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Abstract

Sohd modehng studies how to represent geometric properties of solids by computer. A funda-
mental operation 1s the construction of representations of solids  Algorithms for set operations
construct boundary representations of solids from boundary representations of other solids

A correct and cfficient intersection algonithm for polyhedral solids that uses boundary repres-
entatrons 1s desenbed A finite-precision implementation of the algorithm uses mcidence tests that
use symbolic inference 1n order to hmut errors due to fimte-piecision approximations The inci-
dence tests are descnbed and expenimental evidence 1s presented to show that the incidence tests
are both empirically rehable and practical

The mtersection algonthm uses a new boundary representation called the Star-Edge represen-
taton A complementation algonithm for solids that uses the new representation 1s given, and an
algonthm is given that uses the new representation to determune if two boundary representations
descnibe the same solild A canonical boundary 1epresentation for solids 1s descnbed and used to
prove a lower bound for the same-object problem
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Résumé

La modélisation volumétnque est I'étude de 1a représentation des propnétés géométnques des objets
sohdes. Une des opérations fondamentales est la construction d’unc représentation d'objects  Les
algorithmes pour les opérations d’ensembles (union, intersection et complémeniation) constriisent
la représentation d’un objet a partir des représentations des composents de 1'objet principal

Cette thése présente une nouvelle représentation par des contours fermés (boundary represen-
tation) des objets polyhédraux, appelée Ie Star-P'dge, et tron algonthmes basés sur cette
représentation  Le premuer algonthme calcule I'mtersection d'obyjets polyhédraux  Cet algorithme
est correct et efficace  Dans I'mplémentation de 1'algonthme, F'utilisation d'inferences symbohques
permet de réduire les erreurs introdustes par les approximations de 'anthmétique de précrsion finie
On présente des résultats expenmentaux qui indiquent que ''mplémentation de 1'algonithme
d'intersection est a la fois pratique et fiable.

Aussi décrits sont un algonthme de complémentation des objets et un algonthme qui permet
de détermuner s1 deux représentations décrivent le méme objet  Utihsant une representation
canoruque, on démontre une himute inféneure de complexité du probleme de I'égalité de deux
représentaticns

Résumé i
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Chapter 1. Introduction

Fundamental to computer-aided manufacture is the ability to design physical
objects. One should be able to construct computer representations that describe
these objects. Just as physical processes act on phisical objects, computational
analogues to these processes act on representations of the objects.  For example,
objects might be represented by their boundaries and set int*1section might be an
operation that we want to perform. Thus we need an algorithm that takes objects
represented by their boundaries, and produces a boundary repiesentation of theit
intersection. Algorithms that compute this intersection are difficult to implement
reliably because implementations of such algonthms usually use finite-precision
arithmetic and can fail or produce erroneous results. This thesis describes a new
intersection algorithm that uses boundary representations of a certain class of
physical objects called “solids™ and uses svmbolic inference to hmit errors due to
finite-precision arithmetic.

1.1 Defining Solids

In this thesis. the term “solid™ denotes any physical object whose surface consists
of planar pieces. (See Figure 1 on page 2 for an example.) In order to precisely
definc a “solid,” we first define the terms regular set, the regularization of a sct,
the regularized set operations, and regular convex polyhedra. The regularization
of aset 4, denoted Reg(4), 15 defined as the closure of the interior of 4, and a set
S is defined to be a regular set iff S = Reg(S). The regularization of a set deletes
every point from the boundary of that set with neighbourhoods that do not
intersect the set interior (see Figure 2 on page 2). Just as there are set operations
for manipulating sets, therc arc regularized set operations, (1", L)', =", and =", for
manipulating regular sets (see Figure 3 on page 3 for an example).! Given sets A4
and B, the regularized set operations are:

" Note that these operations are not restnicted to regular sets, although we will usually apply them
only to regular sets

Introduction !



(1) A(Y'B= Rez(A ) B).
(2) AU'B=Rez(A B).
(3) A —'B = Reg(A — B).
(4) —°A = Reg(—A).

A regular convex polytope in R is a bounded point set formed as the regularized
intersection of a finite number of closed half spaces. The solids are the finite-
closure of regular convex polytopes in R?® under the regularized set operations.
Thus a solid is the result of combining a bounded number of regular convex
polvtopes in R? using regularized set operations.

‘]
%

W

Figure 1. A solid has planar surfaces

A Reg(A)

In order to regularize A, boundary points which do not
touch its interior are deleted.

Figure 2. Regularization of a point set in R?

s o
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The regularized intersection of two sets is defined
as theregularization of their intersection.

Figure 3. Regularized intersection

1.2 Why study the intersection of solids?

Because solids are closed under the regularized set operations they are an appro-
priate domain for studying intersection. although other domains have been used.
For example, if we restrict the surface of a solid to be a 2-mamifold, then we ob-
tain objects called manifold solids (sec Figure 4).

Although (non-manifold) solids constitute a larger class of objects than
manifold solids, it has been argued that non-manifold <olids arc not practically
useful, r.e., not manufacturable [Eastman and Prewss, 1984: Mantyla, 1984]. In
contrast, Requicha and Voclcker [1977] have argued that there are manufactur-
ing processes such as material removal that can be described using non-manifold
solids but not using manifold solids. It is still open to debate as to which of the
two models is better, and the sohid-modeling application itsclf dictates the class
of physical objects modeled.

——t

(a) (b) " (c)

. QI

o =i

[Sp—
-

-

4 7’

Solids (a,b) are not manifold solids because their surfaces
arenot 2-manifolds. Solid (¢) is a manifold solid.

Figure 4. Manifold solids are a proper subset of solids
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Rather than study an operation on a general domain such as solids, it is of-
ten easier to study the operation on a simpler domain comprising collections of
objects simpler than solids. An n-cell is a topological space whose interior is
homeomorphic to R” (sec Appendix A or Rourke and Sanderson [19827), and a
(closed) cell complex 1s a collection of cells with the following properties: (i) cells
of the complex have pa:rwise-disjoint interiors; (ii) every cell of the complex has
boundary that is the union of cells of the complex; and (iii) if two cells of the
complex intersect, then their intersection is the union of cells of the complex. A
3-complex 1s a closed cell-complex with 0-, 1-, 2-, and 3-cells (sce Figure 5).
Dobkin and lLaszlo [1987] described both a representation for certain
3-complexes and implementations of algorithms that use the representation. In
particular, they discussed how to triangulate a polyhedron and construct a
Delaunay tiiangulation of a point-set.  Edelsbrunner, O’'Rourke, and Seidel
[1986] described algorithms that construct higher-dimensional Voronor diagrams
using a representation of cell-complexes due to Grunbaum [1967].

Cells joined on common face
Cells joined along common edge
Cells joined at common vertex

Figure 5. A cell comples in R}

Just as we argued that manifold solids are unsuitable for studying inter-
section because they are not closed under the regularized set operations, we can
argue that 3-complexes are not closed under the set operations. It is of course
possible to define an operation similar to regularization that converts the inter-
section of two 3-complexes into a 3-complex, for example, by triangulation. Such
an operation would also convert a solid to a 3-complex. Conversely, a 3-complex
can be comverted inte a solid by regularizing the union of its cells. The need to
regularize demonstrates that there are 3-compleses that are not regular sets. Set
A of Figure 2 on page 2 is a cell-complex, but not a regular set. Thus we see that
although cell-complexes are useful domains for the study of subdivision algo-
rithms, solids seem to be more suitable for the study of set operations.

Introduction 4
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1.3  Representing Solids

. In order to formulate algorithms that manipulate solids we need a description,
or representation, of these solids. (By “representation.”™ we mean either an en-
coding scheme used to describe a solid or an instance of the scheme applied a
particular solid.) Three types of representations from Requicha's [1980]
taxonomy of representations arc spatial decomposition, Constructive Solid Ge-
ometry, and boundary representation. The first of these, spatial decomposition,
represents a solid as a disjoint union of simpler solids. The second. Constructive
Solid Geometry, represents solids by explicitly giving a set-theeretic combination
of geometric primitives. which parallels our definition of a solid. The third Kind,
boundary representation, represents the boundary of a solid as a collection of
zero-, one-, and two-dimensional scts.

Spatial decomposition of a solid is a partition of its volume into simpler ob-
jects. For example, an octtree representation of a volume is a decomposition into
cubes of volume 8w, where v is a constant. Thus an octtree approximates a vol-
ume with an error that depends on v. Octtrees tend to be large. For example, if
the size of an octtree is the number of cubes in the representation, then an octtree
can be eaponentially larger than a corresponding Constructive Solid Geometry
encoding (sec Figure 6). Thus octtrees arc not often used as the basis of a solid
modeling svstem [Requicha, 1980]. although spaual decomposition is generally
used to represent complex mechanical-assemblies as parts [Requicha and |
Voelcker, 1982]1. |

7N
(7

A |
(a) |5 (b)
L

Octtree (a) with 56 nodes describes the difference of two
cubes formed using Constructive Solid Geometry
representation (b).

Figure 6. Representations vary widely in size

Constructive Solid Geometry (CSG) represents a solid by giving an algebraic
expression where regularized set operators combine other solids. CSG represent-

Introduction 5



ations arc useful because related objects will often have similar rcpresentations.
For example, the regularized complement of an object with CSG representation
(E) has CSG representation (="E) or (R*—"E). However, not all solid modeling
operations arc casily implemented using CSG paradigms. For example, Lee and
Requicha [1982a, 1982b7 discuss the difficulties of using CSG in algorithms that
compute volumes or moments of nertia.

A boundary representation (B — Repj is an organized enumeration of certain
zero-, one-, and two-dimensional sets of the surface of a solid which are called
vertices, edges, and faces, respectively.  We will sec that precise definitions of
these sets depend upon a particular boundary representation, although we will
use these terms informally (see Figure 7).

A face (f) is a connected, two-

dimensional set on the surface of a
solid.

A vertex (v) is the zero-dimensional
intersection of three or more faces.

An edge (e) is a connected, one-dimensional set that is a
component of the intersection of two or more faces.

Figure 7. Vertew, edge, and face

Boundary representations consist of two parts: the geometric information
about the features (vertices, edges. and faces) of the boundary and the adjacency
information about how these features are joined. For example. the geometric in-
formation in a B-Rep of a tetrahedron (seec Figure 8 on page 7) might include the
coordinates of the four vertices, and the adjacency information might consist of
a clockwise listing of the vertices around each face. We will see that B-Reps can
be more complicated than this simple example.

Introduction 6




: a: (x4,50,2) fi: (c,a,b)
i b b: (xl,yl,zl‘) f5: (d,a,c)
C: (x9,¥4,2,) f3: (d,c,b)
C d: (xs,y3,23) f4: (a,d,b)
Tetrahedron Geometr.ic Adjacency
Information Information

Geometric information in the representation consists of
the vertex coordinates. Adjacency information in the

representation consists of an ordered list of vertices
around each face.

Figure 8. A boundary representation of a tetrahedron

Boundary representations are often used to implement Constructive Solid
Geometry. If a subexpression in a CSG representation 1s E; [)'E,, then a regu-
larized intersection algorithm computes a B-Rep that describes the object defined
by E, ()'Ex in this way a CSG representation is used as a “recipe” for a solid
[Requicha and Vocicker. 19857, and computationally intensive operations, e.g.,
finite-element analysis, use the B-Rep [Boyvse and Rosen, 19827]. Thus B-Reps
and algorithms for the regularized set operations are fundamental to solid mod-
eling. We will now discuss algorithms for these opcrations.

1.4 Intersecting Solids Represented by their Boundaiies

Algorithms that intersect solids represented by their boundaries have been im-
plemented for various classes of solids with varying degrees of completeness.
These algorithms can be simplified by restricting the class of solids intersected or
the way in which the solids are allewed to intersect. For example, if the solids
are restricted to be convex polytopes. or if the surfaces of the solids are only al-
lowed to irterscct in a non-degenerate manner,? the intersection is casier to com-
pute. Preparata and Shamos [1985] survey several algorithms that require time

2 For example, given solids A and B, a two-dimensional set, or face, of the surface of A cannot
intersect any face of B in a two-dimensional set
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O(n log n) to compute the intersection of two three-dimensional convex polytopes
(where n 15 the number of vertices in the input convex polvtopes), and Hertel,
Mehlhorn, Mantyla, and Nievergelt [1985] describe O(rn log n) algorithms that
compute this intersection, as well as the associated union and difference. Inter-
secting sohds 18 a more complicated problem than intersecting convea polytopes.®
Allowing degenerate coincidences in the solid boundaries further complicates the
problem. Tilove [1981] has pointed out that intersection algorithms must handle
degenerate comcidences because they occur frequently in many solid-modeling
applications. In addition, the interscection algorithms for convex polytopes, ref-
crenced above, all use the convexity property of the input polvtopes in order to
compute the intersection efficiently. However, it is doubtful that the techniques
used to intersect convex polytopes are extensible to non-convex solids or manifold

solids.

Algorithms for intersecting solids have been presented. although not proved
correct. by <cveral researchers.  Laidlaw, Trumbore. and Hughes [1986] have
described an algorithm for computing the regularized intersection of two solids,
Mantyla [1986] has described an algorithm which computes the intersection of
two manifold-sohds. and Paoluzzi. Ramella. and Santarell: [1986] have described
an algorithm for computing the regularized union of two solids. However, all of
these algorithms have inherent shortcomings.  The algorithm of Laidlaw,
Trumbore and Hughes, although elegant. restricted faces of the 1epresentation to
conmvexn polygons, thereby complicating the algorithm in order to enforce this
condittion. Mantyla restricted his domain to manifold solids. thereby precluding
the computation of a compound expression like 4 ()(B ()'C) because the subex-
pression (B ()'C) is not necessarily a manifold solid. Paoluzzi, Ramella. and
Santarelli usec “echniques similar to Mantyla’'s, restricted faces of their repre-
sentation to be triangles, and claimed their algorithm worked for solids, as op-
posed to manifold solids.

1.5 Numerical Robustness of Geometric Algorithms

One of the problems of implementing geometric algorithms is that computers use
finite-precision anthmetic.  Numerical quantities are represented as fixed-length
bit-strings. and it is well known that not all fractions can be accurately described
by computers in this way. Therefore, algorithms that make logical decisions

' Iven from a theoretical standpoint, the problem of intersecting two comvex polyhedra has a
lower bound of 2(n) The more general problem has an £(72) lower bound
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based upon finite-precision approximations are often prone to errors. Consider
Figure 9 on page 9, in which *he incidence of line-segment e and line P ) @ is
computed: endpoint v of ¢ 15 on P, and endpoint » 1s below P. An incidence test
should not claim that a point in the interior of e is incident 10 P {1 Q, but using
a finite-precision approximation. it is possible that 4 is incident to Q. and hence
e intersects P () Q. Algorithms which assume that @ and v, but not «, lic on P
arc bound to fail: for example, a logical conscquence of this assumption 1s that
u. a, and v define a planc.

- -
. -
-

Even though a appears to lie on
PN@Q, we can infer that a does not
because only one of 1 and v lies on P.

Figure 9. Inconsistent fimite-precision geometrie computations

Obviously, rescarchers need to sceh numerically-robust algorithms, te., algo-
rithms that are provably correct using a model of finite-precision arithmetic, or
at least algorithms that use finite-precision arithmetic and are emparically reliable.
Dobkin and Silver [1988] describe some experimentation to show how numerical
accuracy decreases as finite-precision calculations are composed. They also sug-
gest that by iteratively perturbing input data and then repeating calculations,
empirically good e:imates of the precision of a computed quantity can be ob-
tained. Hoffmann [1988] discusses their work and describes other several other
approaches (some of which are also described in this section) to dealing with the
problem of robustness in gecometric algorithms.

Although there are as yet no provably correct algorithms that intersect solids
using a model of finite-precision arithmetic, some work has been donc on formu-
lating robust algorithms for simpler geometric problems, such as computing the
intersection of a colicction of lines on a plane. (It may not be possible to exactly
compute an ntersection point even though the equations of two mtersecting lines
can be exactly 1epresented.) There aie two popular methods for achieving nu-
merical robustness: (i) configurations which are mexact using a finite-precision
approximation with a certain granularity are perturbed, maintaimmng topological
invariants, into exact configurations; or (i) sometimes algorithms can be formu-
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lated to werk with inexact representations. Both of these techniques have been
used in numerically-robust algorithms to intersect a collection of lines on a plane,
producing sets of intersection points ordered along each line.

Algorithms have been given by Greene and Yao [1986] and Milenkovic
[1986] that achieve numerical robustness by moving intersection points so that
they are exactly representable using finite-precision.  Greene and Yao used this
technique to solve the line interssction problem, whereas Milenkovic used this
technique to represent polygonal regions on a plane. In both cases, line segments
were subdivided into smaller, non-collincar segments, thereby substantially in-
creasing the compleaity of the arrangements.

Algorithms formulated to work with inexact representations have !:en pre-
sented by both Milenkovic [1986] and Ottmann. Thiemt, and Ullrich [1987].
Ottmann, Thiemt, and Ullrich solved the line-segment intersection problem by
computing ntersection points using finite-precision arithmetic accurate to the
Jeast-significant bit.* The importance of their approach is that they were able to
integrate this computation into the segment-intersection algorithm of Bentley and
Ottmann [1979], without substantially changing it, and thereby making it nu-
merically robust. Milenkovic modeled the error due to finite-precision by treating
the lines as “wavy™ curves. Because there can be many possible interpretations
of curve-intersections, a data structure was produced which contains all possible
interpretations.  Milenkovic [19887 showed how to extract a desired interpreta-
tion from the data structure, using either an exponcntial-time algorithm or
nonfinite-precision arithmetic.* Milenkovic has also shown how to intersect a set
of planes in R' by projecting intersection lines onto a plane, using a robust line-
intersection algorithm, and then back-projecting.

