
“extremely variable”™ (multifractal) counterparts, with the intermediate categories of “irregular” -
media (non-diffcrentiable but possibly continuous on average) or of “singular” media which
can exhibit an arbitrarily wide range (or ratio) of p-values but lack the cascade—type (hence
highly correlated) structure of;multifractals. We will be investigating generic examples from
most of these broad categories. Another important factor in inhomogeneous cloud models is

the range of scales involved in the vanablllty and just how that affects the various statlstlcs of
the density field. ' ’

1.2. “Scale Invariant,” or “Scaling” (both Simple- and Multiple-)
These adjectives have both extremely broad and very narrow meanings. They can be
used to describe anything vaguely related to fractal structures and (usually statistical) power

< law relations, i.e., they describe systems that exhibit no characteristic length; they can also be

applied to families of objects (sets) whose members are exactly self-similar images of one
another, i.e., the family is invariant under change of scale (x—>A*!x, A=1); they can also
mean both together ... as in the title of this thesis. Connections with dimehsional analysis

and similarity theory are obvious and examples are prov1ded in sect. C.1 and C.6.- As - :

mentioned-above, we are interested i in systems that are invariant over a wide range of scales;
in theory (e.g., chap. 5), this range can be mﬁmte (AE[1,%[) and, in practice (e.g., chap. 2,
4 and 6), this range remains finite but is made as large as possible (A€[1,A] with A»1).

o
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In the most interesting (and contemporary) acceptance of scaling éonccpts, they are
applied to fields (rather than sets) and the variability of (range of values taken by) the field
quantity is directly related to the range of scales involved; we can distinguish two types of
scaIing behaviour: simple- and multiple scaling, In simple scaling models, we are usually
more interested in absolute differences (JApl’s) taken over a scale (Ax=IAx!) than in the field
value itself; they are typically such that

Aplhax 4 A 1Aplax (1.0)
where “4” means equal in distribution. These models are said to have “stationary
increments,” and clearly they must be constructed by some “additive” procedure, possibly in
Fourier space. We notice that a single exponent arises (some examples are provided in sect.
C.2 where the fractal interpretation of H is discussed). In contrast, multii;]e scaling models
have a different scaling exponent for every threshold (AY, ye R) which is best expressed as

Prob{ps > AY) ~ A<t 5(1.1)
where “~" is used to absorb non-exponential (prefactor) functions of. 7y as well as slowly
varying (log) functions of A. We refer the reader to sect. C.2-5 for the nomenclature

associated with vy and c(y) as well as several mono- and multifractal examples, all constructed
with “multplicative” procedures.

1.3. (Physical) Radiation “Transport Model,” or “-Thecory”
1.3.1. Kinetic-Type Theories

This expression is used to describe any well-defined way of associating radiation fields
to density fields. The “way” usually consists of equations that express some kind of physical
conservation law or balance between different features of the radiation field and this
necessarily involves the density field, along with the pertinent optical parameters (typically
related to elementary cross-sections), plus the appropriate BCs. In Preisendorfer’s [1976]
words, we want to relate a cloud’s “inherent” properties (i.e., its structural and optical
parameters) to its “apparent” properties (1.e., the source dependent radiation fields). We are
mainly interested in “general purpose” radiation transport theories (i.e., that can accommodale
any given density field) and we know of the following four categories that fall into two
groups of two. We will proceed from the most general (and difficult to deal with) to the most
simple (and easy to use).

« -Continuous angle (CA) radiative_transfer, This basic model was pioneered by |
Schwartzchild [1914], standardized by Chandrasekhar [1950], and now routinely
connected with parﬁculate-based kinetics, centered on Boltzmann’s equation [see, e.g.,
Mihalas, 1978], but its relation to matinsq;gam optics is still unclear: see Ishimary
[1975] and Barabanenkov [1969] for connections with scalar wave theory, Wolf [1976]
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and Harris [1965] with EM wave theory. The formal connection with kinetic theory
and stochastic processes (app. E) is the most useful conceptually anyway since it firmly
estabiishes the central role of the photon’s free path (f.p.) distribution hence, in the
inhomogericous case, the spatial- and/or ensemble-distribution of f.p.-distributions (see
sect. A.2). Recall that in homogeneous situations everything is determined by the
m.f.p. (and dM), but such is not the case in inhomogeneous situations where the m.f.p.
becomcs a notion which is only local (and is therefore uscless by itself). The most
mterestmg (but difficult) problems involve multiple scattenng and we are then dealing
,w1th random walks (RWs) in random environments (or, at least, envn'onments where
the m.f.p. is @ non-constant function of space). We will see that these two sources of
stochasticity—one additive in nature, one multiplicative (in the multifractal
case)}—interact in a highly non-trivial fashion. In order to unravel this interaction as-
best we can, we need a separate notation for the RWs and we have adopted the
mathematician's “expectancy:” E() Notice that the RWs are subordinated to the
spatial disorder; so <E(-)>, or E( -), makes sense but not E(<->), nor E(7); examples
of how the different sources of Stochasﬁcity/variability can be combined are provided in
sect. A.2 (and an application is found in sect. 4.4). The basic construct of CA transfer .
is the field I,(x) (lul=1, xe M) of radiance propagating into direction u and we will ) “

~ present (in sect. A.3) a readmg of the transfer equation as a balance betwecn/
x-gradients and u-anisotropy in I,(x), on the one hand, and p(x), on the other hand.
We also refer the reader to app. A for the other CA idiosyncrasies related to other parts
of this thesis (spherical harmonic expansions, phase functions, similarity, BCs, and
various operational definitions of albedo versus transmittance).

« Discretg angle (DA) radiative transfer. This approach can be traced back to Schuster’s
{1905] two-flux theory, possibly the first theoretical paper ever on multiple scattering,
Later generalized by Chu and Churchill [1955] to a six-beam model, the idea was
systematicaily explorcd by love_]oy and his co-workers in the late *80s [Gabriel et al.,
1986;-Gabriel, 1988; Lovejoy et al., 1990; Davis et al., 1990a,b]. DAs are merely a
spec-..m.,_ se of CAs (with &-like phase functions and radiances) where only finite
families of beams are coupled by the scattering processes. The simplification is very
welcome when the focus is turned towards the effects of inhomogeneity since at least
modest - analyncal progress -is -possible’ (chap. 3) while numerical speed-up is
‘outstanding (app. B, chap. 4 and 6). . S

In sect. 4.1-2, we make sure that DAs and CAs are sufficiently s:mllar (in the scalmg sense
. of the word) to be considered in the same class of transport models that we will refer to -
generically as transfer (bearing in mind that they are basically kinetic theories).

S
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1.3.2 . Diffusion-Type Theories

f~fbﬁcc our insistence on using “transport” as the most general expression and “transfer”
as a mote specific case, although vgé will see that either of the two above models contains
both of the two remaining models as special cases, formal limits and/or approximations. We
must however beware that, in the literature, “diffusion” is often referred to as “transfer” ...
and sometimes vice-versa. This can be partially justified in the more homogencous
applications where all of the theories agree pretty well (e.g., chap. 2, last example in §2.3.4
excluded). In extremely variable media however, they systematically disagree (e.g., last
example in §2.3.4, and sect. 4.2) and we are therefore of the opinion that they should be
viewed as independent transport theories, each one interesting in, its own right.
Notwithstanding, the connections between the various theories are also interesting to explore
since they help us to understand the reasons for their (dis)agreement as a function of the
structural properties of the media (see sect. D.1, D.6, 2.3 and 4.4). =

» Diffusion, This is the well-studied “hydrodynamic” limit of kinetic (hence CA transfer)”

theory (see sect. D.0-1 for areview); in the context of radiation transport, the original
idea goes back to Eddington [1916] in homogeneous systems, and Giovanelli [1959] in
inhomogeneous systems. Interestingly, the diffusion model can also be reached via DA
formalism [Lovejoy et al.,, 1990; Davis et al., 1990b, 1991; or sect. 3.3] and this is
done by operating on the phase function, not on the u-distribution of the radiance field
(as in the standard approach) since this option has already been implicitly exploited by
putting oneself in the DA framework. This is a much simpler model that has attracted
far more attention from the physics community at large, probably because it calls for a
single scalar field U(x) (xe M) that represents (radiant energy) density; at any rate, we
systematically exploit it in chap. 2 to investigate the basic effects of inhomogeneity.
The key concept here is (radiative) “diffusivity” that we will denote D(x) and which is
the diffusion theoretical counterpart of both m.f.p.’s and phase functions in (CA or DA)
transfer (see sect. D.3 for the connection with correlated RWs). The gradient-
anisotropy balance is reflected in the characteristic Fickian law or “constitutive” relation:
(net radiative) flux is given by F =.DVU and, in absence of absorption, we of course
have V-F =0. We will see (chap. 2-4) that, generally speaking, the diffusion and
ransfer theories make different predictions for transport through extremely variable
media but, we maintain a keen interest in both theories not only for theoretical reasons
but observational ones also; indeed, King et al. [1990] have recently produced strong
evidence that diffusion may apply quite well in typical cloud decks (see sect. D.2 for a

detailed discu_ssitm of their findings). We refer the reader to the final sections of app. D S r

for the standard similarity properties, the non-standard BCs (that should be used in

[
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radiative applications), the RWs of “diffusing” particles (not to be confused with
photons!), and examples from radiative- and other homogencous and inhomogeneous
applications. e

“Independent pixels” This is certainly the omplest poss:ble model for
inhomogeneous radiation transport since all higher-dimensional effects are. neglected:

the radiative flux lines are constrained to be vertical. This can be done in different ways
in all of the above theories: CAs call for internal vertically oriented boundaries that are
perfect Fresnel reflectors (followed by homogenization inside each sub-domain),
diffusion calls for simiiarly oriented boundaries that are insula@in g (F1=0), and DAs
simply call for a phase function with no side-scattering, only in the forward/backward
directions. This last approach to IPs yields d uncoupled one-dimensional diffusion
equations, one for each spatial direction (although only the vertical one is excited with
our usual BCs), so this is essentially another, ultra-simplified diffusion-type theory. A
certain number of radiatively independent columns are thus defined, each equivalent toa
homogencous plane-parallel medium, and an analytical solution can therefore be
obtained for each one; the IP solution is simply the spatial average of these
“pixel-wise” partial solutions. Because of the nonlinear—convex, for
lraﬁ,'smittancHependance of the plane-parallel result on (optical) thickness, this last
(averagi ng) operation alone is enough to guarantee a systematic difference between the
IP solution and the one that consists in neglectmg internal structure altogether (see sect.

3.3 for mathematical details and D.S for electrical parallels). In practice (computational
effort), IPs constitute a kind of compromise between the complete homogenization of
the medium and the Jull-blown d-dimensional.inhomogeneous transport; we shall not
be surprized to sce that this is exactly where the [P answer (say, for transmittance) lies
quantitatively also: viz., in between the (analytical) homogeneous plane-parallel result
and the (numerical) transfer or diffusion result, at least if the total mass is held constant
(see chap. 2-3 for the theory, and chap. 4 and 6 for illustrations). The name that we
have retained for th\}saapproach was coined by Cahalan [1989] in connection with
Landsat imagery simulation with the help of a multifractal cloud model. The technique
has however been used in many other ci rcuinstances for its sheer simplicity, e. g in
GCM radiation routine calls, going from one gnd point to the next, but also by using

“the “cloud fraction™ concept inside each cell in absence of f urther inf ormation on sub-

cell variability, lhls Use of IPs is more-or-less justified. For an applu.auon of IPs to in
situ cloud radlauon measurements see also King et al. [1990] in this case, the method
is far less justified due to the observed vanablhty (see sect. D. 2 for more dctalls)

3
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We have listed the four transport theories by order of increasing “user-friendliness,” as
measured by the degree of understanding we have of inhomogencity effects which gocs
more-or-less hand-in-hand with the amount of analytical progress to date. Furthcrmore, we
notice that the number of ways a given physical transport model can be reached is in direct
proportion to this (rather subjective) notion, as well as the degree of approximation (using
CAs as the benchmark). In fig. 1.1 we present graphically our complete constellation of
transport theories with all of the above mentioned inter-connections.

We have deliberately excluded from the above discussion all “non-gencral purpose”
radiation transport theories which can only handle a specific kind of mcd:um Sonie of these
will however be discussed in relevant part of the thesis (e.g., chap. 4) Amongst these
approaches (o the multiple scattering radiation problem, we could mention the work of
Lovejoy et al. [1989] and Gabriel et al. [1990] who adapted (real space) “rcnonnuli'/.ution“‘
ideas to DA transfer on grids; although the general idea may prove more useful, their method
applies specifically to the deterministic monofractal medium studied in sect. 4.2 (as well as
some less interesting homogeneous cascs). Another example is the “mean ficld” theory
developed by Avaste and Vaynikko [1974], Titov [1990], Boissé [1990]—the two tier
relying heavily on the former—-that applies only to transfer through exponentially
decorrelating (hence generally? non-scaling) binary mixtures in planc-parallel gecometry.

1.4. (Radiative) “Response,” or “-Property,” and its Scaling

We will use these expressions to designate some simple, scalar measure of the radiation
field that is excited by external illumination at a boundary: albedo (or reflectance),
transmittance (direct or total), and absorptance (on occasions). The main thrust of this thesis
is to investigate the systematic effects of inhomogeneity on these “bulk™ properties (which we
will also call integrated-, unresolved-, global-, overall-, mean-, or spatially averaged-) in
presence of multiple scattering but no absorption. With such tools, we are therefore
addressing the cloud “albedo paradox™ problem, rather than the cloud “absorption anomaly”
problem or the problems related to the spatial variability of radiation ficlds (sec however chap.
6 for a glimpse at simulated ficlds and sect. 7.3 for our ideas on these exciting subjects).
Finally, we can formulate a little more precisely our basic radiative scaling relation (0. 1)/

there are no characteristic scales in the system (in particular, this implies’ v'mlshm[,
absorption), we will have )

<IFy-Fl> ~ NKF (1.2)
- when A»1. If furthermore, K7 in : =
Cen> ~ A _ (1.3)

\
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is positive, then we are in the thick cloud rcgime' and vr in eq. (0.1) is equal to -K¢/Ks.
Otherwise, we are in the thin cloud regime, where linear responses can be expected: vp=-1in
(0.1) and K=K in (1.2-3). Sece chap. 5 for examples of both types of small scale limit.

1.5. (Cannon’s Radiative) “Channeling” and/or (Stephens’) “Mode-Coupling”
1.5.0. Cannon'’s Original Idea, in Kinetic Theoretical Jargon and Physical Space

Our main objectives are to define and clearly as possible the effects of density
fluctuations on the flow of radiation: (a) on the mean flcw (i.e., the previous entry), and (b)
on its local features. Generally speaking, the answer to ﬁ'ﬁéslion_ (a) is that mean fluxes are
systematically enhanced but to diffcrent extents for the various transport theories. A possibfé
approach to qucsiion (b) is to try to identify a basic, universal mechanism by which the

radiation fields react to a perturbation in the density field, using the simplest possible

situations and seeing just how far we can follow the lead into the more complex cases. With
this strategy in mind, we propose “channeling” as the basic radiative reaction to
inhomogeneity. This expression was coined by Cannon [1970] and seems to havc gained
acceptance in the astrophysical literature {Jones and Skumanich, 1980]. Ccmnon was
investigating numerically spectral line transfer through some deterministic two-dimensional
arrangement of variable optical .densit'y (and/or other optical parameters); as usual in line
transfer, he was considering a semi-infinite medium. He noticed the tendency of the radiation
to flow ‘into the less opag‘fxe regions by increased scattering in the regions of greater opacity.’
Just how this very natural phenomznon connects with question (a), which corresponds to a
very different type of support and source distribution than Cannon’s, will be demonstrated
analytically within the framework of diffusion in chap. 2 and illustrated with numerical results
for DA transfer in chap. 6. For the moment, we will simply clarify Cannon’s definition as
best we can in the languages adapted to each level in our hierarchy of radiation transport
theories, stanmg with the Kinetic-type.

CA lranslcr is indeed the tool that Cannon himself was workmg with and his verbatim
captures the most undamcmal aspect of inhomogeneous transfer theories, namely, the
spatially variable free path (f.p.) distribution: ‘increased scattering’ means smaller f.p.’s,
conversely we expect longer [ .p."s in the more tenuous regions but, interestingly, the effects
do not cancel on average due to the non!ihearity of {.p.’s probability distribution function
with respect to optical density (which is directly related to the astrophysicists’ ‘opacity,” see
sect. A.1). In homogencous media, f.p.’s are exponentially distributed; in sect. A.2, we
show (using characteristic function theory) that average f.p. distributions in inhomogeneoﬁs
media will always be wider and in chap. 5 we look at the special case of multifractal media
and indeed we find algebraic laws. There is however another i lmportant and complemcntary.

i
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aspect to kinetic “channeling’.’ that is related to the angular part of the transfer problem.
Schematically, we can say that the photons are painfully random walking in dense regions
and freely streaming in the tenuous ones, from the boundary of one denser domain to
another. At these interfaces, we can expect stronger u-anisotropy (pointing towards the less
dense region) thus driving enhanced x-gradients, fluxes away from the dense region appear;
see §A.3.3 for an argument for the u-anisotropy/x-gradient connection from [irst principles.
Inside the'denser regions, we can expect more u-isotropic (diffusion-like) radiance ficlds to
prevail due to the enhanced scattering (shorter photon f.p.’s). Finally, we expect no
fundamental difference to arise when going from CA to DA formulations, the u-distribution
becomes discrete—it is carried by a finite sub-set of the unit spherc—but simple measures of
anisotropy can nevertheless be defined; see, e.g., §3.3.2.

1.5.1. Stephens’ Ideas, using Fourier Space and Spherical Harmonic Language

Adopting the slightly more abstract language of spherical harmonic analysis, we can
describe u-anisotropy quantitatively by adding weight to the higher order modes of the
radiance field, viewed as a u-distribution. In the following, we will argue that any kind of
horizontal fluctuation in the density field will break the spatial symmetry that prevails at
homogeneity. We will closely follow the analysis of Stephens [1986] who uses a Fourier
space approach to inhomogeneous transfer; accordingly, we will refer to the symmeltry-
breaking process as “mode-coupling” throughout this thesis (it is used in particular in sect.
2.3). In essence, we view “mode-coupling” as the Fourier space/spherical harmonic
counterpart of “channeling,” which has natural physical space/unit sphere overtones.

In his basic [1986] paper, Stephens talks about a-‘horizontal divergence term’ that
appears in the horizontally Fourier transformed transfer eqf}étion once it is made {o look as
much as possible like the classical plane-parallel (j.e., 1D) equation. This new term formally
looks like an source/sink term but it has a characteristic V-1 factor (it is best called a*pseudo-
source/sink” term). Furthermore, it is a Fourier space convolution (associated with a simple
product in physical space) of density with radiance; if horizontal homogencity prcvaiis (a
d-function al the origin in the corresponding Fourier space), then the more symmetric 1D
formalism is identically retrieved. Upon spherical harmonic analysis of the directional
distribution of radiance, Stephens [1988a] notices that® ‘unfortunately, the [azimuthal) ¢
dependence does not decouple in the more gencral 2D and 3D transfer problems’ due to this
same term. The symmetry breaking mechanism is as follows: under the combined
mathematlcal effects of the convolution product and the V-1 factor, the non- van:shmg

phencal harmonlc mode in dlrecuon -space at all scales (wavcnumbcrs), 1nclud1ng the

largest (vamshmg wavenumber) In partlcu!ar this means lhat the overall (spatially averaged)

g
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flux will generally be affected, although just how (much) and what parameters of the problem
play a role are non-trivial questions that should be the object of future research.
We tentatively summarize this whole Fourier space/spherical harmonic picture with

the expression “mode-coupling” although we do not want this to be confused with _,L.,phens .

