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Abstract

This thesis focuses on utilizing concepts from control systems engineering to provide

additional insight into approaches for low back pain (LBP) care, specifically considering

surgical intervention and preventative measures. LBP is a leading cause of disability and

imposes economic strain on the healthcare system. Despite its high prevalence, the cause of

many LBP cases remain unknown.

Surgical intervention is often required when preventative measures do not alleviate LBP.

One method used to train and improve a surgeon’s operational skills is through surgical

simulation. In this thesis, a lumbar interbody fusion simulator was studied, with a focus

on developing dynamic soft tissue models. Force feedback models were built using system

identification with dynamic input signals, and evaluated by clinicians using a haptic force

feedback device. It was found that the closer the dynamic models matched the signals the

more they were favoured by the clinicians. These results carry potential implications for

integrating tissue dynamics into soft tissue force feedback models.

Understanding preventative measures to alleviate LBP or reduce the risks of developing

pain is important to avoid more invasive interventions. Spinal stability is known to contribute

to a healthy spine, and as such, understanding potential factors which may improve spinal

stability could be beneficial. A basin of attraction (BOA) was calculated for a single novice

and a single expert. The BOAs represent how much an individual can be perturbed along

their trajectory while maintaining stability, identified with respect to a target trajectory. The

BOAs showed differences in their mean cross sectional areas between lifters, with the novice

having smaller BOAs than the expert. Additionally, the novice lifter was more susceptible

xiii



to changes in mass of the box they were lifting. These preliminary results indicate that the

novice lifter selected trajectories that make them more susceptible to perturbations than the

expert lifter, however, further work is needed to demonstrate statistical significance.

Overall, the works presented herein may provide insight to clinical interventions when

focused on improving spine health. This thesis demonstrated how systems and control

engineering can be leveraged to analyze behaviours that are not easily observed from sensors

alone. Techniques such as dynamic modelling and numerical computing provide insight from

data into the unseen behaviour of the spine and its musculature.
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Résumé

Cette thèse se concentre sur l’utilisation des concepts de l’ingénierie du contrôle pour

fournir un aperçu supplémentaire des approches de soins de la lombalgie, en tenant compte

spécifiquement de l’intervention chirurgicale et des mesures préventives. La lombalgie est

l’une des principales causes d’invalidité et impose une pression économique sur le système de

santé. Malgré sa prévalence élevée, la cause de nombreux cas de lombalgie reste inconnue.

Une intervention chirurgicale est souvent nécessaire lorsque les mesures préventives ne

soulagent pas la lombalgie. Une méthode utilisée pour former et améliorer les compétences

opérationnelles d’un chirurgien est la simulation chirurgicale. Dans cette thèse, un simulateur

de fusion intersomatique lombaire a été étudié, en mettant l’accent sur le développement

de modèles dynamiques de tissus mous. Des modèles de retour de force ont été construits à

l’aide de l’identification du système avec des signaux d’entrée dynamiques et évalués par des

cliniciens à l’aide d’un dispositif de retour de force haptique. Il a été constaté que plus les

modèles dynamiques correspondaient aux signaux, plus ils étaient favorisés par les cliniciens.

Ces résultats ont des implications potentielles pour l’intégration de la dynamique des tissus

dans les modèles de retour de force des tissus mous.

Comprendre les mesures préventives pour soulager la lombalgie ou réduire les risques de la

développer est important pour éviter les interventions plus invasives. La stabilité vertébrale

est connue pour contribuer à une colonne vertébrale saine et, à ce titre, la compréhension

des facteurs potentiels susceptibles d’améliorer la stabilité vertébrale pourrait être bénéfique.

Un bassin d’attraction (BOA) a été calculé pour deux sujets sujets dont le travail nécessite

de soulever des objets lourds. Un des sujets est un novice et l’autre est un expert. Les BOA

xv



représentent à quel point un individu peut être perturbé le long de sa trajectoire tout en

maintenant une stabilité, identifiée par rapport à une trajectoire cible. Les BOA ont montré

des différences dans leurs sections transversales moyennes entre les sujets, le novice ayant des

BOA plus petits que l’expert. De plus, le sujet novice était plus sensible aux changements de

masse de la boîte qu’il soulevait. Ces résultats préliminaires indiquent que le sujet novice a

sélectionné des trajectoires qui le rend plus sensible aux perturbations que le sujet expert,

cependant, des travaux supplémentaires sont nécessaires pour démontrer la signification

statistique.

Dans l’ensemble, les travaux présentés ici peuvent donner un aperçu des interventions

cliniques lorsqu’elles sont axées sur l’amélioration de la santé de la colonne vertébrale. Cette

thèse a démontré comment l’ingénierie des systèmes et du contrôle peut être exploités pour

analyser des comportements qui ne sont pas facilement observables à partir de capteurs

seuls. Des techniques telles que la modélisation dynamique et le calcul numérique fournissent

un aperçu des données sur le comportement invisible de la colonne vertébrale et de sa

musculature.
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Chapter 1

Introduction

The idea that “form implies function” is a heuristic commonly used in human biomechanics

since the human form has been built through evolution to fit its environment. This phenomena

can be observed in many structures throughout the body. For example, the orientation of the

fibers in bone can indicate the direction that bone is loaded in. The ability to identify such

mechanisms that allow the human body to function is imperative for scientific understanding

and effective clinical intervention.

The spine is a critical structure in the human body that provides mobility and support.

The spine works in multiple degrees of freedom and is a high-dimensional nonlinear system.

As a result, it can be difficult to capture many of its characteristics using solely imaging and

raw data obtained from sensors. This thesis leverages techniques from systems and control

engineering to determine information from data that would be otherwise inaccessible. The

purpose of this work is to improve on the current state of the art for surgical intervention

and preventative measures for lower back pain (LBP).

The motivations of this work are addressed using the workflow depicted in Figure 1.1.

The corresponding objectives are as follows:

• Chapter 3: Develop and evaluate dynamic soft tissue force feedback models to be

used for the surgical simulation of a lumbar interbody fusion procedure.

• Chapter 4: Develop estimates for a basin of attraction to characterize manual material

handling tasks.
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The literature review in Chapter 2 motivates these objectives, and the discussion in Chapter 5

reviews how these objectives were addressed and discussed limitations and opportunities for

future work.

Motivation: Low Back
Pain

Chapter 2: Literature
Review

Surgical Simulation

Modelling Surgical
Movements
Modelling Tissue Force
Feedback

Chapter 2: Literature
Review

Spine Stability

Lyapunov Exponents

Basins of Attraction
(BOAs)

Preventative Measures

Surgical Intervention

Chapter 4: Additional
Study

Chapter 3: Manuscript

Chapter 5: Discussion
Chapter 6: Conclusion  

Figure 1.1: Workflow and breakdown of the subsequent chapters of this work.
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Chapter 2

Literature Review

The spine has a highly ordered structure, consisting of both passive and active components.

It works in tandem with soft tissues and surrounding systems to function. There are multiple

anatomical structures and physiological phenomena that contribute to its complex role in the

human body and allow it to play an integral part in mobility and support. The development

of pathologies in these structures can result in pain that can often require clinical intevention.

