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Abstract

Tlùs thesis pre.ents numerical .tudie~ of phase behavior for boih thermotropic ar,d

lyotropic liquid crystals. The nature of the orientational transition in the Lebwohl­

Lasher mode! for the ncmatic-isotropic phase transition is found to be weak first·order

with the stability limits of the nematic and isotropie phases being extreme!y close to

the equilibrium transition temperature. lt is also found that the director fluctuations

in the nematic phase correspond to fractional Brownian motion whereas the fluctu·

ations in the isotropie phase follow ordinary Brownian motion. The Pink model is

extended to give an accurate description of the main phase transition in lipid bilay.

ers by introducing hydrophobie mismatch interactions between acyl chains and also

direct inter.monolayer attractive interacfons. The lateral density fluctuations and

the resulting dynamic bilayer heterogeneity are studied. Lipid-protein interactions

are further included to describe the phase separation of lipid-protein mixtures, gram·

icidin channel formation and the effects of protein on the lipid bilayers. A model

is also proposed for phase transitions involving hydrogen bo.lding between the polar

heads in lipid bilayers.
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Résumé

Cette thèse porte sur des études numériques du comportement des phases pour

des cristaux liquides lyotropiques et thermotro;)iques. La nature de la transition

d'orientation ayant lieu dans le modèle Lebwohl-Lasher, lequel est sensé représenter

une transition de phase nématique-isotropique, s'est révélée du premier ordre. De

plus, les limites de stabilité des phases nématiques et isotropiques sont très près de

la température de transition à l'équilibre. fi y est également trouvé que les fluctua­

tions directrices dans la phase nématique correspondent à des mouvements Browniens

fractionnels alors que les fluctuations dans la phase isotropique ont lieu selon un mou­

vement Brownien ordinaire.

En outre, le modèle de Pink y est étendu afin de donner une description plus

précise des transitions de phases principales dans les doubles couches lipidiques. Ceci

est effectué en introduisant des intéractions hydrophobiques impaires entre les chaines

acyliques et des intéractions attractives directes entre les monocouches. La densité des

fluctuations latérales et l'hétérogénéité dynamique résultante entre les couches ont été

étudiées. Les intéractions lipides-protéines ont été incluses pour d'ecrire la séparation

de phases des mélanges lipides-protéines, la formation des canaux de gramicidine, et

enfin l'effet des protéines sur les doubles couches lipidiques.

Finalement, un modèle inclua.nt des ponts hydrogène entre les têtes polaires dans

les doubles couches lipidiques est proposé.

iü



The author daims the originality of the ideas and results preseuted iu this thesis.

The following contributions are of particular iukrest:•

•

CLAlM OF OlUGINALITY

• The Lce-Kosterlitz Illethod was first used to study the

3d Lebwohl-Lasher Illodd, thc canonicn.l mode! of

a system which displays an oricntational phase transition.

The first unambiguous evidence for a very weak first-order

transition in this modd was found.

• The spinodal points for this model were first located here by

studying the variation of the free encrgy which was obtained from the

simulations of order-parameter distributions around the equilibrium

transition temperature.

• The director fluctuations in liquid crystals were first

investigated by Monte Carlo simulations described in this thesis.

It was confirmed later by the neutron-scattering experilllent that

the Hurst exponent, H ~ l, in the nematic phase and the

crossover between fraction al and normal Brownian motion l'an be

induced by an external field.

• The study of director fluctuations led to the finding of a new

universal dass of models with a continuous order-parameter degcneracy.

• The mismatch interactions between the lipid acyl-chain

conformation states were first introduced in this thesis to describe

the main phase transition via an extended Pink mode\.

• lt was first suggested here that the finite-size effects should

be considered in the interpretation of experimental observations

for small biological systems.
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CI,ATM OF ORIGINAUTY

• The relation between the specific heat obtained from

finite·size simulations and the latent heat at first·order

transitions was first c1arified in this thesis.

• The kinetics of ionic conduction equilibria for the ion

channel of gramicidin in term of monomer-dimer formation of

gramicidin mo!ecu!es was first simu!ated here in a nove! bilayer

model composed of two mono!ayers.

• A new correlation function was first introduced here to the

study in the e!fects of proteins on lipids. The suppression of the

correlations in the presence of proteins is consistent with the

recent 2H - N M R observations.

• The Lee-Kosterlitz method was first used here to determine

the phase boundaries of binary mixtures in terms of temperature and

composition.

• The first microscopie mode! was established in this thesis

to predict a critica! mixing point in a binary peptide-lipid

mixture. The study !ed to the first understanding of the !ower

critica! mixing point found in experiments at the !eve! of a

microscopic mode!.

• The method of Ferrenberg and Swendsen was first used in this

thesis to ca1cu!ate the properties re!ated to c1uEter distributions

and the exponents at percolation transitions.

• A new mode! for 2d hydrogen bonding networks in lipid

bilayers was proposed in this thesis.

v
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Chapter 1

General Introduction

Liquid crystal phases arc distinct states of matter that have structural order interme­

diate between that of conventionalliquids and solids (de Gennes, 1974). For example,

many organic crystals melt by passing through intermediate fluid phases that are op­

tically anisotropie. Although liquid crystals were identified for at least 100 years,

they have attracted major attention from physicists only in the last twenty-five years

(Litster and Birgeneau, 1982). The dramatic rise in scientific interest in liquid crys­

tais has occurred for several reasons. First, liquid crystals precipitated a revolution in

the display industry and this in turn excited the interest of basic scientists. Second,

the liquid-crystalline state is ubiquitous in biological systems and this has led to a

major effort in biological research. Third, the physical behavior of liquid crystals

raises sorne fundamental problems in statistical physics.

From the way that the liquid crystals change phases, they can be c1assified into

thermotropic and lyotropic liquid crystals (Litster and Birgeneau, 1982; Pershan,

1982). For thermotropic materials, as the name implies, temperature determines the

phase. However, for lyotropic substances, concentration is the main physical variable.

Thermotropic liquid-crystal phases are those observed in pure compounds or ho­

mogeneous mixtures as the temperature is changed. They are conventional1y c1assi­

fied into nematic, cholesteric, and smectic phases (see Fig. 1.1). The nematic phase

is the least complex liquid.crystal phase, whose long range order is based on molec-

1
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Figure 1.1: Common types of liquid-crystai ordering [Arter Rer. (Litster and Birge­

neau, 1982)) .



ular orientation via quadrupole-quadrupole interactions. This phase is used in eal­

eulator and wrist-watch displays (Kahn, 1982). The molecules butoxybenzylidene­

octylanilene and octyloxy-cyanobiphenyl in Fig. 1.1 both exhibit nematic phases. The

thermotropic nematics have one symmetry axis, called the director n, and are optically

uniaxial with a strong birefringence. The molecules themselves usually lack a center

of symmetry but the nematic phase has inversion symmetry and the orientational

order parameter has quadrupolar rather than dipolar symmetry. The continuous ra­

tational symmetry of the isotropie liquid phase is broken when the molecules choose

a particular direction to orient along in the nematic phase. Another thermotropie

phase having only molecular orientational order is formed by chiral molecules. This

is the cholesteric phase, thermodynaoùcally equivalent to a nematie but with a chiral

character that causes the director to twist (see Fig. 1.1) with a pitch that is compa·

rable to the wavelength of light. The name 'eholesterie' derives from the fact that

many cholesterol esters exhibit this phase. The strong modulation of the refraetive

index due to the twist causes Bragg scattering of various colors of light and makes

eholesteries the most beautiful of the liquid-crystal phases. The remaining important

thermotropic phases are smectics. There are many distinct smeetic polytypes bear­

ing the labels smectic A,B,C, ..., with the phases being labeled not according to any

microscopie properties but rather by the chronological order of their discovery. It is

clear, however, that these liquid-crystal phases have different underlying symmetry

properties. The smeeties are distinguished by having an intermediate degree of posi­

tional order in addition to molecular orientational order. Smectics have usually been

identified by the textures they exhibit under a polarizing microscope and by oùsci·

bility studies with known phases. The molecules butoxybenzylidene-octylanilene and

octyloxy-cyanobiphenyl shown in Fig. 1.1 also exhibit smectic phases.

Lyotropic liquid-crystal phases are observed when amphiphilic (from the Greek

'amphi' meaning 'on both sides' and 'philo' meaning 'loving') molecules, such as

soaps, are dissolved in water. The simple soap, potassium n-oetanoate, for example,

exhibits such liquid-crystal phases. The molecules of this soap have a hydrocarbon,

•

•
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Figure 1.2: A cartoon of the fluid·mosaic model of a biological membrane [Arler
Ref. (Mouritsen, 1987)].

or n·alkane part, CH3(CH2h- that is poorly soluble in waler and a 'polar head

group'-CO; K+ that is exceedingly water-soluble. At suilable concenlrations and

temperatures, nature resolves these opposite lendencies by forming liquid·cryslalline

phases in which the molecules are arranged so lhat the polar head groups shield the

hydrocarbon parts from the wa~er.

Lyotropic liquid crystals have long been important to researchers interested in

biologieal membranes. These membranes are, in general, composed of individual

lipid and protein rnolecules in a bilayer structure 60-100 À thick (Fig. 1.2). The lipid

molecules involved in bilayer formalion are amphipathic. They are composed of a

polar or charged head group altached to a variable-length nonpolar tai\' Depending

on their molecular structure, lipids in water spontaneously form micelles, vesicles,

monolayers, or bilayers. In ail cases, the driving force is primarily entropie in nature.

The hydrophobie efJeet favors these structures because they minimize the contact



between the nonpolar regions of molecules and the surrounding water. Minimizing

this contact area minimizes the structural ordering of water molecules around the

nonpolar groups. The lipid tails also show van der Waals attractions and the polar

head groups show electrostatic and hydrogen bond attraction to the solvent water.

Thus, cooperative motion of lipid molecules with long tails seeking a thermodynarnic

energy minimum leads to the formation and maintenance of the bilayer structure.

Biologieal membranes play a central role in both the structure and function of all

cells, from plant to animal (Gennis, 1989). They provide the cells with a permeabil­

ity barrier whieh is necessary in order to maintain chemical and e!ectrical gradients

between the intra- and extra-cellular media. They also determine the nature of all

communication between the two sides, such as the actual passage of ions. This in­

cludes the transport of electrons, the conversion of sunlight to chemical and electrical

energy, pumping small molecules against a concentration gradient, and the use of that

gradient as a source of energy. What is 50 remarkable about a biological membrane

is that, in a process known as self-assembly, its thousands of individual component

Illolecules spontaneously associate, align, and create its precisely defined structure.

The lipid bilayer which will be considered in this thesis is only a smalI part of the

large macromolecular composite which makes up the biological membrane. Proteins

constitute from 25% to 80% of the membrane by weight. These membrane proteins

fall into two classes. Peripheral proteins bind to the surface of the membrane, gen­

erally through polar interactions, ionic bonds, or hydrogen bonds. Integral proteins

penetrate the membrane, often extending beyond its surface in both directions. These

proteins can also self-assemble with the membrane as it is driven spontaneously to

an energy minimum. Non-membrane proteins fold spontaneously with their nonpo­

lar amino acid side chains in the central core, protected from solvent water by the

amino acids with polar or charged side chains that appear on the surface. Membrane

proteins, on the other hand, fold 50 that the nonpolar amino acid side chains are on

their surface, in contact with the nonpolar tails of the lipids in the interior of the

membrane.

•
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With our interest in understanding phase transitions, we examine in this thesis

the properties of theoretical mode!s for the nematic-isotropic phase transition in

thermotropic liquid crystals and for the ge1-fluid transition in Iyotropic liquid crystals.

In Chapter 2, we give an introduction to the numericalmethods used in the thesis.

Then we present our analysis and results in the rest of the chapters of this thesis.

In Chapter 3, we study the three-dimensional Lebwohl-Lasher model for Iiquid

crystals. The Lebwohl·Lasher model is the canonical model of a system which dis­

plays a nematic-isotropic phase transition. A better understanding of the model

is useful for studying the basic interactions between lipid molecules. In fact, the

first model for lipid bilayers was a liquid crystal mode!. The anisotropie van der

Waals interactions between the acyl chains described below for the Pink mode! of

lipid bilayers correspond to a mean·field approximation of the interactions used in

the Lebwohl-Lasher mode!.

In Chapter 4, we are concerned with the main phase transition of pure phos­

pholipid bilayers. A brief introduction to phospholipids and the basic experimental

observations for the transition is given in the chapter. Extensions of the Pink mode!

which describe the first-order phase transition are then presented.

In Chapter 5 we propose on the basis of the extended mode!s in Chapter 4 a mode!

for lipid-protein mixtures in order to examine the bilayer phases of these systems.

The studies are then compared to experimental results for gramicidin channels and

phase diagrams of lipid-protein mixtures.

Polar-head interactions between lipids are discussed in Chapter 6. We present

a lattice model for the hydrogen bonding of polar-heads in order to describe the

hydration-dehydration transition. The aspect of percolation in the hydrogen bonding

model is investigated in detai!.

The thesis is concluded in Chapter 7 which contains suggestions for further work.

•

•
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Chapter 2

Numerical Simulation Methods

In this chapter we discuss the numerical simulation methods which are used in the

later chapters. Furthermore, we choose the Ising model in a magnetic field as a

tutorial example although the applications of the methods are quite general. We

begin by giving a general description of the Monte Carlo method and its application

to problems in statistical physics (Mouritsen, 1984; Binder and Heermann, 1988) and

we then describe the recent extensions due to Ferrenberg and Swendsen (Ferrenberg

and Swendsen, 1988) and Lee and Kosterlitz (Lee and Kosterlitz, 1990).

2.1 The Monte Carlo Method in Statistical Physics

2.1.1 Monte Carlo Methods: General Considerations

Monte Carlo methods are used to solve numerically mathematical problems which

are too complex to allow an exact analytical treatment. The problems approached by

Monte Carlo methods are conveniently devided into two classes consisting of proba­

bilistic and deterministic problems respectively. In solving a probabilistic problem,

one tries to simulate directly the random process inherent in the problem. A clas­

sica! example is simulation of neutron diffusion in reaetors. Solving a deterministic

problem by a Monte Carlo calculation requires a transformation of the deterministic

7



problem into another problem of a stochastic nature. The original problem need not

itself have anything to do with random processes. The only requirement is that the

original problem and the transformed one have solutions which differ by a controlled

amount. A example of deterministic problems wlùch have been solved by Monte Carlo

methods is that of multi-dimensional integra.!s in many-body theory. We are then con­

cerned with the type of Monte Carlo methods wlùch a.llow a numerical eva.!uation of

the multi-dimensional integrals which arise in the physics of interacting many-body

systems.

•
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2.1.2 Statistical Mechanics

The application of Monte Carlo methods to statistica.! physics requires the description

of some basic statistica.! mecha.nica.! properties. A microstate, or configuration, of a

system is described by a set of mecha.nical variables, n, wlùch contains the values of

a.ll possible degrees of freedom for each particle ofthe system. Phase space, {n}, is the

space spanned by a.ll possible rnicrostates of a system. The properties of the system

is governed by a Hamiltonian funetion, ?t(n), defined in terms of the mechanical

variables. For a ferromagnetic system described by two-dimensiona.! Ising model, the

Hamiltonian is

(2.1)

(2.2)

where the spin Si> representing a magnet at site i, can point up or down a.long the 'euy

axis', the exchange energy J is restrieted to nearest neighbors, and H is a magnetic

field. In tlùs case, the phase space {n} == {Si} with a.ll possible configurations. In

statistica.! mechanics, a probability, p(n), is associated with each configuration. The

probability may be expressed in terms of a canonica.! density function

e-'H(Ol/kBT

p(n) = z

•
where Z is a normalization factor (the partition funetion)

Z = ( e-'H(Ol/kBTdn.
l{o} (2.3)



T is the absolute temperature and ka is Boltzmann'8 constant. Given the probability

distribution of the configuration, the thermodynamic average of a measurable physical

quantity, g(n), is obtained in the canonical ensemble as

•
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< 9 >= r g(n)p(n)dn
l{o}

9

(2.4)

The properties of the system in thermodynamic equilibrium are then determined

by Eq. (2.4) which constitutes the formal connection between the Ir'icroscopic and

macroscopic physical worlds. Based on Eq. (2.4), one has a set of relationships be­

twecn responsc functions and equilibrium variances for the corresponding physical

quantitics. This is the so-called fluctuation-dissipation theorem which is expressed

as follows in the case of the specifie heat Cp(T) and the isothermal compressibility

X(T):

Cp(T) = nk~T2(('H?} - (1l}2)

X(T) = nk~T( (X2) - (X)2)

whcre n is the number of particles in system and X is the order parameter.

2.1.3 Importance Sampling

(2.5)

(2.6)

The use of the Monte Carlo method in equilibrium statistical mechanics is based on

the idea of approximating Eq. (2.4) by a summation using only a characteristic subset

of phase space points, {nb n2, ... , nN }, which are used as a statistical sample. li N

is large enough, one has

L:~ e-ll(O,j/ksTg(n·)< >_ • 1 •
9 - ""!f e-ll(O,)/ksT

LJ'=l

(2.7)

•

The points, {ni}, may be chosen by two kinds of sampling, simple sampling and

importance sampling. In simple sampling, one chooses the points at random, using

'pseudo-random numbers' produced by a 'random number generator' built into the

computer. In the neighborhood of phase transition, however, this procedure is highly

inefficient since the Boltzmann weights vary by many orders of magnitude. Important
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(2.9)

information about the transition may therefore be lost by using simple sampling.

Impor/ance samplin9 samples the configuration {ni} not completely ranclom, IlUt

preferentially from the region of phase space which is important at tcmpcratnre T.

Consider a process where the phase space points, {ni}, are scledecl according to a

probability, p(n;). With the choice of this set {ni} for the calcnlation of a tht'rmal

average, formula (2.7) is now replaced by

L:~I e-'lt(n,)/kBT9(n;)/p(n;)
< 9 >:::: L:f:1 e-'lt(n.)kBT / p(n

i
) (2.8)

One choice·for p(ni ) would be p(n;) oc exp[-'Ji(n;)/kBT]. The Boltzmann factor

cancels out a1together, and Eq. (2.8) is reduced to an arithmctic average

1 N
< 9 >:::: - L9(n;)

N ;=1
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•

The problem is then to find a procedure which implements importance sampling.

Such a procedure is due to Metropolis et al (Metropolis et al., 1953).

2.1.4 The Metropolis Monte Carlo Method

Metropolis et al. (Metropolis et al., 1953) chose successive states {ni} stochastically

via a Markov process where each state n;+I is obtained from the previons state n; via

a suitable transition probability W(ni ..... n;+I)' A sufficient condition for achieving

this is the principle of detailed balance

(2.10)

Metropolis et al. then showed, from the transition probability W in the limit N ..... 00,

that the distribution function p(ni ) of the states generated by this Markov process

tends towards the equilibrium distribution

p. (o.) _ .!.e-'lt(n;)/kBT
eq u, - Z . (2.11)

•
Eq. (2.10) implies that the ratio of transition probabilities for a 'move' ni ..... ni' and

the inverse move ni' ..... ni depend only on the energy change S'Ji = 'Ji(nj .) - 'Ji(ni),

W(ni ni') -6'1t/k T
w(ni, ni) = e B (2.12)



E'l' (2.12) docs not spccify w(n, -> n;.) uni'luely, and sorne arbitrarincss in the

cxplicit choice of W remains. One fre'luently used form for W is•
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(2.13)

•

{

le-!'H/kBT if 6'H. > 0
W(n, ..... n;.) = T.

l otherwise
T.

The quantity T, usually is chosen as unity. On the basis of Eq. (2.13), Metropolis et

al. proposed the following a1gorithm for the eanonical Monte Carlo method,

1. Specify an initial configuration n.

2. Generate a new configuration n'.

3. Compute the energy change 6'H..

4. Calculate the transition probability W for the change.

5. Choose a random number R uniformly distributed between 0 and 1.

6. If R < W, accept the new configuration; otherwise retain the old configuration.

7. Analyze the resulting configuration as desired, and store its properties to cal­

culate the necessary averages. Then return to step 2.

A measure of the times by which the above a1gorithm is repeated is Monte Carlo

steps per particle (MeS).

2.1.5 Dynamic Interpretation ofthe Metropolis Monte Carlo

Method

There are usually correlations which occur between the configurations generated se­

quentially in the Markov chain described in Sec. 2.1.4. These correlations strongly

affect the accuracy that can be obtained from a given number of MCS. They can be

understood by interpreting the Monte Carlo averaging in terms of a master equation

describing a well-defined dynamic model with stochastic kinetics (Mouritsen, 1984;

Binder and Heermann, 1988). The interpretation of correlations as time is usefuI for



estimating of the accuracy and provides the theoretical basis for the application of

Monte Carlo methods to the simwation of dynamic processes. One application is the

simulation of the Brownian motion of macromolecules. The time t is associated with

the scale i of the subsequent configurations. Therefore, the probability that a config­

uration noceurs at time t, p(n, t), corresponds to p(ni ) in a Monte Carlo process,

I.e. p(n,t) == p(ni ). This probability satisfies the Markovian master equation

•
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dPsn, t) = _ L W(n -+ n')p(n, t) +L W(n' -+ n)p(n', t).
t 0' 0'

12

(2.14)

•

In thermal equilibrium, dP~~,') = 0 so that detailed balance, Eq.(2.10), is satisfied.

