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L'ÉTRANGER

« Qui aimes-tille mieux, homme énigmatique, dis?

ton père, ta mère, ta sœur ou ton frère?

- Je n'ai ni père, ni mère, ni sœur, nifrère.

- Tes amis?

- Vous vous .~'%Î;·ez là d'une parole dont le sens m,'est resté jusqu'à
. . /1 "'~"0) li

ce Jour mCOlmu.

- Ta patriil?
- J'ignore sous quelle latitude elle est située.

-La beauté?

-Je l'aimerais volontiers, déesse et immortelle.

- L'or?

- Je le hais comme vous haïssez Dieu.

- Eh! qu'aimes-tu donc, extraordinaire étranger?

-J'aime les nuages... les nuages qui passent... là-bas... là-bas...

les merveilleux nuages! »

Charles Baudelaire,

tiré du SPLEEN DE PARIS

(Petits Poèmes en Prose, I)



ABSTRAcr -RÉSUMÉ

RADIATION TRANSPORT IN SCALE lNVARIANT OPTICAL MEDIA

We focus primarily on the bulk response to external illumination of conservatively

scallering thick inhomogeneous media (or simply "clouds") which are exactly or statistically

scale invariant; Ûlese radiative properties are compared to Ûlose of homogeneous media with

the same shapes and masses. Also considered are the ensemble-average responses of

multifractal distributions of optical Ûlicknesses and the closely related spatially averaged

responses obtained wiÛlin the "independent pixel" approximation to inhomogeneous
l(

transfer. III all cases, the nonlinearity of Ûle radiation/den5ity field coupling induces

systematic and specifie variability effects. Generally speaking, Ûle details of Ûle scattering

process and of the boundary shape affect only prefactors whereas "anomalous" scaling

exponents are found for extreme forms of internal variability which, moreover, are different

for different physical transport ri;ô;'els (e.g., kinetic versus diffusion approaches). Finally,
""-'~ ,

detailed numerical computations of radiation flows inside a log-normal multifraclal illustrate
é'

Ûle basic inhomogeneous transport mechanism of"channeling."

TRANSPORT DU RAYONNEMENT EN MlUEU OPTIQUE INVARIANT D' ÉCHEUE

On étudie principalement les réponses globales d l'illumination externe de milieux

optiques hétérogènes épais qui sont exactement ou bien statistiquement invariants tf échelle;
ces propriétés radiatives sont comparées d celles de milieux homogènes de même forme et
masse. Aussi considère-t-on les réponses moyennes pour des distributions multifractales

d'épaisseurs optiques, celles-ci sont ,étrôitement liées aux réponses obtenues dans
l'approximotion au transport hétérogènefpar les "pixels indépeiidants," Dans tous les cas de

• ,!;
figure, la narnre non-linéaire du êoûplage entre les champs radiaJifs et de densité induit des

effets de variabilité systémotiques et spécifiques. 'En général, les détails de la fonction de
phase ou de la forme précise du milieu n'influencent que les préfacteurs a/ors que l'exposant

caractéristique devient "anorma/" pour les formes extrêmes d'hétérogénéité; il dépend alors
également du choix de modèle physique du transport (e.g.,méthodes cinétiques versus

diffusives). Finalement, le ml.canisme élémentaire de transport hétérogène ("channeling")

'est illustré par des calculs numériques détaillés du champ radiatif d l'intérieur d'un
multifractal typique.

o

,
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PRELUDE

Ul.. '] the grealest sculptures can be viewed-indeed, should be viewed-{rom ail

distallces since new aspects ofbeallty will be revealed ill every scale."

<~ Henry Moore' s answer ta S. Chandrasekhar's questioll as co

'how should one view sClllptures: from afar or nearby?'

My first encounter with radiative transfer happened. as a matter of course. during my

astronomically oriented M.Sc. at U. of Montreal. in '77-'79. It was a little IîIt like a love-at­

first-sight and 1 somehow incorporaled its non-equilibrium features into my life-style: 1

subsequently took a (seemingly) random walk through (mainly) teaching-related jobs through

the early ·SOs. At mid-decade. my professionallife was becoming a little fuzzy. at Jeast Ihat
,

much was clear about it! By then l was then e~i1y convinced that l should geophysically

"recycle" my astrophysical experience.1 This'appealed to my environmentally friendJy

political ideas and lead me (almost) straight to;the Ph.D. program at McGill. Over live

academic years, spanning 'S6 to '91,1 was involved in research into atmospheric scattering

but. under numerous influences. the focus of my research project considerably shifted after the

f11"St two of those years. It staned off with a compulsive investigation of aIl the anglilar details

on radiances emerging from conlpletely homogeneous models of thin (hazy) atmospheres.2

possib1y overlaying ground with a discontinuity i~ aIbedo at a specific scale;3.4 this work was

specifically targeting direct applications to the remote sensing of air qllality. and a qualilied

success was achieved.s Il ended with an extreme'ly crude treatment of fluxes6 only inside very

1 This is by no means uncommon and l'm beginning to view ccnain (radiation-related) aspeclS of gcophysics as
"applied" astrophysics, or maybe astrophysies as a sehool for atmospheric radiation scienlislS. At the '92
spring meeting of AGU (in Montreal), l happened .on thrce ex-comrades-in-anns from the srruggle for
survival in (pure) astrophysies. lost for a dccadel Itwas as pleasurable as unexpcclcd. Counting mysclr,
there were three carly drop-oUIS from the Ph.D. program in (astro)physics al U. of Montreal, ail of which are
now somehow involved in atmospherie radiation. Interestingly. we worle in three quite distinel"spheres:"
M.C. now sludies aurora borealis in the ionosphere. D.T. monilors s!Tatospherie ozone depletion, and A.D.
is involvcd Wilh tropospherie (turbulence dominaled) cloud systems; J.-P. A. actually pursued his
astrophysical career but is now considering a movc. !.

2 Royer, A., N. O'Niell, A. B. Davis and L. Hubert....Comparison of Radiative Transfer Models used 10
Detennine Atmospherie Pararnelers from Space," S.PJ.E. Proceedings, 22P1, 118-135, 1988.

3 Davis. A. B.• and A. Royer. "Effel de l'environnement 'dû à la diffusion atmosphérique sur une cible de petiles
dimensions," Proceedings of /he Il/h. Canadian Reino/e Sensing Symposium, Canadian Aeronautics and
Space Institute, June 22--25, Waterloo (Ont.). Canada; 1988.

4 Royer. A.• A. B. Davis. and N. O'Niell, "Analyse des ErfClS Atmosphériques dans les Images HRV de
SPOT," Canadian Journal ofRemo/e Sensing. 1.1. 80;-91. 1989.

5 O'Niell. N., A. Royer. L. Hubert, J. R. Miller, J. t;'reemanlle, G. L. Austin and A. B. Davis. Cri/ical
Evaluation of A/mDspheric Pallu/an/ Parame/erizli/ion from Sa/elli/e lmagery. Report for the OnLario
Minisrry oC Environment. Toronto (OnL). Projecl #349.0, April 1989.
~........ n j....î
~ J!.,
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inhomogeneous models of thick (cloudy) atmospheres, (implicitly) overlaying absorbing
ground; this work lead to very strong conclusions on the theoretical aspects but with only

potential applications to satellite imagery interpretation at present (and, on the longer run, to

the improvement of radiation treatment in climate prediction). In short, a complete tumabout

in topic, methodology, etc. The overall trend being a constant move towardsthe most basic
physical principles (Le., theory)-but it is now timely to reverse that trend. No attempt has

becn made in this thesis to reunify the IWO phases of the project as described in the above. Is
there any point? We already know that the number of "interesting" problems in atmospheric

radiation is infinite and, clearly, both of the above topics belong to the more restricted c1ass of

(currently) "important" problems. At any raIe, the experience is gained, the publications are

there to bear witness to this and 1fully acknowledge the (moral and financial) support from my

previous supervisors/collaborators at CARTEL (Université de Sherbrooke).

1will therefore concentrate only on the work carried out during calendar years '88 to .
. '1

(circa) '91.5. Interestingly, and in spite of the obviously desirable restriction in fecus, the Il
present thesis suffered much the same fate as the research project itself: a complete turnabout.'~

'j
The opening remarks of the flI'st draft-il naive attempt to expose both radia.~ve transfer and

multifractals on their cornmon ground (viz., probability measures in phase space}--eventually

evolved into the last appendix of the final version! Apart from the articles on which a majority

of chapters are based, the writing exercise took a half year full tir.ne, starting with a skeleton
made of this (pub!ished) and other (unpublished) material. Maj;r cuts wf,re made, yet the)'e

remains a certain amount of partial overlapping and, in a couple of instances, outright

redundancy (going from certain portions of the,appendices to sorne parts of the chapters). The

fmal structure was adopted relatively late on, and thë;intricat,e)ntemal cross-referencing was
~, , 1

carefully monitored, yet sorne minor eITors may have survivoo; there is !ittle doubt that the

whole volume would gain in coherence from a complete overhauling. However, in the

meantirne, 1have come to subsctibe entirely to an aphorism (found in a margin note) of Shaun

Lovejoy's, my thesis advisor (~nd mentor-in-all-thing;-multifractal), '[ ...] research is an

ongoing process which still hasn't achieved the status of solid "knowledge." [...r which 1

understand as 'imperfection is our lot (andin fact thisikeeps us going).' Consequently, it

would be border!ine dishonest to rewrite the thesis i~text~book style. It must. be said that

Shaun's proofreading of all the major sections of this thesis, all of his suggestions and all of
the subsequent discussions proved extremely valuable in every re;~l

o (',.. "1
6 We will sec (sect 3.1) that DA "~'ances" are akin to (hemisphcrical) fluxes and, at any rate; use the same

physical units. v'
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A comment on the final structure and adopted style is in order. There has been a
(/

deliberate effort to. make the thesis as self-contained as pos~ible.l This was perceived as

particularly important because po.ential readers can be attracted either from the statistical

physics and/or multifractal corn munity with liule or no knowledge of radiation transport

(especially in the atmospheric context) ... or vice-versa. Indecd, very little cross-fertilization

has happened as )iet. The net result of this choice is thal a large amount of background

)Tli!teriallO be reviewed accumulated, and this was finally c6~piled into the various appendices
---._--,--':': ,-::/ -<--::;

(which collectively rivalthe main part of the thesis, chap. 2-Q, in terms of sheer volume). For

guidanc~;the folk;i;in~ flow-ehart iIIustrates the connections between the variaus chapters and

appendices. -

NlImerical Approaches
1 1

...... ---,---,__---1

Analytical Approaches

Flow chan illustration of !he in!er-d~ndencjes arnongst\he various Ilarts of this thesis. Notice the Iwo "entry
points:" respectively,ldnetic theory (i.e., molecular chaos and additive processes) by above and multifractals 0
(i.e., multiplicative chaos and turbulent hydrodynamical processes) by below. lnterestingly, these "points" are
in fact conceptualIy much.doser thail they seem since bolh fonnalisms rely heavily on probabilily and measure,-./' ~\

lheory applied 10 phas.: spaces. The key is (,'
A: CA !fansfer (general theory) 2: Diffusion (basic inhomogeneity effects)
B: CA and DA transfec (compulational aspects) 3: DA transfer and IPs (generaI theory)
C: Fracla1s and 11)~ltifracla1s in lurbulence 4: Universai radiative scaling, trivial and anomalous
D: Diffusion (genèral theory) _. 5: Multifracla1 direc~ plane·paralJel or IP transmittancies
E: CA transfec (kinetic lheory foundations) 6: Numerical DA transfec lhrough a typicaI multifracla1

tTo sorne extenl, Îhis is true also of each,individuai chaptet. ln many cases, "Introductory Notes" are provided
and most of the abbreviations are redef1!led localJy when needed. The beuer kown abbreviations (r/l.h.s.,
Wi.L, m.f.p., p.d.f., ete.) are however nowhere specled ouL

() .

Il
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A generic equation identification/reference would read "(c.n)" where "c" is the chapter

numher and "n" the equation 's order of occurence in the chapter (sometimes 's and/or letlers

are appended) whereas reference to the contents of sub-section "p" of sect. "s" of chap. "c"

reads "§c.s.p" (no further sub-divisions are used). Furthennore, footnotes are collected at the

end of each chapter which makes them less disruptive to the rea~i;;g. In my opinion, this is

the hest place for them since they are used to convey information deemed "non-vital" to the

problem at hand. This information can range from the odd note of historical interest to a

clarification, from extra evidence for sorne result (even a short proof) to an application of a

result. Finally, a specialized bibliography is provided for each chapter, sorne repetitions will

therefore he noticed.

The thesis will he overviewed in the course of the IntrO<iuction, SOC (after our stance on.,

redundancy) we shall not repeat the process here; we point out only that, to use a double

musical metaphor, it goes crescendo and makes use of a leit-motiv. By this we wish to

express the fact that it starts, in chap. 2, with rather weak (Pp) disorder where diffusion is al
IC-

valid model for radiation transport (with one counter-example at the very end, viz., singular -

percolating binary mixtures). Chap. 3 is an "interlude," no particular inhomogeneous cloud

model is studied since a general purpose transport model takes center stage, namely, discrete

angle transfer which is presented as the basic tool we need to cope with the upcoming extreme

fonns of variability. Sect. 4.1 elaborates on the "theme" of homogeneous horizontally

bounded media but, ail of a sudden (sf), a very intermittent but deterministic monofractal

model is introduced in sect. 4.2. Sect. 4.3-4 "recapitulate" the material and an explanation of

anomalous scaling from f!Tst principles is proposed. This concludes the f!Tst "movement." ln

the second, chap. 5 and 6, the focus is on random multifractals, using respectively analytical

and numerical (solo) "instruments." The variability "volume" can hardly he pumped up

heyond the level attained in chap. 6 with the introduction of the (fff) mulûfractal model with

Gaussian generators. Indeed, il is classified by Schertzer and Lovejoy [Physica A, in press]

as the 'wildest' and 'hardest' of alI (universal multifractals). And the reassuring thing about il

ail is that we c,an still recognize the "light-motif' introduced from the outset, namely radiative

"channeling." Of course, the symphony is patenüy unfinished. This is of course not a fatal

f1aw in itself.-famous precedents exist-but many quacks will doubtless he heard as the

"measures" go by and the "scales" unfold, until the final, harmonically unresolved chord is

struck.

The opening quote was borrowed from Chandrasekhar's Truth and Beaury - Aesthetics

and Motivations in Science [U. of Chicago Press, 1987]. It was originally intended as a

juxtaposition of a symbol of radiative transfer (Chandrasekhar's query) and one of scale

invariant stuctures (Moore on sculpture). However, the way 1 read it now is that interesting
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sculpture is not scale invariant (at least in a trivial way) ... and this contrasts markedly Wilh

our opiniq~ of cloud models, especially from the point of view of radiation. Understandably,

the encounter of the fanlOus physicist and sculptor happened at the inauguration of the latter's

work that marks the site of the tirst controled fusion experiment , in front of the Enrico Fermi

Institute on the U. of Chicago campus. In this remarkable piece of art-at onc':"heavy and

buoyant, threatening and attractive-Moore used a relatively dark material (bronze) to define

not so much an outer shape but empty internai spaces, cavities through which bright skylighl

would shine; adults invariably see skulls and/or atomic mushrooms in Ihis abstracl creation

but the artist envisaged children playing with/in it [1 owe ail of this to Prof. Chandrasekhar

himself]. 1cannot imagine a more !rUe and beautiful metaphor for clouds in general and our

fractal models in particular: at once massive and transparent, unconventional yet necessary.

A.D.
Montreal,

14lh of February (revised lOth of May) 1992.
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CONTRIBUTIONS Ta ORIGINAL SCHOLARSHIP

This thesis is made up of a main part (ch. 2-6) followed by an extensive appendix

section; on p. viii, there is a ten~tive graphical display of the nextlevel of internaI structure.
This way of organizing it makes the separation of the original--but not necessarily highly

original-contributions from the prerequisite, background and othelWise ancillary--hut not
necessari1y readily avaivable:---material relatively easy. There are only a few exceptions worth

mentioning.

On the one hand, the non-original parts of the main section are as follows. Firstly, and

most imponantly, Shaun Lovejoy must receive full credit for the basic radiative scaling ansatz
expressed in eq. (0.1). In sect. 2.1 and §2.3.4, previously existing transport results have

been quoted and then simply adapted to the radiation problem; the important result in

§§2.3.1-2 on transmittance being boosted by any form of inhomogeneity was more-or-Iess

known but not readily explained in terms of "channeling." The contents of §3.2.1 and §3.3.l

, on the basic form~lation of "DA(d,2d)" transfer basicaUy reproduce (and, to sorne, extent,

were even "lifted" from) previous collaborative work by S.L. and Philip Gabriel (phD, McGiIl

'88). In the other parts of chap. 3 related to their work on DA fundamentals, there has becn at

the very least substantial clarification. Finally, P.G.'s continuous angle Monte Carlo results
for homogeneous cubes are used in fig. 4.2b.

On the other hand, sorne CA work that is original (to the best of our knowledge) has

becn embedded in the appendices because of the logical connections. More precisely, §A.2.3

on the nonlinearly induced necessity of non-exponential average propagation kernels in the

kinetic theory of random media and their relation to characteristic functionals, §A.3.3 on the

transfer (or any other so-called "linear transport") equation as an "x-gradient/u-anisotropy"

balance with a role for P(x), and §A.4.2-3 where the various definitions of (overall) albedo

are c1early spelled out for horizontally bounded media and the issue of "terminator pathology"

is risen (in connection with the reexamination of our previous results on homogeneous squares

and cubes). On a more technical note, a new two-dimensional "Henyey/Greenstein-like"

model phase function is described in eqs. (A.2Ib) and (B.S) while, in sect. B.2, we address

the "thick ceU" problem that arises in ail numerical techniques based on finite differencing

when applied to extremely variable media. FinaUy, sections D.2-3 are also new; they

respectively comment extensively on King, Radke and Hobbs' [J. Armos. Sei., 47, 894-907,

1990] recent in situ cloud radiance observations, on the one hand, and provide an

interpretation of the standard "transport" m.f.p. rescaling in terms of correlated random walks

in space that map onto uncorrelated ones on the unit sphere, on the other hand



xii
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LA SOUPE ET LES NUAGES
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ouverte de la salle Il manger je contemplais les mouvantes
architectures que Dieu fait avec les vapeurs, les merveilleuses

constructions de l'impalpable. Et je me disais, Il travers ma

contemplation: « - Toutes ces fantasmagories sont presque aussi
belles que les yeux de ma bien-aimée, la petite folle aux ye~iX'

"

verts. Jo>

Et tout Il coup je reçus un violent coup de poing dans le dos, et

J.,entendis une ~idij;=r<Juque et charmante, une voix hystérique et
~ ...

comme enrouée par l'eau-de-vie, la voix de ma ch~re petite
bien-aimée, qui disait: « - Allez-vous bientôt manger votre soupe,

s... b... de marchand de nuages? Jo>

Charles Baudelaire,

tiré du SPLEEN DE PARIS
(Petits Po~mes en Prose, XliV)
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Chapter Zero

INTRODUCTION

O. 1. Theoretical and Observational Motivations

0.1.1. Repalrialioll ofRadialive Trallsfer (Bock 11110 Ihe Rea/m ofTheoretical Physics)

This thesis is concerned with the transport of radiation through inhomogeneous

distributions of scattering material lhat are invariant under scale changing operations.

Rcwording this with our prime application in mind, we can say that this thesis is about what

happcns to sunlight when it encounters a cloud (deck), in terms of reflection, transmission,

and (in sorne cases) absorption. We will be looking at clouds as members of families of

objects that can be transformed into one another using zooms, i.e., we will model them with

simple geometrical shapcs and homogeneous (that is, no) internai structure, as weil as their

far more interesting and realistic fractal and multifractal counterparts. We will seek

characterizations of the radiative properties of these "scaling" families of optical media as a

whole; in short, we are interested in the exponents related to the radiation transport. This

focus on the scaling exponents for the radiative properties of the cloud families allows us to

scparate radiatively "important" and "unimportant" factors: an "important" factor must he able

to affect an exponent. In this respect, we foHow the tradition established in the study of

nonlinear dynamical systems where the preferred terrns are "relevant" and "irrelevant," a1so

used in statistical physics.

BeCore proceeding to the scale invariant media, we must clarify what we mean by

radiation "transport" and "scattering." At the most rigorous level, these concepts should be

approached using c1assical or quantum EM theory and we have indeed learned (in our

standard curriculum) that any inhomogeneity in density (hence permeability) scatters waves

into ail directions, usually in a relatively complicated pattern (cf. Mie theory for plane waves

impinging on spheres). In this wave-theoretical Cramework, multiple scattering theory is

extremely difficult, even Cor scal,\f waves. Spurredin part by thetechnologicaHy (even

tactically) important problem oC ~ropagation of EM waves through turbulence, steady

progress has been ma~e, usuaH/fat the expense of sorne approximation such as smaH

scattering angles. This is of course an ongoing andfascinating area of research1 but, from

our point ofviGw, it applies only to the very fine structure of the "direct" beam, as induced by



coherence effects.2 Fortunatcly, there arc many circumstances where the cCfects of coherence

can be disregarded: we simply add scaltcred encrgy Ouxes as soon as a large number of

randomly distributed discrcte scattering centers is considered. However. this is reasonable

only if the typical distances between these entities are large w.r.t. their typical size and w.r.t.

the wavclength of interest, othenvise characteristically wave-Iike locali'lA'ltion phenomena will

occur. Again fortunately, there is an ad hoc theoretical framework for the description of

radiation transport in this intermediate density regime where the wave-like behaviour is not of

interest as such; it is of import.'lnce only to compule the given scattering and/or absorption

cross-sections. This theory is known as "radiative transfer" and it lises macroscopically

deCined Ciclds lhat model the Ouxes of radiant encrgy propagating in gcometrically deCincd

beams into the various directions.

The connection between radiativc transfcr and mainstream optics is still unclcar; in

§1.3.1 (and more so in app. E), we bricOy describe the major problems and refer lo thc

relative!y smallliterature on the subject. ln sharp contrast to this conceptually uncomfortlble

situation, radiative transfer is formally identical to neutron transport lhcory as modelled bya

Boltzmann equation with a linear collision kernel (rather than a diffusion cquation): thc word

"neutron" can be replaced loosely3 by "photon," see app. E for further details (ineluding a

mapping of transfer concepts onto lhose of Markov chain thcory). F,'gl!owing a very large

community of researchers, we will adopt radiative transfer as our highest level of physical

theory for the matter-radiation interaction that we intend to investigate. Curiously, relatively

few members of this large community would deCine themselves as "pure" physicists. more

likelyas astrophysicists (either observationally or theoretically inelined), as geophysicists

(e.g., specializing in remote sensing, meteorology or climate), as engineers or as applied

physicists (most probably working on neutron and/or plasma deviccs) and, in a few cases, as

applied mathematicians (usually working with one of the above). Apart from the uncertain

position of radiative transfer in the ovcrall structure of theorelical physics, therc are many

rcasons why the physics community per se has shown little intercst in the subject.

First of ail, we must recognize that Chandrasekhar [1950] carried radiative transfer

theory to a very high degree of perfection. However, his rcsults apply only to highly

symmetrical systems, usually made of homogeneous plane-parallel scattering media. This

brings us to the point where we must make a realistic (and sobering) assessment of the status

of the theory of inhomogeneous radiative transfer. (Notice lhat in the abovc---and throughout

this thesis--we do not take "radiative transfer" to be synonymous with "radiation transport,"

as used in the title; see sect. 1.3 below for the technical distinction.) Thc most general

problem of inhomogeneous radiative transfer through arbitrarily shaped, arbitrarily structurcd

optical media, with arbitrarily complicated phase functions (i.e., differential scattering
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cross-sections), and arbitmrily distributed sources seems to bc fundamentally intmetable,

analytically speaking. Seveml general numerical approaches have been developed [e.g.,4

Cannon, 1970; Stephens, 1986] that go bcyond straightforward Monte Carlo simulation

which, in turn, ean al ways bc used as a calibrationS tool; however, therc will always bc

practical (CPU time and RAM capacity) limitations in numerical work. This is a rather

frustrating state of affairs, given the fundamental importance of radiative (and/or neutron)

transfer to our understanding of the structure and evolution of macroscopic systems ranging

in size from laser-fused droplets of heavy water to the Universe as a whole with, in bctween,

Tokamaks, A- and H-bombs, single clouds, planetary atmospheres, stars and interstellar

clouds, to mention but a few applications. Indeed, radiation-all frequencies combincd-is

often an active component in the dynamics of these natural or man-made systems. Moreover,

radiation is an extremely useful diagnostic tool-virtually the only one available in

astronomy-for extracting, without interference, information on the state of the system.

However, in order to convert such remotely sensed data into physically meaningful

information, wc need to know (br, more likely, make an assumption on) the structure of the

system viewed as an optical medium. And the real worid is obviously made of very

inhomogeneous material structures that create, destroy, or simply scatter radiation.

The above situation basically explains why radiative transfer has bccome more of an

engineer's than a physicist's topic: the practical applications are pressing (in particular,

coming from the civilian and military nuclear industries) and the kind of breakthroughs

(insights) that the pure scientist thrives on are few and far bctween. Even in the applications

to both meteorological and astrophysical problems, radiative transfer plays a central role yet it

has bccome a sub-topic that the dedicated dynamicist has little time to copewith. Wc believe

this situation can oc remedied by applying three complementary measures:

1- The general radiative transport problem docs not have to bc posed in lerms thi( altempt

to make it as close as possible to reality (Le., there is no absolute necessity to work in

three spatial dimensions with complicated scaltering kernels). This is especially truc if

wc want to lcarn (understand in depth) something about the inhomogeneity aspects of

the problem, if only bccause we will soon be confronted with our analytical or

numericallimitations anyway.

2- Our attitude w.r.t. the kind of inhomogeneity to be studied need not be one of

compulsive\y trying to accommodate the most general case (at least, right aw'ay)

li bccause, again in a learning process, a few weil chosen but specifie examples are often

I!f/ enough to anticipate the general principles, to provideguidelines for future research at

the very \easl.
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3- Possibly most importantly, we need to take an objective way of deciding (in faet,

learning) what is physically important and wkt is not. This is a necessary step if we

want to rethink the basie theory, elaborate alternative models of radiation-maller

interaction that target the most important radiative features of the most relevant types of

media. In turn, sueh alternative, more focused theory should lead to improved tools for

dynamieal modelling as weil as for diagno~tie applications.

Aeeordingly, we will (1) systematieally seek ways of simplifying the general radiation

transport problem, (2) systematically eolleet examples that are reprc~::;.~tative oLbroad

categories of media, and (3) systematically use scaling relations to delïne radiativcly impol1ant

exponents.

0.1.2. Sailli! Cllrrelll Problems ill Terres/rial A//Ilospheric Radia/ioll

So we cannot solve the most general radiative transfer problem, let alone in the inverse

direction where one ex tracts physical information on a system·simply by measuring itsl, .- .
radiative properties. Focussing only on terr~strial c10llds and sunlight, we arc neverthcless

eompelled to interpret our satellite imagety qllantitatively, and we are still commilled to
1

eonstantly improve our weather foreeastirig ski Ils, in partielilar, by using remotcly sensed
r

data (at the level of the initialization of the numerical model). Unsllrprisingly, major

atmospherie radiation problems more-or-Iess direetly related to clouds abound. Here is a

short line-up where the visible-, near I~- and thermal IR speetral regions each take center
/'stage:

a- Wiscombe e/ al. [1984] summarize in their cloud "albedo paradox" what kind of

problem can arise when ideas based on unrealistie modeIs are applied to reality. Stated

simply, the paradox is that optical thicknesses obtained from scemingly reasonable

liquid water content (LWC) prolïles, based on actuallïeld measllrements, ean reach the

hundreds, even for clou?s of moderate geometrical thickness. However, in order to

obtain eonsisteney betll!èen the value of the planetary albedo (o,(J.3), and the globally

, :::veraged cloud eover/(50%), the laller cannot have a mean albedo greater than ..(l.S

'[p,altridge and Platt,.1980]. This last value is achieved by homogeneous non-absorbing
\\ / ~

plahe-parallel clotids at optical thicknesses of order 10 only.6 According to the same

models, the observed optieal thicknesses lead to albedocs in excess of 0.9, a value very

rarely observed. Conversely, the optical thicknesses dedueed from satellite

observations are too small when the same models are uscd [Twomey and Cocks,

1982]. We will see that this paradox vanishes once we leave the very artificial case of

homogeneous plane-parallel models. Alternative explanations [e.g., Fouquart el al.,

1990] cali for an amount of absorption that seems to be unsubstantiated, at least at'"

strietly visible wavelengths (..(l.5flm) [e.g., King el al., 1990]. In our opinion, the



5

considcmblc spread in the observed (apparent) absorptance bears witness more to the

presence of internai variability than to the difficulty in conducting simultaneous

renectance and tmnsmittance measurements, which is already considemble.

b- At any rate, much of the attention has now shifted towards the cloud "absorption

anomaly" which has bcen recently reviewed by Stephens and Tsay [1990]. In the

energetically important near-IR (that contains one half of the solar irmdiance at the top

of the atmosphere), there are known and well-understood sources of (true) absorption.

\i There are also reasons to believe that there might bc sorne more, poorly understood

Ji sources of absorption such as H20 dimers or a water vapor continuum formed by the

Ir' extended "wings" of very remote but numerous spectral bands. Whatever the
l'

1 absorption situation is, scattering is also very much present and, given the systematic

(and eventually quite strong) inhomogeneity effects that we observe in the

non-absorbing cases, it is unclear whether we are witnessing truly enhanced absorption

or just more variability effects, or (worse) a combination of the both. Obviously, the

implications on the radiative budget are totally different in the two extreme cases.

c- Finally, we are acutely conscious of the fact that continuous input of (inhomogeneously

distributed) solar radiation is quite literally "driving" the dynamics of the atmosphere on

ail meteorogically defined "scales," from the "micro-" (e.g., slope breeze, convectional

instability) to the "synoptic" (e.g., Hadley cells)'? Simultaneously, the closely related

problem of climate prediction has ail of a sudden bccome a major concern for policy

makers; these newcomers to atmospheric science are trying very hard to balance

economic and political pressures exerted respectively by the typicallobby, representing

an industry that still needs fossil fuels (to generate profit), and their eonstituents,

ordinary (voting) people concerned with runaway greenhouse effects and that now

demand action, not (more) hot air. Understandably, the politicians want reliable

predictions about the climatic effects of human activity but all that they can get for the

moment is scientifically sound statements about the uncertainties of climate moclelling.

It is indecd notorious that climate moclels are very sensitive to their trcatment of cloud

backscatter, cspccially in the visible/near-IR [Ramanathan el al., 1983]. Il is still

unclear whethc!:/litclouds will tend to counter-balance or enhance the warming effect

of the ~'arious'eenhouse gases that are themselves active in the thermal IR; there are
~ .-

.semi-cmpirical as weil as theoretical indications that both can happen, at different

latitudes [Ramanathan el al., 1989]. The only real consensus i~,that the uncertainties,
'-,

on the cloud-factor in particular, are so large that the reliabilitY=:-even the feasibility-of

climatc moclcIling is highly questionablef5he ceptics have [~ed to data analysis and
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the believers need, amongst other things, better cloud-radiation interaction

paramelerizations.

We should also mention the problems related to the depcndenee of albedo and "cloud amount"

on satellite resolution whieh are to be expeeted in sealing cloud and/or radiation fields [s~e

Gabriel et al., 1988; and referenees therein). In response to the challenges posed by these

atmospherie radiation problems, we advocate the use a eombination of simplified transport

models and idealized cloud models (the latter are only required, for the moment, to not be of

<i the homogeneous plane-parallel type). We are aware of the faet lhat this attitude is in

complete opposition 10 the usual approaeh in theoretical radiative transfer studies whieh is to

postulate an unrealistieally homogeneous and symmelrie (usually plane-parai leI) cloud modcl

and then to use ever more sophisticated transport schemes. This attitude eould be partially

justified in limes when detailed quantitative information on internai cloud structure was

largely inaccessible, but this is no longer the case: for examples of LWC valiability, sec Tsay

and Jayaweera [1984), Stephens and Platt (1987), or Durouré and Guillemet [1990).

0.2. A Survey of the Literature from the Sealing Vicwpoint, followcd by our
Main Results

0.2.1. 1nllOmogeneolls Radiation Transport (Theoretical and/or Compl/tational Approaches)
ç,~-,-;:::":':::::_-~

For reasons~tèhtativelydescribed in the above, there are very few speeifically mdiative

transfer studies in the traditional p:~)'~ics literature. However, transport problems in general
--" ......... '.

have always geilCrated cons,iderableinterest in the physics community; a weil studied

example that is quite relevant to our concern with basic effects of inhomogeneity is the

question of diffusion in percolating binary mixtures. This subject has a sub-literature ail of its

own and we will not even attempt to review it here, rather in §§D.6.2-3 wc describe the main

results of importance' to us (viz., used for radiative purposes in §2.3.4) and thereabouts

references are given that eontain adequate bibliographical surveys. For the moment, we will

focus almost entirely on geo- and astrophysical publications.

For sorne lime, the term "inhomogeneous" atmosphere in the radiative lransfer literature

\Vas synonymous with a vertically slratified system of atmospheric layers whieh,can be
.,... " "':-,

described within the eontext of plane-parallel geometry; see l..cnoble(l'!9TI) for an extensive

review. There is no doubt that stratification is present in the atmosphere, but ignoring

horizontal variability is a very extreme assumption: if strictly applicable, the variability of

(visible) satellite imagery would he due only to the randol11 spatial distribution of surf;~e
alhed08 and the determinislib variation of illumin_ation geometry. This simple faet has creatcd

the need to better understand "multidimensional radiative transfer." In the circumstances, this

expression is rather unfortunate since we want to avoid ail possible confusion with the

u
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concept of "multiple (fractal) dimensions." This is especially important given the key role of

the latter in transfer phenomena and we therefore prefer to use the expressions like "higher­

dimensionallransfer" or "horizontally inhomogeneous media" (when the direetional bearings

have been made clear) to charaeterize this broad field of researeh. In the upcoming

discussion, we will exclude from the outset work on "inhomogeneous" atmospheres where

variability is confined only to the vertical; for the purposes of this study, these stratified

media exhibit plane-parallel (or one-dimensional) behaviour. Furthermore, in this suceinct

review, wc will mainly be eoneerned with the simplest of boundary conditions (BCs) that

define the so-called "albedo" problem. In essence, these BCs deseribe the sources and sinks

for the (generally conservative) multiple scattering problem: namely, external9 illumination

from above (usually by a uniform collimated beam) and absorbing tO ground below.

Alternatively, we ean say that such BCs provide a "forcing" of theJJgw of radiant energy

through the medium. There is a basic dichotomy in the literature whi~h-is important to respect

(see sect. 0.3 on our main results): horizontally finite cloud models versus their horizontally

extended counterparts. ll We start with the former.

There as been a sustained interest in treating clouds as simple geometrical shapes

(usually cubes or cylinders) while maintaining({internal homogeneity. See, for example,

McKee and Cox [1974], Davies [1976, 1978], Bdrkstrom and Arduini [1977], Busygin el al.

[1977], Cogley [1981], Weleh and Zdunkowski [1981a], Preisendorfer and Stephens

[1984], Stephens and Preisendorfer [1984] for various approaehes; see aIse Crosbie and

Dougherty [1985] who compound the difficulties, using laser beam-like illumination

conditions in cylindrieal media. The basic motivation is always to understand the basic

radiative effects of imposing an outer horizontal seale on a system; we approach this

essentially homogeneous problem from the sealing point of view in sect. 2.2 and 4.1 of this

thesis where we reevaluate the findings of Gabriel [1988], Gabriel el al. [1990] and Davis el

al. [1989, 1990a]. Before leaving this artificial class of internally homogeneous cloud

models, we must note the eonspieuous absence of fractal (nowhere rectifiable) boundary

shapes, either deterministie (like the von Koch eurve) or random (like fraetional Brownian

motion); this contrasts sharply with the faet that these surfaces aetually "grow" very mueh

like (convective) clouds do, Le., by "budding" (as in eauliflower).12

Regularly slIiated systems (one-dimensional horizontal variability at one specifie scale,

often specifiedby a sine wave) have always attraeted sorne attention if only because, like our

inhomogcneous atmosphere, they offer no outer scale in the horizontal. This ean;be done

either by assigning sorne purely horizontal variation in optical density (whieh is casier to

approaeh analytieaIly) or bymodulating periodically the upper (Or lower) surface of an

otherwise homogeneous medium (if a pieeewise linear profile is used, this type of medium js
','/
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easily treated by Monte Carlo techniques). See Weinman and Swartztrauber [1968], van

Blerkom [1971], Romanova [1975], Davies [1976], Wendling [1977], Romanova and

Tarabukhina [1981], Stephens [1986, 1988a] and Cahalan [1989] for a variety of examples

and techniques of solution. By using a multifractal cascade to modcl the horizontally variable

optical thickness, the last author in fact leaves the realm of smooth, deterministic prolïles. It

is also important te note that Stephens [ibid.] offers a much more general fom1alism but his

examples exhibit (deterministic) one-dimensional variability in the horizontal only since this

allows him to use an inhomogeneous variant of the "adding/doubling" technique which has

proved to be very expedient in plane-parallel applications.

ln order to simulate horizontally extendcd cloud fields more realistically, Busygin el al.

[1977], Aida [1977], Gube el al. [1980], Davics [1984], Kite [1987] (\Vith a comment by

Rawlins [1990]), Crétel el al. [1989], Barker and Davies [1992a; and other refcrences

therein] have arranged the above mentioned homogcneous cloud shapes inlo pcriodic or

random two-dimensional arrays, with or without clustering, with or without dislributcd sizcs

and, \Vhen distributed, there is usually a characteristic (or very representative mean) size

involved. In step with CUiTent observational findings (sec below), the last authors use

random scaling geometry to define the clustering properties of their clouds; for comparison,

they also allow the individual cloudy cells to he of different optical thicknesses, as naturally

dictated by theirtruncated additive model (brieOy described in sect. C.2). These purely

numerical investigations can be contrasted with the approach that consists of ensemble

averaging the (~nalytical, parameterized, or tabulated) radiative responses associated with the

simple homogeneous cloud geometries in an attempt to mode! the effect of spatial valiability.
oc

More precisely, one argues that the ensemble averages can be interpretcd as spatial averages if

one neglects all (net) effects of radiative interaction from cell-to-cell, or cloud-to-cloud

(depending on whether one is thinking of a single variable cloud model, or a modcl for a field

of clouds). See, e.g., Busygin el al. [1973], Mullaama el al. [1975], Ronnholm el al.

[1980], Welch and Zdunkowski [1981b], and Stephens el al. [1991; and (more) references

therein] for some examples. 13 In essence, this last approach is very close to what we will

come to cali "independent pixels." This expression is due to Cahalan [1989] who applies the

technique numerically to a (definitely spatial) multifractal distribution of optical lhickness in

an efÇ0rt to mimic his results for the albedo field oblained by Monte Carlo simulation (and
"

thereJore with horizontal Ouxes fully accounted for). For a general discussion of theidea, wc

refer the reader to sect. 3.3. Dayis et al. [1991a, or chap. 5] obtain analytical results for

multifractals in general, Schertzer and Lovejoy's [1984] "a-mode!" in particular; a

"microcanonical" version of the latter \Vas in facl used, with specific parameter values, by

Cahalan [ibid.]. ':~
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Ail of the above media have horizontal as weil as vertical variations in their radiation

fields, the laller bcing largcly driven by boundary conditions. Up until now however, the

only systcms with dcnsity gradients in both the vertical and (at least one of the) horizontal

directions are those homogeneous ones \Vith a non-planar surface: for instance, collections of

sphcres [e.g., Davics, 1984] or else slabs supplemented with periodic "turrets" on top [e.g.,
(.

van Blérkom, 1971; Davies, 1976]. At any rate, relatively lillie attention has been paid to

systems with bolle fide "internai" inhomogeneity (density f1uctuating in ail directions),l4 We

also note that, within this more general framework, the standard distinction between the one­

or two-dimcnsional cloud array problems (discusscd above) and the problems of internai

variability (discussed below) is in fact quite artificial since the former can bc viewed as a

special sub-class of the laller where density is either finite and constant on some given set or

null on its complement.

Turning to internally variable media, we find, on the one hand, that Mosher [1979] and

Welch [1983] have adopted a dcterrninistic approach to cloud structure respectively built from

a (rclatively small) number of elementary "blocks" and controlled by the numerical integration

of the f1uid dynamical equations (at necessarily very modcrate Reynolds numbers). On the

other hand, Avaste and Vaynikko [1974]. Glazov and Titov [1979], Titov [1979, 1980;'

1990], and Boissé [1990] have developed analytically a mean field theory applicable to media

with two possible values of the density and a spatial distribution generated bya Poissonian

(exponcntially decorrelating) process. These last idealized media are weil approximated by

white noise on a grid if the lattice constant is identified with the integral correlation length;

such media have been investigated numerically by Welch el al. [1980] a1though they allowed

for a contilluous (rather than a binary) distribution of density values. Stephens [1988b] also

develops an analytical mean field approach based on Reynolds averaging of the transfer'

cquations and the subsequent application of different closures to a two-f1ux approximation.

Ail of these authors report relatively small but systematic effects of internai variability

'on the overall radiative properties of their models; their direction is dictated by the

nonlinearity of the radiation-scattering material coupling and it appears to depend onlyl5 on

thc choicc of radiative property to be monitored (Le., albcdo decreases and transmittance

increases). The smallness of the observed differences w.r.t. homogeneity is partly due to the

., fact that the cloud models are usually taken as qui te thin, Le., not dominated by (effectively

isotropic) scattering which means an overail smallèr nonlinear coupling between the radiation

and density fields. It is also partly due to the relative weakness of the variability of the media.

In sharp contrast to this situation, the multiplicative cascade models presented in app. C are

designed specifically to mimic the very singular features of extremely high Reynolds number

f1ows: they are characterized by a huge variability (implying, in particulaI'. a very wide range
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of values), the possibility of diverging statistical momcnts, a heavy concentmtion of the

"activity" onto very sparse (fractal) sets, hence a corrcspondingly high degree of

intermittancy, and yet long-range (algebraically decaying) correlations. We will retum to thcir

radiative properties after an observational justification of their introduction.

0.2.2. Fractal alld Mulli/raclal Aspecls oflhe Almosphere (Observatiolls alld Simulaliolls)

There are many theoretical reasons, as weil as considerable empirical evidence

supporting the idea that, over wide ranges in scale, the statistical properties of clouds are

invariant under scale changing operations. Scale invariant (or simply "scaling") systems are

associated with power law behaviour and complex fractal stmctures arise naturally since over

the corresponding range, the system has no characteristic size. Theoretically, we expect

atmospheric fields, including clouds, to be sealing since the goveming dynamieal equations

have no eharacteristic length between the outer (planetary) scale and the inner (viscous) scale.

Furtherrnore, the radiative transfer equation introduces no intrinsic scale either since we

expect the optical density field itself to obey scale independent spatial statistics. In the

following we shall consider observationally based motivations, foeussing only on cloud

stmcture and/or radiation fields. In particular, we willleave aside the'growing litemture on

the sealing properties of rain, wind, temperature, and other atmospheric fields in spite of the

fact that many of these quantities are clearly related physically to cloudiness); see Schertzer

and Lovejoy [1991] for a broader survey.

Empirical (aircraft) energy spectra of cloud liquid water content, such as those obtained

by King el al. [1981], are scaling (power-Iaw) in form and broadly SUppolt the idea that, at

lcast over wide ranges in scale, clouds (as revealed by satellite images) are fractal [Lovejoy,

1982; Rhys and Waldvogel, 1986; Kuo el al., 1988; WeIch el al., 1988a,b; Lee, 1989;

Sèze and Smith, 1989; Cahalan and Joseph, 1989; Yano and Takeuchi, 1991]. For

reviews, see Lovejoy and Sehertzer [1986, 1990] or Schertzer and Lol'ejoy [1988]. Ludwig

and Nitz [1986] extend scaling analysis techniques to lidar probings of smoke plumes, as do

Durouré ând Guillemet [l990] to ill silu cloud LWC probings, followed by Malinowski and

Zawadski [1991]. There have been some reports of scale breaking [Cahalan and Snider,

1989], but these may weil be due to the use of monofractal rather than multifractal analysis

teehniques; see Lovejoy and Schertzer [ibid.] for a discussion of this difference as weil as a

critical reevaluation of previous analyses. In any case, systematic studies of scaling and its

limits in the atmosphere still hav,e not been undertaken and the basie issues are still open.
1

The very least that can be said is thatcloud scaling is fairly complex. ln this regard,

Gabriel et al. [1988] analyzed several IR and VIS channel images eaptured by GOES, ovec

ranges from 8 to 512 km; they found that the intense and weak regions have differentscaling

exponents, i.e., the clouds (and the underlaying ground) are "multifractal.", Sehertzer and
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Lovejoy [1987] show theoretically that under fairly general circumstances the entire

multifractal spectrum or (co)dimension function, can itself be characterized by three

paramcters which deline multifractal "universality classes." Unlike fractal dimensions which

provide purely geometlic charactelizations of sets, these parameters characterize the

dynamical gene'rator of the process. Lovejoy and Schertzer [1990] refine the analysis of

Gabliel el al. [ibid.] and estimate the three parameters for IR and VIS (cloud and/or ground

surface) radiances which are respcctively translated into albedoes and blightness

temperatures). The same type of dataset is reanalyzed 17 by Tessier el al. [1992] and

compared with other types of satellite imagery. A further complexity in the scaling is

empilically discussed in Lovejoy el al. [1987] (in connection with radar rain fields) showing

that the appropriate scale changing operator is not simply a zoom (self-similality), but

involves stratilication as weil and a new "elliptical" dimension must bc introduced; this is not

unexpected in presence of a gravitationallield and the ensuing convective activity [Schertzer

and Lovejoy, 1985]. Moreover, Lovejoy and Schertzer [1985] argue that the relevant scaling

should also involve differential rotation due to the presence of Coriolis forces and they

illustrate their ideas with quite convincing simulations. This aspect of "generalized ~cale

invaliance" (or GSI) has now bcen validated empilically by scaling cloud "texture" analyses

[Pllug el al., 1991; Lovejoy el al., 1992]. In summary, multiple scaling and anisotropy are

-'{ikely to bc fundamental ingredients of realistic cloud models.

0.2.3. Radialioll Transporl ill Fraclals and Mullifraclals (Ineludillg Resulls illlhis I7lesis)

We now resume our discussion of theoretical/computational (rather than empirical)

radiative transfer studies at the point where we left it at the end of §0.2.I, viz., in search for

cloud models with strong inhomogeneity effects, large enough to explain the cloud "albcdo

paradox" described in §0.1.2 abave at any rate. This challenge is met by Gabliel el al. [1986]

who obtain numelical results for a random monofractal cascade model-a so called

"~-model" (see sect. C.2}-that deveIops in allthree dimensions of space. I8 In compalison,

Cahalan [1989] uses only one (holizontal) direction to develop his random multifractal

cascade model---"i:lf the type known as an "a-model" (see sect C.3}-with interesting effects

induced by this very strong structural anisotropy [Davis el al., 1991a; also sect. 5.4 of the

present thesis]. It is important to realize that both of these models are generated by a

multiplicative cascade procedure and are therefore very intermittent and singular in nature as

weil as highly correlated, even the monofractalone. I9

Lovejoy etai. [1989] and Gabliel el al. [1990], on the one hand, and Davis el al.

[1989, 1990a; or sect. 4.2 of this thesis], on theother hand, study a deterrninistic

monofractal model with, respectively, innovative analytical (renorrnalization) and standard

numerical (Monte Carlo) approaches. Their results are somewhat different and the
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discrepancy is explained by Lovejoy et al. [1990) in terms of the adopted methodology. At

any rate, these studies are the frrstto define and to illustrate "anomalous" radiative scaling

with reasonably strong numerical evidence of "universal" (phase function independent)

behaviour. A detailed discussion of this phenomenon is conducted in chap. 4, on both

computational and theoretical grounds. For the moment, we simply let "F" denote some

appropriately normalized bulk radiative response to the extemal illumination, e.g., total

transmittance (which is simply the mean flux through the system expressed in units of

incident flux). We also let ""t" represent some non-dimensionalized measure of the total mass

(or LWC) of the cloud mode!. For this last parameter, optical thickness-vertically integrated

cross-section per unit of volume---is a convenient choice, provided that it is spatially averaged

horizontally in inhomogeneous situations. If the scatlering is conservative, if the cloud's

structure is scale invariant, and ifit is optically thick enough (Le., we require"t» 1), then we

can confidently anticipate an asymptotic regime with algebraic (or "scaling") behaviour:

IFrF..J"'hF"t-vF (0.1)

where VF is the universal scaling exponent associated with response F and hF, a (phase

function dependent) prefactor. Naturally, if the cloud model is stochastic, we should be

considering ensemble-averaged F's and "t's; in sect. lA, we will offer an alternative

para;l1eterization of the basic radiative scaling relation in eq. (0.1) that incorporates Ihis

possibility, in a "mean field" sense. We will see many applications of such relations

throughout this thesis, mainly in chap. 2, 4 and 5.

As a frrst example, consider transmittance (F=T) which we will often use in practice.

The thick cloud limit (T_) is naturally 0 and the "standard," or "normal," or "trivial" scaling

exponent, associated with homogeneous plane-parallel slabs,20 is VT = 1 while an

"anomalous" scaling is characterized by VT < 1 hence much higher transmittancies at a given

"t and this generically explains the cloud "albedo paradox." As customary, the signs in eq.

(0.1) are chosen in such a way that the parameters remain positive. Nevertheless, we can

define a similar thin c1oud--we should say "haze"-limit (Fo) for "t«I, in which case we,
expect to find a lil!ear response (VF =-1); this is a well-known fact for thin homogeneous

systems21 but we present arguments for its generalization to the most extreme cases of

multifractai variability [Davis et al., 1991~; or sect. 5.1-2 of this thesis). Phys.ically

speaking, linear response means that the light particles suffer at most a single scaltering

within the medium. Iii coritrast, the non-linear regime described above and where the

anomalous scaling can eventually be observed is associated with a predominance of highly

scatlered photons. In fact we can take the multiplicity of scattering as a (stochastic) measure

of the non-linearity of the cOllpling belWeen the radiation and density fields which is of coursé

defined, however less intuitively, by the equations of radiation transport t)1emselves. In this



13

conncction, wc argue (in sect. 4.4) that "-p) 1:' is a necessary but not a sufficient condition to

obtain strong nonlinear effects such as the anomalous scaling described in eq. (0.1). Indeed,

multifractal examplcs of intinitely massive c10uds with no scaltering whatsoever are provided

in sect. 5.4.

The idea of anomalous scaling exponents and universality in transport phenomena is

adapted from the abundant statistical physics literature on conductance (or diffusion) in

disordered media, a brief summary of which is presented in app. D (and the results therein are

adapted to the radiative problem in chap. 2). The real novelty here is to operate within the

theoretical framework of radiative transfer: an exact kinetic theory (and ballistic random

walks), not its hydrodynamical limit (and diffusive random walks). Lovejoy el al. [ibid.;

also sect. 3.5] present a similarity-based argument for the universality within the framework

of "discrete angle" transfer. Davis el al. [l99la, or chap. 5] have sinee detined and evaluated

"mean field" and/or "independent pixel" exponents for multifractal media; in essence, these

last exponents capture the statistical scaling effects of nonlinearity that are already present in

one-dimensional transfer or, equivalently, do not cali for horizontal fluxes.
"Finally, Davis el al. [199lb, also chap. 6 (and app. B, for the numerical technicaliti~s)] .

leave aside the determination of new exponents to have a c10ser look at how radiation fl~~s
through a typical multifractal density tield with various overail optical masses. Having been

carefully validated (at a considerable computational cost), these last results tirst of ail set a

precedent against which tentative improvements in numerical transfer schemes can be

evaluated; the challenge for approaehes based on tinite differencing (rather than direct Monte

Carlo simulation) is to cope with the very thick cells that naturally arise in any multifractal

type of optical medium. Beyond the numeries, these simulations serve as illustrations of the

higher-dimensional aspects of the nonlinear radiation/density field cl?upling (traeeable to

Cannon's [1970] concept of radiative "channeling") that are at w"ork in particularwhen

anomalous scaling is obtained (sect. 4.3-4). In spite of the very arbitrary choice of internaI

structure, many specitic features of the numericaJ experiment compare quite favorably with

the corresponding observations in real c1ouds. These quantitative successes are very

encouraging for the future of scale invariant cloud modelling. Aiso encouraging is the fact

that our numerical multifractal results in no way conniet with the qualitative understanding of

inhomogeneous radiation transport that we develop in chap. 2 with the help of diffusion

theory applied to farless realistic but analytically tractable media.

0.3. A Detailed Overview of this Thesis

First of ail, we have systematieally collected radiation transport theoriesthat are general

enough to accommodate any given inhomogeneous scattering optical medium. More
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precisely, each of thesc physical models for matter-radiation interaction can be used, for

instance, to predict an albedo (or renectancc) and/or an overall nux (or totaltransmittance),

the remainder, if any, yielding absorptance. We restrict oursel\'es to "general purpose"

transport theories--they can be applied to an arbitrary medium--they are therefore readily

compared quantitatively, simply by keeping the same medium. Wc have clarified the inter­

connections between these theories and organizcd them in a hierarchy. By order of increasing

"case of manipulation," we have: continuous angle (CA) transfer, discrete angle (DA)

transfer, diffusion theory, and "independent pixels" (IPs). For the moment, let it simply be

said that

• CA transfer is the standard kinetic-type "linear transport" theOl)', completely equivalcnt

to neutron transport theory (and reviewed in app. A).

• DA transfer is a special simplifying choicc of the "phase funclion" (scattering kerncl) in

its CA counlerpart (full delails to be found in chap. 3).

• diffusion theory is known as "Eddington's approximation" in the radiative litcralUre,

and the "hydrodynamic limit" in statistical physics (reviewed in app. 0).

• IPs means thatthe medium is somehow divided into columns that exchange no radiant

energy with one another (sec sect. 3.4 for specifics).

We better describe, contrast and inter-relate of ail of the above approaches in sect. 1.3 (and

the above-mentioned sections of the thesis give ail the necessary technicalilies).

0.3 .J. Gelleral17leory ofJII/zO/llogelleolls Radiatioll Trallsport (App. A alld D. Chap. 2-3)

Within the most general framework (Le, CA transfer), we have

• established that pho}on free paths are always longer on average in inhomogeneous

situations than in hdinogeneous ones (with the corresponding average density).
l'

• proposed and expibited a new model phase function thal is the two-dimensional

counterpart of the celebratélnièèlyey-Greenstein phase function.

• interpreted the radiative transfer equation for (the important case of) conservative and

isotropic multiple scattering as a detailed balance between spatial gradients and

directiona! anisotropies in the radiation field, with (relatively minor) role for density.

• enumerated and contrasted the various definilions in existence for albedo (versus

transmittance and, possibly, absorptance) for the case of horizontally bounded media

(Le., "isolated" clouds). AIso, the IP approach is shown to be largely irrelevant to

these horizontally bounded cases.

• related the "transport" m.f.p. resc;'lling to the statistics of corrclaled random walks in

space, viewed as images of their uncorrelated counterparts in direction-space.

Focusing primarily on conservative scattering, several analytically-based results have been

obtained using t\1e three simpler theoretical frameworks in the hierarchy (DAs, diffusion, and



(~;

15

IPs), orten further simplifying the problem at the leyel of the boundary conditions (this last

procedure poses no major problem for horizontally extended media, at lcast in the case of

wcak enough variability). Thcse rcsults include:

• generalized similarity relations for DA transfer, where a single phase function parameter

is varicd, rather than aIl at once as in the standard theory;

• total transmittance is al ways increasing when going from IPs to DAs to diffusion, for a

given medium;

• the average transmittance of an ensemble of media with various masses (or optical

thicknesses) and given structure is always less than the transmittance of the medium

with the average mass (due to thc convexity of transmittance w.r.t. mass and Jensen's

inequality);

• the previous statement also applies to any IP transmittanee, as compared to the

corresponding mean density transmittance;

• the homogeneous distribution always yields the smaIlest transmittance, for a given total

mass. ln particular, wc find (horizontaIly) homogeneous plane-parallel media to be

extremalw.r.t. the the decrcase of transmission, equivalently, increase of albedo.

The three last results and the one in the above concerning freepaths (hence direct

transmittancc) were previously known but, in our opinion, not weil ~xplained. We have
••

underscored the fundamental raIe of the nonlinear coupling that exists between the radiation .

and density fields. Furtherrnore, higher dimensionality is essential to the last result and it is

shown io be directly related to Cannon's [1970] "channeling" (see §1.5.1 for adiscussion of

the author's original definition) and Stephens' [1986] "mode-coupling" (see §1.5.2 for an

explanation of this paraphrasing of the author's original analysis). In essence, the authors

have used these expressions to describe the basic effects of inhomogeneneity on the Oow of

radiant energy, respectively in physical and Fourier spaces. This basic fact is iIlustrated with

a novel (c1osed-form) analytical solution for homogeneous and hollow spheres. The

conditions of its extension to CA transfer are also discussed: normal, isotropic or othenvise

qui te symmetric illumination geometry secms to~be required.

Finally, ail of the àbove results seem to generalize (when necessary) to every case of

extreme variability and/or (numerical) application of exact boundary conditions to be

mentioned in the foIlowing. ln particular, this indicates that "channeling/mooe-coupling" is

still atwork on a per realization ba.sisinthecase of stochastic cloud mooels. Notice that pure

internai variability (hence "channeling") and pure stochasticity (hencê'Jensen'siI)equality)

both enhance the overaIl and/or average transmittance, so it is conceptually important to

consider them separately, at least at this point in time since we are still trying to positively

identify the basic mechanisms at work.
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0.3.2. Normal and Anomalous Radiative Scaling Exponents (Chap. 4-5)

In the following, we use the scaling pararneterization defmed in eq. (0.1).

• Homogeneous Squares. Cubes. Elc.: Contrary to previous claims concerning the

scaling of albedo, these media prove, upon closer examination, to be in the same class

as other types of horizontally bounded media (e.g., spheres), especially if the albedo is

properly defined. Of course, this scaling is "normal" (VR =vT =1), Le., cloud sides

are asymptotically unimportant. This scaling is indeed found tobe "universal" (phase

function independent) and is the same for both transfer and diffusion theories; recall

that IFs are (applicable bUll irrelevant here. However, if the apparently simple hyper­

cubical media are used, then the beginning of the asymptotic regime is already large in

two dimensions and it is pushed to still higher sizes in higher dimensionalities.

• BinaI)l Mixtures on a Grid: In general, the scaling is normal; in the interesting but very

special case where an exactly "percolating" fraction of the cells are totally emply (Le.,

the "RSN" limit in conductance studies), "anomalous" scaling does occur (VT < 1) but

only for diffusion, not for transfer, nor IPs.

• Deterministic Monofractal Cascade Field: In this case, we find strong numerical

evidence of anomalous scaling for transfer theory too and it is shown to be universal in

general. Furthermore, the exponents associated with the various transport theories are
"all different.

• The Transition from Normal to Anomalous Scaling: These two last results can be

explained from flTst principles, reckoning on the structure of the basic diffusion and

transfer equations a~c4 the key roles played by singular density values and long-range

correlations in conjunction with our understanding of the radiative "channeling"

process. In particular, these arguments make clear that the previous result is very likely

to be true for otherwise "multiplicative" (Le., random and/or multifractal) cascade fields

too, but doubtful for ail "additive" models.

• Random Multifractal Distributions: .Analytically estimated exponents for ensemble

averaged total plane-parallel transmittance show that the (mean field) radiative scaling

can be either normal (homogeneous-like) or anomalous (inhomogeneous-like),

depending on whether the small scale limit makes the cloud ever thinner or ever thicker.

Thesame applies to direct transmittance which is normally exponential w.r.t. optical

" thickness (formally, VTd =00) and for which we find vTd < 00, in the thick cloud case.

These results can ail be interpreted in terrns of IP calculations, at least within a specially

restricted class of cascade models (that still contains most cases used in the cloud

radiationliterature).=
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0.3.3. Numerical Simulation ofTrallSfer Through a Typical Multifractal (Chap. 6, App. B)

Up until now, we have concentrated on spatially unresolved or ensemble averaged

responses to external illumination. We now turn to fully resolved radiation fields associated

with a specific realization of a random multiplicative cascade sporting Gaussian generators

(with standard deviation (J ="ln2 = 0.83 and centered at J.l. =-(J2/2, which guarantees that

the ensemble average is unit, cf. §C.3.2). After 10 discrete cascade steps with a dividing

ratio of 2, this yields an extremely variable log-normally distributed density field on a

1024X1024 grid; the spatial average is =1.5 but the max-to-min ratio is =1011 over the

whole field and ratios in the range 2-4 are not rare going from one cell to the next. Finaily,

the whole field is modulated by a numerical factor K: = 2k, with k = -7(+1)-3, which at

once keeps the average cellrelatively thin and the whole cloud relatively thick. 1bis defines a

highly non-trivial probleml'n computational transfer, bearing in mind that we want to see the

internal radiation fields in full detail.

• The purely numerical aspects are considerably simplified by opting for an isotropic DA

phase function; the problem is then approached in two totally independent ways in

order to make sure that the results are reliable (Le., physical). We can live with

unbiased random numerical errors of known magnitude (as in the Monte Carlo

method), but we must avoid at all costs contamination by systematic biases (to which

finite difference methods are prone, especially in presence of very thick cells). Apart

from a straightforward Monte Carlo simulation, a simple fmite differencing scheme

(followed by relaxation of the sparsely coupled system of difference equations) is used

but with the utmost care. The final results of the two methods compare is very

satisfactorily. So, on the one hand, we now have an extremely inhomogeneous

benchmark medium w.r.t. which different codes can be compared and, on the other

hand, we have truly physical results to discuss in the following.

• As expected from the above, the visualizations of the internai radiation fields show

"channeling" at work (on al! scales observable to the eye), as demonstrated by the way

the horizontal and vertical (net) fluxesinterplay.

• As expected on general grounds, the component of the radiation field that vanishes

when diffusion is a good approximation to transfer becomes very small in the thickest

regions and/or clouds. This is quite interesting because very diffusion-like radiance

distributions were recently observed in real cloud decks [King et al., 1990].

• As observed in ieal clouds, we find scaling power spectra for the albedo field, with

roughly the same exponent, for all but the smallest scales that are contaminated by

MonteeCarlo noise (at the expected level). "
)\
-"II
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• Again as with real clouds, comparing the albcdo, transmitlance and ineident Oux for

eaeh column, one can define an "apparent" absorplancc ficld with roughly the observed

range of values (even though not ail are positive since the spatial average must

identically vanish).

• Also as observed in real elouds, we find smoother albcdo fields for the thicker c10uds

(it naturally saturates) but, simultaneously with this more "homogeneous plane-parallcl"

appearance, we find stronger "channeling" effects (i.e., greater differences with the

homogeneous plane-parallel prediction for the same total optical mass).

• Finally, another predicted effect of "channeling" shows up in the orctei-::okcallering
,,';: ....

decompositions of the overall albedo and transmÎllance. Namcly, we findÏower
,<.:.

reOectance values when compared with the homogeneous case (of equal ovemll mass)

but only for two and more scallerings. In contrast to this higher transmillaJlce values,

even at no scallering at ail (directly transmitled Iight). Inlerestingly, saluration occurs at

roughly the same order-of-scallering as in the equivalent homogcneous case. In short,

the distributions are displaced towards much lower orders and considembly broadened.

The above results on a single rcalization of a stochastic cloud model clearly point, on the one

hand, to the necessity of improving our numerical techniques in order to reduce lhe

computational costs involved since we evenlually want to obtain accu rate ensemble-averages

and, on the other hand, 10 the necessity of improving the cloud modcl itself using Nature as a

guide. Finally, we must refine our procedures for comparing CA and DA quantities and

explicitly define the appropriate (vectorial, n-point, cross-correlaling) scale invariant stalistics

to quantify the occurrence of "channeling" events in both computerizcd and in Sirli radiation

experiments. .

:~

"
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1For successive revicws of the problem of wave propagation lhrough random media, sec Chcrnov [1960], Tatarski
[19611. Frisch [1968J. Radio Science [1975J. Ishimaru [1978J. Chow el a/.• [1981J. and Sornelle [1989J; this lasl
author cavers the regirncs whcn the (homogencous, "equivalcnt medium") diffusion equation should be used as weil
as the onset of (c1assicaJ) localization phenomena, also summarizcd by Anderson (1985] himself. Very interesting
pioncer work by Bourret [1962, 1964, 1965, 1966] shows, in particular. that stochastic classical systems where
propagation accurs 3rc cquivalent to second quantized systems (and the characteristic non-commutation arises
bcausc of the samc kind of nonlinearily that wc cncounter in §A.2.3 for direct transmitlance).

2This accurs on scalcs (00 small for us ta model with radiative transfer, even in theory, due ta the necessity of
"coarse-graining" of the wave fields (see sect. E.3).

3I-1ere. the expression "photon" is not ta be understood in the strict QED sense of a single quantum of a given mode
of the ai field if onl)' because no coherenœ effcets can be modeled by transfer as such.

4We will onen rcturo ta these two remarkable papers that not only present innovative numericaJ techniques but,
more importantly. give qualitative but prccious insight into the basic processes of inhomogeneous transfer.

5Indeed, the Mo'nte Carlo melhod has no systematic bias due to spatial diseretization, its onl)' problem is the
presence of an intrinsie statistical noise (whieh is fortunately wen understood, sec sect. B.1). It therefore provides
a bottom line point of referenee in terms of accuraey and efficieney: any viable alternative must he faster and/or
more precise.

60ne can use mdiant energ)' conservation R+TD=OI in conjunction with. e.g., the diffusion result RJ'TO=Ot/2X (see
sccl. DA) where ~ is Ihe optical thickness and XD-Olf(l-g) is the "extrapolation Icnglh" parameler; according 10
Del'mcinjian's CI drop size distribution at 0.45 ~m, wc can takc go-aO.8~Jor the phase function's "as)'mmetry
factor:' :;: \:'

71n essence, solar radiation is fueling the atmosphcric engine but the thcrmodYliamics are complex, very poorly
underslood sillcc the solar radiation field can in no way be considered even close to thermal equilibrium with the
system; see Essex [1984: and refercnces thcrein] for some of the fundamental consequences.

81ncidcntally, inhomogeneous ground renectance under a homogeneous plane-parallel airitosphere is sufficient to
generate horizontal gradients everywhere in the radiation field; this problem has important implications in the
field of relllote sensing of the environment and many authors. including Malkevich {1960], Ollerman and Fraser
[1979J. Diner and Martonchik [1984J. Kaurman and Fraser [1983J. and Stephens [1988aJ have sludicd it ror
differenl configurations with different methodologies. The same remark applies to non-uniform illumination of
the upper boundary. Consider, for instance. the "search-Iight" problem where an initially very narrow pencil of
radiation impillges on a scattering atmosphere (this is of importance, in particular. to lidar sounding of the
atmosphere); see Lenoble [1985] for a review and many references, also Crosbie and Koewing [1979] for a sine.
W3ve iIIuminaliolrpaltern as weil as Weinman and t-,'fasutani [1987] for the problemof an isotropic point source.
Tanré ~I al. [1981] make an inleresling combination of these two types of transfer problems with horizontal
gradients dri\,'en by on.ly boundary conditions: they use reciprocit)' to model the "adjacency effeet" of
inhomogeneous ground using "search-Iight" problem responses.

9For compleleness, we should mention the work of several geophysicists and many more astrophysicists concerned
with the effcets of spatial variability (in more than one direction) of internai (thermal) sourceS for, continuum or
otherwise "coherent" transfer, going back at least to Giovanelli [1959]. More recently, we have for example
Harshvardan el al. [l981J. Crosbie and Schrencker [l984J. Preisendorrer and Stephens [1984J. Stephens and
Preiscndorrer [1984J. and Stephens [1986J. For cases (mainiy or aSlrophysical inlerest) with a rrcquency
redistribution function Ihat models spectral line (or "incoherent") transfer, sec Jones and Skumanich [1980; and
references therein].

1050l11e authors. obviously presscd to simulate "typienl" remole sensing and radiation budget situations, have
started 10 invesligate (numerically) "broken" c10udiness overlaying' hOl11ogeneous Lambertian {e.g., Welch and
Wielicki.1988J or otherwise [Barker and Davies. 1992bJ renecting ground.

IlThis is an important difference (the media have totally diffcrent kinds of support) even though it cao be described
in tçrms of BCs in the case of horizontally pcriodic media. Il is importantnot to think of lhis diehotomy as a

'0;' quljStion ,of BCs, bccause bOlle /ide ,BC differences (e.g." "mixed'~, versus more standard) normally tend 'ta he quite
:~1rlinor. ' ,

12Scc howcvcr Mullaama el al. [1975] who modelthe directional errccts or cloud lop "roughncss" by assuming il to
he a random Lambcrtian surface (no, multiple scatlerir.1g is involved).

131n particular, the whole'mini~litera~ure on "Mark~n" media in one dimension only(reviewed and quoted,e.g.•
by Boissé [1990)) enter this calegory becau,e none or the rundamentaBy higher-dimensionalerrcclS that inlerest
us prima:'ily Qn:occur. However, other non-trivial effeets on the internai fields have.becn by studiedquite
rigorously in this type of medium using the analytical methods developed for trcating stochastic ODEs (reviewed,
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in particular. by van Kampcn [1976]). The main groups involvcd in this rcscarch drorl are siluated at eilhcr
Lawrence Livermore Nation111 Laboratory or the (french) Commission d l'Énergie Atomique and one can on1y
wonder how far the highcr-dimensional lransport-possibly classiricd, probably main!y numcrical­
inyestigations have becn carricd oui in thcse prcstigious institutions.

14rrhis is largely duc to the fact lhat sorne of the techniques uscd in computalionaJ transfcr bccornc morc involvcd
whcn dcnsity gradients are apt to appear in any direction.

15If more sophisticalcd (continuous angle) transfer thcory is uscd, then:rillumination conditions a1so play a role.
though mainty in the optically thin regime.

17These las:','authors prefer, for melhodologieal rcasons, 10 study Ihe (fini le differenee) !.aplaeian of the albcdo field
in absolule value or cise ils ahsolute gradient; the)' point out lhat the main universal parnmctcr (calicd the Lévy
index) is indecd invariant under 5uch operations for simulalcd cascade fields but here they find, quile
understandably, rather dirrcrent universal parameters than those obtaincd for the nlbedo field ilself. Sec sect. C.3­
5 for brier descriptions of the dirfcrent analysis techniques employed by the vnrious authors.

18-rhis numerical expcriment is describcd in full dctail by Gabriel [1988] while t~~': main results of arc alsa rcportcd
by Davis el al. [199Oa],

19A priori, slich is not the case of the additive modcls reeently proposcd by Barkcr and Davies [19923]. In arder to
oblain intcresling cloud fields (the authors takc the individual c1auds ta he hamageneaus), lhey must use a
truncatian, a "zcro-crossing set," 10 restore intermillancy into the system (sec sect. C.2-4 for a discussion of
similar models used in turbulence theory).

2ÛThese media have the folitwing two-nux-equi'o'alcntly, diffusion-transmittallce: TO::DI/(l+bt) and R[);CJI-T,
where bO-D(I-g) is as BC/phase funetion (g is the asymmelry faelor), up 10 an 0(1) numerital faelor. So
TO-D(l/b)'t"' for~»I, hence VT =VR =1 in the (Ihiek) cloud Iimi!.

21The above yields RD=Db1:/(I+b~) and TD=DI-R. So RD- b1: fo««I, i.e.. a Iincar response, henee (formally)
v-rO=OvRO=O-l in the Iimit of "thin c1ouds" (a somewhat self.contradictory expression).
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Chapter One

TECHNICAL PRELIMINARIES,

DEFINITIONS AND CONVENTIONS

Succinct Ovcrview of this Thesis: We are primarily concerned with the effects of

spatial vaIiability on the radiative properties of clouds in the visible part of the EM spectrum

(wavelengths ",0.5 Ilm, where absorption is negligible) associated with BCs that describe

collimated illumination of the (top) boundary. We will be comparing the predictions of

different radiation transport theories when applied to various inhomogeneous cloud models

(in particular, of the scale invariant type), and find that systematic differences arise from one

theory to another, on the one hand, and w.r.t. the very special case of homogeneity, on the

other hand. In agreement with Cannon [1970], we view "channeling" as one' of the basic

mechanism underlying inhomogeneous radiative transport in presence of multiple scattering.

In die following, we will define as precisely as possible the terms underlined in the above

(respectively, sect. 1.4, 1.3, 1.2, 1.1, and 1.5), right after setting our bearings (sect. 1.0).

1.0. Orientation Conventions

As mentioned above, there is generally a privileged direction in our radiation transport

problems: that of the incoming radiance. This will allow us to define a "top" (hence a

"bottom") as weil as a vertical direction (henee horizontal planes). We will sometimes need 10

differentiate the vertical and illumination directions; in such cases however, the geome!ry of
~

the cloud must have sorne very obvious anisotropy (e.g., the infinite horizontal extension

obtained by periodic replication of a finite unit eell). Whenaxes become necessary, we will

take the z-axis as vertical, oriented downwards (Le., following the incoming flux) and ­

coordinatcs originating at cloud top; this choi~e is common practice, but not universal, in

radiative studies. We will orient the coordinates on our unit sphere, Le., (propagation)

dircction space, using the same convention: that is, ils "north pole" is at nadir (in the

dircction of the positive z-axis). Thislast choice is by no means universaI in thê' radiative
il ,,(/

litcrature, it howcvcr seems tà bé more consistent with the kinetic theory foundations of

radiative transfer (detailcd in app. E): there is no rcason to reorient the axes when going from

the position part to velocity part of the photon's phase space.
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1.1. (Optical) "Medium," or (Cloud) "Model"

For the pUrpOses of radiation studies (at visible wavelenglhs), we view a "cloud" as a

distribution of scatterers within a given region (M) of d-dimcnsional space (!Rd). This

distribution is oost descriOOd mathematically as a density function of position (x) in M (or,

more simply, a density "field"): say, p(x) with xEM. The pair {p('),M} constitute what we

will caH the (optical) medium or cloud model and it obviously has two basic attributes: a

"support" M (equivalently, a "shape" or "boundary" éJM, in standard topological notation)

and a "stmcture" descriOOd by the non-negative function pO,
The "support" can 00 either infini te, semi-infinite, or bounded. Infinite media must

necessarily 00 invested with internaI sources and, in such cases, we are generally interested in

the temporal evolution of a sudden,burst of radiant energy and the ensuing random walk

statistics of the energy carriers (that we will somewhat abusively cali "photons," sec app. E

and B). The semi-infinite medium can 00 steadily illuminaled at the boundary that lies at finilc

range and we can ask about its reOection (or "alOOdo") properties. Bounded media come in

two categories: vertically bounded (and, implicitly, horizontally unbounded), and

horizontally bounded (and, again implicitly, vertically bounded too). In practice, memOOrs of

the former e1ass are usually made of an infinite numOOr of repliCas of a given mcmOOr of the

latter class laying one next to the9ther (the horizontal projection of M must then 00 a shape
.~

that tiles !Rd-t) and the radiation Oows freely from one unit ccli to the next.2 Notice that this

arrangement could'provide the kind of anisotropy needed to define a "vertical" independently

of illumination. We will sometimes talk about "cyclic" (versus "open") horizontal Bes. This

is however somewhat misleading since the difference is one of support, not one of BCs at

all-in the sense of, say, using the Dirichlet-type versus the mixed-type or a simple change of

illumination angle. This possible source of confusion must 00 c1arified from the outset

OOcause we are interested in separating the radiatively important and unimportant factors and,

with a few sublleties to 00 explored furlher on, "support" and "BCs" are in different

categories (respectively, important and unimportant3).

The' "structure" of the medium can be either homogeneous (constant p) or

inhomoi~neous(variable pl. It is normal practice to require éJM to be convCx and almost

everywhere smooth (see app. A) which is not a limitation within the framework of

inhomogeneous media OOcause of the option of using null density values. In fact, we can

emOOd a homogeneous medium with an almost nowhere differentiable hence (or otherwise)

non-convex boundary in a region with an ouler smooth and convex boundary. containing

complementary empty and filled sub-regiolls; 'we thus create a special class of

inhomogeneous media that, as it turns out, can teach us somcthing (give us hints) about
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variabilily effects in general (see chap. 2 for details). BOlle ./ide inhomogeneous media can he

eilher determinislic or stochastic. In the former case, sorne (hopefully) simple rule for

constructing the medium is sufficient (see sect. 4.2 for an example). In the latter case, ail of

its n-point statistics should, in principle, he specified; the hetler known 2-point statistic is the

auto-correlation function (see sect. 4.4 for details). In practice however, a set of rules that

precisely descrihes the role of randomness is sufficient (see app. C, chap. 2 and chap. 6 for

examples); one can always deterrnine the said statistics from the rules anyway (atleast

numerically). When dealing with stochastic cloud models we will he interested in ensemble­

average radiative or structural properties; we will denote s~ch averages (over the "disorder")

by angular brackets: <'>. Stochastic, deterministic and even homogeneous (but somehow

asymmetricaI) media ail require spatial averages to he taken, for instance, te obtain total mass

or bulk responses; we denote these averages with bars: -:-. We will meet yet another kind of

stochasticity in sect. 1.3 below which is more fundamental since already present in

homogeneous (or olherwise deterrninistic) optical systems.

Independently of the deterrninistic!stochastic dichotomy, inhomogencous media come in

many flavors ranging from regular, "smoothly varying" (differentiable) p-fields to their

"extremely variable" (multifractaI) counterparts, with the intermediate categories of "irregular"

media (non-differentiable but possibly continuous on average) or of "singular" media which

can exhibit an arbitrarily wide range (or ratio) of p-values but lack the cascade-type (hence

highly correlated) structure of;multifractals. We will he investigating generic examples from

most of these broad categories. Another important factor in inhomogeneous cloud models is

