% é, g National Library

of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitons !

Bibliographic Services Branch  des services bibliographiques

395 Wellinglon Stieat
Onawa, Ontano
K1A ON4 KA 0N

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, 1ue Wellngion
Ottawa (Ontanio)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a l'aide d’un
ruban useé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Numerical Studies of Phase Behavior in
Thermotropic and Lyotropic Liquid Crystals

Zhengping Zhang
Department of Physics, McGill University
Montréal, Québec
Canada

January, 1993

A Thesis submitted to the
Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

© Zhengping Zhang, 1993



Bl e

Acquisitions and

Bibliothéque naticnale
du Canada

Direction des acquisilions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A QN4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Welington
Ottawa (Ontano)

Your Moo bt avierenee

Chi e et ioderenee

L’'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-87889-4

Canada



Phase Behavior of Thermotropic and Lyotropic
Liguid Crystals

Zhengping Zhang
Department of Physics, McGill University
Montreéal, Québec
Canada

January, 1993

(© Zhengping Zhang, 1993



Abstract

This thesis presents numerical studies of phase behavior for bolh thermotropic ard
lyotropic liquid crystals. The nature of the orientational transition in the Lebwohl-
Lasher model for the nematic-isotropic phase transition is found to be weak first-order
with the stability limits of the nematic and isotropic phases being extremely close to
the equilibrium transition temperature. It is also found that the director fluctuations
in the nematic phase correspond to fractional Brownian motion whereas the fluctu-
ations in the isotropic phase follow ordinary Brownian motion. The Pink model is
extended to give an accurate description of the main phase transition in lipid bilay-
ers by introducing hydrophobic mismatch interactions between acyl chains and also
direct inter-monolayer attractive interact'ons. The lateral density fluctuations and
the resulting dynamic bilayer heterogeneity are studied. Lipid-protein interactions
are further included to describe the phase separation of lipid-protein mixtures, gram-
icidin channel formation and the effects of protein on the lipid bilayers. A model

is also proposed for phase transitions involving hydrogen boading between the polar

heads in lipid bilayers.



Résumeé

Cette these porte sur des études numériques du comportement des phases pour
des cristaux liquides lyotropiques et thermotroniques. La nature de la transition
d’oricntation ayant lieu dans le modéle Lebwohl-Lasher, lequel est sensé représenter
une transition de phase nématique-isotropique, s’est révélée du premier ordre. De
plus, les limites de stabilité des phases nématiques et isotropiques sont trés prés de
la température de transition i 1’équilibre. Il y est également trouvé que les fluctua-
tions directrices dans la phase nématique correspondent i des mouvements Browniens
fractionnels alors que les fluctuations dans la phase isotropique ont lieu selon un mou-
vement Brownien ordinaire.

En outre, le modele de Pink y est étendu afin de donner une description plus
précise des transitions de phases principales dans les doubles couches lipidiques. Ceci
est effectué en introduisant des intéractions hydrophobiques impaires entre les chaines
acyliques ct des intéractions atiractives directes entre les monocouches. La densité des
fluctuations latérales et I'hétérogénéité dynamique résultante entre les couches ont été
étudiées. Les intéractions lipides-protéines ont été incluses pour d’ecrire la séparation
de phases des mélanges lipides-protéines, la formation des canaux de gramicidine, et
enfin 'effet des protéines sur les doubles couches lipidiques.

Finalement, un modele incluant des ponts hydrogéne entre les tétes polaires dans

les doubles couches lipidiques est proposé.



CLAIM OF ORIGINALITY v

The author claims the originality of the ideas and results presented in this thesis.

The following contributions are of particular interest:

o The Lee-Kosterlitz method was first used to study the
3d Lebwohl-Lasher model, the caronical model of
a system which displays an orientational phase transition.
The first unambiguous evidence for a very weak first-order
transition in this model was found.

¢ The spinodal points for this model were first located here by
studying the variation of the free energy which was obtained from the
simulations of order-parameter distributions around the equilibrium
transition temperature.

e The director fluctuations in liquid crystals were first
investigated by Monte Carlo simulations described in this thesis.
It was confirmed later by the neutron-scatiering experiment that
the Hurst exponent, H ~ 1, in the nematic phase and the
crossover between fractional and normal Brownian motion can be
induced by an external field.

¢ The study of director fluctuations led to the finding of a new
universal class of models with a continuous order-parameter degeneracy.

¢ The mismatch interactions between the lipid acyl-chain
conformation states were first introduced in this thesis to describe
the main phase transition via an extended Pink model.

o It was first suggested here that the finite-size effects should
be considered in the interpretation of experimental observations

for small biological systems.



CLAIM OF ORIGINALITY

o The relation between the specific heat obtained from
finite-size simulations and the latent heat at first-order
iransitions was first clarified in this thesis,

o The kinetics of ionic conduction equilibria for the ion
channel of gramicidin in term of monomer-dimer formation of
gramicidin molecules was first simulated here in a novel bilayer
model composed of two monolayers.

o A new correlation function was first introduced here to the
study in the effects of proteins on lipids. The suppression of the
correlations in the presence of proteins is consistent with the
recent 2H — NM R observations.

¢ The Lee-Kosterlitz method was first used here to determine
the phase boundaries of binary mixtures in terms of temperature and
composition.

o The first microscopic model was established in this thesis
to predict a critical mixing point in a binary peptide-lipid
mixture. The study led to the first understanding of the lower
critical mixing point found in experiments at the level of a
microscopic model.

s The method of Ferrenberg and Swendsen was first used in this
thesis to calculate the properties related to cluster distributions
and the exponents at percolation transitions.

* A new model for 2d hydrogen bonding networks in lipid

bilayers was proposed in this thesis.
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Chapter 1

General Introduction

Liquid crystal phases are distinct states of matter that have structural order interme-
diate between that of conventional liquids and solids (de Gennes, 1974). For example,
many organic crystals melt by passing through intermediate fluid phases that are op-
tically anisotropic. Although liquid crystals were identified for at least 100 years,
they have attracted major attention from physicists only in the last twenty-five years
(Litster and Birgeneau, 1982). The dramatic rise in scientific interest in liquid crys-
tals has occurred for several reasons. First, liquid crystals precipitated a revolution in
the display industry and this in turn excited the interest of basic scientists. Second,
the liquid-crystalline state is ubiquitous in biological systems and this has led to a
major effort in biological research. Third, the physical behavior of liquid crystals
raises some fundamental problems in statistical physics.

From the way that the liquid crystals change phases, they can be classified into
thermotropic and lyotropic liquid crystals (Litster and Birgeneau, 1982; Pershan,
1982). For thermotropic materials, as the name implies, temperature determines the
phase. However, for lyotropic substances, concentration is the main physical variable.

Thermotropic liquid-crystal phases are those observed in pure compounds or ho-
mogeneous mixtures as the temperature is changed. They are conventionally classi-
fied into nematic, cholesteric, and smectic phases (see Fig. 1.1). The nematic phase

is the least complex liquid-crystal phase, whose long range order is based on molec-
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Figure 1.1: Common types of liquid-crystal ordering {After Ref. (Litster and Birge-
neau, 1982)].
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ular orientation via quadrupole-quadrupole interactions. This phase is used in cal-
culator and wrist-watch displays (Kahn, 1982). The molecules butoxybenzylidene-
octylanilene and octyloxy-cyanobiphenyl in Fig. 1.1 both exhibit nematic phases. The
thermotropic nematics have one symmetry axis, called the director n, and are optically
uniaxial with a strong birefringence. The molecules themselves usually lack a center
of symmetry but the nematic phase has inversion symmetry and the orientational
order parameter has quadrupolar rather than dipolar symmetry. ‘i‘he continuous ro-
tational symmetry of the isotropic liquid phase is broken when the molecules choose
a particular direction to orient along in the nematic phase. Another thermotropic
phase having only molecular orientational order is formed by chiral molecules. This
is the cholesteric phase, thermodynamically equivalent to a nematic but with a chiral
character that causes the director to twist (see Fig. 1.1) with a pitch that is compa-
rable to the wavelength of light. The name ‘cholesteric’ derives from the fact that
many cholesterol esters exhibit this phase. The strong modulation of the refractive
index due to the twist causes Bragg scattering of various colors of light and makes
cholesterics the most beautiful of the liquid-crystal phases, The remaining important
thermotropic phases are smectics. There are many distinct smectic polytypes bear-
ing the labels smectic A,B,C,..., with the phases being labeled not according to any
microscopic properties but rather by the chronological order of their discovery. It is
clear, however, that these liquid-crystal phases have different underlying symmetry
properties. The smectics are distinguished by having an intermediate degree of posi-
tional order in addition to molecular orientational order. Smectics have usually been
identified by the textures they exhibit under a polarizing microscope and by misci-
bility studies with known phases. The molecules butoxybenzylidene-octylanilene and
octyloxy-cyanobiphenyl shown in Fig. 1.1 also exhibit smectic phases.

Lyotropic liquid-crystal phases are observed when amphiphilic (from the Greek
‘amphi’ meaning ‘on both sides’ and ‘philo’ meaning ‘loving’) molecules, such as
soaps, are dissolved in water. The simple soap, potassium n-octanoate, for example,

exhibits such liquid-crystal phases. The molecules of this soap have a hydrocarbon,
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Figure 1.2: A cartoon of the fluid-mosaic model of a biological membrane [After
Ref. (Mouritsen, 1987)].

or n-alkane part, CH3(C H;);- that is poorly soluble in water and a ‘polar head
group’—CO; Kt that is exceedingly water-soluble. At suitable concentrations and
temperatures, nature resolves these opposite tendencies by forming liquid-crystalline
phases in which the molecules are arranged so that the polar head groups shield the
hydrocarbon parts from the water.

Lyotropic liquid crystals have long been important to researchers interested in
" biological membranes. These membranes are, in general, composed of individual
lipid and protein molecules in a bilayer structure 60-100 A thick (Fig. 1.2). The lipid
molecules involved in bilayer formation are amphipathic. They are composed of a
polar or charged head group attached to a variable-length nonpolar tail. Depending
on their molecular structure, lipids in water spontaneously form micelles, vesicles,
monolayers, or bilayers. In all cases, the driving force is primarily entropic in nature.

The hydrophobic effect favors these structures because they minimize the contact
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between the nonpolar regions of molecules and the surrounding water. Minimizing
this contact area minimizes the structural ordering of water molecules around the
nonpolar groups. The lipid tails also show van der Waals attractions and the polar
head groups show electrostatic and hydrogen bond attraction to the solvent water.
Thus, cooperative motion of lipid molecules with long tails seeking a thermodynamic
energy minimum leads to the formation and maintenance of the bilayer structure.
Biological membranes play a central role in both the structure and function of all
cells, from plant to animal (Gennis, 1989). They provide the cells with a permeabil-
ity barrier which is necessary in order to maintain chemical and electrical gradients
between the intra- and extra-cellular media. They also determine the nature of all
communication between the two sides, such as the actual passage of ions. This in-
cludes the transport of electrons, the conversion of sunlight to chemical and electrical
cnergy, pumping small molecules against a concentration gradient, and the use of that
gradient as a source of energy. What is so remarkable about a biological membrane
is that, in a process known as self-assembly, its thousands of individual component
molecules spontaneously associate, align, and create its precisely defined structure.
The lipid bilayer which will be considered in this thesis is only a small part of the
large macromolecular composite which makes up the biological membrane. Proteins
constitute from 25% to 80% of the membrane by weight. These membrane proteins
fall into two classes. Peripheral proteins bind to the surface of the membrane, gen-
erally through polar interactions, ionic bonds, or hydrogen bonds. Integral proteins
penetrate the membrane, often extending beyond its surface in both directions. These
proteins can also self-assemble with the membrane as it is driven spontaneously to
an energy minimum. Non-membrane proteins fold spontaneously with their nonpo-
lar amino acid side chains in the central core, protected from solvent water by the
amino acids with polar or charged side chains that appear on the surface. Membrane
proteins, on the other hand, fold so that the nonpolar amino acid side chains are on
their surface, in contact with the nonpolar tails of the lipids in the interior of the

membrane.
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With our interest in understanding phase transitions, we examine in this thesis
the properties of theoretical models for the nematic-isotropic phase transition in
thermotropic liquid crystals and for the gel-fluid transition in lyotropic liquid crystals,

In Chapter 2, we give an introduction to the numerical methods used in the thesis.
Then we present our analysis and results in the rest of the chapters of this thesis.

In Chapter 3, we study the three-dimensional Lebwohl-Lasher model for liquid
crystals. The Lebwohl-Lasher model is the canonical model of a system which dis-
plays a nematic-isotropic phase transition. A better understanding of the model
is useful for studying the basic interactions between lipid molecules. In fact, the
first model for lipid bilayers was a liquid crystal model. The anisotropic van der
Waals interactions between the acyl chains described below for the Pink model of
lipid bilayers correspond to a mean-field approximation of the interactions used in
the Lebwohl-Lasher model.

In Chapter 4, we are concerned with the main phase transition of pure phos-
pholipid bilayers. A brief introduction to phospholipids and the basic experimental
observations for the transition is given in the chapter. Extensions of the Pink model
which describe the first-order phase transition are then presented.

In Chapter 5 we propose on the basis of the extended models in Chapter 4 a model
for lipid-protein mixtures in order to examine the bilayer phases of these systems.
The studies are then compared to experimental results for gramicidin channels and
phase diagrams of lipid—protein mixtures.

Polar-head interactions between lipids are discussed in Chapter 6. We present
a lattice model for the hydrogen bonding of polar-heads in order to describe the
hydration-dehydration transition. The aspect of percolation in the hydrogen bonding

model is investigated in detail.

The thesis is concluded in Chapter 7 which contains suggestions for further work.



Chapter 2

Numerical Simulation Methods

In this chapter we discuss the numerical simulation methods which are used in the
later chapters. Furthermore, we choose the Ising model in a magnetic field as a
tutorial example although the applications of the methods are quite general, We
begin by giving a general description of the Monte Carlo method and its application
to problems in statistical physics (Mouritsen, 1984; Binder and Heermann, 1988) and
we then describe the recent extensions due to Ferrenberg and Swendsen (Ferrenberg

and Swendsen, 1988) and Lee and Kosterlitz (Lee and Kosterlitz, 1990).

2.1 The Monte Carlo Method in Statistical Physics

2.1.1 Monte Carlo Methods: General Considerations

Monte Carlo methods are used to solve numerically mathematical problems which
are too complex to allow an exact analytical treatment. The problems approached by
Monte Carlo methods are conveniently devided into two classes consisting of proba-
bilistic and deterministic problems respectively. In solving a probabilistic problem,
one tries to simulate directly the random process inherent in the problem. A clas-
sical example is simulation of neutron diffusion in reactors. Solving a deterministic

problem by a Monte Carlo calculation requires a transformation of the deterministic
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problem into another problem of a stochastic nature. The original problem need not
itself have anything to do with random processes. The only requirement is that the
original problem and the transformed one have solutions which differ by a controlled
amount. A example of deterministic problems which have been solved by Monte Carlo
methods is that of multi-dimensional integrals in many-body theory. We are then con-
cerned with the type of Monte Carlo methods which allow a numerical evaluation of

the multi-dimensional integrals which arise in the physics of interacting many-body

systems,

2.1.2 Statistical Mechanics

The application of Monte Carlo methods to statistical physics requires the description
of some basic statistical mechanical properties. A microstate, or configuration, of a
system is described by a set of mechanical variables, £2, which contains the values of
all possible degrees of freedom for each particle of the system. Phase space, {2}, is the
space spanned by all possible microstates of a system. The properties of the system
is governed by a Hamiltonian function, H(f?), defined in terms of the mechanical
variables. For a ferromagnetic system described by two-dimensional Ising model, the
Hamiltonian is

H=-JEu5585—HE: S (J >0) (2.1)
where the spin 5;, representing a magnet at site ¢, can point up or down along the ‘easy
axis’, the exchange energy J is restricted to nearest neighbors, and H is a magnetic
field. In this case, the phase space {f2} = {S;} with all possible configurations. In
statistical mechanics, a probability, p(§2), is associated with each configuration. The
probability may be expressed in terms of a canonical density function

e~H{()/kpT

) = —F— (2.2)

where Z is a normalization factor (the partition function)

Z= ~HT g, 2.
Loy (23)
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T is the absolute temperature and kg is Boltzmann’s constant. Given the probability
distribution of the configuration, the thermodynamic average of a measurable physical

quantity, g(£2), is obtained in the canonical ensemble as

<g>= f{ oy S()(D)d0 (2.4)

The propertics of the system in thermodynamic equilibrium are then determined
by Eq. (2.4) which constitutes the formal connection beiween the microscopic and
macroscopic physical worlds. Based on Eq. (2.4), one has a set of relationships be-
tween response functions and equilibrium variances for the corresponding physical
quantities. This is the so-called fluctuation-dissipation theorem which is expressed

as follows in the case of the specific heat Cp(T'} and the isothermal compressibility
x(T):

CH(T) = () = (H)) s
X(T) = (X% - (X)) (26)

where n is the number of particles in system and X is the order parameter.

2.1.3 Importance Sampling

The use of the Monte Carlo method in equilibrium statistical mechanics is based on
the idea of approximating Eq. (2.4) by a summation using only a characteristic subset
of phase space points, {€2;,2;,...,fx}, which are used as a statistical sample. If N

is large enough, one has

):?;1 e—?i(ﬂ.-)/kgrg(nl_) (2 .
z‘_h;l e—-‘H(ﬂ.‘)/kBT * )

<g>m

The points, {£%;}, may be chosen by two kinds of sampling, simple sampling and
importance sampling. In simple sampling, one chooses the points at random, using
‘pseudo-random numbers’ produced by a ‘random number generator’ built into the
computer. In the neighborhood of phase transition, however, this procedure is highly

inefficient since the Boltzmann weights vary by many orders of magnitude. Important
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information about the transition may thercefore be lost by using simple sampling.
Importance sampling samples the configuration {£;} not completely random, but
preferentially from the region of phase space which is important at temperature T,
Consider a process where the phase space points, {£2;}, are sclected according to a
probability, P(£2;). With the choice of this set {§;} for the calculation of a thermal
average, formula (2.7) is now replaced by

Tl e M kaT () / P(S)
L, eMkaT/ P(S;)
One choice for P(€;) would be P(£2;) « exp[—H(£2;)/ksT). The Bollzmann factor

<go>=

(2.8)

cancels out altogether, and Eq. (2.8) is reduced to an arithmetic average

1 N
<g>m > g(%) (2.9)
i=1

The problem is then to find a procedure which implements importance sampling.

Such a procedure is due to Metropolis et al (Metropolis et al., 1953).

2.1.4 The Metropolis Monte Carlo Method

Metropolis et al. (Metropolis et al., 1953) chose successive states {£2;} stochastically
via a Markov process where each state §2;,; is obtained from the previous state £2; via
a suitable transition probability W(£2; — £;41). A sufficient condition for achieving

this is the principle of detailed balance
P (U)W — Qi) = P ()W (2 — Q) (2.10)

Metropolis et al. then showed, from the transition probability W in the limit N — oo,
that the distribution function P(£2;) of the states generated by this Markov process

tends towards the equilibrium distribution
P (%) = %e-”(“-')f"ﬂ. (2.11)

Eq. (2.10) implies that the ratio of transition probabilities for 2 ‘move’ 2; — £ and

the inverse move Q; — §2; depend only on the energy change §H = H(Q4) — H(S%),

W — Q) = e~tM/knT

T = (2.12)
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Eq. (2.12) does not specify W(§; — i) uniquely, and some arbitrariness in the

explicit choice of W remains. One frequently used form for W is

1e-8H/kaT if 1 > 0
' (2.13)

1 otherwise

Ta

«4

W(Q; - Q) =

The quantity 7, usually is chosen as unity. On the basis of Eq. (2.13), Metropolis et
al. proposed the following algorithm for the canonical Monte Carlo method,

1. Specify an initial configuration §2.

2. Generate a new configuration §2'.

3. Compute the cnergy change §H.

4. Calculate the transition probability W for the change.

5. Choose a random number R uniformly distributed between 0 and 1.

6. If R < W, accept the new configuration; otherwise retain the old configuration.

7. Analyze the resulting configuration as desired, and store its properties to cal-

culate the necessary averages. Then return to step 2.

A measure of the times by which the above algorithm is repeated is Monte Carlo
steps per particle (MCS).

2.1.5 Dynamic Interpretation of the Metropolis Monte Carlo
Method

There are usually correlations which occur between the configurations generated se-
quentially in the Markov chain described in Sec. 2.1.4. These correlations strongly
affect the accuracy that can be obtained from a given number of MCS. They can be
understood by interpreting the Monte Carlo averaging in terms of a master equation
describing a well-defined dynamic model with stochastic kinetics (Mouritsen, 1984;

Binder and Heermann, 1988). The interpretation of correlations as time is useful for
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estimating of the accuracy and provides the theoretical basis for the application of
Monte Carlo methods to the simulation of dynamic processes. One application is the
simulation of the Brownian motion of macromolecules. The time ¢ is associated with
the scale ¢ of the subsequent configurations. Therefore, the probability that a config-
uration £ occurs at time ¢, P(f2,t), corresponds to P(£2;} in a Monte Carlo process,
i.e. P(2,t) = P(£2;). This probability satisfies the Markovian master equation
2’!;(;%_51 = —g W(Q — Q)P(N,t) + % W(Q' — Q)P(Q,1). (2.14)

In thermal equilibrium, ﬂ‘?—"l = 0 so that detailed balance, Eq.(2.10), is satisfied.