{1988b] description of a hicrarchical coupling of scales (spatial Fourier modes) Ieadmg toa
closure problem. We in lact use a (numerically-based) finding of Stephens’ [ibid.] to show
(in §2.3.2) that the above mentioned effect on the overall flux is apt to be a boost under quite
general circumstances, thus conflirming our (§2.3.1) diffusion theoretical analysis of
“channcling” in physical space.
1.5.2. Implications for Diffusion Theory

Diffusion is a special limit of both CA- and DA transfer, corresponding to radiation
fields that can modelled with an “isotropic” component (J) and “dipole” component (F) fitis
thercfore quite easy to find the implications of “channeling” in this context. The flux F tells
us about the mean direction and intensity of the flow of the radiation, as controlled by the
multiple scauenng (which is taken for granted in this approach, see sect. D.1-3).-&' enhanced
by the occurrence of higher radiative diffusivity D (lower density p) and/or stronger gradients
(IVJI), but the second factor is of less interest to us because it is also at work in homogeneous
sitvations. “Channeling” can therefore be described graphically in this context: the pattern
of the F-lines along with the density field tell the whole story. Fig. 1.2 illustfates the two
basic situations of a hypothetical average radiative flow colliding with a positive and a
negative density fluctuation. In the former case, the lines are repelled by the dense region
(where F decreases); in the latter case, they are attracted into the tenuous region (where F
increases). Notice that the total number of lines (hence the mean flux) has increased when
going from homogeneity to inhomogeneity; this is a non:trivial effect (investigated in sect.
2.3) that is guaranteed to arise when the total mass'is kept constant,
1.5.3. Position with respect to the “Independent Pixel” Approximation

Although some systematic nonlinear effects remain that are traceable to Jensen's
nequahly for convex functions in functional analysis (see sect. 3.4 for detallc ), , the simplicity
of the'iP approach stems entirely from the postulate of “non- channehng“ (only vertical
F-lines are allowed) and indeed higher dimensionality plays a fundamental role in both of the

‘above descriptions. Indeed, a whole sequence of events is initiated if the IP constraints
described above are suddenly relaxed (e.g., s:de-scattcnng is “turned-on” in DAs) As stated -
above (and demonstrated in various ways in various parts of this thesis), the new steady-state |
confi gur'mon w1|l obviously include non- -vertical (posmbly very convoluted) F-linesand an -
- increased ovemll transmittance, which is proportional to the mean (vertical component) of F. |

In this respect, we can use IPs as a benchmark and define an overall measure of “channeling”

-
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as the difference between the [P response and its CA, DA, or diffusion counterpart. In chap.
6, we turn from unresolved- to {ully resolved radiation fields in (a specific realization of) a
multifractal cloud ﬁ{odel, only to find our above description of the basic inhomogencous
transport mechanism confirmed. Other interesting and “channcling-related” effects are also
observed; for instance, the powerful smoothing (via multiple scattering) of the features of the
density field that increases along with the “level” of “channeling,” defined as the “DA minus
IP” difference in the (bulk) transmittance. This tells us that the thicker the cloud, the more
scattering occurs, the more “channeling” is enhanced (a prerequisite for “anomalous” scaling
to occur) but also, and somewhat paradoxically, the more bland the fcatures of the apparcnt
{emerging, remotely measurable) radiation field. |
1.5.5. Summary

It is fair to say that “channeling” is above ali a pattern, a concept which shows different
facets of itself when examined under the different theoretical “spot-lights,” as described in the
above. We remark that all of the three descriptions we have provided in the above are
perfectly compatible with one another, at the highest level in the hierarchy of transport
theories: in transfer approaches, one has at once order-of-scatlering statistics, flux vector
fields and overall responses. In the future, we can expect more precise definitions to arise, or
else the concept will evolve into one more precise, with a different name ... either way, we
have gained insight. In final analysis, we have adopted the expression because it is intuitively
appealing, it conjures up ideas of the fluid-like behaviour of the radiation: it “flows” around
obstacles (dense regions), into “valleys” (defined by the more tenuous regions). This is what
one expects from any macroscopic continuum-type theory, in sharp contrast with wave-like
behaviour that characterizes a microscopic (say, EM) theory of matter-radiation interaction.”
The f undamental roles of higher dimensionality and of nonlinearity are stressed by this
analoéy but it should not be pushed to far—or rather, there are subtleties. For instance, the
“nonlinearity” is not an attribute of the radiation field itself, the basic equations are lincar in
this quantity (unlike the Navier-Stokes equations (C.1-2) w.r.t. the Eulerian velocity licld),
instead, we are talking about the radiation-density coupling (not totally unlike the admixture-
velocity coupling in eq. {C.42) for passive scalars which is linear).

A
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V'fhe other mechanism identified by Cannon [1970}, a more-or-less elficient coupling of the radiation- to the
temperature field, is irrelevant lo the “albedo” (diffuse reflection/transmission) problems discussed throughout this
thesis as it only applics to problems with a specific type of internal source.

2The same remark can be applied 1o the very first that we category mentioned, i.e., infinite media (then M must of
course tile Rd),

3This statement applies to the mixed/standard BCs in the important case of horizontally extended atmospheres, the
illumination angle problem is not really addressed in this thesis and we suspect it to be far more subtle (see, e.g.,
§5.4.3). Also, in the extreme case of quasi-grazing incidence, the scaling properties become mere complex since
the thin cloud fixed points (T and Rg) are both 1/2, instead of 1 and 0, respectively.

AThere are (wo scaling limits to this model: infinite and vanishing integral correlation length, corresponding
respectively (o homogeneity and white noise. [nterestingly, the two lead to formally identical equations (hence
trivial scaling behaviour).

Stn honiogeneous absorbing systems, one can define a characteristic optical scale {the so-called “diffusion” length
scale) and expect associaled exponential behaviour (see sect. D.3-4). This scale diverges with vanishing
absorption (probability per clementary collision event), leaving only the overal] size of the system as a relevant
scale in the system to describe the resulting algebraic behaviour. Clearly the same is true in mildly
inhomogencous situations but just how much this picture carries over into extremely inhomogencous multifractals
is an interesting and (“absorption anomaly”) relevant question for future research (see sect. 7.3).

Ggtephens” use of the word ‘unfortunately’ is very inleresting because, in effect, the pseudo-source/sink term will
cause the inhomogencous radiative transferist to have many a head-ache but at the same time it will make his life
most interesting. :

7As poinled out in app. E, the connection between these two aspects of matter-radiation interaction is highly non-
trivial,

¥
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Figure 1.1: Inter-connections of ihe various 39
fiati tels (or theorics L in thi

thesis, An — (or two) from theory X to theory Y
means that “Y can be reached from X" as a special
(or limiting) case; this can usually be interpreted as
“theory Y approximates theory X" in certain
circumstances, most of which are spelled out in the
various parts of this thesis. Interestingly, each
transport theory is tniquely characterized by the
number of —'s it reccives and this number is a
reasonable measure of its degree of “ease to handle”
(on a scale from 0 to 3). The key describes the basic
operations (o be performed.
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Figure 1.2: A_sghsmaumuummn_m_b&cwh ‘chignneling” _Q_Ll_ll;ai.qaﬂ_ossu:_w_l___ms:v n ithin
Mﬂm&m& {a) Refercice. ﬂux-hncs for a homogeneous medium. Notice that
more lines are “pulled in” from the sides in the inhomogencous ca&.s assuming the total mass is constant (this
expresses the fact that the overall flux has increased). {(b) The flux-lines tend to be expelied from a region of
higher-than-avcrage (optical) density, i.e., the flow is *‘deflected” by the obstacle. (c) In presence of a negative
density fluctvation, the flux-lines are attracled into it, i.e, the flow is “funneciled” throvgh the low densuy .
region. Yz
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Chapter Twot

THE BASIC RADIATIVE EFFECTS OF SPATIAL VARIABILITY,
THE DIFFUSION PICTURE

)

Overview and Preliininary Remarks: In this chapter, we use the diffusicn model of
radiation t:ransport to explore the most obvious effects of spatial variability on the overall
radiative propcmcs of clouds in the context of diffuse reflection/transmission via multiple
scattering (m.s.). In all circumstances, we underscore the fundamental importance of net
horizontal fluxes that play a key role in the ubiquitous phenomenon described by Cannon
{1970] as “channeling,” tentatively defined in the introductory chapter.

; At this point, we take the term “spatial variability” in a rather broad sense. In sect. 2.1,
we investigate media that are homogeneous'and:horizontally extended like their standard
plane-parallel counterparts but, having upper and lower boundaries of arbitrary shape, they
are more general; in fact these media are best viewed as a special class of internally
inhomogeneous media bounded by two horizontal planes. | In sect. 2.2, we turn to
homogeneous media that are horizontally as well as vertically bounded (and special interest is
taken in spherical shapes). Finally, in sect. 2.3, the external shape is no longer of any
importance and the systematic effects of internal variability on overall response to
illumination are the focus. In the various sections, we use quite different methodologies:
formal analogies with electrostatics (sect. 2.1), harmonic analysis using separation of
variables (sect. 2.2) and, finally, a perturbation-type approach that parallcls Stephens’
[1988b] application ¢ of a simple “closure” hypothesis to a two-flux thco*y modlf ed for the
most obvious effects of: mhomogencny (sect. 2.3), followed by furthcr harmomc analysis
and formal analogies. The bas:c results are: // ' (Ls::“f'
* In the first section and ﬁollowmg our discussion in sgr’fD 5(on honzontal!y extcnded

homogeneous\mcdla) we relax our normal (mxxcd;\boundary conditions (BCs) to their
simpler Dirichlet counterparts and find two rigorous inequalities in the mathematical
physics literature. Expressed in radiation transport terms, they read: ‘for a given
boundary shapé, transmittances associated with d-dimensional diffusion exceed those
corresponding to its “independent pixel” (IP) approximation (where no horizontal fluxes

)
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are allowed),’ on the one hand, and ‘arbitrarily shal;cd media (diffusively) transmit more
than their plane-parallel counterparts of equal mass,” on the other hand.

¥ In the second section, we find a closed form solution for the albedo problem of
homogeneous spheres (diffusely illuminated by a distant point source) which turns out to
be formally equivalent to that obtained in app. D for a (diffusely illuminated) slab. It is
argued that every;step in the calculation can be ransposed to several other shapes that
must however be everywhere smooth, This purely mathematical necessity precludes
cubes, that are obviously in the same (homogeneous, horizontally bounded) class as
spheres from the physical point of view, as shown in sect. 4.1, In this case, a naive
application of IP ideas can violate the above inequality and, furthermore, psing Dirichlet
BCs leads to physically absurd situations (infinite fluxes arise). These findings stress the
fact that one cannot quantitatively compare the optical properﬁes of media that do not share
the same support (to within a well-defined scale-changing operation).

* In the final section, we show that inhomogeneous media are more than 11ke1y to be more
transmitting than their homogeneous counterparts with the same outer shape and total
mass. This last inequality is illustrated for horizontally bounded media by boring a cavny,.;
out of the homogeneous spheres of sect. 2.2 and generalizing the analytical solutlon to
this elementary form of inhomogeneity—the outcome being a prefactor effect in thc

AR

scaling characterization spelled out in eq. (1.1-2). Finally, houzomally extended mefua

¢y are illustrated with random binary mixtures and the outcome 'is either a prefactor- or an

RN

exponent effect, depending on whether or not the low density cells are in fact comp]etely‘_
empty . | //JF
Many of the results obtained (analytically and/or by analogy) here will be combined with
iose obtained (numerically) in the first two_sections of chap. 4 for (the analytically
intractable) homogeneous cuboids and (the far _;iom interesting) fractal media respectively;
we therefore postpone until the end of that chapier, our general discussion of when, why and
for which physical transport model (diffusion versus transfer), one can expect to observe
“anomalous” radiative scaling,

We restrict ourselves throughout this chapter to conservative steady-state problems, for
which diffusion theory makes use of

[8

VF=0 e i 2.1y f“ff
J

p
where F is the net flux vector. This result is exact as it simply reflec{s the;conservation of

radiant energy (see sect. D.1). It must be complemcntcd by the gppr\opnatc COﬂStItL}tlvc
relation expressed i in this case by Fick’s law (for radJanon) which n:lads as =

ot . —L— ' ‘i
F g VU _ : (2.2)
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where U is radiant energy density but we tend to use J=cU that we will call “io1al radiance”
(somewhat abusively, see sect. A.1). The flux-to-gradient ratio is radiative diffusivity (c is
the velocity of light) as is shown in sect. D.2 (and, independently, in sect. 3.3). The usual
asymmetry factor, related to the phase function by (A.20}, is denoted by “g,” while “xp”
designates optical density and we recall that these parameters combine into the so-called
“transport” m.f.p. 1/(1-g)xp. Finally, the proportionality factor in (2.0b) is always O(1} and

depends on the details of how the hydrodynamic limit of the radiative transfer equarion is

taken; for instance, if Eddington’s approximation is used (as in sect. D.2), then we find 1/d
where “d” is the dimensionality of space. For further details on the connection of the above
approximation with standard continuous angle {or “CA”) transfer theory (including a
discussion of its conditions of validity), similarity relations, boundary conditions, formal
analogies, standard (homogeneous) scaling properties, as well as a qualitative description of
the idiosyr:crasies of inhomogeneous diffusion (including an illustration using random binary
mixtures), we refer the reader to app. D where much of this prerequisite and ancillary
material has been collected.

In several portions of this chapter (most notably §§2.1.2-3, §2.3.4), we will be
exploiting formal analogies of the diffusion approximation (to radiative transfer) with
apparently remote transport or p‘o.lan'zal:ion'l problems. In this way, we can cast new light on
the fundamental prbcesses of inhomogeneous radiation transport by “recycling” into radiative
language existing theorems, in some cases (§§2.1.2-3), and re-interpret precise numerical
results, in other cases (§D.6.2 and §2.3.4). The specific field with which we choose to
establish a formal connection is determined largely by the (usually) bibliographical source
where the result of interest was first established—or, at least, found by this investigator.
Moreover, we favour the use of notations that are more-ore-less traditional for the field of
research in which the targeted result was originally obtained since this somehow eases our
(mental) “visualization™ of the process under consideration. At a higher level of abstraction
(than we presently wish to work at), all physical systems constrained by a continuity and a
constitutive equation—respectively, for a conserved (extensive) thermodynamic quantity and
an (intensive) thermodynamic forcing on its flux—are equivalent to one another. In table
2.1, we detail the (electrical) cox%%}%ﬁ&énca’? used somewhere in this chapter. Since we
have come to adopt fluid mechanical jargon to describe inhomogeneous radiative “flows”
(including Cannon’s expression of “channeling”"jtsclf), we have added to table 2.1 the
formal analogy with the (laminar) fluid dynamics of porous media; for a recent survey of

this topic with many geophysi{gal applications, see the recent volume edited and contributed
to by Cushman [1990). 7 |
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Application: Radiation Transport Conductors Capacitors Flows in Porous

or Ncutronics Media
Conserved Quantity;  Radiant Energy Charge Charge Mass (of incom-

{or particle number) (dynamic) (static) pressible fluid)
Flux Quantity; Radiative Flux Current Density  Displacement Specific Discharge Rate
S (with Vf=0) F j D ) Q (o< velocity)
Field Quantity: Energy Density Potential Potential ‘Hydraulic Head
F U=l H (o< pressure)

/ ¢ (E =-V§) ¢

Coupling Cocfficient; Dilfusivity Conductivity Permittivity Hydraulic Conductivity
C (withf=-CVF) Ds=c/(l-gxp g € K
Constitutive Relation; F =-DVU =oE] D=¢E Q=-KVH

(Fick) (Ohm) - (D' Arcy)
Boundary Conditions; mixed [ Dirichlet ... or ... von Neumann ]

Table 2.1: The correspondences in formal diffusion analogies.

One can always consider diffusion as an interesting transport theory in its own right
but, from our discussion in app. D on the connections between diffusion and radJatxve (or
neutron) transport, we can only expect a good‘agreement for media that are ot oo
inhomogeneous—this is amply verified and (at least tentatively) explained by the end of
chap. 4. Generally speaking, this means that the variability effects that we observe here are
weak versions.of the kind of effect we can cxbect from highly irregular optical media such as
those modclcd"ii{\im the help of fractals and multifractals that we tumn to in the middle of chap.
4, In short, we vJ"i;l tend to find prefactor effects in the following and exponent effects later
on but the dkecﬁéns of these effects is the same (higher fluxes) and we strongly suspect that
the basic mec'h/amsms involved are also very 81mllar More precisely, we introduce

“channeling” as soon as the upcoming section ona very restricted class of inhomogeneous
media (that merely model homogeneous cases with arbitrary shape by introducing internal
discontinuities) and we will still be seeing it actively at work in chap. 6 but on a all scales
within a typical multifractal density field (this is extremely variable and highly singular).

2.1, Y On the Effect of Shape in Horizontally Extended Homogeneous ‘Media
,7 (and an Interpretation in Terms of Internally Variable Media)

In this section, we make use of the formal analogy existing between the radiative and
dielectrical diffusion. problems since this is the focus in the early sections of Mossino’s
(1984] monograph (on isoperimetric problems in mathematical physics) that we will be

following in the next two sub-sections. We also recall from our discussion in sect. D.5 that,
ly ' '
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for weakly variable horizontally extended media (there is no “terminator” in sight, as defined

in sect, A.4) that are also relatively thick, we do not need to enforce mixed BCs, the Dirichlet

conditions suffice.

2.1.1. The Extremal Property of Diffusive Transport in Higher Dimensions ( “Channeling”
versus “Independent Pixels” )

Consider the problem of capacitors of arbitrary shape: a bounded but not necessarily
convex {open) domain €y of R4 containing a (closed) cavity H, also of arbitrary shape. We
only assume enough regularity of the boundaries (9,0H) to allow the definition of normal
vectors (almost) everywhere. Q = Qo\H (i.e., the points of g that do not belong to H) is
then the (open) region of space that constitutes the capacitor per se. It is assumed to be
uniformly filled with some homogeneous dielectric material—for simplicity, we can take this
to be vacuum. The “inner” boundary of Q (dH) is maintained at a constant unit potemizil
while its “outer” boundary (d€2p) is grounded. In Q, the potential obeys Laplace’s equation
(V24 = 0) and is therefore a harmonic function; in particular, this implies that 0<¢<1 where
the equalities are reached on 00 and oH respectively. In these circumstances, capacilance is
the total charge accumulated on oH:

C(Q) = [ n'V¢ dd-1x (2.3)
where we have assumed the normal n oriented away from .

We first remark that the requirement of boundedness is strictly for convenience: this
provlem is topologically equivalent to the problem of capacitance developed between two
horizontally periodic, non-intersecting hypersurfaces. We also note that, apart from the
Dirichlet BCs, the problem is equivalent to that of diffusive radiation transport through a
homogeneous medium with (almost everywhere) smooth but otherwise arbitrary upper and
lower surfaces. In turn, this problem is equivalent to the one of an inhomogeneous medium
(M) contained between two hyperplanes that bound from above and from below a sub-
domain (M) with finite density (while M\M’ contains optical vacuum). From (2.3) and
(D.29), recalling that ¢<>J in formal analogies with both electrostatics and conductance
problems, we see that overall flux (or transmittance) can be equated with yC(Q) where ¥ is
the “extrapolation length,” introduced in sect. D.4.

Using the divergence theorem (for the field $V2¢), it can be shown that

C(Q) = [, IV§i2 ddx 24

which is also the total (electrostatic) energy stored in the system. The variational formulation
of electrostatics (Dirichlet’s principle) tells us that, for given fixed Q (hence Qg and H) and
an arbitrary function ¢(x) supported by Q that is only required to obey the above conditions
on aQo and JH, then (2.4) is absolutely minimal when ¢ is harmonic.



45

We now stretch between €2 and dH any number of smooth but otherwise arbitrarily
shaped internal boundaries where we require that the fluxes in and out of these boundaries
vanish identically2 n-V¢; = 0; in the electrostatic analogy, the electrical field-lines must be
tangent to them (i.e., they carry no charges). We have thus divided £ into a number of
regions Q;; each one of these now works as an independent capacitor and they are all
connected in parallel mode (their C(Q;)’s add). But Dirichlet’s principle applies to each and
every capacitor hence the part of the integral in (2.6b) corresponding to the original
(undivided) system’s potential exceeds C(£2;). This tells us that its “effective” capacitance,
Z;C(5Y), has been decreased by the subdivision into separate capacitors. The only case
where capacitance is unchanged is when the divisions are bundles of electric field lines.3

In our radiative analogy, the IP approximation is merely a special kind sub-division—it
constrains flux lines to be vertical—and we now see that it necessarily decreases the total
transmittance:

" Tip £ Tait _ . (2.5)

Morcover, the only configurations that remain uﬁpcrturbed (equality in the above) have
perfectly vertical flux lines, viz. plane-parallel slabs. In essence, allowing net horizontal
fluxes to arise? causes Lghc: flux lines to wander away from the vertical and the direction in
which they move is not hard to predict. In the above example of homogeneous media with
.arbitrary boundary gcomcrﬁ;, they will “head” towards the nearest boundary, i.e., the
 radiation is “channeled” towards the nearest exit. In the internally inhomogeneous media that
-we \yjll encounter in sect, 2.3 (weak but general variability) and in chap. 6 (strong but
spec‘iﬁgri/ariability), the flux lines “seek” the more tenuous regions and, again, we can talk
about “channeling.” Finally, we note that the result in (2.5) must not be taken out of context;
in particular, horizontal extension (by periodicity) is one of its basic premises and it will have.
to be re-examined in the case of horizontally finite optical media (which have no capacitor
analog, see §2.2.3 below).

2.1.2. The Extremal Property of Slab Geometry in Higher Dimensions

We now allow the shape of the internal and external boundaries to change freely but the
volume between them must rémain unchanged: vol(Q)=constant, i.¢., we are dealing with a
given and fixed amount of dielectric. Following (and generalizing) the analysis of Szegd
[1930], Mossino [ibid.] shows~—with some recourse to “rearrangement” theory (in Sobolev

. function spaces)—that C(£2) reaches its absolute minimal value when Q is a shell conteuned :
between two concentric hyperspheres (and their radii dre totally determined as soon as tnc,
volume of the cavity is also spccxfied) This is a classic example of an 1sopenmctnc”
 inequality. 5 The proof is outsui_c the scope of this thcsm but it should be noted that it relies
on transformations of the solution ¢(x) o_f the given boundary value problem that are based
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on Lebesgue's measures and integrals (i.e., decimating ¢-space, not x-space) which allow
for more generality. The unbounded but periodic equivalent of the concentric spheres are of
course plane-parallel slabs which therefore appear to be the absolutely optimial geometry in

terms of flux reduction or, equivalently, albedo generation. In obvious radiative notations,
we have

T(slab geometry) < T(anything else) (2.6)
Finally, we can generalize this result by taking the period to infinity (equivalently, the size of
H becomes very large).