Greene and Yao [1986]. Milenkovic [1986, 1988], and Ottmann, Thiemt,
and Ullrich [1987] solved onc problem, computing the intersection of a collection
of coplanar lines, that arises in many geometric algorithms; however, many other
problems must be addressed in order to compute the regularized intersection of
two solids. (sce, e.g.. Figure 9 on page 9). Segal and Séquin [1985] suggested

4 If a fraction 1s represented using a string of A bits, then a computation is performed with an error
of at most 2 *.

¢ If the cquations of the hines to be intersected are represented using k bits of precision, then
Milenhovie's algonthm requires k(1 + ¢) bits of precision, where ¢ is a small constant (For
A<6d k(] +0)=x1l)
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how a boundary representation for a solid might be changed by perturbing
vertices 10 points on a discrete grid, and then by medifyving the other parts of the
represertation. Although relevant, their work only begins to address the issue of
numerical robustness. Sugihara [19877] described a technique in which certain
parts of the geometric information in a boundary representation are represented
exactly, and other parts are approximated using finite precision.

We have seen that boundary representations and regulanized set operations
are fundamental to solid modeling and that regularized intersection algorithms
are complicated. Comphcations arise from the need to handle, in a numerically
robust and efficient way, degencracies in the relative positions of the two solids.
In this thesis, an algorithm to construct the regularized intersection of two solids
represented by their boundaries is presented and proved correct using a model
of exact arithmetic. The algorithm 15 implemented to use symbolic inference n
order to limit the errors fiom finite-precision arithmetic in incidence computa-
tions, and experimental evidence is presented that demonstrates a measure of
numerical robustness. The intersection algorithm uses a new boundary repre-
sentation, called the Srar-Edge representation, defined in “Chapter 2. Represent-
ing Solids".
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Chapter 2. Representing Solids

The regulanzed intersection algorithm studied in this thesis uses a new boundary
representation for solids, called the Star-Edge representation. To show why this
new boundary representation is nceded, some representational issues are dis-
cussed. Then the Star-Edge representation is defined and compared to other,

existing representations.

Recall from “Chapter 1. Introduction” that a boundary representation (B-
Rep) is an enumeration of zero-, one-. and two-dimensional sets, called vertices,
edges, and faces. respectively. that constitute the boundary of a solid. Exact de-
fimtions of these sets are necessary to define a boundary representation [Brown,
19817]. However, there are two fundamental assumptions about the faces of a
boundary representation that simplify the formulation of algorithms that use
boundary representations.  These assumptions are: (1) all faces in a B-Rep are
regular scts with pairwise-disjoint interiors;® and (2) the union of all faces in a
B-Rep covers the total surface of the solid. A more general issue is whether a
regularized intersection algorithm should use boundary representations for mani-
fold or non-manifold solids.

Certainly boundary representations for manifold solids can be simpler than
for solids because representations for 2-manifolds can be used to describe mani-
fold solids [Baumgart. 1972; Guibas and Stolfi, 1985]; an edge in the boundary
representation of a manifold solid is defined by the intersection of two surfaces;
avertey is defined by the intersection of threc or more surfaces: and the surfaces
whose intersection defines a vertex can be radially ordered around that vertex.
In contrast, the surfaces whose intersection defines a vertex of a non-manifold
solid cannot be ordered as easily (see Figure 10 on page 13). Because manifold
solids are casier to represent than non-manifold solids, there have been attempts
to usc boundary representations for mamfold solids in regularized intersection

* In order for this property to hold, we must be careful how we define the “boundary ” and “in-

tenor” of a face
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algorithms, even though manifold solids are not closed under regularized sct op-

erations.

NG
(b)

'
e

(a)

Because the surface of manifold solid (a) is a 2-manifold,
we can represent vertex v by the radially-ordered face list
(fi>f5,f3). There is no radial ordering of the six faces
incident to vertex win solid (b).

Figure 10. Manifold-solid vertices have simple neighbourhoods

Even though non-manifold solids have more complicated boundaries than
manifold solids. Weiler [1984] demonstrated that by moving and deforming a
manifcld solid. 1t can be made to look like a non-manifold solid. The technique
is illustrated in Figure 11(a). where a 2-manifold (the surface of a cube) is de-
formed into an “hourglass.” Conceptuaily, this deformation works by construct-
ing a 2-manifold B-Rep for the cube and modifving the geometric part of the
B-Rep (see “Chapter 1. Introduction™) to look like an hourglass. Thus, Weiler
treats the hourglass as a deformed cube, even though the embedding of the
hourglass in R® is not bounded by a 2-manifold. Weiler’s technique has been
criticized by Eastman and Preiss [1984] and Mantyla [1984] because 1t 1s diffi-
cult to manipulate such boundary representations. For example. the hourglass
of Figure ll(a) can be constructed by moving two prisms together as shown in
Figure 11(b), and positional uncertainties in the two coincident line segments can
lead to numerical errors 1n algorithms that use a manifold boundary represen-
tation for this hourglass. This possibility of error arises because the fact that two
line segments arc comncident is not recorded in the representation. Even 1n the
absence of positional uncertainty, such representations are difficult to combinc
into representations of new objects. For exampie, 3 manifold boundary repre-
sentation of the object shown in Figure 11(c) is difficult to construct from man-
fold boundary representations of the objects in Figure 11(a,b). Despite the
difficulties described here in approximating the boundary of a non-manifold solid
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using a 2-manifold, some researchers have formulated algorithms for regularized
set operations which use this (Weiler’s) techniqgue. Mantyla [1986] was able to
use Weiler’s technique to intersect manifold solids. but did not discuss how to
intersect solids. Paoluzzi, Ramella, and Santarelli [1986] presented 2 union al-
gorithm for solids that used Weiler's technique on a B-Rep with triangular faces.

RS
e

(c)

In (2) we form an “hourglass” by deforning a cube. In 'b)
we form an hourglass by moving two prisms together. In
(c) the union of these two hourglasses has an edge that is |
adjacent to eight faces.

Figure 11, Weiler's technique for representing sol.ds

We conclude from the above discussion about Weiler's technique that a
boundary representation to be used for a class of solids should completely de-
scribe incidences in the sohd’s surface. This 1s not the case, for example, 1If we
use a representation for a 2-manifold to describe the surfaces of the objects in
Figure 11. We define a boundary representation oS explicit for a class of solids
if, using appropriate definitnons for features (vertices, edges and faces), that
boundary representation describes all ¢ incidences of the features of any re-
presented solid in the class. For example, the boundary representations of Stolfi
and Guibas [1985] and Baumgart [1972] are explicit for manifold solids; they
define a face a< a polvgon (and ity interior): an edge is a line segment that is a
componcnt of the intersection of two faces: a vertex is the intersection of three or
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more faces. We wili see that the Star-Edge representation of this thesis is explicit
for solids.

Even though precise definition of a face depends on a particular boundary
representation, algorithms that manipulate B-Reps are casier to formulate if faces
of the B-Rep arc connected sets. For example, the fact that fauces in a boundary
representation are connected sets makes it casicr to determine if the represented
solid is a connected set (see Figure 12). Thus we define a boundary represen-
tation to be a connected boundary representation if the faces of the representation
are restricted to be connected sets.

7 7

(a) (D) (c)

- 7 7

The solid in (a) is a connected set; the solid in (b) is not.
Because a representation that is not connected does not
discriminate between these two situations, f¢) cannot
immediately be classified as connected or not.

Figure 12, Face and solid connectivity

It is important for many geometric algorithms to have outward normals as-
sociated with the faces of a boundary representation of a solid. Outward normals
are used to discriminate between points in the interior and exterior of the solid.
For example. outward normals can be used to determine if a point is in the inte-
rior of a convex polyhedron. Assigning an outward normal to a face puts a re-
quirement on the neighbourhood of the points of a face. A face fof a boundary
representation of solid S 15 defined to have the constant-neighbourhood property
[Requicha. 1980] if there is a plane P(xy,z) defined by Ax + By + Cz + D =0,
containing f, such that for half-space H defined by {{xy,2) : P(xy,2) < 0}, every
neighbourhood N of every point @ of f has the property that N () H () Int(S) is
non-empty. We will require that boundary representations have faces with the
constant neighbourhocd property (sece Figure 13 on page 16).

Notatior: From the above definition, plane P(x,y,z) is called the oriented
bounding-plane of face f. For brevity, we say that P is the plane of f, and the ori-
ented bounding-planes of the faces of a solid are called the planes of the solid.
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5 F=fuf,
T, Int(f) N Int(f,) = @

Regular set F' does not have the constant neighbourhood
property because f; and f; have different outward normals,
but regular sets f; and f, do have the constant
neighbourhood property.

Figure 13. The neighbourhood of a point of a face

The discussion to this point (in this chapter) abstracts from previous re-
scarch. (scc also TRequicha, 1980; Brown, 1981; Silva, 1981; Eastman and Preiss,
1984; Mantyla, 19847].) Froin tuis discussion we extract five properties of
boundary representations which seem to allow algorithms that use boundary
representations to be easier to formulate (see Figure 14). The new boundary
representation of this thesis, called the Star-Edge representation. has these prop-
criies.

(I} faces ina B-Rep are regular sets with pairwise-disyomt intenors,
(2) faces ma B-Rep cover the surface of the represented solid,

() boundan representations are exphent (for s;)hd<)

(4) boundan representations are connected, and

(5) faces na B-Rep have a constant neighbourhood

Figure 14.  Representational properties

2.1 A Minimal Boundary Representation for Solids

In order to define the Star-Edge representation for solids, it is necessary to define
the features (vertices, edges, and faces) of the representation. We will do this by
defining the features of a very general B-Rep for solids, and then restrict these
definitions appropriately . We call this general boundary representation a minimal
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boundary representation, denoted B-Repn,. We will define what we mean by a
face of B-Repmn first, and then define vertices and edges as interscctions of these
faces.

In the previous section we said that the faces of a B-Rep are regular sets with
pairwise-disjoint interiors that cover the surface of the solid, and whose interior
points have a constant neighbourhood. A procedural definition of a face is given
as Algorithm 1. Once a face is defined. we can define what we mean by the face
interior and boundary in order that Properties (1) and (3) of the representational
properties (Figure 14 on page 16) hold (face interiors are disjoint and all inci-
dences are enumerated).

Let P be a plane of sohd X, and let H be the closed half-space bounded by P such that the
normal vector to P points away from /1. The B-Rep,,, face on P 1s defined as follows:

(1) Compute the regulanized intersection of /f with the itenor of X, denote the result by X
(sec Figure 15[a))

(2) Compute the mtersection of A with P, and regulan/ze the result with respeet to £ the
result, denoted X, 1s a regular point set on P that represents the cross section of X" writ
P (see Figure 15[b])

(3) Compute the regulanzed difference of Xp and the winterior of A, the result is a B-Repun,
face of XYon P (see Figure 15fc])

Algorithm 1. Definming a face of B-Repmn
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Regularized intersection of interior of solid X with half-
space H is denoted X, .

( deleted)\

(b) ﬁ

Isolate points on P by intersecting X, with P and the
regularizing with respect to P; denote the result by Xp.

(c) ﬁ

Remove points from X, that are in the interior of X by
computing the regularized difference of X, and the
interior of X. (Both the rectangle and its interior
disappear after regularizing.)

Figure 15. Defining a face of B-Repu

With the definition of a face given in Algorithm 1 on page 17, we can define
what we mean by the boundary and interior of a face, and the edges and vertices
of B-Repmn.  First, the boundary of a B — Repmy face is defined as the intersection
of that face with all other B-Repn, faces in the rcpresentation. Faces intersect in
line segments and points, called B-Repa,, edges and vertices, respectively. A point
is defined to be in the mterior of a B — Repny, face if that point is in the face and
not in the face-boundary. An immediate consequence of this approach to defin-
ing B-Repg, is that all of the representational properties (Figure 14 on page 16)
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are satisfied, with the exception of connectedness (Property [47), as demonstrated
by Figure 15(c). In the next section we define the Star-Edge representation; we
refine the faces of B-Rep, into connected sets (satisfying Property [4]): and we
define mechanisms, called adjacency mechanisms, for describing relationships be-
tween the vertices, edges, and faces of the Star-Edge representation.

2.2 The Star-Edge Boundary Representation

We now define the Star-Edge representation by refining definitions of the
vertices, edges and faces of B-Repn. Boundary representations whose faces are
triangles [Paoluzzi, Ramella, and Santarelli, 1986], polsgons [Baumgart, 1972;
Guibas and Stolfi. 1985], or comex polygons [Laidlaw, Trumbore, and Hughes,
1986] have been defined, but we choose a less restricted definition by requiring
only that the representational properties (Figure 14 on page 16) hold. Conse-
quently, Star-Edge faces can be as simple as the triangular faces of Paoluzzi.
Ramella, and Santarelli, or as complicated as the connected components of the
faces of B-Repn,. With definitions of the vertices. edges, and faces of the Star-
Edge representation. we present adjacency mechanisms that describe incidences.
(An encoding of the Star-Edge representation used by an implementation of the
regularized interscction algorithm of this thesis is described in Appendix B.)

The faces, edges, and veruces of the Star-Edge representation are now de-
fined. Subdivide the B-Repm, faces of a solid into connected, regular sets. Each
set in the subdivision 15 a Star-Edge face. The boundary of a Star-Edge face is
defined as the intersection of that face with all other Star-Edge faces in the rep-
resentation.  Faces intersect in line segments and points, called Star-Edge edges
and vertices, respectively. A point is defined to be in the wnterior of a Star-Edge
face if that pomnt is in the face but not the face-boundary. The definitions of
Star-Edge faces, edges, and vertices closely resemble their B-Repy,, analogues. A
consequence of this is that all of the representational properties (Figure 14 on
page 16) are satisfied. We now define the adjacency mechanisms of the Star-Edge
representation.

An edge is a line segment 1n R*bounded by two vertices; one of these vertices
is arbitrarily called Vertex; and the other is called Vertex,. Informally, an edge
is oriented with respect to an incident face as follows: when traversing an edge
of a face from Vertex; to Vertex,, if the face is to the right of the edge then the
edge is assigned a right orientation with respect to the face. If the face is to the
left of the edge then the edge is assigned a left orientation. It 15 possible to have
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the face both to the right and to the left, and in this case thc edge is assigned botn
a right and left orientation (sec Figure 16 on page 20); this procedure is formal-
ized as Algorithm 2 on page 20. We call these oriented face ‘edge pairs directed
edges [Karasick, 1989]. The coincidence of an edge and a face is represented ei-
ther by one or two directed edges, and in general, the directed edges associated
with an cdge describe the orientations of that edge on all incident faces in the

Star-Edge representation.

— L ’ 7 (b)
/AN / (c)
/----1 ’
7\ t
‘ SN /
Vertex, ¢ ! S ' Vertex,

Edge (a) gets a left orientation on f; edge (b) gets both a
left and a right orientation on f; edge (c) gets a right

orientationonf.

Figure 16. Onenting a facefedge intersection

An edge e contained 1n face f1s assigned a left onentation, a right orientation, or both, by the
following procedure  This procedure assumes the eastence of the normal vector A to fwhich

points to the eaterior of the represented sold

(1) lirst, consttuct a vector ¢, defined by Vertexy(e) — Vertexi(e) and then compute the two
vectors {and ran the plane of fthat pomnt from the interior of e to the left and to the right

mIx MNand /s « A xt

(2) Ither /or r, or both, point from e to the interior of / If / points into the intenor of f; then
e gets a left onentation on /£ If 7 points into the interior of f; then e gets a right orientation
on f. If both / and r e in the interior of fthen e gets both a leit and a right orientation

(see Fagure 16)

Algorithm 2. Orienting a directed edge
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A directed edge (e) has threc components: an edge e given by
(Fertex,. Vertex,), a containing face f. and an orientation bit righs? (which is tiue
if the directed edge has a right orientation). These three data are used to infer
numerical quantities such as the tangent #(¢) corresponding to the traversal di-
rection of the edge, and the initial and terminal vertices of a directed edge. A
vector, called a face direction vector, which points from the edge into the interior
of an incident face, is inferred as well. Definitions for all of these quantities are
found in Figure 17.

L Normal of face
R~ eeeee .
-
ey Terminal Vertex ofe
,r’ ’,’ \ Ed e
,,”,” I/ : . ge Ofe —>
e s Directed edge e
<7 ' 5>
“ S ace of e
~ 7 []
]

__________ nitial Vertex of e

Figure 17. Directed edge notation: We denote directed edge ¢ by the triple (e firight”), where ¢ 1s the
edge of e, f 15 the face of ¢, and right” 15 the orientauon bit of ¢ Note that there may be
many directed edges associated with ¢ We say that ¢ 1s one of the directed cdges of ¢
Dirccted edge ¢ describes how ¢ 1s traversed on f 1f e has a right orientation, then we ~ay
that Vertex(e) 1s 1ts imnal verrex, and Vertexyle) 1s ws terminal vertex, conversely, ¢ has
a left orientauon, then we say that Pertexs(e) s its iniudl vertex, and Vertexi{e) i s ter-
minal vertex The rangent of ¢, denoted 1(¢), 15 defined as the unit vector directed from
its intual vertex toward its termunal vertex  Finally, we define the face direction of ¢, de
noted fd(e ). as the umit vector that 1s the cross product of t{e’) with the normal vedor to
the face fof ¢ This vector, which 1s in the plane of /, pomts orthogonally from the interior
of e into the intenor of f

We can use the directed edge notation (Figure 17) to describe a represen-
tation for the direcied edges of a Star-Edge face, which forms part of the face
boundary.” First, the directed edges of a face arc ordered radially around incident

7 Recall that by boundary of a face we mean the intersection of that face with all other faces 1n the
representation
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vertices on that face (see Appendix C). Using this ordering, the bounding
directed-edge cycles of a face (denoted simply as “cycles”) are defined as those
directed-edge cycles induced using the following rule to determine succession:
given a directed edge ¢, the next directed edge e, around the beunding directed-
edge cycle is the counter-clockwise successor to e; in the radial ordering of di-
rected edges around the terminal vertex of e, (sec Figure 18). We arbitrarily
distinguish one directed edge as the first one in a cycle in order to facilitate trav-
ersal of this cycle It is possible that vertices incident to a face are not contained
in any of 1ts cycles. We say that these vertices are isolated vertices of this face.
Thus, we represent the boundary of a Star-Edge face as a list of isolated vertices
and bounding directed-edge cycles.