the range of scales involved in the variability andjust how that affects the various statistics of
\. Il

~~~ficld - ..

1.2. "Seale Invariant," or "Sealing" (both Simple- and Multiple-)

These adjectives have both extremely broad and very narrow meanings. They can he

used to descrihe anything vaguely related to fractal structures and (usually statistical) power

G law relations, i.e., they describe systems that exhibit no characteristic length; they can also he

applied to families of objects (sets) whose members are exactly self-similar images of one

another, i.e., the family is invariant under change of scale (x--'À±lx, Îl.<!:l); they can also

mcan both together ... as in the title of this thesis. Connections with dimensional analysis

and similarity theory are obvious and examples are providedin sect. C.I and C.6. As·

mentioned':above, we are interested in systems that are invariant over a wide range of s~les;

in theory (e.g., chap. 5), this range can he infinite (ÀE[I,ooD and, in practice (e.g., chap. 2,

4 and 6), this range remains finite but is made as large as possible (ÀE[I,A] with A»l).
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In the most interesting (and contemporary) acceptance of scaling concepts, they are

applied to fields (rather than sets) and the variability of (range of values taken by) the field

quantity is directly related to the range of scales involved; we can distinguish two types of

scaling behaviour: simple- and multiple scaling. In simple scaling models, we are usually

more interested in absolute differences (Iôpl's) taken over a scale (ôx=lôxl) than in the field

value itself; they are typically such that

lôp1ux ,!! Â,H lôpl&x (1.0)

where ",!!" means equal in distribution. These models are said to have "stationary

increments," and clearly they must be constructed by sorne "additive" procedure, possibly in

Fourier space. We notice that a single exponent arises (sorne examples are provided in sect.

C.2 where the fractal interpretation ofH is discussed). In contrast, multiple scaling models

have a different scaling exponent for every threshold (Â,Y, "(E~) which is best expressed as

Prob{p1..~Â,Y) -Â,-c(Y) ~,(I.1)

where "-" is used to absorb non-exponential (prefactor) functions or y as weIl as slowly

varying (log) functions of Â,. We refer the reader to sect. C.2-5 for the nomenclature

associated with y and c(y) as weIl as several mono- and multifractal examples, all constructed

with "multiplicative" procedures.

1.3. (Physical) Radiation "Transport Model," or ".Thcory"

1 .3.1. Kinetic-Type Theories
This expression is used to describe any well-defined way of associating radiation fields

to density fields. The "way" usually consists of equations that express sorne kind of physical

conservation law or balance between different features of the radiation field and this

necessarily involves the density field, aIong with the pertinent opticaI parameters (typically

related to elementary cross-sections), plus the appropriate BCs. In Preisendorfer's [1976]

words, we want to relate a cloud's "inherent" properties (Le., its structural and optical

parameters) to its "apparent" properties (Le., the source dependent radiation fields). We are

mainly interested in "generaI purpose" radiation transport theories (Le., that can accommodate

any given density field) and we know of the following four categories that fall into two

groups of two. We will proceed from the most generai (and difficult to deal with) to the most

simple (and easy to use).

• Continuous angle (CA) radiative transfer. This basic model was pioneered by

Schwartzchild [1914], standardized by Chandrasekhar [1950], and now routinely

connected with particulate-based kinetics, centered on Boltzmann' s equation [sec. e.g.,

Mihalas, 1978], but its relation to ma:ïnst!:eam optics is still unclear: sec lshimaru
, ""-'.

[1975] and Barabanenkov [1969] for connections with scalar wave theory, Wolf [1976]
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and Harris [1965] with EM wave theory. The fonnal connection with kinetic theory

and stochastic processes (app. E) is the most useful conceptually anyway since it fmnly

estabiishes the central role of the photon's free path (f.p.) distribution hence, in the

inhomogeneous case, the spatial- and/or ensemble-distribution of f.p.-distributions (see

sect. A.2). Recall that in homogeneous situations everything is detennined by the

m.f.p. (and aM), but such is not the case in inhomogeneous situations where the m.f.p.

becomes a notion which is only local (and is therefore useless by itself). The most
\: .

interesting (but difficuIt) problems involve multiple scattering and we are then dealing, .
with random waiks (RWs) in random environments (or, at least, environments where

the m.f.p. is a non-constant function of space). We will see that thestl two sources of

stochasticity-one additive in nature, one multiplicative (in the muItifractal

case}-interact in a highly non-trivial fashion. In order to unravel this interaction as'

best we can, we need a separate notation for the RWs and we have adopted the

mathematician's "expectancy:" E(·). Notice that the RWs are subordinated to the

spatial disorder; so <E(·», or E(·), makes sense but not E«·», nor E(:"); examples

of how the different sources of stochasticity/variability can be combined are provided in

sect. A.2 (and an application is found in sect. 4.4). The basic construct of CA transfer

is the field Iu(x) (lul=l, XE M) of radiance propagating into direction u and we will J)
:. JI

present (in sect. A.3) a reading of the transfer equation as a balance between?'

x-gradients and u-anisotropy in Iu(li), on the one hand, and p(x), on the other hand.

We also refer the reader to app. A for the other CA idiosyncrasies related to other parts

of this thesis (spherical harmonic expansions, phase functions, similarity, BCs, and

various operational definitions of albedo versus transmittance).

• Discrete angle (DAl radiative transfer. This approach can be lraced back to Schuster's

[1905] two-flux theory, possibly the fust theoretical paper ever on multiple scattering.

Later generalized by Chu and Churchill [1955] to a six-beam model, the idea was

systematicaily explored by Lovejoy and his co-workers in the late '80s [Gabriel et al.,
1986;"Gabriel, 1988; Lovejoy et al., 1990; Davis et al., 1990a,b]. DAs are merely a

speci~l=case of CAs (with ô-like phase functions and radiances) where only finite

families of beams are coupied by the scattering processes. The simplification is very

welcome when the focus is lUmed towards the effects of inhomogeneity since at least

modest analytical progressispossible (chap. 3) while numerical speed-up is

outstanding (app. B, chap. 4 and 6). ')

In sect. 4.1-2, we make sure tharDAs and CAs are sufficiently similar (in the scaling sense

of the word) to be considered in the same cIass of transport models that we will refer to

generically as transfer (bearing in mind that they are basicalIy kinetic theories).
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1.3.2. Diffusion-Type Theories
:'<i

l ~otice our insistence on using "transllQ!1" as the most general expression and "transfur"
..' fi

as a more specific case, although "Yê will see that either of the two above models conlains

both of the two remaining models as special cases, formallimits and/or approximations. We

must however beware that, in the Iiterature, "diffusion" is often referred to as "transfer" ...

and sometimes vice-versa. This can be partially justified in the more homogeneous

applications where ail of the theories agree pretty weil (e.g., chap. 2, last example in §2.3.4

excluded). In extremely variable media however, they syslematically disagree (e.g., last

example in §2.3.4, and sect. 4.2) and we are therefore of the opinion that they should be

viewed as independent transport theories, each one interesting i~ its own right.

Notwithstanding, the connections between the various theories are also interesting 10 explore

since they help us to understand the reasons for their (dis)agreement as a function of the

structural properties of the media (see sect. D.1, D.6, 2.3 and 4.4).

• Diffusion. This is the well-studied "hydrodynamic" Iimit of kinetic (hence CA transfer}'·

theory (see sect. D.D-I for a review); in the conlext of radiation transport, the original

idea goes back to Eddington [1916] in homogeneous systems, and Giovanelli [1959] in

inhomogeneous systems. Interestingly, the diffusion model can also be reached via DA

formalism [Lovejoy et al., 1990; Davis et al., 1990b, 1991; or sect. 3.3] and this is

done by operating on the phase function, not on the u-distribution of the radiance field

(as in the standard approach) since this option has already been implicilly exploited by

putting oneself in the DAframework. This is a much simpler model that has attracted

far more attention from the physics community at large, probably because it caIls for a

single scalar field U(x) (XE M) that represents (radiant energy) density; at any raie, we

systematically exploit it in chap. 2 to investigate the basic effects of inhomogeneity.

The key concept here is (radiative) "diffusivity" that we will denole D(x) and which is

the diffusion theoretical counterpart of both m.f.p. 's ànd phase functions in (CA or DA)

transfer (see sect. D.3 for the connection with correlated RWs). The gradient­

anisotropy balance is reflected in the characteristic Fickian law or "constitutive" relation:

(net radiative) flux is given by F = -D'VU and, in absence of absorption, we of course

have 'V·F =O. We will see (chap. 2-4) that, generally speaking, the diffusion and

transfer theories make different predictions for transport through extremely variable

media but, we maintain a keen interestin both theories not only for theoretical reasons

but observational ones also; indeed, King et al. [1990] have recently produced slrong

evidence that diffusion may apply quite weil in typical cloud decks (see sect. D.2 for a

detailed discussion of their findings). We refer the reader to the rmal sections of app. D

for the standard similarity properties, the non-standard BCs (that should be used in

.
:,'
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radiative applications), the RWs of "diffusing" particles(not to be confused with

photons!), and examples from radiative- and other homogeneous and inhomogeneous

applications. . .

• "Independent pixels" (JPsl. This is certainly the simplest possible model for

inhomogeneous radiation transport since ail higher-dimensional effects ·~ie neglected:

the radiative flux lines are constrained to he vertical. This can he done in different ways

in ail of the above theories: CAs cali for internai vertically oriented boundaries that are

perfect Fresnel reflectors (followed by homogenization inside each sub-domain),

diffusion calls for simiiarly oriented boundaries that are insulating CF.l=0), and DAs

simply cali for a phase function with no side-scattering, only in the forwardlbackward

directions. This last approach to IPs yields d uncoupled one-dimensional diffusion

equations, one for each spatial direction (although only the vertical one is excited with

our usual BCs), so this is essentially another, ultra-simplified diffusion-type theory. A

certain number of radiatively independent columns are thus defined, each equivalentto a

homogeneous plane-paralle! medium, and an anaIytical solution can therefore be

obtained for each one; the IP solution is simply the spatial average of these

"pixel-wise" partial solutions. Because of the nonlinear---convex, for

transmittance-dependance of the plane-parallel result on (optical) thickness, this last

(averaging) operation alone is enough to guarantee a systematic difference between the

IP solution and the one that consists in neglecting internai structure altogether (see sect.
:r-

3.3 for mathematical details and D.S for electrical parallels). In practice (computational

effort), IPs constitute a kind of compromise between the complete homogenization of

the medium and theJull-blown d-dimensionaUnhomogeneous transport; we shall not
>...:..::

be surprized to see thatthis is exactly where the IP answer (say, for transmittance) lies

quantitativelyalso: viz., in between the (analytical) homogeneous plane-parailei result

and the (numerical) transfer or diffusion result, at least if the total mass is held constant

(see chap. 2-3 for the theory, and chap. 4 and 6 for illustrations). The name that we
Il

have retained for thisapproach was coined by Cahalan [1989] in connection with

Landsat imagery simulation with the help of a multifractal cloud model. The technique

has however been used in many other circumstances, for its sheer simplicity, e.g., in

GtM radiation routine calls, going from one grid pointto the next, but also by using

the "cloud fraction" concept inside cach cell; in absence of further information on sub-.=-
cell variability, this use of IPs is more-or-Iess justified. For an application of IPs to ill

<-~

silll cloud ra.diation measurements, see also King el al. [1990]; in this case, the method

is far less justified due ta the obferved variability (see sect. D.2 for more details).
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We have listed the four transport theories by order of increasing "user-friendliness," as

mcasured by the degree of understanding we have of inhomogcneity effects which gocs

more-or-less hand-in-hand with the amount of analytical progress to date. Furthcrmore, we

notice that the number of ways a given physical transport model can be reached is in direct

proportion to this (rather subjective) notion, as weil as the degree of approximation (using

CAs as the benehmark). In fig. 1.1 we present graphically our complete constellation of

transport theories with ail of the abave mentioned inter-connections.

We have deliberately excluded from the abave discussion ail "non-gencral purpose"

radiation transport theories whieh can only handle a specific kind of medium. Sorne of these
;-:::::~.

will however be discussed in relevant part of the thesis (e.g., chap. 4). Amongst these

approaches to the multiple scattering radiation problem, we could mention the work of

Lovejoy et al. [1989] and Gabriel et al. [1990] who adapted (real space) "renonllalization"

ideas to DA transfer on grids; although the general idea may prove more useful, thcir mcthod

applies specifically to the deterministic monofractal medium studied in sect. 4.2 (as weil as

sorne less interesting homogeneous cases). Another example is the "mean field" thcory

developed by Avaste and Vaynikko [1974], Titov [1990), Boissé [1990]-lhe IWO liiïier

relying heavily on the forme~that applies only to transfer lhrough exponentially

decorrelaling (hence generally4 non-scaling) binary mixtures in plane-parnllel gcometry.

1.4. (Radiative) "Response," or "·Property," and ils Scaling

We will use thcse expressions to designate sorne simple, scalar measure of the radiation

field that is excited by external illumination at a boundary: albedo (or renectance),

transmittance (direct or total), and absorptance (on occasions). The main thrust of this thesis

is to investigate the systematic effccts of inhomogeneity on these "bulk" properties (which we

will also cali integrated-, unresolved-, global-, overall-, mean-, or spatially averaged-) in

presence of multiple scattering but no absorption. With such tools, we are therefore

addressing the cloud "albedo paradox" problem, rather than the cloud "absorption anomaly"

problem or the problems related to the spatial variability of radiation fields (see however chap.

6 for a g!impse at simulated fields and sect. 7.3 for our ideas on these exciting subjeçts).
"

Finally, we can forrnulate a !ittle more precisely our basic radiative scaling relation (0.1): if
"there are no characteristic scales in the system (in particular, this implies5 vanishin'g

absorption), we will have

<IF).-F",I> - ÀKF

when À» 1. If furtherrnore, K. in

<'ti.> - ÀK,.
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is positive, then we are in the thickcloud regime and VF in eq. (0.1) is equal to -KFIK".

Otherwise, we are in the thin cloud ~egime, where Iinear responses can be expected: vr-:-l in

(0.1) and KFK" in (1.2-3). Sce chap. 5 for examples of both types of small scale limit.

1.5. (Cannon's Radiative) "Channeling" and/or (Stcphens') "Modc-Coupling"

1.5.0. Call1lOll's Origillalldea, in Kinelic 17leOrelica/Jargoll and Physical Space

Our main objectives are to define and clearly as possible the effects of density

nuctuations on the now of radiation: (a) on the mean nCiw(i.e., the previous entry), and (b)

on its local features. Generally speaking, the answer to question (a) is that mean nuxes are

systematically enhanced but to diffcrcnt extents for the various transport theories. A possible

approach to question (b) is to try to identify a basic, universal mechanism by which the

radiation fields react to a perturbation in the density field, using the simplest possible

situations and seeingjust how far we can follow the lead into the more complex cases. With

this stratcgy in mind, we propose "channeling" as the basic radiative reaction to

inhomogeneity. This expression was coined by Cannon [1970] and seems to h~ve gained,.
acceptance in the astrophysical literature [Jones and Skumanich, 1980]. C~~non was

investigating numerically spectralline transfer through sorne deterministic two-di~ensional

arrangement of variable optical'dcnsity (and/or other optical parameters); as usual in line

transfer, he was considering a scmi-infinite medium. He noticed the tendency of the radiation

to now 'into the less opaQte regions by increased scattering in the regions of greater opacity. '

Just how this very natural phenomenon connects with question (a), which corresponds to a

very differenttype of support and source distribution than Cannon's, will beçlemonstrated

analytically within the framework of diffusion in chap. 2 and illustrated with numerical results

for DA transf~r in chap. 6. For the moment, we will simply c1arify Cannon's definition as

best we can in the languages adapted toC each level in our hierarchy of radiation transport

theories, starting with the kinetic-type.

'"CA transfer is indeed the tool that Cannon himself was working with and his verbatim

captures the most fundamental aspect of inhomogeneous transfer theories, namely, the

spatially variable frce path (f.p.) distribution: 'increased scattering' means smaller f.p.'s,

conversely we expect longer f.p. 's in the more tenuous regions but, interestingly, the effects

do not cancel on average due to the nonlinearity of f.p.'s probability distribution function

withrespect tooptical density (which is directly related to the astrôphysicists' 'opacity,' see

sect. A.l). ln homogcneous media, f.p.'s are exponentially distributed; in seçJ. A.2, we

show (using characteristic function theory) that average f.p. distributions in inhomogeneous

media will always be wider and in chap. 5 we look at the special case of multifractal media

and indeed we find algebraic laws. There is however another important and complcmentary

lit
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aspect to kinetic "channeling" that is rclated to the angular part of the transfer problem.

Schematically, we can say that the photons are painfully random walking in dense regions

and freely streaming in the tenuous ones, from the boundary of one denser domain to

another. Atthese interfaces, wc can expect stronger u-anisotropy (painting towards the less

dense region) thus driving enhanced x-gradients, fluxes alVay from the dense region appcar;

see §A.3.3 for an argument for the u-anisotropy/x-gradient conneetion from first principles.

Inside thedenser regions, we can expect more u-isotropic {diffusion-like)/adiance fields 10

prevail due to the enhanced scattering (shorter photon f.p. 's). Finally, wc expcct no

fundamental difference to arise IVhen going from CA to DA formulations, the u-distribution

becomes discrete--it is carried by a finite sub-set of the unit sphcrc-but simple measures of

anisotropy can nevertheless bc defined; see, e.g., §3.3.2.

1.5.1. Slephe/lS' ldeas, IlSillg Fourier Spaee alld Spherieal Harmollie Lallguage

Adopting the slightly more abstractlanguage of sphcrical harmonic analysis, IVe can

describe u-anisotropy quantitatively by adding weight 10 the higher order modes of the

radiance field, viewed as a u-distribution. In the following, IVe will argue that any kind of

horizontal fluctuation in the density field will break the spatial symmetry that prevails at

homogeneity. We will closely follow the analysis of Stephens [1986] who uses a Fourier

space approach to inhomogeneous trahsfer; accordingly, we will refer to lhe symmetry­

breaking process as "mode-coupling" throughoutthis thesis (it is used in particular in sect.

2.3). In essence, we view "mode-coupling" as the Fourier spaee/spherical harmonic

counterpartof"channeling," which has natural physical space/unit sphere overtones.

In his basic [1986] paper, Stephens talks about a "horizontal divergence lerm' that

appears in the horizontally Fourier lransformed transfer eq~àtion once it is made 10 look as

much as passible like the classical plane-parallel (i.e., ID) equation. This new term formally

looks like an source/sink term but it has a characteristic v-l factor (it is oost called a "pseudo­

source/sink" term). Furthermore, it is a Fourier space convolution (associatcd with a simple

product in physical space) of density with radiance; if horizontal homogeneity prevails (a

ô-function atthe origin in the correspanding Fourier space), then the more symmetric ID

formalism is identically retrieved. Upon spherical hannonic analysis of the directional

distribution of radiance, Stephens [1988a] notices that6 'unfortunately, the [azimuthal] rp
dependence does not decouple in the more general 2D and 3D transfer problems' due to this

same term. The symmetry breaking mechanism is as follows: under the combined

mathematical effects of the convolution produet and the v-l,factor, the non-vanishing

wavenumber (horizontal) Fourier modes of the density field will excite non-axisymmetric

spherical harmonic modes in direction-space at all scales (wavcnumbcrs), including the

largest (vanishing W~venumOOr). In partieular, this means thàtthe overall{spatially averaged)
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flux will generally bc affeeted, althoughjust how (mueh) and what parameters of the problem

play a role are non-trivial questions that should bc the objeet of future researeh.

We tentatively summarize this whole Fourier space/spherieal harmonie picture with

the expression "mode-coupling" although we do not want this to bc confused with!Sl~phens'

[1988b] description of a hicrarchical coupling of scales (spatial Fourier modes) leading to a

closure problem. We in fact use a (numerically-based) finding of Stephens' [ibid.] to show

(in §2.3.2) that the above mentioned effect on the overall flux is apt to bc a boast under quite

general circumstances, thus confirming our (§2.3.1) diffusion theoretical analysis of

"channcling" in physical space.

J .5.2. Implications for Diffusioll Tlzeory

Diffusion is a special Iimit of both CA- and DA transfer, corresponding to radiation

fields that can modelled with an "isotropie" component (J) and "dipole" component (F),:it is
:,).

thcrcfore quite easy to find the implications of "channeling" in this context. The flux F tells

us about the mean direction and intensity of the flow of the radiation, as controlled by the

multiple scattering (which is taken for granted in this approach, see sect. D.1-3);"~· enhanced

by the occurrence of higher radiative diffusivity D (lowerdensity p) and/or stronger gradients

(l'\7JI), but the second factor is of less interest to us because it is also at work in homogeneous

situations. "Channeling" can therefore be described graphically in this context: the pattern

of theF-lines along with the density field tell the whole story. Fig. 1.2 illustrates the two

basic situations of a hypothetical average radiative flow colliding with a positive and a

negative density fluctuation. In the former case, the Iines are repelled by the dense region

(where F decreascs); in the latter case, they are attracted into the tenuous region (where F

increases). Notice that the total numbcr of lines (hence the mean flux) has increased when

going from homogeneity to inhomogeneity; this is a non;trivial effect (investigated in sect.

2.3) that is guaranteed to arise when the total mass'is kept constant.

J.5.3. Positiollwith respectto the "Indepelldellt Pixet" Approximatioll

Although sorne systematic nonlinear effects remain that are traceable to Jensen's
.~ J'

inequalily for convex functions in functional analysis (see sect. 3.4 for detail~): the simplicity

of thc''i'P approach stems entirely from the postulate of "non-channeling" (only vertical

F-Iines are allowed) and indeed higher dimensionality plays a fundamental role in both of the

above descriptions. Indeed, a whole sequence of events is initiated if the IP constraints

describcd above are suddenly relaxed (e.g., side-s.cattering is "tumed-on" in DAs). As stated
"'-'" ..

above (and demonstrated in various ways in variotiS"parts of this thesis), the new steady-state

configuratio~~ill obviously include non-vertical (possibly very convoluted) F-Iines and an

incrcascd oveI1Îll transmittancc, which is proportional to the mean (vertical component) of F.

In this respect, we can use IPs as a bcnchmark and define an overall measure of "channeling"
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as the difference between the IP response and ils CA, DA, or diffusion counterpal1. In chup.

6, we tum from unresolved- to fully resolved rudiation fields in (a specific rcalization of) a

multifractal cloud Iriodel, only to find our above description of the basic inhomogeneous

transport mechanism confirmed. Other intercsting and "chunneling-relatcd" effects are also

observed; for instance, the powerful smoothing (via multiple scultering) of the fc.·llures of thc

dcnsity field that increases along with the "Ievel" of "channeling," defincd as the "DA minus

IP" difference in the (bulk) transmittance. This tells us that the thicker the cloud, the more

scattering occurs, the more "channeling" is enhanced (a prerequisite for "anomalous" scaling

to occur) but also, and somewhat paradoxically, the more bland the fealUres of the apparcnt

(emerging, rcmotely mcasurable) radiation field.

1.5.5. SUIllmary

It is fair to say that "channeling" is above ail a paltel11, a concept which shows different

facets of itself when examined under the different theoretical "spot-lights," as described in the

above. We remark that ail of the three descriptions we have provided in the ubove ure

perfectly cOl1)patible with one another, at the highest level in the hierarchy of transport
..'~'::-

theories: in transfer approaches, one has at once order-of-scattering statistics, nux veclor

fields and overall responses. In the future, we can expect more precise definitions to arise, or

else the concept will evolve into one more precise, with a different name ... either way, we

have gained insight. In final analysis, we have adopted the expression becausc it is intuitivcly

appcaling, it conjures up ideas of the nuid-like behaviour of the radiation: it "nows" around

obstacles (dense regions), into "valleys" (defined by the more tcnuous regions). This is what

one expects from any macroscopic continuum-type theory, in sharp contrast with wave-like

behaviour that characlerizes a microscopic (say, EM) theory of mutter-rudiation interaction.?

The f~ndamental role~of higher dimensionality and of nonlinearity are stressed by this

analogy bUl it should not be pushed to far--or rather, lhere are subtleties. For instance, the

"nonlinearity" is not an attribute of the radiation field itseIf, the basic equations are linear in

this quantity (unlike the Navier-Stokes equations (C.I-2) W.r.t. the Eulerian velocily field);

instead, we are talking about the radiation-density coupling (not totally unlike the admixture­

velocity coupling in eq. (C,42) for passive scalars which is linear).
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IThc. other mcchanism idcnlified by Cannon [1970], a more-or-Iess erricient coupling of the radiation· to the
tcmpcrature field. is irrclcvant to the "albedo" (diffuse renectionltransmission) problems discusscd throughout Ihis
thesis as il on1y applics to problems wilh a specifie type of internai source.

2The same rcmark can he applied la the very (ics! that wc calegory rncnlioncd, i.e., infinite media (then M must of
course tile ffid),

3This statcrncnt applies to the mixed/standard BCs in the important case of horizontally extended atmospheres, the
illumination angle problcm is not rcally addrcssed in Ihis thesis and we suspect il to be far more subtle (soo, e.g..
§S.4.3), Also, in the cxlreme case of quasi-grazing incidence. the scaling propcrties become more complex since
lhe thin cloud fixed poinls (fo ond Ro>ore bath 112, instend of 1 ond 0, rcspectively,

4-rherc are two scaling limits 10 Ihis model: infinite and vanishing integrat correlation length. corresponding
respcclÎvely to homogcneity and white noise. Intcrestingly, the Iwo lead to formally identicaJ equations (hence
trivial scaling bchaviour).

Sin hOOlogencous absorbing systems. onc can define a charactcristic optical scale (the so·called "diffusion" length
scaJe) and cxpcct associaled exponenlial bchaviour (sec sect. D.3-4). This scale diverges with vanishing
absorption (probability per clcmentary collision event), leaving on1y the ovcrall size of the system as a relevant
sCc11e in the system 10 describe the resulting algehraic behaviour. Clearl)' the same is true in mildly
inhomogcneous siluations but just how much this picture carries over into eXlremely inhomogeneous multifractals
is an interesting and (".absorption anonlaly") relevant question for future research (sec sect. 7.3).

6Stephens' use of the word 'unfortullalely' is very interesling because, in cffeet, the pseudo-source/sink tcrm will
cause the inhomogeneous radiative trallsferist to have many a head·ache but at the same time it will make his Iife
most inleresting.

7As poinlcd oui in app. E. the conneclion between these t\\'o aspects of mailer-radiation interaction is highly non·
trivial.

ff
Il
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Figure 1.1: Inter-connections of the various
radiation transport mode1s (or rbooôçs) Dm jn Ibis
~ An -4 (or two) from theory X to theory Y
mC3nS that "Y can be reached from X" as a special
(or Iimiling) case; this can usually be interpreted as
"lheory Y approximales theory X" in certain
circumstanccs, most of which are spelled OUI in the
various parts of this thesis. Inlereslingly, each
transport theory is uniquely characterized by the
number of -4 's il receives and this number is a
reasonable measure of its degree of "case to handle"
(on a seale from 0 to 3). The key deseribes the basic
operations to be performed.
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Figure 1.2: A schematic iUustratioo Qf the Iwo bwj;ç tyw~ Qf "rhlinneling" event tl;Jt can occyr within the
frameworJç of djf(usive (radiation) lranspoa. (a) Reference fluX~li~'es for a homogeneous medium. Notice that
more lines,are "puUed in" from the sides in the inhomogeneous~, assuming the tolJlI mass is constant (this
expresses the fact that the overall flux has increased). (b) The flux-Iines tend 10 be expelled from a region of
higher-than-averagc (optical) dcnsity, i.e., the flow is "deflected'; by the obstacle. (c) ln presence of a negative
density fluctuation, the flux-Iines are allracled ioto il, i.e, the flow is "funnellcd" through thc low densily
rcgion.~'~
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Chapter Twot

THE BASIC RADIATIVE EFFECTS OF SPATIAL VARIABILITY,

THE DIFFUSION PICTURE

Overview and Preliininary Remarks: ln this chapter, we use the diffusion model of

radiation transportito explore the most obvious effects of spatial variability on the overall

radiative propertië~ of clouds in the context of diffuse reflection/transmission via multiple

scattering (m.s.). In',\11 circumstances, we underscore the fundamental importance of net

horizontal fluxes that play a key raie in the ubiquitous phenomenon described by Cannon

[19'70] as "channeling," tentatively defined in the introductory chapter. '\\
'\1 At this point, we take the term "spatial variability" in a rather broad sense. In sect. 2.1,

we investigate media that are homogeneomtâoo'horizontally extended like their standard

plane-parallel counterparts but, having upper and lower boundaries of arbitrary shape, they

are more general; in fact these media are best viewed as a special class of intemally

inhomogeneous media bounded by two horizontal planes. 1 ln sect. 2.2, we turn to

homogeneous media that are horizontally as weil as vertically bounded (and special interest is

taken in spherical shapes). Finally, in sect. 2.3, the external shape is no longer of any

importance and the systematic effects of internai variability on overall response to

illumination are the focus. In the various sections, we use quite different methodologies:

formai analogies with electrostatics (sect. 2.1), harmonic analysis using separation of

variables (sect. 2.2) and, finally, a perturbation-type approach thatparallels Stephens'
~p.-,

[1988b] application of a simple "closure" hypothesis to a two-flux théâiy mo..1ified for the
'~"'- Ir=:-- "->",

most obvious effects oi\inhomogerieity (sect. 2.3), followed by furiher harmonie analysis
'.... ' - )'

and formai analogies. The b~ic results are: lI' !~C.~;::::;)"(
* ln the frrsuection and following our discussion in sect?D;§"éon horizontally extended .>

~ U ,
homogeneou~tedia), we relax our normal (mixed~boundary conditions (BCs) to their

simpler Dirichlet counterparts and find two rigorous inequalities in the mathematical

physics literature. Expressed in radiation transport terms, they read: 'for a given

boundary shape, transmittances associated with d-dimensional diffusion excced those

corresponding to its "independent pixel" (IP) approximation (where no horizontal fluxes

~
Il
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ar~ allowed),' on the one hand, and 'arbitrarily shaped media (diffusively) transmit more

than their plane-parallel counteIJlarts of equal mass,' on the other hand.

* In the second section, we find a ciosed form solution for the albedo problem of

homogeneous spheres (diffusely illuminated by a distant point source) which tums out to,
be formally equivalent to that obtained in app. D for a (diffusely illuminated) slab. It is

argued that every-step in the calculation can be transposed to several other shapes that
.1

musthowever be everywhere smooth. This purely mathematical necessity precludes
,~

cubes, that are obviously in the same (homogeneous, horizontally bounded) ciass as

spheres from the physical point of view, as shown in sect. 4.1. In this case, a naïve

application of IP ideas can violate the above inequality and, furthermore, using Dirichlet

Bes leads to physically absurd situations (infinite fluxes ariSI~). These findings stress the.

fact that one cannot quantitative1y compare the optical properties of media that do not share

the same support (to within a well-defined scale-changing operation).

* In the final section, we show that inhomogeneous media are more than likely to be more

transmitting than their homogeneous counterparts with the same outel~hape and total

mass. This last inequality is illustrated for horizontally bounded media by boring a cavity;
-:~---

out of the homogeneous spheres of sect. 2.2 and generalizing the analytical solution to

this elementary form of inhomogeneity-the outcome being a prefactor effect in the

scaling characterization spelled out in eq. (1.1-2). Finally, horizontally extended me(l{~~\
., li \,

(, are illustrated with random binary mixtures and the outcome iis either a prefactor- o~an

exponent effect, depending on whether or not the low density cells are in fact completè)y.
,.' JI .

emptY;0 J/
Many of the results obtained (analytically and/or by analogy) here will be combined ~ith

\h'ôse obtained (numerically) in the first two~ sections of chap. 4 for (the analytically

intractable) homogeneous cuboids and (the far more interesting) fractal media respectively;

we therefore postpone until the end of that chapter, our general discussion of when, why and

for which physical transport model (diffusion versus transfer), one can expect to observe,
"anomalous" radiative scaling.

We restrict ourselves throughout this chapter to conservative steady-state problems, for

which diffusion theory makes uSe of

V·F=O /='" ( (2.1)' cy
where F is the net flux vector. This result is exact as it sirnply (efl~Îî~i~nservation of 1

radi~nt energy (s~ se~t. D.1). Il. must be comple.m~nted b~ tiie~rp~pri~e constituNve

relanon expressed ID thlS case by Flck's law (for radianon) whlch reads as : -
Il .

Fo<-~VU "(2.2)
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where U is radiant energy density but we tend to use J=cU that we will cali "total radiance"

(somewhat abusively, see sect. A.I). The flux-to-gradient ratio is radiative diffusivity (c is

the velocity of light) as is shown in sect. D.2 (and, independently, in sect. 3.3). The usual

asymmetry factor, related to the phase function by (A.20), is denoted by "g," while "Kp"

designates optical density and we recall that these parameters combine into the so-called

"transpon" m.f.p.1/(I-g)Kp. Finally, the proponionality factor in (2.0b) is always 0(1) and

depends on the details of how the hydrodynamic limit of the radiative transfer equation is

taken; for instance, if Eddington's approximation is used (as in sect. D.2), then we find I/d

where "d" is the dimensionality of space. For funher details on the connection of the above

approximation with standard continuous angle (or "CA") transfer theory (including a .

discussion of its conditions of validity), similarity relations, boundary conditions, formai

analogies, standard (homogeneous) scaling properties, as weil as a qualitative description of

the idiosYI:crasies of inhomogeneous diffusion (including an illustration using random binary

mixtures), we refer the reader to app. D where much of this prerequisite and anciIlary

material has beencollected. .

In several portions of this chapter (most notably §§2.1.2-3, §2.3.4), we will be

exploiting formai analogies of the diffusion approximation (to radiative transfer) with

apparently remote transpon or polarization1 problems. In this way, we can cast new light on

the fundamental pr6cesses of inhomogeneous radiation transpon by "recycling" inlo radiative

language existing theorems, in some cases (§§2.1.2-3), and re-interpret precise numerical

results, in other cases (§D.6.2 and §2.3.4). The specific field with which we choose to

establish a formal connection is determined largely by the (usually) bibliographical source

where the result of interest was frrst established-or, at least, found by this investigator.

Moreover, we favour the use of notations that are more-ore-less traditional for the field of

research in which the targeted result was originally obtained since this somehow eases our

(mental) "visualization" of the process under consideration. At a higher level of abstraction

(than we presently wish to work at), aU physical systems constrained by a continuity and a

constitutive equation-respectively, for a conserved (extensive) thermodynamic quantity and

an (intensive) thermodynamic forcing on its flux-are equivalent to one another. In table
r.;,;;:.~.,-

2.1, we detail the (electrical) correspond<:iicêifused somewhere in this chapter. Since we

have come to adopt fluid mechanical jargon to describe inhomogeneous radiative "flows"

(including Cannon's expression of "channeling" jtseIf), we have added to table 2.1 the

formai analogy with the (laminar) fluid dynamics of porous media; for a recent survey of

this topic with many geophysical applications, see the recent volume edited and contributed
n

to by Cushman [1990). "
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ApplicatiQn: RadiatiQn Transport ConduclOrs CapacilOrs AQWS in PQrQus

( or Neu!rQnics Media

Conservcd Oyantjty; Radiant Encrgy Charge Charge Mass (Qf incQm-
(Qr partic1e number) (dynamic) (static) pressible nuid)

Flux Ouamity: Radiative Aux Current Density Displacemcnt Specific Discharge Rate
f(wilh V{= 0) F j D . Q(0< velocity)

Field Ouantity· Energy Density PQtentia1 PQtential HydraulicHead
F U=J/c $ (E = -V~)

cjl H (0< pressure)

CQllpljng Coefficient: Diffllsivity CQnducôvity Permiltivity Hydraulic CQnductivily
C (wilhf = - CVF) D Q c/(I-g)Kp cr e K

Constitutive Relation· F=-DVU j = crE) D=eE Q=-KVH
(Fick) (Ohm) (-) (D'Arcy)

BQundp,ry CQnditiQns; mixed [ Dirichlet ... Qr ... VQn Neumann 1

Table 2.1: The cQrrespondences in fQrmal diffusiQn analQgies.

One can always consider diffusion as an interesting transport theory in ilS own right

but, from our discussion in app. D on the connections between diffusion and radiative (or
neutron) transport, we can only expect a good'agreement for media that are ~ot too
inhomogeneous--this is amply verified and (at least tentatively) explained by the end of

chap. 4. Generally speaking, this means that the variability effects that we observe here are

weak versions. of the kind ofeffect we can expect ITom highly irregular optical media such as
.\

those modeled "':ith the help of fractals and multifractals that we turn to in the midd1e of chap.,
4. In short, we will tend to find prefactor effects in the following and exponent effects later

/1 "
on but the directions of these effects is the same (higher fluxes) and we strongly suspect that

the basic meclfanisms ·involved are als~ very similar. More precisely, we introduce
/ --'

"channeling" as soon as the upcoming section oriâ: very restricted class of inhomogeneous

media (that merely model homogeneous cases with arbitrary shape by introducing internaI

discontinuities) and we will still be seeing il actively at work in chap. 6 but on a all scales

within a typical multifractal density field (this is extremely variable and highly singular).
Î.'

r~_'l.: .,.

2.1., On the .Effect of Shape in Horizontally Extended HomogeneousMedia
f' (and an Interpretation in Terms of Internally Variable Media)

/,

, In this section, we make use of the formal analogy existing between the radiative and

dielectrical diffusionproblems since this is the focus in the early sections of Mossino's

[1984] monograph (on isoperimetric problems in mathematical physics) that we will be

following in the next two sub-sections. We also recall ITom our discussion in sect. D.5 that,
,-.
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for weakly variable horizontally extended media (there is no "terminator" in sight, as defined

in sect. A.4) that are also relatively thick, we do not need to enforce mixed BCs, the Dirichlet
conditions suffice.

2.1.1. The Extremal Property ofDiffusive Transport in Higher Dimensions ("ChalJ1le/ing"

versus "lndependent Pixels" )

Consider the problem of capacitors of arbitrary shape: a bounded but not necessarily

convex (open) domain na of 9td containing a (closed) cavity H, also of arbitrary shape. We

only assume enough regularity of the boundaries (ano,aH) to allow the definition of nomlal

vectors (almost) everywhere. n =no\H (Le., the points of no that do not beIong to H) is

then the (open) region of space that constitutes the capacitor per se. It is assllmed to be

uniformly fIlled with sorne homogeneolls dielectric material-for simplicity, we cantakc this

to be vacuum. The "inner" boundary of n (aH) is maintained at a constant unit pOlential

while its "outer" boundary (ana) is grounded. In n, the potential obeys Laplace's eqllation

(V2<jl = 0) and is therefore a harmonic function; iri particular, this implies that ~<jl$l whcre

the equalities are reached on ana and aH respectively. In these circllmstanccs, capacilance is

the total charge accumulated on aH:

C(Q) = faH n·V<jl dd-lx (2.3)

where we have assumed the normal n oriented away from n.

We fust remark that the requirement of bOllndedness is strictly foi'convenience: this

pr6bl~!D is topologically equivalent to the problem of capacitance developed between two

horizontally periodic, non-intersecting hypersurfaces. We also note that, apart from the

Dirichlet BCs, the problem is equivalent to that of diffusive radiation transport throllgh a

homogeneous medium with (almost everywhere) smooth but otherwise arbitrary upper and

lower surfaces. In tum, this problem is equivalentto the one of an inhomogeneous medium

(M) contained between IWo hyperplanes that bound from above and from below a sub­

domain (M') with fini te density (while M\M' contains optical vacuum). From (2.3) and

(0.29), recalling that <jlHJ in formaI analogies with both eIectro~Îà.tics and conductance

problems, we see that overall flux (or transmittance) can be equated with XC(n) where Xis

the "extrapolation length," introduced in sect. 0.4.

Using the divergence theorem (for the field <jlV2<jl), it can he shown that

C(n) = fn IV<jl12 ddx (2.4)
""

which is also the total (electrostatic) energy stored in the system. The variationaI formulation

of electrostatics (Oirichlet's principle) tells us that, for given fixed n (henee no and H) and

an arbitrary function <jl(x) supported by n that is only required to ohey the above conditions

on ana and aH, then (2.4) is absolutely minimal when <jl is harmonie.



45

We now stretch between ana and aH any number of smooth but otherwise arbitrarily

shaped internai boundaries where we require that the fluxes in and o~t of these boundaries

vanish identically2 n,V$j =0; in the electrostatic analogy, the electrical field:\ines must be

tangent to them (Le., they carry no charges). We have thus divided n inlO a number of

regions ni; each one of these now works as an independent capacitor and they are all

connected in parallel mode (their C(Q;)'s add). But Dirichlet's principle app\ies to each and

every capacitor hence the part of the integral in (2.6b) corresponding to the original

(undivided) system's potential exceeds C(nj). This tells us that its "effective" capacitance,

LjC(nj), has been decreased by the subdivision into separate capacitors. The only case

where capacitance is unchanged is when the divisions are bunclIes of electric field !ines.3

In our radiative analogy, the IP approximation is merely a special kind sub-division-it

constrains flux !ines to be vertical-and we now see that it necessarily decreases the total

transmittance:

~S~ ~.5)

Moreover, the only configurations that remain unperturbed (equa\ity in the above) have

perfectly vertical flux !ines, viz. plane-parallel slabs. In essence, allowing net horizontal

fluxes to arise4 causes the flux \ines to wander away from the vertical and the direction in,.
which they move is not hard to predicl In the above example of homogeneous media with

,arbitrary boundary geometry, they will "head" towards the nearest boundary, i.e., the

radiation is "channeled" towai'ds the nearest exil In the internally inhomogeneous media that

~we will encounter in sect. 2.3 (weak but general variabiIity) and in chap. 6 (strong but

specifi~\'ariabiIity), the flux !ines "seek" the more tenuous regions and, again, we can talk

about "channe!ing." Finally, we note that the result in (2.5) must not be taken out of context;

in particuIar, horizontal extension (by periodicity) is one of ils basic premises and it will have

to be re-examined in the case of horizontally finite optical media (which have no capacitor

analog, see §2.2.3 below).

2.1.2. The Extremal Property ofSlab Geometry in Higher Dimensions
"

We now allow the shape of the internai and external boundaries to change freely but the

volume between them must remain unchanged: vol(n)=constant, i.e., we are dealing with a

given and fixed amount of dielectric. Following (and generalizing) the analysis of Szegti

[1930], Mossino [ibid.] shows-with sorne recourse to "rearrangement" theory (in Sobolev

function spaces}-that C(n) reaches ils absolute minimal value when n is a shell contained

between IWO concentric hyperspheres (and their radii are totally deterrnined as soon as 'f~~
volume of the cavity is also specified). This is a classic example of an "isoperimetriè"

inequality.S The proof is outside the scope of this thesis but it should he note4 that it re!ies

on transformations of the solution $(x) of the given boundary value problem that are based
.~
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on Lebesgue's measures and integrals (i.e., decimating ljl-space, not x-space) which allow

for more generality. The unbounded but periodic equivalent of the concentric spheres are of

course plane-parallel slabs which therefore appear to be the absolutely optimal geometry in

tenns of flux reduction or, equivalently, albedo generation. In obvious radiative notations,

we have

T(slab geometry) <T(anything else) (2.6)

Finally, we can generalize this result by taking the period to infinity (equivalently, the size of

H becomes very large).

Notice that, in the above discussion based on electrostatic-radiative analogies, we have

considerably simplified the BCs, not only are they considered Dirichlet but the imposed
ilpotential is considered as unifonn on aH and ana. If we were to be totally consistent with Il

the idea of illumination by a collimated beam, we should modulate the top boundary vâlue by

the vertical direction cosine of the local nonnal vector (~o(X), XE aH); this means that

boundary values could, in principle, f]uctuate from 0 to 1 in the most general case. If the

upper boundary has multiple points along a vertical (i.e., ~(x) can become negmive), then

the "non-illuminated" and the "shaded" parts should receive a null boundary value. Even

further complications ensue if we attempt to model the illumination of a boundary point by

the diffuse radiation coming out of another; this obviously becomes more important as the

boundary shape becomes more convoluted. As argued in sect. A.4, in such cases we are

better off moving to the framework ofinternally inhomogeneous media. (In this case, we are
é.),

dealing with a restricted class with simple boundary shapes, a constant density in sorne sub-

domain and null values everywhere else.) In other words, our argument remains perfectly

valid as long as we limit ourselves to (top) boundaries that are "almost" horizontal (~(x)~1;

XE aH); the final result then takes on a perturbative flavour, much like our analysis of

internal variability (in sect 2.3 below).

Returning to electrostatics per se, we can clearly extend the result (on physical

grounds) to boundary shapes that an': not necessarily smooiKanywhere, in particular, they

can be fractals (that are almost nowh~re rectifiable but in a unifonn and self-similar way, see

sect. C.2). This can be seen by visualizing the limit of ever more convoluted (piecewise)

smooth surfaces: the electric field (hence charge) at the boundary develops singularities that

can only add to the (surface integral) expression for c(n) in (2.3).6 We strongly suspect

that the analogous radiative statement can also be extended, just as the 2nd order but

systematic effect predicted by penurbing the internal structure is cor;'tderably enhanced when
\ .

the variability becomes "extreme," i.e., singularities arise in the-density field (see, for,.
instance, the example studied in chap. 6).
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2.1.3. Summary and the PossibUity ofGeneralization to Arbitrary Internai 1nhomogeneity

Summarizing and rephrasing, we have considered the restricted class of media

contained between two horizontal planes (M={xe9td,O<z<L)) that are inhomogeneous in

both horizontal and vertical directions but in a restricted way. Density is zero between the

upper Iimiting plane and an upper internaI boundary, similarly for the lower case, and the

density is uni(?rm in the region (M') hetween the two arbitrarily shaped, non-intersecting

internal boundaries which are horizontally periodic (modulo N). The volume of the unit cell

in M' (that we denote MN) is however held constant, consequently, so is the total (optical)

mass of !he system. (The region M'of course constitutes the "real" medium but on which it

is difficult to apply BCs since its boundaries need not even he rectifiable anywhere.) On the

one hand, it has been shown thal, apart from unimportant boundary layer effects, lPs yield a

smaller transmiuance than diffusive transport (with the horizontal fluxes fully accounted for).

We will see in the following chapter that these two methods of obtaining an overall

transmiuance correspond respectively to the "p~O':,and "p~oo" Iimits of "discrete angle"

(DA) transfer with orthogonal beams; so the tran~~ittance for finite "p" (i.e., a bone /ide

-'kinetic approach to the transport proiîlèIn) is likely to yield an intermediate value since we are

dealing with a single-pararneter family of transport models. On the other hand, it was shown

thatthe smallest transmiuance of all is obtained when the (internal) boundaries are made fiat

and siab geometry is thus retrieved: we are back to standard homogeneous plane-parallel

opHf-almedia. Adding the intermediate (highly plausible) inequality, we can colleet our

results in the following way:

T(M'",M):S; TIP(M'):S; TDA(M'):S; Tdu<M') with ~ ddx =const. (2.7)
. ~

In the following chapter, we will confirm thatlPs, orthogonal DAs and diffusion ail yield the

exact same result for the very special (ultra-symmetric) horizontally homogeneous

plane-parallel medium. We suspect this to be the only situation where such perfect

agreement happens whereas (in chap. 4) we will argue !hat any kind of medium with non­

singular internal structure will have the same scaling pr<:>perties (in the sense of sect. 1.4),

irrespective of boundary shape.

Finally, it wouId he interesting ifwecould generalize (2.7) from the restricted class of

inhol~~~_neousdensity fields contained by two horizontal planes to arbitrary internal

variability p(x) with XE MN, the elementary cell (of size N) which is to be replicated in ail

horizontal directions; viz.

T(p(x)=consl.) :s; TIP(p(x» :s; TDA(P(X»:S; Tdu{~(X» with~ p(x)ddX =const. (2.8)

li.
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In sect. 2.3 below, we present a perturbation-type argument for the "widest" inequality

(relating the fust and last quantities) for general but weak variability. The leftmost inequality

is easily proven on completely general grounds, using Jensen's inequality (see sect. 304 for

details). However, ail we can say about the second (IP-to-DA) ineijuality is that it is verified

by our numerical results for the deterministic fractal media introduced in sect. 4.2 (at aIl

cascade steps), as weil as those that pertain to the single realization of a stochastic multifractal

investigated in chap. 6 (sec sect. 6.5); in fac!, we have never secn a violation to date in al! of

our test-, preliminary- or otherwise unpublished numerical results. This leaves little doubt

about the validity of (2.8) within the relatively simple elass of transport models we are

presently working with. The conditions where we can expect T(p(x)=const.)<TcA(p(x» are

tentatively diseussed in §2.3.2; basically, we should remain in the optically thick cloud

regime and use the simplest possible illumination conditions (Le., normal or diffuse).

2.2. On the Effect of Shape in Horizontally Bounded Homogeneous Media
(and the Irrelevance of Comparison with Plane-Parallel Media)

2.2 .1. Background, Motivation and Main Results
In this section, we will be presenting and use a (closed-fÇlrm) solution of the albedo

problem for homogeneous spheres within the framework of the diffusion approximation ta

radiative transfer (that we will generally refer to simply as "diffusion"). This case is of

interest for at least two reasons, one more historical and one more pedagogical.

FtrStly, the fact that the problem is entirely tractable seems to have been over-looked in

the literature. In the heyday ofanalytical (pre-computer) approaches, Davison7 [1951] uses

various approximations to obtain transfer results concerning the extrapolation length (cf.

sect. DA) for spheres and very long cylinders (lying on their side)-effectively 2-D

"spheres"-while Giovanelli and Jefferies [1956] investigate diffusion in several geometries,

incl~dirÎg spheres and (infinite) cylinders. The latter authors solve the problem completely
,/

but tjJey insist on irradiation conditions so arbitrary that their fmal results are delivered in the

form of infmite expansions containing undefined coefficients. wé will basically be showing,

from first principles, that these series are trivially summable for the simplest albedo problem

where illumination cornes from a distant point-like source.8 Since then, high-speed

computation has become a primary tool in transfer research and consequently, there has been

a natura! tendency to use geometries where ray-boundary intersections ("piercing)points") are

easily determined for the purposes of Monte Carlo simulation: "cylinders" of finitc length .

standing on an end with various,sections. For instance, McKee and Cox [1974] worked on

"euboidal" eloud shapes (orthogonal parallelepipeds or, equivalently, cylinders with a

rectangular section)--a problem that has since becn attacked analytically with a "multi-mode"
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approach [Preisendorfer and Stephens, 1983]. Within this framework, this problem
formally lo~ks enough Iike one in plane-parallel geometrythat the plu.le-parallel techniques
of invariant imbedding can he used to solve it [Stephens and Preisendorfer, 1983]. (In the
case of diffusion :in spheres, we will be able to take this formai analogy one step further.) In
lhis contexl, the word "analytical" does not mean that th!l compuler i1superfluous; in fact,
the encoding of the analytical solution is bound to be far more intricate than a simple Monte
Carlo simulator program but, in the end, il will be faster and more accurate. The primary aim
of the above analytical approach-and ours-is however nol numerical efficiency but to gain
insight into the workings of transfer in presence of horizontal fluxes, breaking away from
siab geometry, e.g., to what extent can we view the effect of sides as a formai analog of
absorplion? (Our views on this question are spelled out in sect. A.4.2-3.)

These upright "cylinders" have also attracted the attention of theoreticians versed in
Eddington's approximation (or its "ô" variant): circular sêctions [Barkstrom and Arduini,

,
1977] and square sections [Davies, 1976, 1978; Davies and Weinman, 1977]. Since these
authors are solving a Laplace9 equation on a finite and regular domain, theycan use the

" h
standard techniques of separation of variables but these lead, in both cases;tô'(quite simiIar)

non-trivial eigenvalue problems in order to m&ich the BCs on the sides and on the ends,
hence final results thal (again) come in the form of infinite eigenfunction expansions. As in

the case of exact transfer, these diffusion results are numerically more expedient than Monte
Carlo but they are approximate in nature and no longer are expected to be an unconditionaIly

accurate representation of transfer. Returning to homogéIieous spheres and infinite cylinders
(having gone a complete circle), the former at leasl have become quite popular as abasic
cloud shape in numerical sludies of broken cloudiness where they are in direct competition

,~

with cubes; thèse cloud aggregation models can be made of identical individuals or

individuals which are either of constant optical density and different sizes or vice-versa with
various rules as to their spacings ranging from regular grids to randomly scaling [references

in chap. If We propose to fill the g~p left in this intensive use of finite homogeneous cloud
shapes and show that the simplest of shapes has the simplest of expressions for its

transmiltance (exactly analogous to a slab), in spite of the manifest presence of net horizontal
fluxes.

The second major reason lo consider homogeneous spheres is important to the basic
logic of this thesis: we are systematically investigating the scaling properties of optical
media, moving away (rom the standard homogeneous slab model one step at a time. A flfst

'''~. ,J -,.'"
logical siriP\i~' s.l.w:'-i',,[?aking the medium not only vertically but horizontally finite.
Homogeneous\('~'l ::Q~re studied for the same reason but under.normal illumination (the
simplest, in princi~;~l .;ubes develop "terminator pathology" (see sect. A.4 for details) hence

.-::-;:~~_,",-"l
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there is an ambiguity about what we should calI albedo, and uncerlainties ensue about its

scaling properties ('Is it really non-trivial?' see sect. 4.1 for a final analysis, hopcfully). By

contrast, spheres can be viewed as a generic representative of the only class of bounded

homogeneous media of an~practical interest (those with "proper" terminators, including

cubes under slant illumination) and the whole picturc of strictly boundary induccd horizontal

fluxes can be considerably simplified: from the scaling (exponent) point of view at least, the

effect is exactly ni!!

Since the radiative problem for homogeneous spheres can he solved with the proper

radiative BCs (of the "mixed" type) we can look into the question of how important these are

for horizontally bounded media. The answer is (unforlunately) a lot more than for their

horizontally extended counterparts and this is an unescapable consequence of the existence of

a terminator. Horizontal boundedness also makes IP-type calculàtions largely irrelevant

::, since near the lerminator external (absorbing) and internai (insulating) boundaries become

parallel and, in the same vicinity, optical thicknesses vanish slowly (they can dominate the

spatial statistics). Finally and possibly most importantly, the methodology of the analytical

solution procedure for the homogeneous sphere can be quite easily generalized to the case of

an inlernally inhomogeneous sphere with one radial discontinuity in density (§2.3.3). So w2

can compare'üomogeneous spheres with hollow spherical shells (or spheres with a denser

core, and ail the combinations in between). This gives us a textbook example where we can

verify our prediction (§2.3.l) that inhomogeneous mediri"iilways transmit more that their

"homogenized" (equal mass) counterparts with the very same external boundary shape.

2.2.2. A De/ailed SO/lIIionfor Spherical Media

Following a proverbial [Harte, 1985] path that needs no further presentatioî;;'we

consider a spherical cloud in d=3, of radius R, and homogeneous in Kp (which can be Laken

as unit for convenience). It was eventually realized that Giovanelli and Jefferies [1956] had

obtained partial results towards the analytical formula that we obtain below for the

transmitlance by such a medium; it was the{soon realized that it is in fact easier to start from

scratch than"to explain their notations. From our point of view, their result is to general to he

directly useful since they consider arbitrary illumination conditions (which is a logical choice

in neutron transport studies). To make this point even clearer, we will reverse tlleir logic

completely, i.e., we start by exploiting the simplifications related to the collimated

illumination and the spatial averaging of the radiative responses. Only then do we solve the

Laplace equation with the appropriate (mixed) BCs, targeting specifically the features of the

solution important to the determination of overall transmitLance.

We naturally center the sphere at the origin and use spherical coordinates with the

"north pole" (hence z-axis) oriented downwards, following the incident and mean fluxes of
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radiation (more-or-less) as usual in atmospheric radiation studies. The problem being axi­

symmetric, we are only relain interest in coordinates rand 9. We are particularly concerned

with the in-coming and out-going fluxes (at r=R) as defined in the most general case by eq.

(D.28), while here, they are best represented as a Legendre series simply because of the

boundary shape (we are not even interested yet if it is a diffusion process going on inside or
not!). So we write

~

f±(cos9) = L B~ Pc(cos9) (2.8)
o

The lower signs in (2.8) designate known quantities since they specify the BCs for the

albedo problem, namely, a unitary collimated flux (coming from a very distant point-source):

F-(cos9) = { 0 0 s 9 S rt/2 (2.9a)
. -cos9 rt/2 S 9 S rt

Equivalently, in the hamlonic representation defined in (2.8):

{
B<Ï = 1/4 (2.9b)
Bj=-1/2

and, for n>I, ail the odd contributions vanish identically. Even contributions beyond n=O

exist but they will not be of any use in the following since we are interested in the overall

responses, not the local fluxes 10 (we relurn to this question below). In particular,
transmittance--llccording to the (terminatot-based) defmition in (A.29Hs given by

rc/2

T = R12 fF+(cos9) 2rtR2d(cos9) (2.10)
rt 0

and si!Uilarly for albedo R with the bounds of the integral moved to rtl2 and rt.
/"
. The expression for T in (2.10), as weil as its counterpart for R, can be considerably

simplified by introducing Heaviside's step function (for ±cos9) along with its Legendre
expansion:

El(±cos9) =f 11 ~ Pc(cos9) ={1 if ±co~9 ~ 0
o 0 otherwlse

Here too, only the first two ternls will be of direct interest to us:

{
11~ = 1/2

. +
. 111 =±3/4

For n>I, ail the even contributions vanish idenlically. Eq. (2.10) can lhen be rewritten and
generalized 10 read
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T ~ ~

{ R} = 2Jf+(cos9) 0(±cos9) d(cos9) = 2t 20
2+1 B~11îi (2.12)

where \he last cquality makes use of the or\hogonality relation for \he Legendre polynomials.

From the above discussion, we see that there are in fact only n=O,1 contributions to the

(functional) scalar product in (2.12). We can then casily see that

R = l _1 = 1 - Bt/2Bti
T T 1 + Bt12Bti

In short, all \hat is required of the solution of the transport problem is the single ratio

Bt/2Bti. Notice that the only assumption we have made in the above is the axi-symmetry
which is guaranteed by the uniform illumination, on the one hand, and an internai

distribution of scattering material that is purely radial, on \he other hand. In the following,

we assume internai homogeneity and, in §2.3.3 below, we will allow for one radial

discontinuity.

Only now do we need to make an assumption about the radiation transport model,

which we of course take to be diffusion. We musttherefore solve Laplace's cquation inside

the sphere. For \he moment (see §2.3.2 bclow), we are only intcrcstcd in the rcgular part of

the gcneral (axi-symmetric) solution in spherical coordinatcs which is

~

l(r,9) = L ~n rD Pn(cos9) (2.14)
o ::

where the constants ~n are to be eventually determined by the BCs. The general definition

(0.28) of in- and out-going fluxes yields .
1 0 1/

F±(cos9) = 2[ l'T Xor ]J(r,9) Ir=Ji' (2.15)

when specialized for spherical systems. Recall\hat the lower signs rcfer to the (given) BCs

assigned to external illumination from a distant source in eq. (2.9a); the upper signs refer to

the (required) responses to the said illumination. By substituting the solution (2.14) into the

above, we find ç
~

F±(cos9) ~ ~LI 1 T n ~] ~nRO Pn(cos9) (2.15')
o

which, by comparison with (2.8) yields

{
2B~ = ~_o (2.16)
2Br = tî px ] ~IR

where we hav~ let X =X/R. Using (2.9b) and eliminating \he 130.1 from the eqs. (2.16), we

fmd the required eombination of harmonie cOefficients: -:..~
~ ~
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Êl l-x
2B6=- I+X

Finally, substituting this into (2.13) and simplifying, we find

l_l=B.
T X :'

or, as usual (e.g., §DA.2), T = l/(l+RIX). This resuIt is readily validated by
straightforward numerical Monte Carlo simulation, bearing in mind that we are not to expect
the same value of Xto apply over the full range of values of R. More prccisely, we expect
X-)4/3- for R-)O+ and X-)O.7104.. · for R--700 which are universal (geometry independent,

dimensionality dependent) limits; the latter value also corresponds to the limit of a semi­

inlinite medium with an up-welling flux (the ''Milne problem").ll
The main focus of this thesis is on overal1 (or average) radiative responses but there is

no rcason to limit oneself to this very lowest leve1 of spatial resolution in the above
development. The information about illumination"'éonditions in (2.16}--with lower

,;/

signs-can be complemented up to any arbitrary,<ffder in the spherical harmonie expansion. q
and, consequent1y, ail the ~D (internai fields) and!B~ (external fields) can be deterrnined. It

1,1.
is not hard'eilher to anticipate the main features.o(lllc flux field. The flux lines star!, straight
down, parallel and equally spaced, on the theupperhalf of the boundary since that is where
the radiation sources are, cpnstantly fue1ed by the (cosS-distributed) external illumination
pattern. The same lines end on the lower half of the boundary12 but they are no longer

equally spaced, no/ili'~ight, nor parallel; instead,\hey fan out: ail off-axis lines deviate
from the z-axis in the direction of the closest part of the non-illuminated lower boundary. In

other words, the radiation is "channeled" towards the nearest "exit" (Le., low density

environment) by the onset of horizontal fluxes which build up constantly from the td~to the /"
. ~- ~/

bottom. We will encounter the converse manifestatiol\of diffusive channeling in §2':3:f
"

below and, being driven by internal density variation, it provides a less trivial example: after
creating cavitics ins.ide the spheres, the flux-lines will tend to funnel into the empty region
where the radiation)gets a "free ride" through the medium.

Finally, we~JJ!d li}c~!o know whether the simpler Dirichlet BCs could be applied
<::-~..::-..:::.: ..... -

with comparable success, as we found in the case of slab geometry and strongly argued for

in otherwise horizontally extended geometries. The answer is yes but ooly Ü we are far more

careful than in the above (sect. 2.1) discussion of arbitrary boundary shapes where we
applied the same boundary value everywhere on the top (and similar1y on the bonom) of the

cloud, irrespective of the local orientation of the boundary w.r.t. the incident beam. This
"cosine" law waS explicitly incorporated into our expression of BCs (2.9a,b), had we not
and had we applied (uniforrn) Dirichlet BCs, we would have found singular fields near the
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equator (or terminator, 8=1(12). In short, the medium would offer no bulk resistance to the

radiation (or current) because of ail the very short paths available at the equator. As a rule­

of-thumb, we should keep to the mixed BCsc when dealing with horizontally finite cases and,

in horizontally extended cases, we can simpIify not only to Dirichlet BCs but to their

standard (uniform) format, especially if we are only interested in the simplest radiative

properties of the system: for ,~nstance, low-order perturbation (not unIike in §2.3.2) or cIse

'flle leading ternl for asymptotic scaIing behaviour (as in §2.3.4).

2.2.3. Independent Pixels, Scaling Implications and Generalization to Other Cloud Shapes

The final closcd-form result (2.18) for the transmittancc of (homogeneous) spheres has

a fa~iliar look to il: if we take L to be the diameter (R=U2), then we retrieve exactly the

diffusion result for slab geometry (0.31") as weil as the exact result (of sect. 3.4) for

transfer in d=1 (where transfer and diffusion are equivalént, see sect. 0.2). Sincc we have

the exact same result for a bonejide sphere (in d=3) and a segment, or "I-sphere" (in d=!),

we can conjecture that the same fornlula will appear t3 in d=2 (and probably also in d>3). ln

ail cases, the sphere has the same transmittance as the sJab defïned by flle tangent planes at

north and south poles.
This brings up an interesting but only apparent paradox. The IP transmittancc for

spheres in any d>1 iS14

2R l' v ( R ) fj "
TIP= Td~l(l) = J dP(l) =~ ln I+i c;:h.19f

o 1+II2X

where [ designates the length of a vertical section of the d-sphere. Now TIP is greater than

the diffusive transmittance expressed in (2.18). In fact that result corresponds to the

minimum value ofTd~l(l) (and the maximum 1=L=2R) and the logarithmic term in (2.19) is

due to the relatively numerous small [-values around the equator (8=7tl2). In essence, we arc

facing the same kind of problem as above in the discussion of the potential usefulness of

Dirichlet BCs in horizontally bounded cases and the answer is the same: we must be more

careful (and this appIies to ail horizontally bounded media, including normally illuminated

cubes). This time, we cannot generaIize the general (shape-independent) "TIPgdir" result c

obtained at the beginning of this chapter for horizontally extended (or periodic) media to the

horizontally bounded counterparts (spheres in particular). This is because, near the

terminator, the "open" (or absorbing) external boundary of the medium gelS confused with
. ..~

the "no-flux" (or insulating) internaI boundaries in the IP approximation. The comparison of

the two resullS is largely irrelevant. In fact, totally wrong conclusions can bc drawn by

trying to compare quantitatively horizontaI1y finite and exlended media Iike 'horizontall1uxes ",;:,

cause lower transmittancies since Tcube<Tslab (cf. figs. 4.2a,b)' whereas exacfly the opposite
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is happening when the media have the same boundaries: transmittancies are generally
enhanced when horizontal fluxes arise, necessarily due to internai variability in this case
(sect. 2.3). The only way to compare the radiative properties of cubes and slabs
quantitatively is to take into account ail the light that is directly transmitted through the empty
space around the cube.1S This of course applies to inhomogeneous cases too: given sorne
density field defined on a plane-filling cell in the horizontal, going from "open" horizontal
BCs to "cyclical" horizontal BCs (see sect. 4.2, for an example) is far less innocent than
going, say, from,,"mixed" to "Dirichlet" (in sect. 2.1 or even 3.5, in connection with

"generaIizcd" DA Silhilarity theory).
Instead of trying to quantitatively compare horizontaIly bounded and unbounded cases,

it is more interesting to notice that the homogeneous diffusive result in (2.18) can probably
be generalized te many other cloud shapes, aIl horizontally bounded in higher
dimensionality. Ali we really require in the caIculation that leads to (2.18) is (i) a coordinate

system where Laplace's equation can be treated by separation of variables (Morse and
Feshbach [1953] enumerate 13 of them in d=3) and (ii) that the boundary of the optical
medium is a (necessarily closed) surface were one coordinate remains constant. In
particulât, the latter condition implies that the boundary is everywhere smooth: cuboids (and
rectangular coordinates) are excluded since they are made up of several cons~t coordinate

surfaces, not just one, but ellipses (and elliptical cbordinates) of ail kinds can certainly be
used. Within this class,of cloud shapes (and associated coordinate systems), every detail of

li
a solution for the radi~tive proble~ in one case can be (conformally) mapped cnte another
case. We therefore expect to retrleve a final result of the same form as (2.18) in ail these

cases.
In sum(11ary, we have just argued that ail homogeneous horizontally bo~hded media

~1ith well-defined terminators have transmittancies that scale inversely with their sizc and
tha~ ü the boundary is furthermore everywhere smooth, the asymptotic regirne is approached
in t~arne way as homogeneous slabs do, namely, as in (2.18). This (exponent) is totally

independent of the phase function choice which appears nowhere in the above (beyond thè~.

natural choice of "rescaIed~'~ilmits of length); the phase funr.;tion will however influence the"=
,-./1 ,-"

prefactor X(if we insist on using units other tharnrar(sPortm.f.p.'s for the extrapolatio~~

length). In the following chapter, we retrieve (anaIytically) the same scaling for DA transfer

through plane-parallel slabs in any dimension w.r.t. tIléir vertical thickness. In chap. 4, we. -----;;/

show (numerically) that normaIly illuminated homogeneous cuboids (in d=2,3) behave like

the spheres in both trammittance and reflectance (even in the reslricted sense, w.r,t.
\'

definition (A.29), of exit thfough the top only), Le., that in such media "sides" may be

lj
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geometrically well-detïned (and the terminator ill-defined) but they are asymptotically

unimportant as far as radiation is concemed.

2.3. On the Effeet of Internai Structure (and a Tentative Quantification of
"Channeling'~)

'-..., --~

2.3.1. Homogeneity as an EJ.1remai Property

We have anticipated systematic inhomogeneity effects on the bulk radiative properties

in different qualitative ways: perturbcd optical path (order-of-scattering) distributions in sect

A.2, and anomalous diffusive random walks in sect. D.6. Quantitative scaling examples of

these effects are discussed in §5.I.l and §D.6.3 respectively. These examplcs however do

not pertain directly to the steady-state albedo problem but ralher to initial condilion problems

for an internaI point-source. It is therefore in order to evaluate and analyze, in the most

quantitative terms possible, the effect of inhomogeneity on an overall response to

illumination: albedo, equivalently, tra'~imittance (or, even more simply , average net flux).

The following development has the flavour of a perturbation analysis but docs not claim to he

a mathematically rigorous expansion16 in higher order perturbations; ralher wc show----using

Fick's law, BCs and mass conservation-lhat the linear (1 SI order) contributions lo the

correction to "mean tïeld" flux due to inhomogeneily vanish identically and that we are left

with nonlinear contributions (of ail higher orders in principle), cf. eq. (2.25) below. This is

an'interesling result but not too surprizing: inhomogeneous transport lheory would not he

the challenging problem it is were it dominated by linear effects! Wc then argue that the sign

of this correction term is likely to be positive (fluxes increase); in a sense, this is more

valuable than a mathematically rigorous result because it forces us to clarify the nolion of

"channeling" on physical grounds. In fact two arguments are given, one specitïcally

diffusive, the olher based on independent research into inhor;'pgeneous radiation transport

based on the transfer mode\. Firstly, wc somewhat retïne ou~-qualitative discussion of the

inhomogeneous diffusion equation in §D.6.I; more precisely, weask 'how do the "pseudo­

source/sink" terms (that appear along with density fluctuations) affect the geometry of the

flux-lines?' Secondly, we turn to a closure hypothesis introduccd by Stephens [1988b] in
-- ..->-"

order to accommodate a simple form of inhomogeneity in a modi~':\wo-l1ux scheme bascd

directly on the inhomogeneous CA transfer equation made to lo~k formally like ilS plane­

parallel counterpart after spherical harmonic analysis and horizonlal Fourier transformation

[Stephens, 1988a]. Given the very close links between two-l1ux theory and the diffusion

approximation in homogeneous plane-parallel media, we can view the following (purely

physical space calculation) as a generalization of Stephens' calculation based on "new optical

parameters" that, in tïq,al analysis, we view as direct measures of Cannon's "channeling."
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We will make no special assumption on the nature or the strength of the inhomogeneity

yet. We simply decompose our inlCl their "mean field" values plus a "correction" lerm;

starting with the density field:

p(x) =P+ p'(x) with fp'(x)ddx =0 (2.20a)

We are therefore constraining the density perturbation explicitly to redistribute mass that

already exists somewhere in the system. We define a similar radiation field decomposition:
J(x) =h(z)+J'(x) and F(x) =Fb+F'(X) (2.20b)

For simplicity, we have assumed our unperturbed medium has slab geometry (we generalize

further on); the mean field term then obeys V2h =d2Jt/dz2 =0, and the corresponding flux
is Fb = FoTb~ where Fo is the incident flux. The precise value of the transmittance in

absence of perturbation (Tb) is not important in the following. Since we will be using

properties that are characteristic of the r'!l~cally thick asymptotic regime (specifically, we will

not attempt to distinguish Dirichlet- and mixed BCs), it shou\d howevèr be quite close to the
:... /"

estimate T(KpL) given in (D.3I') where length units that make Kp = 1 were used. The

geometrical vertical extent L of medium is therefore implicitly assumed much greater than

l/Kp. (One might add that using diffusion rather than transfer is only a good idea in quite

thick systems, dominated by high orders-of-scattering, in the first place.) '0

For specificity only, we will take Eddington's expression for radiative diffusivity,

hence the "d" factor in the following (recall that d is the, dimensionality of the system). The

new (inhomogeneity) term in Fick's law, F = -(VJ)/dKp, then reads:

VI' =-dK [pF' + P'Fb + p'F']- (2.21)

where the last (higher order) term will tum out to be crucial to the final outcome. We now
/". t'~ \,.:

tum our attention to global qtllu)tities such as T = Tb + T' which are horizontally extended

hypersurface averages of n'F, n·Fb, and n'F' respectively. They are ail independent of the

}~)eYel and the precise shape of the transection since the fluxes are ail divergence free.- '
'6 ~Focussing more particularly on .

(Nd-1Fo)T' = f"o ~·F'(x,z) dd-lx (2.22)

we use, for simplicity, a transection at constant geometrical depth. In the above, N is the

width of the unit cell of,the medium (Ao=]O,N[d-t), assumed to be horizontally periodic.
Integrating (2.22) vertically also, we find

L(Nd-1Fo)T' =f ~'F'(x) ddx

'whcre, from (2.21), the integrand can be'expresscd as

"1,, " "z'F' =- - [z·VI' + dKp'Fb'Z + dKp'F"z]
dKp
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This last expression tells us that we have three different contributions to the integral in
(2.23a), one for each of the terrns on the r.h.s. of (2.23b).

The first two terrns are easily evaluated. Using ~,VJ' = azJ', we obtain
L

J azJ' ddx = JAodd.1x fazJ'dz = 0 (2.24a)
o

since the vertical integral is simply J'(x,z)I~~ and both contributions vanish (for ail XE Ao)

because the BCs on J'(x) are homogeneous. We will see that this field is excited not by BCs

likefor h(z) (1h(O)=l, Jh(L)=O), but by internai sources dependent on h and Vp', cf. eq.

(2.28) below. The other !inear contribution also vanishes because of the constant total mass

constraint imposed on the density fluctuations, cf. (2.20a):

J P'Fh'~ ddx = FoTh J p' ddx = 0 (2.24b)

We are therefore left with

(LNd.l)pFoT' =-Jp'F'·2 ddx
or, equivalently,

(2.24c)

(2.25)T' = _p'Fz'

pFo
In other words, the quantitative effect of (mass conserving) inhomogeneity on the overall

flux through the system is directly proportional to the (spatial) correlation between the

fluctuations in density and vertical flux. We also recall that, within the framework of

diffusion theory (as applied to radiation transport), the only approximation we have made is

to assume Dirichlet rather than mixed BCs.

We will now present strong evidence that the correlation ternl in (2.25) is likely to be

negaiIVi.'Jy valued, thus making th~ correction T' to transmittance positive. For the moment,

we will exploit diffusion theory itself and, in the upcoming sub·section, we will reconsider

this question using an important numerièal finding of Stephens' [1988b] wit.hin the

framework of CA transfer theory. The structure of the relevant (diffusive, steady·state)

radiation transport equation is quite simple; from (2.1-2), we indeed find

V2J = (Vlnp)·(VJ) (2.26)

and this implies, in partic.ular, that only ratios of density are of any importance. This

suggests that we should now look at
1;

!,' "

\1 Inp(x) = Inp + (lnp)' where (lnp)' =p'(x)
p

(2.27)

o -:.'
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Only in this last step do we assume the variability ta be quite weak. Substitution of (2.~1)

and (2.27) into (2.26) and removing the dominant term in Fick's law ('V'h=-dKpFb) yields,

ta 1st arder:

- V'2J' = dK(V'p')'Fb (2.28)

which, we recall from the discussion in sect. 0.6, acts as a source (sink) for J' when
positivè'(;.egative). If ail orders of perturbation are included then Fb, F, hence F' are ail
divergence free; but ta Ist order, taking the divergence of (2.21) allows us ta write the I.h.s.

of (2.28) as dKpV' ·F'.

jJV.F' =(V'P')·Fb (2.29)

We are thus adding ta the mean flux field a diverging (pseudo-source driven) flux field when
V' p' and Fb lay roughly)n the same direction; otherwise, it is a converging (pseudo-sink
driven) flux field. This means that the Cl 51 arder) effect of a positive density fluctuation is ta

decrease the total flux along the mean flux field direction, and vice-versa. In short, if the
mean field flux is vertical (parallel ta the z-axis), then p' and F; tend ta anti-correlate; and
we therefore conclude that p'Fz' is likely to be negative. This is essentially what the local

multiplicative coupling of the radiation and the density fields has to tell us. Notice that we
have implicitly assumed in the above argument that we are in higher dimensions (d>l).
Indeed, if d=l, then necessarily F' = F-Fb =0 everywhere; the prevailing flux passes
through ail density fluctuations without change (by conservation) and, in contrast,
V'J = J'(z) will change, it is only required to remain negative.

To determine not only the sign but also the magnitude of T', one must make a specific ,

assumption on the nature of the inhomogeneity and solve the corresponjing inhomogeneous /::J,!:S
POE that would follow from (2.28). In practice however, we are more interested in systems;~-""'7i

where the variability is such that any perturbation-type approach will fail quantitatively. .,g '\
will therefore retain only the qualitative features of the calculation that brought us to th~
"T'>O" or "T>Tb" result, most importantly, the critical roles played by higher
dimensionality, on the one hand, and the nonlinear aspects of the transport process, on the
other hand. We see radiation nonlinearities from the (related) viewpoints of the multiplicative
nature of the maner-radiation coupling in (2.26), on the one hand. and the occurrence of very

large optical thickness. hence the predominance of high orders-of-scanering (which diffusion
"theo.ry takes for granted anyway, cf. sect. 0.3), on the otherhand. "

2.3.2.. Extensionfrom Diffusion to Transjer, Connections with Stephens' "New Optical
( ~. .,.

Properties" and "Mode-Coupling" Process if.

The above "T>Tb" result seems quite general and it is worthwhile considering the
extent to which it will apply to transfer-type models of transport. Firstly. we can confidently

o
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report that, in ail of our numerical DA transport (Monte Carlo) simulations, even

unpublished, not a single (numerically accurate) violation of 'the inequality has been

observed. Given their formaI similarities, the above diffusive analysis could probably bc

adapted to such simple kinetic systems with too much effort; this goes for the rigorous

general part of the argument, leading up to (2.25), as weil as the perturbation-type part in

(2.26-29). (This may however not be very rewarding however-except maybc in the

optically thin regime-because perturbiltion and diffusion go hand-in-hand with wei\k
variability, as far as truly approximating transfer goes.) The same remarks apply to our

(more costly hence far less numerous) CA experiments which always use normal

illumination conditions, for simplicity. Moreover, the perturbative aspects will definitely bc

moreinvolved in this very (too?) general framework; we suspect however that the ideas

developcd by Box et al. [1988] arc general enough to by applicable outside of their (vertically

inhomogeneous) plane-parallel applications [Box et al., 1989]. Secondly, very few

violations of the rule were found by us in the (CA transfer) literature. One is on the thin

cloud side ("'t<5, with g=0.84) of Stephens' [1986] figure 7 which plots out, as a function of

"'t, the albedo of vertically homogeneous, and horizontally variable (y-uniform, x-Gaussian

and periodic) density fields. The illumination geometry is however somcwhat slant

(cosSo=13.1°) at right angles to the striation (the Sun is in the z-x plane) so one can rcadily

define ilIuminated and shadowed "sides" of the cloud, even through it does not stop

abruptly. These striations being relatively weil separated to consider each one as an

independent cloud, we should ask ourselves which finite cloud albedo definition listed in

sect. A.2-3 applies bcst in the circumstances. It is of course (A.36)that calls for angular

integration w.r.t. a zenith that is generally distinct from the (opposite 00 incidence direction.

AlI of these angular aspects of Stephens' transfer approach contrast markedly with our

diffusion approach whcre ail angular difficulties are essentially neglccted from the outsel.

One should therefore not be too surprizcd to see differences to ariSe, espccially if (l-g)'f is as

small as 0.8 as is the case here since this is precisely the regime where diffusion is not

expected to be accurate, for lack of multiple scattering (that otherwise considerably

"smooths" the angular problems away). We are however reassurcd to see that, in the same

figure, R<Rb as soo~ as (l-g)"'t;:: 1 and to see that there is no more discrepancy all the way

down to (l-g)'f=O.2 in Stephens' [1988a) computations on the sarne dcnsity field, but with

slightly different illumination conditions. Another exception is found in (regular or random)

assemblies of individually cube-shapcd clouds, but again at relatively slant illumination [e.g.,

Barker and Davies, 1992; and references therein); the reason is essentially the sarne as

above: the effective cloud surface seen by the incident light rays incr~ases and this bcnefits

albcdo mosl. We suspect thllt the rule is applicable to CAs for any optical thickness, as long
'''''-,/ .. ('-..,

.;:~ \.,./'
~/
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as the illumination is suffïciently symmetric: normal or isotropic illumination will generally
bc requircd, in the case of striated media, incidence from anywhere in the "uniform" plane (at

right angles to the variable direction) is probably good enough.
Rather than providing caveats for a few exceptions that lie outside of our main field of

irilercst (l~(l-g)"E) anyway, it is more interesting to recall that Stephens [1988b] uses his
numerical data on the Gaussian cloud model just discusSed to parameterize p-Iu correlations
as a function of Jl=cos(u,~), In our notations and orientation conventions (the "north pole"

of 33 is down, like the z-axis), he proposes

P'Ip.' '" - C j5 IP.,b.Jl (2.30a)
foi'azimuthally-averaged radiance, where C is a positive parameter [basically the slopc of the
linear approximation in his fig. 6]. By further directional integration (w.r.t. Jl), this directly

yields

p'Fz' '" - C j5 Fb < 0 (2.30b)

Le., preciscli the crucial inequality needed to establish that T'>O. In other words, we can

propose the parameter C as a quantitative measure of "channeling" that is operationally
accessible in CA transfer via (2.30a), in diffusion (or DA transfer) via.(2.30b). In the case
of diffusion with Dirichlet BCs, C (determined from the internal fields) can be directly

compared to T', as a check for the expression in (2.25).,
Interestingly, Stephens prefers to define parameters like Cas "new" optical properties

(beyond the usual "E, lila, and g) and uses them in a simple closure scheme. More preciscly,
the new parameters allow the author to accommodate (in a mean field fashion) horizontal

variability within a simple 2-flux model which, unsurprisingly, yields systematically lower

albedacs. (Recallthat the diffusion approximation used in the above reduces to 2-flux theory

when applied to plane-parallel media.) Having argued that even weak variability leads to
systematic overall effects, our approach in chapters to come will bî~ quite diffe~ent from

Stephens' since we will bc interested in finding the new structural properties that are likely to
lead to slrong variability effects on the mean radiation fields and criteria in that direction are

proposed at the end of chap. 4 and thesc are corroborated by analytical and numerical results

in chap. 5 and 6 respectively. In contrast to an "optical" property, a "structural" propcrty
should make no reference to the radiation field in its definition, in Preisendorfer's [1976]

jargon: only "inherent," not "apparent," propcrties are called for. Thus, generally spcaking,
a rule involving structural propcrties gives us predictive power whereas, in principle, a result

based on optical properties could give us diagnostic power.

We have conducted our above analysis entirely in physical space and clearly that is
where Cannon's expression of "chànneling" has so many overtones: the original idea was to

1

l!/
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describe the tendency of the Iight to find the geometrical paths of least resistance (Le.,
density) compatible with the laws of multiple scattering. We are however interested in
finding its best Fourier space counterpart. In variability studies (e.g., turbulence), Fourier
space is generally considered to bc a more comfortable env,:ronment to work in (especially i,n
perturbation studies) but, at this point in time, such is not Hie case when rescarching radiation
effects. This is traceable to two complemenlary aspecwof transfer: firstly, it is linear in its
fields (hence no obvious similarity-based phenomen()iogy arises) and, secondly, the matter­

radiation coupling is nonlinear since muitiplicatiyë (hence, IiteraIly, a more convoluted
description arises in Fourier space). Indeed, 'i~t~rning te our main culprit in diffusion
theory, namely, (Ylnp)·YJ in (2.26), we recall from app. D that it follows in direct Iineage

"
from both "Kp(x)Iu(x)" and "u·YIu" in transfer theory, Le., the basic ingredients of the

kinetic prop'~gator, incarnated (so-to-say) by direct transmittance that we singled out as the

fundamental ngnlinearity of lransfer iri sect. A.2. Stephens [l98;~i.:,t988al traces a~elegant
Fourier space picture of inhomogeneous transfer (not diffusion !), where lhe horizontal

Fourier transform of the densily field interacts via convolution with lhat of the radiance field,
in spherical harmonic representation. If the "spectrum" of thiff6iizonlal density fluctuations

. "
is not entirely concentrated at k=O (its spatial average) then this convolution necessarily

-.-,-,:

excites non-axisymmetric modes of the radiance field. This is due to the fact thatthe /j,~.

"streaming" operator (u·Y) contributes, upon Fourier transformation, a term in "iu·k," theZ li
i=v-l factor is in fact responsible for the coupling of the various different u-modes. We' "~

describe17 Stephens' symmetry-breaking mechanism as "mode-coupIing" and we view it as. ,
the best Fourier space expr~s~ion for "channeIing." Furthermore, the expression "pseudo- '~

source/sink" term that ~euse to describe (Ylnp)·YJ is even betler justified in lhe Fourier

pictuw'" in fact, was l;yge1y inspire,ct from it-since its Fourier counterpart is a (convoluled j:

but) s':aIar result that can be directly combined with the absorption term, when present,.
-,\. ;:.
Iri'summary, we~ave studied the perturbation of the steady flow of radiation through a

slab by the creation of internai inhomogeneity. Starting with a homogeneous, plane-parallel,
vertically finite medium, we redistribute the material within sorne horizontally defined'unit
cell lhat is then replicated periodically. It is shown that the overall flux (or transmiltance) is..

~. - ,. .
very likely to bc systematicallyoliîcreased by the higher order terms but only in higher

dimensions. This is traceable to the nonlinear nature of the matter-radiation coupling in the
adopted (diffusion) transport equation and is indicative that the trend '.vil2t reverse for'

more extreme forii~s of inhomogeneity than perturbative-type approa~hes ca~ normally

accommodate. We have also argued that this finding will generalize to CA transfer if the

illul!1ination conditions are sufficiently simple (and, possibly, if the medium iS,effectively

thick W.r.t. isotropic scattering as weIl). At any rate, the naturU! illumination geometry in the
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special case of (orthogonal) DA phase funcûons is always very simple and, accordingly, no
violations have bcen found within that framework to date.

2.3.3. A Deterministic Narrow Band Example: Spheres with a Cavity

In the above analysis,cf the basiC overall cffect of inhomogeneity, making the medium
periodic is not strictly necessary, simply easier to visualize: the homogeneous bcnchmark is
then plane-parallel and Fb =FoTb~ applies. In the horizontally finite case, we must firstly
define T according to (A.29) as always in diffusion, Le., by fin ding the "(proper)
terminator" set (ëlM=) on the medium's boundary18 which is always of dimension d-2. The
hypersurfaces where the integration in (2.22) is performed above are now required ta Contaiil
ëlM=. Secondly, we must bear in mind that we are using the (usually unknown anai~tically

but perfectly well-defined) lb and Fb"mean" fields for the particular choice of M (really ëlM)
under consideration. Finally, the special roles played by thei,orizontal and vertical
coordinates in the spatial averaging can bc replaced by the curvilinear coordinates defined
along h(x) =const. and Fb's field-lines, respectively (recall that h(x) is harmoriic). In the
important result (2.25), "z" thus becomes locally defined (prior to spatial averaging) by
Fb(X) bu!, the conclusion is unchanged because it stems from the local analysis of (2.28). A
prime example ofT'>O (or T>Tb) in this horizontally bounded case is proviocd below. An
important implication of this generalization is that, in all fairness, one can ôrily compare

optical density fields having the same support. In particular, one can compare the qualitative
differences between horizontally finite and plane-parallel media (e.g., the appearance of

1

horizontal fluxes even for homogeneous cases). Quantitative comparison (of, say,
transinittancies) is irrelevant since we would have to compare the effect of a fini te to an
',---,__ ; i

infinite amount of material, equivalently, an extensive to an intensive quantity,\,r' a "total
amount" to a "flux." The abusivecomparisons found in the Üteratur6·ste~.from the fact that

1-" .~

it is traditionàl in radiative studies to express the said total amount as an average flux, cf.
definitions (A.29)'ànd (A.38) of albedo and transmittance, one then forgets that there are no
replicas i~ the fini te case. '. -

We now illustrate the general "Tinbomo>Tbomo" result from §2.3.1 which applies to
media thafshare the samesupport and the same total mass and generalized>above to
horizontally bounded cases. We will simply modify our previous (§2.2.2) an~lysis of the

/~ , ,/"

albedo problem for homogeneous splieres)o accommodate'spheres with a concentric

- spherical c;!vity.This will proviC:ec~>s ~ith a specific example of diffusive "ch~~eling" in a ,_
_ ,.v" . ..'. '. ," '

cQntext that we un,~r,rstanu wèlJ.-.Eqs. (2.8-13) as weil as (2.15) apply here without
modification ,'since they concern only the in-going and out-comingJadiation fiélds.

Furthermore, since at present we are only intèrested in the global responses (T,R), we need

only todetermine the ratio ÉtI2Bt; in (2.j3) as a function oftlte cloud's e~terriall!,ns!.internal
, l ....... L._

;~.'
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geometries (Le., radii). We must however modify eq. (2.14) whieh defines the spherical

harmonie expansion of ;le radiation field. Letting re be th.ej!:lern:Ù radius where the

discontinuity in density occurs, we now have:

00

J(r,e) = L ~11' rO PD(cose) 0::;; r::;; re (2.3Ia)
o

in the central region where we are only interested in the regular part of the solution of

Laplace's equation. In contrasl, we can make use of the singular solutions in the

surrounding region:
/,

00 . "

J(r,e) = L [~11 rO + r"'Y:1 ] PD{êosfJ)o .
Subslituting (2.3Ib) into (2.15), we find:

(2.3Ib)

00

F(cose) = i t {[ LF' n ~] ~oRo + [ 1 ± (n+1) ~] R~:I} PD(cose) (2.32)

and we recal1 Ihat the coefficient of the Legendre polynomial in (2.32) is defined as 2B;;

where the lower sign corresponds 10 known (BC-related) numerical quantities, cf. (2.9b;.

As in the case of homogeneous spheres (and in diffusion approximalion tradition, see

§DA.2), we leave the extrapolation length Xas free parameter.

The novelty in this pmblem is that, by radianl energy conservation, we must require

continuity across the internai boundary of the in-going and out-going hemispherical fluxes

written as in (2.32) but for r=re rather than for r=R. Equivalently and more sim ply

expressed, we can 'rèquire continuity, on the one hand, of the tolal radiance field J(re±O,e)

and, on the other hand, of the normal componenl of the net radiative flux -DëlJ(re,e)/ëlrlr=rJ:O

where Dis the radiative diffusivity (l/3(l-g)Kp) whieh has distinct values on eilher side of

re. 19 Respectively, we find

R' R 10
PD = PD + 20+1

re
(2.33a)"

.i\

nD'~o'=D[ n~D- (n+1) r~+I] (2.33b)
fc /#. j;_ ~.--

For every value of n of interest, eqs. (2.32) and (2.33a,b) provide four constraints on the

four unknown quantilies: B~, ~o', ~o' 10' Clearly the general solution will depend only on

the dimensionless ratios XIR, relR, and D 'ID=p/p', noticing that, up to this point, we have

made no specifie assumption on the value of the density (or diffusivity) inside the internai

boundary. At least one of our unknowns is easily deterrnined in Ihis quite general case:

writing (2.33b) for n=O (a value of special interest to us) we see that 10=0 hence ~o'=~o,
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from (2.33a). In turn, wc ean use this result to sec, direetly from the general harmonie

expansion (2.32) but truneated as previously at n=l, that the ratio of harmonie coefficients

that wc are seeking can be simply expressed in terms of two other ratios of the remaining

unknowns:

Br =K (fu.) [(1;X) + (1+2X) (l!.) -\]
2B6 2 ~o ~I R

where wc have let X=XIR, as in the above section on homogeneous spheres.
Wc now take the limit D 'lD-7 oo (p'/p-70), i.e., we are dealing with an optical void

inside a spherical she1l uniformly fi1led with scattering material. At n;::l in (2.33b), this

implies that ~o'=O. Summing up, the radiation field inside the eavity is reduced to its

uniform eomponent (corresponding to ~') which, in this case, does ill!l imply an absence of

net flux, quite the contrary. This can be seen by noticing that D '~l' goes to sorne finite limit

given ultimately by the Lh.s. of (2.33b) for n=l and, since·the l.h.s. of (2.33a) for n=l

vanishes, wc know that ~ 1 and YI are of opposite signs; therefore a non-vanishing YI
(creation of a cavity) in (2.33b) implies an increase in the flux (D '~I') at the center of the

system (flux lines are converging into the cavity). In short, wc are witnessing "channeling"

as it was described above (and in sect. 0.5); a finer ana1ysis is bound to show that the same

phenomenon will occur as soonas D'ID>l, Le., long before it becomes infinite.

To finish the caleulation, a1l wc need are two independent equations to determine the

two ratios (~I/~o, YI/~I) that appear in (2.34). Eqs. (2.32) with lower signs (BCs), on the

one hand; and (2.33a), on the other hand, both for n=l, provide a eonvenient choice. Henee

{
~l(l+X)R + Yl(l-2X)IR2 = 2Bj (2.35)
~lrC + Yl/rc2 = ~I' .

where wc can readily use 2Bi=-1 from (2.9b) and ~l'=O from the above D'ID-7oo limit on

the r.h.s.'s respectively. Finally, letting vc=(rcIR)3 denote the cavity-to-sphere volume ratio

(O~vc~l), a little algebra Icads te
+ .-..ê.L __ (1-',\') - (1+2x)vc

2B6 - (I+x) - (I-2X)vc

and substitution into (2.13) yields

.!. -1= (I-Vc)E.
T" 1+2vc X c'.

Wc find the same gcneral form that wc generally expcct for hornogcneous clouds with

(cverywhere) smooth ,boundary shapcs. In particular, the homogeneous result (2.18) is of

course rctricvcd at vc=O and we naturally find T-71 in the opposite (VC-71) lirnit where the

medium itself vanishes. Eq. (2,37) also implies that the radiative scaling is the same for the
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full and the hollow spheres. This scaling rcsult can he considerably generalized sincc there is

no obvious rcason to not consider the hollow spheres to he rcpresentative of cloud models

with arbitrary but narrow band internai variability (inhomogeneity only ariscs on a finite
l':!

range of scales). JV'
<·-11

Returning to ),the verification of the general perturbation result, wc wish to relate

homogeneous and'inhomogeneous media with the same supports and masses, Le., in this

case

{
Rr"a", Rballow ,'.
Pfu'l~= Pbaliow(l-vc) ,. (2.38)

,
Finally, we will assume that the numerical value of X is the same for both media when

expressed in natural (transport m.f.p.) units. In other worcts, lCPX, hcnce lCpR, ar~ held

constant. Writing out (2.37) for both media, taking ratios. and using r((lations (2.38) leads
.', ,- '
'J., ~

~ .~

1 _1=_1_( 1 -1) (2.39)
Tbollow(R)/ 1+2vc TCull(R)

which means that, as predicted, as soon as a cavity is created (vc>O) by redistributing the

given amount the scattering material inside the external boundai'y, transmittance is boosted.

Interestingly, the maximum ratio of 3 in the above responscs is found for an infinitely thin

shell (vc=I) of infinite density.

We can elaborate on (2.39) in order to underscore the importance of higher

dimensionality in the "channeling" process. We argued above that our analysis of

homogeneous spheres (in d=3) is probably generalizable ta any dimensionality (including

d=I), yielding in fact the very san1e result! Il is of interest to see why this is no longer quite

true now that we have an internai cavity. Wc know that in d=1 the response ratio in (2.39)

must be 1 for al! values of Vc since we are dealing with the equivalent of slabs with (a special

case of) purely vertical variability (no channeling is possible). We therefore conjecture that

the factor "2" in the denominator of the ratio in (2.39) is indeed given by "d-l" (hence the

above maximum ratio would he "d" in general). To see why this is likely to be true, notice

that the origin of the new (vC> tems in (2.36-37) is entirely traceable to the sccond kind of

coefficient introduced here in (2.31b). In d=1 however, there is no need for such distinct

coefficients since the most general solution of Laplace's equation is a (piecewise) linear

function; in d=2, the general solution of Laplace's equation has a (Iogarithmic) singularity at

the origin and a second set of cocfficien~2()=fsagain necessary in the region not containing

the origin; in d>2, the singularity is algebraic, of order d-2.:;

\'"::." .
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2.3.4. A Random Broad Band Example: Uncorrelated Billary Mixtures

We now turn to the case of random optical media that are modeUed by random binary

mixtures that are reviewed, as simple models for inhomogeneous conductors, in §D.6.2 with

sufficient detllil to proceed here with a formaI analogy; in particular, ail of the symbols used

below are defined. We recall that the individual ceUs in these models are given one of two

density values (p±); these values are distributed in a totally uncorrelated manner going from

one cell 10 the next, with relative probabi1i.ti~ (P±). However, if one considers the clusters
, ,-

t'Jr "animaIs") made up of cqnnected celJ.."of one kind, then at "percolation threshold" (a

"critical" value Pc of, say, p_=I-p+) the size of the cluster becomes infinite and, in this sense

only, the medium has long-range correlations and we refer the reader to sect. C.2 for a brief

discussion of the associated frac laI aspects. We are particularly intercsted in the singular

limit p_~O known as the "random sup~rconducting network" (or RSN) limit wher~ the
~~ .

supcrconducling (cr+-+>o) eclls can simply bèvJewed as holes in the cloud.
Il

To inlerpret the conductance results in term's of diffusive radiative transport in

(horizontaUy pcriodic and) vertically finite but thick media, we only need to invoke the

formaI analogy (JH$, FHj and KP±HlIcr,,) leading to (D.35), equivalently,
j

R 1 M V L
T ='[ - 1 =-=- H:: =l (2.31)

Fz Jz ",7
for each realization of the slochaslic medium. ln a vast majority of cases (choices of p and

P±), the binary mixtures under study yield a <.1:> which is independent of lhe sire L of the

system, and we retrieve the standard (homogeneous-like) scaling <T>o<L-I. In particuJar,

this is true of the percolating (hence highly correlated) but non-singular case, viz. when

(DA8a) applies. Nevertheless, "channeling" is already at work at the level of prefactors, as

explained in the appendix, cf. the inequali~y in (DA9) which, inlereslingly, applies to

average bulk conductanc.es undei average, rather than exact, con~rvation of mass. Normal

scaling is also found for singular choices of density but when the system is not exactly at

percolating threshold, viz. when (D.45) applies. And of course, the same scaling will be

found in non-percolating, non-singular cases which have attracted much less att':ntion, see
;"/.,\

however Hong et al. [1986]. "

By contrast,lhe percolating, singular RSN limit in (DA7) yields <T>ocLsIv-l; using

the numerically determined values of slv quoted in §D.6.2, we fmd
"<'-..

S {0.03 in d=2
VT = 1-~ = 0.2 in d=3 (2.32)

since <DoeL (if» 1), së"e below. Notice that the "VT" (with a subscript) refers to our usual'

notation for theradialive scaling exponents introduced in chap. 0-1 while the "v" (without

subrcript) is standard notation from the literature on percolation. The radiative analog of the

\\
\1
\\ 0·-'·,
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"random resistor network" (or RRN) limit is not quite as interesting because of the

occurrence of infinite (optical) masses: the insulating (vanishing conductance) cells are like

totaIly opaque (i.e., very thick) individual clouds distributed, with relative probability pJp_.

in an otherwise normally scattering atmosphere and the. transitio!l observed at p+=l-pc tells us

cthatLIJe atmosphere becomes totally renective (no transmittru'nux) long before it bccomes

totally cloudy, according to diffusion theory. '.

What doe~'the IP approximation say about this siJ\ple stochastiç cloud model? For a
'.::;,- /;> ..._".,:.

medium discretized on a Nd-lxL-sized grid. the statistics for'1;pû"nrthicknèss Ct) are obtained

with a sampIe of Nd·t independent realizations of the random variable (r.v.) obtained by

adding L independent r.v.'s with values Kp±lo (where 10 is the grid constant). The latter
r.v.'s follow the law given by the simple Bernouilli trial in (DAO) while the former have an

order L binomial distribution. The strong law of large numbers21 tells us that this last

"distribution converges (in probability) towardsa Gaussian distribution centered on

<t> = LK<p>lo «p> = p+p++p_p.) with a relative variance of Lp+p.; so we are dealing

with a rather narrow distribution that will prodllce simple scaling in its moments of all

orders.22 In particular, we will have T1P oc <lit> oc l!<t>.

What does the transfer model of radiation transport say about these intriguing medhi?

Not too surprisingly, Welch et al. [1980] find "small" differences between the radiative

properties of cloud models generatedowith;white noise and their homogeneous co~terparts.,
using Monte Carlo simulation forphoton'\ransfer; the fact that they Ilsed a continuous

distribution of density valucs rather than binary mixture is not important, the key structural

feature he~ejs the lack of spatial correlations, The same re~ark applics implicilly to Boissé's

[1990] nJmericai results for non-conservative transr~r in b~nefide binary mixtures since he

finds that a single realization is sufficienlto validaùi'his own analytical mean field results

from transfer calculations of media exponentially correlated on some given seale (which he

naturally associates with the grid constant). More importanlly, Boissé's [ibid.] analytical

'inhomogeneous formalism is becomes identicai to homogeneous fomlalism (for the mean

.density) in the limit of vanishingly small célrrelation length, irrespcctive of whether the lower

density value v,anishes or not, whether absorption is present or not.
'. ,

. This major discrepancy bctweèn diffusive and tr~d:er scaling behaviours was first

anticipated by Lovejoy et al. [1989] who found a close con~ection between photons~nd the
._ l ,o.

"skating termites" described by Bunde et al. [1985]. "Temlites" ("anIS") are special l'oses of
c ~ l .' .

particles that "diffuse" exaclly on a grid in the RSN (RRN) limits; theformer were originally

';proposed by de Gennes [1980]. A "diffusing:':.particle must know how to navigate in

presence of any change in the local value of diffusivity D, not only going from 0 to a finite
value (ants) or frOI;'there to 00 (t~rll1ii.es).··Sêveraiyersions of the termite were under study

,~",,~ G /,;I.~:::::: .;IJ -:,;'
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by Bunde et al. [ibid.) and the "skating" model (which had the particularity of perfonning

ballistic flights through the supcrconducting c1uster, Iike photons would in an optical void)

"'ècJailed to show the expected phase transition behaviour at percolation. In other words,

photons poorly approximate diffusing partic1es (and, of course, vice-versa) but, from the

above scaling results, we only expcct this in presence of singular, highly correlated density

fields since both of these features are sine qua non conditions to obtain the "anomalous"