2.2 Ferrenberg-Swendsen Extrapolation Method

The data obtained from standard Monte Carlo simulations described in Sec. 2.1.4 are

averages of thermodynamic quantities at the single point in t!te parameter space for

which the simwation is performed. Therefore in order to obtain information over a

range of parameters, one has to perform many individual simulations in the parameter

'range. Recently, Ferrenberg and Swendsen (Ferrenberg and Swendsen, 1988) proposed

an efficient method which uses standard simwation methods to generate continuous

thermodynamic functions across important regions of parameter spaces. The data

from a single simwation can for example he used to study the entire scaling region

near a phase transition. The method is especia11y important when the behavior of

the system displays sharp peaks, such as those near first- and second-order phase

transitions, which are crucial for understanding the critical behavior of a mode\.

Standard Monte Carlo techniques locate the position of a narrow peak by multiple

high-accuracy simulations. The reswt is a set of discrete points, none of which is

exactly at the maximum. With the new method, data {rom a single simulation can

be used to accurately locate the peak position and determine its height.

To illustrate the Ferrenberg-Swendsen method, consider a Monte Carlo simulation

of the Ising mode\. Each configuration is generated with its proper thermal weight



and is then averaged over time to give the equilibrium averages of physical quantities

of interest. These averages are the usual output of Monte Carlo simulations. However,

Ferrenberg and Swendsen (Ferrenberg and Swendsen, 1988) showed that the corre·

sponding histogram can be used to extract more information from the simulation.

To this purpose, the average in the formula (2.7) is performed for a point in pa­

rameter space, for example at (T, H), for the Ising mode!. Choosing S = ~(iJ) SiSj

and M = ~i Si as quantitics representing configuration of system, the probability

distribution of Sand M at space (T, H) can be written as

n(S, M)e*(Js+HM)

P(T.H)(S, M) = ...L.(JS+HM)' (2.15)
~S,M n( S, M)e 'BT

where n(8, M) is the degeneracy of the configurations with the same Sand M. The

histogram of values of (S, M) generated by the Monte Carlo simulation is proportional

to P(T,Il)( 8, M). By storing this histogram, one can generate the normalized prob­

ability distribution. The histogram can then be used to generate data for different

parameters. The normalized probability distribution with new parameters (T', H')

can be expressed in terms of the distribution with (T, H) in the following way:

R (8 M)e('-;"-*)(Js+HM)+(H'-H)~
R , ,(S M) - (T,H) , (2 16)

(T ,H), - " D (S M) (~-.-J-T)(JS+HM)+(H·-H)trT .
L..S,M .r(T,H) , e B B B

Since T' and H' are continuously variable, any quantities of interest, including the

cluster distribution, can be ca1culated as a continuous function of the parameters

(Zhang, Mouritsen and Zuckermann, 1992aj Zhang et al., 1992c). The technique can

easily be generalized to other models, including those with continuous symmetry or

described by several parameters.

•
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2.3 Determination of the Nature of Phase Tran-

sitions

Metropolis Monte Carlo simulations can only be performed for finite systems. In the

early use of this method, a system with as large a size as possible was used in order
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to suppress the finite-size eiTects. However, a knowledge of the finite·size eiTects is

useful not only for the calculation of the various thermodynalllÎc quantities for small

systems and their extrapolation to nontrivial thermodynamic lilllit but also because

it is possible to obtain information about the nature of a phase transition (Challa,

Landau and Binder, 1986; Mouritsen, 1984; Zhang et al., 1992a).

2.3.1 Finite Size Effects of Phase Transitions

A first-order transition is charaeterized by discontinuities in the first derivatives of the

free energy, such as the internai energy and the magnetization in the thermodynalllic

limit (Landau and Lifshitz, 1980). This results in c5·function singularities in the

specifie heat and the susceptibility at the transition. The singularities at a first·

order transition are due to phase coexistence. At a second-order transition, on the

other hand, the divergences are intimately linked to the divergence of the correlation

length. In a fini te system, however, the above divergences do not occur. Instead, in

both types of transition, one sees finite peaks in the specifie heat and the susceptibility

near the transition point. Two eiTects appear because of the finite size: a 'rounding'

of the transition region occurs with the peak heights increasing with lattice size and

the location of the maxima shift in a size.dependent fashion (Challa, Landau and

Binder, 1986; Fisher, 1971). In a second·order transition the rounding is due to

the correlation length being limited by the lattice size, L, so that the scaling theory

prediets that the maximum of the specifie heat diverges as L"'lv and that the half·

width decreases as L-I/v. At a first·order transition, L appears only in terms of the

volume, Ld , in d dimensions. The maxima therefore grows as Ld and the c5·function

limit is obtained because the width decreases as L-d
• The scaling for the specifie heat

and the susceptibility is given by (Mouritsen, 1984; Fisher, 1971)

•
c'LQZ = a+bL'"

'X.'LQZ = a' +b' L'" (2.17)



where '" = d for a first-order transition and'" = a/II for a second-order transition.

Note that these specifie predictions only apply when L is large enough.

The fourth-order cumulant proposed by Binder (Binder, 1981) is a useful quantity

to measure in a simulation since it behaves quite differently at first-order and contin­

uous transitions. This quantity is defined in terms of the configurational energy, E,

as follows

•
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(E4)
O"(L) = 1- 3(E2)2' (2.18)

For continuous transitions, o"(L) -+ ~ for all temperatures as L -+ 00. For first-order

transitions, 0"( L) takes on the value 2/3 for both high and low temperatures, tending

toward a nontrivial minimum value at the transition temperature. The minimum

value, O"iin, of 0"( L) scales as L-d in the thermodynamic limit. However this method

suffers from severe crossover effects.

2.3.2 Lee-Kosterlitz Method

An unambiguous method which determines the order of a phase transition was pro­

posed by Lee and Kosterlitz (Lee and Kosterlitz, 1990). This method consists of

calculating the free energy as a funetion of the order parameter, X, from the proba.

bility distribution at the transition. In the Ising model, X would be the magnetization

per spin. The distribution of the order parameter 1'(X, T, L), as already described in

Sec. 2.2, can be obtained from the histogram of X generated in a single Monte Carlo

simulation at T for the system with size L. The free-energy-like quantity, A(X, T, L),

defined by

A(X,T,L) - -ln1'(X,T,L) (2.19)

•

differs from the bulk free energy, .1"(X), by a T- and L-dependent additive quantity.

However, at fixed T and L, the shape of A(X, T, L) is identical to that of .1"(X) and

furthermore A(X) -A(X') = .1"(X) -.1"(X'). A measurement of SA = A(X) -A(X')

therefore gives a direct evaluation of the corresponding 5.1" = .1"(X) - .1"(X').

At a first-order transition, .1"(X) has pronounced double minima corresponding to



two coexisting phases at X = Xl and X = X 2 separated by a barrier with a m&ximum

at Xmaz corresponding to a domain boundary between the two phases. The height

of the barrier measures the interCacial Cree energy between the two coexisting phases

and is given by

•
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. (2.20)

•

ThereCore, an increase in 5:F with increasing L implies a first-order transition whereas

a decreasing 5:F which vanishes at large L implies the absence oC a transition. Finally

a constant 5:F indicates the occurrence oC a continuous transition. This method is

used widely in the following chapters Cor the identification oC the nature oC the phase

transition for a variety of microscopie models .



•

•

Chapter 3

Model for Nematic Liquid

Crystals

In this chapter, we present the results of extensive Monte Carlo simulations of a

thermotropic liquid crystal model, the Lebwohl-Lasher model, for both transitional

properties and director fluctuations. These results will be compared with experimen­

tal observations.

3.1 Introduction

Nematic liquid crystals differ structura.lly from normal isotropie liquids only in the

spontaneous orientation of the molecules with their long axes para.llel. In the absence

of orienting fields, the preferred direction of the long axes is not constant over large

areas, but varies continuously with position in real space (Saupe, 1968). However

a complete understanding of the nature of intermolecular interactions is not ava.il­

able. Maier and Saupe (Maier and Saupe, 1959; Maier and Saupe, 1960) proposed

a simple model for the nematic-isotropic phase transition. It was assumed that the

interactions between molecules are dependent on both their positions, r, and relative

orientations, 1J;:r, through the Legendre polynomial, P2(:J:), which describes the ori·

entational ordering of the molecules. The interaction term can then be written as

17
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fol1ows
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(3.1)

•

Since P2(:Z:) is the lowest term in the expansion of :z: for an uniaxial function, it can

be considered as the simplest expression for interactions between molecules in the

nematic phase of liquid crystals. Maier-Saupe theory in the mean field approximation

is equivalent to the Landau-de Gennes theory (de Gennes, 1974) in which the nematic

order in liquid crystals is characterized by a second-rank tensor order parameter, Q,

and the free energy is expanded in components of tlùs order parameter as fol1ows

In contrast to the dipolar symmetry of ferromagnets, the sign of the order parameter is

important in a nematic. Q and -Q correspond to positive and negative birefringence

and hence to quite different physical arrangements of the molecules. Therefore there

is a term of order Q3 in the free energy for the purely geometrical reasons. Symmetry

does not forbid a tlùrd-order invariant in F and tlùs implies that the model should

exhibit a first-order transition. Although the mean-field solution to the Maier-Saupe

model is consistent with most of experimental observations for the nematic-isotropic

phase transition, it fails to estimate the spinodal temperature, T~, which marks the

stability liruit of the isotropie phase. The reswt for T~ is displaced relative to the

equilibrium transition temperature, Tc, by (Tc - T~)/Tc - 10-1 wlùch is aimost two

orders of magnitude larger than typical experimental values (de Gennes, 1974; Stinson

and Litster, 1970; Thoen, Marynissen and Van Dacl, 1982).

The fol1owing approach to the Maier-Saupe model was proposed by Lebwohl and

Lasher (Lebwohl and Lasher, 1972) in 1972. They introduced the lattice version of the

Maier-Saupe model in order to define the simplest possible ruicroscopic lattice model

of a regwar array of rotor variables that has an orientational transition. Only nearest­

neighbor interactions needed to be considered since the factor of f(1T - T'I) in Eq. (3.1)

was found to decay very rapidly with increasing distance between molecules (Lasher,

1970). In the Lebwohl-Lasher model, therefore, the rotor variables are coupied by the
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Hamillonian

1f. = -(2LP2(COSOij),
iJ
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(3.3)
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where P2(cos Oij) = H3 cos2 Oij - 1), Oij is the angle between the axes of rotors at

nearest-neighbor sites i and i, and (2 is a coupling pararneter. The rotors are con­

tinuous variables and since the interaction in Eq. (3.3) is fully isotropic there is no

coupling between the orientational properties and any preferred spatial directions.

Be!ow the equilibrium phase transition temperature, Tc, the orientational isotropy is

broken and an orientational1y ordered phase characterized by the nematic order pa­

rameter is formed. Even though the Lebwohl-Lasher model neglects the coupling be­

tween positional degrees offreedom and molecular orientation which is present in real

nematogens, the orientational. transition in the Lebwohl-Lasher mode! is believed to

resemble the nematic-isotropic phase transition in liquid crystals (de Gennes, 1974).

The nature and the properties of the nematic-isotropic phase transition in the

Lebwohl-Lasher model have been under active investigation since 1972 both in three

(Lebwohl and Lasher, 1972; Lebwohl and Lasher, 1973; Lasher, 1972; Luckhurst and

Simpson, 1982; Fabbri and Zannoni, 1986j Zannoni, 1986j Biscarini et al., 1991;

Cleaver and Allen, 1991; Zhang, Mouritsen and Zuckermann, 1992bj Zhang et al.,

1992b; Zhang, Zuckermann and Mouritsen, 1992j Cleaver and Allen, 1992) and two

spatial dimensions (Chiccoli, Pasini and Zannoni, 1988). Strong numerical evidence

for a first-order transition in the three-dimensional Lebwohl-Lasher model has been

presented (Fabbri and Zannoni, 1986; Zannoni, 1986) but only recently (Zhang,

Mouritsen and Zuckermann, 1992b) has unambiguous evidence for the first-order

nature of the transition as presented below been found using the latest advances in

numerical Monte Carlo simulation techniques described in Sec. 2.2 and Sec. 2.3.2.

From these calculations (Zhang, Mouritsen and Zuckermann, 1992b) it was found

that the Lebwohl-Lasher model can account for the close proxirnity of the experi­

mental1y observed stability limit of the isotropie phase to the transition point and

that the Maier-Saupe mean-field approximation grossly overestimates the range of

metastable states in the mode!.



The computational problems arising in studies of the oricntational·ordering tran·

sition in the Lebwohl·Lasher model are related to the strong pretransitional effects

which make it difficult to reveal the nature of the transition and to accurately de·

termine the transitional properties. ln particular it is troublesome to ealculate the

limits of stability of the two phases, i. e. to locate the spinodal points. In Sec. 3.3

we describe the results of extensive Monte Carlo computer-simulation calculations

on the three-dimensional Lebwohl-Lasher model involving a determination of order­

parameter distribution functions which permit free.energy functions to be derived.

From a finite-size scaling analysis of these functions the nature of the orientational

transition is shown to be of first order. The first-order transition is, however, ex­

tremely weak with strong precursor effects. From the variation of the free energy

around the equilibrium transition temperature, it is possible to derive the limits of

stability (the spinodal points) of the nematic and isotropie phases. The spinodal

points are found to be extremely close (~ 10-3 ) to the equilibrium transition tem­

perature, Te. Results are also presented for the specifie heat, the axial and biaxial

susceptibilities, as weil as the enthalpy and discontinuity in the nematic-order param·

eter at the transition. It is also shown (Zhang, Zuckermann and Mouritsen, 1992)

that inclusion of a term P4 ( cos B,;) in the Hamiltonian,

•
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11. = -f2 ~P2(cosB,;)- f4~ P4(cos B,;),
i,j i,i
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(3.4)
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where P4(cos 8,;) = l(35 cos4 8,;-30 cos2 8,;+3) is the 4th order Legendre polynomial,

enhances the first-order character of the transition and leads to a displacement of the

limits of stability away !rom Te.

We have also investigated the director fluctuations in the Lebwohl-Lasher model

by simulating equilibrium time series of the nematic director and its magnitude, the

nematic order parameter. The results are described in Sec. 3.4. From a statistical

analysis of these time series in terms of the auto-correlation function, C(t), and the

power spectrum, PU), of the accumulated fluctuations we have obtained the fol1owing

results: (i) the correlation of the director fluctuations scales as C(t) ~ t2H and the



power speclrum as PU) - 1-(2H+I) with the value of the Burst exponent being

H ~ 1 for all temperatures in the nematie phase, (ii) in the isotropic phase, C(t)

scales as C(t) - t2H and PU) scales as PU) - r(2H+l) with H ~ 0.5 independent

of temperature, and (Hi) in the presence of a unidirectional ordering field, _h2 cos2 9.,
there is a crossover from H ~ 1 to H ~ 0.5 in the nematic phase, whereas the

presence of the field does not affect the Burst exponent in the isotropie phase. For

comparison we show that the correlation function of the order-parameter fluctuations

and the corresponding power spectrum is characterized by a Burst exponent, H ~

0.5, independent of the phase, independent of the temperature, and independent of

the presence of an ordering field. These results show that the director fluctuations

exhibit fractional Brownian motion (Mandelbrot, 1982; Feder, 1988; Feder, 1991),

i.e. H > ~, in the nematic phase whereas whenever the continuous degeneracy

is broken, the fluctuations follow ordinary Brownian motion, i.e. H = ~. The

field-induced crossover between fractional and normal Brownian motion is consistent

with the findings from a recent neutron-scattering study of the nematogen d-PAA

(deuterated para-azoxy-anisole) (Zhang et al., 1992b; Otnes and Riste, 1992).

•
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3.2 Details of the Simulations

We used the Metropolis Monte Carlo computer-simulation method, described in

Sec. 2.1.4, to determine a canonical equilibrium ensemble of microstates for the

Lebwohl-Lasher mode!. In the Lebwohl-Lasher model, the orientation of the ith

rotor can be described by a unit vector, Ui, wlùch is stored as cos 9i and 4>i in our

simulations for the phase transitional properties, where 9. and 4>i are the polar and

azimuthal angle of the symmetry axis of the rotor. On a simple cubic lattice with

linear size, L, the microstate of system is given by the set of N such orientations,

{4>.,9.}, where N = L3 is the number of rotors. The angle between the symme­

try axes of rotors i and i, 9iil is determined by the polar angles of the rotors, i.e.

cos 9i; = cos 9. cos 9; +sin 9i sin 8; cos(4>i - 4>;). The periodic boundary conditions are



imposed on the lattice in order to suppress the boundary effects. In order to generate

a new microstate, we first chose rotors randomly and the orientations of the chosen

rotors are then changed by generating two uniformly random values for cos 9 and </J.

Considering the uniaxial property of rotors, we chose cos 9 E (0,1) ",nd </J E (0,211')

respectively. The acceptance rate is about 40% in our simulations.

Monte Carlo simulations are performed in three steps. First, simul",tions Me per.

formed to evaluate the specific heat, C(T), and the susceptibility, X(T), as functions

of tempero.ture. The resuIts of these simulations are used to determine the peaks in

C(T) and X(T) as accurately as possible. Secondly, very extensive simulations Ille

then performed at the position of the peak of C(T) or X(T) for different values of

the system size, L. These simulations involve 1 - 2X 106 Monte Carlo steps per site

(MCS). The basic thermal averages over a microstate are calculated and stored every

20 MCS.

•
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The basic thermal quantities are the internai energy per rotor, E(T) = ('H)/N,

and the nematic order parameter. The value of nematic order parameter is determined

as

(3.5)

where 9. is the angle between the axis of the ith rotor molecule and the nematic

director. Due to the non·broken continuous symmetry of the nematic ordering, the

direction of the nematic director varies and has to be determined during the simulation

in order to calculate (P2)' This is facilitated by diagonalization of the tensor order

parameter Q,

a,{3 = :c,y,z, (3.6)

•

where na,. is the Q·component of a unit vector, n., which specifies the orientation of

the ith molecule. The instantaneous value of the order parameter is then given by

the largest eigenvalue, À1 , of Q (Zannoni, 1986). The corresponding eigenvector, n,

determine the direction of the nematic director. From the two smaller eigcnvalucs, >'2



and >'3, of the order-parameter tensor the biaxial susceptibility, é(T), can be derived•
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(3.7)

On the basis of the data, the nature of transition can be determined by using

the Lee-Kosterlitz method described in Sec. 2.3.2 and the properties of system near

transition temperature are calculated by using the method of Ferrenberg and Swend­

sen described in Sec. 2.2. The thermodynamic order parameter is obtained as the

average,

(3.8)

The response functions like the specific heat and the ordering susceptibility, G(T)

and x(T), arc calculated according to the fluctuation-dissipation theorem [Eqs. (2.5)

and (2.6)]. Furthermore, free energies, F(E, T, L) and F(>', T, L), are obtained as

F(E,T,L) ~ -lnP(E,T,L)

F(>', T, L) ~ -ln P(>', T, L) (3.9)

•

where the energy and the order-parameter distribution functions, P(E, T, L) and

P(>', T, L), can be derived !rom the data.

3.3 Results for Transition Properties

3.3.1 Response Functions: Susceptibilities and Specifie Beat

Fig. 3.1 shows the data for the susceptibility, X(T), as functions of temperature and

system size for a range of temperatures in the transition region. A similar plot for the

specifie heat, G(T), is shown in Fig. 3.2. The two functions exhibit a pronounced max­

imum signaling the orientational transition. The maximum increases as a function of

system size for both functions and the position of the maximum moves correspond­

ingly towards lower temperatures. The inserts oI Figs. 3.1 and 3.2 show that the

maxima scale with system size in such a way that the scaling forms, Eq. (2.17) are

approximate1y obeyed. The data for Xrax clearly approach the scaling regime earlier



than the data for Cr". Hence we conclude that the expeded scaling relations for 1\

first-order transition hold. Even though the maximum value of the response fundions

appears to have approached the asymptotic scaling regime, the full fundional fOrln

of the two fundions are not in the scaling regime for the system sizes investigl\ted.

This is demonstrated in Fig. 3.3 which shows plots of CL-d and XL-d vs the scaling

variable, t:>.TLd • Here t:>.T = T - T.(L) and the finite-size transition temperature,

T.(L), is defined as the position of the peak of the response fundion in question.

Again even though the data for the susceptibility appear to scale approximately over

a range of temperatures in the transition region, the data for the specifie heat are not

yet in the scaling regime.

•
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3.3.2 InternaI Energy and Nematic Order Parameter

Fig. 3.4 shows the simulation data for the internai energy per rotor, E(T), and the

orientational order parameter, (Pz(T)h in Eq. (3.5), for a wide range of temperatures.

Only results for the two largest system sizes studied are exhibited. These figures

c1early show that the transition is so strongly influenced by f1uduations that the

variation of both the internai energy and the order parameter is smooth and effedively

continuous throughout the transition region evcn for the largest system size.

3.3.3 Nature of the Nematic-Isotropic Phase Transition

The data for the free energy functionals, Eq. (3.9), for different system sizes calculated

at temperatures, T;(L), were determined by matching local minima in :F(>., T, L) and

are displayed in Fig. 3.5. The finite-size behavior of :F()', T, L) in Fig. 3.5(a) is quite

clear: as the system size is increased, a double-weil structure develops in the free

energy. This is conclusive numerical evidence in favor of a first-order phase transition

(Sec. 2.3.2). Since the barrier between the two minima is weil pronounced for the two

larger system sizes only, we have insufficient data to find the exact scaling behavior

of the barrier height, cf. Eq. (2.20). This shows that the first-order transition is



very weak. In fad it is considerably weaker than the first-order transitions in the

tltree-dimensional three-state Potts model (Lee and Kosterlitz, 199Iai Stephanov and

Tsypin, IJ91) and the two-dimensionai five·state Potts model (Lee and Kosterlitz,

1990) wl"th arc weil known to exhibit weak first-order transitions. The free energy

fundional, :F(E, T, L) in Fig. 3.5(b), derived for the internai energy distribution

fundion is found to be a much weaker indicator of the nature of the orientational

transition for the system sizes studied. A two-well behavior has barely developed

for the largest system size. However, the strong deviation from a Gaussian shape

suggests that a barrier is about to develop.