2.2 Ferrenberg-Swendsen Extrapolation Method

The data obtained from standard Monte Carlo simulations described in Sec. 2.1.4 are
averages of thermodynamic quantities at the single point in the parameter space for
which the simulation is performed. Therefore in order to obtain information over a
range of parameters, one has to perform many individual simulations in the parameter
range. Recently, Ferrenberg and Swendsen (Ferrenberg and Swendsen, 1988) proposed
an efficient method which uses standard simulation methods to generate continuous
thermodynamic functions across important regions of parameter spaces. The data
from a single simulation can for example be used to study the entire scaling region
near a phase transition. The method is especially important when the behavior of
the system displays sharp peaks, such as those near first- and second-order phase
transitions, which are crucial for understanding the critical behavior of 2 model.
Standard Monte Carlo techniques locate the position of a narrow peak by multiple
high-accuracy simulations. The result is a set of discrete points, none of which is
exactly at the maximum. With the new method, data irom a single simulation can
be used to accurately locate the peak position and determine its height.

To illustrate the Ferrenberg-Swendsen method, consider a Monte Carlo simulation

of the Ising model. Each configuration is generated with its proper thermal weight
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and is then averaged over time to give the equilibrium averages of physical quantities
of interest. These averages are the usual output of Monte Carlo simulations. However,
Ferrenberg and Swendsen (Ferrenberg and Swendsen, 1988) showed that the corre-
sponding histogram can be used to extract more information from the simulation.
To this purpose, the average in the formula (2.7) is performed for a point in pa-
rameter space, for example at (T, H), for the Ising model. Choosing § = 3 ;y 5:5;
and M = ¥; S5; as quantities representing configuration of system, the probability
distribution of S and M at space (T, H) can be written as

n(S, M)eTTSHHM)

P S\ M) =
(T.H)( ) ZsMn(S’M)ern!-f(Js-l-HM)’

(2.15)

where n(S, M) is the degeneracy of the configurations with the same S and M. The
histogram of values of (S, M) generated by the Monte Carlo simulation is proportional
to Pir.u)(S, M). By storing this histogram, one can generate the normalized prob-
ability distribution. The histogram can then be used to generate data for different
parameters. The normalized probability distribution with new parameters (7¥, H')
can be expressed in terms of the distribution with (T, H) in the following way:

( g )(JSIHJMN(HI H)
P']' H S M e lBT ApT AT
.P(Tl.yi)(s, M) - (T, )( ! )

: (2.16)
st B (5, M) S~ O IO B

Since T and H' are continuously variable, any quantities of interest, including the
cluster distribution, can be calculated as a continuous function of the parameters
(Zhang, Mouritsen and Zuckermann, 1992a; Zhang et al.,, 1992c). The technique car
casily be generalized to other models, including those with continuous symmetry or

described by several parameters.

2.3 Determination of the Nature of Phase Tran-
sitions

Metropolis Monte Carlo simulations can only be performed for finite systems. In the

early use of this method, a system with as large a size as possible was used in order
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to suppress the finite-size effects. However, a knowledge of the finite-size effects is
useful not only for the calculation of the various thermodynamic quantities for small
systems and their extrapolation to nontrivial thermodynamic himit but-also because
it is possible to obtain information about the nature of a phase transition (Challa,

Landau and Binder, 1986; Mouritsen, 1984; Zhang et al.,, 1992a).

2.3.1 Finite Size Effects of Phase Transitions

A first-order transition is characterized by discontinuities in the first derivatives of the
free energy, such as the internal energy and the magnetization in the thermodynamic
limit (Landau and Lifshitz, 1980). This results in é-function singularities in the
specific heat and the susceptibility at the transition. The singularities at a first-
order transition are due to phase coexistence. At a second-order transition, on the
other hand, the divergences are intimately linked to the divergence of the correlation
length. In a finite system, however, the above divergences do not occur. Instead, in
both types of transition, one sees finite peaks in the specific heat and the susceptibility
near the transition point. Two eflects appear because of the finite size: a ‘rounding’
of the transition region occurs with the peak heights increasing with lattice size and
the location of the maxima shift in a size-dependent fashion (Challa, Landau and
Binder, 1986; Fisher, 1971). In a second-order transition the rounding is due to
the correlation length being limited by the lattice size, L, so that the scaling theory
predicts that the maximum of the specific heat diverges as L2/* and that the half-
width decreases as L=Y/*, At a first-order transition, L appears only in terms of the
volume, L9, in d dimensions. The maxima therefore grows as L? and the §-function
limnit is obtained because the width decreases as L=?. The scaling for the specific heat

and the susceptibility is given by (Mouritsen, 1984; Fisher, 1971)

Pt = g4 bLY

XL = o' +bI¥ (2.17)
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where ¥ = d for a first-order transition and ¥ = a/v for a second-order transition.
Note that these specific predictions only apply when L is large enough.

The fourth-order cumulant proposed by Binder (Binder, 1981) is a useful quantity
to measure in a simulation since it behaves quite differently at first-order and contin-
uous transitions. This quantity is defined in terms of the configurational energy, E,
as follows .

o(L)=1- 3%%;)53 (2.18)
For continuous transitions, (L) — 2 for all temperatures as L — oo. For first-order
transitions, o( L) takes on the value 2/3 for both high and low temperatures, tending
toward a nontrivial minimum value at the transition temperature. The minimum

value, o™, of o(L) scales as L~ in the thermodynamic limit. However this method

suffers from severe crossover effects.

2.3.2 Lee-Kosterlitz Method

An unambiguous method which determines the order of a phase transition was pro-
posed by Lee and Kosterlitz (Lee and Kosterlitz, 1990). This method consists of
calculating the free energy as a function of the order parameter, X, from the proba-
bility distribution at the transition. In the Ising model, X would be the magnetization
per spin. The distribution of the order parameter P(X,T, L), as already described in
Sec. 2.2, can be obtained from the histogram of X generated in a single Monte Carlo
simulation at T for the system with size L. The free-energy-like quantity, A(X, T, L),
defined by

AX, T, L)~ - P(X,T, L) (2.19)

differs from the bulk free energy, F(X), by & T- and L-dependent additive quantity.
However, at fixed T and L, the shape of A(X, T, L) is identical to that of (X)) and
furthermore A(X)— A(X') = F(X)—F(X'). A measurement of §.4 = A(X)- A(X')
thercfore gives a direct evaluation of the corresponding §F = F(X) — F(X').

At a first-order transition, F(X) has pronounced double minima corresponding to
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two coexisting phases at X = X, and X = X, separated by a barrier with a maximum
at Xma- corresponding to a domain boundary between the two phases. The height
of the barrier measures the interfacial free energy between the two coexisting phases
and is given by

6F = F(Xpaz) — F(X1) ~ L4L, ©(2.20)

Therefore, an increase in §F with increasing L implies a first-order transition whereas
a decreasing 6F which vanishes at large L implies the absence of a transition. Finally
a constant 8F indicates the occurrence of a continuous transition. This method is

used widely in the following chapters for the identification of the nature of the phase

transition for a variety of microscopic models.



Chapter 3

Model for Nematic Liquid
Crystals

In this chapter, we present the results of extensive Monte Carlo simulations of a
thermotropic liquid crystal model, the Lebwohl-Lasher model, for both transitional
properties and director fluctuations. These results will be compared with experimen-

tal observations.

3.1 Introduction

Nematic liquid crystals differ structurally from normal isotropic liquids only in the
spontaneous orientation of the molecules with their long axes parallel. In the absence
of orienting fields, the preferred direction of the long axes is not constant over large
areas, but varies continuously with position in real space (Saupe, 1968). However
a complete understanding of the nature of intermolecular interactions is not avail-
able. Maier and Saupe (Maier and Saupe, 1959; Maier and Saupe, 1960) proposed
a simple model for the nematic-isotropic phase transition. It was assumed that the
interactions between molecules are dependent on both their positions, 7, and relative
orientations, 87, through the Legendre polynomial, P;(z), which describes the ori-

entational ordering of the molecules. The interaction term can then be written as

17
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follows

J = —¢(|F = #|) Pa(cos O). (3.1)

Since P(z) is the lowest term in the expansion of z for an uniaxial function, it can
be considered as the simplest expression for interactions between molecules in the
nematic phase of liquid crystals. Maier-Saupe theory in the mean field approximation
is equivalent to the Landau-de Gennes theory (de Gennes, 1974) in which the nematic
order in liquid crystals is characterized by a second-rank tensor order parameter, Q,

and the free energy is expanded in components of this order parameter as follows

F= Fot SAT)QusQuo + 3B(T)00s00 0 + OQY). (32

In contrast to the dipolar symmetry of ferromagnets, the sign of the order parameter is
important in a nematic. Q and —Q correspond to positive and negative birefringence
and hence to quite different physical arrangements of the molecules. Therefore there
is a term of order Q3 in the free energy for the purely geometrical reasons. Symmetry
does not forbid a third-order invariant in F' and this implies that the model should
exhibit a first-order transition. Although the mean-field solution to the Maier-Saupe
model is consistent with most of experimental cbservations for the nematic-isotropic
phase transition, it fails to estimate the spinodal temperature, T, which marks the
stability limit of the isotropic phase. The result for T* is displaced relative to the
equilibrium transition temperature, T¢, by (T. — T*)/T. ~ 10~ which is almost two
orders of magnitude larger than typical experimental values (de Gennes, 1974; Stinson
and Litster, 1970; Thoen, Marynissen and Van Dael, 1982).

The following approach to the Maier-Saupe model was proposed by Lebwohl and
Lasher (Lebwohl and Lasher, 1972) in 1972. They introduced the lattice version of the
Maier-Saupe model in order to define the simplest possible microscopic lattice model
of a regular array of rotor variables that has an orientational transition. Only nearest-
neighbor interactions needed to be considered since the factor of ¢(|7 — '{) in Eq. (3.1)
was found to decay very rapidly with increasing distance between molecules {Lasher,

1970). In the Lebwohl-Lasher model, therefore, the rotor variables are coupled by the
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Hamiltonian

H=—€ Z Py(cos 8;;), (3.3)

wi

where Py(cos6;;) = 3(3cos?8;; — 1), 6;; is the angle between the axes of rotors at
nearest-neighbor sites ¢ and j, and €3 is a coupling parameter. The rotors are con-
tinuous variables and since the interaction in Eq. (3.3) is fully isotropic there is no
coupling between the orientational properties and any preferred spatial directions.
Below the equilibrium phase transition temperature, T¢, the orientational isotropy is
broken and an orientationally ordered phase characterized by the nematic order pa-
rameter is formed. Even though the Lebwohl-Lasher model neglects the coupling be-
tween positional degrees of freedom and molecular orientation which is present in real
nematogens, the orientational transition in the Lebwohl-Lasher model is believed to
resemble the nematic-isotropic phase transition in liquid crystals (de Gennes, 1974).

The nature and the properties of the nematic-isotropic phase transition in the
Lebwohl-Lasher model have been under active investigation since 1972 both in three
(Lebwohl and Lasher, 1972; Lebwohl and Lasher, 1973; Lasher, 1972; Luckhurst and
Simpson, 1982; Fabbri and Zannoni, 1986; Zannoni, 1986; Biscarini et al., 1991;
Cleaver and Allen, 1991; Zhang, Mouritsen and Zuckermann, 1992b; Zhang et al.,
1992b; Zhang, Zuckermann and Mouritsen, 1992; Cleaver and Allen, 1992) and two
spatial dimensions {Chiccoli, Pasini and Zannoni, 1988). Strong numerical evidence
for a first-order transition in the three-dimensional Lebwohl-Lasher model has been
presented (Fabbri and Zarnoni, 1986; Zannoni, 1986) but only recently (Zhang,
Mouritsen and Zuckermann, 1992b) has unambiguous evidence for the first-order
nature of the transition as presented below been found using the latest advances in
numerical Monte Carlo simulation techniques described in Sec. 2.2 and Sec. 2.3.2.
From these calculations (Zhang, Mouritsen and Zuckermann, 1992b) it was found
that the Lebwohl-Lasher model can account for the close proximity of the experi-
mentally observed stability limit of the isotropic phase to the transition point and
that the Maier-Saupe mean-field approximation grossly overestimates the range of

metastable states in the model.
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The computational problems arising in studies of the orientational-ordering tran-
sition in the Lebwohl-Lasher model are related to the strong pretransitional effects
which make it difficult to reveal the nature of the transition and to accurately de-
termine the transitional properties. In particular it is troublesome to calculate the
limits of stability of the two phases, i.e. to locate the spinodal points, In Sec, 3.3
we describe the results of extensive Monte Carlo computer-simulation calculations
on the three-dimensional Lebwohl-Lasher model involving a determination of order-
parameter distribution functions which permit free-energy functions to be derived.
From a finite-size scaling analysis of these functions the nature of the orientational
transition is shown to be of first order. The first-order transition is, however, ex-
tremely weak with strong precursor effects. From the variation of the free energy
around the equilibrium transition temperature, it is possible to derive the limits of
stability (the spinodal points) of the nematic and isotropic phases. The spinodal
points are found to be extremely close (~ 107*) to the eq;lilibrium transition tem-
perature, T.. Results are also presented for the specific heat, the axial and biaxial
susceptibilities, as well as the enthalpy and discontinuity in the nematic-order param-
eter at the transition. It is also shown (Zhang, Zuckermann and Mouritsen, 1992)

that inclusion of a term Py(cos 6;;) in the Hamiltonian,

H=—e E Py(cos8;;) — & Z Py(cos 6;;), (3.4)

ij
where Py(cos 8;;) = 1(35 cos* 8;;—30 cos® 8;;43) is the 4th order Legendre polynomial,
enhances the first-order character of the transition and leads to a displacement of the
limits of stability away from T..

We have also investigated the director fluctuations in the Lebwohl-Lasher model
by simulating equilibrium time series of the nematic director and its magnitude, the
nematic order parameter. The results are described in Sec. 3.4. From a statistical
analysis of these time series in terms of the auto-correlation function, C(t), and the
power spectrum, P(f), of the accumulated fluctuations we have obtained the following

results: (i) the correlation of the director fluctuations scales as C(t) ~ t*# and the
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power spectrum as P(f) ~ f~(H+1) with the value of the Hurst exponent being
H ~ 1 for all temperatures in the nematic phase, (ii) in the isotropic phase, C(t)
scales as C(t) ~ t*F and P(f) scales as P(f) ~ f~(*¥+1) with H ~ 0.5 independent
of temperature, and (iii) in the presence of a unidirectional ordering field, —A? cos? §;,
there is a crossover from H ~ 1 to H ~ 0.5 in the nematic phase, whereas the
presence of the field does not affect the Hurst exponent in the isotropic phase. For
comparison we show that the correlation function of the order-parameter fluctuations
and the corresponding power spectrum is characterized by a Hurst exponent, H =~
0.5, independent of the phase, independent of the temperature, and independent of
the presence of an ordering field. These results show that the director fluctuations
exhibit fractional Brownian motion (Mandelbrot, 1982; Feder, 1988; Feder, 1991),
i.e. H > 3}, in the nematic phase whereas whenever the continuous degeneracy
The

field-induced crossover between fractional and normal Brownian motion is consistent

is broken, the fluctuations follow ordinary Brownian motion, t.e. H =

[ X3
-

with the findings from a recent neutron-scattering study of the nematogen d-PAA

(deuterated para-azoxy-anisole) (Zhang et al., 1992b; Otnes and Riste, 1992).

3.2 Details of the Simulations

We used the Metropolis Monte Carlo computer-simulation method, described in
Sec. 2.1.4, to determine a canonical equilibrium ensemble of microstates for the
Lebwohl-Lasher model. In the Lebwohl-Lasher model, the orientation of the ith
rotor can be described by a unit vector, u;, which is stored as cosf; and ¢; in our
simulations for the phase transitional properties, where 8; and ¢; are the polar and
azimuthal angle of the symmetry axis of the rotor. On a simple cubic lattice with
linear size, L, the microstate of system is given by the set of N such orientations,
{¢:,6;}, where N = L3? is the number of rotors. The angle between the symme-
ry axes of rotors ¢ and j, 8;;, is determined by the polar angles of the rotors, i.e.

cos 8;; = cos §; cos §; + sin 0; sin §; cos(p; — ¢;). The periodic boundary conditions are
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imposed on the lattice in order to suppress the boundary effects. In order to generate
a new microstate, we first chose rotors randomly and the orientations of the chosen
rotors are then changed by generating two uniformly random values for cos 8 and ¢.
Considering the uniaxial property of rotors, we chose cos8 € (0,1) and ¢ € (0,27)
respectively. The acceptance rate is about 40% in our simulations.

Monte Carlo simulations are performed in three steps. First, simulations are per-
formed to evaluate the specific heat, C(T'), and the susceptibility, x{T'), as functions
of temperature. The results of these simulations are used to determine the peaks in
C(T) and x(T) as accurately as possible. Secondly, very extensive simulations are
then performed at the position of the peak of C(T) or x(T) for different values of
the system size, L. These simulations involve 1 - 2x10°® Monte Carlo steps per site
(MCS). The basic thermal averages over a microstate are calculated and stored every
20 MCS.

The basic thermal quantities are the internal energy per rotor, E(T) = (H}/N,

and the nematic order parameter. The value of nematic order parameter is determined

as

(Py) = L™ <Z (g- cos? B; — %)> , (3.5)

where 6; is the angle between the axis of the ith rotor molecule and the nematic
dizector. Due to the non-broken continuous symmetry of the nematic ordering, the

direction of the nematic director varies and has to be determined during the simulation

in order to calculate {P;). This is facilitated by diagonalization of the tensor order

parameter Q,

- 3 1
Qaﬂ =L Z (Ena.inﬁ.i - 5 aﬂ) 3 a,B = T, ¥, 2, (36)
i
where n, ; is the a-component of a unit vector, n;, which specifies the orientation of
the ith molecule. The instantaneous value of the order parameter is then given by
the largest eigenvalue, A;, of Q (Zannoni, 1986). The corresponding eigenvector, n,

determine the direction of the nematic director. From the two smaller eigenvalues, );
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and Az, of the order-parameter tensor the biaxial susceptibility, §(T), can be derived
§(T) = (|A2 — Asl). (3.7)

On the basis of the data, the nature of transition can be determined by using
the Lee-Kosterlitz method described in Sec. 2.3.2 and the properties of system near
transition temperature are calculated by using the method of Ferrenberg and Swend-
sen described in Sec. 2.2. The thermodynamic order parameter is obtained as the

average,
(A1) = (P)a. (3.8)

The response functions like the specific heat and the ordering susceptibility, C(T')
and x(7T'), are calculated according to the fluctuation-dissipation theorem [Eqgs. (2.5)
and (2.6)]. Furthermore, free energies, F(E,T, L} and F(A,T, L), are obtained as

F(B,T,L) ~ —InP(E,T,L)
F(\T,L) ~ -lnP(\T,L) (3.9)

where the energy and the order-parameter distribution functions, P(F,T,L) and

P(A,T, L), can be derived from the data.

3.3 Results for Transition Properties

3.3.1 Response Functions: Susceptibilities and Specific Heat

Fig. 3.1 shows the data for the susceptibility, x(T'), as functions of temperature and
system size for a range of temperatures in the transition region. A similar plot for the
specific heat, C(T'), is shown in Fig. 3.2. The two functions exhibit a pronounced max-
imum signaling the orientational transition. The maximum increases as a function of
system size for both functions and the position of the maximum moves correspond-
ingly towards lower temperatures. The inserts of Figs. 3.1 and 3.2 show that the
maxima scale with system size in such a way that the scaling forms, Eq. (2.17) are

approximately obeyed. The data for x7** clearly approach the scaling regime earlier
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than the data for CP**. Hence we conclude that the expected scaling relations for a
first-order transition hold. Even though the maximum value of the response functions
appears to have approached the asymptotic scaling regime, the full functional form
of the two functions are not in the scaling regime for the system sizes investigated.
This is demonstrated in Fig. 3.3 which shows plots of CL™? and xL~¢ vs the scaling
variable, ATL?. Here AT = T — T.(L) and the finite-size transition temperature,
T.(L), is defined as the position of the peak of the response function in question.
Again even though the data for the susceptibility appear to scale approximately over

a range of temperatures in the transition region, the data for the specific heat are not

yet in the scaling regime.

3.3.2 Internal Energy and Nematic Order Parameter

Fig. 3.4 shows the simulation data for the internal energy per rotor, E(T), and the
orientational order parameter, (P2(T')), in Eqg. (3.5), for a wide range of temperatures.
Only results for the two largest system sizes studied are exhibited. These figures
clearly show that the transition is so strongly influenced by fluctuations that the
variation of both the internal energy and the order parameter is smooth and effectively

continuous throughout the transition region even for the largest system size.

3.3.3 Nature of the Nematic-Isotropic Phase Transition

The data for the free energy functionals, Eq. (3.9), for different system sizes calculated
at temperatures, 7 (L), were determined by matching local minima in F(),T, L) and
are displayed in Fig. 3.5. The finite-size behavior of F(A, T, L) in Fig. 3.5(2) is quite
clear: as the system size is increased, a double-well structure develops in the free
energy. This is conclusive numerical evidence in favor of a first-order phase transition
(Sec. 2.3.2). Since the barrier between the two minima is well pronounced for the two
larger system sizes only, we have insufficient data to find the exact scaling behavior

of the barrier height, cf. Eq. (2.20). This shows that the first-order transition is
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very weak. In fact it is considerably weaker than the first-order transitions in the
three-dimensional three-state Potts model (Lee and Kosterlitz, 1991a; Stephanov and
Tsypin, 1391) and the two-dimensional five-state Potts model (Lee and Kosterlitz,
1990) which are well known to exhibit weak first-order transitions. The free energy
functional, F(E,T,L) in Fig. 3.5(b), derived for the internal energy distribution
function is found to be a much weaker indicator of the nature of the orientational
transition for the system sizes studied. A two-well behavior has barely developed
for the largest system size. However, the strong deviation from a Gaussian shape
suggests that a barrier is about to develop.

The first-order nature of the phase transition is further supported by the scaling
behavior of the susceptibility maximum in Fig. 3.1, cf. Eq. (2.17).