scaling in (2.32), see sect. 4.3-4 for further discussion of this point.

"li

;'~'.
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tThis chaptcr bas no publisbed cquivalent. the autbor is largely responsible (or ilS content. His advisor (S.
Lovejoy) was instruni,ental in finding a basic inconsistency iD an carly version of the "pcrturbalion.like"
argument in §2.3.1. He at:;.'o rescarched the percolaling conductance problcm bUl (rom th.: point of view of "nnls
and termites" (see §D.6:), rather Ihan the formai analogy standpoint uscd hece, and only with the singular
(anomalous scaling) limi.t in mind; this bad the crrc~cl of attracting the author's nllcntion to binary mixtures in
genceat (singular or not.i\percola"'1g or DOt).

l"Polarlzatioo" is used he~h in th~di~lectric, not radiative, sense of the ward.

2Yn a thermal conductance analogy, we would calltbcsc boundaries "insulating."

3A similar argument cao be made w.r.t. the insertion of conducling (4tj=const.) hypersurfaces hctwecn aH and a!lo:
but this amouets to crc:lting a number of independcnt capacitors in a series arrangement (lhe I/C(QI) Ildd) all.1
rcsults in an increased effective capacitance, unlcss the newly insertcd sub~domain houndaries all coincide with
equipatenlial surfaces of the original field.

4In DA transfcr thii~~Y:Mlouets lo:allowing for sorne degre'~ of side-scattcring to occur (sec chap. 3).

SThe author thenl(goes on lO\~e-derive (al1d-!i:'.:'m~w_hat generalize) P6lya's [1948] l'roof of Saint Vcn:mt's conjecture
that, within the framcwork>of~line{(êîastieity theory, Jll~ximal torsional rigidity for cylindrical cables of
arbitrary sectio'n is achieyed wh'èn-tlÎc section is circular ~~~'ri one conccotnc hole.

6Sce Le Méhaulé and é"~épy [1982] and Le Méhauté Ù984] for a similar l'rob lem in clectro-chcmistry (with
oscillating ratbe:-.Jhan steady-state potc_ntials) tbat they treats phellomellologically wi.th fraction al (time)
deriyatives. ./

7The author thank~ P. Gabriel for attractiog' his attention to this early publication. /1; :-,
8We will however disrcgard the houndary layer effects rclated to collimated illumination( that could he incorporalcd

by using the "direct+diffuse"'~!nrrnulalion and internaI (single-scattcring) sources ncar the upper houndary. Wc
assume the strict)y colIimatcd]?Jcident radiation is immediately convertcd iuto an isolropic irradiance pattern
normalizcd to the amount dictated by (Lamberl's) cosine law. "1Oe negleeted cffccts are howcvcr partially
accountcd for implicilly by leaving the extrapolation lenglh as a fre~ pararnctcr.

90 1' Helmoltz equation, if in pre!:i:ncc of absorption (of radia-tion) or multiplication (of neutrons).

10Fodhis;pne~will need jl;p.(X)dX whieh is (.I)nJ1n!l2'(n.I)(n+2)(n/2)! for n e('en (in partieu!ar, -112 for n=O),
and 0 lor n,ood hut 0'1, ~/3 lor n=l; lhis is adapted from Gradshteyn and Ryzhik [1980, p. 820]. 111e hamlOnie
(BC) cocfficfents Bô are obtained'by multiplying lhis,exprc' li hy -(2n+I)/2.

110ayison [1951] discusses these Iimit cases and ~~(Ornls IJulilcrical ancI e:nalytical transfer calculatiolls for
intermediate values. RecaIl that tbese were originally inteoded to be used in more general but ncccssarily
approximate diffusion calcul~tions (such as those of Gioyanclli and Jcfferies {1956]) in order to increase lheir

/'~ numerical accuracy-a yery important concern in bolh ciyilian a-nd military contemporary applications of
./ neulronics.

12The whole boundary is a sink for Ule diffuse radiation but lhe lowcr half is only a sink (no in 4 coming radiation,
traesmittcd fluxes going out) whlle the upper half is in fact more of a source (unit in-c:oming) than ~!iink (albcdo
oul-going). .

13This can be readily checkcd usitlS standard 100ls from harmonie analysis in 3D cylindrical~ or 20 polar
coordinates, viz. Besse)'s functions (of the l't kind) and Fourier series. Note that only a cosine series will be
nccessary, by syrnrnetry, jùst a the simple Legendre polynomials were uscd in d=3.

14The °inlegration is easily perlormed by using lhe polar angle: / = 2Reos9 and dP(/) = sin9d9.

15)n comparing the radiative properties of (say) cubes and slabs wc arc in fact comparing an extensive quantity
(in,tegraled flux) wilh an intensiYc quaotity. TIlis is however not immediatdy obvious because these quantities are

':. :::'::-aIways ncatly normalized by the (respcctively, extensive and intensive) quantities of Iight received.

16Thc rigorous (mathematically self-containcd) 2nd order perturbation theory of the complete boundary Yalue
problem at hand seems to be intraclable [S. Loycjoy, p.c.].

17See §1.5.2 for a more accurate discussion of Stephens' words.

18The fact (pointed outin the previous section) tbat, for horizontally finitc media, we must be more caccfut about
mixcd Bes oely means lhat they will oety be approximately verified by the total (Jh+J') radiation field in Lhis
generalizatioe of the pertùr~a~iYe result.

19Tbis results direcUy from the"integr2{form (0.2-3) of the radiant cnergy conservationlaw applied to a smaJI
volume that encloses a portioe of the surface of discontiouity. . Ir
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20These would he affcctcd to Besscl's functions of the 21'1d Ic.ind Lbat come to complement their (non-singular)
countcrparts of the 1st kind.

21This is a special case of the centrallimit theorem, for a rcstrictcd class of mndom variables bUl wilh a stronger
critcrion for convcrge.nce. '._

22111is is al50 basicatly why noly the "mcans (and no other moments) wcre considere<! in the abovc resullS for 4>
and <L> as weil as in §D.6.2.
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Chapter Threet

DISCRETE ANGLE RADIATIVE TRANSFER,

ELEMENTS AND CONNECTIONS

Preliminary Remarks and Overview: We refer lhe reader lo app. A for a brief survey
of s;.onlinuous .Il.ng1e (CA) transfer in d-dimensional space, including ail lhe necessary

· background malerial and (in §A.3.3) a rarely discussed inlerprelalion of the steady-state

mulliple scatlering (m.s.) lransfer cquation,
Ji

U'V Iu(x) = - Kp(X) LIu(x) - f p(u'-7U} Iu-Cx) dd-l u ' l (3.0)

· 'as a local balance between spatial variability (directional gradients of radiance field) and lhe

angular variabilily (anisolr0py of the radiance al a point in space). This means that we never

be able lo lolally "decouple" these two basic aspects of the radiative transfer problem but we
can reduce the lever of SOphislication and difficlllty in the angular part. Jhe reader is further ),
referred lo app. D for a review of the standard approach which co~sists in Laking the

· hydrodynamic limit; lhis leads to the "diffusion" approximation which was syslematically

cxploiled in lhe previous chapter lo invesligale (largely analylically) the basic effeclS of

spatial variabilily.

In lhis chapler, we describc a ,way of satisfying this same need withoul leaving the

realm of kinelic theory: Qiscrele .Il.ngles (DAs), nol a new bUl a previously under-exploiled
idea. Direclion-space always has to be discr~m~ed sooner-or-Iater in numerical radiative

, ..._\,

lransfer. "Sooner" refers lo straightforward numerical solution of the lransfer equation, e.g.,,
in Chandrasekhar's [1950] d~;;~,~ete ordinale melhod lhal muSl be performed wilh a given
number of "streams," each ç{.)e associated wilh a pivOl angle given by Gaussian quadrature

formulae. "Laler" refers lO"\\rect siniulations, Le., Monte Carlo techniques which cali for
lhe definilionof-anct"compÙer memory allocation for-angular "bins," cf: app. B. By

c6ntrast, we do_not view DA transfer afàh_approximation to ilS CA courilerpart. (On the
- \....,1 ,"";.

conlrary, DA phase functions are limilS of CA phase functions more-and-more peaked in
certain directions; in this sense, CA lransfer therefore can only app:;'oximate1 ilS DA Iimit)

Being only a special (however extreme) case of CA theory, it is hoped that DA theory will
share its essenlial features;"in our view, an "essential" prope~~:il "scaling"~roperty and

'.-
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this outlook provides a way of testing this (or any other proposed simplification scheme), sec
chap. 4. Returning to practical (numerical) matlers, DA phase functions make many new

computational short-cuts available (see app. B) ... quite apan from the considerable

conceptual simplification to be cxploited in the present chapter.

Before proceeding and in order to accommodate future needs, we relax t11e steady-state

assumption on the I.h.s. of (3.0) and al10w for the possibility of non-m.s. sources on ils

r.h.s., thus
la ~[cdt + u·YO ] Iu(x,t) = - Kp(X) l Iu(x,t) - f p(u'~u) Iu-Cx,t) dl1-1u' - Su(x,tl l (3.0')

will be our point of departure. (AIl the symbols are defined in app. A.) In the opening

section, we show how (3.0') can be considerably simplified (mathematical1y speaking) by

considering only a finite number of beams with phase function choices that only couple

members of this family; we go on to show that only a countable infinity of such families

exist if the phase function can only depend on relative (or "scatlering") angles. The simplest

of these families consist of mutually orthogonal beams and we focus on these in sect.3.2,

deriving in particular their "eigenvector" representation. In sect. 3.3, we derive the 2nl1 order

coupled PDEs ott:yed by these systems and show that they have two interesting special

(limiting) ca~es; on the one hand, systems of d uncoupled one-dimensional diffusion

equations, this limit being equivalent to the "independent pixel" (IP) approximation discussed

within the framework of diffusion in the previous chapter; on the other hand, d·dimensional

diffusion itself is retrieved but from a very non-standard approach. The general propenies of

the IP approximation are discussed in sect.. 304 and it is related to the problem of
"~

homogeneous media with random optical parameters (to which we return in chap. 5).

Finally, sect. 3.5 is devoted to the twosimilarity theories one can devclop for orthogonal DAv ~

systems, one is<a straightforward transposition of ils exact CA counterpart while the other is
-_.. '< .......:. :

more-gèneral Oùt 9nlY,approximate w.r:G:the problem of imposing boundary conditions

',-CBCs), not ~serio~~ c~nèern in optically thick (and possibly also horizontal1y cxtended)
.;.....;:;::1,---

fi' , systems. At any rate, the IP and diffusion limits are singular W.r.t. these similarity

transfomlations, imrJying qualitatively,different properties in general.

,- - 3.1, DA Phase Functions and Transfer Equations /},_. ",,-'_-..'

r; 3.1.1. The General Case where Absolute Directions are iléeded
Ihour usual (propabilistic) transfer jargon developed in app. E (and A), we are simply
l"''::::.' " "',

.(,.goJr!gto "sampie" u-space, Ed: let {il ~} finite but otherwise arbitrary set of directions.

We now simply require the radiance,fïeld and phase function be dccomposable into sums of
B-functions both sup~à;BY{i}:.· .

'.\

;'
//

/1
"
""



l,.

75

lu(x,t) = L Ib,t) 8(u-i), (3.1)
{il

p(j--7u) = L Pji 8(u-i), for al! je {il. (3.2)
{i}

Note that DA "radiances" li are rcally coefficients in a 8-decomposition and therefore have

units of nux (irradiance). Similarly, the coefficients Pij can be viewed as the elements of a

(dill1ensionless) scattering matrix P = {Pij}' Apart l'rom this question of units, there is no

intrinsic difference bctwccn the physicaI definitions of DA intensity li given by (3.1) and that

of its CA counterpart, (specifie) intensity lu, given in app. A: both are conserved quantities
,

along the beam in absence of extinction (i.e., Kp=O) and their respective transfer equations

aœount for the changes that occur when Kp>O (i.e., scattering in and out of the beam as weil

! '. 1Ui. possible absorption). However, when associating DA "intensity" (or radiance) with a CA

"hux" (or irradiance), we."'\Ist bear in mind that the latter is diluted by space along àbundle
--", '1

9f rays, i.e., it obeys the "llfd-1" law, a basic tene! of standard transfer theory and practice.

j Substitution of eqs. (3.1-2) into the CA transfer equation (3.0'), followed by

.u-integration yields tjJe basic DA radiative transfer equation:

[~i + j'Y' ]IjCx,t) = - Kp(X) { m(l-P)ij li(X:t) + SjCx,t) } (3.3)

A finite, rather than infinite, system of coupled Ist order PDEs. SjCx,t) represents ail of the

non-m.s. DA sources, not necessarily related in any specifie way to their CA counte.'llarts.

Ali of our CA expressions for BCs, albedoes and transmittances carry over to DAs without

change. Expressions containing u-integraIs will even simplify as did the radiative transfer
ir-:-è:"_

equation itself:-Conc:erning the albedo prq,blem BCs, we must obviously choose the

direction of collimated incident nux (00) witl'd~ {i} aIthough we notice that, due to linearity,

~we can "superpose" al' many {i} fan1ilies as we want (even fill ail of 3d!)' These various

families of bcams will remàin however mutuaIly independent of one another.

3.1.2. The Specifie Case where Only Relative Directions are Used "\
/i

As in CAs, the most useful DA phase functions depend only on relative angles

(equivalently, ij) but it is important to reaIize, on the one hand, that relative DAs does'not
.~

imply axi-symmetry and, on the other hand, that this requirement greatly restricts the numbcr

of eligible DA systems. To determine those which qualify, we note that imposing

i·j-dependence is equivalent to asking that the set of transformations needed to map unit

vectors {i} onto {j} form a non-degênerate and non-trivial finite sl!,b-group of the

corresponding rotationlrenection group O(d). By "non-degenerate," we m~âù a sub-group

that cannot he projected unto a finite sub-groupof O(d-l) and by "non-trivial," we mean a
.:,-
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sub-group that does not reduce to the identity element2 (x--+x) of O(d). We shaH use the

notation DA(d.n) for DA systems with n bcams in d dimensions.

ENUMERATION IN d=!. On a line. only two directions are possible and "d-I" degeneration is

not a concem; hence only one DA system that we shaH denote DAO.2) and which will

prove to be formally identical to the "two-flux" mode!. For future (d>l) reference, we

note that 0(1) is itself finite as it contains only the identity and parity (x--+-x)

transformations.

ENUMERATION IN d=2. In the plane. we have a countable infinity of acceptable DA systems.

each one corresponding to a nondegenerate finite subgroup of 0(2) generated by a

rotation through 2'Tt/n (with n=3,4.5...·) which we shaH designate by DA(2.n). Notice

that the ease n=1 is trivial and the case n=2 is excluded because rotation through 'Tt is

equivalent to parity and DA(2.2) is therefore degenerate.

ENUMERATION IN d=3. In space. we have but five possibilities erich corresponding to one

of the five Platonic solids (or fuHy regular polyhedra): DA(3,4) for the tetrahedron.

DA(3.6) for the cube. DA(3.8) for the octahedron. DA(3.12) for the dodecahedron.

and DA(3.20) for the icosahedron. This indeed .is the only way to divide the 4'Tt

steradians of 3 3 equally while maintaining the same (discrete) isotropy around every
I{ '<:: ':-

beam; this last eonstraint excludes the 13 semi-regular (or Archimedian) solids as weH

as their duals (or Catalan solids. obtained by truncation or stellation of the above), see

Smith [1982] for details and Kepler [1619] for an early application to celestial

mechanics3 ... interstingly. planetary astronomy is precisely where the expression

"phase function" came from in the first place (see §A.4.3).

In many applications. it is desirable thaUhe DA system aHow backscattering, that the

associated sub-group of O(d) must contain parity. Eligible DA systems wou Id then be
. " \

DA(I.2). DA(2.n) (with n=4.6.8... ·) and DA(3.6). DA(3,8).DA(3,12). DA(3.20). ~ince

the tetrahedron does not have "opposite" faces. For d=I.2,3, thesimplest of these are

DA(d,2d) systems and they will be used extensively in the foUowing. they correspond to

.... mutually orthogonal beams(when d>!). An important applicatipn where DA back-scattering

is prerequisite is spatial discretization of the DA trànsfer equations by finile differencing; in

such applications. the ceHs are "dual" (faces perpendicular) to the direction set {i} and the

associated solids must "ml" their embedding·space.

ENUMERATION IN d={' On a line, di~œt&ation poses no special problem.
!.' ','o' ~~~ ,~

ENUMERATIm;; IN d=2. In-the plane, we\ean exploit either one of the three weH-Icnown
J'

, regular t~ssellations of the plane: (i) by squares, (H) by equilateral triangles or (iii) by

regular hexagons. These lattiees are associated (i) with DA(2,4) systems. (ii) a

sub-class of DA(2,6) systems, and (iii) ail DA(2.6)~ystems. Consider the case of a
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triangular lattice where "up" and "down" triangles must be alternated: the DA(2,6)

sub-cIass of interest con-csponds to the inhibition of "transmittance" sincc there is no

opposite face as weIl as "scattering" through ±1200. Thus the "transfer" of a given

bearn through a single cell feeds radiant energy into its opposite (at 180°) and the two

others at ±600; of course, the sarne source of energy will eventually feed the tluee

other beams (including itself) upon crossing a second (or more) ceIl(s). For an

illustration, Gabriel et al. [1990] used both squares and triangles.

ENUMERATION IN d=3. In space, we are interested in those Platonic polyhedra that are also

(or can be combined into) paraIlelohedra or FedNov solids, i.e., they fiB space. These
and their associated DA systems are (i) cubes ~nd DA(3,6), (ii) "up" and "down"

tetrahedra and (iii) a sub-cIass (cf. discussion incd=2 case) of DA(3,8), octahedra and

aIl of DA(3,8).

Finally, we remark that in d=3, Whitney's [1974] "Dodecahedron Approach to Radiative

Transfer" (DART) is cIosely related to the DA(3,12) system and has been used primarily to

optimize radiative transfer codes; along with Chu and Churchill [1955], Siddal and Selçuk

[1979], Mosher'[;i979], Cogley [1981], Gabriel et al. [1986], and Lovejoy et al. [1989] we

favor the DA('J;8) model for its conceptual (ànd computational) simplicity.
-- .' ~.~

"It'\ >

3.2. The Simplest DA Syst!!ms;'~(Orthogon-al Bearns
. ".,"--- "\ ::;;:;;"-'-

3.2.1. DA(d,2d) in ils Natl/ral Repreçentation, Two-Flux Theory as a Special Case
... il

ér" We now turn to the simplest oli DA systems where the propagation is confined to

mutually perpendicular directions, conveniently oriented by the axii of a rectangular
/t

coordinate system. Writing out the DA transfer eq. (3.3) explicitly in the DA(3,6) case for c>

which {±~,±y,±~} is the set of unit vectors for the x,y,z-axii respectively (plus their

opposites), we find
1 a a a a

[c] dt + A xdX + Ayay + Azdz,"] 1 = Kp(X) [ (P·J)I(x,t) + S(x,t) ] (3.4)

with
100000 0000'00 000000
o ·1 0 0 0 O. 000000 (j00000

Ax= 000000
A y = 001000

Az= 000000
o 0 0 0'0 0 o 0 0 ·1 0 0 000000
000000 000000 o 0 0 0 1 0
000000 000000 o 0 0 0 0 ·1

1·1 r s s s S +, S+,
r 1·1 s s s s jJ

1., s.,
s s 1-1 r s s I.y S=

S+yp.] = #1=s s r 1·1 s s ,,}-I l.y S.y .

~ s s s s 1·1 r .~4,._ S+,_'01. ~

S S S s r 1·1 /t 1..- S.•

(3.5a)

(3.5b)
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where t, rand s are the relative probabilities of scattering through 0, 1t, rc/2 radians~esp.
The DA(2,4) model can be retrieved by making l+x=,Lx-"O in (3.5b) hence a/ax=o in (3.4>

and reducing the order of the system accordingly; this system is the simplest where higher

dimensional effects--such as "channe\ingn as defmed in chap. 1 and described in terms of

diffusion in chal? 2-can happen and it has now becn extensively exploited numerically

[Davis et al., 1989, 1990a, 1991] (see also chap. 4 and 6). Similarly, we retrieve the

DAO,2) model by starting with l+x=Lx=l+y=Ly=O, a/ax=a/ay=O; this last system is
completely equivalent to Schuster's [1905] (analyticaIly solvable hence muchused)
"two~fluxn model for the diffuse radiation field with S representing theoptional

single-scattering sources, see Meador and Weaver [1980] for full detaiis. We are thus faced

with a finite system of \inear Ist order PDEs with all its matrices Ai (i=x,y,z) being singularl

for d>1. We shaIl continue to assume that the p-matrix is constant in space, only the optical
~,

density varies, via p(x). Except for notation, the full DA radiative transfer system described
. .,',

by (3.4-5) is identical to the "six-beamn model of Chu and Churchill [1955] and Siddal and

Selçuk [1979], who seem to have worked independently. The former authors used it as àn ~

approximation to CA scattering in plane-parallel geometry (obtained by taking a/ax=a/ay=O
hence,a/az=dldz), the latter (who incorporate internal sources) compare its performance with

other solutions of the transfer problem for cuboidal enclosures (which is of importance in
"

'. fumace design). Our exploitation of this idea differs substantially from theirs: we do not

consider the DA case as an approximation scheme for CA transfer but rather we study it as a

theoretically realizable model interesting in its own right

Rather than the above ("naturaln) description of the DA scattering process in terms the
, :.-.=-

elements (t,r,s) of the p-matrix, we will introduce the folIowing equivalent parameterization

when and where convenient:
a = 1 - t - r - 2(d-l)s (3.6a)
q = 1 - t +f (3.6b)
p = 1'- t - r (3.6c)

Notice that the relative weights that multiply the various scattering matrix coefficients Pij

from (3.5b) in the combinations that appear in (3.5a,b,c) are simply (j.j)n with n=O,1,2

respectively. The above are therefore sirnply related to the Oth through 2nd coefficients of the
"'.

d-dimensional spherical harmonic expansion of the DA phase function: Fourier in d=2,

Fourier-Legendre in d=3 (recall that DA phase functions are not axi~symmetric). Parameters ~

a and q are already weIl-kn<1;wn: respectively, I-l0o and l-lilog ascan be seen from

definitions (3.6a,b). Parameter p is new, from (3.6a,c): .
p = a + 2(d-l)s (3.7)
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It can therefore be viewed as a measure of the combined effects of absorption and/or
side-scattering. The (a,q,p) have natural bounds imposed by the probabilistic interpretation

of the (t,r,s); namely,
OSa S 1 (3.8a)
OS q S 2 (3.8b)
aS pSi (3.8c)

Equalities are obtained respcctively for alUno scattering, all forward/backward-scattcring, and

no/all side-scattering.
3.2.2. DA(d,2d) in Eigenvector Representation. Comparison ofDA and C4. Qualltities

From the definitions of sect. A.3, we can see that l-rnoand I-rnog are the flfst two

harmonic coefficients of the CA scattering-extinction kernel K(u'·u) = li(u'-u)-p(u'·u) that

can be used to write the whole Lh.s. of (3.0) within a single collision-type integraJ. We now

seek a complete eigenvector characterization of the DA scatteringlextinction matrix P-l in

(3.4-5). Its eigenvalues are found to be:
a, q (once each) for d=1

-··--ri " '. '. a, q (twice) and 2p-a " d=2
~ u~"""a, q (thrice) and 2p-a (twice) "d=3

.<.1
Notice that P-l in (3.4) is (alsorsingular in the conservative (a=O) case; see below for what

happens in d>1 when p-7a and two of the eigenvalues become one. We now define the

symmetric and anti-symmetric components of DA radiance along the various axii:

'. Ii± = I+j ± Lj (for j=ty ,2), (3.1 0)

In d=2, we find the following association of eigenvalues and -vectors:
a: (1,1,1,I)T (3.1 la)

q: (l,-I,O,O)T and (0,0,1,-1)T (3.llb)

2p-a: (-I,-I,I,I)T (3.lIc)

where super-script UT' denotes transp'0sition. The. projections of the (formaI) radiance

4-vector 1on the above three eigenspaces are respectively:

J =Iy+ + Iz+, (3.11 a')

,) F = yIy_+~Iz-, (3.llb')

X = - Iy+ + Iz+, . \ (3.llc')
~-;

Le., total radiance (or scalar flux), net flux (2-vecior), and (scalar) excess of vertically to

horizontally propagating radiation. The Ii- terms are thus the d·c;omponents of the DA flux

d-vector F whereas the Ii+ can he viewed as the contribution of radiation flowing along the

ith àxis to total DA intensi~i J. This is the DA equivalent of using spherical harmonics to

characterize radi.ance in tf'1. ~ansfer (cf. sect. A.I). Anticipating that diffusion theory only
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(3.13)

atlempts to model the rirst two of the above~ we will cali the last the unon-diffusive"

component of DA radiance (see helow).

Similarly to (3.l1a--c). we find for d=3:

a: O,I,I,I,I,I)T (3.12a)

q: O.-1.0,O,O,O)T, (0.0.I,-1.0.0)T and (O.O.O.O,l.-I)T (3.12b)

2p-a: (-1I2.-1/2,-II2,-112.1.1)T and O.I.-I.-I,O,O)T (3.12c)

Notice·that the last choices are somewhat arbitrary (due to the degeneracy) and we choose to

privilege the vertical axis which is usually assumed to carry the incident flux in albedo

problems, hence the radiation field's main (spatial) asymmetry. We also see that, eqs.

(3.lla·--c·) l>ccome

J = lxi- + Iy+ + Iz+, (3.12a·)
A A AF = xlx_+yly_ + zlz_. (3.12b·)

Z+ = - (Ix+ + Iy+)12 + Iz+. and Z- = Ix+ - Iy+ (3. 12c')

The lwo last (Unon-diffusive") components are the excesses of vertically (up- or downwards)

traveling radiation over the average traveling in the ±X- and ±y directions (for Z+). and the

difference between ±x- and ±y directions (for Z_). AIternatively. one could take

(-1.-1.0.0,1.I)T and (O.O.-I.-I,l.l)T. Le., the excesses ofvertically traveling radiation over

that traveling in the ±X- and ±y directions rcspectively.

It is obviously important to find a operational way of comparing the CA- and DA

radiation fields quantitatively and the easiest way of doing this is to consider the scalar and

vectorial fiuxes defined over portions of 3d. the hemispheres used in (A.2·-3·) providing a

natural choice for comparison with the orthogonal DA(d,2d) radiances we are presently

concerned with. However. the choice between the association of I±i with J±j or F±j for

.~ j"'ii{~j. j=I ... ·.d} cannot be made uniquely nor arbitrarily, it must he guided by general
~'-.. ~l",

""':"'~dn~rvation principles which involve the F±j. cf. eq. (D.2-3). Moreover. we can use our

definitions to see that

d
F =~ ~ ±j F±j, in CAs

1 ±

(3.14)
d

F =~ ~ ±j I±j, in DAs
1 ±

\\
\\
''0\
\.

so the adequate choice seems to he the association of I±j with F±j of (A.3·). This is

particularly important when dealing with overall (boundary integrated) fluxessince F is the

conserved (divergence-free) quantity in steady-state, non-absorbing systems. The trouble
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with this correspondence is that the sum of a11 the.I:±Jis not J, we would have to use the J±j

of (A.2') and divide by d for that to work. c~ - \;'\

Clearly, CA-to-DA comparisons are best don~ using their respective orthogonal
function bases: spherical harmonics and formai eigenvectors, respectively. This rises the
question of the CA equivalent of X, the scalar defined in (3.llc'nf d=2, or of the 2:",
defined in (3.l2c') if d=3, and a (d-I)-dimensional entity in general. The candidate(s) must
be some function of the d(d-l)/2 independent cpmponents of the traceless part of the photon

pressure tensor~ defined in (A.4) which, within a factor of c, is proportional to the term
that fo11ows J and F in the harmonic expansion of lu. In this way, the term "non-diffusive"
component still applies, see sect. D.2. We notice that, in d=2, this is again (reducible to) a
scalar quantity whereas, in d=3, the appropriate two combinations of the three independent
tensor components will obviously depend on the specific DA eigenvector choice (which is
somewhat arbitrary due to the degeneracy, cf. above discussion). In the near future

however, most inhomogeneous DA transfer calcula~i€~,\,are most likely to be conducted ,in
,1 ''\\./.! ;(

d=2 anyway, for simplicity, for numerical accurac;y, ana for ease of representation and/or
analysis of the results (sec chap. 6, for an instancet(,e-/ .

Another aspect of the C,~~DA comparison is the question of illumination geometry. In
this (BC) connection, a coro11ary of the above "I±j-to-F±( association (dictated by
conservation) is that in DA transfer one is no longer able,5 nor inlerested, in distinguishing
between collimated (towards nadir) and diffuse illumination conditions, nor between the
corresponding "zenith-Sun" and "spherical" albedoes. This may seem extraordinarily crude

to those familiar with usual preoccupations C!,f meteorological radiation studies where the

.primary interest is to coyer the various illumination conditions on a spherical planet.
However, in our view, this obsession with angular properties has diverted the overa11

research effort towards the only kind of system where they can be treated "properly" (i.e.,

with arbitrarily complicated phase functions), namely, plane-parallel 3-D slabs, often
homogeneous in the verticaltoo, and sometimes even reslricting attention to a single "typical"

optical thickness.6 We have indeed simplifiedthe direction~1 aspectto the extreme: we
considereffectively "average" illumination conditions, somewhere œtween collimated (from

overhead) and diffuse, "average" measures of exiting and internai radiance, somewhere
between scalar and vectoril\! fluxes, and extremely simple phase functions. By drastically

reducing the size of the functional space we operate in, we can use the same compulational

and analytical resources to explore systems inhomogeneous in both vertical and horizontal
directions and with many dirferent sizes, shapes and internai structures. This last remark

applies fu11y to diffusion theory too (with the content of chap. 2 providing some relevant

il

"'d'<::
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cxamplcs); in facto wc wiIl now procccd to cstablish establish an interesting conncction

bctwccn diffusion and DA transfcr.

3.3. The Second Order Formulation for Orthogonal DA Systems, Their
Relation to Diffusion. .

3.3.1. Rescaled Equations for the Symmetric and Anti-symmetric Combinations ofDA

Radiance

In app. A on CA transfer. we did not look into the 2nd order formulation which is

mainly of usc in numerical "finitc element" techniques [see.e.g.• Marchouk and Agochkov.

1981]; it consists esscntially in the expression of the transfer equations-and (by then

mixed) BCs-for the even/odd combinations of the radiance field Iut = I+u ± Lu.

UE 3d+={UE 3d. Jl=u,uz>O}. In con,trast. the 2nd order DA formalism leads to sorne

analytical insight into the problem; in particular. we will discover a "route to diffusion;"

uncharted by Preisendorfer [1976] or anyonc else. to the best of the authors' knowledge.

Wc introduce the following notations:

Sl-~ ~ S' __1_~ (fori=l.···.d) (3.15)
- ClCp(X) at • 1 - qKp(x) aXi

Si is a non-dimensionalized differential operator that corresponds to taking spatial gradients .

. w.r.t. rescaled7 ("transport") optical distance in direction i (recall that q=l-tnog); similarly

for Sl. if one adopts units of velocity (for c) such that a m.f.p.is covered in unit lime in

places whcre lCp=l. Suitably generalized definitions similar to (3.10) are assumed for Ii±

and Si± (i=l ... ·.d).

Rcspectively. subtracting and adding consecutive pairs of rows in (3.4) and using

ùefinitions (3.5). (3.15) along with that of J. we obtain:

Slli- + qSi li+ = - qli- + Si- (3.l6a)
>

Sl li+ + qSi li- = - pli+ + 2s (J - li+) + Si+ (3.l6b)

Notice that J-li+=~.Ij+ contains d-l terms. In connection with the validity of Fick's law. we
~ .

spcll out in sect D.2 the conditions under which one can neglect thet-derivative in (3.l6a);
. If.

as in that diffusion situation. we wiIl assume that these conditions are verified. We theref6re

drop the Sl term in (3.l6a): the response of li- t~;,!.ocal chariges in li+ (and Si-) is

instantancous. We however maintain it in (3.l6b): temporal changes in li+ can compensate

for a divergence in li- and/or be forced bytime dependent sources. Applying Si to (the

rcmainder) of (3.l6a). substituting the result into (3.l6b) and 'using (3.7). we obtain:

li_ = - Si li+ +~ Si- (3.l7a)

[ St - q S~ + P lIi+ =~ (J - li+) + Si+ - SiSi- (3.l7b)'
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Essentially the same equations were obtained (for vanishing 8t and Si±) and numerically

solved by Siddal and Selçuk [1979]. If we are to consider (3.17b) in isolation we must

express BCs for the Ii+. DA transfer BCs are normally (lst order formulation) expressed in

teffilS of the various "natural" radiances

t 1 8I±i = 2: (Ii+±Ii-) = 2: (l Ti) Ii+ (3.18)

where we have used (3.l7a). Conditioning the I±i oa'the boundaries make the BCs for the

Ii+ "mixed," which is a well-knowa fact criife in radiation diffusion theory that applies to

2nd order DA theory too.

In summary, we see that the system of DA equations in (3.17a.b) separate naturally

into two groups: the second of which (3.17b) can, in principal, be solved for the Ii+

independently of the first (3.17a). Given these hypothetical solutions for the Ii+. the

remaining Ii- can be obtained by differentiation using (3.17a), and the various beam

intensities I±i can be obtained by the linear combinations corresponding to the Ii±' s

definitions as their evenlodd combinations, cf. (3.18). In spite of thi~ separation of

(dependent) variables, this system 'i's still difficult to handle directly since the d equations in

(3.l7b) are still fully coupled via side-scattering, since (l-a1p)/(d-l)=2s. This implies that

they cannot be combined into a scalar equation for J as in 'diffusion theory, similarly (3.l7a)
.'/ .

is not the usual kind of Fickian relation that converts a scalar (measure of the total radiation

field) into a vector (measure of the flow of radiation). ~

3.3.2. A New "Route to Diffusion" Using Phase Functions, Not Radiation Fields \,
,\ 'l

Generally speaking, the mathematical character of the basic DA transfer eq. (3.l7!>L5b,

and its solutions. for given d, is determined by the values of q, p and (p-a)/(d-l)=2s, aIi'~f
which have physical bounds set in (3.8a-<). We will however consider formally the limit

p-700 and retrieve d-dimensional diffusion, not the djn.cJependent Qne-dimensional diffusion

equations (i'!effect, the IP approximation) thàf~;find when p-7a. (Lovejoy el al. [1990]

go one step further and consider p<Q-the "unphysical" domain-in connection with the

explanation of the shortcomings of the "real-space renormalization" approach to

inhomogeneous radiative transport developed by Gabriel el al. [1990].) Notice that this way

of getting from transfer to diffusion operates only on phase function parameters;

specifically, we have followed a route described by CA-7DA-7P(t,r,s)~P(a,q,p)-7p=oo.

We have made no a priori assumption on the character of the u-distribution asin the

traditional development (reviewed in app. D). Taking the limit8 p-700 in (3.17b) yields

(d-l)I',+ = J-li+ = ~ IJ'+ (fori=l .. ·· ,d) (3.19)
j;<i

This last system is easilysolved for the Ii+: they are all equal to J/d. This limit thus imposes
'.'

a posteriori a certain degree of isotropy on the DA distribution of radiance among the
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available directions. More specifically, on each axis we are given the total radiance (Ii+=J/d)

and the corresponding component of the flux vector (Ii-); this determines the DA radiances

(I±i) entirely, from (3.18). In app. D, we show that CA transfer also goes to diffusion in the

Iimit of u-distributions that can be represented by an isotropie (J) plus a dipole (F) term, i.e.,

a 1SI order truncation in its expansion into spherical harmonies. We therefore see that the

two routes from transfer to diffusion cannot wander too far apart. Conversely, assuming

li+=J/d in (3.17b) implies [Bt-q8ÎJJ=0 in absence of absorption (a=O) and non-m.s. sources

(Si+=O); so x-gradients and t-derivatives, on the one hand, and u-anisotropy, on the other

Iiand, are in direct relation. We have thus retrieved, at 2nd order (and in the diffusion limit),

this basic property of aIl conservative m.s. transport systems (described in CA language in

§A.3.3).
The derivation of diffusion equations is now easily completed by substituting li+ = J/d

into (3.17a), we find li. = -8iJ/d +SiJq. Hence, using various definitions:

F = - -LVU + l S (3.20)
dq"P q

where U is the radiant energy density (J/e) and Sis the d-vector made up the the Si-; this is

consistent with the notational conventions used in app. D for the anti-symmetric combination

of CA non-m.s. sources found in (D.9b). The fl!st term in eq. (3.20) expresses Fick's law

for radiation if we let D=c1dqKp t>.e radiative diffusivity, exacUy as in app. D (notice that its

dimensions are indeed length2/time). Secondly, we substitute li+ = J/d back into (3.17b), to

find [ 81 - q 8~ + a] Jld = Si+ - 8iSi- (i=I .. ··,d); hence, adding aIl these d equations,

multiplying by eKp and using the defmitions of D and of U: :;c,

[a l - V-DV +A] U=![E....~ - V·S] (3.21)
. q dD

where, on the I.h.s., A=aeKp=ae2/qdD is the (specifie) rate of destruction of radiant energy

. per unit of time and per unit of energX;;:the:r~~., we find the corresponding rate of creation

and destruction (by non-m.s. sources and sinks~~ is the total DA non-m.s. source function

which is not different from the definition found iil-p.9a), its CA counterpart (so no new

notation is needed).

To summarize, we see that the parameter, p (when finite, as in physical systems of

interest), is precisely what makes DA transfer an overall better approximation to CA transfer

than diffusive transport, in general, but we must remember it is not trivial to relate DA

. radiances to experimentally accessible (3-D) CA quantities. (Standard diffusion theory's J

andF may have a direct connection with lu, but it has its problems too when it cornes to

exiting diffuse radiation in connection with the problem of "extrapolation lengths," :i.:;,ci'.:.

BCs.) Two slighUy different derivations~)f this DA Iimit are given by Davis et al. [1990b]'Oê"



(3.22')

85

for d=3 and by9 Davis et al. [199Ib] for d=2, both in the less general case where ~ and al
vanish. Notice that Ii+ = J/d implies that the projection of the DA radiance vector on the

eigenspace with eigenvalue 2p-a vanishes identically since it is made of (d-l) combinations

such as Iz+-li+ (i=I,"·,d-I). In particular, we find X=O in d=2 from (3.llc') and Zt=O in

d=3 from (3.12c·); the name we coined for it, the "non-diffusive" component, is therefore

fully justified. Finally. it is dear that diffusion theory will approximate transfer very weil in

cases were the radiance fields are quasi-isotropic Gi+=J/d) and this is expected to happen in

regions that are optically remote from the boundaries, e.g., throughout the bulk of

homogeneous or mildly inhomogeneous media. For very inhomogeneous (e.g., multifracta!)

media. the question of diffusion accuracy is addresscd in chap. 6.

3.3.3. Solutions for Homogeneous Plane-ParaUel Media c=
The key result in the above derivation is the "equipartiLion" of the radiant energy

amongst the different directions: Ii+ = J/d (i=I .. ·· ,d). There is one case where this is an

exact result at finite p (hence for DA transfer proper): a homogeneous (and plane-paralle!)

sIab of optical thickness ,; = lCpL. If we çonsider the sourceless (Si+=O), steady-state

(1i1=0) case for simplicity. we indeed find all of the Ii+ in (3.17b) to bc equal (to J/d) simply

by requiring conservation (a=O), on the one'hand, and Iii = 0 (i=1.. ·· ,d-I but not i=d, for

the z axis). on the other hand. Eq. (3.17a) makes the important point that Ii_ = 0

(i=I .. ··.d-l). i.e., the net horizontal fluxes vanish. In this very special case, the above

prediction about diffusion being adequate for homogeneous media is verified beyond ail

expectaiions: il is exact! The remaining equation in (3.17b), Ii~Iz+ = 0, is easily solved:

Iz+(';') decreases linearly (using optical coordinates, d,;' = lCpdz) between !z+(O) = I+R

and Iz+(';) =T+O. using definitions (3.10) and assuming unit incident flux (Fo=I). Finally,

the last (i=d) "quasi-Fickian" law (3.17a) allows us to determine T from ,;:

Iz_(';') = const. = [Iz+(O)-Iz+(,;)]/q,;, which is also given by T-O (at ,;'=,;) and I-R (at ,;'=0).

from (3.10). Hence T = 2(1-T)/q,;, or

_1__ 1 = q,; (3.22)
T(,;) 2

Equivalently.lo

T(,;) = 1
1+q't!2 "

We see that p is absent from the final result-and this is preciscly what makes it exactly
j,

diffusive-:calthough it is instrumental in populating the horizontal beams:

I±i(';') = Iz+(,;·)/2. for i=I .. ··.d-1. For future reference. we note that the total DA radiance

at the top of the slab is
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J(O) = d(l+R) = d 1+q't
1+q't!2

which naturally increases with d. The above exact solution for the case of conservative

scatlering complements Boissé's (1990) analysis of the absorbinglscattering case (in d=3).

This author found the (completely analytical) homogeneous six-beam model to approximate

quite weil his (semi-analytical and Monte Carlo) results for inhomogeneous "Markovian"
(Le., exponentially decorrelating) media; we view this is a symptomatic of weakly variable

media in general (see secL 4.3-4 for further discussion).
Finally, we can define two distinct scaling (power law regimes) for T('t) or

R('t)=I-T('t):

at q't«I: R('t) - ~ 't (Iinear response, single-scatte~ng) (3.24a)
// ,

at q't» 1: T('t) - ~ 't- I (nonlinear response, multii:léscattering) (3.24b)
q .~

Notice how (unlike the prefactor) the scaling exponents are unaffect~~tly the phase function
~

choice and even dimensionality. Comparing with our general definition (0.1) for F=T, we

find respectively

at 't« l/q: VT = -1 and hT = q/2 (for To = 1) (3.24a')

at 't» l/q: vT=+1 andhT=21q (forT_=O) (3.24b')

and the same scaling parameters for R, only the fixed point changes: Ro/_=I-To/_. Using
(1.2) instead, with L rather than À (which is 1 at homogeneity), we find

at L« l/qKp: KT = +1 (and a prefactor qKpl2) (3.24a")

at L» lIqKp: KT = -1 (and a prefactor 21qKp) (3.24b")

Viewing the above as "normal" scaling, characteristic of homogeneous (and weakly

inhomogeneous media in general), we will find different exponents hence "anomalous"

scaling in the extremdy variable (fractal and multifractal) media studied in chap. 4-5.

The detailed analysis of the non-conservative case is somewhat more involved, due to

the appearance of a characteristic optical scale in (3.21) appropriately called the "diffusion

length:"
_ [D. 1
"'1 A = Kp;f daq (3.25)

which goes to co when scattering becomes conservative. It is however quite easy to

anticipate the asymptotic ('t =KpL» l/;fdaq) responses in the important case of relatively

weak absorption and quasi-isotropic scattering, Le., 0 :s a « q :s 1. In essence, we expect

to find a break in the 2nd of the above scaling laws (3.24b) which becomes:
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T(t) - exp[ - t~daq ] (3.26a)

1 - R(t) - ~a1/2 (3.26b)

and. of course.. we have a finite bulk absorptance A(t) as required by total energy

conservation. Le.• T(t)+R(t) = l-A(t) < l-for a ~ick cloud A(t) is roughly given by

(3.26b). The last estimate in (3.26b) is obW.:iTëdsimplY by taking t - lNdaq in (3.22): we

schematically view the medium as non-absorbing above that depth and purcly absorbing

below il. Formally, we have VT = 00 and VR = O. Most importantly. (3.26b) shows that

l-R scales like ~ l-Cilo. Le.• the albedo of a very thick cloud decreases rapidly whcn (true)

absorption sets in. Il is Iittle surprise that observed albedo discrepancies wer~ first

hypothesized to he homogeneous absorption effects rather than scauering inhomogeneous

effects. cf. the discussion of the "cloud ~ibédo paradox" in the introductory and concluding

chapters.

3.4. "Independent Pixels" and/or Scattering Media wilh Random Optical
Thicknesses

3.4.1. The 1P Limit in the Framework ofDA(d,2d) Systems

The only. but notable. exception to the characleristic coupling of the DA PDEs in

(3.l7b) occurs when p=a (equivalently, s=O)-or d=l (making Ii+=J). In both cases, the

.first term on the r.h.s. vanishes idenlically and we recover one-dimensional diffusion

equations for each of the Ii+ separately: [Bt - q 8~ + a ] Ii+ = Si+ - 8iSi-. (for i=l ... ·.d). By

multiplying through wilh CKp and leuing ëli=a/aXi, we find one-dimensional diffusion in

more tradilional format:

[ al - aiDai + A] Ii+ = CKp[Si+ - 8iSi-] (3.27)

where we have used on the I.h.s. the same definilions as in (3.21) but for d= 1. Since this

p~a Iimit implies no side-scauering.ll a vertically irradiated medium cannot have any

horizontal fluxes, net or otherwise. not even radiances (unless it is also ilIuminated on a

side).

In other words. we are dealing with an exact DA problem which is the equivalent of the

"independent pixel" (or IP) approximation to CA transfer. We have adopted this

expressionl2 of Cahalan's [1989] which conjures up visions of high-tech digital image

processing and. indeed, the author compares the statistical properties of (Landsat) satellite

imagery with those of his simulations. The inhomogeneous optical medium, confined

between two horizontal planes, is first mentally fragmented into a certain number of

sub-domains by vertical divides. the approximation consists in assuming each sub-division

or "pixel" (as seen from above) is then homogenized and made radiativçly independent of its
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ncighbours by ncglccting the net horizontal fluxes that would norrnally develop in thc vicinity
of the pixel boundaries. If the vertical division is viewed as reflecting (as a means to
codserve total energy), the pixels cach behave exactly like a homogeneous plane-parallel
"mtdium (in practice this means that they must he optically very thick in the horizontal). Ali

that is left to do is to spatially average the response of interest over thé whole medium, and
this is easily done since we have an analytical closed-forrn solution (3.22) for DA transfer

, through each pixel-medium, cali it Tp(t) where t is the pixel's optical thickness. The global
IP transmittance is given by

-- 1 f dl
Tp(t) = surf(Aol AoTp[t(x)] d - x (3.28)

with the notations of sect A.2 (Ao is the horizontal projection of M). Notice that the spatial
discretization has vanished from the the final result; the theory is indeed more general (and
convcnicntly formulaled) in tcrrns of spatial continua, as weil as continuous distributions of

optical thickness.
In the previous section, wc obtained a tolal (multiply scattered) transmÎllance of the

forrn
1Tp(t) =--=--

1+ bt
(3.29)

. ,"'- ,-

if a=l-wo=O. b denotes a generaI purpose (phase function and/or BC parameter) which is
always proportional to q=l-g. For instance, for DA transfer we have b=ql2, equivalently,
we could he using the diffusion approximation 10 plane-parallel CA transfer (see §DA.2)

which, at bcst, allows for the possibility to model the effects of slant illumination geometry13

(i.e., the appearance of a boundary layer of thickness IJ{J); in this case, b can he used to

represent a BC parameter (related to the "extrapoJ~tion length") which is againproportional to

q=l-g (thus 'making bt proportional to the thickness of the slab in units of "transport"..!1
",m.f.p.'s, i.e., the effective t for isotropie scattering). 'J

We can generally expect final DA transfer resultS (for, say, global transmittance) to he

monotonie w.r.t. p as it goes from a to co; this is exactly what we already have for a=l-wo

as weil as q=I-Wog in asymptotic diffusion theory, cf. (3.25b). We can use this fact to put
bounds on either side of (say) conservative responses to extemal illumination for regular
(O<p<co) DA transfer by using its two diffusion limits: IPs at p=O, on the one hand, and

/,

bone fide (d-dimensional) diffusion at p=co, on the other hand. This can be of Gre in

situations where diffusion results are easier to obtain than their counterparts from DAs, let
alone CAs-we recall that both of the latter transport models are in the same broad category

of "kinetics," where ballistic propagation (as described in sect. A.2) is the central concept.

In the context of diffusionJheory proper (chap. 2), we showed that these bounds do not
!/ Q
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come in an arbitrary order; specifically, for conservative transmittance, IPs yield a lower

valuê than d-dimensional dWusion. After IPs (which has the above closed-foffil final result

Jor an arbitrary density field), the only foreseeable way the m,aking the general albcdo

problem any simpler is to assume homogeneity. We can easily show that this homogeneity

assumption may make the problem simpler but il also biases the result systematically, that
spatial averaging, on the one hand, and radiative transport calculations, on the other hand,

are operations that do not commute14 due to the fundamenmlly nonlinear character of trye
matter-to-radiation coupling. '<'-",.

3.4.2. Mixing the Responses ofRantÙ:!lII Media:'."'eIiition to Jensen 's Inequality

In sect. A.2, we substitute ensemble- and spatial-averages (this property defines an

"ergodié' variability mod~O in the case of direct transmittance which, incidentally, is

completely "pixel independent" by definition. We can.therefore proceed using dur nolations
,"" -, "l,'

for ensemble-averages and think of the above pixels simply as independent realizations of a

homogeneous plane-paralle(medium with a random density, equivalenUy, optical thickness
.....:. ..";",1

distributel!- according to som~ given probability distribution function P('t)=Prob{ 't':!>'t 1.
r'. '\\, _ '...
(P('t) is readilyrelated to the p.dJ. p('t) by Integration frofll 0 to 't.) We are now intercslcd in

,;:;1 ,_ \
the averages ',t

00

<Tp('t)h> =' J(l+bt)-h dP(t) ". (3.30)
o ii-'

Unfortunately, (3.30) does not have the fOffil O(%'Slandard Integral transfOffil,like Laplace's
~ , ~

w.r.t. Td('t), cf. (A.13-14). In both cases, we are dealing with a probabilistic

"randomization" or "mixing" [Feller,19?1] of p.dJ.'s since Tpet) is itself the paramctcr of a

Bernouilli law which has two outcomes: transmission with Prob=Tp('t), or rel1ection with

Prob=Rp('t) which is I-Tp(t), by nOffilalization (obviously related to our usual rcquirement
or

of "conservation").

, Using the basic properties of the 2n&characteristic function or cumulant generating

function (c.g.f.) of pet), we argue (sect. A.2) that the average <Td(t)h> is alway~ greater

than Td«'t»h, obtained for the average thickness, if Il>0. This is direcUy related to the

convexity of the exponential function and Jensenls'iriéquality[Hardy et al., 1952] whir,h, in
"our notations, reads

{
?j«x» ifjis convex15 .

<j{x», .,:!>.:f(<p) if j is concave ::;
:'1

Equalities are obtained for a \inear f(x) or for a degenerate (or "sure") x-distribution; notice

that f(xjfmust be a real (scalar) function, but x ~an belong to a vector space of any

dimensionality. The convexity ofTp(t)b (h>O) has exacUy the sam.e consequences resulting
,{:/

-:')

~I
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from Jensen's inequality that we found for Td(t)b and discussed at length in sect. 1.5. In

particular, for h=l:

<Tp(t» ~ Tp«t» (3.32)

The IP transmittance is thus necessarily greater than that of the medium which (surely) has
the same optical thickness under every pixel; in fact, equality is obtained only if ail of the

pixels have t=<t>. We remark that the function Tp(t) is only used for commodity; an
arbitrarily inhomogeneous medium will always have T('t)e ]0,1] for 'te [0,00[, so a
decreasing, continuous T('t) is necessarily convex. For instance, such a simple relation will
arise when the given variable density field sees itself multiplied everywhere ~y a numerical
factor (II:) which would then h.ecome the random factor in (3.32), see chap. 6 for a

detcrministic example.
In the literature, we have traced this kind of IP approach to atrnospheric radiative

variability estimation as far back as (the work performed earlier in the ex-USSR and reported
by) Mullaama et al. [1975] who uses normal t-distributions with careful truncation of the
unphysical negative values, especially since empirical evidence suggested, unsurprisingly,

the use·of a variance of the same order of magnitude as the mean. Ronnholm et al. [1980],

who seem to have worked independently, postulate log-normal variability and resort to

numerical integration; nearly the same type of distribution is studied analytically by Davis et

al.. [1991a, and in chap. 5], using multifractal formalism. Their computations agree with our
above (more qualitative) results evcn though they did not publish their figures for (l-g)<'t>

greater than 4. We must however take exception to their conclusion that (spatial) variability

has effects on radiative responses that are comparable to the differences that arise between
various radiative transfer schemes (i.e., a few percent between, say, a &-Eddington method
and a "doubling" method). Notably, they find O'T:"'<T> ail the way down to (1-g)<'t>"'114

?

with reasonably broad t-distributions, namely, where O'lo't"'<lnt> (which is a specific
prediction of intermittent turbulent cascade theory, cf. chap. 3). We very strongly disagree

with the predicament that the direction in which ensemble-averaging changes the response is

not obvious from the outset, unless some combination of undersampling of too narrow

p.dJ.'s weighted by more (too?) complicated response funetions has arîsen. The authors
~ -

also modelled "vèrtical" variability in plane-parallel media by "adding".ten layers upto an
average total of (1-g)<t>=4 at most(in their published data) and they find much smaller
deviations from the radiative response of the average medium. This is easily understandable

since (for Cilo=l) "adding" several layers is like adding their scaled optieal thicknesses (1~g)'tï

(i=I,10) togetlier and ten log-normal deviates add up to an approximatelynormal deviate, by

virtue of the centrallimit theorem (the variance of the log-normal distribution is finite), in
turn, this is a far narrower variability model which can be expected to yield
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<Tp('t»~Tp«'t». In other words, (without saying 50) Ronnholm and his co-workers also

did IPs with Gaussian distributions since there is no difference in their way of modelling

horizontal and vertical variability, beyond the somewhat academic distinction between IPs

and random homogeneous media. This distinction can he adapted to fields (or ensembles) of

c10uds with horizontally fini te geometry: the rcquirement of radiative independence translates

to large inter-cloud distances. (This approach to radiation interacting with broken c10udiness

is exploited by Welch and Zdunkowski [1981].) While Ronnholm et al. [ibid.] also varied

mû and g (one at a time), Mikhaylov [1982] considers the effect (via the diffusion length

1l1cp...j d(l-Cilo)(l-Cilog» of normal1y distributed fluctuations of the extinction coefficient (Kp)

in the average responses non-conservative asymptotically thick systems. Given the

concavity of absorptance A~l-R w.r.t. a=l-mû in (3.26b), systematical1y lesser averages arc

to be expected from Jensen's inequaIity. More recently, Pomraning [1988] discusses the

•. general case of finite plane-parallel slabs. Finally, Stephens et al. [1991] present a general

review the topic along with some new numeries on 't-variability.

3.5. DA 8imilarity Theories and the 8ingularity of the Diffusion Limits

In the CA formulation, the spherical harmonies of the phase function-<lr rather of the

scattering/extinction kerne1 [McKeIlar and Box, 1981]-is particularly useful in local

similarity ana1ysis (see §A.3.2 for more details). The same is truc for the eigcnvector

decomposition of J.p: if the optjcal parameters (K, a, q, p, and those tl1at intervene in S) arc

varied but the products Ka, Kq, K'p, and K'S arc all left unchanged, then the corresponding

solutions of (3.4) are a1so left unchanged. In other words, 1=1' if
• /:';c

Ka =K'a'(3.33a)

Kq = K'q' (3.33b)

K'p = K'p' (3.33c)

and KS = K'8'. In partieular, we see that the important c1ass of conservative (a=O) phase

functions is invariant under similarity. A good example is provided by the solution

(3.22-23) to the plane-parallel DA problem for conservative scattering: it is a universal

function of q't=(qK)pL; another example can he found in the asymptotic non-conservative

case (3.25-26). Furthermore, a=q=p=O (conservative al1 forward scattering) is the only­

and trivial-fixed point of the similarity transformation. As is the case in CAs, we must

exclude the single-scattering term from 8 in '6rder to main tain consistency since it is

proportional to eiilier t or r, not a, as would be the case for a iliermal-type DA source term.

The above, very simply expressed, similarity ana1ysis concerns only the DA(d,2d) systems;

it can of course he derived directly from McKellar and Box's [ibid.] CA similarity analysis

since oriliogonal DA phase functions are merely special caseS.16
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Lovejoy et aL [1990) develop a somewhat independent similarity theory based entirely

on the 2nd order DA formulation contained in eqs. (3.17a,b) for the Ii±; they also assume

a=Ol=Si+=O (Le., steady-state and conservative m.s. sources only). Introducing the notation

15; = 1 ai (3.34)
. {pq "p(x)

for i=I,"',d and O<pq<oo, the (readily simplified) eqs. (3.17a,b) become

li- = - -{fl5iIi+ (3.35a)

[ 1 -15;2] Ii+ = ~I (J - Ii+) (3.35b)

The second set (3.35b) no longer contains any explicit reference to the phase function values. .
whatsoever. In other words, the Ii+ are left invariant by changing the phase functions in

such a way that ICm remains constant, from (3.34). This time however, we proceed

without requiring invariance of the Ii- nor of eq. (3.35a), we thus gain an extra degree of

freedom. To see this, suppose we know the IW fields, hence the I\~, for sorne choice

(ql>Pl) of the (conservative) DA phase function, we now wish to obtain the original DA

radiances, Ifl, for a different choice (q2,P2) by postulating that their corresponding Ii+ are

"similar," Le., I\~(x;1C2) = Il~(x;lCi). As usual, we take a given p(x) field and modulate

optical density via the overall multiplier lC. We now define

~ - --J P2Q2 a. - --J P2fq2 - ~ ~ (3.36)- Plql - pJ!ql - q2

where ~=klflC2, is the constant ratio of optical densities (or thicknesses). Our above

postulate of course implies that I5;Ii~(X;lC2) =15i1i~)(X;ICI), and using (3.35a) and (3.36),

we obtain Il~)(x;lC2) = a. I\~)(x;lCi) where 0.;,,1 in general. Combining this with our·

postulate, definitions and (3.19) yields

l~l(x;lC2) =t (1 ± o.) IW(X;lCl) +t(l 'F o.) t/l(X;lCl) (3.37)

These "generalized" similarity relations hold for ail (pairs of) conservative DA(d,2d) systems

for d> 1; otherwise (p=a=O), the similarity transformations (3.36) are singular. From

(3.37), we see that the standard (lst order) similarity postulate (that Jill radiances,

equivalently, 1lQ1h symmetric and anti-symmetric parts are invariant) is retrieved for 0.=1;

eqs. (3.34) then read as the "exact" DA(d,2d) similarity relations.in the conservative case,

namely, lClql = lC2Q2 and lCIPI = lC2P2, or (3.33b,c)

In practice, the non-invariant eqs. (3. 17a) or (3.35a) are important in the expression of

the BCs, see the discussion around eq. (3.18). In particular, we see from (3.37) thal, for

XE aM, the illumination pattern is rescaled to a different one lhat depends not only on the

original pattern but aIso on the local response 10 it, respectively, the flIst and second terms in
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(3.37). So, with these non-standard BCs, the above generalizcd (or 200 order) DA similarity

is expected to apply only "asymptotically," that is, away from boundaries. By "away" we
mean out of reach of direct transmittance (for illumination or escape) but it may be quite

difficult to achieve this in very inhomogeneous media, such as (multi)fractals, where

radiation penetrates far deeper than in their homogeneous counterparts. Lovejoy et al. [ibid.]

however go on to obtain similarity transformations for global (spatially integrated) albedoes

and transmittances (applicable to media with various internai symmetries) by applying (3.37)

to the corresponding BCs and by further making the approximation that the irradiation pattern

can 00,. rescaled very simply (by a constant factor). For insllince, if the medium is both

up/down symmetric (Ti,"fromabove,,=Ti:'rrombelow") and cyclical in the horizontal (Ri=I-Ti),
they find that

1 _ 1 =.!. (_1__ 1) (3.38)
T2(K/~) lX TI(K)

Other, somewhat more involved formulac, are obtained by relaxing one or the other of the

above structural constraints. As pointed out by Lovejoy et al. [ibid.], an advantage of

generalized DA similarity is that, contrary to exact CA or DA similarity, it allows isotropie

and 3-D Rayleigh-like (llil21~215, lill =lili=Û, for i~3) scattering to be related by taking

p=1-5lil2 for the latter. (Recall that q=I-3lill and that, in general, we are concerned with the
ntb Kuscer coefficient: 1-(2n+l)liln.) This may be of sorne practical importance in

sufficiently thick homogeneous plane-parallel Rayleigh-like atmospheres where the

homogeneity hypothesis makes the constant factor rescaling assumption perfectly justified

and the other (boundary-induced) shortcomings of the generalized similarity theory are

. unlikely to be too serious since, again due to homogeneity, boundary layers are at their

thinnest (preliminary numerics seem to confirm this). We also notice, using (3.36), that

unsurprisingly the (exact) plane-parallel DA transmittance in (3.22) verifies (3.38) just as

weil as it does the standard (exact) similarity relations.

We now recall that the motivation behind radiative similarity analysis, in both "exac~'

(CA or DA) and "generalized" (DA only) versions, is that the similarity transformations (of

phase functions) and ensuing relations (between corresponding radiation fields) show that an

understanding of the behavior of a given medium for one phase function and ail possible

optical thicknesses is sufficient to predict ilS radiative properties for other phase functions.

For instance, if we restrict ourselves to the important cIass of conservative phase functions,

either many of them (p/q=eonst., in "exact" DA similarity) or ail of them (in "generalizcd"

DA similarity) can be accounted for-tlte difference only being one in BCs. This is also the

basic idea behind the above concept of"scaling" in transfer systems that we defined in the

introductory chapter and it is made more precise by (tentatively) limiting the effect of phase
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functions to the prefactor. We can further argue for phase function independence of the
scaling exponent by using the generalized DA similarity result in the asymptotic regime
(Tj«l, i=I,2). Rewriting the basic scaling relation in (0.1) but forl7 K(i.e., T~hKV) for

both TI and T2. Identification of both sides of (3.38) then leads to

V2 = VI (= v) and h2 = hl o:~v (3.39)

Along these Iines, an interesting point suggested by generalized similarity---which could be
exploited numerically--is that the isotropic DA phase function (pq=I-l/d) is not the one that
allows the fastest convergence to the thick cloud (scaling) limit since, taking p=q=1 (the
maximum possible with r=t=O, ail side-scattering), (3.36) yields ~="d/(d-I) which exceeds
one. Equivalently, from (2.34), the "effective" optical thickness w.r.t. this kind of

non-isotropic scattering iSl8 't.a="CNpq<'t.
Finally, from sect. 3.3 above (and app. D), we see that a and q are the independent

phase function parameters of diffusion theory and, as expected, ils characteristic similarity
relations are retrieved from our exact DA similarity relations. (Their generalized counterparts
however do not really separatel'the rescalings of p and q, except of course when 0:=1.) Most
importantly, we note that the twodiffusion limits of DA transfer, p~a=O (dxl-D diffusion)
and p~oo (d-D diffusion) are both slngular w.r.t. the (both) similarity theory(ies) since the
parameter q must simultaneously remain fini te as it enters the gradient rescaling in (3.15).

This means that the DA transfer and diffusion radiance fields cannot he related by similarity;
in particular, we can generally expect them t9 scale differently w.r.t. (total optical) thickness

as it becomes very large. More specifically, the similarity relation (3.38) at fixed q (hence
o:=~) predicts, as previously anticipated:

~<~<~ (3~

as represented by ~«I, ~I, and ~»I, respectively. This implies

VIP ~ vDA ~ Vdif (3,41)

The equalities are introduced to allow for the (at least possible) case where the sealing w.r.t.

K, at constant À. (as required in the premises) is the same in ail circumstaflces and that only
prefactor differences arise. In chap. 4, we examine numerically the opposite case where lC is

held constant and À. is varied but (3,41) still proves true (for both of our examples: random
binary mixtures and a deterministic monofractal).

In retrospect, this difference in scaling is hardly surprising given the.entirely different

mathematical structure of the respective formulations of the different approaches: compare
(3.30) for IPs, on the one hand, and VDVJ = 0 (plus BCs) for diffusion, on the other hand,

with (3.0) or (3,4) for CA or DA transfer (taken in the conservative steady-state case and

with the appropriate BCs). However, as previously mentioned, diffusion theory is expected
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"to provide a good approximation to transfer in "not too inhomogeneous" media. In the

previous chapter that covers variability effects in diffusive transport, we find that, for a

medium to be suPlciently inhomogeneous to exhibit radically different transfer- and diffusion
.,>,

behaviors, boqfà'special structural property ("percolation") inducing long-range correlations

Jl!1l! singular density values (the "RSN" limit) are called for. Other cases of major diffcrences

in transfer and diffusion behavior are found in monofractals (chap. 4) whilc multifractals

(chap. 6) open very interesting questions for future investigation.
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tThis fundamental ehapter is largc'ly bascd nn Lovejoy el al. [199OJ and Davis et al. [1991]. Sol. and Gabriel
[19SS] (unknowingly) resuseitated Cbu and Cburebill's [1955] six-bcam model and developcd tbe basic equations,
mainly on square grids (sec sect. B.2); still using spatially discrelized systems, tbey contrasted their simplified
transfcr model with diffusion theory. S.L. latter made the same conoectioD in the continuous space (orthogonal
beam) 2Dd arder formulation and he deveJoped the "gcncralized" similarity tbeory. A.O. enumerated exhaustively
the acceptable "relative scattering angle" DA SYStcI(5 (§3.1.2) and improved the connectioD with the CAs in three
diffcrcnt ways: flISUy, by establishing the nux~like nature of DA "radiance" 00 general grounds (§3.l.1);
secondly, by completing the eigen-vector description of orthogonal DA systems whicb closely paralJels the
spherical harmonie reprcscnlatîon of CA radiances (§33.2) and is Iikely to provide grounds for their quantitative
comparison in the future; Lbirdly, by clarifying the simple connections between (exact) CA-, DA-, and diffusion
similarity theories and how "exact" sirnilarity relates to its "generalized" counterpart (sect. 3.5). He also
considerably gcneraIized the DA-diffusion connectioD in continuous space and paraIleled the "new" derivatioD
wilb its standard (app. D) counterpart (§3.3.2). Finally, be notiecd the DA·IP eonnection (in tbe previously ealled
"1-0" diffusion Iimit) and explained, on very general (Jensen's inequaJity) grouods, the systematic differences
between homogeneous-based and IP·based--or otberwise variable optical thickness--calcuJations (sect. 3.4).

IThis however would he a hopeless wby 10 procc'e<fin practice given the very sharp angular features of a quasi.DA
phase function. Indecd, Hunt [1971] is o,nly concerned with details in Mie scattering and shows that already
hundreds of sp,';}erical harmonies are necéssary in single-scattering calculations, tens of streams in multiple
scattering calcuiations.

2Notiee tbat tbe "trivial" (single.beam) DA(d,l) system is eompletely solved by the Bouger-de Beer law nf
(exponential) extinction. studied in::'full detail in sect. A.2.

3Einstein was of course the one /)' finally succeed in bringing gravitation into the realm of geometry but Kepler's
imbricated polyhcdra work about as weIl as for the (then koown) oumber and spacings of the planets as
contemporary QCD does for the mass spectrum of (now knowo) particlesj beth approaches are based 00 symmetry
considerations hence (consciously or not) on group theory. Were an his polybedra chosen ideotical. Kepler
would have predicted a structure for the Solar System with exact scaling symmetry and his "successful"
combination in fact accounts for the observable discrepaocies between reaIity and perfeet scaling. The
Titius-Dode law (aa+l=2an-0.4) goestwo planets furtbcr 00, accounts for asteroids, and generalizes ta the major
satellite systems. Finally, VOD Wieszacker's turbulence·based cosmogony justifies pbysieally tbis omnipresence
of quasi.scaling in planetary systems.

4In particular, this precludes a solution by eharacteristics for the steady-state equation.

SUsing a single orthogonal family of beams, not many independent ones ,as discussed in the opening section.

60plical tbiekness is often taken in tbe 10-30 range, with g=O.S5, (1.g)~ is therefore in tbe range '1-4.5. Tbese
numbers are also invoked in investigations of inhomogencous cloudiness and inbomogeneity effects are
sometimes rather unclearj we strongly believe this is a consequence of the fact tbat we are dealing with systems
that are neither thiek nor thin w.r.t. 'isotropie scauering.

7The notational conventions of Lovejoy el al. [1990] omit this resealing whicb is however important in the
specification of tbe exact (mixcd) BCs for the albcdo problem (at 2'd order, cf. eq. (2.IS) and §3.3.3).

SAs suggestcd by Lovejoy et al. [1990], Davis el al. [199Ob] take the pq-+-limit but in faet q must remain fmite in
arder to satisfy the radiative BCs of the albedo problem; see discussion arouad eq. (2.18). Furthermore, the
extension from steady.state to time depcndeot problems presented here does oot support their single parameter
(pq) resealins·

9Thcse authors eonsidcr tbe couplcd system of 2'" order PDEs obcycd by ] and X; namely,

[ 22] [22] [22P] [22]Sy + Sz ] =- Sy. Sz X, Sy + Sz - 4q X =- Sy • Sz J.

10The most interesting allemative proof of this result uses invariant imbcddins [Bellman el al., 1960] whieb
transforms the Hnear 2-point bouodary value problem (that must a priori be solved for the internal field) ioto a
non·tinear ODE for R("e) whicb is readily intcgrated with initial. condition R(O)=O. This underscores the
fundamentally nonlinear nature of the radiation field (R) coupling with matter (-c), even before integrating the
(Ricatti), transfonnedtransfer equatioo; tbespecial role of the BCs in revealing this. nonlincarity is .also
emphasized. A simiJar proof but based on functional analysis, rather tban ODEs, is given by Gabriel et al.
[1990].

IIThe radianees deeouple furtber (w.r.t. lbe already decoupled mullially ortbognnal familles) into coupled direction
pairs, .i.e., one·dimensional systems.

12Theprocedure comes to mindso naturaIly 'that, witbout having any specialname. it is very often invoked. For
instance, every time a radiation routine is called by· a GCM and, if the notion of cloud "fractionu is diagoosed.
then cach grid box is itself divided iota two indepcndent pixels, one cloudy and the other noL .
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13This is done hy implemcnting th~ option to use 1st arder scattcring sources (and associatcd homogcneous Des) in
the Si+ (or. rather, their CA equivalcnt Sin eq. (D.9a». Sec Meador and Weavor [1980] for an extensive review of
the various "two·flux·· appro~'matioDS to CA plane-paranel transfcr in the literature.

14We use the ward in the same' sense as i~ quantum thcory wil.b onc important dirfercnce. In "quantics," 10 use
Lévy-Leblond's expression that avoids the words "wavc" and "mcchanics," x and p=~I"hêJlùx are Hamiltonian
(benee Fourier) conjugales. This is a lot worse than being nonlinear "functions" of onc 3nother: thcre exists a
"minimal" wave packet, viz. a GaussiaD~ (the nonn of) this wave packet is the analag of our 't- (or p-) distribution
but tbcre is notbing to stop us from making it degenerate. Indeed an overwhelming majority of transfer
calculations in the literature apply only to this very special case.

ISA functionjis said to he convex if it satisfies.r(X t;X2) s!txt);J{x2) for ail pairs of points (xI,X2) on ils support..

This translates ta j" ~ 0, if it exists, but this is .D.2l a rcquiremcnt for Jcnsen's inequality (3.31) to bc valid.

.160encrally speaking, CA similarity theory is not limited to the 3xi-symmetric phase functions treatcd by McKellar
and Box's [1981] and therefore carries over unmodificd to the most general DA system as describcd by eqs.
(3.2.3).

17Recall that, in general, wc expect the IC~ and the À.scalings to be related via supplementary (mass or dcnsily)
conservation constraints. In tbis case however, the similarity theory of sect. 3.S explicitly requires a constant
grid size (À) and overall multiplication by a variable IC-factor. Furthennore, wc are justified to use the notation
adopted for lite "mean field" exponent in. (1.2-3) since, at given p-field (henee À), we have 'toclC.

18This makes intuitive sense since automatic side-scattering is certainly the most radical way of loosing track of an
initial direction of propagation. Recall (from sect. D.3) that standard rescaling theory shows just how isol.ropy is
obtained from an initially collimated beam aCter several scaUerings if necessary.

\'
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Chapler Fourt

THICK HOMOGENEOUS AND FRACTAL MEDIA,
RADIATIVE SCALING PROPERTIES

Overview: In the present chapter, one of our aims is to quantitatively compare the
predictions of DA transfer described in chap. 3 and those of general (CA) transfer described
in app. A using, as a test, the compatibility of the exponents defined by the general

asymplotic thick cloud scaling,relations:

(4.0a) .

c

R ~ R_ - hR 't-vR (4.0b)

for transmittance (T) and albedo (R) respectively, and where 't denotes the spatially
averaged optical thickness (which is a direct measure of total LWC or optical "mass").

'"
Notice in, (4.0b) that we have naturally anticipated a non-vanishing thick cloud limit <R-)
for albcdkarid we recall from our discussion in sect. A.4 that one can distinguish Rand I-T
only if two conditions are mgt: the media are horizontally bounded, on the one hand, and
very special illumination conditions, f11le-tuned to non-generic boundary shapes (that allow

the~geo~etrical definition of ~,c1oud "side") are used, on the other hand.
The other aim is to quanÎitatively compare these two exact kinetic theories of radiation

transport with various approximate theories (lPs, diffusion and renormalization) and try to
single out the important structural properties of the optical media that cause these diffërent

approaches to agree weil sometimes and 10 disagree completely at other times. The answers

are of course respectively the opposite ~oles of extreme homogeneity (or regularity) and

extreme inhomogeneity (or singularity;i, but with subtleties w.r.t. the type of transport
\\

theory. Media with the former quality have been as weil studied as they are unrealistic but

we too will bc indulging in sect. 4.1, largely motivated by the urge to wrap up sorne
"unfinished business" conceming the scaling (actually, to a large extent, the very defmition)

"
of albcdo in horizontally boundeéi/systems. More precisely, we invèstigate reflection
through the top only of normlilîfjlluminated square shaped two-dimensional clouds and

. ':'"",:

show that this (essentially improperly defined) albedo scales trivially (VR=!), contrary to

our previous claims based on poorer data (vR=3/4). One of the reasons it is important to

setlle this problem is that,.,however artim:ial, such simple media and responses provide a
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benchmark for comparing both numerical transfer methods and inhomogeneous (isolatedl

cloud models. For instance, in sect. 4.2, we turn to internally inhomogeneous media

modelled with fractals which are far more interesting (in spite of their deterministic

structure) because radiative scaling properties are totally different from their homogeneous

(vr-=1) counterparts, it is "anomalous" (vr<I).

In sect. ,4-3, we compile all of our radiative scaling results in a comprehensive table •

and discuss the structural properties of the optical media that are apt to promote the
anomalous scaling; according to the available data, the crucial features seem to be singular

one-point statistics and long-range correlations in their two-point counterparts. TIle final

section is more theoretical, weask (in retrospect) whether this could have bcen anticipated

from first principles, i.e., by looking more c10sely at the mathematical structure of the basic

transport equalÏons. We summarize the situation by tentatively proposing two very specific

criteria, (4.9) and (4.14), for the onset of strong nonlinear effects (e.g., anomalous scaling)

on which both transfer and diffusion theories agree; the former criterion implies very

irregular (non-differentiable, possibly discontinuous) structures, and the latter that many

scatterings are needed to build up the nonlinear effects of "channeling." These criteria have

predictive (rather than diagnostic) power in the sense that they relate--in Preisendorfer's
\\

words-o!)ly the "inherent" optical (lC,g) and structural (p-field) properties of the medium,

no "apparent" property (related directIy to radiation fields, illumination geometry, etc.).

4.1. Homogeneous Squares, Cubes and Beyond

In fig. 4.1 and figs. 4.2a,b, we show numerical (Monte Carlo) results for

homogeneous squares (d=2) and cubes (d=3) where the dimensionality designates not only

the number of dimensions needed to describc the figure but also the numbcr of dimensions

in which the photons can propagate. In other words, the square is JlQ.l. a long 3-D

square-sectioned cylinder laying parallel to its axis. Illumination is normal and

tran~mittance is naturally defined as exit through the "bottom" (unique non-illuminated)

fac~.:' Because this is a case of "terminator" pathology as described in §A.4.2 abov~, the

way is opened to distinguishing reflèctance through the (normally irradiated) "top" and
"

through any (grazingly irradiated) "side." We will denote these responses respectively T, R

and S=(l-R-T)/2(d-l) and 't is the opticallength of the ail the edges.

4.1.1. Standard Diffusive Rescaling Retrieved

In fig. 4.1 ;:we find CA results for this geometry in d=2. The two-dimensional

analog of the Henyey-Greenstein phase function (describcd in §A.3.l) was used for several

values of the asymmetry factor (g). Notice that, rather than R directly, it is ôRlôln't

(ôln't=0.25Inl0~O.58) that is presented on the log-log plot; it is easy to see from the basic

relation (4.0b) that dRldln't scales the same way as R for large (or small) 't. Furthermore,
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this measure of albedo, as weIl as transmittance, arc graphed as a function of optical

thickness rescaled à la van de Hulst and Grossman [1968], viz. (1-g)t,just as in diffusion

theOl-Y. Both responses collapse onto universal curves, just as in d=l. (The discrepancies

seen in the transmittance curve are entirely attributable to the numerical Monte Carlo

uncertainties.) Davies [1978] as has already convincingly demonstrated that transfer and

diffusion yield asymptotically similar results for homogeneous cuboidal (d=3) cloud models .

with various aspect ratios. The universal bchavior w.r.t. (1-g)t observed here is a strong

indication that this is also truc for our square media in d=2. Il also implies, in particular,

phase function independence in the ~ymptotic rcgimes.
Finally, wc notice thatdRJd~~ goes through a maximum, just as in d=l (or in slab

gepmetry) where, from (3.22),

dRp = R (1-R ) (4.1)
dlnt p p

(4.2)
,y:o

hence, using (4.1) again, the second derivative is -%îiTp<O for al1 finite t's.3 At the sarne

lime, the value of theprefactor hr is decreasing7 d d increases and: most importantly, the

asymptotic regime is entered at increasingly large optical sires. This is not too surprizing

eilher since, from its point of injection on the top face, the typical photon "secs" the bottom

face through a relative angle (on ?:d) that decreases constantly with d, hence. increased
1.....1,

chances ofbcing intercepted by other sides before reaching the bottom on its RW. On the

same figures. we find 10g[1-R(t)] vs. log't with v{=3/4 lines indicated !hat seem to

which is maximal at Rp=Tp=1/2, Le., (1-g)tmax=2. The subscript "p" stands for

"plane-parallel" as in (2.28). Here, in d=2 with horizontal fluxes due to horizontal
boundedness, we find a somewhatlarger but stiU 0(1) value for (1-g)tmax• We will soon

sec that this type of behaviour is not specifie to homogeneous media.

4.1.2. Characterization ofthe Phase Function lndep'èndent Scaling Regimes

Turning to figs. 4.2a,b, respectively for d=2 (t$512) and d=3 (t::;256), the phase

functions are either DA- or CA-isotropie (g=0) and, in d=3, the Deinnenjian "Cl" (g=0.85)

phase function has been added.1 The fact that the T-curves, on the one hand, and

R-curves, on the other hand, for both types of phase function bccome paraUel in the log-log

plot demonstrates that the important scaling properties (exponents) are insensitive to the

phase lunction choice. We ftrst focus on T(t), in d=2, there is little doubt that this rcsponse

is weB into its asymptotic regime with vr=l, unsurprising1y. More interesting is the

inflection of the 10gT vs. 10gt curve which incrcases from d=2 to d=3. We note that there

is none of this inflection at~Un d=l (or plane-parallel geometry2 in d>l); indeed, from
-.=.>

(4.1) above and Tp=l-Rp, we find

dlnTp =-R
dlnt p
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" l,

represent the avai!able data adequately; we address quantitatively the question of the

albedo'sasymptoticbeh'avior for d=2 in the next sub-section. In the mean time, we simply
notice how the distance between T and I-R increascs with t and, more markedly, with d.
This distance is of course ni! in d=l. Whatever ils scaling exponent is, R also enters its
asymptotic regime at optical sizes that increase with d.

These trends4 w.r.t. increasing d are not hard to understand. First, it is easy to see
that T(t) becomes exponential in the limit d-t'" because, in oo-D, the photons that,are not
direcüy transmitted have a vanishingly small chance of even being scattered back into the
downward direction in a'finite numbcr of steps. In the sarne lirnit and for the same reasons,
we expect R(t) to vanish for ail t. This last point can be furthered by noticing that, for
thick media (homogeneous or not), the fraction of ail incident.photons that are reflected after
a single DA(d,2d) scattering is 1'/2 since, after reflection (with probabi!ity l'), we want to
know how many photons, starting at exponentially distributed optical distances from z=O in
an optically thick medium, make it back according to the same exponential optical f.p.
distribution (the answer i.~ exactlyS 1/2). Notice how the exponential character of the
distributio.n is not esscntial to the outcome.. We are presently comparing, in a systematic
fashion, isotropie scattering in various dimensionalities (so t=r=s=I/2d). The contribution

of fIrst order reflection is therefore 1/4d; as dc:?~,thi~fra.(;tion vanishes identically and,
, . -_.------- '-

since the contributions of higher orders-of-scattering necessarily go in diminishing,6 this
tells us that convergence towards a high value of R is ever slowerl~)('è.need -t2 scatterings,

'~independent of d, see discussions in sect. B.l and DA), as dincreases without bound.
~

4.1.3. The Evidence (and RelevanceJ ofNon-trivial Scaling in Homogeneous Systems

Gabriel et al. [1990] argue that the thick cloud scaling exponent for I-R has to bc
sorne ratio of small integers since the problem has regular BCs. In other words, the scaling

may not be "trivial" (the plane-parallel result) but neiiher is it "anomalous" which would be

the case if the exponent took on sorne non-rational real value. The authors in fact proposcd

3/4 in d=2 and 112 in d=3 for VR; however they based their estimates on the predictions of
their "real space renormalization" approach which can lead to unphysical results, as shown

by Lovejoy et al. [1990]. Indeed, the former exponent seems to accommodate our above

numerical results in both d=2 and d=3. It is clearly of interest to try to setlle for sorne
defInitive understanding of these totally homogeneous (hence totally unrealistic) cloud
models if we are to feel confIdent about our ability to understand the more interesting but

more diffIcult case of realistically inhomogeneous clouds. j

First,we recall from our dis,cussion in §4.1.2 that, in this very special case of cloud

.ilill! illumination geometries, there is a basic ambiguity about what we can cali albcdo. This
ambiguity can be removed by sccking theurobust" term-!,,:\ator which here tums out to be the

rim of the cloud's base. In this analysis of the problem there is of c'jurse only one
.;)



\1111"if&,.

','~,'

104

exponent for both T and R since they add up to 1, by definition, independently of cloud
geometry and even in presence of internai structure. If internal homogeneity prevails, this

exponent is 1, arguably for any finite d.
Secondly, if it still appears important to separate l-T into R. on the one hand, and

2(d-l)S, on the other hand, then we must recognize that, as d increases, the asymptotic
regimes (whatever they happen to be) are ever harder to reach hence less-and-Iess relevant
to "reasonable" optical sizcs (say, in the several hundreds). For this reason, we will dwell
on homogeneous squares with isotropie DA(2,4) scattering-a very simple Monte Carlo
code to write--and ron high quality (mega-photon) simulations that are statistically
independent, not only from one photon to the next but also from one medium to the next
(this inhibits certain optimization procedures used previously) for 't up to 512. The results
are plotted in fig. 4.3 as they should when seeking an asymptotic scaling regime: (l-R)'tvR
vs. logz't for several test values of VR ranging from less than 3/4 to 1. In ail cases, the'
numerical uncertainty is smaller than the'symbol. cf. eq. (B.lb). For the right exponent,

the curve levelsoff at an ordinate equal to the prefactor hR. Clearly, 3/4 fails the test and a
rough examination shows that VR can be no less than 0.8. If we believe very strongly that
the two last points ('t=256,5l2) are in the asyrnptotic regime, then VR is slightly greater than

0.8=4/5 but 516~0.83 appears to be already too big ... and the integers in the ratio that
forms VR cannot be that small.

IL seems that the easiest way to save the (perfectly valid) "small integer ratio"
argument is to consider vR=lIl with a very large prefactor, i.e., the log(l-R) and 10gT
curves eventually become parallel (S and T go to 0 at the same rate ultimately). This would

have the further advantage of being independent of d; otherwise, the whole exercise must

be successfully repeated for all d's. Finally, there is a simple geometrical argument that

predicts this behaviour, including the prefactor increasing with d (as discussed in the
previous sub-section). Consider a very large homogeneous hypercubical cloud of optical
size 't»1 in all d directions; only a fraction =2(d-l)td-zltd-1=2(d-l)/'t of the incident photons

fall within a m.f.p. of the edges and only these stand a fair chance (say, 50-50) of reaching
the corresponding side. the others are generally reflected (contribute to R) and a very small

number are eventually transmitted (reach the bottom) afte~ very many scatterings.
Neglecting those transmitted photons (due to the relatively small prefactor), we find '

l-R=2(d-l)S~(d-l)/'t. In short, sidesare asymptotically unimportant. at leastin these

homogeneous situations. This analysis of the homogeneous cloud scene also irnplies that
most of the top face of the large cuboidal cloud will have a ql1asi-plane-parallel response

attached to il. In turn, this is corroborated by the simple visual experiments described by
Bohren [1991]: he photographs fromabove (the illuminated side) horizontally finite ,

:::::::::.:~::=
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homogeneous clouds (made of milk and water) and they indeed are featureless, except at the
very edge where they naturally darken.

FinaIly, we note thatthe above argument makes use of the intuitive idea that the
presel)ce of boundaries can only be felt (in the fine directional structure of the radiation
fields) up to a few photon m.f.p.'s (while the rough directional features are conditioned
everywhere by the asymmetry 'in illumination). In turn, this leads to the idea of a
"physically defined" boundary layer which, in homogeneous situations at least, would he
relatively narrow (and this is essentially why the diffusion approximation can he expccled to
be quite accurate, see app. D). In contrast, a non-trivial albedo exponent would be an
indication of the presence of a "mathematically defmed" boundary layer in the sense that the
required solutions of the transfer equations would behave non-analyticaIly near the
boundaries (Le., infinite gradients would occur). Indeed, the weIl-studied solutions of the
simplest (plane-parallel) problems are singular but they have the property of having
bounded first order directional derivatives, these are the physically meaningful ones that
appear in the transfer equation itself [Marchuk and Agochkov, 1981]; these derivatives can

be--in fact, generally are--<liscontinuous across boundaries (infinite second derivatives).
Exact solutions of the CA transfer problem on cuboidal media have been developed by
several authors [e.g., Crosbie and Schrenker, 1982; Preisendorfer and Stephens, 1984;
Stephens and Preisendorfer, 1984]; they are quite complex but, unsurprisingly, they make

no use of boundary layer methods and show n?_.evidence of singularily in the physicaIly
interesting7 quantities.

4.2. Deterministic Monofractal Media (Sierpinski Gaskets)

4.2.1. Resultsfor the Horizontally Infinite Cloud ("Cyclical" Boundary Conditions)

As a prototy'pical internally inhomogeneous medium with the kind of intermittent scale

invariance that we expect from CUITent turbulence theory (and observation), we propose to
use the saine D=log23=I.S8S.. · deternlinistic monofractal used as an elementary example in

app. C. Fig. 4.4a shows the first three cascade steps (with ÂQ=2 and d=2) and fig. 4.4b
shows the same medium after n=7 cascade steps (hence Â.=Â.oo=128) while, in our

numerical transfer simulations, we prr,ceeded up to n=9 (cyclical BCs) and n=12 (open
BCs), Le., a 4096X4096 grid. In aIlA~ses, the total numher of fiIled ceIls is N/..=Â.D, see

sect. C.2 for more details on thedeflnition and geometrical meaning of D (including the
relation to more standard ways ofconstructing "Sierpitiski Gaskets").

The Monte Carlo simulations follow the general guidelines exposed in sect. B.l with

one difference which consists in an optimization that exploits the monofractality. Given that

the individual cell is either fuIl or empty, the (integer) array in computer memory is used ta

store, notdirectly the local value of the d_~sity, but rather the OOg2 of the) sizc of the hale
-.......-:~
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ranging from 0 (one elementary ceU) to n-l (the massive hole in the upper right corner) and
a token (negative) number was used for the filled ceUs. This way the photon could be
immediatcly propagated from one side of a hole to the other, with no further questions
asked about the cumulative amount of scattcrers encountered since it remains constantin
such opûcal voids (hence considerable spced-up). The fùled cells were maintained at one of
three optical thicknesses ('to=lCpolo=1I8,1I2,2) throughout the cascade. The total

(horizontally averaged) optical thickness is thus given by

'toN", C
l =- ='toÎ-!' (4.3)

Î\.d·!

where l-C=1-(d-D)=0.585···.
The results for cyclical BCs with normal incidence and CA isotropic scattering are

presented as usual (T('t) vs. "ë) in fig. 4.5 for all three adopted values of'to. Noûce that the
curve for the thickest cells lies almost entirely in its asymptotic regime, in sharp contrast

wilh the previously discussed homogeneous media, and we find Vl' = 004. Alsoillustrated
are selected results for isotropic DA(2,4) and DA(2,6) scattering phase functions with 'to=2

and we remark that only the DA(2,4) exponent differs significantly (VT = 0.5). This is the
only violation ever observed of our general mie of radiative exponent independence of
phase function choice and is (probably) caused by the strong degrce of anisotropy (r.hJ1.h.
asymmetry plus horizontal extension via cyclical BCs) somehow "resonating" with the
privileged directions of propagation of the photons. Also indicated for reference on the

same figureis the homogeneous plane-parallel transmittance (3.22) and we find, for T=O.l
(not untypical of overcast conditions), an optical thickness ratio in the range 5-8 with more

LWC in the inhomogeneous cloud. This agrees weU with the kind of discrepancy reported

in connection with the cloud "albedo paradox" [Wiscombe et al., 1984] discussed in the
concluding chapter.

4.2.2. Resultsfor the HorizontaUy Finite Cloud ("Open" Boundary Conditions)

Fig. 4.6a shows our Monte Carlo results for the transmission through the same

normally illuminated monofractai medium but without the photons being recycled if exit by
,

a side is detected-physically, this is a very different situation (see discussion in sect. AA

and 2.2). Again the illumination is normal, and we compare CA- and DA(2,4)-isotropic

phase functions. Using the data for 'to = 2, the scaling exponent in (4.0a) is found to be

VT= 0.5 (not unlike the above DAexponent, but there is no reason to thinkthis should be
a rule). However, albedo (in figs. 4.6b,c) exhibits R.. = 1/2; its precise value will be
estimated numerically along with vR further on. The cloud possesses a symmetry axis (at

45° clockwise from the vertical) which,combined with theisotropic phase functions used
here, ensures that roughly half of the (vertically incident) photons will escape from the top

and half from the r.h.s. of the cloud (if it is very thick). By the same token, we sce that if
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the cloud were rotated 45° counter clockwise in fig. 4.4, its R~ would bccome \,
equivalently, rotate the angle of incidence 45° clockwise. Either way, wc sec that the
boundary. conditions (of illumination) have an obvious inOucncc on thc fixed point of the
scale changing operation in thick cloud limit, but not on the cxponcnts (cf. our discussion
of percolation below). Notice also that, in the new configuration, the (grazingly
illuminated) cloud sides are reduced to two points, one can no longer distinguish R and \-T
hence a single exponent is called for.

In order to determine the values of~ and VR, it is convenient to graph thc finite
derivative of the aIbedo w.r.t. the (naturaI) log of (space-averaged) optical thickness against
the albedo itself, thus avoiding a nonlinear three parameter fit. From (4.0b) one readily

obtains

(4.4)[R -R(-)] (3/2)VR- 1
~ ~ In3/2

_L\R_ _ R('f)-R(2't/3)
In3/2L\ln't

Suc~ a graphS is shown in fig. 4.7; from the linear regression coefficients one obtains
R~ = 0.53,0.54 in the CA and DA cases, respectively, and vR = 0.46. As for the

transmittance data, the exponents obtained are the same (to within numerical precision) for
both phase functions, supporting the hypothesis that DA and CA are in the same
"universality class" of phase functions. However this last number can be viewcd as
basically compatible with vT determined above above, given the very noisy data and the way
the "asymptote" is approached (we will not stress thcir difference in the following). We
wiII retum to this medium in sect. 5.3 with analytical results for direct transmittance as wcB

as IP transmittance.

4.3. The Transition from Normal to Anomalous Radiative Scaling

4.3.1. Physical Transport Theories and Madel Optical Media

Table 4.1 summarizes most of our (and several other authors') findings in scaling
language. Its purpose is to single out, using the available data, thc structural propcrtics 'of

the optical medium that are necessary for obtaining anomalous radiative scaling and/or
diverging predictions using different physical theories to describe radiation-matter

interaction. This justifies the presence of four columns, the flfst three of which correspond ,
to the three basic "general purpose" radiation transport theories, Le., a thcory that can

accommodate any kind of medium, on a per realization basis when its nature is s\,ochastic.
SpecificaIly, we have radiative kinetic theory in column #2, its hydrodynamic Iimit

(diffusion theory) incolumn #3, and the "independent pixel" (lP) approximation in column

#1. The above criterion excIudes "mean field"theorles where the average effect of sorne
specific brand of inhomogeneity is directly modeled [e.g., Stephens, 1988; Titov, 1990;

Boissé, 1990;also the brief discussion in sect. 5.1 based on our scaling results for average
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mulûfractal direct transmittance]. Also excluded a priori is the "real space renorrnalization"

([ approach of Gabriel et al., 1990] which must be redesigned more-or-Iess from scratch for

each different (necessarily scaling) medium. "Mean field" and "renonnalization" are ideas

more than theories and, in fact, the quoted application of renonnalizaûon ideas to radiation

transport uses a mean field idea (specifically, when across-cell gradients are neglected). A

posteriori, there are several reasons (given below) to inc\ude this renorrnalization approach
so il is associated with column #4. At present, we are exc\usively interested in the

conservative "albedo" problem (i.e., purely scattering media illuminated at a boundary) and,

for completeness, we have quoted sorne results established (or simply discussed) elsewhere
in the litcralure.

Transport Indcpcndcnt Radiative Diffusion RcnOl1O-
Theory -7 pixels uansfcr approx. alization

... DA rcgimc: p=O' O<p<~ p=!~ __P<O
Medium.!. VT ;-- _

(vR)
Homogeneous
Plane-parallel:
"rod" (d=\), (trivial) 1 (exact)

(d=2) 1 1 1
"sIab" (d=3) 1 1 1

Homogeneous
and Bounded:

circ\es 1 1
squares 1 1
(d=2) (1?) (l?)

spheres 1 1
cubes 1 1
(d=3) (1 ?) (1?)

Inhomogerieous
and Bounded:
Ciro Annuli (d=2) 1 1
Sph. Shells (d=3) 1 1

Binarv Mixtures
in Slab Geometo':

(d=2) 1 1 1
(d=3) 1 1* 1

... same at p' -Pc and
in the "RSN" limit:

(d-2) 1 . If 0.03
(d=3) 1 1 0.2

1.5S-D monofracta!:
cyclic BCs 0.71 0.4 0
open BCs 0.5

(d=2) (0.5-?)
Multifractal-:ç:

<tI(l+rt» <1
<cxp(-t» <co

1
1
l'

!
(3/4)

!
(1/2)

0.60'
!

(0.16)

Table 4.1: A compilation of most known radiative scaling exponenlS, see text for details.
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The four different transport models are not unrelated to one another and we now rccall
their various interconnections. The second column is reserved for radiative transfer per se,

the fundamentally kinetic approach that models photon populations in their natural phase
space (Le., in both physical space' and velocity-, or propagation direction-, space); most
importanUy, the photon propagation is ballistic in nature with lhep(x) bcing the local m.f.p.
and we will return to this aspect in the next sub-section. Based on our comparisons in the
above sections, we consider the general (CA) model to be in the same dass as DA(d,2d)
transfer, on condition that its characteristic phase function parameter "p" remains finite. To
the left, we find the IP approximation at the "p~O" DA limit and where net radiative
exchanges from one (vertical) column to the next are prohibited, not by inserting internal
(insulating) boundaries as describcd in sect. 2.1 from the diffusion viewpoint but by gi"ving
probability 0 to a sideways scattering event. To the right, we find tlle diffusion
approximation at the (more formaI) "p--700" DA limit and where fluxes in any direction are
not only allowed but given exactly by Fick's law; see sect. 3.3 and D.2 respcctively for the

connections with the DA- and CA transfer models. As we see, these two
approxirnations--cven DA transfer itseIf---ean be obtained dirccUy from CA transfer but the
route via DA formalism shows how the three general models fit into a continuum
parameterized by a single DA parameter; we can therefore expect systematic effects to arise

when going from one transport modelto the next for a given medium. For instance, it was
shown (on a restricted class of inhomogeneous media) in sect. 2.1 that IFs yield smaller
overall fluxes (transmittanec) than diffusion theory; on the examples studied here, we will

see that DA (hence CA) transfer fits neatly in between the two. Because of its close

connections with DA transfer, we have provided a faurth column atthe extreme right for the

renormalization approach but it has entries only for those few scaling media for which it has
been worked out; we note however that these connections exist at the technical level

[Gabriel et aL, 1990] as weIl as at the formal level [Lovejoy et aL, 1990]; in the latter case,
we have an association of renormalization with the "unphysical" DA regime (-oo<p<O).

4.3.2. Homogeneous (but not Necessarily Plane-Parallel) Media

The rows of table 4. I. correspond to different categories of media, starting with
(horizontal) homogeneity in plane-parallel geometry and there are no surprizes here sinec

these media provide the bcnchmark for "normal" radiative sealing. From there, we go on to
homogeneous media in sorne kind of bounded geometry. Entries in italics correspond to

results that have not been established in any great detail but are nevertheless extremely
plausible. For instance, we discuss cirdes and spheres in chap. 2 but solve the albcdo

problem only for the latter and only in the diffusion approximation. Because they have a

weIl-defined terminator, only a transmittance exponent is required and it is of course unit;
in sect. 2.2, it was shown that the formal equivalence to plane-parallel response goes in fact
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a lot further than just the exponent. In sharp contrast, squares and cubes under normaI
illumination have pathologicaI terminators; in the table, we quote (with a "7" marker) our
updated estimatc of the "top only" refiectance exponent and hopefully put this totaIly

academic problem to peace: either we accept that l-R scaIes as for the plane-parallel
medium or we use the "robust" tcrminator and then only the transmittance exponent is caIled
for. Il is hard to convince oneself that there is something fundamentaIly different between
equally homogeneous sphericaI and cubicaI cloud models! We quote the diffusion result for
cubes as positively known because of Davies' [1978] semi-anaIyticaI solution. which agrees
numerically extremely weil with his Monte Carlo resul15. Following our discussion in
§2.2.3, wc omit IP estimates for aIl horizontaIly bounded media since they are basically
irrelevant to that geometry. For completeness, we also quote the quantitatively poor
renormalization estimates of Gabriel et aL [1990] for this controversiaI refiectance exponent
and note that the authors themselves retain onlythe quaIitative features of the approach
(which borrows heavily from nonlinear dynamical systems theory): phase function
independence of the radiative scaling in the "attractive" (hence stable) thick cloud limit,
phase function sensitivity in the "repulsive" (hence unstable) thin cloud Iimit This last
method yields no information on the transmittance exponent (hence the "1" marker in the
table, il is not an omission). Notice that, apart from the problematic numbers just

discussed, we see only one exponent vaIue up until now: unit.
4.3.3. Weakly Variable (but not Necessarily Snwoth) Media

We now enter the rcaIm of inhomogeneous media, starting with the deterministic case
(again from chap. 2) of spherical systems with a sphericaI cavity. In more generaI terms,

this example is representative of a whole c1ass of media with inhomogeneities present only
in a very narrow range of scales. "Narrow" w.r.t. the range going from overaIl cloud size

down to sOme very much smaller scale, just Iike the inertial range in fully developed

turbulence theory (cf. app. C). Unsurprisingly, the scaIing is the same as for the above
totaIly homogeneous media. This does not mean that there are no interesting and systematic

effec15 of inhomogeneity present, only that they can affect the prefactors alone (see §2.3.2
for a very specific illustration of radiative "channeling" using hollow spheres). We now

turn to very much random media, namely, "binary mixtures" where the vaIue of (opticaI)
density is chosen according to a simple Bernouilli triaI between a lower (K'p_. probability p_)

and a higher (Kp+, probability p+=I-p_) vaIue. This process is repeated in each and every

cell without any correlation from one to thenext. We are dealing with "on/ofr' or "1-bit"
white noise with an offset, further discretized spatially on a grid of constant 10 and outer

size L. 115 spectral density is flat from k=21t1L to k=21t110, so this is very "broad band"
variability if L»10. In §D.6.2, wereviewed the extensive anaIyticaI and numeriêaIdiffusion
studies conducted on such media and put them to radiative purposes in §2.3.4; we saw that
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these media have normal (homogeneous-typc) diffusive scaling in general [e.g., Hong et

al., 1986] with exceptions discussed in the upcoming sub-section. From the transfer
vantage point, Welch et al. [1980] report "small" differences bctween white noise and
homogeneity using Monte Carlo simulation for photon transfer (although Uley did not use
exactlya binary mixture, hence the "*" marker in the table). In the same vein, Boissé's
[1990] analytical results the ensemble-average transfer responses of binary mixtures that arc
exponentially decorrelating (on a scale R) ratherlhan uncorrelated as di>eussed above (and
again bclow); the author numerically confIrmed his (non-conservative) results using a

white noise medium and setting R=lo in his formulae. This "mean field" theory for media
that exhibit a specifIc scale in the structureis normally outside of the scopc of this survey.
However, the model has two scaling limits: R~oo (homogeneity) and R~O ("atomic
mixture," which is an idealization of white noise on a very large grid). Interestingly, the
equations in the latter limit become formally identical to those of the former limit (at the

mean density).
Finally, it is important to realize that the inhomogeneous media that we have been

considering are far from being "smooth" (differentiable). The hollow spheres have one
major discontinuity since the density goes from sorne finite value to zero as the center is

approached; their density field has singular values but it is almost everywhere smooth
(technically speaking, it is called "piecewise constanI.J,). We furthermore recall (from

~.

§2.3.3) that the radiation field is itself continuous across the discontinuity and we will see
(in chap. 6) that multiple scattering can very powerfully smooth out very intense
fluctuations in the density field. By way of contrast, the media composed of binary

mixtures are nowhere differentiable although they are everywhere stochastically ("aimost
surely") continuous in general (i.e., as long as R remains fini te). We will collectiyely refer

to these media as "weakly variable" in spite of the possibility of vanishing density (hence of
an infinite relative range in density values) because, in the cases where this happcns, the

optically empty regions are somehow localized and, as we will now bc arguing, this is of

crucial importance to the maintenance of normal transport propcrties (vr-l) in presence of
singularity. Indeed, it is difficult to conceive of an interesting "transport" process (e.g.,
"channeling") happening at a point-;-even Fick's law calls for a gradient (henee information
from two neighboring points). Conversely, we can imagine optical media that are highly

correlated and basically irregular (in the sense of non-smooth) but nowhere singular. For
instance, we could mention density fields that look lilee Mandelbrot[1975]- Voss[1983]

"fractional Brownian landscapcs;" ",'although such models have not bcen extensively

researched9 from the radiative pointof view, we strongly suspect them to be in this

category.
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4.3.4. Extremely Variable (and Somehow Correlated) Media

In the statistical physics literature, binary mixtures have attracted much attention

becausc of the "percolation" phenomenon that appears at sorne critical probability pc. At

this frequency of occurence, an infinite c1uster of low density (p.) ceIls appears after a stage

of algebraic growth w.r.t. (P'Pc), Le., the size of the biggest c1uster 1;-lp-Pcl'v also known
as the "correlation" length although "connectivity" length would be a better expression (sec

our discussion of this nomenclature in §4.4.4 below); notice that we retain the traditional

notation since no confusion is possible with our radiative "vs" since the latter aIl carry

subscripts. Furthermore, this large cluster has a characteristic fractal structure, the number

of ceIls it contains (its "mass") grows algebraically with 1;, Le., as 1;D where D is the

associated fractal dimension (see sect. C.2 for further details). In the above, the exponents
(v and D) are "universal" in the sense that they depend only on d (a "relevant" variable), not

on the type of grid or whether we are dealing with "bond" percolation rather than (the above

described) "site" percolation. In contrast, the value of Pc does depend on such so-called

"irrelevant" details. For an exceIlent review of the geometrical aspects of percolation (and a

good introduction tO'the transport aspects), see Stauffer [1985]. In itself, this percolation is

not enough to change the diffusive nor transfer scaling, let alone IPs, but, if the limit p_~O

(or P+-?oo) is Laken while remaining near Pc, then new and interesting transport phenomena

occur, but,only when diffusion is used to model il. This is the "random ~uperconducting

network" (RSN) limit where the appropriate (properly diffusing) particles to be used in

simulations are de Gennes' [1980] "termites." In this limit, the incipient infinite P!lrcolalion

fractal c1uster Iiterally "channels" the termites and the medium becomes globaIly

superconducting (read, totally transparent), Le., we witness a phase change behaviour at

the critical (mean) density value. to In table 4.1, we simplyquote-l!Je diffusion RSN- .
exponents and notice their anomaly (at last!) which is clearly related toîné singular nature of

the density field; for details, conceming finite size scaling in particular, we refer'ihe reader
to §D.6.2 and §2.3.4. We simply point out the fact that the RSN exponent in d=2 is the ...•-,,0).

only one numerically determined to more'than one significant figure (and this c:l1led for

considerable computational "8ffort-by several groups·· working with different

techniques-motivated mainly by the eventual disproving of the "Alexandre-Orbach"

conjecture). We can confidently predict normalscaling for transfer through percolaling

media even with nuIldensity values mainly because of Bunde etai. [1985] report negative

results on';skating" termites (identified by a "t" in table) which, Iike photons, were

programmed to have ballistic trajectories in the superconducting cluster. By negative, we

mean that no phase transition was observed and that particular breed of termite was

(J consequently rejected as a model for diffusion, see Lov~joy et al. [1990] for further
discussion along thesc lines.
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Finally, we arrive at the deterministic monofractal investigated in the previous section
and, simultaneously, at a pie thora of anomalous scaling exponents. The transfer entries
reproduce the results obtained numerically in the previous section of this chapter. We

dismiss the numerical significance of the difference between VR and VT in the case of "open"
horizontal BCs (hence the "?" marker reappears). For the case of "cyclic" horizontal BCs,
we use the (more universal) CA-DA(2,6) figure rather than the DA(2,4) figure which is
numerically compatible with the "open" BC exponent(s). This last choice is to stress the
fact that we are really dealing with two very different transfer problems, not just a minor
change in BCs (in the same sense as, say, varying illumination angle is): one medium is
Infinite and the other not; there is no reason to believe that the exponents should be the
same a priori, even in suéh simple transfer systems. The corresponding IP result is
obtained analytically in the next chapter and we can confidently predict total transparency
w.r.t. diffusion (T=1 hence VT=O) since the fractal medium is so sparse (Le., it can by
associated with an RSN medium at p=1>pc). Gabriel et al. 's [1990] renormalization results
are also quoted for completeness. What has happened? Il is singularity in conjunction with
long range correlations (and the appearance of a fractal structure) that caused diffusion

theory to "go anomalous" in the percolating RSN limit. Here too singularity is playing a
crucial role; although the worked out example is an "on/off' monofractal density field,
there is no fundamental reason to restrict ourselves to this blatant type of singularity
(density simply becomes exactly null here and there, as in the case of binary mixtures) but

rather we can think of singularity in the sense of strong intermittency, extreme variability,

Le., the multifractal sense of the word that is encountered in turbulence theori(app. C).
, _.' L~

Here too long-range correlations are present although this time in thestraightforward
statisti;;al sense of a diverging "integral scale" (cf. eqs. (4.10-13) below), not in the

~. ~

perc6lation theory usage evoked in the beginning of this sub-section. Fin\l!ly, under the
entry "Multifractal- t," we quote symbolically, ~!..om the upcoming chapter,'our analytical