The first-order nature of the phase transition is further supported by the scaling

behavior of the susceptibility maximum in Fig. 3.1, cf. Eq. (2.17).

•
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3.3.4 Equilibrium Transition Temperature

Fig. 3.6 shows the results for the different measures of the finite-system phase tran­

sition temperature and how they scaie with system size. The finite-system transition

temperatures are defined from the position of the maximum in the specific heat,

TcC(L), from the position of the maximum in the susceptibility, Tc"(L), and from the

criterion that the two minima in the free energy are equally deep, T{(L). For fi·

nite systems, these three different measurements of the transition temperature have

different values, but they ail should approach the same value in the thermodynamic

!imit, L .... 00. The data in Fig. 3.6 show that this is indeed the case. Furthermore,

Fig. 3.6 demonstrates that the finite-size scaling relation,

(3.10)

•
expected to hold at a first-order phase transition, applies. Extrapolation to the ther·

modynamic limit yields the following estimate of the equilibrium first-order transition

temperature, Tc = (1.1232 ± 0.0001)f2/kB •

The transition temperature obtained from an earlier high.precision Monte Carlo

simulation study of the Lebwohl·Lasher model (Fabbri and Zannoni, 1986), Tc =



(1.1232 ± 0.0006)€2 /kB' was obtaincd from an analysis of thc finitc·sizc hchavior of the

specific heat. This value is identical to the vaIne obtained here. As indicated by the

data in Fig. 3.6, the size-depcndence of Tee (L) is less prononnced in the scaling regime

than that of Te"(L) and T:(L) and hence highly accurate values of the transition

temperature ean be obtained directly from specific-heat data for large systcms Ils

seen in Ref. (Fabbri and Zannoni, 1986).

•
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3.3.5 Location of Pseudo-Spinodal Points: Stability Limits

of the Isotropie and Nematie Phases

We now turn to a discussion of the pretransitional effects (de Gennes, 1974) near

the orientational transition. The cxtremely weak emergence of the first·order ori·

entational transition in the Lebwohl·Lasher model suggests that the l1uctuations of

the nematie order in the transition region are eontrolled by singularities from nearby

eritieal-points which lie at the termini of the metastable branches of the free energy.

The use of distribution functions, sueh as 'P(.x, T, L), and the derived free·energy

funetional, F(.x, T, L) in Eq. (3.9), allows us to make a detailed study of the limits of

stability of both the nematie and the isotropie phase. These limits of stability are not

rigorously defined for a system with short.range interactions (Gunton, San Miguel

and Sahni, 1983) but correspond to relatively blurred regions. Henee we refer here to

these limits, T±, as pseudo.spinodal points rather than spinodal points. T~ denotes

the stability limit of the isotropie phase within the nematie phase and T'; denotes the

stability limit of the nematie phase within the isotropie phase.

The numerieal data from whieh the pseudo-spinodal points, T±(L), are determined

are shown in Fig. 3.7. The free energy is displayed in this figure for the largest

system size studied, L3 = 283 , and for different values of the temperature around the

equilibrium transition temperature. The figure shows the 'c1assie' behavior of a free·

energy function near a first-order transition as usually presented from the Landau

theory (Stanley, 1971). The pseudo·spinodal points in the finite system are estimated

as the temperatures where the second, local minima of the free energy vanish when



the temperature is varied away from the transition temperature.

The pseudo-spinodal points, T±, in the thermodynamic limit have been determined

from an empirical extrapolation, as indicated in Fig. 3.6. We note that we have no

rigorous basis for this type of finite-size scaling behavior of T±(L). Presumably a

more rigorous scaling analysis should involve the exponents characterizing the pseudo­

spinodal singularities. Therefore, the quoted estimates of T± should be considered as

maximal displacements of the pseudo-spinodal points from the transition. The main

rcsult obtained from Fig. 3.6 is that the pseudo-spinodal points are extremely close

to the equilibrium transition temperature,

•
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(3.11)

•

Within the numerical accuracy of our data, the two pseudo-spinodal points are equally

close to the transition point.

We wish to remark that we have only been able to obtain these results for

the pscudo-spinodal points due to the availability of methods such as the power­

fui reweighting technique by Ferrenberg and Swendsen (Sec. 2.2). By this method it

bccomcs feasible to gcnerate numerical data for the free energy, cf. Figs. 3.5 and 3.7.

Thesc data givc dctailcd insight into the non-equilibrium properties of a system which

undcrgoes such a weak first-order transition as the three-dimensional Lebwohl-Lasher

mode!. This is probably the reason why earlier numerical work on systems as large

as 303 molecules (Fabbri and Zannoni, 1986) on the model using more conventional

techniques, but also involving distribution funetions, had difliculty in matching the

two free-energy minima. In the work by Fabbri et al. (Fabbri and Zannoni, 1986) the

stability limit of the isotropie phase was investigated by an extrapolation analysis of

an Ornstein-Zcrnikc expression for the pair correlation function. The result found for

a 303 system, (Tc - T~)/Tc ~ 3 x 10-3
, is in an order-of-magnitude agreement with

the value obtained in the present calculation which indicates that the assumptions

undcrlying the work in Ref. (Fabbri and Zannoni, 1986) are reasonable.



3.3.6 Transition Enthalpy, Nematic-Order Discontinuity, and

Biaxial Susceptibility•
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The value of the transition enthalpy, C!.H = JG(T)dT, ean be estimated from the

finite-size sealing behavior of the specifie heat. From the data for the larger system

sizes studied we estimate that C!.H ~ (0.20±0.04)l2' There is another way to estimate

the transition enthalpy sinee, in the thermodynamie limit, the separation between two

minima of :F(E) would direetly amount to C!.H. However, as remarked earlier, we

have found that the specifie heat approaehes the sealing regime mueh slower than the

suseeptibility does. The distribution function for the internai energy in the transition

region is strongly non-Gaussian for the larger system sizes studied, but as seen in

Fig. 3.5(b) two clear minima eannot be diseerned within the aeeuraey of the data.

We are therefore not able to determine the transition enthalpy with high precision.

The value ofthe diseontinuity in the nematie order parameter, c!'(P2)~' at the first­

order transition was determined from an empirieal finite-size sealing analysis at the

equilibrium transition temperature. The data for (P2) ~ in a wide temperature range

were shown in Fig. 3.4(a). From this figure we have obtained the estimate c!'(P2)~ ~

0.39 at the transition. It should be noted that the approaeh to the thermodynamie

limit for this 'quantity is extremely slow implying that our estimate is somewhat

tenuous. The position of the upper minimum in the free-energy function, :F(>', T, L)

in Fig. 3.5(a), show only a very weak size dependenee.

The biaxial suseeptibility, 5(T) in Eq. (3.7), is zero by symmetry in the thermo­

dynarnie limit for the isotropie Lebwohl-Lasher mode!. However, for a finite system

there is a non-zero differenee between the two smaller eigenvalues of the nematic or­

der parameter tensor and 5(T) will attain a finite value and have a non-trivial and

interesting temperature dependenee. Sinee there is sorne interest in the behavior of

nematie droplets, we show in Fig. 3.8 data for two different system sizes. As expected,

5 deereases for inereasing system size and will vanish in the limit L -t 00. It is seen

that 5(T) is very weak eompared to the order-parameter suseeptibility in Fig. 3.1

but it has a sharp cusp-like maximum at the transition. Furthermore, 5(T) is highly
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asymmetric around the transition.
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3.3.7 Enhancement of a Weakly First-Order Phase Transi­

tion

As shown above, the first-order transition in the Lebwohl-Lasher model of Eq. (3.3) is

extremely weak and associated with strong pretransitional effects, stability limits and

pseudo-spinodal points which arc very close to the equilibrium transition temperature.

We now show that by adding to the Hamiltonian a term, P4(COSOi;) in Eq. (3.4),

which does not break the continuous degeneracy of the orientational ordering, the

first-order character of the transition is enhanced. Fig. 3.9(a) shows the data for

the free energy .7='(>., T, L) as a function of system size evaluated at the transition

temperatures, T[(L), for the case of E4/E2 = 0.1. The free-energy barrier develops

and increases in height as the system size is increased. This demonstrates that the

transition is of first order as in the absence of the P4-term. We used a finite-size scallng

analysis to estimate the equilibrium transition temperature in the case E4/E2 = 0.1 to

be T. = (1.1628 ± 0.0001)E2/kB' By comparing Fig. 3.9(a) with the analogous. data

in Fig. 3.5 for E4 = 0, it is seen that the barrier height for the same system sizes is

larger when the P4-term is present. This is demonstrated in Fig. 3.9(b) whieh for a

large system size, L =24, shows a comparison between :F()., T, L) for the two cases.

From this figure we conclude that the P4-terms acts 50 as to enhance the fust-order

character of the transition: not only the barrier height (i. e. interfacial tension) but

also the distance between the two minima increases with system size.

When the first-order transition in the Lebwohl-Lasher model is made more strongly

first order by adding the P4-term, the pseudo-spinodal points, and hence the stability

limits of the two phases, are further displaced from the equilibrium transition tem­

perature. This is illustrated in Fig. 3.10 in the case of E4/E2 = 0.1. This figure shonld

be compared with Fig. 3.7 for E4 = O. From a finite-size analysis similar to that

described in Sec. 3.3.5 we estimated that the pseudo-spinodal points for E4/E2 = 0.1

are positioned at JT. - T,i I/T. $ 0.8 X 10-3•



Our finding of an enhancement of the first-order character of the orientationa!

transition of the Lebwohl-Lasher model in the presence of the P4-term is consistent

with earlier mean-field (Zannonj, 1979) and conventiona! Monte Carlo simulation

studies (Chiccoli et al., 1988; Fuller, Luckhurst and Zannoni, 1985).

•
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3.4 Results for Director Fluctuations

A renewed interest in the study of temporal fluctuations in complex dynamical sys­

tems has emerged since Mandelbrot (Mandelbrot, 1982) introduced the concept of

fractional Brownian motion. In contrast to ordinary Brownian motion which refiects

independent stochastic processes, fractional Brownian motion implies persistence or

anti-persistence and power-law correlations in the fluctuations.

An interesting possibility for observing fractional Brownian motion in a cooper­

ative many-particle system exists in the case of fiuctuating modes in a symmetry­

broken state of continuous degeneracy. A candidate for a system exhibiting this type

of behavior is a liquid crystal witmn the nematic phase where the director fluctua­

tions correspond to a dynamical mode wmch is critical for all temperatures in the

nematic phase (de Gennes, 1974). We shall here show that the three-dimensional

Lebwohl-Lasher mode! provides a convenient and simple model framework witmn

wmch fractional Brownian motion and its consequences can be observed.

3.4.1 Time-Series Analysis and the Hurst Exponent

We used the standard interpretation of a Monte Carlo simulation via a Master­

equation formulation to associate a time parameter (Markov time) with the sequence

of states generated for the equilibrium ensemble by the stochastic Monte Carlo pro­

cess (Sec. 2.1.5). Obviously, the associated time scale is not the true physical time

scale since we have not invoked the true equation of motion. In particular we have not

strictly unforced the conservation law for the nematic order parameter (de Gennes,

1974). However, the average of the orientational order parameter is conserved during



the simulation and we assume in the following that the Monte Carlo time series have

sorne relevanee for the equilibrium nematodynamies. Sinee our elementary excitation

is a single-site rotor reorientational process we basieally study the overdamped regime

of the dynamies.

We first calculated equilibrium time series of the nematic director, given by the

components, na(t), of the unit eigenvector corresponding to the highest eigenvalue of

Q, as weil as the nematic order parameter, (P2),(t). The time is measured in units of

Monte Carlo steps per lattice site (MCS). Time series were determined for different

temperatures in both the nematic (Sec. 3.4.2) and the isotropie phase (Sec. 3.4.3) as

weil as in the presence of an ordering-field term (Sec. 3.4.4), _h2 cos2 8i , which was

added to the Bamiltonian in Eq. (3.3).

The time series have been analyzed in terms of power spectra as weil as by the

rescaled-range (RIS) method (Mandelbrot, 1982; Feder, 1991) which was originally

developed by Burst (Hurst, 1951) to analyze statistical fluctuations of water levels in

large natural reservoirs. In the case of a component, na, of the nematic director, the

RIS analysis is based on a range

•
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R =max[X(t,T)]- min[X(t, T)], 0:5 t :5 T

and an accumulated standard deviation

where the average of the stochastic variable na(t) over the time range T is

1 T

(na)T = - L: na(t).
T '=1

The accumulated fluctuations over the same time range are
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(3.12)

(3.13)

(3.14)

•
X(t,T) = L:[na(t') - (na)T]' (3.15)

t'=l

X(t,T) is the basic stochastic variable of the process we consider. An auto­

correlation function, O(t), for this variable can be defined as

• ott) = (X(O)X(t)). (3.16)
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The Hurst exponent, H, is defined as (Feder, 1991),

or equivalently

The corresponding scaling form for the power spectrum is

P(f) = I!X(t) exp(-i21l1t)dtI2 - r fJ •
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(3.17)

(3.18)

(3.19)

•

Scaling implies the relation {3 = 2H + 1 (Feder, 1991). Statistical independence of

stochastic events leads to H = ~ and ordinary Brownian motion. In the case of

H # ~, the correlation function has power-law decay and infinitely long correlations.

This latter case is associated with fractional Brownian motion (Mandelbrot, 1982).

An equivalent formalism can be written down in the case of the time series for the

nematic order parameter, (P2h(t).

3.4.2 Frai::tional Brownian Motion of Director Fluctuations

in the Nematic Phase

The director fluctuations are recorded in terms of the fluctuations in one of the com-

ponents of the unit directional vector. Ail three components are found to behave

statistically in a similar manner and we therefore only examine one of them. Fur­

thermore, we found that the fluctuations in the polar angle also behave in the same

manner. Fig. 3.11 shows untreated simulation data illustrating the director fluctu­

ations both without (h = 0) and with a symmetry-breaking field (h2/s2 = 1). The

top panel in Fig. 3.11 shows an example of one of the Cartesian components of the

director for the two cases and the bottom panel shows blow-ups of a small part of the

two time series for the same two' cases. The figures show that the director fluctuations

exhibit structure on ail time scales and they illustrate the self-similar nature of the

director fluctuations.



Data for the director fluctuations were analyzed by the R/S-method of Eqs. (3.12)­

(3.17), and the resu1ts are shown in Fig. 3.12(a) for two different temperatures in the

nematic phase. This figure demonstrates that the director fluctuations display a re­

markably clear scaling behavior over a wide range of T. Both data sets are weil

described by a Hurst exponent, H ~ 1, which implies fractional Brownian motion

and long-range power-law correlations. This implies that the Hurst exponent is inde·

pendent of temperature in the nematic phase.

The results of an analysis of the director fluctuations in terms of the power spec­

trum, Eq. (3.19), are given in Fig. 3.12(b) for a temperature in the nematic phase.

Although the data for the power speetrum are much less smooth, they also provide

evidence for power-law scaling. The data for the power spectrum are, however, not

accurate enough to decide whether the scaling relation f3 = 2H +1 breaks down.

•
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3.4.3 Brownian Motion of Director Fluctuations in the Iso-

tropic Phase

By contrast to our findings of fraetional Brownian motion of director fluctuations in

the nematic phase, the data for the director fluctuations in the isotropie phase in

Fig. 3.13 demonstrate that ordinary Brownian motion, H ~ 1/2, prevails over long

times in the isotropie phase. Both the R/S-analysis shown in Fig. 3.13(a) and the

analysis of the power speetrum shown in Fig. 3.13(b) give the same result, and the

scaling relation, f3 = 2H + 1 appears to hold.

3.4.4 Field-Effeets on Direetor Fluctuations

The continuous degeneracy of the nematic order can be broken by adding a uniaxial

ordering field to the Hamiltonian,

where h is the field strength and cos 9, is the angle between the axis of the ith rotor

molecule. 'l'he average nematic director direction is then controlled by the direction•
'H. = -f2 L P2(COS 9.;) - h2 L cos2 9.,

iJ i
(3.20)



of the applied field. In the presence of this field, the fractional Brownian motion in

the nematic phase is destroyed and there is a crossover to ordinary Brownian motion

over long time ranges. Fig. 3.14 also shows that the presence of the field in the

isotropic phase does not alter the ordinary Brownian motion characteristics of the

director fluctuations.

Fig. 3.15 gives the results of a doser study' of the crossover effects induced by the

applied field. It is seen that there are two time regimes in the fluctuation character­

istics in the presence of the field. For short time ranges, the field has not yet made

its influence felt on the director motions and an effective fractional Brownian motion

with H ~ 1 is observed. At longer time ranges a crossover to ordinary Browninn

motion with H ~ 1/2 takes place. The crossover occurs nt shorter times the slronger

the field is. At very high field strengths the signal saturates. In the crossover regime,

effective Hurst-exponent values between 0.5 and 1 can be assigned to the data. As

expected, this effective exponent is very sensitive to the sampling density employed

whereas the limiting behaviors are not.

•
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3.4.5 Effects on Director Fluctuations Due to Walls

We also simulated the effects of another type of symmetry-breaking field on the

director fluctuations which is of relevance for interpreting certain experimental data.

This type of field may be considered as due to a wall which imposes a local boundary

condition on the nematic ordering. This type of boundary condition is only expected

to have an effect on finite systems except near wetting transitions. In the present

realization, the wall is simulated by fixing all rotors in an :z: - y plane of the lattice

to point along the y-axis. For lattices of the typical sizes we have studied in this

chapter, the effect on the director fluctuations due to this particular type of boundary

condition is shown in Fig. 3.16. From a R/S-analysis of the data an effective Hurst­

exponent value of H ~ 0.82 is obtained. The exponent value depends on the specific

boundary condition and the size of the system.
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3.4.6 Fluctuations of the Nematic Order Parameter
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By contrast to the fluctuations in the nematic director (in the absence of a field) the

fluctuations in the nematic order parameter correspond to independent stochastic

processes and hence to ordinary Brownian motion (H = ~) in either phase and

independent of temperature, as illustrated by the data in Fig. 3.17. Both the RIS­

analysis and the power spectra leads to H ~ 0.5 for long times.

3.5 Comparison with Experiments

3.5.1 Transition Properties

In this section we compare our simulation results for the three-dimensional Lebwohl­

Lasher mode! to relevant experimental data for the nematic-isotropic transition in

liquid crystals. It should again be noted that the Lebwohl-Lasher model, being a

lattice model, neglects the positional degrees offreedom of real nematics but the mode!

should still capture the essential physics of the orientational degrees of freedom which

are mainly responsible for the nematic-isotropic phase transition. It has been found

(de Gennes, 1974; Stinson and Litster, 1970; Thoen, Marynissen and Van Dael, 1982)

for a large number of room-temperature nematogens that the transition enthalpy and

the relative stability lirnit of the isotropie phase are only slightly sensitive to the

material in question. Bence it is reasonable to compare experimental results for such

transitional properties with corresponding data obtained from the simple Lebwohl­

Lasher mode!.

As a specifie example we consider the liquid crystal octylcyanobiphenyl (8CB)

(Stinson and Litster, 1970; Thoen, Marynissen and Van Dael, 1982). 8CB has been

found experimentally to have the following transitional parameters, Tc =40.8·C and

t!J.H = 612J/mo1. From the experimental transition temperature we can deterrnine

the value of the energy parameter, E2' which leads to t!J.H = 460JImol for the Lebwohl­

Lasher mode!. This is in reasonably good agreement with the model result .



Since nematics usually cannot be supercooled (Thoen, Marynissen and Van Dae!,

1982), the experimental determination of the stability limit of the isotropic phase is

not very accurate since it is obtained by extrapolation of the equilibrium data for the

susceptibility or the specific heat from the isotropie phase iuto the nematic phase and

vice versa. The experimental values (Stinson and Litster, 1970; Thoen, Marynissen

and Van Dael, 1982) quoted for ITe - T.: liTe lie in the range ~ 0.2 - 3 x 10-3 which

is in good agreement with our results from the Lebwohl·Lasher mode\. Bence one

cannot discard the Lebwohl-Lasher mode! as a modcl of nematics on the basis of

a large discrepancy between the experimental values of stability limits and the val·

ues obtained from Maier·Saupe theory, which provides the mean·field solution to the

Lebwohl·Lasher mode\. Mean·field theory strongly underestimates both the fluctua·

tions and the pretransitional effects in the Lebwohl·Lasher modcl and also predicts a

first·order transition which is far too strong. It appears likcly from the results pre­

sented in Sec. 3.3.7 on the enhancement effects duc to the additional term, P4, of the

interactions that an extended Lebwohl·Lasher model, Eq. (3.4), with varying f4/f2,

may account for the slight differences between the stability limits found for different

nematogens.
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3.5.2 Director Fluctuations

Recent neutron·scattering studies of director fluctuations in the nematic phase of d·

PAA (deuterated para-azoxy-anisole) by Otnes and Riste (Zhang et al., 1993; Otnes

and Riste, 1992) found evidence for power·law correlations of the director fluctuations

and hence fractional Brownian motion. Otnes and Riste analyzed the raw time·series

data obtained from the scattering experiment using the same formalism as described

in Sec. 3.4.1.