3.3.4 Equilibrium Transition Temperature

Fig. 3.6 shows the results for the different measures of the finite-system phase tran-
sition temperature and how they scale with system size. The finite-system transition
temperatures are defined from the position of the maximum in the specific heat,
TE(L), from the position of the maximum in the susceptibility, T%(L), and from the
criterion that the two minima in the free energy are equally deep, T7(L). For fi-
nite systems, these three different measurements of the transition temperature have
different values, but they all should approach the same value in the thermodynamic
limit, L — co. The data in Fig. 3.6 show that this is indeed the case. Furthermore,
Fig. 3.6 demonstrates that the finite-size scaling relation,

AT =T. - T.(L) ~ L9, (3.10)

expected to hold at a first-order phase transition, applies. Extrapolation to the ther-
modynamic limit yields the following estimate of the equilibrium first-order transition
temperature, T = (1.1232 £ 0.0001 )¢, /kp.

The transition temperature obtained from an earlier high-precision Monte Carlo

simulation study of the Lebwohl-Lasher model (Fabbri and Zannoni, 1986), 7. =
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(1.12324+0.0006)¢, /kp, was obtained from an analysis of the finitc-size behavior of the
specific heat. This value is identical to the value obtained here. As indicated by the
data in Fig. 3.6, the size-dependence of TC(L) is less pronounced in the scaling regime
than that of TX(L) and T (L) and hence highly accurate values of the tramsition
temperature can be obtained directly {from specific-heat data for large systems as

scen in Ref. (Fabbri and Zannoni, 1986).

3.3.5 Location of Pseudo-Spinodal Points: Stability Limits

of the Isotropic and Nematic Phases

We now turn to a discussion of the pretransitional effects (de Gennes, 1974) ncar
the orientational transition. The extremely weak emergence of the first-order ori-
entational transition in the Lebwohl-Lasher model suggests that the fluctuations of
the nematic order in the transition region are controlled by singularities from nearby
critical-points which lie at the termini of the metastable branches of the free energy.
The use of distribution functions, such as P(),T, L), and the derived frec-energy
functional, (A, T, L) in Eq. (3.9), allows us to make a detailed study of the limits of
stability of both the nematic and the isotropic phase. These limits of stability are not
rigorously defined for a system with short-range interactions (Gunton, San Miguel
and Sahni, 1983) but correspond to relatively blurred regions. Hence we refer here to
these limits, T}, as pseudo-spinodal points rather than spinodal points. T denotes
the stability limit of the isotropic phase within the nematic phase and T} denotes the
stability limit of the nematic phase within the isotropic phase.

The numerical data from which the pseudo-spinodal points, T} (L), are determined
are shown in Fig. 3.7. The frce energy is displayed in this figure for the largest
system size studied, L® = 283, and for different values of the temperature around the
equilibrium transition temperature. The figure shows the ‘classic’ behavior of a free-
energy function near a first-order transition as usually presented from the Landau
theory (Stanley, 1971). The pseudo-spinodal points in the finite system are estimated

as the temperatures where the second, local minima of the free energy vanish when
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the temperature is varied away from the transition temperature.

The pseudo-spinodal points, T3, in the thermodynamic limit have been determined
from an empirical extrapolation, as indicated in Fig. 3.6. We note that we have no
rigorous basis for this type of finite-size scaling behavior of T3(L). Presumably a
more rigorous scaling analysis should involve the exponents characterizing the pseudo-
spinodal singularities. Therefore, the quoted estimates of T3 should be considered as
maximal displacements of the pseudo-spinodal points from the transition. The main
result obtained from Fig. 3.6 is that the pseudo-spinodal points are extremely close

to the equilibrium transition temperature,
|Te = T21/T. $0.5 x 1073, (3.11)

Within the numerical accuracy of our data, the two pseudo-spinodal points are equally
close to the transition point.

We wish to remark that we have only been able to obtain these results for
the pscudo-spinodal points due to the availability of methods such as the power-
ful reweighting technique by Ferrenberg and Swendsen (Sec. 2.2). By this method it
becomes feasible to generate numerical data for the free energy, cf. Figs. 3.5 and 3.7.
These data give detailed insight into the non-equilibrium properties of a system which
undergoes such a weak first-order transition as the three-dimensional Lebwohl-Lasher
model. This is probably the reason why earlier numerical work on systems as large
as 30° molecules (Fabbri and Zannoni, 1986) on the model using more conventional
techniques, but also involving distribution functions, had difficulty in matching the
two free-energy minima. In the work by Fabbri et al. (Fabbri and Zannoni, 1986) the
stability limit of the isotropic phase was investigated by an extrapolation analysis of
an Ornstein-Zernike expression for the pair correlation function. The result found for
a 30° system, (T. = T*)/T. =~ 3 x 1073, is in an order-of-magnitude agreement with
the value obtained in the present calculation which indicates that the assumptions

underlying the work in Ref. (Fabbri and Zannoni, 1986) are reasonable.
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3.3.6 Transition Enthalpy, Nematic-Order Discontinuity, and
Biaxial Susceptibility

The value of the transition enthalpy, AH = [C(T)dT, can be estimated from the
finite-size scaling behavior of the specific heat. From the data for the larger system
sizes studied we estimate that AH =~ (0.2040.04)¢;. There is another way to estimate
the transition enthalpy since, in the thermodynamic limit, the separation between two
minima of F({E) would directly amount to AH. However, as remarked eatlier, we
have found that the specific heat approaches the scaling regime much slower than the
susceptibility does. The distribution function for the internal energy in the transition
region is strongly non-Gaussian for the larger system sizes studied, but as seen in
Fig. 3.5(b) two clear minima cannot be discerned within the accuracy of the data.
We are therefore not able to determine the transition enthalpy with high precision.

The value of the discontinuity in the nematic order parameter, A{P;),, at the first-
order transition was determined from an empirical finite-size scaling analysis at the
equilibrium transition temperature. The data for (P:)) in a wide temperature range
were shown in Fig. 3.4(a). From this figure we have obtained the estimate A(Py), ~
0.39 at the transition. It should be noted that the approach to the thermodynamic
limit for this 'quantity is extremely slow implying that our estimate is somewhat
tenuous. The position of the upper minimum in the free-energy function, F(A, T, L)
in Fig. 3.5(a), show only a very weak size dependence.

The biaxial susceptibility, 8(T) in Eq. (3.7), is zero by symmetry in the thermo-
dynamic limit for the isotropic Lebwohl-Lasher model. However, for a finite system
there is a non-zero difference between the two smaller eigenvalues of the nematic or-
der parameter tensor and §(T') will attain a finite value and have a non-trivial and
interesting temperature dependence. Since there is some interest in the behavior of
nematic droplets, we show in Fig. 3.8 data for two different system sizes. As expected,
§ decreases for increasing system size and will vanish in the limit L — oco. It is seen
that §(T) is very weak compared to the order-parameter susceptibility in Fig. 3.1
but it has a sharp cusp-like maximum at the transition. Furthermore, §(T') is highly
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asymmetric around the transition.

3.3.7 Enhancement of a Weakly First-Order Phase Transi-
tion

As shown above, the first-order transition in the Lebwohl-Lasher model of Eq. (3.3) is
extremely weak and associated with strong pretransitional effects, stability limits and
pseudo-spinodal points which are very close to the equilibrium transition temperature.
We now show that by adding to the Hamiltonian a term, Py(cosf;;) in Eq. (3.4),
which does not break the continuous degeneracy of the orientational ordering, the
first-order character of the transition is enhanced. Fig. 3.9(a) shows the data for
the free energy F(A,T, L) as a function of system size evaluated at the transition
temperatures, T7(L), for the case of ¢/ez = 0.1. The free-energy barrier develops
and increases in height as the system size is increased. This demonstrates that the
transition is of first order as in the absence of the Py-term. We used a finite-size scaling
analysis to estimate the equilibrium transition temperature in the case ¢;/e; = 0.1 to
be T, = (1.1628 £ 0.0001)e;/k. By comparing Fig. 3.9(a) with the analogous. data
in Fig. 3.5 for ¢4 = 0, it is seen that the barrier height for the same system sizes is
larger when the Py-term is present. This is demonstrated in Fig. 3.9(b) which for a
large system size, L = 24, shows a comparison between F(A, T, L) for the two cases.
From this figure we conclude that the P;-terms acts so as to enhance the first-order
character of the transition: not only the barrier height (i.e. interfacial tension) but
also the distance between the two minima increases with system size.

When the first-order transition in the Lebwohl-Lasher model is made more strongly
first order by adding the Py-term, the pseudo-spinodal points, and hence the stability
limits of the two phases, are further displaced from the equilibrium transition tem-
perature. This is illustrated in Fig. 3.10 in the case of ¢;/¢; = 0.1, This figure should
be compared with Fig. 3.7 for ¢, = 0. From a finite-size analysis similar to that
described in Sec. 3.3.5 we estimated that the pseudo-spinodal points for ¢;/e; = 0.1
are positioned at |T. — T3 |/T. $0.8 x 1072,
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QOur finding of an enhancement of the first-order character of the orientational
transition of the Lebwohl-Lasher model in the presence of the P;-term is consistent
with earlier mean-field (Zannoni, 1979) and conventional Monte Carlo simulation

studies (Chiccoli et al., 1988; Fuller, Luckhurst and Zannoni, 1985).

3.4 Results for Director Fluctuations

A renewed interest in the study of temporal fluctuations in complex dynamical sys-
tems has emerged since Mandelbrot (Mandelbrot, 1982} introduced the concept of
fractional Brownian motion. In contrast to ordinary Brownian motion which reflects
independent stochastic processes, fractional Brownian motion implies persistence or
anti-persistence and power-law correlations in the fluctuations.

An interesting possibility for observing fractional Brownian motion in a cooper-
ative many-particle system exists in the case of fluctuating modes in & symmetry-
broken state of continuous degeneracy. A candidate for a system exhibiting this type
of behavior is a liquid crystal within the nematic phase where the director fluctua-
tions correspond to a dynamical mode which is critical for all temperatures in the
nematic phase (de Gennes, 1974). We shall here show that the threc-dimensional
Lebwohl-Lasher model provides a convenient and simple model framework within

which fractional Brownian motion and its consequences can be observed.

3.4.1 Time-Series Analysis and the Hurst Exponent

We used the standard interpretation of a Monte Carlo simulation via a Master-
equation formulation to associate a time parameter (Markov time) with the sequence
of states generated for the equilibrium ensemble by the stochastic Monte Carlo pro-
cess (Sec. 2.1.5}). Obviously, the associated time scale is not the true physical time
scale since we have not invoked the true equation of motion. In particular we have not
strictly unforced the conservation law for the nematic order parameter (de Gennes,

1974). However, the average of the orientational order parameter is conserved during
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the simulation and we assume in the following that the Monte Carlo time series have
some relevance for the equilibrium nematodynamics. Since our elementary excitation
is a single-site rotor reorientational process we basically study the overdamped regime
of the dynamics.

We first calculated equilibrium time series of the nematic director, given by the
components, nq(t), of the unit eigenvector corresponding to the highest eigenvalue of
Q, as well as the nematic order parameter, {P;);(t). The time is measured in units of
Monte Carlo steps per lattice site (MCS). Time series were determined for different
temperatures in both the nematic (Sec. 3.4.2) and the isotropic phase (Sec. 3.4.3) as
well as in the presence of an ordering-field term (Sec. 3.4.4), —h? cos? §;, which was
added to the Hamiltonian in Eq. (3.3).

The time series have been analyzed in terms of power spectra as well as by the
tescaled-range (R/S) method (Mandelbrot, 1982; Feder, 1991) which was originally
developed by Hurst (Hurst, 1951) to analyze statistical fluctuations of water levels in
large natural reservoirs. In the case of a component, n,, of the nematic director, the

R/S analysis is based on a range
R = max[X(¢,7)] - min{X{(¢,7)], 0<t< T (3.12)

and an accumulated standard deviation
{. 1/2
5= (3 3nalt) - () (3.13)
t=1

where the average of the stochastic variable n,(t) over the time range 7 is

(na)r = %ilna(t)' (314)

The accumulated fluctuations over the same time range are

X(ty7)= "E_lena(t') ~ {na)s). (3.15)

X(t,7) is the basic stochastic variable of the process we consider. An auto-

correlation function, C'(t), for this variable can be defined as

O(t) = (X(0)X(t). (3.16)
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The Hurst exponent, H, is defined as (Feder, 1991),

R/S ~7H, (3.17)

or equivalently
C(t) ~ t?H. (3.18)

The corresponding scaling form for the power spectrum is

P(f) =| j X(t) exp(~i2r ft)dt]* ~ F5. (3.19)

Scaling implies the relation § = 2H + 1 (Feder, 1991). Statistical independence of
stochastic events leads to H = -;- and ordinary Brownian motion. In the case of
H # 1, the correlation function has power-law decay and infinitely long correlations.
This latter case is associated with fractional Brownian motion (Mandelbrot, 1982).
An equivalent formalism can be written down in the case of the time series for the

nematic order parameter, {P;},(¢).

3.4.2 Fractional Brownian Motion of Director Fluctuations

in the Nematic Phase

The director fluctuations are recorded in terms of the fluctuations in one of the com-
ponents of the unit directional vector. All three components are found to behave
statistically in a similar manner and we therefore only examine one of them. Fur-
thetmore,.we found that the fluctuations in the polar angle also behave in the same
manner. Fig. 3.11 shows untreated simulation data illustrating the director fluctu-
ations both without (A = 0) and with a symmetry-breaking field (h*/e; = 1). The
top parnel in Fig. 3.11 shows an example of one of the Cartesian components of the
director for the two cases and the bottom panel shows blow-ups of a small part of the
two time series for the same two cases. The figures chow that the director fluctuations
exhibit structure on all time scales and they illustrate the self-similar nature of the

director fluctuations.
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Data for the director fluctuations were analyzed by the R/S-method of Egs. (3.12)-
(3.17), and the results are shown in Fig. 3.12(a) for two different temperatures in the
nematic phase. This figure demonstrates that the director fluctuations display a re-
markably clear scaling behavior over a wide range of . Both data sets are well
described by a Hurst exponent, H ~ 1, which implies fractional Brownian motion
and long-range power-law correlations. This implies that the Hurst exponent is inde-
pendent of temperature in the nematic phase.

The results of an analysis of the director fluctuations in terms of the power spec-
trum, Eq. (3.19), are given in Fig. 3.12(b) for a temperature in the nematic phase.
Although the data for the power spectrum are much less smooth, they also provide
evidence for power-law scaling. The data for the power spectrum are, however, not

accurate enough to decide whether the scaling relation 8 = 2H + 1 breaks down.

3.4.3 Brownian Motion of Director Fluctuations in the Iso-

tropic Phase

By cont.ra.st to our findings of fractional Brownian motion of director fluctuations in
the nematic phase, the data for the director fluctuations in the isotropic phase in
Fig. 3.13 demonstrate that ordinary Brownian motion, H ~ 1/2, prevails over long
times in the isotropic phase. Both the R/S-analysis shown in Fig. 3.13(a) and the
analysis of the power spectrum shown in Fig. 3.13(b) give the same result, and the
scaling relation, 8 = 2H + 1 appears to hold.

3.4.4 Field-Effects on Director Fluctuations

The continuous degeneracy of the nematic order can be broken by adding a uniaxial
ordering field to the Hamiltonian,
H=—c z Py(cos 6;;) — k? 2 cos? §;, (3.20)
i §
where A is the field strength and cosf; is the angle between the axis of the ith rotor

molecule. The average nematic director direction is then controlled by the direction
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of the applied field. In the presence of this field, the fractional Brownian motion in
the nematic phase is destroyed and there is a crossover to erdinary Brownian motion
over long time ranges. Fig. 3.14 also shows that the presence of the ficld in the
isotropic phase does not alter the ordinary Brownian motion characteristics of the
director fluctuations.

Fig. 3.15 gives the results of a closer study of the crossover effects induced by the
applied field. It is seen that there are two time regimes in the fluctuation character-
istics in the presence of the field. For short time ranges, the ficld has not yet made
its influence felt on the director motions and an effective fractional Brownian motion
with H o 1 is observed. At longer time ranges a crossover to ordinary Brownian
motion with H =~ 1/2 takes place. The crossover occurs at shorter times the stronger
the field is. At very high field strengths the signal saturates. In the crossover regime,
eflective Hurst-exponent values between 0.5 and 1 can be assigned to the data. As

expected, this effective exponent is very sensitive to the sampling density employed

whereas the limiting behaviors are not.

3.4.5 Effects on Director Fluctuations Due to Walls

We also simulated the effects of another type of symmetry-breaking ficld on the
director fluctuations which is of relevance for interpreting certain experimental data.
This type of field may be considered as due to a wall which imposes a local boundary
condition on the nematic ordering. This type of boundary condition is only expected
to have an effect on finite systems except near wetting transitions. In the present
realization, the wall is simulated by fixing all rotors in an z — y plane of the lattice
to point along the y—axis. For lattices of the typical sizes we have studied in this
chapter, the effect on the director fluctuations due to this particular type of boundary
condition is shown in Fig. 3.16. From a R/S-analysis of the data an effective Hurst-
exponent value of H ~ 0.82 is obtained. The exponent value depends on the specific

boundary condition and the size of the system.
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3.4.6 Fluctuations of the Nematic Order Parameter

By contrast to the fluctuations in the nematic director (in the absence of a field) the
fluctuations in the nematic order parameter correspond to independent stochastic
processes and hence to ordinary Brownian motion (H = 3) in either phase and
independent of temperature, as illustrated by the data in Fig. 3.17. Both the R/S-

analysis and the power spectra leads to H =~ 0.5 for long times.

3.5 Comparison with Experiments

3.5.1 Transition Properties

In this section we compare our simulation results for the three-dimensional Lebwohl-
Lasher model to relevant experimental data for the nematic-isotropic transition in
liquid crystals. It should again be noted that the Lebwohl-Lasher model, being a
lattice model, neglects the positional degrees of freedom of real nematics but the model
should still capture the essential physics of the orientational degrees of freedom which
are mainly responsible for the nematic~isotropic phase transition. It has been found
(de Gennes, 1974; Stinson and Litster, 1970; Thoen, Marynissen and Van Dael, 1982)
for a large number of room-temperature nematogens that the transition enthalpy and
the relative stability limit of the isotropic phase are only slightly sensitive to the
material in question. Hence it is reasonable to compare experimental results for such
transitional properties with corresponding data obtained from the simple Lebwohl-
Lasher model. -

As a specific example we consider the liquid crystal octylcyanobiphenyl (8CB)
(Stinson and Litster, 1970; Thoen, Marynissen and Van Dael, 1982). 8CB has been
found experimentally to have the following transitional parameters, T, = 40.8°C and
AH = 612]/mol. From the experimental transition temperature we can determine
the value of the energy parameter, ¢, which leads to AH = 460J/mol for the Lebwohl-

Lasher model. This is in reasonably good agreement with the model result.
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Since nematics usually cannot be supercooled (Thoen, Marynissen and Van Dael,
1982), the experimental determination of the stability limit of the isotropic phase is
not very accurate since it is obtained by extrapolation of the equilibrium data for the
susceptibility or the specific heat from the isotropic phase into the nematic phase and
vice versa. The experimental values (Stinson and Litster, 1970; Thoen, Marynissen
and Van Dael, 1982) quoted for |T. — T|/T. lie in the range ~ 0.2 — 3 x 10~ which
is in good agreement with our results from the Lebwohl-Lasher model. Hence one
cannot discard the Lebwohl-Lasher model as a model of nematics on the basis of
a large discrepancy between the experimental values of stability limits and the val-
ues obtained from Maier-Saupe theory, which provides the mean-field solution to the
Lebwohl-Lasher model. Mean-field theory strongly underestimates both the fluctua-
tions and the pretransitional effects in the Lebwohl-Lasher model and also predicts a
first-order transition which is far too strong. It appears likely from the results pre-
sented in Sec. 3.3.7 on the enhancement effects due to the additional term, Py, of the
interactions that an extended Lebwohl-Lasher model, Eq. (3.4), with varying e(/es,

may account for the slight differences between the stability limits {found for different

nematogens.

3.5.2 Director Fluctuations

Recent neutron-scattering studies of director fluctuations in the nematic phase of d-
PAA (deuterated para-azoxy-anisole} by Otnes and Riste (Zhang et al., 1993; Otnes
and Riste, 1992) found evidence for power-law correlations of the director fluctuations
and hence fractional Brownian motion. Otnes and Riste analyzed the raw time-series
data obtained from the scattering experiment using the same formalism as described
in Sec. 3.4.1.

The first neutron-scattering study (Otnes and Riste, 1992) showed that the direc-
tor fluctuations in the nematic phase exhibit scaling and fractional Brownian motion
characterized by a Hurst exponent, H = 0.74, whereas ordinary Brownian motion ap-

plies in the isotropic and solid crystalline phases. In a later experiment (Zhang et al.,
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1993), the conditions for the first experiment in the nematic phase were changed with
a view to minimizing effects due to convection-flow alignment which tends to reduce
the effective exponent of H. It was then found that the Hurst exponent value is close
to H =~ 1, in excellent agrcement with the results from the Lebwohl-Lasher model,
cf. Fig. 3.12. Furthermore, it was found in the experiment, where a symmetry-
breaking magnetic field was applied, that lower effective values of H result which
tended towards H =~ 0.5 for large field values. These results are consistent with the

field-induced crossover phenomena found in the Lebwohl-Lasher model, cf. Fig. 3.15.

3.6 Conclusions

In this chapter we presented results from a combined numerical study of the phase
transition and director fluctuations in the Lebwohl-Lasher model of the nematic-
isotropic phase transition in liquid crystals.