AN

I\v'/\i

Radial order

Terminal
Vertex of &,

The successor to e, is the dlrected edge ( ¢, ) that is the
counter- clockmse successor to el around the terminal
vertex ofe1

Figure 18, The successor of a directed edge of a face

2.3  Some Combinatorial Propertics of the Star-Edge

Representation

Now that the Star-Edge representation has been defined, we can make some ob-
seryations about properties of the representation. Because of our definition of a
bounding directed-edge cycle, a vertex is alternately an initial and terminal vertex

* Thas rule induces a clockwise cycle, e, the face 1s always found to the nght of its directed edges,
i instead we used the radally-clochwise successor at the terrminal vertices to determune the next
directed edge around the cyvcle, the face would be found the the left of sts directed edges, and we
would mduce a counter-clochwise cycle
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in the radial ordering of the directed edges of a face incident to that vertex. Thus
on each incident face of a vertex there are an even number of dirccted edges in-
cident to that vertex, and a directed edge together with its successor ditected edge
“enclose” an area of this face. Similarly, an edge may be adjacent to many faces,
and as-ociated with each adjacent face is one or two directed edges. In total, an
edge has an even number of directed edges. and the faces of these directed edges
can be radially ordered around this edge by using face direction vectors to sort
them (sec Appendix C). Thus the faces of two consecutive directed edges in this
ordering enclose a volume of the represented solid. These two radiai orderings of
directed edges around vertices and edges are shown in Figure 19,

Vertex;‘\

1
Radial order of directed Radial order of
edges on face around vertex. faces around edge.

Figure 19. Radal ordering of directed edges

Asymptotic analyses of algorithms that use the Star-Edge representation of
a solid 4 are parameterized by the numbers of vertices, edges, directed edges and
faces of the Star-Edge representation of 4. We denote these quantities by 17,
E4, D4 and Fj, respectively. and we further denote quantities like “the number
of directed edges adjacent to vertex v’ by “D,. ” We now V, and F, in terms of
E,.

Lemma 1. If a Star-Edge representation of solid A has V, vertices, £y faces, and £, edges, and every
vertex 1s adjacent 1o at least two edgr and two faces, then' (1) V< Ey; and (2) 2/, < 3L,

Proof.

(1) Each vertex is adjacent to at least two edges, and so by hsting the the edges adjacent to cach
vertex, each edge is listed twice:
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Veruces(A)

W, < ) E=2E

Vertices(A)

(2) FLach vertex 1s adjacent to at least two faces, and so 2F, < 3 F, The number of faces F,
adjacent to vertex v 1s bounded by one more than the number of edges adjacent to the v. (v
can be 1solated on exactly one adjacent faces.) Finally, using Result (1), we have

Vernces(A) Vertices(A4)

2F, < Z F < Z (E,+1) < 3E, »

14

There arc also trivial relationships between the numbers of edges and directed
edges in the Star-Edge representation of a solid.

Lemma 2. If a Star-F'dge representation of solid 4 has D, directed edges and E4 edges, then: ()
20,< Dy, and (2) for eveny face fof the representation, 2E, > Dy,

Proof. 1 very edge of the Star-Edge representation of 4 is adjacent to at least two faces of the rep-

reseatation. ®

We will use these bounds to obtain a simple form for the asymptotic running time
required by the intersection algorithm of “Chapter 4. Intersecting Solids”.

2.4 A Survey of Boundary Representations

This chapter began with a discussion of representational issues. A very general
B-Rep, called B-Repn,. was defined and used to define the Star-Edge represen-
tation. We now compare the Star-Edge representation to other, existing bound-
ary representations for manifold-solids. non-manifold solids, and cell complexcs.
Manifold-solid representations discussed are the Hinged-Edge boundary repre-
sentation of Baumgart [1972], the Quad-Edge boundary representation of Stolfi
and Guibas [1985], and the Winged-Triangle boundary representation of
Paoluzzi, Ramella. and Santarelli [1986]. We will also examine representations
for cell-complexes in R [Hanrahan 1985; Dobkin and Laszlo 19877 and a repre-
sentation for solids due to Laidlaw, Trumbore, and Hughes [1986].

The Winged-Edge representation [Baumgart, 19727 and the Quad-Edge
representation [Stolfi and Guibas, 19857 are explicit, connected representations
for manifold sohds. Property (4) of the representational properties (Figure 14
on page 16) is enforced by requiring that face boundaries be simple polygons,
r.e., that topologically, faces are discs. The Winged-Triangle representation
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[Paoluzzi, Ramella. and Santarelli, 1986] further requires that face boundaries
be triangles. The Winged-Edge. Quad-Edge, and Winged-Triangle 1epresent-
ations for manifold solids exploit two properties of manifold solids: an edge in
the representation of a manifold-soiid is defined by the intersection of exactly two
faces, and the edges incident to a vertex in the representation can be radially or-
dered around that vertex. Vertex coordinates serve as 2 means for embedding a
2-manifold i R?* as the surface of a manifold solid.  Thus, a very simple
adjacency mcchanism suffices to describe the topology of a 2-manifold:  this
mechanism is a Dist of the prececeding and succeeding edges on the two adjacent
faces of an edge (scc Fagure 20). The adjacency mechanism for the Winged-
Triangle representation is even simpler because each triangle (face) v adjacent to
three other triangles. It is easy to see. by using directed edge notation, how rep-
resentations for manifold solids are special cases of the Star-Edge representation.
If the Star-Edge representation 15 used to represent a mamfold sohd, then cach
edge has exactly two dirccted edges and each vertex of a face is adjacent to two
directed edges on that face.

Left Successor

Vertexl“—‘“—

IRightPredecessor - RtghiFace RzghtSuccessor
T D e S A B T TN
Associated with each edge in the Winged- Edge representation
are the four edges that correspond to the predecessor and suc-
cessor edges on the left and night faces. The successor (clock-

wise) to e around a face is the same as the successor
(counter-clockwise) to e around a vertex.

Figure 20. Adjacencies of the Winged-Edge representation

Although polygonal face-boundaries are easier to represent than the general
face-boundaries of the Star-Edge representation, it iS necessary to examine how
polvgonal face-boundaries affect algorithms that use such representations.
Polygonal or triangular face-boundaries increase the number of faces in a repre-
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sentation. This has two effects on regularized intersection algorithms: because
face boundaries of these representations are polygonal, extra work in addition to
the actual intersection computation is necessary; on the other hand, the inter-
section of two faces becomes easier to compute (but it 1s not clear if this simplicity
outweighs the other induced computation [c.f., Eastman and Preiss, 19847).
Certain algorithms require polygonal face-boundanics. For example, the Quad-
Edge representation of Guibas and Stolfi {1985] can be used to describe sub-
divisions of R* and was used in an algorithm to compute the Voronoi diagram
and Dclaunay tniangulation of a set of points in R

Representations for cell-complexes embedded in R? have been described by
Hanrahan [1985] and Dobkin and Laszlo [1987]. Hanrahan's representation,
the Face-Edge 1epiesentation, was used in a solid modeling system. Dobkin and
Laszlo independently formulated the Facer-Edge representation, which they used
to solve geomettic problems like the construction of Voronoi diagrams and
Delaunay triangulations in R The Face-Edge and Facet-Edge representations,
like the Star-Edge representation, are based on ntersections of edges with faces
(recali that Star-Edge nomenclature for the intersection of an edge with a face is
a directed edge). Not surprisingly, the Star-Edge representation has adjacency
mechanisms which are very similar to those used by these two representations.
Dobkin and Laszlo supphed adjacency mechanisms for the Facet-Edge represen-
tation which they called traversal functions. These functions provide the four
facet edge traversals, using directed edge notation. these traversals correspond to
moving around a face or an edge to the successor or predecessor of a directed
edge.  (For the Star-Edge 1epresentation, we defined only the successor of a di-
rected edge around a face. but the other three traversal functions could easily
have been defined, see Figure 19 on page 23.) One important difference between
the Star-Edge representation and the Facet- and Face-Edge representations is
that the Star-Edge representation can describe certain cell compleaes which can-
not be described using thesc representations (see Figure 21 on page 27).
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This cell complex cannot be represented using either the
Face- or Facet-Edge representations because these
representations require that adjacent cells intersect in at
least an edge and these cubes intersect at only a vertex.

Figure 21. Two cells with only a vertex in common

There is a representation for solids, due to Laidlaw, Trumbore, and Hughes
[1986]. that is closcly related to the Star-Edge representation. In Laidlaw,
Trumbore, and Hughes’ representation, faces are bounded by convex polygons.
This simplifies the adjacency mechanisms in two ways: edges are defined by an
even number of faces, and vertices are defined by an even number of edge face
pairs (directed edges). In contrast, Star-Edge faces are much more general: an
edge has an even number of directed edges, and on cach face a vertex is adjacent
to an even number of directed edges. Because Laidlaw. Trumbore, and Hughes
bound faces with convex polygons, their representation may contain many more
faces than the corresponding Star-Edge representation.® A regularized intersection
algorithm that uses the Laidlaw, Trumbore, and Hughes representation s com-
plicated by three factors: first, the input representations are quite lengthy; and
second, extra complication is added to the interscction aigorithm m order to cn-
sure face convexity; and third, many edges in their representation are not defined
by the intersection of two faces, and this can complicate incidence tests in their
intersection algorithm. Laidlaw, Trumbore, and Hughes designed their repre-
sentation in this way hoping that the case with which two convex faces could be
intersected would compensate for these drawbacks. On the other hand, the
Star-Edge representation is designed to minimize the number of faces in order to
lower the overall cost of these computations.

9 Subdividing a single Star-Edge face with n directed edges can induce as many as n convex faces
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We have seen that the Star-Edge representation subsumes many other rep-
resentations for solids and manifold solids. Certainly the Star-Edge represen-
tation is more general than the manifold-solid B-Reps of Baumgart [1972], Stolfi
and Guibas [1985] and Paoluzzi, Ramella, and Santarelli [1986]. For manifold
solids, instances of these three representations are casily converted into instances
of the Star-Edge representation.  Furthermore, we saw that there are cell-
complexes which the Star-Edge representation can describe, and the represent-
ations of Hanrahan [1985] and Dobkin and Laszlo [1987] cannot. Finally, the
boundary representation of Laidlaw, Trumbore, and Hughes [1986] for solids is
casily converted into an instance of the Star-Edge representation. In the next
chapter we examine how to solve two basic problems using the Star-Edge repre-
sentation: (i) computing the regularized complement of a solid, and (i) deter-
mining if two instances of the Star-Edge representation describe the same solia.
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Chapter 3. Some Representational Results

To demonstrate the Star-Edge representation’s utility, we can snow how to use
the Star-Edge representation in aigorithms for solid-modeling operations other
than regularized sct operations. The Star-Edge representation will now be used
to solve two problems in solid modeling: (1) transform a representation of a solid
into one for the solid’s regularized complement; and (2) determine 1if two solids,
represented by their boundaries, are identical. An algorithm that solves the first
problem using the Star-Edge representation can be used in conjunction with a
regularized intersection algorithm to implement any regularized set operation.”
The sccond problem, called the “samec-object™ problem, was posed as an open
problem by Requicna [19807] and solved for Constructive Solid Geometry (CSG)
by Tilove [1981, 1984]. The complexnity of Tilove’s algorithm is O(#»¢), where n
is the number of intersections of surfaces used to define primine solids in the
CSG representation.  The large asymptotic complexity of Tilove's algorithm is
duc to that fact that CSG representations can be redundant, we., given a CSG
representation 4 "B, there may be surfaces that define the boundaries of 4 and
B that do not define the boundary of their regularized union. The redundancy
tests used by Tilove’s algorithm have been impreved by Rossignac and Vocelcher
[1986], although the asymptotic complexity remains O(n®).

In order to analyze the asymptotic complexity of an algorithm that uses a
B-Rep, it is necessary to describe how the B-Rep is encoded as input to the al-

1o Kuratowski and Mostowski [ 1968] proved that the regular sets in conjunction with the regular-
ized set operations form a boolean algebra Because solids are regular sets we can express regu-
larized union in terms of regulanized intersection and complementation using one of DeMorgan's
Laws:

R U'S = ﬁ'((ﬂ'.Q) ﬂ.('—l'S))
Similarly, we can write an expression for regulanzed difference

R-"S=RN'(="9)
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gorithm. A «olid’s boundary is composed of connected components, and we en-
code cach of these components as an explicit, connected B-Rep! containing
veriex edge, and face lists of that component. We define the size of one of these
components to be the total number of vertices. faces, and edge Tace intersections
in that component. Using the Star-Edge representation, the size of this compo-
nent is the total number of vertices, faces and directed edges (a directed edge de-
scribes an edge face intersection).  We also define the size of a boundary
representation of a manifold solid to be the total number of vertices, faces, and
edges (a manifold-solid edge is defined by the intersection of two faces: for the
Star-Edge representation, each edge has exactly two directed edges).

We often cannot compare very different representations by comparing the
asymptotic complexities »f algorithms that use the different representations be-
cause representational sizes can very greatly (see Figure 6 on page 5). For ex-
ample the size of a Constructive Solid Geometry (CSG) representation is usually
defined as the total of the number of regularized sct operations and primitive
solids, and hence a CSG representation of a solid is much smaller than a B-Rep
of the same solid. Furthermore, algorithms for the regularized et operations are
trivial using CSG. but difficult using B-Reps. However, there are many other
operations which are casier to perform on B-Reps than on CSG representations.
For example, we will see that the same-object problem 1s easier to solve using
boundary representations than using Constructive Solid Geometry. Very differ-
ent representauons for solids can be compared by implementing equivalent algo-
rithms using the different 1epresentations, and then by measuring computation
times and other relevant factors, such as numerical error. Using this approach,
Lce and Requicha [1982a7] evaluated algorithms that compute volumes of solids

represented in various ways.

3.1 Regularized Complementation for Solids

It 15 very easy to transform a Star-Edge representation of a solid into one for its
regularized complement because a solid and its regularized complement have the
same boundary.

f.emma 3. [Requicha, 1977] If 4 is a regular set then 0(—"4) = 04. ®

1 Receall the representational properties of the representational properties (Figure 14 on page 16)
in “Chapter 2 Representing Sohds”

$Some Representational Results 30




Algorithm 3 transforms a Star-Edge representation of a solid into one for
this solid’s regularized complement by inverting each face’s normal vector and
s each directed edge’s orientation. (Recall that directed edges arc oriented inter-
sections of edges and their containing faces; faces have normal vectors that point
to the exterior of the colid [see Figure 227.)

T z-d = Qhas T - z+d = 0has
normal (00 1) normal (00 -1)
/ ‘ I
|
—_— l .
(a) T (b) l

¥ ¥

Solid (a) is complemented by inverting the normal vector
of each face equation in its boundary represenation. This
has the effect of inverting directed-edge orientations in (b).

Figure 22. A solid and its regulanzed complement

The Star-Edge representation of a solid is transformed into one for this solid’s regulanzed
complement as follows

(1) 1nvert the normal vector of each face,

(2) on each face, invert the radial ordering of directed edges around vertices (see Figure 19),
and

(3) invert the orentation bit of each directed edge

Consequently, the mitial and terminal vertices of each directed edge are interchanged, each da-
rected edge tangent 1s inverted, and the bounding directed-edge cycles of cach face are reversed.

Algorithm 5. Regularized complementation using Star-Edge encodings

If the solid’s Star-Edge representation has a length of n, then Algorithm 3 has a
running time of O(n). We can compute representations of the regularized union
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and difference of two solids using both Algorithm 3 and an algorithm for regu-
larized intersection (see “Chapter 4. Intersecting Solids”).

3.2 The Same-Object Problem for Solids

The other algorithm we examine in this chapter determines if two Star-Edge
representations describe the same object. This same-object problem arises in
many arcas of computer-aided manufacture. For example, an algorithm that
computes a machining sequence for a modeled part would need to verify that this
sequence yiclded an object identical to that part [Tilove, 1984]." The same-object
problem can be solved in terms of regularized set operations,” but a more efficient
algorithm using the Star-Edge representation is possible. This algorithm works
by comverting the Star-Edge representation into a canonical encoding of the
minimal boundary representation (B-Repy,) of “Chapter 2. Repiesenting Sohds”
The same-object problem can then be solved efficiently because there is only one
canonical B-Repn, encoding of a solid. We prove that the B-Repn, vertices,
edges. and faces of a solid are unique, we show how to encode them canonically,
and then we use this canonical encoding to solve the same-object problem.

Lemma 4. he faces, edges, and vertices of B-Repm, are uque

Proof. Assume that R and S are two mimmal boundary -representations of solid X. We prove that
every face, edge, and vertea of R 1s contamned in S, that every face, edge, and vertex of S 1s contamned

imn R

Without loss of generality, we argue that there must be a face, edge. or vertex of R that 1s not
found in § Let us assume that there 1s a face fof R that 1s not contained 1n § Then, there 1s a poimnt
that 1 1n the mtenor of f(and on the boundary of A) Because f1s not i S, ore of the following
must be true about this pomnt 1t 1s on some face of §, 1t 15 1n the intentor of X, 1t 15 1 the extenor
of Aot is ataverten of S, oritisonan edgeof S Any of these cases imply that the nesghbourhood
of the point differs in R and S, and therefore R and S describe different solids  Simular arguments
follow for the edges and vertices of R and § We conclude that the faces, edges, and vertices of R
and § are identical, and therefore, the faces, edges, and vertices of B-Repn, are umgque ®

12 §imulanty testing 1s a special case of congruence testing  Sugihara [1984] adapts an algorithm
that tests for planar-graph isomorphism 1o test for the congruence of mani‘old sohds Atkinson
[1987] tests for the congruence of point scts 1n RY, and Alt, Mehlhom, Wagener, and Welzl
[1988] discuss a vanety of algonthms that test for exact and approamate congruence of point
sets n R° We (and Tilove [1984]) do not address this mere difficult problem

Y Given regular sets denoted 4 and B, A =B ff (4 —"B)=¢ and (B —"4)=¢
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Lemma 4 established that the vertices, edges, and faces of B-Repm, are
uniquely defined. The canonical encoding of B-Repg, is simply a lexicographical
ordering of the faces and face-boundaries of B-Repma. The face-ordering is di-
rectly obtained by sorting these faces using their face-equation coefficients (see
Figure 23 on page 33) and the face-boundary ordering is obtained from the
vertices that constitute this face boundary.