In this thesis, both surgical interventions and preventative measures to address back pain

are explored. For surgical intervention, high-fidelity robot-assisted virtual reality surgical

simulators have been developed for training purposes, which require realism for modelling

human systems. For preventative measures, techniques to assess spine stability have been

developed to characterize tasks that may cause back pain if done incorrectly. The following

chapter provides an overview of:

• Spine Anatomy and Physiology: this section describes the structure of the spine

and mechanisms which contribute to low back pain (LBP).

• Surgical Intervention: this section describes surgical simulation of the lumbar

interbody fusion (LIF) procedure, and explains the current state of the art for modelling

surgeon movement and tissue force feedback to implement in surgical simulators.

• Preventative Measures: this section discusses the current state of the art for defining

spine stability about a static equilibrium point and along a trajectory to characterize

tasks that can cause back pain.
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2.1 Spine Anatomy and Physiology

The spine can be broken down into five distinct regions: two sections of fused bones, and

three sections demarcated by vertebral bodies along the column. Inferior to the sections of

vertebrae are five fused sacral bones that make up the sacrum, and four fused bones that

make up the coccyx [1]. The inferior most section of vertebrae consists of five vertebral bodies

(L1 - L5), referred to as the Lumbar region of the spine, then twelve thoracic vertebral bodies

(T1 - T12), and seven cervical vertebral bodies (C1 - C7) moving superiorly along the column

[1]. These segments are summarized in Figure 2.1. Beyond the column, the global spine

includes intervertebral disks (IVDs), the rib cage, ligaments, and spinal musculature [2]. In

particular, the IVDs and spinal musculature play integral roles in spine support and stability,

as they help resist the significant loads applied to the spine during everyday activity.

The IVDs are important components in the spine, as issues with the IVDs can be a

primary source of back pain and can cause changes in the biomechanics of the spine [4, 5].

The IVDs make up a significant portion of the global spine, contributing to approximately

20−33 % of the height of the spine [4]. The two main components of the IVDs are the nucleus

pulposus and the anulus fibrosus, as seen in Figure 2.2. The nucleus pulposus is a gelatinous

proteoglycan-rich structure with a high water content, which allows large loads to be sustained

in the vertebral body [6]. The load is distributed to the collagen-rich anulus fibrosus through

hydrostatic pressure [6]. In a healthy individual, the anulus fibrosus has a fiber orientation

that allows it to resist the corresponding hoop stress from the nucleus pulposus [6, 7]. These

structures allow the IVD to carry large compressive loads while maintaining flexibility in the

spine [6].

The muscles appended to the spine are classified as striated skeletal muscles. Contractions

are mediated by the nervous system, which send signals at neuromuscular junctions [9]. The

spine skeletal muscles attach to the vertebral column through tendons, which are a tissue

type that serves to attach muscles to bones in the human body [10]. The muscles play a

large role in the ability for the spine to stabilize itself [11]. The ability for humans to stand
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Figure 2.1: The spine segmented at the different levels. Depicted from bottom to top: Coccyx,
Sacral, Lumbar, Thoracic, and Cervical regions of the spine, obtained from [3].

Figure 2.2: A vertebral body with an IVD from a lateral and superior view, obtained from [8].
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upright for bipedal motion is largely attributed to a muscle group called the erector spinae

[4]. The erector spinae is composed of three muscles: the spinalis, longissmus and iliocostalis

[12]. Another large muscle group that is attached to the spine is the psoas major, which

extends the upper lumbar spine to help with lifting and flexion [12, 13]. Additionally, the

multifidus muscle group aids with producing extension of the vertebral column [4]. In general,

these large muscle groups contribute to the overall stability and support along the vertebral

column.

As with many biological structures, the shape of the spine informs its function. There is

a distinct change in the size and shape moving downward from the cervical region towards

the coccyx. This change in shape reflects the load-bearing ability of the vertebral bodies

are dependent on its size, shape and density [11]. In particular, the loads from body weight

and stresses from muscles increase moving down the spine, with the average strength of

the cervical segment and the lumbar segment being 2000N and 8000N respectively [11, 14].

These large loads on the lower back can lead to high incidence of low back pain.

2.1.1 Low Back Pain

Low back pain (LBP) is a common health problem, with a lifetime prevalence between

49-70%. LBP is considered a foremost cause for work absence and limitation of activity

[15–17]. Clinically, LBP can occur due to mechanical conditions such as a degenerative disc,

neurogenic conditions such as spinal stenosis, non-mechanical spinal conditions such as an

infection, referred visceral pain such as renal disease, or other causes such as fibromyalgia

[18]. Many factors influence an individual’s potential to experience back pain, some are

genetic, while others are due to circumstance. For example, occupational weight lifting is

associated with a higher incidence of LBP [18, 19]. As such, the ability to prescribe proper

lifting techniques is a clinically relevant issue for intervention of LBP [20]. Additionally,

degenerative disc disease is the most common cause of LBP and has been attributed to both

fatigue from high cyclic loading as well as genetic factors [21]. Degenerative diseases of the
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spine can be addressed with surgical intervention [21].

2.1.2 Summary

The spine has an ordered structure that is influenced by the vertebrae, IVDs, and spine

musculature. The structure of the spine allows it to take on high loads in daily activities.

However, often people experience pain in the lower regions of the spine. LBP is multifactorial

and complex as it can be caused both through genetic and environmental factors. In certain

cases, environmental factors which cause LBP can be mitigated with clinical intervention.

When preventative measures are ineffective, surgery can be performed to alleviate pain.

2.2 Surgical Intervention

Lumbar interbody fusion (LIF) surgeries are used to stabilize a segment of the lumbar

spine by fusing two vertebrae [22]. This is usually performed when a patient presents with

longterm LBP from degenerative disease of the lumbar spine [23]. LIF is a procedure that

navigates the soft tissues in the back to access an IVD and perform a discectomy, which

is a removal of the disk [22]. The IVD is then replaced with an implant, typically a cage,

spacer, or structural graft to fuse the vertebrae [22]. Certain LIF procedures are classified

as minimally invasive (MI) since access to the IVD can be obtained with a laparoscopic

probe [24].

2.2.1 Surgical Simulation

Results from a 2019 meta-analysis found that 1 in 20 patients experience harm from

preventable errors made during medical treatment [25]. With LIF procedures being a relatively

common MI surgery, improving the teaching practices to avoid errors is important [26]. The

Halsted method, commonly described as “See One, Do One, Teach One”, is the traditional

method for teaching surgery [27]. The Halsted method takes on the following workflow: the

surgical residents will first observe a surgical procedure, and then be expected to perform
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that procedure, and finally must teach it to other residents [27]. However, the traditional

training methods have limitations such as a lack of skill proficiency training and adequate

skill assessment [28, 29]. These drawbacks can be addressed using surgical simulation [28, 30].

Surgical simulators take on many forms to help train surgeons at different levels. A

surgical simulator is often characterized by its fidelity, indicating how well it can replicate a

given surgery [31]. Low-fidelity simulators tend to allow for practicing only a specific, usually

basic, surgical skill, whereas high-fidelity simulators are able to realistically emulate the

surgery and are better suited to train more advanced surgeons [32]. Surgical simulators can

be further sub-categorized as organic and inorganic. Organic simulators typically take the

form of operations on live animals or on cadaveric models [31]. Operations on live animals

can be effective because they can share many characteristics with operations on humans.