We first exploited modern computer-simulation techniques described in Chapter 2
involving the Ferrenberg-Swendsen reweighting technique (Ferrenberg and Swendsen,
1988) in combination with the Lce-Kosterlitz finite-size scaling analysis (Lee and
Kosterlitz, 1990; Lee and Kosterlitz, 1991b) in order to investigate the nature of the
orientational phase transition in the three-dimensional Lebwohl-Lasher model. The
methods of analysis operate on a level of the free-energy which makes it possible to
examine the nature of the transition and to determine the transitional properties ac-
curately. We found unambiguous evidence for a very weak first-order transition with
stability limits extremely close to the equilibrium phase transition temperature. The
results show that the Lebwohl-Lasher model gives 2 good description of those prop-
erties of the nematic-isotropic phase transition which are not particularly material
dependent.

Secondly, we analyzed time-series data for the director fluctuations and found
evidence for fractional Brownian motion of the director fluctuations in the nematic

phase. As a symmetry-breaking field is applied, a crossover to ordinary Brownian
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motion is observed. These findings are in excellent agreement with recent neutron-
scattering experiments on nematogens by Otnes and Riste {Zhang, Mouritsen and
Zuckermann, 1992b; Otnes and Riste, 1992),

The physical interpretation of the numerical simulation of the director fluctuations
are as follows. In a nematic, ordered phase, the director is subject to a continuous
degeneracy since its direction is not coupled to the lattice and there is no activa-
tion barrier for directional rotation. Hence, the director field is subject to critical
fluctuations and power-law correlations at all temperatures within the nematic phase
(de Gennes, 1974). This leads directly to fractional Brownian motion of the direc-
tor. In contrast, the nematic order parameter is not a critical mode, except at a
singular temperature, the pseudo-critical point, where it displays power-law scaling.
At all other temperatures the order-parameter fluctuations in both the nematic and
the isotropic phase are short range effects and are associated with ordinary Brow-
nian motion. The continuous degeneracy of the nematic director can be lifted by
an ordering field, in which case the fluctuations become quenched and the mode is
no longer critical. Ordinary Brownian motion then results over long time ranges as
observed. At short times the symmetry-breaking field is not capable of destroying
the power-law correlations and only for longer times is there a crossover to ordinary
Brownian motion. This cressover occurs {or shorter times the stronger the field is.
A similar behavior can be expected for a number of other models with a continuous
order-parameter degeneracy, including the three-dimensional Heisenberg ferromagnet
where the fluctuations in the magnetization direction should also exhibit fractional
Brownian motion. This is supported by the results from computer simulations on the

Heisenberg model without conservation laws (Zhang, Mouritsen and Zuckermann,

1992c).
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Figure 3.1: Ordering susceptibility, x(T') {in units of e5'), as functions of temperature,
T (in urits of €;/kg), for four different lattice sizes, L® = 16°,20%,24%, and 28°. The
inserts show the finite-size scaling behavior of the maximum of x(T').
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Figure 3.2: specific heat, C(T') (in units of kg), as functions of temperature, T (in
units of €z/kp), for four different lattice sizes, L® = 163,203,242, and 28°. The inserts
show the finite-size scaling behavior of the maximum of C(T).
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Figure 3.3: Finite-size scaling funciions for (2) the ordering susceptibility, x(T') and
(b) the specific heat, C(T) for three different lattice sizes, L* = 20°(c),24*(A),
and 28%(e). AT, is the temperature relative to the peak position of the respective
response function.
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Figure 3.4: (a) Nematic order parameter, (P,)y, ard (b) internal energy per rotor,
E = (H) (in units of e), as functions of reduced temperature, T'/T., where T is
the transition temperature in the thermodynamic limit. Results are shown for two
different lattice sizes, L* = 24% (o) and 283 (e).
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Figure 3.5: Free energy, F (in units of ¢;), as a function of nematic order (a), {Pa),,
and as a function of internal energy (b), E, for four different lattice sizes, L* =
162 (A),20° (o), 24% (O), and 28° (o). The different sets of data are displaced vertically
for the sake of clarity.
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Figure 3.6: Finite-size scaling behavior shown for three different measures of the
finite-system transition temperature, T.(L): T7(L) (o), TX(L) (o), T°(L) (A). Tke
estimates of the finite-size pseudo-spinodal points T2(L) (+) and T}(L) (O) are also
shown. Extrapolations to the thermodynamic limits, T.(oo) and T}(co) are denoted
by solid and dashed lines respectively.
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Figure 3.7: Free energy, F (in units of €;), as a function of nematic order, {P;),, for a
lattice with L® = 283 sites. Results are given corresponding to seven different temper-
atures near the nematic-isotropic transition. From bottom to top the temperatures
(in units of €;/kp) are: 1.1238 (M), 1.1241 (o), 1.1243 (e}, 1.1245 (O}, and 1.1248
(A). The middle curve corresponds to the finite-size equilibrium transition tempera-
ture, To(L)”. The sets of curves in either direction away from the transition in either
direction correspond to metastability and pseudo-spinodal behavior respectively. For
the sake of clarity, the different sets of data are displaced vertically.
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Figure 3.8: Biaxial susceptibility, §(T'), as a function of temperature for system sizes
L = 20° (o) and L® = 282 ().



CHAPTER 3. MODEL FOR NEMATIC LIQUID CRYSTALS 45

ry T T T T T
9.6} (a) «° A
a
‘o o". ..oo
8.2 n‘:”.n.-' .“o..uge o
* 8.8} o A
o o
8.4 e, uun“n .
n“"““mun"m@u"n
8.0 ) 1 L te .1 1 ]
0.00 0.10 0.20 0.30
P>
10-2 L L] 1 ] 11 )
(b)
10.0} . o -
0.8+ °* . » .
L ] ... @
. ° . . J
9.8 ...... . “'..o\,'
9.4f ° ° -
9.2 ¥ °°° °u°°°°°°°° °°u°° -4
oo o“oo
%800 0.10 0.20 0.30
Pa>)

Figure 3.9: (2) Free energy, F (in units of ¢;), as a function of nematic order, (P, ),, for
the Lebwohl-Lasher model in the presence of a term Py(cos 8;;} in the Hamiltonian, f.
Eq. (3.4), with e4/€e; = 0.1 for three different lattice sizes, L® = 16° (0O),20° (o), and
243 (»). (b) A comparison of the free-energy functions for a system of size L® = 24°
in the case of ¢4/e2 = 0(0) and 0.1 (). For the sake of clarity, the different sets of
data have been displaced vertically.
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Figure 3.10: Free energy, F (in units of ¢;), as a function of nematic order, {P),,
for a lattice with L® = 24 sites in the case of €;/€; = 0.1. Results are given corre-
sponding to five different temperatures near the nematic-isotropic transition. From
bottom to top the temperatures (in units of e;/kg) are: 1.1637 (O), 1.16415 (o),
1.1646 {e), 1.16505 (O), and 1.1655 (A). The middle curve corresponds to the finite-
size equilibrium transition temperature, T,(L)”. The sets of curves away from the
transition in either direction correspond to metastability and pseudo-spinodal behav-

ior, respectively. For the sake of clarity, the different sets of data have been displaced
vertically,
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Figure 3.11: Raw data for the director fluctuations given as time series, u,(t), for one
of the Cartesian components of the director u. The time, ¢, is given in units of Monte
Carlo steps per lattice site (mcs). Results are shown for a temperature T = 0.85¢3/ks
both in the absence, h? = 0 (a), and in the presence, h*/e; = 1 (b), of an ordering
field. The lower panels show blow-ups of a small part of the corresponding time series
in the top panels.
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Figure 3.12: (a) Log-log plot of the R/S-value vs time range r for the nematic
director fluctuations at two temperatures in the nematic phase, T = 0.85¢;/kgp (o)
and T = 1.00¢;/kp (o). The best linear fit to the data set is given by the solid line,
R/S ~ 78 with H ~ 1. (b) Log-log plot of the power spectrum, P(f), for the data
at T = 1.00¢;/kp. The solid line denotes the function P(f) ~ f-P with B =3.
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Figure 3.13: (a) Log-log plot of the R/S-value vs time range 7 for the nematic
director fluctuations at a temperature, T = 1.30¢2/kp (o} in the isotropic phase.
The best linear fit to the data set over long time ranges is given by the solid line,
R/S ~ rH# with H ~ 0.59. (b) Log-log plot of the corresponding power spectrum,
P(f). The solid line denotes the function P(f) ~ f~? with 8 = 2.
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Figure 3.14: (a) Log-log plot of the R/S-value vs time range 7 for the nematic director
fluctuations in the presence of an ordering field of strength h%/e; = 1. Results are
shown for a temperature, T' = 1.00¢; /kp (o), in the nematic phase and 2 temperature,
T = 1.30¢z/kp (o), in the isotropic phase. The best linear fits to the two data sets
over long time ranges are given by the solid lines, R/S ~ 7#, with H ~ 0.52 and 0.55
respectively. (b) Log-log plot of the corresponding power spectra, P(f). The solid
line denotes the function P(f) ~ f~# with 8 = 2.
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Figure 3.15: Log-log plot of the R/S-value vs time range 7 for the nematic director
fluctuations at temperature in the nematic phase, T = 1.00¢;/kg. The data corre-
spond to four different values of the applied field, h? = 0 (), 0.05 {0), 0.4 (D) and
1 (W), The best linear fits to the data sets over long time ranges are given by the
solid lines, R/S ~ 7H, with H ~ 1 for zero field and H ~ 0.5 for finite fields.
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Figure 3.16: Log-log plot of the B/S-value vs time range 7 for the nematic director
fluctuations at temperature in the nematic phase, T = 1.00e2/kp in the case of a
symmetry-breaking wall boundary condition imposed on a system with L3 = 28°
sites. The solid line denotes R/S ~ 77 with H ~ 0.82.
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Figure 3.17: (a) Log-log plot of the R/S-value vs time range 7 for the nematic order-
parameter fluctuations for a temperature, T = 1.00¢;/kg (), in the nematic phase
and a temperature, T = 1.30¢; /kg (0), in the isotropic phase. The best lincar fits to
the entire data set over long time ranges are given by the solid lines, R/S ~ 7%, with
H ~ 0.48 and 0.49 respectively. (b) Log-log plot of the corresponding power spectra,
P(f). The solid line denotes the function P(f) ~ f™® with 8 = 2.



Chapter 4

Phase Behavior of Pure Lipid
Bilayers

4.1 Introduction

Lipid molecules are amphiphilic surfactants which self-organize into a variety of phases
when mixed with water. These phases are called lyotropic liquid crystal phases since
they are controlled by both temperature and water concentration. Lipid molecules
are, on the basis of their structure, major components of biological membranes, which
consist of a lipid bjla.yer containing proteins and cholesterol usually attached to a
cytoskeleton (see Fig. 1.2). The properties of the membrane are to some extent
controlled by the lipid bilayer which provides a relatively impermeable fluid barrier
to ions and nutrients.

The lipid bilayer in a membrane is composed of different types of lipid molecules.
When the lipid components of a membrane are extracted and then redissolved in
water at room temperature, the lipid molecules self-organize to form liposomes or
multi-bilayer membranes in an ‘onion’ structure. These can be further treated by
sonication to form unilamellar vesicles which are composed of a single bilayer and, if
large enough (~ 1pm), can be used as membrane models.

In this chapter we are concerned with pure single-component lipid-water systems.

53
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A commonly used lipid is dipalmitoyl phosphatidylcholine (DPPC) which has a zwit-
terionic (dipolar) polar head and two saturated palmitoy) (C16) chains (Fig. 4.1).
Fig. 4.4 shows the phase diagram for DPPC-water systems (Sackmann, 1983). The
phases of interest to us are Lg:, Pg and La. Lg is a quasi-2d crystalline (gel) phase in
which the lipid chains are tilted. Pp is slso a quasi-2d crystalline {(gel) phase known
as the ripple phase in which the bilayer interface supports a long wavelength ripple
and L, is a quasi-2d fluid phase known as the liquid crystalline or fluid phase. An
abrupt first-order phase transition occurs between the Pg: phase and the L, phase in
DPPC. This is known as the m~in phase transition whose nature is the object of our
study via microscopic interaction models. Qur description of the main transition in-
volves the extension of the Pink model to include hydrophobic mismatch interactions
between the lipid acyl-chain conformational states and direct trans-bilayer interac-
tions between the two monolayers. The bilayer properties in the transition region are
analyzed with particular emphasis on the lateral density fluctuations and the related
dynamic heterogeneity of the bilayer.

The lipid bilayer can be considered as a lamellar liquid-crystal phase. The bilayer
thickness depends on the lipid chain length and lies in the range from 50-100 A with
a polar headgroup reg.ion of about 5 A. The width of the hydration layer is of the
order of 10 A, depending on the nature of the polar head. To have an idea of how thin
the bilayer is, these numbers should be compared to the linear extensions of biological

cells which typically lie in the range 105106 A.

4.1.1 Structure and Properties of Lipid Molecules

Most lipids are amphiphilic molecules which consist of a hydrophilic polar head and
at least two hydrophobic hydrocarbon chains. Lipid species differ with respect to the
number of carbons and degree of saturation in the chains, as well as nature of the polar
head. Hydrocarbon chains which only contains single o-bonds between the carbons
are called saturated chains. Hydrocarbon chains are quite flexible because isomeric

rotations around the C-C bond involve much smaller energies (~ 1 kcel/mol) than
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Figure 4.1: Chemical structure of dipalmitoyl phosphatidylcholine (DPPC) [Adapted
from Ref. (Mouritsen, 1987)].
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Figure 4.2: Potential energy curve for rotation about a carbon-carbon bond in an
alkane., Below is the Newman projection diagram of the minimum energy gauche and
trans conformations of butane:g*,g~, and ¢. [After Ref. (Gennis, 1989)}

the covalent bonds (~ 90 kcal/mol) between the carbon atoms. The potential encrgy
curve for the rotation in an alkane is shown in the Fig. 4.2. The trans configuration
is most stable and there is an estimated energy barrier of 3.5 kcal/mol for rotation
to the gauche form. The all-trans configuration allows the chain to be maximally
extended, whereas a gauche bond alters the direction of the chain. A gauche-trans-
gauche sequence for three consecutive C-C bonds results in a kink in the chain which
effectively displaces the portions of the chain above and below the kink, as shown in
Fig. 4.3. Note that each gauche configuration can be designated g* or g~ depending
on the sense of rotation in going from C, to Cy. A kink which results in a simple
displacement can be either g*#g~ or g~tg*. The presence of kinks or other deviations
from the simple all-trans chain configuration results in increasing the cross-sectional
area of the hydroca-bon chain from the minimum of about 20 A,

X-ray diffraction, neutron diffraction and Raman speciroscopy (Hauser et al.,
1981; Seelig and Seelig, 1980) indicate that in the gel phase, the hydrocarbon chains
of saturated diacyl phospholipids are predominantly in the all-trans configuration. In
the liquid crystalline phase, the introduction of gauche configurations increases the

effective chain cross section considerably.
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Figure 4.3: Tllustration of two alkyl chain configurations [Adapted from Ref. (Gennis,
1989)].

4.1.2 Lipid—Water Mixtures

Lipids display remarkable physical properties when they are mixed with water. The
nonpolar hydrocarbon portions of lipid molecules are aggregated and the polar head-
groups are in contact with water. The major thermodynamic driving force stabilizing
the self-organization of hydrated lipid aggregates is the hydrophobic effect. This ef-
fect is entropic in origin and is caused by the unfavorable constraints placed on water
in direct contact with nonpolar hydrocarbons.

The structure and dynamics of pure water are complex and are dominated by
intermolecular hydrogen bonds. When a nonpolar hydrocarbon is dissolved in water,
it causes an unfavorable organization of the water around the hydrocarbon by reducing
the number of hydrogen bonds, The water molecules orient themselves in such a
way as to maintain intermolecular hydrogen bonds, but since those water molecules
in direct contact with the nc:.i:rlar solutc molecule have fewer water molecules as
neighbors, there are substantial configurational constraints on the system. Hence,
there is a decrease in the entropy of the system. As a result, the net free energy change
upon transferring a nonpolar solute from a nonpolar solvent to water is unfavorable
due to this entropic effect on the water solvent.

Some of the important phases found for lipid-water systems (as summarised
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Figure 4.4: Phase diagram for the DPPC-water mixture [Adapted from Ref. (Gennis,
1989)].

above) are:

1. The lamellar liquid crystalline phase (L,): this phase is present for the majority
of lipid species in biological membranes. There is considerable disorder in the
acyl chains as indicated by the X-ray diffraction data and the lipid molecules
can diffuse laterally.

2. Lamellar gel phases (Lg, Lgr): these are low temperature phases for lipids which
form the lamellar structure. The molecules are tightly packed in a lattice struc-
ture and the acyl chains are highly ordered, corresponding mostly to the all-
trans configuration. Because the chains are maximally extended in the gel
phase, the bilayer thickness is greater than in the liquid crystalline phase. The
density of the gel phase is slightly greater than that of the liquid crystalline
phase. Lg is an untilted phase whrreas Ly denotes that the chains are tilted
with respect to the bilayer normal. There is no lateral diffusion in this phase,

but the molecules can librate.
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3. The ripple phase Pg: in this phase, the surface of the bilayer is rippled and
presents a wave-like appearance in electron nicrographs. The thermotropic
phase transition Pgr — L, is known as the main transition, whereas the transi-
tion Ly — Pg is called the pretransition. When the ripple phase is not present,

the main phase transition can be from Ly — L,.

4. Hexagonal I phase (H;): in this phase, the lipids are organized into cylinders
with the polar groups on the outside, in contact with water. The cylinders are
packed in a 2d hexagonal pattern. This and the next phase are non-bilayer

phases.

5. Hexagonal II phase (Hy): the lipids are into cylinders, but in this case the
polar groups face the inside, where there is a column of water. The cylinders

are again packed in a 2d hexagonal array.

4.1.3 Summary of Experimental Observations for the Main

Phase Transition of Lipid Bilayers

A selection of experimental results on the thermal behavior of fully hydrated lipid
bilayers is presented in Fig. 4.5 for DPPC and DMPC. All experiments indicate that
the bilayers display striking thermal anomalies. For example, Fig. 4.5(a) shows that
the specific heat exhibits a pronounced peak. At the peak temperature, a discon-
tinuous change in the multi-lamellar repeat distance and therefore bilayer thickness
occurs as shown in Fig. 4.5(c). The change in bilayer thickness is accompanied by an
cqually dramatic change in bilayer area as shown in Fig. 4.5(d) for DMPC. Fig. 4.5(b)
presents the results for the first two moments of the distribution of quadrupolar split-
tings in the nuclear magnetic resonance (NMR) spectrum of perdeuterated DPPC,
Again there is a dramatic decrease in the moments over a narrow temperature inter-
val. This temperature interval is lower than the equivalent temperature in Figs. 4.5(a)
and (c) due to deuteration of the chains. The moments are direct measures of the

average segmental order elong the deuterated hydrocarbon chain, i.e. Eq. (4.3). Toa
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Figure 4.5: Thermal behavior of one-component lipid bilayers of DPPC (C16) and
DMPC (C14). (a) Specific heat for DPPC determined by differential scanning
calorimetry; (b} First and second moment of the quadrupolar magnetic resonance
spectrum of dg3-DPPC; (c) Lamellar repeat distance determined by low-angle X-ray
scattering on DMPC and DPPC; and (d) Cross-sectional area change for DMPC

determined by micromechanics measurements.
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good approximation, M is proportional to the hydrophobic thickness of the bilayer
(Seclig and Scelig, 1980; Shinitzky and Yuli, 1982).

The sharp thermal anomalies are distinct signals of a phase transition in the
bilayer. This transition, commonly referred to as the main transition, or the gel-
fluid transition, takes the bilayer from a low-temperature 2d solid (gel) to a high-
temperature fluid (liquid crystalline) phase. The main gel-fluid lipid bilayer phase
transition has the following characteristics: (i) a sharp endothermal first-order tran-
sition at a temperature T,; (ii) a large area expansion, typically AA(T,.) ~ 20%,
(iii) a small volume change, AV(T,,} £ 5%, and (iv) a large transition entropy,
AS(T,) ~ 15kp /molecule.

4.2 The Pink Model

In this section we present the microscopic phenomenological model used in this section

to describe the main phase transition.

4.2.1 Microscopic Models of the Main Transition

There are several types of theoretical models and accompanying methods which have
been used to analyze the properties of lipid system (including lipid bilayers). These
fall into the {ollowing categories:

1. Packing models;

2. Full simulation of the bilayer using molecular dynamics;
3. Continuous 2d-models;

4. 2d-microscopic phenomenological models.

There are both lattice and off-lattice models in the last category. The exclusive
volume is automatically included in the lattice models. Furthermore the translation

degrees of freedom are neglected since the high value of the specific heat at the main
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transition temperature and the fact that it increases with chain length implies that
main phase transition is entropic. Also, as Doniach (Doniach, 1978) pointed out,
the transition is triggered by changes in chain-conformations and the related change
in entropy is much greater than the latent heat due to crystal melting. The model
lattice therefore fixes the number of nearest neighbors and assigns pre-selected single
chain conformational states to each lattice point. Since these states have different
cross-sectional areas, the total area of the system changes with temperature. 2d
lattice models include the two-state model of Doniach, the multi-state Pink model
and its extension by Tevlin et al. (Tevlin et al, 1986) and the Pink-Potts model
of Mouritsen and Zuckermann {Mouritsen and Zuckermann, 1987; Zuckermann and
Mouritsen, 1987) which makes an atterupt to include translation degrees of freedom.
Oft-lattice models include the 7-state model of Scott and the off-lattice version of the
Doniach model (Fraser et al.,, 1991). The problem with lattice models is that they
do not include sterically induced correlations between chain conformation. However
they are very useful for the understanding of phase transitions close to or at a critical
point, as is likely to be the case for the main phase transition (Doniach, 1978). In this
chapter we use the term chain-meliing to refer to the dominant effect of the change

in chain conformations on the main phase transition, which is entropic in nature.