Notice that, in the above discussion based on electrostatic-radiative analogics, we have
considerably simplified the BCs, not only are they considered Dirichlet but the imposed
potential is considered as uniform on dH and 9. If we were to be totally consistent with
the idea of illumination by a collimated beam, we should modulate the top boundary value by
the vertical direction cosine of the local normal vector (iy(x), xe dH); this means that
boundary values could, in principle, fluctuate from 0 to 1 in the most general case. If the
upper boundary has multiple points along a vertical (i.e., {15(x) can become negative), then
the “non-illuminated” and the “shaded” parts should receive a null boundary value. Even
further complications ensue if we attempt to model the illumination of a boundary point by
the diffuse radiation coming out of another; this obviously becomes more important as tie
boundaryr shape becomes more convoluted. As argued in sect. A4, in such cases we are
better off moving to the framework of internally mhomogeneous media. (In this case, we are
dealing with a restricted class with simple boundary shapes, a conslant density in some sub-
domain and null values everywhere else.) In other words, our argument remains perfectly
valid as long as we limit ourselves to (top) boundaries that are “almost™ horizontal (io(x)=1,
xedH); the final result then takes on a perturbative flavour, much like our analysis of
internal variability (in sect. 2.3 below). =

Returning to electrostatics per se, we can clcarly extend the fcsult (on physical
can be fractals (that are almost nowhere rectifiable but in a uniform and self-similar way, see
sect. C.2). This can be seen by v1suahzmg the limit of ever more convoluted (piccewise)
smooth surfaces: the electric field (hence charge) at the boundary develops singularities that
can only add to the (surface integral) expression for C(Q) in (2.3).5 We strongly suspect
that the analogous radiative statement can also be extended, just as the 2nd order but
systematic effect predicted by perturbing the internal structure is comlderably enhanced when
the variability becomes “extreme,” i.e., singularities arise in the “density field (see, for
instance, the example studied in chap. 6).
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2.1.3. Summary and the Possibility of Generalization to Arbitrary Internal Inhomogeneity

Summarizing and rephrasing, we have considered the restricted class of media
contained between two horizontal planes (M={xe Rd,0<z<L}) that are inhomogeneous in
both horizontal and vertical directions but in a restricted way. Density is zero between the
upper limiting plane and an upper internal boundary, similarly for the lower case, and the
density is uniform in the region (M’) between the two arbitrarily shaped, non-intersecting
internal boundaries which are horizontally periodic (modulo N). The volume of the unit cell
in M’ (that we denote Mp) is however held constant, consequently, so is the total (optical)
mass of the system. (The region M’ of course constitutes the “real” medium but on which it
is difficult to apply BCs since its boundaries need not even be rectifiable any'whcre.) On the
one hand, it has been shown that, apart from unimportant boundary layer effects, IPs yield a
smaller transmittance than diffusive transport (with the horizontal fluxes fully accounted for).
We will see in the following chapter that these two methods of obtainin g an overall
transmittance correspond respectively to the “p—0", and “p—ee” limits of “discrete angle”
(DA) transfer with orthogonal beams, so the trahsnuttancc for finite “p™ (i.e., a bone fide
kinetic approach to the transport problcm) is hkely to yield an intermediate value since we are
dealing with a single-parameter family of transport models. On the other hand, it was shown
that the smallest transmittance of all is obtained when the (internal) boundaries are made flat
and slab geometry is thus retrieved: we are back to standard homogeneous plane-parallel
optical media. Adding the intermediate (highly plausible) inequality, we can collect our
results in the following way:

T(M'=M) < Typ(M") £ Tpa(M) < Tr(M’) withMI ddx = const. Q.7
) N

In the following chapter, we will confirm that IPs, orthogonal DAs and diffusion all yield the
exact same result for the very special (ultra-symmetric) horizontally homogeneous
plane-parallel medium, We suspect this to be the only situation where such perfect
agreement happens whereas (in chap. 4) we will argue that any kind of medium with non-
singular internal structure will have the same scaling properties (in the sense of sect. 1.4),
irrespective of boundary shape.

Finally, it would be interesting if we could generalize (2.7) from the restricted class of
inhomogcneous density fields contained by two horizontal planes to arbitrary internal

vanablhty p(x) with xe My, the elementary cell (of size N) which is to be replicated in all-

horizontal directions; viz.

T(p(x)=const.) £ Tip(p(x)) < Tpa(px)) < Ta(p(x)) withMj p(x)d?x = const. (2.8)
. , |
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In sect. 2.3 below, we present a perturbation-type argument for the “widest” inequality
(relating the first and last quantities) for general but weak variability. The leftmost inequality
is easily proven on completely general grounds, using Jensen’s inequality (see sect. 3.4 for
details). However, all we can say about the second (IP-to-DA) inequality is that it is verified

by our numerical results for the deterministic fractal media introduced in sect. 4.2 (at all

cascade steps), as well as those that pertain to the single realization of a stochastic multifractal
investigated in chap. 6 (see sect. 6.5); in fact, we have never seen a violation to date in all of
our test-, preliminary- or otherwise unpublished numerical results. This leaves little doubt
about the validity of (2.8) within the relatively simple class of transport models we are
presently working w1th The conditions where we can expect T(p(x)=const.)<Tca (p(x)) are
tentatively discussed in §2.3.2; basically, we should remain in the optically thick cloud
regime and use the simplest possible illumination conditions (i.e., normal or diffuse).

2.2. On the Effect of Shape in Horizontally Bounded Homogeneous Mecdia
(and the Irrelevance of Comparison with Plane-Parallel Media)

2.2.1. Background, Motivation and Main Results

In this section, we will be presenting and use a (closed-form) solution of the albedo
problem for homogeneous spheres within the framework of the diffusion approximation to
radiative transfer (that we will generally refer to simply as “diffusion™). This case is of
interest for at least two reasons, one more historical and one more pedagogical.

Firstly, the fact that the problem is entirely tractable seems 1o have been over-looked in
the literature. In the heyday of analytical (pre-computer) approaches, Davison? {1951} uses
various approximations to obtain transfer results concerning the cxtrapdlation length (cf.
sect. D.4) for spheres and very long cylinders (lying on their side)}—effectively 2-D
“s phenas” while Giovanelli and Jefferies [1956] investigate diffusion in several gcometries,
mcludmg spheres and (infinite) cylinders. The latter authors solve the problem completely
but they insist on irradiation conditions so arbitrary that their final results are delivered in the
form of infinite expansions containing undefined coefficients, We will basically be showing,
from first principles, that these series are trivially summable for the simplest albedo problem
where illumination comes from a distant point-like source.8 Since then, high-spced
computation has become a primary tool in transfer research and consequently, there has been

a natural tendency to use geometries where ray-boundary intersections (“piemin’g)points’l) are -
easily determined for the purposes of Monte Carlo simulation: .“cylinders” of finite length .

standing on an end with various sections. For instance, McKee and Cox {1974] worked on
“cuboidal” cloud shapes (orthogonal parallelepipeds or, equivalently, cylinders with a
rectangular section)—a problem that has since been attacked analytically with a “multi-mode”
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approach [Preisendorfer and Stephens, 1983]. Within this framework, this problem
formally looks enough like one in plane-parallel geometry. that the plané-parallel techniques

of invariant'imbcddin g can be used to solve it [Stephens and Preisendorfer, 1983]. (In the

casc of d1ffus10n in spheres, we will be able to take this formal analogy one step further.) In
this context, the word “analytical” does not mean that the computer is ‘superfluous; in fact,
the encoding of the analytical solution is bound to be far more intricate than a simple Monte
Carlo simulator program but, in the end, it will be faster and more accurate. The primary aim
of the above analytical approach—-and ours—is however not numerical efficiency but to gain
insight into the workings of transfer in presence of horizontal fluxes, breaking away from
slab geometry, e.g., 10 what extent can we view the effect of sides as a formal analog of
absorption? (Our views on this question are spelled out in sect. A.4.2-3.)

These upright “cylinders™ have also attracted the atiention of theoreticians versed in
Eddington’s approximation (or its “6” variant): circular sections [Barkstrom and Arduini,
1977] and square sections [Davies, 1976 1978; Davies and Weinman, 1977]. Since these
authors are solving a Laplace9 equation on a finite and regular domazin, they can use the
standard 1echruques of separation of variables but these lead, in both cases;:i0 (qultc similar)
non-trivial eigenvalue problems in order to maich the BCs on the sides and on the ends,
hence final results that (again) come in the form of infinite eigenfunction expansions. Asin
the casc of exact transfer, these diffusion results are numerically more expedient than Monte-
Carlo but lliéy are approximate in nature and no longer are expected to be an unconditionally
accurate representation of transfer. Returning 1o homoge}ieous spheres and infinite cylinders
(having gone a complete circle), the former at least have become quite popular as a basic
cloud shape in qp_merical studies of broken cloudiness where they are in direct competition
with cubes; these cloud aggregation models can be made of identical individuals or
individuals which are either of constant optical density and different sizes or vice-versa with
various rules as to their spacings rangmg from regular grids to randomly scaling [references
in chap. 1] We propose to fill the g qp left in this intensive use of finite homogeneous cloud
shapes and show that the sunp]esl of shapes has the simplest of expressions for its
transmittance (exactly analogous to a slab), in spile of the manifest presence of net horizontal
fluxes.

The second major reason to consider homogeneous spheres is important to the basic
logic of this thesis: we are systematically investigating the sciiling properties of Optical'
media, movmg away from the standard homogeneous slab model one step at a time. A first
logical step 1s; I makmg the medium not only vertically but horizontally finite.
HomogeneouS\ w #ere studied for the same reason but under normal illumination (the
simplest, in pnnc1p e ,ubes develop “terminator pathology” (see sect. A.4 for details) hence

)/

e T,
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there is an ambiguity about what we should call albedo, and uncertaintics ensue about its
scaling properties (‘Is it really non-trivial?’ sec sect. 4.1 for a final analysis, hopefully). By
contrast, spheres can be viewed as a gencric representative of the only class of bounded
homogeneous media of any practical interest {those with “proper” terminators, including
cubes under slant illuminatif)h) and the whole picture of strictly boundary induced horizontat
fluxes can be considerably simplified: from the scaling (exponent) point of view at least, the
effect is exactly nil!

Since the radiative problem for homogencous spheres can be solved with the proper
radiative BCs (of the “mixed” type) we can look into the qucslibn of how imporiant these are
for horizontally bounded media. The answer is (unfortunately) a lot more than for their
horizontally extended counterparts and this is an unescapable consequence of the existence of
a terminator. Horizontal boundedness also makes IP-type calculations largely irrelevant

.- since near the terminator external {(absorbing) and internal (insulating) boundaries become

parallel and, in the same vicinity, optical thicknesses vanish slowly (thcy can dominate the

_spatial statistics). Finally and possibly most importantly, the methodology of the analytical

solution procedure for the homogenecous sphere can be quite easily generalized to the case of
an internally inhomogeneous sphere with one radial discontinuity in density (§2.3.3). So we
can compare lomogeneous spheres with hollow spherical shells (or spheres with a denser
core, and all the combinations in between). This gives us a textbook example where we can
verify our prediction (§2.3.1) that inhomogencous medizif:'always transmit more that their
“homogenized” (equal mass) counterparts with the very same external boundary shape.
2.2.2. A Detailed Solution for Spherical Media

Following a proverbial [Harte, 1985] path that needs no further presentatich;” we
consider a spherical cloud in d=3, of radius 8, and homogencous in xp {which can be taken
as unil for convenience). It was eventually realized that Giovanelli and Jefferies [1956] had
obtained partial results towards the analytical formula that we obtain below for the
transmittance by such a medium; it was theri-soon realized that it is in fact easicr to start from
scratch than to explain their notations. From our point of view, their result is to general to be
directly useful since they consider arbitrary illumination conditions (which is & logical choice
in neutron transport studies). To make this point even clearer, we will reverse their logic
completely, i.e., we start by exploiting the simplifications related to the collimated
illumination and the spatial averaging of the radiative responses. Only then do we solve the
Laplace equation with the appropriate (mixed) BCs, targeting specifically the features of the
solution important to the determination of overall transmittance.

We naturally center the sphere at the origin and use spherical coordinates with the
“north pole” (hence z-axis) oriented downwards, following the incident and mean fluxes of
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radiation (more-or-less) as usual in atmospheric radiation studies. The problem being axi-
symmetric, we are only retain interest in coordinates r and 6. We are particularly concerned
with the in-coming and out-going fluxes (at r=R) as defined in the most general case by eq.
(D.28), while here, they are best represented as a Legendre series simply because of the
boundary shape (we are not even interested yet if it is a diffusion process going on inside or
not!). So we write

Ft(cosB) = i BE P.(cosd) (2.8)
0

The lower signs in (2.8) designate known quantities since they specify the BCs for the
albedo problem, namely, a unitary collimated flux (coming from a very distant point-source):

0 00 £xn/2
F-(cos0) = 2.9a
( ) {-cose n/2<0 < (2.92)
Equivalently, in the harmonic representation defined in (2.8):
{ Bj = 1/4 (2.95)
Bi=-1/2

and, for n>1, all the odd contributions vanish identically. Even contributions beyond n=0
exist but they will not be of any use in the following since we are interested in the overall
responses, not the local fluxes!® (we return to this question below). In parlicular,
transmittance—according to the (Lermmator-based) definition in (A.29)—is given by

w2

I
T=—3 Oj F*(cos8) 2nR2d(cos8) (2.10)

and 31m11arly for albedo R with the bounds of the integral moved to #/2 and x.

“The expression for T in (2.10), as well as its counterpart for R, can be considerably

simplificd by introducing Heaviside’s step function (for +cos0) along with its Legendre
expansion;

enc®) =S _[1 ifxcos6 20
O(£cos) %‘,nn Pa(cosB) { 0 othervise (2.11a)
Here too, only the first two terms will be of direct interest to us:
*
ng = 1/2
: 2.1
{n;—‘ =+3/4 (211b)

For n>1, all the even contributions vanish identically. Eq. (2.10) can then be rewritten and

generalized to read

=
AN
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T oo
{ g} = 20j F*+(cos0) © (xcos0) d(cos8) = 220, L Bint 2.12)

where the last equality makes use of the orthogonality relation for the Legendre polynomials.
From the above discussion, we see that there are in fact only n=0,l contributions to the
{functional) scalar product in (2.12). We can then casily sce that
R _1_,_1l-B{rB}
T T 1 + B{/2B}
In short, all that is required of the solution of the transport problem is the single ratio
B1/2B§. Notice that the only assumption we have made in the above is the axi-symmetry
which is guaranteed by the uniform illumination, on the onc¢ hand, and an intcrnal
distribution of scattering material that is purely radial, on the other hand. In the following,

we assume internal homogeneity and, in §2.3.3 below, we will allow for one radial
discontinuity.

(2.13)

Only now do we need to make an assumption about the radiation transport model,
which we of course take 1o be diffusion. We must therefore solve Laplace’s equation inside

the sphere. For the moment (see §2.3.2 below), we are only interested in the regular part of

&

the general (axi-symmetric) solution in spherical coordinates which is

Jr,0) = Y, Ba " Py(cosh) (2.14)
0 g

where the constants By are to be eventually determined by the BCs. The general definition
(D.28) of in- and out-going fluxes yields
7

i

F£(cos@) = 15[ 1% x%] J@O) | g

(2.15)

when specialized for spherical systems. Recall that the lower signs refer to the (given) BCs
assigned to external illumination from & distant source in eq. (2.9a); the upper signs refer to

the (required) responses to the said illumination. By substituting the solution (2.14) into the
above, we find

=
F¥(cos8) 21, [ 1+ 0% Bar" Py(coso) 2.15")
0
which, by comparison with (2.8) yields
2BF = o,
=Po. 2.16
{2B%=[19~x1w 219

where we have let X = X/R. Using (2.9b) and eliminating the Bo,1 from the egs. (2.16), we
find the required combination of harmonic Coefficients: =



0

53+

Bf  1-x_

- : 2.17
2}3‘5 T 1+x - ( )
Finally, substituting this into (2.13) and simplifying, we find _ .
1 _,.&R
T 1= " ; | (2.18) .

or, as usual (e.g., §D.4.2), T = 1/(1+R/X). This result is readily validated by
straightforward numerical Monte Carlo simulation, bearing in mind that we are not to expect
the same value of  to apply over the full range of values of R. More precisely, we expect
x—4/3- for R—0* and 3—0.7104-- for R—e= which are universal (geometry independent,
dimensionalily dependent) limits; the latter value also corresponds to the limit of a semi-
infinite medium with an up-welling flux (the “Milne problem™).11 .

The main focus of this thesis is on overall (or average) radiative responses but there is
no reason to limit oneself to this very lowest level of spatial resolution in the above
development.  The information about illuminatign=conditions in (2.16)}—with lower
si gns—can be complemented up to any arbitrary [r:af‘&er in the spherical harmonic expansion
and, consequently, all the B, (internal fields) and B} (external ficids) can be determined. It
is not hard:either to anticipate the main features of the flux field. The flux lines start, straight
down, parallel and equally spaced, on the the upper half of the boundary since that is where
the radiation sources are, constantly fueled by the (cos8-distributed) external illumination
pattern. The same lines end on the lower half of the boundary!2 but they are no longer
equally spaced, nofrs:i‘r\lﬁight. nor parallel; instead, ‘they fan out: all off-axis lines deviate
from the z-axis in the direction of the closest part of the non-illuminated lower boundary. In
other words, the radiation is “channeled” towards the nearest “exit” (i.e., low densny
cnvironment) by the onset of horizontal fluxes which build up constantly from the top 1o the
bottom. We will encounter the converse manifestation. of diffusive channeling in §2‘3 3
below and, being driven by internal density variation, it prowdes a less trivial example: after
creating cavitics inside the spheres, the flux-lines will tend to funnel into the empty region
where the radiation éew a “free ride” through the medium,

Finally, we @y._cy.ﬁic‘ll like to know whether the simpler Dirichiet BCs could be applied
with comparable succé's_s,"afs we found in the case of slab geometry and strongly argued for
in otherwise hon’zomally extended geometries. The answer is yeé but only if we are far more
carcful than in the above (sect. 2.1) discussion. of arbitrary boundary shapes where we
applicd the same boundary value everywhere on the top (and similarly on the bottom) of the
cloud, irrespective of the local orientation of the boundary w.r.t. the incident beam. This
“cosine™ law was explicitly incorporated into our expression of BCs (2.9a,b), had we not
and had we applied (uniform) Dirichlet BCs, we would have found singular fields near the

T
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equator (or terminator, 6=r/2). In short, the medium would offer no bulk resistance to the
radiation (or current) because of all the very short paths available at the equator. As a rule-
of-thumb, we should keep to the mixed BCs when dealing with horizontally finite cases and,
in horizontally extended cases, we can simplify not only to Dirichlet BCs but to their
standard (uniform) format, especially if we are only interested in the simplest radiative
properties of the system: for instance, low-order perturbation (not unlike in §2.3.2) or clse

“the leading term for asymptotic scaling behaviour (as in §2.3.4).

2.2.3. Independent Pixels, Scaling Implications and Generalization to Other Cloud Shapes

The final closed-form result (2.18) for the transmittance of (homogencous) spheres has
a familiar look to it: if we take L to be the diameter (R=L/2), then we retrieve exactly the
diffusion result for slab geometry (D.31") as well as the exact result (of sect. 3.4) for
transfer in d=1 (where transfer and diffusion are equivalent, see sect. D.2). Since we have
the exact same resull for a bone fide sphere (in d=3) and a segment, or **1-sphere” (in d=1),
we can conjecture that the same formula will appear!? in d=2 (and probably also in d>3). In
all cases, the sphere has the same transmiltance as the slab defined by the tangent planes at
north and south poles.. ‘

This brings up an intercsting but only apparent paradox. The IP transmittance for
spheres in any d>1 isl4

2R
Tip=Te1{l) = |
0

' 4 R / G
dp() =% In(1+2) A219F
14172 R x

where ! designates the length of a vertical section of the d-sphere. Now Tip is grealer than
the diffusive transmittance expressed in (2.18). In fact that result corresponds to the
minimum value of Ty=;(#} (and the maximum 'I=L=2R) and the logarithmic term in (2.19) is
due to the relatively numerous small [-values around the equator (6=m/2). In essence, we are
facing the same kind of problem as above in the discussion of the potential usefulness of
Dirichlet BCs in horizontally bounded cases and the answer is the same: we must be more
careful (and this applies to all horizontally bounded media, including normailly illuminated

cubes). This time, we cannot generalize the general (shape-independent) “Tp<Tg;" result |

obtained at the beginning of this chapter for horizontally extended (or periedic) media to the
horizontally bounded counterparts (spheres in particular). This is because, near the
terminator, the “open” (or absorbing) external boundary of the medium gels /f(:pnfuscd with
the “no-flux” (or insulating) internal boundaries in the IP approximation. The comparison of
the two results is largely irrelevant. In fact, totally wrong conclusions can be drawn by
trying to compare quantitatively horizontally finite and extended media like *horizontal fluxes
cause lower transmittancies since Teype<Tsiap (Cf. figs. 4.2a,b)’ whereas exactly the opposite
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is happening when the media have the same boundaries: transmittancies are generally
enhanced when horizontal fluxes arise, necessarily due to internal variability in this case
(sect. 2.3). The only way to compare the radiative properties of cubes-and slabs
quantitatively is to take into account all the light that is directly transmitted through the empty
space around the cube.15 This of course applies to inhomogeneous cases t0o: given some
density field defined on a plane-filling cell in the horizontal, going from “open” horizontal
BCs to “cyclical” horizontal BCs (see sect. 4.2, for an example) is far less innocent than
going, say, from. “mlxcd” to “Dirichlet” (in sect. 2.1 or even 3.5, in connection with
“gencralized” DA ssmlanty theory).

Instead of trying to quantitatively compare horizontally bounded and unbounded cases,
it is more interesting to notice that the homogeneous diffusive result in (2.18) can probably
be generalized to many other cloud shapes, all horizontally bounded in higher
dimensionality. All we really require in the calculation that leads to (2.18) is (i) a coordinate
system where Laplace’s equation can be treated by separation of variables (Morse and

Feshbach {1953} enumerate 13 of them in d=3) and (ii) that the boundary of the optical

medium is a (necessarily closed) surface were one coordinate remains constant. In
particul'zi'f, the latter condition implies that the boundary is everywhere smooth: cuboids (and
reclangular coordinates) are excluded since they are made up of several constant coordinate
surfaces, not just one, but ellipses (and elliptical coordinates) of all kinds can certainly be
used. Within this class;of cloud shapes (and associated coordinate systems), every detail of
a solution for the radiative problem in one case can be (conformally) mapped onto another
case. We therefore expect to retrieve a final result of the same form as (2.18) in all these
cases. -

In summary, we have just argued that all homogeneous horizontally bounded media
(:ﬂlh well-defined terminators have transmittancies that scale inversely with their size and
Lﬁat, if the boundary is furthermore everywhere smooth, the asymptotic regime is approached
in tﬁamo ‘way as homogeneous slabs do, namely, as in (2.18). This (exponent) is lotally
mdopendcnt of the phase funchon choice which appears nowhere in the above (beyond thc-,\

natural choice of “rescaled“ Uhits of length); the phase funchon will however influence lhe =

prefactor % (if we insist on using units other than=t ansport m.f.p.’s for the extrapolatmn\

length). In the following chapter, we retricve (analytically) the same scaling for DA transfer
through plane-paralle] slabs in any dimension w.r.L. heir vertical thickness. In chap. 4, we
show (numerically) that normally illuminated homogeneous cuboids (in d=2,3) behave like
the spheres in both tranmutance and reflectance (even in the restricted sense, w.r.t.
definition (A.29), of exit through the top only), 1e that in such media “sides” may be
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geometrically well-defined (and the terminator ill-defined) but they are asymptotically
unimportant as far as radiation is concerned.