However, the anatomical structures of the animals used can vary greatly from human beings

[32]. Additionally, there are ethical concerns surrounding their use [31–33]. Cadaveric models

are another organic simulator used in surgical simulation and they are commonly regarded as

the gold standard due to their proximity to living human tissue [32]. However, cadavers are

often too expensive in practice to be used frequently as they also cannot typically be reused

following many procedures [32]. It should also be noted that depending on the post-mortem

treatment of the cadavers, fidelity in the tissue force feedback can be lost as well [34].

Synthetic simulators that employ polymeric materials and tissue analogues are also

common for both high- and low-fidelity simulations. The higher-fidelity analogues, like the

one in Figure 2.3a, can accurately recreate complex procedures, particularly in the context

of minimally invasive surgery [32, 37]. In certain cases, these models can be 3D-printed

and customized to specific patients as a result [34, 38, 39]. Many high-fidelity analogues

have been validated for use in surgical skill training activities including obtaining access in

laparoscopic surgery and image-guided needle-based interventions [40, 41]. However, the

high-fidelity analogues tend to have a higher cost which can make them less accessible as

training modalities [32].
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(a) (b)

Figure 2.3: (a) Synthetic benchtop simulator obtained from [35]. (b) Robot-assisted VR
simulator obtained from [36].

Virtual reality (VR) simulation is the newest form of surgical simulation, having first been

introduced in the 1990s [32]. These inorganic simulators provide the operator with images

on a computer that can be manipulated to emulate a given surgery. The robot-assisted VR

simulators, like the one in Figure 2.3b, were then introduced soon after the VR simulators

in 1999, with the first one being the da Vinci surgical system [32]. Robot-assisted surgical

simulators can utilize VR for visual and auditory feedback, and a robotic haptic device to

convey the forces experienced during the surgery to the operator [42]. The haptic feedback

is particularly important for MI surgical simulation when obtaining access to the target

structure (in the LIF procedure, this is when the surgeon gains access to the IVD), as the

surgeon relies almost entirely on tactile feedback during this step. As such, adequate models

of soft tissue force feedback add realism to LIF surgical simulators, which requires modelling

both how the surgeon interacts with the soft tissue and the resulting tissue force response.

2.2.2 Modelling Surgical Movement

Transforming signals measured from a surgeon’s movement to the frequency domain

can provide insight into how the surgeon may excite tissue during surgery and quantifies

bandwidths that may not be easily observed in the time domain. The frequency domain

is exploited in surgical robotics studies for motion compensation of physiological tremors
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[43]. This is because the motion of the surgeon while performing the surgery occupies a

different bandwidth than their tremors in the frequency domain [43]. This is an example of

behaviour that is more easily observed in the frequency domain than in the time domain.

The movements made by surgeons are also commonly explored in surgical skill assessment

literature. Surgical skill assessment uses artificial intelligence to compartmentalize surgical

skill level and augment VR training modalities [30]. Modelling the surgical movement in

the frequency domain using a discrete Fourier transform (DFT) has previously provided an

excellent classification result [44, 45]. Therefore, modelling a surgeon’s movement in the

frequency domain can be divided into different bandwidths.

2.2.2.1 The Frequency Domain

The Fourier series provides one method of transforming signals into the frequency domain.

Specifically, and periodic, piecewise smooth function f(x) can be represented as

f(x) =
a0
2

+
∞∑
k=1

(ak cos(kx) + bk sin(kx)), (2.1)

where equation (2.1) can be thought of as an infinite sum of sine and cosine functions of

increasing frequency [46]. The coefficients ak and bk are formally defined as the Hermitian

inner products of f(x) and the orthogonal cosine and sine bases {cos(kx), sin(kx)}∞k=0 [46].

Intuitively, it can be thought of as the projection of f(x) onto cos(kx) and sin(kx) [46].

This is analogous to a dot product between two vectors in Euclidean space. As such, the

coefficients can be rewritten as

ak =
1

∥ cos(kx)∥2
⟨f(x), cos(kx)⟩ (2.2)

and,

bk =
1

∥ sin(kx)∥2
⟨f(x), sin(kx)⟩. (2.3)

Using Euler’s formula, eikx = cos(kx) + i sin(kx), the Fourier series can be written in a
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complex form,

f(x) =
∞∑

k=−∞

(αk + iβk)(cos(kx) + i sin(kx)) (2.4)

=
∞∑

k=−∞

cke
ikx. (2.5)

The Fourier series applies to periodic functions but is often needed for nonperiodic functions

as well. The Fourier transform allows the Fourier series to approximate functions that are

not necessarily periodic. The Fourier transform is derived by defining the Fourier series on

the domain x ∈ [−L,L) and taking the limit L −→ ∞ [46]. This ultimately results in the

Fourier transform pair that converges on a solution [46]. The practical implementation is the

DFT because it allows the Fourier analysis to be performed on numerically on a computer

[46]. The DFT takes the form of a linear system of equations, Ax = b, with a linear operator

that maps data points in the time domain f into the frequency domain f̂ [46]. The linear

transformation is defined as a unitary Vandermonde matrix to formulate the DFT [46]

f̂0

f̂1

f̂2
...

f̂N−1


=



1 1 1 . . . 1

1 ω−1
N ω−2

N . . . ω
−(N−1)
N

1 ω−2
N ω−4

N . . . ω
−2(N−1)
N

...
...

...
...

1 ω
−(N−1)
N ω

−2(N−1)
N . . . ω

−(N−1)2

N





f0

f1

f2
...

fN−1


. (2.6)

2.2.3 Modelling Tissue Force Feedback

Tissue force feedback models have been generated in many different ways for surgical

simulation and surgical robotics. One common way is through the use of the finite element

method (FEM), in which the tissue deformation is modelled as a spatial discretization

of the continuum mechanics of the materials [47]. This method is often criticized for its

computational complexity in the context of surgical simulation, as haptic feedback requires a

100ms computation time, necessitating efficient modelling techniques [48, 49]. To address time
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restrictions, kinematic and dynamic models have been developed for tool-tissue interaction

[50, 51]. For example, modelling needle bending for force feedback of needle insertion has

been done using beam models [52]. These models are meshless and often exploit very

complex dynamics that must be determined through rigorous experimental testing [49, 52].

Additionally, these models are typically not transferable to other systems, with the dynamics

changing between different tool tips and tissue types [53].

Data-driven approaches such as machine learning have also been used for tissue force

feedback modelling. However, these models have been built to replicate an FEM structure or

are more suited to surgical robotics applications because they employ vision-based strategies

that do not work when the real environment is abstracted to a simulation [54, 55]. Additionally,

these approaches are limited to the information obtained from training data, and utilizing

models from first principles may be more scalable to applications not previously captured

with data. Other studies have fit parabolic curves to measurements from cadavers to find

the corresponding force feedback [56]. However, this risks over-fitting to specific cadavers

instead of using known tissue behaviour to infer a generalizable model. Tissue viscoelastic

models can be exploited to build force feedback models from data. Employing viscoelastic

tissue models as a means of modelling force contact between the tool and tissue has been

widely applied in the context of surgical robotics [48, 57–59]. A summary of the viscoelastic

models employed in literature is in Table 2.1. These models can be most effectively built

through a process known as system identification [60].
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Table 2.1: A summary of mass-spring-damper models used to model tissue force feedback. The table includes the name of the
model, a depiction of its mechanical analogue, the corresponding force equation, any definitions of parameters, and corresponding
references, where x(t) represents position and fe(t) represents force.