We represent each: veriex v, by 1ts coordinate tnple (x,. )y, 2) and represent cach onented
face f; by the tuple (4,, B,.C, D), where Ax+ By + Cz+4 D,=0 is the onented unphent
equation of the face, and (4., B..C) 1s a unit vector We leaicographically compare two vertices
or two faces using these tuples Two tuples can be learcographically ordered by companng
them element by clement  tuple a 1s less than tuple § f o and § have identical prefiaes, and
the first element 1n the suffix of « 15 smaller than the corresponding element of f

Figure 23. Lexicographically ordering B-Repmn vertices and faces

We now define a canonical encoding of the boundary of a B-Repm., face.
Recall that the boundary of a B-Repn, face is defined as those edges and vertices
that constitute the interscction of that face with all other faces in a B-Repgy,,
representation. Because a Star-Edge face can be as general as a B-Repy,, face (see
“Chapter 2. Repiesenting Solids™) we could use the Star-Edge adjacency mech-
anisms, 1.e., bounding directed-edge cycles and isolated yeruces, to describe the
boundary of a B-Repa, face. Using directed edges comphicates our same-object
algorithm, and so we choose to describe a B-Repp,, face-boundary using vertices.
To convert from a directed-edge cvcle to a vertex cycle, we extract the mitial
vertex of each directed edge: furthermore. we can trecat an isofated vertex as a
cvcle of length zero. Each bounding vertex cycle 1s canonically encoded by iden-
tifying its lexicographically-smallest vertex (see Figure 23) as the first vertex of
that cycle (see Figure 24 on page 34). If the lexicographically-smallest vertex is
the initial vertex of more than one directed edge of the cycle, then the
lexicographically -smallest of the corresponding terminal vertices is distinguished
as the second vertex of the cycle. A canonical encoding of all of the vertex cycles
of a B-Repn, face 1s obtained by ordering the hst of vertex cycles using their
lexicographically-smallest vertices. If a lexicographically-smallest vertex is shared
by two or more cycles then the successor of this vertex 1n each cycle distinguishes
and orders these cycles (see Figure 25 on page 34).
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\ N —b for the bounding cycle of this
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N/ e vertex in this cycle (f).
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bigure 24.  Canonically representing a bounding cycle of a face

//._b If canonical representations of
J—

¢ bounding vertex-cycles ¢;, ¢,, and

¢, are (a,b,c), (a,d,e), and (a,f,g),
e respectively, these three cycles
~~ [ are ordered by lexicographically
3 /1 _——8 ordering coordinates of b, d, and f.

Figure 25.  Canonically representing the boundary of a face

Using Lemma 4 and the canonical encoding described for the boundary of
a B-Repy,s face, we define the canonical encoding of B-Repm,. Each component
of the surface of a solid is canonically encoded by a list of lexicographically-
ordered B-Repn, faces. Each face is represented by 1ts (normalized) oriented
planc cquation and by the lexicographically-ordered list of lexicographically-
ordered bounding vertex cycles of the face boundary. Finally, we canonically
encode the list of surface-component encodings by lexicographically ordering
them using the smallest vertex on each component.

In order to solve the same-object problem for two boundary representations,
convert 10 B-Repmn, encode canonically, and then compare the two canonical
encodings of B-Repmis. As this comparison can be done in linear time, the time
required to solve the same-object problem using the input boundary represent-
ations is bounded by the time required to convert the two input representations
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to B-Repmns and canonically encode them. We now examine that conversion and
encoding process for the Star-Edge representation.

If an instance of the Star-Edge representation has faces that are the same as
the connected components of a B-Repy,, face, then conversion of that instance
of the Star-Edge representation is relatnely easy. In general, Star- Edge faces can
be much simpler than the connected components of B-Repp,. and then convert-
ing the Star-Edge representation to B-Repp, is moie tedious  Thus we need an
algorithm that finds a canonical encoding of the B-Repma representation of a
solid, given the Star-Edge represenitation of that sohid.

Constructing the canonical B-Repmn encoding from a Star-Edge represen-
tation of a solid is done first by combining coplanar faces and then by deleting
all edges and vertices that arc not boundary clements of B-Repg,,. This con-
struction 1s described by Algorithm 4, which has an asymptotic running time of
O+ Dlog D + Flog F)., where I, D, and F arc the numbers of vertices, di-
rected edges. and faces. respectively, in the Star-Edge representation.

The following algorithm constructs the canonical B-Repp,,  encoding from the Star-Fdge
representation of a sohd

(1) Lencographically order the faces of the Star-Edge representation Mark all faces with the
same onented face-cquation as belongng to one B-Repmn face

(2) If all faces adjacent to an edge belong to the same B-Repy,. face, delete the edge and the
associated directed edges. and join the affected bounding directed-edge cycles.

(3) If every edge adjacent 1o a vertex belongs to evenn B-Repn,, face mnadent to the vertea,
delete the vertex, join the edges (hence duected edges) adjacent 1o the vertex, and join the
affected bounding directed-edge cycles

(4) Construct the lexicographicallv-ordered vertex cvcles from both the bounding-directed
edge cycles and the isolated vertices of each face boundany

If there are D directed edges, F faces, and V vertices, respectively, in the Star-1dge represen-
tation, then Step (1) can be camed out 1 tme Q(f log F), Steps (2) and (3) require time
O(D + V), and Step (4) requires time O(Dlog D) Thus B-Repp, can be extracted from a
Star-Edge representation 1n a total time of O(V + DlogD + [logl)

Algorithm 4. Converting from Star-Edge to canonical B-Repgy. Encoding
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We now prove that the problem of computing B-Repn, from an explicit,
connected boundary representation with F faces has an Q(Flog F) lower bound.
The proof of Theorem 5 shows that the problem of determining if the elements
in a list of size n are unique, can be solved by constructing the canonical
B-Repm, cncoding from an eaplicit, connected B-Rep of a particular solid. The
model of computation used. the algebraic-decision-tree model, is sufficiently
powerful for the algorithms of this thesis.

Theorem 5. The problem of constructing the canomical B-Reppm, encoding from an exphat, con-
nected representation (of a solid) with F faces has an Q(Flog F) lower bound 1n the algebraic-

decision-tree model

Proof. Given a hist a of n numbers (a, a;, ., a,), the problem of determuning f the elements of a
are unique 15 transformed 1nto the problem of constructing the canonical B-Repmn cncoding from
an cxphent, connected B-Rep with 2n2 + 4 faces, 6n+ 6 edges and 4n+ 4 vertices, whuch descnbes
a “staircase " This transformation 1s done by constructing  this staircase along the x-axis between
x =0 and v = n, with the height of a “step™ corresponding to an element m a  (Without loss of
generabity, we assume that no two consecutve elements 1n a are 1dentical and that the first and last
clements are zero with all the others positive ) Finally, the elements of @ are umque if and only of
the starrcase has eaactly 27 + dfaces We now desenbe how to construct the staircase

An explicit, connected representation of this staircase has four types of faces the suppring
floor, the top of a step. the front of a step. and the two sides We gave the vertices of cach / 1 these
faces as a clochwise cycle  (We will not represent these faces in the canonical form of "igure 24
on page 3 and igure 25 on page 34. although we could easdy do this without penalty) The
supporting floor, or bottom of this staircase (see Figure 26), is a rectangle on the plane (» = 0), with

a boundmg vertea cycle

((0,0,0), (0,0, 1), (n,0,1), (n,0,0))

A
\
1
1
1
'
1
1
'
'
1
N
Y]
\
A}
]
i
]
s

!

]

]

]

)

]

]

)

3

—

.

]

b
1

]

]

K
Ay

—
o
-
o
-
o
~
_.:" ,
" lam e
-
\
o ———
AY
f‘_______‘
ry
[RY
4
A
\l
\
L
\
)
o
(=]
N

Figure 26. Bottom of the staircase

The top of a step, or tread (see Figure 27 on page 37), is a square in the plane (y = a), i.e., the i
tread of this staircase has height given by the ™ element of a. The #" tread has a bounding vertex

oyele

(tt—1.4a,0), a0, ¢ al),—1a.l).
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Figure 27. Tread of the staircase

The front of a step, or riser (see Figure 28), is a rectangle in the plane (x = i), with a bounding

veriex cycle:

(i, a,1), (1, @,0), (i, a,y1.0), (i, @,y ), 1))

Figure 28. Riser of the staircase

Finally, the two sides of this staircase, shown in Figure 29 on page 38, arc more complicated
side on the plane (z = 0) has a bounding vertex cycle.

((nvovo)» (n: Gn,O), (n - 1v anvO) [ (l. a] y 0), (0, a] ,0), (0,0,())), and

the side on the plane (z= 1) has a bounding vertex cycle.

((0,0,1), (0, @),1), (1, a;,1) , .., (n=1,a,,1),(n,ayl), (n0,1))
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(n-1,a,,0)

~(n,a,,0)

A4 (n,0,0)

.......... (n-1,a,,1)

’—’ﬁ:‘\(n,anyl)

Figure 29. Sides of the staircase

The completed <tarcase 15 the manifold solid shown in Figure 30

Figure 30. The completed staircase: A boundary representation of the staircase contains 4n + 4
verlices (211 + 2 vertces along each side of the staircase), 2n + 4 faces (n treads, n+ 1
risers, two sides, and one bottom), and 6n + 6 edges (4 bottom edges, 2 vertical edges in

each niser, and 4 edges « n each tread)

In order to complete the proof of this theorem, we must show how an algonthm that con-
structs the canonical B-Rep,.. encoding from an explicit, connected representation 1s used to de-
termine of the clements of the list a are umque  First we observe that an exphcit, connected
representation of the staircase 15 hnear in the size of a because 1t has (from Figure 30) 12n + 14
boundary elements ' More importantly, there are 2n+ 4 faces 1n this representation  Next we ob-
serve that there are duplicates in @ if and only if there are coplanar treads in the staircase, and that
an algorithm, by constructing the canonical B-Repn,, encoding, combines these coplanar treads.

14 Note that we may have added a Iincar number of elements to @ 1n order to ensure that no two
adjacent elements of @ were identical  This technical condition makes the staircase construction
sumpler
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Thus, the elements of a are unique if and only if there are 2n + 4 faces 1n the B-Repy,, represen-
tation of the staircase Because the problem of deleting duphcates from a hat of size 7 has a lower
bound of Q(r2log n) in the algebraic-decision-tree model [Preparata and Shamos, 1985, pg 186],
the construction of B-Repn, from an eaplicit, connected representation of the staircase requires
time O(nlog n) Thercfore, the problem of constructing the canonical B-Repg,, encodmg from an
explicit, connected representation of a sohid with F faces has a lower bound of ()(Flog #) w

Theorem 5 gives a lower bound of Q(F log F) for the problem of constructing
the canonical B-Repn,, encoding from a connected, explicit representation of a
solid with F faces; and Algorithm 4 on page 35 solves this problem in time
O(1"+ Dlog D + Flog F). where F, D, and | arc the number of faces, directed
edges. and vertices, respectively. in the Star-Edge representation.  For manifold
solids with polygonal faces, D < 6F and "< 4F, and so Algorithm 4 on page 35
is optimal. However, 1t 15 possible to construct a Star-Edge representation of a
solid that has few faces, but a great many vertices and directed cdges. For ex-
ample. Figure 31 describes a solid with O(n) Star-Edge faces, O(#") directed
edges, and O(n?®) vertices.

For n = 4, the solid is made from 32
cubes; the Star-Edge representation
for the solid can have:
24 faces, 115 vertices, and 768
directzd edges.

Figure 31. A sold with many more edges and vertices than faces:  The sohd is made by joining -'—'21
cubes along edges The Star-Edge representauon of the solid has 6n faces 1n the sohd (n
faces i each of the six principal direction), 1273 directed edges (each cube has 24 directed
edges), and (n + 1)> — 2n — 2 veruces (in a prinapal direcuon, each of the n + | planes
has n? 4+ 2n — 1 vertices)

The same-object algorithm, w.e., comparison of two canonical B-Repn,, en-
codings constructed using Algorithm 4 on page 35, can be implemented using
exact arithmetic (e.g., rational arithmetic) in the straightforward way. However,
if we wish to implement the same-object algorithm using finite-piecision (e.g.,
floating-point arithmetic), we must be more careful. Because finite-precision
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arithmetic implements equality using proximity (within a tolerance ¢), three
problems arise:

(1) Two vertices with proximal x-coordinates cannot be sorted using a finite-
precision lexicographic comparison: consequently, it may be impossible to
identify the lexicographically-smallest vertex of a bounding vertex cycle of a
face. For the same reason, it may not be possible to lexicographically-order
two different vertex cycles on the same face.

(2) Two faces whose normalized face-cquations have proximal x-coefficients
cannot bhe lexicographically-ordered using finite-precision arithmetic.

(3) If two faces lic on oriented planes that are almost identical, it may be impos-
sible to determine if the two faces should be coalesced into a single B-Repmn

face.

These three problems illustrate that it may not be possible to construct the
canonical B-Rep,,, encoding of a solid using finite-precision arithmetic. Algo-
rithm 4 on page 35 can always 1nake arbitrary choices to solve these three prob-
lems. but then the comparison phase of the same-object algorithm will simply
report that the two solids are different. By modifying the B-Repn, encoding to
eaplicitly describe ambiguities that result from implementing the ordering caicu-
lations with finite-precision, error due to the three problems can be reduced.

Problem (1) is solved by identifying, for cach cycle, the list of “possible”
lexicographically-smallest vertices with proximal x-coordinates; and the B-Repun
encoding of such a cycle is augmented with the list. The comparison phase of the
same-object algorithm compares two such augmented cycles by comparing all
possible cvcle-pairs.  Similarly, if the cycles of a B-Rep,., face cannot be
lexicographically -ordered, the comparison phasc of the same-object algorithm
compares B-Repp,, faces by comparing all possible pairs of cycles.

Problem (2) is solvea similarly to Problem (1); the B-Rep.., encoding of a
solid is modified to contain clusters of faces with proximal x-coefficients. The
comparison phase of the same-object algorithm compares two such clusters of
faces by comparing all possible face-pairs.

To alleviate Preblem (3), we make a minimum-feature-size assumption
[Segal and Séquin, 1985] about the input boundary representations: Two faces
that are coplanar to a tolerance ¢ and that share a vertex v are defined to be
coplanar. The idea vehind this assumption is the following: two of the three
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planes that define v are nearly coplanar, and so the coordinates of v contain a
large error. When two faces are coalesced to form a single B-Rep. face, their
face-equations are combined to form an equation with interval-coefficients. For
example, two vectors of coefficients, {a, b, ¢, d) and (a', b'. ¢’ d'), are combined to
form the vector of intenal-coefficients

([amin @', amax @'}, [brun &, bmax b'}, [cmun ¢, cmax ¢'], [dmin d’, 4 max d'});

the comparison phase of the same-object algorithm compares two
lexicographically-ordered lists of facec-equations by comparing interval-
coefficients.

Our discussion of the problems in a finite-precisicn implementation of the
same-object algorithm provide some context for the remainder of this thesis, I
we choose to implement a geometric algolithm to use exact computation, then the
implementation will be correct, although inefficient. Conversely, if we implement
the algonithm using finite-precision arithmetic, then the implementation will be
efficient, although probably incorrect. In the next two chapters, we discuss both
a solid-intersection algorithm and its finite-precision implementation.  This im-
plementation uses symbolic inference technigues te alleviate errors duc to finite
precision.
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Chapter 4. Intersecting Solids

In this chapter, a new regularized intersection algorithm for solids is described,
analyzed, and proved correct. Given Star-Edge representations of solids 4 and
B, thc algorithm computes a Star-Edge representation of 4 ["B. The new inter-
section algorithm has been mmplemented as described here, using finite-precision
incidence tests to be described in “Chapter 3. Incidence Tesis™ (see also Appen-
dices B-E).

Few attempts have been made to develop correct. efficient algorithms that
intersect wolids, although such algorithms have begn presented for convex
polvhedra. Muller and Preparata [1978] describe an algoritbm that intersects
two conmvex polyvhedia, and Brown [1978] and Pieparata and Muller {1979] use
this algorithm to intersect a collection of half-spaces. Hertel. Mantyvla, Mchlhorn,
and Nievergelt [19847 describe algorsthms that compute the union. intersection,
or difference of conven polyhedia. All of these algerithms use a representation
of Preparata and Muller [1978]. called the doubly-connected edge list (DCEL),
which is almost identical to the Winged-Edge representation of Baumgart
[1972] (described in “Chapter 3. Some Representational Results”).

Muller and Preparata [1978] describe an algorithm that, given DCEL rep-
resentations of convey poiyhedra P and Q. constructs a DCEL representation of
P Qintime O log 1), where ¥V is the total number of vertices in P and Q. If
both P and @ contain thc origin, their mtersection can be written as the inter-
section of half-space« of the form gx + by + ¢z < 1. The dual of each half-space
iv defined to be the peint (a, b, ¢), and the dua! of a convex polvhedron is defined
to be the convex hull of the duals of its defining half-spaces. Muller and
Preparata [1978] prove thar if £ znd @ are coavex polyvhedra that contain the
origin, then P [) @ is the dnal of the convex hull of the union of the duals of P
and Q. Thus P ) Q1s Jound by: (i) fmding 2 point ¢ in the interior of P ) Q; (ii)
translating P and @ so that g is at the origin: (ilij computing the points that are
the duals of the (wransiated} defining half-spaces of P and Q: (iv} finding the
conven null of the poinis found in Step (iv): and (v) obtaining P ) Q by applyving
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the inverse translation of Step (ii) to the dual of the convex hull found in Step
(iv). Muller and Preparata [1978] give a detailed algorithm for Step (1) that uses
time O()” log V) to either find @ or determine that P () Q = ¢. They also use the
conivex-hull algorithm of Preparata and Hong [1977] in Step (iv). which finds the
convex hull of # points in time O(n log n).