2.3. On the Effect of Internal Structure (and a Tentative Quantification of
“Channehng”)

2.3.1. Homogeneity as an Extremal Property

We have anticipated systematic inhomogeneity effects on the bulk radiative propertics
in different qualitative ways: perturbed optical path (order-of-scatiering) distributions in scct.
A.2, and anomalous diffusive random walks in sect. D.6. Quantitative scaling examples of
these effects are discussed in §5.1.1 and §D.6.3 respectively. These examples however do
not pertain directly to the steady-state albedo problem but rather 1o initial condition problems
for an internal po‘int-source It is therefore in order to evaluate and analyze, in the most
quantitative terms possible, the cffcct of inhomogeneily on an overall response to
illumination: albedo, equivalently, transmlllancc {or, even more simply, average net flux).
The following development has the flavour of a perturbation analysis but does not ¢laim to be
a mathematically ﬁgorous expansion!6 in higher order perturbations; rather we show—using
Fick’s law, BCs and mass conservation—that the linear (15t order) contributions to the
correction to “mean field” flux due to inhomogeneity vanish identically and that we are left
with nonlinear contributions (of all higher orders in principle), cf. eq. (2.25) below. This is
an‘interesting result but not too surprizing: inhomogeneous transport theory would not be
the challenging problem it is were it dominated by linear effects! We then argue that the sign
of this correction term is likely to be positive (fluxes increase); in a sense, this is more
valuable than a mathematically rigorous result because it forces s 10 clarify the nolion of
“channeling” on physical grounds. In fact two arguments are given, one specifically
diffusive, the other based on independent research into mhor pgencous radiation transport
based on the transfer model. Firstly, we somewhat refinc our quahlauve discussion of the
inhomogeneous diffusion equation in §D.6.1; more precisely, we ask ‘how do the “pscudo-
source/sink™ terms (that appear along with density fluctuations) affect the geometry of the
flux-lines?" Secondly, we turn to a closure hypothesis mlroduccd by Stephens [1988b] in

_order to accommodate a simple form of inhomogeneity in a modlf' Awo -flux scheme based
directly on the inhomogeneous CA transfer equation made 1o lol)k formally like ils plane-

parallel counterpart after spherical harmonic analysis and horizontal Fourier transformation
[Stephens, 1988a]. Given the very close links between two-flux theory and the diffusion
approximation in homogeneous plane-parallel media, we can view the following (purely
physical space calculation) as a generalization of Stephens’ calculation based on “new optical
parameters” that, in final analysis, we view as direct measures of Cannon’s “channeling.”
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We will make no special assumption on the nature or the strength of the inhomogeneity
yet, We simply decompose our into their “mean field” values plus a “correction” term;
starting with the density field:

p)=p +p’(x) with Jp’(x)ddx =0 (2.20a)
We are therefore constraining the density perturbation explicitly to redistribute mass that
alrcady exists somewhere in the system. We define a similar radiation field decomposition:

J(x) = Iu(z)+3'(x) and F(x) = Fy+F’(x) (2.20b)
For simplicity, we have assumed our unperturbed medium has slab geometry (we generalize
further on); the mean field term then obeys V2], = d21,/dz2 = 0, and the corresponding flux
is Fy = FoTyZ where Fyp is the incident flux, The precise value of the transmittance in
absence of perturbation (Ty) is not important in the following. Since we will be using
properties that are characteristic of the rir):iéally thick asympitotic regime (specifically, we will
not attempt to distinguish Dirichlet- and mixed BCs), it should however be quite close to the
estimate T(kpL) given in (D.31’) where length units that make kp =1 were used. The
gcometrical vertical extent L of medium is therefore 1mphc1lly assumed much greater than
17¢p. (One might add that using diffusion rather than transfer is only a good idea in quite
thick systems, dominated by high orders-of-scattering, in the first place.) a

For specificity only, we will take Eddington’s expression for radiative diffusivity,

hence the “d” factor in the following (recall that d is the dimensionality of the system). The

new (inhomogeneity) term in Fick’s law, F = -(VJ)/dxp, then reads:

Vi =-dc[PF’ + p'Fy+p'F’] = (2.21)
where the last (higher order) term wﬂl turn out to be crucial to the final outcome. We now
turn our attention to global quﬂunmes such as T = Ty + T’ which are horizontally extended

hypersurface averages of n'F, n-Fy, and n'F’ respectively. They are all independent of the
,,uvcl and the precise shape of the transection smce the fluxes are all divergence free.

R Focussmg more particularly on

(NIFQT’ = o, 2F (x,2) d%-1x _ (2.22)
we use, for simplicity, a transection at constant geometrical depth. In the above, N is the
width of the unit cell of the medium (Ap=]0,N[d-1), assumed to be horizontally periodic,
Integrating (2.22) vertically also, we find

LINGTF)T = [ 26" (x) ddx | (2.23a)
“where, from (2.21), the integrand can be expressed as

3F =- — [4VP + dxp’Fud + dep’F' 4] (2.23b)
dxp ‘ ' L s

!_f"
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This last expression tells us that we have three differcnt contributions to the integral in
(2.23a), one for each of the terms on the r.h.s. of (2.23b).
The first two terms are easily evaluated. Using % V)" = 9,J', we obtain

L
3.1 ddx =[5 dd1x [3,0°dz =0 (2.24a)
o

since the vertical integral is simply J'(x,2)I2=5 and both contributions vanish (for all xe Ag)
beeause the BCs on J'(x) are homogencous. We will see that this field is excited not by BCs
like-for Jy(z) (Ju(0)=1, J,(L)=0), but by internal sources dependent on J, and Vp', cf. eq.
(2.28) below. The other linear contribution also vanishes because of the constant total mass
constraint imposed on the density fluctuations, cf. (2.20a):

{p'Fp2 ddx =FeTy [p’ ddx =0 . (2.24b)
We are therefore left with _
(LN&-DYBFT’ = - [ p’F* 2 ddx (2.24c)
or, equivalently,
=Pl (2.25)
pFo

In other words, the quantitative effect of (mass conserving) inhomogencity on the overall
flux through the system is directly proportional 1o the (spatial) corrclation between the
fluctuations in density and vertical flux. We also recall that, within the framework of
diffusion theory (as applied to radiation t.ranéporl), the only approximation we have made is
to assume Dirichlet rather than mixed BCs.

We will now present strong evidence that the correlation term in (2.25) is likely to be
negativaly valued, thus making the correction T” o transmiltance positive. For the moment,
we will exploit diffusion theory itself and, in the upcoming sub-section, we will reconsider
this question using an important numerical finding of Stephens’ [1988b] within the
framework of CA transfer theory. The structure of the relevant (diffusive, stcady-state)
radiation transport equation is quite simple; from (2.1--2), we indeed find

V2] = (Vinp)-(V]) (2.26)
and this implies, in particular, that only ratios of density arc of any importance.. This
suggests that we should now look at

D
Pift

/

¥ Inp(x) =Inp + (Inp)’  where  (lnp)' = p(x)

P

(2.27)

~r
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Only in this last step do we assume the variability to be quite weak. Substitution of (2.21)
and (2.27) into (2.26) and removing the dominant term in Fick's law (V],=-dkpFy) yields,
to 1%t order:
— V2] = dk(Vp')-Fy (2.28)

which, we recall from the discussion in sect. D.6, acts as a source (sink) for ' when
.pasitivé?(negétive). If all orders of perturbation are included then Fy, F, hence F’ are all
di-\)crgcnce free; but to 18t order, taking the divergence of (2.21) aliows us to write the Lh.s.
of (2.28) as dxpV-F’.

pVF =(Vp)Fy - (2.29)
We are thus adding to the mean flux field a diverging (pséudo—source driven) flux field when
Vp' and Fy lay roughly.in the same direction; otherwise, it is a converging (pseudo-sink
driven) flux field. This means that the (18t order) effect of a positive density fluctuation is to
decrease the total flux along the mean flux field direction, and vice-versa. In short, if the
mean ficld flux is vertical (parallel to the z-axis), then p’ and F;’ tend to anti-correlate; and
we therefore conclude that p°F,’ is likely to be negative. This is essentially what the local
multiplicative coupling of the radiaticn and the density fields has o tell us. Notice that we
have implicitly assumed in the above argument that we are in higher dimensions (d>1).
Indeed, if d=1, then necessarily F’ = F-F, =0 everywhere; the prevailing flux passes
through all density fluctuations without change (by conservation) and, in contrast,
VI = F'(z) will change, it is only required to remain negative. |
To determine not only the sign but also the magnitude of T', one must make a specific

assumption on the nature of the inhomogeneity and solve the corresponding inhomogeneous /”5
PDE that would follow from (2.28). In practice however, we are more interested in systems. e H"?
where the variability is such that any perturbation-type approach will fail quantitatively. Wé

will therefore retain only the qualitative features of the calculation that brought us to the
- “T'>0” or “T>Ty” result, most importantly, the critical roles played by higher
dimensionality, on the one hand, and the nonlinear aspects of the transport process, on the
other hand. We see radiation nonlinearities from the (related) viewpoints of the multiplicative
nature of the matter-radiation coupling in (2.26), on the one hand, and the occurrence of very
large optical thickness, hence the predominance of high orders-of-scattering (which diffusion
theory takes for granted anyway, cf. sect. D.3), on the other hand. v
2.3.2. Exrensxon from Dxﬂi‘s:on to Transfer, Connections with Stephens’ “New Optzcal

Properrxes and “Mode-Coupling” Process & ‘
~ The above “T>Ty" result seems quite general and it is worthwhile considering the

extent to which it will apply to transfer-type models of transport. Firstly, we can confidently

P,
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report that, in all of our numerical DA transport (Monte Carlo) simulations, even
unpublished, not a single (numerically accurate) violation of the inequality has been
observed. Given their formal similarities, the above diffusive analysis could probably be
adapted to such simple kinetic systems with too much effort; this goes for the rigorous
general part of the argumeht. leading up to (2.25), as well as the perturbation-type part in
(2.26-29). (This may however not be very rewarding however—except maybe in the
optically thin regime—because perturbation and diffusion go hand-in-hand with weak
variability, as far as truly approximating transfer goes.) The same recmarks apply to our
(more costly hence far less numerous) CA expcriments which always use normal
illumination conditions, for simplicity. Morecover, the perturbative aspects will definitely be
more involved in this very (t0oo?) gencral framework; we suspect however that the ideas
developed by Box et al. [1988] are general enough to by applicable outside of their (vertcally
inhomogencous) plane-parallel applications [Box et al., 1989]. Secondly, very few
violations of the rule were found by us in the (CA transfer) literature. Onge is on the thin
cloud side (T<5, with g=0.84) of Stephens’ [1986] figure 7 which plots out, as a function of
7, the albedo of vertically homogencous, and horizontally variable (y-uniform, x-Gaussian
and periodic) density ficlds. The illumination geometry is however somewhat slant
(cos€p=13.1°) at right angles to the striation (the Sun is in the z-x plane) so one can readily
define illuminated and shadowed “sides” of the cloud, even through it does not stop
abruptly. These striations being relatively well separated (o consider each one as an
independent cloud, we should ask ourselves which finile cloud albedo definition listed in
sect. A.2-3 applics best in the circumstances. It is of course (A.36) that calls for angular
integration w.r.t. a zenith that is generally distinct from the (opposite of) incidence direction.
All of these angular aspects of Stephens’ transfer approach contrast markedly with our
diffusion approach where all angular difficulties are essentially neglected from the outset.
One should therefore not be too surprized to see differences to arise, especially if (1-g)7 is as
small as 0.8 as is the case here since this is precisely the regime where diffusion is not
expected to be accurate, for lack of multiple scattering (that otherwise considerably
“smooths” the angular problems away). We are however rcassured to see that, in the same
figure, R<Ry as soon as (1-g)7>1 and to sce that there is no more discrepancy all the way
down to (1-2)T=0.2 in Stephens’ [1988a] computations on the same density field, but with
slightly different illumination conditions. Another exception is found in (regular or random)
assemblics of individually cube-shaped clouds, but again at relatively slant illumination [e.g.,
Barker and Davies, 1992; and references therein]; the reason is esécmially the same as
above: the effective cloud surface seen by the incident light rays incrgases and this benefits
albedo most. We suspect ;E‘:}t the rule is applicable to CAs for ény opﬁ;call _&hickness, as long

a - \// ‘
e

— !

3 ) )



61

as the illumination is sufficiently symmetric: normal or isotropic illumination will generally
be required, in the case of striated media, incidence from anywhere in the “uniform” plane (at
right angles to the variable direction) is probably good enough.

Rather than providing caveats for a few exceptions that lie outside of our main field of
inerest (1x(1-g)T) anyway, it is more interesting to recall that Stephens [1988b] uses his
numerical data on the Gaussian cloud model just discussed to parameterize p-I, correlations
as a function of p=cos(u%). In our notations and orientation conventions (the “north pole”
of 253 is down, like the z-axis), he proposes

Pl =-CPLink (2.30a)
fof'azimulha]ly-averaged radiance, where C is a positive parameter [basically the slope of the
linear approximation in his fig. 6). By further directional integration (w.r.t. p), this directly
yields

p'F, =-CpFr<0 (2.30b)
i.e., precisely the crucial inequality needed to establish that T'>0. In other words, we can
propose the parameter C as a quantitative measure of “channeling” that is operationally
accessible in CA transfer via (2.30a), in diffusion (or DA transfer) via (2.30b). In the case
of diffusion with Dirichlet BCs, € (determined from the internal fields) can be directly
compared to T°, as a check for the expression in (2.25).

Interestingly, Stephens prefers to define parameters like C as “new” optical properties
{beyond the usual %, @, and g) and uses them in a simple closure scheme. More precisely,
the new parameters allow the author to accommodate (in a mean field fashion) horizontal
variability within a simple 2-flux model which, unsurprisingly, yields systematically lower
albedoes. (Recall that the diffusion approximation used in the above reduces to 2-flux theory
when applied to plane-parallel media.) Having argued that even weak variability leads to
systematic overall effects, our approach in chapters to come will be quite different from
Stephens’ since we will be interested in finding the new structural properties that are likely to
lead to strong variability effects on the mean radiation fields and criteria in that direction are
proposed at the end of chap. 4 and these are corroborated by analytical and numerical results
in chap. 5 and 6 respectively. In contrast to an “optical” property, a “structural” property

should make no reference to the radiation field in its definition, in Preisendorfer’s [1976]

jargon: only “inherent,” not “apparent,” properties are called for. Thus, generally speaking,

;J - arule involving structural properlies gives us predictive power whereas, in principle, a result
" based on optical properties could give us diagnostic power.

We have conducted our above analysis entirely in physical space and clearly that is

. where Cannon’s expression of “channeling” has so many overtones: the original idea was to
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describe the tendency of the light to find the geometrical paths of least resistance (i.e.,
density) compatible with the laws of multiple scattering. We are however interested in
finding its best Fourier space counterpart. In variability studies (c.g., turbulence), Fourier
space is generally considered to be 2 more comfortable environment to work in (especially in
perturbation studies) but, at this point in time, such is not the case when rescarching rad:ahun
effects. This is traceable to two complementary aspec;.-.. ‘of transfer: firstly, it is linear in its
fields (hence no obvious similarity-based phenomenqiégy arises) and, secondly, the matter-
radiation coupling is nonlinear since multiplica}ig’é (hence, literally, a more convoluted
description arises in Fourier space). Indeed,'};éiurning to our main culprit in diffusion
theory, namely, (Vlnp)-YJ in (2.26), we recall from app. D that it follows in direct lincage
from both “kp(x)[,(x)” and “u-VI,” in transfer theory, i.e., the basic ingredients of the
kinetic propag oator incarnated (so-to-say) by direct transmittance that we singled out as the
fundamental no'ﬂmeanty of transfer 1*{ sect. A.2. Stcphens [1986, :1988a] traces an clegant
Fourier space picture of inhomogeneous transfer {not dlffusxon'), where the horizontal
Fourier transform of the density ficld interacts via convolution with that of the radiance ficld,
in spherical harmonic representation. If the “spectrum” of thé hotizontal density fluctuations
is not entirely concentrated at k=0 (its spatial average) then this convolution necessarily
excites non-axisymmetric modes of the radiance field. This is due to the fact that the

describel? Stephens' symmetry-breaking mechanism as “mode-coupling” and we view it as
the best Fourier space expression for “channeling.” Furthermore, the expression “pscudo-
source/sink” term that we 'use to describe (Vinp)-VI is even better justified in the Fourier
pxcture———m fact, was largely 1nsp1red from it—since its Fourier counterpart is a (convoluted
but) sralar result that can be directly combined with the absorption term, when present.

Tii: summary, e\}lave studied the perturbation of the steady flow of radiation througha °

slab by the creation of internal inhomogeneity. Starting with a homogeneous, plane- paral]cl

vertically finite medium, we redistribute the material within some horizontally dcﬁned unit
cell that is then replicated periodically. Itis sh_own that the overall flux (or transmilttance) i is. .

very likely to be systen1atically=i1i’c§eased by the higher order terms but only in higher
dimensions. This is traceable to the nonlinear nature of the matter-radiation coupling in'Lhe

adopted (diffusion) transport equation and is indicative that the trend wilizt rcvcrse for

more extreme forfiss of inhomogeneity than perturbative-type approaches can normally
accommodate. We have also argued that this finding will generalize to CA transfer if the

illumination conditions are sufficiently simple (and, possibly, if the medium is effectively -

thick w. rt 1sotrop1c scattering as well). Atany rate, the natural illumination geomelry in the

et

AF

“streaming” operator (u-V) contributes, upon Fourier Lransl‘ormzﬁion, a term in “ju-k,” the // })
i=V-1 factor is in fact responsible for the coupling of the various different u-modes. We
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special case of (orthogonal) DA phase functions is always very simple and, accordingly, no
violations have been found within that framework to date.
2.3.3. - A Deterministic Narrow Band Example: Spheres with a Cawty

In the above analysis ¢f the basic overall effect of inhomogeneity, making the medium
periodic is not strictly necessary, simply easier to visualize: the homogeneous benchmark is
then plane-parallel and Fy, = FgTy% applies. In the horizontally finite case, we must firstly
define T according to (A.29) as always in diffusion, i.e., by finding the “(proper)
terminator” set (dM.) on the medium’s boundary!8 which is always of dimension d-2. The
hypersurfaces where the integration in (2.22) is performed above are now required to contain
JdM... Secondly, we must bear in mind that we are using the (usualIy unknown anaiytically
but perfectly well-defined) J, and Fy, “mean” fields for the particular choice of M (really oM)
under consideration. Finally, the special roles played by the orizontal and vertical
coordinates in the spatial averaging can be replaced by the curvilinear coordinates defined
along J,(x) = const. and Fy’s field-lines, respectively (recall that J,(x) is harmdﬁic) In the
important result (2.25), “z” thus becomes locally defined (prior to spatial averaging) by
Fy(x) but. the conclusion is unchanged because it stems from the local analysis of (2.28). A
prime example of T*>0 (or T>Ty) in this horizontally bounded case is provided below. An
important implication of this generalization is that, in all fairness, one can cniy compare
optical density ficlds having the same support. In particular, one can compare the qualitative
differences between horizontally ﬁpile and plane-parallel media (e.g., the appearance of
horizontal fluxes even for homogeneous cases). Quantitative comparison (of, say,
lransﬁiﬁillancies) is irrelevant since we would have to compare the effact of a ﬁnile o an
infinite amount of material, equivalently, an extensive to an 1nten<1ve quanmy. of'a “lotal

- amount”to a “ﬂux " The abusive comparisons found in the 11tcralure stem. t'rom the fact that

itis tradmoval in radiative studies to express the said total amount as an average flux, cf.
deﬁnluons (A. 29) and (A.38) of albedo and transmittance, one then forgets that lhere are no
replicas i in the finite case. : o

We now illustrate the general “Tishomo™Thomo ™ result from §2.3.1 which applies to
media that” share the same support and the same total mass and generahzed ‘above to
honzomally bounded cases. We will s1mply modify our previous (§2.2.2) analys1s of the
albtdo problem for homogeneous soneres _lo accommodate*spheres with a concentric

= spherical cavuy This will prowc‘e us with 2 specxﬁc example of diffusive “chmnclmg ina “

context that we undefstanu wel Fqs (2.8-13) as well as- (2 15) apply here without
modification'since they concern only the in-going and out- -coming_ radiation flelds
Furthermore, since at present we are only mterested in the global Iesponses (T R}, we need
only to'determine the ratio B*IQBO in (2 13) as a function of the cloud § extemal and internal
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geometries (i.e., radii). We must however modify eq. (2.14) which dcfines the spherical
harmonic expansion of :'ie radiation field. Letting r¢ be the internal radius where the
discontinuity in density occurs, we now have:

I(r,0) = Z Bu' 1" Py(cosB) | 0Lr<re (i.31a)
0

in the central region where we are only interested in the regular part of the solution of

Laplace’s equation. In contrast, we can make use of the singular solutions in the
surrounding region: '

(r,0) = 2 [Byr® + ;"Hﬁ] P;{cosB) Ic<r<R (2.31b)
5

Substituting (2.31b) into (2.15), we find:

W(cos@):%% {[1snX1p.r" +[1i(n+1)%]%}1>n(cose) (2.32)

and we recall that the coefficient of the Legendre polynomial in {2.32) is defined as 2B
where the lower sign corresponds to known (BC-related) numerical quantities, cf. (2.9b;.
As in the case of homogeneous spheres (and in diffusion approximation tradition, sce
§D.4.2), we leave the extrapolation length ¢ as free parameter.