The first neutron·scattering study (Otnes and Riste, 1992) showed that the direc·

tor fluctuations in the nematic phase exhibit scaling and fractional Brownian motion

characterized by a Burst exponent, H =0.74, whereas ordinary Brownian motion ap·

plies in the isotropic and solid crystalline phases. In a later experiment (Zhang et al.,



1993), the conditions for the first experiment in the nematic phase were changed with

a view to minimizing effects due to convection·f1ow alignment which tends to reduce

the effective exponent of H. ft was then found that the Hurst exponent value is close

to H :::: l, in excellent agreement with the results from the Lebwohl·Lasher model,

cf. Fig. 3.12. Furthermore, it was found in the experiment, where a symmetry­

breakillg magnetic field was applied, that lower effective values of H result which

tellded towards H :::: 0.5 for large field values. These results are consistent with the

field-illduced crossover phenomena found in the LebwohI·Lasher model, cf. Fig. 3.15.
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3.6 Conclusions

In this chapter we presented results from a combined numerical study of the phase

transition and director fluctuations in the LebwohI-Lasher model of the nematic­

isotropie phase transition in liquid crystals.

We first exploited modern computer·simulation techniques described in Chapter 2

involving the Ferrenberg-Swendsen reweighting technique (Ferrenberg and Swendsen,

1988) in combination with the Lee-Kosterlitz finite·size scaling analysis (Lee and

Kosterlitz, 1990; Lee and Kosterlitz, 1991b) in order to investigate the nature of the

orientational phase transition in the three·dimensional Lebwohl·Lasher mode!. The

methods of analysis operate on a level of the free-energy which makes it possible to

examine the nature of the transition and to determine the transitional properties ac­

curately. We found unambiguous evidence for a very weak first·order transition with

stability limits extremely close to the equilibrium phase transition temperature. The

results show that the Lebwohl-Lasher model gives a good description of those prop­

erties of the nematic-isotropic phase transition which are not particularly material

dependent.

Secondly, we analyzed time-series data for the director fluctuations and found

evidence for fractional Brownian motion of the director fluctuations in the nematic

phase. As a symmetry·breaking field is applied, a crossover to ordinary Brownian



motion is observed. These findings arc in excellent agreement with rcccnt nentron­

scattering experiments on nematogens by Otnes and Riste (Zhang, Mouritsen and

Zuckermann, 1992b; Otnes and Riste, 1992).

The physica! interpretation of the numerica! simulation of the director flnctnations

arc as follows. In a nematic, ordered phase, the director is subject to a continuous

degeneracy since its direction is not coupied to the lattice and there is no activa·

tion barrier for directiona! rotation. Hence, the director field is subject to critica!

fluctuations and power·law correlations at all temperatures within the nematic phase

(de Gennes, 1974). This leads directly to fraction"l Brownian motion of the diree·

tor. In contrast, the nematic order parameter is not a criticn! mode, except at a

singular temperature, the pseudo-critical point, where it displays power-law scaling.

At all other temperatures the order.parameter fluctuations in both the nematic and

the isotropic phase are short range e!fects and are associated with ordinary Brow·

nian motion. The continuous degeneracy of the nematic director can be lifted by

an ordering field, in which case the fluctuations become quenched and the mode is

no longer critica!. Ordinary Brownian motion then results over long time ranges as

observed. At short times the symmetry-breaking field is Ilot capable of destroying

the power·law correlations and only for longer times is there a crossover to ordinary

Brownian motion. This crossover o('curs for shorter times the stronger the field is.

A similar behavior can be expected for a number of other models with a continuous

order-parameter degeneracy, including the three-dimensional Heisenberg ferromagnet

where the fluctuations in the magnetization direction should n!so exhibit fractional

Brownian motion. This is supported by the results from computer simulations on the

Heisenberg model without conservation laws (Zhang, Mouritsen and Zuckcrmann,

1992c).

•

•
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Figure 3.1: Ordering suseeptibility, X(T) (in units of fi'), as funetions oftemperature,
T (in units of f2/ko), for four different lattice sizes, L3 = 163 ,203 ,243 , and 283 • The
inserts show the finite-size sealing behavior of the maximum of X(T).
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Figure 3.2: specifie heat, C(T) (in units of ka), as funetions of temperature, T (in
units of f2/ka), for four different lattiee sizes, L3 =163,203 ,243 , and 283 • The inserts
show the finite-size sealing behavior of the maximum of C(T).
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Figure 3.6: Finite-size scaling behavior shown for three different measures of the
finite-system transition temperature, Tc(L): T[(L) (e), TNL) (0), TcC(L) (6). The
estimates of the finite-size pseudo-spinodaI points T~(L) (+) and T.j.(L) (0) are aIso
shown. Extrapolations to the thermodynarnic lirnits, Tc( 00) and T±(00) are denoted
by solid and dashed lines respectively.
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Figure 3.7: Free energy,:F (in units of E2), as a function of nematic order, (P2h, for a
lattice with L3 = 283 sites. Results are given corresponding to seven different temper­
atures near the nematic-isotropic transition. From bottom to top the temperatures
(in units of E2/kB ) are: 1.1238 (-), 1.1241 (0),1.1243 (e), 1.1245 (0), and 1.1248
(.6.). The rniddle curve corresponds to the finite-size equilibrium transition tempera­
ture, T.(L)". The sets of curves in either direction away from the transition in either
direction correspond to metastability and pseudo-spinodal behavior respectively. For
the sake of clarity, the different sets of data are displaced vertically.
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Figure 3.12: (a) Log-log plot of the R/S-value vs time range T for the nematic
director fluctuations at two temperatures in the nematic phase, T = O.85f2/kB (.)
and T = 1.00f2/kB (0). The best linear fit to the data set is given by the solid line,
R/S - TH, with H ~ 1. (b) Log-log plot of the power spectrum, PU), for the data
at T = 1.00f2/kB. The solid line denotes the function PU) - r fJ with {3 = 3.
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Figure 3.13: (a) Log-log plot of the RIS-value vs time range T for the nematic
director fluctuations at a temperature, T = 1.30€2/kB (.) in the isotropie phase.
The best linear fit to the data set over long time ranges is given by the solid line,
RIS - TH, with H ~ 0.59. (b) Log-log plot of the corresponding power spectrum,
PU). The solid line denotes the function PU) - r f3 with {3 =2.
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Figure 3.14: (a) Log-log plot of the RIS-value vs time range T for the nematic director
fluctuations in the presence of an ordering field of strength h21f2 = 1. Results are
shown for a temperature, T = 1.00f2/kB (.), in the nematic phase and a temperature,
T = 1.30fdkB (0), in the isotropie phase. The best linear fits to the two data sets
over long time ranges are given by the solid lines, RIS ~ TH, with H ~ 0.52 and 0.55
respectively. (h) Log-log plot of the corresponding power spectra, PU). The solid
line denotes the function PU) ~ r P with {3 = 2.
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Figure 3.16: Log-log plot of the RIS-value vs time range T for the nematic director
fluctuations at temperature in the nematic phase, T = 1.00edkB in the case of a
symmetry-breaking wall boundary condition imposed on a system with L3 = 283

sites. The so\id \ine denotes RiS - TH with H ~ 0.82.
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Figure 3.17: (a) Log-log plot of the RIS-value vs time range T for the nematic order­
parameter fluctuations for a temperature, T = 1.00ez/kB (.), in the nematic phase
and a temperature, T = 1.30ez/kB (0), in the isotropie phase. The best linear lits to
the entire data set over long tin.e ranges are given by the solid lines, RIS - TH. with
H ~ 0.48 and 0.49 respeetively. (b) Log-log plot of the eorresponding power spectra,
PU). The solid line denotes the function P(f) - f-fJ with (3 = 2.
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Chapter 4

Phase Behavior of Pure Lipid

Bilayers

4.1 Introduction

Lipid molecules are amphiphilic surfactants which self-organize into a variety of phases

when mixed with water. These phases are called lyotropic liquid crystal phases since

they are controlled by both temperature and water concentration. Lipid molecules

are, on the basis of their structure, major components of biological membranes, which

consist of a lipid bilayer containing proteins and cholesterol usually attached to a

cytoskeleton (see Fig. 1.2). The properties of the membrane are to some extent

controlled by the lipid bilayer which provides a relatively impermeable lluid barrier

to ions and nutrients.

The lipid bilayer in a membrane is composed of different types of lipid molecules.

When the lipid components of a membrane are extracted and then redissolved in

water at rl>flm temperature, the lipid molecules self-organize to form liposomes or

multi·bilayer membranes in an 'onion' structure. These can be further treated by

sonication to form unilamellar vesic1es which are composed of a single bilayer and, if

large enough (- IJLm), can be used as membrane models.

In this chapter we are concerned with pure single.component lipid-water systems.
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A commonly used lipid is üipa.!mitoyl phosphatidylcholine (DPPC) which hl\S a zwit­

terionic (dipolar) polar head and two satl!rated pa.!mitoyJ (CI6) chains (Fig. 4.1).

Fig. 4.4 shows the phase diagram for DPPC-water systems (Sackmann, 1983). The

phases of interest to us are LfJ" PfJ' and La. LfJ' is a qUl\Si-2d crystalline (gel) phase in

which the lipid chains are tiltcd. PfJ' is 81so a quasi-2d crysta.!line (gel) phl\Se known

as the ripple phase in which the bilayer interface supports a long wavelength ripple

and La is a qua::i-2d fluid phase known as the liquid crysta.!line or l1uid phl\Se. An

abrupt first-order phase transiticn occurs belween the PfJ' phl\Se and the La phl\Se in

DPPC. This ls known as the mr.in phase transition whose nature if. the object of our

study via microscopie interaction models. Our description of the main transition in­

volves the extension of the Pink model to inc1ude hydrophobie mismatch interactions

between the lipid acyl-chain conformationa.! states and direct trans-bilayer interac­

tions between the two monolayers. The bilayer properties in the transition region are

ana.!yzed with particular emphasis on the latera.! density fluctuations and the related

dynamic heterogeneity of the bilayer.

The lipid bilayer can be considered as a lamellar liquid-crysta.! phl\Se. The bilayer

thickness depends on the lipid chain length and lies in the range from 50-100 À with

a pol~r headgroup region of about 5 À. The width of the hydration layer is of the

order of 10 À, depending on the nature of the polar head. To have an idea of how thin

the bilayer is, these numbers should be compared to the linear extensions of biologica.!

cells which typica.!ly lie in the range lOs-106 À.
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4.1.1 Structure and Properties of Lipid Molecules

Most lipids are amphiphilic molecules which consist of a hydrophilic polar head and

at least two hydrophobie hydrocarbon chains. Lipid species differ with respect to the

number of carbons and degree of saturation in the chains, as weil as nature of the polar

head. Hydrocarbon chains whieh only contains single D'-bonds between the carbons

are called saturated chains. Hydrocarbon chains are quite flexible because isomeric

rotations around the C-C bond involve much sma.!ler energies (~ 1 kcal/mol) than
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Figure 4.1: Chemical structure of dip'.L1mitoyl phosphatidylcholine (DPPC) [Adapted
from Ref. (Mouritsen, 1987)J.
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the covalent bonds (- 90 kcal/mol) between the carbon atoms. The potential energy

curve for the rotation in an alkane is shown in the Fig. 4.2. The trans configuration

is most stable and there is an estimated energy barrier of 3.5 kcal/mol for rotation

to the gauche form. The aIl·trans configuration aIlows the chain to be maximaUy

extended, whereas a gauche bond aiters the direction of the chain. A gauche-trans­

gauche sequence for three consecutive C-C bonds results in a kink in the chain which

effective1y displaces the portions of the chain above and below the kink, as shown in

Fig. 4.3. Note that each gauche configuration can be designated g+ or g- depending

on the sense of rotation in going from Cl to C4 • A kink which results in a simple

displacement can be either g+tg- or g-tg+. The presencè of kinks or other deviations

from the simple aIl-trans chain configuration results in increasing the cross·scctional

area of the hydroca'bon chain from the minimum of about 20 Â2
•

X·ray diffraction, neutron diffraction and Raman spectroscopy (Hauser et al.,

1981; Seelig and Seelig, 1980) indicate that in the gel phase, the hydrocarbon chains

of saturated diacyl phospholipids are predominantly in the all·trans configuration. In

the liquid crysta.lline phase, the introduction of gauche configurations increases the

effective chain cross section considerably.
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Figure 4.3: Illustration of two alkyl chain configurations [Adapted from Ref. (Gennis,
1989)).

4.1.2 Lipid-Water Mixtures

Lipids display remarkable physical properties when they are mixed with water. The

nonpolar hydrocarbon portions of lipid molecules are aggregated and the polar head­

groups are in contact with water. The major thermodynamic driving force stabilizing

the self-organization of hydrated lipid aggregates is the hydrophobie effect. This ef­

fect is entropie in origin and is causcd by the unfavorable constraints placed on water

in direct contact with nonpolar hydrocarbons.

The structure and dynamics of pure water are complex and are dominated by

intermolecular hydrogen bonds. When a nonpolar hydrocarbon is dissolved in water,

it causes an unfavorable organization of the water around the hydrocarbon by reducing

the number of hydrogen bonds. The water molecules orient themselves in such a

way as to maintain intermolecular hydrogen bonds, but since those water molecules

in direct contact with the nr:'l'"lar solutl molecule have fewer water molecules as

ncighburs, there are substantial configurational constraints on the system. Hence,

there is a decrease in the entropy of the system. As a result, the net free energy change

upon transferring a nonpolar solute from a nonpolar solvent to water is unfavorable

due to this entropie effect on the water solvent.

Sorne of the important phases found for lipid-water systems (as summarised
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Figure 4.4: Phase diagram for the DPPC-water mixture [Adapted from Ref. (Gennis,
1989)].

above) are:

1. The lamellar liquid crystalline phase (La): this phase is present for the majority

of lipid species in biological membranes. There is considerable disorder in the

acyl chains as indicated by the X-ray diffraction data and the lipid molecules

can diffuse laterally.

•

2. Lamellar gel phases (LfJ, LfJ ,): these are low temperature phases for lipids which

form the lamellar structure. The molecules are tightly packed in a lattice struc­

ture and the acyl chains are highly ordered, corresponding mostly to the aU­

trans configuration. Because the chains are maximally extended in the gel

phase, the bilayer thickness is greater than in the liquid crystalline phase. The

density of the gel phase is slightly greater than that of the liquid crystalline

phase. LfJ is an untilted phase wh"feas LfJ' denotes that the chains are tilted

with respect to the bilayer normal. There is no lateral diffusion in this phase,

but the molecules can librate.



3. The ripple phase PfJ': in this phase, the surface of the bilayer is rippled and

presents a wave-like appearance in c1ectron n icrographs. The thermotropic

phase transition PfJ' -+ LQ is known as the main transition, whereas the transi­

tion LfJ' -+ PfJ' is called the pretransition. When the ripple phase is not present,

the main phase transition can be from LfJ -+ L Q •
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4. Hexagonal 1 phase (HI): in this phase, the lipids are organized into cylinders

with the polar groups on the outside, in contact with water. The cylinders are

packed in a 2d hexagonal pattern. This and the next phase are non-bilayer

phases.

5. Hexagonal II phase (HIl ): the lipids are into cylinders, but in this case the

polar groups face the inside, where there is a column of water. The cylinders

are again packed in a 2d hexagonal array.

4.1.3 Summary of Experimental Observations for the Main

Phase Transition of Lipid Bilayers

A selection of experimental results on the thermal behavior of fully hydrated lipid

bilayers is presented in Fig. 4.5 for DPPC and DMPC. All experiments indicate that

the bilayers display striking thermal anomalies. For example, Fig. 4.5(11.) shows that

the specific heat exhibits a pronounced peak. At the peak temperature, a discon­

tinuous change in the muiti-iamellar repeat distance and therefore bilayer thickness

occurs as shown in Fig. 4.5(c). The change in bilayer thickness is accompanied by an

equally dramatic change in bilayer area as shown in Fig. 4.5(d) for DMPC. Fig. 4.5(b)

presents the results for the first two moments of the distribution of quadrupolar split­

tings in the nuclear magnetic resonance (NMR) spectrum of perdeuterated DPPC.

Again there is a dramatic decrease in the moments over a narrow temperature inter­

val. This temperature interval is lower than the equivalent temperature in Figs. 4.5(11.)

and (c) due to deuteration of the chains. The moments are direct measures of the

average segmental order :ùong the deuterated hydrocarbon chain, i. e. Eq. (4.3). To a
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Figure 4.5: Thermal behavior of one-component Iipid bilayers of DPPC (C16) and
DMPC (C14). (a) Specific heat for DPPC determined by differential scanning
calorimetrYi (b) First and second moment of the quadrupolar magnetic resonance
spectrum of de2-DPPCi (c) Lamellar repeat distance determined by low-angle X-ray
scattering on DMPC and DPPC; and (d) Cross-sectional area change for DMPC
determined by micromechanics measurements.



good approximation, MI is proportional to the hydrophobie thickness of the bilayer

(Seclig and Seelig, 1980; Shinitzky and Yuli, 1982).

The sharp thermal anomalies are distinct signais of a phase transition in the

bilayer. This transition, commonly referred to as the main transition, or the gel­

fluid transition, takes the bilayer from a low-temperature 2d solid (gel) to a high­

temperature fluid (liquid crystalline) phase. The main gel-fluid lipid bilayer phase

transition has the following characteristics: (i) a sharp endothermal first-order tran­

sition at a temperature Tm; (ii) a large area expansion, typica1ly ll.A(Tm) ~ 20%,

(iii) a small volume change, ll.V(Tm ) :s; 5%, and (iv) a large transition entropy,

ll.S(Tm) - 15kB /molecule.
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4.2 The Pink Model

In this section we present the microscopie phenomenologieal model used in this section

to describe the main phase transition.

4.2.1 Microscopie Models of the Main Transition

There are several types of theoretical models and accompanying methods which have

been used to analyze the properties of lipid system (including lipid bilayers). These

fa1l into the following categories:

1. Packing modelsj

2. Full simulation of the bilayer using molecular dynamicsj

3. Continuous 2d-modelsj

4. 2d·microscopic phenomenological models.

There are both lattice and off·lattice models in the last category. The exclusive

volume is automatica1ly included in the lattice models. Furthermore the translation

degrees of freedom are neglected since the high value of the specifie heat at the main



transition temperature and the fact that it increases with chain length implies that

main phase transition is entropie. Also, as Doniach (Doniach, 1978) pointed out,

the transition is triggered by changes in chain-conformations and the rclated change

in entropy is much greater than the latent heat due to crystal mclting. 'l'he mode!

lattice therefore fixes the nnmber of nearest neighbors and assigns pre-sclec.ted single

chain conformational states to each laltice point. Since these states have different

cross-sectional areas, the total area of the system changes with temperature. 2d

lattice models include the two-state mode! of Doniach, th~ multi-state Pink model

and its extension by 'l'evlin et al. ('l'evlin et al., 1986) and the Pink-Polts model

of Mouritsen and Zuckermann (Mollritsen and Zuckermann, 1987; ZlIckermann and

Mouritsen, 1987) which makes an attempt to include translation degrees of freedom.

Off-laltice models include the 7-state model of Scott and the off-Iattice version of the

Doniach mode! (Fraser et al., 1991). 'l'he problem with laltiee mode!s is that they

do not include sterical!y induced correlations between chain conformation. lIowever

they are very useful for the understanding of phase transitions close to or at a critical

point, as is likely to be the case for the main phase transition (Doniach, 1978). In this

chapter we use the term chain-melting to refer to the dominant effect of the change

in chain conformations on the main phase transition, which is entropic in nature.
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4.2.2 The Pink Model

The Pink model, which is an extension of the 2-state Doniach model, is a multi-state

lattice model in which each acyl chain is positioned on a regular (e.g. hexagonal) two­

dimensional lattice. !t is also assumed that the conformational properties of a single

acyl chain can be described by a smal! number of se!ected conformational states cor­

responding to the mapping of the three-dimensional acyl-chain conformations upon a

finite, discrete set of projected two-dimensional coarse-grained variables. The number

of states included in a multi-state model depends on the level of detail required.

Pink et al. (Pink, Green and Chapman, 1980; Pink, 1983) used the mode! to

calculate the temperature dependence of the intensity of the 1130cm-1 Raman band,



which is a hydrocarbon chain G-G ske!etal stretch mode (Snyder, 1970), by extrap­

olating the ca1culations of Snyder (Snydcr, 1967; Snyder, 1970). In constructing a

mode! of chain me!ting they assumed that the lipid chain conformational states were

givcn by thc rotational isomeric model (Flory, 1975; Flory, 1969), and found that

nine low-energy hydrocarbon chain states with cross-sectional area ::; 25À
2

, ranging

from the ail· trans state tu .tates with three gauche bonds, contributed significant1y

to the Raman intensity of the 1130cm- l band. The lirnit on the area per chain was

then imposed to account for hard-core steric hindrance in the gel phase, where only

conformations with small cross-sectional area could be thermally excited. These nine

states, pIns a high-cncrgy me!ted state (see below) formed the basis of the Pink model.

The mean-field results for the Raman intensities were found to be in good agreement

with the measured intensities (Pink, Green and Chapman, 1980).