results for both total plane-parallel (IPttransniitiance and direct transmittance; in both
.'

cases, the scaling is found to be non-trivial in general. Although extensive nunîcrical

radiâtive scaling studies have not yet been conducted for multiple sealtering in multifractals
of all kinds, we can anticipate anomalous exponents for both transfer and diffusion (and

they will probably he different in general).ll
In summary, non-trivial ,radiative scaling does not appear along with horizontal

boundedness, nor inhomogeneity, nor stoehasticity, not even very broad band variability of
the density field. The key notions seem to be (i) wide-spread sin~ularity, in the

str~ightforward sense, or in that of extreme multifractal (hence intermittent) variability, and
(H) long-range correlation, in the usual statistical sense, or in that used specifically in

percolation theory (see §§4.4.2-4 to come for technicalities). Singular (RSN) percolating
"
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media are associated with anomalous diffusion only and multifractals are associated with

1: non-trivial scaling for transfer as weil. In other words, it seems to take nothing short of

strong (multifractal) intermittancy and the accordingly strong degrce of concentration (hence

correlation) for radiative "channeling" processes to affect the exponents in a transfer-type
approach. In contrast, spatial correlation is of no importance to IP approaches since only

I-point statistics are needed but clearly, for anomalous behaviour to be observed in this

approximation, singularity must bc present not only in the d-dimensional density fields but

in the associated and necessarily smoother (d-l)-dimensional optical thickness fields. It is

hard to imagine how this can happen outside of Itlultifractal models where integrals

("measures") are typically dominated by the strongest singularity present, see app. C for the

basic theory and chap. 6 for a good ~xarnple. We have also found that, in the cases
studied, the IP- and diffusion approximations provide respectively lower and upper bounds

on the scaling exponent for transmittance, as predicted in chap. 3 from their positions w.r.t

DA transfer theory.

4.4. On the Meehanisms Involved in Anomalous Radiative Behaviour

4.4.1. Transfer Theory (begin.): The Needfor Singularity

The steady state radiation transport problems such as those describcd in sect. 4.1-2

above are described by the basic transfer equation:

u'V lu = - Kp(X) [ lu - Su ] (4.5)

The symbols are ail defined in sect. A.l and an esscntially phenomenological derivation of

(4.5) that emphasizes the underlying stochastiC concepts is given in app. E. If the source

field Su(x) that appears on the r.h.s. of (4.5) is known everywhere, then il is trivially

solved for the radiance field Iu(x):
~ s

Iu(x) = J exp[- JKP(X-US') ds'] Kp(X-US) Su(x-us) ds
o 0

-~.-;:::-"'"

as can be verified by substitution. The infinite upper bound in (4.6) simply means that we

want the whole optical medium M included; M can be viewed as the region ofspace where

optical density Kp(X) is non-vanishing (see §A.4.l for further details). In the albedo

problems studied here, at least one boundary lies at close range and is iIIuminated by a

distant (hence collimated) extemal source of radiance. Eq. (4.6) is known as the "formai"

solution and, indeed, it is not of much use by itself, atleast in the multiple Scattering (m.s.)

problems of interestto us because Su(x) is also an unknown field:

Su(x) = fp(u'-+u) Iu'(x) dd-lu' (4.7)

Substitution of (4.6) into (4.7) yields the "auxiliary" integral equation of transfer which can

be iterated to generate the source field S~)(x)for ail orders-of-scattering (n=O,I,2,.;·) by
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starting with the single-scattering source field given in sect. A.3; the corresponding
radiance field I~)(x) is then given by (4.6). This procedure }ields the von Neumann series
solution to (4.6-7).1 2 The opposite substitution, (4.7) into (4.6), can also be iterated
directly towards the solution Iu(x) of the given transfer problem. 13

Clearly, the most important term in the system of coupied integral equations (4.6-7)

is the "integrating factor" of (4.5) that becomes the "propagation" kernel in (4.6), namely,

direct transmittance from x to some other point in M, at a distance 1:
1

Td(X,x-ul) = exp[- fKp(X-us) ds] (4.8)
o

In sect. A.2 on the nonlill~'ar radiation-density field coupling encapsulated in (4.8), it is
shown (i) that the geometrical photon free path statistics are directly related to Td(viewed as
a function of 1), (ii) thàt, in homogeneous media, they are given by the well-known
exponential distribution, and (iii) that, in inhomogeneous media, they can be considerably

different from their homogeneous (or "optical") counterparts. 14 Il is of interest !o notice
that the propagation kernel in (4.8) is bounded, even in presence of singular density fields.

In essence, this guarantees the convergence of the above-mentioned von Neumann series
and, at the same time, the convergence of the estimates of linear functionals of Iu(x) bascd
on direct Monte Carlo simulation since, by definition, Monte Carlo photons obey (4.6-7);

see sect. B.l.
The above discussion makes clear that the key concept in radiative transfer is the

photon free path distribution (not only the m.f.p., but ail of ilS other momenlS will be of

interest too, in general); we can try to use 0tlr understanding of the stochastic process

associated with photon propagation in an inhomogeneous medium to anticipate criteria ori"

this internal variability-sometimes referred to as the "disorder"-which can predict the

onset of strong (highly nonlinear) effeclS on the overall radiative response. We start by
picturing a photon taking a random walk (RW) in an infinite homogeneous medium
(9td=M). Using (optical) units of length where Kp=l, the average step in this RW is (the

m.f.p., by definition, hence) unit and much larger steps are exponentially rare. In the
transfer problems of interest here, this RW is "bounded" (9t d::>M): it starts on an

"illuminated" part of aM and ends as soon as it encounters any part of aM again, with the
above step distribution, this will happen(with probability 1) in finite "time" (number of
"steps," in fact, elementary scattering events). As the inhomogeneity increases, the

previous (optical) free paths and their geometrical counterparts differ more and more,

especially in places where Kp(X) varies considerably over a (local) m.f.p.; as a standard

measure of the distance over whicli p(x) varies "considerably," we take the ratio of local
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density to its local gradient: p/lVpl=lIlVlnpl. We are thus requiring that I/lVlnpl:5 Ihep

C or, equivalently,

V _1 ~l
!Cp

(4.9)

In our reasoning, we have ignored the effect of the phase function in (4.7), that is,
implicitly assumed it to he constant (isotropie scattering). We can however use the simple
van de Hulst-Grossman [1968] similarity relation, !C-+(l-g)!C, to somewhat refine the
above criterion, incorporating the (1st order) effects of anisotropie scattering, via g.

We are thus conjecturing that, if (4.9) happens often enough, the cumulative effect of
the difference in step values during the photon's RW is apt to hecome very large and we can
expect interesting things to happen. What do we mean by "often enough?" On average?
For the most probable density value? Or the median (i.e, half of the time)? Or on a
"space-filling" (Lebesgue-measurable) set? ... This question wi111ikely develop into a
whole area of cloud radiation research with scaling concepts at the center. The term 0

"interesting" is easier to define. For instance, if the boundaries are maintained in their
positions (and, for the sake of argument, we can assume that the optical mass is
redistributed around inside): (1) a different part of the boundary can he encountered frrst,
(2) at adifferent numher of prior steps. The frrst consequence can convert a reflected

photon into a transmitted one or vice-versa, but the former case happens more often since
(as argtied in sect. A.2) geometrical path distributions are made systematically wider by the

internai variability (hence upon injection at cloud top the phot~ns Slart their RW c10ser to the
cloud base). This constitutes a fundamental aspect-but only one aspect-Qf radiative

" "channeling" from the viewpoint of transfer; the otlier-more complex-aspect involves
the angular part of the transfer process (i.e., the multiple scattering) to which we return

further on. This also means that the second of the above consequences can he refined to
say that the numher of scatterings needed to exit an inhomogeneous medium is always
(statistically speaking) less than for its homogeneous counterpart and we refer the reader to

sect. 6.5 for a dramatic illustration of this. Given the importance of boundaries on the

outcome of the RW, we can confidently predict that d=l (where ,~oundaries are always
reduced to 2 ,points) plays a very special role in transfer theory. I~'other words, in (d~2)

cases where the above condition is;generally'met in the bulk of the medium, we expect to
make quite different predicti~~sing inhomogeneous transfer, on the one hand, and

"homogenized" transfer, on the other hand. We have aIready seen several exarnples' of this'
kind of systematic variability effect (and more will he provi'ded) but w~ust flfst realize

that, if (4.9) seems to he a necessary condition to obtain strongyariability effeéts, it is not
by itself sufficienHn essence, "channeling" can't work if we have no spatial cOlwlations.
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It is important to realize that we can use (4.9) even if the density field is non­
differentiable; in fact, we can use (4.9) to argue that, in practice, p{x) cannot be
differentiable atleast if we are interested in optically thick media. Suppose the medium is
discretized on a grid {constant spacing, lo, and linear size À=Ulo}-this is always necessary
in computational situations anyway. Criterion (4.9) then reads

lôpl
- ;:: lCplO ='ta (4.10)

P
which is the optical thickness of the elementary cell. A very smooth (differentiable)
medium has lôploc lo"p (assumed to be of finite magnitude); (4.10) then calls for extremely
l1ùn cells; at fmile À, we are therefore confmed to optically thin media hence trivial radiative
scaling properties: the medium responds linearly to external illumination. In such
quasi-homogeneous (smoothly varying) media, we can also anticipate independence w.r.t.
(large enough) Àat any given opticalthickness (hcld constant) since the decimation appears

merely a computational necessity, containing no physical information on the system. In
contrast to this, we can more generally define a (Hcifder) exponentlÔplocloH (H<1) that

describes the "irregularity" of the density field. It is generally assumed (in the simpler
models) that H is independent of the choice of origin (but it is generally not so in
experimental situations). In scale invariant structures, H does not depend onl0,~ither, over
a large range of values (as lôpl ,_~ecreases to zero), and H thus describes just"how non­
differenliable (fractal) the density field is, usually in a statistical sense (Le., we are

interested in <lôpl»,15 Moving away from additive processes towards multiplicative
cascade fields, one is not even interested in the "ô" any more (to 1st order): we can direcUy.

write poclo-Y where the exponerit 1 is the "order of singularity" introduced in app. C and,
very importantly, it is shown that we must then look at the "multiple" scaling of the density .~

field (Le., <ph> will scale differently with Jo for different values of hl. Far from bein{

differentiable, such "singular" density fields are everywhere discontinuous. At any rate, in
additive (multiplicative) models, the size of the scaling range (Le., À) is as much a physical

measure of the irregularity (singularity) as is the unique exponent H (are the various

exponents 1's). We should also stress that this reading of (4.10) already imposes a strong
degree of spatial correlation on the-structure of the optical medium. Finally, it is

worthwhile emphasizing that questions concerning the radiative properties of scaling media
are essentially open (only onesimple deterministic case was examined numerically in the
above, a random example is studied in chap. 6, and the simplest analytical results are

obtained in chap. 5).

4.4.2. Transfer Theory (cont'd): The Needfor Long-Ral'lge Correlations

Viewed as a requirement on the spatial statistics of the medium" condition (4.9)

applies to a local (one-point) statistic. It seems quite dear that any bone fide transport
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(hence non-local) process will be sensitive to at least the two-point statistics of the medium,

say.

C ( )
_ <[p(x)-<p(x»][p(y)-<p(y»]>

p x,y -
" <[p(x)-<p(x»F>" <[p(Y)-<p(Y» F>

Notice the normalization by the (local) r.m.s. deviations; implying, in particular, that
Cp(x,x)=l. A random p-field is said to be statistically homogeneous (isotropic) if all of its
n-point statistics are invariant under translation (rotation). In the homogeneous and
isotropic case, Cp would therefore depend only on the magnitude (r) of r=x-y:

<[p(r)-<p>][p(O)-<p>]> <p(r)p(O»-<p>2
Cp(r)

<[p-<p>F> <p2>_<p>2

where <p(r)p(O» is the auto-correlation function. As in the above general case, we have
Cp(O)=1 (from definitions) and that we generally expect (from statistical homogeneity) that
Cp(oo)=O. The simplest example of a randomly homogeneous and isotropie field is
provided by totally uncorrelated fields of density fluctuations-the spatial eguivalent of
"white" noise in the temporal domain-which has formally Cp(r)oc8(r) (in this special case,
Cp(O)=oo). When dealing with processes that are non-stationary16 but do have"stationary

increments," then

<lp(r)~p(O)12> = 2 [<p2> - <p(r)p(O»] oc 1- Cp(r) (4.12)

is used instead of <p(r)p(O», it is known as the structure function (and sometimes

"variogram"). IdenticaÙy null at r=O, it increases (generally monotonically) to sorne
èonstant value. Given Cp(r), one can always (tentatively) define the "integrallength-scale"
of the stochastic medium:

00

Rp = f Cp(r) dr (4.13)
o

This definition can not always be taken literally since, in many interesting cases, it leads
(formally) to Rp = 00 or (practically) to Rp - L, the overall size of the medium (where the
above integral must consequently be stopped, examples to follow). For instance, in an

additively scaling medium «I~pl>ocrH, Hd), Cp(r) decays algebraically (henee quite

slowly) over a large range of seales (a geophysieally relevant example to follow).
Having theoretieally everywhere infinite gradients, &-correlated fields easily satisfy

(4D) but we can confidently predict very "mean field" (homogeneous-like) transfer

bchaviour since the meaI) density p over any finite segment, howèver small, is <p>, i.e.,

its distribution is degenerate (sinee a theoretieally infinite number of independent p-values

have been sampled). At any rate, Weleh et al. [1980] indeed fmd very small effeets in their
numerieal studics on snch media and this is confirrned byBoissé's [1990] independent

numerical and analytical results on very similar media (based, for the latter approaeh, on ,~
~.

(
\, .J,.

\7f:":"\::.~~
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previous work by Avaste and Vainniko [1974] on binary mixtures). Even diffusion theory
yields a "normal" scaling properties in uncorrelated binary mixtures, except exactly at

percolation threshold a~d in the very special limit of vanishing density values (see,
§§2.3.4-5). Il is important to note that, in these '~white n'u,se" studies, there is in fact a
finite correlation length-equivalently, a low pass cut-off in Fourier spacc---imposed either
by the numerical discretization (grid constant, 10) or by the analytical model ("Poisson point
fluxes" for which17 CCr)=exp[-rIR)); the 8-correlated case is approximated by (or
analytically retrieved in the limit of) vanishingly small R. In a sense, this is an example of
"too much," or more precisely "unstructured," rather "dull" variability.. Another
undesirable radiative consequence of the lack of spatial correlations is that "channeling" is

essentially inhibited. We have assumed our stochastie media to he isotropic on average but
this statistical symmetry is broken by every realization: at a given point, sorne directions
lead to denser regions, others to more tenuous regions, and "channeling" tends to enhanee
the fluxes in these latter directions. However, in any white noise medium, no direction is
special as soon as scales larger than 10 are considered.

If we want to restore the possibility of strong variability effects via photon f.p.'s that
are significantly longer than those predicted using the average density, as well as via large
scale "channelling," we can tentatively require that, over and above (4.9), the

ensemble-average m.f.p. <E(/» (defined in sect. A.2) must be exceeded by Rp• Hence18

<E(/» :5 Rp (4.14)

Retuming to our examples and counter-examples, we now see that, if Cp(r) oc 8(r), then
(4.13) yields Rp = ü (since Cp(ü) = 00, in this exceptional case); consequently, media

generated with white noise do violate the new condition. A radical way of satisfying (4.14)

is to require Rp = 00 (formally), that is Rp - L (in praetice). If indeed we have Rp - L, then
a direct interpretation of (4.14) is that we are basically requesting that there he generous

amounts of scattering involved for a typical photon history; this is neccssary for the angular
aspects of transfer to get to work on the "channeling" problem: the photons are individually

blind, they ne~d time (scatterings) to collectively "seek" the more tenuous parts of the
medium. Recall that, in homogeneous media, t is simply L in units of photon m.f.p.'s; so

in (4.14), we are requiring, in a sense, that the medium not be too "thin," not only in the
(average) "optical" sense ('t» 1), but also w.r.t. the more relevant ensemble-averaged

m.f.p.'s, and this will always calI for an even greater't (hence total mass). In app. C, we

review basic turbulence theory in partieular for passive scalar advection by fully developed
(inertial range) three-dimensional turbulence where (Corrsin-Obukhov) phenomenology

predicts <lp(r)-p(O)12> oc rV3 for the structure functio.n (the associated Hôlder exponent19
.""

is H=1I3), equivalently, Cp(r) = l-Ar2l3, Le., a sharp but only algebraic decay over a
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large range of scales. The constant term dominates the integral in (4.13) and Rp is said to

"diverge," in practice, we can state that Rp - L.
What do scaling media predict for the other side of (4.14), namely, <E(l»? This is

where additive «lilpl,>oerH, H<1) and multiplicative «p,h>oer-K(h), he 9t and K(h)e §b
models are apt to differ considerably. In the additive case, average density <p> is not

defined by the stochastic model which has "stationary increments;" it is basically an

independent parameter of the modelthat must be made large enough w.r.l. the maximum

(expected) fluctuation so that p remains (almost surely, everywhere) positive. Optical

distance (cumuJ.ative optical density) over a distance r will also have an average and a

fluctuation component, respectively proportional to r and rH (H<1) hençe relative

fluctuations are relatively small. We can therefore expect still very exponential-type photon·

f.p. (/) distributions; more precisely, we can anticipate (at best) "stretched" exponential

distributions where the p.dJ. for 1 decays as exp[-/H] (H<1), if the fluctuation term is

somehow made to dominate at long (1)10) range, while at short range, we will of co~rse

have a linear decrease (as in the homogeneous case). The multiplicative case is somewhat

more involved and it is investigated in chap. 5 in the asymptotic limit of many cascade steps

(hence a very large outer-to-inner scale ratio, Â.). Depending on whether this limit makes

the medium optically thinner or thicker, we find respectively a linear response or an

algebraic (hence very non-exponential) decay of direct transmittance with distance and

correspondingly wider I-distributions."
The enhanced photon free path distributions we expect in multifractal media have an

interesting---even somewhat paradoxica1-<onsequence, especially when many orders-of~

scallering are involved: clouds with such exiremely variable internai density fields may

iook relatively featureless, like their weakly variable (possibly even homogeneo.us)

counterparts. In homogeneous systems, radiation fields change typically on the scale of a

photon m'c.p. which is the length over which radiatively pertinent information (presence of

a boundary, of a source, etc.) is directly transmitted. This will still be the case in

inhomogeneous systems and, as previously mentioned, radiation fields remain essentially

continuous across discontinuities in density. This is especially true if many such cell

boundaries are encountered along a single photon free path (on average) and this will

happen everywhere (4.10) is consistently verified. Using Preisendorfer's [1976] jargon,

we can therefore anticipate relatively smooth "apparent" optical properties (e.g., albedo

fields) to be associated with potentially violently variable "inherent" optical properties. The

paradox is that this will happen at the saroe time as the bulk response becomes very

different from that corresponding to the (apparently and inherently) homogeneous model ...

which is in turn used toexplain Wiscombe et al.-'s.[1984] cloud albedo "paradox." AIl of

this (apparent) speculation is conftrrned by our detailed numerical simulations of transfer

.,
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through a multifractal cloud presented in chap. 6, as weil as in arctic stratus [Tsay and
\~~,

Jayaweera, 1984].

4.4.3. Transfer Theory (end): Long-Range Correlations. in Fourier Longuage

Il is of interest to rephrase the above using Fourier space nOInenclature. The Weiner­
Khintchin theorem states that the auto-correlation function <p(ru)p(O» of a homogeneous
and isotropic process is the (one-dimensional) Fourier transforrn of the energy spcctrum of
the p-field. The latter quantity is defined as

Ep(k) = f <T>*(k)'P(k» ddk = kd-! f <1T>(ku)12> dd-I u (4.15)
. Ikl=k . ue Sd

where ':' denotes a d-dimensional Fourier transforrned quantity. We favour the following
defmition of this transformation and its inverse:

p(k) = fp(x) eik.x ddx ~ p(x) = _1_. fp(k) e-ik.x ddk (4.16)
(21t)d

Mathematically, the W-K theorem then reads
00 00

Ep(k) = 2 f<p(ru)p(O» eikr dr ~ <p(ru)p(O» =~ fEp(k) e- il" dk (4.17)
o 0,

Now, from (4.11), <p(ru)p(O» oc Cp(r)+const. (ue Sd) and we notiCe that, in the
definition (4.13) of Rp, the integral of Cp(r) can be related to that of Ep(k), essentially v'ia

Percival's theorem for the Fourier transforrn pair in (4.17), hence any divergence of the
energy integralleads to one in the correlation integral.

We now reexarnine our exarnples (and counter-examples) of random optical media

susceptible (or not) to exhibit strongvariability effects. If Cp(r) oc oCr) = o(r)/ndrd-1 then

Ep(k) oc kd- I, as we would expect, directly from its definition in (4.15), for (any kind of
finite variance) noise that uniforrnly fi1ls (d-dimensional) Fourier space. Turbulent passive
scalar advection, along with (4.12), yields <p2>_<p(ru)p(0» oc r2/3 which translates to
Kolmogorov's famous Ep(k) oc k-5/3 spectrum ll,nd the large (diverging) amount of

integrated energy found at k..O,refiects the fact that the spatial average of the p-field,

p = -p(O), f1uctûates wildly-hence the necessity of reverting to increments before taking

ensemble-averages. One talks about an "infra-red (large scale) catastrophy." Power law

spectra with exponents in excess of -1 also have diverging integral scales, this time due to
an "ultra-violet (small.scale) catastrophy." Instead of large arnounts of energy at the largest

possible scales, used in overall spatial averaging (L~;, k..kmin=21t1L), we find large
"amounts of energy in the smallest possible scales, pixel:fsized (Le., k..kmax=21t1Io, where 10

is the grid constant) and we can expect very singular (spiky) looking fields. A good

exarnple of such a field is provided by a (conserved) multifractal cascade in e-a "cascade
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(
quantity," as defined in app. C-has <e(ru)e(O» oc rJl with 11>0 (equivalently,
Ee(k) oc k-1+Jl). For these multifractals, we have ~el-e going from one pixel to the next
and this is Iiterally a result of their construction since, at each cascade step, we are
multiplying the previous value of the field by a random number which is typically 0(1).

Now, for lack of a satisfactory "e-to-p" connection (sec app. C), we currently identify e
and p for the purposes of numerical simulation of transfer (in sect. 4.2 above and in chap. 6

below). So (4.10) is satisfied as soon as lCplo=to::;1 (often enough), Le., that most (not
aIl!) cells are made optically not-too-thick. This is achieved by modulating the whole
optical density field via lC and, needless ta say, we find very strong inhomogeneity effects.

4.4.4. Diffusion Theory: Singular Density Values and Long-Range Correlations, Again
Recall that anomalous radiative (and, more generally speaking, transport) scaling is

found for diffusion "sooner" than for transfer (or, more generally speaking, kinetics), in the
sense that simple binary mixtures are sufficient ... if certain other conditions are satisfied.
We will now argue that these special conditions are (again) synonymous with singularity,
on the one hand, fractals and long range correlations, on the other hand, but with somewhat
different meanings than (for multifractals as) used in the previous sub-section on transfer.

Compared to the coupied integral equations (4.6-7) for the transfermodel of radiative

transport, the steady-state conservative diffusion equation is.deceptively simple:

'V2] =(Vlnp)·V ] (4.18)

Its most striking feature is that not only the typically diffusive phase function parameter (g)

is absent but so is our customary lC factor. This means that, contrary to photons, the
behaviour of diffusing particles (in unbounded media) is unaffected by an overall

multiplication of the density field, only density ratios are important. see Bunde et aL [1985]

for details. Both parameters appear however (combined) in the expression of Fick's law:

F =-DV] (4. 19a)

with

(4.20)

(4.l9b)D '" 1
(l-g)lCp

Froin (4.18-19a,b), we have (at various levels of approximation):

1V2]1 IV]I F
l'Vlnpl =- '" - '" - lCpl'V]I ] ]

"/?

where we have Laken g=O, for simplicity. Let us now recall (fron{sect. D.2) the condition. /

for obtaining "normal" diffusion, defined as a casewhere it approximates transfer weil:
.- ~

FI] ::; 1. Substituting this condition into (4.20), we Î1nd IVlnpl :5 lCp foi "normal"

diffusion and, conversely, we retrieve (4.9) as a condition for "anomaly" to occur.
Recalling that (4.9) must he verified "often" and that this in tum implies singular (non-
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differentiable, possibly discontinuous) density fields, we see that "normal" diffusion

requires regùlarly varying density fields, which is exactiy our conclusion [rom the above
discussion of table 4; 1. So the diffusion and transfer transport models agree on this
(partial) answer 10 the question of 'what makes the radiative sealing anomalous?' which
does not mean that the two theories will predict the same anomalous behaviour, quite the
contrary (cf. table 4.1). This begs the question whether or not the two theories agree on the
complementary criterion (4.14) which, in particular, expresses the fact that "channeling"

needs sorne degree of spatial coherence and several scatterings get to work. Our above
reasoning on photons can be transposed to diffusing partitles, ail known types of which
move on grids from one site to one of its nearest neighbours--they have degenerate free
path distributions with a m.f.p. of la (the grid constant). Sinse Rp (for a discretized
medium) is bounded from below by la, our criterion (4.14) rcIating the (ensemble-average)
m.f.p. and the (integral) correlation length is therefore alwàys marginally satisfied in the
case of diffusion. This is a clear indication that diffusion is more (easily) perturbed by

inhomogeneity than transfer, as was noted during the discussion of table 4.1: il is the first
to exhibit anomalous behaviour as we make the media more inhomogeneous, and it shows
the most anomalous behaviour for a given type of inhomogeneity.

In summary, the above inspection of (4.18) teIls us _that we can expect severe
,

perturbation of the diffusion process if Inp, as a random variable (one-point wise), exhibits
a very wide range of values within a given medium. Ali the better if Inp exhibits, as a
random field (two-point wise), long range correlations. As explained in the previous sub­
sections, these two conditions basically define fractals and multifractals since their

generically seale invariant structure gives them the desirable long range correlations and, for

the latter, their multiplicative (caseade)"nature guarantees their extreme variability (a wide

singularity spectrum arises). We therefore expect diffusion on multifractals to be
anomalous a1though we do not know of any (published) attempts to study this numerically

to date.20 In sharp contras!, a lot of effort has been invested over recent years into the topic

of diffusion in binary mixtures, mai~ly at (or near) percolation threshold, and mainly in
their singular (RRN and RSN) limi&. The main results are reviewed in §2.3.4 and the
outcome is that the diffusion is anomalous only if both of the above conditions arc satisfied.

It is hard to imagine more diametrically opposite stochastic models as random binary
mixtures (vanishing integral correlation length, on1y two values) and multifractals
(diverging integral correlation length, large range of values). Yet, in interestingly different

'\.

ways, our !WO "anomaly" conditions (existence of singular values and of correlated

structures) are still verified. The condition of singularity is satisfied in the only

straightforward way that a binary mixture possibly can:one of the aIlowable density values
becomes infinite (RRNs) or null (RSNs). The correlation condition is saûsfied in a more
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subtle, even somewhat paradoxical, way. We have indeed insisted in the previous. sub­
section that a medium generated by white noise was a vanishing "inte~ral" correlation length
Rp, as defined in (4.13), independently of whether its one-point statistic is a Bernouilli

distribution or not. However, once diseretized on a grid, we have in effect Rp-1o while
<E(l»=4J for a diffusing particle: as noted above, (4.14) is already marginaUy satisfied.
We will now show that, at percolation (and beyond), the criterion is in fact unambiguously
satisfied on condition that we broaden our definition of what we mean by "correlation

length."
In percolation studies, the term "correlation length" has taken on a rather different

meaning than the one associated with eq. (4.13), a meaning in which the spatial
discretization (the grid) plays a fundamental role-not the type of grid, just its existence!
Letting g(r) denote the probability for two sites (placed at relative distance r) to belong to the
same.duster (group of connected sites having the same associated density value), the
"correlation" (or "connectivity") Jength is defmed as

ç="<r2>=~Lr2g(r) . .~' (4.21)

but would obviously be better called the "average of aIl the clustèrs' radii of gyration," but

in scaling arguments is generally interpreted as the "radius (size) of the average (typical)
cluster" that (implicitly) dominates the 200 order statistic used in (4.21) [Stauffer, 1985]. At
any rate, the most prominent geometrical feature of percolation is the divergence of çwith

"(Pc-p) and eq. (2.43) gives the universal (grid-type independent) sealing characterization of
this divergence. Furthermore, this appearance of an infinite cluster totally dominates the
transport properties in the RSN (and2\ RRN) limit(s), as described in §2.4.4. In this

sense, the anomalous diffusion is obtained on condition that the con;elation length ç
diverges or, in practice, becomes of the order oi the finite size of the medium (ç-L). In

summary, we can retain criterion (4.14) for diffusion in RSNs to become anomalous üwe

replace Rp by çon the r.h.s. (since we already have <E(l»=lo on the I.h.s.). Finally, we
recall that the incipient infiniti percolating cluster is a highly convoluted object that sprawls
infinitely far in all directions yet it has a vanishingly smaIl volume: it behaves like a fractal

<::. (see sect. C.2 for fufther details) down to seales "'4J.

4.4.5. Summary and Discussion

In summary, we haveargued that in spatially discretized sealing media we are apt to

obtain anomalous radiative scaling of Ïheir bulk propertiesü we have lL\pVp.~ Kp10 ='to
"often enough," on the one hand, and <E(l» :5 Rp - L. on the other hand. These two

criteria have been respectively interpreted to say that the media sh?uldbe highly irregular

and tIiat the radiation fields of interest bedoriIinated by relatively higli orders-of-seattering.
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It is important to stress that the analysis in this whole section is very qualitative and

the above inequalities, indicate more a "direction to look into" than a mie (of thumb, even);

in particular, they are not to be interpreted as saying "the greater the difference. the greater

the expected effects." As an example of what this implies, recal1 that in the ad hoc models

of "self-organized" critical phenomena first proposed by Bak et al. [1987] within the

general framework of open, non-equilibrium systems with large scale forcing-not unlike

ours (sunlight+clouds}--, the strongest effects (scaling noises in time evolution, fractal

structures' in space) arise at criticality and this very dynamical state of the system is

attractive, stable (although obviously not in the usual sense of "static"). In our opinion, it is

no accident that recent insight into the connections between self-organized critic~ity (s.o.c.)

concepts and the idea of generic seale invariance (g.s.i.22) has been gained with the help of

"singular" diffusion theory [Carlson et al., 1990a,b; Kadanoff et al., 1992] which is not

unrelated23 to the subject matter of the previous sub-section. In this context, the term

"generic" refers to the scaling power spectra. diverging correlations and fractal structures

that seem to dominate open systems that are far from equilibrium quite independently of the

values taken by state parameters; this contrasts sharply with closed (often Hamiltonian)

systems in thermal equilibrium (such as Ising models) where the seale invariant behaviour

is obtained only by very finely tuning the parameters, specifical1y to their criticai values

where phase transitions occur. A simple example is provided by diffusion in singular

binary mixtures where scaling anomaiy kicks in exactly at the percolation threshold whereas

diffusion in multifractals will (likely) be anomaious quite independently of the structurai

parameters of the mode!.
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tThe numerieal resullS used in scet. 4.1-2 (except for fig. 4.3) were publisbed in Davis <1 al. [1989, 1990]. A.D.
dcvised the lwo·dimcnsional Hcnycy.Grecnstein phase function and conducted the bomogcneous CA simulations
in d=2, as weil as tbe DA simulations in d=2,3 and the inbom08encous (1585...·D fractal) in DAs and CAs. Tbe
plolting tecbnique uscd in fjgo.4.7 is due to S.L. The discussion in sect 4.1 is A.D.'s; responsibility is sbared
for that in sect. 4.2; the two last sections are essentially new.

ITbe author thanks P. Gabriel for kindly communicating these resullS (for <';2(0) along with those for isotropic
CAs in d=3.

2Tbis lowering of transmitlance (T) via horizontal fluxes does Dol affect our arguments (in cbap. 2) about
inbomogeneity a1ways increasing T, via the same horizontal fluxes, because plane.paralJel and,hyper-cubic
media do Dot bave the same support. Dor total mass (50 tbey arc Dot direcLly comparable in the lerms clearly
defined in scet. 2.3).

3We note incidcntaUy tbat the inflection round for d>l is cntirely due to the log-log represectation and does Dot
renect a complicatcd (non..coevex) depcndency of T on "C.

4Prcliminary numerics conflfDl these trends up ta d='.

5More precisely, [1·exp(-2<)]/2 where < is the optieal thickoess of fioite sized medium.

6They form a von Neumann series solution to a system oC ietegral equations with a coctI'acting kernel.

'By tbis we mean radiances and fluxes tbat arc constrained by tbe radiative transfer equatioD, and Dot the
component of the gradient at rigbt angles ta the beam.

SThe "arches" observed bere for fractal media, as weil as in eq. (2.1) Cor their plane·parallel counterparts, are not
without recalling tbe envelopes of Coakley and Bretberton's [1982] empirical scatter grapbs of local albedo
variance versus local albedo ("local" meaoing a few pixels from a satellite scene). Tbese plots are DOW routinely
used in tbe "spatial coherence" metbod for recovering "fractional cloud cover'" a parameter mucb used in GCM
(two component IP-like) radiation calculatioos.

9Barkcr and Davles [19921 use'sucb models 10 simulate broken but sealingly elustered cloud fields; however they
use an additive constant and reduction oC negative values to zero 'in arder ta modulate cloud .lfraction"·
Moreover. the radiation is not transferred "througb" the resulting two-dimensiooal density field which is in fact
imbcdded in d=3. lying flat. and illuminated from above; 50 most photons interact with very few cells and,
unsurprisingly, relativelYismall inbomogeneity effeclS (beyond IPs) are found.

lOIn the opposite limit, p'~~O, we find l"tandom tcsistor .Iletworks" (RRNs) and de Genoes' "ants," which are of a
Jesser direct interest in cloud radiation studies, see discussion in §§2.3.4-5.

IlThis conjecture conceres only the higbly variable cascade fields themselves. Theirdractionally integrated
eounterpartS"(propesed by Sebertzer and Lovejoy [1987] as a model for passive scalar fields) are much smootber
and questions on their radiative propcrties are completely o~n.

12This procedure is however not useful in (numerical) practice: memory requirements are huge. and the
convergence isslow if the scattering kernel is conservative. Monte Carlo simulation is a far more efficient way
of obtaining the same order-of·scattering statistics as long as they do Dot need ta he known everywhere; see our
discussion in sect. B.1 and an illustration in sect. 6.5.

13In practice, this again is less efficient than Monte Carlo simulation unless the (preCerably, isotropic) scattering
is vcry non·eooservative. Indeed bath of these methnds are used by Baissé [1990]: Monte Carlo for the
diC(erent realizations oC bis stochastic media (ç.omposed of binary mixtures) and iteration of bis mean field
integral equations which are of course variable hî the vertical only.

14Moreover, Flateau and Stepheos [1988] argue tha~ using the appropriate transformations, the horizontaUy
inhomogencous plane.parane] transfer problem can he put in the one-dimensional form of (4.5), bence its the
solution iDto tbat of (4.8) but with iDtegratioD and exponentiation of (random) matrices rather than a simple
scalar function as (ound here. Using two·flux lheory for media with vertically variable absorption properties as
an example, these authors trace the effect o( the fundamental nonlluear dependence of radiance on the optical
parameters (l<, p) in (4.5-8) ta the non·commutation of the coupling matrices; the same remark applies la
vertically variable· horizontal structure, i.e., variabiIity in· both directions at once.

15An example(wbicb is ·close ta borne" w.r.t standard radiation transport theory but) in the temporal rather than
spatial domain is (a photon's) Gaussian RW in an infinite bomogeneous medium: lârl~tH with H=1I2. Sec sect
D.4 for radiative detaits and sect. C.2 for geometrieal implications (the fractal dimension of the RW is D=11H=2,
indepeodent of the embedding dimensionality, ~). '

1600e sbould really say (statistically) non·bomogencous.

17Tbe power speetrum of sueb a pmeess is ~(I+kR)·2; i.e., fiaI (like for white noise) for k«27tIR, which
corresponds to the largest scalesl and decays in k2 (like for Brownianmotion) (or k»2n1R I whicb corresponds to
the smallest scales. .
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18Here agaio, we can somewhat refine be using "transport" m.f.p.'s whicb are associated wilb Merrecûvely"
isotropie scatterîng by using the slandard similarity transformation lC~(l~g)lC in the calculation of <E(l».

19Note tbat the Hôldcr exponent H is usally defined "al a point." DOt as a statisUc they way wc use il here.

20Givcn the Many potential applications of diffusion theory (cf. §2.2.1), on the one band, and the current
popularity of muIlifractals, on the other band. wc can also confidenUy predict thal lhis will (sooo) become an
aeliYe area of research.

21 ln d=2 nnly, one .ould say "or" ralber lban "and" (because of Slraley's [1977] duallly).

22Nol 10 be .onfused with S.bertzer and Lovejoy's [1985] "generalized" scale invariance (OSlj wbicb describes a
formalism that cao accommodate varions kiods of structural anisotropy without leaving the frarncwork of scale
invariance. In.tbis tbesis, wc ooly use the simplest (isotropic) kind of scale invariance.

23The fundamental difference being that düfusivitYI DI is allowed to depend scalingly on the field quantity (our J)I
thus making the basic equation non-tînear.
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Figure 4.1: CA lransmillance and albedQ fQr
homogcncous squares with various asymmctry
~ The Qrdinale rcpresents IQg,o Qf the phQton
CQunts (fQr 1) Qr IQglo Qf the differences in these
CQunts (fQr R) expressed in arbitrary but similar
units; the tWQ·dimensiQnal Beney·Grecnstein phase
functiQn described in app. A-B was used (with
g = 0, 1/2, 9/11) under nQrmal iliuminatiQn
cQnditiQns. NQte the CQnstant IQgarithmic
increments in Qplical size and that, if I-R '" t·vR

then dR/d(lQglOt) '" t·VR alsQ. The dispcrsiQn in
the IQW transmillance CQunts is relatcd tQ lhe
characteristie nQise Qf the adQpted MQnle CarlQ
scheme which was Qplimizcd fQr speed at the priee
Qf a sQmewhat mQre invQlvcd calibratiQn (irrelevant
tQ the sIQpes).

130

oS~-----------------,èr' Normal Incidence
S
t=' ~

c
iD al
U li
c .!!!
g "i
'Ë ct:
~

:; ';'

~ !
~

"" .~
u " T(O).;;

.~ *" * R(O)""Co ".. • T(112)'Ë u

" Ë • R(112)
"" =i • T(9/11)
! co .- R(9/11 )
il 2

c; ~.O 0.5 1.0 1.5 2.0 2.5
2

log ( rescaled optical thlckness. (1'g)'lau )

Figure 4.2a: ISotrQpic CA and DA transmillance
and albedQ fQr hQmQgeneQus squares. Tx 105 Qr
(l·R)x 105 versus t fQr iSQtrQpic (g " 0) scallering
in CAs and DA(2,4), Qbtained by MQnte CarlQ
simulaliQn Qn nQrmally iIIuminatcd squares. The
reference Iines shQW the asymptQtic slQpes y R= 3/4
and YT = 1.

10'

;;;-
"
.~

:ë

"0 10'
~

0
0
0
0
0

10 3

1-

e;

'!'
10·

.1

CA DA
-0- T --1--
--0- 1· R --+-

10 100

optical thickness of square medium
1000

Normal Incidence

c

Figure 4.2b: Same Fig. 4.2a but fQr cubes. with
the "CI" phase functiQn added. Tor (I-R) versus
(I·g)t fQr anisQtrQpic (Deirmenjian CI drop size
disuibutiQn, g = 0.85) and isotropic scauering in
CAs-wc thank P. Gabriel for this data-or
DA(3,6) transfer, obtained by Monte Carlo
simulation on normally iIIuminated cubes with 106

photons (except for DAs, where 105 histories were
usect).

10 0

g
~
c
.!!
~

C
10. 1"'Ji-

:s
E
" 10.2
~c
!l
'Ë
w
c
n
{:.

10. 3
.1

log(* of
histories)
6 ,
6 •
5 +

Phase •
function
isouopic{ï
CI (g-o.35)
6 bcams (g=O)

\0
+

100 1000

rescaled opticalthickness of cube, (l.g)·lau c



131

15 -r------------------------,
"Top only" refleclance exponenl delermination

10

5

~ 1.00-- 0.95

a 0.90

0 0.85

• 0.80

~ 0.75

.. 0.70
,"

il< 0.65

96log2(tau)3o
ok~~---r---"T"""--.----,-----,-----,-J

-3

Figure 4.3: Determination of the aJbedo exponent for sQuares, The curves represent (I-R)~VR for
VR = 0.65(0.05)1.00 as a funclion of JOg2~ = -3(1)9, the oplical size of the norrnally iIIuminaled squares for
isotropic DA(2,4) scanering. High-quality Monte Carlo dala (with NIOt=106 histories) was used in tbis testing
procedure. The slatislicaI uncerlanties are typicaIly much smaIler than the symbols as can be chccked using

t.(I-R)~VR = ~vRM where M2 =R(I-R)IN101 from eq, (B,lb).
The curve should bccome fiat at the value ofvR that we are seeking. Clearly, il cannot be Jess than 0.8 and, at
any rate, there is no evidence that the asymplolic regime has ever becn reaehed, even at ~ = 512. Note that
Davis el al.'s [1989, 19901 claim that VR = 3/4 is based on poorer dala (N I01=105) and a poorer pJolling
leehnique at lcast for the purposes of exponent estimation (cf. figs, 4.2a,b).
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Figure 4.4a: Generation of a dcterrninisIic monofracta) cloud mode) in d =2spaLiai dimensions (lirsllhree
stcps, at constant inner scalel.) \Vith D = log23 =1.585·... ~.
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Figure 4.4b: Deterministic monofractal used as protolypical medium pcrmeated by hales of ail sizes.
l1Iustrated aren (0 S n S 7) successive steps into the construction procedure thm can bc visualized abovc the
horizontal linos designmed by n. For the purposes of ail the radiative transfer calculations presented here.
illumination is from tlle top.
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Figure 4.5: Transmittance versus spatially avera&ed optical thickness for the horizontally periodic cloud
with a D - 10&23 = 1.585. d - 2 elemenl!lrv coll. Isotropic CA, DA(2,4) and DA(2,6) Monte Carlo is uscd
under normal illumination conditions. The data points correspond to 0 through 9 construction sleps.
respectively Ix1 to 512x512 grid points; three different cell opticaI thicknesses were used (1/8, 112,2) and
periodie horizontal BCs'are assumed. The nhsolute slope for the most opaque cells is vr= 004 forCA and
DA(2.6), = 0.5 for DA(2,4). The corresponding response for CA transfer lhrough homogeneous plane-parallcl
medin is aIso shown (which yields vr = 1).
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Chapter Five t

RADIATIVE PROPERTIES OF MULTIFRACTALS,

AN ASYMPTOTIC ANAL YSIS

''\"

Preliminary Remarks and Overview: The alI110s;J\re inJo-~:- ;~;:~y nonlinearly
~

coupled fields. If the corresponding dynamies are seale invarianl over significant ranges in
scme, then we generally expect that lhe appropriale way of relating the various fields is via
their scale/resolution independent singularities and codimension functions (or, more
fundamentally, the generators of lhe latter). For instance, lel (Pl.=À.Y~ denote some
(conserved) cascade field quantity observed at some tinite scale À. and scale invariantly

characterized statistically by c~(Y.) and K.(h), as explained in app. C. Then, say, optical
thickness (or more simply, distance) 1. is likely to be related lo $. by

1. = À.Y = À.aYHb (5.0a)

hence for the orders of singulru'ity:

y= ay.+b

and for the dual scaling functions:

(5.0a')

( Y.-b)c(y) = c.(y~) = c. a (S.Ob)

K(h) = K.(ah) + bh (5.0c)

where the lack of subscript refers to lhe (non-conserved) qualltity 1,.. This provides a simple
illustration of the types of relations we may cxpecl. 1 ln radiali ve transfer lhrough mullifractal

clouds, we may expect relalions between the orders of singularities of the cloud densily and

radiation fields to be statistical. However, in the cases of direct transmission and total
transmission but for plane-parallel media, we have simple determinislic funclional relations

between the radiative response and optical thickness, and these will be exploiled below to
yield results analogous to (5.0a-<:) above.

The formulae discussed here will be for bare cascades (a cascade constructed ov~r only
a finite range of scales À.) whereas 1 is (by definition) a drefsed quantity;.éf.' eq. (A.9) that

"'" involves an integral over a scale À. of a completed cascade. This fundamenlal distinction is

briefly discussed in sect. CA [and at lenglh in many references lherein]. The c(y) funclion
for the dressed quantities is the same as for the bare quanti lies excepi for the large values of y
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(where c(y) generally becomes linear). ln the following, we ignore this complication except
in the final section where it is exactly accounted for but in a rather anificial (but usefu!) way.

':\ For the direct transmittance (sect. 5.1) and transmittance through (horizontally

homdgeneous) plane-parallellayers (seclr;,5;;~), the relations with 'th are Td,.=exp(-'t.) and

Tp:~=l!~1 +r't.) respectively. ln the latter (eS~~2tially 1-0) case, the parameter "l''' can be used
ta 'tepresent either the DA phase function"parameter2 "q/2" that appears in the exact DA
solution (3.22'), or the (boundary condition and phase function) related parameter "lI2X"

ii:,~t appears in lhe approximale (diffusion) CA resull (0.31}-X is lhe "extrapolation length"
. which is oc(l-g), see §OA.2. ln order ln use lhese and oblain relations between the
".cprrespondi,ng orders of singularily and codimensions, we introduce the following nOlation

. .-' .,J;- f.

(dropping 'ule 'A. subscripl for simplicity): .., _~ /;::'
,,-"-;;;:::~-' 1. -~._p

't=eçyli" where Ç=ln'A. (5.1)

We will be interesled primarily in lhe small scale limit where 'A.~oo (hence Ç~oo). If this
limit correspond to increasingly lhick clouds, we find no longer exponential but algebraic
average direct transmittance (implying much longer photon free paths) and non-trivially

sca!ing.average total "1-0" transmittance. If this limil means ever thinner clouds, the !inear
responses are naturally retrieved in both cases.

For convenience, ail the definitions and analytical results are summarized in sect. 5.3
with the help of tables. In the same section, we also discuss some potential applications of
our direct transmittance results to "mean lield" approaches to radiative transport in

multifractal media and, finally, we draw a parallel belween lhe problem of total (l-O)
transmittance and one of condensed' malter physics. Finally, the ensemble-average resullS

are adapted (in sect. SA) to a qscade model cunningly designed so that they can be

interpreted as spatial averages, hence "independent pixel" (lP) estimates of the corresponding
"responses. Interestingly, our D=I.S8S"· determinislic fractal model sludied in the previous

chapter as well as Cahalan's [1989] random multifractal bclong to this class; so new

conclusions ~bout these models can be d?à~n concerning, in particular, the radiative
consequences of the high (and artificia!) degree of anisotropy.

5.1. Simple Scaling Properties of Direct Transmittance

5.1.1. The Optically Thick Lill1it: Non-exponential Average Path Distributions

We will use the fom1ula for transforming p.dJ.·s to obtain a relation between c(y) and
CTd(Yrd), this will illustrate the general method employed below; namely ,0' (;

(5.2)
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which, according to the delinition (C.16), implies the following general relalion between
codimension functions:

CT.()'r.) =c(y) - ç

Introducing
".~r \,

Td =e-' =e"YT. with Yr. ::; 0 J,'

we obtain the following relation between the singlilarilies in , and Td:

(5.3)

(5.4)

(5.5)Yrd ::; 0

In(-Ç)'rd)
Y= ç
• exp(çy)
)'rd =- ç

Id)'rd 1 =dr
dy

,=-
Hence in the limil as ç-?oo, allthe positive orders of singlilarities in, 6'>0)are mapped onto

(the infinitely) strong regularity (negative singlilarity) in Td ()'rd -? _00). Conversely, allthe

regularities in, (y<O) are mapped onto the (single) nelltral singularity in Td ()'rd =0). We

may now use eq. (5.3) to oblain the following relation between codimension functions:

CT.()'r.) =c(y) + y (5.6)

(5.7)
In(-YYr)

CT.()'r.) = c(O) + ". [1 +c'(O) 1+ ...ç
The first term on the r.h.s. indicates that a single codimension c(O) dominates the behaviour '~

ofTd. The second term on the r.h.s. c()rrespond~)51;lW() preracLOrs in the probability density r~~

for )'rd. The first is (-)'rd)-(l+c'(Oll, Le., a singùlarity~t the origin of the density of)'rd 0V'
order (1+c'(O)); in the probability distribution of Yrd;ihis is of order c'(O), which is~reg!!14

~.'" (: ?~~

as long as c'(O)<O. Conversely, when c'(O»O, the pibbability of YI" will be singWar at the

origin. The second term yields a (sub-eiponential) factor (1nÀ)·(l+c·(O» in th~probability
distribution of)'r.; the exponent -[I+c'(O)] is called a "sub-codimension." Of all the cases

we discuss below, the (IiI~ct transmillance problem is the only one where the detailed,',-
consideration of these higher order terms is necessary.

We may now use the Legendre transform (C.24a) to calclliate KTd(h) from CT.(Yr.),

and hence to obtain the multiple scaling characteristics ofTd. However, relation (C.2) is

Substitllting )'rd in terms of y in the above, and expanding c(y) in a Taylor series about the

oiigin, we obtain :'
"I\.
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true only when exponential factors arc dominant. Le.. for c'(O)<O (which corresponds to

<Tdh>~O as ç~oo. clouds become opaque). For c'(O»O. we must consider the quantity

I-Td (see next sub-section); we will find that <Tdh>~ 1 (the clouds become transparent in the

li 111 it). Restricting our attention to the case c'(O)<O. we therefore3 obtain:
KTd(h) =-c(O) when c'(O) < 0 (5.8a)

Eq. (5.8a) shows that the direct ,tr~nslllittance decreases algebraically as the cloud increases
'-'

in thickness.
Following our discussion in chap. 0-1. it is often convcnient to introduce another

exponent which is essentially a "mean field" exponent relating <'t> to <Td>. in analogy with

eqs. (1.2-3). we obtain,

"
where

(5.8b)

KTd(l )
VTd = - K(l) (5.8c)

",,;nlè'above result shows that the elTect of the mullifractal optical density field has been to
~ .
greatly enhance the mean direct translllittance which is now algebraic. not exponential. The

photon free path distribution will therefore have a much longer tail. Ingeneral. from the

Legendre relation. we find -c(O) = min[K(h)]. hence

min[K(h;.]. 'vhen c'(O) < 0 (5.8d) i\VTd =- K(l) ,

This exp.&~~nt is always positive sjnce min[K(h)] is necessarily negative due to iLS convexity
~( b:

and that K(O) =O. The homogenéous case (K(h) =0) is indeterminate but returning to the
,-.;"

adopted definition of cc:D in (C.16). we see that c(O) = 00 in eq,<ÇS.8a) for a degenerate

(ô"function)p.dJ. and the exponential distribution is therefore (fprmâl1y) retrieved, i.e.•

VTd = 00.

5.1.2. The Oprically Thin Limir: Linear Resl'0nse. Rediscovered

We saw that Lhe exponenlial wlalilln hClwccn 't and Td mapped the continuous

distribution of singularities in 't onLO the two values l'rd =-00 and 0 for )'>0. y<O respectively.

More interesting relations (useful bclow) muy be obtaincd by considering the quantity

Rd =I-Td, where Rd is simply the "dilTuse"radiation. i.e.• the radiation that has been

scattered at least once and that will end up as either transmission or reflection in the casé'bf~ (
tl /-C<.-~~

conservative scattering. Introducing the corresponding orders of singularity )'Rd. we obtaill: If\\~~~
Il "RJ = e~YRd = 1 - exp(-e~Y) with YRd :s; 0 0 (5.9) JI

This yields \\

In[ -ln(l-e~YRd) 1
Y= ç
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In[ I-exp(-eçy)]
YRd ç

1dYRd 1 = eçYRd
dy (i-eÇ1Rd)ln[ l_eçYRd]

Or. approximately.

eçY
YRd =Y- - y < 0;

2Ç
pO

(5.10)

(5.11 )

YR' = 0

YRd = 0
In[ -In( -YRd) 1

Y= ç

1
dYRJ 1- = ÇYRJ In(-YRd)
dy

YR'< 0;

YR,<O;

c;

hence. as ç-7 oo • singularities in tare mapped onto the neutral singularity in Rd. and

regularities in 't are mapped Oolo regularities of the same order in Rd. Using these relations

between y. YRd. and eq. (5.3). wc obtain the following relation bctween codimension

fùnctions (valid only for YRd<O and ç large enollgh, Le., this formula will give infornHltion

only on the regularities in 't):

(5.13a)

(5.13b)

CRd(YRd) =C(YRd) with YR, < 0 (5.12)

wherf) we have dropped the IIÇ corrections. We can now use eqs. (C.24a, 5.12) to calcula te
.'/

the scaling exponents of <Ri'>:

KRd(h) = max [hYRd - c(YRo)] = K(h) > -c(O) with h < c'(O)
YRd<O

The condition h<c'(O) immediatcly follows l'rom the relation h=C'(YRd). the convexity of cry)

hence monotonicity of c'(y). and the restriction YR'<O. FlIrlhennore, the convexity and

positivitY requirements on C(YRo) ensllres thut K(h»-c(O). and implies that for c'(O»h>O.

K(h)<O. If h~c'(O). the maximum in the UhllVC will depend on the limit YRd-70 (Le., the

singularities in 't will dominate), and the ahove formula breaks down. To understand what

happens. consider the two cases c'(O»O. c'(O)<O. In the former case. for some smaIH~;;\

positive h, the above formula will hold. and <Rdh>~O as ç-7oo• This is sufficientto imply' "\

li <Tdh>-71 for ail h>O. in conformitywith the results of §5.1.I. Conversely. when c'(O)<O. ~l we expect <Tdh>-70. and hence <Rdh>-71.
Assuming that c'(O) > 1. we obtain KRd(1) = K(i) hence

KRd(l) \':"
VRd = - K(l) = -1
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i.e., <Rd> is a linear function of <t>, as expected on general grounds in the case of optically

thin media.

5.2. Multiple Scaling Properties of Total 1-0 Transmittance

5.2. J. The Optica/ly Thick Limit: Non-trivial Scaling by "Mixing" Trivial Responses

The plane-parallel formula (3.29) leads lo particularly simple mappings between

singularities, codimensions and multiple scaling exponents. To ayoid ambiguity with a

parameter in eg~. (S.Oa--<:) aboye, the phase function (and/or boundary condition) parameter

"b" in (3.29) il'replaced here by "r." Following lhe procedme discussed aboye, we obtain:

Tp= eÇYTp = (1+ reçY)·1 where Yrp <0:: (S.14)

hcnce
ln( 1+reçy)

)'rp = - ç

In(r'!eXYTp - 1)
Y= ç

1dYTp 1 = 1 - eçYTp
dy

In the limit ç---too, we oblain the following approximale formulae:

YTp< 0 (S.1S)

(S.16)YTp= -y pO
'\\

reçy\~
Yrp= - y<O JI

~. 0 ç #
/".- ' ..o/

i! The singularities in t are lhus map~;~H onto lhe corresponding rcgulari ties in Tp' and the

rcgularities in tare mapped onto lhéneulral singularity Yrp = O. Consid~ring only the case

:}'1'p < 0, we therefore obtain the following relation hetween codimension functions:

")) CTp(YTp) = c(-YTp) with YTp < 0 (S.17)

Finally, using the Legendre transfonnation, wc lind the following relation between multiple
.]

scaling exponents:
)}

KTp(h) = max [hYT/ c(-YTp)] =K(-h) > -c(O) with h < -c'(O) (S.18a)
Yrp<O .'i

In particular, we sec that, as long as c'(O)<O, then the aboye is true for sorne positiye h and

the corresponding moments will tend to 0 as ç~co. As in the aboye": if h>-c'(O), then it is

the regularities in t that dominate (YTp=O), and the aboye formula breaks down. Again,
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rather than attempt a complicated analysis of lhis CIL,e. it is much simpler to analyze Rp=I-Tp;

Le.• the plane-paral1el reflectance (see below).

Il is worth mentioning lhat. by compltring eqs. (5.8a) and (5.18a). we have

KTp(h) ~ KTd(h) for ail h>O. This very simply follows l'rom the fact lhal Tp takes into

account multiple scattering, and hence Tp 2: T,I' Wc ltlso note thm the relations arc ail phase

function (l') independent; the latter only affect lhe prefactors but not the exponents. If we

now use eq. (5.18a) ta detenl1ine
K(-!)

VTp=- K(l) ::; 1 (5.18b)

where the inequality is a direcl consequence of the convexity propeny of K(h):

K(-I)+K(l)~2K(O)=0. This is basically Jensen's inequality (3.31) for the convex function

Tp-'t't, but rephrased in scaling language. In essence, we have been "mixing" trivial (i.e ..

plane-paralle!) responses and oblained a non-trivial average response; the f~rm "mixing" is

used here in the sense of Feller [1971], see discussions in sect. 3.4 and A.2.

5.2.2. The Optically Thin Lilllit: Linear Respol1se. Again

As remarked above, we only need to consider Rp=1-TI' in this case which is very easy

to deal with since

Rp= eÇYRp = (l + r-1e-ÇY)-i (5.19)

This is identical ta eq. (5.1.'1:) for Tp except lhal l' is replaccd by 1'.1, and y by -y. We
therefore immedialely oblain ."

yd)

y> 0

(5.20)

The regu1arities of 't are mapped omo the corresponding regularities of Rp, and the

singularities of 't onto the neutral singularity of Rp (YRp=O) as in the case for Rd, with

comments analogous to those at the end of §5.1.2. The fact that the results for ~ and Rparc

the same follows directly l'rom the fact that both are linear functions of 't for 't«l.

5.3. Summary and Discussion of Multifractal Radiative Scaling Properties

Defi ni tions
't = dl"Àb
T_ = e-t

Tn=(l +r't}-l
R.,= I-T.. _l-e-t

Rn = 1 - Tn= (\ + r-I't-I )-1

Table 5.1: SUlllmary of the definilions discusscd in dle lex!.
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L Rel!ularities (y<O)
',.: (Y-b)/a
Yrrl: 0
'l'r": 0
'YRrl, YD, : y

Sinl!ularities (y>O)
(Y-b)/a
-00

-y
o

Table 5.2: TIle mapping of singulnrities in t 011\0 the vnrious singulnrilies discussed in U,e texl

Ranl!e of validitv
_00 < y < 00

Yr"< 0

Table 5.3: TIle codimension fonnulae discussed in the texl.

Multiple scaline exoonents
K~(h) - K(hla)-bhla .....

KrAh) = -c(O)
K'r"(h) - K(-h)

KOA(h) = KD"(h) = K(h)

Conditions of validitv
_00 < h :'> 00

c'(O) < 0
h < -c'(O)
h < c'(O)

Tllble 5.4: TIle multiple scalîng fonnulae discusscd in Ule texL

Analogies in Condensed Matter Physics. and The Role ofAigebraic PaTh DisTributions in

RadiaTion "Channe/ing" ~

Closely related to the algebraic (average) disu'ibutions for the photon free paths that we

found in the above are the symmetric Lévy-stable distributions; these are defined by their

c.g.f. (cf. sect. A.2) which is pmportional to qa (O«x<2), hence moments of order ~a

diverge. Along wilh their Gaussian «(,(=2) collnterparts, symmetric Lévy deviates have the
fundamental property of being invariant w.r.l. addition,4 apart from a simple rescaling (no

recentering is necessnry due to the symmetry), hence self-similarity of the additive random

processes based on them. Klafter eT al. L1987] use sush processes to generically obtain the
"anomalous" diffusion regimes (i.e., E(r2lt) - tk with k;él) observed in so many

phenol11ena; for instance, Shlesinger eT al. [19861 apply Lévy-flight theory to turbulent
diffusion and "chaos" in Josephson junctions.

Remaining in the domain of condensed matter physics, Siebesma [1989] investigates
" .. ..

extensively the multifractal structure of one-dimensionallocalized electronic wave functions
in strongly disordered materials. We notice that the cOiTesponding (quantum mechanieal, not
radiative) "transm'ission coeflicient" T and conductance G in Landauer's formula

G=(2e2/h)ITI2/(l-ITI2) are respectively equivalent to our ~Tp and 1I't in our plane-parallel
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result (3.29) with b=2e2/h. Siebesma gocs on to remark that T (hencc 0) will be mullifractal

(in the case of interest, log-normally). Consequently, the most probable value of 0 (viz.

e<lnG» is far more "typical" of the ensemble-average behavior than the average value <0>

itself--this kind of reasoning is akin to our use of the Legendre transform. She also points

out that extreme sampIe dependent fluctuations are to be expected (and they are apparently

observed). These ideas are made far more precise by our results l'rom sect. 5.2.

Along the same Iines but going l'rom diffusion- to kinetic-type transport, we strongly

suspect that replacing symbolical1yS e-<t> by <e-t > wou Id lead to a far better "mean field"

theory than simply replacing p(x) everywhere by <p>. But we should not be too optimislic

because~e are only looking at one aspect of the trunsfer process (propagation) and seeing

that it isseriously perturbed by inhomogeneity which al1nws much longer geometrical photon

free paths. Just how these individual photon paths combine ln fon11 net radiative fluxes that

systematically "channel" the radiation into the more tenuous regions involves the scatlering

(angular) part of the transfer process.6 We examined in detail lhe subtle interplay of these

two aspects of radiation transport within lhe framework of diffusion theOl'y for arbitrary but

weak variability in sect. 2.3 above, using analytical perturbation techniques; and we will
return to them again but within the context of DA transfer in strong (mullifractal) but

parlicular (one single realization) variability in chap. 6 below, using purely numerical

techniques. We will come to see this? "channeling" of the photon flow in the variable
"density field as the basic mechanism nf inhomogeneous radiative transport in higlier

'.dimensions (Le., modelled by transfer or diffusion, not lPs). It is largely responsible, in
\.

'particular, for the systematically higher bulk transmittancies (hence exponents) observed in. .
chap.4.

5.4. Multifractal Independent Pixels, A Cas~ Study
..... '

5.4.1. A Special Microcanonical (X-Model lin' Coll/mn-wise Dressed Quantities

We are now in a'position to exploit lhe above results tci: obtain the direct transmission. t
through a simple class of "(X-model" discrete microcanonica18 cascades for the optical

density. In this model, the introduction of the microcanonical constraint is real1y an artifice

designed to avoid the problem of bare/dressed propcrties by ensuring that the spatial averages

of't are equal to the ensemble-averages.

We discuss only the simplest case in two dimensions (see fig. 5.1), in which each

eddy is broken up into four sub-eddies, cach with one hall' the size of the parent eddy o.o=ij
per step). For the moment, wc consider the general (non-conserved) case in which the SUlU

of the two multiplicative factors on either side are fixed, À{jYI and t..oY2 respectively. but do

not neccssarily add up to one. The factors which sharc a column can be randomly chosen as
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(5.20)

(5.23)
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long as they respectthis constraint; furthermore, lhese two factors can be distributed either

left-right or right-lef!. This constraint is such that, as the cascade proceeds, if we are only

illlerested in the Integral of the optical density (t) over colul11ns, then the latter is modulated'

by one of the above factors at each step.
j, Calculating the multiple scaling for the optical thickness as for the usual lX-model

(C.30) with C±:1 (since the probabiliiies arc bOlh 1/2 = Î\o-l), we obtain9

K(h) = log <th> 10gi.o(ÀohYI-t + ÀohY2" 1)
log À

hence, for a ta~cade that conserves t (i.e., K( 1)=0 so thal <t> is ind(;pendent of À), we

require that YI, Y2 be constrained such that },oY'+ÀOY2 =Ào. It is straightforward to calcolate

the corresponding multiple scaling function for Kp. bUI to do this we must introduce the

\j~int) probabilities for the a,b,c,d faclors.

According to our previous analysis, lhe two fllndamental cases of interest are c'(O)<O,

c'(O»O, and we will also be interested in the value of c(O). We l11ustthè7êt'ore obtain the

Legendre transform of eq. (5.21) butfor y=O only, i.e., wc do not need to use the general

result (C.3Ic). Expressions for c(O), c'(O) are obtained using the factthat c(O)=K(ho) where

ho=c'(O) is the value that yields the minimum K(h). We therefore have

c'(O) = ho = _ log~(-YJl-Iogi,"(Y2)

Y2 - YI
where we have assumed YI<O and Y2>0; otherwise (0 is not in the singularity spectrum of

the mode!), we have c(O)=oo. From (5.22), it can be seen thatthe sign of c'(O) is opposite to

that ofYt+Y2. In particular, whënever Y'+Y2 = 0, wc have simultaneously c'(O)=ho=c(O)=O;

the various cases are shown in fig. 5.2. Using the reslilts summarized in table 5.4, we have

c'Co) > O. Yt±YU; 0: This case lO yields
KRd(h) = KRp(h) = K(h) whcn h < c'(O)

c'Co) < 0, Yl±Y2'::' 0: This case yields
KTp(h) = K(-h) when h<-c'(O) (5.24a)
KTd(h) = -c(O) = min[K(h)) ,(5.24b)

Here, Tp is obviously not a plane-parallel transminance, but tolal transmillance in the IP

approximation discussed (unper 'Lanous guises) in the the last ùlree chapters. In particular, it
';:..-..:~.--;:.r

appears as the exact solution for DA phase functions with no side scallering, only forward

and backward.

We can now conveniently display the combincd results for KTd and K (fig. 5.2), where

we see thatthere are three regions corresponding to

<'t>~O, <Td>~ 1 (thin transparent clouds)

<t>~oo, <Td>~ 1 (thick but transparent clouds)
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<'t>-700, <Td>-70 (thick opaque clouds)

The intersection of the curves Kril)=Û and K(1 )=0 occurs at YI =Y2=0 and corresponds to

multiplicative factors of 1 in each column, Le., lhis is the (only) non-fractal case (however

YI=r2"'0 yields a non-fractal 't, whatever the make-up of a,b,c,d is).

5.4.2. Two Special Cases ofInfereSf

As an example of the above,ll we mal' consider lhe deterministic D=log23= 1.585

monofractal cloud in d=2 discussed in sect. 4.2 and illuslrated in Iïgs. 4.4a,b; notice that

K(I) = I-C = 0.585 since C=d-D. Within the ahllve class of models, it corresponds to

a=c=d=I, b=O hence to Y2=I, Yl=O. It is interesling to see how the simple operalion of
column integratioo (which is basically a highly anisotropie form of "dressing" a cascade,

using an averaging set of vertical extelll L, hllrizonlal extelll lol can map a ~-model Olllo an

lX-model, at least in this microcanonical case. Returning to our radiative preoccupations, eq.

(5.22) yields c'(O)=-oo and we Iïnd Kr,(I) = -c(O) = K(-oo) = -l, from (5.24b), hence

Vr,= l/K(I) = l/I-C = 1.71. We therefore have <Td>-70 and <'t>-700 , Le.• the cloud is

thick and opaque. For comparison, we recalllhal numericalmultiple scallering results on

this cloud are vr = 0.4-0.5 for the case with eyclic horizontal BCs. and 0.5 for open sides.
Both exponents are smaller than 1.71 as required since lhe direct transmillance is a lower

bound on the total transmitlance. We also Iïnd Krp(l) = IOg23-2, hence vrp = CVr, = 0.71

which is not only <l, it also provides an improved lower bound on vr. This is excally what,

we expect, given the position of tbe IP approximalion in the one parameter (p) family of

transport theories going from IPs (p=O) lo diffusion (p=oo), via DA transfer (finite pl. In

order to make lhe model transparent in the Iimit, we must divide 't by at least a factor ..fï
(Le., we decrease YI and Y2 by 1/2l, yielding KTd( 1)=0. and K( 1)=IOg2(3/2,,[ï)=0.08 which

implies that 't still increases withllUt bllund.
~-7/

As another example of the a~:ove mlldel, we examine the direct transmillance properties

of CahaI~n'~ [1989] random but'mil:rocanonically conserved lX-mode!. His model is
oc

one-dimensional, the optical density is assumed constanl in vertical columns. Le., he

implicitly takes a=c, b=d. He performed extensive Monte Carlo simulations in the case

where a=c=1.3 or 0.7 (with 50-S0 chances), and conversely for b=d; this yields

yi",10g21.3=0.379, Yl:",log~0.7=-0.S7S which, by dcfinition, is on the curve K(I)=O in fig.

S.2. With these parameters, we find c'(0)=0.497, c(O)=O.OI? hence we can use formula

(S.3) which will be valid for momenL~ of Rd. Rp for h up to ():497. We see that for the case

of vertically incident radiation considered here. we expect <T>-71 as <'t>-700 , i.e" for

"overhead" illumination his cloud is transparent in the limit 1..-700 • However, Cahalan

examined the case of incidence at 60°, and obtained an increase of <T> with 1.., but

apparently tending towards a finite (non-zero) value. This result is not too surprising since,
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in the limit A.~"", slant incident rays wÙl tra~eïse an infinite number of columns before

,piercing the cloud base, whereas their vertically incident counterparts examined here stay in
thc·sâme column. As A.~"" most columns become very thin while rare, sparsely distributed

columns:get thicker to compensate, hence the result <T>~ 1 for vertical inciden~e but

another result for non-vertical incidence (where the "sampling" by even a single ray is

infinitely more generous). This artificial dependence on angle of incidence should disappear

if vertically varying Kp fields-such as the slightly more general modelused here--were

employed.
5.4.3. Anisotropies in Clol/d Models, Tl'unsporl Models and lill/minG/ion Conditions

Il is noteworthy that lhe lWO ahove modds constitute a fair fraction of the strongly

intenllillent cloud mode!s studied radiatively in lhe Iilcrature la dale. 12 Both are problemafic

because of their high degrees of structural anisolropy that, iIllerestirigly..come l'rom entirely

different constrainls imposed on them for enlirely different reasons. The 1.585-D

monofracta! is made deterministic for simplicity, a logical'step to make before adding a

stochastic ingredient and, in the previous chapter, we have tried to eX,!ract as much

information as possible l'rom its simulated radiative properties. As a learning tool, its only

problem is a (relatively minor) violation of the universalilyof the scaling exponent w.r.t.

phase functions and this is (probably) due to the striking deterministic anisotropy of the

mode!'s geometry that somehow interferes with the anisotropy corresponding to the cyclical

(horizomal) BCs and asymmetric illumination conditions (in the vê'nical); not to mention the

anisOU"opy created by privileged(DA) propagation directions. Cahalan's model is designed
. \"

to emulate the structure of marine stralOcuiîïulus as dctermined l'rom one-dimensional

observations, mainly power spcctra of inlegniled LWC (which is oct). In absence of

information on vertical structure, it is nalUrally ncgleclcd whilc the availability of Landsat

(mid-morning) imagery (of tcrritory ofrthe Californian coast) j1.~~fifies the choice of =600

inclination of the Sun in his simulations. "

In the illlmediate future, we must he aware of the artiticial anisotropies that we are

prone to introduce imo our Illodcls for Illany dill'crent (and pcrfeclly good) reasons. For

instance, in chap. 6 we use (for simplicily) a discrete cascade process to generate the

multifractal density field of interest and that is enough to explain most of the fine (grid-like)

structure found in the radiation fields. In the near future, the continuous cascade processes
c:-:....,~. .J:'....--..., .........,

of Schertzer and Lovejoy [1987], which ~ij,::',.:;., the "grid" problem of their discrete
':", l ~ ~.<

counterpans head-on, will clearly play an'jfli'.u,', .c,(ole; especially when combined with

Schertzer and Lovejoy's [1985, 1987] Genda(iT}"S~ale Invariance (GSI) formalism for
.!.",/"

incorporating the rotational symmetry;bnSaking êffects of stratification, horizontal texture,
etc. :(,<1'7
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tTtlis chapter is largely bascd on Davis t't a/. [19CJhl) uf which :1 prdiminary version appcal'cd as Lovcjoy el ni.
[1990], A.D. originatcd the idca of looking nt the spiltial Sl:llistié:>;)f direct 1r<llmnittallcC (l'dl for the D=1.585"·
dcterministic monofr3ctnl cloud mode! (invc:stigatl,'J ;11 !clIgtll in char. 41. as weil as looking al ensemble·
avcrages of direct- and I-D total lransmitlance~' (Tpl in gClll.'I"<.lI: he .!lso cstablishcd the cOl1ncctiol1 bctwccn this
dcterministic "W' model in d=2 (or KP(X.y) :md the special micrùc::lI1onÏl:al "cx" model for t{y). S.L and O.S.
generalized the approach and. using multifl':lcw.1 formalism. obtaillcd the e,;:poncnts for the transmillancics fonn
thase of an arbilrary multifractal distribution in optic31 thicklll::SS. "-D. is gl::nerally rl::sponsible for the
"indl::pendcnt pixel" applications, including lù Callal:111's (1989) nlCldcl; hl:: also found thl:: analogy of aVl::rage Tp
with conductance through disordl::red materi:lls und 'Illsisled on the: inlerpn:talion of average Td in Icrmsof
cnhanced phaton (gcametrical) frl::c paths. .

1A relaled I::xample is the relation betwl::en varinus radar l'ain sill~ularilie$ Jiscussed in Lovejay and Scherllcr
[ 1990].

2Notice that. il1 d=I. wc IUlve '1/2 = (I-t+I')/2 = l' III Ihl.' rch.·v;lI1t ((unscl'\';JIi\,el CoISe: wht!rt! t+r = 1.

3Althou~h when it haIds. eq. (S,Ra) dlll:sn't in\'lllvL' h. Ihl.'n: i~ ;Ul Il dcpl.'l1dcncc thal enters via tht! correction terni:
discussed above. This correction is cslimated in L1l\'CjIIY t" (//. 111)1)01.

4Schertzer and Lovcjoy [1987) use this prnpcrl)'. hUI l'Ill' nl.'!!ativc "cxln..'mal" L.5vy variahlcs (on 9\-), la derme
universal classes af multifraCi.als thal wc hl'ictly discussed in sect. C.5.

SIn prnctic;; we mean replacing the t:xponcntial distrihution by its (algcbraic) average counterpart. For instance.
extensive 1-0 numerical simulations of the alht:..Io prohl~m using s)'mmctric L~vy la\\'s (with "index" ae ]0.2[)
were pcrformed. They yield total (multiply scattel'...dl transmittancl: in Cnp... ratller Ihat Ihe usual L·I, which is
retrieved of course 'iii the Gaussian (finitc val'iancl:) CilS... al Il:;2, ln other w(Jrds. wc can gcnerically rcproduce the
"nnomalous" (v<l)' transmittance laws Ihat wc expect :lIld obwill for muhiplicativt:ly scaling (intermillcnt) fractal
or mullifractal media. Sec Barker [1992] for a semi-cl1lpilic'al applicatinn of tbis kind of kinctical "meau field"
approach to radiation transport. ,..

6Putting these two aspects of lransfl:r together. w~ have propaS-3lion (through inhllmogel1eous macroscopic dt:nsity
fields) subordinaled ta scattering (by micl'oscf\pic inhol1logencities in the refraclive index).

7It is recalled that lhe originalor of this cxpl'essil..1nis C:iIlllUll (1970] who used it whl:l1 describing his n"Jlncrical
results on spectral line transfer in dt:tcl'ministic model ml:dia. var)'ing in b(lth vertical and horizont:11 dirJclions.

8Rccall that in microcanol1ical cascades. there is strict CllllSl:rvatil.ln at each step. i.e., in fig. 5.1,
a+b+c+d = constant. In canonicaJ casl::ades wc: have the we:tker rt:striction <a+b+c+d> = constant. AClually, the
model dcscribt:d here is more slrol111ly micrllcOIllllllicOII thall is usu:d ~inct: each column at each step is
microcanonical. i.e.• a+c=W1 and b+d=W:! whl.'rc: W\ and W'J, arc Cllnslants.

As noted in Schertzer and Lovejoy {19871. discrete cOl~cadt:s arc outsiJe Iht: scopc of the universalily classes
(sect. 3.5) which are ob~ail1ed for continu(lus c:lsc"d...s.

9Lovejoy el al. [1990) uses a quadralic approxim;l.Iilln 111(5.11 ;Ind this giv...s rcsulL<; corrt:sponding la thase b~low
but only wilhin this 3pprClximatiun.

lOIn Lovejoy el al. [1990) a formula for <TtJh> fllll)' \'aHJ lill" L'1I= .y,.)~ was useJ 10 p~~ain K1M(l). The Intler formula
is elToneous since hem this spt:cial ":l'llh.litioll is not satislÏcd: Clj. (53) is ç.lrrec·l:·

Il Many (but not ail) random microcalll1l1ic.t1 W·nh'dL'ls OIrc ,pl.'.:iOlI Cil"el'o lA thc abovc: the total numhcr of alive
eddies pel' column must he tixed.

12To the best of our kllowl~dge. one can only ndJ hl Ih... Iist Ihl.' num~ric:tl stuJi~s ol' rOlndom p-mode1s by Gabriel el
al. [1986] and those of a single multifr:Jctal witll Gnussinn gCllcrators b)' DOIvis el al. [1991bJ. also chap. 6.
Cahnlan and Snidt:r [1990) discuss a (smootht:r) v;uiation lin th... u-moJd descrihed h~re but its rndialive. and eYen
intermittancy properties rem:.lÎn lar,gcly unc:xplon:d. The c10uJ lÏt:lo.!nodcls of Barkc:r :lnd Oavies (1992) are
additive. nat multiplicative. hence not slrongl)' Îlltcl1nittent in Ihe st:ns........... use here (furthermore, the individua!
cloudy "ecUs" are homageneous in the vertical).

o
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Figure 5.1: A special microcanonical ca"'adc modcl for bolh dcnsilY and oOlical thickncss. The unil square
with unil optical density (=l<p) is broken up inlo four sub-eddies al cach slep in the cascade, each sub·cddy
bcing modulalcd by the faclors a,b,c,d which are here delerministically arranged as shown in the middle figure
(the firsl slep of Ihe cascade). The expressions in each box indicate the local optical density. The
one·dimensional cascade shown bclow il shows the eVI1!I!tion of the vertical inlegral, Ihe opticalthickness (t)
with the corrcsponding expression for the o~tical densW.~ On the Hne bclow, we indicale the corresponding
orders of singulariIY..oft (Yt=log,"~)with Ào l=a+c, Ào =b+d, '-0=2. Closer inspection revcals "13t, as far as
the t-cascade is w.iœrncd, the faclors a,b,c,d can bc random, as long as they arc constraincd so th31a+c, b+d are
constants. The ifrows atthe top indicale the incident radiation.

Fig~re 5.2: A dia gram of the (Y1:[2) plane showing the Lhrl'c dirrcrcnt rcgiQlls [hm Ch.u:lclcrizc the
\ ~ scalmg of the Qmjcal thickncss and direct transmission. The slnlighl linc corresponds to

c'(O) c(O)-KTd(l)-O, and the curvcd Hne 10 K(l),,(J.
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Chapter Sixt

RADIATIVE TRANSFER IN A MULTIFRACTAL,

A NUMERICAL EXPERIMENT

priifnjinarics, Cavcats, Ovcrview, Summary and Outlook: In this chapter, we
report on a two-dimensional numerical transfer experiment conducted on the Cray 2 of the l

C2 VR in February 1991. The primary aim of this experiment was to show that radiation
fiçlds can be reliably calculated for extremely variable (multifractal) optical density fields
(cf. app. C). This computa~ional challenge was successfully met-the validation consists

'\../
in showing that the results obtained by two quite simple and totally independent numerical
techniques agree to within their expected numerical accuracies. The readèr'itreferred to
app. B for further technical details on both Monte Carlo simulation and relaxation of finite

difference equations within the framework of "discrete'angle" (DA) transfer (cf. chap. 3),
especially when applied to multifractals.

We have reason to bclieve that we are now in presence of the flfst complete databasc
consisting of a fully resolved highly variable optieal density field and its associated
radiation fields for a conservative albedo problem. That the scattering is orthogonal and

isotropie DA, not Mie, on the one hand, and that the embcdding dimensionality is two, not

three, on the other hand, may seem like factors that reduce the "realism" of the experiment

but it must be realized that such a comprehensive experiment is impossible in Nature and
that, bcing faced with considerable visualization problems, the "DA" and "d=2" options are

in factjudicious.2 Obviously, a countless numbcr of statistical questions can bc addressed

using this database and it is hoped that the ideas,discussed tltroughout this thesis will be
helpful in forrnulating a reduced set of more pertinent questions. For instance, two-point

slatistics seem to bc the minimal framework to gain physical insight into the radiation
transport process (according to our discussion in chap. 4) whïIe the notion of "channeling"

(introduccd as soon as chap. 2) suggests that we shouldattempt to quantify the anti­
corrclations of the deviations of the density and of the net flux vector from their local

means. Ali of these statistics must of course bc estimated at all (cloud-to-pixel) scales and

characterized in scale invariant terms along the lines discussed in different parts of app. C

(and with more dctail in the quoted literature). We note however that all the routine scaling
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analyses performed to date on aU kinds of geophysical signais apply to one (scalar) field at

one point, not two quantities (including a 4-vector) at two poinlS or more, although the

general formalism for developing such statistics has alrcady bcen described by Schertzer
and Lovejoy [1991].

For the present, we will therefore limit ourselYlèj in the following (sect. 6.3) to a

rather qualitative discussion of sorne of the most obvious graphical renderings of lhe

various componenlS of the internai radiation fields. This however is not done without

presenting prior and in sorne detail the adopted multifractal densily field (in sect. 6.0),

optical parameters, boundary conditions (BCs) and corresponding analytical "independent
pixel" (IP) responses (in sect. 6.1). Several varianlS of the same cloud (p- or LWC

distribution) are finally used, differing only by an overall multiplicative factor (le) that

delermines uniquely the average optical thickness ('t) ranging from = 12 to ~200. The main

point of this discussion is to illustrate--literally-the largest scale "channeling" event

induced by the largest cluster of singularities that developed during the ten (discrete)

cascade steps used to generate the multifractaI. In this respect, the present numerical

experiment serves us with a final (and hopefully dramatic enough) example of this very

basic mechanism of inhomogeneous radiation transport which has pursued us from

diffusion to transfer theories of matter/radiation interaction and from weakly variable and/or

deterministic to extremely variable and/or random cloud models. Another point we will

stress, in a different way from chap. 2-4, is that the rough characlerization of the

conditions (w.r.t. a variable density field) that make diffusion a better or a worse

approximation to transfer agrees with the basic theory (rcviewed in app. D), Le., the more

multiple scatlering (m.s), hence the denser, the bctler. In sect. 6.4, we switch to a slightly

more quantitative discourse in connection with the (one-dimensional) exiting radiation

fields across ~~Ioud's top (albedo) and bottom (transmittance). Indeed, we are able to

deterrnin~tlie spectral exponenlS for these fields in the thinnest case which is only
--,-.:r ",- "

1'contamfn~tedJjy numerical noise at the very smallest scales; thcsc cxponcnts compare
'-....4

favorably with their observed counterparts. The spcctra of the thickest case shows"

(uncorrelated) Monte Carlo noise to appear precisely at the expccted level and associaled

scale. Bearing this artefact in mind, we also witness extremely powerful smoothing of the

radiation fields, both internai and exiting, by the enhanced scatlering brought on by

increasing the cloud's mass.
Being fully aware of the fact that we are opening more questions than we are

answerÏ\lg (quantitatively speaking), wc are content with the fact that our contributions,

how~~ei\'modest, may weil be opening the way for new vistas in theoretical,

computational, statistical and, eventually, observational rescarch into atrnospheric solar
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Œdialion problems. Allhis point, it is however worth rccalling that the main thrust of the

present thesis is lo account for the systematic effects of inhomogeneity thal appear in the
spaliaUy unresol~ld radiative responses to illumination, with scaling cloud models playing
an important but largely illustrative role. In our rmal section, we thercforc revert from fully
resolved fields to these simple measures of diffuse radiation and find yet another
confirmation of the inequalities presented early on in chap. 2 between the transmittancies
oblained using homogeneity- or transport-related hypotheses applicable to arbitrary
horizontally extended media (in this case, by periodic replication). In self-explanatory

notations, we expect:

?"''''::::cc.: T:,omo(t) < TIP < TDA < Tdif (6.0)

where we have added the rightmost inequâÏity for reference only (it is not illustrated here).

Wc also recaU that, for the leftrnost inequality to apply, the amount of scatlering material
(t)~r"l1ust be held constant. Variously restricted praofs of these inequalities were presented

in chap. 2 and 3 of the thesis a10ng with arguments for pending generali7..ations (and scaling
examples were provided throughout), the role of nonlinearity and higher dimensionality
(Le., "channeling") was each time emphasized. Finally, the intermediate inequality is the

'''::.--./z
one direclly related to "c:hanneling" and it is reconsidered here using the complete order-of-
scatlering decompositions of the unresolved rcsponses that illustrate, in a specific case, our

ideas about non-exponential photon free path dism,ilUtions that were introduced in sect.
A.2, used in sect. 4.4 and found to be scaling in seé'( 5.1.

We view the inequalities in (6.0) as fundamentaJ in the sense that they apply to every
realization of a stochastic cloud model, at least for the kind of simple transport model and

illumination geometry used here (and~ïn the foreseeable future, given lhe ambitious

program outlined in the above). Failure to sec this before forging ahead with the ensemble-\"average properties of stochastic scale invariant cloud models will almost sureW'create

confusion as to what systematic nonlinear radiative variability effect belongs ta w~t cause,
for at least two reasons. On the one hand, the average response of randomly thick

. Il
homogeneous media can look like that of one realization of a stochastic· medium (cf. chap. ""

z:.
4-5) and, on the other hand,the role of the scaling in the physical explanation of these

effects is not fundamentaJ (chap. 2-3), it however amplifies them (sect. 4.3-4) to a point

that would soon be beyond recognition, had we not looked closely enough at the general

case. An example of how we can use the information in (6.0) is easy to pravide. For a
(canonicàlly conserved) stochastic model, all of the rêSpo~ses involved in that inequality

,\, .
sequence are in fact random variables.3 Taking (positive) powers and ensemble-averages,
we can add a new inequality at the left of ail the others:
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Tbomo({t»h < (Thomo('t)b) < (TIPb) < (TDAb) < (Tdif) (6.0')

where we have made the (ergodie-type) assumption that ('t) = (t). The lertmost inequality

in (6.0) is a direct consequence of Jensen's inequality (3.31) applied to the spatial average"

of the convex function Tbomo(t) that enters the definition (3.28) of Ttp; ail we have done

here is to use the same inequality again, this time for the ensemble-average w.r.t. a random
't. If an outer-to-inner scale ratio parameter (1..) enters the definition of the slochastic model

as is the case below, then (6.0') will be true for ail :>">1, while at :>"=1 homogeneity is

retrieved and all of the above inequalities become equalities.

6.0. The Structural Properties of the Optical Density Field

6.0.1. Rationale for Adopting a Cascade as a Modelfor Density

In order to obtain an unambiguous illustration of the radiative effects of scaling

inhomogeneity, we require our model optical density field to exhibit'

(i) a large range of scales,

(ii) a large range of values,

(ili) well-understood mathematical properties,

and, if possible, some degree of

(iv) physical justification.

The universal multifractal models described in sect. C.s automatically fulfill

requirements (i), (H) and (iii) as soon as :>" and Cl (as defined in sect. CA) are given

reasonably large values within their natural ranges, respectivcly, [I,oo[ and [O,d[ where d is

the embedding dimensionality and either one of the lower bounds corresponds to

homogeneity. In the following, we take d=2, mainly because of computer memory

limitations (see app. B), also for ease of resulting radiation field visualization. Retuming to

the multifractal parameters, we choose

[-:>"-=-1-02-4-1 (6.1 a)

and

1 Cl =()SI'\ (6.1b)

Further justification of this last value to follow.

Concerning requirement (iv), the deep connections of multifractals wit'!.-.

turbulence-the primary source of inhomogeneity in clouds-have now been w{/

established (see app. C for a brief review, and the literature quoted therein for details); in

particular, they have ail but completely superseded the monofractal models used

justifiably-for simplicity-in our previous numerical radiative studies (discussed in chap.

4). Still, item (iv) deserves a more detailed discussion. Dissipation e is not density p; in
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particular, the spectral exponent of E lies above -1 (see §C.4.3) whereas that of p is

obscrved to be c10sc to -5/3. Methods applicable to the concentration of scalars passive1y

advected by l'ully developed turbu1ence--based on [Corrsin, 1951; Obukhov, 1949]

phenomenology-are actively being researched [Schertzer and Lovejoy, 1987; Wilson et

al., 1991]. but no completely satisfactory stochastic model for the fluctuations of p has yet

been deviscd.
Recalling that the lasrl universal multifractal parameter to be determined is the Lévy

index which can go l'rom 0 (Bernouilli generators and monofractals) to 2 (Gaussian

generators and log-normal multifractals). Having examined the radiative properties of a

deterministic version of the former limit (in chap. 4), we are now temptedS by the opposite

limit which in many respects constitutes the "u1timate" multifractal \Vith in the classification
f r

scheme proposcd by Schertzer and Lovejoy [1992]; surely this exuéme casc of extreme

variability will help our purposes in "seeing" how inhomogeneity affects the radiatibn

fields. Hencc,

(6.1c)

c

and conscquenlly eqs. (C.17-18) app1y. A remark ofhistorical interest is that this model is

c10scly rcIated to the one proposed independently by Kolmogorov [1962] and Obukhov

[1962] for the çjfects of internlittancy on the statistical properties of the dissipation field in
/1

l'ully developéd turbulence, in facttwo years before the prototypical monofractal mode1 of

, Novikov and Stewart [1964] was introduced. c'

Finally, and again for simplicity, we will use the discrete cascade construction

procedure ilIustrated graphically in fig. 6.0 with a dividin:-)atid~';;'2; al'ter n=10 cascade

step, we obtain the value of Â.=Ào° quoted in (6.1 a). Only À, not the fact that the cascade

is discrete, is important to the mathematical description of the model found in sect C.2-4.

The main (practical and c,ciùceptual) inconvenience of the discrete cascades w.r.l. their
~

continuous counterparts is the persistence of the rectangular grid structure which is of

course totally irrelevant to the turbulence being modelled. In our exploratory transfer

expçriments however, we will see that the grid structure dominates the smalÎ scale features
-~-'of the radiation field (which is bad, possibly inducing scale breaks in future statistical

analysis) but this provides a reference frame to the eye (which is good, but only for our

present purposcs of visual cross-referencing).

6.0.2. Scaling One-Point, Two-Point and Co/umn SUJtistics ofthe Adopled Realization

The dual codimension functions corresponding to lX=2 are, respectively, l'rom eqs.
(3.35) and (3.18b):
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{

C(h) = C,h

c(y) = C
4
' ( J, + 1 )2 (6.2)

and 'hey provide the proper (scale invariant) characteri7.ation of the one-point statistics of

our adopted density field.6 Since the associated cascade is conserved, we have <p>=1 in

natural units of density. In sharp contrast with our detemlinistic monofractal cloud model

from sect. 4.2, this is an inherently stochastic model but we will focus on a single
realization in the present study, heing at the numerically exploratory stages of radiation

applications of these kinds of model optieal media

Fig. 6.1 shows the specific realization that we adopted7 in order of singularity

representation (i.e., y(x) = 10g,,<P(x»),. with linear grey-scale) and fig. 6.2, the portion of its
,<1

theoretical scale invariant histogram pertaining to a single realization (i.e., c(y) ~ d = 2

[Lavallée et al., 1991]) with remarkable values highlighted. Notice the weil distribuled

(space-filling) interm(;diate shade of grey corresponding to the theoretically most probable,

singularity Yo= -Cl = -0.5 which has c(Yo) = 0 and is very close to our example's
'Y ~ -0.46. We have also singled out the point where c(y) = C,; the (positive) solution,

Yh of this equation is shown in sect. C.3 to he the order of singularity generically

associated with the mean of the process, <P>. It has the rcmarkable property of bcing the.,

,point where the c(y) curve is tangent to the first diagonal (i.e., C'(YI) = 1 and YI = Cl)

whether the multifractal is log-normal or not, incidentally.

The overall spatial average of this realization is il ~ 1.52 which is not a rare

fluctuation from the ensemble-average <p> = 1. The individual p-values span a range
from ~10-7 to ~1()4. Unsurprisingly, this is quite closeS to the theoretical fluctuation ratio

of ~ Â,4..JdC\ ~ 10'2 which is preiicted from eq. (6.2) and the sampling singularity criterion

discussed above (namely, C(.y~~\:l). While these huge fluctuations occur over the whole

cloud, ~2-4 ratios will not bc rare from one cell to the next; indeed, from (C.1Sc), we

must use cr = --J'-2""ln-:Ào"""'C-,;: 0.83 in eq. (C.17a) to generale the random multiplicative

weights. Letting':- denote the (d=2) Fourier transform and k the wavenumbcr vector, we

find in the isotropie power spectrum of p(x), viz.

271
',' Ep(k) = J<1ï5(k')P> d2k' = J <!ï5(kU(9»)P> da

Ik'l=k 0

a spatial/ensemble statistie whiçh directly generalizes the spatial and/or ensemble mean
.~

since p- = '1'1(0) for every realli.ation. Since the Wiener-Khintchin theorem states that they
1-' 'W

form a one-dimensional Fo~iier transf0J"IU pair (see sect. 4.4), the above power spectrum

conveys the same information as the density field's 2-point correlation function:

-:.
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<p(ru)p(O» - <Pi.2>I1.=r/~ - À.K(2)I1.=r/1o (6.3a')

where K(h)=(h-I)C(h); see Monin and Yaglom [1975] who however use different

notations than us. Specifically, the spectrum in (6.3a) scales as k-'+K(2) and, in our

particular case, K(2) = 2C, = l, Le., Ep(k) is independent of k. (The observed spectral

exponents for turbulent velocit~,dissipation fields are somewhat negative, corresponding to

C,=0.2-0.3 in this model.9) Inshort, the medium exhibits the long range correlations

which, according to our discussion in sect. 4.4, are one of the prerequisites that make
"interesting" radiative properties. By contrast, uncorrelated «p(r)p(O»-6(r)) noise in

two dimensions, which we have often contrasted with multifractals on radiative grounds,
has a constant spectral density Ep(k)/ndJcd-l hence Ep(k) - k in d = 2 but totally different

scaling of their probability distributions. ()
In order convey more directly an idea of the dègree of variability of our prototypical

optical medium (without referring to singularity- or power spectral, we provide in fig.

6.3a,b,c three different exceedence sets at three very different levels in density value:

1132=0.031, l, and 32. These thrce thresholds correspond respectively to the the specially

selected orders of singularity YO=-Cb Ybrnl.=O, and y,=+C,. The former is the most

probable order of singularity and associated density value Pm.p. (in fact, it is an order of
"regularity" since Pm.p.=À.Yo-+O as 1,.-+00); it is associated (via Legendre transformation)

with the Oth moment of the field; finally, it fills space since c(Yo)=O as is clear from fig.

6.3a. The second is the "neutral" order of singularity (or regularity) corresponding to p=1

(recall that we have constrained <p> to this value by conservation); it is Legendre

associated with the order of statistical moment that minimizes K(h), Le., K'(hmiD)=O which

in the cx=2 case yields hmiD=1/2; finally, the exceedence set in fig. 6.3b has a theoretical

codimension of c(O)=-min[K(h)] which in the cx=2 case is Ctl4=0.125 (in this particular

case). The last is the order of singularity associated with the mean of the process <p>;

indeed, the Legendre transformation associates it with the statistical moment of order 1

which implies y,=C, which is defined as K'(l); finally, the very sparse exceedence set in

fig. 6.3c has a theoretical codimension of c(y,)=C,=O.5 (in this particular case). Together,

figs. 6.3a-c show how unsuitable "Ievel curve" representations are for multifractals since

such curves are the fractal boundarics of fractal sets.

If only to e';phasize the very strong degrce of concentration prcvailing in the lower

th. side of the medium, we have plotted the column-averaged densities in fig. 6.4a,
namely, ,. ,0: ,~

L

Pey) =t f p(y,z) dz
o
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We have proceeded similarly for row-avcrages and p(z) is ilIuslIated in fig. 6.5a. Figs.

6.4-5a give us an idea of the difficulties lo in properly evaluating statistics for canonically

conserved multiplicative processes since each p(y) and p(z) is the overal1 average of a

log-normal cascade in d=l; these cascades are however not mutually independent, hence

the resulting on(;-dimensional fields are themselves multifractals. p(y) and p(z) both have

minima around ~O.I and extend respectively to ~40 and ~20. Unsurprisingly. these

maxima are reached at horizontal and vertical coordinates of the peak in the original p(x)

field. This maximum density value is ~12000 which means that p(y) and p(z) acquire

respectively ~1I3 and ~1I2 of their value within this single cell! This ilIustrates eloquently

the multifractal ideas of singularity and extreme variability.

We can also define the orders of singularity associated with the column-averaged
densities:

Yp(y) = 10g,j5(y) (6.3b')

and similarly for the row-averages; both one-dimensional singularity fields have been

added to figs. 6.4-5a. The corresponding ranges for the values of yp(y) and those of the

statistically e(l.uivalent yp(z) are -0.35 to +0.53 and -0.27 to +0.42 respectivelY.

6.1. The Optical Parameters, Boundary Conditions and Independent Pixel
Responses

The only physical parameters left to specify are purely optical in nature: t. r. s, and lC

(with the same definitions as in chap. 2). We can view the latter as an arbitrary overail

numerical multipH~r of the raw density field that converts it into "optical density" or
~: .

"extinction coefficient." We want a large overall optical thicknesses (as required in an

opaque Object such as a cloud): 'f = lCpL ~ lCÂ/o»1. At the same time. we want the

medium to he optically thin at the homogeneity scale 10 (at least on average) hence

".::'Kp/o ~ lC/o« 1. This is a natural requirement in numerical applications but. in the case of
\"

mùl!ifractals (with non-negligible CI). this constraint automatically implies the verification

(on average) of the [lfst criterion for strong radiative variability effects. Le.• inequality

(4.10). When Â= Ulo= 210• these constraints can he fulfilled simultaneously as long as

~' lC is kept in the range 2·L 2·3 using natural unl'ts of length (where 10 = 1). One could argue

that the relevant factor for mnltifractals is not the average density <p>=1 but the most

probable (space-filling) density value Pm.p.=').,-CI=1I32 (here). we could thus gain five

more powers of 2 in the range of lC values (up to 22).

Pqiiu't from constants. fig. 6.4a therefore illustrates

L

~(y) = JlCp(y,Z) dz = lC p(y) L
o
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As already stated, the total optica1 thickness is simply

't =t l 't{y) dy = 1( PL (6.4b)
o

We are lert with 5 opti~al media by taking IOg21(=-7,-6,-5,-4,-3. Ali of these are

proportionalto the nominâl bare (log-normal) cascade field represented in figs. 6.1 and/or

6.3a,b,c; their total (or spatially averaged) optical thicknesses 't being in the range 12.2 to

195. We will dwell mainly on the extreme values oCI( (hence 't) in the remainder of this

chapter. For (numerical and conceptual) simplicity, we assume conservative isotropic

DA{2,4) scallering (t = r = s = 1/4 hence, from definitions (2.6a-<), a = 0, q = l, P = 112);

results are expected to he qualitativel)' the same in any other DA(2,4) system because of the

similarity relations established in sect. 3.5 (that relate different values of Je).

As presented in chap. 2, transfer theory relates the optical density and radiation fields

in a purely local manner; BCs are required to determine the latter completely. In early

investigations using bath transfer [McKee and Cox, 1974] and/or diffusion [Davies, 1978]

methods, horizontal radiative fluxes were induced simply by changing the support of the

(otherwise homogeneous) optical medium from an infinite slab to a fmite cuboid. Since we

now want to isolate variability-induced horizontal fluxes, (meteorologically) we think of

our cloud as horizontally "extended" and (mathematically) we impose horizontal cyclical

conditions
I±y(O,z) = I±y{L,z) (O < z < L) (6.5a)

in DA transfer. ll At present, we are interested in the (DA) problem of diffuse reflection

and transmittance which is defined by the following vertical BCs:
I+z(y,O) = 1 L.{y,L) =0 (0 < y < L) (6.5b)

In many respects, the mest important unknowns in this (so-called "albedo") problem

are the exiting radiance fields which, in DA transfer, read as:
R{y) = 1.. T(y) = I+z{y,L) (O ~ y ~ L) (6.6a)

for local reflectance and transmittance respectively. At the lowest level of spatial resolution

(as considered in our previous studies, discussed in chap. 4), the response of the

inhomogeneous medium is of course defmed by12

1 L
T=r JT{y) dy = 1- R (6.6b)

o
The last step .equality is a global consequence of the local conservative property we

assumed for the DA phase function (a =0).. This hypothesis makes our calculations most

readily comparable to radiative transfer in the visible part of the solar spectrum where the

cloud-free atmosphere is quasi-transparent and {pure)liquid water has vanishingly small
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absorption; the most equivalent continuous angle illumination conditions would be

overhead sun, or a uniform (at least axisymmetric) distribution of diffuse radiance.
In fig. 6.4b, we have plolted the total and direct transmitlances of each column for the

thinnest cloud. The related fig. 6.5b is discussed in sect. 6.4 below. Total columri:wise
li

(or local IF) transmitlance reads asl3 '

l 'l
Tp('t(y».(6.7a)

1 + r't(y) y

This is the exact solution corresponding to the case of conservative (a;;I/O, mo= 1)

scattering in d=1 or eIse with no side scattering (s = p = 0); we then have i~ q/2 = (l-g}/2
so, as in any standard two-flux theory, Tp is a universal function of rescaled optical
thickness, (l-g)'t, see the review/extension by Meador and Weaver (1980). Recall from
sect. 3.4 that total transmittance is a~ç7 given by (6.7a) for any conservative DA phase
function in higher dimensions but in the ~'!"ry restricted case of r:b~ogeneous plane-parallel>s"
media. Comparlng figs. 6.4a and 6.4b, it is not hard to see the anti-correlation ofTpand't
as expected from our discussion in chap. 5: in.. and 't). are both »1, <Tp('t).)h>-with a

- ;~..::=.....- ,,'

multifractal 't).-distribution--was found to scale like <'t).-h> for h>O but not too large, the';
result being independent of r (Le., we again find radiative exponents independent of phase

functions). A log (YTp) plot ofTpwould make this even more obvious.
Direct transmittance reads as

7d('t(~)) = exp[-'t(y») (6.7b)

This is the exact,solution corresponding to thé case of transfer in a totally absorbing (mo=O)

\~: medium: t = r = s = 0 in orthogonal DAs, hence a =,q = p = 1. We immediatelysee that
Td('t(y» can far exceed Td('t) = e-12.2 = 10-5.3 as wclIas its extreme intermitlancy; neith'er

~, ,l'

of these features are too surpri;d~;g since our (châp~ 5) analytical investigation into direct

transmittance through multifra2tals shows it tOhave very simple (monofraclal-Iike) scaling
-"\

statistics in the Iimit À~co and 'on condition l~at this corresponds to increasing optical
"} ,.

thickness. We notice the relatively high levels ôf directly transmitted Iight on the r.h.s.

with, in particular, Td('tmin)=O.5. The corresponding field for the thick~r cloud model
(1C=2·'j'is given by thè same values as iIlustrated here, except carried ta,the power 16; the

'-::::'maximum goes from =0.5 to=10-5 ! ln other words, ourthinner model is much Iike a
complex (but horizontally periodic) structure of "broken cloudiness" whereas our thicker
model is more like a (horizontally extended but) "single cloud" with a complex internal
structure; we must however stress the arbitrliness of such a categorization in general.

We must finally seUle on a numerical procedure to solve the (lst order) DA(2,4)

transfer system of equations,j.e.,
:..

(\
-'
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where

1 - Û::) A - ( 6-~ ~ ~) A - ( ~ ~ ~ ~) P 1 - (t~1 t~1 ~ ~) (6.8b)- J.. Y- 0 0 0 0 Z - 0 0 1 0 • - s s toi r
J.. 0 0 0 0 0 0 0 -1 s s r t-I

with BCs (6.5a,b) and vaCdate it. Given the noveIty of the type of optieal medium
investigated (with its extreme variability being a partieular concern), we have decided to use

JO, -

the most straightforward approach available: Monte Carlo simulation which can be
considerably speeded up in DA transfer (sec sect. B.l). Photons are tracked continuously
in space and detected by digital counters at every ceU boundary crossing. The validity of
the code was esta~lished by applying to our thinnestmedium the next most straightforward
approach availa61e, namely, (Gauss-Seidel) relaxation of the fini te difference equations

obtained from the above on a square lattice (see sect. B.2). The two methods are now
compared using the adopted multifractal as a test case.

6.2. Validation of the Nurnerics, Monte Carlo and Relaxation Compared

As discussed in app. B, both methods are guaranteed to converge (they are both
perfectly stable) b~t only the Monte Carlo method can be viewed as completely reliable, in

é.-, the sense that th(horresponding solution indeed obeys eqs. (6.8a,b) with BCs (6.5a,b);
;.\:.:

unfortunalely the method is slOl" but this inconvenience is compensated by the fact that the
accuracy is known a priori since the errors are(-::fely"statistical (Le., we always know

exactly where we stand W.r.t. the ideal case). In total contrast to this situation, the finite
difference and relaxation approach can!be made very accurate with enough CPU time (and

:/ '1

-=:'Jar more efliciently if direct sparse matrix)nversion methodology replaces our adopted
~ ~

relaxation solution) but its reliability'-even physicality--depends somewhat on the wey the

~:""--.'{i.'1ite differencing is done and very critically on the way the thick ceUs are dealt with (see
Lovejqy!/et al. [1990], especially theirappendix A). This last problem is ineseapable in the

framewor~, of mul~fractals, it is funher described in sect. B.2 along with the strategy we
adopted to overcome it (namely, interpolation of the transfer coeffi,';ients from a reasonably

" \\. .
dense tabulation generated by mega-photon Monte Carlo,simuhltions"on homogeneous

,.-::.......~~"" - ,/ -, --:;:;
•P- sqlJares). ,._.<' ,

"i \~ The mai; source of n;merical error wJ1en relaxation is used is the non-uniformity of

"the c?nvergence which is not easily monitored during the iterationinpra~tice. Il was ~5?n
realized that, independently of the type of inhomogeneity (white noise or multifraetals); the

'\'.

convergèpce of the relaxation is slowest almest throughciut the th;:;nest row when cyclical
~ ,~,-
li Ji -, _)1 ,
~ ~ -.-,-
(.

..-::'
;;".;

;,

<;'~~=-.
.



,."".

161

BCs where applied. This is easily understandable since that row is the most weakly

coupleu'with the overall downwards flux that prevails throughout the system (due to the

strongly anisotropic BCs). Il is hard to say which method is really the most accurate in the

absolute (neither is ideal in the long run anyway). For roughly constant cru time (several

Cray 2 CrU-hours), the relaxation technique yields results that are smoother simply

because they are not contarninated with the characteristic Monte Carlo noise; to appreciate

this, compare fig. 6.10a (l ()4 relaxation steps) and fig. 6.8a (Monte Carlo, a run at 106

photons in ail, =103 photons/pixel).
As expccted, the two methods agree to within the Monte Carlo noise level which, in

the circumstances (the final run used 10,240,000 histories in ail, 1()4 photons/pixel), is at
"

the 1% level for the brighter internal/exiting fields (pixel values) and a few % for the

dimmer fields. ll1e overall (integrated) Monte Carlo responses are however reliable to a

few %0. However, this does not mean that the Monte Carlo estimate is the worse. on the

contrary; the greatest discrepancies between the two methods appcar in the regions of

lowest overalliight levels (where the Monte Carlo noise as at its maximum) but also in the

regions where thick cells prevail (and where finite difference solutions are known to he

more systematically biased). After t=l()4 iterations (see se~t. B.2 for the notations), the
global accuracy estimators for the relaxation were IIlLII.11!t=2.1O-7 and R4'P=1.001 (Le.•

RI and l' appcar to be slightly betler estimated individually than by Monte Carlo). For our

present purposes, this is ail we need to proceed to the physical discussion of the results

found in remainder of this chapter since we have made sure that the simulated radiation

fields reflect primarily the physics. not the numerics. Ali of the above figures relate to the

case where 1(=2-7 ('t=12.2) which is the only one where the thickest cell still falls within

our tabulation (Le.• maxl't(i)~1 00). Having obtained a mutual validation of our numerical

recipes in the thinnest case, the Monte Carlo method alone is retained for the thicker media.

However, for 1(=2-3 ('t=195), only 103 photons could he injected per pixel (again for

several hours worth of CrU-time) hence uncer!Jlinties =1 % for total fluxes and at the

3--'rO% level for the internallexiting fields-thê range being due to the greater overall

gradients and extremely low fluxes are somewhat more uncertain (but relatively infrequent,

they are only to be found below the major concentration visible in the lower I.h.s. of figs.

6.1 or 6.3). Finally, we note that the conceptual simplification achieved by applying

cyclical horizontal BCs does carry a computation time cost in both of the methods that we

inlplemented.
; Before leaving the topic of numerical techniques, we must admit that our brute

force-and overkill-approach (of using not one but two very simple methods) is only

justified in the present exploratory stages of research into the radiative properties of
li'

\\
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stochastic cloud models; given that we have not even considered ensemble-averages yet, it

is clearly unviable in the long ron. Eventually, we will require a combination of more CPU
time and improved numerical methodology (e.g., sparse matrix rather than relaxation
techniques). Because of their greater flexibility and robustness (w.r.t. the thick cel1