The novelty in this problem is that, by radiant energy conservation, we must require
continuity across the internal boundary of the in-going and out-going hemispherical fluxes
wrilten as in (2.32) but for r=r¢ rather than for r=R. Equivalently and more simply
expressed, we can‘réquire continuity, on the one hand, of the total radiance ficld J(rc0,6)
and, on the other hand, of the normal component of the net radiative flux -DaJ(re,8)/drl = to

where D is the radiative diffusivity (1/3(1-g)xp) which has distinct values on cither side of
re.!? Respectively, we find

Bn =PBa+ 2n+1 (2.332)

nD B, = D[ Py - (n+1) 2n+1] : (2.33b)

/A ’f e

For every value of n of interest, eqgs. (2.32) and (2.33a,b) provide four constraints on the
four unknown quantities: B3, By’, Ba, Ya. Clearly the general solution will depend only on

“the dimensionless ratios X/R, r¢/R, and D '/D=p/p’, noticing that, up to this point, we have

made no specific assumption on the value of the density (or diffusivity) inside the internal
boundary. At least one of our unknowns is easily determined in this quite general case:
writing (2.33b) for n=0 (a value of special interest to us) we see that yo=0 hence B¢’ =fq,

=T
g

B :,.g-



el 65

from (2.33a). In turn, we can use this result to see, directly from the general harmonic
ecxpansion (2.32) but truncated as previously at n=1, that the ratio of harmonic coefficients
that we are sceking can be simply expressed in terms of two other ratios of the remaining
unknowns: ‘
Bt
2}30
where we have let X:X/R, as in the above section on homogeneous spheres.

We now take the limit D'/D—eo (p’/p-—0), i.e., we are dealing with an optical void
inside a spherical shell uniformly filled with scattering material. At n21 in (2.33b), this
implies that B,’=0. Summing up, the radiation field inside the cavity is reduced to its
uniform component (corresponding to B¢’) which, in this case, does not imply an absence of
net flux, quite the contrary. This can be seen by noticing that D'B;’ goes to some finite limit
given ultimately by the r.h.s. of (2.33b) for n=1 and, since-the Lh.s. of (2.33a) for n=1
vanishes, we know that B; and v, are of opposite signs; therefore a non-vanishing v,
(creation of a cavity) in (2.33b) implies an increase in the flux (D ‘B1") at the center of the
system (flux lines are converging into the cavity). In short, we are witnessing “channeling”
as it was described above (and in sect. D.5); a finer analysis is bound 10 show that the same
phenomenon will occur as sbgn-as D'/D>1,i.e., long before it becomes infinite.

To finish the calculation, all we need are two independent equations to determine the
two ratios (B)/Bo, Y1/B1) that appear in (2.34). Egs. (2.32) with lower signs (BCs), on the
one hand, and (2.33a), on the other hand, both for n=1, provide a convenient choice. Hence

{ Bi(1+X)R + v;(1-2X)/R? = 2Bj
Birc + Nfrc? = By’ _
where we can readily use 2Bj=-1 from (2.9b) and B;’=0 from the above D/D—ee limit on
the r.h.s.’s respectively. Finally, letting ve=(ro/R)? denote the cavity-to-sphere volume ratio
(0=ve£1), a little algebra leads to '
B _ (1% - (1+2%)v¢

i

(Bl) [(1-x) + (1+2X)( Ly (2.34)

(2.35)

= : (2.36)
2B (14X) - (1-2X)v¢
and substitution into (2 13) yields
- (s 2.37)

1 +2v

“We find the same general form Lhal we generally expect for homogeneous clouds with

(everywhere) smooth ;boundary shapes. In particular, the homogeneous result (2.18) is of
course retrieved at ve=0 and we naturally find T->1 in the opposite (vc—1) limit where the
medium itself vanishes. Eq. (2.37) also implies that the radiative scaling is the same for the
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full and the hollow spheres. This scaling result can be considerably gencralized since there is
no obvious rcason to not consider the hollow spheres to be representative of cloud models
with arbitrary but qggr’ﬁiw band internal variability (inhomogeneity only ariscs on a finite
range of scales). 1}/

Returning tfii?,ihe verification of the general perturbation result, we wish (o relate
homogeneous andfl’inhomogencous media with the same supports and masscs, i.e., in this

case
Riwyy = Rpallow :

{pfull = Phatlow(1-ve) ::5'" (2. 38)
Finally, we will assume that the numerical value of x is lhe same for both media whcn
expressed in natural (transport m.f.p.) units, In other words Kpy, hence XpR, are held
constant. Writing out (2.37) for both media, taking ratios, and using n:\l_auions (2.38) leads
to: : - T

1 __ 1 L) i

Thonow(R) 1+2ve * Tryn(R) "
which means lhat as predicted, as soon as a cavity is crealed (vc>0) by redistributing the
given amount the scattering material inside the external boundary. transmittance is boosted.
Interestingly, the maximum ratio of 3 in the above responses is found for an infinitely thin
shell (ve=1) of infinite density.

We can elaborate on (2.39) in order to underscore the importance of higher
dimensionalily in the “channeling™ process. We argued above that our analysis of
homogencous spheres (in d=3) is probably gencralizable to any dimensionality (including
d=1), yielding in fact the very same result! It is of interest to see why this is no longer quite
true now that we have an internal cavity. We know that in d=1 the response ratio in (2.39)
must be 1 for all values 'of v since we are dealing with the equivalent of slabs with (a special
case of) purely vertical variability (no channeling is possible). We therefore conjecture that
the factor “2” in the denominator of the ratio in (2.39) is indced given by “d-1" (hence the
above maximum ratio would be “d” in general). To see why this is likely to be true, notice
that the origin of the new (v¢) terms in (2.36-37) is cntirely traceable to the second kind of
coefficient introduced here in (2.31b). In d=1 however, there is no need for such distinct
coefficients since the most general solution of Laplace’s equation is a (piccewise) lincar
function; in d=2, the general solution of Laplace’s equation has a (logarithmic) singularity at
the origin and a second set of cocfﬁmemsib";s again necessary in the region not containing
the origin; in d>2, the singularity is algebraic, of order d-2.

(2.39)
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2.3.4. A Random Broad Band Example: Uncorrelated Binary Mixtures

We now turn to the case of random optical media that are modelled by random binary
mixtures that are reviewed, as simple models for inhomogeneous conductors, in §D.6.2 with
sufficient detail to procecd here with a formal analogy; in particular, all of the symbols used
below are defined. We recall that the individual cells in these models are given one of iwo

density values (py); these values are distributed in a totally uncorrelated manner going from -

one cell to the next, with relative probabilities (ps). However, if one considers the clusters

for “animals™) made up of connected cell.-of one kind, then at “percolation threshold” (a

“critical” value p, of, say, p-=1-p,) the size of the cluster becomes infinite and, in this sense
only, the medium has long-range correlations and we refer the reader to sect. C.2 for a brief
discussion of the associated fractal aspects, We are particularly interested in the smgu]ar
limit p.—0 known as the “random supcrconductmg network” (or RSN) limit where the_
superconducting (0,—e0) cells can simply be" wewed as holes in the clong.

To interpret the conductance results in term$ of diffusive radiative transport in
(horizontally periodic and) vertically finite but thick media, we only need to invoke the
formal analogy (J&¢, F&j and xps+e> 1/0%) leading to (D.35), equivalently, —

A
Rl ALY L 231)
A M

A

for each realization of the stochastic medium. In a vast majority of cases (choices gf p and
p+), the binary mixtures under study yield a <> which is independent of the size L of the
system, and we retrieve the standard (homogeneous-like) scaling <T>e<L-l. In particular,
this is true of the percolating (hence highly correlated) but non-singular case, viz. when
(D.48a) applies. Nevertheless, “channeling” is already at work at the level of prefactors, as
cxplained in the appendix, cf. the 1nequa11ly in (D.49) which, interestingly, applies to
average bulk conductances under average rather than exact, conservation of mass. Normal

scaling is also found for singular choices of density but when the system is not exactly at

percolating threshold, viz. when (D.45) applies. And of course, the same scaling will be
found in non-percolating, non-singular cases which have attracted much less attpntlon see
however Hong et al. [1986].

By contrast, the percolating, singular RSN limit in (D.47) yields <T>ecLsV-1: using
the numencally determmed values of s/v quoted in §D. 6 2, we find

0.03 ind=2

vr=1-0=102 ind=3 ' (2.32)

since <T>o<L (if »1), scé below. Notice that the “vy” (with a subscript) refers to our usual
notation for the-radiative scaling exponents introduced in chap. 0-1 while the “v” (without
subscript) is standard notation from the literature on percolation. The radiatiyé analog of the

I



o

68_ LT

“random resistor network” (or RRN) limit is not quite as interesting because of the
occurrence of infinite (optical) masses: the insulating (vanishing conductance) cells are like
totally opaque (i.e., very thick) individual clouds distributed, with relative probability p./p-,
in an otherwisc normally scattering atmosphere and the transition observed at p,=1-pe tells us

. -that the atmosphere becomes totally reflective (no transmitted flux) long before it becomes

[
<L

totally cloudy, accordmg to diffusion theory.

What does the IP approximation say about this sxmple slochaslxc cloud model? Fora
medium discretized on a Nd-1xL-sized grid, the statistics for opp! m.ﬂ thickness () arc obtained
with a sample of Nd-1 independent realizations of the random variable (r.v.) obtaincd by
adding L independent r.v.’s with values xpylp (where Iy is the grid constant). The latter
r.v.’s follow the law given by the simple Bernouilli trial in (D.40) while the former have an

_order L binomial distribution. The strong law of large numbers2! tclls us that this last
“distribution converges (in probability) towards a Gaussian distribution centered on

<1> = Lx<p>ly (<p> = p4p.+p-p-) With a relative variance of Lp,p-; so we are dealing
with a rather narrow distribution that will produce simple scaling in its moments of all
orders.22 In particular, we will have Tipec <1/T> ¢ 1/<T>.

What does the transfer model of radiation transport say about these intriguing media?

" Not too surprisingly, Welch et al. {1980] find “small” differences between the radiative

properties of cloud models generated-with.white noise and their homogeneous countcrpans
using Monte Carlo simulation for_rp..oton g;ansfer, the fact that they used a continuous
distribution of density valucs rather than binary mixture is not important, the key structural
feature here s the lack of spatial correlations. The same remark applics implicitly to Boiss¢’s
[1990] numerical results for non-conservative transfer in bone fide binary mixtures since he
finds that a single realization is sufficient to vahdale his own analytical mean field results
from transfer calculations of media exponentially correlated on some given scale (which he -
naturally associates with the grid constant). More importantly, Boissé’s [ibid.] analytical

“inhomogeneous formalism is becomes identical to homogeneous formalism (for the mean
density) in the limit of vanishingly small correlation length, irrespective of whether the lower

density value vanishes or not, whether absorption is present or not.

- This major discrepancy between diffusive and transfer scaling behaviours was first
anticipated by Lovejoy et al. {1989] ‘who found a close connection between photons and the
“skating termites” described by Bunde et al. [1985]. “Termites” (“ants”) are spCClal N asus of
pamcles that “diffuse” exactly on a grid in the RSN (RRN) limits; the- former were ongmally
proposcd by de Gennes [1980]. A “diffusing’ parucle must know how to navigate in
presence of any change in the local value of d1ffuswuy D not only going from 0 to a finite
value (ants) or from there 1o oo (lermlt..s) Séveral vetaxons of the tenmte were under study

o —, "
L
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_— by Bunde et al. [ibid.] and the “skating” model (which had the particularity of performing
{- o :"’*‘e\\\“ ballistic flights through the superconducting cluster, like photons would in an optical void)
“«.failed to show the expected phase transition behaviour at percolation. In other words,

photons poorly approximate diffusing particles (and, of course, vice-versa) but, from the

above scaling results, we only expect this in presence of singular, highly correlated density

ficlds since both of these features are sine qua non conditions to obtain the “anomalous”

scaling in (2.32), see sect. 4.3—4 for further discussion of this point,
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TThis chapter has no publishcd equivalent, the author is largely responsible for its content. His advisor (S.
Lovejoy) was instrumental in finding a basic inconsistency in an early version of the “periurbation-like”
argument in §2.3.1. He 2l5o researched the percolating conductance problem bul from the point of view of "ants
and termites” (see §D.6! J) rather than the formal analogy standpoint used here, and only with the smp,ular
{anomalous scaling) hmrt in mind; this had the effect of attracting the author's altention io binary mixtures in
general (singular or not, pu'CDlﬂ’"lg or hot).

1“Polanzanon" is used here in the ¢ dlclectnc. not radiative, sense of the word.,
?'In a thermal conductance analogy, we would call these boundaries “insulating.”

3A similar argument can be made w.r.t. the insertion of conducting ($;=const.) hypersurfaces between 9H and a(dg;
but this amounts to creating a number of independent capacitors in a series arrangement (the 1/C(£2;) add) auid

. ’ results in an increased effective capacitance, unless the newly inserted sub.domain boundaries all ¢oincide with
\\ equipofential surfaces of the original ﬁeld
AR Sy

4In DA transfer this’ s:mply '\moun!s to allowmg for some dcgru. of side-scattering o occur (see clap. 3).

l
! 5The author then'goes on to Te-derive {and. s-.ugw11a1 generalize) Pélya's [1948] proof of Saint Venant's conjeciure
8 ¢- and. P j
that, within tl'c framework” ﬂ(_ilnear elnsl:cuy theory, m}.mmal torsional rigidity for cylindrical cables of
arbitrary section is achieved when the section is circular with one concentric hole.

R 6See Le Méhauté and Crépy [1982] and Le Mé&hauté {1984] for a similar problem in electro-chemistry (with
oscillating ratber.than steady-state potentials) that they treats phenomenoclogically w:lh fractional (time)
2 derivatives. .-

i TThe author thanks P. Gabriel for attracling h‘as altcmion to this carly publication. i

Ry 8we will however disregard the boundary layer effects related to collimated illumination that could be incorporated
2 by using the “d1rccl+dxfl'use"\"nrmulauou and internal (single-scattering) sources near the upper boundary. We
& assume the strictly collimated_iicident radiation is immediately converted into an isolropic irradiance patiern
normalized to the amount dictated by {l.ambert’s) cosine law. The neglecied effects are however partially

accounted for implicilly by leaving the extrapolation length as a free parameter,

%or Helmoltz equation, if in pres‘ciéc of absorption (of radiation) or multiplication (of neutrons).

10par:this, one wiil need jlen(x)dx which is (-1)™2n1/25(0-1)(n+2)(n/2)} for b even (in particular, -1/2 for n=0),
¥ and O for odd but %1, §/3 for n=1; this is adapted from Gradshieyn and Ryzhik [1980 p. 820]. The harmonic
/’ (BC) coefficients B; are obtained by multiplying thls expres 0 by -(2n+1)/2.

[( Hpavison [1951] discusses these limit cases and pcrfprms uumerical and- 2nalytical transfer calculations for
intermediate values. Recall that these were originally intended to be used in more general bul necessarily
approximate diffusion calculalions (such as those of Giovanelli and Jefferies {1956]} in order to increase lheir

P pumerical accuracy—-a very important concern in both civilian and military conlcmporary applications of
e
: neutronics.

12The whole boundary is a sink for the diffuse radiation but the lower half is only a sink {no in-coming radiation,

transmitted {luxes going out) while the upper half is in fact more of a source {(unit in-coming) than a sink (albedo
out-going). ’

13This can be readi.ly checked using standard tools from harmonic analysis in 3D cylindrical; or 2D polar
coordinates, viz. Bessel's functions (of the I*! kind) and Fourier series. Note thut only a cosine series will be
ncccssary. by symmelry, just a the simple Legendre polynomials were used in d=3.

14Thc integration is easily performed by using the polar angle: [ = 2Rcasd and dP({) = sdeB

151 comparing the radiative properties of (say) cubes and slabs we are in fact comparing an extensive quantity
(integrated flux) with an intensive quantity. This is however not immediately obvious because these quantities are
- Talways neatly normalized by the (respectively, extensive and intensive) quanlities of light received.

16The rigorous (mathematically self-contained) 2°¢ order perturbation theory of the complete boundary value
problem at hand seems to be intractable [S. Lovejoy, p.c.].

1750e §1.5.2 for a more accurate discussion of Stephens’ words.

18The fact (pointed out in the previous section) that, for horizontally finite media, we must be more careful about
mixed BCs only means that they will only be approximately verified by the total (Ju+J') radiation field in this
geoeralization of the perturbauve result.

197his results direcly from the mtcgral form (D.2-3) of the radiant energy conscrvauon ‘faw applied to a small
volume that encloses a portion of the surface of discontinuity.
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20These would be affected to Bessel's functions of the 2°¢ kind that come to complement their (non-singular)
counterparts of the 1* kind.

21This is a special case of the central limit theorem, for a restricted class of random variables but with a stronger
criterion for convergence. S

22This is also basically why only the means (and no other moments) were considered in the above results for <T>
and <> as well a5 in §D.6.2.
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Chapter Threet
DISCRETE ANGLE RADIATIVE TRANSFER,

ELEMENTS AND CONNECTIONS

Preliminary Remarks and Overview: We refer the reader to app. A for a brief survey
of continuous angle (CA) transfer in d-dimensional space, including all the necessary

“background material and (in §A.3.3) a rarely discussed interpretation of the steady-state
3 multiple scattering (m.s.) transfer equation,
)

Y L) =- kp(®) [ - § sy L@ adlw'] (3.0)

s a local balance between spatial variability (directional gradients of radiance field) and the

angular variability (zmisotropy of the radiance at a point in space). This means that we never
be able to totally “‘decouple” these two basic aspects of the radiative transfer problem but we X_
can reduce the Ievel of sophistication and difficulty in the angular part. ;{"he reader is further
referred to app. D for a review of the standard approach which consists in taking the

" hydrodynamic limit; this leads to the “diffusion” approximation which was systematically

exploited in the previous chapter to investigate (largely analytically) the basic effects of
spatial variability.

" In this chapter, we describe a way of satisfying this same need without leaving the
realm of kinetic theory: discrete angles (DAs), not a new but a previously under-exploited
idea. Direction-space always has to be discrefized sooner-or-later in numerical radiative
transfer. *“Sooner” refers to straightforward numerical solution of the transfer equauon, e.g.
in Chandrasekhar's [1950] di';’orete ordinate method that must be performed with a given
number of “streams,” each o 1e associated with a pivot angle given by Gaussian quadrature
formulae. “Later” refers o’ urect simulations, i.e., Monte Carlo techniques which call for
tho definition of—and compmer memory allocation for—angular “bins,” cf. app. B. By
contrast, we do_not view DA transfer a;}n approxlmauon to its CA counterpart. (On the
contrary, DA phase functions are limits of CA phase functions more-and-more peaked in
certain directions; in this sense, CA transfer therefore can only approx1mate1 its DA limit.)
Bemg only a special (however extreme) case of CA theory, itis hoped that DA theory will
share its essential features; “in our view, an “essential” property isa “scaling” property and
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% this outlook provides a way of testing this (or any other proposed simplification scheme), sce
*I chap. 4. Returning to practical (numerical) matters, DA phase functions make many new
computational short-cuts available (see app. B) ... quite apart from the considerable

conceptual simplification to be exploited in the present chapier. |
Before proceeding and in order to accommodate future needs, we relax the steady-state

assumption on the Lh.s. of (3.0) and allow for the possibility of non-m.s. sources on its
r.h.s., thus

[ %%r 0V Ty, = - kp() [ Tu(x.) - § plu'—u) Tu(x.0 a-u - S,01 (307

will be our point of departure. (All the symbols are defined in app. A.} In the opening
section, we show how (3.0") can be considerably simplificd {mathematicaily spcaking) by
considering only a finite number of beams with phase function choices that only couple
mecmbers of this family; we go on 1o show that only a countable infinity of such familics
exist if the phase function can only depend on relative (or “scatiering™) angles, The simplest
of these families consist of mutually orthogonal beams and we focus on these in sect.3.2,
deriving in particular their “eigenvector” representation. In sect. 3.3, we derive the 20 order
coupled PDEs oueyed by these systems and show that they have two interesting special
-{limiting) cases; on the one hand, systems of d uncoupled one-dimensional diffusion
equations, this limit being equivalent to the “independent pixel” (IP) approximation discussed
within the framework of diffusion in the previous chapler; on the other hand, d-dimensional
diffusion itself is retrieved but from a very non-standard approach. The general properties of
the IP approximation are discussed in sect. 3 4 and it is related to the problem of
homogeneous media with random opncal parametcrs {(to which we rcturn in chap. 5). |
Finally, sect. 3. 5 is devoted to the two s1m1!ar1ty theories one can dcvclop for orthogonal DA
systems, one is; a straightforward Lransposmon of its exact CA counterpart while the other is
more gcreral but it only approxnnate w.rii.-the problem of imposing boundary conditions
s rdCs), not a serious concern in optically thick (and possibly also horizontally extended)
ral a systems. At any rate, the IP and diffusion limits are singular w.r.t. these similarity
transformations, imrﬁying qualitatively different properties in general.

s ‘\\ﬁ
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=~-3.1. DA Phase Functions and Transfer Equations e
3.1.1. The General Case where Absolute Directions are Needed § o -

In our usual (probablhsuc) transfer jargon developed in app. E (and A}, we are simply
= g0ing: 10° ‘sample” u-space, Eq: let {i} be a finite but otherwise arbitrary set of directions.