In the Pink lattice model the conformational chain variables are coupied by hy­

drophobie anisotropie van de Waals interactions by analogy with anisotropie liquid

crystals. The lattice approximation automatically takes care of the excluded volume

interactions. The interaction between the hydrophilic moieties can be modeled by

a Coulomb force or an effective intrinsic lateral pressu~e (Caillé et al., 1980). It is

assnmed that each site of a hexagonal lattice is occupied by one of the hydrocarbon

chains of the phospholipid molecule with M carbon nuclei. The selected conforma­

tional states of the chain can be described as follows:

•
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1. The all-trans ground state which is non-degenerate and has internal energy
• 2

El = 0 and area Al = 20.4A .

2. Eight intermediate states of energy, En, area, An, and degeneracy, Dn (n =

2, ... ,9). Here Dn is proportional to M and An ::; 26À
2

• The energies, En,

are less than or equal to 3Eg where Eg is the energy required to form a gauche

bond. The corresponding chains are at most three units shorte,r than the aIl­

trans state.

3. One high-energy 'melted' state which is taken to have an area AlO , an energy
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E IO , and a degeneracy DIo lX 3M • This state reprt'sents the average over an the

conformations which occur in the fluid phase.

Experimental observations for the bilayer volume change (Sec. 4.1.3) suggest that

the hydrophobic membrane volume is almost constant (Marc.e\ja, 1974; Triiuble and

Haynes, 1971) and therefore the areM of ail 10 states are re\ated to their hydrophobie

length dn by

(4.1)

The inter-chain interactions are taken to be van de Waals interactions. The van de

Waals dispersion forces are induced by quantum zero-point fluctuations of e\ectronic

systems. The attractive interactions, W(r), between long paralle\ saturated chllins

at short distance vllries as r-s (Salem, 1962). The Vlln de Wallis interaction between

neighboring chains in states m llnd n is approxinlllted as (Wulf, 1977; Mouritsen,

1990)

(4.2)

(4.4)

•

Here Sn is the orientational orde! parameter of the n-th c!lllin conformation and is

written by:
1 M-I

Sn = 2(M _ 1) ~ (3cos
2

(lInq ) - 1) (4.3)

where IInq is the angle between the normal spanned by tl>e qth C-H2 group and the long

axis of the chain. The order parameter can be measured by 2H·NMR since deuterium

can be chemieally substituted for hydrogen at specific places in the lipid molecule.

This substitution is generally considered nonperturbing. As an approximation, the

C-C-C bond is assumed to have an angle 1200
• Then the geometrical constraints

give a simple relation between Sn and dn (Seelig and Seelig, 1980):

dn
Sn = 1.8~ - 0.8.

The distance between the two neighboring chains at state m and n is Rmn =Rm +Rn

in a close·packed configuration. Using (Caillé et al., 1980)

(4.5)
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the van de Waals interaction between the chains, the Eq. (4.2), can be written as
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(4.6)

where Jo is a coupling constant and In = wnSn(An/Ad-~, since the radius R.,. of a

cylindrical chain is related to its cross-section, An, by R.,. = JAn /7r. The factor, W n,

is only different from unity for the highly excited state for which the approximation

of the acyl chain as a long rod is poor.

The interactions between the polar headgroups are not taken into account in a

detailed manner, because they are expected to play a minor role in the main phase

transition in comparison to the chain behavior. The entropy change in the transition

comes primarily from the increase in internai entropy in going from the ordered gel

state (n = 1) to the highly excited ftuid state (n = 10). The interactions are approx­

imated by an effective lateral pressure, n, which couples to the cros~ sectional area,

An, in the tenu of nA". The interaction between the headgroups such as hydrogen

bOllding will be discussed later in Chap. 6.

The Hamiltonian of the Pink model can be written as follows:

(4.7)

•

where (i,j) are nearest-neighbor indices. La,; is an occupation variable, which is unitY

when the ith chain is in the ",th conformational state and zero otherwise. The model

was first examined in the mean-field approximation and the model parameters used

were determined by fitting to thermodynamic data for saturated phosphatidylcholine

(PC) bilayers of different acyl-chain length. For example, the values orthe parameters

Jo and n found for dipalmitoyl phosphatidylcholine (DPPC) are Jo :::: 0.71 x 10-13 erg

and n = 30 dyn/cm by fitting to experimental values for the transition temperatures

Tm and transition enthalpies tlH of DPPC. The mean-field calculations predicted

first·order phase transitions for all chain lengths (M = 12-22) examined with the

phase transitions becoming sharper as chain length increases. Monte Carlo simulation

work of Mouritsen and co-workers (Mouritsen, 1990) inclicated that the transition



predicted by Pink mode! with the fitted parameters is at best a weak first-ordl'r phase

transition close to a critical point. Furthermore, these results showl'd that the mode!

exhibits dynamic heterogeneity in the transition rl'gion, which could be interpreted

in terms of thermal fluctuations in the form of c1usters of the Illinority phase in the

majority phase. Ipsen et al. (Ipsen, Jprgensen and Mouritsen, 1990) suggl'sted that

the fluctuations couId be characterized by a finite length and that thl'Y bl'havl'd in

a pseudocritical manner in the transition region. It is howevl'r rather dilTIcult, using

conventional methods of analyzing the transition, to assess whether the transition is

continuous or of first order, or whether there is a transition at ail. Corvl'ra et al.

(Corvera, Laradji and Zuckermann, 1993), using the methoe! of Lee and Kostl'r1itz,

found no phase transition in the Pink mode! for t'Ile fitted parallleters. They showed

that the system was close to a critical point and that the e!ynalllic heterogeneity

predicted by the Pink model is re!atee! to long-lived short-range order elfecls. In

fact, the finite-size behavior of the peak in the specific heat remained constant with

varying system size up to lattices of size 300 x 300 (Ipsen, 1991). It does not scale as

expected for a first-order phase transition. In contrast to the most of experilllenta!

results, the maximum of the specific heat calculated in the Pink Illodcl is ;,lso very

small.
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4.3 Extensions of the Pink Model

As seen in the previous section, the Pink modcl with the fitted parameters for satu­

rated PC bilayers does not give a phase transition, but rather describes a f1uctllating

lipid monolayer beyond a critical point. In this scclion wc propose two models based

on the Pink model, but with additional interactions appropriate for lipid bilayers.

4.3.1 Pink Model with Mismatch Interactions

The form of the interactions used in the Pink mode! applies to a single monolayer,

such as a lipid monolayer spread on an air-water interface. The question therefore



arls<:s: what typ<: of interactions present in bilayers and not in monolayers leads

to a first-order phase transition? One type of interaction is duc to the mismatch

hdwecn lipids in diffcrent c'onformational ,tates, which is analogous to the mismatch

interaction hdween lipids and proteins in the 'mattress mode!' proposed by Mouritsen

and I3loom (Monritsen and Bloom, 1984). In the mattress mode! this interaction

was assigned to the mismatch between neighboring lipids and proteins with unequa!

interfacial lengths of hydrophobie contact. This effect was represented by a repu.1sive

interaction between the aqueous medium and the superfluous hydrophobie length.

The same interaction should occur between neighboring lipids in different rotameric

conformational states having Ilneqllal hydrophobie contact lengths and it should only

occur in bilayers, since, for monolayers, the superfluous hydrophobie length can make

contact with air (or oil) at negligible energy cost (Zhang et al., 1992a).

An additional term in the Hamiltonian describing the mismateh interaction among

clifferent conformational states of the acyl chains can be written as follows by analogy

with the case of lipid-protein interactions (Zhang et al., 1992a):
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'Hm = 'l';;' L L Ida - dIlICa.•CIl,j,
('.i) a,1l
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(4.8)

where da is the hydrocarbon chain length for the (>:th conformational state, and 'l'nù, is

the parameter related to the hydrophobie e[ect. The approximation made here is that

two monolayers of a phospholipid bilayer are identieal and do not interaet directly

with one another. The two monolayers only interact with each other indireetly via

the mismatch interaction. The total Hamiltonian of the extended Model is therefore

'H = 'Ho +'Hm

4.3.2 Inter-Monolayer Coupling Model

(4.9)

•
Another type of interaction presents in bilayers but net in monolayers is the direct

eoupling between the two monolayers in a bilayer. The e[ect of the inter-monolayer

was first studied theoretically in a two-state lattice mode! proposed by Georp:allas et



al. tGeorgallas et al., 1984). They showed by both analyticaland simulation methods

that even a weak inter-monolayer interaction is sufficient to change the critical point

dramatically.

In a more realistic description of bilayers, the monolayers are no longer identical

so the monoJayers should be described separately. The lIamiltonian for two non­

interacting monolayers, according to Eq. (4.7), is
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'Ho = :E{4= :E(Ea+ nAa)C~.i - 20 L: :E IaliJC~,.C;U·
n=l '0=1 (l,)) n.,O=l
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(4.10)

C~,. is the occupation variable which is unity when thc ith chain of the IIth monolayer

is in the oth conformational state and zero otherwise. The mismatch interaction of

Eq. (4.8) between different conformational states of the acyl chains across the bilayer

should be re-written as

'Hm = 'Y~" :E :E :E Idal + d/31 - da2 - d/3lIC~I .•C~I,.C~2,jC~2,j·
(',jl al ,/31 a2,/12

(4.11 )

Finally, we consider a Hamiltonian, 'H., which represents a direct contribution

from the interiayer coupling. Wc assume that every acyl chain internets ",,;th its

nearest neighbors in the opposite monolayer in a pair-wise manner with an energy

-J2nan/3 where na are state-dependent parameters. In the nuid phase the acyl chains

are disordered and the lateral diffusion coefficient is at least two orders of magnitude

greater than in the gel phase. This implies that the interlayer coupling between the

chains in the alI-trans state is much greater than that in the highly exci,ed nuid

state. We therefore take ni = 1 and nlo = O. For the intermediate states we choose

n2,3,. = ~, nS,G,? = 3, and na.9 = ~. 'H. can be written as follows

The total Hamiltonian of the extended model (Zhang, Mouritsen and Zuckermann,

1992a) described in this section is therefore

•

'Hi =-J2 :E:E nan/3C~,.c~, •.
i a.f3

'H = 'Ho + 'Hm +'Hi.

(4.12)

(4.13)



Models deseribing the complete bilayer as a system of interacling monolayers are

useful since they can be extended to inclnde and distinguish between periphera! and

integralmembrane.bound protcins. Furthermore, they enable us 10 mode! monomer­

dimer dissociations for certain integra! proteins such as gramicidin A (Sec. 5.3).

•
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4.4 Phase Behavior in (~he Extended Pink Models

Wc examine the extended Pink models described in Sec. 4.3 by performing numerica!

simulations described in Chap. 2 on Lx L triangular lattices with periodic boundary

conditions. Very long simulations arc performed at the transition temperature in order

to obtain good statistics. The temperature at which the simulations are performed

were chosen as close as possihle to the transition temperature Tm(L), and ii was found

that 2 x 106 Monte Carlo steps per =it.e (MCS) are sufficient to obtain the required

accuracy (Zhang et al., 1992a; Zhang, Mouritsen and Zuckermann, 1992a).

4.4.1 Nature of the Phase Transition (1) - Effect of the

M:'~match Interaction

Il is clear, from the Bq.( 4.8), thatthe mismatch interactions affect the bilayer mainly

in the region where there are strong fluctuations in the hydrocarbon chain length. The

extended model is therefore mainly different from the original Pink model in tr~.nsition

region. The elrect of the mismatch interaction is to suppress the fluctuations ,md drive

the transition away from criticality into a region of well-defined first-order tmnsitions.

The elrecl of suppressing the fluctuations around the transition rrgion is illUl;trated

in Fig. 4.6 in the caSe of the specific heat. The specific heat in the thermodynamic

limit for temperatures outside the transition region decreases as the value of "'(mi. is

increased. At the transition Fig. 4.7 shows the emergence of the first-order phase

transition with increasing "'(mi. via the appearance of the maximum in tl:F(L).

The finite size scaling methods described in Chap. 2 are applied to determine the

nature of the phase transition in the model described in Sec. 4.3.1. The temperature



at which a finitc systcm undcrgocs a first-order phase transition usually dcpcnds on

the size of the system. Il also depends on which 'luantity is uscd to id,'ntify the

finite-size transition point. In the case of the free energy, thc transition tcmperature

T: is defined by requiring F(A II L) = F(A 2• L), where F(1\1I L) and F(A 2• L) arc

the free energies of th" gel and flu:J l'hases respeelivcly. The free energy funelions

dre calculated for several values of the mismalch paramcler 1',.;" in order 10 examine

lhe phasc benav;~r of lhe syslem and 10 locale lhe crilical poinl. The dala for three

differenl cases are prescnled in Fig. 4.8, which show lhal free energy as funelion of

area l'cr lipid molecule exhib;ls Iwo minima wilh a barrier in belween. Wc find lhal

lhe syslem does not exhibit a phase lransit:on for values of 1',.;, bclow 4 X 1O-16crg/ À

(Fig. 4.8a). At this value of 1',.;" the syslem is eilher al or exlremcly close 10 lhe

critical poinl (Fig. 4.8b). Above this value of 1',.;, lhe lmnsilion is of firsl order

(Fig. 4.8c). The heighl of the barrier, C!.F(L). changes considerably wilh system size

for different values of 1'mi,. This l'an be seen in Fig. 4.9, where C!.F(L) is shown as a

funelion of system size for lhe three values of 1'mi, l'orresl'onding 10 Fig. 4.8. Fig. 4.9

shows that c!'F(L) decreases with increasing L for 1'",;, = 3 X 1O-16erg/ À (implying

the absence of a transition) and increases wilh increasing L for 1'm;, =5 X 1O-16 erg/ À

(implying the occurrence of a first-order phase transilion). For 1',.;, = 4 X 1O-16erg/ À,

the height of the barrier does nol depend on system size 10 within numerical error,

indicaling that the transition for this parameter value is very close 10 a continuous

transition.

The temperature dependence of the specific heat and the susccptibilily obtained

by using the method of Ferrenberg and Swendsen are shown in Figs. 4.10 and 4.11

respeelively for 1'mi, = 5 X 1O-16erg/ À and for several system sizes. As the syslem size

increases, the peak height of both response funelions increases while lhe widlh of the

peaks decreases. The peak heights of bolh quantitics arc ploltcd as funelions of Ld in

Figs. 4.12 and 4.13 and a linear behavior is obscrved in agreemenl wilh Eq. (2.17).

The temperature T;' at which the specifie heat exhibils a maximum is, for large­

enough system sizes, identieal to the eorresponding temperature for the suseeplibilily

•

•
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maximum. The full finite-size scaling behavior is investigated for the case of the

specific heat. The results are given in Fig. 4.14 and they exhibit the expected scaling

behavior for a first-order phase transition. Results for the fourth-order cumulant

am given in Fig. 4.15 for "lm;, = 5 X 1O-16erg/ À. As L increases, the minimum

of the cumulant goes to a value dilferent from 2/3 at a certain temperature T~(L),

and to 2/3 at other temperatures, as expected. The nontrivial limit is obtained by

extrapolating the data for the larger sizes, as shown in Fig. 4.16.

There are dilferent values of the transition temperature depending on the size of

system and the physical <;uantity used to define the transition (Sec. 3.3.4). However

they tend to the same temperature in the thermodynamic limit, i.e., as L --> 00. This

is rlemonstratcd in Fig. 4.17, which shows that for "lm;' = 5XlO-l"erg/ À the transition

temperature Tm = 313.7K in the thermodynl\mic limit. This is a good agreement

with the experimental observations (Albon and Sturtevant, 1978; Biltonen, 1990).

The absolu te value of the mismatch interaction required 10 induce a first·order

phase transition is small comparcd to the strength of van der Waals interactions

between lipid chains. This is due to the closeness of the crii.ical point. The ratio of

the maximum value of the mismatch interaction used in this model to the coupling

constant of the van der Waals interaction is only of the order of 5%.

The latent heat of the first-order transition can be obtained from an integration

over a narrow temperature range around the transition. Indeed according to the

universal curve of the specific heat (Fig. 4.14), the integral Je(T)dT, the area under

the curve of the specifie heat is independent of the size of system, L. Therefore, the

quantity is a measure of the latent heat in the thermodynamie limit. The latent heat

obtained by this way is about 8.12 keal/mol, whieh is almost same as that found

by ealculating the dilference in free energy between the minima at the first order

transition (Zhang et ai., 1992a).

•
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4.4.2 Nature of the Phase Transition (II) - Effeet of Il1t,~r­

Monolayer Coupling•
CHAPTER 4. PHASE BEHA\'IOR OF PURE LIPlD mM YERS 72

•

Although there is no direct measurement of the interlayer coupling, previons stud­

ies suggested that it should be very weak in comparison with the van der Waals

interactions between the chains in the same monolayer. In order to investigate the cf·

fects of both the mismatch and the interlayer interactions, we dlOose their respective

strengths in such a way that the bilayer would not have a phase transition in the ther·

modynamic lilllit in the absence of interlayer coupling but would be extremely close to

a criticai end·point. A vaiue of J2 = 0.04Jo in Eq. (4.12) is chosen in accordance with

the earlier work on inter-monolayer coupling (Georgal1as et Cil., 1984). We find that

the system does not exhibit a phase transition for values of Imi. below 3 X 1O-16erg/ Jl

and exhibits a weak first-order phase transition at Imi. = 4 x 1O-16 erg/ il (Zhang,

Mouritsen and Zuckerlllann, 1992a).

The results for the model described in Sec. 4.3.2 are similar to those shown in

the previous subscction, because they are typicai of a first-order phase transition.

However Fig. 4.18 shows that there is a finite·size effect in the free energies for the

smaller lattice sizes, i.e. an additional weil is present because the monolayers are in

diffcrent phases, one being in a gel phase and the other in a fiuid phase. Hence in

this case, the weak coupling between the finite·size monolayers is overcomc by strong

laterai fluctuations within the monolayers. Fig. 4.18 also shows that the additional

weil disappears as the size of system increases, since the interlayer coupling then

ensures that the entire bilayer is in either the gel phase or in the fiuid phase at any

given temperature. Il can be seen from the figure that the twù phases are separated

by an energy barrier whose height increases with increasing L. This indicates that

the system undergoes a first-order phase transition in the thermodynamic limit .
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Cooperativity in the Main Phase Transition

In this section, we examine the physical properties of the bilayers in the neighbor­

hood of a first-order ph'.se transition, such as the lateral heterogeneity, and compare

the results with those obtained for a single monolayer of Pink model which has no

phase transition in the thermodynamic limit but is close to a critical point (Zhang,

Mouritsen and Zuckermann, 1992a; Mouritsen, 1990). Tc avoid hysteresis effects

encountered in standard Monte Carlo calculations, the extrapolation m~; ~ od of Fer­

renberg and Swendsen is used to analyze bilayer heterogeneity (Zhang, Mouritsen and

Zuckermann, 1992a).

The clusters can be described by a size-distribution funetion nnT) which gives

the number of clusters of type p with llipid chains (Mouritsen, 1990). Here p refers

to the fiuid chain state if T < Tm or the gel and intermediate chain states if T > Tm.

The clusters are defined via a nearest-neighbor connectivity criterion dictated by the

interaction range. The average cluster size is then

ç(T) = l: ln~(T)/l: n~(T)
l l

(4.14)

•

where the summation is restrieted by a lower eut-off in the value of l (correspond­

ing three acyl chains in our case) in order to exclude local fluctuations controlled

by the Glauber dynamics. Fig. 4.19 .shows that average linear dimension ç of the

fiuetuadng clusters of the minority phi:.sP as a function of temperature for both in

the presence and absence of the mismatch anà the inter-layer interactions. Il is seen

that ç is considerably reduced at any given temperature in the presence of the ad­

ditional interactions, implying that the transition region has narrowed considerably

and that the wings of the transition are confined to a much narrower temperature

range. This is understandable because of the high energy barrier for the formation

of cluster interfaces in a first-order transition. ç could be interpreted as a measure of

the correlation length of the cooperativity. Fig. 4.19, therefore, shows the difference

in the correlation length for the presence and absence of a first-order phase transition.

We analyze the spatial pattern of the lipid clusters by dividing each monolayer



into three regions: the background phase (bulk, b), the clusters (c) and th~ interface

(i) between the clusters and the bulk. The interfacial region is composed of those

acyl chains which have nearest-neighbor bonds close to the cluster bOllndary. The

spatial pattern is then described in terrns of the corresponding fractional areas of the

membrane (i.e. ab, a" and ai) and the relative occurrences of acyl-chain states in the

different regions.

Fig. 4.20 shows that the fraction of the membrane area in the clustcrs and in

the interfaces is considerably lower in the case of a first-order phase transition. This

figure also shows that the fractional areas of the bulk, interface and cluster regions are

similar close to Tm in the absence of a phase transition, whereas in the case of a first­

order transition the bulk dominates in this temperature range. The interfacial region

can be probed by calculating the relative occurrence of the acyl-chain conformational

states in the first interfacial layer bctween the clusters and the bulk. This layer is

defined as the set of acyl chains which are connected by nearest-neighbor lattice bonds

to the cluster boundary. Fig. 4.21 shows the relative occurrence of the all·tr-ans (g),

the intermediate (i), and the f1uid (f) states in the first interracial layer. The same

quantities are given for the bulk in Fig. 4.22. A comparison of Figs. 4.21 and 4.22

demonstrates that the first interfacial layer is domhated by chains in intermediate

conformational states. This kind of soft interface in a ceU membrane wouId certainly

have a biological significance (Mouritsen et al., 1992). These figures also show that the

variation with temperature in the neighborhood of Tm of the relative occurrences of

the different chain states are similar in the absence and in the presence of a first·order

phase transition, although considerably sharper in the latter case.