Name Mechanical Analogue Equation Parameter
Definition Ref.

Linear Elastic fe(t) = kx(t) - [48, 57]

Maxwell fe(t) = bẋ(t)− αḟe(t) α = b/k [48, 57]

Kelvin Voigt fe(t) = kx(t) + bẋ(t) - [48, 57–59]

Kelvin Boltzmann fe(t) = kx(t) + νẋ(t)− γḟe(t)
k = k1k2/(k1 + k2)
ν = bk2/(k1 + k2)
γ = b/(k1 + k2)

[48, 57]
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2.2.3.1 System Identification

System identification (ID) is a modelling approach that can both be data-driven and

exploit known system mechanics [60]. In general, system ID uses input and output data to

inform a model, which is what categorizes it as data-driven [60]. However, system ID can be

further sub-classified as grey-box modelling and black-box modelling, also called parametric

and non-parametric modelling [60]. When doing grey-box (or parametric) modelling, data is

fit to a pre-determined model structure, which is what allows system ID to exploit known

system mechanics [60]. Black-box (or non-parametric) modelling uses only the data to inform

a model structure as well as how that model is parameterized.

ARX

𝐀𝐱 = 𝒃

input output

Figure 2.4: The autoregressive with exogenous inputs (ARX) model.

The equation Ax = b represents a problem with known data matrices A and b, while x

contains unknown parameters. In particular, this is the formulation for an autoregressive

with exogenous inputs (ARX) model, shown in Figure 2.4. The ARX model can be solved

with a least squares approach [61, 62]. The objective is to minimize the cost function

J(x) =
1

2
||Ax − b||22, (2.7)

where || · ||2 denotes the Euclidean norm. Differentiating J(x) with respect to x and setting

it to zero gives

A⊤Ax = A⊤b. (2.8)
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The parameters can then be approximated as

x̂ = (A⊤A)−1A⊤b. (2.9)

The input data contained in A, should be sufficiently varying to ensure that the matrix is

full column rank, so that A⊤A is positive definite and the solution x̂ is a unique minimizing

solution. The data is typically normalized or standardized during the system identification

procedure to account for differences in units amongst parameters. The technique of system

identification has been widely used in various applications, such as for identifying models for

flight simulators and for identifying physiological systems [62–64]. Additionally, ARX models

have been previously used to model tissue behaviour for biomedical applications [65, 66].

2.2.4 Summary

Surgical simulation provides a valuable resource and training modality for surgeons. The

minimally invasive LIF procedure necessitates a high fidelity simulation. In particular, gaining

access to the IVD during this procedure requires realistic tissue force feedback models, which

neccessitates accurate modelling of the interaction between the surgeon and tissue. Modelling

the surgeon can be done by utilizing the frequency domain because surgeon movements

during an operation are within a bandwidth of frequencies. Modelling soft tissue can then be

developed by exploiting tissue properties and using data-driven techniques such as system ID

in the bandwidth of frequencies of the surgeon.

2.3 Preventative Measures

One way to prevent LBP is by mitigating environmental factors. For example, being

able to characterize incorrect lifting techniques, which is associated with high incidence of

LBP [18, 19]. Systems, such as the spine during lifting, can be fundamentally characterized

through stability. The stability of the spinal column is critical for movement, bearing loads,

and avoiding pain [67]. Unlike other autonomous systems such as drones or manipulator
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arms, many systems in the human body are not observable through sensors [68]. Previously

inaccessible signals and systems in the spine can be more readily estimated by leveraging

systems and control theory [68–71]. Understanding stability can also potentially provide

clinical insight into pathological mechanisms underlying pain [68].

2.3.1 Spine Stability

The spine on its own is an inherently unstable system. However, in tandem with other

structures in the body, the spine becomes stable. The vertebrae, discs, and ligaments

constitute the passive components, while the muscles and tendons can be considered active,

and the surrounding neurological system acts as a transducer to direct the active components

[72]. Problems arising in these subsystems could hinder spine stability and lead to pain and

sub-optimal adaptations to compensate for abnormal behaviour [67, 72–74]. There is little

consensus on a definition of spine stability. Generally, the definitions can be subdivided into

two groups: the mechanical definition and the clinical definitions in Table 2.2. The mechanical

definition of stability closely aligns with the Lyapunov definition about an equilibrium point

(EP) [68]. The EP defined as x = 0 of the system ẋ(t) = f(x(t)), with the initial conditions

x(0) = x0, is considered Lyapunov stable if ∀ϵ > 0,∃δ(ϵ) > 0 such that

∥x0∥ < δ(ϵ) ⇒ ∥ϕ (t, x0)∥ < ϵ, ∀t ≥ 0. (2.10)

The system is considered locally asymptotically stable if it is Lyapunov stable and ∃η > 0

such that [78]

∥x0∥ < η ⇒ lim
t→∞

∥ϕ (t, x0)∥ = 0. (2.11)

If neither conditions are met then the system is considered unstable about that EP [78].

Roughly speaking, this means that after an impulse, the system is Lyapunov stable when the

system’s trajectory stays within a region of the EP, and it is considered asymptotically stable

when it is Lyapunov stable and converges to the EP [78]. In the context of spine stability,
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Table 2.2: The mechanical and clinical definitions of spine stability.

Type Defintion Ref

Mechanical Definition

“we must give a small perturbation and
observe the new behavior. If the new behavior
is approximately the same as the old,
qualitatively speaking, the system is stable.
If the changed behavior becomes indistinguishable
from the old behavior, returning to its original
position or trajectory after a sufficiently long
time, the system is asymptotically stable. Finally,
if the disturbed behavior differs significantly
from the old behavior, the system is unstable.”

[75]

Clinical Definition

“the ability of the spine to limit its patterns of
displacement under physiologic loads so as not to
damage or irritate the spinal cord or nerve roots”

[76]

“the capacity of the vertebrae to remain cohesive
and to preserve the normal displacements in all
physiological body movements”

[77]

the mechanical definition is criticized for being more suited to quantifying stability about

an EP, as opposed to quantifying stability about a trajectory [67, 79]. Mechanical stability

of the spine can be considered “static” when it is about a static EP, but when the EP is

time-dependent such as along a trajectory, then it is considered “dynamic” stability [67, 79].

Additionally, different components of the body contribute to static and dynamic stability.

In static stability baseline intra-abdominal pressure has played a larger role by increasing

stiffness in the abdominal cavity [80]. While in dynamic stability, time-varying properties of

tissue, neuromuscular control, and time-dependent reflex-responses are the main contributing

factors [77, 81]. Human beings are often moving beyond a single point, leading to effects

from kinetic energy or inertia that cannot be captured by a static equilibrium [79].
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2.3.2 Lyapunov Exponents

One way that spine stability along a trajectory is quantified in literature is through the

use of Lyapunov exponents. In nonlinear systems theory, Lyapunov exponents have been

used to quantify how sensitive the system is to a set of initial conditions [79, 82]. Considering

the initial conditions of the trajectory as a sphere, as time progresses and the system moves

along the trajectory, the variations in the mechanics cause the sphere to expand and contract

in different directions [79, 82]. This leads the sphere to transform into ellipsoids of different

shapes over time [79, 82]. The principle axes of these ellipsoids are the Lyapunov exponents

[79, 82]. The more negative the Lyapunov exponent, the more the ellipsoids contract, such

that the system is converging to the trajectory over time [79, 82]. The more positive the

Lyapunov exponents, the more the ellipsoids expand, indicating that trajectories diverge

[79, 82]. A system is therefore considered stable when the sum of its Lyapunov exponents is

negative [79, 82].