4.2.2 The Pink Model

The Pink model, which is an extension of the 2-state Doniach model, is & multi-state
lattice model in which each acyl chain is positioned on a regular (e.y. hexagonal) two-
dimensional lattice. It is also assumed that the conformational properties of a single
acyl chain can be described by a small number of selected conformational states cor-
responding to the mapping of the three-dimensional acyl-chain conformations upon a
finite, discrete set of projected two-dimensional coarse-grained variables. The number
of states included in a multi-state model depends on the level of detail required.
Pink et al. (Pink, Green and Chapman, 1980; Pink, 1983) used the model to

calculate the temperature dependence of the intensity of the 1130cm ™! Raman band,
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which is a hydrocarbon chain C-C skeletal stretch mode (Snyder, 1970), by extrap-
olating the calculations of Snyder (Snyder, 1967; Snyder, 1970). In constructing a
model of chain melting they assumed that the lipid chain conformational states were
given by the rotational isomeric model (Flory, 1975; Flory, 1969), and found that
nine low-energy hydrocarbon chain states with cross-sectional area < 25;12, ranging
from the all-trans state iv states with three gauche bonds, contributed significantly
to the Raman intensity of the 1130cm™! band. The limit on the area per chain was
then imposed to account for hard-core steric hindrance in the gel phase, where only
conformations with small cross-sectional area could be thermally excited. These nine
states, plus a high-energy melted state (see below) formed the basis of the Pink model.
The mean-field results for the Raman intensities were found to be in good agreement
with the measured intensities (Pink, Green and Chapman, 1980).

In the Pink lattice model the conformational chain variables are coupled by hy-
drophobic anisotropic van de Waals interactions by analogy with anisotropic liquid
crystals. The lattice approximation automatically takes care of the excluded volume
interactions. The intcraction between the hydrophilic moieties can be modeled by
a Coulomb force or an effective intrinsic lateral pressure (Caillé et al., 1980). It is
assumed that each site of a hexagonal lattice is occupied by one of the hydrocarbon
chains of the phospholipid molecule with M carbon nuclei. The selected conforma-

tional states of the chain can be described as follows:

1. The all-trans ground state which is non-degenerate and has internal energy

Ey =0 and area 4; = 20.44".

2. Eight intermediate states of energy, E,, area, A,, and degeneracy, D, (n =

2,...,9). Here D, is proportional to M and A, < 26A4°. The energies, E,,
are less than or equal to 3E; where E, is the energy required to form a gauche
bond. The corresponding chains are at most three units shorter than the all-

trans state.

3. One high-energy ‘melted’ state which is taken to have an area A;p, an energy



CHAPTER 4. PHASE BEHAVIOR OF PURE LIPID BILAYERS 6

Eig, and a degeneracy Dyo o« 3*. This state represents the average over all the

conformations which occur in the fluid phase.

Experimental observations for the bilayer volume change (Sec. 4.1.3) suggest that
the hydrophobic membrane volume is almost constant (Margelja, 1974; Triiuble and

Haynes, 1971) and therefore the areas of all 10 states are related to their hydrophobic

length d,, by
A, = A;S—:. @.1)
The inter-chain interactions are taken to be van de Waals interactions. The van de
Waals dispersion forces are induced by quantum zero-point fluctuations of electronic
systems. The attractive interactions, W(r), between long parallel saturated chains
at short distance varies as ~* (Salem, 1962). The van de Waals intcraction between
neighboring chains in states m and n is approximated as (Wulf, 1977; Mouritsen,

1990)

V(1) = SnSaW(r). (4.2)

Here S, is the orientational order parameter of the n-th chain conformation and is

written by:

1

M-1
5= 37T E (3c0s2(8ng) — 1) (4.3)

where 8,4 is the angle between the normal spanned by the gth C- H, group and the long
axis of the chain. The order parameter can be measured by 2H-NMR since denterium
can be chemically substituted for hydrogen at specific places in the lipid molecule.
This substitution is generally considered nonperturbing. As an approximation, the
C~C-C bond is assumed to have an angle 120°. Then the geometrical constraints
give a simple relation between S, and d, (Seelig and Seelig, 1980):

5. =18 _0s. (4.4)
dy

The distance between the two neighboring chains at state m and nis R, = R, + Ra
in a close-packed configuration. Using (Caillé et al., 1980)

W(Rmp) & Remp~® o Ry ™%/*R,, %2, (4.5)
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the van de Waals interaction between the chains, the Eq. (4.2), can be written as
an = "'JUImIn (46)

where Jg is a coupling constant and In = wnSa(An/A, ) , since the radius R, of a
cylindrical chain is related to its cross-section, A,, by R, = \/_,,/_W The factor, wp,
is only different from unity for the highly excited state for which the approximation
of the acyl chain as a long rod is poor.

The interactions between the polar headgroups are not taken into account in a
detailed manner, because they are expected to play a minor role in the main phase
transition in comparison to the chain behavior. “The entropy change in the transition
comes primarily from the increase in internal entropy in going from the ordered gel
state (n = 1) to the highly excited fluid state (n = 10). The interactions are approx-
imated by an effective lateral pressure, II, which couples to the cross sectional area,
A, in the term of ITA,. The interaction between the headgroups such as hydrogen
bonding will be discussed later in Chap. 6.

The Hamiltonian of the Pink model can be written as follows:

'HD_E‘L (Ea + AL Lo Z Z LsCails; (4.7)

i a=1 (1 4} anB=1

where (i, j) are nearest-neighbor indices. £, ;is an occupation variable, which is unity
when the ith chain is in the ath conformational state and zero otherwise. The model
was first examined in the mean-field approximation and the model parameters used
were determined by fitting to thermodynamic data for saturated phosphatidylcholire
(PC) bilayers of different acyl-chain length. For example, the values of the parameters
Jo and 11 found for dipalmitoyl phosphatidylcholine (DPPC) are Jp 2 0.71x 10~23 er
and IT = 30 dyn/cr by fitting to experimental values for the transition temperatures
T and transition enthalpies AH of DPPC. The mean-field calculations predicted
first-order phase transitions for all chain lengths (M = 12-22) examined with the
phase transitions becoming sharper as chain length increases. Monte Carlo simulation

work of Mouritsen and co-workers (Mouritsen, 1990) indicated that the transition
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predicted by Pink model with the fitted parameters is at best a weak first-order phase
transition close to a critical point. Furthermore, these results showed that the model
exhibits dynamic heterogeneity in the transition region, which could be interpreted
in terms of thermal fluctuations in the form of clusters of the minority phase in the
majority phase. Ipsen et al. (Ipsen, Jprgensen and Mouritsen, 1990) suggested that
the fluctuations could be characterized by a finite length and that they behaved in
a pseudocritical manner in the transition region. It is however rather difficult, using
conventional methods of analyzing the transition, to assess whether the transition is
continuous or of first order, or whether there is a transition at all. Corvera et al,
(Corvera, Laradji and Zuckermann, 1993), using the mecthod of Lee and Kosterlitz,
found no phase transition in the Pink model for the fitted parameters. They showed
that the system was close to a critical point and that the dynamic heterogencity
predicted by the Pink model is related to long-lived short-range order effects. In
fact, the finite-size behavior of the peak in the specific heat remained constant with
varying system size up to lattices of size 300 x 300 (Ipsen, 1991). It does not scale as
expecied for a first-order phase transition. In contrast to the most of experimental

results, the maximum of the specific heat calculated in the Pink model is also very

small.

4.3 Extensions of the Pink Model

As seen in the previous section, the Pink madel with the fitted parameters for satu-
rated PC bilayers does not give a phase transition, but rather describes a fluctuating
lipid monolayer beyond a critical point. In this section we propose two models based

on the Pink model, but with additional interactions appropriate for lipid bilayers.

4.3.1 Pink Model with Mismatch Interactions

The form of the interactions used in the Pink model applies to a single monolayer,

such as a lipid monolayer spread on an air-water interface. The question therefore
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arises: what type of interactions present in bilayers and not in monolayers leads
to a first-order phase transition? One type of interaction is due to the mismatch
between lipids in different conformational states, which is analogous to the mismatch
interaction between lipids and proteins in the ‘mattress model’ proposed by Mouritsen
and Bloom (Mouritsen and Bloom, 1984). In the mattress model this interaction
was assigned to the mismatch between neighboring lipids and proteins with unequal
interfacial lengths of hydrophobic contact. This effect was represented by a repulsive
interaction between the aqueous medium and the superfluous hydrophobic length.
The same interaction should occur between neighboring lipids in different rotameric
conformational states having unequal hydrophobic contact lengths and it should only
occur in bilayers, since, for monolayers, the superfluous hydrophobic lengih can make
contact with air (or cil} at negligible energy cost (Zhang et al., 1992a).

An additional term in the Hamiltonian describing the mismatch interaction among
diffcrent conformational states of the acyl chains can be written as follows by analogy
with the case of lipid-protein interactions (Zhang et al., 1992a):

Fmis
Mo = 5= 2 2 lda = dglLailpi) (4.8)
(i} a8

where d,, is the hydrocarbon chain length for the oth conformational state, and 7, is
the parameter related to the hydrophobic effect. The approximation made here is that
two monolayers of a phospholipid bilayer are identical and do not interact directly
with one another. The two monolayers only interact with each other indirectly via

the mismatch interaction. The total Hamiltonian of the extended model is therefore

H = Ho + Hum (4.9)

4.3.2 Inter-Monolayer Coupling Model

Another type of interaction presents in bilayers but not in monolayers is the direct
coupling between the two monolayers in a bilayer. The effect of the inter-monolayer

was first studied theoretically in a two-state lattice mode! proposed by Georgallas et
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al. (Georgallas et al., 1984). They showed by both analytical and simulation methods
that even a weak inter-monolayer interaction is sufficient to change the critical point
dramatically.

In a more realistic description of bilayers, the monolayers are no longer identical
so the monolayers should be described separately, The Hamiltonian for two non-

interacting monolayers, according to Eq. (4.7), is

: S n Jo \ E)‘ n n
Ho = 21{2 ZI(EC,l + AL - o > %‘1 I IsLh L5 0} (4.10)
n= i\ oas 1) af=

L7 ; is the occupation variable which is unity when the ith chain of the nth monolayer
is in the ath conformational state and zero otherwise. The mismatch interaction of

Eq. (4.8) between different conformational states of the acyl chains across the bilayer

should be re-written as

Trmnis
Hm = == Z Z Z |der + dgy — daz — dﬁzlﬁf.z,.-ﬁﬁl,.-Elz,,-ﬁfu,,-- (4-11)

(.5} a1,81 a2,02

Finally, we consider a Hamiltonian, H;, which represents a direct contribution
from the interlayer coupling. We assume that every acyl chain interacts with its
nearest neighbors in the opposite monolayer in a pair-wise manner with an energy
—J2§1,Q03 where @, are state-dependent parameters, In the fluid phase the acyl chains
are disordered and the lateral diffusion coefficient is at least two orders of magnitude
greater than in the gel phase. This implies that the interlayer coupling between the
chains in the all-trans state is much greater than that in the highly exciced fluid
state. We therefore take Q; = 1 and Q,p = 0. For the intermediate states we choose

Q234 =3, V567 = 5, and Qgg = . H; can be written as follows
Hi=—=Ty. ) WL, L] (4.12)

i aB

The total Hamiltonian of the extended model (Zhang, Mouritsen and Zuckermann,

1992a) described in this section is therefore
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Models describing the complete bilayer as a system of interacting monolayers are
uscful since they can be extended to include and distinguish between peripheral and
integral membrane-bound proteins. Furthermore, they enable us o model monomer-

dimer dissociations for certain integral proteins such as gramicidin A (Sec. 5.3).

4.4 Phase Behavior in the Extended Pink Models

We examine the extended Pink models described in Sec. 4.3 by performing numerical
simulations described in Chap. 2 on L x L triangular lattices with periodic boundary
conditions. Very long simulations are performed at the transition temperature in order
to obtain good statistics. The temperature at which the simulations are performed
were chosen as close as possible to the transition temperature T,,(L), and it was found
that 2 x 10 Monte Carlo steps per zite (MCS) are sufficient to obtain the required
accuracy (Zhang et al., 1992a; Zhang, Mouritsen and Zuckermann, 1992a).

4,4.1 Nature of the Phase Transition (I) — Effect of the

tsmatch Interaction

It is clear, from the Eq.( 4.8}, that the mismatch interactions affect the bilayer mainly
in the region where there are strong fluctuations in the hydrocarbon chain length. The
extended model is therefore mainly different from the original Pink model in transition
region. The effect of the mismatch interaction is to suppress the fluctuations z2nd drive
the transition away from criticality into a region of well-defined first-order trunsitions.
The effect of suppressing the fluctuations around the transition region is illustrated
in Fig. 4.6 in the case of the specific heat. The specific heat in the thermodynamic
limit for temperatures outside the transition region decreases as the value of 4., is
increased. At the transition Fig. 4.7 shows the emergence of the first-order phase
transition with increasing vm;, via the appearance of the maximum in AF(L).

The finite size scaling methods described in Chap. 2 are applied to determine the

nature of the phase transition in the model described in Sec. 4.3.1. The temperature
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at which a finite system undergoes a first-order phase transition usually depends on
the size of the system. It also depends on which quantity is used to identify the
finite-size transition point. In the case of the free energy, the transition temperature
TF is defined by requiring F(Ay, L) = F(A:, L), where F(Ay, L) and F(A,, L) are
the free energies of the gel and fluid phases respectively. The free energy functions
are calculated for several values of the mismatch parameter v,44,, in order to examine
the phasc Lenavior of the system and to locate the critical point. The data for three
different cases are presented in Fig. 4.8, which show that frce energy as function of
area per lipid molecule exhibits two minima with a barrier in belween. We find that
the system does not exhibit a phase transition for values of 4, below 4 x 107 %erg/ A
(Fig. 4.8a). At this value of i, the system is either at or extremely close to the
critical point (Fig. 4.8b). Above this value of vmi, the transition is of first order
(Fig. 4.8¢c). The height of the barrier, AF(L), changes considerably with system size
for different values of 4ni,. This can be seen in Fig. 4.9, where AF(L) is shown as a
function of system size for the three values of 4,;, corresponding to Fig. 4.8. Fig. 4.9
shows that AF(L) decreases with increasing L for Y, = 3 x 10-%erg/A (implying
the absence of a transition) and increases with increasing L for y,n;, = 5 x 10"lﬁerg//'1
(implying the occurrence of a first-order phase transition). For 4, = 4 x 107'®erg/ A,
the height of the barrier does not depend on system size to within numerical error,
indicating that the transition for this parameter value is very close to 2 conlinuous
transition.

The temperature dependence of the specific heat and the susceptibility obtained
by using the method of Ferrenberg and Swendsen are shown in Figs. 4.10 and 4.11
respectively for Ym;, = 5% 10" *®erg/ A and for several system sizes. As the system size
increases, the peak height of both response functions increases while the width of the
peaks decreases. The peak heights of both quantities are plotied as functions of L? in
Figs. 4.12 and 4.13 and a linear behavior is observed in agreement with Eq. (2.17).
The temperature 75 at which the specific heat exhibits a maximum is, for large-

enough system sizes, identical to the corresponding temperature for the susceptibility
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maximum. The full finite-size scaling behavior is investigated for the case of the
specific heat, The results are given in Fig. 4.14 and they exhibit the expected scaling
behavior for a first-order phase transition. Results for the fourth-order cumulant
are given in Fig. 4.15 for ymi, = & % 10~'®erg/A. As L increases, the minimum
of the cumulant goes to a value different from 2/3 at a certain temperature T9(L),
and to 2/3 at other temperatures, as expected. The nontrivial limit is obtained by
extrapolating the data for the larger sizes, as shown in Fig. 4.16.

There are different values of the transition temperature depending on the size of
system and the physical quantity used to define the transition (Sec. 3.3.4). However
they tend to the same temperature in the thermodynamic limit, i.e., as L — oo. This
is demonstrated in Fig. 4.17, which shows that for s, = 5% 107 %erg/A the transition
t:cmpcraturc Tm = 313.7K in the thermodynamic limit. This is a good agreement
with the experimental observations (Albon and Sturtevant, 1978; Biltonen, 1990).

The absolute value of the mismatch interaction required to induce a first-order
phase transition is small compared to the strength of van der Waals interactions
between lipid chains. This is due to the closeness of the critical point. The ratio of
the maximum .va.luc of the mismatch interaction used in this model to the coupling
constant of the van der Waals interaction is only of the order of 5%.

The latent heat of the first-order transition can be obtained from an integration
over a narrow temperature range around the transition. Indeed according to the
universal curve of the specific heat (Fig. 4.14), the integral [ ¢(T')dT, the arez under
the curve of the specific heat is independent of the size of system, L. Therefore, the
quantity is a measure of the latent heat in the thermodynamic limit., The latent heat
obtained by this way is about 8.12 kcal/mol, which is almost same as that found
by calculating the difference in free energy between the minima at the first order

transition (Zhang el al., 1992a).
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4.4.2 Nature of the Phase Transition (II) — Effect of Intar-
Monolayer Coupling

Although there is no direct measurement of the interlayer coupling, previous stud-
ies suggested that it should be very weak in comparison with the van der Waals
interactions between the chains in the same monolayer. In order to investigate the eof-
fects of both the mismatch and the interlayer interactions, we choose their respective
strengths in such a way that the bilayer would not have a phase transition in the ther-
modynamic limit in the absence of interlayer coupling but would be extremely close to
a critical end-point. A value of J; = 0.04J; in Eq. (4.12) is chosen in accordance with
the earlier work on inter-monolayer coupling (Georgallas et al., 1984). We find that
the system does not exhibit a phase transition for values of i, below 3 x 10~ %erg/A
and exhibits a weak first-order phase transition at 4, = 4 x 10""%erg/A (Zhang,
Mouritsen and Zuckermann, 1992a).

The results for the model described in Sec. 4.3.2 are similar to those shown in
the previous subscction, because they are typical of a first-order phase transition.
However Fig. 4.18 shows that there is a finite-size effect in the free energies for the
smaller lattice sizes, i.e. an additional well is present because the monolayers are in
different phases, one being in a gel phase and the other in a fluid phase. Hence in
this case, the weak coupling between the finite-size monolayers is overcome by strong
lateral fluctuations within the monolayers. Fig. 4.18 also shows that the additional
well disappears as the size of system increases, since the interlayer coupling then
ensures that the entire bilayer is in either the gel phase or in the fluid phase at any
given temperature. It can be seen from the figure that the two phases are separated
by an energy barrier whose height increases with increasing L. This indicates that

the system undergoes a first-order phase transition in the thermodynamic limit.
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4.5 Cooperativity in the Main Phase Transition

In this section, we examine the physical properties of the bilayers in the neighbor-
hood of a first-order phase transition, such as the lateral heterogeneity, and compare
the results with those obtained for a single monolayer of Pink model which has no
phase transition in the thermodynamic limit but is close to a critical point (Zhang,
Mouritsen and Zuckermann, 1992a; Mouritsen, 1990). To avoid hysteresis effects
encountered in standard Monte Carlo calculations, the extrapolation me'od of Fer-
renberg and Swendsen is used to analyze bilayer heterogeneity (Zhang, Mouritsen and
Zuckermann, 1992a).

The clusters can be described by a size-distribution function »J(T") which gives
the number of clusters of type p with £ lipid chains (Mouritsen, 1990). Here p refers
to the fluid chain state if T < T,, or the gel and irtermediate chain states if T > T},.
The clusters are defined via a nearest-neighbor connectivity criterion dictated by the

interaction range. The average cluster size is then

£€(T) = ;fn’i(T)/ ;nf(T) (4.14)

where the summation is restricted by a lower cut-off in the value of £ (correspond-
ing three acyl chains in our case) in order to exclude local fluctuations controlled
by the Glauber dynamics. Fig. 4.19 shows that average linear dimension £ of the
fluctuaiing clusters of the minority phase as a function of temperature for both in
the presence and absence of the mismatch and the inter-layer interactions. It is seen
that £ is considerably reduced at any given temperature in the presence of the ad-
ditional interactions, implying that the transition region has narrowed considerably
and that the wings of the transition are confined to a much narrower temperature
range. This is understandable because of the high energy barrier for the formation
of cluster interfaces in a first-order transition. £ could be interpreted as a measure of
the correlation length of the cooperativity. Fig. 4.19, therefore, shows the difference
in the correlation length for the presence and absence of a first-order phase transition.

We analyze the spatial pattern of the lipid clusters by dividing each monolayer
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into three regions: the background phase (bulk, b), the clusters (¢) and the interface
(i) between the clusters and the bulk. The interfacial region is composed of those
acyl chains which have necarest-neighbor bonds close to the cluster boundary. The
spatial pattern is then described in terms of the corresponding {ractional areas of the
membrane (i.e. as, a, and ;) and the relative occurrences of acyl-chain states in the
different regions.

Fig. 4.20 shows that the fraction of the membrane area in the clusters and in
the interfaces is considerably lower in the case of a first-order phase transition. This
figure also shows that the fractional areas of the bulk, interface and cluster regions are
similar close to T, in the absence of a phase transition, whereas in the case of a first-
order transition the bulk doininates in this temperature range. The interfacial region
can be probed by calculating the relative occurrence of the acyl-chain conformational
states in the first interfacial layer between the clusters and the bulk. This layer is
defined as the set of acyl chains which are connected by nearest-neighbor lattice bonds
to the cluster boundary. Fig. 4.21 shows the relative occurrence of the all-trans (g),
the intermediate (i), and the fluid (f) states in the first interfacial layer. The same
quantities are given for the bulk in Fig. 4.22. A comparison of Figs. 4.21 and 4.22
demonstrates that the first interfacial layer is dominated by chains in intermediate
conformational states. This kind of soft interface in a cell membrane would certainly
have a biological significance (Mouritsen et al., 1992). These figures also show that the
variation with temperature in the neighborhood of T}, of the relative occurrences of
the different chain states are similar in the absence and in the presence of a first-order
phase transition, although considerably sharper in the latter case.