probJem in particular), Monte Carlo approaches are likely to 00 favored in future numerical
transfer research, especial1y as more extreme kinds of inhomogeneity OOcome the focus,14
We must also recallthat Monte Carlo algorithms can generally 00 adapted and optimized to

targel specifie statistics which might 00 considered of special interest in future studies,
using "double randomization" [Kargin et al., 1985] if necessary. Other reasons to improve
Monte Carlo algorithms in spite of the diflïculty of accelerating lhem by vectorization
menlioned in sect. B.I are that (i) massively parallel supercomputers will soon become
widely available and lhere is no limit to how many particles can be processed
simultaneously in Iinear transfer problems, and that (ii) they hav_e a nalural by-producl: the

orders-of-scallering decompositions of the various flux fieids (their utilily is briefly
discussed in sect. 6.5 and 7.3).

J deceases linearly, hence we must picture the grey·scale key
but stretched tothe ful1 frame-width of the figures.

figs. 6.6-7b,b': Fy =0, hence a blank pieture appears. and Fz=Tm =
const, hence some unüorrn shade of grey covers the picture.

6.3. The Two·Dimcnsional Internai Radiatitn Vector Fields

6.3.1. General Discussion ofthe Visualization in Eigenvector Representation

In figs. 6.6a-c ('t = 12.2) and figs. 6.7a-c (ï: = 195), we present grey·scale
renderings of lhe four eigenspace projections of the DA radianc~ fields aS defined in eqs.
(2.l2a-c):

J (figs. 6.6-7a)
Fy (figs. 6.6-7b) and Fz (figs. 6.6-7b')
X (figs. 6.6-7c)

This choice has proved more useful to us than the radiances themselves. Grey-scales are

al1linear in DA radiance (that has the same u~tsas a flux, see sect 3.1) and each pixel

receive~ one unit; wehave indicated the numerical min's, max's aswel1 as means (except
_ in figs.'6.6-7a).

'r:/"" BefOTe any further discussion, it is important 10 "see" the amount of information

contained in figs. 6.6-7; this is oost done by mentally visûalizing the results one would
.''" find; for isotropic DA scallering in a total1y homogeiieous plane·parallel medium.

Spècifical1)',
figs. 6.6-7a:
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figs.6.6-7c: X = 0, diffusion applies everywhere exactly, hcnce wc sec
another blank picture.

The most casual glance at figs. 6.6-7 is sufficient to sec how severely this symmetry is

broken by our example of internaI variability. It is however important to realizc that any

amount of inhomogeneity will produc~ sorne perturbation by a mechanism that, inspired by

Stephens' [1986, 1988] work, weha;'e prcviously described asa "mode-coupling~','
'"

induced by a sourccJsink-like term that appcars on the r.h.s. of the (usual, d=3, counterpart

01) transfer eq. (A.5) after harmonic analysis in u and Fourier analysis in (x and) y;'but not

in z. In sect. D.S and 2.3, we presented arguments that show tllat Cannon's [1970) simple

idea of "channeling" is in fact the counterpart of "mode-coupling" in physical space.

Equally striking is the fact that the huge IOIl-range variability of the p-field has bcen

comprcssed into ranges of only =2-4 (in units of T) for the maximum absolute values of

the quantities Fy, Fz and X, which are ail algebraically valued a priori and constant

(eventually null) in the homogeneous case.)Ne haveused T = Fz(z) as a convenient point

of comparison since it remains constant w.r.t. the ver'.ical coordinate by conservation of
total radiant energy flux. The total range of values found for J, which is strictly positivè~

may seem impressive at first glance (i.e., =19 for the thinner- and =400 for the thicker

cloud using max-to-min ratios) but in fact they are not much grealer than the values that we

predict for the corresponding homogeneous clouds: namely, from eqs. (6.9a,b), we find

JmaxlJmin = (1+R)/T = 2r't+l (i.e., =10 for 't=12.2 and =100 for 't=19S, if 1'=1/4); so
again the inhomogeneity has induced maximal change with ratios in the range 2-4.

6.3.2. Total DA Radiances

The most striking feature in fig. 6.6a is the prominence of the rectangular grid

structure which has, however, almost vanished from fig. 6.7a; this provides a (first)

illustration of the smoothing power of multiple scattering when boosted by an overall 16­

fold increase in optical density. The artifact is of course due to the photons' propagation

being restrictéd to the axes of the grid which are also (artificially) enhanced by the

"discrete" nature of the cascade; cf. the visually obvious grid lines in fig. 6.1. For the

moment, this small scale "texture"is"in fact useful for tracking visually the large scale

p(x)-I(x) connections. For instance, we notice in figs. 6.6-7a the more pronounced

Jigradients in the denser regions; these come in all sizcs (hence stre~.g~hs) but the foremost

lié in the lower I.h.s. This region is literally a (semi-isolated) cloud wilhin the (extended)

cloud and we will see it either dominate the overall picture (w.r.t. F(x), §6.3.3} or as a~,
, .~/

concentrated version of the whole picture (w.r.t. X(x),§6.3.4).

Returning to fig. 6.Sb, we have plotted the results of three differen~ ways of

calculating the row-averaged internaI total radiance (J) fields for 't' = 12.2: beforÇ

~.
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(homogeneous laycrs) and after (IPs) applying eqs. (6.9a--<:) as weil as our full-blown
.numerical procedure. The bone fide (but vertically inhomogeneous) plane-parallel prome is

very non-representative duc to the large concentration of mass in the lower layers of the
cloud which, in turn, concentrates radiation in the layers above it. Il would have hardly
been any beller to homogenize the medium in both directions: this WoC')d have resulted in a,
!inear decreasc in J from the very sarne starting- and ending points and an ensuing
underestimate of the amount of radiation in the lower-layers. The IP approximation is

;~

much closer to reality due to the relatively low masS of this cloud (see sect. 6.5). The
orthogonal grid/DA transfer-induced texture of the numerical results has survived the
row;averaging to yield local increases in total radiance. These would not be present in the
more relevant enscmble-averaged statistics: on average, the radiant energy will decrease
with depth into the cloud but not as predicted by plane-parallel theory, if only because of
inequality (6.0') above. Of course, the overall top-to-bottom gradient is due to the ~ighly

asymmetric vertical BCs that translate illumination (irradiation) from above. However
indigenous to cloud-radiation interaction these BCs may be, the asymmetry they impose on
the system can be viewed as problematic l5 when trying to understand the more subtle

aspects of inhomogeneous transfer, sorne of which may be ail but masked in the present
situation. Analytical work is in progress on transfer (indeed, simply photon random
walks) in infinite multifractals and, in this context, numerical approaches are also possible
if one deals carefully with finite size effects.

6.3.3. Horizontal and Vertical Net Fluxes

In figs. 6.6-7b (Fy) and 6.6-7b' (Fz), we also notice a "smeared" texture of the net
fluxes parallel to the direction they represent (stronger gradients at right angles): the

photons are encouraged to stay "on track" until a major obstacle arises or more tcnuous

regi(lns come within "reach" (a few locally av~raged m.f.p':s at most). This collectiv~
~ "

seeking of the most tenuous optical paths'-Iias been called "channeling" in the astrophysical
• lJ

literature, following Cannon [ibid.]. We have defined "channeling" as the the whole
complex of radiative events that happen as soon as flux-lines are no longer somehow

confined to the vertical; the effects causedJ:l)! relaxing the vertical flux-line constraint in an
inhomogeneous medium range from the global (T increases, §2.3.1 and fig. 6.14 below) to
the locap-lJe,anti-correlations noted iri~§§2.3.1-2).The most obvious manifestation of

\; ",
this "cha....eling" can be seen in the lower halC of figs. 6.7-8b where wewitness

divergence ofjJ.orizontal flux on the I.h.s. (above the densest region) and convergence on
the r.h.s.; simultaneously, in figs. 6.6-7b', wesee vertical fluxes that decrease on the

I.h.s. and increase on the r.à.s. (going downwards) since the two-dimensionalflow of the
F(x) field is divergence free due to lack of internal sources (emission) and sinks

\\
\~
\\
\'

'-. ~
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(absorption). This radiative flow pattern is clearly present at many smaller scales too.

Notice thatthe horizontal fluxes are rather narrowly distributed around small negative

meanS'and are relatively small in absolute value: ~o.l (thinner) to =0.2 (thicker) times thcir

mean vér~cal counterpnt:t. It is remarkable that such locally small numbers can accoullfor

(up to almost) an order of magnitude difference bctwccn exact (numerical) and approximate
\~

(analytical IP) calculations of net overall flux T (see secL 6.5 bclow). The verlicài:fluxesj' .."" •
.~,. .'/

are distributed around a positive mean which is constrained (by conservation) to bc liic
same in every row from top to bollOm and equal to the overall transmiltance (T) in eq.

(6.6b). The vertical fluxes have by far the strongest fluctuations, ranging from vanishingly
small values, in the densest regions, to twice T ('t=12.2) or four times T ('t=195), in the

most tenuous regions.
6.3.4. Non-Diffusive "Components

Finally, we turn to figs. 6.6-7c where we see the much more up/down- and

ylz-symmetric "non-diffusive" component'defined in eq. (2.12c). By and large, we see

that il is most apt to vanish in the most opaque regionslc1ouds. This is indeed what we

expect from standard (continuous angle) theory bchind {he diffusion approximation which

tells us that il works liest for quasi-isotropic radiation fields. In turn, we expectto find

relatively i;otropic radiance distributions iIi' dense regions whcreJQts of scaltering occurs
'.

due to shorter-than-average photon f.p.'s and as (optically) far from sourceslsinks as

possible since these produce/cause "streaming" ra!..lJer than "random walking" photon'.behavior; in our case, this means top/boltom bOllndaries. On c10ser examination howcver,
-,' /'

we see that IXI is rarely negligible compared to T in the thin cloud. In thc~tl1Îck cloud

however, it seems to exceed T (and even maxFz) only very locally but, cllriously, quite

deep inside.

- Il is noteworthy that the recent in situ measurements of radiance in extended (marine

stratocumulus) cloud dècks by King et al. [1990] strongly suggest a predominance of

diffusive bchaviour a1though Iu(x) was sanlpled exclusively in a vertical plane, hence only
1:"';',

vertical~flu~~sare accessed. In essence, the authors fit (quasiéiocal) radiance measurements
310ng on-:ili~ridian arc to a cosine curve and claim excellent rekults in a majority o!"cases .

(see §D.2.2 for ,details). The DA(2,4) equivalent of a perfect fit is X=O (cf. sect. 3.3); it
if' ;;

would not be fiard to findhoriiontal "mght paths," in our thicker cloud at least, where

X(y)~O but this (Iz+~Iy+) has absolutely n~ incidence on the value of the net horizontal

fluxes (Iy- in figs. 6.6-75); in"parlicular, they need not vanish as King and'his co-workers
. "

go on to assume in order to interpret their d~_ta in what ,ve would call "IP terms." In fact,

vanishing horizontal fluxes is likely to bc aràÏe occurrence,.glvcn th~ variabil~ty.til(fàùthors

themselves find in the optical thickness16 (compatible withthe Ip.:;ranspÔ"{modcl)? Our

.::;
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rcsullS thc~éfbrC$trongly suggest, on the one hand, that in future cloud radiation

experimental studie'~';'::orizontal fluxes should not be overlooked due to their fundameùta1

role in radiation "channeling" and that, on 'the other hand, concerted experimental and

theoretical efforts should be made to better understand the transitions between the kinetic

and diffusion transport regimes as weil as Lry to characterize the situations where the IP
approximation works best since, for somepractical applications, it might turn out to be

" '

sufficientlyaccurate. .

6.4. The One·Dimensional Exiting Radiation Fields

CI 6.4.1. Silllu/ated and Observed Power Spectra and ApparentAbsorptances, Compared

In figs. 6.8a,b,c ('1: =12.2) and figs. 6.9a,b,c ('1: =195), we have plotted (a) R(y)

and T(y) from eqs. (6.6a}-noti.ce the separate scales in fig. 6.9a, (b) ER(k), and (c) ET(k)

the (one-dimensional) power spectra of R(y) and{If(y) respectively-notice'the use of
\\

log/log scales. In both the physical- and Fourier spâce representations, il is important to

distinguish the "signal" of medium's variability in this single realizatio!texperiment from

the "noise" due to finite photon statistics in the numerics. This can be done by assuming a

Poissonian distribution of detection events which is expected to be a very good

approximation whenever the "bins" are relatively small (sect Rl). Forinstance, we notice"

(fig. 6.9a) that the reflected flux field locally exceeds unit several times; we can focus

maxyR(y) =R(489/o) =1.05 which is very likely to be a real exceedence of l, not a Monte

Carlo fluke, since the noise level for 103 photons is vlO·3 = 3%· (reasons for this specific

'è location~re listed below). In homogeneous media, the fluctuations in photon counlS across

the cloud'would be spatially uncorrelated-and their speclrUm fla~whereas, in variable /' ;;'

media, weak and strong counlS wiÙ tend to cluster. We have indicated ~n figs. 6.8-9b,c 1'~4-.:=.
the level of Monte Carlo noise for the average response (or, in one case, the range of

rcsponses) using eq. (B.lb).!? These a priori noise levels coincide with the appearance of

the "whitening" trend (mainly in figs. 6.9b,c), implying that the effect of correlations in the

Monte Carlo noise cannot be very important. ''F;;r~ïhe rather (Iower k's), we observe

spectra that scale very well given that we aredealing with a single realization. The spectral

il exponenlS for rcflectance are around -l, not far from the values found for satellite radiailces

(see Cahalan and Snider [1989] for spectra of one-dimensional sub-sets and Tessier et al., "

[.1992] for full two-dimensional analyses). Transmittance spectra are somewhat steeper

" due to enhanced ener~; at the lowest frequenciés; this is obviously due to\lhe strong {cloud

scale) perturbationof th.e radiation flow in the lowest layers of the cloud by the very dense
region,2!1,the'lJi:S. /' = '

(J "

{~
,
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We can use our simulated exiting radiation fields together in a mock cloud radiation

field expcriment where the albedo and transmitt~nce li.eIds are simultaneously probcd and
the (apparent) local absorptance is computed:ir1A.(y)'~ l-R(y)-TCy). Fig. 6. lOb displays

\1
this absorptance field for the cloud with 'f=12.2 "'hile. for reference. fig. 6.lOa shows the
the corresponding albedo and transmittance field?-t.hese arc in fact the relaxation results.

not their Monte Carlo counterparts used in fig. 6.8a. Recall that we are looking at one unit

ccll in a pcriodic cloud coyer. We immediately notice that A(y) has a vanishing spatial

average. as,required by conservation. and that it exhibits spatial correlations. as one expccts
~ \. _ ..-,:...--:::::::::.~;,

from the sùm of two scaling noises. ~ppâIen(j~ternal sinks (A(y»O) dominate the I.h.s.

due-to the large concentration of siinthetic L~%,~J!t"prCvuils in th(~t region and.
consequently. apparent internaI sources (A(y)<O) are to bc found largily on the r.h.s.
Again, wear~' seeing a direct effect of cllanneling within the cloud: thc";~diative flux-lines

stan. equally spaced. at cloud top and end at cloud base'out non-uniformly distributed (Jess

on the I.h.s.• more onJhe r.h.s.). Interestingly. the range of values we find for A(y).
'. " ..... .--;./ :.,

1 =-0.3 t~ =+0.3. ThIS is not at all incompatible wi~he range of empirically determined

\;,,--=-absQrptances found in the literature. as compiled byFouquart et al. [1990]: =-0.1 to =+0.2
~'--- ..-.----.~

but the'Î\1!lst negative results have probably rell1ained'unpublished bccause they'look too
",.~:/

suspicious [~~Fouquart. p.~:! .,ro a~preciate thcse figures. it must n,e recalled that the \'
(real worYl) eX\;?,riments are vei'Y~ifficult to cond,uct and. as, in our simulations. the .

fluctuatiolîs arc now widely believed to reflect internaI variabiIity. nortruc , sorption (with
"the ensuing heaûng rates).

6.4.2. Simulated and,Observed Singularity Spectra. Smoothing by Multiple Scallering
:~

Fig. 6.11 iIIustrutes the smoothing power of enhanced multiple scattering in another

way. simply. by showing the p.d.f.'s of albedo fields for 10g,lC = -7...·.-3 but they are

presented in "codimension function" format: wc Lake CR(YR) = -logl.(IlPRIt"YR) from

definition (C.16) where YR(y) = 10gl.(R(y)iR) is obtaï'ned from definitions (6.6a.b) and..
(C.llc). Particularly.obviousis the graduai narrowing of the singularity spectrum. Le.•

effectively smaller Cl's are to be expected. We also see a simultaneous trend from more

skewed distributions t? 'TI0re symmetric ones. Similar (but more thorough) analyses of

remotely sensed (visible channel) cloud scenes were pcrformed by Lovejoy and Schert7..er

[1990] and Tessier et al. [1992]. The former authors use a straightforward sealing analysis

techniq'!c ("functÎonal box counting;" see §C.3.2) which focuses on the (cumulative)

distribution function of the y's (at various seales-2. rather than our way of plotting the p.dJ.

atthe finest scale only, but this finest scale domin.~J.es the log-log regression and.

furthermore, the two c(y)'s are similar when c(y»O (sec §C.3.2). They used synoptic

seale (GOES) imagery. hence (=50% cloudy only) which is more directly comparable to
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our thinner cloud model and, as here, they find a relatively small C1=0.2 and a Lévy index
0.=0.6 which indeed corresponds to a highly skewed distribution of extremal Lévy
gcnerators (sec sect. C.5, for dcfinitions of terms and parameters). The laller authors look,
in particular, at almosttotally (=90%) cloudy Landsat ir,[agery which is of course more

comparable with our thicker cloud model and they too find smaller Cl values (0.05 to 0.09)
and a more symmetric generator distribution (0.=1.4). They also revise the above values

for GOES images (0.=1.1-1.5, CI=0.13) but it must be realized that-being justifiably
concerned with the underlying cascade process' "non-conservation," Le., spectral,

~ ~

exponents <-I-they analyzed not the radiance field itself but its (finite difference) gradient

or Laplacian in abs()lute value and, furtherrnore, they applied the more robust "double trace
moment" technique (also described in sect. C.5). Given the rough agreement before this
pre-scaling analysis treatment, our data wouId probably yield,similar results if it suffered
the same fate. However, taking the gradients or Laplacians would considerably boost the
ri~lrlCrical noise which we do not have the leisure to smooth by ense~ble-averaging (yet);
indeed, we would be multiplying the spectra in figs 6.8-9b by k2 or k4 respectively and
boosting the high frequencies even more by taking the absloute values. .~

Being limited to this one realization, some insight into the mechanism~orradiative

smoothing can be gained by pondering the reasons that make very large reflectance values'
not only improbable but physically impossible. On the one hand, it is not hard to identify
the factors that are limiting R(y): in the IP approximation it is strictly less than 1 so àny

excess is necessarily due to horizontal fluxes taking energy into regions where it is aIready
in high concentration, at the expense of regions of lower concentrations (by overall

conservation); this is in outright contradiction with our general expectation from the

Fickian-type (but exact) DA eq. (2.17a). On the 0tller hand, our present maximum
R(y}-merely =1.05-occurs (i) at maximum Je = 118 hence systematically shorter free

photon paths bet\~~en scatterings, (ii)"at a column (#489) stradàled by a more-or-Iess "V"
shaped cluster of aboye-average singularities (cf. fig. 6.1 or 6.3b) that lie right at the top'of

the cloud, a situation where recenpy injected photons are Iikely to be "trapped" and
reflected, and (iii) this structure happens to be right above the very dense region at the

bollom of the cloud, hence further concentration of radiant energy; at present, it is
impossible to quantify the contributions of these three factors,scpax;ately but clearly

occurrence(i) is perfectly naturalzfEom fust principI~~ but furtherenhancement of Je can
---- ' >

only bring on still smoother fields, occurrence (li) is certainlynot exceptional in these kinds
ofdoud mèdels, and occurrence,(iii) is completely circumstantial,l9 OÛT DA reflectances

obviously $lbey the same conservation rules as CA fluxes into the upward hemisphere

while remofefy sensed albedocs ar~!rc~Y;firdiances expressed in terrns of an eq~ival~nt
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Lambcrtian reflector; they are therefore not physicaily bOlmdcd quantities but-since

fluxes are bounded--very large values would cail for aimost Fresnelian opties (Le.• like the

ocean's "glint"). unlikely and unobserved behaviour in clouds. This powerful

smoothing20 effect of multiple scatlering is reminiscent of the fact that Nature produces

c10uds that are at once radiatively featurcless and highly ~ariable internally: arclic status
fr

[Tsay and Jayaweera. 1984] which were once viewed as potential benchmarks for

homogeneous plane-parailel transfer caiculations in full angular detail. Finally,\yeremark

that the smoothing of turbulent structures by radiative transfer processes has long been

reeognized when the sources are thermal and the turbulent field is temperature. As

explained theoretically by Spiegel [1957], this effect is traceable to the multiple scattering

(hence "non-Iocai") terms in the coupled Navier-Stokes and transfer equations [see a1so

Simonin et al.• 1981; Schertzcr and Simonin. 1982].

6.5. The Spatially Unresolved Radiation Fields

6.5.1. lnequalities Amongst the Various Mean Transmittance Estimates

Figure 6.12 summarizes many of our findings by showing TpCi:). Tpt't) , and T. as

functions of ï' =KpL for IOg21C =-7..··.-3. and rises some interesting questions as weIl.o .. ~
Fundamentall):. these numbers are al! single samples of random variables dependent on the

stochastic process that generated the opticai medium but the graph leaves little doubt that

there are systematic effects at work on a per reaiization basis. Il also shows that. while

spatial aibedo variability diminishes (cf. fig. 6.11) with increasing '1:. we see here the

graduai enhancement of these systematic radiative effects of inhomogeneity as the degree of

multiple scattering (hence nonlinear p-I coupling) increases.

We are not surprized to see that,:(Jensen's) general inequality 'l'pt't) > Tpn) is

verified since it is valid for any nonli.rl~ar-in this case. convex-function for any type of
~ ,

averaging over any non-degenerate p.dJ. More intriguing is the fact that. at first. most of

the overall inhomogeneity effect is captured by the IP caiculation. implying that most of the

photons have probably not travelled very far lateraily between injection and escape or.

equivalently. thaqhe net horizontal fluxes remain quite smal!"w.r.t. their vertical

counterparts (flux-lines remain quite vertical). As the density increases so is the length. .

(and lateral extent) of the typical photon RW. At the same time. the horizontal-to-vertical

net flux ratios increase, implying that the flux lines can diverge more markedly from the

vertical. In short, "channeling" (as described and quantified in sect. 2.3) is continually

enhanced 'while the IP correction to the thoroughly plane-parallel calculation gvcs to a

constant ratio (which is not unexpected since K. like r, only yields a prefactor tcrm in our

anaiyticallP calfulations of sect. 5.3). Intcrestingly, the absolutc numbcrs that measure the
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net horizontal fluxes are in faet (abouttwice) larger in the thinnest medium than in the
thickest (cf. figs. 6.6-7b) even if their overail contribution to the channeling is lesser; so
lIidocai quantitative charactcrization of channeling is ~und ta be quite subtle in theory and

in experimental situations.
At 't' ~ 200, we have reached a whole order-of-magnitude ratio between plane-parallel

and inhomogeneous rcsults for total transmittance. Such ratios are in step with the worst
discrepancies reported in connection with the cloud "aibedo paradox:" c\ouds only rarely
attain R = 0.9 (never 0.99!) while (rescaled) opticai thicknesses approaching the hundred
are not unheard of (for references and further discussion, see the introductory and
concluding chapters). This alone eliminates the plane-parallel-and otherwise quasi-

_~homogeneous--models in favour of their scaling inhomogeneous counterparts. The other
r~~.-. '

inècjuality we observe~"T > TpC't), can be shown to hold in general (sect. 2.3) and the
sharper T >"I7tJ canâlso be proven but within a rcstricted c1ass of media (sect. 2.1) but
in both cases for for diffusive transport (Le., we take T = Tdif)' These inequalities are

"

probably:also exact witlÙn the frarnework of DA transfer; no counter-examples have been
observed yet in spile of extensive (and yet unpublished) numerical experimentation. One

"'(.'an confidently speculale that, due to the inlerrnediale position of DA transfer (0 < p < 00)

wilhin a single parameler continuum going from IPs (p = 0) to diffusion (p = 00), there

exists a furthe;;:inequality, Tdif > T = TDA; this allows us to put bounds on bolh sides of
TDA' These results were summarizedand applied in the introductory paragraphs of this

chapter.
,6.5.2. Inhomogeneity Signatures in the Order-of-Scattering Decompositions

Figs. 6.13 and 6.14a:,b illustrale, for transmittance and albedo respectively, lhe
distribution of the (otherwise) unresolved responses according to the photon's order-of­

scattering uif'?,n exit from the medium (in this case 't=12.2). I~ both cai~s; we supply (as
usual) the corresponding distribution for purely homogeneous me,9ia, in this case, with

oplical thicknesses wilh integer powers of 2. Wit'-t this added dimension in the
/('

characterization of the radiative responses, we are abl(lo demonstrate a systematic effect

we expcct of inhomogeneily in general (cf. sect. 4.4)0~ la particularly spectacular exarnple
-'il'

that we have been anaiyzing in many other respc'Cts thib~ihoul this chapter.
~'~ -~

We must first familiarize ourselves with this lessér'known aspect of the
~ :- \-';

'homogeneous benchmarks. Notice how both transmitlance (1'<D» âiid reflectance (R(D»
""arter n scatlerings" saturale at n~t2. This is easily understandable. Indeed, for a standard ,,'

(finile slep size) photon's unbounded RW, a r.m.s. displacement of "n (average) step sizes

is attained in n steps and, being an additive process,this is a.case of "simple" scaIi.ng, i.Y"
-.....- - - ., '

with well-behaved statistics (see sect. D.3 for further details). Conversely, a RW bounded
--,

'..
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in a region of size 't (steps) will almost surely have reached a boundary after 't2 steps (or

scatterings).21 It is in the lower orders-of-scattering that we see an enormous difference

bctween the two responses. Pedictably, T(n) scales directly with n and inversely with

(large enough) 't: i.e., the graphs are linear in a log/log plot (such as fig. 6.13) and,
moreover, the graphs are equidistant. Somewhat more surprisingly, the increase of R(n)

w.r.t. n is independent of't (again, if large enough); this is duc to the fact that RWs that

contribute to R all start and end at the top boundary hence those with a relatively short
~~;

number of steps almost never get anywhere close to the bottom boundary and the

corresponding R(n) statistic is insensitive to iLS position (namely, at relative depth 't, in

average steps). Notice that fig. 6.l4a is plotted in semi-logarithmic coordinates; not too

surprisingly, we find a very regular sealing regime when we graph I-R(n), the radiation not

reDected (but possibly transmitted) after n scatterings, versus n in the log-log plot used in
fig. 6.14b. The well-known: (Laplace transformation) connection between (in this case,

homogeneous) absorption response w.r.t. mo (or a) and the order-of-scattering

J./distributions of course tolally determine the various details of the above scalings
.~

relationships.=_
We see in fig. 6.13 that, compared to a homogeneous medium with 't='t'~12.2, the

lower22 orders-of-scattering in transmittance for the multifractal are enhanced bcyond

recognition (Le., the homogeneous cases are found way below the range of transmittancies

actually illustrated in the figure). Recall from our analytical results in chap. 5 that we

expect non-vanishing direct transmittance through multifractal densi~y fields (in the

optically thick regime) and that this has already been observed in fi'g:=6.4b. In sharp

contrast to this, the multifractal has an R(l) very similar to the universalthick cloud value

for homogeneous media, namely,23 r/2/l=I/8, here). As soon as n2:2, higher-dimensionàl,

nonlinear effecLS becomeobviO).lsinf~ albcdo's deCOmp?~ition:.)n essence, lesser R(n)

values are observ~d f(l.r/the multifrâcl;;T"dù~ tothe grealer p~~etration depth at first

incidence, makiptfr'tn';mittance more likely, even for very low order scattering (in fact, as

soon as the Otl1 scattering). At the higher orders-of-scattering end of the figures, both of
<.> l(:.'

the multifractâl;,s responses saturate at values that characterize a homogeneous oplical

mediuii1'of "'113' the.overall averagedensity (i.e. 't",4). In both low- and high n riigimes
c::::::.'" ',._, "\ 1.:

and in both T (n2:0) and R (n2:2), we are witnessing different effecLS of "channeling" (as

described and used in the'<)ntroduction "and in sect. 4.4): i.e., the longer-than-
,. 1/' ~-. .,\ '

hoOmOgeneOuSly-pre9.icteQ,~p?;-anticipated in sect. A.2 make the~boundaries more easily

(hence~'sooner") .réilched during photon's RW. Finally an~ maybe most importantly, the
...:.::: (/ .~........--..-;:;,

multifractal's responses saturate at a value oTifthàCis not:significantly greater than 't'2 (as
/'- \1" ç---

for homogene()us media) but the transition towards saturation is much slower; in other
li' .....:.. ,~'-'."\'"

.///.. ,g. ,ff'
o '~,

'.' ..,~
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words, the n-distribution has been not only considerably displaced but also much
broadened by the extreme multifractal inhomogeneity.24

'.:1

7,1
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tThis chapter is largely based on Davis et al. [1991], S.L. ilnd O.S. originated the idca of Jooking al radiation
fields associated witb mullifractals, A.D. is entirely responsiblc for the prognunming. the validation of the (wo
basic codes (Monte Carlo and relV':ation), masl of the the data manipulation, ait of the visualization wark. as
weil as for the idea of lookiog atthe fèmnal eigcnvector fields rathcr than the radiances. and virtually al1 of U1C
preliminary analysis in sect. 6.3-5.

1A partncrship of Milio-France (whom we gratefully acknowlcdge) and severn! other french govcmmcniai
scicntific or technologieaI agencies situatcd On the prcmiscs of the Ecole Polytechnique in Palaiseau (1 buts-de­
Seine).

2To sorne extcnt.. the same cao be said about the use of il discretc (rather than a conlinuous) cascade sincc wc will
bencfit visually (if not esthetically) from the pers~stent grid structure which provides a lemplate that facilita tes

";':::'~~ cross-referencing with the eye. .)

3Tbe proper usage would be [Titov, 1990} random "tinear functionals" of the stochastic proccss uscd to gcncrate
the random optical density fields.

4This excludes the optional order the fractional integration which is normally relatcd 10 the prcviously
mentioned P"à.~sive scalar phenomeDology.

::: '

5 Anotber reasèjo, tbat bas now become obsolele, is that exactly unilary ccntered Gaussian deviates can be
efnciently generated from two indepcndent random variables uniformly distributed on }O,1 [, say ç and ç', by thf.\

well-known Boi.~Muller transfonnation: '" &2In~ cos(2~'). If convenicnt, a second (indepc.ndel1t~ Gaussian

deviate is gi~~n by {:2j';G sin(21tG')' Il bas receotly been realizcd [D. Watso~', p.c.} lhat similar
transformations exist for Lévy deviates [Zoltarev, 1986] bence numericatly incfficient SUffiS of algcbraic (or

,l)arcto) deviales are no longer neccssary. ~

6\Vith Cl=O.5. the ctiterio~'\ for divergence of statistical moments aCter "dressing" the fully developed cascade
field (namely, C(b) ~ DA; lbe fractal dimension of lbe averaging sel A) yields eriUeal moments of order 2 and 4
respcctively for averaging the unique realization o"cr one- and t~o-dimcnsjollal sets.

7Tberc is nothing special about this realization (it was not selcctcd for "represcnlativeness"); we just uscd a very
;, simple (easily remembered) "sced" to prime the (on line) pseudo-random number gcnerator.;,

8Although Ulis is only one realization, part of the discrepancy can be accounled for by incorporating the extra

·'·t?'rih in the exact finite À. expression for c(y). quoting from app. C:

-log,:.J In;J2l<a2=-log,;.J In;J4nClln"o=-ln(n/4nCl)/2n (wbere n is lbe numbcr of caScade steps).

9 Another classical way of detennining CI uses the intermittancy corrections to the velocity (not dissipation)
spcctrum, i.e., the discrepancy between -513 and observed exponent. Again. CI =0.5 is somewhrlt in excess of
tbe values quoted in the literature. Schmitt el al. [1992}, using the more sophisticated "DTM" scaling analysis
techniques, find Ct=O.2-O.3 but for a=1.4 witbin the universal multifractal scheme wherc the log.normal modcl
used bere is associated with a=2; see sect C.S for further details. i~·.'

IOSee Stanley and Meakin [1988} for an illustraUon of tbe sampling requiTements using tbe e,ample of a simple
multiplication of random variables.

11:i~UJe Mo:~t:Carlo scberne, we simply "recycle" photons from one side of the medium ta the opposite.
II ~c

12·J'bis overall response is denoted with a "DA" subscript in the introductory paragraphs of this chapter.

13n.e notation is made-'less cumbersome here tban in tbe 'introductory paragrapbs of this cbapter'-whel~e the
subscript "bomo" was used, bere we use "p" which stands for "plane-parallel" but we sbould always he adding
borizontaUy homogeneous (si[1ce ail of tbese borizontally extended media are boundcd by two horizontal
planes),

14This is precisely what happcned in the context of diffusion on percolation f~stals where statistical (random
walk) approacbes based on "ants," "termites," and more general "diffusing" pa':licles (cf. §D.~.3) supersedcs. to
a large extenl, transfer matrix and other steady-state 1l1~tbods. __:(/

15For instancc, the strong vertical gradients impÇ,~ed by 'these-':IJ~r-~e thé\'direct statistical comparison of
the J's (bencc, to sorne extenl, the radiances) ~t,different l~els in the cloud; fjs not!l statisticaUy stationary
field except w.r.t. purely boriiontaldispIacements-(the,same remark appHes ta a11 the radiances). Removing
the known linear trend, corresponding to homogeneity does not heJp because it is not equivalent to' the
ensemble-average <1(z», whicb is probablynot even Hneu. ~

16More precisely, the King et aL [1990] detcrmine the opUeal altitude of tbe aircrafi 'y'(z) = J} lCP(y,z')dz:

('-
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17Por tbese figures 1()6 photons wcrc ,lJsed in aIl (but for the internai field calculatkms, let photons/pixel wcre
used, 10,240,000 in aIl). Ta obtaip the units used in figs. 6.8-9b,c, one must dividc the rcsult by ).2=22°,
cquÎvalcntly, removc 20 aftcr taking:the 1082'5.

19Here we are pushing our single rea'i;z~::c.:::l: strategy to the limit. In principal. there i5 no point in trying to
"explaio" the particular value of the radiation field al any point in a stochastic medium since il is a mndom
functional of the dcnsity distribution and ooly ensemble avcrages are of any Tea! siguificance.

20Barker and Davies [1992] present anolher c"ampte of il sealing but very smooth radiation field associated, in
lbis case, with a Schertzer and Lovejoy [1987] passive scalar cloud model, which is 'already a much smoolhed
version of the (baro) kind of multifractal used here (via fraclional integration of order 1/3).

2lThis criterion is used as a control parameter in our Monte Carlo simulations to avoid wasting a lot of computer
time on exceplionally IIslow"-and basically non.representativc-photons (sec sect. B.I).

2210 DA the non·trivial bigher-dim~nsionaleffects (i.e., tbe "cha::meling") cali for ané~t two scallerings. Wc
can tberefore obtain analytically the 1si order scattering term in transmittance: '}"<I) = tte-<f in each column
(whicb is indepcndent of ail others for tbis response, as is the case of T<°)=Td)' Notice how tbis expression very
quickly vanishes witb Îllcreasing "t, in homogcneous cases. However, in inhomogeneous cases, a spatial
average must bc taken and, as for Td (cf. §5.1.l and fig. GAd), wc can cxpect very "non.avcragc" hehaviour wilh
multifractals.

23The same remark as above applies to the 151 order scaùcring tenn in renectancc: R(I)::: r(l-e-2't')12 in each
column (again indepe.ndently of a11 others w.r.t. tbis response). This expression very quickly hecomes r/2 wilh
increasing t, in bomogeneous cases. In inhomogeneous cases, a spatial average must again he taken but for
tbick multifraclals <1.e-2't'>=1, so the (tbick) homogcoeous R(l) is even rcprescntative of thcse.

24Barker [1992] presents very similar findings using a Monte Carlo simulation technique tbat directly uses a real
cloud LWC probing rather than any specific inhomogcneity model.

\\
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Figure 6.2: L.jnear grey·scaie man of the orrlets of singularity for the adQQ[ed log-normal multifrncml dcnsÎly
futlll. with CI =0.5 in d =2 arter n =10 discrete 0..0 =2) cascade steps (sec text for details on the highlighted
y-values).
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Figure 6.3a: Exccl;dancc set for v VI = +C1...:

lU. (p = '),.y = 32), lhe singularity lhat cantributes
mast ta the average <p»; the fractal dimension is
D, =d-c(y,) =2.5 (sec text for more details).

.,:~

Figure 6.3b: Same as Fig, 6.3a hut for v- vin
= 0 (p = '),. y = 1), the neutral singularity.
corresponding tci the numerical value of <p> which
is 1; lhe fractal dimension is 01/2 = d-c(Y1/2) =
2.875 (sec texl for more details).

Figure 6.3c: Same as Fig, 6.3a bill fQr~'{"~cy;;

o =-C,-=-=.!l.2 (p ='),.y = 1/32), lhe mast probable
singularilY allhough, being of a negalive arder, il is
in fact a "rcgularity;" the fractal dimension is Do =
d-c(yo) = 2, this singularity fills two-dimensiona!
space (sCe text for more details).
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Figure 6.6 (begin.): DA radiance fields in eigen-vector decomposilion for "1 =12.2 (log,. =.7): (a) J.
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c
Figure 6.6 (cont'd): DA radiance fields in eigen-veclor decomposilion for"'f = 12.2 (I0g2" = -7): (b) Fy.
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Figure 6.6 (cont'd): DA radiance fields in eigen-veclOr decomposilion for"f = 12.2 (log,. = -7): (b') Fz·
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Figure 6.6 (end): DA radiance fields in eigen-vcctor decomposition for t = 12.2 (log,,, = ·7): (c) X.
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Figure 6.7 (begin.): DA radiance fields in eigen-vectoLdécomposition fer, t =195 (log,. =-3): (a) 1.
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Figure 6.7 (cont'd): DA radiance fields in eigen-vector decomposition for"f = 195 (lOg21< = -3): (b) Fy.

.-1-0.06

,(

-+0.051

"]



::: ..

188

Figure 6.7 (cont'd): DA radiance fields in eigcn-veclor dccomposilion for'f =195 (log,,, =-3): (b') Fz.
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Figure 6.7 (end): DA radiance fields in eigen-vectar decampasitian far'f =195 (lag2K =-3): (c) X.
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Figure 6.8: (a) Monte Carlo DA rcncctance Rly) and transmillance TI,) Iields and (b). (e) their ,,'sJ'l'rli"e.
powcr spcotra. for'! = 12.2. Numer!cal noise I~:els arc indicuted for the sJ'ecua.
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Figure 6.10a: Relaxation DA renectance Rey) and 1,:,nsiniu,)nce Tey) fields for l = J2,2
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Chapter Seven

CONCLUSIONS

7. 1. Physical Discussion

We can isolate four categories of results, ranging from the quite general to the very

specific and, at the same time, ranging from a somewhat speculative (or "plausible") kind to

straightforward computer output. The speculation, identified as such, is important in our

opinion and deserves to be spelled out, if only because it provides an orientation (or simply

ideas) for future research, in this case, at the more fundamentallevel.

7.1.1. General Results on Systems with bath Vertical and Horizônial Radiative Fluxes

This is just a complicated way of describing what is known in the literature as

"multidimensional" transport, a term we wish to avoid (except for cross-referencing

purposes) because of the possible confusion with "multiple (fractal) dimensions" that play a

very important role in the results discussed in §§7.1.2-4 below. So presently, '!'le arc
C· Î

interested a priori in any kind of radiation transport model in conjunclion with any k:fld of

medium provided it is not horizontally homogeneous and plane-parallel; • this includes

homogeneous media that are not of slab geometry, as weil as plane-parallel media wilh (at the

very least) horizontal inhomogeneilies, and ail combinations of the above, horizonlally,l
bounded or not. Many of the results i~~ this calegory are clarifications of more-or-less weil

understood.'facets of inhomogeneous transport discussed in various literatures. During this

process of clarification however, a persistent theme recurs: "channeling," which we lherefore

propose as a useful concept for future research into the radiative effects of inhomogeneity,

scaling or not. We recall the radiation is "channeled" into the more tenuous regions, simply

by enhanced multiple scattering in the adjacent more opaque regions. This intuilively

appealing idea has rust proposed by Cannon [1970) and has since gained acceptance, but

mainlyl in the astrophysicalliterature [Jones and Skumanich, 1980).

In the following, we will use our usual abbreviations for the different radiation

transport theories: standard or "continuous angle" (CA) radiative transfer, its"diserete angle"

(DA) counterpart, diffusion theory, and Cahalan's [1989) "independent pixels" (IPs); see

sect. 1.3 for brief descriptions and various chapters and appendices for ail the necessary

details.

!/
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i: On comparing transD0r\ theories. If we wish to compare the predictions of various
transport theories, we need a well-defined protocol, e.g., use a given response for
given medium (or, beller still, a given scaling family of media, see §7.1.2 below). As

an example of a response, we can take (total) transmittance, T, which is defined as the
ratio of mean-to-incident fluxes. In some cases, it might be of interest to require the
chosen media to be horizontally extended, periodic and/or thick enough to avoid
boundary layer effects (see item "iv" below) and/or that the variability be relatively
weak. Once the specific set of rules is established and, most importantly, if the
transport theories are themselves simple enough, then simple relationships can be
established and these tell us about the underlying physics. After the fac!, one can see
whelber or not the relationship (and the physical mechanisms involved) carries over to
more general situations. For instance, variational arguments tell us that for
homogeneous, horizontally extended (by periodic replication) but otherwise arbitrarily

shaped media, we have (§2.1.1)
TIPs:S;Tdif (7.1)

Furthermore, IPs, DAs, and diffusion are all related (in that order) inside a
one-pararneter farnily of transport models; we naturally expect simple responses (such
as T) to be monotonic w.r.!. t1ùs (phase function) pararneter, hence (§3.3.2)

TIPs:S; TDAs:S; Tdif .(7.2)

for the above type of media. It is important to note that the targeted media constitute a

sub-class of intemally inhomogeneous plane-parallel media with (simply connected)
empty and full sub-domains; this of course qualifies as rather weak brand of

variability. For this special class of media in particular, and inhomogeneous media in
general, (7.1) and the ftrst inequality in (7.2) is direcUy related to the "channeling"
phenomenon (as defined w.r.!. IPs in §1.3.5).

ü: On comparing the rcsDonses of 0Dtical media. Here again, meaningful quantitative

comparisons-that can teach about the internal mechanisms-call for a certain protocoI.

If we are interested in the effect of shape, maintain constant structure-for instance,
homogeneity (for simplicity}-and constant (total) mass. In precisely this case, it can

be shown (§2.1.2) that slab geometry is extremal (yields the srnallest T), i.e., the "=" is
~. , .

attained in (7.1) at the same time as "channeling" is suppressed since the flux lines all
align vertically. If we are interested in the effect ofinternal structure (§§2.3.1-2) then .

maintain a constant support and (if possible) a constant mass, then"channeliÏ1g" (as

defined w.rct. diffusion' in §1.3.5) automatically means a higher T, i.e., that
homogeneityis the extremal situation where the "=" signs are obtained in (7.1-2). In
summary, we have

o
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Tdu{uniform density) < Tdit\variable densily) (7.:n
Basing ourseIves on published and unpublished numerieal results, thi~ secms to
generalizc to DAs and, with a couple of extra constraints on the illuminatÏlln, to CAs.

The general idea is illustrated with the exactly solvable case of sphercs with a\conccntric
cavity (§2.3.3); further examples are provided by another exactly solvable model from

the theory of regular random binary mixtures, complemented with numerical'\F.Sults for
the singular limits (§2.3A). A counter-example is to try to compare horizontaIry

bounded and unbounded media (e.g., homogeneous slabs and cubes): one1\then gets
the very wrong impression that horizontal gradients (the main differcnce) callse lower

'l'
T's. But this is only true if we forget ail the light that can bypass the cube cOmpletely

• jl' .~

(whereas it must still filter through the slab). With this kind of data, one can ohJydrâw
very qualitative conclusions, e.g., that horizontal bounds induce horizontal nuxes,
even at homogeneity.

iii: On the raIes of spatial variability and stochasticity, This dichotomy may seem artificial ,

since the most realistic variable cloud models are likely to he stochastic. It is however
important to realizc that the effectsof internal variability and overaIl stochasticity arc in
fact quite distinct, if only because the two effects go in the same direction, viz., towards

greater transmittance. More precisely, the inequalities discusscd above are applicable
on a per realization basis, so they allow us to better understand the effects of pure
spatial variability (via the "channeling"), on the one hand, and pure randomness (via
Jensen's inequality), on the other hand. For scaling examples. sec respectively §7.1.2
(item "iii") and §7.1.3 (item "ii") to come. Consider a medium of given structure and

we multiply the density field everywhere with a positive random variable that wc will

denote 1(; in essenee, we arc modulating the total "optical" mass.' We expect T to be

convex w.r.t. Ksince Te]O,I] and decreases with Ke [0,00[. Jensen's inequality then

reads

T(average K)::; average T(K) (704)

for anarbitrary K-distribution (see §3A.2 for more discussion). Note also that (7 A)

applies also to spatial averaging (hence overall rcsponsc) in the IP approximation.
In summary, there is a very definite advantage in seeking simpler transport theories like IPs,

diffusion or DAs: amongst other analytical results, we can obtain quite general inequalities
j, ,-

that,aie directly related to the basic radiative-processes at work in inhomogeneous media,

n~rilely, the "channeling." Concerning DAs, other benefits are of course reaped at the

cOmputationallevel (sec app. B for details).
iv: On the importance of boundary conditions, Even in the simplest (DA- and diffusion)

transport theories, BCs can he more involved !han we want to deal with; typically, do



197

we really need the "mixed" variety, or can we satisfy oursclves with the more standard
and analytically canvenient "Dirichlet" type? The answer is yes, if boundary layer
effects arc kept ta a minimum. By"boundary layer" we designate the region where
escape probability (direct transmittance ta any part of the baundary) is nan-negligible.
Unfortunately (far aur systematic attempts ta simplify tl)e problem in order to cape with
variability), this can include the whole medium in extremely inhamageneaus situatians.
Also excluded are harizontally bounded media because af the unavoidable (and
physically important) presence of a "terminator," where the angle af attack of the
incident flux w.r. t. the boundary becomes grazing. This also means that the IP
approach becomes irrelevant since outgaing fluxes (ar auter boundaries) and, in
principle, internaI IP fluxes (ar internaI boundaries) becorne physically (or

geametrically) confused, se~ §2.2.3.
v: On the importance of properly definin~ radiative responses. The definitian af albeda

'f
!versus transmittance always makes sorne reference ta the BCs. The terminator set

pravides a simple, spatially defined divider that we favour: albedo cames fram all of
the ilIuminated section of the baundary (grazing included), equivalently, it is the exact
camplement of transmittance. However, this is nat always the mast relevant way to .

proceed for the prablem at hand (especially if angles are of special interest, cf. §A.4.3).
It must alsa be realized that the terminator can become "pathalogical" (Le., have a
surface, hence be able support "side" fluxes of its own) in very artificial illumination­
~Gundary geometric arrangements. Unfortunately, these are also seemingly the

simplest to study, viz. normally illuminated cubes (see item "i" in upcoming §7.1.2, for

\)an adverse effect of this kind of situation). At any rate, this whole issue is concretely

illustrated by contrasling Ilbmogeneous cubical and spherical media (the latter tum out
to be exacUy solvable). .,

In summary, exact radiative BCs can be viewed as an unnecessary detai! if we are careful
enough but, in sharp contrast, and the presence of "sides" is defmitely not a detail (the
medium's support has been radically changed!) and this should not be viewed simply as
"open"(versus, say, "cycHc") BCs. In this way only, we can say that BCs are not that

important, nor is the precise boundary shape itself (sec §7.1.2, item "i" below).

7.1.2. (Mainly) Numerical Results on the Scaling ofSpatially UnresolvedResponses

Let t designate overall optical thickness; in the following, we will be using
//)/ .

@f/ T - t-Y-r(7.5)

which is expected to apply asymptotically (t»1) in scalïng media ..vith conservative scattering.

The standard benchmark for radiative scaling is provided by homogeneous plane-parallel
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media which yield VT = l, independently of the phase function choice; we will call this
"trivial" or "normal" scaling.

i: Homo~eneous media scale trivially. We have made previous daims that the albedo R

of (normal1y illuminated) homogeneous squares and cubes scales non-trivially

(allhough not anomalously, the exponent being a rational). I.e., that VR < VT = 1 in

I-R - t-VR (7.6)

This daim relies entirely on the existence of a "pathological" terminator (made up of ail

the grazingly iIluminated sides) and an ensuing "improper" definition of R as Ilux

through the top only, rather than as I-T. Most importantly, this scaling tells us nothing

about horizontal boundedness in general since the far more numerous non-pathological

combinations of cloud shape and illumination angle lead to trivial scaling (for ins(,1nce,

in the exactly solvable case of homogeneous spheres). Furthermore, even when

accepting the improper definition, the numerical evidence is unsubstantiated under

doser scrutiny.2 See sect. A.4, 2.2 and 4.1 for details. In short, sides are

asymptotically unimportant anyway we look at them (but this docs not mean we can be
careless about them, cf. §7.1.1 items "iv & v").

ü: Weakly variable media always scale trivially for transfer, usually for diffusion too.

Trivial scaling is also robust against intemally singular density ficlds as long as the

range of scales wherc the inhomogeneity occurs is Iimited. Even broad band variability

(white noise on a grid) yields trivial scaling in all cases for transfer, in non-singular or

sub-percolating cases for diffusion. This is traceable to the lack of long-range

correlations, in the sense of the "integral" correlation length, for transfer whereas

diffusion reacts very strongly to the presence of the infinite (and highly auto-correlated) .

percolation duster, but only if its cel1s are completely empty. In jlarticular, this means

that for diffusion, but not transfer, anomalous scalingis obtained but only in this

special case known as the "RSN" limit in the statistical physics literature on

conductance and/or diffusion (random walks) in disordered media. See §§D.6.2-3 and

§2.3.4for'-.~etails. _.
iii: Numerical e\'idence for universal anomalous scaIin~ in radiative transfer systems. We

present unquestionable numerical evidence of anomalous scaling for transfer in a

deterministic fractal medium and reasonably good evidence of its universality w.r.t.

phase functions, in both the isolated case and the periodically replicated case (where one

minor violation of universality is observed). See sect 4.2 for more information.

iv: The [OIes of "channelin~" and "extreme yariability" in anomalous scalin~. Simple

arguments, based on first principles, show that strong "channeling" caBs for highly

singular, highly correlated media. Multifractals generically verify these criteria and the
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deterministic monofractal used in item "iii" above is, radiatively speaking,
represcntative of the general case because it is of the multiplicative (cascade) type, not
the (so often illustrated) additive type. For transmittance, we find

1 ~ VIP. ~ VDAs (= VCAs) ~ Vdiff (7.7)

as expected from above (with "=" now obtained for weak variability, including
homogeneity). This provides further evidence that "channeling," as observed in the
weakly variable media used to illustrate the general principles in §7.l.1, is still at work
in the extremely variable media used here. See sect. 4.3-4 for details.

7.1.3. (Strict/y) A_na/ytica/ Resu/ts on the Scaling ofAverage Mu/tifracta/ Responses
1~~''-

We nowconsider the small scale limit of multifractal probability distributions of optical
thickness, 't, for two important radiative properties for which we have analytical closed-form
expressions: direct transmittance, exp(-'t), and total plane-parallel transmittance for diffusion
or DAs, 1/(1+b't), where b is a phase function and/or boundary condition parameter.

i: Muliifraclal direct transmillance js scaline, not eXPQoential. in the thick cloud case. In
homogeneous cases, direct transmittance decays exponentially with geometrical (and/or
optical) distance; this is the famous Bouger-de Beer law which is a1ways true w.r.t.
optical distance for every realization of any kind of random medium. In weakly
variable media, the average optical distance will scale like geometrical distance and the

fluctuations are small, so the Bouger-de Beer law still applies very weIl. However, for
multifractal media, the celebrated law is no longer true on average w.r.t. geometrical
distance, nor w.r.t. average optical distance: the average (hence more typical) law is

algebraic. In essence, this is a scaling consequence of J~nsen's inequality applied to the

exponential function. This a1so means that the geometrical f.p.'s of the photons are
much longer in multifractals than in homogeneous media (of comparable average
density). See §5.1.1.

ü: Muliifraetal total transmillance mimics anomalous sealine in the thick cloud case.

AnotjJer consequence of Jensen's inequality expressed in scaling languageYs that, by
~

averaging plane-parallel total transmittance laws (ail trivially scaling) over a multifractaI

distribution of optical thicknesses, one finds a scaling for the average transmittance

w.r.t. the geometrical size W?Ch is non-trivially related to key exponents in the

multifractaI hierarchy? Wh~tombined with the scaling of the average optical thickness
to form a "mean field~onent, as in eqs. (1.2-3), an anomalous-type scaling is
found; An multifractal distribution of homogeneous plane-parallel media therefore

ri
behaves, on average, like a single (extremely) inhomogeneous one. This resillt can be

interpreted directly in terms of the IP transport mod~l for inhomoge~us scaling
media. See §5.2.1.

()
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Hi: Mullifrnc\a1 Albedo is linear w.r.l, optical thickness in the thjn case. If the small scale

-'limit of the density cascade used in the Aboye leads to ever thinner media, rather than

ever thicker, then we have a very different situation. As expected for arbitrary
variability .in the single-scattering approximation, wc naturally retrieve a linear
backscallered response w.r.l, optical thickness (average, in partïcular) for multifraclals.

The same remarks apply the whole diffuse radiation field. See §5.1.2 and §5.2.2.

7.1.4. (Preliminary) Results on the Fully Resolved Radiation Fields in Multifractals
.....,

First of all, detailed computation of multifractal transfér is feasible (but presently quite

expensive). The DA radiation fields are computed everywhere in a (horizontally replicated)

typical Gaussian multifractal using two totally independent numerical techniques-Monle

Carlo simulation and relaxation of finile difference equations-and the results Agree, to within

numerical accuracy. This success is largely due to the particular care taken w.r.L the problem
posed by the thick cells in the finite difference approach. At the very least, this exercise

provides us with a fully validated benchmark case of extreme variability against which Any

future improvements in computational transfer can--and should (if Any form of spatial

discretization is used}--be compared in lerms of accuracy and efficiency.

Having established that the results are representative of the physics and not of the

numerics, they can be discussed in lerms of our previous findings, wether based on general­

(including weak-) or scal~a15iYilY:"'With these results in mind, we ask the question "!S

there anything new (when multifractals are plac~l:tunder the sun?" At this stage, it appears
.........~

that the answer is no. ~

i:. Seein& "channelin&" at work (on ail scales). Visualizations of these fully resolved

internai radiation fields illustrate, as expected, large scale "channeling" (the}:fluxes

literally carry the radiation around the thickest regions, through the more lenuous ones);,.
furthermore, this kindof event seems to be present on allscales observable (to the eye);

Unsurprisingly, we find TIPs < TDAs in ail cases (the basic multifractal density field is

multiplied everywhere by five different·numerical factors), arld the difference incrcases'

with the (average) optical thickness, Le., the overall effect of "channelïng" is enhanced

because of the boost in the generallevel (orders) of the multiple scallering which, in

tum, provides a direct measure of the nonlinearity of the radiation-density field

coupling.
ü: Diffusion as an approximation to transfe[, The thicker the version of the cloud model, ,"

r

the betler diffusion models~e transport process (and in the ~ickest regionsit further

improves). However, therlare al'tVays places.,with a substantial "non-diffusive"

component in the DA radiation field so we clll1n;~ take diffusion as a uniformly good

approximation to transfer in such extremely variable media.
~~

-"/
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iii: Smoothing out densily [eatures Cby enhanced multiple scalledng). The variability of the

exiting albedo fields decreases with the optical thickness, thus iIlustrating the extremely

powerful smoothing by multiple scaHering of the variabîlity present in the internaI

density field.
The two last items shed new light on the in situ radiation and microphysical measurements by

King et al. [1990] concerning diffusion in marine stratocumulus, on the one hand, and by

Tsay and Jayaweera [1984] concerning apparently uniform yet internally variable arctic

stratus. ûther features of the simulated emerging radiation fields also compare favorably with
their observed counter parts, viz., the "apparent" absorption field and the power spectrum.

Finally, order-of-scattcring decompositions of the overall responses furtJ:lllr illus:.rate the
---,.:--

anticipated effects of "channeling:" these distributions are systematically lowered and

broadened w.r.t. their homogeneous countcrparts for the same total mass; in the upcoming

sections, we will discuss the implications of this for the current issue of cloud "absorption

anomaly."
The results presented in this sub-section may iIlustratc very well all of our previous

findings, but we view still them as preliminary in the sense that it would be of considerable

interest to perform elaborate statistical scaling analyses of a quantity that somehow measures

"channeling." However, such analyses wouldnormally cali for many realizations since the

radiation fields obtained for a single one are (vertically) non-stationary and we are ignorant of

the ensembJe-average profile (until the many realizations are obtained). Moreover, horizontal
transections of the fields are stationary in principle but, due to their generallack of (extreme)

variability, will probably be deemed "non-conserved" in the sense of multifractal cascade

theory (see sect. C.3-4) which means that gradients (possibly Laplacians) should be taken,

according to the "double trace moment" (DTM) recipe of Lavallée et al. [1992] or Tessier et

al. [1992]. In tum, this would have the effect of boosting the numerical noise to unbearable

levels (and without the many realizations needed to smooth it). Most irnportantly, any careful

definition of a "channeling" event will necessarily call for 2-(or possibly more)-point scaling

statistics fora vectorial quantity cross-correlatcd with a scalar one; this is far more complex

than the DTM (and other) scaling analysis techniques currentlyin use since they apply a

I-point approach to a single scalar quantity [see, e.g., Lavallée et al., ibid.; Tessier et al.,
ibid.]. =.,,<,~ .'

7.2.' Meteorological Implications

The problem of inhomogeneous radiative transfer in presence of multiple scattering bas

many applications in atrnospberic researcb and we in fact take this bas our prime motivation.

See sect. 0.2 [and references therein] for a discussion ofthree specifie problems tha'Darë

.. ;' c'
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currcntly mobilizing at lot of effort: the cloud "albedo paradox" (transfer in inhomogeneous
cloud in absence of absorption), the cloud "absorpIion anomaly" (same in presence of
absorption), and problems related to 210bal warmin2 (inhomogeneity effects in the radiative
driving of GCMs); note that in the two latter, understanding the effects of cloud liquid water
content (LWC) variability is only a part of the answer (respectively, cloud microphysical and
dynamical questions are also of concern). The results in this thcsis pertain largely to the first
of the above problems because of our focus on conscrvative scattering, on the one hand, and
on overall responscs, on the other hand. The message is clear: firstly, the albedo reducing
effects of scalingly variable internai structure are strong enough to explain the observed
discrepancies (w.r.t. standard plane-paraileI theory) and, secondly, the effect of phase
function details are minor, in comparison. Converscly, application of homogeneous models

to measurements of real cloud radiation fields wil1lead to systematically under-estimated

optical thicknesses. We wi1l briefly speculate on the second major problem in the upcoming
section.

The number and practical importance of atmospheric applications largely justifies our
need for as many different radiation transport theories as we can possibly fmd. Each one we
have used-CAs, DAs, diffusion, and IPs--has its advantages and disadvantages in terms of
exactness(w.r.t. reality) and solvability (which translates directly into computer time). We

have constantly compp.red these approaches and it is clear that the two latter (diffusion-type)
,. -..'

theories generally do not agree -with the two fornler (kinetic-type) theories for the more

realistic scalingly inhomogeneous cloud models. This makes the simpler bone fide transfer

theory (DAs) particularly attractive, especially in computational situations. Finally, we can
reverse the previous logic and view the atmosphere not as a source of challenging theoretical

problems but as a laboratory where we can validate our theoretical findings as well as put

observational constraints'onto future research (see below). In other words, we can ask sorne
questions to the observationally inclined members of the cloud radiation and/or -microphysics

community. Forinstance:
- Can we measure the radiation fluxes simultaneously in the vertical and horizontal

directions (ideally, obtain complete directional distributions of radiance)? This is

extremely important to decide when and where the various transport theories can be

applied.

Can we sampIe cloud LWC fast enough to decide what the radiatively relevant
homogeneity seale is? And can we obtain more-or-Iess co-Iocated LWC probings at

different levels in, a cloud deck? These questions are very important to the
improvement of our stoehastie cloud models (w.r.t. structural anisotropy in

particul(U")·
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- Finally, can we investigate the statistics of directly transmitted light in real clouds?
This could lead to the replacement of the Bouger/de Beer exponentiallaw that applies
in homogeneous situations by one more relevant to inhomogeneous situations; in
particular, this would he of use in the context of mean field theories.

These are but a few interesting and specific questions that we would like to have answers
for. Many more can he formulated, most importantly concerning the statistical properties of
the spatial distribution of radiation fields; indeed, we are entering an era where these fields
will he readily obtainable from theory via large-scale computer simulation; see Gabriel et aL
[1986], Cabalan [1989] and Davis et aL [1991, or our chap. 6] for steady progress in this
direction: respectively, on a 32X32X32 grid (and also 3D propagation in DAs), on a
4096XIXI grid (with 3D propagation in CAs), and on a 1024XI024 grid (and also 2D

propagation in DAs).
In this connection, we can suggest a new facet of Wiscombe et aL' s[1984] cloud

"albedo paradox" (which, incidentally, also posesserious theoretical questions): namely, the
simultaneous occurrence of very smooth (basically plane-parallel) looking clouds, Le.,
weakly variable radiation fields, and extremely variable internai LWCs. Tsay and Jayaweera
[1984] present a fully documented case of such intriguing hehaviour for arctic stratus. This
problem is indeed directly related to the standard formulation of the paradox (see §0.1.2)
because the extreme internai variability explains the very non-plane-parallel hehaviour in the
overall fluxes due to strong "channeling" (nonlinear, higher-dimensional) effects.3

7.3. Future Directions
In the previous sections, we have already evoked sorne important questions that this

thcsis leaves unanswered. In particular (sect. 7.1), the need for a closer look at the scaling
properties of the simulated radiation fields displayed and discussed on physical grounds in
chap. 6. In the short mil, further (e.g., DTM) scaling analyses can he performed but, in the
longer mn, operational defmitions of "fùters" that can deteet "channeling events" will have to
be developed. Of course, closer inter-comparison of observed and simulated cloud radiative
properties i~ also strongly desirable (sect. 7.2), both to validate our ideaslfindings based on
ad hoc variability models and to improve the latter. In the following,we will dwell on two
purely theoretical developments, one of importance to the statistical physics of transport in
disordered materials in general, and the other with immediate applications to the cloud
"âbsorptiori anomaly"problem in llIeteorology,recently ëe"iewed by Stephens and Tsày
[19~O]. Interestingly, both cali for a closer lookat either the order-of~scattering distributions

" _ _'.:' -, ,.,' ,', , : f

in transfer theof'j or their diffusion theory counterparts (viz., random walk statistics).
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Firstly, we must realize that our usual way of forcing the transfer of radiation through

the inhomogeneous system by applying asymmetric boundary conditions may he very natural
and fully descriptive of the cloud/sunlight application but it is not the most helpful when
analyzing the results. On the one hand, the mathematically simpler diffusion model attracts
far more attention from the theoreticians in the physics community (it also applies very weil to
many laboratory situations). On the other hand, the trend is now to consider the statistics not
of the bulk properties of steady-state transport systems such as ours but rather to release a
large number of (diffusing) particles from a point deep inside the medium and to monitor the
time evolution of this "cloud" of "light" (the quotes here are important bccause diffusing
particles do not behave like photons in the most interesting situations). In short, we are
talking about spatial /l-function as initial conditions rather than spatially uniform boundary
conditions. Aiter many realizations have been co'nsidered, wc can access (the scaling of) the
average (and other statistical moments) of the associated Green's function. To the best of our
knowledge, this type of study has not yet been performed using multifractals to model the
variability in local diffusivity. This is quite surprising given the many potential applications
that can be found both in materials science and in geophysics; in particular, fiuids move

through bed-rock according to D' Arcy's law, hence diffusion (cf. introductory notés to chap.
2). Of course, the same kind of investigation can be done with photo'ns too and this will
certainly help us clarify the difference between diffusion and transfer and will probably help
in the comparison of homogeneous to inhomogeneous situations since the basic
inhomogeneity (Le., "channeling") effects will be less masked by the strongly asymmetrical

boundary conditions that we currently use. -
Without shifting our attention to diffusion nor to time evolution problems, Monte Carlo

simulation of conservative multiple scattering naturally produces detailed information on

order-of-scattering statistics and it is well-known that this can be converted into information

on the overall effects of absorption (sec sect. B.l). In turn, this new information within the
general framework of inhomogeneous cloud models is very important to decide whether (or

to what extent) the discrepancies between observations and (homogeneous) theory in the
near-IR are due to a new source of true absorption or to more inhomogeneity effects. For the
moment, it can be said that inhomogeneity and absorption are basically competing with one

.another since "channeling" systematically reduces thenumber of scatterings suffered by a
typical photon inside the medium (cf. §6.5.2) hence the probability of being destroyed 'by the

occurrence of an absorption event. In scalingly inhomogeneous situations, it is quite

conceivable that, on average, variability effects can "wipe out" the exponential decays that

characterize(homogeneous) absorbing systems, in much the same way as we found for

average direct transmittance through multifractals in chap. 5. We must recall thatalternative
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allcmpts to explain the "albedo paradox" discrepancies in the strictly visible part of the

spcctrum called for (not extra but just) sorne amount of absorption4 which is not only
unnecessary in our view but unsubstantiated by direct observation in typical cloud decks
[e.g., King et al., 1990). This question is important to our understanding of both remotely
sensed and in situ cloud radiation measurements in the near-IR but it also has considerable
implications for the overall radiation budget of the atmosphere-ground system since only truly
enhanced absorption leads to increased local heating rates (non-vanishing divergence of the

net radiative flux vector field). In short, the dynamical consequences are totally different.
Finally, we must point out that we are only beginning to understand the effects of

inhomogeneity in optically simple situations, e.g., conservative scattering. Moreover, it is

fair to say that even this understanding comes at the cost of further simplification, like DAs
hence/or very symmetric illumination conditions; the effects of illumination angle are indeed

very poorly understood (cf. §5.4.3) and must logically he approached within the framework
of CA transfer. As argued in the above, the next step should he to add weak absorption to the

multiple scattering processes. Also evoked above is the possibility of internal sources and, in
the atmosphere, these are related to thermal emission, hence to the far-IR; as a Fust
appr;j;\.~rnation, scattering can he neglected altogether in this region but this does not mean that
inhomogeneity becomes unimportant (cf. our analysis of direct transmittance in chap. 5). In

between the near- and far-IR, we findthe most complicated optical situation with absorption,
emission and scattering altogether ... and apparently lots of information on meteorologically
relevant atmospheric constituents and state parameters-such as water vapor concentration,
pressure and temperature-to extract [O. Steenbergen, p.c.). With such an intimidating

optical set-up (we can always add sorne oblique illumination for good measure), the net effect
of the inhomogeneity is anyone's guess at this point--it shows that we are getting doser to

the necessities of (the difficult "science assisted" art of) weather prediction-but we can risk a

forecast. On the one,hand, our experience tells us that it will non-negligible (with probability
close to one) and, on the other hand, that lots of work lies ahead of us (this is the ultimate
understatement concerning atmospheric radiation).
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1In the geophysical literature, we vicw Slcpbcns' [1986, 1988] analysis of horizontally inhomogencous radiative
transfer as a simiIar brcakthrougb althougb with less intuitive content sioee il is expressed in Fourier
spacelspherical harmonie spacc jargon (viz., "pseudo-sourcc/sink terms" and "mode-coupliDg").

2Tbis underscores onc of the many difficulties in obtaining scaliog exponcnts: large prefaclors associated with a
very slow approacb to the asymptotic regime (Fortunately, this problem seems to be exclusive to homogeneous
systems.)

3This leads us to speculate on 3nother paradox. Ihis Ume at the edge of the observable uoiverse: the cosmic
microwave background is observed to he far tao smooth for the liking of lheoreLical cosmologists who belicve
tbat the inbomogeneities related to the formation of galactic c1ustcrs (or super-clusters, or cIse the galaxies
themselves since opinions differ on what cornes first) should be delectable-as nuctuations in the background
brightness temperature field. In tbis problem the sources are internai and diffuse (in fact, thennal) ralber lhan
external and collimated and tbe boundJry (pbotons begin to stream rather than random walk because densily
decreases) is a temporal event in the expansion of the Universe rather than a simple geometrical entity. However,
the bottom line is the same: wc bave lots of multiple scattering (and this is guaranteed prior to "decoupling," in
the guise of absorption by bydrogen phota-ionization follawed by re-emission at recombin3tion) in an
inhamogeneous structure that is likely ta be scaling (and this is indecd the case for theorcacal reasans, not ta
mention the ample observatianal evidence from the matter-dominatcd cra). In such citc~rliStiiiÎces, our findings in
chap. 6 tell us thal "what yau sec is not nccessarily what you bave (espccially if it looks fcaturcless)l" And
apparently the ooly sure way of finding out wbetber the medium is truly homogeneous (short of in situ probing
which is clearly out of the question) is comparison with homogeneous theory for sorne response (other than the
unobservable apparent variabilily) that reacts ta the inhomogeneity. In our relatively featureless cloud albedo
fields, we can look at the albedo itself if wc know a priori the overaJ1 mass of the cloud. In the cosmological
problem, wc would have to look at tbe observed temperature itself (=2.7 K) and rcassess our estimates of the current
age of the Universe on the one band, and of ils average density aD the other band. Needless 10 say, there is already
pleoty of controversy and speculation 00 bath of thesc issues.

4It is Dot hard to find plausible sources to incriminate: pollution by sool particJesl ln sorne very special
circumstaoces however, these are a reaJ factor: see Coakley et al. [l98~] on the clouds formed in the traits of
ships, thanks ta thcir smake effluents. '
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CADENZA

"En France. toutfinit en ChaflSOll."

(dicton français)

This thesis covered physical models of r,adiation-matter interaction (via multiple
l'

scattering) ahd physically-bascd (multiply scaling) cloud models. Not too surprisingly, 1am
still confused'as to where the physics rcally fits in (the answer is probably multiple). 1have
tried my best to draw a comprehensive picture of inhomogeneous radiation transport
phenomena but the subject is vast, even with a sharp focus on somehow scaling optical
media. This report started off very low key with a more personal kind of work (weak
disorder, diffusive' transport, analytical. approaches) and it ended with extremely heavy
artillery and more team-like work (multifractal cascades, "DA" transfer, supercomputer

simulations).
Concerning my raie, as a physicist, 1 hear conflicting signais. Reconnecting with the

musical analogy used in the Prelude, 1can elaborate. Is the idea to listen carefully to enough
of the music, to study enough of thl! scores, to experiment "hands-on" enough to figure out
what the basic (truly universal) niles are? In this case, everything---starting with the very

equations of r~diation transpo~ems to be pointing towards the concepts encompassed by
"channeling" and the scale invariant models merely provide the most interesting (dramatic)
variations on this theme. Or is it to actively orchestrate the facts into sorne greater scheme of

things? In which case, it appears that everything-in the sense of geophysical

observables-seems to be pointing towards the scale invariant properties (the exponents) and

the fact that we are dealing with radiation is incidental, almost anecdotal, just one more
instrument in the band. And (it has been decided that) the fans always want to hear the same

music, the most "universal" stuff. Generally speaking, the details of a complex geophysical
problem are of little interest to the inspired multifractalist and this can go as far as the
equations themselves. Most often they are not even known to us in any kind of detail

anyway. The equations of turbulence are known but cannot be solved, even numerically, in

the most relevant situations (very high Reynolds numbers). Although he should be praficient
(instrumentally literate), the,band leader does not really care how the individual instruments

are played, only whether they sound good, all together. For the better and the worse,

fast-paced technological developments have put (sound) analysis and synthesis atour
finger-tips. Here is a (smail) nùmber.ofparameters that describe what we think resembles

reality. However, the trained ear can a!ways discrimi,!ate between a synthesizer and the rea!
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thing and, furthennore, the settings on a semi-conductor device mean nothing to the dedicated

instrument artisan. Most importantly, the electronic keyboard gives no physical feed-back to

the player.
In this mctaphor, atrnosphcric radiation enjoys (?) a vcry special situation. Unlike so

many othcr gcophysical ficlds of research, its cquations are not only known to us but they can
he solvcd, at Icast numerically, in vcry intercsting situations. Not only cloud images can be
analyzcd and synthesizcd with the help of fractals and muItifractals, there is also the
intcrmcdiatc arrangcmcnt where thc physical equations can be applied to the fractals and
multifractals and thc outcome compared to the real as weIl as to the purely synthetic imagery.
(Basically, thc radiation "instrument" player can join the band but he can also play solo.)
Most importantly, we can get a fceling for how the radiation '\%rates" with the multifractals,

or whatcvcr, since the interaction can be numericaIly observed, analytically investigated. In
final analysis, onc can passively contemplate reality and try, painstakingly, tO:understand it
from first principles, or one can by-pass the fundamental problems altogether, using a lot of
crcàtivity and even more high-tech, actively dcsign statistical tools that target directly the

o

appropriate parameters then imitate rcality. The ch,oicc is essentially one of personal taste.
And a question of rhctoric too since il can equally weIl he argued that a reasonably successful
synlhetic modcl must captu;~:ili'e'most fundamental aspects of reality, especially if it provides

\~,

a plausible "theory for everything" as',\>\,eIl (in this case, cascades galore).,
This thcsistakes the former-more introspectivC'--path with no further justification,

othcrwisc it would have been called something like "Scale invariant modelling applied to

radiation(-likc) transport." No apologies are called for but the fact is that my advisors have
adopted the opposite attitude-and it indeed sounds like so much more fun. This may part1y

explain why 1have felt quite defensive during most of the writing exercise and, inlum, this is
bound to show in the final produet. 1also feel slightly old~fashion because the writing is on

the wall: if "virtual reality"l is as good as true to the mind (and all of its extensions), then
clearly we should be studyingits much simpler physics (that may of course be only virtual

too, but then who really cares?).

Shaun, Daniel and 1don't always agree on the important issues but we still have lots in

common, one of those things is a strong connection with France, as a country and as a culture
(but all for different reasons). French people love to use the saying in the opening quote: In

France, ail ends in song. 1believe a PhD thesis can too, at least au Canada Français, at least
- -

the one 1'11 have to live with for the rest of my life. Daniel and myself grew up in France,

Daniel as a national, myself as an alien, while Shaun grew up in New York, so 1thought of

ID~n'iel'and Shaun preferthc e~pressioDs umock geophysics" or ,-pixel-worlds."
"
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Jacques Brel since he is so universally admired. in part thanks to the Broadway musicalthat

paid tribute to him. brought his sensitivity to the English speaking world. But Brel tends to
make me feel nostalgie. he is no longer "live and well and living in Paris" and. bcsides. he's

too much of an anarchistie individualist to represent a team! 1 then thought of Manhattan

Transfer. they eertainly form a real tcam. our discrete cascade models look suikingly like their

namesake (cf. fig. 6.0) and our two-dimensional DA photons fit the bill. quite literally. But

their style is not really my kind of jazz (their harmony is ... too perfeet!) and. besides.

neutrons obey the same basic laws as photons and. in that connection. the word "Manhattan"

has highly explosive (and ultimately very sad) overtones. 1finally realizcd that. playing only

slightly with the words. the computational transfer problem that. as a team. we address in

chap. 6 is conceivably one of the "wildest" and "hardes!" of all (in terms of internaI

variability) sinee this is precisely how Schertzer and Lovejoy [Ph)'sica A. in press] c1assify

Gaussian multifractals. 1 therefore feel totally comfortable with one of the best rock singer­

composer-arrangers (and band leaders) that New York has ever produeed. His rock may not

he so "hard" but his lyrics are dermitely wild and. in particular. he writes so eloquently about

random walks.,:;,,

Merci à tous deux.

A. D.

"Say he)' babe, take a walk on the wild side!"

Lou Reed (J 972),

formerl)' of the VELVEf UNDERGROUND

(now Chevalier de J'Ordre des Arts et Lettres,

decorated by Jack Lang, Ministre de la Culture,

in Paris, the 181h ofFebruary, 1992)
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Appendix A

ELEMENTS OF CONTINUOUS ANGLE

RADIATIVE TRANSFER THEORY

OveJ,CView: We star! off by recasting the most basic concepts (quantities and cq~";iliOns",:.
relating:them) of radiative transfer in a dimensionality independent formulation which we .
systematically parallel with concepts from the theory of stochastic processes. In the sccO,nd
section, we contrast the standard exponential distribution (with unit parameter, or average)"of

"photon "optical" free paths (f.p.'s) with the generally unknown distribution of "real"

(geometrical) f.p.'s, highlighting the fundamental role of the nonlinear radiation-to-material
density field coupling; we also generalize the notion of optical thickness (viewed as a
measure of the total amount of scallering material) to arbitrarily shaped and internally

structured media. The third section is devoted to the fundamentally linear aspects of the
multiple scattering transfer problem (Le., sources and similarity relations); we also
reinterpret the transfer equation'as a local balance between the angular anisotropy and the
spatial gradients of the radiance field.' This complicates life in radiation transport theory to

the point where we must either go "homogeneous plane-parallel" to procced analytically with

continuous angle (CA) transfer ... or contemplate ways of simplifying the angular problem in
"order to better explore the spatial (inhomogeneity) aspects and, being admittedly biascd

towards the latter option, we survey the different simplification schemes exploited and
compared in various parts of the thesis. In the final section we turn to the question of

boundary conditions (BCs) for the albedo problem and the related problem of defining

reflectance versus transmittance which, as simple as it sounds, still needs to be c1arified
(mainly in the largely unexplored area of horizontally bounded media).

A.1. Radiative Transfer: A Formalism for Arbitrary Dimensionality

A.I.I. The Radiance Field and its First Three Spherical Hamwnics ~;

. The basic descriptorof the macroscopic radiation field is "radifnce" or "specifie
intensity" which we shall denote Iu(x,t). In the familiar 3-D context, let u be a unit vector

that defines the direction of propagation of a geometrically definable light "beam" and lu as
the amount of radiant energy crossing a unit of area (projected) perpendicular to u (around x)

-,~ fi
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within a unit of solid angle (around ul and a unit of time (around t). In Preisendorfer's
[1976] words, radiance is an "apparent" optical property: it is measurable with a radiometric
device (which could simply be the human eye), but it depends on the position, distribution

·and intensity of the sources of radiant energy (in our case, illumination geometry). Of
·course, radiance somehow ret1ects---the word says it all!---the "inherent" optical properties
of the medium: presence of absorption, seattering cross-sections, density of scatterers Cas a
function of space), etc. The role of a radiative transfer theory is to describe the connection
bctween these two types of optical quantities, how they are coupled physically.

Before characterizing this coupling of IuCx,t) with p(x), defined as the field that
models the density of optically relevant Ce.g., scattering) material, we will view lu as a
probability distribution in direction space and look at some of its simplest properties. Define
the following angular integral opefator:

y (-) dd.lu = J.::/) ddu CA. 1)

where?:d dcnotes the unit d-sphere {ue9td, lul=l}. We now c~aractep.ze the degree of
.' ,-,:.

u-anisotropy of the radiation field lu in much the same way we will proceeded for the phase
function in sect. A.3 below.

The flfst step is to define a u-independent measure of radiance and a natural choice is
·Preisendorfer's [ibid.] "scalar" flux which we will abusively calI "total" radiance or intensity:

J = f lu dd·lu (A.2)

Whatever its name, J is direcUy related to radiant energy density: U = Jle where e is the

velocity of light in vacuum. Many authors prefer to use the average radiance (or specific
intensity) which, in our notations, is J/Od where Od = 2Jtl112/nd/2) is ydd-lu, the d-surface

(or (d-l)-volume) of ?:d. The proper usage for J would therefore be (not "specific," sirnply)

"intensity." The most prominent directional feature of the radiance distribution on ?:d is

surely indicated by (Preisendorfer's "vectorial") flux: "/

F = fu lu dd·lu CA.3)

and almost! everybody agrees to calI it the~ "flux" or "irradiance" vector. J and F are

respectively equal, within d-dependent p~oportionality factors, tQ the Olb and lst order
coefficients ofan expansion ofIuin spherical harmonics w.r.t. u.

W~~~also define the sealar and vectorial fluxes defined over portions of Ed. The
mostnaturalchoicebeingsemi-hypersphereson either side of a hyperplane oriented

perpendicular to sorne le 8d: ~

Ji = JIu dd-lu . (A.2')
l·u~O ..
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Fi=i· fUIudd-1 1l (A.3')
l·u~O

We can obviously relrieve the complete integrals from the partial ones: J=JI+J_1. for any
choice2 of i, and i·F=F;-F_1. so the components along d non-coplanar d-vectors suffice to
restore F (the mutually perpendicular axii of a rcctangular coordinate system provide a

convenient choice). Preisendorfer [ibid.] showed how these integral transforms of lu can be
uniquely inverted. Hence there is no loss of directional information in either of the radiation
field characterizations (A.2'-3') but their associated transfer equations are not independent.
By contrast, the information content of (A.2-3) is patently incomplete, any intricate
u-variation has been smoothed out by the averaging. There are several ways of showing that
the deliberate choice of modelling lu with its J and F components alone is congruent with the
"diffusion" of "Eddington" approximation. ~

The next moment is best described as a 2nd order tensor and it is directly proportional

the pressure tensor of the photon gas ~ and the proportionality constant is simply c. So we
will nolintroduce a new notation for il:

)~,.

yu U lu dd-I u = c!: (A.4)

Il essentially describes the transfer of (photon) momentum through planes of any orientation:
the rate of transfer of u-momentum through a unit_of surface perpendicular to n is

n'!:'u=u'~:!1=~:nu where nu is the (dyadic) tensor'~~oduct of d-vectors n and u
(components njuj in orthonormal coordinate systems). Il is importantto notice,that not

everything is new about!:. Letting ~ denote the (Euclidian) melric tensor with orthonormal

componénts equal to Sij, the usual Kronecker symbols, we see (from definitions) that_its

trace !::~ is equalt03 U=J!c. Moreover, the traceless (hence new) part of!: is symmelricby
definition and therefore only d(d-l)/2 of its d2 components are in fact independent.4

For an illustration, take a normalized purely streaming radianê{dislribution Iu=Ô(u-uo);

our definitions (A.I-4) yieldrespectivelyJ=I,F=uo, JI=0(i·uo), Fi=i·uo0(i·uo) ands
:;;

c~=uoUo where 0(·) designates Heaviside's step function. As we will see in sect. A.3 (in

_connecûon with very peaked, g=±l, phase functions), a S-function has spherical harm'\?~.:s

of equal magnitude at aIl orders. """­
A.l. 2. The Rpdiative Transfer Equation and its Position in the Theory ofStochastic

Processes

The (essentially phenomenological6) considerations on radiant enffgy (flux)

conservation of app. E can be summed up in a. ra.dia.tive transfer equation whichis
sufficiently7,8 general for our needs:

1 a[ë dt + u'V] lu(x,t) =,-Kp(X) [ Iu(x,t) - Su(x,t) ] (A.S)
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that wt:~have spelled out in the most traditional [Chandrasekhar, 1950] manner apart from

subscript notation for u where we normally lind frequency v but one can argue that u and v
reaUy belong together since bôth are state variables for the EM wave or photon. For a fairly
rigorous connection between radiance and the constructs of EM theoretical and QED, via a
coarse-graining procedure, see Wolf [1976]. In the following, we will not he adarnant about
the fundarnentally 3-D nature of EM radiation and, by making systematic use of differential­
and integral operator notation, we do not require any specifie choice of embedding
dimensionality9 nor of any particular coordinate system; only the geometrical meanings of
the various quantities are changed, e.g., going from d=3 to d=2, "area" translates to "Iength"

and "solid angle" to "angle."
On the r.h.s. of (A.5), 1C is the cross-section per partic1e (or unit of mass) which

astrophysicists caU "opacity," Next in line is p(x), the particle (or mass) density-eloud
liquid water content (LWC) in meteorology-to which we will confine (for simplicity) all

spatial variability. We will denote by M the spatial "support" of Iu(x,t) and p(x); this given
sub-set of ~d will he caUed the "(opticaJ) medium" or simply the "cloud." Kp(X) is the

"optical" density field which can he interpreted as a (bulk) cross-section per unit of volume,
its units are therefore lnength; thus defined, optical density must he non-negative,lo We

note that Kp(X) could also bc variable in lime-and in the most interesting applications (e.g.,
turbulence) it certainly is-.but we will assume that light "sees" the K(Ffield in a "frozen"

state, Le., light travel time is short w.r.t. the shortest dynarnical time scale of the medium,
cven for the long optical paths that are typical of contributions to transmitted fluxes. This

stillleaves open the possibility of time evolution for lu by imposing initial conditions (les)
on an infinite system. The fust term on the r.h.s. of (A.5) -Kp(x)Iu is a sink for (direct

bcam) u-radiance through "extinction" which can he caused by either absorption or scattering

through any angle. This term controis the process of ldnetic propagation and is discussed in
more detail in sect. A2 where we will sec that lIKp(x) is thekl&al value of the mean free

path (m.f.p.) of the photon-the m.f.p. it would have in an extended homogeneous medium

of equal density-which is non-trivially related to the real m.f.p. and its more relevant
ensemble-average propcrties for media that are only statistically defmed. The second term on

the r.h.s. of (A.5) +Kp(X)Su is a source for u-radiance and Su is indeed known as the
. "source function," further discussed in sect. A3.

It is important to realize that radiance lu and the transfer eq. (A5) are the physical
(kinetic theory)counterparts of very specifie concepts from the mathematical theory of

stochastic processes and we refer the readertoapp. E fordetailed connections aswell asa
closerlook at the phenomenological derivation of (A5). This is particularly obvious when .

we are dealing with multiple scattering (m.s.) sources described in fuJlmàthrni~ical detail in
\' ., ' .... \

' , -:1 '" ','\ '··C
"i---\::~~~
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sect. A.3. In the jargon of Markov chain thcory, we are characterizing an ensemble of
(photons perfonning) continuous.,space, discrete timc random walks (RWs) with, gcnerally, .
speaking, spatially inhomogeneoL,''transition probabilities." The random walker's "statc" is
given by position x and (nominal) velocity u, Iu(x) is commcnsurate with its probability
density function (p.dJ.) of being in that state, (A.5) with the m.s, source function (A.17)

below constitute the kinetic equivalent of the Chapman-Kolmogorov equation of the process,
The hydrodynamic limit of (A.5) that we take in app. D is cquivalent to the continuous time
limit and we naturally find Fokker-Planck equations and "diffusion" processes. Things
become a little more confusing when these "stochastic" equations, in the gcncrally acccptcd
mathematical sense of the tenn (the dependent quantity is a probability), also bccome
"stochastic" in the sense often used in statistical physics (their coefficicnts arc random
variables or, more gcnerally speaking, random functions of the independent variablc(s), viz.
space and/or time). To add to the general state confusion, the tenn "random" is often taken,

in the atmospheric radiation literature, as synonymous with "uncorrelated fluctuations" which
is in fact a very special (and rather dull) kind of randomness. This spatial equivalent of white
noisè is dealt with at the end of chap. 2 and, from then on, we are morc interested in density
fields generated by "random (cascade) processes," Interestingly, this means we will be
studying additive stochastic processes (unfolding spatially as a function of time)

subordinated by multiplicative stochastic processes (unfolding in density function space as a;
function of spatial scale).

In fact, the real difference between the two fonnulations (and literiltures) of radiative

transfer, on the one hand, and of stochastic processes, on the other hand, is that the
mathematicians have shown little interest in physical problems such as rcflectance and

transmittance and much more in applications such as queueing theory (e.g., "what is the

probability of retuming to the point of departure in sorne given timeT'). In an timely attempt

to restore a semblance of clarity in questions of statisticaf radiative transport, we are
prompted to introduce (at the very least) separate notations for ensemble-averaging ovcr the
disorder of the density field, (.) (7" for spatial averages), and over all possible the photon

RWs, E(·), following the mathematicians' preference for the expression (mathematical)
"expectancy." The latter fonn of stochasticity is of course present even in homogeneous (or

otherniise detenninistic) media and, furthermore, it is exploited direcUy for numerical
purposes in MonteCarlo techniques (cf. sect. B.I). ForÎnstance, iri' the previous sub­

section, we were looking at the various statistical moments of the probability distribution of

radiant energy in u-space: J is the nonnalization factor that applies and we have E(u) =F/J;

F isthus a proper meaSure of the mean flow of the,radiation, the exact equivalent~f mean
velocity ingas dynam.ics.l1 Examples of spatial- (singlerealization or detenninistic) and



217

ensemble-averages arc to 00 found in the next section along with different combinations of
the various types of averaging.

This distinction wouId not he so important were jt not for the fundamentally nonlinear
couplin2 of the density and radiance fields in CA.S) which is at the heart of the
jnhom02eneous transfer problem. The two basic forms of stochasticity are therefore
interacting in ways that we are interested in unraveling as oost we can. This calls, in
particular, for investigations of ensembles of homogeneous media or, equivalently,
"independent pixel" calculations for inhomogeneous media where, in both cases, only
vertical fluxes are present (see chap. S and 3, respectively). We will also consider radiation
transport in deterministically inhomogeneous media-or their stochastic counterparts but on a
single realization basis-in order to identify the important mechanisms at the most basic
level, i.e., characterizing the role played by horizontal fluxes w.r.t. the spatial variations in
optical density (see chap. 2,4 and 6). Given the special role of higher dimensionality in the
latter case, these two nonlinear effects of variability must not 00 confuse~ and we have
adopted Cannon's [1970] expression of "channeling" to descriOO the whole complex of
phenomena that arise when going from the former to the latter type of sit,1]ation. This
categorization, however rough, of the fundamental processes is especially important since the
systematic trends either in a (single realization) response or in"an ensemble-average response
go in the same direction: towards higher overall fluxes which translates to .l!l.Q.œ

transmittancy. ]ower albedo.,Another reason for separating the effects of (single realization)
spatial variability, on the one hand, and medium stochasticity, on the other hand, is that for·
scale invariant varfability models (the most interesting ofwhich areintrinsically stochastic),

they are so strong that confusion of the IWO effects is aimost bound to arise since, within that
framework, only the ensemble-average properties are considered relevant. At the OOginning
of chap. 6, we summarize the situation and discuss ways in which the two effects are
compounded.

,

(A.6)
'J

A.2. Non·Local and Non·Linear Aspects: Direct Transmittance and Photon
Propagation

A.2.1. The Standard Exponential Optical Free Photon Path Distribution

We now tum to the simple yet fundamental problem of sourceless transfer in order to
focusonthe "streaming"operator on -the-J.h.s.of the transfer equation (A.S). For
simplicity, wecan assume a steady-state isreached and radiance fo°) then obeys the
hom?geneous (S:=S~O)(x)=O) much simplified transfer equation12

u'V I~O)(x) =-lCp(X) I~)(~?,
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The superscript notation refiects the factthat we ar~\:ltcrestcd in unscathed (neither scallercd
nor absorbed) radiation which becomes itself a local source for single-scallered radiation,
I~)(x,t), and so on.. ·· in the general solution procedure by successive orders-of-scattering ,~

(or von Neumann series).13 The general solution of (A.6) is

I~O)(x) = Td(X,x-ul) I~)(x-Ill) (A.7)

where the dimensionless factor Td(x,x-ul) is the "direct transmittance" between points x and
x-ul (a path of geometricallength 1in direction -u) in the p(x)-field. Td(x,x-ul) has ail the
usual semi-group properties of a "propagator" and is given expHcitly by14

1

Td(X,Xc)ll)' = exp[ -K Jp(x-us) ds ] (A.8) '0

o
where the argument of the exponential is known as the "optical distance:"

1

't(x,x-ul) = KJp(X-us) ds (A.9)
o

li
between the two points of interest, i.e., a (unitless) measure of the cumulative arncurit of
absorbing and/or scatlering material encountered,~ong a straight Hne between them. Notice
that radiance is conserv.~d.(along the beam) in absence of matter and that 't(x,y), hence
Td(X,y), are symmetric\i;~ih~i~ arguments,1s If, in the above definition, we let u(=uz) be

oriented vertically downward and put x on the "top" of the boundary aM of the medium, we
can talk about 't as "optical depth" into M, below x; conversely (u=-uz and x on the ,
"bottom" of aM), we can legitimately ta1k about "optical altitude,"16 especially since in cloud

radiation studies the surface below the lower boundary is generally viewed as purely

absorbing. In practice, water is a very good approximation to this situation.
Retuming to the fundamentally probabilistic meaning of radiance discussed above (and

in app. E), we have17
.... ('

,\ I~O)(x+ul)
Prob(l'>11 x,u) = = exp[-'t(x,x+ul)]

I~)(x)

In other words, photon opIical free paths are always exponentially distributcd (with unit
mean) but their geometrical counterparts obey a simiIar law only in homogeneous media; this

~

is the well-known Bouger-d~Beer law of exponential extinction. If p(x) is indeed uniform,
'//".'

then 't(x,x+ul) = 't(l) = Kpl i1nd lIKp is therefore. the photon m.f.p., E(l). Recall that every
detail oftheexponential distribution is specified by its unique parameter (here, Kp); for

instance, its statistical moments have the following simple scaling: E(lm) = r(m+l)/(Kp)m.
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One of ilS important properties is that ilS standard deviation is equal to ilS mean, equivalently,
Var(l) = E([I-E(l)]2) = E(l2)-E(l)2 here reduces to (lep)-2. In this sense, the exponential
distribution is by no means "narrow" amongst aU possible distributions on 9\+;18 Way~ire

and Gupta [1981] would however classify. it as "thin tailed" rather than "medium tailed"
(e.g., the log-normal distribution used for p in chap. 6) or "fat tailed" (e.g., the algebraic law

found for <Td> w.r.t. <'0> in chap. 5).

A.2.2. On the Characteriwtion ofTotal OpticalMass by aDimensionless Parameter

A most useful concept in standard (horizontally homogeneous, plane-parallel) radiative
transfer is "optical thickness" 't* which is the vertical optical distance from top to bottom
boundaries. (We will drop the"~" when no confusion between distance and thickness is
possible.) If p is constant, we can always choose units of iength where lep = 1, 't* is
therefore the geometrical thickness measured in photon m,f.p.'s. Depending on whether ilS
value is much less that 1 or much greater that 1, we immediately know whether we are
dealing with a system dominated by low or high orders-of-scattering, Le., whether we are in

the linear response regime or in the nonlinear domain of radiationldensity field coupling
respectively. Because this dichotomy is likely to he relevant in most19 inhomogeneous

systems as weU, it is of interest to generalize the notion of optical thickness to these. This
can be donc either by averaging or by sampling.

In the latter case, we choose a "representative" I-D transection through M. Letting~
be the (vertical) uo-projection of M and x=(x,z) with x=(xxuo)xuo, then define (for sorne
"typical" x)

+00

't*(x) = le Ip(x,/î dl'
-00

(x E /x)) (A.11)

IP:.....'
~.

where the infinite bounds simply make sure that the outer most bounds of M (viewed as the '
regipn where p(x) '# 0 a priori) are reached. This approach is obviously quite arbitrary. The

alternative is by far preferable since the spatially averaged optical thickness is an "optical"
(naturally non-dimensionalized) measure of total mass (hence total LWC, in the case of
clouds). In thiscase, we take

J 't*(x)dd·'x lC 1 d
7 - A" p( )d (A 12)--j dd.'x surf(Ao) M x x . Il

.Ao ... Ji .

as the desired quantity. For instance, atuniform dellsity, we find lCp"I o where

To=vol(M)/surf(~) is the average geometrical thickness of the medium (w.r.t. Do).
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A.2.3. Average Geometrical Free Photon Path Distributions

As previously stated, when lCp(X) is non-uniform, l/lCp(x) must he interpreted as a

"local" mJ.p. and the real (geometrical) mJ.p. will generally depend not only on x, u but

also the actual realization of the stochastic process that generated the medium when it is only

statistically defined. If such is the case, then the only well-defined quantities are the
ensemble-averages, in this instance, <Td(X,x+ul)h>. In a (statistically) homogeneous and

isotropic medium will only he a function of 1and h, not of x nor u, all we need to know is
the probability density function (p.d.t) of optical depth 't, at given 1. Wc then have

<Td(l)h> = < exp[-h't(l)] > = < exp[-hlCpl] > (A.l3)

where the spatial average is carried out over a segment of fixed length 1. The first task is

therefore to find the p.dJ. pepll) of the random variable p at given 1and then to compute its

Laplace transform or (Laplacian) "characteristic function:"
00

Gl/(q) = < exp[-qp] > = f e-qp pepll) dp (A.l4)
o

then to take q=hlCl. (Fourier counterparts, better adapted to distributions on 9t ralher than on

9t+, are readily defined.) Notice that the non-negativeness of pepll) implies that Gl1Cq) is also

non-negative, as well aS non-increasing, and analytic (it has derivalives of all orders). Il can

be shown te.g., Feller, 1971] that In[Gl(q)], the "2nd" characteristic function or "cumulant

generating function" (c.g.f), has the general properties of being convex and, if polynomial,

its order is 2 at most We also note that a properly normalized p.dJ. has MO)=1 and thal the

mth statistical moment is given by (-dGl/dh)mlh=o. In the "sure" case where p is a S-function

centered on the (ens~mble-)mean <p>, onetalks of a "degenerale" distribution and it is

descrihed,by In[Gl/(q)]=_q<p>.20 In particular, the convexily of In[Gl/(h)}-equivalenlly,

Jensen's inequality (3.31)-implies that

<Til» = < exp[-lCpl] > ;:: exp[-lC<p>l] = Td.bomo(l) (A.l5)

In other words, we can expect deeper geometrical penetration of the photons (on average)

into any kind of inhomogeneous medium than into its homogeneous counlerpart (uniform
"

density as equal to average or, equivalently, the same overall mass).

Given the information in (A.l3-14), we find <Prob(l'~l» at h=l which could in tum

allow us to calculate the ensemble-average moments of the photon f.p. distribution. Namely,
00

<E(trn» =f trn <dP(I» (A. 16)
o ~

The above argument using the properties of the c.g.f. translate here to the fact that (A.16)

will not lead to (A.IO) with p=<p> but toa "wider" distribution. In fact, (Td) need no

a
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longer 00 an exponential decay at aIl, on average,21 as was remarked early on in !he relatively
short hislory of inhomogeneous transfer research by Romanova [1975] and as we find in

chap. 5 for multifracla! distributions.
Eqs. (A.l3-16) show how !he different kinds of averages can interact and that !he

various powers and exponential functions !hat intervene guarantee !hat !hey do not commute.
If !he stochastic optical medium is reasonably "ergodic," !hen (by definition) !he ensemble
average can 00 obtained by using different segments wi!hin a single realization. Finally, we
remark !hat even a deterministically variable medium has a non-degenerate pepll); in !his
case, we must distinguish OOtween !he spatial average over a segment of leng!h l (bars) and
looking at all possible [-segments (brackets).

A. 3. Local and Linear Aspects: Sources and Similarity Theory
A.3.1. Source Functions and Phase Functions

If Su(x,t) is a known quantity, !hen (A.5) can is simply solved wi!h !he help of an

integrating factor, viz. Td(x,y), discussed in !he last section. Such is !he case when dealing
wi!h sources from !hermal emissionwhich (in d=3) is proportional to By[T(x,t)], Planck's
(black body) function for the local temperature T(x,t), assuming !he medium can 00

considcred in local th.ermodynamical equilibrium (LTE). In most of this !hesis, we are
however interested in multiple scattering as a source in the transfer equ'ation. The
corresponding source function is -_

Su(x,t) = fp(u'~u') lu,(x,t) dd-lu' . (A.l7)

wherep(u'~u) is known as !he '~phase function." Up to !his point, we have made no

assumptions on d (Le., d~l) but in (A.17), we implicitly assume d~2. In o!her words, we

are now interesled in bone fide CA systems. (The important d=1 case fits oost wi!hin !he

framework of DA transfer so we will resume our discussion of it in !he chap. 2.) !Cp is
simply !he differential cross-section for !he elementaryscattering process, i.e., da/dn where

. the element of soIid angle dn is dd-lu in our notations. Thus!he probability per unit leng!h

of !he u-radiance to be scaltered inlo direction u' is

p da(u~u') = !Cp p(u~u') dd.l u (A.IT)

In essence, p(u~u') is !he transition probability density !hat defines !he photon (OOam)
RW22 on Sd; accordingly, its units are lId-anglê\~&,inverseradiansjn d=2 and inverse

, 'steradiansin d;;'3): 'Thé fùl1I11a!hëmatica.1 complexitYClCcontinuClus angle transfer is rell.llzecl
when we see !hat, toge!her, (A.5) and (A.17) constitutean infinitesystem of fully couplêd

1st ordCr, PDEs with variable coefficients which is subjected to BCs (for external
illumination) !hat niake il a boundary value problem in higher dimensions.
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Due to linearity of the transfer eq. (A,5), the general case of (thenually) emitting,

absorbing and scattering media is describcd by weighting BY(T(x,t)] by (l-mo)-only the

absorbed fraction of radiant energy can bc re-emitted in LTE-and combining it with (A.!7).

Furthenuore, if externat illumination is also present, the two problems of internaI and
external sources can be solved independently and their solutions superposed. Better still, the

external sources that excite the diffuse radiation fields via BCs can equally weil bc viewed as

internai sources by using Ist order scattering s!i'(x) = FoP(uo~u)Td(XO'X) where xo(x,uo)
is the (unique) intersection of the direct (uo) light bcam passing through x with convex (cf.

sect. A.4) aM. Td[xo(x,uo),X] is known as the "escape probability" in direction -uo from
point x and is readily generalizcd to an arbitrary direction u followed by the exiting diffuse

radiation. In this case, one writes a transfer equation for düfusc radiation that obeys simpler

(homogeneous) BCs. We notice thal, contrary to their themla1 counterparts, S~I)(x) sources

are not distributed throughout the bulk of the medium, only within a photon m'c.p. from the

upper boundary but, as argued above, inhomogeneity tends to make this'geometrically

deeper than in the equivalent homogeneous case. In other words, we witness a thickening of

the "boundary layer" which we define loosely as the portion of M where directly transmitted,

hence "streaming" (rather than düfuse) radiation prevai1s; in this context, direct transmittance

applies equally to illumination of- and escape from the optical medium.

The most important question about a phase function is that of normalization. Let the

"single-scattering albcdo" be

mo =tp(u'~u) dd·l u' (A.! 8)