During a repetitive trunk movement, the trajectory kinematics should be similar at

each repetition [79]. The variances in repeated trajectories can be attributed to random

disturbances and control errors in the movement process [79]. The purpose of Lyapunov

exponents in this context is to model neuromuscular responses that keep the trajectories

consistent, attracting the trunk’s inherent dynamics towards a single trajectory at every

repetition of the movement [79]. This can be found by modelling the maximum Lyapunov

exponent of nearest neighbors in repeated trajectories [79]. The benefit is that no model

of the system is necessary, so the results can be inferred from only data [79]. The use of

Lyapunov exponents as a measure of dynamic spine stability has been used for unloaded

trunk movements and lifting [67, 83, 84].

2.3.3 Basins of Attraction

Lyapunov’s direct method can also be used to evaluate a system’s stability. Consider the

case of a single EP x = 0 [78]. The EP is locally asymptotically stable if there exists any

18



continuously differentiable locally positive definite function V : Rn × R+ → R, where 0 ⊂ D,

such that [78]

V (0) = 0,

V (x(t)) > 0, ∀x ∈ D\0,

V̇ (x(t)) < 0, ∀x ∈ D\0.
(2.12)

These Lyapunov functions can be analogous to energy, and by finding a Lyapunov function

candidate that satisfies these conditions it implies that the system converges towards the

EP, similar to how energy dissipates. These Lyapunov function candidates can be searched

through for a given closed loop system to demonstrate local asymptotic stability about

an EP [85]. One way to do so is by using sum of squares (SOS) programming [85]. SOS

programming can be used to systematically find Lyapunov functions by parameterizing them

as SOS polynomials. A polynomial p(x) with an even-numbered degree can be searched for

as SOS iff there exists a positive semidefinite matrix Q that parameterizes a monomial basis

vector b as

p(x) = bTQb. (2.13)

This form expands out to a polynomial function [85, 86]. The monomial basis vector in this

case takes on the form of

b =
[
1 x1 x2 . . . xn x1 x2 . . . xd

n

]T
. (2.14)

If Q is symmetric positive semidefinite, then Q can be written as Q = ATA. The SOS

polynomial can then expand out to [85, 86]

p(x) = bTATAb = (Ab)T (Ab) = ∥Ab∥2. (2.15)

Equation (2.15) is an algebraic certificate of nonnegativity that can be solved for as a

semidefinite program using numerical computing software [85, 86]. Therefore, a polynomial
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Lyapunov function can be found with the following feasibility problem [87]

min
V (x)

− γ

s.t. V (x) is SOS

− ∂V (x)
∂x

f(x) is SOS.

(2.16)

Where γ is a slack variable for the feasibility problem, f(x) is the nonlinear closed loop

dynamics approximated as a polynomial, and ∂V (x)
∂x is the gradient of the Lyapunov function.

This constrains the polynomial Lyapunov function to the conditions in equation (2.12).

A Lyapunov function that satisfies equation (2.12) approximates the invariant set around

the EP [88, 89]. An invariant set, G, can be defined as x(0) ∈ G ⇒ ∀t > 0, x(t) ∈ G [88]. This

means that once the state enters G, it stays within the set [88]. A region of attraction is a

bounded invariant set that can be approximated with the sub-level invariant sets of Lyapunov

functions [90–92]. These sets can be extended along a trajectory to form a basin of attraction

(BOA) by adding a time dependency to the Lyapunov function

V̇ (x(t), t) =
∂V (x(t), t)

∂t
+

∂V (x(t), t)
∂x

f(x(t), t). (2.17)

In biomechanics, the use of BOAs has been validated for a sit-to-stand task by using a

pendulum as the plant model about a person’s centre of mass (COM) [93, 94]. The inverted

pendulum model has been used for the unstable seated balance task to quantify spine stability

about an EP as well [95, 96]. Intuitively, the BOA represents the boundaries for which the

plant can be perturbed and still converge to the goal set at the end of the trajectory. The

optimization problem for the BOA provides a certificate for a bounded invariant set at each

point along the trajectory to the goal set.

2.3.4 Summary

Adequately characterizing the stability of the spine can provide insight into how it performs

movement, bears loads, and avoids pain. Spine stability has multiple definitions, with the
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mechanical definition most closely aligning with the Lyapunov definition of stability. The

definitions of stability can extend beyond a static EP to understand how the spine moves

along a trajectory. This has been quantified for various tasks using Lyapunov exponents.

However, this can also be characterized using BOAs, which have been validated for other

mechanical tasks.

2.4 Conclusion

In this work, both surgical interventions and preventative measures are addressed to

improve outcomes of LBP using systems and control engineering. Surgical interventions

can be addressed by improving training modalities for LIF procedures using robot-assisted

VR surgical simulators. Additionally, preventative measures can be addressed by defining

spine stability along a trajectory for lifting techniques during manual materials handling

tasks. The subsequent chapters examine these topics in a manuscript and an additional study

respectively.
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Chapter 3

System Identification and Simulation of
Soft Tissue Force Feedback in a Spine

Surgical Simulator

3.1 Framework of Article 1

The following study exploits the dynamic nature of the soft tissues of the spine to develop

force feedback models that were implemented in the haptic device of a surgical simulator. A

frequency analysis of surgeon movement was used to generate signals that excite the soft tissue

across a bandwidth of frequencies. Subsequently, linear system identification was performed to

identify the tissue force feedback behaviour realized as ordinary difference equations. The mod-

els were then programmed into a surgical simulator and tested with clinicians. The workflow of

the article is depicted in Figure 3.1. Ethics approval was obtained for this study from necessary

review boards (see Appendix A). The manuscript was accepted for publication in Computers

in Biology and Medicine (DOI: https://doi.org/10.1016/j.compbiomed.2023.107267) [1].
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Signals: build signals that excite the tissue 
across a surgeon’s frequency bandwidth

Systems: identify the system as dynamic 
viscoelastic models

Simulation: test models in a surgical 
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3.2.1 Abstract

Surgical simulators are being introduced as training modalities for surgeons. This paper

aims to evaluate dynamic models used to convey force feedback from puncturing the soft tissue

during a spine surgical simulation. The force feedback of the tissue is treated as a dynamic

system. This is done by performing classical system identification across a bandwidth of

frequencies on a tissue analogue and fitting that behaviour to dynamic viscoelastic models.

The models that are tested are an inverted linear model, the Maxwell model, the Kelvin-

Boltzmann (KB) model, and a higher-order blackbox (HO) model. Several error metrics

such as percent variance accounted for (%VAF) are determined to measure solution accuracy.