/ We now simply require the radiance field and phase function be decomposable into sums of
. T g ”
d-functions both supporied by {i}:-=

et =
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T(x.t) = Z Li(x,0) S(u=i), (3.0
|

pj—u) = E P;; 8(u-i), l‘orallje{l} (3.2)

Notc that DA "rad1ances“ I; are really coefficients in a 8-decomposition and therefore have
unns of fux (irradiance). Similarly, the coefficients P;j can be viewed as the elements of a
(duncnsmnlcss) scattering matrix P = {Pj;}. Apart from this question of units, there is no
intrinsic difference between the physical definitions of DA intensity Ij given by (3.1) and that
of its CA counterpart, (specific) intensity Iy, given in app. A: both are conserved quantities
alc_i:n g the beam in absence of extinction (i.e., kp=0) and their respective transfer equations
account for the changes that occur when xp>0 (i.e., scattering in and out of the beam as well

as possible absorption). However, when associating DA “intersity” (or radiance) with a CA

“i]ux" (or irradiance), we.must bear in mind that the latter is diluted by space along abundle
of rays, i.e., it obeys the “1/%-1" law, a basic tenet of standard transfer theory and practice.
Substitution of eqs. (3.1-2) into the CA transfer equation (3.0’), followed by

‘u-intcgration yields the basic DA radiative transfer equation:

:":[%BT” -V 150 = - xp(x) { 2 (1-PYjj Ticx.D) + Sj(x) } (3.3)

A finite, rather than infinite, system of coupled 1t order PDEs. S j(x,0) represents all of the
~ non-m.s. DA sources, not necessarily related in any specific way to their CA counterparts.

All of our CA expressions for BCs, albedoes and transmittances carry over 10 DAs without
change. Expressmns containing u-integrals will even simplify as did the radiative transfer
equatxon uself “Cofcerning the albedo pro.)]em BCs, we must obviously choose the
direction of collimated incident flux (ug) wulun (i} although we notice that, due to linearity,

“Swie can “superpose” as many {i} families as we want (even fill all of Z Z4"). These various

families of beams wili remain however mutually independent of one another.
3.1.2. The Specific Case where Only Relative Directions are Used . \;:\‘;\,-
As in CAs, the most useful DA phase functions depend only on relative angles
(equivalendly, i-j) but it is important to realize, on lhe one hand, that relative DAs doesnot
imply axi-symmelry and, on the other hand, that this requxrement greatly restricts the number
of eligible DA systems. To determine those which qualify, we note that imposing
lj-depcndence is equivalent to asking that the set of transformations needed to map-unit
vectors {i} onto {j) form a non- degenerate and non-trivial finite sub group of the

corresponding rotation/reflection group O(d). By “non-degenerate,” we meai1 a sub- -group

. that cannot be projected unto a finite sub-group of O(d-1) and by “non-trivial,” we mean a

AN



76

z ' sub-group that does not reduce to the identity clement? (x—x) of O(d). We shall use the
notation DA(d,n) for DA systems with n beams in d dimensions.

ENUMERAT]ON INd=1. On aling, only two directions are possible and “d- 1" degeneration is
nota concern; hence only one DA system that we shall denote DA(1,2) and which will
prove to be formally identical to the “two-flux” model. For future {d>1) reference, we
note that O(1) is itself finitc as it contains only the identity and parity (x—-x)
transformations.

ENUMERATION IN d=2. In the plane, we have a countable infinity of acceptable DA systems,
each one corresponding to a nondegenerate finite subgroup of O(2) generated by a
rotation through 2n/n (with n=3,4,5,+) which we shall designate by DA(2,n). Notice
that the case n=1 is trivial and the case n=2 is excluded because rotation through =« is
equivalent to parity and DA(2,2} is therefore degencrate.

i’ ENUMERATION IN d=3. In space, we have but five possibilities eiach corresponding Lo one

of the five Platonic solids (or fully regular polyhedra): DA(3,4) for the tetrahedron,
DA(3,6) for the cube, DA(3,8) for the octahedron, DA(3,12) for the dodecahedron,
and DA(3,20) for the icosahedron. This indeed is the only' way 1o divide the 4rx
steradians of Z3 equally wh1le maintaining the same (discrete) isotropy around every
beam; this last constramt excludes the 13 semi-regular (or Archimedian) solids as well
as their duals {or Catalan solids, obtained by truncation or stellation of the above), sce

= Smith [1982) for details and Kepler [1619] for an early application to cclestial .
| mechanics3 .. . interstingly, planeté.ry astronomy is precisely where the expression

“phase function™ came from in the first place (see §A.4.3).
In many applications, it is desirable that the DA system allow backscallering, thal the
associated sub-group of O(d) must contain parity. Eligible DA systems would then be
DA(1,2), DA(2,n) (with n=4,6,8,---) and DA(3,6), DA(3.8),-DA(3,12), DA(3,20), since
— the tetrahedron does not have “opposite” faces. For d=1,2,3, the simplest of these are
o DA(d,2d) systems and they will be used extensively in the following, they correspond to
. mutually orthogonal beams (when d>1). An important application where DA back-scattering
is prerequisite is spatial discretization of the DA transfer equati[:ms by finite differencing; in
such applications, the cells are *dual” (faces perpendicular) to the direction sct {i} and the
associated solids must “ﬁll" their embeddm,o -space. :

ENUMERATION N d_l On a line, dxscrﬂuzauon poses no special problem.

ENUMERATION IN d=2. Ir'fthe plane we'can exploit either one of the three well-known-
regular tessellanons of the plane: (i) by squares, (i) by equilateral triangles or (iif) by
regular hexagons These lattices are assocxated (1) with DA(2,4) systems, (ii) a .
sub-class of DA(2 ,0) systems, and (iii) all DA(2 6) syslems .Consider the case of a
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triangular lattice where “up” and “down” triangles must be alternated:. the DA(2,6)
sub-class of interest corresponds to the inhibition of “transmittance” since there is no
opposite face as well as “scattering” through +120°. Thus the “transfer” of a given
beam through a single cell feeds radiant cnergy into its opposite (at 180°) and the two
others at £60°; of course, the same source of energy will eventually feed the three
other beams (including itself) upon crossing a second (or more) cell(s). For an
illustration, Gabriel et al. [1990] used both squares and triangles.

ENUMERATION IN d=3. In space, we are interested in those Platonic polyhedra that are also
(or can be combined into) parallelohedra or Fedorov solids, i.e., they fill space. These
and their associated DA systems are (i) cubes : nd DA{3,6), (ii) “up” and “down”
tetrahedra and (iii) a sub-class (cf. discussion i d-2 case) of DA(S 8), octahedra and
all of DA(3,8).

Finally, we remark that in d=3, Whitney's {1974] “Dodecahedron Approach to Radiative

Transfer” (DART).is closely related to the DA(3,12) system and has been used primarily to

optimize radiative transfer codes; along with Chu and Churchill [1955], Siddal and Selguk

[1979], Mosher{i979}, Cogley [19811, Gabricl ez al. [1986), and Lovejoy et al. [1989] we

favor the DA\J,U) model for its concepmal (and computational) simplicity.

C
N;l‘\

3. 2 The Simplest DA Sys*ems. \Orthogonal Beams .
3.2.1. DA(d,2d) in its Natural Repre enrarzon Two-Flux Theory as a Special Case

P

i We now turn to the simplest ofi DA systems where the propagation is confined o

mutually perper}tdicular directions, conveniently oriented by the axii of a rectangular
coordinate systefn Writing out the DA transfer eq. (3.3) explicitly in the DA(3,6) case for -=

which {+%,t %2} is the set of unit vectors for the X,y,z-axii respectively (plus their
opposites), we ﬁnd
1. d d
(= 13_+AXE+AYT+AZB—]I xox) [(P-DIxD+SxH] (3.4
with
100000 000000 000000
0-10000. 000000 0600000
_{000000 001000 000000 :
Ax=1 000000 | “¥=[oco0o0-100 | 2% 000000 (3.52)
000000 000000 000010
06000000 '00000_0' 00000 -1
_ S
S
Suy
S= (3.5b)

-

mfn,w
™~

0
[



78

where t, r and s are the relative probabilities of scattering through 0, =, =/2 radians ?esp.
The DA(2,4) model can be retrieved by making I,,=I-x=0 in (3.5b) hence d/9x=0 in (3.4}
and reducing the order of the system accordingly; this system is the simplest where higher
dimensional effects—such as “channeling” as defined in chap. 1 and described in terms of
diffusion in chap. 2—can happen and it has now been extensively exploited numerically
[Davis et al., 1989, 1990a, 19913 (see also chap. 4 and 6). Similarly, we retrieve the
DA(1,2) model by starting with [,,=1.,=I,,=1.,=0, 0/dx=d/dy=0; this last system is
completely equivalent to Schuster’s [1905] (analytically solvable hence much- used)
“two-flux” model for the diffuse radiation field with S representing the ’Optiorial
single-scattering sources, see Meador and Weaver [1980] for full details. We are thus faced
with a finite system of linear 15t order PDEs with all its matrices A; (i=x,y,z) being singular?
for d>1. We shall continue to assume that the p-matrix is constant in space, only the optical
density varies, via p(x). Except for notation, the full DA radiative transfer system described
by (3.4~5) is identical to the “six-beam’ model of Chu and Churchill [1955] and Siddal and

Selguk [1979], who seem to have worked independently. The former authors used it as an =

approximation to CA scattering in plane-paralle] geometry (obtained by taking d/9x=0/dy=0
hence E)/az-—dlcb) the latter (who incorporate internal sources) compare its performance with
other soluuons of the transfer problem for cuboidal enclosures (which is of importance in

- furnace design). Our exploitation of this idea differs substantially from theirs: we do not _

consider the DA case as an approximation scheme for CA transfer but rather we study it as a
theoretically realizable model interesting in its own right. :
Rather than the above (“natural™) description of the DA scattering process in terms the

clements (t,r,s) of the p-matrix, we will introduce the following equivalent parametenzahon
when and where convenient: .
a=1-t-r-2(d-1)s , (3.63)

q=l-t+r . - (3.6b)
p=1-t-r ' ‘ (3.6¢)

Notice that the relative weights that mulnply the various scattering matrix coefficients Pjj
from (3.5b) in the combinations that appear in (3.5a,b ,C) are simply (i-j)? w1th n=0,1,2
respectively. The above are thcrefore simply related to the 0 through 2nd coefficients of the
d-dimensional spherical harmonic expansmn of the DA phase function: Fourier in d=2,
Fourier-Legendre in d=3 (recall that DA phase functions are not axl-symmetnc) Pararneters‘-
a and q are already well-known: respectively, 1-®, and 1-@,g as can be seen from
definitions (3.6a,b). Parameter p is new, from (3.6a.c): . . ;
p=a+2(d-1)s | | : @B
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g It can therefore be viewed as a measure of the combined effects of absorption and/or

side-scattering. The (a,q,p) have natural bounds imposed by the probabilistic interpretation
of the (t,r,8); namely,

0<ac<l . (3.8a)
0<qg<2 ' (3.8b)
agpsl (3.8¢)

Equalities are obtained respectively for all/no scattering, all forward/backward-scatiering, and

‘no/all side-scattering.

3.2.2. DAC(d,2d) in Eigenvector Representation, Comparison of DA and CA Quantities
From the definitions of sect, A.3, we can see that 1-, and 1-B,g are the first two

harmonic coefficients of the CA scattering-extinction kernel X(u'u) = d(u"-u)-p(u“u) that

can be used to write the whole r.h.s. of (3.0) within a single collision-type integral. We now

i seek a complete eigenvector characterization of the DA scattering/extinction matrix P-I in
,~ (3.4-5). Its eigenvalues are found to be:
e a,q (once each) for d=1
- “j-~-w,,r,,i‘-.; . a, q (twice) and 2p-a " od=2 . (3.9)

i T

S= ¥ 573, q (thrice) and 2p-a (twice) " d=3
* Notice that P- in (3.4)is (aIso)‘j'singular in the conservative (a=0) case; sce below for what
| happens in d>1 when p~a and two of the eigenvalues become one. We now define the
symmetric and anti-symmetric components of DA radiance along the various axii:

I =Lyl (forj=%.9.2), (3.10)
In d=2, we find the following association of eigenvalucs and -vectors:
a: (1,1,1,1HT (3.11a)
q (1,-1,0,00T and (0,0,1,-1)T . (3.11b)
2p-a: (-1,-1,1,1)T (3.11c)

where super-script “T” denotes transgosition. The projections of the (formal) radiance
4-vector I on the above three eigenspaces are respectively:

J=Tyy+ Iy, (3.11a")
O F =% +2,, | (3.11b")
X =—Tp4 + Lo, L (311

i.e., total radiance (or scalar flux), net flux (2-vector), and (scalar) _excesgrof vertically to

horiz_on'tally_ propagating radiation. The I;- terms are thus the d.components of the DA flux

d-vector F whereas the I;, can be viewed as the contribution of radiation flowing along the

. _ ith axis to total DA intensi;}r‘!. This is the DA equivalent of using spherical harmonics to
% ' characterize radiance in C/A gansfer (cf. sect. A.1). Anticipating that diffusion theory only

~

"
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attempts to model the ﬁl‘at two of the above; we will call the last the “non-diffusive”
component of DA radiance (sec below).
Similarly to (3.11a~c), we find for d=3:

La (1,1,1,1,1,1)T (3.12a)
q: (1,-1,0,0,0,07, (0,0,1,-1,0,0)T and (0,0,0,0,1,-1)T (3.12b)
2p-a; (-1/2,-1/2,-1/2,-1/2,1,1)T and (1,1,-1,-1,0,0)T (3.12¢)

Notice-that the last choices are somewhat arbitrary (due to the degeneracy) and we choose 0
privilege the vertical axis which is usually assumed to carry the incident flux in albedo
problems, hence the radiation field’s main (spatial) asymmetry We also see that, eqs.
(3.11a’<") become

J = Ix+ + Iy+ + Iz+, - (3123.’)
F = XIx- +31,_ + 2L, | (3.12b")
Ly =— (I!H' + Iy+)lz + Iz+, and Z- = Ix+ - Iy.{. ' (3.120’)

The two last (“non-diffusive’) components are the excesses of vertically (up- or downwards)
traveling radiation over the average traveling in the :x- and ty directions (for Z4), and the
diffcrence between *x- and xy directions (for Z.). Alternatively, one could take
(-1,-1,0,0,1,1T and 0,0,-1,-1,1,1)T, i.e., the excesses of vertically traveling radiation over
that traveling in the +x- and ty directions respectively. .

It is obviously important to find a operational way of comparing the CA- and DA
radiation fields quantitatively and the easiest way of doing this is to consider the scalar and
vectorial fluxes defined over portions of Eq, the hemispheres used in (A.2°-3") providing a
natural choice for comparison with the orthogonal DA(d,2d) radiances we are presently
concerned with. However, the choice between the association of Iy; with J1j or Fyj for
jr-,i{xj, j=1,--,d} cannot be made uniquely nor arbitrarily, it must be guided by general

/conservauon principles which 1nvolve the F+j, cf. eq. (D 2-3). Moreover, we can use our

definitions to see that
d
F=E§ij F+j, in CAs (3.13)
1 - :
Cod o ' "-Q\
=2 _t' : H o . ,C":' .
F=2Zsjly inDAs N . 610

| N
so the adequate ch_oi_ce seems to be the assbci:;ﬁon of Lij with Fsj of (A.3"). This is
particularly important when dealing with overall (boundary integrated) fluxes since F is the -
conserved (divergence-free) quantity in steady-state, non-absorbing systems. The trouble
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with this correspondence is that the sum of all the Fj;i is not J, we would have 10 use the T4
of (A.2’yand divide by d for that to work. T \\L

Clearly, CA-to-DA comparisons are best dont using their respective orthogonal
function bases: spherical harmonics and formal eigenvectors, respectively, This rises the
question of the CA equivalent of X, the scalar defined in (3.11¢’Yif d=2, or of the Zy,
defined in (3.12¢’) if d=3, and a (d-1)-dimensional entity in general, The candidate(s) must
be some function of the d(d-1)/2 independent components of the traccless part of the photon
pressure tensor P defined in (A.4) which, within a factor of c, is proportional to the term
that follows J and F in the harmonic expansion of I,;. In this way, the term “non-diffusive”
component still applies, sce sect. D.2. We notice that, in d=2, this is again (reducible to) a
scalar quantity whereas, in d=3, the appropriate two combinations of the three independent
tensor components will obviously depend on the specific DA eigenvector choice (which is
somewhat arbitrary due to the degeneracy, cf. above discussion). In the ncar future
however, most inhomogeneous DA transfer calculavom .are most likely to be conducted in
d=2 anyway, for simplicity, for numerical accurafcy, and for ease of representation and/or
analysis of the results (see chap. 6, for an instance ,(

Another aspect of the Cg_\-DA comparison is the question of illumination geometry. In
this (BC) connection, a cofollary of the above “Iyj-to-Fi;” association (dictated by
conservation) is that in DA transfer one is no longer able,5 nor interested, in distinguishing
between collimated (towards nadir) and diffuse illumination conditions, nor between the
corresponding “zenith-Sun™ and “spherical” albedoes. This may seem extraordinarily crude
to those familiar with usual preoccupations cf meteorological radiation studies where the

. primary interest is to cover the various illumination conditions on a spherical planet.
‘However, in our view, this obsession with angular properties has diverted the overall

research effort towards the only kind of system where they can be treated “properly” (i.e.,
with arbitrarily complicated phase functions), namely, plane-parallel 3-D slabs, often
homogeneous in the vertical too, and sometimes even restricting attention to a single “typical”
optical thickness.6 We have indeed simplified.the directional aspect to the exwreme: we
consider effectively “average” illumination conditions, somewhere between collimated (from
overhead) and diffuse, “average” measures of exiting and internal radiance, somewhere
between scalar and vectorial fluxes, and extremely simple phase functions. By drastically

reducing the size of the functional space we operate in, we can use the same computational

and analytical resources to explore systems inhomogeneous in both vertical and horizontal
directions and with many different sizes, shapes and internal structures. This last remark
applies fully to diffusion theory too (with the content of chap. 2 providing some relevant

fi
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examples); in fact, we will now proceed to establish establish an interesting connection
between diffusion and DA transfer.

3.3. The Second Order Formulation for Orthogonal DA Systems, Their
Relation to Diffusion

3.3.1. Rescaled Equations for the Symmetric and Am‘t synunetnc Combinations of DA
Radiance

In app. A on CA transfer, we did not look into the 274 order formulation which is
mainly of use in numerical “finite element” techniques [see, e.g., Marchouk and Agochkov,
1981]; it consists essentially in the expression of the transfer equations—and (by then
mixed) BCs—for the even/odd combinations of the radiance field Iyt = Iy £ Iy,
ue Egt={ue E4, u=v-u,>0}. In contrast, the 204 order DA formalism leads to some
analytical insight into the problem; in-particular, we will discover a “route to diffusion;”
uncharled by Preisendorfer [1976] or anyone else, to the best of the authors’ knowledge.

We introduce the following notations:

1° 9 1 o .
8L=m 3 Bi =m Kl (for i=1,---,d) ' (3.15)

&i is a non-dimensionalized differential operator that corresponds to taking spatial gradients -
"w.rt, rescaled” (“transport”) optical distance in direction i (recall that g=1-G,g); similarly
for &y, if one adopts units of velocity (for ¢} such that a m.f.p.is covered in unit time in
places where kp=1. Suitably generalized definitions similar to (3.10) are assumed for li+
and Siz (i=1,---,d).
‘Respectively, subtracting and adding consecutive pairs of rows in (3.4) and using

definitions (3.5), (3.15) along with that of J, we obtain: \

& Ii‘ + qd; Ii4+ = - qli- + §;. (3.16a)

8uTie + @0 li- = - plis + 25 (J - Tip) + Siv - (3.16b)
Notice that J-Ij,=X IJ+ contains d-1 terms. In connection with the val1d1ty of Fick’s Iaw we
spell out in sect. b 2 the conditions under which one can neglect the t-derivative in (3.16a);
as in that diffusion situation, we will assume that these conditions are verified. We therefore .
drop the &; term in (3.16a); the response of I;- tko ocal changes in Ij+ (and §;.) is
instantancous. We however maintain it in (3.16b): temporal chariges in Ij+ can compensate
for a dwergence in X;. and/or be forced by time dependent sources. Applying &; to (the
rcmamder) of (3 16a), subsmuung the result mto (3 16b) and usmg (3.7), we obtain:

L=-8iLiy + — Sx- _ ‘_ (3.17a)

[8-q8i+p ] =220 1) + i - S (3.17by

S
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Essentially the same equations were obtained (for vanishing §; and S;i+) and numerically
solved by Siddal and Selguk [1979]. If we are to consider (3.17b) in isolation we must
express BCs for the Ij;. DA transfer BCs are normally (15t order formulation) expressed in
terms of the various “natural” radiances

Li=j Mthi) =3 (1= 8) e - (3.18)

where we have used (3.17a). Conditioning the I3; oa'the boundarics make the BCs for the
Iis “mixed,” which is a well-knowa fact 674ife in radiation diffusion theory that applics to
2nd order DA theory too.