which, in principle, can still be a function of u. O~mo<1 corresponds to absorption with

probability (l-mo) per (inelastic) scattering event, mo>1 corresponds to (neutron)

multiplication with probability (l-l/mo), while mo=l is the important conservative (elastic)

case.

It is often assumed that the phase function depends only on the relative scattering angle

9 = cos·l(u',u); this hypothesis is justified for ail spherically symmetric scatterers (such as

cloud droplets). In this case, the expansion of p(cos9) into spherical harmonics only

contains the usual azimuth independent tenus: letting the mo (n=O,l,2,"') designate the

Fourier·cosine (for d;"2) or Legendre (for d=3) coefficients for 11dIJ(9), respectively:

4ltp(cose) =L, (2n+l)moPo(cose) ~
o

00 2
2ltp(9) = L, -.,-macos(n9)

o l+uOo

00

+11

~ ma = fp(9)cos(n9) dEl
·It .

+11 .
ma = 2 f 4ltp(cose) po(cose) d(cose)

-1

(A,19a)

(A, 19b)
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A non-trivial consequence of the non-negativeness of p (related to its probabilistic
interpretation) is that Imnl::;1 (with "=" obtained for the degenerate B-type phase functions).
The 1st order harmonic coefficient is directly related to g, the famous "asymmetry factor."

f u'·u p(u'·u) dd-l u ml
g = E(cosEl) = - (A.20)fp(u'·u) dd-lu mo

Some natural and artificial examples are now in order.
In the familiar d=3, conservative Rayleigh scattering [Strutt, 1871, 1899] isdescribed

by23 mo=I, m2=1I10, a11 others vanish (in particular ml, hence g=O). Another: exarnple
relevant to meteorology is the Deirmendjian [1969] "CI" cloud droplet (size) distribution
which, after Mie calculations and averaging over sizes, yields g=O.86 but any reasonable
representation of the corresponding phase function calls for a very large number of Legendre

coefficients. It is therefore worthwhile to devi~ p-functions that are entirely determined by
their g (and Mo) value(s), especially in circumstances where no other scattering-related
infoffilation is available. Truncation of the expansion at 1st order is sometimes used, In this
case, Igl::;1I2 in d=2 and IglS;1I3 in d=3 from (A.20), since the probabilistic significance of

p(u'·u) requires il to he non-negative. A model phase function that varies continuously away
from isotropy but with no limit on g was proposed by Henyey and Greenstein [1941]:

~f

,/IÎ p(El) = (mO) 1 - g2 (A.2Ia)
il. 4lt (l + g2 _ 2g cosEl)312

The authors used it in connection with scattering by.dust grains in the:Milky Way galaxy-a

situation where very little indeed is known about the chemistry and structure of the scatterers.

Il has gained much favour in atmospheric applications as a substitute for its non-analytical Cl

counterpart. Thisis a1l for d=3 of course, the f01l0wing two-dimensional

Henyey-Greenstein type of phase function was used by Davis et al. [1989]:

p(El) = (mO) 1 - g2 (A.2Ib)
2lt 1 + g2 - 2g cosEl

This last phase function has rather simple radiation diagrams (Le., 2ltp(El)/mo vs. El plotted
in polar coordinates): afamily of confo<:al ellipses24 with semi-major axes (l+g2)/(I-g2) and

eccentricities 2g/(l+g2).. Both of the above phase fonctions have mnlmo=gD andjn the limit
g~±1 both yield theextreme (and degenerate) phase functions mo6Cu''fU) respectively2S as

eipèëted fromthe definition of gwith "all forward" or "all backward" scattering.We.also

note that both of these model phase functions have closed-form (cumulative) distribution .'.

functions which is. very convenient (accurate and CPU-time saving) in Monte Carlo

simulations,see sect B.l. Although import~t for validationpurposes, we willsee that
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even these idealizations are unnecessarily complicated in terms of radiative "scaling" where
cloud structure dominates the overall picture, see chap. 4.

A.3.2. Similarity Theory in Scattering Media

Before seeking solutions of the transfer equation (or any other mathematically

well-posed physical problem for that matter), it is important to see whether we can ease our

task by relating solutions for one choice of optical parameters (lC and p) to another. This is

the object of similarity theory. In particular, amongst the related solutions, one might be

easier to obtain than ail the others. For instance, isotropic scattering is far simpler to treat

numerically and analytically than any o~er phase function choice. Even if we are not too
successful with this assignment, we will at least learn about the basic scaling symmetries of

our equations which, in itself, is a worthwhile exercise.

Substituting the m.s. sources (A.l7) into the transfer eq. (A.5), we obtain

r~~ + u'V ] lu(x,t) = - Kp(X) l lu(x,t) - fp(u'~u) lu{x,t) dd-tu' + Su(X,t) l
(A.22)

"",where Su(X,t) now simply designates ail non-m.s. sources. Following kinetic theory (and

neutron transport) usage, we group the terms on the Lh.s. in order to define the
extinction-scattering (collision) kemel :

[ ~ ~ + u'V ] lu(x,t) = Kp~X) [ f K(u'~u) lu{x,t) dd-l u' + Su(X,t) l (A.23)

with

K(u'~u) = p(u'~u) - B(u'-u) (A.24)

The similarity analysis of this problem is considerably simplified by the fact that it is linear:

we can require, without loss of generality, that the lu(x,t) fields associated with two choices
:::ôJ "

of lC and p are identical26 (up to a proportionality factor dependent on ICs or BCs). Notice

that a change in lC is completely equivalent to an overall uniform change in p(x),27 hence a

change in the total mass of the system !!Jat we have parameterized by average optical

thickness 't, giyen by (A. 12). For lu=lu', we need only

1CK(u'~u) = K'K'(u'~u) (A.25a)

and

KSu(X,t) = lC' S~(x,t) (A.25b) '!

One immediate consequence of this similarity relation is that it leaves the conservative (lilo=l)

property of the scatlering kemel invariant, i.e., if IIKlI=fKdd.tu=o thenllK'II=O too. Another

consequence is that if K is expanded into d-dimensional spherical harmonics then, by

orthogonality, all its coefficients must be rescaled by the slime factor (lC'/K) to yield those of

K'. This ill.lplies that the only fixed point of (A.25a) is K=O or p(u'~u)=B(u'-u), ail
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forward (hence no real) scattering. As pointed out by McKellar and Box [1981] for d=3 and
K=K(u'·u), if the rcscaling is only pcrformed up to a finite order in the expansion then the
similarity will only bc approximate. Unfortunately, the coefficients of the a-function in
(A.24) are ail equal to l, so truncation carries risks. In particular, the conservative

isotropically scattering kemel has 0 for flIst harmonic, -1 for ail the others, so it is rescaled to
a kemcl (hence phase function) containing ail the higher harmonics whereas van de Hulst and

Grossmann's [1968] original similarity relations correspond to a Ist order truncation. (yVe
,

will see that this is exactly what we expect from the similarity analysis of the diffusion
equation obtained within Eddington's approximation, cf. sect. D.3)

Since many naturally occurring phase functions are strongly peaked in the forward

direction, it is advantageous to mode! them with a a component28 which is readily grouped
with the (extinction) a already present in (A,24), in tum, this I~~ds to the "a-Eddington"
rescaling of Joseph et al. [1976] and to Wiscombc's [1977] "a_M" rescaling which, for

instance, can bc used to considerably reduce the computationalload in a discrete ordinate
scheme [Stamnes et al., 1989]. While Davies [1978] applied the former method to
homogeneous cuboids (in d=3), we are not aware of any application of the latter method
outside of plane-parallel media. Finally, we must recognize that not ail non-m.s. sources are
compatible with (A.25a) and (A.25b) together: thermal sources (l-lUo)BY[T(x,t)] are eligible
whereas the 1st order scattering sources, p(uo-tu)Foexp[-'t(xo(X,Uo),x)] applicable to the

"direct+diffuse" formulation, are not. This rcflects the fact that (the diffuse component of)
the radiation field generally has boundary layers and is not so easily rescaled to a universal

function.
A.3.3. The Transfer Equation as a Balance BetweenAngularAnisotropy and Spatial

Gradients

In the remainder of this appcndix (and most of this thesis), we will bc interested in

steady-state (a/at-to or c-too) transfer problems with no internai sources bcyond multiple

scattering. In this case, the transfer equation (A~5) bccomes

u'V Iu(x) = - lCp(X) l Iu(x) - §p(u'-tu) Iu{x) dd-1u' l (A.26)

We can interpret this equation asa detailed balancing of spatial gradients (I.h.s. or
"streaming" term) by angular anisotropy (r.h.s. or "source/sink" term) in the following

sense: anisotropy (possibly imposed by lies) drives the gradients of the radiation field and
a

wherever gradients appear (possibly associated with internai densityfieldvariability)

anisotropy is created. Stamnes [1986] provides a graphic illustration of the coupling of

anisotropy and vertical gradients driven by illumination at a boundary in the context of
homogeneous plane-parallel media, but thisis in facta universal aspect of radiation transport
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and we will observe the same phenomenon in our detailed numerical calculations of transfer
in multifractal optical density fields. Simuiianeously, and in response to the strongest
positive density fluctuations, we will also see the creation oflarge scale horizontal fluxes via
changes in the local angular distribution of (DA) radiance, sec chap. 6.

To see how this coupling arises, we first suppose lu = 1: it is independent of u.
Using the normalization condition (A.18), the r.h.s of (A.26) becornes -Kp(I-Olo)I which
vanishes identically in the conservative case. Conversely, anisotropy implies generally non­

vanishing directional gradients. CWe expect this picture to remain qualitatively true for the
many interesting cases where Olo =1.) The reciprocal of this statement is easily proven in
the case of isotropic (but not necessarily conservative) scattering, i.e., p = lilolnd. We now
suppose that the I.h.s. of (A.26) vanishes, i.e., u and Vlu arc perpendicular; this happens,
for example, in plane-parallel atrnospheres when u lies in the horizontal, at right angles to the
only allowed gradients. In general, when u·Vlu= 0, the transfer eq. (A.26) implies that

"
either

(I) lu = Su and using the definition of m.s. sources (A.!7) for Su and our
isotropic phase function, we find Su = S = (Olo/nd) ~Iudd.lu, i.e., the
radiation field is (locally) isotropic. Conversely, gradients that do not
vanish (in all directions) promote sorne kind of anisotropy w.r.t. u. In
summary, the spatial and angular parts of the m.s. transfer problem are

intimately intertwined by the transfer equation itself. In chap. 3 and app.
D, we will be seeking different ways of simplifying the angular part in
order to better study the spatial part. This is of course the exact opposite of

the strat~gy implicit in the staggering amount of literature available on the

homogeneous plane-parallel problem.

(2) Kp(X) =0 which reminds us of the simple fact that lu is constant (along
any u) over an expanse of (optical) vacuum whether it lies inside or outside

the boundaries of the overall optical medium under consideration. The
(optically) empty medium is clearly the only one that can support

simultaneously arbitrarily anisotropic lu fields and vanishing directional
gradients. A prime example of this is provided by the starry skies of cloud-

free nights: lu is composed of many li-functions (of various magnitudes29)

scattered-if not scattering~n :::3 and a witness ta the fact that interstellar

space is by-and~large optically thin.30

A.3.4. The Yarious Ways ofSimplifying the Angular Problem ::,
In summary and in,~pite of our attempts at independent discussion of the properties of

~ .

'.~; the nonlinear, propagation (hence non-local) aspects, on the one hand, and of the linear,
/)

/ '. ,/.....
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scattering (hence local) aspects, on the other hand, as weil as our (somewhat u-minimizing)
notational efforts, the spatial (9td) and angular (3d) parts of the m.s. problem remain closely
related via the transfer equation itself. We will be presenting and comparing two very
different ways of simplifying the angular part in order to better study the spatial part ...
which is of course the exact opposite of the strategy implicil in the staggering amount of
literature available on the horizonta11y homogeneous plane-parallel problem. Since in essence
we a dealing with a distribution of radiant energy on 3d, the required simplifications can

proceed either by samDljn~ u-space or by avera2in~ the lu-distribution.
; ~

In app. D, we explore the latter approach by taking the hydrodynamic limit of the
kinetic transfer equation (A.26) with a 1st order truncation of the spherical harmonie
expansion; this is (one of) the standard (and equivalent) route(s) to diffusion theory with, in

particular. its characteristic "constitutive" Fickian law (which is a direct result of the above
anisotropy-gradient coupling). Il is, at oost, an approximation of transfer which works oost
in very homogeneous media (chap. 4) but it is certainly an interesting physical model of

transport phenomena in its own right and there is a staggering amount of literature on
diffusion processes with applications in many fields; some of this literature is revisited in
app. D and chap. 2 and the main results are translated into radiation language and sorne new
results are obtained. The approximation is however not so poor that diffusion theory cannot

help us to considerable insight into the mechanisms of "channeling," as tentatively defined in
the introductory chapter. We ha'iFc come to view this as the basic mechanism of
inhomogeneous transport in higher dimensions since the simple picture drawn in chap. 2 (for
weakly variable media) does not vanish from the scene in chap. 6 (for extremely variable

media). This leads us to conjecture that extreme variability amplifies the effects-and the

mechanisms by which they arise-already present in weakly variable media, rather than

induce totally new physical transport phenomena. '
In chap. 3, the former approach is exploited by using l1iscrete llngle (DA) phase

functions in (A.26); the end result is a bone jide transfer theory that is exact in the limit of
o-type CA phase functions. This original idea of Chu and Churchill [1955] was left largely

unexploited until Lovejoy et al. [1990], Gabriel et al. [1990], and Davis et aL [1990a]
showed how il can 00 used both analytically and numerically to considerable advantage in

inhomogeneous situations. Using a combination of analytical and numerical argum~nts, they
show that, generally speaking, DAs are in the same class as CA transfer w.r.lthe way the
predicted radiative properties scale with the sizeandlormass ofthe system in eqs.(1.1-2).

Furthermore, Davis et al. [1990b] show that diffusion, on the one hand, and "indePenderl't

pixels" (IPs, seeOOlow), on the other hand, are retrieved as limiting cases of DA transfer,

simply by further manipulating the phase function. However, the corresponding similarity
.',., ;-
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relations are singular in these two limils hence IFs and diffusion are not expected to !Je in the

same class as CAs; this prediction tums out to be true in more relevant case of extremely

variable media (chap. 4).

If one is reluctant to abandon sophisticated phase functions and/or the comfort of well­
understood plane-parallel media, there is a third possibility-definitely an approximation­

were "channeling" is explicitly inhibited by neglecting (net) horizontal fluxes: the medium is
, divided into (radiatively) "independent pixels" (or columns), an expression coined by

Cahalan [1989] for a procedure used already in very many circumstances for its,sheer

simplicity. The expression is precise and better appreciated by recalling that the author was

interested in recreating (statistically speaking), by numerical simulation (and this simpler

approach), what he sees in satellite imagery of typical cloud fields. Both in terms of the

computational effort invested and w.r.t. the final result, IPs tum out to be a compromise,.
between full-fledged (numerical) inhomogeneous transfer and using a (closed-forllÎ

analytical) homogeneous model of equal mass. How happy this compromise is depends

largely on the degree of inhomogeneity (chap. 4 and 6) and whether or not it can he used in

reducing real data, as do King et al. [1990] will doubtless become the focus of future

research. In the meantime, we indulge in IP calculations in chap. 5, using multifractal

distributions of optical thickness.

A.4. Diffuse Reflection!Transmission Problem: Boundary Conditions and
Overall Responses

A.4.1. Boundaries and Boundary Conditions for Extemal Collimated Sources ofRadiance

The steady-state m.s. transfer eq. (A.26) is of course only,a local constraint on the
'1

radiance distribution lu(x), XE M and UE 3d. and its directib'nal gradients u'V lu in
~;

combination with the phase function p(u'-7u) and the local value of optical density Kp(X).

The entire radiance field is completely determined only after setting BCs. In absence of

internai sources, these BCs are the only way to get radiant energy into the system. Eq.

(A.26) then describes a boundaÎy value problem (in higher dimensions) for an infinite set of

(generally coupled, 1st order) PDEs.

ln the above. M can be quite general; in essence, it is the support of lu(x) and will be

called the "optical medium" or, more simply, the "cloud," There is a standard topological

feature of the support of lu(x) worth mentioning: in order to define partial derivatives in all

directions, M must contain a I)eighborhood around each of ils points, it is an "open" set. In
\ "

contrast to this, the boundaryof M (aM, in traditional topological notation) is il. "closed" set:
Co"

it contains all of its limit points.3t In particular, this makes aM eligiblé to be fractal (hence

non-rectifiable). This is in fact an attractive prospect when modelling natural clouds given (i)
r.

)0;:;
'"-,'"'
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the non-integer dimensions found by many authors, starling with Lovejoy [1982], for (the
most obvious radiometric definition of) cloud boundaries as viewed from satellite imal!,f;rY:'"~-"""

(ii) the striking realism of purely synthetic images based on renderings of stochasticscale
invariant models [e.g., Lovejoy and Mandelbrot, 1985; Lovejoy and Schertzer, 1985, 1986]

and (iH) that we know their dynamics to be highly turbulent and it is now weil established
that turbulence is genericaUy related to fractal and multifractal structures [very many
references, see app. C for a few]. We only need to think of the billowing in strongly
convective ("cauliflower") clouds that generates surface features at all observabl~ scales, but 'i

this reflects internal inhomoge,neity on aIl scales as weil; see aircraft LWC probings by Tsay
,{

and Jayaweera [1984], Stephens and Platt [1987] for fully documented examples, and,:i
il . -i< 1

Durouré and Guillemet [1990] for a simple scaling analysis. ,
In m.s. problems, BCs can be usedto specify illumination of the r;"~èdium by external

sources of radiance; this class of problems is known as diffuse "reflectionltransmission-" or
"albedo" problems. The necessary data to he specified is Iu(x) for XE aM and u·n(x)SO ",
where n(x) is the outward pointing normal to aM at x-this assumes that aM is (almost
everywhere) smooth, hence rectifiable (blatanüy excluding the fractals just discussed, but we

will soon see how to reconciliate the mathematical and physical requirements). A complete
set of BCs for collimated illumination coming from direction -ua with flux Fo is

Iu(x) = Foli(u-uo) for XE aMs} d () 0an u·n x <
Iu(x) = 0 for x E aM> ",

where we have defined the complementary "direcüy illuminated" and "shadowed" parts of
aM é.

aMs =(XE oM, uo·n(x)SO}
aM> = (xEoM, uo·n(x»O} = M\oMs

These sub-sets of aM are "simply connected" if M is convex; "as explained helow, this
property:,;'in always he assumed (at least within $e framework of inhomogene6{s media).

We notice, incidentally, that the mere fact that M is fini te in the horizontal direction

(considering Uo to define the vertical) is sufficient to induce horizontal gradients (hence
flux~s, cf. §A.3.3 above) in the radiation field, even when Kp is constant within M. "

If M is required to he convex then no part of a~f'sees" (is illuminated by) any other "

part of aM; we therefore avoid the complicationof explicitspecificationofre:entering direct­

and diffuse bearns1( These"requirements of smoothness and convexity on M only constitute
real limitations-~ither that or complications-in the very restricted class ofinternally
homogeneous media. Within the general framework of internally variable media, one can

study non-smooth (nor even rectifiable) and/or non-convexsub-domains M'of an otherwise"
,,' ~ . , '
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acceptable M simply by allowing for null values of p(x}, e.g., we simply can take

p(x}=plM'(X} to obtain the above-mentioned homogeneous cases. (iS(x) denotes the

indicator function of set S which is 1 if XE S, 0 otherwise.} The above remarks on M and

aM make it clear that the whole program of investigation of the radiative properties of

inhomogeneous cloudiness is more easily implemented within the framework of

(hydrodynamically driven) variable optical density "fields" than that of (geometrically

defined) cloud "shapes."

A.4.2. . Horizontally Bounded Media 1: The "Terminator" Definitions ofAlbedo
/

Viewing radiative transfer as a theory of rcmotely sensed measurement, the most

important feature of the radiation field excited by external illumination is thetoutgoing"

radiance field, namely, Iu(x) for XE aM and u·n(x} <:: O. In view of the general BCs{A.27}

of the diffuse reflectance/transmittance problem, the most natural definitions of (global)

o='::;-rêflectance Ro and transmittance To, are surely

ii { 1" Ro = F"S JP+(x} dd-l x
o 0 aM,;

T 0 = _1_ JP+(x} dd-l x
PoSo aM>

where

So = Jluo·n(x}1 dd-lx = Juo·n(x} dd-l x (A.30)
aM,; aM>

is the (d-l)-measure of the geome.\[lcAL~hadow (uo-projected area) of M,

Ao={ (xxuo)xuo, XE M}fànd .y!r"'~"'-=.

P+(Z: ~:;(X)~ JU!t~:}If.(X} dd-l u , for XE aM (A.31)
;". \\ u.n(x)iO ),1

Il ':' /<, •

is the local outgoingfluYNhere ~{sed definition (A.3'). (The incoming flux, P-(x), is not

of intercst here since i(js entir{Ij dètermined by the said BCs.) In essence, we are saying

that "transmittance sl-;;rts'\if~ere illu'mination (grazing included) stops, irrespective of

direction of propagation upon escape from the medium," hence the sub-script "0" notation

that is traditionally associated with external illumination. In (planetary) astronomical

applications, the natural delimiting (boundary-on-a-boundary) set we have just used is called

the "terminator:"aM==a(aMs}=a(aM>}, the sub-set of aM with exactly grazing incidence.
\~, '. ~-",.\

Using this deflilition and assuming the Sun is at zenith, we ca.nsee-:-even from ground

level-light "reflected" off clouds in all directions (except directly overhead) andthis indeed

is the proper way of defining the bright (white) parts of a typical(relatively isolated) fair
"

weather cumulus (Fwèù). At high Sun, this operational definition of the rellecting parts of a---~ ..
../-/./
,/,;.-



, ~)

231

cloud coincides with that of cloud "top" but, at very slant Sun, it can include large portions

of what would otherwise be viewed as a cloud "side,"
Global absorptance Ais, from fust principles, given by

(FoSo) A = J(V·F) ddx = Jn(x)'F(x) dd-I x (A.32)
M aM

We also have

(FoSo) (To+Ro) = JF+(x) dd-I x (A.33)
aM

Of course the divergence theorem applied to (A.26), guarantees Ihat A = 1-To-Ro; in

parlicular, To+Ro=l and A=O when IDo=l, cf. (0.2).
"A variation on definitions (A.29) that may appear quite sublle is to replace ëJM~ by

ëJM< and Ro with Ro'. Subtle because Ro-Ro' vanishes with the (d-!)-measure of ëJM=
which is nomlally O. Following Davies [1978] and other authors, we will be considering (in

sect. 4.1) the case of cubes under normal illumination (1Jo is parallel to the "side" faces) and,
sure enough, we will find that 1-Ro' is considerably larger than To (even at IDo=!) simply

because surf(ëJM=»O. The ensuing side "losses" have of course nothing to do wilh
absorption evcn if their apparent effect on the radiative balance of Ihe cloud is analogous
(To+Ro'<I) since there is no associated heating ralC,(V·F=O). This conclusion is unchanged
even in view of the formal analogy, pointed out by Davies [ibid.], between new terms due 10
horizontal gradients that appear afler horizontally Fourier-transforming the transport

equation32 and the usual absorption lerms. To see how this analogy fails, recall that the
presence of (true) absorption implies the existence of a characteristic opticallength scale

hence exponential type solutions to the transfer equation. Conversely (and.apart from
eventual boundary layers33), its absence dictates algebraic behavior to thesesolutions

although this feature might be masked by the infmite sums of exponential (Fourier) tenus and

this is indeed the final format of Davies' (semi-)analytical diffusion results for Ro' or To[cf.
~:his eq. (63)].

In summary, our claim is simply that escape through sides 'is really just more
reflectante. Although one could ask 'Why we are sub-dividing reflectance, not
transmittance?' True enough, this choice is hinges entire1y on the position of the "=" sign

(along \Vith"<") in defmitions (A.29). This position is not arbitrary sincegrazing incidence
is a valid choice for illumination geometry. Nor is the choice of "<," not "S," in the

'condilioning of u in the BCs (A.27)·arbitrary since outgoing grazing (u·n=O) diffuse

radiance is determined by the transfer equation, For instance, vanishingly thin plane-parallel
media a",','ays have rcflectance (and transmituince) 112 at grazing incidence, atleast for axi-, .)

symmetric phase functions. To sec this, consider a small (but finite) f, the diffuse rndiation

/,

J
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field here reduces to ilS singly scattered component J~l)-which is proportional to p(uo'u), by
ilS very definition-for horizontal uo, half of this u-distribution lies in the upper hemisphcrc.
At 1:=0, this situation must persist and indeed, from BCs (A.27), wc see that only 112 of the
light gets "into" M (to bc immediately transmitted) while the other 112 carries on to be
immediately "reflected," from definitions (A.29-3l). Finally, we notice that media for
which surf(aM=) can bc finite must have edges and then surf(aM=»O can only happen for
particular choices of Uo (and their numbcr is, at any rate, finite). Wc therefore suggest

.,--
"collapsing" the iII-defined tem1iîùJ.!.s>r to a properly defined one by reqùiring it to bc stable

(or "robust") w.r.t a slight perturba~in uo, i~j.JFcases;,this should rcmove any ambiguity
about what is transmitted versus reflected radiiGon. AIl of the above complications of course
disappear as soon as we leave the rather pathological class of media that have a terminator
with a surface. This is done as soon as chap. 2 where homogeneous spheres are examined
and, in retrospecl, a much simpler overall picture of the effect of horizontal boundedness (on
the radiative properties' scaling) will bc drawn in the final section of chap. 4.
A.4.3. Horizontally Bounded Media 2: The "Zenith" Dejinitions9fAlbedo

It can bc argued that the choice of starting by averaging over angles rcally refleclS our
eagemess to get to a simpler (scalar) function of x to study (scalingly, of course) and thatthe

decision to separate T from R at the terrninator is just another bias towards spatial properties.
But u is an argument of Iu(x) in ilS own right (no matter how small and low wc make it

look!). Hence a totally opposite approach to the definition of albedo is possible: let the light

ray's direction of propagation upon er;ape from the g3edium, irrespective of the position of
its "piercing point" on aM, decide whéther it is a contribution ~ a1bcdo or to transmittance.,

We can define P(uo-7u) as the norrnalized radiance produced by multiple seattering
within M. This constitutes a genuine return to the origins of the expression "phase funclion"

which, in planetary astronomy, is the properly normalized measure of the (specific)

"Iuminosity," i.e., the total flux per unit of apparent size (in steradians), measurcd in units of

total (area-integrated) flux of incident sunlight (FoSo). In a sense, this is the "unresolved"
'"radiance of an angularly rcsolvablé celestial body, such as the Moon or Venus. If the body is

sufficiently symmetric and unifdrrn, then this ratio depends only of the object's "phase"

(angle), viz. cos-1(-Uo·u)=7t-cos-1(uo·u), the angle subtended by the Earth and the Sun at the
planet. The knowledge of P(uo'u) a1lows the astronomer to compute the planet's brighlness
from Fo which, a10ng with Uo'U, can be predicted from celestial mechanics (and So is of

course tabulated); conversely, P(uo'u) can bc obtained from photometry, and celestial
- .

mechanics.
As in the case of our (transfer) phase function, we will not assume such symmetry a

priori:



(A.36)

(A.34)
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P(Uo--7U) = 6(u-Oo) +F IS f u·n(x) Iu(x) d4-1x
o 0 aM

where the 6(u-Oo) tenn is introduced to cancel the incoming contributions to ù1e integral tenn

(from aM~) and .whi;.'h are not to be confused with the outgoingcontributions (from aM».
-\~:,-",)i_

Using, the definition'f(A.3) of F and (A.32) of A, we see that angular integration of (A.34)

yields Il

f P(Oo--7u) dd-lu = I-A, for ail OoE Sd (A.35)

as expected from global conservation considerations. In planetary applications (M is a

3-sphere), this is basically the "spherical" (planetary, or Bond) albedo.34 Letting -Uz denote

sorne "zenithal" direction (not necessarily -Uo but, in principle, such that 1-4>=uo'uz<:O), we
, li

are tempted to redeflrrr-'fcflectance and transmittance simply by partitioning the angular (,

integral in (A.35), i.e.,

{

RZ = fP(uo--7u),dd-l u
1l~0

l'z = fP(UO--7u) dd-lu
Il>0

In essence, Rz and l'z are (proportional to) the leading terms in the expansions in spherical

harmonies of El(-Il)P(UO--7u) and 0C1l)P(uo--7u) respectively, with the "north pole"lying at

Uz. Following McKee and Cox [1974], Davies [1978] also applies this alternative definition

, to his cuboidal cloud models of variable aspect ratio, iIluminated under various incidences.

Here~again, on could sub-divide Rz into its "1l<0" part (Rz') and "1l=0" part (l-Tz-Rz')

which, generally speaking,35 vanishes along with the (solid) angle subtended by a great

circle on Sd. This is however just as artificial as in the "terminator" option of the previous

sub-section although~unlike for that option, there is no clear reason for associating the "~'

relation with albed~~.~!'!'('k.36) rather that a "<:" relation with transmittance beyond a duality

argument w.r.t. the definitions (A.29) of Ra and 1'0 (faces are associated with their nOffi1als).

We can iIlustrate the differences between albedo and transmittance definitions (A,29)

and (A.36) qualitatively by returning to the planetary analogy. Taking Uz=Oo for simplicity"

we witness (from Earth) contributions to the Moon's "1'z-transmittance" from new moon to

fust quarter and the Moon's "Rz-reflectance" from then to full moon (and similarly in its

waning phases); respectively; from inferior conjunction to greatest elongation and from then"

to superior conjunction, in the case of Venus. Using "the previous (tenninator-based)

definition, the Moon has of course no ''To-transmittance'' at ail whèreas that of Venus is

enûrely contained in her (atmosphericaJly-induced) "horns." -
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for ZE [O.L]. liE Ed. and ~, (A.37b)
in ail the (dol) horizontal coordinates .J)

which enforces periodicity in the horizontal. instead of, /

lu{ 0 z) = T\ oFoB(II-1I0) for Il'11 1 > 0r~)}
lu(N z) = 0 for Il'11 1 < 0 " ZE [O.L] (A.37b·)..;
lu(~.O .. '" z) = Lu(· ...N ..... z) = 0 for Il'I1i > 0 (i=2.....d·1) \::' ,';0

which ~uld apply for the same medium with "open" (or "absorbing~) sides.
'}

The above multiple defmitions (and eventual complications) concern media with a finite

So (hence bounded M): Ra and Toare more appcaling to our intuitive idea of rel1eClance and

transmiltance from an isolated cloud whereas Rz and Tz seem more relevant to the
contribution of the said cloud to (say) the surface radiation, budget. (In the lalter case

however. we are certainly even more interested in the contribution of ail the clouds. in full
radiative interaction with each other. and this is really a problem to bc modelled within the

framework of unbounded media discussed below.) So there is no unique answer to the

question of which is the most appropriate definition but there is always one which wc are

more interested in-furthermore. one can conjure up yet other definitions.36 Our mIe of

thumb will therefore bc. if clouds must bc viewed in isolation. then we favour the former

definitions bccause of their conceptual simplicity (and generally drop the "0" subscripts); if
,';'

not. then there is nothing to stop us from moving the (potentially problematic) tenninator set

aM= to infinity at rigiÙ angles to the vertical direction IIz• we then obtain a horizontally
" \,-1

extended'''atmosphere,~ "
A.4,/. Horizontally Unbounded Media: A Unique Definition ofAlbedo

Whenjlmulating the horizontal extension of Earth's almosphere (as weil as its relative

l1atness) using the procedure just suggested. cyclical horizontal BCs are used consistenlly in

the Iiterature. as they will be here. Recall that. if defined in discretized Fourier space. then

the medium is automatically pcriodic as soon as Fourier space has itsclf bcen discreti7A'd. see
~ ~

Stephens [1986] for a direct application to CA transfer. Without loss of generality (bccause

of the possibility of internaI null p-values),\vefcan take M=]O,N[d.l~]O,L[ (with N=L. if

necessary). Le.• x={x .z) with X={XXllz)XllzR:here IIz denotes the vertical unit vector.,
(oriented downwards). The vertical component of Il is traditionally denoted 1l=1I'lIzand we

can assume (again without Joss of generality) that 110 lies in. the 1st horizontal coordinate
=~~ ,::

hyper-plane. Le.• its components are {T\o.O... ·.llo} with'Jlo=lIo'lI z (assumed ~O) and

T\o~. BCs then bccome ,

lu{x.O) = IlOoFoB{II-1I0) for Il > OO} andx E [O.N]d-l (A'.37a)
lu{x.L) = for Il <

in the vertical. and:~.,.
Ik·.O...·. z) = li\,N...·. z)
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(A.38)

(A.40)

(A.39)

r-
'..J

l'

We are again primarily interested in the outgoing radiation fields at the "top" and

"boltom" of the medium, i.e., Iu(x,O) and Iu(x,L), respectively for Il~ and Il~O. If BCs ('

(A.37a,b) are adopted, then the above definitions of albedo and transmittance merge:

1 N N JR = dot f... f F+(x,O) dd-lx = R(uo-4u) dd-l u
FolloN 0 0 , Il~O

N N '
T = 1 dol f... f F+(x,L) dd-tx = JT(uo-4u) dd-l u

FolloN 0 0 Il~O

Che first expressions are based on (A.29-31) with n(x,L)=-n(x,O)=uz and So=lloNd-l, not

(lloN+lloL)Nd-2 which would be the case if the (cuboidal) cloud were isolated, and they caU

f& the (local) outgoing hemispherica111uxes:

F+(x,O) = J, IIlI Iu(x,O) dd-l u }
Il~O for,x E [O,N]d-1

F+(x,L) = J Il Iu(x,L) dd-l u
Il~O

The second expressions in (A.38) are based on (A.36) and they cali for the (spatial!y_:,
/,/'..........

unresolved) bi-directional reflectance and transmittance defined (here) as: ,-

Il,11 N N
R(uO-7u) = , C Am-l f.oof Iu(x,O) dd-lx for Il$O

~'{)' 0" - 0 0 l'

N N amI Jlo~ 0
T(uo-7u) = FJvd-1 foo·f Iu(x,L) dd-lx for Il~O

," Jlo 0 0
'"tf...-

Like P(uo-4u), these have units of [(solid) angle)-l. Rand T in (A.38) can of course be

vJewed as the leading terms in the expansions of R(uo-4u) and T(uo-7u) in spherical
~

harmonics. One can also define the spherical albedo of a plane paraUel medium as its

response to isotropic illumination and it is obtilined by integrating o~~r"'iiie~sidual

uo-dependence in the expression for R in (A.38);37 't ~.~
In principle, the formèr quantities iIi'(A.39)can be sampied along a Ùp transection by

flying a (transparent) aircraft just above cloud top with a do~nward 100ki~) pyranometer

(resp., below cloud base, looking up) and the frrst in (A.40) by a radiometet;l.ln an orbiting

platform programmed to keep looking at the same portion of atmosphere during fly-by (this

is not feasible with the usual electro-opti~a1 scanning im'agertt'>~tice that the !~
information content ofboth types of measurement is only redundaut'witli';espect to our

" 0 Il \' \,,~

definition of "overall" a1bedo R in (A.38), the local fluxes can be used to estimate the efferts

of sub-pixel variability on satellite data whereas thebi~irectional pil~perties of cloud co~~r
. , - ,. ~

seem unavoidable for the inter.,comparison and quantitative exploitation of satellite imagery.
~)

IF
li
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1Net flux is denoted "rtF" in the astrophysical (d=3) literature. the advantage of this definitioD is tbat
"astrophysical" flux F and lu share the saroe uoits bence il is casier to compare spherica! (Bond) albedoes with 3·D
Lambertian surfaces (uniform refiectcd radiance, Fln). Ta he consistent with this convention, onc should require
the phase function to he dimcnsionlcss (and dd-lu-+ddolu1tld. in our Dotations).

2011C should subtract, a term Ihat vanishes in general since the surface of a great ciecte. i.e., l dd. t u is nul1. In
h=O

certain DA systems with certain cboices of l, this correction can bowevcr he finile; for instance, aoy onc of the
DA(d,2d) cases in higbcr dimensions and with 1 cbosco among the orthogonal directions.

31n other wards. the isotropie compODeot of the pressure field, trace(P) averaged over ail d directions, is
p=~:l/d=U/d, as expected from elcmentary kinetic theory for any ulffa-relativistic (p=E/c) gas in d spatial
dhiieÏlsions.

40iven tbat diffusion tbeory (examined in delail in app. D) malces no attempt to model the radiance field beyond J
and F, we can confidently predict it to be an exact model for transport in d=l. Ta sec this more plain1y, notice
tbat, since cP=J in d=l, tbus we have Dot introduced any new unknowns, as is the case in d>1. nley are
J=4+I.E9t' and F=I+-I.E91 for the two iodependent equ.tions (D.I).nd (0.7).

5beDce p=U, Le., the maximal pressure-to-energy density ratio, just what we expcct for a l·D photon (or otherwise
ultra-rcJativisti;;) gas.

6The derivation of (A.5) presented in app. E cannot be considered physically rigorous since it relies heavily on a
questionable anaJogy ~tween tigbt- and material particles ,sucb as neutrons. It does bowever clanfy the deep
connections between radiative transfer and the tbeory of stochastic processes, as weil as further justify the
nurnerous analogies wc make throughout this thesis witb various other transport phenomena involving matter.

7Various states of poJarization could he added rnakiog each lu a formaI 4-vector (in Stokc's representation) where
ooly three componcnts arc independent: the two above mentioned angles and an amplitude. Wc refer to
Chandrasekhar [1950] for details, including remarkoble agreement of strictly plane-parallel calculations with
observations (of the positions of "neutral" points) of multiple scattering in our ('tAJO.I vertically, but
horizontallyOo) Rayleigh atmospbere. In the remainder of this thesis, we will ignore this compticatioD\s;nce il
bas negtigible effects in thick systems such as clouds where bigh orders of scattering dominate, hence vigùrous
mixture of the different poJarizations. Furthermore, this simptification will allow us to explore 10wer and higher
dimensionalities witbout any preconceived ideas about the fundamental 3-D nature of Iight and coUeet henefits on
both conceptual and computational levels.

8Anotb~~\refinement that we ignore, is spatial variation in the medium's dispersivity: see Harris [1965],
PomranÎng [1968], Zhelenznyokov [1971: and references tberein] for the conlroversy .boUI the proper w.y of
modifyiog tbe tronsfer equOlion (A.5) to accommodate the effeclS of refraclion in the limit of ray optics which are
appi1l'cntly important in the study;of microwave transfer in plasma.

9Nonnally d = 1,2, or 3, but in secL 4.1 we briefly consider even higher values (in fact up ta 00).

10AItematively, using (A,5) as an operalional definilion of le can lead 10 ilS being effeclively neg.live in the
special case of lasing media. In our notations, the emission coefficient is KPS. with lasing corresponding to
SJllI = coust. > l, i.e. more "out" than "in," due to stimuJated emission (and inverted atomic populations) hence
""ff= -(u·VI.)/pl. < O. SI"

lIAs defined in the bydrodynamic limil of BollZmann's equation (E.5) wbich yields the Navier'Stokes eq. (C.I).

12Flateau and Stephens [1988] argue that the most general transfer equation cao he transfonned into the samc simple
fonn but witb vector-like fields and matrix-like coefficients multipJying them. They work out the tWo-flux model
in detaU using invariant imbedding whicb demonstrates eloquentIy tbe Donlinearity of the radiation- to scattering
materiai density field coupIings. Mucb of the following discussion therefore appJies jto more General
circumstances witb an interesting complication (due to the fundamental DonHnearity) that;jâ"ppears in higher
dimensions (wit~ variabilily in b_oth vertical and horizontal direclions): the arisin(~of non-commuting
(generally random) matrices. fi' "

13This calls-for the"iteration orthe so-called "auxiliary" intcgral equations whicb are eql~ivalent ta lhe-transH:r
. equation t plus Bes. Tbese are obtained by substituting the "fonnal" solution of (A.S}-where radiance is
expressed in terms of the source function and Td(x,y}-into the definition of the multiple scattering' source
funclion (A.17), so these integraI equ.lions are fully coupled (sce Dave [1965] for an application to plane.parallel

l'systems). ..~l

14In order 10 see that (A.7-8) indeed verify (A.6), nolice that we bave considere<! x as a conslaDl and that u·V is
simply the (directional) derivative dldI in direction u which isalso held constant since we do not consider any
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macroscopic refraction effcets here; they ooly bccome appreciable al grazing incidence and/or long patbs becce
lhrough (optically) thin, stratified and/or spherical atmosphercs.

1SAt this lcvel (a specifie pbotoo's lract), the propagation process is symmetric under lime reversaI and very
general reciprocity relations can he obtained [c.g., Lenable, 1977]. It is equally cIcar tbat, from the point of view
of photon gas thcrmodynamics (many photon lracks), the transfer eq. (A.S) is entropy producing even in
conservative stcady.statc conditionsj indeed. wc bave mucb more information OD tbe pj;'}lOO'S whereabouts (io
phase space) before than afler scattering (espeeially wben multiple). ln olber words, (AS) bas ils "H-theorem"
just like any other k.Înclic equatioD 5uch as Boltzmann's. Considerable problems bowever arise when bydro. and
tbermodynamical coupling with matter (hence the basic nonlinearity) is taken into account [Essex, 1984: and
references therein].

16Either of these quantities provides a convenient independent variable in either I·D transport or in horizonlally
homogeneous piane.parallei media in b~her dimensions where p(x)=p(z) and the optical distance between two
arbitrary poinls is At/J! wbere At=IK1': p(z)dzl is th~ absolute difference in (say) optica1 depth and J! is lhe
vertical cosine of u. In generaI, such optical coordin~tes are of litUe Use outside of these well·studied plane.
paralle) media. An exception is found in the optimization of "DA(d,2d)" Monte Carlo code (for rectangnlar grids)
by pre-catcu,lation of the cumuJated densities along this grid lines, cf. sect. B.l.

17A straigbtforward probabilistic derivation would start with the elementary probabilities for no scattering oor
absorption event to occor in lbe segmenl lx,x+udsl (viz.; I.Xp(X)dS=I-dt) then take the limit of optically tbin
segments. Hence .-

1

Prob(l'>llx,u) = Hm nl(l·dti) = Hm expl-!idtil= exp[-Ie fp(X+US)dS]
maxi(dtl)....O maxi(dtl)-+O 0

and (A.8-9) follows. Notice that the above reasoning remains valid in the limit of very, singular density fields
such a.l; (fuUy developed) multifractals since we ooly deal witb fDtegrated (dressed) quaotities or "measures" whiëh
are fioite.

18A good example of a "narrow" distribution (on 9t+) is the binomial distribution eocountered in §2.3.4 in
connection with the optical thickness field for random binary mixtures modeJs wherc the density can lake ooly
one of two values (the sum of several such BcmouiHi variables is bin~JPially distributed).

19Bul not alll An exception is presented al lhe end of cbap. 5, within th~\fr.uneWOrk of multifractals.

20Anolber useful properly of +(q) is that sums of independent random va~ables imply convolulion of tbeir p.d.f.'s
hence products of their 4'(q)'s or SUffiS of lheir c.g.f.'s: this makes cbaraheristic fonctions an essential tool in tbe
theory behind "central limit" meorems. In particular, they have been(~xtensively exploited in the establisbing
lhe (universal) mathematical properties of mullifractals conslIUct~liy slochastic cascade processes (sec app. C,
for a rcview). ,~

21This "non·exponcntial" behaviour is welI·known in the"ÇCi'ltext of (direct) gaseous transmittance for large
spectral bands wbere onc must averagc over many frequencicS'Wilb very diversified values of te: various morc-or·
less ad hoc models (such as the above) bave been proposed and lbeir parameters fit either to experimentaJ data Or
to "line-by-line" lransfer calculations [e.g., Goody, 1952].

22By way of contrast, it is easy to imagine lbal it is a keme1 dependent on lep(x)-indeed Td(x,y)-that controls tbe
mOre importanl RW in 9(d (or M, wben bonnded). .

23Recall lhat the 2,d order Legendre polynomial is P2(x) = (3x2-1)12 and, in our notations, Rayleigb's pbase
= funclion is (3116ll)[I+cos20].

24WhiJe on the topi~ of ellipsis (an unforeseen jump in logic), tbis tums out to be a rather uDcanny retum ta
Keplerian "sources" since the very name "phase function" bappons to find ils origins in planetary (or lunar)
astronomy but in the field ,of radiometry. over and above celestial mecbanics(see secl A.4 for precisions). In
secL 3.1 on DA phaseJunctions.,we,willfind ,an,even weirder parallel wilb,Kepier's. geo~etric~,theory for the
discrete distribution of planetary orbits via (quantum·Jike) group theory. A typical Keplerian "premonition"
[Koestler, 1959] of discrele atomic orbitais ... bence pbase function calculation (in the case of molecules, at
leasl)•. Our attitude towards phase functions however is·closer te KepJeriau practice: we will postulate them ex
nihilo (cbap. 3) and find pbysical justification for tbem after (eq. (A.2D-21), seél. 3.5 and cbap. ~7). Tbe
unifying concept in aIl' of the above is' of course spberic31 harmonic analysis. "harmony of the spheres" in
Kepler's jargon and more synthetic outlook on the greater scbeme of things.

r;,
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25Notice lhat the upper sign (8=+1) trivializes the whole m.s. problcm: what isn'( transmittcd dircetly is scattcred
forwardt The Jower sign (g=-I) makes the problem I-D but ccrtainly Dot trivial: the position of a (non-modom)
walker aftee an jonoite cumber of unit steps iD alternate direclions slacting al the origio is
1:ii(-I)' = 1/(1-(-1» = 1/2.

261D gcaccat, similarity analysis is more involved. For instance, with Navier-Stokes equations (C.I) in miad, wc
make the following traosfonnations x~Àx (henee V~Â-IV) and v-JoÀHy (benee l-JoÀ.l.Ht). an iodependcot
rescaling of the dcpendent variable .is required because of nonlinearity. Here. we must impose a 1.-+1.
transformation in order to accommodatc the linearity of transfer W.c.t. ils sources. Moreover, Wc must impose
1-).,t, siDee c must remain constant.

27Tbus any rescaling of density, such as tbat rcquired by the (Corrsin·Obukhov) pbenomenology of passive sca1ar
advection by turbulence (âp-+I..H,6,p), can be absorbcd ioto a change in )C as long as the average density is rcscalcd
in the same way. (This is required by the linearity of the mass continuity cquation anyway.)

28As pointed out by McKellar and Box [1981], the weighting of this component seems to he a mattcr of personal
tas te.

2910 the contcxt of transfert we should rcally he say "nuxcs" (in astronomical usage) or "irradiances" (in
geopbysics), Specific intcnsity or radiance can only bc defined (observationally) in tenns of the surface
brightness of an angularly resolved object such as the Sun, planets or the sky itself. Note that the astronomer's
"magnitude" is flux on a log (or "arder of singularity") scale.

300rbe geometrical distance ta the stars may he huge but the optical distance is tin)' an~J, as a matter of fact. is almost
entirely accumulated in the last la km or sa arter following the light ray through" vast expanses of optical void.
Indeed, one airmass·worth of Rayleigh scattcring brings in =0.1 in optical palb (a("visible" wave1cngths). This
is indeed a prerequisite for obtaining reliable~ information by any means of remote sensing and appHes to
any other "visible" objet whether celestial and viewed from the ground, or terrestrial and viewcd from orbit,
whethcr the waveleogth is uvisible" or oot, strictu sensu.

31This resullS directly ~om ilS formaI definition: aM = Mn(!Jt<IIM) wJ'cre&'l is lbe "closure" of M (M plus ail of
its limit points) and 5R \M:, ils complement in ~d (tbe clements of 9\ which are not in M). Both these sets are of
course tbemselvcs closed and closure is obviously preservcd by interscction.

3210 this.jDavies, 1978] case, an approximate diffusion equation, but tbe same comment applies to the exact
transfer'èquation, cf. Stcpheos [1986]. In both cases, tbe difference betweeo the bon~ Jide absorption (or
multiplication) sink (or source) tenn and the "pseudo.source/sink" tcrm is a vcry important faclor of ~-l, cf.
discussion in sect. O.S.

33Tbese boundary layers are related to the penetration of direct radiation hence, eveo in absence of absorption, they
will be exponcntial (on a 1!J.Lo scale) in quasi-homogeneous cases but algebraic in scalingly inhomogeneous
cases.

341t intervenes, for instance, in the calculation of tbe equilibrium planet~ temperature in the approximation of no
thermal, greenhouse. nor atmospheric circulation effects: «t-A)FoJqa) 14 for the sub·solar point (Fo is the solQL
constant and aB, the Stephan-Boltzmann constant), ta he divided by ~2 for the average On a slow rotator, and by 12
for a fast rotator,

35An obvious exception is provided by orthogonal DA(d,2d) systems witb d ~ 2 wbere, the incidence direction
must he along one of the axes (hence a finite amount of radiant energy is found propagaiing at J.1 = 0).

36For instance, one could derme a second (pseudo-)terminator witb the help of uz.'t-uo and integrate spatially the
fluxes up ta eitber side of it.

37Tbis is equivaJent to secking the planetary albcdo of a hypotheticaJ planet covercd witb small (unresolved but
still radiativcly independcnt) pixels, cach made of many reptieas of the same medium (if the cyclical Bei are ta
make any sense), and relaxing the (non.essential) constraiot on ua that it ties in a horizontal coordinate plane.
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Appendix B

TWO SIMPLE TECHNIQUES IN NUMERICAL TRANSFER,

ApPLICATIONS TO MULTIFRACTALS AND ORTHOGONAL BEAMS

Overvicw: We summarize the twomost straightfo,rward numerical procedures for solving
transfer problems in arbitrary geometry and for arbitrary optical density fields: Monte Carlo
simulation, on the one hand, and relaxation of finite difference equations, on the other hand.
The firsl Iwo sections are devoted 10 each one of these approaches and special attention is
paid to their application to DA(d,2d) systems (Le., orthogonal beams). There is only one
source of error in Monte Carlo simulation and it is wcnô:understood: finile photon statistics..;.
In parlicular, it can accommodate arbitrarily lhick ceUs which are bound to arise in
multifractal media. In sharp contrast, thick ceUs pose a fundamental problem for finite
difference approaches where cross-cell gradients are neglected; the only reliable solution is
to imbed finer meshes that ultimately make the sub-cells thin, but then the method can no
10nger~l5C'viewed as "simple." For the purposes of the numericalexperiment presenled in
chap. 6, we adopt a hybrid solution for the thick cell ;roblem which proves satisfactory in
the case study but has its limitations (alternatives are briefly discussed)..

In short, Monte Carlo simulation provides a reliable solution of the real transfer
problem (there equations are identical) but accuracy cornes at a very high cost in CPU time.
Finite difference equations may by derived from those of the transfer problem in various
ways but they lake on a life of their own; in other words, they can be solved efficienily and
accuralely (the relatively slow relaxation procedure can eventually be replaced by a direct
sparse matrix technique) but they are only guaranteed to be reliable-even physical--if the
"thin-cell" rule-of-thumb is strictly enforced. Since this is impossible for multifractals in
praclical situations, sorne compromise must be settled upon but, in turn, this rnakes it
man.datcm' t~at finite difference techniques be carefully calibrated with the "fool-proof'

..... :/....~~
Monte Carlo method. In particular, the scaling behaviour of the fully relaxed solutions must
reproduce that obtained with high quality Monte Carlo simulations.- Fora specific report on
how well the two numerical techniques compare when applied to the multifractal density
field, see chap; 6 and, having satisfied the numeIj.cal reliability tests, the results are also
discussed on physical grounds. . . If r

'=,
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B.l. Direct Monte Carlo Simulation

B.l.l. Safe-Guards. Bins and Associated Uncertainties

The simplest possible way of obtaining a reliable answer to a radiative transfer problem
with multiple scattering is to simulate the photon's random walk (RW),stâiting at the source
and, in a conservative l simulation, ending as soon as the boundary (ëlM) is encountered.

This is known the "Monte Carlo" method. Given the vast amount of technicalliterature
available on the subject, we will discuss it only enough to underscorc the aspects wherc DA
transfer a1lows a degree of conccptual simplification in the numerical procedure (whichcan
often be "optimized" at the level of FORTRAN encoding as welJ). Before proceeding
however, it is important to stress that, as long as one exccpts the validity2 of the radiative
transfer equation (w.r.t. MaxwelJ's equations), Monte Carlo photons are simply the digital
analogs of their real counterparts and the only fundamental difference is in the numbers

involved. This contrasts sharply with other Monte Carlo partic1es designed to solve other
types of equaUons. For iriitimce, the propagation rules for "diffusing" partic1es (of which
"ants" and "termites" are special cases [see, e.g., Bunde et al. [1985]) are dictated by the
spatialJy discretized diffusion equation whereas the propagation rules for Monte Carlo

photons are based on the very same premises as the continuous space transfer equation
(whether in DAs or CAs).

For the albedo problem, the photon starts its journey at a random point on the
illuminated,part of the boundary (ëlM:;;), in the specified (uo, inward) direction. In the case
of conservative scattering, (it can be shown that) this event will happen-with probabilily

l-in a finite number of "steps." In practice however, it can take a large amount of

CPU-time, too much for a single realization of the photon RW which is sometimes called a

"history." Moreover, this is eventually within a single realization of the stochastic optical

medium. So;aC:my rate, one must a1ways set some'maximum number of steps (nmax), stop
the RW if {( is reached before exit and "bin" the photon as "Iost." For the simulation to be

valid, the total number of lost photons (NlosJ should be very small éompared to the grand

total injected (NtoJ, otherwise, one has in effect a spurious absorption (that, unlike real
absorption, only affects highly scattered radiation). Thick homogeneous media arc the worst
offenders w.r.t the loss of photons since the photon free paths are at their absolute minimum

;'::':'~

in such media (see sect.5.l). Fortunately, the scaling of the RW statistics for thar,casc is
welJ-known and very simple: E(rm ln)-nm/2 (anyd)where ris thedistanêe (in unitsof

m.f.p.'s) covered after n steps (sectp.4); hence a criterion (not necessarily optimal but)

that works welJ enough in the homogeneous case is log2ninax~210g21: where 1: is the
(greatest) optical size. The same criterion has never failed to work in reasonably
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inhomogeneous cases. If a simulation yields N1oSI>0, the tolerance (Niost w.r.t. Ntoù will
depend largely on the desired accuracy in ail of the other "bins" (see discussion below). Of

course, the problematic simulation can always be restarteé with different nmax and Nlol, the

existing photon statistics are not wasted.

Having dealt with this practical problem, we now assume the photon has reached aM

in n steps (scatterings). It is then "binned" according to predefined spatial- and/or angular

criteria which can be further subdivided into orders-of-scattering (O~n~nmax),3 The final

subdivision is not always possible, in temlS of the available memory and/or CPU lime, nor is
it necessarily desirable. For instance, one can be interested in estimating simultaneously

albedo and transmittance flux (angularly integrated) fields (Nspatial bins), on the one hand,

and order-of-scattering decompositionsby powers of 2 for thè' spatially integrated fluxes, on

the other hand; this canbe done with ~2N+2log2nmax integer bins (+1, for unscattered

transmittance) over and above the NxL (usuaUy rea14) values needed to defin,eiÎhe optical
/'

density field. In the foUowing, a "bin" can be anything from a global",response (e.g.,
\~)

"transmittance," defined as exit from any non-illuminated part of the boundary, into any

direction and after any number of scatterings) to a narrowly definedradiance (e.g., exit out

of top pixel #3904, into renith angles in the range 21 0_200 after precisely 6 scatterings).'="·

By returning literally to the kinetic origins (app. E). of radiative, transfer theory, the

Monte Carlo method directly yields an "estimator" of the flux going into the bin

F• Nbin
bin= -Ntot

,~

which (by construction) converges to the required radiative flux Fbiri as Nlot4".

Equivalently, on can think of many independent experiments conducted for some finite

NIOI~l, then

Fbin =E(Fbin) = EWbin).,'~
toi

However, Nbin is then only a r.v; but ilS a priori variance is weU-understood [e.g., Spanier

and Gelbard, 1969]:

var(N . ) - Nbin(Ntot-Nbio)
bm - Ntot - 1

is an unbiased eslimator for Nlot>!. This is totaUy independent of the specific nature of the

problemii:~~relr(~-nu."~~on of finite discrete statistics. Notice that NbiO~behav~~ililœ a

Poissonian i:.~': '.;;: :·j/bin«Nlot but, when Nbin$Ntot (e.g., total albedo fora thick ~
\ ".0«(

medium), then thq." factor on the r.h.s. makes use of the (certain) fact that Nbin will never .
, __ , J ~ ,

be greate~)'!,a!1 Ntot\;i.6~, it is then Ntot-Nbin that is approximately Poissonian. This tells us

!hat ~<\~
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(B.3a)

(B.3b)

In DA(d,2d), we

(B.lb)

i'
1/

CF
., ) - Fbin(1-Fbin)

var bm - N
lot "

for Ntot» 1. In other words:,"lv10nte Carlo r.m.s. errors, ;1var(Fbin), decrease relatively
slowly with I/;1NlOt (and CPU-time of course increases directly with N,où.

Finally, there is no reason to keep the digital "detectors" on the boundaries only. Il is
relatively straightforward to set up (in RAM, digital) flux measuring devices on either side of
ail the boundaries of ail the cells. In CAs, they are incremented at the same time as the end
point of the photon's current step is sought. In general, periodic horizontal BCs require
more attention and, furthemlOre, in DAs special care must bc taken to account for those long
horizontal steps in optically thin rows where one or more cycles arecrQssed (in which case,
the same photon activates the sorne of the counters more than once). Eqs. (B.o-Ia,b) apply
(Ô" bins for "exiting" fluxes where the histories are necessarily terminated. As far as we
know, the question of Monte Carlo uncertainties on internaI fluxds has not yet been
thoroughly researched. Generally speaking, we expect that, if sorne N'ot is considered
sufficient for resolving the exiting fields, then the accuracy of the statistics for the internai

fields will be in!:Crmediate between those obtained for the (local) albcdo and transmittance

fields.
B.1.2. Numerical Sinullation of/he Propagation and Scattering Processes

j)"
In order to proceed, ail we need to know is how to propagate and how to scatter the

"digital" photon. Propagation is trivially simple in the homogeneous case where each slep
length is an independent exponentially distributed random variable (using optical units):

1= -lnS (B.2) °
where S designates a random number uniformly distributed on [0,1]. Isotropie scattering is

hardly more involved:

a= 21tS in d=2

a= co~-I(1-2S), cp = 21tS in d=3

in CAs, where the direction cosines (l1i' i=I,"',d) are obtained as usual.
have simply

l1i = 1-2int(2S) (BA)

, and we remark that, if one opts for the case of "all-side" scattering (t=r=O, s=1/2(d.l»), then

one less cali to the(pseudo-)random numbcr generator is needed. We also notice the the
ealculation of the "piercing points" where the ray encounters the various boundaries (which

')

are necessary to deterrnine whether the photon is still in M or not) is eonsiderably sirnplified

in the DA case. Anisotropie scattering is again a lot simpler in the orthogonal DA systems,
using the probabilistie meanings of the basic phase function parameters (t,r,s). For CAs, we
refei' the reader to the Iiterature for d=3 and, for d=2, we provide the formula for the

'l'0., n
. 1 ~,
.1 t

l
li,y
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scallering angle according to the 2-D Henyey-Greenslein phase function proposed and used

by Davis el al. [1989]:

a= 2 tan- l [( lt,) tan Î (1-21;>] (B.5)
" ",

In this volume, it is described in sect. A.3, cg. (A.21 b) anùexploited in sect. 4.1. Eqs.

(B.3b) and (B.S) are wrillen with inverse trig functions only for clarity, it is never necesi:ary

to actoal!y compute them sincc the the ha$ic opcrali f ll1s cal! only for the direction cosines:

propagation along the various axes and angular addilion (using products and sums of

direction sines and cosines, not via trigonometric function cal!s).

We now turn to the more numerical!y chal!enging case of inhomogeneous media. Ali

of the above applies without modificalion exccpt that, arter drawing the exponential!y

distributed optical distance to cover using (B.2), one must determine the corresponding

geometrical distance by solving

1

K f p(x+us) ds = -ln1; (B.6)
o

for 1; see fig. B.I for a schematic. So, on the one hand, our particles follow the slochastic

rules in (B.6) for spatial propagatiop, and on the other hand, any one of those associated

with a phase function choice; exar;Trîès being provided in (B.3-5). il is not hard to see that_
<~;,

the histories (tracks) of such particles are Markov chains, with "transition probabilities" .. -,

determined by the said rules. In steady-state injection conditions, the relative probability of

finding a particle in a "state" (x,u) is in direct proportion ta radiance I.(x), asconstrained by

the ccûpled inlegral equalions spelled oul in (4.6-7) which play the role of Kolmogorov-

Chapman equations for the slOchastic proccss associaled wilh the photon random w&'&'.s
Returning to the numerical solution of (B.6) can only be d,9ne by viewing each

elementary cell as a homogeneous medium of optical thickness 0't(ir;(~p(i)/o, where 10 is the

grid constant (usually taken to be 1) and i=int(x+us) is the inte~rtcoordinate vector of the

current position of the photon and pei), the discretized densitYvalue. In general CA (hence "

DA) transfer, this means obtaining "entering" and "exiting" piercing points andÎ[or each and

ev~ cell on the way and using their distance to increment the I.h.s. of (B.6}-there are

however various ways of optimizing this calcul~n. When enough scaltering materi~1 has

beenencountered, a simple interpolation withinihe'last cell determinesthe end point of that

step (and scalleiY~~les can be reckoned). Assuming 'the grid is aligned with the

propagation axes, this)t~p,can be considerably speeded upin DA transfer, not only because .~

the piercing poinL~ are known a priori from the direction of propagatiOrf;but also because ail

the cumulated amounts can De pre-computed (say, from the boundary at coordinate 0) in all d

directions. This 'carries a cast in lerrns of memory requirement but allows the end point's œil
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to be found in far less operations by doing a binary search for the readily known optical

coordinate. For this to be worthwhile, we have put ourselves in the more interesting cases

where IOg2L and IOg2N are both relatively large integers; we are indeed comparing these
numbers of operations to anywhere from =1 to =L or N itself with a bias towards the higher

end of that range since the cells are usually made thin on average.

Note on vectorization: From the above, it is clear that lhe computation of a RW is so full of

contingencies that it seems impossible to be-even conditionally-"pipe-lined" through a

vector processor. This applies to the binary search in DAs too, but the internai DA field

bins' incrementation is readily vectorized. The two remedies left to explore are: (1) to

propagate a whole bateh of photons unconditionally and periodically ask if they are still in M,
and then to consolidate the sub-batchs that qualify [W. Ridgway, p.c.], and (2) to fill the

machine's RAM with independenl realizations of the stochastic mcdium and injcct one
photon pcr medium, making the inner most loop-inside the binary search for DAs-eoverc:::>

the media [P. Gauthier, p.c.]. Both solutions have relatively minor inconvcnienccs: the

former calls for more "book-keeping" code, the second heavily taxes the mcmory allocation,

which usually carries a cost in priority. We expect that as very fast massively parallel

facilities become available, and more "user friendly," Monte Carlo techniques will bccome

very po.p.ular, since they are too simp)iê conceptually to introduce serious "bugs" that eannot
be ïinmediately eradicated. .

B. 2. Finite Differencing Followed by Relaxation

B.2.1. General Principles and the ProblemPosed by Thick c,~lls __

Bcfore even contemplating the idea of computing enscri1bJ~l\'ltÎbge properlies, it is

important to apply astringent quality control on our product at the level of single realizalions.

Recal1 that we are attempting to determine a whole slew of (linear) functionals of a

(potentially violentiy) random density field. In spite of the proverbial robuslness of the

above Monte Carlo lechnique, it is hardtoC"BCiieve" the resultant fields by visual inspection

since they look very random, as they should. We are, <ilter aIl, using an intrinsically

statistical method to determine the value of a very large number of random variables. To

probe the accuracy of our results,it is desirable lO reduce to a minimum the melhodological

source of uncertainty-at least on one "typical" case. The traditional procedure of numerical

code validation in transfer studies is to retrieve results published in the literature, for the sarne

BCs, phase functions, illumination geometry and, most importantiy, optical density field

[e.g., Lenoble, 1977, forplane-parallel media]. This is of course nol possible when dealing

with DA phase functions and multifractal density fields. We have therefore decided Lü focus

on one "benchmark" realization of the log-normal cascade and invoke a numerical
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methodology that is completely differcnt (Le., that is prone to go wrong in a very different

way) from the Monte Carlo simulation technique, and to see how weil the results agree; il
should theoretically he within the known-or rather, anticipated-accuracies. This is,t~e

strategy behind the numerical work that lead up to the results confidently presented an,!"

discusscd on physical grounds in chap. 6.

We have naturally opted for the next simplest technique (after Monte Carlo): finite

difference equations6 solved by straightforward (Gauss-Seidel) relaxation, no over­

relaxation or under-relaxation paranleter is uscd, for simplicity (otherwise it must he carefully

turned). Here again, there is abundant literature on the topie, so we will focus on the speeific

application to DA transfer. The easiest way to visualize this method is to use the framework
of time-dependent DA(d,2d) transfer in the presence of multiple scattering (m.s.), Le., the

fully coupied finite system of linear lst order PDEs in eqs. (3.4-5a,b). We will take d=2 for

specificity and drop the non-m.s. sources (this is the situation of practical interest described

in the above anyway):

[1 ft- +-Ay#y +Az#Z] I(x,t) = Kp(X) (P-1}J(~;t) (B.7)

where we use time units such that c=l,let 1 ,,; CI.;'l,.I...l.)T, and

A Y=( ~ -r ~~) .". AZ=( ~ ~ ~ ~) (B.8a)
o 0 0 0 0 0 0 -1

P = (: ~ : :) 1 = (b ~ ~ ~) (B.8b)sstr 0010
ssrt' 0001

We arc sccking the steady-state solution I(x) of the horizontally cyclical albedo

problem BCs:
I••(y,O) = 1, I..(y,L) = 0 (O~yQ{) (B.9)

" I±.(O,z) = I±z(N,z) . (O~Q)

This solution is of course unknown to us but we can make a initial (educated) "guess,"

IO(x), and this provides us with initial conditions, I(x,O), for the t-dependent problem.

Since the (boundary) sources are constant, we know there exists an equilibrium asymptotic
solution I-(x)=I(x,oo) which is none other than to our unknown radiance field; at the same

~ time, thisguarantees the (absolute)numericalstability of the relaxation method [Press et al.,

1986].' Clearly the proximity of IO(x) and I-(x) in function spaee is the determining factor

for the convergence of the method and we return to this issue in the next sub-section.

The discretization of (B.7) on the same rectangular grid as used in the previous section,
leads to
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ct
[Il+l(i)-fl(i») + L,Aj/lj 1'(i) = Kp(i)/l1 (P-/) (l(i) (B.IOa)

1
-

where Kp(i)/o is the oplical thickness T(i) of lhe;!ell al the grid poinl of (integer) coordinates

i. In practice, one would normally take In=1 for simplicily in coding. /lj is the finite

differencc operator in the j'Il direc,~on:

" /ljl'Ci) = l'(i+uj) - l'Ci) (B. lOb)

Rearranging (B.10a,b), we lind lhe simple iteralion rule7

ct
Il+l(i) = [Pcell(i) - L,Aj/l j ] l'Ci) (B.II)

1

and we are seeking its fixed point I*(i); see fig. B.2 for an illustration. Pceu(i)=Pcell(t(i» is

the 2dX2d "transfer matrix" of tlle illl ccli, of oplicallhickness t(il, and which is neccssarily

block-symmelric; for instance, in d=2, it rends

Pcell(t) = (~ i !i) (B.12)
S S R T

Lovejoy et al. [1990) establish lhe conneclion between the slcady-stale, It+!(i)=ll(i)=I*(i),

version of (B.II-12) and Preisendorfù's [19651 fundnmenwl"lnteraclion Plinciple" which

is the natural poslulate for radiative tl1lllsl"er on discretized spncc-the basic trnnsfer.equation
.~

(B.7) with %t=O being ilS "Ioca'" (DA) version. We should also mention that lhe

steady-state syslem of finite differel1l:e equations cano in principle, be solved directly by

some oplimized inversion proccùure for lhe corresponùing sparse malrix problem (rather

than the above iteralion which not consiùereù~t() be an efIïcient way of solving linear

systems, large or small). ((

It is imporlant to realize thal I*(i) isÜie solulion of lhe large coupied system

steady-state finite difference equations, and nol the spatially discrelized representation of

I~(x), the exact solufion gf the correspondin{~ontinuous space equations which is what we
_< v

are really al'ter. ,'Even in ideal circumstances (absence of numerical round-off errors and
:..:::.

using some non-approximate method, e.g., sparse mnlrix rather thnn relaxation algolithms),

I*(i) and I-(ilo) are only as close as the lineness of the grid cnn make them, over and beyond

the homogeneity scale in principle. This is a fundamental differencc betw~i~ the two

techniques presented in this appendix, the Monte Carlo method is totally insensftive to the

spatial discretization which is only useù in practice for slOring an image of the medium in

computer memory, with no impact whaL~oever on ilS perfonnance. The method of slatislÏcal

simulation respects the physics of the problem completely: below the discretization (or
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"homogeneity") scale, the medium is treated as homogeneous, while f.p.'s that cover several

cells account for the variations in density exactly.
At this point, we must consider the practical determination of the coefficients (T,R,S)

in (B.12). Comparing (B.9-lll, one finds

Poell = [1-t(i)]l + t(i)P (B.13)

where the 1st term expresses (linearized) extinction, i.e., direct transmittance for a very small
optical thickness, and the 2nd expresses single-scattering contributions.

We are now in a dilemma because, on the one hand, (B.13) makes no sense if t(i) is

not very small (w.r.t. unity) and, on the other hand, t(i) can easily change by a very large
factor within one realization of the kind of "extremely" variable density field models we are
interested in (cf. sect. 4.4), e.g., the "conserved" multifractals described in app. C. In
practice (chap. 6), for a grid of size t..=Ulo~103, the thickest cell can be t..Ymax~104 times

denser than the average cell «p>=l) and therefore cannot be made thin (via lC) without
making the whole cloud optically thin! Indeed, if tmax~lCÂ.Ymax«1, then
<'t>=Â.<t(i»=1CÀ«Â.I-Ymax. In the "typical" case studied in chap. 6, this yields ~1/l0; in
generaI, the maximum order of singularity to be observed in a single realization (Ymax) is

already ~d for "microcanonical" conservation [Schertzer et al., 1991] hence >1, forcing <'t>
to go to zero as Â. increases. This is an unescapable consequence of th~,singular nature of a

nf@tifractal field: its maximum (and even the typical contributions to the mean, cf. app. C)
increase faster than Â.d, so we are guaranteed to obtain thick cells sooner or later.

The most obvious fixes for this practical problem are (1) imbedded sub-grids (hence
far more complicatcd code) or, (2) interpolation using a tabulation of (at least !WO of) Pcell'S
coefficients (say, T and R) for the chosen DA phase function and optical thicknedés'that

range from the end of the strictly Iinear regim\~q-g)t~1/4) to the antiêi~ated t max (~100).
The disadvariÛige (danger?) of the latter appro~h,js that, in the spirit of (1st order) finite

differences, all ~~~dients that might otherwise 1ifise across a side of a single cell are
neglected. A third avenue is currently being investigated,cusing a "semi~impIicit" approach in

,>'.- ,~ - \

the finite.(lifferencing from the oÜtset [D. Schertzer and R: Borde, p.c.]. 0fcourse, &ing
~ ~

another finite difference technique, it will also have to pass the reliability test before being
adopted, i.e., favorable comparison to high quality Monte Carlo simulations for various

.--;~~

benchmarks, incIui!ingtIîé multifractal used in chap. 6 (along the lines of the discussion in
secl6.2) as well as sorne of the scalingresults found in table 4.1.8.\~

For the moment, we havéadopted the second and simplest solution and applied it with
\\

great caution. Naturally, the Oogarithmic) interpolation is done before the iteration was
initiated. Using mainly optically thick cells (R~l, T~O) can obviously have devastating

effects on the final numerical results; Lovejoy et al. [1990] discuss this in connection with
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their criticism of the the "real space renormalization" approach developed by Gabriel et al.

[1990). This is not a major concem here since the cells are explicitly required to bc mainly

thin, only exceptionally will they bc quite thick; this requiremcnt dO\1s however put an upper

bound on the overall multiplier of the density field (le). In this sense, the finite difference

technique is more limited than the Monte Carlo technique bccause, although they are not
resolved by the method, gradients on the scale of a single cell are (like everything else)

exactly accounted for (in the limit of very many photons).9 Generally speaking, the problem

of thick ceUs must bc carefully addressed whatever the nurnerical approach (other than Monte

Carlo), e.g., the invariant irnbedding formulation (followed by "addingldoubling") describcd

by Stephens [1986).

B. 2.2. Beginning and Ending; lnitialization Strategy and Convergence Criterion

There are only two remaining questiol1s but they are quite important (CPU-time is

involved). What is the best initial field IO(x)? And when do we stop iterating (B.l!)? As in

Monte Carlo simulation, one must set an arbitrary upper bound to the numbcr of ilerations (if

only, for safety) but the question of tolerance is more of an art than a science. We can star!

by computing the "LP-norm" of M=ILJt-1 on our function space from its definition:

II LH IIp = L(j}JM lt.lj(x)IP ddx =L(j}L11t.lj(i)IP (B.l4)

The most popular of these are10 p=I,2,oo but any one can be used to define the "distance"

between Il(i) and It-I(i) which is use.d as an estimator of "where we are" w.r.!. I;j.n, the
"discrete counterpart of I-(x). We used our "artistic licence" to choose p=1 and used

IIIl-It-11I1 to monitor the situation but, in fact, we stopped the iteration when roughly the

same amount of CPU time was consumed as for the Monte Carlo simulation; this gave

relaxation a slight edge in terms of accuracy (sel. below). This strategy is obviously not

optimal but satisfies our present needs which is basically to compare the two meth~c1s.

Conceming IO(x), any choice will do (the relaxation method is "absolutely s~ble") but

sorne are obviously better than others. Il was initially hoped that, in the case of multifractals,

the previous steps in the cascade would do weil. Such is not the case, unless ail the

intermediate radiatioli"T1èids are in fact required (e.g., to visuali7..e the development of the
\\

"radiative caseade"). During'the preliminary runs on multifractaIs (at,0=5 for A.o=2, hencev
À.=32), it became apparent that decimating the (DA) radiation fields on a finer (N=L=4À) grid

than the density field did not improve the accuracy significantly. Nor did it help (in temns of 0

overall convergence time) to use the radiation fields associated with previous (n = 1..··,4)

cascade steps; the optimal initialization strategy seems to be to use the analytically known

solution for the internaI(~di~j.on fields corresponding to the "independent pixel"
....-

approximation (see sect ~.4). SPecifically, we have

o

i\
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(B.l5)

with
1\

{

IP.(y;O) = l+Rp(t(y» \\

(dl,~) = 2Rp(t(y» \\ (B.16)
dt' y tfu) 'iv

V ~\\

Il
1\

where Rp(t(y» = 1-Tp(t(y» and Tp(t)=I1(l+rt) and \\
\\z ~

t'(y;z) = leI p(y,Z') dz' ''::(B.17)
o '<:-;:..:.::::--- - \

'<:::::.::::::.~~::;::::

We also have I,.(y;z) = Tp(t(y» for ail z. Definitions I,..,(y;z) = I.,(y;z) ± l,(y;z) finally yield

the four required DA radiances: I;.(y;z) = [I,.(y;z) ± Tp(t(y»)/2 and ~(y;z) = I,.(y;z)/2.

Note'on vec(orization and eeneral cQmparisQn Qf the tWQ methQds: The time consuming step

in relaxation is of course the iteration of (B.1l) above but it'vectorizes spontaneously on
C' condition that 11+1(i) and Il(i) are stored in distinct arrays, otherwise "recurrences"ll will

arise. Moreover, we need memory for T(i), R(i) and, preferably Sei) too; note however that

one of these can take the place of t(i) once the pre-computations are finished. In ail, a

DA(d,2d) relaxation calculation on a Àd_grid caIls ideally for a memory aIlùcation of

(4d+4)Àd limes the number of words per real variable whereas an oplimized DA Monte Carlo

simulation with fuIly resolved internai fields calls for only 2dÀd integers plus 3Àd reals, Le.,

as much as four times less. This last estimate assumes that orders-of-scattering statistics are

not required everywhere; this would probably he unrealisticaIly time consuming anyway;

such decompositions should he limited~Q.average fluxes or, if absolutely necessary, exiting

fields in which case anJh?er (210g2nm':x+ 1)Àd-I integers are needed. In the end, the

somewhat mÇll"l: accurate relaxation experiment took roughly twice the amount of iline than
',./

tht,directly comparable (fuIly optimized DA) Monte Carlo. Recalling that Monte Carlo

alicuracy increases only as ;fCPU-time, this means that the two methods have roughly the

same accuracy per unit of CPU-time yield, but Monte Carlo has severa! advantages over

relaxation hence finite differences, at least at present For instance. the statistical method

naturaIly yields order-of-scattering statistics which contain valuable information on

inhomogeneous transfer effects (see sect. 6.5) as weIl as on the potential effects of

absorption.
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1When non-conservative scaltcring is being investigatcd, usually severa! cases are necdcd (a ronge of Wa values); il
is then aJways more efficient to compile the conservative ordcr~of-scatlcring statistics and then ta compute the
absorptive responscs:

n=-

Nbin.Œo = L mou Nbin,l (n)
n=O

By dividing througb by Ntol and Doticing tbat Nbin,l(n)lNbin,1 = probbin{n), we sec lhat

n=-
~Îll.mo=Fbin,l L mon probbin(n) =Fbin•18bin(0l0)

n=O

wbcre gbin(') is the "(moment) gcnerating function" of the discrete probability distribution of the ordcrs-of
scattcring in the givcn bin. The otber-more straigbtforward but less efficient-option is to allow for the
possibility of actually slopping the RW inside M (by calling the machinc's random number gencrator and
campanng the result to a single value of mo, uncbanged for the wbole simulation). ln computational applications,
the above summations will of course bave te be tnmcated (at nmal)'

2The status of our understanding of the connections betwecn radiative transfcr and mainstream opties fonnalisms is
brieny reviewed (in a fooloote) Olt the beginning of app. E: to the best,o( our knowlcdge, the most rccenl
contribution to this effort is by Wolf [1976] who dermes radiance cxplicitly in tenns of coarsc-graincd quantities
in the frameworks of both c1assical- and quantum EM theory.

30ther statistics cOIn 01150 be obtained, e.g., the horizontal distance covcrcd betwccn cnlly and cxit (this is of
interest in the "cnvironment" cfrect in problems of iohomogcneous ground under thin acrosol atmospheres [Taoré
et al., 1981]). Furthennore, i( the outcome is a random quantity (as in the above example), there is no obligation
to always use a decimated bislogram approacb, one could equally weil (ocus directly 00 statistical moments or
even the cbaracteristic (unction. Such is the nexibility of the Monte Carlo mcthod.

4It is possible to use an integer in those cases where the density field cOIn only take on a finite number of values
(e.g., the "(X-model" multifractals).

SThe equivalent integral equation of (steady-state) transfer is of course readily obtained from the standard "intcgro­
differential" equation of transfer given, e.g., in (A.29). Proof of the equivalence of the two
formulalions--<>blainiog (A.29) from (4.6-7), or simply (4.5) from (4.6)-hinges eotirely on the exislance of the
directional derivatives u·Vlu(x). This existance is ecrtainly guaranteed if bath deosity values and sources are
finite but"remains an open qU~stion for media (such as fully developed muJtifractals) with singular dcnsity values.
The results presented in chap. 6 are howe~er very encouraging in this respect; notice. in particular. the

_smoolbnc:ss of the flux componenls in the direction of the beam in figs. 6.6-7b,b'.

6The qU~.5Jion as 10 whether we cOIn expect a priori quantitative agreement between a method based on the integro­
differentfài'Jormulation of transfer (sucb as finite differencing) and one based on. the purely intcgral formulation
(such as Monte Carlo simulation) is breifly addressed in the opening discussion of §4.4.1.

7Notice that the procedure in (B.ll) reads somewhat like a cellular automato~ cule with nearest neighbor
interactions but where the state of the lattice gas is described by 1(1), i.e., a 2d-vector that can assume eontinuou5
real values.

8Prcliminary resuHs using tbis approaeh yield different exponents than ours for the detenninistic monofractaJ and
eveo the aJbedo of homogeneous square [Borde, 1991]: exaetly the same symptoms as in previously altempted
finite difference approaches [Gabriel, 1988] for the same media. So, Dot too surprisingly, this technique will ncod
further refiDement.

9The Monte Carlo method mOlY Dot have any fundamental problem with thick eells, but there is a practicaJ one: if
ever a photon wanders too far iota a thick ecU, it wilJ ooly get out agaio Olt lhe expense of copious amounts of
CPU lime (scatterings)1

l~ote/th.(11 &1 11_ = Maxle U},xeM [I&II(X)I]. .

Il Duéi~~ ils presence in the "pipe-line," the value of a variable in the CPU register can differ from the copy Laken
fro~'lRAM; final seaIar and vector results generaUy differ and (at defauH seUings) the compiler inhibits
veèlorization. D -
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Figure B.1: PropagatiQn in an inhQmQgeneous DAlZ.4l MQnte CarlQ simulatiQn, A shQrt photQn histQry
with 5 scallerings is illustrated. The determinatiQn Qf the geometrieal length Qf the secQnd step is delailed;
nQtiee thal fluxes in the -y directiQn through the interfaces bctwccn (4,1) and (4,2) Qn the Qne hand, and bclwecn
(3,1) and (3,2) Qn the Qther hand, are incremen!ed (in thal Qrder). Sec texl fQr definitiQn Qf the symbols.
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Figure B.2: IteratiQn in a simple DA(Z 4l [mite differcnce scheme. The densily field p(i)=p{j,lc) is flfSI u<cd
la determine the cell's bulk responses: T(~o), R(~o), ans S(~o), where ~o=lCp(i)/o' In this case, we used
logarilllmic interpolation in a look-up table based on high quaiilY (megapholOn) MQnte Carlo simulations of
isotropie (t=1'=S=1/4) DA(Z,4) transfer inhomogeneous squares with pivot points atlog1o'to=-Z.0(0.l)+2.0; for
~<10-2,linear response was used and no cells cells with ta>10+2 were called for. The improved estimaleS of
IWO typical fluxes are illustrated; explicitely"we have (using 10=1):

l':i(Z.5,1) = T(Z,I) l.!z(Z.5,2) 1'.1(5,2.5) = T(4,2) qy(4,2:5)
+R(Z,I) 1MZ.5,1) + R(4,2) l.!y(5,f:5)
+S(Z,I) [lMZ,l.5)+1.!y{3,l.5)] + S(4,2)'[lM4.5,Z)+l.!z(4.5,3)]

The weakness of this method is2e assumption of constant fluxes (sampled nom;:::' llv at semi-inleger
coordinates) a10ng lIle ccII interfaces interfàecs (plaeed nomina\ly at inlCger co~rlÏiilaté.,"n'ihe perpendicular

._ direction). .
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Appendix C

SCALE INVARIANT MODELLING TOOLS

IN TURBULENCE THEORY

Ovcrvie~: In this appendix. we survey the devçlopment of scale invariant concepts in the

contcxt of statistical fluid mechanics, from Kolmogorov's landmark contributions (sect C.l)

to recent insight into the general properties of multifractal cascades. The basic ideas of

stochastic scale invariant modelling are systematically illustrated with three examples: the

"~." ..a ... and "log-normal" models of intermittancy in turbulence. These three models are of

direct use in chapters 4. 5 and 6 respectively. Moreover. we illustrate fractal geometry (sect

C.2) with several examples including Brownian motion tracks and percolation in random

binary mixtures. the former are relevant to standard photon transport in homogeneous media

and the latter are used to model optical media in chap. 2. Multifractals are introduced (sect.

C.3). as usual. with the help of a straightforward but specifie generalization of the

(mono)fractal "W' model, nan1ely. the "a" model and the concept is furth;é illustrated with

the "log-normal" mode!. With these examples in mind. the general multifractal formalism,

centered on the Legendre transformation. is presented (sect. CA) and it too is used in the

main body of the thesis--most notably in chap. 5. The field of multifractal modelling is in

rapid growth and the chosen examples are already somewhat antiquated compared to the

family of "urii'versal" multifractals (sect C.5)that are generically related ta continuous

cascades. This last family of models contain the "W' and "log-normal"·models as sPecial

(extreme) cases but specifically excludes "a" models for which the cascade is necessarily

, discrete. As in the realm of the living. energetic growth generically causes defects; in this

case. multiple--somtimes conflicting-defmitions. not to mention different notation schemes

that have been developed independently in the literature. reflecting the multiplicity of possible
"applications of multiple scaling theoryin physics (pure and applied). We will use our,

examples ta show how these diff~rent definitions sometimes conflict and sometimes agree.

Pictures are very important to all aspects of fractal research whereas this reviewis more

technically oriented and therefore cannot really stand by itself; basically, the essential needs

of this thesis---«y). K(h). Edk). Ep(k}--are covered in sufficient detail and we refer the

reader to Lovejoy and Schertzer [1990] for visual compensation.1
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In geophysical applications, al! of the above mentioned models are motivated by
turbulence theory (sect. C.l) and, accordingly, they primarily target the velocity (and related

dissipation) field(s) but they can in fact be applied to any geophysical field that is shaped by
reasonably nonlinear processes, i.e., in which cascade-like dynan1ics are expected to arise.
To boot, fractals (sect. C.2) and multifractals (sect. C.3-5) ~~n be used not only for the :;

'.
purposes of computer simulation (e.g., chap. 4 and 6.rcsp.) but also to characterize

'f
statistically empirical datasets (e.g., acquired remotelY from satellite platforms). We

,1 .
therefore briefly discuss, at different places, several diffrrent multifractal analysis techniques

..Ji
currently available, as weil as the results directly iïilêvant to clouds interacting with solar
radiation; in particular, this calls for a distinction between the "bare" (theoretical) and
"dressed" (observable) quantities, the latter are more variable and prone to exhibit divergence
of their statistical moments. Finally, we comment (sect. C.6) on the far more difficult

\ ..~\ .::;:.......

problem of passi,:~~calar advection by/iùrbulence, a problem di~;st~y related to that of
internai cloud structure.

C .1. Turbulent Cascade Processes, Power-Law Struct!r,~! Functions and
Spectra . ()' 1.::

C.l.l. Kolmogorov's Theory ofHomogeneous and Isotropie Turbulence

Macroseopie veloeity (and pressure) field(s) v (and p) obey the Navier-Stokes

equation: ,)
a 1[dt + V''V ] v = Va 'V 2 V- Pa 'Vp +[ (C.I)

where Va (10.5 m2/s) and Pa (1.3 kglm3) are respectively, the (kinematic) viscosiÎy and

density of the fluid (numbers referto air at STP) while[ represeI1ts a forcing term that can
/ .

partially ac;count for the effe(;is of BCs. ~Eq. (C.l) expresses the conservation of momentum
in the sy~tem and must bécompleme;ted by energy and mass conservation law (not to
mention BÇs). Meteorologically significant motions happen in the lower atrnosphere which,

'i as a fluid, ~an be eonsidèi'~d almost incompressible. Hence v(x,t) is divergence-free to a

high degree of precision: "'.
../";

'V'v =0 (C.2)
/' G ~

which is sufficient to close the problcm;ils long as the specifie acceleration teimf(x,!) is a
given quantity, no new variables have been added.2

We are interested in highly turbulent regimes where. the nonlinear term on the f8\ of
-".. . . ' .'" , '.' :::.. ':."--"

(C.l) dominates the vi~cous dissipation terrn. If L is the oyerall size of the system and VL

the charaeterislic velocity at that scale, thenwe require VL 2/L» vaVL/L2 or, equivalently,
that the overall dynamical time scale (Wù is much shorter than the dissipation lime scale

r. .'.' Il

(Olva); eitherway, weobtain



(C.5)
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VLLReL = » 1 (C.3)
va

In the atmosphere (ù=IOLIO"km'and VL=O.l-IOO km/h), the above Reynolds number is in;,
the range IOLIOI2. At scales somewhat smaller than L, boundary effects become negligiblt'
and tho~ of viscosity are also negligible down to the scale (1<» at which the flow becomes

l' ,

laminar'(Re4J=1). In the atmosphere l'\ can generally be put in mm-cm range. The range of
, ,

scales (L»l»la) where (C.3) (with 1 instead of L) remains true is known as the "inertial
range." Within this (vast) range of scales, the turbulent flow can be viewed, for simpiiCity,
as (statistically) stationary in time and homogeneous in space (as weIl as isotropic, but only
with much smaller ranges of scale in mind3). One talks about "fully developed" turbulence
which obviously needs to be maintained by continuous extemal forcing. In the atrnosphere,
this forcing is of course guaranteed by its state of radiative non-equilibium (wiiil clouds
playing a very importantraie).",

In his seminal "1941" paper, Kolmogorov défines a fundamental (scaleinvariant)

quantity "E," using a similarity argument with slrong phenomenological overt~n~~ To see
~' .

how this works, we make the following substitutions 1['--

{
X -+ AX hence V -+ A-1 V c, (CA)
v -+ AHV hence t -+ Al-Ht

which implies, in particular. Va -+ At+HVa. Viewed a simple independent change of units of

lengtil and time. this natur{~~leaves the dimensionless Re in (C.3) unchanged for any ,choice
of H. We however prefer to view (CA) as a change in scale. a "zoom," simultaneously in

space and in ti\l1e. We then expect to sce different (increasing) Re's as we zoom away from

the homogencÜyscale la into the inertial range where the flow becomes more-and-more
.......,:', :\

chaotic and, sure enough, we will come to see Rel as ascaling function of A.ccf. (C.10)

below. If the natural dimensionless number is scale dependent, is there a physical quanlity

that is not? ".
Let Ebe the rate of removal of turbulent kinetic energy from the system (per unit mass):

a (V2)E(X ,t) =dt "2

'" The similarit:.::transformation in (èA) implies e -+ A3H~IE and Kolmogorov atgues that e

canilot depend o~ ~ale'within th~ i,1ertial range where the dissipative effects or'viscosity~are
too small (its lime scale Plva is much less than "eddy tum over lime" vJ!l). This requires that

H=113. The associated phenomenologica! pictilie ~s that of a:~.'cascade" of tur~ulent kinetic

energy which is injec!Cd into th~ system at the largest possible scales ("'L) but rèmcved only" ,'; .,,.... . . -""-' ','

by dissipation prôcesses only at the-;mallest possible scales ("'10, often called the,"
~I, _~ 'l', -

"Kolmogorov" s~~le). An ,','E-flux" is thus established acrosiithe inertial range but the
,',

h
:"'" ,_~~',c

~

'.
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"transport" phenomenon is best viewed in Fourier space: a (steady-stale) "e-source" is

placed in a smail region (radius, kmin=21dL) around the origin and aIl the concentric k-shells

contained in the inertial range are crosscd (i.e., up to kmu=21dlo) before the kinetic energy is
efficiently transformed into internai heat by viscosity.

Esscntially the same idea was conveyed-although more poctically4-by Richardson

[1922]. This inspired and influential author describes the mechanism of the above flux of

kinetic energy from one scale to the next as the breaking up of larger eddies inlo smaller ones

by hydrodynamical instabilities. This "break up" is directly traceable to the intrinsically
destablizing nonlinear term on the I.h.s of (C.I) where the only stabilizing Lerm is the

viscous term on the r.h.s, so the turbulent cascade stops when dissipation comes into the

picture. The basic mechanism involved is "vortex stretching:" incompressible advection

alone (without viscosity or diffusion) does not allow material to cross the boundaries of

vorticity (!2=Vxv) tubes since vorticity Hnes are also materiallines [e.g., Tritton, 1977]; so,

as their length increascs, their width decreascs and the velociLy (perpendicular to the tube's

axis) increases, enhancing the nonlinear effecLS until break-up occurs after considerable

distortion and wandering. This stretching (and iLS Irreversible outcome) happens far more

often than the opposite which would cali for an unlikely cooperation of fluid particles aIl

around the vortex tube (hence at relatively large distances). There is one notable exceplion

where this "coherence" is guaranteed and that is when the flow is confined to two spatial

dimensions where, in fact an inverse (small-to-Iarge scale) cascade develops.5

By applying the divergence theorem to the scalar product of (C.I) with v, it is readily

shown that the nonlinear term on the I.h.s. makes only boundary contributions which can be

made negligible in a very large volume (the velocity vanishes at 00). We are left with the

volume integrals

fe(x,t) d3x = - ~a f(~+~)2 d3x (C.6)

where the usual implicit summation of rcpeated indices is uscd. The r.h.s. is the net work of #
the internai stresses, Le., heating by the friction of fluid particles one against anotlier. This.;,f""

flux ofkinetic energy from the macroscopic (fluid level) to the microscopic (molecular level)

will be approximately true for volumes that are simply large w.r.!. 103• For averages over

slJch (inertial range) scales, we can say that e-vaC;)v/èJx)2 hence e is generally referred to

simply as the Oocal) "dissipation" field.

In the above sense, the nonlinear term "conserves" e during the complicated break up

process (tentatively) described above, i.e.; the sub-eddies each carry away their share of the ;~"1;

total energy flux. There is however no need for this "conservation" to be exact, except for Ji
the whole system but then again the most interesting systems (such as the atmosphere) are',il.y- "

~ , "
\ Ij

\'\,;j,~~:_~-':"
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never energetically c10sed anywa~therwise the turbulence would simply decay and the

fluid would end up in hydrostatic equilibrium (and slightly warmer). At best, homogeneity

and isotropy are statistical symmetries of the turbulence and, accordingly, we will only

requirc a statistical conservation of e. In particular, only ensemble-average conservation will

be required in (most of) our stochastic models for the spatial distribution of e, Le., explicit

recipes for generating e(x} fields using random numbers (several examples are provided in

the following sections).
Kolmogorov's similarity hypothesis allows us to relate ail the main quantities to the

fundamentally scale invariant quantity e, basically via diniensionaI analysis. For instance,

the experimentally relevant structure function of the velocity field <lv(x+lu}·v(x}12> (Iul=1)

which. from homogeneity and isotropy, is only a function of l, the distance between the two
sampling points. The scaling of the structure function can only be

dv2(l}> = e2f3 [2f3 (C.7)

This can be rephrased in spectral temlS (see §4.4.3, for definitions) to obtain Kolmogorov's,,',--,

famous (and ubiquitously obsèrved) "·5/3" law,

Ev(k} = e2f3 k-513 (C.8)

which is expected to extend over the the fuIl inertial range (kmin«k«kmax). The Kolmogorov"

scale itself can be estimated from Relo = vlololv. =1 using (C.7) to evaluate the typical

velocity at seale 10 (vlo) by fOffilaIly extending the spectral inertial range up to kmax• Hence

10 = e·1/4 V.3/4 (C.9)

This aIlows us to estimale e numericaIly for typical atrnospheric conditions; using the

numbers quoted at the opening of this section, we find IO-LlO·3J!kgls which converts to

IO-LlO-! o/day. arclatively small figure compared to typical radiative heating rates of several

o/day. This does not meanthat turbulence is energetically unimportant however, ouite the
',~. <- ..

-contrary and for the following reason. Because it is solar radiation that ultimately drives the

turbulent atmospheric dynamics, the above calculations underscore the importance of

obtaining accurate estimates for the various contributions to the radiative budget. Now, the

effect of c10uds in this balance is 'prpbably the most poorly understood, largely due to their
\

inhomogeneity which, in tum, is c10sely related to me atmosphere's state of turbulence

(including convection) and how that affects the hydrological budget. IncidentalIy, the fate of

water (in all phases) a major source of uncertainty in current dynamical modelling efforts,

again largely due tothe extreme spatial variability.6

FinaIly, by extending (C.6) down to kmiD' (C.7) up to L, we can relate the (outer)

Reynolds numbèr in (C.3) to the outer-to-inner scale ratio A=Ulo:
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VLLReL = ~A4/3 (C.IO)
v/cio

In tum, this allo~s us to make a rough estimate of the number of degrees of liberty that the ii :'

system enjoys, nainely Reë4 in each of the three dimensions. We can use the above quoted
values for Land 10 to obtain an cstimate of ReL,using (C.IO), i.e.,~ithout making use of the

known value of Va nor any assumption about ilie range of wind s~l'ecds that prevails in the
atmosphere: A~IOLI010 thus yields ReL ~ 1012, in good ag~ecm~nt with the(indepcndent
empirical estimate. This constitutes a simple validation of Kolmogorov's(~2(3" (he'nce
"05/3") law(s). The fact thatthe upper end of the empirical range is more consistent with the
semi-theoretical values reminds us that strong (10-100 km/h) average winds are ccrtainly
more apt to sustain fully developcd turbulence than (0.1-1 km/h) brcezes.
C.l.2. The Necessity ofCorrections for the Intermittancy ofTurbulence "

The above the0l}',of "homogeneous" turbulence can be improved by incorporating the
spatial variability of e while retaining the basic ideas of scale invariance as we will now see.
Returning to the historical development, Kolmogorov's [1941] theôry of homogeneous and

isotropic turbulence was soon attacked, in spite of its successes, by Batchelor and Townsend
on observational grounds (real turbulence exhibits "spolliness": a turbulent signal is
characterized by short periods of extreme activity separated by relatively long periods of
calm) and by Landau and Lifchitz [1953] on theoretical grounds (the dissipation field cannot
be spatially uniform on ail scales). In response to these criticisms, two compcting scale

invariant models were developed in the early '60s to account for the strongly "intermittent"
character of the inhomogeneity in turbulence: the "fractally" homogeneous (or monofractal)

model [Novikov and Stewart, 1964], on the one hand, and the log-normal model
[Kolmogorov, 1962; Obukhov, 1962] which tums out to be the prototypical"multifractal,"

on the other hand. Of course, the terms "fractal" and "multifractal" were coined in the '70s
and '80s respectively [Mandelbrot, 1975; Friseh and Parisi, 1985].

.These, models fall into two broader categories (next two sections) which can now be

viewed as the extreme forms of a family of universal multifractals (penultimate section). The

two basic multiplicative models are illustrated by two figures that can be found in the main
part of this thesis, namely, fig. 4.4a and fig. 6.0. In both cases, we can see cascade

processes developing in d = 2 with, on the ohè':hand (figs. 4.4a,b), the daughter "eddies"
becoming either "dead" (for once and for all) or remaining "aIive" (for the moment) or, on

the other hand (fig. 6.0), the daughter eddies becomffig simply "$~aker" or "stronger,"
Both examples are iIIustrated using a "discrete" cascade (for pectagogical purposes), i.e., the

scale dividing ratio is chosen to be Â.o =2 for simpliciij. For contrast, fig. 4.4a uses a
','

deterministic construction (for simplicity) and a grid of increasing physiCal size; the latter

1\
11
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choice is arbitrary and the overall size of the system is mayOO oost viewed as constant, as in

fig. 6.0 where the energy fiux in the (ever smaller) sub-eddies are randomly boosted or

decreased. In both cases, we are dealing with a,,"?Jtiplicative process which is intuitively

more consistent with the fundamentally nonlinealn'ature of the underlying dynamics.
After sorne relatively large numOOr (n) of these cascade "steps," the total range of

scales is Â. = Â."D. In the remainder of this appendix, we will 00 using the following notation:

let ilE; 00 the ith random multi~{ic:ative increment7 of the dissipation field. This choice of

notation is based on an analogy with the usual idea of "Br" OOing an additive increment in,

say.. a standard random walk process developing in (ordinary) space as a function of time.
-~

Here, it is the random field as a whole that is developing into function-space (or ratlier

measure-space) as a function of the scale ratio Â.. We then find, at sorne point on the
-,;;:;;;:::.

d-dimensional grid _

n

En = El. = e., IlIlE; (C.lla)
1

.;-~!\

fofthe nth iterate of E. We can think of e., as Kolmogorov's uniform E; in particular, it

carries the appropriate physical dimensions (Le., length2/time3). As usual, one can always

choose "natural" units for which e.,= l, without any loss of generality. Eq. (C.l1arthen

reads, after taking log's

(C.l1b) ,

o'\:l
\ .-,.:

C. 2. Fractal Sets as Models for the "Support" of Turbulence

C. 2.1. The Two Basic Wàys ofConstructing Fractals and Determining their Dimensions

As an operational definition of a set A's "fractal.. dimension D(A), we will simply take

the ej;ponent that replaces d (the dimensionality of space) in the mass-size relation.By

"mass," we mean the number of "boxes" needed to cover A using a grid (of sorne large size
c, '\\; ~

l "
Il
\,

\\
~ -\~,

1 n
10g),E), =- L 10gl.oC!.Lej)

n 1

The choice of the base Â. for the logarithms is arbitrary but we will soon see that the grid

si7.e-more generally speaking, the ol)!er-to-in~er scale ratio--provides the best choice (at

any rate, more "natural" loian e=2.7IS ... ). In a sense, the choic~, of a large base for the

logarithms "tames" the extreme variability of the dissipation field: we are more interested in

the rate at'Which El. goes to 00 (or 0) with ever larger Â, than its actual value, Le.,

El. - Â,Y (Ç;'llc)
{,

where y is its associated "order,of singlliarity (or regularity)." In the same vein, 10gl.<lCl.le) is

more interesting thaÎf~E itself a"nd, bo~owing from semi-group theoretical jargon, is called a
..generator....ê

è
.

r---"'J ,1
i ""-,-X'; "-

I~. '-...-.,..-
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(C.12b)D(A) = 1im 10g"N,,(A),,-

À); we are therefore working at some "resolution" (box "size," or simply "scale," in the

cartographical sense) W.. w.r.L to the outer scale of A (taken to bc 1). Let this numbcr bc

N,JA) oc ÀD(A) Ji (C.12a)
~

and not the usual N" oc Àd apriori. Equivalently, \:
\~"',cd(;"='" "",

(C.l3)

In the above, D(A):>d is justifiably known as the "box-counting" dimension of A. Notice

that the d-measurc of such a set is generally vanishingly small for large À; indeed, the total
numberof boxes in the grid is Àd, and ÀD(A) « Àd as soon as D(A)<d. It can be shown

[Falconer, 1990] that the above algorithm will generally converge to the Haussdorf
LL .,'

Ùimension of the set A which, roughly speaking, is defined as follows (with no need for a

grid). Let N/A) be the minimal number d-balls o[maximum sizc r that are necessary LO

coyer the set A (i.e.'>-the most efficient covering), tllen therc is a unique "critical" exponent
"(

D(A) such that N,(A)rD' goes to 0 for D'>D(A) and to 00 for D' <D(A) as r gocs to 0 (hence

N,(A) to 00). Moreover, the limiF(not necessarily finite) towards which N,rD(A) converges is

the Haussdorf measure of A, denoted JAdD(A)X in straightforward generalizati6ii"of the

Lebesgue measure\~e have (implici!lytused up until now, viz. JAddx. In (C.12-13), Iii..
-,,,"~~'-""""':'

plays the role of r and the grid providesan cj\pedient way of estimating (if not delermining
\
~,

exactly) N,. cê-" c\\
"We can,illustrate the definition in (C.12b) with the exainple found in fig. 4.4a which

use~Ào=2'~nd d=2. By'inspection,we see that À=2n a"n.ct N,,=3" (whereas the total surface

goes as 4"=À2) hence

log3n
D = = IOg23 = 1.585· ..

log2n

Numerous other examples can be found in Mandelbrot's [1975,1977,1983] "essays." A

majority of the constructions he presents use one of two basic strategies; another of his

favorite procedures, i\eration of nonlinear(c9mplex) mappings, is not unrelated to the idea of

Poincaré phase space maps that are used in.dynamical systems n:.~arch (briefiy discussed in

§3.2.2). 'J

: The'simplest way to proceed is by recursively removjne points from a d-dimer.sional
. \ . '.

set. The prototypical fractal of this category is the famous Cantor set,..whiê:h is the àJo...~d

~"':'3 counterpart of the above fig. 4.4a where the middlp.,section is systematically removed;
'\.... -~ , '7,"

in other words. its "generator" ~,s " ~ _ _" andJwe see that th~ ~'mass" (in fac!,

totallength) is reduœd by a factor of 2/'3 at each iteratïon./,Thce recursivity guarantccs that the- ., ,"--"".... "-: //' - ._--

limiting set is self-similar: every panofit ~ a smaUiëimagt':.:of the whole: The end product

is isomorphic with the set of ail points on [0,1] with;a coordinate that contains no'1's when
. ,\'-~ '\\

~ ~
'.,;-......
~,

'_:"\

,
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._-------.:;'-..,
-":..'0.
"~\,~,cxpressed in base 3,'which is clearly very sparse w.r.t. the,full segment. The above

\)ox-COunling algorithm would yield D=log32=0.631··· whiciHs indeed less than 1. Inl,
Mandelbrot's pictural description. it is less than a line and more than a point. a "dust."

The most numerous examples h9wever proceed in the opposite direction. Le.• by
recursively addjn2 new points to some lower (d'<d) dimensional set The deterministic
prototype of this category is the well-known Kpch "snowflake" or "island" where we are
focussing on the ever more convoluted shape of the boundary. Le.• d'=1<d=2 (d' is the
"topological" dimension of the Koch "curve"). In this case, we again have Ào=3 but the
generator is "_~ .J\.-" for each of the thrce sides of an equilateral triangle. the "mass"
(in fact, length of the perimeter) is increased by a factor of 4/3 at each iteration. In such

examples, the shrinking boxes (of dimension d=2) of the box-counting algorithm in
~ \.

(C.12a.b) can be replaced by~ver smaller segments (of dimension d'=1) linking ever closer
points on the curve--this is~known as Richardson's "yardstick" algorithm. With this

difference in mind. definition (C.12b) still ap'pJies and we find D=10g34=1.262.. ·• as
'--../' '-

intuitively expected, we fmd d'<D<d; had we applied box-counting to the "island" as whole
rather than its "coastline." we would have of course found D=d=2-it is a so-called "fat"

'~,

fractal. If
Interestingly (from the radiative transfer viewpoint). the prototypical random

counterpart of the above additive procedure is provided by the trace of standard Brownian

motion, e.g.• a photon's random walk(RW) in an infinite homogeneous medium. as a
runction of time (or number of scatterings) in :Rd has D = min(2,d); To see this, iï,Otice that

the "large parameter" is Ilt. the number of ste~~, and the "field51~antity," is the total
displacemerit Illrl from t=O to t=llt» 1. Now the scaÎing of uncorrelatf:t!fmite step (variance)

~---

RWs is <D.rlh> - (lltH)b with H = 112 (see §DA.I) which is known. in general, as the
"HOIder" exponent and measures the irregularity of the process (H~l can be associated with

smooth. ballistic motion); notice the simple scaling w.r.t. h, the order of the statistical
"

moment. However, the'''siZê'' of the object (equivalent to scale ratio À) is Ilr, and its
"mass," the analog of N&:, is oellt (in higher dimensions); so, using h=l in the above, we ",,;,

find N&:- MllH and, according to (C.l2a,b), we obtain D=11H=2 (if d>l). This of course

generalizes to other values ofH which correspond to correlated (1~H>1/2) or anti-correlated
,;({0<H<112) steps and the associated pr;X;esses are knewn as "fractional" Brownian motion;
t ,.-:.. _ " _,' .. \~,,_ _',' " . , .. :

'lhey areindeed readily'generated by fractionally integrating(to order H+1I2) a sample of
purely white noise (this is conveniently done by applying a scaling low-pass filler in Fourier

"e:~ 4gpace, the final spectral exponent is 2H+1). A related example is provided by the graph of

any oneJof, the Brownianparticle's coordinates as a function of t, say x(t). Viewedas a
curve, this graph is self-affine rather than self-similar (Le., the scale changes are differerit for

/'/' ,,'.
o.,' . 1\

'/ ,- .:..:!-ï
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r,....:
the space and time variables) and it has D=3/2 while ils intersection with the ûme axis (or

"zero-crossing set") ha~'!p=312-1=II2, by virtue of the fractal intersecûon theorem; see
,l,

Falconer [ibid.] for delJül:~, inc1uding many proofs as well as generalizations to H"112 as

well as to Lévy processes wh,ich are characterized by steps with infinite variance. We will

briefly discuss spatial generalizations in §C.4.2, in connecûon with Mandelbrot's [1974]

(monofractal) model for the "support" of turbulence (in fact, the dissipation field).

Finally, we remark that fractal sels are uniquely defincd by their construction procedure~'

but not vice-vers!i._For instance, apart from an, affine transformation than brings an
/.>------'~~' !;

equilateral- to à'right-a~gled isosceles triangle, we arrive at the same Iimiting set as in fig.
II \\ _::..',' __.'_

4.4a starting by with an 'èqujlay;;Fal\iiàngle made;up of 4 half-sized images of itself and

recursively remQvine the ce~~al one; the res~}t{~ known as the Sierpinski gasket. More

intriguingly, on can also build a Sierpinski gaslèet additively: starting with the unit segment,

we replace it ~Ùh half of a regular hexagon, and so on (cf. Mandelbr~;'s [e.g., 1983]
Il ff; "

,,;:;'oiscussion of the "arrowhead" curve). "- ~/;