The chain orientational order parameter, S, is calculated as rouows

1 2 10

S = 2'L-2 L L L(1.8AI A;;-1 - 0.8)!:". (4.15)
n=l i 0'=1

•
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In order to obtain values of S for a large system over a wide temperature range, we

computed this quantity by using the standard Monte Carlo method rather than via

Ferrenberg-Swendsen method. In Fig. 4.23 we present the results of the acyl·chain

orientational order parameter both in the absence and in the presence of a. first-
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Figure 4.6: Specific heat in the thermodynamic limit for temperatures outside the
transition region shown for "(mi. = 0,4,5 X 10-16 erg/À (from top to bottom). The
specific heat is in units of kB'

order phase transition. Theoretical results, Eq. (4.15), were obtained from model

simulations on a 60 X 60 bilayer. We also show the experimental data of Davis (Davis,

1979) for S obtained from the first moment of the quadrupolar nuclear magnetic

resonance spectrum of d62·DPPC bilayers. The experimental order-parameter data

cxhibit a sharp variation in the transit~on region. The model results in the presence

of a first-order phase transition a1so exhibit a sharp jump at Tm, which is in closer

agreement with the experimental results. In contrast, the Pink model gives a curve

for S which is much smoother than the experimental results. The reason for the

difference in the value of Tm between the experimental and theoretical results is

related to the fact that the experiments were performed on fully deuterated chains

whcreas the theory applies to fully protonated chains. In fact the pretransition of

DPPC bilayers has not been considered in the theoretical analysis, whereas it clearly

affects the experimental results .
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Figure 4.7: Free energy F(Tm(L)) for "(m" = 1-5 X 1O-16erg/À (from bottom to top)
and L =24.
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Figure 4.10: Temperature dependence of the specifie heat, C(T), for L =
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Figure 4.13: Dependenee of the lateral eompressibility maximum on Ld for L=
8,12,16,20,24,32 and "(mi. = 5 X 1O-16erg/À. The lateral eompressibility is in units
of 1013 À4 erg-1 •
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Chapter 5

Protein-Lipid Mixtures

In this chapter, we present microscopie lattice models for lipid-protein and lipid­

polypeptide mixtures in order to study the effects of proteins on the physical prop­

erties of lipid bilayers, gramicidin channel formation and the phase diagram for the

binary mixtures, based on the models in the previous chapter.

5.1 Introduction

Proteins are the most abundant organic molecules in ceUs, constituting 50% or more

of their dry weight (Lehninger, 1979). They are found in every part of every ceU

and they are fundamental for ail aspects of ceU structure and function. There are

many different kinds of proteins, each specialized for a different biological function.

A fundamental question arises as to how the proteins affect the properties of lipid

systems and, conversely, how the lipids modulate protein function.

So far, little is known regarding internai molecular conformational states ofintegral

membrane proteins and their relation to modes of protein activity. The bulk of our

quantitative information on the physical effects of the interaction between lipids and

proteins is concerned with the perturbing effects of proteins on their lipid environment

(Mouritsen and Sperotto, 1992). However, it seems reasonable to postulate that most

integral (trans-bilayer) membrane proteins have as part of their structure a-helices,

86



which have predominantly hydrophobie residues and which span the hydrophobie

region of the lipid bilayer (Henderson, 1981). This implies that there arc wcll-ddincd

restrictions on the length and hydrophobicity of the proteins. This lcads to the

concept of hydrophobie ma!ehing between the hydrophobie length of prott'in and the

hydrophobic thickness of the surrounding lipid bilayer matrix (Owicki, Springgate and

McConn.,U, 1978; Owicki and McConnell, 1979). The hydrophobic llIatching thcrefore

is an important component of lipid-protein interactions in membranes. lIence, in the

models studied in thi, chapter, the effect of lipid-protein mismatch is considered

to be fundamental in the understanding the influence of proteins on lipid bilayers

(Sec. 5.2), the instability of the gramicidin channel (Sec. 5.3) and the phase separation

of the lipid-protein and lipid-polypeptide mixtures with a lower criticalmixing point

(Sec. 5.4).

A protein incorporated in the lipid bilayer usually perturbs the physical properties

of the surrounding lipids, such as their hydrocarbon chain order (Morrow and Davis,

1988). Since the order of the lipid chain in the f1uid phase is linearly related to the

hydrophobic thickness of the bilayer [Eq. (4.4)1, a protein in the lipid bilayer l'an

induce a local variation in lipid hydrophobic thickness. In Sec. 5.2, we study these

effects on the basis of the lipid model described in Sec. 4.3.2 and then compare them

with the results of Sperotto and Mouritsen based on the Pink model (Sperotto and

Mouritsen, 1991). We also investigate the influence of proteins on the correlations

between lipids by introducing a new correlation function.

Gramicidin A is a linear antibiobic polypeptide which forms ionic channels in

lipid bilayers. The channel exists as a dimer of helical (3LD structure spanning the

bilayer (Urry et al., 1971). The dimer has a finite lifetime of about 0.1 seconds which

influences the conducting properties of the system (Gennis, 1989). The conforma·

tion of gramicidin A molecules does not depend r.trongly on the thickness of the

lil-id bilayer into which it is emhedded, whereas the lifetime of the channel depends

strongly on bilayer thickness. The lifetime has its maximum for a hydrophobic bi·

layer thickness which is close to the hydrophobic length of the channel. Due to the

•
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hydrophobicity and structure "f gramicidin A, gramicidin-lipid systems are ideally

suited modcl membranes for the study of lipid-protein interactions which are not in­

fluenced by hydrophilic interactions. Therefore the kinetics of the channel formation

a.nd its dependence on temperature and on the thickness of lipid bilayer have been a

subject of interest for both experimental and theoretical studies (D'Connell, Koeppe

II and Andersen, 1990; Kolb and Bamberg, 1977; Bamberg and Laüger, 1974; Huang,

1986). However, most of the studies are concerned one channel opening at a time. In

Sec. 5.3 we study the equilibrium channel density and its dependence on temperature

and lipid-protcin interactions by simulating a microscopie model of lipid-gramicidin

mixtures.

•
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The presence of hansmembrane amphiphilic proteins or polypeptides in lipid

membranes has considerable influence on the phase equilibria of the mixed system

(Mouritsen and Sperotto, 1992). In particular th.. ~:»id-protein interactions give

rise to phase-separation (Huschilt, Hodges and Davis, 1985; Morrow, Huschilt and

Davis, 1985; Morrow and Davis, 1988). Despite considerable experimental studies on

lipid-protein interactions in reccnt years, only a few phase diagrams of lipid-protein

mixtures have been elucidated with sufficient accuracy to allow a theoretical interpre­

tation in terms of the details of lipid-protein interactions. The difficulty in obtaining

accurate experimental phase diagrams for lipid-protein and lipid-polypeptide mix·

tures is related to several different circumstances. It is, for example, common that

most experiments do not give information on the free energy of the mixture directly

but rather certain derivatives of the free energy, such as the specifie heat and the

spectroscopie order parameters. It is often difficult to determine the position of phase

boundaries based on these derivatives without invoking certain model assumptions.

Furthermore apparent anomalies in the specifie heat are not sufficient to determine the

existence of a phase transition or a phase boundary and spectroscopie order parame­

ters depend in principle on certain intrinsic time and length scales of the experimental

technique in question.

In Sec. 5.4, we propose a lattice model (Zhang et al., 1992c) to describe the



phase diagram of phospholipid bilayers containing small transmembrane proteins or

polypeptides. The mode! is based on the extended Pink modcl described in Sec. 4.3.1.

The interaction between the lipid bilayer and the protein or polypeptide is modcled

using the concept of hydrophobie matching. The phase diagram has been derived

by computer simulation techniques which fully account for thermal density fluctu­

ations and operate on the level of the free.energy thereby permitting an accurate

identification of the phase boundaries. The calculations predict a closed loop of gel­

f1uid coexistence with a lower critical mixing point, which is in agreement with recent

experimental measurements on phospholipid bilayers mixed with synthetic transmem·

brane amphiphilic peptides or with gramicidin A (Morrow, Huschilf. and Davis, 1985;

Morrow and Davis, 1988).

•
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5.2 Lipid Order Parameter Profiles around Pro-

teins

On the basis of the mattress mode! (Mouritsen and Rloom, 1984), Sperotto and

Mouritsen (Sperotto and Mouritsen, 1!l91) illtroduced lipid-protein interactions into

the Pink model by assuming that the hydrophobie membrane-spanning part of the

protein molecule is a. stiff, rod·like and hydrophobically smooth object with no ap­

preciable internai flexibility (Owicki, Springgate and McConnell, 1978; Jâhnig, 1981;

Sadler and Worcester, 1982). The protein is therefore characterized only by a cross·

sectional l'rel', A p, (or circumference pp) and a hydrophobie half·length, dp. The

Hamiltonian describing the lipid·protein interaction for a bilayer composed of two

monolayers can be written as follows

1lLP = IIAp L Lp,i +~(p:) L L Ida +d(J - 2dpl.c~,i.c~,iLP,j -
i (i,j) a,fJ

~(p:) L Lmin(da + dfJ,2dp).c~,i.c~,iLp,j (5.1)
(i,j) a,(J

wh~re z is the coordination number and z = 6 for the hexagonal lattice. Lp,i is the

protein occupation variable, which satisfy the completeness relation La .ca,i+Lp,i = 1.



The p"rameters "1 and fJ rcfer to the mismatch and the van der '.Vaals interaction

respeetively. The tot"l Hamiltonian of the model is thercfore•
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(5.2)

where 1tLL is the Hamiltonian for pure lipid bilayers. In order to describe the thick­

ness profile of lipids near an isolated protein, Sperotto and Mouritsen (Sperotto and

Mouritsen, 1991) introduced a decay length, (, defincd by the following relation,

< dL(I) >=< dL > t(dp- < dL > )e-D(I)/e (5.3)

•

where < dl. > is the mean thiekness of the pure lipid bilayer at a given temperature,

0(1) is the distance of the lipid from the protein, and 1 is an index for the Iipid

layers "round the protein. Sperotto and Mouritsen then calculated the decay length

for the Pink model, i.e. 1tLL = 1to• However, as we now know, there is no phase

transition in the Pink model for the calculated parameters in the thermodynamic

sense (Sec. 4.2.2). Hence it is useful to make a similar study for the bilayer mode)

described in Sec. 4.3.2 and compare the effeets of proteins on the properties of Iipids

for both cases, i. e. in the presence and in the absence of a first·order phase transition.

Here we use "1 = 0.01 X 10-13 erg À-2 and fJ = 0.03 X 10-13 erg À-2 (Sperotto and

Mouritsen, 1991).

Wc simulated both cases by choosing different coupling parameters, J2 and {mi.,

in the pure lipid bilayer model of Sec. 4.3.2. The system then undergoes a first·order

phase transition for the case of J2 = 0.04Jo and "lm.. = 0.004 X 1O-13erg/ À and is

equivalent to the Pink model for J2 = 0 and {m" = 0 (Sec. 4.4.2). The protein is

assumed to take up seven sites forming a hexagonal shape with a side length of two

sites since integral proteins like gramicidin A or the polypeptides may be mode)ed

by this way (Chapman et al., 1977; Davis et al., 1983). The thickness profiles of

bilayer near the 7-site protcin at different temperatures for both cases are presented

in Figs. 5.1 and 5.2, where dp = 16À, respectively. It is shown that the protein.

induced disturbance of the Iipid bilayer decays with increasing distance from the

protein and it is c1early temperature dependent. The profiles result in the occurrence
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Figure 5.1: Bilayer thickness as a function of distance to the protein for a varicty of
temperatures in the Pink mode!. T = 300, 305, 309, 311, 313, 313.5, 314, 315, 317,
319, 330 K from top to bottom.
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Figure 5.2: Bilayer thickness as a function of distance to the protein for a varicty of
temperatures in the extended mode!. T = 300, 305, 309, 311, 313, 313.5, 314, 315,

• 317,319,321,325,330 K from top to bottom.
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Figure 5.3: Thickness in the first four layers around the protein as a function of tem­
pcrature for the extended Pink mf)del (solid lines) and for the Pink model (dotdashed
Hnes).

of a correlation between [ipid molecules an<l a competition between the lipid-lipid

interactions and the lipid-protein mismatch. Since the correlations in the pure lipid

bilayer are stronger in the temperature region close to the transition, the disturbance

due to the presence of the protein can extend beyond the first few molecular layers in

this region. The effect of the protein also rapidly decays outside this region. While

the decay length, ~, indicates the range of latera1 correlations for the lipid bilayer,

the hydrophobic thickness of the first lipid layer around the protein is a measure of

the competition between the interactions of the first layer lipids with the protein and

with their neighboring lipid molecules respectively. For the cases shown in Figs. 5.1

and 5.2, the hydrophobic length of the protein is less than the mean thickness of lipid

bilayer in the gel phase but is greater in the fluid phase. Because the interactions

between the lipid molecules arc weaker in the fluid phase and stronger in the gel

phase, the thickness of the first layer in the fluid phase can he stretched to match the

length of the protein completely while the reduction of the thickness in gel phase is

limited.

There is a striking difference hetween the profiles for the two cases. For example
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Figure 5.4: The thickness correlations as function of temperature for the extended
Pink model (so\id \ines) and for the Pink model (dotdashed lines). ln both cases the
curves from top to bottom correspond to i=2,3,4.

profiles of the hydr'Jphobic thickness vary more dramatically with tempemture T

in Fig. 5.2 than in Fig. 5.1. The hydrophobie thickness of the first four layers as

a funetion of temperature is shown in Fig. 5.3. There are abrupt changes of the

hydrophobie thiekness for l'Il the layers at the transition ',mperature, although the

jumps in the thiekness are not ail equal. This is eharaeteristic of a first order phase

transition.

Il is shown, in Figs. 5.1 and 5.2, that the relation in Eq. (5.3) is not valid at

the phase transition so that we cannot define the decay length, e, in the transition

temperature region. Since the decay length, e, is dependent on the correlation between

the lipid molecules, we examine the correlations in the lipid bilayer direetly. The

hydrophobic thiekness correlation funetion of lipid molecules is here defined as

(d d.) _ < dlcl; > - < dl >< di >
cor 1, , -

O'lUi
(5.4)

•
where O'i = [< d~ > - < di >2J~, and cl; is the thickness of i·th layer around

a reference center. Bere the index i refers to the distance away from the central

site. When this site is occupied by a protein, we refer to the correlation function as
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cor(dl , di)p to distinguish it from thc non-protein casc.

The correlations are shown in Fig. 5.4 as f\lnetions of t<'mpcraturc T for the two

cases (with and without a first order transition) in the pure lipid hilayer. The three

curves presented for each case correspond to i = 2,3, -1 respcetively. The correlation

funetion for i = 2 has the largest values at ail tempcrat\lres for both cases. As ex­

pected, there are strong correlations at the transition tcmperature Tm for the first

order transition case. Beyond the transition region, the correlations are weaker than

that for the case with no transition. This is consistent with other observations s\lch as

the specific heat and the lateral compressibility (Sec. 4.4.1). However the correlations

between lipid molecules are suppressed in the presence of proteins. This is shown

in Fig. 5.5, where the curves for the correlation function are presented for both in

the presence and in the absence of the protein. These results are consistent with the

recent experimenta! observations by Watnick et al. for the mixtures of gramicidin

and lecithin (Watnick and Chan, 1990). The results obtained from their 2 Il·NMR

re\;.xation measurements indicate that the peptide disrupts the cooperative fluetun.·

tions characteristic of pure multilamellar lipid dispersions through the hydrophobic

mismatch between itse1f and the lipids.

The quantity ocor( i) = cor(dl, d;) - cor(dl, di)p is a measure of the elfeet of the

protein on the hydrophobic thickness of the lipid bilayer. ocor is shown n.s a funetion

of T in Fig. 5.6. Since ocor(2) :::::: ocor(3) and ocor(l) ~ ocor(2), the elfect of proteins

on the lipid bilayer is very short range except at the transition. A longer range elfeet

occurs at the transition since ocor(i) has the same values for i = 2,3,4. Therefore, use

of this analysis allows us reach a conclusion similar to that Sperotto and Mouritsen

obtained from their decay length calculations. They found that the perturbation by

proteins on the surrounding lipids is strongly dependent on temperature and reach

its maximum at the transition (Sperotto and Mouritsen, 1991),
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Thermal Equilibrium and Gramicidin Chan­

nel Formation

The cation permeability of lipid bilayers increases in the presence of the linear pen­

tadecapeptide, gramicidin A (Wagner et al., 1972). It is known that gramicidin A

forms dimeric channels consisting of two monomers that are linked by of the order of

six hydrogen bonds (Hladky and Haydon, 1972; Bamberg and Laüger, 1974). When

two molecules of gramicidin A, one in each monolayer, form a linear dimer, an ion­

specifie channel through the bilayer is created. The channelloses its ionic conductivity

when it dissociates into monomeric units. Studies of the statistics of channel open­

ing by conductance measurements show that the dimers (channels) and monomers

are in thermal equilibrium (Hladky and Haydon, 1972; Bamberg and Laüger, 1973;

Zingsheim and Neher, 1974),

(5.5)

•

where Gand G2 represent the gramicidin monomers and dimers respectively.

Most experimental results for the mean lifetime of a single channel support the

assumption that the mismatch between the gramicidin dimer (a channel) and the lipid

bilayers mainly accounts for the dissociation of the gramicidin dimer (Elliott et al.,

1983). For example, the mean lifetime of gramicidin channels in monoacylglycerol­

squalene bilayers was found to increase as the bilayer thickness decreas~s from 28.5

to 21.7 À while the hydrophobie length of the channel is assumed to be 21.7 À. This

is consistent with th.:: fact that a decrease in mismatch makes the dimeric state more

stable.

There have been many theoretical studies on the kinetics of the channel formation

and its dependence on membrane structure. A theoretical model was proposed for the

relation between the mean lifetime of gramicidin channels and the thickness of lipid

bilayers by Elliott et al. (Elliott et al., 1983) and was modified by Huang (Huang,

1986) in term of deformation of the bilayer. The basic idea of the model is as follows:

when a dimeric gramicidin channel is formed in a membrane of thickne~s greater than



the length of the channel, the membrane deforms locally to accommodate the channel.

Then the restoring force of the deformed membrane will reduce the stability of the

dimer. ':"'he dissociation corstant kv l'an in this caSe be estimated from (Huang, 1986)

•
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(5.6)

where g' is the free energy of activation, which is the energy required to break the

hydrogen bonds linking two monomers, and v is a frequency factor almost indcpcndent

of temperature.

Here we simulate dimer formation on a microscopic levcl. The assumption that

the hydrocarbon chaius of lipids adapt to the thickness of the hydrophohic core of

a protein in the membrane is the basis of the mattress modcl, which allows us to

formulate a microscopic modc1 for gramicidin channels in the lipid bilayers using the

bilayer model discussed in Sec. 4.3.2. Even though the parameters in the bilayer

model has been determined for DPPC bilayers only, we assume that the mechanics of

channel dissociation is valid for ail phospholipid bilayers, i.e. the mismatch between

the gramicidin dimer and the bilayers should still aLcount for the instability of the

channels.

The microscopic model consists of two parts: the modc1 of pure lipid bilayers

which is described in Sec. 4.3.2 and the coupling of the gramicidin monomers or

dimers incorprated in the bilayers to lipid molecules. By analogy with the interactions

between the acyl chains, the interactions between lipid molecules and gramicidin

monomers are then written as fol1ows,

1iLG =
2 J d 10

I:{I: l1AG.cM,i - ~G ( dG) I: I: Ia.c:,i.cM,j} - Eu I: .c~,i.c~.i+
n=1 i 1 (i,;) 0:=1 i

LGi,t I: I: Ida + d{J - 2dGI.c~,i.c~.i.c~,j.c~.j· (5.7)
(i,j) a,{J

•
.cM,i is the occupation variable for gramicidin monomers which is unity when the i-th

site of the n-th monolayer is occupied by a gramicidin monomer and zero otherwise.

In this approximation the hydrophobic part of the gramicidin monomer is assumed



to be a stiIT rod-like object with no internai 11exibility. Il can thercfore be character·

ized by a cross-section area, AG, and the length of the hydrophobic core, dG, hG

is the direct lipid-protein interaction constant, which depends on the properties of

gramicidin hydrophobic surface. The parameter, i;;'Z, is rclated to the hydrophobie

eITect describing the hydrophobie area exposed by the longer species to water. EH is'

the strength of the hydrogen bonding between the two monomers of a dimer.

In the model of Eq. (5.7) it is assumed for computational convenience that the

monomers arc single·site objects on the lattice substituting for a single acyl chain.

Il is however possible to relate the results of this model to those of the experimental

situation where the monomers occupy about seven adjacent lattice sites by a simple

scaling, though this is clearly an approximation. From a scaling argument, we choose

EH "" 2 x 1O-13 erg as a single hydrogen bond instead of six or seven hydrogen bonds.

Although the approximation overestimates the mixing entropy, it works quite weil in

the lipid-protein model described in Sec. 5.4. Finally we only consider the case of

dG = d lO = 11.25À because experiments (Elliott et al., 1983; Huang, 1986) suggest

that the hydrophobie thickness of gramicidin channels matches the thickness of the

membrane exactly in 11uid phase. Consequently the value of if:.Z is chosen to be the

same as im" (Sec. 5.4).