The force feedback models are programmed into a surgical simulator and tested with study

participants who rated them based on how well the identified models match the behaviour of

the rubber tissue analogue. The highest %VAF is 82.64% when the tissue is modelled as

the HO model. Statistically significant differences (p < 0.05) are found between all model
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ratings from participants except between the HO model and the KB model. However, the

HO model has the highest percentage (37.8%) of participants who rank its performance as

the closest to the tissue analogue compared to the other force feedback models. The more

accurately the dynamic behaviour resembles the tissue analogue, the higher the model was

rated by study participants. This study highlights the importance of utilizing dynamic signals

to generate dynamic models of soft tissue for spine surgical simulators.

Keywords: System identification, surgical simulation, force feedback, modelling, viscoelas-

ticity

3.2.2 Introduction

The traditional approach for teaching surgery has relied on the Halsted method, commonly

described as “See One, Do One, Teach One", in which a novice surgeon will observe a

surgical procedure, and then be expected to perform that procedure, and finally teach it

[2]. However, the traditional training methods have limitations that can be addressed with

modern technologies to improve surgical training and reduce costs [3, 4]. In particular,

surgical simulators are being introduced as training modalities to assess surgical skill level and

to impart skill proficiency through repetition without risking harm to a patient, or utilizing

high-cost options such as cadavers [5].

Previous surgical simulators have employed physical benchtop models using a tissue

analogue made of 3D printed materials or rubber as these are inexpensive non-cadaveric

educational models that can mimic tissue characteristics [6]. These benchtop analogues

have been validated for use in surgical skill training activities such as obtaining access in

laparoscopic surgery and for image-guided needle-based interventions [7, 8]. Other surgical

simulators have used virtual reality for visual and auditory feedback with a haptic device

to provide force feedback to its operator [9]. One area of interest with respect to these

simulators is the force feedback used to simulate the response from soft tissues during surgery.

These force profiles add realism and fidelity to the simulators, and have been found to show
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particular importance when simulating the access-gaining step during minimally invasive

(MI) surgeries [10]. This step varies between different surgical procedures. One methodology

is to insert a small probe into a patient through an incision to gain tactile access to the target

structure and expand the incision for visual access for the remainder of the surgery [11]. This

is the first step of the MI spine interbody-fusion surgery under consideration in this work [11,

12]. Haptic feedback is important during the access-gaining step because the surgeon can

rely almost entirely on somatosensory feedback when first puncturing the patient. As such,

the models used to generate this force response are important and a pertinent area of study.

Human soft tissue possesses the property of viscoelasticity, and its manipulation over

time can be considered a dynamic system as a result [13]. There are multiple ways to model

dynamic biomechanical systems. One approach is to derive the behavior of the system from

first principles, with parameters determined from experiments [14]. Another approach is

data-driven modelling where the system is modelled by the way it transforms a given input

dataset to provide a given output dataset, similar to the modelling approaches that have been

employed in machine learning [15]. Classical system identification is a data-driven modelling

approach that can also exploit known system mechanics from first principles when determining

a system model [16]. Linear systems are of particular interest in classical system identification

as they can be easily integrated into many modern control systems. Linear systems are

formulated as the next output value that is predicted by a linear transformation of a time

window of input and output data-points at previous time-steps [16]. System identification

has previously been used for modelling in simulation, such as in flight simulators, as well as

for identifying multiple dynamic physiological systems [17, 18].

Literature on system identification of tissue force response for haptic feedback has been

largely concentrated in the field of surgical robotics [19–22]. Considering the viscoelastic

nature of tissue, it is common for researchers to model its force response as mass-spring-

damper systems. The most recurrent linear viscoelastic models in these works are: the

Maxwell (MW) model, the Kelvin-Voigt (KV) model, and the Kelvin-Boltzmann (KB) model
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[23]. To identify the models offline, researchers typically employ static signals such as the

stress relaxation response of the tissue. Since the models are inherently dynamic, the static

signals previously used to identify the system may not have reflected the tissue’s actual

behaviour. However, in general, surgical robotic systems are teleoperated, so the haptic

feedback is generated using online measurements. Previous models have been parameterized

using online recursive algorithms, or modern observer-based control policies have been used

to provide robustness to model uncertainty [19–22, 24]. In surgical simulation, the real

environment is abstracted to a virtual simulation. Without sensor measurements, the models

used in simulation may require more accuracy than the ones implemented in surgical robotics.

Higher accuracy would necessitate that the signals generated to identify these models would

be dynamic to reflect the true nature of the tissue system.

Previous studies on modelling tissue force feedback for surgical simulation of the access-

gaining step of an MI surgery have focused on measuring the force response from cadavers

[25, 26]. In a study by El-Monajjed et al., the force required to gain access with a probe

for a MI spine surgery was measured [25, 27]. This study provided insight into the force

response of the tissue layers and provided a comprehensive dictionary of forces during

tool-tissue interaction. While using cadaveric measurements provides a realistic ground truth,

the signals used to determine the tissue force feedback in this study were largely static, with

the dynamic behaviour of the tissue being inferred from stress relaxation response curves

[25, 27]. This study used a physics based approach in that it directly measured forces from

a realistic ground truth, however considering dynamic signals to realize a system model

may provide more insight into the tissue force feedback behaviour. The measurements were

then implemented into a surgical simulator as a force feedback algorithm [28, 29]. This was

done considering multiple different force feedback scenarios that were fit with a second order

polynomial and integrated into the surgical simulation platform [28, 29]. While this algorithm

considers multiple different types of forces, it provides fits to the cadaveric curves, whereas

modelling the system instead as a dynamical equation could fit to the tissue behaviour while
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also potentially simplifying the force feedback algorithm.

An additional concern is how closely the behaviour of the force feedback model must match

the system to ensure the realism perceived by the operator. Previous studies have examined

the tradeoff between computational complexity and graphics within surgical simulation [30].

However limited comparable studies currently exist for the tradeoff between tissue model

accuracy and the realism in the force feedback provided to the operator. Kim et al. examined

force feedback model fidelity when there is no force feedback and with force feedback modelled

as linear and non-linear functions [31]. They found by assessing the learning curve of the

operators of a laparoscopic surgical simulator that the highest fidelity was observed in the

nonlinear function [31]. However, the functions they used had no terms that evolve with

time. The performance of such dynamic changes in the system within the context of surgical

simulation is yet to be assessed. Lastly, the boundaries of human perception have been

quantified for just noticeable differences between two tactile stimuli at the fingertips as a

change of 7% for forces between 2N and 10N [32]. Transiently, the differences experienced

with respect to the MI spine surgical simulation remain undefined.

The purpose of the present study is to identify and assess force feedback models of soft

tissue during the access-gaining step of an MI spine interbody-fusion surgery. The objectives

of this study are:

• to identify the tissue force feedback response as the dynamic systems outlined in

Figure 3.2 and,

• to examine the tradeoff between the accuracy of the force feedback models with respect

to the tissue dynamic behaviour, and how the models are rated by the operator when

programmed into a surgical simulator.

The objectives were addressed by first conducting system identification on a tissue analogue.

Then by programming the identified models into a surgical simulator and having participants

rank how well the models mimicked the behaviour of the tissue analogue.
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3.2.3 Methods

System identification experiments were performed on a rubber tissue analogue (Lumbar

Spine Demonstrator, The Chamberlain Group). The tissue analogue was previously found to

be suitable for capturing the surgical forces during the MI spine surgery for the incision size

used in this work [33]. Three models were fit to the system using system identification methods.