~~~'! C.2.2. (Many) Oth'er GeoiTi}::,rical, Compulational and Ph"ysical Ways ofObtaining Fractals

'"

Il is important to realize that we have not exhausted the ways of obtaining fractals in the

"'- previou,s sub-section. NOLeven for SierpinSkigaskels,! ;They indeed arise as the result of
,~ )/ ,

.playi!.'g' the "chaosgame,'; as well as in the time'evolution of simplelone-dimensional cellular
~' ~ ,~ -

fi' automata starting with only.·one "live";'cel~., [e.~,. Peterson, 1988]. These last ways of
{( producing a Sierpinski gasket are quite interestirg IlCcausc they have a dynamical, rather than

purely geometrical f1avo~ to them. Remaining in the context of strictly deterministic

~::>ehaviour that "looks random," the interest in "strange" (Le., fractal) attractors in nonlinear

dynamical systems seems to be growing with no foreseeable bounds. In our opinion

however, the most inieresting systems consist of physical models that are generally describcd

by analytically intractable cquations, rather than the above mathematical models that basically

postulate their cquationsin a form that facilitates their manipulation; the latter approach lcads

to "delerministic chaos" whereas the former spontaneously develop fractal patterns that are

charaeterized by bone fide randomness. Examples abound [e.g., Pietronero and Tosati,

Ci 1986; Pietronero, 1989; Aharony and Feder, 1990], many provided by laboratory- or

. computational situations: growth phenomena such as diffusion Iimited aggregation (or

"DLA"), statistical physics tools and/or phenomena such as spin glasses, "roughening" in

phase transitions, lattiee gas simulations, models of self-organized critical systems, etc.

Many other examples'[e.g., PAGEOPH, 1989; Schertzer and Lovejoy, 1991] come from

natural (geophysical) situation~;;As a general rule. we are dealing"with'systems that are

characterized by very many degrees of freedom.

i!
i'

: '.

'.-
:.;;....--:;:
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For our final example, we nevertheless retum to geometry--but with a distinctly
stochastic ingredient added-and describe an extraordinarily simple system which has
attracted a lot of attention from physicists (during the late '70s and early '80s): fields of
randomly distributed ':live" and "dGld" cells, "Os" and "ls," or whatever. The relative

. probabilities are p and I-p (rcspectively), and no correlations are introduced from one cell to
the next (Le., spatially, discretized binary white noise in higher dimensions). The huge

amount of interest generated by this model hinges entirely on the purely geometrical
phenomenon of "percolation." In turn, this phenomenon dominates Sie transport properties
of such systems that we will discuss in some detail in §§D.6.2-3 and use in §2.3.4 to
ilIustrate the basic mechanisms of inhomogeneous (e.g., radiation) transport within the

'::~'

framework of diffusion which, in well-defined cases, contrasts markedly with radiative
transfer through the same medium (see"sect. 4.3-4). For the moment, we dwell on ihe
purely structural aspccts, taking just the materi~,1 we will eventually need from Stauffer's
[1985] highly recommended review. The term "pcrcolation" relates to the fact that, at P=Pc
(some "critical" value), a cluster of connected live cells (almost always) spans the whole
system, no matter how big it is! ~ Il

Ifg(r)is the probability for two sites (at some distance r apart) to belong to the same
y- .-

cluster, then the "correlation" (or "connectivity") length8 is defined as S= --J <r2> where

<r2>=D2g(r) and it is found that S- (Pc-p)-V, Le., it diverges\.~lgebraically as P~Pe-' at
percolation "threshold." The exponent "v" is universal in the sen'k;that it is indepcndent of

the grid's geometry and of the type of pcrcolation''C''site'' or "bond"); in contrast, Pc will
generally depend onsuch (so-cal1ed "irrelevant") details. Many other universal exponents

arise. For instanée, ihe probability of a cell to belong to the infinite cluster is P - (P-Pe)~'

Le., it vanishes as P~Pe+; this me~ns, in particular, that the volume (Lebesgue measure) of

the infinite cluster is zero at P=Pe, which does not stop it from dominating the transport
;..::..

properties! Fi~ally and most interestingly for our present purposes, the live cIusters

(sometimes called pcrcolation "animals") are statistically seif-similàr to one another and upon
degrading the spatial resolution (box-counting) on a given individual: they are fractal.

Eliminating IP-Pel between the above scaling relations and using the fact that S= À (the
overall size of the system, this is known as a'scaling "ansatz"), we find Pl.. - ),-1~1v. In"other

·'words (Pl..=N.;ï..d), D = d-Wv is the fractal dimeilsion of the infinite cluster, accordingto

the definiti~(C.l2a,b). As ~~example in d=2, il is found that v=4/3 alld ~=5/36,hence

D=91/48 whereas Pe is =0.59275 on square lattices, 112 on tiiangular ones and ,=0.6962 on
hexagonalones (for site pcrcolation, other values for bond percolation).,
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C.2.3. The "/3-Model" ofDissipation in Full)' Developed Turbulence Theory

The random version of the fractal in fig. 4.4a is the so-called "~-model" and
corresponds to the following two parameter Bemouilli law for the Ill;:

{
')...01+ Prob = ')...o·C

Ile = (C.14a)o Prob = 1-')...o·C

Notice that this probability distribution has been propcrly normalized from the outsel. Fr~m

(C.14a), we see that C;:: 0, with(;homogeneity retrieved at equality; in the non-trivial

(C>O) case, El. will also have a Bemouilli distribution with only two possible values but the

non-zero value 0...1+°=')...1+, with y+>-oo) is found more-and-more rarely as ')... increases. The
parameter C is called the "codimension" of the limiting (')...=Àon~oo) fractal set; to sec why,

we ask 'how many of the (Àod)o=Â.d ceUs arc still "alive" after n cascade steps?' and find'

Nl.( El. > 0 ) = (')...d)(Ào·C)O = ')...d·C (C.14a')

although only on average. We arc therefore dealing with a very sparse fractal set and

D = doC is its fractal dimension according to definition (C.12). Eq. (C.14a') is more
(~

simply written as a probability

Prob( El. = ')...1+ > 0 ) = k C (C.l4a")

We remark the formai similarity with (C.14a). The base ')...logarithms occur naturally when

we tum (C.l4a") into an operational definition ofC (and ofy+):

C = -Iogl.[ Prob( logl.el.= Y+)] (C.l4a''')

In case there is a transient regime for small ')... (large boxes), a "')...~oo" limit can be taken on

the r.h.s. of (C.14a"'), cf. (C.l2b); in some cases, liml...._(logl.[·]) is best replaced by

liml......(dlog[·j/dlog')...) to eliminate the uninteresting prefactors in (C.12-13).

The two basJ~,.parameters in (C.14a) can in fact be equated to C as soon as the

constraint of (turbulent cascade flux) conservation is imposed. Indeed, wc have'. .'

10gl.o<IlE> = Y+ - C = 0 (C.l4b)

We recall that "conservation" means that we want to have <El.> = 1 at all steps in the cascade,

(C.14b) and (C.llb) guarantees that this will indeed be the case since the IlEi arc chosen

indepcndently. This strategy was justified in the previous section, further justification comes

,from the fact that we will often want to mod~i only .~ome section of a much larger system

(e.g., wher. d<3: we can think of fig. 6.0 as a two-dimensional cut through an idealized

three-dimensional dissipation field).

The ancestor of the ~-model is Novikov and Stewart's [1964] model of "pulses-in­

pulses"'for the "support" of the dissipation field (Le., wherr, ~O); no grid is necessary here

(the relative positionsof the sub-pulses are random) but there is always the same nilmbcrof

. sub-pulses, the model Îherefore has "microcanonical" conservation, Le., Ël. = 1 for evêry



(C.15a)

(C.l5a")
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realization. (For instance, in d=2 with t..o=2, we could stan by drawing three of the four
random weighLS according to (C.14a), the fourth weight is determined by the requirement9

!l. = 1.) The model has since been proposed in different guises, primarily by Mandelbrot
[1974] who fiTst argued for the idea'of"canonical" conservation that we favour and Frisch et

aL [1978] who coined the term "~-mode!."

C. 3. Multifractal Measures'as Models for Turbulent Dissipation Fields
C.3.J: The "a-Model" and the Scaling ofthe Singularities' Probability Density Function

An apparenUy subtle variation on the theme of the ~-model was originally proposed by

Schert7..cr and Lovejoy [1983, 1984] who called it the "a-mode!." We now consider the

thrce parameter Bemouilli law:

{
t..oY+ Prob = t..o-c+

JlE=
~) t..oY- Prob = I-t..o-c+

where one normally assumes Y+ > Y_ > _00 (respectively, stronger and weaker sub-eddies, not

alive and dead as in the ~-model). Homogeneity is retrieved at Y+ = y_ (or for C+=O,oo).
, .

From (C.! la,b), we see that a "log-(ntb order) binomial" law is to be expected for el., i.e.,

the order of singularity y=logl.el. ( a sum of n Bemouilli i.r.v.' s) can take on n+1 different

values (Yi, i=O... ·,n) equally spaced between y_ and y+ included. ii
. JI

To see how much richer the model in (C. 15a) is compared to that in (C.14a). we only

have to ask 'what is the (average) nu,mber of boxes where we fmd el. equal to '),.Yi?,'. Letting

c.. denote -log""O _ÂQ'c+) in order to make the notation more symmetric, the answer is

Nl.( el. = '),.Yi) = '),.d (p) ÂQ-[iC++(o-ilC..! (C.!5a')

wherc (p) designates the binomial coeffiéient We Lake i as the number of limes aboost (by

. '),.1+) was hit in the trial set up in (C.!5a). In general.\'!'.e will get a different answerfor each

different value of Yi (at given C+ and n). By contrast, the ~-model has only one characterlstic

exponent (iLS codimension C) and it is in fact rctrieved here in the limit y_-)-oo; in this limit,
r; ...~.

only i=n (Yo=Y+) survives (e~>O) il)',(C.15a') since iy+-(n-i)oo=~co, if kn. In this extreme
" .; f

case, we can equate C+ with C and:l ~us retrieve the simple scaling relation (C.14a'). So, not

only the field has a range of orderi\~f singularity but also the codimension (say, Ci) is now

'goinMo be a functlon of i (or Yi). Ihdeed, in~a.~alogy with (C.!4a".a"'), we canwrite down
the following defmition of Ci: '('.fi

Probe el. = '),.Yi) = (r) ÂQ.[iC++(0-ilC_1= '),."'<'i

at any finite number of cascade ~teps. A'?complete description of the Yii p.d.f. is th~n given
by Pl.(Y) = Li'),.-ci/)(Y-Yi). '.. /'
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Taking the small scale limit, we find a (countably) infinite number of orders of
singularity, all in the range [y_,y+], and we can define

c(y) = lim Ci-,(D) where....- ·.f) . ( y-y-)Il,n = mt n--
y+-y-

(C.l5a''')

fi

The above "codimension funcûon" ;c(y) will he esûmated for the a-model further on using an
indirect method (see eq. (C.20b)below). For the moment, we can only anticipate that

c(y+)=cn=C+ and that c(y_)=co=C_ (since cg)=(~)=I, indepcndently Hf n); also, from our
knowledge of p.d.f.'s, it is clear that these limits will be approached from helow. In the
standard development of probability theory, it is customary to seek a Gaussian
approximation to the binomial p.d.f. by using Stirling's formula to approximate
(p)=n!l(n-i)!i! and expand (C.15a") around its most probable value (~nÀ.o·c+). This would
of course yield a log-normal multifractal which we will be discussing indepcndently in the

next sub-section. For the moment, let it be said that this may be a good idea w.r.t. the
additive process defined by (C.llb) for the generators (y=:Ejlog1.oIlei) but the subsequent
opcratipn in (C.llc) is so highly nonlinear (e,,=A.1) that the extreme Gaussian events will
completely domin:l!.::othe staûsûcal behavior in ways we will discuss in the next secûon.

The conservation constraint associated with the a-model is expressed by

<1J.e> = À.o1+-c+ + A001--c- = 1 (C.15b)

and we recall the p.dJ. normalizaûon constraint: Aoo'c++ A.o'c- = 1 (where C±~O). These
equations can be readily solved for two (remaining) parameters, given at least one of the y±
and either the other or one of the two Co: parâineters. Noûce that conservation is possible

''='only if both orders of singularity and orders of regularity co-exist in a particular model (Le.,

that y+>O>y_~-oo);, These will be the tyvo free parameters of thcponserved cascade model
~ . ,.

which makes orùv one more parameter"than for the conserved ~-model monofractals yet the
~;::::::::':C:::::~"'_ -<,.~' :,

a-l11ôde1 càn generateupto_an infmitenurIÎ1!er of fractal dimensions!"'''--or>~~jY In the Iiterature, the microcanonical version of the a-model is known as the "p-model"
!( of Meneveau and Sreenivasan [1987]. Just like our deterministic monofractal in fig. 4.4a,

"~ determinisûc multifractals a:~e a possibility that offers sorne pedagogical advantages (they are
~~ '·".c

):;< '\. of course microcanonical by construcûon); for instance, Feper [1988] considers the case
,,~. 1; with-Îl.o=3 (in d=l) where he boosts the first sub-portion;~s~mewhat lèss the second, llJld ,~

leaves tJ:1e third emptK this amounts toC the generaûon of a log-binomial mûlûfractallTleasure

supportéii'by thè Cant~fset ratherthan by the full unit segment. The resulûng field has all
_...... .. /1

I/'iliê'ni'tihematical attributes of a multifractaJ~ albeit of a rather mild variety according to the..--:-/ "

f classification scheme=of...Sc]1.ertzerêt al. [1991] and/or Schertzer and Lovejoy [1992].
Ir~ ._~ ~

/;7,. Moreover, 'their' [1987a,b] "universal" m'lIltifractals provide, rather than the allQve
,J' c ~/-/ . ~~. /if" .~'/ . \::;;:;/- ~~ '':/

,~-/~;:.-; -, .,/r'
1 ~ ~

,'~ ,'~-' \.
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C straightforward hybridization of the ~-model and the (inherenlly discrete valued) a-model, a
continuous variation away from monofractals towards (continuously valued) multifractals,

specifically, the log-normal model described below.
In summary, we have shown that only one exponent is necessary to characterize ail of

the ~-model's statistical properties, this limiting case is therefore called a Jll.Qll.Q.fractal; ail
c:::!( other cases clearly calI for a whole family of exponents, they are better called lllllltifractals.
~'Mathematically speaking, the former models are defined by sets (of d-measure zero), hence

they are "geometrical" in nature, whereas the latter are defmed in the (weak) limit of singular
measures, they have a more "dynamical" flavor. lO Furthermore, we can define a scaling
characterization of the the p.dJ. of the various orders of singularity (y) present with the help

i?f the codimension function c(y): ['

~-, , P1.(Y) dy = Probe ')..Y!!, El. < ')..'ftdy) = ')..-c(y) dy (C.16)

The ~-model has an infir.;;,·~ c(y) everywhere except at a single value y=C while the
a-model's c(y) is infinite everywhere except on (a countable infinite number of values on) a

segment [y-,y+l, see eqs. (C.14a"') and (C.l5a"') respectively.
C.3.2. The "cx=2" Model and the Scaling ofthe Singularities' Probability Distribution

Function

The tille for this sub-section is deliberately chosen as close as possible to that of the

previous one in order underscore simultaneously two possible sources of confusion thabwe
wish to clarify immediately. Firstly, the "a" in the chosen name ll of the prototypical
multifractal model for the dissipation field (briefly diseussed above) is not to be confused, on

llle one har,ô, with-ihe!~c:i of the formalism that~rvails in the dynamical systems12 (strange

attractor) literature and discussed briefly in upcjming sect CA nor, on the other hand, with

.' _~ the "a" of Lévy index13fame, discussed in sect C.5 on "universal" multifractals (as weil as
\\ -

in sect 5.1, with a, totally different application-and Lévy's "W' parameter for that
matler l4-in mind). Within the context of universal multifrac.tals, "cx=2" dès,ignates
log-noffilal model which we discuss here and use (radiatively speaking) in chap. 6, hdhce the

above tille. Secondly, we have chosen to defme the codimension function c(y) in terms of~

the y's p.d.f. (cf. (C.16) above), not its integral which is the y's (complementary)

distribution function (cf. (C.19) below); however, in the multifractalliterature, both
definitions are in usage and, in practice, a third-based on the Legendre transformation-can

bè singled out15 This choice of using ihe p.dJ. is made in order to meet our specifie needs
-~ . .- -

(in chap. 5--6), so we will clariCy this sourée of ambiguity as'best as possible b'efyre closing

this sub-section by listing the rationales behind each definition and iIlustrating the differenees
with specifie examples.



(C.l8a)

(C.l8b)

270

Compared to lhe a-model developed in the '80s, a far more violent type ofmullifractal

had already existed in the literature for sorne time as a result of the very flfst attempts to

address the problem of intermittancy quantitatively (Le., with an explicil model in mind):

Kolmogorov [1962] and Obukhov [1962] independently proposed the following log-normal

law for the Ile:

1 (r'I1)2 dr
IlE = er, dP(r) = - e - 202 - (C.17a)

..J21t cr

Like for the ~-model;, this model has only two parameters (mean Jl and variance cr2) and

there exists a simple conservation constraint between them:

In<JlE>=îcr2 +Jl=0 (C.17b)
,;0­
f"jb Homogeneity is retrievedin the limit cr-70 while at finile cr2 we can see lhat the log-normal

model is very different from both of the dissipation models describeq in the two previous

sub-sections: its singularity "spectrum" is not narrowed down to a single value like the

~-model's, nor is it restricted to a (countable infinity on a) bounded segment of tlle real axis

as.is the a-model's. It is evcry where dense and indeed encoinpasses ail of the real axis. In

thi& very basic sense, the above "0.=2" model is more multifractal than the "a-mode!" ~nd we

will see further on (seét. C.S) thattllis carries over to almost every imaginable case.;

The "extreme" multifractality of the log-normal model can be further underscored by
,~ -

evaluating its codimension function c(y). Using the same definition (C.16) as for the

a-model, the c(y) for the log-normal model in eq. (C.17a) is readily obtained by invoking the

well-known properlies of sums of n independent, identical distributed Gaussian (Jl,cr2)

deviates. More precisely, we make the substitutions 11-7nJl and cr2-7ncr2 while the

definitions (C.llb,c) and (C.16) dictate thechange (Jf variable Ljri-7n(lnÀo)Y. Hence,
collecting results, weobtaino~.

c(y) = InÂ.o ( y _ --'!:.... )2
fcr2 1nÂ.o

Notice that the additive normalization constant for log,[p,(y)], namely log,[..Jln'-l21to2],

vanishes when the small scale (À-7oo) limit is takenbecause il is'OOognln), for large n. In

practice (finite À) however, this term will be non-negligible if the variance cr2 is not itself

0(1). Using the c'onservation relation (C.17b), (C.l8a) reads
- I~ ç"

c(y) =CI ( .1. .filY . _'0:.>
4 Ct· _-""-=~ '1,'.,

~r h ..... .-·--
~ - / ~/

where we have defined .

\~

(C.l8c)
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This choice of notation will he fully justified in the next section, for the moment, we see that:',

-Cl is tl;" most probable order of singularity and that the "width" of the singularity spectrum
,\ ~

can, in a Sense, be measured by I/c"(y)Iy=.ct=2CI; as expected, increasing the variance
increases the probability of obtaining large deviations in the y's hence extremely variable
(very large ratios in) el.'s.

Before leaving the topic of codimension functions, we can show how much simpler
things become in the asymptoti,c limit (À.-7co). Unfortunately, this simplification opens the
way for some notational ambiguity. Indeed, in the small seale limit, c(y) determines not only

the fractal dimensions of the level sets of the ~ field but also that of its exceedence sets for all
thresholds À.Y, but only if y is greater than'its most probable value. To see this, imagine that
the e-field has been generated down to some resolution l/À. on a d-dimensional grid with À.
boxes on a side; the number of boxes required 10 coyer an exceedence set is then

co

Nl.( el.;;:: À.Y) = À.d Probe el. ~ À.Y) = Â,d JÂ,-c(y'l dy' - Â,d.C(l"l
y

(C.19)

(C.20)

.,
"

where the "-" relation is introduced, as usual, to absorb both prefactors (e.g., c'(y» and
slowly varying scale dependent terms (e.g., InÀ.). Of course, using (C.l9) as a definition of
c(y) yields a non-decreasing function so il can only agree with definition (C.16) for the

higher, hence more interesting, orders of singularity for which c'(y)>O. Yet another
definition of c(y) is possible, namely, by using the Legendre transform of some (postulated)

"'K(h)" function. This definition will always yield a convex codimension function; in the
next two sections, we will see examples obtained from this third and last (7) definition that

~I

are non-decreasing c(y)'s and others that give negative c'(y) branches also.

To illustrate the difference between the three definitions of c(y), we consider the

somewhat caricatural ~-model. The definition contained in (C.19) yields

{

0 for y = -co (an almost sure event)
c(y) = C for -co < y ~ y+

+co for y > y+ (an impossible event)
\,j

The Legendre definition is the same except for c(-co) which has to he +co, not 0, to make the

result convex. 'Fin!l!.!Y-, the definition (C.16) is consistent with a very much "defective"

(sub-normalized) p.dJ. entirely concentrated at y = y+ plus a Iiuge complementary peak
placed (formally) at y = -co; the intensities of (i.e., integrals under) these peaks are
respectively À.-C and (l-Â,-C); at these two points, c(y) is formally -co (the log of the inverse

of a li-function!), everywhere else it is +co (since the p.d.f. vanishes identically).

Fortunately, c(y)'s are much hetter behaved for multifractals and the three defmitions agree at

least two-by-two. For the log-normal model and the a.-model, the frrst (C.16) and last
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(Legendre) àefinitions agree, but only in the limit of infinilely many cascade steps.l6
Finally, for universal multifractals (sect. C.S), the c(y)'s can only beobtained analytically by

~ ,

Legendre transformation which yields only the leading term; if O<lX<2 (Le., bone fide

log-Lévy multifracWs), this term is non-decreasing.l7 In this case, it is therefore definition
(C.l9) that agrees with the Legendre estimate but all information about the c'(y)<O branches

is lost
", The agreement in the log-Lévy case is basically circumstantial and, if we are looking

for a better rationale for using (C.l9), we should briefly consider the problems posed by data
analysis. Now definition (C.19) can be readily used in straightforward box-counting
techniques of empirically determined €-fields made available, say, on a A-sized grid. Some
threshold (simply denoted AY) is chosen and used to define the exceedence set which is then,-,
covered with Nt..-sized boxes and c(y) is determined from (C.l4a") or via (C.l2b), using d.

Having done this for several values of y, one can plo(c(y) as a function of y. This is the

basic idea of Lovejoy et al. 's [1987] "functional box counting" (FBC) techniqlJe which
Gabriel et al. [1988] apply il to GOES satellite imagery, fmding very 10g-norcl'àIlooking '-'
c(y)'s in both VIS and IR channels. In the above, the fundamental reason to use (C.19)
rather than (C.16) is that better statistics are obtained for a semi-infinite range of ys than for
a finite (let alone infmitesimal) range.

For the same reasons, definition (C.l9) is also favored by Lavallée et al. [1991] in

their "Probability Distribution/Multiple Scaling" (PDMS)' technique which has now
superseded FBC. To see how the two methods differ, recall that FBC uses only the €A-field,

viewed as a theoretical (or "bare") quantity that we have implicitly been modelling by
'.'

proceeding "down" the cascade (from large to small scales), whereas the PDMS approach

uses the observcd (or "dressed") Ël.-field which is obtained by proceeding back "up" the
cascade, spatially averaging the fully developed f_-field. In practice, we assume €-=€A and

average over boxes of size NA. In tlie following section, we will only briefly discuss the
differences between the statistics of e. and those of Ël. that Lavallée [1991] studies in full

d~tail. He also compares the PDMS technique not only with FBC but also with two others,
namely. "Trace Moments" and "Double Trace Moments" (that we will briefly describe,

respectively, in the next two sections); he concludes in favour of the last which is geared
specifically towards finding the best fit by a "universal" multifractal (as descrlbed in sect.

C.S). SOl1Je of the problems encountered by the PDMS technique are traS7.Jl15le to the
(weakly t..-dependent) normalization constant which is not accounted for in the scaling

characterizations (C.16) or (C.19) and, aspointed out above, it can become quite
important--even for the bare quantiûes-if theparameter Cl that controls variability (or,

more precisely,intermittancy) is quite small aI1j!lor'the useful range of scales is not huge. By
~ '~~

;'-'
i)
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"useful" range, we mean the range (usually smaller than [l,A]) where the the log-log plots of
the cumulative histograms (or moments) are reasonably linear w.r.t À. Unsurprisingly,,
when the intermittancy is relatively weak (e.g., satellite imagery; topography) the different
methods tend to disagree but when it is quite strong (e.g., rain, wind, earthquakes) better
agreement is achieved.
C.3.3. (Many) Other Situations where Multifractals Arise Naturally

Much like fractals themselves (§3.2.1-2) there are many ways of obtaining
multifractals, not only cascade processes de!iver them. In fact more-or-Iess at the same time
as Schertzer and Lovejoy [1983, 1984] were realizing that the basic concept (of multiple
scaling, sect 3.4) had been around for sorne time in turbulence theory [Kolmogorov, 1962;
Obukhov, 1962; Mandelbrot, 1974], Hentchel and Procaccia [1983] and Grassberger [1983]
were using very similar concepts ("generalized" dimensions) within the context of chaotic
dynamical systems. The multip!icity of exponènts arises as soon as the distribution of points
on the strange attractor is considered: vicwed as a set, the attractor is only the support of an
interesting p.d.f. which is naturally to be "weighed" by Integration (of different moments,

:~see below) over different scales.
,~, It was only after these pioneering studies that, on the one hand, the notations were

stablized, with phase space and strange (but deterministic) attractors in mind [Halsey et al.,

1986], and that, on the other hand, the expression "multifractal" proposed, with turbulence

and (random) cascades in mind [Frisch and Parisl,1985]. Of course applications of
multifractal concepts does not stop there! Every time there is a field quantity involved in a
physical system with no characteristic scale, scaling p.dJ.'s and scale-invariant measures
(sect 3.4) will arise. For instance, we can mention current (or potential) in conductance

through percolating binary mixtures [e.g., Rammatet al., 1985], electronic wave-functions

of localized states in disordered materials [e.g., Siebesma, 1989], p.dJ.'s of RWs on a
fractal [e.g., Havlin and Bunde, 1989], rate of growth in DLA and other systems in

statistical physics [e.g., Derrida, 1986; Stanley and Meakin, 1988]. Ali of the above

examples from physics involve diffusion-lilec equations but that is not an absolute necessity,
the equations of general relativity, QCD, or those of radiative transfer (Le., !inear transport

theory) would do just as weil ... if only they were more tractable, but theoretical (numerica!

.. '" simulation),and/or observationa! progress can be reported on ail of these fronts.18

Nole on notation #1; From eq. (C~1.6), il can also be seeri tha\, in our notations, the fractal

dimension. d-c(y), when positive, corresponds to the "f(a)" used by many authors, mainly

, involved in strange attraclor studies, following Halsey et al. [ibid.]; at the same time, their
Q "a" is to be equated with our d-y since, in dynamica! systems theory, the focus is on the

"measure" qÀd i18elf-i'ather than its "density" q-as a function of the size of the avê'~aging
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set (l/Â.}--rather than Â.. Our multifractal notation is independent of d, as are the notations

we use in (most 00 the sections of the thesis devoted to radiative problems; this is an

important advantage in stochastic modeIIing since the very large sample-space will be

formally related to the limitd~ in the next section. In "f(lX)" notations, which rely heavily

on a specifie d, the purely statistical effects, such as under-sampling by using a single'
realization, are felt in the negative-or "latent"-f(lX)'S which are associated with rare

events.

C.4. Multiple Scaling of the Statistical Moments and the Dual,Çodimenslon
Function·.

-);

C. 4.1. General Properties ofthe "Bare" Moments and the Divergence of"Dressed"

Moments

An aIternative-in fac!, complementary-approach to the statisticaI characterization of

turbulent dissipation fields is possible, based on the moments of el.' From the scaIing of the

p.dJ.'s, we expect a priori these averages to scaIe with Â.aIso:".~C",J

<el.h> = Â.K(h) (C.21)

From this definition, K(O) = 0 if the p.d.f. is properly normalized and, if the cascade process

is conserved, then K(l) = 0 too. In essence, K(h) is the 2nd characteristic (or cumulant

generating) function (c.gJ.) of the probability distribution of the ys:
00 +00 +00

<el.h> = Je.h dP(el.) = J Â.hy PA(y) dy = J eï(hlnÀli)y Pl.(y) dy
o -00 -00

(C.22a)

If cMt) is the Fourier transform of Pl.(Y), then K(h)=logl.MhlnÂ./i)=lncj>n(nhlnÂ.oIi)/nlnÂ.o.

Now y is the running average of n identically and independentiy distributed (LLd.) random

generators, 10gl.o(lle), cf. (C.lIb,c). From the discussion below eq. (A.14) on the

properties of the c.g.f., we recall that the c.g.f. of a sum of n LLd.r.v.'s is n limes the c.gJ.

of just one of them, hence logl.ocj>n(tln)=nlogl.ocj>l(tin) and, finally, dropping the subseript "1":

K(h) = I:ÏI.o ln[cj>(hlnÂ.o!i)] (C.22b)
<::.

Thus K(h) inherits ail of the generaI properties of the (Laplacian) c.gJ. In parti~ular, it is

convex and, if K(h) is polynomial, its degree is 2 at !!lost Furthermore, a degenerate .'

Ile-distribution (homogeneous el.) has a linear c.g.f.: "K(h) = h In<l.te>, which vanishes

identically if conservation is required.

The Iwo fundamentai multifractal functions c(y) and K(h) are therefore in the same dual

relationship as p{Jle) and its Fourier transformcj>(t), except translated into exponent language.

Frisch and Parisi [1985] realized that in.theasymptotic small scaIe limit (Â.»l) one can do

away with the (integration part of the) Fourier transformation aItogether:
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<El.h> = f Â.hy-c(y) dy _ Â.max[hy-c(y)J
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(C.23)

where the last step makes use of the method of steepest descents. Hence, comparing with

the definition (C.21) of K(h),

K(h) = max [ hy - c(y) ]
y

Le., the Legendre transfonnation which is known to be involutive; thus

(C.24a)

c(y) = max [hy - K(h) ] (C.24b)
h

This is very convenient because, in many interesting cases, it is K(h) that is known a priori
(e.g., the universal multifractals, presented in the next section) or else it is more simply

expressed than the c(y) and is independent of Â. even if it is finite (e.g., the a-model, as

~,",-~s.hown below). The only limitation of (C.24b) is related to the fact that the Legendre
-<:~:;-~-,

transform of a convex function is necessariIy convex also. So the c(y) estimated from K(h)

in (C:24b) is will be convex on ail of its domain even though the p.d.f. Pl.(Y) can be bi-modal

(~-model) or multi-modal (a-model) and, from its definition (C.l6), these attributes carry

over to c(y).· The above Legendre transfonn estimate of c(y) is therefore the convex envelop

of c(y) as defined by (C.l6), not (C.19) since we expliciUy need the p.d.f. in (C.22a,b-23).

There isa well-known geometrical interpretation to the Le'gendre transfonnation. We
"

see that, li the c(y) curve is given, the K(h) curve is defined parametricaIly by

{
hy=C'(Y)

(C.25a)
K(hy) = yhy- c(y)

Le., slope and (negative) intercept of the tangent with the vertical axis, respectively. Of

course, the same applies conversely:

{
Yh = K' (h) (C.25b)
C(Yh) = hYh - K(h)

An alternative characterization of the scaling of the statistical moments of conserved

(K(l)=O) cascade processes is given by the "dual" codimension function C(h) where
K(h) = (h-l)C(h) (C.26)

From K(h)'s general properties, we have C(O) = 0 and C(h) is necessarily non-decreasing.

C(h) is useful in specifying the statistical differences that arise between the theoretical

("bare") cascade quantities used (here) in simulation and the observable ("dressed")

quantities. The latter are spatial averages of the former taken to their ultimate singular

expression obtained in the smaIl scale limit The bare (e.) and the dressed ~) dissipation

fields are oost compared at the same resolution (Â.) and the difference between the two isthat
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the statislical moments of the former are always well defined (hence convergent) whereas
those of the latter are'apt 'ta diverge at high arder. This phenomenon is due ta the
singularities that remain "untamed" by the averaging either because t1iey are tao frequent
(recal1 that therc are infiriitely many cascade steps below the averaging scale) or,
equivalently, because the averaging set is tao sparse ta sense these singularities on a regular -­
basis and they appear only as statistical flukes (that would probably be disrnissed as
"outliers" in more standard approaches). More specifically, it can be shawn [e.g., Schertzer
and Lovejoy, 1987a] thatthe hlh arder moment of the average flux through a set A of
(generally fractal) dimension D(A) diverges if

C(h) ~ D(A) (C.27)

hence ',he often used term of "hierarchy of crilical (fractal co)dimensions." The inequality in
(C.27) will always happen sooner or later if C(h) is unbounded ("wild" singularilies are
present): taking the maximum D(A)=d, moments of order greater than C-l(d) will diverge

for almost any realization. They can however be tarned by averaging over Nr realizations,
but only up ta arder C-l(d+logl.Nr) [Lavallée et al., 1991J-as expected, we see that
increasing d by 1 is equivalent ta studying Â. realizations (each on a grid of size Â. in each

direction). In this sense, the probability spacecontaining ail possible'realizations of the
given stochaslic mulwtacta! model has infmite dimensionality.

In practice, "divergence" in the above discussion means that the dressed statistic is
completely dominated by a single singularity Yc which (C.25b) associates with he, the critical
moment that verifies the equality in (C.27) for the given dimension of the averaging set.

This singularity will fluctuate from olle realization to the next but, for a given realizatiorr,

d: •b> will scale approximately like <El.h> = Â. K(h) for h<he and like
\

(Â.Ye)hÂ,"c(Yc) =Â.hK'(he)-C(Ye), for h~hc. In other words, the K(h) for the dressed quantity'-

simply follows the langent of the bare K(h) curve beyond he since, from (C.25b), -c(Yc)is
the the intercept of the tangent at hc.iB)' Legendre transformation, the same applies for the
c(y) for the dressed quantities, b(jyond Yc: i.e., for the dressed quantities, we have
pey) =Â,"c(Y) for Y<~c and pey) =Â,-Yc'(Ye)+K(be) for "t?Yc.-

As described 'hy Lavallée et al::! [ibid.], "Trace Moments" (TMs) can be readily

evaluated from "data," i.e., some E-field 011 a grid of maximal size A. This is done by
degraded the field over boxes (D(A)=d) of size ln.. w.r.t. the overa11 system, reckoning the

average flux in, them (ë,), caITying it to the power h, and finally averaging these over ail

available boxes «ël.h». Apart from the_~bove (eventual) divergence of the higher moments,
logarithmic regression of these TMs w:r.t. Â, yields an estimate of K(h), equivalently, of

C(h). This empirical K(h) can then be nonlinearly fitre'd ta any particular model for K(h)
such as those presented below, eqs. (C.30) for the lX-model or (C.34) for the log-normal

".,
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model, or else those of the universal multifractals of sect. C.6 in (C.38a). This method is

not plagued with the problems of the PDMS approach that are related to the unknown

normalization constants of continuously distributed generators, e.g., the r's in (C.l7a).

The single most important exponent in the whole C(h) hierarchy is the "codimension of

the singularities (YI) associated with of the mean «El,» of the process," that we will denote

by CI' Although <El.> = 1 by conservation, YI is generally quite different from the "neutral"

order of singularity (rO) which is associated with El. =1. The most important order of

singularity in the whole spectrum is certainly the most probable of alI, and we will denote it

by Yo. Now recal1 that for conserved cascades, K(O) =K(l) =°hence, from the convexity

of K(h), we necessarily have K'(O) S °and K'(l) ~ 0, with equalities obtained

simultaneous1y at homogeneity. On the one hand, the most probable order of singularity Yo is

given by K'(O) since c'(Yo) = hyo = 0, from (C.25a), and is therefore negatively valued;

moreover, c(Yo) = YohYo-K(hyo) = 0, i.e., this order of singularity has the remarkable

property of filling space. On the other hand, from (C.25b) with h = l, we lind YI = K'(l)

and C(Y1) = YI-K(l) where K(l) =°hence CI = C(CI), i.e., Cl is a lixed point of c(y) and
,,'

is found at the intersection of the c(y) curve with the lirst diagonal. Another remarkable
-"

pr.operty of YI is obtained from (C.25a): c' (YI) = 1 and the intercept of this tangent to c(y) is
~

K(~~ 0, i.e., the rust diagonal is in fact tangent to the c(y) curve at y, = Ch the lixed point
"'-is unique. This pr0perty can he used to determine CI from an empirically determined c(y)

curve [e.g., Lovejoy and Schertzer, 1990]. Furthermore, we have
CI = C(l) (C.28)

~::~;;

since K'(l) = C(l) from the delinition in (C.26), he~ceo!hc adopted notation. Using this

with the diy~rgence criterion in (C.27), we notice~r."fnp"f1lcûce;:û"r" cascade process can

on1y he properly conserved if CI < d since <el.>itSelf must obviously converge, ifit is to

he equated with 1; more precisely, the average of theprocess (El,=l) should he weil sampled

in almost every realization. Stochastic cascade processes with CI ~ d are said to he

"degenerate," for almost every realization the set where'El.>1 is sparse even in probability

space (alI realizations combined); rare realizations contain extremely strong events (since the

ensemble-average is still unit).

Note on notation #2: The more standard [Halsey et al., 1986] multifractal notation is "or(q)",.,

for our (h-l)d-K(h) and"D(q)" for ourd-C(h), with "q" equated to our h; the differences are

mainly due to the fac't that, in phase-space portraits of chaotic attractors, the focus is on the

moments of the measure «el.À.d)b> as a function ofJ/À.). Apart from the conceptual

advantages of our notations when dealing with stochastic processes, we wish to avoid

undesirable ambiguity with our DA- and general radiative transfer notations, for "q" and "or,"

respectively. ;:~
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CA.2. li/us/rations with Monofractals, a-Models and Log-Normal Multifractals

The three intermitlancy models discussed in the previous two sections can he used to
ilIustrate different aspects of the multiple scaling of Slatistical moments examined above in the

general case.
We'slart atlevel zero on the multifractality scale with the monofractal ~-mQdel (C.14a)

with its log-Bernouilli Slatistics. Its K(h) is easily obtained directly from its (Bemouilli)

p.d.f. in (C.14a): first taking (positive) hth powers and then ensemble-averaging yields
<e~h> = (Â,hY. )Q..-C) = Â,hY..C and, otherwise (h < 0), <e~h> is infinite because of the (very

numerous) nuIl values dominate. In summary,

h > 0
h =0
h < 0

(C.29)

,~'

The conserved case yields
K(h) = (h-1)C (h > 0) (C.29')

hence C(h) = C and, in particLilar, Cl = C. Moreover, ifC<d, aIl the positive order moments
will always converge for this modei. Recall that a homogeneous e-fie1d also has a Iinear
K(h) but for all h, not just positive; we are therefore fully justified in calling these simple
fractal models "fractaI1y homogeneous."

Finally, we note that <e~h> = Â,hY.-C is as close as we can (formally) get, within the

context of multiplicative processes, to the simple. scaling oblained for their additive
counterparts such as the spatial analogs of RWs discussed in §C.2.1 where we have .6.x~M
and .6.t~t..x hence <IMâl(h>_(.6.xH)h and this applies, likefOr homogeneity, to lIlJ. real values

of h (and that makes all the difference!). These spatial generalizations of Brownian motion
(viz. Mandelbrot [1975] - Voss[1983] "fractional Brownian 1andscapes") could he used to

model (optical) density (lC)p(X) fields in any dimensionality. They must then he viewed as
functions of pQsition that fluctuate around sorne mean that is large enough to avoid

unphysical negative value~ in every realization.. Such models would totally lack the
intermittancy and corresponding extreme variability of multifractals, iI\h!uding simple-but

multi.plicatively generated--monofractals, thanks to the diverging negative ordered moments

of the latter. To obtain a degree of intermitlancy using this lcind of additive model in the

context of turbulence, Mandelbrot [1974] considers the "support" of three-dimensional
turbulence to he the "zero-crossing set" (no additive constant is called for, as in the above) of
such a process embedded in (3+l):dimensional space. A combination of these ideas (an
additiveconstanl, foIlowed by truncation of negative values) was recently used by H. Barker

[p.c.] in d=2 to obtain the optical thicknesses 't(x,y) of individlla1ly homogeneous'clouds that
cluster scalingly in an attempt to model "realistic', broken cloud fields.

>-
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We now turn 10 the prototypical multifractal a-model (C.l5a) with iL~ log-binomial
statistics. Il yields by direct calculation, <E.b> = [(À"bY+)(À,,'c+) + (À"bY-)(l_À,,-c+)]O with n

designating the (finite) number of cascade steps, by virtue of the binomial theorem; hence,
for ail values of n and of h (as long as y_ > _00):

K(h) = log,,<>[ À"bi+-c+ + À"bY--e-] (C.30)

where wc use the same notations as in §C.3.l. In particular, proper normali71ltion (K(O)=O)

requires I::tÀ.-c± = l, and conserved (K(l )=0) a-models must have r±ÀoY±-C± = 1 also;

this leaves only two of the pararneters unconstrained but docs not make (C.30) any simpler

to write. In the previous section, we were able to describc the (finite n) p.dJ. of the 1s as a

sum of n+1 &-functions centered on the n+1 distinct orders of singularity generated between
y_ and Y+ (included), cf. (C.l5a"). The intervening S~functions however make the

corresponding c(y) ill-defined, as remarked in our discussion of the ~-model's c(y) under eq.
(C.20). This inconvenience vanishes however in the small scale limit since the y's fill

(countably) the segment [Y_,Y+] ~nd the associated c(y) can be obtained by computing the

Legendre transform (C.25b) ~or the K(h) in (C.30). After a little algebra, wc find
1hy = -Iog,,<>( r(y) À,,6C) (C.3la)

6Y
where we have set 6C=C+-C_, 6Y=Y+-y_ and

r(y) = y-y- (C.3Ib)
y+-y

maps [Y_,Y+] cinto 9t+=9t++{ 00 J. With these notations,

{
[r(y) À/'c ]yll1y )

c(y) = log (C.3Ic)
.. "J:.±:'f(y)y±'l1y Ào'c,

As expeèted';the c(y) in. (C:J le) is [mite only on [Y_,Y+] and (formally) infinite elsewhere.

At any rate, c(y) rrîay be',convex but its graph is not a parabola as for the log-normal

.. model in (C.18a), except p~~sibly perseived as a rough approximation around the minimum

at Yo (given below). In other words, and contrary ta what one might have expected, the

log-binomial model (C.15a) does JlQ1 converge to the log-normal model (C.17a) in the limit

of many cascade steps even though their respective binomial and Gaussian generators do

(Le., their "non-log" counterparts/due to the strong law of large numbers). <?ne could try to
,; remedy this sitliàtion by extending the range of singularities to ail of 9t by t:Îking the limits

Y±~±oo. Recall however that we ooly have a countably infinite number of y's at our

disposai and they cannot cover.9t densely; their distribution will be no ~ore continuous than

theindicator function of ail integers. So we still do not retrieve Gaussian behavior in spite of

the fact that in the limit Y±~±oo. the proper algebra may allow us to make (C.3Ic) fO[llla~ly

"

...:: .,
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identicalto (C.18a); wc must remembcr that (C.3Ic) is only the (À--7co Iimit) of the convex

envelop of the very singular c(y)'s for finile À. We retum to this important point furlher on
for a doser look (w.r.l. the Slatistical moments) and, in the following section, we argue that

the fundamenlal problem cornes from the discrele nature of the cascade.

In the conserved case, the corresponding C(h) does not simpIify but the important CI

rcads

CI = y+'J..,k<:'+ + y-Â,,1--<:'- = k;ty±'J..,'Y±-c± (C.32a)

which also expressible as <llelogl.Qllê> and is necessarily greater than <1lE>Iog"o<IlE> = 0
because of Jensen's inequality (3.31) applied to the convex function f(x) = xIogx; so

YI = CI is indeed positive. We can also oblain the most probable r-
Yo = y~-c+ + yJ.,,'c- = k;tY±Ào'c± (C.32b)

which is also expressible as <log"o,iJ and is necessarily less than 10g"o<IlE>=0 because of
\.:../"

the same inequality applied to the~ncave functionf(x)=logx. The a-model's K(h) and C(h)

can aIso bc studied in the asymptotic'~gions: .'

K(h) =hy±-C± at h~±oo (C.33a)

In other words, K(h) becomes asymptotically !inear in both directions. This means that the

corresponding C(h) levels off in both directions and takes all of its values in ]Y_,Y+[,
increasing steadily from the former te the latler. Being upwardly bounded by ,-;,

1/,-
C_=C(oo)=y+ (C.33b)f"

the singularities generated by the a-model can always be lamed by dressing, givi~ big

enough a;ve~aging sets and/or a sufficient number of rea!izations. We are dealing with "soft"

multifractals in the general classification of Schertzer et al. [1991], also described by

Scherlzer and Lovejoy [1992].

Finally, we discuss the Io~-normal model (C.17a). Up until now, we have been able

to oblain our K(h) directiy from definitions, without using the c.g.f. corinection eSlablished

in (C.22b), by exploiting the discrele nature of the y-di~tributions. Here, we no longer have

this advanlage but the c.g.f. of the normal distribution is well-known: viz., for the r's in

(C.l7a), In[~(t)] = illt-a2t212. Hence, from (C.22b) with the natural change of variables
r = ylnÀo: ~

'.'

1 1
KW=~~a~+~) ~~

which is also the result oblained by Legendre transformation of (C.18a). Using the

conservation constraint (C.l7b) this yieIds
K(h) =Cth(h-l)
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with Cl =cr2121n~, as previously defined in (C.18c). The corresponding dual codimension

function is simply
C(h) =Clh (C.35)

for any h. Since the C(h) in (C.35) inereases beyond ail bounds, high enough order

moments will diverge no malter how many realizations are sampled. In the characterization

by Schert77T,e_U!L[ibid.], we are dealing with "hard" multifraelals. In a sense, log·normal

multifractal are the "hardest" of ail since polynomial K(h)'s are of degree 2 at most, the
corresponding C(h)'s cannot increasc faster than predieled in (C.35).

Comparing (C.30) and (C.34), we see that the binomial law may converge to the

normal law "almost surely" (in probability, or p.d.f.'s) when n-7CO (stf6ng law of large

numbcrs), and so do their log- counterparts inlhe':'same sense, but they fail to converge

"stochastically" (in moments, or c.g.f.'s). This is enlirely traceable to the rare Gaussian

events that deviate strongly from the mean, i.e., more than the binomial approximation can

account for aecurately, at any order. Their effect docs not dominate (the statistics of) the sum

of random generators in (C.I 1b) but the strong nonlinearity of the exponentiation in (C.lle)
causes them to dominate in (sufficiently high order moments of) the product of random

"weights" in (C.lla). In short, "rare" docs not mean "unimportant" when dealing with

multiplicative processes; on the contrary, these rare events are the cause such violent effeets

as the divergence of moments because they are nonlinearly amplified (by exponentiation) but

not bcyond recognition. So, unlike what might have bcen expected, log·binomial cascade

models do not provide a valid interpolation bctween Bernouilli monofractals and log-normal

multifractals. This task is to bc fulfilled by the "universai" multifraclals that we will now bc

turning our attention to. Furthermore, the above lack of stochastic convergence is endemic in

multiplicative processes and has lead sorne authors to bclieve that their is no universality

classes in multifractals, each law for IlE has its particular and unique properties. We wiU:o::--."

argue that, this is only true within the very artificial framework of discrete (integer ~)

cascades and that universal properlies appear naturally within the broader framework of

"continuous" cascades.

CA.3. The Dissipation Spectrum and the lntermittancy Correction for Velocity Spectrum

Although K(h) and c(r) are only one-point statistics, they convey plenty of spatial

information bccause of the cascade procedure used ,to generate the E-field and that either

function specifies completeJY. This fact can bcused todetermine the E-field's correlation

properlies which are ofcourse scaling andrelated, by the Wiener-Khintchine theorem, to the

(scaling) energy spectrum Ee(k) of the stochastic process. Specifically, one finds [Monin

and Yaglom, 1975] in our notations
Ee(k) - k-1+K(2) (C.36)
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for the (conScrved) dissipation field itself. Furthermore, the velocity and e-fields are related
by (c.?) which yielded the famous "-5/3" spectrum for homogeneous e. This exponent must
now be corrected for the scale dependence of e, the so-called "intermittancy correction"
ariscs. This leads to [Monin and Yaglom, ibid.]

Ev(k) - k-513•K(2J3) (C.37)

Using K(h) = C1h(h-I), i.e., the conserved Gaussian generator model (C.34-35), in
(C.36-37) yields values of Cl in the range 0.2-0.5 given the experimentally determined
spectral exponents of either kin~we will use this upper bound in our simulations of

radiative transfer in chap. 6.

C. 5. Contlnuous Cascades and Universal MultiCractals
Th~?ughout the above discussion, we have tried to not overemphasize the role of the

"dividing" ratio, Â", in the cascade process. We usually think of it as an integer (2,3,4,.")
and this allows us to relate il to the final grid size (or, more precisely, inner-to-outer scale .,

ratio) Î.. after sorne finite number of cascade steps. There is however nothing fundamental
about any one of these integers and, ail things considered,the original idea of turbul~:~ .

'''-.:._-::. .
kinetic energy transport through concentric shells in Fourier space implies, if anything, a

dividing ratio of 1+, or a whole continuum of dividing ratios. Inpra«tJce (Le., before the'
small scale limit), we are looking at Î..-I steps of ratio 1+(Î..-l)-1 to obtain the same fmal grid
size as n Î..o-steps getting us to Î..=Î..OD. Notice that, if such is the case, we have =À., not
n=lnÎ.., random numbers that participate in each and every value of the final e-field. With so
many random numbers participating, we can expect that centiallimit theorems are somehow

i) '~.

going to intervene making the final results quite simple. The main difference will !Je that

amount of multiplicative "noise" involved in each infinitesimal cascade step must be carefully

filtered to yield the proper multiplc'scaling. In'essence"a discrete cascade process (with
. j-'

Î..o=2) very simply distributes one unit of multiplicative noise (Le., a single generator Il') per

"octave" in frequency or, more precisely, wavenumbers. In order to retain this essential
property of energy equipartitionl9 amongst the generators, we want the same totàlamount in

every octave. In other words, the infinitesimal generators must have an exactly "llk" energy
spectrum, they are no longer totally independent (spatial1y uncorrelated).

. Along thesc lines, Schertzer and LC?vejoy [1987a,b] develop (in equatioiîs) the forma!
~ c

theory of continuous cascading in Fourier space w!i:éh, on quite general grounds, cal1s for a

very specifie kind of "sub-generator," the continuous cascade equivalent of r in our discrete
cascade prescription (C.l7a) for the log-normal mode!. These previously unexplored rs are

negatively extrema!Lévy-stabler.v..s.In ,!!Jis context, "stability" means "sums are if
distributed like their components, apart from a sinlple rescaling." Gaussian deviates are the

1\
II
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(',t;

({

only stable r,v.'s with finite variance and, for infinite variance but finite m0,!TIents of arder
less tt(àn a, one finds Lévy deviates which have various amplitude-, skewness- and

ccntering parameters; because we arc interested in genêrating log-Lévy variables, only the

most negatively skewed can tie retained if (at least some) positive order moments are to exisL

The concept of stability is related to the notion of attraction in probability theory as in

general. Forinstance, the standard central Iimit theorel11 tells us that by summinglrescaling

independent ~.v.'s, ail o~finite variance, one eventually obtains a nonnal deviate. Equivalent

theorems exist for r.v.'s ofinfinite variance and Lévy-stabIG'deviates [Feller, 197!]. This

attractive pr.9perl~ entails a slrong dcgree of universality to the muilifractals based on such
-' .,;

generators.
Since Lévy-stable r.v.'s are delÏncd in terms of their c.g,f.'s, the corresponding

"universal" multifractals are delïned from th'eir K(h)'s:

0<a<2 (a*!): Keh) =~ (h" - h) }
ex-! .' .' h2:0 and K(h) = 00 for h<O (C.38a)

..)'';''

a=l: '/ K(h) = CI h In(h)

The two basic "universa!" mu!tifractal parameters arei'(Cl,a). On thèJone hand, the

parameter Clhas b~en adopted quite naturally as a measJ~e of the degree of inhomogeneity

(in the sense of intermittancy) since homogeneity is found in the Iimit C1~O. On the other

hand, a (thcLévy "index") measures the dcgree of multifractalily since monofractals and'
',', ,(

(C.29) are retrieved at a~O+, the lower bound, as is the log-normal mode! and (C.34) at

a~2-, the!Gpper bound. Notice that K"(O) = 00 (infinitc'f-varianceJ, except in this a~2­
Iimit where K"(O) < 00 (finite f-variance) and analytic continuation 10 h < 0 is possible.

From our above discussion on the div2?gence ofiilOl11ents, we are particularly

inlerested in

C.. ={ ~! ~::::
I-a'

(C.38b)

(C.39a)

So, according 10 the classification proposcd by Schertzer et al. [1991], "wild" singularities

are present in.alha2:1 universal multifractals, they are "hard." li
; \~,.., ..\

il The above K(hl' scan be analytically Legendre-trunsformed ta yield the associated

c(y)'s, at leasllo first order: "'.'
o Q, Y 1 lX' . 1 1 .

c(y) = Cl [ - + - ] (- + - = 1
a'CI a a' a

o y
c(y) '" Cl exp[ Cl - 1] (a' = ±oo )

//

D

il



r'l,

284

but, since K(h)=oo for h < 0, no c'(Yl<O information is conveyed by Legendre

transformation, the above c(y)'s are therefore expected to be good approximations for the
cumulative probabilities in (C.19). The only, but notable, exception is found in the limit

<l--72- (<l'--72+), where analytic continuation of the K(h) to h<O yields a c'(y) < 0 branch in

the corresponding c(y) and it therefore models a p.d.f. according to our adopted definition

(C.16).20 In connection with the possibility of divergence of moments, we are interested in

the order of singularity corresponding to the root of the argument of the power/exponential

law in (C.37a), Le.,

'':\, {-C' 1~a:Q'<l-I
Yo = (C.39b)
~ O~<l<l
1-0: \\

\1...
In the former case, we have (a firsl 'arder estimate of) the most probable order of singularity

which (to the same order) tllls space. In the laller case, we retrieve Coo and it represents the
maximum possible order of singularity; Scherlzer eT al. [1991] would classify these 0~<l<1

universaI multifractaIs (monofractals at a=O) as "soft."

Lavallée et al. [1992] have recently modified the 'Trace Moment" (TM) data analysis

technique, briefly described in the previous section, simply by starting not with the given

e-field as such but with that sarne field carried to sorne power 1'\ and then spatially degraded.

The ensuing scaling analysis then yields not a K(h) but a K(h,1'\), hence the name "Double

Trace Moment" (DTM). .one can see that

K(h,1'\) = K(h1'\,l) - hK(1'\,\) = K(h1'\) - hK(1'\) (CAO)

where, by definition, K(h)=K(h,I). Indeed, using e.ll instead of e. in (C.21-22) is like

co~sidering thé(h1'\)lh order moment-hence the tirst term in (CAO}-except that the e.ll

field is not conserved since <e.ll>=)..K(l1L hence the second term in (CAO). Equivalently,

we are looking at the very same cascade with generators ail multiplied by factor 1'\ and

recentered by -K(l); and the Legendre transform of c'(y')=c(y)ly=(y'+K(ll))/ll is

K'(h)=K(1'\h)-hK(1'\). If there is no difference between "dressed" and "bare" moments of

order h :md h1'\, then we can substitute (C.38a) into (CAO) yielding

K(h,1'\) = 1)(1 K(h) (CAl)

for h~O only, except if <l=2, and where K(h) is given by (3.38a). Having determined

K(h,1'\) for a few h's and as many 1'\'s as possible, <l (andell are obtained by a simple

logarithmic regression of K(h,1'\) w.r.t. 1'\. This is a substantial improvement over the kind

of nonlinear fitting (and/or graphical methods) necessary to obtain ci (and Cl) usingthe
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PDMS or TM techniques. Recenl DTM analyses [Sdlmin eT al.• 1992] of wind (tunnel) data

yield a=1.3. Le., in belween the ~- and log-normal models which have been used mosl

often to date.

A third universal parameter is reserved for direclly measuring the degree of

non-conservalion of the mulliplicalive process; on general grounds, ùlis amounLS lo an extra

!inear term in K(h) or, equivalently. a lranslalion (by y,) along the y-axis, depending on

whether a moment- or a histogram melhod is used. Many geophysical signais have been

analyzed in terms of a, Cl and (say) y, with the various lechniques described above.

Included, and of particular interest to us. are lhe Earth's radialion tields as measured by

GOES (geostationary meteorological) salellite imagery (8 km resolution for 1024 km sized

:scenes) in the VIS and (thermal) IR channels: a = 0.6, 1.7 and CI = 0.2. 0.3 for C(Y-YI),

with YI = 0.15, 0.19. respeclively. l'rom PDMS analyses [Lovejoy and Schertzer. 1990].

These values have been updaled wilh lhe introduction of lhe DTM lechnique [Tessier et al.,

"1992] Wilh even smaller Cl 's hUl a= 1.3 fnr the visihle chunnellhul we arc more concerned

with, hence closer lo lhe a=2 class ohlained frnmlhe FBC unalysis of Gabriel et al. [1988].

It should finally be menlioned lhal in ail of our discussions of dula analysis, il is Laken for

granted Ûlat lhe empiIical field is of ùle "e-lype," Le., il is (allhe very leasl) non-negalive and

"conserved" (Le., ensemble-average is unit) which. in panicular. implies a speclral exponent
o

in excess of -1, see (C.36). To achieve lhis, a certain amount of "pre-lreatment" is

sometimes nece.ssary; ilS description is tolally beyond lhe scope of this review but an

example relevant to radiation is discussed in some delail in §6.4.2.

C. 6. Passive Scalar Advection by HOl11ogeneous Turbulence

We have gone full circle ';hh lurbulence. slarting at a speclral exponenl of -5/3 and

ending at -[5/3+B] with B=0.15 which may nOl seem like a big dilTerence but we must

rea!ize Ûlat, on the one hand'cspectral exponenls are very robusl statistics (almost insensitive

to intermittancy, in particular) and lhal, on lhe other hand, we have elaboraled very general

modelling tools for extreme nonlinear variahilily in the meanlime. We will finish this

appendix with a few commenLS on lhe highly O<IO-u'ivial prohlem of passive scalar advection

by turbulence. This will give us an oppnrtunily ln appreciate the factlhat Kolmogorov-type

spectra are nol speeific to the lurbulent velocily Iield.
/~.

Let p(x,t) be the instantaneous density tield of some con laminant (or admixlure or

"scalar") introduced into lhe fluid, the velocily tield of which is v(x,l) at time t; furthermore,

the contaminant is assumed to be dynamically passive. hence v(x,t) is still described by the

Navier-Stokes eqs. (C.l-2). Conservation of the lotal amount of admixture is locally

guaranteed by Ûle continuity equation

.J
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(C.42)

1.. '

where Da is the diffusivity of the admixture in (say) air andf(x,t) represents a new (scalar)

forcing lerm that partially accounts for boundary- and/or initial conditions. Alone, the Lh.s.
of (C.42) is responsible for the advection ofthe scalar quantity p by the velocity field which

" /'

we continue to assume is homogeneously and isotropically turbulent with a weil developed
inertial range first without and then (next sub-section) with intermittancy. The r.h.s.

accounts for any arnount ofcontaminant 'iliat leaves or enters the moving fluid particle and we
have spelled out explicitly the effect of molecular diffusion, all other sources and sinks are
incorporated into the forcing term. We have put ourselves in the context of passive scalar
advection-diffusion for the sake of specificity; indeed, (potential) temperature obeys an
similar equation with 1\a (thermal conductivity) replacing Da and, in particular, a contribution
proportional to e-v.cav/ax)2 enteringf' as a source of heat from the viscous dissipation of
(turbulent) kinetic energy, see eq. (C,48) below. In purely mathematical terms, (C.42) reads
as a th~ee-dimensional Folçker-Planck equation with v representing the "drift" term. This is

not unfamiliar to those versed into inhomogeneous diffusive transport-radiative, in
particular, where the main particularity is that the analogs of v and Da are not unrelated to
each other, cf. eq. (0.32).

Compared to the Navier-Stokes equations in (C.1-2) and the many unsolved problems
of turbulence, equation (C,42) and the problems of passive admixtures look trivially simple

being scalar rather than vectorial and linear in the field quantity. However, being coupled (in
one direction at least), the problems are compounded as soon as turbulent velocity fields are

involved. Sorne simple questions can be addressed within the frarnework of "K41"

turbulence theory nevertheless; for instance 'How do the passive scalar fluxes fluctuate in

space?' As in the case of the velocity field, we tum to similarity-based phenomenology for
ideas. We star! by adding

p~ "-H'P (C.43) ;,

to the operations already present in (C.3). Viewed as a simple change of units for the scalar
quantity (density or temperature), this leaves the Prandtl number

Va
Pr = Da (C.44)

unchanged if and only if H' = H.

Corrsin [1951] and Obukhov [1949] independently developed a natural extension of
Kolmogorov's [ibid.] cascade phenomenology of the velocity field (sect C.l) to the

temperature field in homogeneous, isotropie turbulence. Recallthat 1. in (C.3)and (C,43) ~

then viewed a zoom ratio, they are scale changes. Given the fundarnental scale invariant
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quantity e which is relat;d to Y, we need an analog related to p. A choice that is consistent
with the similarity constraint (H'=H=1I3) is given by

X(x,t) =i (lIP)2. (C,4S)

i.e., the flux (rate of change) of scalar "variance." The "li" is not called for in the case of
e(x,t) w.r.!. velocity y(x,t), cf. eq. (C.S), since y212 is a well-defined and physically
meaningful quantity and the nonlinear tenn in the Navier-Stokes eq. (C.I) is important to its
Galilean invariance (adding a constant and unifonn velocity to the whole field). The passive
sealar eq. (CA2) is of course also invariant under a Galilean transformation (the presence of
a total derivative on the I.h.s. guarantees this), however it is linear in p and additive
constants are irrelevant to the dynamics. As in the case of velocity, the most easily obtained
empirical statisticfor scalar density is the structure function <lp(x+lu)-p(x)12> (Iul=!) which

,..-;/

is only a function of 1in statistically homogeneous and isotropie fields. From dimensional
arguments, the sealing of the structure function can only be

clp2(/» '" Xe-1/3 [213 (C,46)

hence another "-S/3" law:

EpCk) '" X e-l13 k-513 2 (C,47)

Since temperature (T) obeys an equalion formally identical to (C,42), the same analysis
applies and another Kolmogorov spectrum is obtained, only the defrnilion of Xis adapted in
(CAS).

In summary, Y, p and T all have Kolmogorov-type spectra (and phenomenologies).
Yet there are fundamental differences between them which are bound to show themselves in

the answer to the next most logical question to ask: 'How docs the inhomogeneity of

turbulence-its intennittancy-affect the fluctuations IIp and LIT?' Unfortunately, no

completely satisfactory model has yet been provided in spite of intense theoretical [e.g.,

'"'" Schertzer and Lovejoy, 1987a,b; Wilson et al., 1991] and experimental[e.g., Sreenivasan
and Prasad, 1989] research. This is largely why we have used dissipation-type fields to

model the spatial variations of optica! density throughout this thesis and, therefore, even a
cursory review of this research is totally outside of its seope.
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1Detler still, the ultimate in multifractal teaching loOls: Lovejoy and Scbertzcr [1992].

2The 1st arder eercets of compressibility come band-in·hand wilh thase of gravity to generate convective beat
transport across the system wben il is submiHed to a temperature gradient (or, more gcncrally, heat sources and
sinks on different parts of ils boundary); this breaks tbe a priori rotational symmetry of (C.I-2). If nenessary,
tbese effects can be accommodated by directly incorporating a buoyancy term ioto J in (C.I) within the
Boussinescq approximation and the ncw field quantity (potcntial temperature or specifie entropy) will be
coDslrained by a continuity equation that balances advection by the velocity field and moIccular dissipation (via
diffusion processes).

30tberwise. rOlatiooa) symmetry-breaking effects must be taken ioto account, most notably those of gravity and of
the Coriolis force. This is an important aspect of scale invariant moclcUing and analysis that we will totally leave
aside: Generalized Scale Invariance or "GSr' [Schertzer and Lovejoy, 1985; Lovejoy and Scbertzer, 1985; Pfiug et
al., 1990; Lovejoy et al" 1992].

4"Big wborls have IiUle wborls that feed on tbeir velocity,
and Httle whorls bave smaller wborls and so on to viscosity
-in the molecular sense:' T~is summary of atmospberic dynamics is based on a equally compact summary by J.
Swift of the dynamics of lSth century englisb society using an appropriate biological analogy: (parasitic) fleasl

STbis is relatcd to tbe fact tbat, in d=2, tbe (surface) integral of "enstropby" 0.2 is conserved. In d=3, the
circulation of "he1icity" v·n (along cJosed paths) plays a similar role in the currently very active research on
"coherent structures" in three~dimensional turbulence.

6It is no accident that the fmt (and very simple) applications of scaling analysis techniques to atmospheric fields
were coDCemed with cloud cover and rain regions [Lovejoy, 1982]. l'bere are now scores of researchers worldwide
engaged in scaIing studies of atmospheric, oceanic and internal geophysical phenomena rangieg from the
genmetry of lightning strokes to the shape of the sea~s surface tn Ibe frequency and distribution of earthquakes
[Scbertzer and Lnvejoy, 19~1].

'Some authors prefer to talk about modom multiplicative "weights,,' Wi.

8This "correlation Jeogth" is oot to'be coofused with the "integral" (correlation) lengLh discussed in sect. 4.4. The
latter is defined in terms of the auto-correlation function of the field which, in this context, vanishes beyood 10
(the grid cnnstant).

9Sioce this is repcatcd in every subdivision at every scale, il leads 'to conservation at every point: "~anonical"
conservation according 10 Scbertzer and Lovejoy [1989]. '

10prom the point of view of cloud modelling for the purposes of radiative transfer calculations, multifractaIs
provide bone flde (potentially extremely) variable density fields (cf. cb. 6) wbereas monofractals can he viewed as
homogencous clouds witb very.. coDvoluted "internaI" boundaries (cf. ch. 4).

II ln original (but nnw obsnlele) a-model nntations: C. = c, Y. = Cfa and y_ = -Cfa' bence the ~-model is
rctrieved at cx~l and a·...-+O. .'

121n the Iiterature on strange attractors in phase space, with the notational standards set by Halsey et al. [19861, a
designates tbe Hôlder exponent which is telated to our Y (otdet of singularity), sen §C3.2.

13ln Lévy-stable (infinite variance) random variable theory, ae IO,2[ designatesthe"otder of the moment that r""t
diverges; moreover cx', sucb tbat lIa+lIlX'=l, plays 3D. important role. Gaussian (finite variance)
gcnerators-bence log-normal (bare) mu1tifractals-are retrievedat a-+2~ and cx'-+2+, and the p.model
monofractals at a-+O+ and a'-+O~. cf. sect. C.s.

141n Lévy-stable random variable thenry, ~e[-I,+I] designates Ibe ·skewness" parameter. At ~=±I,tbe r.v.'s are
extremal with algebraic laits in eith~r positive or negative directions, not bath; apart !rom a reeentering by
translation, Ibe support is 9!±, not 91. At ~=O, we find symmetric r.v.'s. The former are calIed for in the design of
universaI muJtifractals and the latter in the tb~ry of additive Uvy processes -where standard RWs with Iinite
(variance) "steps"are replaced h)" "mgbts" with infinite variance, possibly evcn infmite mean in the absolute (if
a~l), j.e., the .fund3.II1entalm.f.p. ofkinetic, theory .fame is divergent.

15With three definitions for the eodimension function in the pbysica1literature, we are still far hehind the numbet
definitions of fractaI dimcosionlhat can he foùDd in themathematical literature whicb is currently twelve [Co
Tricot, manuscnpt].

16This condition arises" for different Rasons in the [WO cases.' For _the Jog.normal, model, the Many cascade step,s are
nenessal'y tu reduce to zero the contribution of Ibe nnnnalization constant nf the p.d.f. and which the Legendre
transform does Dot restare. -Por the ex-model" the same _nccessity arisesfrom the discrete distribution of
sioguJarities whicb becomes dense ooly in the limiL

-.~

\J
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I?This is related to the faet lbat this leading tenu is rcsponsible (or the exponcntiaJ approacb to the strict posiÙve
cut~off of the gcnerators in these "extrema!" log-Lévy models. Only ncgatively large deviations (associated wilh
Lévy "holes" iIi the e·field) are aUowed.

18Multifractal analyses of rapidity in elemcntary particlc "cascades" in higb encrgy physics have bcen performed ;':
[Bialas aod Peschansld, 1988], similarly in the rcalm of the nebulae [Atmaospacher et al., 1989]

19This expression from (equilibrium) statistical mcc:hanics i5 chasen delibcratcly. Tbere are many fonnal analogies
hctwecn multifractal formalism and thermodynamics [Chbabra et al., 1989]. In this context, the analog of a
gcncrator i5 an degree of freedom in the system. The usefulncss of these analogies becomes more debatable when
2Dd order phase transitions are inc1uded as they play a role analogous to the divergence of higb order moments
discussed in sect. CA; see Schertzer and Lovejo)' [1989] for a discussion in our notations.

20Another, somewhat fortuitous, e,;ception is found al «=112 (<<'=.1) where we nnd inverse squared Gaussian
deviates to be e,;actly e,;tremal Lévy deviates (of inde,; 112). CorrespondingJy, we have nol only a Legendre
transform estimate of c(y) for very large l's but a1so an e,;act inverse Fourier-Laplace transfonn of <E,.h> in the
forro of a Pl.(Y) , viz.

~
nÂ, y

Pl.(y) = - [2_-]-'12 Â,.ct'(2-'l'Ct)
nC! CI

hence

before taking the smal1 scale limit. Notice how the c),,'(y)<O branch which corresponds to the essenlial algebraic
"taH" in J»,,(Y) appears as a "slowly varying" logarithmic fUDClioD of y in the above whereas the nonna1ization
constant becomcs a straightforward Ulog-correction" to the first order (Legendre) tcrm from (C.37a) which, in
tum, appears last in the above expression for c),,(y). It is a1so clear that c),,(y) is oot convcx on aH of its domain
]-oo,2C i [. The above exact formulae (also available for «=2) can be useful in the calibration of computational
synthesis or analysis tools by eliminating one source of uncertaioty, namcly. finite~size effcets.
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Appendix D

DIFFUSIVE TRANSPORT, THE RADIATION CONNECTION

Preliminary Remarks and Overview: One of the main messages contained in app. A
is that the major source of difficulty, and subtlety, in general (continuous angle, or "CA")

~adiative- or neutron transfer is the angular part of the problem. Moreover, the complexity is
.'
traceable to the presence of multiple scattering (m.s.); the problem at hand is epitomized by
equation (A.5) and source [unction (A.17):

1 a ,([ëdï + u'V] lu(x,t) =- lCp(X) [Iu(x,t) -:r p(u'-.?u) luoCx,t) dd·'u'] (0.0)

Le., an infinite set of fully coupled PDEs constrained by BCs that make it a boundary value

problem in higher dimensions, with highly variable coefficients in the most interesting cases.
The hope for analytical progress in such a situation is very slim and we are confined in

practice to numerical methods.
ln this appendix, we review the most traditional way of coping with the angular

problem which however carries a cost, in terms of subtlety. The traditional route of the
"diffusion approximation" (d.a.) is to assume that the angular (u) distributions of radiance

are everywhere smooth enough to he weIl represented by a small number of average

quantitie~ (in fact, statistical moments). This amounts to taldng the hydrodynamic limit of

the above kinetic equation for the photon gas dynamics which, at least, is linear in radiance
since, rather than interacting with each other, the photons interact with ambient seattering

malerial. In chap. 2, we will systematically exploit this approximate theory of transfer-but
an interesting transport theory in its own righ~o gain insight into a (the?) basic mechanism

of trânsport in inhomogeneous and/or non-plane-parallel media: flux-lines are attracted by
negative fluctuations of optical deiisity, including (non-illuminated) boundaries, and repelled

by positive fluctuations, including isolated clouds. This is clearly an aspect of "channeling,"
acéording to Cannon's [1970] definition (the light seeks the lesser optical paths through the

medium). ,

o In chap. 3, we re-examine Chu and Churchill's [1955] original idea of arbitrarily

reducingthe ord~r of the.co~pled system in (0.0) as another mean~ of.reducing the leve\tof~

angular complexlty. This dlscrete angle (or "DA") transfer-whlch IS a simply a special, \~.. /.
~

·1-4n ~
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more tractable, case of exact (CA) trans(er-is systematically exploited numerically in chaps.

4 (where iL is compared with CAs) and 6 (where it is used to case an exceptionally heavy
computational task). Wc arc basically faced with photon populations distributed on the
angular part of their characteristic phase space and the pcrennial choices of averaging versus
sampling lead us (rcspcctively) the d.à:' and to DAs. Not too surprisingly, the latter approach
turns out to be not only a better model of inhomogeneous transfer processes (w.r.t. their
scaling characterization, sec sect. 4.3) but also a more encompassing theoretical framework
since an entirely new "route to diffusion" is unearthed in sect. 3.3 by fornlally pushing DA
phase function parametetS"bcyond their physical limits, not by manipulating the rad}ancc field

~ we do here.
Wc consider, in sect. D.O, the (beginning of the) hierarchy of exact angular moment

equations derived from the above CA transfer equation; each one corresponds to a
fundamental radiative (;onservation law 1hat is briefiy discussed. In sect. D.I, we close this
hierarchy at \St order by introducing Eddington's approximation, closely examining its
conditions of validity from the theoretical SlJndpoint whereas, in sect. D.2, we a.dopt a more
empirical point of view. In connection with the latter approach, we discuss some recent
radiometric measurements by King et al. [1990] inside a marine stratocumulus cloud deck;

these observations are extremely interesting although, in our opinion, incomplete (and this
prompts us to describe the ideal in situ cloud radiation transport expcriment). In sect. D.3,
we briefly look at the similarity properties of diffusion theory which can be readily
interpreted in terms of the photon's generally correlated random walks (RWs). Section DA

is devoted to the diffusive scaling properties of homogeneous media (our standard

benchmarks) either with vertical Qounds and external excitation or infinite but with a focus on

the dispersion of a cloud of diffusing particles. Formai analogy is a powerful tool in
diffusion theory (used mainly in chap. 2) and the only concern, going from one application

of diffusion to another, arises from differences in the boundary conditions (BCs). These
problems undergo close scrutiny in sect. D.5 and the method is ilIustrated by the following
two examples: (vertically inhomogeneous, horizontally homogeneous) plane-parallelmcdia

J

behave like resistors in series, on the one hand, while inhomogeneous media treat%d in the
"independent pixel" (!P) limit behave like resistors in parallel, on the other hand, an)j there is

a well-known inequality betwc.en the two situations. Finally, we look at inhonfbgeneous,..
situations in sect. D.6 and introduce "channeling" as the basidncchanism by which the
~', '" ~~ .

;adiation reacts to density fluctuations (thus providing a qualitaÎi&e introduction to the
. somewhat more quantitative approàch developed in chap. 2).· The simple class of

inhomogeneous media consisti~ of uncorrelated random binary mixtures, viewed as a
variable conductivity problem, attracted a lot of attention in the statistical physics literature (in
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the early '80s); the (typically numerical) results of these studies provide us with a perfect
illustration of the bulk effects of "channeling" and, moreover, they will he of use in chap. 2.