The intersection algorithm of Muller and Preparata [19787 is used by Brown
[1978] and Preparata and Muller [1979]. to intersect a set of F half-spaces in
time O(Flog F) First, the F half-spaces are partutioned into two seis: set H-
contains half-spaces of the form ax+ by + ¢z <1, and set H contains half-
spaces of the form ax + by + ¢,- < —1. Then the duals of the half-spaces of H-
and H- are feund: the dual of a half-space of H- is point (a,, b.. ¢;). and the dual
of a half-space of H- is point ( — a@,. — b. — ¢). The F half-spaces intersect if and
only if there is a planc that separates the duals of the half-spaces of H from the
duals of the half-spaces of A . (Preparata and Shamos [1985, pg. 291] gine an
algorithm that uses time O[F]. to cither find & separating planc or determine that
one does not exist.) Using homogeneous coordinates, the rotation that maps the
separating plane to the plane at infinity also transforms every half-space of H
and H- to contain the ongin. Fmnally. the F rotated half-spaces are intersected
using the method of Muller and Preparata [19787]. and the inverse rotation is
applied to the resulting convex polyhedron. In total, the algorithms of Brown
[1978] and Preparata and Muller [1979] require time O(F log F) to produce a
DCEL representation of the intersection of F half-spaces.

Hertel, Mantyla, Mchlhorn, and Nievergelt [1984] describe algorithms that
compute the intersection, union, or difference of convex polyhedra Py, and P, in
time O(V log V), where }7 1s the total number of vertices in Py and P,. (They
represent the polyhedra using the DCEL representation). A plane, orthogonal to
an arbitrarily chosen hne. 1s swept along that line. As the plane passes through
Py and P, balanced binary wrees ¢, and C, keep track of the edges and faces of
Py and Py, respectively, intersected by the plane. The dircction of <weeping in-
duces an order, called a sweep-order, on the vertices of Py and P, An edge (v,w)
of P, is defined to star: at vertex v if v precedes w in sweep-order, and a face of
P, is defined to start at v if v precedes every other vertex of the face in sweep-
order. Faces and edges of P, that end at v are similarly defined At cach veriex
v of P, in sweep-order, the following procedurc is used to find some of the inter-
sections of edges of P, with faces of P,.;:

(1) First C is updated. Added to C, arc the edges and faces of P, that «tart at v,
and deleted from C, are the edges and faces of P, thatend at v.
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(2) Then the edges of C, that start at v are intersected with the faces in C,,, and
the intersection points, if any, are recorded.

(3) Finally, for cach face fof C, that starts at v, if no intersections of edges of f
with the faces of C, , were found by Step (2), the interior of f could be picrced
by the faces of '} .. To determine whether this is so, an arbitrary edge of
C, ,is intersected with £, and the intersection point, if any, is recorded.

+

The authors show that the above procedure requires total time O(1 log V) to find
a sufficient number of intersection points so that a boundary representation of
Py P, Py Py, o1 Py— Py, can be subsequently constructed in time G(V). The
authors conclude that although the details of their intersection algorithm are
complicated, the algorithm is conceptually simple, and they also suggest that the
space-sweep naradigm does not have the same power in R* as plane-sweeps have

in R-.

The algorithms described above arc not so relevant to the problem of solid
regularized-intersection because they exploit the properties of convea polvhedra.
The problems of developing correct and efficient algorithms for regularized set
operations of solids are summarized by Mantyla [1986]:

*. a set operations algonthm must be able to treat all possible kinds of geometric inter-
sections that may appear between faces, edges, and vertices of the two objects  The proper
treatment of all cases easily leads to a ven hainy case analysis Second, the veny case analysis
must be based on vanous tests for overlap, coplananty, and mtersection, which are dafficult

to perform robusth in the presence of numencal errors ™

Mantyla deseribes the details (corresponding to the “hairy case analysis™ above)
of incidence tests used in union, intersection. and difference algerithms for mani-
Jold solids represented using  the Winged-Edge representation.  Laidlaw,
Trumbore, and Hughes [1986] present a simple. albeit asymptotically slow algo-
rithm for the regularized intersection of two sohds with connected boundary.
Laidlaw. Trumbore, and Hughes claim that a proof of correctness of their algo-
rithm is possible. although they do not offer one. Paoluzzi. Ramella, and
Santarelli [19867] present an algorithm that computes the regularized union of
two solids with connected boundary, but their discussions of special cases and
asymptotic complexity  are sketchy (these two algorithms are discussed in
“Asymptotic Complenity of the Intersection Algorithm™ on page 50). Segal and
Scquin [1988] present an algorithm that intersects manifold solids. but they do
not present an analysis of asymptotic complexity nor do they discuss special cases

in any detail.
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The presentation of the new intersection algorithm of this chapter improves
upon the work cited above by giving an asymptotic analysis of complexity which
encompasses all of the special cases. (Of the algorithms cited above, the only one
that discusses special cases in detail is that of Mantvla’s.)) The new intersection
algorithm improves on Mantyla’s algorithm by generalizing the domain to solids.,

4.1 Overview of the Intersection Algorithm

Star- Edge representations of 4 and B are used by the new intersection algorithm
to construct a Star-Edge representation of 4 {}"B. The boundary of a sohd i« not
necessarily connected. and so each shell, or connected component of the solid
boundary, will be represented by lists of the vertices, edges. and faces of the
Star-Edge representation of that shell.” Figure 32 iy a paradigm for intersecting
objects that have several boundarv components and are represented by their
boundaries.

Given regular but not necessarily connected objects 4 and B represented by their bound-
aries. a boundary representation of 4 'B1s produced as follows

(1) Intersect the shells of 4 with the shells of B, and assemble picces of the intersecting shells
to obtam some of the shells of A (VB

(2) Obtain the remaming shells of A4 (VB by taking those shells of 4 (resp  B) contained en-
tirely 1n the intenor of B (resp A)

Step (1) 1s comphcated by extra processing to ensure that the result of the intersection 1s a
regular set

Figure 32. Standard computation of 4 (1'B

Before showing how Figure 32 might lcad to an algorithm that intersects
solids 4 and B, we examine a simpler case. In two dimensions, 4 and B might
be polygons with polygonal holes, ard Figure 32 would say: (1) intersect the
boundary palygons of 4 with the boundary polygons of B, vielding a collection
of intersection points that are used to trace out some of the boundary polygons
of A()'B: and (2) obtain the remaining boundary polygons of 4 [)'B by taking

15 We will use some shorthand for brevity For example, when we refer 10 a “face of a solid” we
mean to refer to a “face of the Star-Edge representation of a shell of a sohd
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every boundary polygon of 4 that is in the interior of B and every boundary
polygon of B thatis in the interior of 4. Regularization of the intersection might
be necessary if a vertex of a boundary polygon of A4 (resp. B) is incident with an
cdge of a boundary polygon of B (resp. A). A boundary representation of 4 (|'B
contains four different types of cdges. These are edges of 4 () B contained in
cdges of A4 (respr B) that intersect polygons of B (resp. 4). and edges of A4 (resp.
B) contained within the nterior of B (resp. A). (We could also distinguish edges
of A B contained both 1 edges of 4 and edges of B.)

Algorithms that use the paradigm of Figure 32 on page 45 to intersect solids
A and B first intersect faces of A with faces of B to obtain line segments and
points that are used to trace the boundaries of the faces of some of the shells of
A ()'B; then the remamning shells of A B arc obtained by taking the shells of
A (B) that are contained in the interior of B (4). Just as in the two-dimensional
example above, a boundary representation of 4 ("B contains four different types
of faces. These four types correspond to faces of 4 [)'B that are:

(i) contained in faces of 4 that intersect the surface or B:
(ii) contained in faces of B that intersect the surface of 4;
(111) Taces of A that are contained in the interior of B: and
(iv) faces of B that are contained in the interior of A.

We distinguish faces of 4 (B that are contained in both faces of 4 and B to be
faces of Type (i).

We now show how the four tvpes of faces of 4 [)'B as defined above are
constructed by the new intersection algorithm of this thesis. The algorithm has
siv steps, which are performed in turn. Step (1) of the new algorithm intersects
B with the oriented plane P of cach face fof 4. vielding a partition (Gp) of P into
two-dimensional sets that are in the intenor of B, in faces of B oriented identically
to P, or in the exteror of B as shown in Figuie 33(a). Faces of B oriented
oppositely to P are considered to be n the exterior of B. Cencurrently, Gp is
augmented with edges and vertices of B that lic on P. Step (2) of the algorithm
finds all faces of Type (1) and some faces of Types (iil). Every face fof 4 is
intersected with the corresponding Gp. If f contains points that are on the
boundary of B, the Type (i) faces contained in f are found (see Figure 33[b]):
otherwise, it f'is contained 1n the interior of B. then fis a Type (iii) face itself.
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Step (3) of the algorithm finds additional Type (iii) faces.' If a face ffrom Step
(2) contains Type (i) faces or 1s a Type (iii) face itself. then f might have
neighbouring faces that are in the interior of B. These neighbouring faces are
Type (iii) faces, which can m turn neighbour additional Type (i) faces. Begn-
ning with f, a breadth-first search examines the edges and vertices of faces of 4
to find Type (iii) faces that were not found by Step (1) and have not yet been
found by Step (2) (not shown in Figure 33).

ST mmm e » . .
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[ s Y (, o .
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{a) The intersection of solid (B) with the cube (4) is a
cuboid. Plane P of the front face f of A is coincident with
face g of B, and the cross-section Gp defined by B N P
contains g and atwo-dimensional set in the interior of B.

eaete

———

(b) The intersection of fwith the points of G, that are inB
oronB isthe square area h thatis aface of AN"B.

Figure 33. Steps (1) and (2) of the new intersection alzonthm

Step (4) of the intersection algorithm finds all Type (ii) faces, and Step (5)
finds some Type (iv) faces. The Type (ii) and Type (iv) faces could be con-
structed by interchanging the roles of solids A and B and repeating the first three
steps of the algorithm. but there is 2 more direct way to generate these faces. By
definition, every face g of B that contains Type (ii) faces must intersect the
boundary of A4, and so Step (2) of the intersection algorithm must have found the
points and line segments of the boundary of A that are contained in g. We can

16 Step (3) 1s necessany if sohd B1s unbounded, e g, if B s the complement of a cube
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use these points and line-segments, which are edges and vertices of 4 {]°B, to find
the Type (ii) faces contained in g (Figure 34 on page 48). Note that two-
dimensional intersections of g with the boundary of 4 are contained in Type (i)
faces, and so we only censider Type (ii) faces that intersect the interior of 4. Step
(5) of the interscction algorithm obtains some Type (1v) faces by scarching for
faces of B that lic entirely in the interior of A, beginning with the neighbouring
faces of g. All faces thus obtained are Type (iv) faces (not shown in Figure 34).

Finally, Step (6) of the intersection algorithm obtains the remaining Type
(iii) and Type (iv) faces. The remaining Type (i1i) faces belong to shells of A4 that
did not contribute any boundary points to the faces of 4 ("B found in Step (2).
The remaining Type (iv) faces belong o shells of B that did not contribute any
boundary points to the faces of 4 ()'B found in Step (4) (not shown in
Figure 34).

In (a), the plane of the top face f” of A intersects the
rightmost face g’ of B in line segment e. Because e is an
edge of AN*B, e is used in (b) to construct the face h” of
AN*Bcontained in g’

Figure 34, Step (4) of the new intersection algorithm

The new irtersection algorithm is given as Algorithm 5 on page 49. The re-
mainder of this chapter fills in the details of the algorithm. For example, we will
see how the intersection is regularized by discarding certain intersections of the
surfaces of 4 and B.
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A Star-Edge representation of 4 ("B 1s constructed from Star-1'dge representations of A4 and
.- B as follows

(1) For each face fof 4, mtersect B with the onented plane P of /. yiekding Gr, a partition
of P nto two-dimensional sets that are m the intenor of B (in8), in faces of B onented
identically to P (onB), and 1n the eatenor of B Taces of B onented opposttely to P are
considered 1o be mn the extenor of B Also, Gy 1s augmented with edges and vertices ol
B that he on P (see Figure 33[a])

(2) For each face fof A, intersect /with subsets of Gy that are inB and onB, viclding vertices,
edges, and faces of 4 ("B contamed 1n f (sce Figure 33[b))

(3) Find the faces of 4 that are in the ntenor of 8 and belong to shells of 4 that contain the
faces of 4 ("B fourd n Step (2) The faces of 4 obtaned by this search are also faces of
A MN'B {not shown in Figure 33)

(4) For each face g of B. find the edges and vertices of 4 "B constructed by Step (2) that are
also contamned 1n g, and use these edges and vertices to construct faces of 4 V'8 contaned
in g that intersect the intenor of 4 (see Figure 34)

(5) Find the faces of B that are i the mtenior of 4 and belong to shells of B that contamn the
faces of 4 ("2 found in Step (4) The faces of B obtained by this search are also faces of
A (V"B (not shown in Figure 34)

(6) Fmally, the remaiming shells of 4 ()'B arc obtained from the set 4, of shelis of 4 that do
not contribute any boundary pomnts to the faces of 4 ("B found 1n Step (2). and the set
B, of shells of B that do not contnbute any boundary points to the faces of 4 N8B found
in Step (4). The shells of A4, (B,) that are contained in the intenor of B (A) are taken to
be shells of 4 ("B

In each of Steps (1)-(2) and (4). entra processmg 1s done to regulanze the imersection of 4 and
B

Algorithm 5. The new regularized intersection algorithm

In the description of the algorithm to follow, we assumec that computations
can be performed exactly and that numerical quantities can be tested for
equality.” Then in “Chapter 5. Incidence Tests” a finite-precision implementation

1" It is possible 1o implement algonthms like the new regulanized intersection algonthm to use ra-
tional anthmetic [O’Connor and Rosssgnac, 1987], although this has not been done  Given an
algonithm that sorts vectors radially around a point on a plane (see Appendix Cy, the intersection
algorithm could be mmplemented to use rational anthmetic
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of the incidence tests used by the algorithm is discussed. Before describing the
new intersection algorithm, the main result of this chapter is stated.

4.2  Asymptotic Complexity of the Intersection Algorithm

Theorem 6. Griven Star-1 .dge representations of the shells of 4 and B with D, and Dy directed edges
respectively, a Star-F dge represertation of 4 (V' 8, which has total size O(D,D;). can be constructed
i nme O(D,Dylog[DaDy]) »

The numbers of faces, edges, directed edges, and vertices in a Star-Edge
representation of an object S are denoted by Fs. Es, Ds. and s, respectively; and
the s1ize |S| of Sis defined as Fy+ D+ I's. For example. if S =fis a face then
D, is the number of ditected edges of f, and {fl=1 + D,+ 1. The simple ex-
pressions for the asy mptouc compleaities in Theerem 6 are obtained by simplify-
ing using the relationships among Fy, E4 Dy, . and F, proved in “Some
Combmatorial Properties of the Star-Edge Representation™ on page 22. The re-
mainder of this chapter prtones Theorem 6 and cstablishes the correctness of the
intersection algonithm.

Other rescarchers claim that their algorithms implement regularized set op-
erations in time that 1s quadratic in the size of their input boundary represent-
ations, but when carefully analyzed. their algorithms are significantly slower.
The algorithms of Laidlaw, Trumbore, and Hughes [1986] and Paoluzzi.
Ramella, and Santarelli [1986] intersect solids 4 and B by intersecting each face
of 4 with cach face of B. Pairs of intersecting faces are subdivided into smaller
faces that intersect only at edges and vertices.  The representation of Laidlaw,
Trumbore. and Hughes requires faces with conyvex polygonal boundaries and so
the subdivision produces convexs polygonal faces. Similarly, Paoluzzi. Ramella.
and Santarelll subdivide faces into triangular faces (sec Figure 35 on page 51).
In either case the subdivision is described by a simple case-analysis and 50 one
would expect the subdivision to be efficient for these two representations. How-
ever, cach subdivision increases the number of faces of .4 and B so that the sub-
division requires ume O(D " Dg?). Thus, the algorithm of Laidiaw, Trumbore, and
Hughes and the algorithm of Paoluzzi, Ramella, and Santarelli require time
O(D°Dy%) to compute boundary representations of 4 ('8 and 4 |J'B, respec-
tivelv. from boundary representations of 4 and B. Thus these two algorithms are
in fact asymptotically slower than the new intersection algorithm of this thesis.
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Two intersecting triangles are
subdivided by the intersection
line and by additional segments
that partition the subdivisions
into triangles.

Figure 35. Triangulating the subdivision of intersecting face,

4.3 Computing Cross-Sections of Solid B

Given solids 4 and B, Step (1) of Algorithm 5 on page 49 intersects B with the
oriented plane P of each face fof 4. The result of each intersection, called Gp. is
a partition of P into two-dimensional sets that are inside, outside, or on the sur-
face of B. denoted inB. out B. and onB. respectively (see Figure 36 on page 52).
Because we are computing a regularized intersection of 4 with B, the interiors of
faces of B coincident with P but whose planes are oriented oppositely to P are
out B. and faces of B whose planes are identical to P arc onB. We also augment
Gp with edges and vertices of B that lic on P.

Just as directed edges and vertices represent the boundary of Star-Edge
faces. directed edges and vertices arc used to represent the boundaries of the
connected two-dimensional inB and onB sets of Gp (recall the definitions of
Star-Edge and B-Repn, faces from “Chapter 2. Representing Sohds™).  As de-
scribed in Algorithm 6 on page 52, certain edges and vertices of B that coincide
with P are edges and vertices of Gp; and other edges and vertices of Gp result from
transverse intersections of P with faces and edges, rospecinely, of B (sce also
Figure 36 on page 52). We orient the edges of Gpso that on P, the area to the
right of the directed edge is either inB or onB when traversing the directed edge
from its initial to its terminal vertex. If the mterior of B is not bounded, e.g., if
B is the complement of a cube, then one of the inB point sets of Gp is not
bounded, but we can still represent the (bounded) boundary of this unbounded
point set using directed edges and vertces.
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T g o / P
in8 o
A7
Cross section of B with oriented plane P partitions P inta
line segments and points that are on the boundary of B,
and two-dimensional sets that are in the interior of B, on
the boundaryof B, and in the exterior of B.