The equilibrium dimer probability, po., is defined as the percentage of dimers

in thermodynamic equilibrium and is therefore a measure of the tendency to form

ionic channels. The dimer probability is affected by several factors, such as the

temperature, the mismatch condition between the gramicidin dimer and the lipid

chains, and the direct lipid-protein interaction. An increase in temperature may

cause the monomer-monomer bonding in a channel to break, thereby Iowering the

dimer probability. Temperature aIso indirectly affects the probability via changes in

the hydrophobie thickness of the lipid bilayer. Furthermore the mismatch between

the dimers and lipids always tends to break a dimer into two monomers. However

the effect of mismatch is dependent on the Iateral distribution of the dimers, whieh is

controlled by the strength of the direct van der Waals interactions betwecn lipids and

•

•
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Figure 5.7: Dimer probability as a function of temperature. 0 refers to the data with
the van der Waals lipid-gramicidin interaction; • refers to the data without such an
interaction.

proteins. For the case when this attractive interaction is very weak, the gramicidin

monomers and dimers aggregate in the bilayer plane in such a way that the contact

between lipids and dimers decreases maximally and the effect of mismatch on the

channel is therefore suppressed. For the case where the lipid-protein interaction is

sufficiently strong, i.e. close to the strength of van der Waals interaction between

lipid molecules, the gramicidin dimers or monomers disperse considerably so that the

environment of each channel will be similar to that of an isolated channel.

The dimer probabilities, P.q(T), are shown in Fig. 5.7 as functions of temperature,

T, for the cases with and without the direct van der Waals interaction between lipids

and gramicidin. The gramicidin-lipid mixture was simulated on two 40 x 40 triangle

lattices, 3% of which is occupied by gramicidin monomers. It is shown that the

equilibrium channel probabilities in the fluid phase of the bilayer are almost the same

for the two cases because the lipid-gramicidin interaction in the fluid phase ia very

weak. However, they are quite different in the gel phase of the bilayer. Indeed the

direct lipid-protein interaction, together with the effect of enttopy, overcomea the

mismatch between the hydrophobie thickness of gramicidin dimera and that of the



lipid bilaycr and disperses the dimers randooùy in the bilayer. In this situation Fig. 5.7

shows that the mismatch is very effective so that the channel probability in the gel

phase decreases. In the opposite case, when the direct lipid-protein interaction is

very weak, the dimers aggregate in the bilayer so that the mismatch does not affect

the channels inside the gramicidin c1usters and the entropy e!fect on the channels

decreases. Therefore the channel prob..bility in this case is even higher than in the

fluid phase where the hydrophobie thickness of dimers is c10sely matched to that of

the lipid bilayer. Overall, the dimer probability has a large value (about 80%) over a

large temperature region in the gel phase because the hydrogen bonding in dimers is

considerably stronger than the van der Waals interactions in DPPC bilayers.

The equilibrium constant of dimerization, K.q , can be related to the channel

probability p.q by K.q ::::: AP.q(l - p.q )-2 (Cohen, Atkinson and Summers, 1970),

where A is the mean area of lipid bilayer.

•
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5.4 Critical Mixing of Protein and Lipids

The occurrence of critical mixing in two-component lipid membranes is a wide-spread

phenomenon. There is a strong experimental evidence that it occurs in DMPC and

DPPC lipid bilayers containing either gramicidin A (Morrow and Davis, 1988) or

synthetic transmembrane amphiphilic polypeptides of the type LYS2-Gly-Leun-LYS2­

Ala-amide with n = 16 and 24 (Huschilt, Hodges and Davis, 1985; Morrow, Huschilt

and Davis, 1985). The phospholipid-polypeptide systems were studied using a combi­

nation of calorimetry and NMR difference spectroscopy, therefore the resulting phase

diagrams have a high degree of accuraCY. The experimental data for the phospholipid­

gramicidin A system have not been interpreted in terms of a quantitative phase di­

agram although it was argued that the data are consistent with the presence of a

lower critical mixing point (Morrow and Davis, 1988). Since there may also be some

influence from the dimer-monomer equilibrium in the case of gramicidin A whieh is

not accounted for in the present type of modeling, we restrict ourselves to a quantita-



tive comparison of our theoretical results of critical mixing with experimental results

for DPPC lipid bilayers containing synthetic polypeptides. Since the experimental

data for both the long and the short peptide are quite similar, we discuss these two

systems together. It should however be noted that there is a slight quantitative differ­

ence between the phase diagram for the two peptides which ean easily be rationalized

in terms of the hydrophobie matehing concept. The short peptide tends to stabilize

the fluid phase more strongly thlUl the long peptide beeause the short peptide is more

c10sely matehed to the fluid hydrophobie tlùckness of DPPC than the long peptide

(Mouritsen lUld Sperotto, 1992).

Morrow and Whitehead (Morrow and Wlùtehead, 1988) used a Landau expansion

of the free energy in terms of area per lipid molecule to obtain protein-lipid phase

diagrams with eritieal ruixing. However the phenomenologieal modeling does not ac­

count for the thermal density fluctuations and cannot address the microscopie origins

of such phase diagrams. Hence we propose a ruicroscopic model to deseribe the phase

diagrams and we identify the phase boundaries by using the Lee-Kosterlitz method

described in Sec. 2.3.2. Our work is therefore complementary to the work of Morrow

lUld Wlùtehead.
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The ruicroscopic interaction model used in this section to describe a lipid bilayer

ruixed with small trlUlsmembrane proteins or polypeptides consists of two parts. The

first part, 1lLL given in Sec. 4.3.1, describes the internai energy of the pure lipid

bilayer and the second part, 1lLP, describes the interactions between the lipid bilayer

and the protein. Direct interactions between different proteins are neglected since we

are only concerned with low ratios of protein to lipid. The lipid-protein interactions,

1lLP, can be formulated in terms of a direct lipid-protein interaction in addition to a

hydrophobic ruis..natch term

1lLP = IIAp L: L:p,. - J~P (i) L: L: IaL:a,.L:p,; + 'Yf L: L: Ida - dplL:a,;L:PJ
• 1 (',;) a ('';) a

(5.8)

The geometric parameters of the protein are chosen to be Ap = 68.0À
2

and dp =
dlo = 1l.25À, where dlo is the acyl-chain length in the fluid state. It is assumed that



the protein is small in the sense that it only oecupies one site of the lipid lattice. This

assumption, which is made for computational convenience, will be discussed f:uther at

the end of this section. The parameter, "Y~, is related to the hydrophobic effect and

describes the exposure of the longer species to water (Mouritsen and Bloom, 1984).

Since we are mainly concerned with the ease where dp is close to the hydrophobic

acyl chain length in the fiuid phase, we only need to consider a value of "Y~ which

describes the exposure of acyl chains (rather than protein side chains) to water. As

described in Sec. 4.3.1, we therefore choose "Y~. = "Ymi. = 5 X 1O-16ergj A. The

actual value of JLp depends on the properties of the protein hydrophobic surface, i.e.

the type of amino·acid side chains. In most of the simulations we choose the direct

lipid-protein interaction parameter to be J LP = 0.25 x 10-13erg.

In the binary mi:'dure for a given temperature T, the chemical potential, p, of

the proteins in the lipid controls the equilibrium composition of the mixture given by

the molar fraction of proteins, c. The molecular composition of the system fiuctuates

over the miscroconfigurations of the equilibrium ensemble. We can thus use the

ensemble of microconfigurations generated at equilibrium to calculate the distribution

function, n(c,p, T, N), for the composition. Bere n(c, p, T, N) denotes the probability

of occurrence of a microconfiguration with composition c at the values chosen for p

and T. The part of the free energy which describes the composition dependence of the

total free energy for a fixed value of T, p, and system size N is related to n(c, p, T, N)

as follows (Sec. 2.3.2)
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:F(c,p, T, N) = -kBTln n(c,p, T, N).

102

(5.9)

The relative stability of two different bilayer phases characterized by compositions

c(l) and C(2) can now be determined by examining free.energy differences such as

l:l:F( N) = :F(C(I), p, T, N) - :F(C(2), p, T, N). (5.10)

•
Fig. 5.8 shows the free energy function, :F(c, /Lm, T, N), for four different temper·

atures, T = 3l3.0K, 3l0.0K, 304.0K, and 303.5K, alI of which are below the gel-f1uid

phase transition temperature, Tm = 3l3.7K, of the pure DPPC lipid-bilayer given by
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Figure 5.8: Free energy :F(c, /Lm(N), T, N) as a funetion of bilayer composition, c,
for different lattice sizes, N = L x L, L = 16(~),24(.),32(o), for three different
temperatures, (a): T = 313.0K, (b): T = 310.0K, (c): T = 304.0K, and (d): T =
303.5K. Jlm(N) refers to the chemicai potentiai at phase coexistence for a system
of size N consisting of a DPPC lipid bilayer embedded with small transmembrane
proteins or polypeptides.
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Figure 5.9: Theoretical T-I' phase diagram for the microscopic model of lipid-protein
interactions. The lower critical mixing point is marked by (+). The diagram cor·
responds to a DPPC lipid bilayer embedded with sma.ll transmembrane proteins or
polypeptides.
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Figure 5.10: Theoretical T-c phase diagram (0) for the microscopic model of lipid­
protein interactions. The solid curve is drawn as a guide to the eye. The critical
mixing point is indicated by (+). The diagram corresponds to a DPPC lipid bilayer
emhedded with sma.ll transmembrane proteins or polypeptides.



present mode! (Sec. 4.3.1). The frce energy was calculated for a "alue of the d'l'mical

potential, Jl = Jlm, at which the two lipid phases coexist and hence the two minima

of the free energy arc equally deep. The following conclusions can be c1rawn from the

size dependence of the data in Fig. 5.8. For the two higher tcmperatures, T = 313.0K

and 310.0K, the free-energy barrier, b.:F(N) in Eq.( 5.10), separating the two minima

increases with system size indicating that the two phases arc separatecl by a first-orcler

transition, i.e. the two phases coexist in the thermodynamic limit. In contrast, at

T = 304.0K in Fig. 5.8c, the barrier hcight does not depend on system size to within

numerical error indicating that the system is close to a continuous transition, in this

case a lower critical mixing point. For even lower temperatures, e.g. T ::; 303.5K,

the barrier decreases with system size indicating that the c1ilference between the two

minima, and hence the two phases, vanishes in the thermodynamic limit. At these

temperatures the mixture is therefore in a one-phase region at ail compositions.

The phase diagram spanned by temperature and chemieal potential was obtained

from data of the type presented in Fig. 5.8 and is shown in Fig. 5.9. The dashed

line in this figure gives the line of coexistence between the ge! and fluid lipid phases.

The line terminates in the critical mixing point. The corresponding phase diagram

spanned by temperature and bilayer composition is displayed in Fig. 5.10. This figure

shows that the lipid-protein interactions of the present microscopic model produce

the characteristic 'tear-drop' shaped closed coexistence loop of a binary mixture with

a lower critical mixing point. Wc also found an absence of phase separation at T =

305.0K for JLP = 0.3 X 1O-13erg. This indicates that for larger values of the direct

lipid-protein interaction constant, !Lp, the critical mixing point moves towards higher

temperatures. Specifically it suggests that the direct lipid-protcin interactions arc

responsible for the location of the critical mixing point.

In order to make a direct quantitative cc,nparison between the theoretical phase

diagram in Fig. 5.10 and the corresponding experimental data, it is first necessary to

scalethe theoretieal data in a manner which allows for the fact that the peptides in

the experimental system are larger relative to the lipid acyl-chains than assumed in

•
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Figure 5.11: Rescaled theoretical T-:z;p phase diagram (0) for the microscopie mode!
of lipid-protein interactions. The rescaling is performed in order to facilitate a com­
parison with a specifie lipid bilayer system: DPPC bilayers mixed with a-helical
amphiphilic transmembrane proteins of the type Lys2-Gly-Lelln-Lys2-Ala-amide.
The experimental data (.) for mixtures of DPPC with LYS2-Gly-Leu2rLYS2-Ala­
amide (Morrow, Huschilt and Davis, 1985) are shown for comparison. The solid line
connecting the theoretical points is drawn as a guide to the eye.



the lattice mode!. In the mode! description it is assumed for computational conve·

ni~nce that the peptides are single·site objects on the lattice substituting for a single

acyl chain. Although it is in principle feasible, it would be computational1y more de·

manding to perform the simulation with objects which occupy seve~al adjacent lattice

sites. It is however possible to scale the data in Fig. 5.\0 to provide an approximation

to the case where the polypeptides occupy more sites and hence have a larger volume

fraction. The approximation underlying this simple scaling is on the same level as the

Flory·Huggins approximation for polymer blends (Flory, 1953; Huggins, 1941) which

for the present system overestimates the mixing entropy. For concentrations which

are not too high this approximation should be reliable. Fig. 5.11 shows the same

data for the phase diagram as in Fig. 5.10 but now scaled down to a concentration

measure, :Z:p, corresponding to a polypeptide which occupies seven lattice sites ap­

propriate for a poly-leucine a-helix, i.e. :Z:p =cn-~) -1. For comparison we plot

on the same figure the experimental data for the DPPC-polypeptide membrane as

obtained for NMR difference spectroscopy (Huschilt, Hodges and Davis, 1985). The

agreement between the experimental data and the theoretical predictions are quite

satisfactory considering the approximation which underlies the concentration scaling.

The good agreement suggests that the microscopic interaction mode! has captured

the essentials of the lipid-protein interactions in the present lipid bilayer system. The

experimental phase diagram for the shorter peptide with n = 16 is very similar (Mor.

row, Huschilt and Davis, 1985). Note, that since the experiments have been carried

out on perdeuterated DPPC which has a lower transition point than that of normal

DPPC, the experimental data have been subject to a trivial translation in temper­

ature in order to compensate for the isotope effect and to facilitate the comparison

between theory and experiment.

•
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Chapter 6

Hydrogen Bondingin Lipid

Bilayers

In this chapter, we propose a mode! for thermodynamic phase transitions and geomet­

ric transitions involving hydrogen bonding between the polar-heads of lipid bilayers

(Zhang et al., 1992d). The relationship of the results to experiment is discussed.

6.1 Introduction

As described in Chap. 4, phospholipids are surfaetant-lîke molecules with two hy­

drophobie fatty acid chains and a hydrophilic polar head. The nature of the polar

head is therefore important for the hydration properties of the bilayer. Two types of

polar head, phosphatidy1choline (PC) and phosphatidylethanolamine (PE), together

account for the polar heads of the majority of phospholipids in most cell membranes

(Silvius, Brown and O'Leary, 1986). Lameller phases composed of PE hydrate less

strongly than the corresponding lamellar phases of PC (Lis et al., 1982), and show a

much greater tendency to form dehydrated and/or non-lamellar phases than do PC

lipids of comparable acyl chain composition.

Boggs (Boggs, 1980) and Hauser et al. (Hauser et al., 1981) suggested that the

differences in the hydration properties of PE and PC lipids are largely attributable

108
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Figure 6.1: (a) General structure of phosphoglycerides; (b) Two types of polar head
groups-PE and PC



to differences in the abilities of these two lipids to participate in intermolecular lipid­

lipid hydrogen bonding. The hydrogen bonding of dilauroylphosphatidylethanolamine

(DLPC) was investigated by using X-ray crystal10graphy by Hitchcock et al. (Hitch­

cock et al., 1974) who found that in anhydrous crystals each PE polar head was

connected by N-H... 0 hydrogen bonds to four neighboring polar heads. Here the

bonds are between the oxygens (acceptors) of the phosphate group and the hydrogens

(donors) of the amino group. Since the trimethylammonio group of PC lipids cannot

form hydrogen bonds, the PC headgroup can serve as an acceptor but not as a donor

of hydrogen bonds.

As described in Chap. 4, fully hydrated one-component PC bilayers undergo a

phase transition, known as the main phase transition, in which the bilayer passes

from a gel (solid) phase to a liquid-crystalline (fluid) phase. Both these phases are

stable hydrated phases. For pure PE lipid bil'~yers, the situation is considerably dif­

ferent. Several studies (Seddon, Harlos and Marsh, 1983; Seddon, Cevc and Marsh,

1983; Chang and Epand, 1983; Mantsch et al., 1983; Wilkinson and Nagle, 1984; Sil­

vius, 1991) showed that aqueous dispersions of dimyristoyl phosphatidylethanolamine

(DMPE) can form at least three distinct types oflamellar phase: stable, virtual1y de­

hydrated 'crystalline' (AS) phases in which the acyl chains are rigid and tightly packed

and the polar heads are presumably hydrogen bonded to one another; a hydrated solid

(HS) or gel metastable phase, in which the chains are somewhat less tightly ordered;

and a hydrated' fluid (HF) stable phase, in which the chains are flexible. The crys­

talline nature of the AS phase was confirmed by the X-ray crystal10graphic studies of

Seddon et al. (Seddon, Harlos and Marsh, 1983; Seddon, Cevc and Marsh, 1983) who

showed that this phase has basical1y the same structure as the anhydrous crystal. On

heating, the AS phase makes a first order phase transition to the HF phase. Severa!

effects occur at this transition. Firstly, the solid melts and the ..cyl chains become

flexible (chain melting). A second likely effect in the HS and HF phases is that the

interlipid hydrogen bond network existing in the AS phase could be disrupted by

competition with lipid-water interactions. The precise degree to which interlipid hy-

•
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drogen bonding interactions are disrupted upon conversion of the AS phase lo the

HS or HF phase has yet to be established experimenta1ly, allhough il appears that

lipid-water hydrogen bonding is extensive in the HF phase in parlicul"•. Yn conlrast

to the AS to HF transition, the transition of the metastable, but loul!> lived HS phase

to the HF phase exhibits a considerably lower latent heat.

There have been a number of theoretical models relevant to hydrogen bonding

in lipid bilayers. The earlier models were phenomenological modcls for the eITect

of hydrogen bonding on the transition temperature of the main phase transition

proposed by Nagle (Nag!e, 1976), and Eib! and Wooley (Eib! and Woo!ey, 1979).

MacDonald et al. (MacDonald and Pink, 1988) proposed a microscopie Illodcl for

those hydrated ceribrosides in which there is a single donor-single acceptor cOlllplex

on the amide group giving rise to a 'striped' ground state cOlllposed of Id hydrogen

bonding networks. This model included both hydrogen bonding eITects and chain

melting at the main phase transition. Their mode! is similar to a Polls lattice gas

model of krypton adsorbed on graphite proposed by Berker et al. (Berker, Ostlund

and Putnam, 1978) and a site-bond percolation model, with tp.mperature dependent

bond probability, proposed by Coniglio et al. (Coniglio, Stanley and Klein, 1982)

to study the sol-gel transition. Both models include a site degree of freedom which

cannot bond with neighboring sites, and other degrees of freedom which are able to,

but need not, bond with neighboring sites. However, in both models, the bonds are

not correlated with the relative position of the sites.
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6.2 Model for Hydrogen Bonding in Lipid Bilay-

ers

In this section we present a microscopic lattice model to describe the hydrogen bond­

ing aspects of the main phase transition of pure PE bilayers. Il is a five state inter­

acting model on a 2d square lattice wh:ch mimics both the hydrogen bonding network

proposed for PE lipids by Hitchcock et al. (Hitchcock et al., 1974) and its disrup-



•
CHAPTER 6. HYDROGEN BONDING IN LIPID BILAYERS 112

«b 1 •.-t--.-t-

« a 1

•

Figure 6.2: (a) Five states of the model. The solid vectors point in the direction
of the HB donors and are equal to S<·) and $(11). The dashed vectors represent
the direction of the HB acceptors. The four bonding states can be represented by
(z,y), (-z,y), (-z,-y), and (z,-y) respectively. The fifth (unbonding) state is
schematically represented as a circle with a dot inside. (b) Two of the bonding
possibilities for nearest neighbor sites. (c) Two examples of nearest neighbor sites
which do not bond.

tion by Iipid-water interactions. Each lattice site represents a PE polar head which

can have a maximum of four possible hycùogen bonds (HBs) with the polar heads of

neighboring molecules. Each polar head has two HB donors and HB acceptors. The

structure of the polar head is such that the two donors are perpendicular to each

other and the donors are antiparallel to the acceptors. This is the case for PE polar

heads in DLPC (Hitchcock et al., 1974). Each lattice site represents a PE polar head

and can be in one of five possible states (Fig. 6.2a). Four of these states are called

bonding states, and we assume that for the bonding states the donors are oriented

along the links between lattice sites. Since the two donors are perpendicular we as­

sociate with each bonding state a horizontal unit vector 5<:) corresponding to the



direction of 'lne of the donors and a vertical unit vector 8(0) corresponding to the

direction of the other donor at the same site. Thus, the four bonding states are given

by (S<·) = :C, 8(0) = !Î), (8<') = -:C, 8(0) = !Î), (8(') = -:C, 8(0) = -!Î), and (8<') = :C,

8(0) = -!Î). This aIlows three possible arrangements on each lattice bond connected

by bonding states: two donors, two acceptors, or one donor and one acceptor. In

this model, a hydrogen bond of bonding energy, Eb , is formed when an acceptor and

a donor are present on the same lattice bond. The two other arrangements have no

energy associated with them. The system lowers its energy by an amount, Eh when

an HB is formed and the same value of the energy is required to break an RB. On

each site it is possible for one of the RB donor vectors, S(·) or 8(0) to bond without

the other donor bonding. The same is true for the acceptors. Thus, from zero to four

RBs can be formed between a site :md its four nearest neighbors. The polar head is

also aIlowed to be in the 5th state, called the 'unbonding' state (Pink, MacDonald

and Quinn, 1988; Coniglio and Klein, 1980). This state has a degeneracy, Du, which

partially represents aIl possible orientations of the polar head, both iv.-plane and out­

of·plane, for which a polar head cannot form hydrogen bonds with neighboring polar

heads. The degeneracy, at low values, is principally a measure of the ability of the

polar head to become hydrated by the surrounding water molecules if the energy

cost of the hydration is assumed to be negligible, but it includes melted chain con­

formation (typical of the RS or RF phase) at higher values of Du. The thermally

induced competition between the formation of RBs and the degeneracy effect of the

unbonding state should therefore result in a hydration-dehydration transition. For

the unbonding state the donor vectors are assigned the values 8(') = 0 and S<o) = o.
Some of the various bonding possibilities are shown in Fig. 6.2(b)-(c).