D. O. Radiative Energy and Momentum Flux: Conservation Equations for
Scattering Media,

By applying f(·)dd·!u to both sides or the m.s. transfer eq. (D.O), inverting the order
of the angular integrations and using normalization (A.18) along with the definitions
(A.2-3), we find the well·known exact relation

aual + V·F = - lCp(X) (l·roo) cU(x,t) (D.l)

where we have reintroduced the radiant energy density U=J/c. This is simply the continuity
equation for U, in particular, we find it to he locally conserved when roo=!. Consider a
regular closed hyper-surface :&=aV; the difference between outgoing and incoming energies

(per unit of time) is

fln(x)dd·!x - Y:l·n(x)dd.lx = fT. F(x,t)·n(x) dd-lx (D.2)

where n(x), XE L, is the running outwardly oriented normal unit veclor. Notice that the
I.h.s. caIls for the hemispherical fluxes (A.3 ') whereas the r.h.s. uses net fluxes (A.3).
Using (D.1-2) and the divergence theorem, we find this difference to hecome:

Iv V·F ddx = - ft IvU(x,1) ddx - ClC(l·roo) Ivp(X)U(X,t) ddx (D.3)

J In sleady·state, conservative systems such as clouds (at visible wavelengths) both lerms on
the r.h.s. of (D.3) vanish identically:! what goes in must come out, either as "transmittance"

Ij or as "reflectance" although there are at least IWO natura! definitions of these as discussed at

lcngth in sect. A.4. Another important consequence of (D.3) is that, in absence of optically

active material (lCp=O), radiance and flux have very different hehavior: radiance is cQnserved,
.~ , ~,

whereas flux is diluted in space2 according to a làw in l/rd·t. '1

By applying this lime YuOdd.lu to both sides ofthe m.s. transfer eq. (D.O), we enter

the classical hierarchy of equations starting with

HI-+ V'cE = - lCp(X) { F(x,t) - f u §Iu'(x,!) p(u''"7U) dd-lu'dd-lu } (DA)

Recall from sect. A.l, that!:(x,t) is the pressure lensor field of the photon gas.
In the second term on the r.h.s. of (DA), we now revive the ~ssumption

,. p(u''"7u) = pra) where a= cos-l(u'·u) and, as in sect. A.3, we can expand pra) into

(azimuth-independent) spherical harmonies; the double integral in (DA) is lhen réadily
~,"::

evaluated by using the appropriate orthogonality relations. As we have not gone heyond,lSI

(:
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order in the u-rùoments of lu, only the om and 1st harmonies of the phase function are called

for, Le., (A. 19a,b) can be truncated at n=1,3 From the definition (A.20) of g, we see that

f u' p(u'·u) dd-I u' = rnog u (D.5)

We therefore obtain a simple expression for the r.h.s. integral in (DA):

f lu'Cx,t) f u p(u'·u) dd.tu dd.tu' = rnog F(x,t) (D.6)

and (DA) itself becomes
1 aFcdt + V'c!:: = - lCp(X) (l-rnog) F(x,t) (D.7)

Like (D.1), this is an exact relation and it too can he integrated over a given d-volume.4

Equations (D.1) and (D.7), as laws of radiative energy and momentum conservation, can be

viewed as (an integral partS of) those of radiative "hydrodynamics." This is a perfectly good

analogy since the continuity and Navier-Stokes and mass conservation equations (C.l-2) can

he obtained from Boltzmann's equation (E.5) by the very sanle averaging procedure although

the derivation is more involved due to the nonlinearity of the collision term (see, e.g.•
Chapman and Cowling [1970]). More importantly for our systematic interest in general

purpose physical models of inhomogencous radiative transport, (D.1) and (D.7) are thi:

traditional point of departure of the diffusion approximation which we will now derive. We

will eventually draw fluid dynamical (and other) analogies within this framework that will

help us clarify the basie workings of inhomogeneous transport, mainly in chap. 2.

Beforc proceeding, we restate onr expre.ssions for the conservation of radiant energy

and momentum:
1alCdt + V·F = lCp(X) [ -(l-rno)I(x,t) + ~(x,t)] (D.8a)

".
1 aFcdt + V'c!:: = lCp(X) [ -(l-rnog) F(x,t) + S(x,t)] (D.8b)

where have simply added to their r.h.s.'s the contributions of non-m.s. sources that were

c.~~, dropped from the above derivations for simplicity. They are related to their CA counterpart
'''Su by

",,:,

~(x,t) = f Su(x,t) dd-I u (D.9a)

S(x,t) = §u Su(x,t) dd-I u (D.9b)

For instance, u-isotropic thermal (hence d=3) sources yield ~(x,t) = 4lt(l-rno)By(T(x,t))

and S = O. Their (very much non-thermal) single-scattering counterparts for runiform;.,

steady-state illumination at a boundary, collimated in direction uo\' yield'

~(x) = rnoFoTd(XO(X,Uo),x) and S(x) = rnoguoFoTd(xo(X,uo),x), if the phase fun.::tion is
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axisymmetric (only a function of uo·u), the latter wil1 vanish only in the case of isotropic
(g=O) scattering. Recall (from sect. A.3) that Td(xo(x,uo),x) represents the escape

probability from position x into the direction opposite to that of incidence.

D.1. The Radiative Hydrodynamic Limit: Eddington's Approximation as a
Closure ln Direction Space

Although solving the angular problem that is presenUy our preoccupation was not the

purpose of the exercise thatlead to the transport problem underlying (D.8a,b), we have

certainly not made any progress on it. On the contrary, since (thanks to c~) the said
-=,cquâtions contain more unknowns than constraints hetween them: [1+d+d(d-l)/2] and....~-::::--

(1+d), respectively. We are d(d-l)12 equations short, the number of independent

components of c~ that were enumerated in sect. A. \. Notice that this "closure" problem

does not affect d=l where vectors and 2nd order tensors are isomorphic with scalars; in

particular, cP=J/d, from their respective definitions (A.4) and (A.2). The way around this

problem in higher dimensions is the introduction of a closure scheme, and this is where

Eddington's approximation enters: ~. = (Uld)J (Le., as in hydrodynamics, the pressure

exerted by the photon gas is the sarne in every direction, even ü it has a non-vanishing mean

Dow direction E(u)ocF). In terms directly applicable to eqs. (D.8a,b), we have
JcP=-l= d=

EquivalenUy, we can say that we have decided to neglect the traceless part of c~, in

particular, all of its off-diagonal components are set to O. This means that the radiance field
"can be described by its two fll'st spherical harmonies, namely, J and F:

{

_1 J + LF·u (d=2) ~/
lu = 2lt lt (0.11)

.L J +...1- F·u (d>2)
fid 211d-1

This can he verified direcUy by substitution, using6 ,

{

lt (d=2)
~, f uu dd-I u = J 2n~'1 (d>2) (0.12)

The next term in (D}T)$ould he proportional to (cf-1J/d):uu, viz. the traceless part of cf '

doubly contracted with·t6eôdYadic product of u with i~lf (recall that l:l=d). This is indeed
~ ~ ==

the only way to ~ain the orthogonality between the various terms of the expansion in
monopoles, dipoles, quadrupoles, etc.

Conversely, it is a simple matter to deduce Eddington's cl~sure (0.10) from the

truncated radiance distribution given in (D.ll).7 This makes theJJI equivalent to each other
n'; "-.:;.

and, to someextent, this equivalence validates Eddington's hypothesis in meteorological
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applications because of the recent rKiI}g et al., 1990) observation of dipolar u-distributions

as in (D.ll) in quite typical cloud; this evidence is closely re-examined in the next

sub-section. In the meantime, it is easy to provide an example of conditions where the

hypothesis in (D.ll) becomes very poor: those where the photon gas is best vi~wed as a

weIl collimated stream (of flux Fo, along direction UO), yielding c~=FouoUo which is far from

being traceless; such conditions are also often observed, granted, mainly in between the

clouds and near their boundaries.

Substituting (D.lO) into (D.8b) yields
dëlFcdï+ VJ = d x:p(x) [-(l-IDog) F(x,t) +S(x,t)] (D.13)

In principle, F can now be eliminated between (D.13) and the continuity equation (D.8a). In

practice, this yields an integro-differential equation in J (or U) alone which is only of intcrest

in cases where energy densities and fluxes vary on the same time-scale.8 We can neglectthe

troublesorne first term on the I.h.s; in steady-slate of course but also, more generally

speaking, in situations where the flux reacts instantaneously and locally to changes in J rather

than with the time-Iag and non-Iocality implicit in (D.13). Rence
\',

1 '~',
F(x,t) = -D(x) VU(x,t) + (I-ri!og) S(:':,t) (D.l4)

where the flISh~!!!Lis:thccQntribution to radiative flux from Fick's law for photons, and

D(x) = c J"'" (D.15)
d(l-IDog)x:p(x)~<::.o

, .
is the (local) radiative diffusivity. lI(l-IDog)x:p is known as the "transport" m.f.p. and it

corresponds to the "effective" m.f.p. for an "effectively" isotropic scattering (see upcoming

section for delails). D is therefore the exact radiative equivalent of molecular diffusivity

which is always on the order of (thermal) velocity multiplied by the m.f.p.

To av6id the complications evoked above in connection with t-dependence, we can

require specifically that

_F_ » D(x) _ 1 (D 16)
IéJF/ëltl c2 - cd(l-IDog)Kp(X) .

i.e. that changes in flux occur over periods of time much longer than Iight-travel timé?aC'ross

a transport m.f.p.9 There is another implicit constraint, this time on the norm of the flux,

that cornes from the fact that we must enforce positive values for lu in (D.ll). Rence,

without being too specifie about the consw.nts involved, we can simply require that
D(x) ,','.

F(x,t) = -,-, IVJ(x,t)1 < J(X,t) (D.17). c -,

Le., the transport m.f.p. must be relatively small w.r.t. the scale on which J changes

considerably. The (D.17) is carefully written so that it does not exclude one-dimensiona!
'--'</
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transport per se (even at the lower boundary where F=J); this is important since diffusion is

.. known to be exact in d=l. At the same time, (D.17) makes a steaming (J=IFI=lIc~II=''')

u-distribution look at least suspicious in higher dimensions.JO We also note that (0.17) has

no direct incidence on the variation of D(x) itself. Even if D becomes infinite (p=O), F can

remain finite if VJ vanishes; an example of this situation is provided in §2.3.3. In

§§2.3.4-5, we will also consider very disorderly (white-noise) media where transfer and

diffusion give either very comparable or very different results, depending on whether or not

and how often D takes on infinite values. This is already quite understandable since, when

density vanishes (making D and the photon m.f.p. infinite), streaming in the photon gas is

radically promoted, as argued in §A.3.3 directly from the pro~~ties of the tansfer equation.
. ~-----.;:;

Generally speaking (§4.4.3), the singularity condition is needs to be complemented by a high

degree of correlation to yield "anomalous" diffusion.11

In ail atmospherical- and many physical applications, (0.16) is weil verified. As

argued above, (0.17) is impossible to justify on general grounds. In sect. 4.4-5, we will

(tentatively) define the favorable property of the optical medium as "regularity" in the sense

of lack of "singularity," itself taken in a sense broader than the limit p--70 evoked above

(specifically, we incorporate the multifractal concept of singularity developed in app. C). In

chap. 6, things become more subtle because we will see that deep inside a very singular

medium, diffusion can be relatively accurate if the optical thickness is large enough (i.e.,

.there is plenty of scattering going on). We will also retum to this question with an empirical

frame of mind in the upcoming sub-section.

At any rate, by substituting (0.14) into (0.13), we obtain the following prototypical

diffusion-type equation for energy density U:

{ a c2 (l-lilO)} 1 C[dt - V·D(x)V] + dD(x) l-lilog U = (l-lilog) [dD(X) ~(x,t) - V'S] (0.18)

In the following two lastsections we will be describing the specifie role of each one of the

three terms on the above I.h.s. Notice that divergence. cf the (vectorial) flux of the non-m.s.

sources in (D.9a,b) acts as sillk for U as it should.'2 Eq. (0.18) can be transposed into the

more familiar terms of J(x,t) and p(x):

{ [ (d(1-lilog))al] }
c dt - V· KP(X)V + d(l-lilo)(l-lilog)lCp(xY!/

.._';" ..

. = d(l-lilog)lCp(x)3(x,t) - dV·S

while bearing in mind the vector- and scalar fluxes are related by

F(x,t) = - d(1-lilo~lCp(X) VJ(x,t) + (1-~Og) S(x,t)

o
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The fust r.h.s. term defines a Fickian "constitutive" relationship and it is clearly diffusion
theory's way of saying that, in absence of the non-m.s. sources (in the second term), spatial
gradients (VI) and angular ani,~otropy (F) are directly related, one driving the other, just as
find in CA (sect. A.3) and DA (sect. 3.3) transfer.

D. 2. The "Diffusion Domain" of Real Clouds: Recent Observations by
King, Radke and Hobbs

Before leaving the topic of the accuracy of diffusion as a model of radiation transport,
we must have another look at our most basic premise, namely, the radiance u-distribution
(D.ll) but from the empirical viewpoint. Eq',(D.1l) is telling us that lu is made up of a
isotropie (monopole) term modulated by a dipole term with its lllds oriented by F. Hence

sampling lu in any plane yields a cosine law in "azimuth," understood as relative to the
direction normal of the sanlpling plane; li this normal is horizontal, then we are sampling in
a meridian plane w.r.t. the vertical (an example to follow). Furthermore, this law has
maximum amplitude (peak-to-peak variation) when the sampling plane contains F and
vanishing amplitude when the plane lies perpendicular to F. In general, we do not expect
(D.11) to bc a very good representation of lu, and indeed we have oClèn argued that the

, number of harmonie terms required to describc lu depends largely on the proximity of

boundaries and/or non-thermal sources which can be either highly directional or weil
localize.d or both. (Recall that a loéalized source implies strong gradients, hence strong

anisotropy according to the argument presented in §A.3.2, potentially stronger than (0.11)

can allow for.) ln clouds, this certainly happens within a few optical m.f.p. values of the
open and/or iIIuminated boundaries (for even the mildest forms of inhomogeneity) and­

according to the arguments presented in §A.2.2 (based on arbitrary variability)-it is quite

conceivable that, in sorne cloud types at least, this can translate to geometrical m.f.p.'s that

permeate the whole cloud.
In spite of these potentially severe shortcomings, there is strong evidence that (D.ll) is

an accurate representation of radiation fields in at least one situation of particular interest to

us: deep inside marine stratocumulus (StCu) which typically form horizontally extensive
cloud fields. This is a most remarkable findingof King et al. [1990] who flew horizontally

through a 50 km wide cloud deck off the coast of California with a scanning radiometer
oriented at right angles to the tine of flight in the nose of a Convair C-131A aircraftduring
the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment

(PIRE) on July 10 1987 between 09:22 and 09:55 PDT [their sect. 4, figs. S, 6 and 8a, in

particular]. Their prime objective was to quantify spectral absorption features in the near-IR

but we will dwell mainly on their observations at 0.503 /lm wavelength where they posit

:~

'~;
• )1

.1
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IDa=l. We agrce with thcir (widely accepted) first conclusion that the observed albedo
rcduction at strictly visible wavelengths (:s0.7Ilm) cannot be du(\ to "anomalous" absorption
sincc it is unobserved, leaving spatial inhomogeneity as the prime candidate, and we can only
wonder why they rely so heavily on a homogencous model to draw their second conclusion
about the reality of "anomalous" absorption in the l.6-2.2Ilm region before this question is
seriously re-examined within the context of inhomogeneous transfer in presence of (normal)

absorption. (TItis is weil within the reach of our present computational resources: simply by
keeping accurate account of the orders-of-scattering in a conservative Monte· Carlo
simulation, one can reproduce after the fact responses for any amount of absorption.)

Intcrestingly, the authors find considerable variability in radiance amplitude,
(3/2lt)IFxvllv, where v is the aircraft's (almost horizontal and constant) velocity vector, and
much less in midpoint radiance, J/4lt. According to the raw data [presented in their fig.7],
J=240 (±15%) and IFxvl/v=35 (±50%), both in units of mW/cm2/1lm whereas their fig.8a
shows that the residuals of lu w.r.t. the cosine that barely reach 0.1 mW/cm2/llffi/sr. We of
course think of these numbers as spatial averages. As expected from our often me.ntioned
counter-example (w.r.t. diffusion theory) of "streaming" (8-like) radiance, the authors report

G sorne instances of scans being "contarnin)lted" by direct sunlight or that otherwise deviate ,~<,,,

from the ominOl~s cosine behavior [cf. tI'Jeir fig.Sb] but there are apparently very few of

these. ClearlY:<~ streaming'radiation flow would often be observed in "broken"
(non-stratiform)cloud fields, e.g., in (between) falr weather cumulii. Of course, all the

intermediate cases are bound to occur too.
King and his co-workers define the part of the cloud where (\heir relatively selective

sampling of) lu obeys eq. (D.11) as the "diffusion domain," we accept this defmition of the
on condition that the criterion is extended to ail of ::3. Unfortunately, no attempts have been

made yet to directly measure any non-verticalcomponents of F. This is mainly due to
hardware limitations: for instance, King's apparatus uses opto-mechanical scanning

technology which is now essentially superseded by CCD devices at the focus of telemetric

lenses [M. Herman, p.c.]. There are also software limitations: CUITent transfer models can
only accommodate a vertical F since they rely heavily on their postulates of plane-parallel

geometry and horizontal homogeneity-this applies in particular to King's [1981] asymptotic

. theory which uses diffusion ideas with.in the framework of transfer[and isused in théir sect.
2 and 5].

The authors do constrain their "theoretical" cosines to be in phase w.r.t. maximum

radiance being detected at zenith viewing (upointing vertically downwards) and still fmd

many seansto be weil fit. At the same time, one of the poorer fits[their fig. 8b] shows.a
'. cosine slightly out of phase hence indication of an F-component in the horizontal direction
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contained in the sampling plane, plus a hint of higher harmonics. Furthenuore, the criterion
does not exclude a case where F has a horizontal component, even substantial, at right angles
to the sampling plane. We can only conclude that the observations tend to indicate that F
does not deviate very much nor very often from the vertical. EquivaienUy, the vertical fluxes
are not dominated by their horizontal counterparts on average which is very different from
saying il never happens. This in no way justifies the plane-parallel assumption that the
authors implicitly use further on [in their sections 2 and 5] and there is in fact no serious
incompatibility between their (empirical) findings and our extensive (chap. 6) model
calculations based on a scaling multifractal cloud. Recall that the data only pertains to a
single I-D transection through one specimen of a 3-D stochastic optical medium. (This kind
of limitation is of course precisely what makes satellite imagery so attractive compared to
such in situ radiometry.) Furthenuore, it is illusory to try to interpret the internai radiation
fields-quantitatively speaking-Qn a pixel-per-pixel basis, given the stochastic nature of the

cloud. The same remark applies to the remotely sensed exiting (albedo) fields. In app. C,
we will refer to more meaningful (turbulence-based) statistieal alternatives which have been
successfully applied to synoptic scale refiectance data [Gabriel et al., 1988; Lovejoy and

Schertzer, 1990; Tessier et al., 1992] and the basic ideas can surely he adapted to the internai
("diffusion" domain) fields as well. At any rate, these scaling analysis techniques cali for the
maximum attainable spatial resolution; given v=80 mIs and the stated sampling rate, we are
presently talking about 24 m (between zenith and nadir viewings). This can be reduced to
"'3 m simply by reducing the number of spectral channels to one,13 without restricting the

above-mentioned (CCD-based) bi-directional sampling of :::3.

For these reasons, we are of the opinion that the authors' reduction of the data to

physical parameters of the cloud can be largely disregarded, except in tenus of a kind of IP

hypothesis. Most interestingly, they do find a factor of!Wo in the variability of their optical
"altitude" (cumulative Kp below the aïrcraft) hence a probable factor of four in (total)optical

"thickness," assuming the aircraft is at mid-cloud leveI. A consistency check would be to
perform 3-D Monte Carlo calculations on the horizontally variable retrieved I-D (vertically

extended) optical density field showin[ negligible horizontal fluxes, but this outeome is
doubtful given the sharp gradients apparent in their probing, cf. their fig. 10.14 Furthenuore,

only 611 out of 3133 eligible (quasi-vertically orientedquasi-cosine) scans were reduced,

apparently due to aircraft roll in excessof 50, hence vignetting of either zenith or nadir

views. In other words, the "pixels" in the horizontal probing are of variable width,
averaging around 80 m mther than the theoretically attainable 24 m (and possibly only 3 m).

This provides another argument in favor of future bi'directional sampling strategies. This
also biases the selection procedure in favor of the more vertical fluxes since roll, strong up
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(down) drafts and horizontal LWC variability all accur together due to both shear-enhanced

turbulent passive advection and cloud droplet condensation (evaporation) provoked by
admixture of saturated (dry) air from cloud base (top).

In sect. 2.1, we argue on theoretical grounds that, on the one hand, homogeneous
plane-parallel media are an extremallep-distribution w.r.t. the amount of diffuse radiation
(e.g., albedo) generated and that, on the other hand, pixel-wise I-D calculations provide only
lower bounds to full 3-D trar:5port when interpreted in terms of an apparent (or "effective")
optical thickness. We can therefore take the authors' estimate of overall variability in optical
thickness as a lower bound: a factor 2 at mid-cloud, 4 in all for the vertically integrated

(hence smoothed) lep. Durouré and Guillemet [1990) perform simple scaling analyses of
cloud droplet counts in both StCu and (precipitating) cumulus congesms which prove to 00
extremely variable, see also Malinowski and zawadski [1992). (Apparently, King et al. use
their cloud droplet size spectra only for the purposc of Mie calculations in order to relate the
measurements in absorbing to non-absorbing wayelengths [in their sections 3 and 5).) The

ideal experimen,t should obviously collectboth reliable LWC and (directionally and spatially
generous) radiance samples, this would provide the basis for extensive "cloudy atmosphere
truthing," the equivalent of "ground-truthing" in the remote-sensing of the environment.
With such a comprehensive data-base, one could,simultaneously address the questions of
which radiation transport model oost applies (e.g., diffusion or transfer? when and where?)

. !'

and of which cloud LWC variability model oost applies (e.g., fractal Ol::ffiultifractal? when
and where? and what kind?). Furthermore, since we can theoretically predict that certain

variability models are incompatible with certain transport models, we will have a way of

checking our grasp of the problem of inhomogeneous transport in a context of practical
(meteorological) importance. ,

D. 3. The Classical Similarity Relations: Their Interpretation in Terms of
" Correlated Random Walks

In essence, il is the truncated representation of radiance in (D.II) that makes diffusion
theory insensitive to the higher harmonicsof the phase function. Ac~ordingly, its (exact)

similarity relations are a fust order truncation of those of full-fledged radiative transfer (see
§A.3.2). This can, also 00 seen by direct inspection of (0.19-20). Recall that the aim is to .

. leave J and JI invariant whilerescaling the optical density field via le.. Independently orthe
non-m.s. sources, le(1-Cilo) and le(1-Cilog) mustremain independently constant, equivalently
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(D.21)

y,-

Ji'.-

These relations were heuristicaUy derived by van de Hulst and Grossman [1968] from the

radiative transfer equation itself. Notice that King's [1981] "simiIarity parameter"

...J(I.Ulo)/(l·Ulog) is invariant whereas the "inverse (optical) diffusion length" ...Jd(l.Ulo)(l-Ulog)

is rescaled by a factor lC!le' along with the overall optical mass of the system. Finally, the

same remaries as for CA and DA transfer apply to the two above-mentioned conlributions to

the non-m.s. source term.

In essence, the (axisymmetrie) phase function in, say, (D.5) describcs the probability

distribution on 3d of the new direction of propagation (u)w.r.t. the old (u'); equivalently,

we have a p.d.f. of scaltering angle S=eos·1(u'·u) on [O,2lt] in d=2 and, in d=3, a p.dJ. for

cosS itself on [-1,+1] given that relative azimuth is uniformly distribuled on [0,2lt[. In this

~espect, the spherical harmonic coefficients mi defined in (A.l9a,b) are closely related (in

.. 'both cases) to the statistical moments of the cosS-distribution. Clearly, mo tells us about

normalization: a conservative (mo=l) phase function is a properly normali7..cd distribution;

otherwise (mo<l), it is "defective" and the probability of survival (w.r.t. absorption) aCter n

scalterings is mon, hence rapidly decreasing if mo is not very close to 1. Focussing

exclusively on the RW on 3d for a moment, let ua he the initial direction and take mo=1.

This'will also he the average position of the 3d-RWer after any number of steps (scatterings).

Letting Un denote this position, we have E(un)=uo, and definition (A.20) of the asymmetry

factor tells us that E(un+!,un)=g for aU n~O. If Sn=cos-t(un'UO) designates the (grcat circle)

dis,tance on 3d betwccn the points of departure and arrival, it is clear that

E(Sn) =0 (D.22a)

(by symmetry) and easy to show (by induction1S) that

E(cosSn) = gn (D.22b)

Once familiar with characteristic function theory'Cin probability, the simplicity ofthis rcsult is

no surprise since spherical harmonies are the equivalent in 3d of Fourier transforms in ~d

and addition of independent random variables translates to products of characteristic

functions which, here, are rep1aced bythe (discrete)mj coefficients. Relations similar to

(D.22b) can be obtained for higher order moments of cosSn, but they will not he as simple

sinee "addition" theorems for the spherical harmonics intervene; in other words, it is b(;lter

. to stay within the spherical harmonie functional basis on 3d: they eonstitute the "right"

combination of powers of cosS to work with. Their orthogonality rules guarantee that



(D.23)

mi={gi)2 for ail the coefficients of the p.dJ. of 92 with (D.22b) for n=2 corresponding to the
1SI order resu1t; this makes g2 is the "effective" asymmetry factor after two scatterings.l6

A further consequence of (D.22b) is that Un can be almost anywhere on 3d (say,
E{cos9n)=I/e) as soon as n=ll1n(lIg). If g=l, this reads as n=lI(l-g) which yields n=7
scatterings for the Cl phase function and n=l for Rayleigh scattering which is correct for
such a quasi-isotropic phase function,17 This trend towards u-isotropy of rilUltiply scattered
radiation is in fact applicable to ail (non-degen~rate) phase functions since, recalling that
Imil<l, the ith harmonic coefficient after the nib scattering is min which goes to 0 with n
(except for rnoihl). Tuming to the spatial consequences of the above, we remark that

~ ~ 1
EŒcos9n) = Ign = -1-

o 0 g

is also the average position of the "correlated" [Renshaw and Henderson, 1981] random
walking light particle in a x:p-homogeneous d-space, projected along Uo and measured in
m.f.p. 's, after an infinite number of steps. Summarizing, an isotropic RWer loses track of
its direction of propagation at every step but it takes the u-correlated spatial RWer about
n=l/(l-g) scatteringsJor its current direction of propagation (uD) to become effectively
independent of its original direction of propagation (ua). However, this has caused it to
travel roughly (on average, precisely) that much further in that initial direction than its
uncorrelated (g=O) counterpart. Everything is happening approximately aS if the photon

where scattering isotropically in a medium with l-g tirnes Oess) the original optical density.
This is exactiy the prediction of diffusion theory's similarity relations (D.22) but,

generally speaking, it can only be an approximation in transfer theory. The rescaling would

be exact if, instead of an exponential (photon-like) f.p. distribution, they were always unit

valued (and this is indeed the case of "diffusing" particles such asP.G. de Gennes' "ants"
and "termites," briefly discussed at the end of this appendix). From this vantage point, we

see that the above homogeneity assumption on the density distribution is paramount to make
this diffusion approximation a more accurate model for transfer since we need the photon

. f.p.'s to be as similar as possible; in other words, their (average) p.dJ. must be. as close as

possible to the standard exponential case, in sharp contrast to our analytical (multifractal)

results presented in sect. 5.1. Conversely, this constitutes a strong indication that diffusion
and transfer will predict radically different radiative behaviors in "extremely" variable media

(where photon f.p.'s arê far from exponential); this will be confmned in the case of the
"singular" density fields discusSed in chap. 4 and 6.

In practice, the similarityrelations(D.21) can be exploited to yield'solutions for aIl

possible (X:,mo,g) values corresponding toa given p{x)~field and BCs from three basic
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cases: filo is 0, finite (and less than 1), or 1. Notice that filo=O,1 are fixed points of the
similarity transformation. For our immediate heuristic purposes, we wish to bcar in mind the
fourth possibility of multiplying media (hence applications in neutronics): filo is unite, but
greater than 1. Thanks to the above similarity analysis, we can take g=O without any loss of
mathematical generality; physically, this corresponds to rcscaling ail m'c.p.'s, or dcnsities.
by their corresponding "transport" ratio, l-filog. With these notational simplifications in
mind, we will proceed in the two last sections of this appendix to make various assumptions
that allow us to single out the qualitative effect of the various tcrms on the I.h.s.'s of
(0.18-19).

r:,
..(0.24)
........-

D.4. Diffusion in Homogeneous Media: The Standard Scaling Properties

DA.l. Initial Conditions and Diffusive Random Walles in Unbounded Media

We now start by postulating homogeneity, the all-too-standard assumption; this will

give us a point of reference for the discussion of inhomogeneity effects in the upcoming riflai
section. We will also see how this frameworkjust about exhausts the resources offered by
the standard curriculum in mathematical physics. In this case, we can always work in natural
units of Icngth where (l,-filog)lCp=1 (Le, the transport m'c.p. is unit). Finally, we will also

""adopt the natural time(units for our problem which make c=d, i.e., Iight travels a (transport)

.m.f.p. in each availi{ble direction in unit time and this makes the radiative diffusivity unit
(within Eddington's approximation). Now (0.19) reads simply as

[~t - Y'2 ± m2 ]J(x,t) =0

with m2:dll-filol.
If we furthermore consider only steady-state (a/at=O) problems, we find a cIassical

Helmoltz equation: (-Y'2±m2)J=O. The qualitative features ofits solutions are dictated by the

remaining choice of sign. In the radiative (+) case, wheI'e we should view 1/m=1/"Id(l-filo)
as the above-mentioned "diffusion" length scale (expressed here in transport m.f.p. units)

and we expect exponential decays in space to occur on that scale. It is notable that the

extreme case of pure absorption (filo=O, m="Id) does not yield the proper exponential decay

expected from standard radiative transfer theory (Le., with the m.f.p. as e-folding distance,
except of course in d=1 where diffusion is not an approximation). This reminds us that,
although lCp appears explicitly in the expression for D, diffusion is insensitive to phenomena

onthescale of the m.f.p. Tuming to the multiplying (-) case, we see that the constant and
the Laplacian operator have the same sign, as in the (hyperbolic) wave equation arter

separation of variables, and we expect spatially oscillating solutions which become unstable
'at the "critical" threshold in filo (or system size, by similarity). In the important conservative

:'"
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(m=O) case, the diffusion Jength OOcomes infinite and we find the (elliptical) Laplace

equation, so the entire body of harmonie analysis applies. This fact will 00 exploited, via
general theorems (in sect. 2.1) and via standard techniques of variable separation (in

spherical coordinate systems, in sect. 2.2 and 2.3).
Still at m=O, but now relaxing the steady-state assumption, (0.24) becomes the

prototypical (parabolic) diffusion equation with its characteristic t-irreversible,
enlIopy-producing solutions which, at oost, are functions of scaling (algebraic) combinations
of the space and time variables.18 For initial conditions J(x,O)=S(x), we find the classical

isotropie Gaussian dislIibution in ~d:

1
J(x,t) = J(r,t) = (21tt)d/2 exp(-r2/2t) (0.25)

where r=lxl and from which we can estimate the moments of the "diffusing" particle's
,position which preform standard RWs in this homogeneous case. We find the following

simple scaling w.r.t. t:

d 1r(Q±g) t
E(~It) =J~(r,t) ddx = J (2t)q/2 (0.26)

r -)2 (t=:'

By "simple,,,cv;''c,mean that the knowledge of one moment is sufficient to define all the other
~ .

momenl~; in app. d\\we will see that this is related to the monofractal nature of the RW. In.,
particuJar, (0.26) gives us the variance

E(r21t) = dt (0.26')

i.e., a factor t is contributed by every direction, as expected from the definition of Euclidian

distance (r2=xI2+"'+Xd2) and the stability property of Gaussian dislIibutions under repeated

convolution (variances of sums of r.v.'s add). Restoring dimensionalized variables, but still
for isotropie (g=O) scattering, the above reads

E(r2It) =.E!. (0.26")
!Cp

For E(r2It) - tk, we talk about "normal" or "standard" diffusion if k=l, otherwise it is

deemed "anomalous" and·an example of anomalous düfusion is briefly discussed in sect 5.1
inconnection with our finding of algebraic, not exponential, average direct transmittance

laws for multifractal media. Finally, we no~ce that,after Laplace transformation of (0.24) in
time, the absorption and time-derivative terms combine so, in a sense, time evolution and

dependence on absorption contain the sam!: infonnatitiiJ19 on thesyslelIl. (This lastfemark

is in fact totally independent of the homogeneity hypothesis and we will make use ofit
further on.)
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D.4.2. Bounded Media. Boundary Conditions and the "Extrapolation Length" Problem

We now retum to steady-state systems and face one of the more annoying yet
fundamental idiosyncrasies of diffusive radiation transport: its "mixed" BCS20 that also
plague OA(d,2d) transfer, in its 2nd order guise. Our usual (transfer) BCs are expr~ssed in
terms of radiance; in principle, we must therefore start by expressing lu in terms 0(J alone
using (0.11) and Fick's law in (0.20):

1 1
lu '" fid [ 1- (l.(jJog)lCp(X) U·V 1J (0.27)

in d = 1, 2, 3 (curiously, but not 4, nor more). The diffusion approach is intrinsically
incapable of accommodating a li-radiance distribution as required in the specification of the
BCs (A.27) for the (steady-state but otherwise) general albedo problem. We can howcver
specify any given enlering (-) or exiting (+) hemispherical flux w.r.!. the running normal to
the surface of the medium we are interested in:

1
F±(x) = F±n(x)(X) '" 2: [ l 'F X n(x)·V 1J(x) Ix=xe aM (0.28)

where X is known as the "extrapolation length" and we prefer to view its as an unspecified,

free parameter of 00) (when expressed in transport m.f.p. units). This was indced the
tradition in the early investigations of diffusion approximations to exact transfer in
homogeneous media since the fitting of the BCs was soon recognized to be its main
weakness. Notice that X is the only (free) parameter left in the steady·state conservative
(m=O) problem in (0.24).21 The practice was therefore to determine X from exact transfer

calculations, numerical if necessary,and then to use it in the diffusion solution.22 At least in
d=3, the vJ&ll understood cases are, on the one hand, the semi-infinite medium (in connection

with the Milne problem) that yields X=O.7104.. · and, on the other :land, the (optically) very

thin case where X-74/3-. The exact dependance of X on size between these two extremes

being a function of the precise geometry of the medium, see Oavison [1951, and references

therein). Finally, we notice that we can formally retrieve at x=O the more standard Oirichlet
BCs (although they apply to JI2) and, since we intend to exploit analogies with such

'pro~lel11s quantitatively, it is of interest to see just how seriously we err by reverting to them.
We notice that a direct consequence of diffusion theory's commitment to fluxes (rather

than radiances) is that only the definitions (A.29) of transmittance and albedo are of any use
here; recall that these require the definition of a "terminator" on aM. Eq. (0.28) therefore

tells us that, at a non-irradiated boundary point (contributing to transmittance) where F-(x)=O

(with XE aM», we can use

T(x) = n(x)·F(x) = F+(x) - F-(x) = -Xn·VJ(x) Ix=xeaM> (0.29)
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(D.30a)F =Fo-.!!L
X+U2

where Fick's Jaw predicts -(n·VJ)/d hence XFick=l/d, Le., a systematic underestimate
(except in d=l). From the DA equivalent (3.18) of (0.28), wesee that all DA(d,2d) systems

yield the reasonable (intermediate) value ofXDA=l.
Returning to the expression of steady-state diffusion BCs in (0.28), wc see that-as is

the case for DA transfer in chap. 3-no distinction between collimated and isotropic (or
otherwise diffuse) illumination can he made. A substantial improvement on the problem of
representing coIIimated irradiation, especially in relatively thin media, is made possible by
using single-scattering sources in the definition of Z and S; in this case, still mixed but
simpler (homogeneous) BCs are applied. This improvement cornes however at a cost that
makes the whole of diffusion theory much Jess attractive. Moreover it only affects the layers
th,at are touched by ditectly transmilted radiance (Le., bnly the first few in, miIdly
inhomogeneous media), which is precisely why this complication is mainly of importance in
extending the accuracy of diffusion towards thin media. The bulk propcrties of thick media
are unaltered and, turning to very inhomogeneous media, we will see (chap. 4) that it is not a
good idea to think of diffusion as an approximation to transfer anyway but,rather as a theory
of transport in its own right; in both cases, using the simplest possible BCs (or ICs) is
tIJerefore fully justified.

We can further iIIustrate the effect of X by considering the conservative transport
problem in a d-dimensional homogeneous slab problem, assuming it is illuminated by an
incident flux Fo at z=O and is of total thickness L (or (l-g)t, since we are using transport

m.f.p: units). Net flux is a cons&ntvertical vector of magnitude F=IVJVd (from Fick's Jaw)

and Laplace's equation V2J=0 is satisfied in rectangular coordinates by J(x)=J(z)=Jo-(dF)z.

The two BCs (0.28) allow the deterrnination of Jo and Fin terrns of L and X: Jo+XdF=2Fo

and CJo-dFL)-XdF=O. Hence

X+L
Jo = Fo--

X+U2

and, for L»X (or, equivalently, at X-70)

')

Jo =2 ( 1 _X) E.. =1.. (D.30b)
Fo L Fo dL

Since X vanishes from the dominant terrns, it can be viewed as largely irrelevant to the

asymptotic scaling propcrties of the system. Consequently, we generally need not he too
'=0 meticulous about theenforcement of the mixed BCs.

This however does not mean that we can systematically take X to he 0, even in terrns of
scaling. To sec why, we frrstcompute the transmittance of the slab from (D.29-30a,b):

· .;i



(0.31)

(0.31")

C",
'-<;'.

309

T - F+(L) _ dX E.. 1
- Fa - Fa I+U2X

Since L represents (l-g)KpL in our present units, this result is identical to (3.22') for OA
transfer in homogeneous slabs if we take X=1 (as anticipated above), recalling that l-g=q in
conservative systems and that t=KpL. We now take the limit L»X:

T"'2XL-' (0.31')

Apart from notations (stemming from different ways of non-dimensionalizing the problem),
the only difference we find between the complete OA transfer result (3.22'-23) and above

diffusion solutions is a factor of d in (3.23) for the total OA radi~ce"à:ql)e top which is
absent from (D.30a). Comparing (0.31') with the scaling relation (1.2) with Â. replaced by
L (due to the prevailing homogeneity assumption, Â.=I), we see that23 KT=-l (with a

"prefactor24 2X),:-independent of ct--inasmuch as X is (e.g., as in orthogonal OA systems);
..,_)1

equivalently, Hom (O.l) with 't=t=L (in the units presently in use), we find VT=l, hT=2X.
. r.:-

The remarkable success of diffusion in reproducing bone fide transfer results-up to (,
prefactors--in this examp1e is entirely traceable to the ultra-symmetric geometry of the slab's

boundaries. In chap. 2, we introduce formai analogies with electrostatics and -dynamics that
we will then use to show, in particular, that the homogeneous plane-paralle1 assumption is
Uextremal" in other important respects also.

Finally, we remark that an equivalent form for the general (any L) result (0.31) is:
1 LT- 1=-

2X

which se~ms to be canonical for diffusive responses, cf. (2.18) and (2.37) for spherical

systems-a case where the mixed BCs are of 'considerable importance to the final

result--and the discussion in §2.2.3 about its generalization to other shapes. The same form
also arises in OA transfer, cf. (3.22) for homogeneous slabs of course but also (3.38) for the

(Ugeneralized") sirnilarity relation between not-necessarily-homogeneous slabs.

0.5. The Power of FormaI Analogy: Transposing Results to/from Another
Field,

D.5.1. The Importance ofMixed Boundary Conditions in Horizontally Extended. Weakly

Variable Media is Minimal

Radiation (or neutron) transport is just one instanceJjère diffusion equations arise (ail
we need is a conservation law plus a constitutive law); several instances are listed at the

beginning of chap. 2. A perfect equiva1ence in the local physics may however be marred by
dif(erent boundary conditions (Bes). Typically, we must compareso1utions for the two
extreme cases of Dirichlet (given field) and von Neumann (given normal gradient) with those

',. .
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for the "mixed" variety which will arise in any 2nd order formulation of radiation transport
(sec, e.g., sect. 3.3. for DA transfer). We will therefore closely examine their effect and
find them to be (relatively) unimportant as long as the medium is somehow horizontally
extended and not too inhomogeneous. This latter constraint is necessary for diffusion and

transfcr to yicld quantitatively similar results anyway (cf. sect 4.3).

Wc only need to consider one example in detai! and the most obvious choice of an
analog of diffusive "photon" transport is diffusive "charge carrier" transport, Le.,
steady-state electrodynamics (in the following, we will simply say "conductance"). Consider
the problem of conductance through a homogeneous (d-dimensional) "wire" of length L

(extending vertically) and width N (extending in ail d-l horizontal directions). The
"insulating" side BCs (n-j=O) make the wire equivalent to a fmite portion of a slab of infinite
horizontal extent since j (current density) is a constant vector in the wire. AlI we need to do
is to find the equivalents of our physical quantities, continuity equation and constitutive laws.
In this case, Fick's (F=-[l/d(l-g)1Cp]VJ) becomes Ohm's law (j=CfE, where E=-Vcjl, with

..- ,."'

the usual meanings for the symbols2S) and the conservation rule for radiant energy (V'F=O)
becomes that for electrical charge26 (V·j=O). Hence the substitutions

1 -7 Cf (with (l-g)1Cp=1 in homogeneous media)
d(l-g)1Cp .
F -7 j (0.33)

V
J -7 cjl (hence Fa -7 2)0

whcre V is the potential drop and the division by 2 compensates the "112" in the mixed BCs
(0.28), with lower signs.27 Our homogeneous radiative result in (O.30a,b) therefore applies

with vanishing extrapolation length (X=O) since we now want Dirichlet BCs and, with
(0.33), reads

j =I V (0.34)

exactly as we expect from elementary considerations (viz. V/L=E). We are now interested in
doing the opposite: obtain a radiative result from conductance theory or experiment

Generally speaking (inhomogeneous situations, Cf=cr(x», "bulk" conductivity or

"inverse resistance" is d~fined from macroscopically measurable quantities-such as the
current 1(or its spatial average density fz}-by

l'/Nd-I ~

" };= VIL .=~. ." ,} . . .."" (0.35)

which is equal to Cf in the above honiô'geneous case. One might expect };10 be independent
of L as it is ofN since ~ese are simply geometrical constants, there is nothing physical about
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them a priori but such is not the case in "extremely" inhomogeneous media. We will he
examining a well-known instance of this kind of anomaly (in §0.6.2), namely, singular (0 or
00) cr-valued binary mixtures at "percolating" threshold (cf. sect. C.2). We can also

confidently anÙcipate anomalous bulk conductance properties for materials (local
conductivity fields) modeled by multifractals as described in sect. C.3-5, they too are
"singular" although in a sense we define more precisely in the corresponding appcndix.

Going from the trivial conductivity result (0.33) to its radiation counterpart is
somewhat more subtle. Clearly we cannot reeupcrate any information on Xdircctly, heing a
dimensionless number of 0(1) related to precise BCs. We are simply interested in finding
the closest possible radiative analog for Lin (0.34), if only for future reference. We know

that the above substitutions work in the reverse direction, r:.'lmely, cjl--+J and j--+F where
(letting Fa=l) we can take F=T=I-R, J(O)~I+R and J(L)~T+O (these last two relations are

exactly true in d=I). We can therefore usefz--+T and V--+M=JI1~(I+R-T)=2R in (0.34) to
yield

L T
L ~2R

Using the L=cr--+lId substitution (that can be obtained by direct comparison of the
Eddingt~n-Fick and Ohm laws), we frnd

1 d '-"',,:,~,
T - 1~ 2' L (0.36)

When compared to (0.311
,) this yields precisely the Eddingtori'-Fick estimate for the

extrapolation length (Xpick=lId). Of course, this attempt to determine T for ail possible

values of Lis an overkill: for the purposes of scaling alone, fz--+F=T (hence T-L-l) wouId
have been perfectly sufficient. The success brought on by the careful use of formal analogy

however does encourage us to use it in more gen~ral cases, namely, (weakly) non-planar
geometry and inliomogeneous media (both generalizations are used in chap. 2, respectively
in sect. 2.1 and 2.3). The BC problem should Ï10wever he re-examined whenever qualitative

changes are made: e.g., horizontal bounded media (equivalent to non-insulated sides in the

above) which are considered in sect. 2.2, using spheres as an (exactly solvable) example that. ' ~,

is likely 10 be generic.
""D.5.2. The (Weil Known) Radiative Equivalents afResistors Mounted in Series and in'

Parallel

Finally, the above conductance analogy serves us with an elementary interpretation of
plane-parallel radiative transport (with inhomogeneity confrned to the vertical coordinate), on

the one hand, and of the "independent pixel" (!P) approach to inhomogeneous radiative

transport (where-horizontal transport is explicitlyinhibited), on thl: other hand. ,Consider a
:: ... .
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(hypcr-)cube of size Ld filled with sorne kind of inhomogeneous (imperfectly) conducting

material at a constant potential across the top, grounded at the bottom, and with insulating
sides. We first'insert n perfectly conducting (constant potential) planes, laying horizontally
at various levels, and then homogenize the material in between them leading to sorne

,conductance O"i for the ith layer; no matter how we subdivide, we end up with a number or
resistors in a series arrangement that add up to a total effective resistance equal to that of a
homogeneous cube of equal mass. In this case, we have a constant (unit) current crossing ail
layers and are adding the various potential drops (hence the depths):

1 n 1 1
--=L, -=-- (D.37a),
Iseries t 0"; I bomo "

where wc have assumed (for simplicity) regular decimation at 10 spacings (with
Âlo=L=const.). The last equality in (D.37a) cornes from the required conservation of total

mass (recall that density Pi is oc 1/0";).

Wc now repeat the operation but with sorne number (n) of insulating (F·n=O) vertical
planes, oriented at right angles to ail the different horizontal directions; this is the diffusive
way of making the different columns ("pixels") independent of one another. We are of

course now dealing with a certain number of resistors in a parallel arrangement and it is weil
known that this leads to a smaller "effective" resistance (and higher total current). In this
case, we have a constant (unit) potential drop and are addmg the various currenlS (hence the

sections):
nd' l

Iparallet =L, O"i :;; Ibomo (D.37b)
1

The last inequality in (D.37b) cornes from Jensen's inequality (3.31) forj(x)=1/x along with
the mass conservation constraint expressed in (D.37a). The equality in (D.37b) is obtained

only if ail the O"i are equal. The minimum is attained with an infinitesimal horizontal mesh,

i.e., IPs as in (3.30) but wit.1l Dirichlet BCs (this does not make much difference if most of
the pixels are at least several m.f.p. 's long).

We will argue on quite general grounds in §2.3.l that still smaller bulk resistance is
,obtained by leaving the inhomogeneous material as it was in the fust place, before.'- . ,

-introducing any king of internaI boundary. In §D.6.2 below we will see (on an example)

that, ifwe lire free to movethemass aroundinsidethe cube as much as we please,then ihere'
are conditions in which we can indeed reduce the bulk resistance to zero, simply by creating

perfectly conducting (null density) regions at random, the relative probability of creating a

hole need only be above a certain threshold. There are no spatial correlations (beyon~ the
elementary cell size) are introduced during the construction,cf tlle medium. However, near, ' , . C/ i-'(~

\p:~\-~~)
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the "percolation threshold" the clusters made of connected empty (infinite conductance!) cells
are highly correla~ç1 (sec sect. C.2): they extend throughout the medium and its bulk,
conductivity becon1sinfinite, being basically "short-circuited" by the sprawling percolation

"animals." In chap. 5, we will argue that the same result can !Je obtained by using extremely
singular (multifractal) distributions which, in contrast, have long-range spatial correlations
built into them, by construction. So, in both cases, singularity and correlation seem to bé>
key factors; this can also !Je argued from first principles (sect 4.4).

D.6. Diffusive "Channeling" ln Inhomogeneous Media: Examples of Normal
and Anomalous Scaling

D.6.1. The "Pseudo-SaurcelSink" T~rmand ilS Raie in "Channelîng"

Having duly considered homogeneous cases, we return to (0.18) and look 11t the
inhornogeneous but conservalive case by taking mo=! and we again ignore the non-m.s.
sources. Invoking the operator identity V'(cfV)=epV2+(Vep)-V and re-arranging the terms,

wefmd

~y =D(x) V2U + (VD)'VU (0.38)

which is a standard Fokker-Planck equation for a diffusion process which sports a variable
diffusivity and a variable "drift" velocity VD(x).28 In this case, the latter just happens to be

related to the diffusivity itself or, more precisely, its spatial variability; ingeneral, the
coefficients of V2U and VU in Fokker-Planck equations are not related to each other.

In view of (0.38), we can better explain how inhomogeneous transport works at the

most basic level bynoticing that only the fust term on the r.h.s. of (0.38) helps the radiant
energy (local density, U) to enter low D (high p) regions but not very weil since, on the one

hand, diffusion is notoriously slow anyway (w.r.t. ballistic motion) and, on the other hand,

diffusion is only as fast as D will make it (and D is already relatively low). In contrastto

this, the second term advects the energy carriers efficiently into high D (low p) regions on

essentially ballistic trajectories, in absence of the diffusion term proper. This is a diffusion

theoretical way of describing the "c~5ffiileling" phenomenon that will be discussed elsewhere
in this thesis (chap. 4 an 6) in kinetic (transfer) terms, namely, the systematic enhancement

of geometrical photon f.p.'s by inhomogeneity which, aided by spatial correlations in the
density field, induce systematic effects in the bulk radiative responses.

Next, we retum to almost the same point of departureas above, namely, eq. (0.19) in
order to examine the inhornogeneous but Steady-slale assumption, still ignoring the non-lII.s.

sources on the r.h.s. Using the same vector identity, we fmd

=V2] = { (Vlnp)·V ± [ffilCp(x)]2 }J(x) (0.39)



(

314

using the same definition for the non-negative parameter "m" and the same sign affectation as
in sect. 0.4 above: "+" refers absorption (of photons), "-" refers multiplication (of
neutrons). This equation has flfSt obtained by Giovannelli [1959] who also considered the
possibility of emission by internaI sources, our Z(x) in (0.19). He then performed 1st order
perturbation on it using smal! amplitude horizontal sine-wave variations in p (andlor
emission) but he had different geometry and BCs in mind than us, corresponding to a flux
emerging from deep inside a semi-infinite medium (with, for instance, applicati9;ns to the
solar atrnosphere). The more interesting effects w.r.t bulk transport properties in vertically
finite media appear however at higher order, as we show in chap. 2.

Since D and p vary in opposite directions, eqs. (0.38-39) will tell us the same
qualitative story about the effect of inhornogeneity but different images corne to mind to
illustrate it; as observed at the end of §D.4.I, absorption (here) and t-dependence (above)
contain the same information, but different aspects of "channeling" become apparent For
constant p, Laplace's equation is retrieved at rn=O and we see that the r.h.s. behaves as a
sink in the radiative (+) case, a source in the fission (-) case,just as we expect intuitively.
Now consider the "pseudo-source/sink" terrn (Vlnp)·V]oc-(Vlnp)·F in (0.39) that

. characterizes the p-variability. By comparison with the above "real" source/sink term, we
see that it acts like a source (the streamlines of the F-field diverge) when F and Ylnp are

, roughly oriented in the same direction, as a sink in the opposite case (the streamlines of the
F-field converge). This is more or less what happens when a given mean flow of radiation
collides head-on with an "obstacle," i.e., a more-or-Iess localized increase iri'the density
field--a "singularity," in multifractal jargon. Such a "mean" radiative flow is present in al!
the physical and geophysical applications we will be considering: either the particles are
leaving a localized internal source and going (on average) towards the sinks at infmity or
else, leaving the illuminated boundaries and going (on average) towards the simply
absorbing ones.29

We can therefore say that, much like a rnaterial fluid, radiation tends to flow around
obstacles using, on average, paths of lesser opticallength. The radiative "fluid" can also be
funnel!ed into the relatively tenuous regions that layon the path of the mean flow. Again we
see that both of these possibilities describe exactly what "channeling" is a11 about; a stunning

,example ofitis illustrated (literally speaking) in chap.6 and wewill witriess its effects
everywhere else. The role of higher dirnensionality is clearly essential: neither of the above
phenomena canhappen in d=! nOI" in hôrizontally homogeneous plane-parallel media in d>1
(since there is no way "around" nor "through" an obstacle consisting of a denser intervening
layer). In d=l, gradientS'in lalready tend to steepenwli~rep reaches a peaic~ as required by
Fick's law (since the flux F is constant in absence ofabsorption). In d~2, F cannot be made
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to stagnate no matter how fast p increases since V'F=O, but the flux lines will "spread out"
considerably, and they will "collect" if a negativefluctuation in p occurs. In slightly
different words, (0.39) is implying that the fluctuations of p and F tend to antkorrelate, a

fact we will make use of to obtain a perturbation-like estimate of the effeet of inhomogeneity
on the overall flux (see sect. 2.3).
D.6.2. SOllle Useful Resultsfrolll the Theory ofConductance in Uncorrelated Binary

Mixtures

We now provide an interesting example to illustrate the systematic effect of
inhomogeneity in the bulk diffusive transport properties that are induced by"channeling,"
viewed as the internai phenomenon described below eq. (0.38). Consider intermlîly variable
media that consist of binary mixtures of cells that are either thinner or thicker than sorne
average value and where the vàTues are distributed randomly, with no correlation from one
cell to the next. More precisely,

{
cr =cr + Prob =P (0.40)
cr = cr_ Prob = l-p

hence the ensemble-average conductance

<cr> =pcr++(I-p)cr_:: (0.41)

which will will be very c!fl.~.tp the spatial-average cr as soon as the total number of cells in
'~-"":'- '"

the discietized (Nd-lxL) d~ili[nensionalmedium is relatively large. In the above we have

used the conductance notations introduced in §2.1.1 since we will he largely following the
discussion in that context found in Stauffer's [1985] excellent review before establishin'g~the

appropriate radiative analogies using the guidelines traced out in the same sub-section. We

recall that density p (or resistivity) is inversely proportional to conduclivity cr; this means

that the "homogenized" medium conductance

crhomo =( 1. ) -1 = 1 (0.42)
" cr p/cr++(l-p)/cr_ ,~

differs systematically from the above "mean" conductance <cr>.
Random binary mixtures are by far the simplest possible model for a disordered C

medium and it attracte.d much attention in the (condensed matter) physicalliterature when it
was realized that, in~pite of its simplicity, it exhibits many inte'resting structural properties

mainly centered on the phenomenon of "percolation," extensively reviewed by Stauffer

[ibid.] and O,f·\vhich we briefly discuss the fractal aspects in sect. C.2. The geometrical
aspect of percolation that we will he concerned with is the appearance, at percolation

"threshold" (p = Pc), of an infinite cluster of connected cr+-cells. More precisely, using the
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definition discussed in sect. C.2, the (average) size !; of the "incipient" infinite c1uster at

p :5 Pc scales as

!; - (Pc - p)-v (0.43)

Pc is dependent on many details of the problem, e.g., type of grid (rectangular or triangular)
and type of percolation (bond or site}-these are called a "irrelevant" variables.30 In
contrast, the exponent y is "universal" in the sense that it depends only on the embedding
dimensionality (for instance, y is equal to 4/3 and 0.9 in d=2,3, respectively); other
universal exponents are discussed in sect. C.2. Notice that there is no subscript for this "y"

and no confusion with our radiative counterparts form chap. 1should ensue. We note that!;
is also known as the "correlation length" but this is not to be Laken in the sense based on the
auto-correlation properties of the (conductance) field, Le., that of "integral" correlation

length, cf. eq. (4.13).
Interest in these systems increased dramatically as their transport properties were

li
systematically explored, mainly in the Iimits

{
cr_=1 and cr+-?co: urandom ~uperconducting network" (RSN) Iimit (0.44)
cr+=1 and cr_-?0: urandom resistor network" (MN) liIilit

~; with analytical, numerical and even experimental methods. Again qualitative (phase-change,/
I~ type) transitions are observed at Pc for (ensemble-average) bulk conductivity and new
~~ (transport) exponents arise, namely,31

~~="=,{ <1:> - (Pc - p)-S in the RSN Iimit for P::;Pc (and co beyond)

<1:> - (p - Pc)J.l in the RRN Iimit for P~Pc (and 0 before)

where the signs are chosen so as to leave s and Il. positive. Many attempts---eulminating in

the A1exander-Orbach [1982] conjecture-were made to relate the transport exponents in

(0.45) to their structural counterparts: generally speaking, d and/or y and/or 13 (see sect. C.2

for a definition of this last exponent). As we will see below on an :~xample, this (A-O)
conjecture eventually failed and, more recently, the interest in these systems has shifted from
the bulk properties to the multifractal aspects of the internaI fields [e.g., Rammal et al.,

1985].

So, as p increases away from 0,<1:> becomes infinite for RSNs at P=Pc (Le., long
before the med~um is totally superconducting) and, siInilarly, <1:> remains null for RRNs up

_, li

to p=pc(Le., only at point when the insulating substrate has been considerably doped with

cOliducting material). In both cases, we seethat <2> obyiously has noth~ng 10 do with <cr>
," '"

nor O'bomo in (0.41-42) but ils position w.r.!. these quantities is foreseeâbie givim thinole
played by uchanneling." In particular, <cr>~ but O'bomo=O'J(I-p) remains fmite for aIl p<1
in the RSN liInit as expected: we obtain greater overal1 fluxes than in thehomogenized case.
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In the RRN limit we have <cr>=pcr+ which is finite for all p>O but crbomo=O since the mass of
the whole system is effectively Infinite as soon as a single cell is made totally insulating by
increasing its "density" without bounds;32 in spite of this infinite "mass," wc obtain a fini te
<l;> as soon as percolation is achieved, again thanks to channeling by the infinite cluster of
connected conducting sites.

In fact, eqs. (D.45) refer to idealized Infinite systems and therefore cannot bc used
directly in conjunction with the definition of .E in (0.34) which wc can rewrite (on a per
realization basis)

.E _.k
L -v

for more convenience. Below we will briefly deseribc how this problem can be overcome by
using the statistics for random walks by "diffusing" particles that are constrained by the
density fluctuations; for the moment, we must first understand the finite size scaling

properties. This can be done (exactly) at P=Pe by taking L-~ (a "scaling ansatz") and
'-eliminating (P-PC> bctween (D.43) and (D.45), hence

{
<.E> - Ls/v in the RSN limit
<.E> - L -Illv in the RRN limit (0.47)

i.e., we assume the system is dominated by the largest cluster. Several authors using several
different methods [Stauffer, ibid.; and references therein] have determined !J/v numerically to
a relatively high degree of precision using the second of the above relations as an operation'al

definition. This considerable computational effort proved necessary to disprove the A-Q

conjecture. For instance, in d=2, the (carefully determined) numerical values for s1v=!J/v arc

in the range 0.97-0.98, while the A-Q conjecture predicts 91/96=0.95 so it was numerically

disproved. (The equality of s and Il is due to a duality argument by Straley [1977].) In d=3
(where the duality argument no longer applies), the numerics yield s/v=0.8 and !J/v=2.2.

The "anomalous" sealing describcd in (0.47) in the two singular limits (0.44) can bc
contrasted with the perfectly"normal" sealing observed when cr_ and cr+ arc both fmite, viz.

<l;> is also finite at a value which is function of the cr± and ofp. Wc refer to Hong et al.

[1986] for the determination of these dependencies in the special cases pepe but O<cr±<oo, on
" 'the oI)e hand, and l=cr_«cr+<oo (O<cr_«cr+=I) at P<Pe (P>Pe), on the 9ther hand. Using

s=11 (hence in d=2 only), the authors are able to show, in particular, that (when our notations
are used)

<2> = (cr+cr_)112 (D.48a)



318

for bond percolation (p=Pc=1I2) on a square lanice. This is an exact result and it provides us
with a means to further illustrate the systematic effect of channeling. In this special case, we

have
_0"+.:....+_0"__

<0>=
2

(DA8b)

'.'

and we know that the above (arithmetic) average is ;always greater33 than the harmonic
average that appears in (DA8a). More importantly, we have O"bomo =20",;.O'J(0"++o"_) from

. /1
its definition (0042) or, equivalently, we can write .

O"bomo = <1:> ~ 1 (DA8c)
<1:> <0>

where equality is of course obtained for 0"+=0"_. Hence,

(O") ~ (L) ~ O"bomo (DA9)

and we note that the last inequality is in the direction that we anticipate in secL 2.3. Il is
important to realize that the argument in chap. 2 works on a per realization basis but, in
principle, for a stochastic model that conserves the total mass (recall that density poe 110",
here). This is reminiscent of the rules of "microcanonical" conservation used in
thermodynamical systems (as weIl as in multifractal theory, cf. sect. C.2). The model used
here has only "canonical" conservation of mass, yet the basic inequalities presented in chap.
2 still apply; this is possibly due.(o the well-behaved (simple-scaling) nature if the statistics
of binary mixtures which, in particular, allow us to consider only means, throughout the

-
discussion.
D.6.3. From the Steady-State (Finite-Size) Scaling ta the Random Walk(Space-Time)

Scaling using Einstein 's Relation
, ~

Before leaving the topie 0fdiffusive transport through percolating systems, we must
note that considerable conceptual andcomputational progress was made when de. Gennes. -
[1980] suggested a connection between the above infinite medium bulk conductances in

- .
(DA5) and the problems of "ants" and "termites" in "Iabyrinths" (respectively, associated
with f~e RRN and RSN limits). These designations refer to particles that move on a lattice
according to various sets of probabilistic mIes that are c~fully chosen so that the particles
"diffuse" in the inhomogeneous medium: always one cell per step in a random direction (the
relative jump probabilities being proportional to the diffusivity ratios) while'lime increments .
are dictated by the local value of the diffusivity. We refer the reader to Bunde et al. [1985]
for a discussion of the general case as weIl as of the (singular) "termite" limiL The colorful
expression "Iabyrinth" was chosen by de Gennes to cçnvey an idea of the

'-" .' ,



319

convoluted-indeed, fractal-structure of the infinite percolation c\uster which defines the
maze in which the animal's motion is (eventually) confmed.

, In the homogeneous case (ail directions are equally probable and constant

t-increments), the statistics of the RWs of above particles are given by (0.26) and eqs.

(0.26'-26") suggest that, in general, bulk diffusivity can be defined as <E(r2It»/(dt).
Furthermore, we know (Einstein's relation) that il must be proportional to <1:>, i.e., in

natural units, we will have

<E(r2It» = <k>t (0.50)

when <2> is finite, e.g., when the cr± are (both) fmite in the random binary mixture model in

(DAO). In the singular (0.44) limits of the same model at P=Pc, scaling arguments yield

<E(r2It» - tk with

(0.53)
< 1 in the "ant" (RRN) limit

> 1 in the "termite" (RSN) limi1
1

l-s/(2V-~)

1
k =

I+W(2v-~)

i.e., "super-diffusive" and "sub-diffusive" behaviours, respectively [see, e.g., Hong etai.,
,',

1986; or Stauffer, 1985]. The latter relation was directly exploited by Pandley et al. [1984]

to numerically estimate ~ in d=2,3.

Lovejoy et al. [1990}-who were presenting transfer as an approximation to diffusion,

rather than vice-versa for the sake of argument--<liscuss the formai equivalence that exists

between the "skating" termites of Bunde et al. [1985], a faulty model for RSN diffusion

(since the above transition is not observed at P=Pc), and photons, a proper model for transfer

(by definition, see sect. B.I). This observation provides anolher- more

qualitative-explanation of the difference in bulk conductivelradiative behaviour as predicted

by (termite) diffusion, on the one hand, and (photon) transfer, on the other hand, that arise

when the density field is allowed 10 become singular.
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1When prescnl, the fini tenn can he balanced by steady-state internaI sources, nol iocluded in the calculatioD (the)'
do bowever play an important role in ouclear reactor· and stellar cores). The second tenn describes the bulk effect
of absorption (or muHiplication). The condition for ovcrall radiative equilibrium is obtained by further
integraling (D3) aver all the relevant photon frequencies (neutron energies) ~d. lwog V;!M (the whole system)
wbcreas the stronger constraint of local radiative equilibrium is expressed by v:mtegrating (D.1).

2This leads 10 the Olbers ("blazing skytt) paradox in S~tiODary bomogeneous universes either infinite and filled
witb point.like sources or simpl)' large enougb'and fùled with fmile-sîzed sources. The two obvious ways out of
this problem are (i) the uoiverse is Dot stationary. as in the standard (big-bang) model, or (ii) it is not
bomogeneous but bicrarcbically structured, as in Cbarlier-Mandelbrot (scating) models; clearly bath capture an
aspect of reality but are hard ta reconcUe one with. the other at carly epoches, since there is no observational
evidence of inhomogeneity (via anisotropy) in the 3K cosmic background. It is noteworthy that, over two
centuries prior to OJbcrs' (the early 19th), Kepler described and resolved the prob1em correcUy: in his view, the
stellar universe just isn't that big: by contrast, Olbers' solution-the ether is abso~~aDt-is wrong(since it would
lhen heat up to steHar surface temperatures in finite time). Given the weIl known close relation between
absorption and t-dependence, there -is an interesting parallel to be made with the more recent "cloud albedo"
paradox [Wiscombe et al., 1984] for which the two ways out are again basically homogeneous absorption and
scating inhomogeneity, resp., wrong andright at visible wavelengths (but in the near IR it is anybody's guess, at
present).

3Sincc this truncation is merely for convenience, not by necessity. this docs not imply, any d-dependeot limit 00 Igl
in order 10 kcep P(9) positive as any well-defined p.d.f. sbould be.

4This yields an equation for the conservation of the momentum transferred from the photons to the
scattering/absorbing material, i.e., an expression for the radiative bulk forcing (by direct mechanical transfer,
Dot via heating as in the Earth's atmospbere) which would enter the Navier-Stokes equations for the radiating fluid
as a specifie acceleration term.· This is of paramount importance in the tbeory of radiatively driven steUar winds
tbal prevail in early-lype (boiter, younger) slars, Wolf-Rayet stars being a prime example.

SPomraning's [1973] "radiative hydrodynamics" are concemed with the global conservation of mass, energy, and
momentum for the combined and interactiog photon· and particulate fluids.· .

6Ail of lbe orf-diagonal elements vaoisb identieall1upon integration, by anti-symmetry. For. a diagonal elemen~
use uudd-1u = o,,_11L2dlL (12:12-1) in d>2, and 2cos 9d9 (~9';;,,) in d=2.

7Eddinglon's [1916] ideas were originally expressed in sealar lerms beeause bewas dealing wilb full-fledged
radianee fields bUI only in 3-D plane-parallel stellar atmospberes (or spberieally stratified inleriors) bence
axisymmetric distributions on 2 3- Using sphe:rical harmonies to model an arbitrary radiance distribution,
Giovaoelli [1959] scems 10 00 lbe flrsllo"generalize lbem 10 density fields and/or sources spatially variable in ail
(3) dircetions. IndependenUy, UDno and Spiegel [1966] reckoned direeUy on lbe pressure lensor and Wilson
[1968] demonstrated the équivaJence of the two approaches. The compact tensornolation uscd here is inspired, in
particular, From Mibalas [1978] and Preisendorfer [1976]. Tbe laler a1so discusses lbe Iwo main palbs 10 lbese
equations describcd above (but takes Fick's law as a premise rather tban a consequence); he aIso outlines more
sophisticated closure schemes. .

8For iostanee, in presence oC rapidly evolving sources andIor media, i.e., D=D(x,l) 100. Tbe problem is mayOO besl
left as a syslem of PDEs wbicb is aIready of more manageable proportions lban full m.s. transCer systems.
Zachmanoglou and Tboe [1976] sbows lbe bomogeneous ease in d=1 (oC importance in "transmission line"
lbenry) 10 00 tractable and finds damped wave-lij," bebavior for lbe solutions. .

9Using Fiek's law in (D.Î4), in spite of its condition of valldity (D.16) nol being verified, leads unsurpisingly 10
violations of causality; amongsl olber reasoDS, lbis prompled Levermore and Pomraning [1981]10 develop 'flux
limited' diffusion (FLD) lbenry wbieb is easier 10 use lban lbe PDE-systemiD d>1 (nollo mention l-<lependenl
transfer) Indee<!, Belbe and Brown [1985] and tbeli co-workers baveperformed detailed numericaI caIculations
based on FLD applied 10 bolb lbe neutrino- and lbe pbolon yield oC Super-Nova explosions using as initial inpul
Ibe (dynamieally unslable) core obtained. allbe end poinl of stellar evolution models (tbemselves, a sequence oC
bydrostatic equilibrium configurations); lbeir predicted fluxes wbere amaziDgly elose 10 lboseobserved for
SNI987a iD lbe Larger Magellanie Cloud, discovered by young Canadianastronomer 1. Sbellon wbile stationed al
U.ofToronlo·s!acilityin Cbile.. (TbeJast SN iD ourgalactie neigbborbood,observable Crom Eartb, was reeorded
by J. Kepler in 1604.) .

1OThe' diffusion· approximation is:·widely uscd' inreactor design. neutfonics,. and 'this is.easily understood sinee
violation oC eilber lbe conditions (D.16-17)spells big trouble.. Very!asl flux variations will be bard 10 conlrol
by moviog m~roscopic objects, in ,or out of the' co~,"50 thereis a risk of melt--do'oVD Jrthey Start te .occur; in the
worstcas~.scenario, .this ·leads·•. ta: lJlajor', radiatioD: leakages~streanuDg .(lc:>ng m~f.p,)·Deutrotis-iDto. remote
places wbe", tbey probàbly do not OOlong(e.g., in b~an .bèingS). . ... ..



321

IlTbe radiative equivalenl of the opposite Iimit of vanishing D is an ÎoficHety dense region. completely
impossible for the photons to penetrale: they must go around il if possible (otbcrwise, they are trapped); clearl)'.
the structure of the medium. will again play a key role in the outcome.

12It can be shawn tbat the single-scattering contribution to S is divergence-free if ma=l. in which case, the
thermal contribution 10 S vanisbes identically; 50, for the purposes of substitution iota the continuity equation
(D.Sa), it could equally weil he left out of (D.14) or (D.20).

13A radical improvement, allowing multispectral observation al higb spaliaVdirectional resolution. wouldof course
be achieved (al a modest cast) by using a tclhered balloon [R. Davies, personal communication].

14King et al. [l981}--not the same group-find a _t-I speclrum. with s""1.7 (hecce very Kolmogorov-like), for
density (LWC) fluctuations. We recall that processes with spectral siopes s:S2 are almost surely nowhere
differentiable and that we argued (in sect 4.4) that this is one of the cases where we cao expect a priori strong
radiative inhomogeneity effects.

15Indccd, we have cos9n+l = cos9ncos9-sin9nsin9 in d=2 and the only difference in d>2 is anolher (zero-average)
azimuth factor iD the secood term, bence E(CDSOo+l) = E(cosO.)E(cosO) iu ail cases.

16This leads us to conjecture that the Henyey-Greenstien phase functions (A.2la.b). considered as a I-pararneler
class. are in fact closed under convolution in u-space with gl'2=g182' This makes these p.d.f.'s the 3 d analogs of
r -distributions 00 9l+ as weil as of (centercd) Gaussian, Cauchy (or otherwise symmetric Lévy-stable)
distributions on 9L

17Curiously, the formula even works for the non-random g::::-1 case since only "112" of a single ~ckward scntrering
is enougb to get balf way across 3d'

18Ioterestiogly. an apparcntly innocuous change, t-+t!i, transforms (0.24) into Schrôdinger's equation for a free
particle (m=O) or one in a regioo of constant potentiaI encrgy (m:,tO)~ tbis equation is however t-reversible.
aHhough oot trivially: 1(x,t) is to be interpretcd as the wave·fuoction and probability density 1J12=1·J is
unaffected by the phase change that foUows t~-t. This constitutes another opto-mechanical "analogy.with-a­
contrast" which at least explains the resemblaoce of the eigenvaIue problems associated with scattering by square
potential wells in 9uantum mechanics, on the one band. and Davies' [1978] cuboidal cloud model, in
meteorology. on tbe other band.

19Tbis is the diffusion theory equivalent of the weU-known close connection between absorptive respanses and the
orders-of-scattering decompositions of conservative responses in general transfer Iheory, not nccessarily
bomogencous pJane-parallel.

20Mixed BCs are sometimes refeITed to as "radiative," DOt so mucb because of their association' witb the present
albedo problem. but rather because of tbeir appearance in beat conduction problems wbeo the boundary is neitber
in contact witb a beat bath (S1(X) = const.) nor tbermally insulated (n'F ~ D·VST = 0), but allowed 10 emit
thermally ioto the environment (n'F = tO'BT4 J::r; (3tO'BT3)6T where t is emissivity and O'B. the
Stepban-BoltzmaDn CODStact).

21 Apart from tbe diffusioD !eDgth (wben m;«)), the non-m.s. source term caD he used ID specify single-seaUering as
aD iDtemal source witb bomogeDeous Bes (F"(X)=O, XE àM) iD (D.2S) aDd tbis creates acotber lenstb scale
(namely, 110 iD m.f.p. units),see Meador acd Weaver [19g01 for a detailed study of "two-nux" Ibeory wbicb is
formally equivalent 10 diffl'~sion in plaoe-paralle! media, both witb and witbout Ibis boundary layer activaled.

22Tbis solution is more useful than its transfer counterpart siDce it is usually analytical and known evcrywhere in
M. Numerical accuracy is o~coune a very major coDcern when dealing with nuclear reactor (or A-bomb) design.

23This scaling is cbaracteristlc _of bomogeneous media in general. as is the simple scaling w.r.t. time found in
(D.26). It is bowever not trivial to rela~_e the types of'!'caling IWO together in a general enough way 10
accommodate anomalously scaling RWs, e.g.• with infini~/variance Lévy-flights replacing the finite variance
steps implicit in (0.26), cf. discussion in sect. 5.3.

241bis is an. "irrelevantn variable in the jargon of dynamical systems. "relevant" variables influence the exponcnt.

·25Recall tbatin cgs-es units, Ibose of conductaDce cr are leDstb2/time. In fac~ cr - vthermal X(carrier) m.f.p. iD
standard plasma theory; , s,~. in a complete analogy. the velocity of light in vacuum is 10 be replaced by the
tbermal velocity of tbe cbarge camers. ;'-~

26This applies stricUy 10 steady-state problems, otberwise we need a àplëJt lerm (wbere p is the density of cbarse).
Tbis bowever doeslll!1 implytbat the radiative acalog of pis li = Jle as we would tend tu cooclude by direct
comparison of ch'arge conservation, with eq., (D.1) for radiant· energy conservation. The proper framework is of
course Maxwell's complete set of equationsand the diffusion..c;onduclancc analogy fails ingene~l-elcctro~



c

322

magnclism is ùot cotirel)' reducible to diffusion problcmst Somewbat paradoxically, this docs Dot stop us from
dclermining (steady-state) bulk condUClivities by salving timc-dcpendent diffusion problems, as brieny described
at the end of Ihis cbapter.

271t may seem paradoxical that a dissipation phenomenon 5uch as bulk resistivity can he modeUcd witbin the
framework of conservative multiple scattering processes. More precisely, there is a local production of heat
(JE = j2/a . by Ohm's law) in conduction yel no local beating rate (V'F =0) in the corresponding radiation
probJem. The paradox disappears wbcn we recall tbat, in conduction, charge is conserved (V'J =0) as are the
photons whcrcas. in radiative transport, the is entropy (henee "heat") creatioe simply by the continuous
conversion of collimatcd radiation into a diffuse radiation field (F'VJ = dF2 is a direct measure of the system"s
steady-state entropy production since it is a straightfoIWard measure of the "distance" from thermal equilibrium,
hence maximal entropy, whcre J aJone represents the radiation field.)

28Bunde el al. [1985) uscd tbe abave interpretation of (D.38) 10 devise propag.tion rules for particles tb.t "diffuse"
exacUy (on. grid).

>. 29IJ1uminated boundaries are also "absorbing" but for diffuse radiation only which is of course precisely what
contributes ta "reflectance/" according to the dermition (A.29) based on tbe existence of a (propcr) terminalor.

30For instance in d=2, Pco=O.59277 for site percolation OD a rectangular grid wbereas bond percolation is obtained at
Pc=ll2. .

31The bulk properties of. these systems fluctuate little from one realizatioD to tbe Dext (see §2.3.4), ,·~o ooly mean
quantities necd to he considered in the fol1owing.

32Notc Ihat, in rcaIity, it is Dot the (mass) dcosîty tbat becomes infioite but the m.f.p. of the charge carriers that
vanishes in insulating matena!. In our radiative anaIogs, the scattering cross~sections become very large (le"""'too),
the pboton m.f.p.'s vanish but the "optical" mass diverges.

33111Ïs is a straigbtforward consequence nf Jensen's inequality (3.31) wben applied to the concave funclion 10g(x). 'Jj
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Appendix E

THE STATISTICAL ApPROACH TO RADIATIVE TRANSFER

;" :
Prcliminary remarks: It is important to relilize that the status of radiative transfer within
the edifice of theoretical physics is unc1ear, to say the least From SchwartzchÙd's [1914]
pioneering of radiative transfer in continuous angles to Chandrasekhar's [1950] treatise and
well beyond, the radiative transfer equation is derived from purely phenomenological
considerations of radiant energy (flux) conservation. Attempts to improve this situation, to

.derive the transfer equation from first principles, have met only partial success,! A
troublesome consequence of this lack of groundiiig in mainstream optics is that we know
rather little a priori about the conditions of validity of transfer theory,altho\!gh nobody
doubts they are generally met as soon as we deal with macroscopic quantitid~ of natural

Ji
(incoherent) light. The main difficulty lies in the fact that in rigorous EM theory, in both
c1assical or quantum (QED) guises, as well as in scalar wave theory, one views propagation

and scallering iIfil unified2 way whereas in radiative transfer the two phenomena are c1early
separated. This can be traced by "coarse-graining" the spatio-tempora'l features of the wave

field: at the scales of interest to us, light can be described by geometrically defined beams

(hence several wavelengths wide) with a constant flux (hence very Incoherent phase mixtures

must be present and/or we are consideringtimesca'les of many pulsation periods).
Fortunately, there is an alternative route from the micro- to the macrophysics of

radiation in interaction with bulk matter that borrows heavily from kinetic theory. The
approach we are about to embark on lacks consistency in severa'l places that wc will point out

but it has the advantage of putting the numerous analogies between radiative- and mass-,

charge-, etc.- transport problems on a more solid footing. If used carefully,
mechanicallradiative para'llels can he quite helpful and we will draw on them in chap. 2.

(Sorne of our findings may thus be reflected back to these other transport phenomena
a1though their respective specialists wi1l have to look into that.) Interestingly, this âpproach

starts with a probabilistic characterization·offlows in phase space, and.Jhis is precisely where
one of the earlies!and still one of the more common applications of multifractal formalism is

found: quantifying the "strangeness" of the "attractor." Il was more-or-less simultaneously
realized that multifractal concepts had in fact been used in connection withcascade models of

\\
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(intennittancy in) fully developed turbulence [see referenccs in app. C). Moreover, there is a

recent trend in the literature to apply multifractaI analysis techniques directly to the Earth's
radiation fields themselves [more references in app. Cl. and these are of course precisely
what radiative tra'lsfer theory is all about in the tirst place. We will therefore invest in this
inter-connectedness of all things (important to us) and introduce, within a familiar radiative
transfer context, some less familiar but very useful mathematical, mainly probabilistic,
concepts. In the process. we partially fulfill Preisendorfer's [1965] program according to
which modern integration- and measure theory should be used to clarify the foundations of

radiation transport theory.

E.l. Phase Space Flows and Boltzmann's Equation
Consider a gas ofN point-like material particles in d-dimensional sp~cc 9\d (9\ denolcs

the set of all real numbers) which can be be described within the framework of classical
Hamiltonian mechanics. Le., by their positions Xi(t) and m~menta Pi(t) (i=I ... ·,N and te 9\).
Now recall Liouville's theorem which states that the flow in phase spacc is incompressible:

(V' x,v p)'{x,p) = V' x'x + V'p'P =~(~) +~(-~) = 0 (E.O)

A (non-trivial) corollary of Liouville's theorem is J;'oincaré's: a conservative Hamiltonian

system will eventually return arbitrarily close to its initial state-mainly bccause the motion is

confined to a surface of constant energy in the N-body phase space [9\d09\d]N (see. e.g.•
Zaslavsky [1985]). This will happen in spite of the almost invariably strong (exponential)

divergence of trajectories starting from arbitrarily close states. the so-called "sensitivity to
initial conditions." No matter how complicated+-we now say "chaotic"-the phase space

Ji
orbit is (recall the possibility of many-body interactions). no infonnation is intrinsically losl,

no entropy is produced.
We now define a sub-set (S) more or less centered around a point (x,p) of the 1-body

(2d-dimensiona1) phase space. For instance, this "neighborhood" could be

[x,x+t.x[0[p,p+t.p[ or else Bd(X.t.x)0Bd(P,t.p) where Bd(XO,r)={xe 9\d. Ix-xol<r) is the

d-sphere of radius r, centered on XQ. Given such a sub-set S, we find

Ns(t)=fJ~S(x-xi(t»S(P-Pi(t»ls(x.p)ddxddp of the N particles in il, at a given time t. In this
expression, we recognize Dirac's familiar (generalized) S-function and the "indicator"

function of the set S:

ls(x p)= { 1if (x,p~e S
• 0 otherwlse.

It can be used, in particular, to define the (Lebesgue-)integral over the given

(Lebesgue-)measurable set S. Le.,
!l'l';
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Ifs (.) ddxddp = JI 0 IS(x,p) ddxddp (E.2)

For instance, the d-volume (Lebesgue measure) of the set S is vol(S)=.fJls(x,p)d~xddp. We
will breifiy discuss other measures in app. C. .','

An independent discussion of Lebesgue's (L-)integral is in order to remove sorne of ,
the circularity in the above definitions. The main difference between Lebesgue's and the .~:/ ..
more familiar Riemann (R-)integral is that the latter is defined as the limit of an ever fine{'
decimation along the axis (axii) of the independent variable(s) where the function is readily
sampied whereas the former proceeds along the axis of the dependent variable. The
L-integral was cunningly devised to have the following enormous advantage over
Riemann's: the operations of taking limits of (stepwise constant) functions ~rd L-integration
commute whereas there is no guarantee that a limit of R..,'ntegrals will con~érge towards the

R-integral of the limit Its p~ctical evaluation requires howeverthe knowledge of hO\\"pften,
. "1 -

a given functional value occurs wit~in the set where its arguments take their values, the
"support" of the function but this apparent disadvantage in fact makes L-integration the
perfect tool for probability theory on which we will be drawing extensively. For instance,
one could view :Eii:~Ô(X-Xi(t»Ô(P-Pi(t»/N as the properly normalized (instantaneous)
probability density function for the whereabouts of any one of our particles. For more
rigorous axiomatics and proofs, the reader is referred to one of the many available
mathemetical reference texts although only intuitively understandable results will be used in

the following. ,VI
'..

A direct consequence of Liouville's theorem is that the phase space particle density

function

f(x t) - lim Ns(t)
,p, - vo!(S)-Kl vol(S)

N--+oo è

remains constant along any past or future trajectory of the system ,since any given set (S) that
~.~: ·v
',~; encloses the corresponding number (NS) of particles at t=O has 'constant volume as it moves

(à la Lagrange) through phase space. Therefore. the continuity equation for the currentji. ~-

density driven by tile dynamics of the system, i.e.,

afJat+(Vx,Vp)'[(ÏI:,p)f] = O. (EA)
/;

reducesto (Vlasov'sequati,Rn), DflDt"=O. where DlDtdenotesthe total (Lagrangian. or

cJ)nvective) derivative a/at"f x-V x + P·Vp• Recalling that in N-body 'phase space the
s~m is repre~nted by a single poin~ we see fromdefmition (E.3). without N-7co. that the
corrcsponding density function f(Xh· ...XN. Pl.....PN. t) is. and remains. a ô-function.
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In practice (macroscopic measurement devices are used in systems with large but finite

N), aIl we can hope to access is a coarse-grained (small but finite S) version of the usual
(l-body) phase space in (E.3) which is an incomplete description of the system and the
amount of (Shannon's) information it contains will f1uctuate before returning to its initial
level, aCter one Poincaré cycle which is however a strongly increasing function of N.
Moreover, when N» l, we proceed-still on heuristic grounds-to separate the motion of
our N particles into one under an extemal force field (no interaction terms in the Hamiltonian)
plus (2-body) collisions; the latter act as a source/sink term that balances exactly (locally)
any non-continuity in the (Hamiltonian) evolution of the phase space density function, hence
(Boltzmann's equation) :

[~+ x'Vx + P'Vp ] f(x,p,t) =DOl
f 1 11" (E.5),\

'al co 151005

which in general is a fierce nonlinear integro-differential equation since typical collision terms
are quadratic in f and involve convolution-type integrals in p-space. In this case, we
systematicaIly loose whatever information we had in the initial coarse-grained density
function: on average, collisions can only broaden f(x,p,t) by taking the pmtides inlo the
more remote regions of phase space accessible to the them.

E, 2. Linear Transport Theoryl, 'l'he Case of Neutrons

The problem of transport in presence of collisions simplifies considerably as soon as
the particles are decoupled from the ex,temal force field (p=O) and, even more importanUy,

lhf-y donot interact tog~her~1.9nIy with sorne ambient material via bulk collisional eross-
, /r!r--7:=:::-~

",s~ctipns which c~l}odepend,on t, x and p but not on the values of f (whether local or not).
~",-:/~, :~:,,,--," ",:':,

> This gùaranteesÎhe liriearity of the collision term, hence of the whole equation, with respect

to f. Su"t~. isrfue r:,:1k for neutrons penetrating sorne (moderating or multiplying) medium.
Ir ~ '. ./:.--:-

The mo~1'ger.erâi "l-body" (linear) collision term can be expressed as
':"- f/" ,-;:.: :::-:/

~>- Ofl \', J ~:-='Ol' (x,p,t) = K(x,t; p'~p) f(x,p',t) ddp'
col

where K is the scattering kemeI. K(x,t; p'~p)ddp'ddp is the probability that a particle

(which happens to be in position x at time t) will suffer a collision (within the next unit of
time) that takes its momcntum from p' to p, to within ddp' and ddp respectively.

_ By now the phase space trajectories (Xi(t),Pi(t» of our individual (i=I .... ,N) particles

\ll~become highly convoluted random walks (RWs) each of which are different reali7.ations
of a Markovian stochastic process in lime; the Markov property expresses the fact that the

particle's futureis (statistically) determined by it present state (x,ph, il has no "memory" of
its past'history. From now on, the system's only weIl-defined (deterministic) properties are-- .
probability;ÎlisÎributions-such as f itself-and average quantities that depend on these.

~;;:.,.
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Within this framework, eqs. (E.5-6) are equivalent3 to the Chapman-Kolmogorov equations
of the system. Furthermore, it is a "homogeneous" Markov process if K isindependent of t,
irrespective of its x-dependence. (In, chap. 4 and app. C, we will discuss spatial
generalizations of Markov- and other stochastic processes as methods for generating random
optical media.) Notice that a direct consequence of the irreversibility acquired from the
collision term is that the largest support for f(x,p,t) is now effectively 9td~9td~9t+, no
physically meaningful predictions can be made about negative times when the density

function is entirely specified at t=O.
Now tuming to neutrons in d=3 (neutron-like particles otherwise), let us suppose they

suffer collisions that are not necessarily elastic, i.e. there is a possibility of absorption or
multiplic~tion, but we assume the kinetic energy of all the neutrons (old and new) to be the
same, Le., there is only one velocity "group" (and we let v=p/m). If we further assume the
scattering to be isotropic, then the kemel in (E.6) becomes

"

K(v'-7v) = VO'IP [ s:c~) lSd(V)(v') - B(v'-v) ] (E.?)

where 0'1 is the total (scattering, absorption or multiplication) d-dimensional cross-section per
particle in the medium, P being their (d-)density. This makes O'tP the (bulk) cross-section

"per unit of d-volume, which has u~its of lllength, hence vcrtP is the event probability per
unit of time and per neutron. The Second term on the r.h.s. of (E.?) describes the depletion
of ncutrons from the "v-beam" by any of the above-mentioned elementary processes whereas

the first term describes the (isotropic) creation of v-neutrons with ma designating the /1
"single-scattering albedo." This is a measure of the relative probability of absorption(Lmo,:!

when >0) or multiplication (l-lIma, when >0). For ma=l, we find the important case of
elastic scattering. In principle, aIl of these parameters coulct be functions of t and x. We

have also used the d-surface of a hypersphere of radius r: sd(r) = surfISd(r)] = Od rd-! where
nd = 21tdl2tr(dl2). In the present case, the sphere is centered on the origin: Sd(r)={xe9td,

Ixl=r}=ëlBd(O,r) which is of course a (d-l)-dirnensional manifold being the boundary,(a) of a

d-domain. In the expression for Od, ro is Euler's gamllla function whereas the prefactors in

front of rd-! are defined as Od=Sd(l), the d-surface-' (d-l)-volume-of the unit spher~,

:::d=Sd(l) and worth 2 (points), 21t (radians), 41t (steradians), respectively in d = 1, 2, 3.

Given that the Vp-terrn has already vanished from the l.h.s. of (E.5), by lack of
coupling of t1Îe neutronswith eXlernlÎ1 force fields, the àbove example provides justification
for a simplification in notation rarely exploited in the literature. Since the collision term'on

the r.h.s. of eq. (E.5) can only couple the various directions of motion, we are justifiedin,

(, viewingf(x,v,t)=f(x,p,t)/md asan Infinite dimensional vector field (fv•ve Sd(V)} defined

on 9td~9t+ ra,ther than a scalar field defined on the (infinitely) vaster support

(; -
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9td@Sd(V)@9t+. Notice that the units of fv are now partic1es per unit of d-volume (in
ordinary space) and per unit of d-surface (in velocity space). A further justification of this
departure from traditional notation becomes obvious as we realize that the fundamental nature
of RWs in the 9td and Sd(V) components of the mono-kinetic neutron's phase space is likely
to he very different, given their radically different topologies, sizes and geometries : open,
infinite and Euclidian versus closed (and disjoint if d=\), finite and cyclical (even
Riemannian for d>2). It is not too surprising then that the spatial and angular aspects of
transfer will také'lz~ entirely different importances in our final analysis, especially since the
effects of inhomog~~:ty, on which we focus primarily, necessarily hinge on the spatial part.

From this vantage poi~i, we Cfu"1 already anticipate the very sPecial role played by d=1 which
is perfectly representative ofplane-parallel geometry in d>1.4

E, 3. Linear Transport Theory 2, Generalization to Photons
Viewing photons as point-like Hamiltonian particles is totally inconsistent with the

teachings of special relativity and second quantization. Nevertheless, photons do not couple
with extemal force fieldss nor do they interact with each other.6 We are therefore tempted to
treat them kinetically as we do neutrons; moreover, relativity's fundamenlal postulate of
constancy of c, the velocity 'of Iight in vacuum, tells us Liat the photon gas is mono-kinetic
(but of course not mono-energetic). In a frame of reference where lheir frequency is vand

where they propagate in direction u (lul=I), their momentum is given by p=(hvlc)u where h

is Planck's constant. An acceptable notation for the (numher) density of photons is therefore
r--.

fp(x,t)=(hlc)3fv,u(x,t). _.-'

In the case of photons at least, we can Ihake the distinction between the p-argument

and p-subscript notations less academic by anticipating that, on the one hand, the space-time

coordinates and, on the other hand, the state variables of the EM-wave or photon will always
he weIl separated within the ideal-but not yet formulated-radiative kinetic theory based on

EM- or quantum field theory, both heing intrinsically 3-0. In contrast, the strong x-p
connection in thecadopted derivation is a by-product7 of our non-rigorous analogy with

Hamiltonian mechani\). Acomplete set of state variables inherited from EM theory could he
0l=27tv, k (wavenumher, k=OlIc) and IWO scalars-usually (phase) angles-to define the

wave' s state of polarization (e.g., in r.h.-Lh. circular decompositionS); whereas, in a QEO

(second quantization)'approach, we are more likely to use E=hOl, p=/lk (/l=hI27t) and two
scalars to define the state of spin s of the photon, namely, s=h and s·k=±h (0 is not an .

option since the spin must he is longitudinal for a massless particle). Notice that the flfst

scalar and the 3-vector are the Fourier- (resp., Hamiltonian-) conjugales oft and x, this gives
.~

radiation transport theory a rather peculiar status amongst physical theories, having
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independent variables in both physical- and Fourier space. These sets of variables are
however of a quite different nature: the Fourier variables retain their original (EM- or
quantum-) meanings whereas we recall that the pilysical space variable has been "coarse-

,grJ\ired"-we therefore talk about "macroscopic" radiation fields-and, on occasions, these
't615:~'.in be the object of Fourier transformation [e~IL Stephens, 1986]. As usual in such

'. \\ .2>

non-equilibrium thermodynamical theories, time plays a special role.
ln "coherent" radiative transfer, it is assumed that the scattering processes redistributes

the photons in direction space (3d), leaving their frequency unchanged. (This is in fact only
an approximation w.r.t. energy-momenlum conservation9 that is valid in the Iimil of
infinilely massive scaltering cenlers.) ln particular, this framework does not allow the

considetation of ~aftspectral fealures, such as atomic or molecular resonance Iines, in
'~'~d~;'h Dl db' fli . d d d··thmOVIng'i1ie la-w ere opp er- an a erratlOn e ects mtro uce v,u- epen encles In e

(bulk) cross-sections related to the macroscopic velocity fields; otherwise, we must also
consider RWs in v-space as weil. In short, the only parameter in the photon's expression for
momenlum (hvlc)u that can change in a scattering,~vent is the direction of propagation UE 3d,. \, ,

so we can now denote the density of photons fu(x,Ô)~h(èh has units of particles per

d-volume per d-angle. Ali that is lacking now is a Iinkbetween fu(x,t) and the s~~d ~\,
descriplor of the radiation field, namely "radiance" or "specific intensity" that we will dénote

lu(x,t) and will designate by eilher name since both are widely used, sometimes abcsively
omilting the "specifie." (Many others exist, each in a specific field of application, e.g., in the
biomedicallilerature, one talks about "f1uence.") lu is defined (in the familiar d=3) as the

amount of radiant energy crossing a unil of area (projected) perpendicular to u (around x)
within a unit of solid angle (around u) and a unit of time (around t). Comparing with

definiti.9.n (E.3) of fu, we find lu=hvcfu. Multiplying (E.S) by hv, we find, the radiative
transftr equation:

[.l-a~] [ ]. -tdf+u'V lu=-Kp lu-Su

where the r.h.s. (Boltzmann coIlision term) has been recast as a general sourcelsink term.

The firsllerm is the amount of radiant energy lost by the ~I-beam in an infinitesimal volume
and il is proport.ional to the intensity lu of the beam (due to linearity), to the local density p of

scattering and/or absorbingmaterial, and to cross-sections that detennine K. KpSu is a
general purpose source term which will. be'given in app. A for multiple scattering, single
scaltering and thermatemission. or'

~
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1Il is Dol tao difficult to establish close analogies hetwecn tbe mean field cquations for wave propagation in
raodom media and the multiple scanerieg transfcr equation but on1y within the small angle approximation [c.g.,
Ishirnaru, 1978], tbe general case is mucb morc Învolved. Wilhin the (r"etIIlcwork of scalar wave theory. Ishimaru
[1975] buiJds on carlier results [c.g., Barabanenkov, 1969] and obtains a formai correspondence between radiance
and the directional auto-correlatioD fUDction of the wave field. Indepcndently. Wolf [1976) is able to define
radiance rigarously in bath classical· and quantum EM_, theoretical (erms but only in vacuum (where il is
conscrved). Starting witb Maxwell's cquations, Harris [1965] bad alrcady obtained the streaming and~~~tinctioD

lerms of the transfer equation (but no scattering sources). The common characteristic of aIl of these apprÔâ~hes is
the need for a spatial average of the wave quantity over sorne domain (this is known as "coarse-grainingU

): this
physical size of this domain will depend on the density of tbe medium and, at any rate, this delines the smallest
scale that radiative transfer has anything meaningful to say about. eveo in thcory.

2For instance, in the classical picture, the scattering pattern (phase function) is shaped by intcrfcrence in tbe far
field hence propagation delay from the various parts of the object ~ in the quantum picture, scaucring results from
the perturbation of the (eleclIOnic) slale of the objecl by the passage (propagalion) of the (quantilcd) EM wave.

3Tbe exact analogs of the Chapman·Kolmogorov equations would he the intcgral equations that arc equivalcnt to
(E.5-6) plus BCs. Things would be quite differenl if we were dealing witb N-body interactions: the Chapman.
Kolmogorov equations could he relaled ta the N-body "mastcr equations" whicb arc fonnulated in N-body phase
space (or "r-spaceOl

) wbercas tbe Boltzmann formulation is fundamentally linked to l·body phase space (or
"J.L-space").

4d==2 is aIso special but to a much lesser:-,~xtent : severa! instances of "d=2" versUs "d>2" dichotomies will appcar in
the following : in particular. the diffùsioo equatioo resolvant (Greeo's function) has a logarithrnic, cather than
algebraic, decay in d=2. This, in tum. is Dot unrelated to the facl that the standard (uncorrelalcd, Cinitc variance) JI
RW bas fractal dimension 0=2. :.7--'

SIndecd in the QED pictur~~7'·(virtual) photons "are" the EM force field. In gcncral-relativistic environrncnts,
photons follow null geodetics but an inertial frame observcr can interprct this motion (change in cnergy.
momcntum) aS,a "gravitational" dcflcction and/or Doppler shift.

..........~.

6Excluding purcl~!formal diagrammatic interactions in QED, photon-photon scattcring is cxpccted to happen only
at GUTs encrgies.

c 7This can he SCCD as a typicaI drawback in such oplo-mechanicaI paraUds (of whicb ~e':~HJ sec Many in the thesis),
the corresponding advantage being the Datural generaIization to any Dumber of dimcnsions (and that we will he

\keen to exploit. capitalizing on. the conceptual and computatioDal simplifications).

8Along with thc two correspo~~& arisplitudes, we caD readily construct the four "Stoke' s pararnctcrs," cf.
Chandrasekhar [19501. '~

9 A previously stationary scatterer mu;'~ recoil to sorne extent and, doiog so, cames s0J1.1e' of the photcn's energy
away which, in tum, implies a change in (1ab) frequency. This direct mechanical.:~f{ect of the radiation ficld
sustains (and maybe accelerates) the violent stelJar winds of the botter stars. Wc can general1y negtect them h~re

siDce, typically, we are dealing with a solar (J.UD-wavelength) photon impinging on a (J.tm.sized) cloud droplet :
we are therefore companng an eV or 50 witb the cne:.rgy equivaJent of a small but macroscopicobject, so laser
beam type fluxes are needed to balance the difference. Interestingly, pJanetary winds are also radiatively driven
but via a very different mechanism, namely, absorption (hence bcating) somewi:ere in the surface-atmospheric
system. C~; '\~
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