Figure 36. ‘The cross-section G

I or cach face g of B. find the two-dimensional sets, line-segments. and points that are the
wtersection of g with onented plane P as follows

(1) Tind the solated vertices of g that e in P For each edge e of g, compute the intersection
of ¢ with P There are four cases e does not ntersect P, the intenor of e intersects P at
a pomt, e bes in P (the ntersection points are tahen 10 be the endpoints of e). or an
endpoint of e intersects P

(2) 1t the onented plane of g 15 identical to P, then the intenor of g 15 onB If the plane of g
s wdentical to P, but oppositels onented. then the intenor of g 15 outB

(3) Otherwise, if ¢ intersects £ transversely, then the intersection points computed m Step (1)
are colhnear  Compute a tangent ¢ along this hne as M, x My, where A and A, are the
normals to g and P, respectively. sont the intersection pornts along (. and remove all du-

pheates from the v

(4) At cach intersection pomnt a, determune whether the ine-segment that connects a with the
neat pomt A 1n order along the mtersection hine 1s 1n the interior of face g This Line-
segment, cddled a eross-fuce edge. 1s created 1if 1 pomnts mto the intenor of g at a

(I a1 1n the mienor of an edge e of g and e has a directed edge on g whose face-
direction vector has a positive dot-product with ¢, then create a cross-face edge be-
tween u and b (see Figure 37{a])

() If a1s at a vertex v of g and erther v 1s 1solated 1n g or ¢ splits an area-enclosing
directed-edge pair of v on g, then create a cross-face edge between a and b (see
Figure 37[b])

Algorithm 6. Intersecting the faces of solid B with oriented plane P
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(i) o . (a) The Face-direction
(ii)’A-“\:. vector at (i) has a positive
it . ’ ‘ dot-product with ¢,, but the

face-direction vector at (ii)
has not.

(b) Vector ¢, splits an area
_ - ‘ enclosing pair of directed
< ° K2 edges at (tit), but not at (iv).

Figure 37. Intersccting faces of solid B with plane P

For each facc g of B, Steps (1) and (2) of Algorithm 6 on page 52 examinc every
directed edge and vertex of g, and Step (3) might have to sort O(E, + 17,) points.,
Step (4 [ii]) requires that we insert ¢ into a radially-ordered list of vectors, corre-
sponding to the directed edges of g adjacent to a vertex of g. Thus Step (4) re-
quires time O(D,). In total, for all faces of B, Algorithm 6 on page 52 requires
time

Faces(B)

Ol D D+ [E+VloglE,+ 1,1 | = O(Dylog Dy)
8

to intersect the faces of B with P. If the number of intersections of P with cach
face of B is bounded by a constant. then the O(Dy log Dg) time bound is reduced
to O(Dp).

The neit stage in the construction of Gpis an orientation of its edges, so that
when traversing a directed edge of Gp, the region of B to the right (on oriented
plane P) is ecither inB or onB. Then the directed edges of Gp are hinked to form
clockwise cycles (the algorithm was described in “Chapter 2. Representing
Solids™). A cross-face edge of Gp gets a single directed edge, oriented by the
vector ¢ of Algorithm 6. An edge of G, induced by edge e of B gets zero, one or
two directed edges using the following idea: If on onc side of e, oriented plane P
is either inB or onB. a directed edge is created (sec Algorithm 7 on page 54).
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The edges of G, get zero, one, or two directed edges as follows:

(1) A crossface edge of Gp gets a <ingle directed edge, onented by the vector ¢ of
Algonthm 6 on page 32 (sce Figure 38[a)])

(2)  An cdge of G, induced by edge e of B gets zero, one, or two directed edges  First, con-
struct face direction vectors fd, and fd, for the left and and nght sides, respectively of e
on P (recall Figure 16 on page 20) Then see which of fd and fd, either point into faces
of B that are onB cr spht volume-enclosing face-pairs of e (point into inB sets) There are

three cases:

(1) f neither fd, nor fd, points into a subset of P that 1s inB (or onB) then G, gets only
the vertices of e, and the edge of Gp 1s removed (see Figure 38[b]),

(n) 1f both fd and fd, point nto subsets of P that are inB (cr onB) ther create two
oppostely-onented directed edges (see Figure 38[c]), finalh,

(xn) if only one of fd and fd, points into a subset of P that 1s inB (or onB) then create a
single directed edge on Gy, onented with the inB (or onB) subset of P to the nght (see
Pigure 38[d])

Algorithm 7. Orienting edges of Gp

In order to get a bound on the running time of Algorithm 7 we observe that
plane 2 might intersect cach edge or vertex of B. and so the number of vertices
of Gp is bounded by Ep + I’y < 2E,. Furthermore, Gp is a planar graph. and so
£, 231, and E,, < 6E,. Thus Algorithm 7 orients the cross-face edges of Gp
in time O(£,,,) = Ot£p). In order to orient an edge of Gp induced by edge e of
B, we must determine *f a face-direction vector fd splits a volume-cnclosing face-
pair of e. We do this by inserting fd into a radially-ordered list of face-direction
vectors that correspond to the directed edges associated with e. Used to orient all
edges  of  Gp. Algorithm 7  has an  asymptotic running time of
O(E.,, + Dy) = O(D;). because every directed edge of B might have to be exam-
ined in order to orient the edges of Gp. If the number of faces defining each edge
of B i bounded by a constant, Algorithm 7 will orient the edges of Gp in time
O(D,,,) = O(En).

As Algorithm 7 creates the directed edges of Gp, we construct lists of di-
rec.ed edges of Gp incident to each vertex of Gp. We also construct lists of di-
rected edges associated with each edge of Gp. The time needed to construct these
lists is O(Dy,;) = O(Ep).
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A cross-face edge is
) oriented with the
——> inB [} 0utB “inp ige” of the edge
to the right (on P).

(@) | B

On one side of e, P is

0 outB, and on the other

‘ “ OutB | outB side 4 face of B is

(b) coincident to P but
oriented opposite.

On one side of ¢, P is

f.:_:> inB lTo”B inB, and on the side

a face of B coincides
/ with P; two directed
edges are created.

(c)

O
)

This case looks very

much like (a) because

—>> inB outB P is in the interior of

(d) B on only one side of
-// e.

B

>

P The page corresponds tooriented plane P, and
v, the “dotted” parts of the solid B are below P.

Figure 38. Orienting edges of Gp

It is possible that Gp has isolated vertices, which are defined to be vertices
of Gp that are not incident to any edges of Gp. We need to determine which iso-
lated vertices of Gr are contained in onB, inB, and outB subsets of P. Because
each isolated vertex of Gpisinduced by a vertex of B, we can distinguish the three
cases by examining edges and faces of B incident to the inducing vertex of B. A
vertex isolated in an onB subsct of P is casy to distinguish but the second two
cases are harder (sce Algorithm 8 on page 56).
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Given a vertex v of B that induces an isolated vertex of Gp, we determine whether the isolated
vertex of G 1 contamed 1n an inB, onB, or outB subsct of P (see also Figure 39)

(1) [ visisolated in a face of # that 1s onB, then vis located m an enB subset of P.

(2) tind the edge e of Binaident to v that forms the shallowest angle with P If e hiesin P then
v 15 contained 1n an outh subset of P (by Algonthm 7 on page 54)

(3) Construct a plane ¢ that 15 orthogonal to P and contains e

(4) Construct the face direction vecter f@ on @ from e, pointing tow ards P

{S) Vertex v is contained 1n an inf subset of P if fd splits a volume-enclosing pair of faces

adjacent to e Otherwise v 15 contained 1 an ouiB subset of P

Algonithm 8. lwolated vertices of Gy are in inB, onB, or outB subsets of

Lemma 7. Algonthm 8 determunes whether an isolated vertex of P induced by vertex v of B isin

4n inf, onf3. or out? subsct of P

Proof. 1he neghbourhoods found by Steps (1) and (2) are straghtforward  Otherwise, plane Q is
uniquely defined (1o sign) by e and P, because e cannot be orthogonal to P Tnally, fd cannot lie
on a face adjacent to e, and hence fd clacsifies the neighbourhood of von P =

The isolated vertex is in an outB subset of P because fd
does not split a volume-enclosing face-pair adjacent to e.

Figure 39.  lsolated vertices of Gp are in inB. onB, or outB subsets of P

.

Step (2) of Algorithm 8 examines each directed edge adjacent to the isolated
verten v and Step (5) examines every directed edge of one edge e adjacent to v.

56
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Because the number D, of directed edges of e is bounded by the number of di-
rected edges D, adjacent to v, Algorithm 8 requires time O(D,) to determine
whether v is inB, onB, or outB. The total number of vertices of 8 that might be
1solated on P is bounded by the number D of vertices of B, and because ecach
directed edge of B is adjacent to two vertices, the total time required by Algo-
rithm 8 to examine them is O(Djp).

The last stage in the construction of Gp is the organization of its directed
edges into bounding cycles. Recall from “Chapter 2. Representing Solids™ that
directed-edge cycles of a face are induced by a radial ordering of directed edges
around incident vertices on the face plane. Thus, the directed edges of Gp must
be radially ordered around the vertices on P (see Appendix C). The ume required
to radially order these directed edges is

Vertices(Gp

)
:
ol > Elogk | = O(E,log E,).

Recall that £;, < 6. and so the above expression is O(£Ex log £3).

The construction of Gp is repeated once for each face of solid A4, and so it
requires time

to construct all cross-sections of B. If every vertex of every Gp has constant degree
and the planes of the faces of 4 cach intersect a constant number of edge~ and
vertices of each face of B. the constructions require total time O(F,Dy).

4.4 [Intersecting Faces of Solid A with Cross-Sections of
yolid B

After computing the cross-sections of solid B using the oriented planes of faces
of solid 4, we intersect each face f of 4 with subscts of the corresponding cross-
section. More precisely, given a face fof 4 with oriented plane P, we intersect f
with the subsets of G, that are inB and onB (recall that G, is the cross-section of
B with P). The 1esults of this intersection are connected regular sets on P, each
of which is a face of 4 []"B. First we will intersect the edges and vertices of f with
the edges and vertices of Gp ana then we will trace out the boundaries of the
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connected regular scts that are in f, and in inB and onB subsets of P (see
Figure 33[bJand Figure 36 on page 52).

(1) Interseat the directed edges and vertices of f with the directed edges and vertices of Ge.

(2} At cach intersection pomt, determine which wcident edge segments bound faces of
AN'B

(3) ‘Trace out bounding directed-edge cycles of 4 ()'B by traversing directed edges of G and
J between intersection points

(4) Add directed edge cycles and isolated vertices of f (respectively Gp) contained in f
(resp inB and on# subsets of Gp)

Algorithm 9. Regularized intersection of f and Gp

In order to guarantee that the faces of 4 [)'B constructed by Algorithm 9 are
regular sets, some of the intersection points found in Step (1) of Algorithm 9 are
discarded. Before seeing how to do this, we will describe how to intersect the di-
rected edges and vertices of fwith those of Gp in more detail (see Algorithm 10).

(nven 4 face f of sohid 4 ana the corresponding cross-section G;. the edges and vertices of f
are mtersected with the edges and vertices of G, as follows:

(1) For cach isolated vertex v of /] determine if any vertices or edges of Gr comncide with v
(2) Torcach edge e of [ intersect e with the edges and vertices of G,

(3) Tor each edpe e of fsort, along e, the intersections of e with the edges and vertices of
(;

() Tor cach edge ¢ of Gy sort, along ¢, the intersections of ¢’ with the edges and vertices
of /

Algorithm 10, Intersecting the edges and vertices of f and Gp

{ in Step (2) of Algorithm 10, we discover that an edge of G overlaps an edge
of /. then the intersection of the vertices of one edge with the other edge (and vice
versa) constitute the intersection points. All intersecting edges are subdivided by
their intersection points. For example, two edges ntersecting in interior points
become tour edge scgments, and directed-edge segments inherit orientations.
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The time required by Algorithm 10 is bounded by the time required to
intersect the edges and vertices of fand G, and then sort those mtersection points
along the intersecting edges. If there arc A intersecuon points and » lines, the al-
gorithm of Chazelle and Edelsbrunner [1988] can implement Algonthm 10 in
time Ofn log n + A). However, a simpler algorithm that just intersects all possible
pairs of edges and yvertices 1s implemented: Steps (1-2) of Algorithm 10 on page
58 firsi obtain the edges and vertices of fand Gp fiom their duected edge cyeles
and isolated vertices. Then these edges and vertices are mtersected.  Because
there are at most £,+ 7 and Eg, + 1, edges and vertices n f and G, respec-
tively, Steps (1-2) require time

O(Dy + Dg, + [E, + 1 ,,JLE + 1))

The running ume of Step (3) is determined by the number of iniersection points
contained 12 cach edge of f. This is bounded by £, + I%,, which is in tuin
bounded by number Ep of edges of B. Thus Step (3} requires time
O(EEplog Ep). Similarly. Step (4) requires time O(E[E + V' JloglE+ 17]) to
sort the intersection points along the edges of Gp.

In total., to intersect edges and \vertices of every face of 4 with the edges and
vertices of the corresponding Gp, Steps (1-2) of Algorithm 10 require ume

Faces(4)
Tym= O| D D+ Dy, + [Eq, + V6 IE+ 1))
f

/ Facer(A)
= O D+ FEp+ Y EfE +1]
= ( aTFabpt  J Lplby+ ¥yl
. /
= O(DA+FAEB+DAEB)

In total, Step (3) sorts the intersection points found in Steps (1-2) along the edges
of every face of 4 in time

T = O(E\Eglog Eg).

and Step (4) sorts the points along every edge of every G, in total time
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’thm

Faces{A)
Tuy= Of Es ). [E+V]loglE+ V]
f

\

Faces(A)
= o EglogD, ). E -~V
7
— O(EgD,log D).

Summarizing. the time required by Algorithm 10 to intersect the edges and
vertices of A with those of the cross-sections of B, and then sort the intersection
points along the intersecting edges is bounded by

Toyayt Tiay+ Tay = O(E4Lplog Ep+ EgDylog D y)
= O(DAEB lOg[DAEB]).

The asymmetry in the above expression reflects the fact that the Gp's are com-
puted independently. If Steps (2) and (4) sort only a constant number of inter-
section pomts along every edge, then Algorithm 10 requires time O(D,4Ep).

Once the edges and vertices of a face fof A4 have been intersected with those
of the corresponding Gp to obtain intersection points. these points are analyvzed.
At cach intersection point we determine which edge segments of Gp (resp.f) are
contained in the interior of f (resp. inB or onB subsets of Gp): we use this con-
tainment information to discard certain intersection points and hence regularize
the imersection.

As a first step in the intersection-point analysis. directed edge-segments inci-
dent to cach intersection point are radially merged. This merge is effected by
radially merging vectors paraliel to the directed edge-segments and oriented away
from the intersection point. For example, if vertex v of Gp is contained by an edge
e of 4 that has two directed edges on f. then the vectors parallel to each
directed-edge of Gp and oriented away from v are radialiy merged wiih four vec-
tors parallel to the intersected ¢ uge of f (two oppositely oriented vectors for each
Jdirected edge of e on f). A casc analysis describing this merge process is given in
Algonithm 11 on page 61.
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The duected edge-segments of fand Gr incident 1o intersection pownt g are merged by radaliy
merging two sets of vectors, one set parallel io the edges of /inaident 1o g and the other set
parallel to the edges of G; inaident to a

If a1s 1 the intenor of an edge e of / { resp Gp), then the set of vectors pardlel to e 18
obtained by taking, for each directed edge of e on f( resp Gp). two opposstel -onented vectors
parallel to e

If a comncides with a vertea v+ of f( resp Gp). then the set of vectors parallel to the edpes
of f( resp Gp), 15 obtained by taking. for each directed edge ¢ of /" (resp Gy) adiacent to v, a
vector parallel to ¢ and onented away from »

The possible cases are as follows
(1) a1s1n the intenor of an edge of fand Gy (hgure 40[a]).
(1) @15 a vertex of Gy and 15 1 the intenor of an edge of / (1gure 40[b]),
() a1 avertea of fand 1s 1n the intenor of an edge of Gy (Figure 40[b]),
(1) ais a vertex of both fand G, (Figure 40[c]). and finally,

(v) 1n cases (u-1v), a can also be an 1solated vertex of cither f or G, and then no merge s
necessany (not shown wn 1igure 40)

Algorithm 1. [ocal analysis atintersection points

— t L 9
== == 42

r |* ‘-- _.h“ ¥ +HH

Il 3 [ i ol B

Directed edge-segments are radially sorted around an
edgel/edge intersection (a), an edge/vertex intersection (b),
and a vertex/vertex intersection (¢), and intersecting areas
in the neighbourhood of the intersections are marked.

Figure 40. Local analysis at intersection points

The radially merged list of direcied edge-segments incident to an intersection
point produced by Algorithm 11 is examined twice. In the first pass, all directed
edge-segments of f that lic within inB or onB subscts of Gp are marked; in the
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second pass, all directed edge-scgments of Gp that lie within f are marked. All
unmarked directed edge-segments are then discarded. Coincident identically-
oriented directed edges are treated as directed edges of both fand Gp. Finally,
remaining radiallv-adjacent directed edges which enclose area are paired and
bound the same face of 4 ()'B.

Algorithm 1i has a running time that is linear in the number of dirccted
cdge-segments incident to the intersection point. Each directed edge-segment is
incident to at most two intersection points and so is merged by Algorithm 11 at
most twice n the intersection-point analysis of /() Gp. Thus Algorithm 11 re-
qurres time O(D; + Do, + Vi + Vg, + DiD¢,) to analize all of the intersection
points of /[ Gp. For ali faces of A Algorithm 11 requires total time

FacesiA)
of > D+ Do+ 1 +1,+ DD, | = OD,Ep).
/

"\

After the intersection-point analvsis is complete. the list of radially-merged
directed-edge segments incident to the point is saved <o that bounding directed-
edge cycles of faces of 4 (7} B on the plane P of fcan be traced oul by traversing
directed edges of £ and Gp between intersection points. This traversal requires
time that s hnear i the number of directed-edge segments of () Gp, which (as
aboye) s

O(Dy+ Dg;, + ¥+ Ve, + DDg ).
and for all faces of 4 and corresponding Gp the traversai requires O(D4Fj).