In summary, we see that the system of DA equations in (3.17a,b) separate naturally
into two groups: the second of which (3.17b) can, in principal, be solved for the Ii4
independently of the first (3.17a). Given these hypothetical solutions for the Ty, the
remaining Ii. can be obtained by differentiation using (3.17a), and the various beam
intensities I+; can be obtained by the linear combinations corresponding to the Ii+'s
definitions as their even/odd combinations, cf. (3.18). In spite of this separation of
(dependent) variables, this system 1s still difficult to handle directly since the d equations in
(3:17b) are still fully coupled via side-scattering, since (1-a/p)/(d-1)=2s. This implies that
they cannot be combined into a scalar Eflualion for J as in=di{fusion theory, similarly (3.17a)
is not the usual kind of Fickian relation that converts a scalar (measure of the total radiation
field) into a vector (measure of the flow of radiation). -
3.3.2. A New “Route to Diffusion” Using Phase Functions, Not Radiation F1elds 8

Generally speaking, the mathematical character of the basic DA transfer eq. (3. 17b) S
and its solutions, for given d, is determined by the values of q, p and (p-a)/(d-1)=2s, all of
which have physical bounds set in (3.8a~). We will however consider formally the limit
p—ye= and retrieve d-dimensional diffusion, not the d jndependent one-dimensional diffusion
equations (in effect, the IP approximation) that we find when p—a. (Lovejoy et al. [1990]
go one step further and consider p<0—the “unphysical” domain—in connection with the
explanation of the shortcomings of the “real-space renormalization” approach to
inhomogeneous radiative transport developed by Gabriel ef al. [1990].) Notice that this way

- of geuting from transfer to diffusion operates only on phase function parameters;

specifically, we have followed a route described by CA—DA—P(t,r,8)—2P(a,q,p)— p=cs.
We have made no a priori assumption on the character of the u-distribution as in the
traditional development (reviewed in app. D). Taking the limit® p—<= in (3.17b) yiclds

d-Dlje =Tt = EIJ+ (for i=1,---,d) (3.19)

This last system is easily. solved for the Ij,: they are all equal to J/d. Th1s limit thus imposes

a posteriori a certain degree of isotropy on the DA distribution of radiance among the
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available directions. More specifically, on each axis we are given the total radiance (Ij,=J/d)
and the corresponding component of the flux vector (Ii-); this determines the DA radiances
(I1+;) entirely, from (3.18). In app. D, we show that CA transfer also goes to diffusion in the
limit of u-distributions that can be represented by an isotropic (3) plus 2 dipole (F) term, i.e.,
a 15t order truncation in its expansion into spherical harmonics. We therefore see that the
two routes from transfer to diffusion cannot wander too far apart. Conversely, assuming
T;,=J/d in (3.17b) implies [Sl-qBﬁJ-—-O in absence of absorption (a=0) and non-m.s. sources
(S;s=V); so x-gradients and t-derivatives, on the one hand, and u-anisotropy, on the other
hand, are in direct relation. We have thus retrieved, at 27 order (and in the diffusion limit),
this basic property of all conservative m.s. transport systems {described in CA language in
§A.3.3).

The derivation of diffusion equations is now easily completed by substituting I;, = J/d
into (3.17a), we find I;. =-8;J/d +S;./q. Hence, using various definitions:

. _
g VU+ = S (3.20)

where U is the radiant energy density (J/c) and S is the d-vector made up the the S;.; thisis
consistent with the notational conventions used in app. D for the anti-symmetric combination
of CA non-m.s. sources found in (D.9b). The first term in eq. (3.20) expresses Fick's law
for radiation if we Jet D=c/dqxp be radiative diffusivity, exactly as in app. D (notice that its
dimensions are indeed length2/time). Secondly, we substitute I;, = J/d back into (3.17b), to
find [8;-q 8? +a] l/d = Si4 - 8;S;- (i=1,+-,d); hence, adding all these d equanons,
multiplying by cxp and using the definitions of D and of U:

[&“VDV+A]U=E%53-VS] (3.21)

where, on the Lh.s., A=ackp=ac?/qdD is the (specific) rate of destruction of radiant energy
.. per unit of time and per unit of energy; ,:he—r h.s., we find the corresponding rate of creation
" and destruction (by non-m.s. sources and smks},%s is the total DA non-m.s. source function
which is not different from the definition found in (D.9a), its CA counterpart (so no new
notation is needed).

To summarize, we see that the parameter, p (when ﬁmte as in physical systems of
interest), is preciscly what makes DA transfer an overall better approximation to CA transfer

than diffusive transport, in general, but we must remember it is not trivial to relate DA’
. radiances to experimentally accessible (3-D) CA quantities. (Standard diffusion theory’s J°

and F may have a direct connection with I, but it has its problems too when it comes to

exiting diffuse radiation in connection with the problem of “extrapolation lengths,”i.c5==

BCs.) Two shghlly different denvatmns uf this DA limit are given by Dav1s et al. [1990b]

\h—f
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for d=3 and by® Davis et al. [1991b] for d=2, both in the less general case where S and 9,
vanish. Notice that I;, = J/d implies that the projection of the DA radiance vector on the
cigenspace with eigenvalue 2p-a vanishes identically since it is made of (d-1) combinations
such as Iy,-Ii, (i=1,--,d-1). In particular, we find X=0 in d=2 from (3.11¢") and Z4=0 in
d=3 from (3.12¢’); the name we coined for it, the “non-diffusive” component, is therefore
fully justified. Finally, it is clear that diffusion theory will approximate transfer very well in
cases were the radiance fields are quasi-isotropic (T;4=J/d) and this is expected to happen in
regions that are optically remote from the boundaries, e.g., throughout the bulk of
homogeneous or mildly inhomogeneous media. For very inhomogencous (e.g., multifractal)
media, the question of diffusion accuracy is addressed in chap. 6.
3.3.3. Solutions for Homogeneous Plane-Parallel Media ===
The key result in the above derivation is the “equipartition” of the radiant energy
amongst the dgifferent directions: ;. =J/d (i=1,--,d). There is onc casc where this is an
exact result at finite p (hence for DA transfer proper): a homogeneous {and planc-parallel)
slab of optical thickness T=xpL. If we consider the sourceless (Si,=0)}, steady-state
(8=0) case for simplicity, we indeed find all of the I;, in (3.17b) to be equa! (to J/d) simply
by requiring conservation (2=0), on the one°hand, and &; = 0 (i=1,,d-1 but not i=d, for
the z axis), on the other hand. Eq. (3.17a) makes the important point that Ij. = 0
(i=1,-+,8-1), i.e., the net horizontal fluxes vanish. In this very special case, the above
prediction about diffusion being adequate for homogencous media is verified beyond all
expectations: it is exact! The remaining equation in (3.17b), 823134. =0, is easily solved:
I;.(t’) decreases linearly (using optical coordinates, dt’ = kpdz) between I, (0) = 1+R
and I,(t) = T40, using definitions (3.10) and assuming unit incident flux (Fp=1). Finally,
the last (i=d) *“quasi-Fickian” law (3.17a) allows us to determine T from t:
Iz.(t’) = const. = [I.(0)-17.(v))/qt, which is also given by T-0 (at v’=t) and 1-R (at 1v'=0),
from (3.10). Hence T =2(1-T)/qt, or

:@ -1 = ' (3.22)
Equivalently,i0
T(1)= 1+C11 — (3.22")

We see that p is absent from the final rcsult-—and this is precisely what makes it exactly
diffusive—-although it is instrumental in populating the ham'ontal beams:

I+i(t") = I4(")/2, for i=1,---,d-1. For future reference, we note that the total DA radiance
at the top of the slab is

e BT

&
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1+qt

1+q1/2
which naturally increases with d. The above exact solution for the case of conservative
scattering complements Boissé’s [1990] analysis of the absorbing/scattering case (in d=3).
This author found the (completely analytical) homogeneous six-beam model to approximate
quite well his (semi-analytical and Monte Carlo) results for inhomogeneous “Markovian™
(i.e., exponentially decorrelating) media; we view this is a symplomatic of weakly variable
media in general (see sect. 4.3—4 for further discussion).

J(0) =d(1+R) =d (3.23)

Finally, we can define two distinct scaling (power Iaw regimes) for T(t) or
R{t)=1-T(z):

at qt«l: R(7) ~ % T (linear response, sin gle-scaltc?p'n 2) (3.24a)
at q»l: T(r) ~ % Tl (nonlinear response, multipié scattering)  (3.24b)

Notice how (unlike the prefactor) the scaling exponents are unafi‘ecle}\d‘;‘tg the phase function
choice and even dimensionality. Comparing with our general definition (0.1) for F=T, we
find respectively

at T« 1/q: vr=-1and hr=gf2 (for To=1) ‘ (3.24a")

at ©» l/q; vr=+land hr=2/g (forT.=0) (3.24b")
and the same scaling parameters for R, only the fixed point changes: Ro.=1-To.. Using

" (1.2) instead, with L rather than A (which is 1 at homogeneity), we find

at L « l/gxp: Kt =+1 (and a prefactor qxp/2) (3.24a")
at L» l/qxp: Kr=-1(anda prefacto? 2/qxp) (3.24v7)
Viewing the above as “normal” scaling, characteristic of homogeneous (and weakly
inhomogencous media in general), we will find different exponents hence “anomalous”
scaling in the extremely variable (fractal and multifractal) media studied in chap, 4-5.
The detailed analysis of the non-conservative case is somewhat more involved, due to

the appearance of a characteristic optical scale in (3.21) appropriately called the “diffusion
length:”

D : 1
- ,_— 2

which goes 10 = when scattering becomes conservative. It is however quite easy to
anticipate the asymptotic (t = xpL » 1/v/daq) responses in the important case of relatively
weak absorption and quasi-isotropic scattering, i.e., 0 < a << q < 1. In essence, we expect
to find a break in the 219 of the above scaling laws (3.24b) which becomes:
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T(t) ~ exp[ - T/daq } (3.26a)

1 -R(1) ~ ‘\f -2ch al”2 (3.26b)

and, of course; we have a finite bulk absorptance A(t) as required by total cnergy

© conservation, i.e., T(t)+R(1) = 1-A(1) < 1~for a thick cloud A(t) is roughly given by

(3.26Db). The last estimate in (3.26b) is obtaincd simpiy by taking © ~ 1/Vdaq in (3.22): we
schematically view the medium as non-absorbing above that depth and purcly absorbing
below it. Formally, we have vt =<0 and vg = 0. Most importanily, (3.26b) shows that
1-R scales like v 1-@,, i.e., the albedo of a very thick cloud decreases rapidly when (true)
absorption sets in. It is little surprise that obscrved albedo discrepancics were first
hypothesized to be homogeneous absorption effects rather than scattering inllomogéncous

effects, cf. the discussion of the “cloud zibédo paradox” in the introductory and concluding
chapters. B

3.4. “Independent Pixels” and/or Scattering Media with Random Optical
Thicknesses

3.4.1. The IP Limit in the Framework of DA(d,20) Systems
The only, but notable, exception to the characteristic coupling of thc DA PDEs in
(3.17b) occurs when p=a (equivalently, s=0)—or d=1 (making Ii;+=J). In both cases, the

-first term on the r.h.s. vanishes identically and we recover one-dimensional diffusion

equations for each of the Ti, separately: [ §;-q 8? +a ] Ii. = Sjs - 8;Si-, (for i=1,--,d). By
multiplying through with cxp and letting dj=d/0x;, we find one-dimensional diffusion in
more traditional format: )

[ 01 - 0iDd; + A ] Tjy = exp[Sis - 3iSi-] (3.27)
where we have used on the Lh.s. the same definitions as in (3.21) but for d=1. Since this
p—»a limit implies no side-scattering,!! a vertically irradiated medium cannot have any
horizontal fluxes, net or otherwise, not even radiances (unless it is also illuminated on a
side).

In other words, we are dealing with an exact DA problem which is the equivalent of the
“independent pixel” (or IP) approximation to CA transfer. We have adoptled this
expressionl? of Cahalan’s [1989] which conjures up visions of high-lech digital image
processing and, indeed, the author compares the statistical propertics of (Landsat) satcllite
imagery with those of his simulations, The inhomogeneous optical medium, confined
between two horizontal planes, is first }nentally fragmented into a certain number of
sub-domains by vertical divides, the approximation consists in assuming each sub-division
or “pixel” (as seen from above) is then homogenized and made radiatively independent of its
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ncighbours by neglecting the net horizontal fluxes that would normally develop in the vicinity
of the pixel boundaries. If the vertical division is viewed as reflecting (as a means to
coriécrve total energy), the pixels each behave exactly like a homogeneous plane-parallel
mcdlum (in practice this means that they must be optically very thick in the horizontal). All
that is left to dois to spaually average the response of interest over the whole medium, and
this is casily done since we have an analytical closed-form solution (3.22) for DA transfer
» through cach pixel-medium, call it Tp(t) where T is the pixel's optical thickness. The global
IP transmittance is given by

Tp(t) =3 M(AO)I Tplt(x)] dd-1x (3.28)

with the notations of sect. A.2 (Ao is the horizontal projection of M). Notice that the spatial
discretization has vanished from the the final result; the theory is indeed more gen'éral (and
conveniently formulated) in terms of spatial continua, as well as continuous distributions of
optical thickness.

In the previous section, we obtained a total (multiply scattered) transmittance of the
form K

Tp(T) = (3.29)

1+bt
if a=1-0g=0. b denotes a general purpose (phase function and/or BC paramé?ér) which is’
always proportional 10 g=1-g. For instance, for DA transfer we have b=g/2, equivalently,
we could be using the diffusion approximation to plane-parallel CA transfer (see §D.4.2)
which, at best, allows for the possibility to model the effects of slant illumination geometry!3
(i.e., the appearance of a boundary layer of thickness jlp); in this case, b can be used to
represent a BC parameter (related to the “extrapolation length™) which is again proportional to
q=1-g (thus making bt proportional to the thickness of the slab in units of “trﬁnsport’:,y
m.f.p.’s, i.e., the effective T for isotropic scattering). '

We can generally expect final DA transfer results (for, say, global transmutance) 10 be
monotonic w.r.t. p as it goes from a to =o; this is exactly what we already have for a=1-Gp
as well as g=1-mpg in asymptotic diffusion theory, cf. (3.25b). We can use this fact to‘put
bounds on either side of (say) conservative responses to external illumination for regular
(O<p<e<) DA transfer by using its two diffusion limits: IPs at p=0, on the one hand, and
bone fide (d-dimensional) diffusion at p=e, on the other hand. This can be of ise in
situations where diffusion results are easier to obtain than their counterparts from DAs, let
alone CAs—we recall that both of the latter transport models are in the same broad category
of “kinetics,” where ballistic propagation (as described in sect. A.2) is the central concept.
In the context of diffusioq p;hcory proper (chap. 2), we showed that these bounds do not

; Z

'Fﬁ_



Lhe averages o

\‘\

89

come in an arbitrary order; specifically, for conservative transmittance, IPs yield a lower
value than d-dimensional diffusion. After IPs (which has the above closed-form final result

problem any simpler is to assume homogeneity, We can easily show that this homogencity
assumption may make the problem simpler but it also biases the resuit systematically, that
spatial averaging, on the one hand, and radiative transport calculations, on-the other hand,

are operations that do not commute14 due to the fundamenf.ally nonlinear characler of lhe_

matter-to-radiation coupling,. 77 o

3.4.2. Mixing the Responses of Randomn Media; R elﬁ;ion to Jensen's Inequality

In sect. A2, we substitute ensemble- and spaual-averages (this property deflines an
“ergodlc variability model) in the case of direct transmittance which, mcndenlally, is
completely “pixel independent” by definition. We can. lhercfore proceed using our notations
for ensemble-averagcs and think of the above pixels simply as independent realizations of a

homogeneous plane- parallel medlum with a random densuy, equivalently, optical thickness

dmtnbuted accordmg to some given probabxlity dlSlI'lbUllOﬂ function P(1)= Prob{'c <t}.
(P('c) is readxly rclated tc the p.d.f. p(%) by integration from 0 to T.) We are now interested in

A

<Tp(h> = j (1+bt)h dP(z) . ‘, (3.30)

Unfortunately, (3.30) does not have the form of .{[ standard integral transform, like Laplace’s
w.r.t. Tg(1), cf. (A.13-14). In both cases we are dealmg with a probabilistic

“randomization” or “mixing” [Feller,1971] of p.d.f.’s since Tp(1) is itself the parameter of a
Bernouilli law which has two outcomes: transmission with Prob=T(t), or reflection with
Prob=Ry(t) which is 1-Tp(t), by normalization (obviously relaled to our usual requlremcnt
of “conservation™). :

. Using the basic properties of the 20d characteristic function or cumulant generating
function (c.g.f.) of P(t), we argue (sect. A.2) that the average <Tg(t)b> is alwayg greater
than Tq(<t>)h, obtained for the average thickness, if h>0. This is directly related to the
convexity of the exponential function and Jensen'S'inequality {Hardy et al., 1952] which, in
our notations, reads ’

2 f(<x>) if fis convex!S _ ,
<f(x)>{ Lif(<x>) lfflS concave - o ‘ 3.31).

Equalities are obtained for a Imear f(x) or fora degenerate (or “sure”’} x-distribution; notice

that f(x)}must be a real (scalar) function, but x can belong to a vector space of any

for an arbitrary. density field), the only foreseeable way the making the general albedo l'

‘dimensionality. The COnVBXIty of Tp(T) (h>0) has exactly the same consequences resullmg B
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from Jensen's incquality that we found for Tg(T)t and discussed at length in sect. 1.5. In
particular, for h=1:
<Tp(T)> 2 Tp(<t>) - (3.32)

The IP transmittance is thus necessarily greater than that of the medium which (surely) has
the same optical thickness under every pixel; in fact, equality is obtained only if all of the
pixels have 1=<7>, We remark that the function Tp(7) is only used for commodity; an
arbitrarily inhomogencous medium will always have T(7)e 10,1] for Te [0,o[, so a
decreasing, continuous T(T) is necessarily convex. For instance, such a simple relation will
arise when the given variable density field sees itself multiplied everywhere by a numerical
factor (x) which would then hecome the random factor in (3.32), see chap. 6 for a
deterministic example. '

In the literature, we have traced this kind of IP approach to atmospheric radiative
variability estimation as far back as (the work performed earlier in the ex-USSR and reported
by) Mullaama et al. [1975] who uses normal t-distributions with careful truncation of the
unphysical negative values, especially since empirical evidence suggested, unsurprisingly,
the use-of a variance of the same order of magnitude as the mean. Ronnholm er al, {1980],
who seem to have worked independently, postulate log-normal variability and resort to
numerical integration; nearly the same type of distribution is studied analytically by Davis et
al. [19914, and in chap. 5], using multifractal formalism. Their computations agree with our
above (more qualitative) results even though they did not publish their figures for (1-g)<t>
greater than 4. We must however take exception to their conclusion that (spatial) variability

* has effects on radiative responses that are comparable to the differences that arise between

various radiative transfer schemes (i.e., a few percent between, say, a 8-Eddington method
and a “doubling” method). Notably, they find 0‘1-<'IB all the way down to (1-g)<t>=1/4
with reasonably broad 7-distributions, namely, where Onp=<Int> (which is a specific
prediction of intermittent turbulent cascade theory, cf. chap. 3). We very strongly disagree
with the predicament that the direction in which ensemble-averaging changes the response is
not obvious from the outset, unless some combination of undersampling of too narrow
p.d.f.'s we1ghted by more (t00?) complicated response functions has arisen. The authors
also modelled “vertical” variability in plane-parallel media by “adding” ten layers up to an

- average total of (1-g)<t>=4 at most (in their pubhshed data) and they find much smaller. |

devumons from the radiative response of the average medium. This is easﬂy understandable
since (for Wo=1) "adding” several layers is like addmg their scaled optical thicknesses (1-g)7;
(i=1,10) togeth_er and ten log-normal deviates add up to an approximately normal dev1ate, by -
virtue of the central limit theorem (the variance of the log—nonnal.disuibution is finite), in -
turn, this is.a far narrower variability model which can be ‘expected to yield
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<Tp(T)>=Tp(<t>). In other words, (without saying so) Ronnholm and his co-workers also
did IPs with Gaussian distributions since there is no differcnce in their way of modelling
horizontal and vertical variability, beyond the somewhat academic distinction between 1Ps
and random homogeneous media. This distinction can be adapted to fields (or cnsembles) of
clouds with horizontally finite geometry: the requirement of radiative independence translates
to large inter-cloud distances. (This approach to radiation interacting with broken cloudiness
is exploited by Welch and Zdunkowski [1981].) While Ronnholm er al. [ibid.] also varicd
g and g (one at a time), Mikhaylov [1982] considers the effect (via the diffusion length
1/xpV d(1-w0)(L-Bog)) of normally distributed fluctuations of the extinction coefficient (xp)
in the average responses non-conservalive asymptotically thick systems. Given the
concavity of absorptance A=1-R w.r.t. a=1-00y in (3.26b), systematically lesser averages are
to be expected from Jensen's inequality. More recently, Pomraning [1988] discusses the
general case of finite plane-parallel slabs. Finally, Stephens e al. [1991] present a general
review the topic along with some new numerics on t-variability.

T

3.5. DA Similarity Theories and the Singularity of the Diffusion Limits

In the CA formulation, the spherical harmonics of the phase function—or rather of the
scattering/extinction kernel {McKellar and Box, 1981}—is particularly uscful in local
similarity analysis (see §A.3.2 for more details). The same is true for the eigenvector
decomposition of I-P: if the opti_ctﬁal parameters (X, a, q, p, and those that intervene in S) are
varied but the products xa, xq, Xp, and xS are all left unchanged, then the corresponding
solutions of (3.4) are also left unchanged. In other words, I=I" if

Ka=xa’ (3.33a)
Xq=x'q’ (3.33b)
kp=x'p’ (3.33¢)

and xS = ’S’. In particular, we sce that the important class of conservative (a=0) phase
functions is invariant under similarity. A good example is provided by the solution
(3.22-23) to the plane-parallel DA problem for conservative scattering: it is a universal
function of qt=(qx)pL; another example can be found in the asymptotic non-conservative
case (3.25-26). Furthermore, a=q=p=0 (conservative all forward scattering) is the only—
and trivial—fixed point of the similarity transformation. As is the case in CAs, we must
‘exclude the single-scattéring term from § in ‘order to maintain consistency since it is
proportional to either t or r, not a, as would be the case for a thermal-type DA source term.
The above, very simply expressed, similarity analysis concerns only the DA(d,2d) systems;
it can of course be derived directly from McKellar and Box’s [ibid.] CA similarily analysis
since bthogonal DA phasé functions are merely special cases. 16
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Lovejoy et al. [1990] develop a somewhat independent similarity theory based entirely
on the 20 order DA formulation contained in egs. (3.17a,b) for the Ii+; they also assume
a=0d=Sj;,=0 (i.e., stcady-state and conservative m.s. sources only). Introducing the notation .