First, two models were grey-box models that were selected based on the viscoelastic properties

of the tissue. The grey-box model components are arranged in the different arrays seen in

Figure 3.2. The array configurations dictate the ordinary differential equations that describe

the inherent tissue force feedback dynamics used to formulate the system identification

problem. The third model was a black-box higher-order model that was selected based on

the dynamic equation with the best error metrics. The system identification procedure and

statistical analysis was done using Python (3.10) and the procedure can be completed using

established libraries and the equations outlined in this study. The IL model was also built to

be less reflective of tissue properties with an inverted force vector and no dynamic component.

The models were programmed into an Entact W3D haptic device (Guelph, Canada) to test

how they performed in simulation. The Entact W3D is a three degree-of-freedom impedance

controlled manipulator robot with three DC motors (maximum transient force of 15 N), and

a surgical tool mounted at roughly the center of mass of the end-effector. The haptic device

uses an Ethernet communication protocol with a game engine hosted on an MSI GT73VR

7RF (MSI) Core i7 3.5 GHz 64 GB RAM laptop and a NVIDIA GTX 1080 GPU to support

the simulation environment. Participants were recruited to test the different models on

the haptic device and determine which ones best replicated the identified system. Ethical

approval for experiments with human participants was obtained through the appropriate

local ethical bodies (McGill University IRB A03-M15-20A/ eRAP 20-03-019, Amendment

approved on 22 August 2022).
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F(z)

ILHOKBMW

Figure 3.2: Schematics of tissue force feedback models under consideration from left to right:
the Maxwell (MW), the Kelvin Boltzmann (KB), the blackbox higher-order (HO), and the
inverted linear (IL) model.

3.2.3.1 System Identification

In previous studies, the haptic device used in this work was employed for simulation of

the access-gaining step of an MI spine surgery [5, 29]. In this work the position of the tool

tip in the z-direction with respect to time was obtained from those previous trials conducted

with surgeons. The power spectral density of these curves is assessed using Welch’s method

to determine an approximate signal bandwidth for the system identification experiments.

Three broadband excitation signals were then generated to excite the tissue across the

bandwidth of interest. First is a Schroeder multisine signal

u(t) =
F∑

k=1

A cos (2πfkt+ ϕk) , (3.1)

with the Schroeder phases ϕk and the increments of the frequency fk [34]. Second is a chirp

signal

u(t) = A sin((at+ b)t), (3.2)

where A is the amplitude, and a and b are functions of the highest and lowest frequencies

of the signal [34]. Lastly, a band-limited Gaussian noise signal was generated in Python

using a Gaussian noise function and applying a low-pass filter [34]. These signals were used
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(a) (b)

Figure 3.3: (a) Setup for the system identification experiments with the tool tip for the
surgery fixed to the top and the tissue analogue fixed to the bottom and tool tip direction
indicated. (b) Experimental setup used by study participants in the simulation that consisted
of the game engine, questionnaire, haptic device, tissue analogue, and model test space.

because they can be designed to excite across the entire bandwidth of frequencies that were

determined from the power spectral density of the surgeon data.

The rubber tissue analogue with a small incision was mounted on an Instron for unilateral

material testing (ElectroPuls® E10000 Linear-Torsion, 95 Instron, MA, USA). The surgical

tool tip was fixed to the top of the MTS and the analogue was fixed to the bottom as in

Figure 3.3a. The input signal was the tool tip position in the z-direction moving throughout

the tissue as indicated by the broadband excitation signal, and the output signal was the

corresponding force response from the tissue analogue.

The two grey-box models were fit to the system as discrete-time transfer functions, where

ak and bk represent nominal parameter values, and z is associated with the z-transform. The

Maxwell (MW) model

H(z) =
b0

z − a0
, (3.3)

and the Kelvin Boltzmann (KB) model is

H(z) =
b1z − b0
z − a0

. (3.4)
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The Kelvin-Voigt model, which consists of a spring and dashpot in parallel, is not considered

in this study as it forms an improper transfer function

H(z) = b1z − b0. (3.5)

An inverted linear (IL) model was also included to provide a less realistic model for the soft

tissue system. This model was selected as it contained only a static spring and the force was

in the opposite direction from the other models. This model is built as a linear increase in

force going from 0N to 5N, which is the maximum static capabilities of the haptic device

motors.

The models are fit to the system using the autoregressive with exogenous variables (ARX)

model [35]. Where the output is represented as the linear transformation of a time window

of input (uk) and output (yk) points applied to a vector of time-invariant parameters



yN
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...
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
︸ ︷︷ ︸

x

. (3.6)

The original formulation for the ARX system identification problem uses a linear least squares

cost function [35]. However, a regularization term is added to the cost function as it improves

the numerical conditioning and may also encourage system stability by favouring smaller

norms of the solution. Additionally, the regularization term can improve the bias-variance

problem observed in classical system identification using the ARX model,

min
x

(
∥Ax− b∥22 + ∥Γx∥22

)
, (3.7)

where Γ = α1 is the Tikhonov matrix and α is the ridge regression coefficient that dictates
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to what extent a small solution norm is favoured [36]. The solution to equation 3.7 is

x =
(
A⊤A+ Γ⊤Γ

)−1
A⊤b. (3.8)

The Tikhonov matrix is created using a grid search. The grid is designed to be an evenly

spaced geometric progression along a logarithmic scale to give preference to smaller values of

α, where values of up to 100 were searched through. This design choice is made because at

high values of α the solution becomes essentially compressed to zero, due to the cost function

overvaluing a small solution norm.

To build the higher-order (HO) model the grid search is extended to three dimensions to

optimize the model hyperparameters. The other two dimensions represent the number of

terms in the numerator and the number of terms in the denominator of the discrete-time

transfer function of the form

H (z) =
bm + · · ·+ b1z

−m+1 + b0z
−m

1 + an−1z
−1 + · · ·+ a0z

−n
. (3.9)

The search space is confined to only consider biproper and proper transfer functions. For

each model several error metrics are evaluated as well as the conditioning and stability of

the resulting transfer function. The search is performed for each excitation signal for model

training with the remaining excitation signals used as testing datasets. The error metrics

that are evaluated for each model are the mean of the residuals

ȳ =
1

N

N∑
k=1

|yk − ŷk| , (3.10)

where N represents the number of measurements in y, fit ratio (FIT)

FIT =

1−

√
1
N

∑N
k=1 (ŷk − yk)

2

σy

× 100,

σy =

√√√√ 1

N

N∑
k=1

(yk − ȳ)2,

(3.11)
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and the percent variance accounted for (%VAF) [18, 37, 38]

%VAF =

(
1− var(ŷk − yk)

var(yk)

)
× 100. (3.12)

The normalized mean squared error (NMSE) for both the testing and training datasets is

also assessed [37, 38]

NMSE =
1
N
∥b−Ax∥22

1
N
∥b∥22

. (3.13)

In addition to the error metrics, uncertainty in the system and the solution are also evaluated.

The numerical conditioning is used because a small condition number represents when the

system is given a small relative input error it will result in a small relative output error.

Whereas a poorly-conditioned solution will amplify small relative input errors

cond(A) =
σmax(A)

σmin(A)
, (3.14)

where σmin(A), and σmax(A) represent the minimum and maximum singular values of the

A-matrix respectively [18]. The relative uncertainty (RU) of the parameters was evaluated

as well by using

Σ ≈ 1

N − (n+m+ 1)
∥b−Ax∥22

(
A⊤A

)−1
, (3.15)

where Σ has the diagonal elements σ2
i representing the uncertainty for each parameter [38].