The Hamiltonian for the five-state model described above can be written as follows:
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(6.1)

where f(l) = l, f(z) = 0 for z :f: 1 and §J,~) and §~~) represent the donor vectora of

the ith polar head located at the position ri. Note that the lattice spacing is set equal
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Figure 6.3: The so!id !ine indicates a first order transition. The dashed !ine indicates
no thermal phase transition, but the existence of a percolation transition.

to unity here.

6.3 Phase Diagram for the Five-State Model

•

In this section we examine the phase behavior of the microscopie model by the stan­

dard Metropo!is Monte Carlo method with non-conserved dynamics in conjunction

with the new techniques described in Chap. 2.

The phase diagram for the model in terms of T'(= ksT/Eb ) and the unbonding

degeneracy, Du, is shown in Fig. 6.3. For Du > 160, the system undergoes a first

order transition. It is determined by calculating the free energy as a function of the

internai energy at the transition (Sec. 2.3.2). The typical results for the first order

transition is presented in Fig. 6.4(a), which shows that the energy barrier, ti:F(L)

increases with increasing L. The first order transition is accompanied by a percolation

transition. In this case the system makes an abrupt transition from the percolating

case to a situation where there are ooly a few c1usters of hydrogen bonded polar head.
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The system does not exhibit a thermal phase transition for values of Du below

about 160 because liF(L) decreases with increasing Land reaches the Gaussian

behavior, implying the absence of a phase transition, in the thermodynamic limit

(Fig. 6.4b). At Du = 160, the system is at or extremely close to a critical point.

Fig. 6.4(c) shows that, in this case, the free energy as a function of E / Eb exhibits

two minima with a maximum between them but that the height of the maximum,

liF( L), is independent of system size to within calculational error.

The latent heat is an important quantity related to a first order phase transition.

It can be obtained by integrating the specifie heat. Although there is the size-effect

of the specifie heat for a finite system, the area under the specifie heat curve is about

constant which corresponds to the latent heat (Zhang et al., 1992a; Zhang et al.,

1992c). Fig. 6.5 shows that the specifie heat scales reasonably as a function of system

size, L, for Du = 200 and reaches certain limit when L is large enough. The area

under the reached curve in Fig. 6.5 gives the latent heat of transition, liH, which is

shown in Fig. 6.6 for several values of Du in the first order transition regime. The

point at Du = 160 is an estimate of the location of the critical point. The same values

for liH also can be found by calculating the difference between the minima in free

energy at the respective first order phase transition (Fig. 6.4a) although this method

may require a large system.
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6.4 Percolation Transitions at Low Degeneracies

There is no thermal phase transition a10ng the dashed line in the phase diagram

(Fig. 6.3). However, there is a percolation transition which occurs when an infinite

cluster of sites connected by hydrogen bonds spans the lattice at a definite transition

temperature T;. We now wish to determine the critical properties of this transition.
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Figure 6.6: Latent heat in the regime of first order phase transitions as a function of
Du. The lines are guides to the eye. The point at Du = 160 is an estirnate of the
location of the critica.1 point
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6.4.1 Summary of Percolation Theory
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The simplest phase transition problem in statistical physics is probably the purely

geometric problem of the so-called percolation transition. A site percolation problem

can be described as follows. Uonsider a lattice which we take, for simplicity, as a two

dimensional square lattice, which composed of the sites and the bonds. Each lattice

site can be either occupied or unoccupied. A site is occupied with a probability p

« 1) and unoccupied with a probability 1 - p. For p less than a certain probability

P., there are only finite c1usters on the lattice. A c1uster is a collection of occupied

sites connected by nearest neighbor distances. For p larger than or equal to P. there is,

an infinite c1uster which ~, ....lects each side of the lattice with the opposite side, i.e.,

the system percolates. For the site percolation problem alI 2d bonds between the sites

are present. In a bond percolation, alI the sites are occupied but a bond is occupied

with a probability p and leave it empty with probability 1 - p. Clusters are defined

in a similar way as for the site percolation. Combining these two problems, we have

the site-bond percolation. In the site-bond percolation problem sites are present with

a probability p,. Bonds can exist only between occupied sites. If two neighboring

sites are occupied the bond is present with a probability Pb. We cali the percolations

mentioned above as ordinary random percolation (RP) to distinguish them from other

percolations discussed in Sec. 6.4.3. They follow the hyperscaling relation described

by Eq.( 6.8).

In contrast, the bootstrap percolation (BP) (Adler, 1991; Chalupa, Leath and

Reich, 1981; Kogut and Riess, 1975) does not follow the hyperscaling law. In m state

bootstrap percolation configurations are generated with site probability p, and then

occupied sites with fewer than m neighbors are recursively eliminated. This culling

tends to increase the value of the percolation threshold for m > 1. The ordinary

percolation is the special case of BP with m=O.
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6.4.2 Finite-Size Scaling for Percolation Transition
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Following power laws are observed at the percolation transition, Pc (Stauffer, 1984).

,

(6.2)

(6.3)

(6.4)

where Poo is the probability of an occupied site belonging to the infinite spanning

c1uster, n, is the number of c1usters per site with s sites, and eis the connectedness

length. The sum in Eq. (6.3) does not inc1ude the largest c1uster. For a finite system

of size L, the power laws lead to scaling relations:

Poo (L,5p) = L-fJ/"g(5pL I
/")

X(L,5p) = p/"h(5pL I /")

(6.5)

(6.6)

(6.7)

where 5p = (p - Pc)/Pc, P,pon equais the probability of the system containing a

spanning c1uster, and I,g, and h are scaling functions. A scaling law known as

hyperscaling is given by

dll=-r+ 2f3 (6.8)

•

where d refers to the dimension of space. The hyperscaling is satisfied by the expo­

nents obtained for standard percolation problems (Stauffer, 1984).

6.4.3 Percolation Transition in the Five-State Model

The five-state model described in Eq. (6.1) is a naturai example of correlated site­

bond percolation. A site is occupied if it is in any one of the four bondable states.

Two neighboring occupied sites are connected by a bond orny if they have a hydrogen

bond. Most other examples of site-bond percolation in thermally driven systems im·

pose bonds on the system. For example, the criticai point of the Ising mode! becomes



a percolation transition if one assigns bonds between spins pointing in the same di­

rection with a probability 1 - e-2J/kBT (Coniglio and Klein, 1980), where J is the

Ising nearest neighbor coupling. The critica.! percolation exponents in this case are

given by their Ising model equiva.1ents. Another example is a mode! of gelation in

microemu1sions devised by Stauffer and Eicke (Stauffer and Eicke, 1992) who use a

Widom model to investigate three transitions: phase separation when the magneti­

zation becomes non-zero, electrica.! percolation when an infinite c!uster of up spins is

formed, and gelation when an inlinite c!uster of up spin connected randomly by bonds

with probability Pb is formed. Again the bonds are imposed and are not part of the

Hamiltonian. When bonds are imposed at random with a particu1ar probability, the

critica.! exponents are to be the same as those for ordinary percolation. According to

the random percolation theory (Stauffer, 1984), the exponents of ordinary percolation

are {3 = 5/36 ~ 0.14, "( =43/18 ~ 2.39, and /1 = 4/3 ~ 1.33.

In the five-state model, the bonding probability P is not a parameter. Therefore

we assume that T' plays the same role as P in random percolation models. Replacing

5p in Eqs. (6.5)-(6.7) by t = (T' - T;)/T;, one has
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P,,,,,n(L, t) = f(tL1
/")

P",,(L,t) = L-fJl"g(tL1/")

X(L, t) = p/"h(tL1
/").

120

(6.9)

(6.10)

(6.11)

•

We use the standard c!uster labeling techniques to enumerate the c!usters and ca.!­

culate x, Poo, and P,pn' Similar to the case of ca.!cu1ating the formation of lipid

domains (Sec. 4.5), the Ferrenberg-Swendsen method a.!so a.1lows us to ca.!cu1ate c!us­

ter properties at percolation transition. At T' =T;, according to the Eq. (6.9), P,,,,,n

is independent of the size of system. The temperature T; clion then be determined by

the crossing of the curves for P,,,,,n versus temperature for different sizes. Two plots

of P,,,,,n as a function of T' for Du =5 and 100 respectively are presented in Fig. 6.7.

It is shown that the transition region narrows as L and Du increase in Fig. 6.7. The

scaling function, f [Eq. (6.9)], clion a.!so be used to ca.!cu1ate the exponent /1. By fixing
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P.pan(L,t) = :z: for different sizes, one has T'(:z:) - T; = T;czL-I/v, where Cz is a

constant for a given :z:, and T'(:z:) is the temperature at which a fraction :z: of the

configuration span vertically. Therefore, the exponent vran be obtained from the

following relation,
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The scaling plots, with :z:\ = 0.2 and :Z:2 = 0.8, for Du = 100 and Du = 5 are shown

in Fig. 6.8(a). To obtain the other exponellts, the scaling behaviors at T' = T; are

studied and shown in Fig. 6.8(b) and 6.8(cl.

The exponent. for Du = 100 are v = 1.28 ± 0.03, ï = 2.87 ± 0.11, and f3 =

0.28 ± 0.04, where the error estimates are based on how the .Iopes in the !og-Iog plots

vary as we vary the estimate of T;. As can be seen, the exponents do not follow

the hyperscaling relation [Eq. (6.8)J. The value of v is reasonably close to that of

ordinary random percolation but the other two exponents are significant!y higher.

This is similar to the situation in bootstrap percolation. For m = 2 on a square

!attice simulations of BP show that v is the same as RP (Adler and Aharony, 1988),

and f3 is higher (Cha!upa, Leath and Reich, 1981; Kogut and Riess, 1975). A!though

our resu!ts are not sufficient1y precise to establish any quantitative connection to BP,

they do show the same qualitative behavior. Also, for m > 2 on a square lattice BP

has a first order transition at Pc = 1 just as the five-state model has a first order

transition for large enough degeneracy.

These results can be understood quite readily. The effect of the interactions in

the five-state mode! is to fill in the clusters that would be obtained from random

percolation. This effect can easi!y be observed visually by examining the snapshots

of configurations as shown in Fig. 6.9. One can then see that above the transition

there are very few clusters, but very close to the transition there is one large cluster

containing almost a.ll the sites. This filling-in will not affect the !inear extent of the

clusters and thus v will not change. However since both Poo and X depend on the

mass of the clusters, one would expect these two exponents to increase.

For Du =0 it is clear that the transition must be at infinite temperature since the
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states. The !ines indicate actua! HB bonds. (al T· = 1.01T;. (bl T· =0.99T; .



site probability is unity and the bond probabi!ity at finite temperatures is always less

than or equal to 0.5 which is the percolation transition for random bond perc.olation

on a square lattice. Thus, one expects the Du = 0 version of the five-state mode!

to be equivalent to random bond percolation, and to give the ordinary percolation

exponents.

The presence of a percolation transition without a thermal transition resembles the

suggestion of Adler and Stauffer (Adler and Stauffer, 1991) for a !iquid-gas transition

!ine above the critical temperature in the Ising mode!. They found an evidence for

a sharp transition !ine where there is a change in the convergence behavior of the

Taylor series expansion of the magnetization for a system in a large magnetic field.

This transition !ine corresponds to the percolation transition based on the Kertesz

droplet definition (Kertesz, 1989).
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Chapter 7

Conclusion

In this thesis we have been eoneerned with the properties of theoretieal modc1s for

the liematie-isotropie phase transition in thermotropie liquid erystals and for the

main gc\-fluid phase transition in lipid bilayers. The various Monte-Carlo simulation

lIlethods have been sueeessfully applied to the analysis of the nature of the phase

transitions, the stlldy of phase stabilities, the determination of the phase diagrams

and the analysis of the fluctuations in these models.

The eomp"tational problems arising in studies of the orientational-ordering tran­

sition in the Lebwohl-Lasher model are related to the strong pretransitional eifects

whieh make it diffieult to reveal the nature of the transition and to aeeurately deter­

mine the transitional properties. In partieular it is diflieult to ealeulate the limits of

stability of the two phases. We have in Chapter 3 been taking full advantage of the

reeent advanees in Monte-Carlo simulation techniques of phase transitions by using

the Lee-Kosterlitz method in combination with the Ferrenberg-Swendsen reweighting

method. We found unambiguous evidence for a very weak first-order transition with

stability limits extremely close to the equilibrium phase transition temperature. By

studying the variation of the free energy around the transition temperature, the spin­

odal points were found to be extremely close (- 10-3 ) to the transition temperature,

in good agreement with experimental studies of room-temperature nematogens. Fur­

thermore it was shown that the first-order character of the transition can be enhanced
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by introducing a term p.(cos 9ij ) into the Lebwohl-Lasher mode\.

The director fluctuations in the Lebwohl-Lasher model have been investigated by

Monte Carlo simulations which led to equilibrium time scrics of the ncmatic director

and the ncmatie order parameter. From the RIS-analysis and the power spcctrum,

we have found that the Hurst exponent is H::::o 1 for alltcmperaturcs in the nematie

phase and H ::::0 0.5 independent of temperature in the isotropic phase. In the prcsence

of a unidirectional ordering field, there is a crossover from H ::::0 1 to H ::::0 0.5 in the

nematic phase, whereas the presence of the field does not affect the Ilurst exponcnt in

the isotropie phase. For comparison wc also showed that the ordcr-parametcr fluctu­

ations is charactcrized by a Hurst exponent, H ::::0 0.5, indcpcndent of the phasc, thc

temperature, and the presence of the ordering field. These results indicate that the di­

rector fluctuations exhibit fractional Brownian motion in the nematic phase whereas,

whenever the continuous degeneracy is broken, the fluctuations follow ordinary Brow­

nian motion (H = 0.5). The finding of H ::::0 1 in the nematic phase was confirmed

by a recent neutron-scattering experiment on the ncmatogcn d-P AA (Zhang et al.,

1993). The field-induced crossover between fractional and normal Brownian motion

is consistent with the results from the neutron·scattering studies of d-PAA (Otncs

and Riste, 1992; Zhang et al., 1993).

The Lebwohl-Lasher model is quite successful in describing experimental data for

those properties of the nematic-isotropic phase transition which are not partieularly

material dependent. Hence a microscopic model for not only the nematic-isotropic

phase transition but also the nematic-smectic A phase transition may be established

on the basis of the Lebwohl-Lasher mode\. However the positional degrees of free­

dom and the couplings between molecular positions and their orientations, which have

been neglected in the Lebwohl-Lasher model are all present in realliquid crystals. In

order to describe the phase transition involving the smectic l'hases, which have diffcr­

ent spatial ordering from the nematic phase, translational variables for the molecules

are required. Although a continuous variable description of the translational degrees

of freedom is closer to what happens in Iiquid crysta!s, the computationa! prob!ems

•
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that arise could be a real challenge to modern computers. Instead an approximate

approach, similar to the Pink-Potts model of Mouritsen and Zuckermann for inter­

facial melting (Mouritsen and Zuckermann, 1987), could be developed by assigning

Potts states to each molecule to describe its relative deviation from its position in

the 3d lattice of the Lebwohl-Lasher mode!. The spatial ordering of liquid crystals

would then be defined through such Potts states. On the basis of this description,

wc could examine the couplings between the translational and orientational freedoms

that induce the layer ordering which appears in the smectic phases of liquid crystals.

The relative strength of the interactions involved could be determined by the fact

that there is a weakly first-order orientational transition with no spatial ordering at

a higher temperature and a spatial order-disorder (second-order) phase transition at

a lower temperature.

Wc have in Chapter 4 extended the Pink model by including hydrophobie mis­

match interactions between the lipid acyl-chain conformation states and interlayer

interactions between the two monolayers in order to describe the main phase transi­

tion in the lipid bilayers. The nature of the extented models was studied by using

finite-size-scaling plus the Lee-Kosterlitz method. By finding the scaling function for

the specifie heat we obtained a latent heat of 8.12 kcal/mol in the thermodynamic

limit, which is in good agreement with the experimental observations. The method of

Ferrenberg and Swendsen was successfully used to calculate the cluster distributions

at the phase transition. The hysteresis effects due to limited statistics in the stan­

dard Monte Carlo simulations can be easily avoided by using thenew method. Our

study suggested the the finite-size effects should be considered in the interpretation of

experimental observations for small systems, such as large unilamellar vesicles. The

mismatch between the lipid acyl-chain conformation states still needs to be verified by

experiment although the concept of mismatch between lipids and proteins has been

widely accepted by experimentalists.

On the basis of the extended models for pure lipid bilayers, we have in Chapter 5

extended the earlier work of Sperotto and Mouritsen for the effects of proteins on

•
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lipid bilayers. A neW correlation function was introduced to describe directly the

effect of proteins on correlations between lipid molecules at the main phase transition

of these systems. Suppression of the co~relations in the presence of proteins was found

and this was shown to be consistent with recent 2H-NM R relaxation measurements.

The model describing the two monolayers in the bilayers in Chapter 4 makes the

study of gramicidin channels in therma.! equilibrium possible. The dependence of the

equilibrium channel probabilities on temperature found in this work should be tested

by doing experiments for gramicidin-phospholipid mixtures. The same interactions

between gramicidins and lipids considered in this work have been used to interpretate

the experimenta.! phase diagrams of the DPPC-polypeptide mixtures successfully. Wc

derived the phase diagram by simulations whieh fully account for therma.! density

fluctuations and which operate on the level of the free.energy thereby permitting

an accurate identification of the phase boundaries for the binary mixtures. This

represents progress in a field where the calculated specific heat was usual\y used to

determine the phase diagrams because there are severa.! examples in the literature

where apparent specific-heat anomalies had incorrectly been taken as indications of

a phase transition or a phase-coexistence region. Our calculations predieted a closed

loop of gel-fluid coexistence with a lower critical mixing point which location is strong

affected by the van der Waals-like interactions between proteins and lipids. The good

agreement between the experimenta.! data and the theoretical predictions suggests

that the microscopie interaction mode! has captured the essentia.!s of the lipid-protein

interactions in the present lipid bilayer system. The successful use of the hydrophobic­

matching concept in the modeling of lipid-protein or polypeptide interactions and its

consequences for the phase equilibria should definitely be useful for the modeling of

more complex membrane systems, such as ternary mixtures of lipids, polypeptides,

and cholesterol. lt was recently shown in an experimental N M R study by Nezil

and Bloom (Nezil and Bloom, 1991) that the cholesterol-induced thickening effeet of

short synthetie polypeptides is in agreement with the predictions of the hydrophobie­

matehing eriterion. lt would therefore be of interest to extend both the experimenta.!
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and the theoretical work discussed hcre to such three-component systems in order to

gain further insight into the nature of lipid-protein interactions in membranes.

In Chapter 6 we have proposed and analyzed a model for 2d hydrogen bonding

ndworks in lipid bilayers. Our purpose was to understand the phase behavior and

percolation properties of these systems in the absence of other more complex effects.

Wc have shown by computer simulation that the model has a percolation transition

in the absence of a thermal transition atlow values of Du and a first-order pha.~~ tran­

sition accompanying the percolation transition for Du > 160. We have investigated

in detail the nature of the percolation transition for 0 < Du < 160, where there is no

thermal transition and found that the scaling behavior cannot be described by ran­

dom percolation theory, but couId be similar to that found in bootstrap percolation.

The exponents for the percolation transition were obtained by using the method of

Ferrenberg and Swendsen.

Il would be interesting to find an actual lipid system which exhibits such a per­

colation transition without a thermal transition. Such a transition could be inferred

from spectroscopie measurements of the number of hydrogen bonds. From the point

of view of hydrogen bonding in lipid bilayers, we have only described part of the

behavior of the system at the main phase transition. For first order phase transitions,

we identify the low temperature fully bonded phase with the dehydrated crystalline

phase, which is therefore characterized by most!y bonding energy and smail overail

degeneracy. By contrast, the high temperature phase wlùch is composed of most!y

unbonding states and therefore represents a hydrated solid or hydrated fluid phase, is

characterized by a higher degeneracy and a smail energy difference between lipid-lipid

and lipid-water hydrogen bonds. What is missing in the mode! described in Chap­

ter 6 is a detailed analysis of the chain me!ting phase transition wlùch accompanies

change in the hydrogen bonding network. We intend to generalize the mode! to in­

clude these effects by using the Pink mode! to describe the chain degrees of Creedom

for two chains at each !atlice site. Non-hydrogen bonding interactions between polar

heads and differences in Cree energy between the dehydrated crystalline and hydrated
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solid phases may be introduced phenomenologically via additional cncrgy and local

entropy terms. Dynamics and metastability may a1so be examincd in the spirit of the

work done on the quenching of Ising mode1s. Furthermore a 'toy' modcl {or hydrogcn

bonding in water can be obtained by cxtending the modcl dcsnibcd in Chllpler 6 to

three dimensions .
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