1
§ = —L 3 3.34)
L Toa o (

for i=1,--,d and O<pg<ee, the (readily simplified) egs. (3.17a,b) become

—— A ’ﬁ 81Tis (3.35a)

[1-82] hie=570-Ti) . (3.35b)

The second set (3.35b) no longer contains any explicit reference to the phase function values
whatsoever. In other words the I;, are left invariant by changing the phase functions in
such a way that xvpq remains constant, from (3.34). This time however, we proceed
without requiring invariance of the I;. nor of eq. (3.35a), we thus gain an extra degree of
* freedom. To see this, suppose we know the Iﬂ_.li) fields, hence the If.l,.), for some choice
(q1,p1) of the (conservative) DA phase function, we now wish to obtain the original DA
radiances, (_2 for a different choice (qp,p2) by postulating that their corresponding I;, are
“similar,” i.e., 1(2)(x Ka) = Iﬂ)(x;xi). As usual, we take a given p(x) field and modulate
optical density via the overall multiplier x. We now deﬁne

B=pas o= Vpllql b (3.36)

where P=¥k1/x2, is the constant ratio of 0pu<:al densxties (or thicknesses). Qur above

postulate of course implies that 8’1(2)(:( K2} =8} I (x;xl), and using (3.35a) and (3.36), |
we obtain I{l_)(x,xg) =0 I(”(x,m) where o#1 in general. Combining this with our -
postulate, definitions and (3.19) yields '

18k = 3 (1+0) 0w + 3 (15 0 1Plxixn) (3.37)

These “generalized” similarity relations hold for all (pairs of) conservative DA(d,2d} systems
for d>1; otherwise (p=a=0), the similarity transformations (3.36) are singular. From
(3.37), we see that the standard (1St order) similarity postulate (that all radiances,
equivalently, both symmetric and anti-symmetric parts are invariant) is retrieved for a=1;
eqgs. (3. 34) lhen read as the “exact” DA(d,2d) s1m11anty relations in the conservauve case,

* namely, Xiq) = X292 and xp1 = ¥2p3, or (3.33bc) |
In practice, the non-invariant eqgs. {3.17a) or (3.35a) are important in the expression of
the BCs, see the discussion around eq. (3.18). In particular, we see from (3.37) that, for
xe M, the illumination pattern is rescaled to a dif_ferent one that depends not only on the
original pattern but also on ghe local response to it, respectively, the first and second terms in
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(3.37). So, with these non-standard BCs, the above generalized (or 2™ order) DA similarity
is expected to apply only “asymptotically,” that is, away from boundaries. By “away™ we
mean out of reach of direct transmittance (for illumination or escape) but it may be quite
difficult to achieve this in very inhomogeneous media, such as (multi)fractals, where
radiation penetrates far deeper than in their homogeneous counterparts. Lovejoy et al. [ibid.]
however go on to obtain similarity transformations for global (spatially integrated) albedoes
and transmittances (applicable to media with various internal symmetries) by applying (3.37)
to the corresponding BCs and by further making the approximation that the irradiation pattern
can be. rescaled very simply (by a constant factor). For instance, if the medium is both
up/down symmetric (T; “from above=Tj, “from below) @nd cyclical in the horizontal (Ri=1-Ty),
they find that =

1 1 1
-l== -1 = 338
T2(x/B) o (Tl(K’) ) (3.38)

Other, somewhat more involved formulae, are obtained by relaxing one or the other of the
above structural constraints. As pointed out by Lovejoy et al. [ibid.], an advantage of
generalized DA similarity is that, contrary to exact CA or DA similarity, it allows isotropic
and 3-D Rayleigh-like (1G321<2/5, ®,=0;=0, for i=3) scattering to be related by taking
p=1-5m; for the latter. (Recall that g=1-3@; and that, in general, we are concerned with the
nth Kuster coefficient: 1-(2n+1)®,.) This may be of some practical importance in
sufficiently thick homogeneous plane-parallel Rayleigh-like atmospheres where the
homogeneity hypothesis makes the constant factor rescaling assumption perfectly justified
and the other (boundary-induced) shortcomings of the generalized similarity theory are

~ unlikely to be too serious since, again due to homogeneity, boundary layers are at their

thinnest (preliminary numerics seem to confirm this). We also notice, using (3.36), that
unsurprisingly the (exact) plane-parallel DA transmittance in (3.22} verifies (3.38) just as

-~ well as it does the standard (exact) similarity relations.

We now recall that the motivation behind radiative similarity analysis, in both “exact”
(CA or DA} and “generalized” (DA only) versions, is that the similarity transformations (of
phase functions) and ensuing relations (between corresponding radiation ficlds) show that an
understanding of the behavior of a given medium for one phase function and all possible

optical thicknesses is sufficient to predict its radiative properties for other phase functions, -

For instance, if we restrict ourselves to the important class of conservative phase functions,
either many of them (p/g=const., in “exact” DA similarity) or all of them (in “generalized”.
DA similarity) can be accounted for—the difference only being one in BCs. This is also the
basic idea behind the above concept of “scaling” in transfer systems that we defined in the
introductory chapter and it is made more precise by (tentatively) limiting the effect of phase
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functions to the prefactor. We can further argue for phase function independence of the
scaling exponent by using the generalized DA similarity result in the asymptotic regime
(Tj«1, i=1,2). Rewriting the basic scaling relation in (0.1) but for!? x (i.e., T=hx") for
both T and T,. Identification of both sides of (3.38) then lecads to
va=vy(=v) and hy=h offy (3.39)

Along these lines, an interesting point suggested by generalized similarity—which could be
exploited numerically—is that the isotropic DA phase function (pq=1-1/d} is not the one that
allows the fastest convergence to the thick cloud (scaling) limit since, taking p=g=1 (the
maximum possible with r=t=0, all side-scattering), (3.36) yields f=vd/(d-1) which exceeds
one. Equivalently, from (2.34), the “effective” optical thickness w.r.t. this kind of
non-isotropic scattering is!8 Ta=t/Npq<z.

Finally, from sect. 3.3 above (and app. D), we see that a and q are the independent
phase-function parameters of diffusion theory and, as expected, its characteristic similarity
relations are retrieved from our exact DA similarity relations. (Their generalized counterparts
however do not really separate'the rescalings of p and q, except of course when a=1.) Most
importantly, we note that the two diffusion limits of DA transfer, p—a=0 (dx1-D diffusion)
and p—ee (d-D diffusion) are both singular w.r.t. the (both) similarity theory(ies) since the
parameter q must simultaneously remain finite as it enters the gradient rescaling in (3.15).
This means that the DA transfer and diffusion radiance fields cannot be related'by similarity;
in particular, we can generally expect them to scale differently w.r.t (total optical) thickness
as it becomes very large. More specifically, the similarity relation (3.38) at fixed q (hence
o=P) predicts, as previously anticipated:

Tip < Tpa < Ta O (3.40)
as represented by P«l, B=1, and P»1, respectively. This implies ‘
Vip 2 Vpa 2 Vdir (3.41)

The equalities are introduced to allow for the (at least possible) case where the scaling w.r.t.
K, at constant A (as required in the premises) is the same in all circumstances and that only

prefactor differences arise. In chap. 4, we examine numerically the opposite case where K is

held constant and A is varied but (3.41) still proves true (for both of our examples: random

~ binary mixtures and a deterministic monofractal).

~ Inretrospect, t_his' difference in scaling is hardly surprising given the entirely different
mathematical structure of the respective formulations of the different approaches: compare

. {3.30) for IPs, on the one hand, and V-DV)Y =0 (plus' BCs) for diffusion, on the other hand,

with (3.0) or (3.4) for CA or DA transfer (taken in the conservative steady-state case and
wilh the appropriate BCs). However, as previously mentioned, diffusion theory is expected
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“to provide a good approximation to transfer in “not too inhomogencous” media. In the

previous chapter that covers variability effects in diffusive transport, we find that, for a
medium to be su_tl'{j_c_:iently inhomogeneous to exhibit radically different transfer- and diffusion
behaviors, botﬁé”special structural property (“percolation™) inducing long-range corrclations
and singular déllsity values (the “RSN” limit) are called for. Other cases of major differences
in transfer and diffusion behavior are found in monofractals (chap. 4) while multifractals
(chap. 6) open very interesting questions for future investigation,
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YThis fundamental chapter is largely based on Lovejoy ef al. [1990] and Davis et af, {1991}, S.L. and Gabriel
{1988) (unknowingly) resuscitated Chu and Churchill's [1955] six-beam model and developed the basic equations,
mainly on square grids (sec sect, B.2); still using spatially discretized systems, they contrasted their simplified
transfer model with diffusion theory. S.L. latter made the same connection in the continuous space (orthogonal
beam) 289 order formulation and he developed the “generalized” similarity theory. A.D. enumerated exhaustively
the acceplable “relative scattering angle” DA systercs (§3.1.2) and improved the connection with the CAs in three
different ways: firstly, by establishing the flux-like nature of DA “radiance” on general grounds (§3.1.1);
secondly, by completing the eigen-vector description of orthogonal DA systems which closely parallels the
spherical harmonic representation of CA radiances (§3.3.2) and is likely to provide grounds for their quantitative
comparison in the future; thirdly, by clarifying the simple connections between (exact) CA-, DA-, and diffusion
simjlarity theories and how *“exact” similarity relates to its “generalized” counterpart (sect. 3.5). He also
considerably generalized the DA-diffusion connection in continuous space and paralleled the “new” derivation
with its standard (app. D) countetpart (§3.3.2). Finally, he noticed the DA-IP connection (in the previously called
“1-D" diffusion limit) and explained, on very general (Jensen’s inequality) grounds, the systematic differences
between homogeneous-based and IP-based—or otherwise variable optical thickness—calculations (sect. 3.4).

IThis however would be a hopeless why 1o proceed iy practice given the very sharp angular features of a quasi-DA
phase function. Indeed, Hunt [1971] is only concerned with details in Mie scatiering and shows that already
hundreds of spherical harmonics are neccssary in single-scattering calculations, tens of streams in multiple
scattering calculations.

2Notice that the “trivial” (s:ngle-bcam) DA(d,1} system is completely solved by the Bouger-de Beer law of
{exponential) extinction, studied m “full detail in sect. A2,

3Einstein was of course the one to ﬁnally succeed in bringing gravitation into the realm of geometry but KepIers
imbricated polyhedra work about as well as for the {then known) number and spacings of the planets as
contemporary QCD does for the mass spectrum of (now known) particles; both approaches are based on symmetry
considerations hence (consciously or not) on group theory. Were all bis polyhedra chosen identical, Kepler
would have predicted a structure for the Solar System with exact scaling symmetry and his “successful”
combination in fact accounts for the observable discrepancies between reality and perfect scaling. The
Titius-Bode law (a,,)=2a,-0.4) goes two planets further on, accounts for asteroids, and generalizes to the major
satellite systems. Finally, von Wieszacker's turbulence-based cosmogony justifies physically this omnipresence
of quasi-scaling in planetary systems,

4In particular, this precludes a solution by characteristics for the steady-state equation.
5Using a single orthogonal family of beams, not many independent ones as discussed in the opening section.

6Oplir:nl thickness is often taken in the 10-30 range, with g=0.85, (1-g)t is therefore in the range '1-4.5. These
numbers are also invoked in investigations of inhomogenecus cloudiness and inhomogeneity effects are
sometimes rather unclear; we strongly believe this is a consequence of the fact that we are dealing with systems
that are neither thick nor thin w.r.t. isotropic scattering,

7The notational conventions of Lovejoy ef al. [1990] omit this rescahng which is however important in the
specification of the exact {mixed) BCs for the albedo preblem (at 28 order, of. eq. (2.18) and §3.3.3).

8As suggesied by Lovejoy et al, [1990], Davis et al. {1990b} take the pq—oe limit but in fact q must remain finite in
order to satisfy the radiative BCs of the albedo problem; see discussion around eq. (2.18). Furthermore, the
extension from steady-state lo time dependent problems presented here does not support their single parameter
{pq) rescaling,

These authors consider the coupled system of 2 order PDES obeyed by J and X; namely,
[s +8]J_—[8 -5, ]x. [s 85 4]x_-[5 5]

10The most interesting alternative proof of this result uses invarjant unbeddmg [Bellman er al., 1960] which
transforms the linear 2-point boundary value problem (that must a priori be solved for the mlernal field) into a
non-linear ODE for R{t) which is readily integrated with initial condition R(0)=0. This underscores the
fundamentally nonlinear nature of the radiation field (R) coupling with matter {t), even before mtegratmg the
- (Ricatti}_transformed transfer equation; the special role of the BCs in revealmg this nonlinearity is also

emphasized. A similar proof but based on functional analysis, rather lban ODEs, is gwen by Gabriel ef al.
[1990].

_“Thc radiances decouple further (w.r.t. the already decoupled mutally orthogonal fam:.hes) into coupled direction
pairs, i.e., one-dimensional systems.

A27pe procedure comes to mind so naturally lhat. without having any special name, it is very often invoked. For
inslance, every lime a radiation routine is called by a GCM and, if the notion of cloud “fraction” is diagnosed,
then each grid box is itself divided into two independent pixels, one cloudy and the other not.
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13This is done by implementing the option to use 15% order scattering sources {and associated homogencous BCs) in
the Si, (or, rather, their CA equivalent S in eq. (D.9a)). S¢e Meador and Weavor [1980] for an extensive review of
the various “two-flux” approximations to CA plane-parallel transfer in the literature.

14we use the word in the same sense as in quantum theory with one important difference. In “quantics,” to use
Lévy-Leblond's expression that avoids the words “wave™ and “mechanics,” x and p=-ihd/gx are Hamiltonian
{bence Fourier) conjugates. This is a lot worse than being nonlinear “functions” of one another: there exists a
“minimal” wave packet, viz. a Gaussian, (the norm of) this wave packet is the analog of our T- (or p-) distribulion
but there is nothing to stop us from making it degenerate, Indeed an overwhelming majority of transfer
calculations in the literature apply only to this very special case.

Xi+x X }+Ax
154 function fis said to be convex if it salisﬁesj( 12 2) Sﬂ l)zﬂ 2

This translates to '’ 2 0, if it exists, but this is pot a requirement for Jensen's incquality (3.31) to be valid.

_IGGencrally speaking, CA similarity theory is not limited to the axi-symmetric phase functions treated by McKellar

and Box's [1981] and therefore carries over unmeodified to the most general DA system as described by egs.
(3.2-3).

17Recall that, in general, we expect the k- and the A-scalings to be related via supplementary (mass or densily)
conservation constraints. In this case however, the similarity theory of sect. 3.5 explicitly requires a constant
grid size (A) and overall multiplication by a variable x-factor. Furthermore, we are justified to use the notation
adopted for the “mean field” exponent in (1.2-3) since, at given p-field (hence X), we have Teck.

18This makes intuitive sense since automatic side-scatterin g is certainly the most radical way of loosing track of an
initial direction of propagation. Recall (from sect. D.3) that standard rescaling theory shows just how isotropy is
obtained from an initially collimated beam after several scatterings if necessary.
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for all pairs of points (xy,x7) on its support.
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Chapter Four?

THICK HOMOGENEOUS AND FRACTAL MEDIA,
RADIATIVE SCALING PROPERTIES

Overview: In the present chapter, one of our aims is to quantitatively compare the
predictions of DA transfer described in chap. 3 and those of general (CA) transfer described
in app. A using, as a test, the compalibility of the exponents defined by the general
asympiotic thick cloud scaling relations:

T=hy TV (4.08)°

R=R.—hgTVR (4.0b)
for transmittance (T) and albedo (R) respectively, and where T denotes the spatially
avcraged optical thickness (which is a direct measure of total LWC or optical “mass”).
Notice i m (4.0b) that we have naturally anticipated a non-vanishing thick cloud limit (R}
for albcdo and we recall from our discussion in sect. A.4 that one can distinguish R and 1-T
only if two conditions are met the media are horizontally bounded, on the one hand, and
very special illumination condmons fine-tuned to non-generic boundary shapes (that allow
the’ bcomcmcal definition of a cloud “side™) are used, on the other hand.

The other aim is to quanumuvely compare these two exact kinetic theories of radiation
transport with various approximate theories (IPs, diffusion and renormalization) and try to
single out the important structural properties of the optical media that cause these différent
approaches to agree well sometimes and o disagree completely at other times. The answers
arc of course respectively the opposite poles of extreme homogeneity (or regu]anty) and
extreme inhomogeneity (or smgularlty but with subtleties w.r.t. the type of transport
theory. Media with the former quality havh been as well studied as they are unrealistic but
we too will be indulgiﬁg in sect. 4.1, largely motivated by the urge to wrap up some
“unfinished business” concerning the scaiing (actually, to a large extent, the very definition)

- of albedo in horiiontally b_oundeﬁ{"éystems. More precisely, we.invéstigate reflection

through the top only of normally illuminated square shaped tiyo-dimgnsional clouds and
show that this (essentially improperly defined) albedo scales trivially (vg=1), contrary to

. our previous claims based on poorer data (vg=3/4). One of the reasons it is important to

settle this problem is that, however artifitial, such simple media and responses provide a
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benchmark for comparing both numerical transfer methods and inhomogencous (isolated)
cloud models. For instance, in sect. 4.2, we turn to internally inhomogencous media
modetled with fractals which are far more interesting (in spite of their deterministic
structure} because radiative scaling properties are totally different from their homogencous
(vr=1) counterparts, it is “anomalous” (vr<1).

In sect. 4.3, we compile all of our radiative scaling results in a comprehensive table
and discuss the structural properties of the optical media that are apt to promote the
anomalous scaling; according to the available data, the crucial features seem to be singular
one-point statistics and long-range corrclations in their two-point counterparts. The final
section is more theoretical, we ask (i'n retrospect) whether this could have been anticipated
from first principles, i.e., by looking more closely at the mathematical structure of the basic
transport cquations. We summarize the situation by tentatively proposing two very specific
criteria, (4.9) and (4.14), for the onset of strong nonlinear effects (e.g., anomalous scaling)
on which both transfer and diffusion theories agree; the former criterion implies very
irregular (non-differentiable, possibly discontinuous) structures, and the latter that many
scatterings are needed to build up the nonlinear effects of “channeling.” These criteria have
predictive (rather than diagnostic) power in the sense that they relate—in Preiscndorfer’s
words-—ortl_ly the “inherent” optical (x,g) and structural (p-ficld) properties of the medium,
no “apparent” property (related directly to radiation ficlds, illumination gecomelry, etc.).

4.1. Homogeneous Sguares, Cubes and Beyond

In fig. 4.1 and figs. 4.2a,b, we show numerical (Monte Carlo) results for
homogeneous squares (d=2) and cubes (d=3) where the dimensionality designates not only
the number of dimensions needed to describe the figure but also the number of dimensions
in which the photons can propagate. In other words, the square is pot a long 3-D
square-sectioned cylinder laying parallel to its axis, Iflumination is normal and
transmlttance is naturally deﬁned as exit through the “bottom” (unique non-illuminated)
face;’ Because this is a case of “lemmator" pathology as described in §A.4.2 above, the
way is opened to distinguishing reflec..\gance through the (normally irradiated) * lop and
through any (grazingly irradiated) “side.” We will denote these responses respectively T, R
and S=(1-R-T)/2(d-1) and 7 is the optical length of the all the edges.
4.1.1. Standard Diffusive Rescaling Retrieved

In fig. 4.1;5we find CA results for this geometry in d=2. The two-dimensional
analog of the Henyey-Greenstein phase function {(described in §A.3.1) was used for several
values of the asymmetry factor (g). Notice that, rather than R directly, it is AR/Alnt
{Alnt=0.251n10=0.58) that is presented on the log-log plot;- it is easy to see from the basic
relation (4.0b) that dR/dInt scales the same way as R for large (or small) t. Furthermore,
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this measure of albedo, as well as transmittance, are graphed as a function of optical
thickness rescaled & la van de Hulst and Grossman [1968], viz. (1-g)t, just as in diffusion
theory. Both responses collapse onto universal curves, just as in d=1. (The discrepancies
seen in the transmiltance curve are entirely attributable to the numerical Monte Carlo
uncertainties.) Davies [1978] as has already convincingly demonstrated that transfer and

diffusion yicld asymptotically similar results for homogeneous cuboidal (d=3) cloud models

with various aspect ratios. The universal behavior w.r.t. (1-g)t observed here is a strong
indication that this is also true for our square media in d=2. It also implies, in particular,
phase function independence in the asymplotnc regimes.

Finally, we notice that dR/dlnt goes through a maximum, just as in d=1 {or in slab
geometry) where, from (3.22),

dR
—£ =R, (1-R,) 4.1)
dint P P

which is maximal at Ry=Ty=1/2, i.e., (1-2)Tnax=2. The subscript “p” stands for
“planc-parallel” as in (2.28). Here, in d=2 with horizontal fluxes due to horizontal
boundedness, we find a somewhat larger but still O(1) value for (1-2)Tpaz. We will soon
see that this type of behaviour is not specific to homogeneous media.
4.1.2. Characterization of the Phase Function fndep‘?éndent Scaling Regimes

Turning to figs. 4.2a,b, respectively for d=2 (t<512) and d=3 (t<256), the phase
functions are either DA- or CA-isotropic (g=0) and, in d=3, the Deirmenjian *“C1” (g=0.85)
phase function has been added.! The fact that the T-curves, on the one hand, and
R-curves, on the other 