After directed-cdge cveles and isolated yertices that are induced by inter-
secuons of edges and vertices of f and G» have been constructed. there may re-
main cveies or isolated veruces of Gp contained 1n £ or cvcles or 1solated vertices
of 1 contained m inB o1 onB subsets Gp. For example, conaider the cycles of Fig-
ure 41 on page 93. Here the face £1s bounded by € and C.. and Gp contains two
in3 (01 onB) subscts, one enclosed by C,., the other by Cs, Ca, and Gs. All cycles
are oriented as shown. € and Gy intersect and yield the merged cycle (1.2.3.4).
C; and C, both arc within # and so must bound some area of intersection. Cg is
not contamned within f and will be discarded. C,. a nonintersecting cycle of f, is
not within any enclosed subset of Gp and is also discarded. As result, the inter-
section area is bounded by the cyeles (1,2.3.4). Ci, and C:. This cycle contain-
ment s tested by casting a ray across P (see Algorithm 12 on page 63).

Intersecting Solds 62




Figure 41.  Intersecting f and Gp

To test for the containment of a cxcle {or 1solated vertea) C by the arca bounded by group €
of cycles and wsolated vertices, perform the following steps

(1) Pick a pont w on C and a point v on one of the escles of €

(2) Intersect the hne containing u and v with the cycles of €, partittoming the hine into seg-
ments that are mside or outside the arca bounded by the eyceles of € (see Figure 42)

(3) Cycle C s contamed by the area bounded by C af the segment contaming w18 1n the area
bounded by C  Thiv 35 determuned by a local anabos hhe Cases (1) or (1) of
Algonthm 6 on page 52

Algorithm 12, Cycle Containment 1est

Cycle C is not contained in the area bounded by C, and C,
because u is not contained in a line segment in the area.

Figure 42. Cycle Containment Test
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The running time of Algorithm 12 is determined by the time neceded to execute
Step (2). which is linear in the number of edges and vertices in the group C of
directed edge cycles and isolated vertices. For a face fof 4. this number is
D, + V,, and for the corresponding Gp this number is Dg, + ', which 18 O(E3).
Algorithm 12 tests for containment of a cvcle or isolated vertex of / inside inB
or onAB subscts of Gp in time O(Djg), and tests for containment of a cycle or iso-
lated vertex of Gp in the interior of f in time O(D/+ !7). Potentally,
Algorithm 12 could be used to test the containment of every cycle and isolated
vertea of every face of A (and its corresponding Gp). There are potentially O(E))
directed edge cycles and O(17) 1solated vertices of fand O(£) directed edge cycles
and isolated vertices of Gp, and so the total time required by Algorithm 12 to test
them for containment 1s

Facest Al

o
0 Z EJE+11] = OD,Ep)
/

Finally. 1t 1s possible that a face of solid 4 is in 4 {}"B even though the cor-
iesponding cross-section Gp contains no edges or vertices. Assume that f1s such
a face, and further that the shell of 4 1o which £ belongs intersects the surface of
B. Face / can be added 1o 4 [)"B because it is reachable by vertex and edge ad-
jacent faces from another face f of 4 that intersects the surfacc of B (see
Figure 42). Thus faces of 4 that are in the interior of B are transitively added
10 4 )8 by uaversing the boundary of 4. This process requires time O(].4]).

/B is complement of cuboid

Face f is the only face of A that induces a cross-sectional
graph. The other faces of AN'B in the interior of A are

those transitively adjacent toedges of f.

A

Figure 43. Adding faces of A in the interior of B

Summarizing this section, Steps (2) and (3) of Aigorithm 5 on page 49
(intersecting faces of A with corresponding cross-sections of B and constructing
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faces of 4 ("B on the surface of A4) require time O(D,Ep log[ D4E3]). This bound
is reduced to O(D4Ep) if no edges of A intersect more than a constant number of
faces of B (the log terms arise from sorting intersecting points).

4.5 Intersecting Faces of Solid B with Solid A

When the processing of the previous section is complete, the boundaries of faces
of A ()'B on the surface of 4 and in the interior of B that result from intersecting
shells of 4 and B have been found. The next steps in the intersection algorithm
(Steps [4-5] of Algorithm 5 on page 49) construct bounding directed edge cycles
and isolated vertices of faces of 4 ()°B that are in the interior of 4 and on the
surface of B. The simplest way to obtain these faces is to run Steps (1-3) of Al-
gorithm 5 with the roles of 4 and B interchanged, but a more direct approach is
used.

We examinc the edges and vertices of 4 {}'B to find those which lie on the
surface of B. transfer those edges and vertices to faces of B extending inside A,
and then usc the transferred edges and vertices to ntersect the faces of B with the
interior of 4 (see also Figure 34 on page 48). Then the boundaries of faces of
A ()'B on the surface of B and in the interior of A4 are traced out. Arcas that he
on the surfaces of both 4 and B can be ignored, as they were classified as onB
and have alrcady been accounted for,

We first transfer edges of A4 {)'B to faces of B. orienting the edges on the
faces of B appropriately (sec Algorithm 13 on page 66).
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(hven onented plane P of a face fof solid 4, and gven cross-section Gy of B with P, edges
of A NP are transferred to faces of B 1n the following manner

(1)

(1)

(111)

(1v)

(v)

(1)

A scgment of an edge of [ located m an mB area of Gp 1s mot transferred (see
fagure 4d[a]).

A sepment of edge e of flocated m an onB arca of Gy is transferred 1o the corresponding
face of Bf e has exactly one dwected edge on J. The orientation of the transferred edge
segment 15 opposte that of the diected edge of e on f (see Figure 44[b])

A segment of a cross-face edge ¢ of G, located 1n the mtenor of /1s transferred to the face
g of B that induced ¢ The onentation of the transferred edge segment 15 opposite that of
the directed edge of & on Gy (see Pigure $4{c])

A segment of an edpe ¢ of B located mn the intenor of /18 transferred to each face of B
adpteent 1o ¢ and below /0 A face g adjacent 10 €' 1s below f1if a face-direction vector that
pomts from e into the mtenor of g also pomts below 1 (sec Figure 43[d]) The onen-
tations of the translerred £dge <egments are ginen by the doected edges of ¢

A sepment of a4 crowface edge € of of Gy comadem wrth an edge e of /1 transferred to
the face g of B that induced e 1f the face-direction vector that points from ¢ wto the n-
wenor of g splits a volume-endosing pair of faces adjacent 1o ¢ (not shown in Figure 44)
Fhe onentation of the transferred edge segment 1s opposite that of the directed edge of @

on (,;

A segment of an edge ¢f of B that comncides with an edge e of /18 transferred to each face
of B adjacent 10 ¢ that splits a volwne-enclosmng parr of faces adyacent to e This deter-
mination 1 made by merging the radialhy -ordered lists of face-direction vectors of e and
e (see rgure SH4{e])  The onentanons of the wansferred edges are given by the directed

edges of ¢

Algonithm 13, Vransfesving cdges of A [1'B to faces of B
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e -— e "
cl 11 f el’ﬂ:\\
ks TN
33 \.._-/ e3 4
(a) Edgese,,e,, and e;of (b) Edgese,, ey, and ¢
fare not transferred to B. of f are transferred tog.

e | [ f
/
(c) Edge 2 of G,
istransferred to g l (d)

Edge e’ of B is transferred
to faces g and f of B.

R v e S A S W e avy

(e) Edge e of B istransferred to face g because g splits
a volume-enclosing pair of faces.

Figure 44. Transferring edges of 4 (178 to faces of B

The transference of an edge of 4 ()'B to a face of B can be done in constant |
time if the edge docs not coincide with an edge of either 4 or B (Casc [iii] of Al-
gorithm 13). If the edge of 4 ("B coincides with an edge e’ of B then every di-
rected edse of ' is examined (Cases [iv] and [\i]). If the edge of 4 (V"B coincides
with an cdge e of f then every directed edge of e is examined (Cases [h] and (v}
of Algorithm 13). In order to bound the time needed by Algorithm 13 to trans-
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fer every edge of 4 ()'B to the appropriate face(s) of B, we analyze each case
separately.

(i) Edge e of A might intersect O(Ejp) edges of B, and so the total time required
15

O(E (Ep).

(ni) For cach face fof A, there might be O(Ej) cross-face edges that intersect ev-
erv edge and vertex of of f, and so the transference of every segment of every
cross-face edge requires time

Faces(A)
ol £5 D E+¥ | = OWD,Ep.
J

(iv) As in Case (iii), edge ¢’ might intersect every edge of A. and so the wransfer-
ence of every segment of every edge of B to a single face of B requires time
Ldges(B)
of > Eb.)| = OE,D.

¢

(\) We could potentially find every cross-face edge of every Gp coincident with
every edge of 4. and so the total time required to transfer cross-face edge-
segments is

Edges(A)
O| E5 ) D, | = OWD,Ep.

(v1) Finallv, every edge of B might be coincident with and subdivided by O(E,)
edges of 4,and so the total time to transfer all of the cdge segments is

Edges(B)  Edges(A)

of > > b ) = oDy

'l €

Summarizing, Algorithm 13 requires time O(D,Dj) to transfer the edges of
A ()'B to the appropriate faces of B and then orient the transferred edges.

After edges of 4 ()'B have been transferred to faces of B, it may be necessary
to transfer vertices as well. Vertex v of 4 ()" B is transferred if v is a non-manifold
vertes of B (recall Figure 10 on page 13) or if Algorithm 13 did not transfer any
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adjacent edges of v to B. There are three situations: the vertex may be in a face
interior, on the edge of a face, or coincident with a vertex. For example, in
Figure 45(a), tetrahedron B is intersected with cube 4. The surface of B is con-
tained entirely within 4 except for a vertex of £ that requires the faces of B to
be added to the surface of 4 (}'B. In Figuic 45(b). the suifaces of the deformed
cube (A4) and the triangular cyvlinder (B) intersect at a pomt in the interion of two
edges. This intersection point must be transferred to B as well.

(a)
L~

In (a), the surfaces of the cube and tetrahedron intersect
at the tetrahedral apex; and in (b), the surfaces intersect
at a single point (two edges intersect).

Figure 45. Vertices of 4 (1B transferred to faces of B

For a vertex v of 4 ()'B in the interior of a face of 4, we determine which
edges of A [)'B adjacent to v are inside A. and transfer these edges w0 faces of
B incident to v (see Algorithm 14). For each edge e of Bincident to v there are
O(D,) such faces, and so Algorithm 14 requires time O(Dg) to transfer edges of
A [’ B incident to vertices of B if those vertices of B are located in the interiors
of faces of 4.

If v is a vertex of A "B contamed 1 the mtenor of a face of 4. and e 15 an edge of AVB
adjacent 10 v and contained by an edge of B, then e 15 transferred to the faces of B contaiming
e as follows:

(1) if the other endpoint of e 1s below the face of A, then transfer e to 1ts adjacent faces (see
Figure 46[a]), otherwise,

(2) 1f e Lies 1n the plane of the face of 4, then transfer e to cach of its adjacent faces that are
below the plane (using Case [1v] of Algorithm 13 on page 66, sce also Fagure 46[b])

Algorithm 14. Transfersing a vertex in a face of A
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D T outward normal
i e c-=zzl of the face of A.
w :7 al
IIA/’
| N

(a) Vertex visin the face of A and the other endpoint w
of e is below the face of A, and so e is transferred to its
adjacent faces.

1T L_\outward normal
of theface of A.

(b) Vertex visin the face of A and the other endpoint w
of eis also in the face, and so e is transferred to its adjacent
faces that are below the face.

Figure 46.  Iransferning a vertex in a face of 4

For a vertex v of 4 ()'B in the interior of an edge of 4. we determine which
edges of 4 ()'B adjacent to v split volume enclosing face-pairs adjacent to the
cdge of 4, and transfer those edges to faces of B incident to v (see Algorithm 15
on page 71).

Intersecting Sohds 70



If v s a veriex of 4 (V'8 contained in the interior of an edge of 4, and ¢ 1 an edge of A B
adjacent 1o v and contained by an edge of B, then e 15 transferred t¢ the faces of B containing
e as follows

(1) Project the other endpoint of ¢ onto the plane orthogonal to the edee of 4 and then de-
termine if ¢ splits a volume-enclosing pair of faces adjacent to the edge of A by exarmning
the radwlly-sorted face-direction vectors asscciated with the edge ot 4,

(2) 1f e splits a volume-enclosing face-pair of the edge of 4, then transter e to the faces of B
that contams e (sce Fagure 47[a]),

{3) if e coincides with the edge of 4, then use Case [vi] of Algonthm 13 on page 66 1o transfer
e to the faces of B that contain e and splt volume-enclowng face-pairs of the edge of 4
(see Figure 47[b]), and

(4) of e hes on & face of 4, then use Case [av] of Algonthm 13 1o transfer e to faces of B that
contamn e and are below the face of 4.

Algorithm 15. Transferring s vertex in an edge of A4
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~volume-enclosing
face-pair of A

.

X isolated vertex v
K\\projection of eonto @

\e
w

(a) The page corresponds to plane @ and the projection of
e onto @ splits a volume-enclosing pair of faces adjacent to
the edge of A, and so ¢ is transferred toits adjacent faces.

— ———=—volume-enclosing
face-pair of A

1solated vertex v

(b) Edge e coincides with an edge of A, and so e is
transfferred to each of its adjacent faces that split a volume-
enclosing pair of faces of the edge of A.

higure 47, ‘Transicrring a2 vertex in an edge of A

A bound on the total time required by Algorithm 15 1s obtained by observing
that the algorithm examines the directed edges of B incident to vertex v of
AV B once, and for every edge of B incident to v, the algorithm examines every
directed edge of the containing edge of 4 once. The total time required by Al-
porithm 15 to transfer edges of 4 ("B incident to vertices of B is

ernced By
of ) D+ED,| = 0DDp:

and the total time required by Algorithm 15 to transfer edges of 4 ('R adjacent
tovertices of 4 {)'B that are contained by edges of B is

Ldgt’.\(B)
of ) D+D,| = OWES.

¢

For a vertex v of 4 {)'B coincident with a vertex of 4, we determine which
edges of B incident to v are in the interior of 4 by examining cross-sections of the
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neighbourhood of the vertex of 4 (see Algorithm 16).

edges of B are transferred to adjacent faces of B.

Then segments of these

0y

(3)

)

5

(6)

(8)

If v is a vertex of A )'B comadent with a vertex of 4, and e 1s an edge of 4 "B adjacent to
vand contancd by an edge of B, then e 1s transferred to the faces of B contatming ¢ as follows

Construct a plane Q that contains both e and an edge of 4 inader to v (igure 48[a])

Intersect 2 wath the edges and faces of 1 inadent to v The resuit of the mntersed tion de-
termunes a collection of sectors on @ centred at v 1 ach sector 1« aeithier inwde 4, on some
face of 4. or outude 4 The sector boundaries are defined esther by edges of .1 that lic i
O or by mtersections of fuces of 4 with @ Because (0 contains ¢, ¢ 15 ether in a sector
or comcidenit with a sector boundany (sec Tigure 48[b])

Once we have constructed the sectors on Q. we can find whach ector contams ¢ as fol-
lows Define a directed sector boundary to be a unit vector parallel to a sector boundan
and directed away fromy Find the largest dot product between a directed sector boundan
and the unit vector parallel to ¢ directed avay from v Lhis determines the dosest sector
boundary

If e comnades with the closest sector boundan . then

(1) 1if this closest sector boundan 1s the intersection of @ with a face of 4. then use Caswe
(1v] of Algonthm 13 on page 66 1o transfir e to faces of B thai contam e und are
below the face of A4, otherwise,

(1) this closest sector boundary s an edge of 4, and so Case [\1]of Algonthr 13 18 used
to transfer ¢ to faces of B that contain ¢ and split volume-endlosing face-pairs of the
edge of A

Otherwise, construct the vector fd that 1s the cross product of the normal of () with the
closest directed sector boundary  Adjust the sign of /d so that fd points from the intenor
of the closest sector boundany 10 the mtenor of the sector containing e

If the sector contaming e 1s on a face of 4. then use Case [1v] of Algonthm 13 on page
66 to transfer e to faces of B that contain e and are below the face of A

If the closest sector boundary is the intersection of ) with a face of 4, then transfer e to
the faces of B that contam e if fd poimnts below the face of 4 (see Tgure 48[(])

Otherwise, the closest sector boundary 15 an edge of 4 If fd sphts a volume-enclosung
pair of faces adjacent to the edge of 4, then transfer e to the adjacent faces of B that
contain e (see Figure 48{d])

Algorithm 16. Transfernng a vertex that coincides with a vertex of 4
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e of B.

the face.

(¢) The closest sector
boundary is in a face of
A and fd points below

(a) Plane @ is defined
by anedge of A and edge

L TRy a—

(b) Q isintersected with
the faces and edges of A
incident to v.

\

[N — 4

e
.
ﬁ.\\-
e DN,
', - G

(d) Chest sector
boundaryis an edge of A
and fd splits a volume-
enclosing face-pair.

Figure 48, Tramferring a vertex that coincides with a vertex of 4

A bound on the time required by Algorithm 16 is obtained by observing that the
algorithm examines every directed edge of B incident to a vertex v of 4 ("B once
in cach of Steps (), (6). (7). and (). For each edge of Bincident to v, the aigo-
rithm examines every directed edge adjacent to the coincident vertex of 4 once in

Intersecting Sohids




each of Steps (2), (3), and (4). The total time required by Algorithm 16 to
transfer edges of 4 ("B incident to vertices of B 1s

Vertices

(B) \
ol > D,+ED,) = Oy

and the total time required by Algorithm 16 to transfer edges of 4 0B adjacent
to vertices of 4 ("B that arc contained ty edges of B is

Fdges(B)
Of D D+Dy| = O+ DE.

€

After all relevant edges and vertices hayve been transferred to B, the bound-
aries of the faces of 4 ()'B that arc either in 4 and on the su.face of B are traced
out using the wechniques of the previous section. The resulting faces of 4 ()'B arc
bounded by cicles consisting of transferred cdges and vertces, as well as edges
and \vertices of Bentirely inside 4. tn order to construct these cveles, transferred
veruces that coincide with pomnts 1n the meeriors of edges of B must be sorted
along the edges of B. Every edge of B might mtersect O(E,) edges and faces of
4 (recall the analysis of Algonthm 10 on page S8). and so 1t requires time
O(EsE4log E,) to sortvertices of 4 (°B along the edges of B. Once these points
have been sorted. the cyvcles of 4 ("B in taces of B thatintersect the surface of
A arc constructed by traversing between edges of B and transferred edges of
AV B. As described in the previous section, this utaversal requires time
O(E.Dyp).