The chain orientational order parameter, S, is calculated as follows

2 10
S=317 Y Y T (184 A - 08)LL,. (4.15)

n=1 1 a=l

In order to obtain values of S for a large system over a wide temperature range, we
computed this quantity by using the standard Monte Carlo method rather than via
Ferrenberg-Swendsen method. In Fig. 4,23 we present the results of the acyl-chain

orientational order parameter both in the absence and in the presence of a first-
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Figure 4.6: Specific heat in the thermodyna:mic limit for temperatures outside the
transition region shown for v, = 0,4,5 x 1071 erg/A (from top to bottom). The
specific heat is in units of kg.

order phase transition. Theoretical results, Eq. (4.15), were obtained from model
simulations on a 60 x 60 bilayér. We also show the experimental data of Davis (Davis,
1979) for S obtained from the first moment of the quadrupolar nuclear magnetic
resonance spectrum of dg,-DPPC bilayers. The experimental order-parameter data
exhibit a sharp variation in the transition region. The model results in the presence
of a first-order phase transition also exhibit a sharp jump at T},, which is in closer
agreement with the experimental results. In contrast, the Pink model gives a curve
for S which is much smoother than the experimental results. The reason for the
difference in the value of T;, between the experimental and theoretical results is
related to the fact that the experiments were performed on fully deuterated chains
whereas the theory applies to fully protonated chains. In fact the pretransition of
DPPC bilayers has not been considered in the theoretical analysis, whereas it clearly

affects the experimental results.
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Figure 4.7: Free energy F(Tn(L)) for Ymis = 1-5 x 107¢erg/ A (from bottom to top)
and L = 24,
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8,16,24,32- and Ymi, = 4 x 107%erg/4; (c) L = 8,12,16,20,24,32 and 4,,;, = 5 X
10-%erg/ A,
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Figure 4.11: Temperature dependence of the latezal compressibility, (T}, for L =
8,12,16,20,24, 32 and Jmi, = 5 X 1071° erg/A. The lateral compressibility is in units
of 10134* erg?.
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Figure 4.12: Dependence of the specific-heat maximum on IL? for I =
8,12,16,20,24,32 and vmi, = 5 x 10~ %erg/A.
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Figure 4.13: Dependence of the lateral compressibility maximum on L? for L=
8,12,16,20,24,32 and yni, = 5 X 10~ %erg/A. The lateral compressibility is in units
of 1013 4 ergt.
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Figure 4.14: Scaling function for the specific heat for L= 16,20,24,32 and v, =
5 x 107%erg/A. The specific heat is in units of kp.
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Figure 4.19: Average domain size (number of chains), {(T), as a function of temper-
ature for the Pink model (dashed line} and the model with mismatch and inter-
nionolayer interactions (solid line), respectively. The curves are obtained from
Ferrenberg-Swendsen simulations on a 24 x 24 lattice. The lower cut-off cluster
size is taken to be three acyl chains.
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Figure 4.20: Temperature dependence of the fractional areas, a{T), in the bulk (b), in
the clusters (c), and in the first interfacial layer (i} for the Pink model (dashed lines)
and for the model with mismatch and interlayer interactions (solid lines). Both sets
of results are obtained from a 24 x 24 lattice using the Ferrenberg-Swendsen method.
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Figure 4.21: Relative occurrence of gel (g), intermediate (i), and fluid (f) acyl-chain
conformational states in the first interfacial layer of lipids chains for the Pink model
(dashed lines) and for the model with mismatch and interlayer interactions (solid
lines). The results are obtained from a 24 x 24 lattice using the Ferrenberg-Swendsen
method.
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Figure 4.22: Relative occurrence of gel (g), intermediate (i), and fluid (f) acyl-chain
conformational states in the bulk for the Pink model (dashed lines) and for the model
with mismatch and interlayer interactions (solid lines). The results are obtained from
a 24 x 24 lattice using the Ferrenberg-Swendsen method.
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Chapter 5

Protein—Lipid Mixtures

In this chapter, we present microscopic lattice models for lipid-protein and lipid-
polypeptide mixtures in order to study the effects of proteins on the physical prop-
crties of lipid bilayers, gramicidin channel formation and the phase diagram for the

binary mixtures, based on the models in the previous chapter.

5.1 Introduction

Proteins are the most abundant organic molecules in cells, constituting 50% or more
of their dry weight (Lehninger, 1979). They are found in every part of every cell
and they are fundamental for all aspects of cell structure and function. There are
many different kinds of proteins, each specialized for a different biological function.
A fundamental question arises as to how the proteins affect the properties of lipid
systems and, conversely, how the lipids modulate protein function.

So far, little is known regarding internal molecular conformational states of integral
membrane proteins and their relation to modes of protein activity. The bulk of our
quantitative information on the physical effects of the interaction between lipids and
proteins is concerned with the perturbing effects of proteins on their lipid environment
(Mouritsen and Sperotto, 1992). However, it seems reasonable to postulate that most

integral (trans-bilayer) membrane proteins have as part of their structure o-helices,

86
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which have predominantly hydrophobic residues and which span the hydrophobic
region of the lipid bilayer (Henderson, 1981). This implies that there are well-defined
restrictions on the length and hydrophobicity of the proteins. This leads to the
concept of hydrophobic matching between the hydrophobic length of protein and the
hydrophobic thickness of the surrounding lipid bilayer matrix (Owicki, Springgate and
McConnell, 1978; Owicki and McConnell, 1979). The hydrophobic matching therefore
is an important component of lipid-protein interactions in membranes. Hence, in the
models studied in this chapter, the effect of lipid-protein mismatch is considered
to be fundamental in the understanding the influence of proteins on lipid bilayers
(Sec. 5.2), the instability of the gramicidin channel (Sec. 5.3) and the phase separation
of the lipid-protein and lipid-polypeptide mixtures with a lower critical mixing point
(Sec. 5.4).

A protein incorporated in the lipid bilayer usually perturbs the physical properties
of the surrounding lipids, such as their hydrocarbon chain order (Morrow and Davis,
1988). Since the order of the lipid chain in the fluid phase is linearly related to the
hydrophobic thickness of the bilayer {Eq. (4.4)], a protein in the lipid bilayer can
induce a local variation in lipid hydrophobic thickness. In Sec. 5.2, we study these
effects on the basis of the lipid model described in Sec. 4.3.2 and then compare them
with the results of Sperotto and Mouritsen based on the Pink model (Sperotto and
Mouritsen, 1991). We also investigate the influence of proteins on the correlations
between lipids by introducing a new correlation function.

Gramicidin A is a linear antibiobic polypeptide which forms ionic channels in
lipid bilayers. The channel exists as a dimer of helical B.p structure spanning the
bilayer (Urry et al., 1971). The dimer has a finite lifetime of about 0.1 seconds which
influences the conducting properties of the system (Gennis, 1989). The conforma-
tion of gramicidin A molecules does not depend strongly on the thickness of the
lipid bilayer into which it is embedded, whereas the lifetime of the channel depends
strongly on bilayer thickness. The lifetime has its maximum for a hydrophobic bi-
layer thickness which is close to the hydrophobic length of the channel. Due to the
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hydrophobicity and structure of gramicidin A4, gramicidin-lipid systems are ideally
suited model membranes for the study of lipid—protein interactions which are not in-
fluenced by hydrophilic interactions. Therefore the kinetics of the channel formation
and its dependence on temperature and on the thickness of lipid bilayer have been a
subject of interest for both experimental and theoretical studies (O’Connell, Koeppe
II and Andersen, 1990; Kolb and Bamberg, 1977; Bamberg and Laiiger, 1974; Huang,
1986). However, most of the studies are concerned one channel opening at a time. In
Sec. 5.3 we study the equilibrium channel density and its dependence on temperature
and lipid-protein interactions by simulating a microscopic model of lipid—gramicidin
mixtures.

The presence of transmembrane amphiphilic proteins or polypeptides in lipid
membranes has considerable influence on the phase equilibria of the mixed system
(Mouritsen and Sperotto, 1992). In particular the Lvid-protein interactions give
rise to phase-separation (Huschilt, Hodges and Davis, 1985; Morrow, Huschilt and
Davis, 1985; Morrow and Davis, 1988). Despite considerable experimental studies on
lipid-protein interactions in recent years, only a few phase diagrams of lipid-protein
mixtures have been elucidated with sufficient accuracy to allow a theoretical interpre-
tation in terms of the details of lipid-protein interactions. The difficulty in obtaining
accurate experimental phase diagrams for lipid-protein and lipid-polypeptide mix-
tures is related to several different circumstances. It is, for example, common that
most experiments do not give information on the free energy of the mixture directly
but rather certain derivatives of the free energy, such as the specific heat and the
spectroscopic order para.meteré. It is often difficult to determine the position of phase
boundaries based on these derivatives without invoking certain model assumptions.
Furthermore apparent anomalies in the specific heat are not sufficient to determine the
existence of a phase transition or a phase boundary and spectroscopic order parame-
ters depend in principle on certain intrinsic time and length scales of the experimental
technique in question.

In Sec. 5.4, we propose a lattice model (Zhang et al, 1992c) to describe the
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phase diagram of phospholipid bilayers containing small transmembrane proteins or
polypeptides. The model is based on the extended Pink model described in Sec. 4.3.1.
The interaction between the lipid bilayer and the protein or polypeptide is modeled
using the concept of hydrophobic matching. The phase diagram has been derived
by computer simulation techniques which fully account for thermal density fluctu-
ations and operate on the level of the free-energy thereby permitting an accurate
identification of the phase boundaries. The calculations predict a closed loop of gel-
fluid coexistence with a lower critical mixing peint, which is in agreement with recent
experimental measurements on phospholipid bilayers mixed with synthetic transmem-
brane amphiphilic peptides or with gramicidin A {Morrow, Huschilt and Davis, 1985;
Morrow and Davis, 1988).

5.2 Lipid Order Parameter Profiles around Pro-

teins

On the basis of the mattress model (Mouritsen and Bloom, 1984), Sperotto and

(
Mouritsen (Sperotto and Mouritsen, 1291} iutroduced lipid-protein interactions into
the Pink model by assuming that the hydrophobic membrane-spanning part of the
protein molecule is a stiff, rod-like and hydrophobically smooth object with no ap-
preciable internal flexibility (Owicki, Springgate and McConnell, 1978; Jihnig, 1981;
Sadler and Worcester, 1982). The protein is therefore characterized only by a cross-
sectional area, Ap, (or circumference pp) and a hydrophobic half-length, dp. The
Hamiltonian describing the lipid-protein interaction for a bilayer composed of two
monolayers can be written as follows
Hip = MApY Lp;+ 32’-(”7”) (Z) 2; \da + dg — 2dp|CL L% Lp; —
i i) @
1

2('Q?P) (E) >_min(da + dg, 2dp)Lg ;L5 L, (8-1)
i.j) a8

where z is the coordination number and z = 6 for the hexagonal lattice. Lp; is the

protein occupation variable, which satisfy the completeness relation -, Lqi+Lp; = 1.
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The parameters 4 and 7 refer to the mismatch and the van der Waals interaction

respectively. The total Hamiltonian of the model is therefore
M = Hir + Hep, (5.2)

where Mz is the Hamiltonian for pure lipid bilayers, In order to describe the thick-
ness profile of lipids near an isolated protein, Sperotto and Mouritsen (Sperotto and

Mouritsen, 1991) introduced a decay length, £, defined by the following relation,
<di(I)>=<ds > +(dp— < df >)e DU (5.3)

where < df > is the mean thickness of the pure lipid bilayer at a given temperature,
D(I) is the distance of the lipid from the protein, and I is an index for the lipid
layers around the protein. Sperotto and Mouritsen then calculated the decay length
for the Pink model, i.e. Hrr = Ho. However, as we now know, there is no phase
transition in the Pink model for the calculated parameters in the thermodynamic
sense (Sec. 4.2.2). Hence it is useful to make a similar study for the bilayer model
described in Sec. 4.3.2 and compare the effects of proteins on the properties of lipids
for both cases, i.e. in the presence and in the absence of a first-order phase transition.
Here we use 7 = 0.01 x 10~*3 erg A™ and n = 0.03 x 10~'* erg A~ (Sperotto and
Mouritsen, 1991).

We simulated both cases by choosing different coupling parameters, J, and v,
in the pure lipid bilayer model of Sec. 4.3.2. The system then undergoes a first-order
phase transition for the case of J, = 0.04Jp and i, = 0.004 x 10'136rg/.21 and is
equivalent to the Pink model for J; = 0 and i, = 0 (Sec. 4.4.2). The protein is
assumed to take up seven sites forming a hexagonal shape with a side length of two
sites since integral proteins like gramicidin A or the polypeptides may be modeled
by this way (Chapman el al., 1977; Davis et al., 1983). The thickness profiles of
bilayer near the 7-site protein at different temperatures for both cases are presented
in Figs. 5.1 and 5.2, where dp = 164, respectively. It is shown that the protein-
induced disturbance of the lipid bilayer decays with increasing distance from the

protein and it is clearly temperature dependent. The profiles result in the occurrence
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Figure 5.1: Bilayer thickness as a function of distance to the protein for a variety of
temperatures in the Pink model.
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Figure 5.2: Bilayer thickness as a function of distance to the protein for a variety of
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CHAPTER 5. PROTEIN-LIPID MIXTURES 92

22

L 1 t Ll
300 310 320 330
T (K)

Figure 5.3: Thickness in the first four layers around the protein as a function of tem-
perature for the extended Pink model (solid lines) and for the Pink model (dotdashed
lines).

of a correlation between lipid molecules and a competition between the lipid-lipid
interactions and the lipid-protein mismatch. Since the correlations in the pure lipid
bilayer are stronger in the temperature region close to the transition, the disturbance
due to the presence of the protein can extend beyond the first few molecular layers in
this region. The cffect of the protein also rapidly decays outside this region. While
the decay length, £, indicates the range of lateral correlations for the lipid bilayer,
the hydrophobic thickness of the first lipid layer around the protein is a measure of
the competition between the interactions of the first layer lipids with the protein and
with their neighboring lipid molecules respectively. For the cases shown in Figs, 5.1
and 5.2, the hydrophobic length of the protein is less than the mean thickness of lipid
bilayer in the gel phase but is greater in the fluid phase. Because the interactions
between the lipid molecules are weaker in the fluid phase and stronger in the gel
phase, the thickness of the first layer in the fluid phase can be stretched to match the
length of the protein completely while the reduction of the thickness in gel phase is
limited.

There is a striking difference between the profiles for the two cases. For example
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Figure 5.4: The thickness correlations as function of temperature for the extended
Pink model (solid lines) and for the Pink model (dotdashed lines). In both cases the
curves from top to bottom correspond to i=2,3,4.

profiles of the hyvdrophobic thickness vary more dramatically with temperature T
in Fig. 5.2 than in Fig. 5.1. The hydrophobic thickness of the first four layers as
a function of temperature is shown in Fig. 5.3. There arc abrupt changes of the
hydrophobic thickness for all the layers at the transition ':mperature, although the
jumps in the thickness are not all equal. This is characteristic of a first order phase
transition.

It is shown, in Figs. 5.1 and 5.2, that the relation in Eq. (5.3) is not valid at
the phase transition so that we cannot define the decay length, £, in the transition
temperature region. Since the decay length, {, is dependent on the correlation between
the lipid molecules, we examine the correlations in the lipid bilayer directly. The

hydrophobic thickness correlation function of lipid molecules is here defined as

did; > — i
cor(dl,d")=< 1di > — < dy ><d; > (5.4)

o a;

where o; = [< d? > — < d; >2]=l, and d; is the thickness of i-th layer around
a reference center. Here the index i refers to the distance away from the central

site. When this site is occupied by a protein, we refer to the correlation function as
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Figure 5.5: The thickness correlations as function of temperature for the extended
Pink model in the absence of a protein (solid lines) and in the presence of the protein
(dotdashed lines).
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Figure 5.6: cor(t) as functions of temperature for i = 2 (solid line), 3 (dashed line),
and 4 (dotdashed line) for the extended Pink model.
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cor(dy,d;)p to distinguish it from the non-protein case.

The correlations are shown in Fig. 5.4 as functions of temperature T for the two
cases {with and without a first order transition) in the pure lipid bilayer. The three
curves presented for each case correspond to i = 2,3,4 respectively. The correlation
function for 1 = 2 has the largest values at all temperatures for both cases. As ex-
pected, there are strong correlations at the transition temperature T, for the first
order transition case. Beyond the transition region, the correlations are weaker than
that for the case with no transition. This is consistent with other observations such as
the specific heat and the lateral compressibility (Sec. 4.4.1). However the correlations
between lipid molecules are suppressed in the presence of proteins, This is shown
in Fig. 5.5, where the curves for the correlalion functlion are presenied for both in
the presence and in the absence of the protein. These results are consistent with the
recent experimental observations by Watnick ef al. for the mixtures of gramicidin
and lecithin (Watnick and Chan, 1990). The results obtained from their 2/{-NMR
relaxation measurements indicate that the peptide disrupts the cooperative fluctua-
tions characteristic of pure multilamellar lipid dispersions through the hydrophobic
mismatch between itself and the lipids.

The quantity dcor(i) = cor(d,,d;) — cor(dy,d;)p is a measure of the effect of the
protein on the hydrophobic thickness of the lipid bilayer. écor is shown as a function
of T in Fig. 5.6. Since §cor(2) = bcor(3) and bcor(1) > bcor(2), the cffect of proteins
on the lipid bilayer is very short range except at the transition. A longer range cffect
occurs at the transition since dcor(i) has the same values for 1 = 2,3,4. Therelore, use
of this analysis allows us reach a conclusion similar to that Sperotto and Mouritsen
obtained from their decay length calculations. They found that the perturbation by
proteins on the surrounding lipids is strongly dependent on temperature and reach

its maximum at the transition (Sperotto and Mouritsen, 1991).
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5.3 Thermal Equilibrium and Gramicidin Chan-
nel Formation

The cation permeability of lipid bilayers increases in the presence of the linear pen-
tadecapeptide, gramicidin A (Wagner et al., 1972). It is known that gramicidin A
forms dimeric channels consisting of two monomers that are linked by of the order of
six hydrogen bonds (Hladky and Haydon, 1972; Bamberg and Laiiger, 1974). When
two molecules of gramicidin A, one in each monolayer, form a linear dimer, an ion-
specific channel through the bilayer is created. The channel loses its ionic conductivity
when it dissociates into monomeric units. Studies of the statistics of channel open-
ing by conductance measurements show that the dimers (channels) and monomers
are in thermal equilibrium (Hladky and Haydon, 1972; Bamberg and Latger, 1973;
Zingsheim and Neher, 1974),

G+G=G, (5.5)

where G and (3, represent the gramicidin monomers and dimers respectively.

Most experimental results for the mean lifetime of a single channel support the
assumption that the mismatch between the gramicidin dimer (a channel) and the lipid
bilayers mainly accounts for the dissociation of the gramicidin dimer (Elliott et al,,
1983). For example, the mean lifetime of gramicidin channels in monoacylglycerol-
squalene bilayers was found to increase as the bilayer thickness decreases from 28.5
to 21.7 A while the hydrophobic length of the channel is assumed to be 21.7 A. This
is consistent with the fact that a decrease in mismatch makes the dimeric state more
stable.

There have been many theoretical studies on the kinetics of the channel formation
and its dependence on membrane structure. A theoretical model was proposed for the
relation between the mean lifetime of gramicidin channels and the thickness of lipid
bilayers by Elliott et al. (Elliott et al., 1983) and was modified by Huang (Huang,
1986) in term of deformation of the bilayer. The basic idea of the model is as follows:

when a dimeric gramicidin channel is formed in 2 membrane of thickness greater than
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the length of the channel, the membrane deforms locally to accommodate the channel.
Then the restoring force of the deformed membrane will reduce the stability of the

dimer. The dissociation corstant kp can in this case be estimated from (ITuang, 1986)

kp = ve 9" /keT (5.6)

where g* is the free energy of activation, which is the energy required to break the
hydrogen bonds linking two monomers, and v is a frequency factor almost independent
of temperature.

Here we simulate dimer formation on a microscopic level. The assumption that
the hydrocarbon chains of lipids adapt to the thickness of the hydrophobic core of
a protein in the membrane is the basis of the mattress model, which allows us to
formulate a microscopic model for gramicidin channels iu the lipid bilayers using the
bilayer model discussed in Sec. 4.3.2. Even though the parameters in the bilayer
model has been determined for DPPC bilayers only, we assume that tile mechanies of
channel dissociation is valid for all phospholipid bilayers, i.e. the mismatch between
the gramicidin dimer and the bilayers should still account for the instability of the
channels.

The microscopic model consists of two parts: the model of pure lipid bilayers
which is described in Sec. 4.3.2 and the coupling of the gramicidin monomers or
dimers incorprated in the bilayers to lipid molecules. By analogy with the interactions
between the acyl chains, the interactions between lipid molecules and gramicidin

monomers are then written as follows,

2 J d 10
Hig = ZI{ZIIAGCR,,_;———;E d—‘l’)(.z;}zlf.,c;,,. bs} = En D Lol +
n= ' 1,))a= )
Tomis dy + dg - 2dg|CL L2 LY L2 5.7
D) 2.2 |da+dg Lo il L il e (5.7)
(i.7) a8

W.; is the occupation variable for gramicidin monomers which is unity when the i-th
site of the n-th monolayer is occupied by a gramicidin monomer and zero otherwise.

In this approximation the hydrophobic part of the gramicidin monomer is assumed
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to be a stiff rod-like object with no internal flexibility. It can therefore be character-
ized by a cross-section area, Ag, and the length of the hydrophobic core, dg. Jig
is the direct lipid-protein interaction constant, which depends on the properties of
gramicidin hydrophobic surface. The parameter, Z€ | is related to the hydrophobic
effect describing the hydrophobic area exposed by the longer species to water. Ey is
the strength of the hydrogen bonding between the two monomers of a dimer.

In the model of Eq. (5.7) it is assumed for computational convenience that the
monomers are single-site objects on the lattice substituting for a single acyl chain.
It is however possible to relate the results of this model to those of the experimental
situation where the monomers occupy about seven adjacent lattice sites by a simple
scaling, though this is clearly an approximation. From a scaling argument, we choose
Ey =~ 2 x 10~ Yerg as a single hydrogen bond instead of six or seven hydrogen bonds.
Although the approximation overestimates the mixing entropy, it works quite well in
the lipid-protein model described in Sec. 5.4. Finally we only consider the case of
dg = dig = 11.25A because experiments (Elliott et al., 1983; Huang, 1986) suggest
that the hydrophobic thickness of gramicidin channels matches the thickness of the
membrane exactly in fluid phase. Consequently the value of v%¢ is chosen to be the
same as Ymi, (Secc. 5.4).

The equilibrium dimer probability, P, is defined as the percentage of dimers
in thermodynamic equilibrium and is therefore a measure of the tendency to form
ionic channels. The dimer probability is affected by several factors, such as the
temperature, the mismaich condition between the gramicidin dimer and the lipid
chains, and the direct lipid-protein interaction. An increase in temperature may
cause the monomer-monomer bonding in a channel to break, thereby lowering the
dimer probability. Temperature also indirectly affects the probability via changes in
the hydrophobic thickness of the lipid bilayer. Furthermore the mismatch between
the dimers and lipids always tends to break a dimer into two monomers. However

the effect of mismatch is dependent on the lateral distribution of the dimers, which is
controlled by the strength of the direct van der Waals interactions between lipids and
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Figure 5.7: Dimer probability as a function of temperature. o refers to the data with
the van der Waals lipid-gramicidin interaction;  refers to the data without such an

interaction.
proteins. For the case when this attractive interaction is very weak, the gramicidin
monomers and dimers aggregate in the bilayer plane in such a way that the contact
between lipids and dimers decreases maximally and the effect of mismatch on the
channel is therefore suppressed. For the case where the lipid-protein interaction is
sufficiently strong, i.e. close to the strength of van der Waals interaction between
lipid molecules, the gramicidin dimers or monomers disperse considerably so that the
environment of each channel will be similar to that of an isolated channel.

The dimer probabilities, P.,(T), are shown in Fig. 5.7 as functions of temperature,
T, for the cases with and without the direct van der Waals interaction between lipids
and gramicidin. The gramicidin-lipid mixture was simulated on two 40 x 40 triangle
lattices, 3% of which is occupied by gramicidin monomers. It is shown that the
equilibrium channel probabilities in the fluid phase of the bilayer are almost the same
for the two cases because the lipid-gramicidin interaction in the fluid phase is very
weak. However, they are quite different in the gel phase of the bilayer. Indeed the
direct lipid-protein interaction, together with the effect of enttopy, overcomes the

mismatch between the hydrophobic thickness of gramicidin dimers and that of the
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lipid bilayer and disperses the dimers randomly in the bilayer. In this situation Fig. 5.7
shows that the mismatch is very effective so that the channel probability in the gel
phase decrcases. In the opposite case, when the direct lipid-protein interaction is
very weak, the dimers aggregate in the bilayer so that the mismatch does not affect
the channels inside the gramicidin clusters and the entropy effect on the channels
decreases. Therefore the channel probsbility in this case is even higher than in the
fluid phase where the hydrophobic thickness of dimers is closely matched to that of
the lipid bilayer. Overall, the dimer probability has a large value (about 80%) over a
large temperature region in the gel phase because the hydrogen bonding in dimers is
considerably stronger than the van der Waals interactions in DPPC bilayers.

The equilibrium constant of dimerization, K., can be related to the channel
probability P., by K., = AP.,(1 — P,;)~* (Cohen, Atkinson and Summers, 1970),

where A is the mean area of lipid bilayer.

5.4 Critical Mixing of Protein and Lipids

The occurrence of critical mixing in two-component lipid membranes is a wide-spread
phenomenon. There is a strong experimental evidence that it occurs in DMPC and
DPPC lipid bilayers containing either gramicidin A (Morrow and Davis, 1988) or
synthetic transmembrane amphiphilic polypeptides of the type Lys,~Gly-Leu,-Lys,-
Ala~amide with n = 16 and 24 (Huschilt, Hodges and Davis, 1985; Morrow, Huschilt
and Davis, 1985). The phospholipid-polypeptide systems were studied using a combi-
nation of calorimetry and NMR difference spectroscopy, therefore the re'.sulting phase
diagrams have a high degree of accuracy. The experimental data for the phospholipid—-
gramicidin A system have not been interpreted in terms of a quantitative phase di-
agram although it was argued that the data are consistent with the presence of a
lower critical mixing point (Morrow and Davis, 1988). Since there may also be some
influence from the dimer-monomer equilibrium in the case of gramicidin A which is

not accounted for in the present type of modeling, we restrict ourselves to 2 quantita-
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tive comparison of our theoretical results of critical mixing with experimental results
for DPPC lipid bilayers containing synthetic polypeptides. Since the experimental
data for both the long and the short peptide are quite similar, we discuss these two
systems together. It should however be noted that there is a slight quantitative differ-
ence between the phase diagram for the two peptides which can easily be rationalized
in terms of the hydrophobic matching concept. The short peptide tends to stabilize
the fluid phase more strongly than the long peptide because the short peptide is more
closely matched to the fluid hydrophobic thickness of DPPC than the long peptide
(Mouritsen and Sperotto, 1992).

Morrow and Whitehead (Morrow and Whitehead, 1988) used a Landau expansion
of the free energy in terms of area per lipid molecule to obtain protein-lipid phase
diagrams with critical mixing. However the phenomenological modeling does not ac-
count for the thermal density fluctuations and cannot address the microscopic origins
of such phase diagrams. Hence we proposé a microscopic model to describe the phase
diagrams and we identify the phase boundaries by using the Lee-Kosterlitz method
described in Sec. 2.3.2. Our work is therefore complementary to the work of Morrow
and Whitehead.

The microscopic interaction model used in this section to describe a lipid bilayer
mixed with small transmembrane proteins or polypeptides consists of two parts. The
first part, Hiy given in Sec. 4.3.1, describes the internal energy of the pure lipid
bilayer and the second part, Hyp, describes the interactions between the lipid bilayer
and the protein. Direct interactions between different proteins are neglected since we
are only concerned with low ratios of protein to lipid. The lipid-protein interactions,
Hyip, can be formulated in terms of a direct lipid-protein interaction in addition to a

hydrophobic misinatch term

Ji
ﬂLp-nApzz:p,. I“’( )erc,,cp., 1"“"ZZIa! — dp|Lailp;

(‘J) o (‘uJ) o

(5.8)
The geometric parameters of the protein are chosen to be Ap = 68.0A° and dp =

dio = 11,254, where dy; is the acyl-chain length in the fluid state. It is assumed that
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the protein is small in the sense that it only occupies one site of the lipid lattice. This
assumption, which is made for computational convenience, will be discussed further at
the end of this section. The parameter, 72}, is related to the hydrophobic effect and
describes the exposure of the longer species to water (Mouritsen and Bloom, 1984).
Since we are mainly concerned with the case where dp is close to the hydrophobic
acyl chain length in the fluid phase, we only need to consider a value of ~LP which
describes the exposure of acyl chains (rather than protein side chains) to water. As
described in Sec. 4.3.1, we therefore choose ¥LF = ~p;, = 5 x 107%%erg/A. The
actual value of Jup depends on the properties of the protein hydrophobic surface, i.e.
the type of amino-acid side chains. In most of the simulations we choose the direct
lipid-protein interaction parameter to be Jpp = 0.25 X 10~ Perg.

In the binary mixture for a given temperature T, the chemical potential, g, of
the proteins in the lipid controls the equilibrium composition of the mixture given by
the molar fraction of proteins, ¢. The molecular composition of the system fluctuates
over the miscroconfigurations of the equilibrium ensemble. We can thus use the
ensemble of microconfigurations generated at equilibrium to calculate the distribution
function, n(c, g, T, N}, for the composition. Here n(c, 1, T, N') denotes the probability
of occurrence of a microconfiguration with composition ¢ at the values chosen for u
and T'. The part of the free energy which describes the composition dependence of the
total free energy for a fixed value of T', p, and system size N is related to n(e, g, T, N)
as follows (Sec. 2.3.2)

Fle,p, T, N) = —kgTlnn(c,p, T, N). (5.9)

The relative stability of two different bilayer phases characterized by compositions

(') and ¢ can now be determined by examining free-energy differences such as
AF(N) = F(M,p, T, N) - F(B, u, T, N). (5.10)

Fig. 5.8 shows the free energy function, F{c, pim, T, N), for four different temper-
atures, T = 313.0K, 310.0K, 304.0K, and 303.5K, all of which are below the gel-fluid
phase transition temperature, T, = 313.7K, of the pure DPPC lipid-bilayer given by
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Figure 5.8: Free energy F(c,pm(N),T,N) as a function of bilayer composition, ¢,
for different lattice sizes, N = L x L, L = 16(A),24(e),32(0), for three different
temperatures, (a): T = 313.0K, (b): T = 310.0K, (c): T = 304.0K, and (d): T =
303.5K. pm(N) refers to the chemical potential at phase coexistence for a system
of size N consisting of a DPPC lipid bilayer embedded with small transmembrane
proteins or polypeptides.
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Figure 5.9: Theoretical T phase diagram for the microscopic model of lipid-protein
interactions. The lower critical mixing point is marked by (+). The diagram cor-
responds to a DPPC lipid bilayer embedded with small transmembrane proteins or
polypeptides.

(]

(=]

[=]
T
L

Figure 5.10: Theoretical T-c phase diagram (o) for the microscopic model of lipid—
protein interactions. The solid curve is drawn as a guide to the eye. The critical
mixing point is indicated by (+). The diagram corresponds to a DPPC lipid bilayer
embedded with small transmembrane proteins or polypeptides.
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present model (Sec. 4.3.1). The free energy was calculated for a value of the chemical
potential, g = g, at which the two lipid phases coexist and hence the two minima
of the free energy are equally deep. The following conclusions can be drawn from the
size dependence of the data in Fig. 5.8, For the two higher temperatures, T = 313.0K
and 310.0K, the free-energy barrier, AF(N) in Eq.( 5.10), separating the two minima
increases with system size indicating that the two phases are separated by a first-order
transition, ¢.e. the two phases coexist in the thermodynamic limit. In contrast, at
T = 304.0K in Fig. 5.8¢, the barrier height does not depend on system size to within
numerical error indicating that the system is close to a continuous transition, in this
case a lower critical mixing point. For even lower temperatures, e.g. T < 303.5K,
the barrier decreases with system size indicating that the difference between the two
minima, and hence the two phases, vanishes in the thermodynamic limit. At these
temperatures the mixture is therefore in a one-phase region at all compositions.

The phase diagram spanned by temperature and chemical potential was obtained
from data of the type presented in Fig. 5.8 and is shown in Fig. 5.9. The dashed
line in this figure gives the line of coexistence between the gel and fluid lipid phases.
The line terminates in the critical mixing point. The corresponding phase diagram
spanned by temperature and bilayer composition is displayed in Fig. 5.10. This figure
shows that the lipid-protein interactions of the present microscopic model produce
the characteristic ‘tear-drop’ shaped closed coexistence loop of a binary mixture with
a lower critical mixing point. We also found an absence of phase separation at T' =
305.0K for Jip = 0.3 x 10~ %erg. This indicates that for larger values of the direct
lipid-protein interaction constant, Jpp, the critical mixing point moves towards higher
temperatures. Specifically it suggests that the direct lipid-protein interactions are
responsible for the location of the critical mixing point.

In order to make 2 direct quantitative co.nparison between the theoretical phase
diagram in Fig. 5.10 and the corresponding experimental data, it is first necessary to
scale the theoretical data in a manner which allows for the fact that the peptides in

the experimental system are larger relative to the lipid acyl-chains than assumed in
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Figure 5.11: Rescaled theoretical T-zp phase diagram (o) for the microscopic model
of lipid—protein interactions. The rescaling is performed in order to facilitate a com-
parison with a specific lipid bilayer system: DPPC bilayers mixed with a-helical
amphiphilic transmembrane proteins of the type Lys,-Gly-Leu,-Lys,—Ala-amide.
The experimental data (e) for mixtures of DPPC with Lys;~Gly-Leugq—Lys,-Ala-
amide (Morrow, Huschilt and Davis, 1985) are shown for comparison. The solid line
connecting the theoretical points is drawn as a guide to the eye.
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the lattice model. In the model description it is assumed for computational conve-
nience that the peptides are single-site objects on the lattice substituting for a single
acyl chain. Although it is in principle feasible, it would be computationally more de-
manding to perform the simulation with objects which occupy several adjacent Iattice
sites. It is however possible to scale the data in Fig. 5.10 to provide an approximation
to the case where the polypeptides occupy more sites and hence have a larger volume
fraction. The approximation underlying this simple scaling is on the same level as the
Flory-Huggins approximation for polymer blends (Flory, 1953; Huggins, 1941) which
for the present system overestimates the mixing entropy. For concentrations which
are not too high this approximation should be reliable. Fig. 5.11 shows the same
data for the phase diagram as in Fig. 5.10 but now scaled down to a concentration
measure, zp, corresponding to a polypeptide which occupies seven lattice sites ap-
propriate for a poly-leucine a-helix, i.e. zp = ¢ (§ - %‘-)—1. For comparison we plot
on the same figure the experimental data for the DPPC-polypeptide membrane as
obtained for NMR difference spectroscopy (Huschilt, Hodges and Davis, 1985). The
agreement between the experimental data and the theoretical predictions are quite
satisfactory considering the approximation which underlies the concentration scaling.
The good agreement suggests that the microscopic interaction model has captured
the essentials of the lipid-protein interactions in the present lipid bilayer system. The
experimental phase diagram for the shorter peptide with n = 16 is very similar (Mor-
row, Huschilt and Davis, 1985). Note, that since the experiments have been carried
out on perdeuterated DPPC which has a lower transitiorn point than that of normal
DPPC, the experimental data have been subject to a trivial translation in temper-
ature in order to compensate for the isotope effect and to facilitate the comparison

between theory and experiment.



Chapter 6

Hydrogen Bonding in Lipid

-

Bilayers

In this chapter, we propose a model for thermodynamic phase transitions and geomet-
ric transitions involving hydrogen bonding between the polar-heads of lipid bilayers

Zhang et al.,, 1992d). The relationship of the results to experiment is discussed.
&

6.1 Introduction

As described in Chap. 4, phospholipids are surfactant-like molecules with two hy-
drophobic fatty acid chains and a hydrophilic polar head. The nature of the polar
head is therefore important for the hydration properties of the bilayer. Two types of
polar head, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), together
account for the polar heads of the majority of phospholipids in most cell membranes
(Silvius, Brown and O’Leary, 1986). Lameller phases composed of PE hydrate less
strongly than the corresponding lamellar phases of PC (Lis et al., 1982), and show a
much greater tendency to form dehydrated and/or non-lamellar phases than do PC
lipids of comparable acyl chain composition.

Boggs (Boggs, 1980) and Hauser et al. (Hauser et al., 1981) suggested that the
differences in the hydration properties of PE and PC lipids are largely attributable

108
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Figure 6.1: (a) General structure of phosphoglycerides; (b) Two types of polar head
groups-PE and PC
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to differences in the abilities of these two lipids to participate in intermolecular lipid-
lipid hydrogen bonding. The hydrogen bonding of dilauroylphosphatidylethanolamine
(DLPC) was investigated by using X-ray crystallography by Hitchcock et al. (Hitch-
cock et al., 1974) who found that in anhydrous crystals each PE polar head was
connected by N-H...O hydrogen bonds to four neighboring polar heads. Here the
bonds are between the oxygens (acceptors) of the phosphate group and the hydrogens
(donors) of the amino group. Since the trimethylammonio group of PC lipids cannot
form hydrogen bonds, the PC headgroup can serve as an acccptor but not as a donor
of hydrogen bonds.

As described in Chap. 4, fully hydrated one-component PC bilayers undergo a
phase transition, known as the main phase transition, in which the bilayer passes
from a gel (solid) phase to a liquid-crystalline (fiuid) phase. Both these phases are
stable hydrated phases. For pure PE lipid bilayers, the situation is considerably dif-
ferent. Several studies (Seddon, Harlos and Marsh, 1983; Seddon, Cevc and Marsh,
1983; Chang and Epand, 1983; Mantsch et al, 1983; Wilkinson and Nagle, 1984; Sil-
vius, 1991) showed that aqueous dispersions of dimyristoyl phosphatidylethanolamine
(DMPE) can form at least three distinct types of lamellar phase: stable, virtually de-
hydrated ‘crystalline’ (AS) phases in which the acyl chains are rigid and tightly packed
and the polar heads are presumably hydrogen bonded to one another; a hydrated solid
(HS) or gel metastable phase, in which the chains are somewhat less tightly ordered;
and a hydrated fluid (HF) stable phase, in which the chains are flexible. The crys-
talline nature of the AS phase was confirmed by the X-ray crystallographic studies of
Seddon et al. (Seddon, Harlos and Marsh, 1983; Seddon, Cevc and Marsh, 1983) whe
showed that this phase has basically the same structure as the anhydrous crystal. On
heating, the AS phase makes a first order phase transition to the HF phase. Several
effects occur at this transition. Firstly, the solid melts and the acyl chains become
flexible (chain melting). A second likely effect in the HS and HF phases is that the
interlipid hydrogen bond network existing in the AS phase could be disrupted by

competition with lipid-water interactions. The precise degree to which interlipid hy-
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drogen bonding interactions are disrupted upon conversion of the AS phase to the
BS or HF phase has yet to be established experimentally, although it appears that
lipid-water hydrogen bonding is extensive in the HF phase in particulai. Tn contrast
to the AS to HF transition, the transition of the metastable, but long lived HS phase
to the HF phase exhibits a considerably lower latent heat.

There have been a number of theoretical models relevant to hydrogen bonding
in lipid bilayers. The earlier models were phenomenological models for the effect
of hydrogen bonding on the transition temperature of the main phase transition
proposed by Nagle (Nagle, 1976), and Eibl and Wooley (Eibl and Wooley, 1979).
MacDonald et al. (MacDonald and Pink, 1988) proposed a microscopic model for
those hydrated ceribrosides in which there is a single donor-single acceptor complex
on the amide group giving rise to a ‘striped’ ground state composed of 1d hydrogen
bonding networks. This model included both hydrogen bonding effects and chain
melting at the main phase transition. Their model is similar to a Potis lattice gas
model of krypton adsorbed on graphite proposed by Berker et al. (Berker, Ostlund
and Putnam, 1978} and a site-bond percolation model, with temperature dependent
bond probability, proposed by Coniglio et al. {Coniglio, Stanley and Klein, 1982)
to study the sol-gel transition. Both models include a site degree of frecdom which
cannot bond with neighboring sites, and other degrees of freedom which are able to,
but need not, bond with neighboring sites. However, in both models, the bonds are

not correlated with the relative position of the sites.

6.2 Model for Hydrogen Bonding in Lipid Bilay-

ers

In this section we present a microscopic lattice model to describe the hydrogen bond-
ing aspects of the main phase transition of pure PE bilayers. It is a five state inter-
acting model on a 2d square lattice which mimics both the hydrogen bonding network

proposed for PE lipids by Hitchcock et al. (Hitchcock et al., 1974) and its disrup-
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Figure 6.2: (a) Five states of the model. The solid vectozs point in the direction
of the HB donors and are equal to §(® and §®). The dashed vectors represent
the direction of the HB acceptors. The four bonding states can be represented by
(£,9), (—%,9), (—%,—3), and (%, -J) respectively. The fifth (unbonding) state is
schematically represented as a circle with a dot inside. (b) Two of the bonding
possibilities for nearest neighbor sites. (c) Two examples of nearest neighbor sites
which do not bond.

tion by lipid-water interactions. Each lattice site represents a PE polar head which
can have a maximum of four possible hydrogen bonds (HBs) with the polar heads of
neighboring molecules. Each polar head has two HB donors and HB acceptors. The
structure of the polar head is such that the two donors are perpendicular fo each
other and the donors are antiparallel to the acceptors. This is the case for PE polar
heads in DLPC (Hitchcock et al., 1974). Each lattice site represents a PE polar head
and can be in one of five possible states (Fig. 6.2a). Four of these states are called
bonding states, and we assume that for the bonding states the donors are oriented

along the links between lattice sites. Since the two donors are perpendicular we as-

sociate with each bonding state a horizontal unit vector §(=) corresponding to the
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direction of one of the donors and a vertical unit vector S® corresponding to the
direction of the other donor at the same site. Thus, the four bonding states are given
by (§) = &, §0) = §), (§&) = —z, §0) < §), (§® = —3, §») = —), and (5 = &,
S = —%). This allows three possible arrangements on each lattice bond connected
by bonding states: two donors, two acceptors, or one donor and one acceptor. In
this model, a hydrogen bond of bonding energy, E,, is formed when an acceptor and
a donor are present on the same lattice bond. The two other arrangements have no
energy associated with them. The system lowers its energy by an amount, E,, when
an HB is formed and the same value of the energy is required to break an HB. On
each site it is possible for one of the HB donor vectors, §(=) or $™ to bond without
the other donor bonding. The same is true for the acceptors. Thus, from zero to four
HBs can be formed between a site and its four nearest neighbors. The polar head is
also allowed to be in the 5th state, called the ‘unbonding’ state (Pink, MacDonald
and Quinn, 1988; Coniglio and Klein, 1980). This state has a degeneracy, D, which
partially represents all possible orientations of the polar head, both in-plane and out-
of-plane, for which a polar head cannot form hydrogen bonds with neighboring polar
heads. The degeneracy, at low values, is principally a measure of the ability of the
polar head to become hydrated by the surrounding water molecules if the energy
cost of the hydration is assumed to be negligible, but it includes melted chain con-
formation (typical of the HS or HF phase) at higher values of D,. The thermally
induced competition between the formation of HBs and the degeneracy effect of the
unbonding state should therefore result in a hydration~dehydration transition. For
the unrbonding state the donor vectors are assigned the values §(=) = 0 and §W = 0.
Some of the various bonding possibilities are shown in Fig. 6.2(b)~(c).