After the edges and vertices of A [V'Bhave been transferred to faces of B and
the traversal of the bounding cycles has been performed. it 18 possible that there
arc cycles of che respective faces of B thart lic in the interior of A, and hence have
yet not been added to A ()'B. In order to determine if this is the case, a cycle
containment test like Algorithm 12 on page 63 s donc. This containment test
could work in one of two wayvs:

(1) A cycle of a face g of B can be tested for containment by A4 by testing to sce
if the cycle is contained in the interior of the faces of 4 ()" B bounded by cy-
cles and isolated vertices of A {)"B contained in g. Testing containment in this
way also tests for containment in A, but the test is very expenstve: There
might be O(EJ[E, + V,]) directed edges and vertices of 4 [ "B contamed 11 g
and each of the O(E,+ V) containment tests would therefore require time
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O(E,[E, + 1’,]). Hence it would require time O(E,D5z?) to test for the con-
tainment of all directed edge cycles and isolated vertices of B by A.

(2) Alternatively, each containment test can implemented by intersecting the
planc of g with solid A and then testing to see if cach cycle or isolated vertex
of g is contained 1in the in4 subsets of the constructed cross-section. Con-
struction of the cross-section of solid A requires uime O(D4log Dy4), and each
containment test additionally requires time O(£,). Using this method to test
all of the cvcles and isolated vertices of B for containment by A requires time

Taces(B)
O > Dylog Dy+ EE,+ T3] | = O(FyDylog Dy + EDp).
&

Note that contamnment is tested in the actual implementation of the intersection
algorithm using the faces of 4 {8 and not the cross-sections of 4.

Finally, all faces of B that he completely in the interior of A and are adjacent
to edges of 4 () B are also faces of 4 (VB These faces are discovered by
breadth-first search (as 1n the previous section) and are added to 4 ("B, This
transitive closure requires time O(]B]). Note that this closure operation can ob-
viate some of the containment tests described above.

Summatizing this section, Steps (4) and (5) of Algorithm 5 on page 49 re-
quire ume O(DpD,; log D4) to find the boundaries of faces of 4 [1°B that are in
the interion of 4 and on the surface of B.

4.6 Constructing the Star-Edge Representation of A (B

At this pointin the algorithm, all of the bounding directed-edge cycles and iso-
lated veruces of 4 ['B that result from ntersecting shells of 4 and B have been
constiucted  These eveles and solated vertices belong to four types of faces of

A8

(1) faces constructed by subdividing a face of 4 that intersects the surface of B:
(1) faces constructed by subdividing a face of B that intersects the surface of 4;
(1) faces of A that aren the interior of B; and

(1v) faces of B that are in the interor of 4.

Cycles and solated wertices of faces of Types (1) and (i) might not all belong to
the same Star-Edge face of 4 (V"B (see Figure 49 on page 77) and so it is neces-
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sary to find the cycies and 1solated yertices that belong to connected subsets of
the subdivided face. This can be done using cither a union-find program [Aho,
Hopcroft, and Ullman, 19837 (see Algorithm 17 on page 77) or point location
iKirkpatrick, 1983] (see Algorithm 18 on page 79). (Algorithm 17 was the one
actually implemented. but both versions are presented hete.)

Figure 49. A subdiided face may not be a connected region

Gnen a collection € of ¢y cles and 1solated vertices 1in a subdiaded face of 4 or B, the ovdes
and 1solated vertices contained 1n the cennected subsets of the subdivided face are found uwng
the followmng algonthm

First, torm the collecuon b of tentatne fuces by connecting the evedes of € mto compo-
nents  Fach solated vertea s abo a tentatne face Repeat the following procedure until every
tentative face of F has been marked 24 examined

(13 Select two unexammed tentatne faces trom b (or one enamined and one unexamined
tentatine face of this 1s not posabley, choose a point on each of them, and intersect a Iine
contamng the two points with all tentatnve fuces of F

(2) Sort the mntersection pomnts aong the hne and subdinade the ine into segments

(3) lor cach line segment 1n the inienor of two different tentanve faces, undy the two tenta-
tive faces and mark them as exarmuned  ©he local analy sis performed 15 identical 10 that
of Algonthm 6 on page 52

The untfied tentative faces are Star-1 dge faces of 4 V'8

Algorithm 17.  Finding cennected subscts of a subdivided face using a union-find program

If there are n cycles and solated vertices in the collection C of

Algorithm 17, then C will be intersected with at most "; !

directed edges and vertices in C, then Step (1) requires ume O(D) to interscct a

lines If there are D
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<ingle line with C, and Step (2) requires time O(D log D) to sort the intersection
points along a single line. Recalling the analysis of Algorithm 6 on page 52. we
sec that for cach intersected line, Step (3) requires time O(L) to do all of the
ncighbourhood analyses along a single line.  Finally, Step (3) does a total of
O(nD) union and find operations, which require a totel time of O(nDa{nD]).
time.”

In total, Algorithm 17 requires time
O(nDlog b + nDa[nD]) = O(nD log D}

to find the connected subsets of a subdivided face. Each subdivided face f of 4
has  n=D =0O(Es[E +1/]). and ach subdivided face g of B has
n=D=0(EJE + 1)) In order to find the connected subsets of all subdivided
faces of 4 and B, Algorithm 17 requires time

O, Dy log[ D D)),

If the problem solved in Algorithm 17, finding the connected subsets of the
subdnided faces of 4 and B. 1s rephrased as a pomt location problem. there is
an algonthm that solves the problem in ume O(D,Dplog[D,Dg]). The idea 1s as
follows: The wveles and wolated veruices of a face are either “outer™ or “inner™
cyeles of the face (see Frigure 50) and the connected subsets of a subdivided face
can be found by apporuoning mner cycles of the subdivided face to outer cyvcles
of the face (see Algorithm I8 on page 79).

/Outer cycle of face
Inner cycle of face

7

bigure S0 Outer and Inner cyeles of a face

® Tunction (7)) grows so slowly that for feasible n, a(n) 1s constant
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Given a collection C of cycles and isolated vertices 1n a subdivided face of 4 or B. the eycles
and isolated vertices contained in the connected subsets of the subdivided face are found using
the following algonthm

First, form the collection ¥ of tentatve faces by connecting the cycles of C mto compo-
nents Each isolated vertex 1s also a tentative face  1hen perform the following procedure

(1) Find an extreme pomnt of each tentatne face and hence determune of the tentatne face
contans an outer ovele (by alocal analysis as in Algonithm 6 on page 52)  In this way
divide the tentative faces into outer components and inner components

(2) Tmangulate the planar subdivision compnising the outer components

(3) Pick a pomnt (say a vertex 1) from each mner cemponent, and scarch the tnangulated
subdivision for the outer component that bounds 4 region containing s

Each outer component together with its contained wner components, forms the boundary of
a Star-I'dge facc ot A4 Y8

Algonthm 18, Finding conaccted subsets of a subdivided face vsing pomt-location

If a subdinvided face has n directed-edges and vertices. and D directed edge cycles
and isolated vertices, then Step (1) of Algorithm 18 requires O(D) ume. By using
an algorithm of Preparata and Shamos [1985] 1o triangulate a planar subdivision
with m vertices in tirne O(mz log m). Step (2) tequires ume O(D log D). Finally,
using an algorithm of Kirkpatrick [1983] that locates a point 1n a tnangulated
subdnvision with s vertices 1in ume O( lee m) after O log m) preprocessing. Step
(3) requires ume O(D log D 4+ nlog D) to apportien inncr cyveles of the subdivided
face to outer cycles of the face.

Each «<ubdnided face f of 4 has n= D = O(Ey[ E. + 17]). and cach subdi-
vided face g of Bhas n=D = O(E,[E, + 1]). and so for all subdinided faces of
A and B, Algorithm 18, which is dominated by Step(3), requires ume

O(EBDA !()g[EHDAJ + E4Dl’v l()g[E4D/;])

4.7 Intersecting Solids with Multiple Shells

The presentation of the regularized intersection algorithm thusfar concentrated
on intersecting the shells of a solid, t.e., if the shells of 4 and B intersect, Steps
(1-5) of Algorithm 5 on page 49 assemble picces of the intersecting shells into
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Star-Edge representations of the shells of 4 ()°B. In order to intersect multiple-
shelled solids 4 and B. two problems must be sohved:

(1) It is possible that there are shells of A that do not intersect the surface of B
and shells of B that do not inicrsect the surface of A, yet the non-intersecting
shells are contained 1n 4 ("B (Step [6] of Algorithm 5). An algorithm that
determines which of these non-intersecting shells form part of the boundary
of A()'B docs the three dimensional analogue of the cycle-containment test
of Algorithm 12 on page 63.

(2) It might be necessary 1o determine which shells of A4 ()'B bound cach con-
nected component of 4 (}'B. (This is the three-dimensional analogue to find-
ing the conncected subscts of the subdivided faces of 4 and B. described in
Algorithm 17 on page 77 and Algorithm 18 on page 79).

Solutions 1o these two problems are now described.

Problem (1) 18 solved by first identifyving candidate shells of each solid that
may be contmined in the other solid and then performing shell-contaimment tests.
The algorithms of “Constructing the Star-Edge Representation of 4 ("B on
page 76 can be casily modified to detect shells of 4 and B that might be shells
of 4 ("B. Specifically, Algorithm 17 on page 77 (or Algorithm 18 on page 79)
1s modified todenufy as candidates those shells of solid A4 (resp. B) that did not
contiibute any boundary points to faces constructed using the algorithms of
“Intersecting Faces of Sohd 4 with Cross-Sections of Solid B™ on page 57 (resp.
“Intersecting Faces of Solid B with Solid .47 on page 65). Once a sct of candidate
shells has been identified. these shells are cheched for containment using an al-
gorithm analogous 1 the cyele-containment test of Algorithm 12 on page 63,
t.e..ashell of 4 isin the interior of B if a point on A v 1n the interior of B (and
vice versa). This shell-containment test 1s deseribed in Algorithm 19 on page
81
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To test for containment of a shell s by solid S, perform the following steps

(1) Pick a point v on s and a point v on one of the shells of §

(2) Construct a plane {2 contamng & and v, mtersect S with Q (construcung the cross-section
Gy of S with @, see “Computing Cross-Sections of Sohd B on page S1)

(3) Use the cycle-containment test (Algonthm 12 on page 63) to determune 1f pownt ¢ s mside
a subset of G that 1s 1n the intenior of §

Algorithm 19. Shell Containment Test

If solid S has Dy directed edges. then Step (2) of Algorithm 19 constructs the
cross-section G of §in time O(Dy log Ds), and Step (2) tests for the containmen!
of point u in an inS subset of Gy in time O(Es). The number of shells of a slid
is bounded by the number of faces of that sohd. and so Algorithm 19 can test for
containment of al! shells of 4 by B and all shells of B by A 1n time

= O(D Dy log[D4Dg)).

Problem (2), finding the connected components of A ("B, 1s sohved by gen-
eralizing the union-find program of Algorithm 17 on page 77. Recall that Algo-
rithm 17 finds the connected subsets of the subdinided faces of 4 and B in time
O(DDg? log[DaDg]).. Unfortunately, Algortthm 18 which solves the same
problem in time O(D,Dg log[D4Dx]) using the triangulation-refinement technique
of [Kirkpatrich. 1983] does not scem to generahize to three dimensions. In con-
trast, just as Algorithm 19 generahizes the cycle-containment  test of
Algorithm 12 on page 63, Algorithm 17 generahizes to find the connected subsets
of A[)'B (see Algorithm 20 on page 82).
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Given a Star-Ldge representation of sobd A4 'B. the shells of each connected compenent of
A (VB are found using the following algonthm

Iirst, assume that each shell of 4 N8 bounds a different tentative component, and denote
the collection of tentative components by S Repeat the following procedure until every

component of S has been marked as examined

(1 Select two unexamined shells from S (or one examuned and one uncaamined shell if this
15 not posable! and choose a point on each of them  Construct an oriented plane @
contaimng the two points, and construct the cross-section Gp of 4 ()8 (see “Computing
Cross-Scections of Solid 87 on page 51)  Intersect the line containing the two points with

the directed edges and vertices of G
(2) Sort the ntersection ponts along the hine and subdivide the line into segments

{3) }or cach segment in the mtenor of two different tentatinve components, unify the two
tentative components and mark the constituent shells as examined  The local analy s1s
performed 18 identicdl to that of Algonthm 6 on page 52

I he resulting tentatsve components are the connected components of 4 N'B

Algonithm 20.  Finding the connected components of 4 ("B

The analvsis of asymptotic running time of Algorithm 20 is similar to that of
Algorithm 17. If there are n shells in the Star-Edge representation of 4 (}'B then
4 ("B is intersected with at most ”: L oriented planes. If there are D directed
cdges and vertices in 4 ()'B. Step (1) requires time O(D log D) to construct a
single cross-section Gy and then time O(D) to ntersect Gp with a line. Step (2)
requires time O(D log D) to sort the intersection points along a single line. Step
(3) requires time O{D) to do all of the neighbourhood analyses along a single line.
Finally . Step (3) does a total of O(nD) union and find operations., which require

a total time of O(nDa[nD]).

In total, Algorithm 20 requires time

O(nD log D + nDa[nD]) = O(nD log D)

to find the shells of the connected components of 4()°'B. For A('B,
D =0O(DsDy). Usually n is small, and then Algorithm 20 requires time
O(D Dy log[ D 4Dy]). although n can be as large as O(FFp).

If 4 and B are single shelled solids then Algorithm 20 is unnecessary. If we
know which of 4 and B is bounded. then there is a simple algorithm, given the
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sheils of 4 (1"B. to determine which shells bound each of the connected compo-
nents of 4 [)'B (see Algorithm 21 on page 83).

Given Star-Ldge representations of single-shelled sohds 4 and B, and gnen the Star-1 dge
representations of the shells of 4 (7B, the shells of the connected componenis of 4 (78 can
be found using the following procedure

First, by local analysts at extreme sertices, determine if 4 and B are bounded  Then ap-
portion the shells to componenis according 1o the following cases

(i) 1if .4 and B are both bounded solids, then 4 ("8 15 a collecion of bounded. single-shelled
components,

(1) if neither 4 nor B 1s bounded, then 4 N'B 1s a collection of single shelled components,
one of which ts unbounded, and finally

(i11) 1f 4 1s bounded and B 1s not then A (V81 esther a collection of bounded, single shelied
components or a 2-shelled sohid bounded by the shells of A and B

Algorithm 21. Intersecting two single-shelied sohds

In order to analyze the asymptotic complexity Algorithm 21, we first sce how to
determine whether a shell bounds a bounded volume. We determine if a shell §
bounds a bounded volume by finding an citreme yerten v of S in an arbitrary
direction d. and constructing an oriented plane @ with normal d that contains v.
Then we use Algorithm 8 on page 56 to determine if v is inS. onS, o1 outS.
Finally, shell S bounds an unbounded volume if v is inS oi if v is outS and has a
face that lies in Q. 1t requires time O(1) to find vertea v, and Algorithm & ad-
ditionally requires O(D,) time: finally. if v is outS. it requires time O{F.) to deter-
minc if there is a face of v oriented oppositely to Q.

Lemma 8. If 4 and B are single-shelled sohds. then Algonthm 21 finds the shells of the connected
components of 4 V'8 in tme O(D,D))

Proof. Case (1) 1s tnvial because 4 {)'B is bounded Case tn) follows by examining the regulanzed
union of —"4 and —'B, which 15 bounded, but may have holes  Case (1), which computes
A "B, vields a 2-shelled sohd sf the shells of 4 and B do not intersect, and a collection of bounded,
single-shells components otherwise

It requires time O(D, + D) to determune if A4 and B are bounded, «nd 1t requires ((D,1)) 1o
find out which component of 4 (B is unbounded @
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Thus, given Star-Edge representations of single-shelled solids 4 and B, a
Star-Edge representation of the compunents of 4 {)'B can be constructed in time

O(D,Dy log[ D 4Dy)).

4.8 Summary

The main theorem of this chapter, that Star-Edge representations of the sheils of
A [)'B can be constructed in time O(D4Dj log[D,D;]) from Star-Edge represent-
ations of the shells of 4 and B, has been proven. This bound might not optimal,
because the only lower bound known for intersecting 4 and B, given their Star-
Edge representations, is €(D,Djp). The problem of apportioning the shells of
A [1'B to the comnponents of 4 (' B is more difficult. We saw that if there are n
shells in 4 [)'B, then the problem of constructing Star-Edge representations of
the components of 4 ("B can be solved in time O(nD,Dslog[ D4Dg]) using a
union-find algorithm. We also saw that if 4 and B are single-shelled solids, then
we can construct Star-Ecge representations of the components of 4 ()'B in time

O(DADR 10g[DAD};]).
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Chapter 5. Incidence Tests

In order to compute the intersection of two solids. it is necessary to identify which
points on the surfaces of these solids coincide. Incidence tests work by comparing
features (vertices. edges, and faces) of representations of the two solids.  Imple-
mentations of these tests often only epproximate true incidence. If numencal
data such as vertex coordinates are represented using finite piecision, or the tests
themselves a.c implemented using fimte-precision arithmetic. we can never ask if
two features are trulyv incident. We can only ask if they are sufficiently close that
we might presume incidence.

This chapter then. contains a description of new finite-precision incidence
tests used by an implementation of the new intersection algorithm of “Chapter
4. Intersecting Solids”. (Experiments which evaluate the utility of the incidence
tests are given in Appendix D.)

5.1 Incidence in a Finite-Precision World

Before the new incidence tests can be presented, it is nccessary to show why
testing for incidence is difficult in a finite-precision world. Suppose that we arc
given the equation of a plance P, and we are given a boundary representation A
of a solid, and we would like to say that a featurc of 4 is “deemed incident™ with
P if the feature is very close to P. Using pronimity to define incidence is neces-
sary il P or the features of A are giver using fimite precision, or if we cannot im-
plement a test for exact incidence. Assume then, that edge e of A4 is defined by
the coordinates of its endpoints v and w, and w is far from P but v 1s sufficiently
close to P that we think v is incident with P. Then there are three possibilities:

(1) ein