The Hamiltonian for the five-state model described above can be written as follows:
H=-B Y f(55 - 85):) + F(5Y - 530, (6.1)

where f(1) =1, f(z) =0 for z # 1 and S-",(;) and 5';(?:’) represent the donor vectors of
the ith polar head located at the position 7;. Note that the lattice spacing is set equal
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Figure 6.3: The solid line indicates a first order transition. The dashed line indicates
no thermal phase transition, but the existence of a percolation transition.

to unity here.

6.3 Phase Diagram for the Five-State Model

In this section we examine the phase behavior of the microscopic model by the stan-
dard Metropolis Monte Carlo method with non-conserved dynamics in conjunction
with the new techniques described in Chap. 2.

The phase diagram for the model in terms of T*(= kgT/E};) and the unbonding
degeneracy, D,, is shown in Fig. 6.3. For D, > 160, the system undergoes a first
order transition. It is determined by calculating the free energy as a function of the
internal energy at the transition (Sec. 2.3.2). The typical results for the first order
transition is presented in Fig. 6.4(a), which shows that the energy barrier, AF(L)
increases with increasing L. The first order transition is accompanied by a percolation
transition. In this case the system makes an abrupt transition from the percolating

case to a situation where there are only a few clusters of hydrogen bonded polar head.
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The system does not exhibit a thermal phase transition for values of D, below
about 160 because AF(L) decreases with increasing L and reaches the Gaussian
hehavior, implying the absence of a phase transition, in the thermodynamic limit
(Fig. 6.4b). At D, = 160, the system is at or extremely close to a critical point.
Fig. 6.4(c) shows that, in this case, the free energy as a function of E/E; exhibits
two minima with a maximum between them but that the height of the maximum,
AF(L), is independent of system size to within calculational error.

The latent heat is an important quantity related to a first order phase transition.
It can be obtained by integrating the specific heat. Although there is the size-effect
of the specific heat for a finite system, the area under the specific heat curve is about
constant which corresponds to the latent heat (Zhang et al.,, 1992a; Zhang et al,,
1992c). Fig. 6.5 shows that the specific heat scales reasonably as a function of system
size, L, for D, = 200 and reaches certain limit when L is large enough. The area
under the reached curve in Fig. 6.5 gives the latent heat of transition, AH, which is
shown in Fig. 6.6 {or several values of D, in the first order transition regime. The
point at D, = 160 is an estimate of the location of the critical point. The same values
for AH also can be found by calculating the difference between the minima in free
cnergy at the respective first order phase transition (Fig. 6.4a) although this method

may require a large system.

6.4 Percolation Transitions at Low Degeneracies

There is no thermal phase transition along the dashed line in the phase diagram
(Fig. 6.3). However, there is a percolation transition which occurs when an infinite
cluster of sites connected by hydrogen bonds spans the lattice at a definite transition

temperature T;. We now wish to determine the critical properties of this transition.
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6.4.1 Summary of Percolation Theory

The simplest phase transition problem in statistical physics is probably the purely
geometric problem of the so-called percolation transition. A site percolation problem
can be described as follows. Uonsider a lattice which we take, for simplicity, as a two
dimensional square lattice, which composed of the sites and the bonds. Each lattice
site can be either occupied ot unoccupied. A site is occupied with a probability p
(< 1) and unoccupied with a probability 1 — p. For p less than a certain probability
Pe, there are only finite clusters on the lattice. A cluster is a collection of occupied
sites connected by nearest neighbor distances. For p larger than or equal to p. thereis
an infinite cluster which «. .iects each side of the lattice with the opposite side, i.e.,
the system percolates. For the site percolation problem all 2d bonds between the sites
are present. In a bond percolation, all the sites are occupied but a bond is occupied
with a probability p and leave it empty with probability 1 — p. Clusters are defined
in a similar way as for the site percolation. Combining these two problems, we have
the site-bond percolation. In the site-bond percolation problem sites are present with
a probability p,. Bonds can exist only between occupied sites. If two neighboring
sites are occupied the bond is present with a probability p,. We call the percolations
mentioned above as ordinary random percolation (RP) to distinguish them from other
percolations discussed in Sec. 6.4.3. They follow the hyperscaling relation described
by Eq.( 6.8).

In contrast, the bootstrap percolation (BP) (Adler, 1991; Chalupa, Leath and
Reich, 1981; Kogut and Riess, 1975) does not follow the hyperscaling law. In m state
bootsirap percolation configurations are generated with site probability p, and then
occupied sites with fewer than m neighbors are recursively eliminated. This culling
tends to increase the value of the percolation threshold for m > 1. The ordinary

percolation is the special case of BP with m=0.
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6.4.2 Finite-Size Scaling for Percolation Transition

Following power laws are observed at the percolation transition, p. (Stauffer, 1984).

Py ~(p—pcf (6.2)
X =Y. n,9% ~(p—p)" (6.3)
£~ (p—p)™ (6.4)

where Py, is the probability of an occupied site belonging to the infinite spanning
cluster, n, is the number of clusters per site with s sites, and ¢ is the connectedness
length. The sum in Eq. (6.3) does not include the largest cluster. For a finite system

of size L, the power laws lead to scaling relations:

Popan(L, 6p) = f(6pL"") (6.5)
Po(L,8p) = L™Plg(5pL/) (6.6)
x(L,8p) = L"/*h(6pL'*) (6.7)

where §p = (p — P.)/Pey Pipan €quals the probability of the system containing a
spanning cluster, and f,g, and h are scaling functions. A scaling law known as
hyperscaling is given by

dv=+v+28 (6.8)

where d refers to the dimension of space. The hyperscaling is satisfied by the expo-

nents obtained for standard percolation problems (Stauffer, 1984).

6.4.3 Percolation Transition in the Five-State Model

The five-state model described in Eq. (6.1) is a natural example of correlated site-
bond percolation. A site is occupied if it is in any one of the four bondable states.
Two neighboring occupied sites are connected by a bond only if they have a hydrogen
bond. Most other examples of site-bond percolation in thermally driven systems im-

pose bonds on the system. For example, the critical point of the Ising model becomes
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a percolation transition if one assigns bonds between spins pointing in the same di-
rection with a probability 1 — e=?/*aT (Coniglio and Klein, 1980), where J is the
Ising nearest neighbor coupling. The critical percolation exponents in this case are
given by their Ising model equivalents. Another example is a model of gelation in
microemulsions devised by Stauffer and Eicke (Stauffer and Eicke, 1992) who use a
Widom model to investigate three transitions: phase separation when the magneti-
zation becomes non-zero, electrical percolation when an infinite cluster of up spins is
formed, and gelation when an infinite cluster of up spin connected randomly by bonds
with probability p, is formed. Again the bonds are imposed and are not part of the
Hamiltonian. When bonds are imposed at random with a particular probability, the
critical exponents are to be the same as those for ordinary percolation. According to
the random percolation theory (Stauffer, 1984), the exponents of ordinary percolation
are 8 = 5/36 = 0.14, vy = 43/18 = 2.39, and v = 4/3 ~ 1.33.

In the five-state model, the bonding probability p is not a parameter. Therefore
we assume that T plays the same role as p in random percolation models. Replacing

&p in Eqs. (6.5)-(6.7) by t = (T* —~ T;}/T;, one has

Popen(L,t) = f(tL*) (6.9)
P (L,t) = L™#lvg(tL'/¥) (6.10)
x(L,t) = LYvR(tLY), (6’.11)

We use the standard cluster labeling techniques to enumerate the clusters and cal-
culate x, P, and P,;;,. Similar to the case of calculating the formation of lipid
domains (Sec. 4.5), the Ferrenberg-Swendsen method also allows us to calculate clus-
ter properties at percolation transition. At T* = T3, according to the Eq. (6.9), Ppen
is independent of the size of system. The temperature T can then be determined by
the crossing of the curves for P,,,, versus temperature for different sizes. Two plots
of P,pan as a function of T for D, =5 and 100 respectively are presented in Fig. 6.7.
It is shown that the transition region natrows as L and D, increase in Fig. 6.7. The

scaling function, f [Eq. (6.9)], can also be used to calculate the exponent ». By fixing
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Figure 6.7: Ppqn vs T for L = 20,40, and 60. (a) D, = 100; (b) D, = 5. The
transition region narrows as L increases.



CHAPTER 6. HYDROGEN BONDING IN LIPID BILAYERS

122

T 1 T T 1 1 T ] T )
~04 (a) | (b) /_
-0.8}

g £ st .
-1.8}
—2.0}
20 25 3.0 3.5 4.0 3.0 25 3.0 35 40
In(L) In(L)
-0.80F \ (e}
—0.85} -
£-o90f -
E_p.95} .
-1.00} -
~1.05} ]
“L0 55 38 40 id
In(L)

Figure 6.8: (2) In (7;(0.8) — T;(0.2)) vs In L. (b) Inx vs In L. For (2) and (b): Lower
plot for D, = 100; upper plot for D, = 5. (¢) In Pa vs In L for D, = 100.
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Pipan{Lyt) = z for different sizes, one has T*(z) — Ty = Tyc. L=/, where ¢, is a
constant for a given z, and T*(z) is the temperature at which a fraction z of the
configuration span vertically. Therefore, the exponent » can be obtained from the

following relation,
AT = T*(z1) ~ T*(z2) = Ty(ce, = € )L™V ~ L7V, (6.12)

The scaling plots, with z; = 0.2 and z; = 0.8, for D, = 100 and D, = 5 are shown
in Fig. 6.8(2). To obtain the other exponents, the scaling behaviors at T* = T} are
studied and shown in Fig. 6.8(b) and 6.8(c).

The exponents for D, = 100 are v = 1.28 4 0.03, v = 287 £ 0.11, and 8 =
0.28 1:0.04, where the error estimates are based on how the slopes in the log-log plots
vary as we vary the estimste of 7). As can be scen, the exponents do not follow
the hyperscaling relation {Eq. (6.8)]. The value of v is reasonably close to that of
ordinary random percolation but the other two exponents are significantly higher.
This is similar to the situation in bootstrap percolation. For m = 2 on a square
lattice simulations of BP show that v is the same as RP (Adler and Aharony, 1988),
and f is higher (Chalupa, Leath and Reich, 1981; Kogut and Riess, 1975). Although
our results are not sufficiently precise to establish any quantitative connection to BP,
they do show the same qualitative behavior. Also, for m > 2 on a square lattice BP
has a first order transition at p. = 1 just as the five-state model has a first order
transition for large enough degeneracy.

These results can be understood quite readily. The effect of the interactions in
the five-state model is to fill in the clusters that would be obtained {rom random
percolation. This effect can easily be observed visually by examining the snapshots
of configurations as shown in Fig. 6.9. One can then see that above the transition
there are very few clusters, but very close to the transition there is one large cluster
containing almost all the sites. This filling-in will not affect the lincar exient of the
clusters and thus v will not change. However since both P, and x depend on the
mass of the clusters, one would expect these two exponents to increase.

For D, = 0it is clear that the transition must be at infinite temperature since the
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Figure 6.9: Configurations for D, = 100. The shaded squares indicate unbonding
states. The lines indicate actual HB bonds. (a) T* = 1.0177. (b) T* = 0.997;.
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site probability is unity and the bond probability at finite temperatures is always less
than or equal to 0.5 which is the percolation transition for random bond percolation
on a square lattice. Thus, one expects the D, = 0 version of the five-state model
to be equivalent to random bond percolation, and to give the ordinary percolation
exponents.

The presence of a percolation transition without a thermal transition resembles the
suggestion of Adler and Stauffer (Adler and Stauffer, 1991) for a liquid-gas transition
line above the critical temperature in the Ising model. They found an evidence for
a sharp transition line where there is a change in the convergence behavior of the
Taylor series expansion of the magnetization for a system in a large magnetic field.
This transition line corresponds to the percolation transition based on the Kertesz

droplet definition (Kertesz, 1989).



Chapter 7

Conclusion

In this thesis we have been concerned with the properties of theoretical models for
the nematic-isotropic phase transition in thermotropic liquid crystals and for the
main gel-fluid phase transition in lipid bilayers. The various Monte-Carlo simulation
methods have been successfully applied to the analysis of the nature of the phase
transitions, the study of phase stabilities, the determination of the phase diagrams
and the analysis of the fluctuations in these models.

The computational problems arising in studies of the orientational-ordering tran-
sition in the Lebwohl-Lasher model are related to the strong pretransitional effects
which make it difficult to reveal the nature of the transition and to accurately deter-
mine the transitional properties. In particular it is difficult to calculate the limits of
stability of the two phases. We have in Chapter 3 been taking full advantage of the
recent advances in Monte-Carlo simulation techniques of phase transitions by using
the Lee-Kosterlitz method in combination with the Ferrenberg-Swendsen reweighting
method. We found unambiguous evidence for a very weak first-order transition with
stability limits extremely close to the equilibrium phase transition temperature. By
studying the variation of the free energy around the transition temperature, the spin-
odal points were found to be extremely close (~ 10~2) to the transition temperature,
in good agreement with experimental studies of room-temperature nematogens. Fur-

thermore it was shown that the first-order character of the transition can be enhanced

126
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by introducing a term Py(cos 8;;) into the Lebwohl-Lasher model.

The director fluctuations in the Lebwohl-Lasher model have been investigated by
Monte Carlo simulations which led to equilibrium time series of the nematic director
and the nematic order parameter. From the R/S-analysis and the power spectrum,
we have found that the Hurst exponent is H o~ 1 for all temperatures in the nematic
phase and H =~ 0.5 independent of temperature in the isotropic phase. In the presence
of a unidirectional ordering field, there is a crossover from H ~ 1 to H =~ 0.5 in the
nematic phase, whereas the presence of the field does not affect the Hurst exponent in
the isotropic phase. For comparison we also showed that the order-parameter fluctu-
ations is characterized by a Hurst exponent, H ~ (.5, independent of the phase, the
temperature, and the presence of the ordering field. These results indicate that the di-
rector fluctuations exhibit fractional Brownian motion in the nematic phase whereas,
whenever the continuous degeneracy is broken, the fluctuations follow ordinary Brow-
nian motion (H = 0.5). The finding of H ~ 1 in the nematic phase was confirmed
by a recent neutron-scattering experiment on the nematogen d-PAA (Zhang et al,
1993). The field-induced crossover between fractional and normal Brownian motion
is consistent with the results from the neutron-scattering studies of d-PAA (Otnes
and Riste, 1992; Zhang et al., 1993).

The Lebwohl-Lasher model is quite successful in describing experimental data for
those properties of the nematic-isotropic phase transition which are not particularly
material dependent. Hence a microscopic model for not only the nematic-isotropic
phase transition but also the nematic-smectic A phase transition may be established
on the basis of the Lebwohl-Lasher model. However the positional degrees of free-
dom and the couplings between molecular positions and their orientations, which have
been neglected in the Lebwohl-Lasher model are all present in real liquid crystals. In
order to describe the phase transition involving the smectic phases, which have differ-
ent spatial ordering from the nematic phase, translational variables for the molecules
are required. Although a continuous variable description of the translational degrees

of freedom is closer to what happens in liquid crystals, the computational problems
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that arise could be a real challenge to modern computers. Instead an approximate
approach, similar to the Pink-Potts model of Mouritsen and Zuckermann for inter-
facial melting (Mouritsen and Zuckermann, 1987), could be developed by assigning
Potts states to each molecule to describe its relative deviation from its position in
the 3d lattice of the Lebwohl-Lasher model. The spatial ordering of liquid crystals
would then be defined through such Potts states. On the basis of this description,
we could examine the couplings between the translational and orientational freedoms
that induce the layer ordering which appears in the smectic phases of liquid crystals.
The relative strength of the interactions involved could be determined by the fact
that there is a weakly first-order orientational transition with no spatial ordering at
a higher temperature and a spatial order-disorder (second-order) phase transition at
a lower temperature.

We have in Chapter 4 extended the Pink model by including hydrophobic mis-
match interactions between the lipid acyl-chain conformation states and interlayer
interactions between the two monolayers in order to describe the main phase transi-
tion in the lipid bilayers. The nature of the extented models was studied by using
finite-size-scaling plus the Lee-Kosterlitz method. By finding the scaling function for
the specific heat we obtained a latent heat of 8.12 keal/mol in the thermodynamic
limit, which is in good agreement with the experimental observations. The method of
Ferrenberg and Swendsen was successfully used to calculate the cluster distributions
at the phase transition. The hysteresis effects due to limited statistics in the stan-
dard Monte Carlo simulations can be easily avoided by using the new method. Our
study suggested the the finite-size effects should be considered in the interpretation of
experimental observations for small systems, such as large unilamellar vesicles. The
mismatch between the lipid acyl-chain conformation states still needs to be verified by
experiment although the concept of mismatch between lipids and proteins has been
widely accepted by experimentalists.

On the basis of the extended models for pure lipid bilayers, we have in Chapter 5

extended the earlier work of Sperotto and Mouritsen for the effects of proteins on
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lipid bilayers. A new correlation function was introduced to describe directly the
effect of proteins on correlations between lipid molecules at the main phase transition
of these systems. Suppression of the correlations in the presence of proteins was found
and this was shown to be consistent with recent 2 H-N M R relaxation measurements.
The model describing the two monolayers in the bilayers in Chapter 4 makes the
study of gramicidin channels in thermal equilibrium possible. The dependence of the
equilibrium channel probabilities on temperature found in this work should be tested
by doing experiments for gramicidin-phospholipid mixtures. The same interactions
between gramicidins and lipids considered in this work have been used to interpretate
the experimental phase diagrams of the DPPC-polypeptide mixtures successfully. We
derived the phase diagram by simulations which fully account for thermal density
fluctuations and which operate on the level of the free-energy thereby permitting
an accurate identification of the phase boundaries {or the binary mixtures. This
represents progress in a field where the calculated specific heat was usually used to
determine the phase diagrams because there are several examples in the literature
where apparent specific-heat anomalies had incorrectly been taken as indications of
a phase transition or a phase-coexistence region. Our calculations predicted a closed
loop of gel-fluid coexistence with a lower critical mixing point which location is strong
affected by the van der Waals-like interactions between proteins and lipids. The good
agreement between the experimental data and the theoretical predictions suggests
that the microscopic interaction model has captured the essentials of the lipid-protein
interactions in the present lipid bilayer system. The successful use of the hydrophobic-
matching concept in the modeling of lipid-protein or polypeptide interactions and its
consequences for the phase equilibria should definitely be useful for the modeling of
more complex membrane systems, such as ternary mixtures of lipids, polypeptides,
and cholesterol. It was recently shown in an cxperimental NMR study by Neazil
and Bloom (Nezil and Bloom, 1991) that the cholesterol-induced thickening effect of
short synthetic polypeptides is in agreement with the predictions of the hydrophobic-

matching criterion. It would therefore be of interest to extend both the experimental
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and the theoretical work discussed herc to such three-component systems in order to
gain further insight into the nature of lipid-protein interactions in membranes.

In Chapter 6 we have proposed and analyzed a model for 2d hydrogen bonding
networks in lipid bilayers. Our purpose was to understand the phase behavior and
percolation properties of these systems in the absence of other more complex effects.
We have shown by computer simulation that the model has a percolation transition
in the absence of a thermal transition at low values of D, and a first-order phase tran-
sition accompanying the percolation transition for D, > 160. We have investigated
in detail the nature of the percolation transition for ¢ < D, < 160, where there is no
thermal transition and found that the scaling behavior cannot be described by ran-
dom percolation theory, but could be similar to that found in bootstrap percolation.
The exponents for the percolation transition were obtained by using the method of
Ferrenberg and Swendsen.

It would be interesting to find an actual lipid system which exhibits such a per-
colation transition without a thermal transition. Such a transition could be inferred
from spectroscopic measurements of the number of hydrogen bonds. From the point
of view of hydrogen bonding in lipid bilayers, we have only described part of the
behavior of the system at the main phase transition. For first order phase transitions,
we identify the low temperature fully bonded phase with the dehydrated crystalline
phase, which is therefore characterized by mostly bonding energy and small overall
degeneracy. By contrast, the high temperature phase which is composed of mostly
unbonding states and therefore represents 2 hydrated solid or hydrated fluid phase, is
characterized by 2 higher degeneracy and a small energy difference between lipid-lipid
and lipid-water hydrogen bonds. What is missing in the model described in Chap-
ter 6 is a detailed analysis of the chain melting phase transition which accompanies
change in the hydrogen bonding network. We intend to generalize the model to in-
clude these effects by using the Pink model to describe the chain degrees of freedom
for two chains at each lattice site. Non-hydrogen bonding interactions between polar

heads and differences in free energy between the dehydrated crystalline and hydrated
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solid phases may be introduced phenomenologically via additional energy and local
entropy terms. Dynamics and metastability may also be examined in the spirit of the
work done on the quenching of Ising models. Furthermore a ‘toy’ model for hydrogen

bonding in water can be obtained by extending the model described in Chapter 6 to

three dimensions,
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