The variables n, and m + 1 represent the number of terms in the discrete-time transfer

function numerator and denominator respectively. The maximum relative uncertainty (MRU)

is then the maximum of

RU =
σi

|xi|
× 100 (3.16)

associated with the solution parameters [39].

The best performing model is picked according to the %VAF since sorting according to

that metric yielded the best results from the other metrics as well. The best performing

blackbox model with reasonable numerical conditioning was then selected.
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3.2.3.2 Simulator Trials

The identified models were integrated into the haptic manipulator platform using the

discrete-time state-space representation as

xk = Axk−1 +Buk−1, (3.17)

yk = Cxk +Duk. (3.18)

Since higher-order models required more steps back in time, the higher-order the model, the

more sensitive it was to noise and uncertainty in measurement such as errors in encoder

measurements and small perturbations in end-effector movement. Therefore, a moving average

about the three previous points on the position measurements was implemented to prevent

chattering from the haptic device.

The integrated models were then tested with participants. The participants were recruited

from attendees of an international conference held by the Fascia Research Congress, as such

they were a selection of research scientists, practicing healthcare professionals, and individuals

with an interest in soft tissue composition and dynamics.

The experimental setup in Figure 3.3b consisted of a haptic device, the game engine, the

questionnaire, and the model test space. Participants were given up to 45 s to puncture the

tissue analogue without any force feedback provided from the haptic device, then they were

told to puncture the model test space in the same way. The force feedback in the test space

began approximately 40mm above the table to reflect the distance they would puncture in

the analogue. For each force feedback model the participants were given up to 30 seconds to

try the model then they filled out the corresponding question in the questionnaire.

The two questions in the survey that addressed the objectives of this study were as follows:

1. “The forces experienced during the simulation were similar to those of what I felt on

the rubber analogue";

2. “The model that most closely matched the rubber tissue analogue was:".

The first question was given for each model with a 5-point Likert scale ranging from strongly
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disagree-1 to strongly agree-5 [40, 41]. The second question was asked at the end of the

experiment so participants could select which model they thought performed the best. The

results from the questionnaire were evaluated using descriptive statics of mode and median

as well as non-parametric inferential statistical tests namely the Kruskal-Wallis H-test and

Mann-Whitney U-Test [42–44]. The results were considered to have statistical significance at

a p-value of < 0.05 and strong statistical significance at a p-value of < 0.001. A Bonferroni-

Holm correction was also applied for α < 0.05 to ensure statistical significance for multi-group

comparisons.

3.2.4 Results

3.2.4.1 System Identification

The frequency bandwidth from trials conducted with the surgical simulator was found

to be up to approximately 2.5 Hz. The chirp and Schroeder multisine were then generated

up to the Nyquist rate of 5Hz and the Gaussian noise was filtered to obtain only noise

up to the Nyquist rate as well. Therefore the signals were designed to excite the system

across a bandwidth of [0, 5] Hz. The signals were then programmed into the MTS at 100Hz,

which was the approximate sampling frequency of the simulation environment of the surgical

simulator. The chirp and Gaussian noise signals were sampled up to 10 s, but the Schroeder

multisine was sampled up to 100 s to capture the periodic nature of the signal. A segment

of each broadband excitation input signal and the corresponding output were presented in

Figure 3.4. Due to the length of the Schroeder multisine only a segment of the data was

plotted in Figure 3.4 for clarity.

After performing the optimization procedure defined in equation (3.7), the resulting error

metrics and optimized ridge regression coefficients were obtained. The results are presented

in Table 3.1. The models with the best FIT and %VAF were selected to program into the

haptic device, which were obtained from the models trained with the multisine data. The

resulting model outputs were then plotted in Figure 3.5.
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Figure 3.4: A segment [1, 7] s of the dynamic input (z) and output (Force) signals obtained
from the system identification experiments. (a) Chirp, (b) Gaussian noise, (c) Shroeder
multisine.
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Table 3.1: Error metrics obtained during the exhaustive search for the MW, KB and HO
models. The metrics obtained were: the condition number the percent variance accounted
for (%VAF), the maximum relative uncertainty of the parameters (MRU), the FIT ratio, the
mean residuals, the normalized mean squared error for the testing and training data and the
ridge regression coefficient (alpha).

Model Condition Number %VAF MRU (%) FIT Mean Residuals NMSE train NMSE test 1 NMSE test 2 Alpha

Multisine
MW 1.95 12.24 0.02 6.32 2.77 0.29 0.44 0.32 39.44
KB 29.38 81.16 0.03 56.59 1.25 0.04 0.05 0.06 0.27
4th order 2086.15 82.64 4.99 58.33 1.24 0.03 0.03 0.05 0.02

Gaussian Noise
MW 1.92 2.09 0.11 1.05 1.65 0.05 0.07 0.09 0.48
KB 44.46 66.16 0.24 41.83 0.83 0.02 0.05 0.06 0.19
4th order 2734.23 67.44 613.42 42.94 0.78 0.02 0.03 0.05 0.05

Chirp
MW 1.56 6.92 0.43 3.52 3.13 0.35 0.43 0.33 17.48
KB 27.68 70.21 0.44 45.42 1.74 0.06 0.03 0.04 0.00
5th order 3481.04 72.55 2428.57 47.61 1.72 0.04 0.03 0.03 0.03
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Figure 3.5: A segment of multisine data from the tissue force response between [1, 7] s
compared to the corresponding output from the Maxwell (MW), Kelvin Boltzmann (KB),
and higher-order (HO) models.
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Table 3.2: On the left side are the descriptive statistics of the Likert scale data as well as
the percentage of participants (N = 45) who selected that model as the best performing once
completing the experiment. On the right are the p-values from the Mann-Whitney U-test
between the model ratings from study participants.

Median Mode Mode Count % Best MW Model KB Model HO Model
IL model 2 2 16 4.40% p <0.05 p <0.001 p <0.001
MW model 3 3 15 31.10% - p <0.05 p <0.05
KB model 4 4 14 26.70% - - 0.8
HO model 4 4 16 37.80% - - -

3.2.4.2 Simulator Trials

There were a total of 45 participants in the study. Of the study participants 75.6% self-

classified as clinicians, 15.6% had practiced dry needling, 13.3% had practiced acupuncture,

and 93.3% had practiced palpation. Additionally, 11.1% of participants reported having less

than 5 years experience in their field, and 35.6% reported having over 20 years experience in

their field.

The Likert scale was treated as ordinal data, as such the descriptive statistics were the

median and mode [42, 43]. Table 3.2 summarized the results from the descriptive statistics

obtained from the study population (N = 45) and the percentage of participants who rated

that model as the best performing. The highest percentage of individuals rated the HO model

as the best. The median and mode for the KB and HO models were the highest as well, with

the mode count being higher for the HO model than the KB model.

The Kruskal-Wallis H-test yielded a p-value < 0.05, allowing the null hypothesis to be

rejected indicating that the population medians between all groups were not equal. Testing

between groups using the Mann-Whitney U-test yielded the p-values in Table 3.2.

The results indicated significant differences in the ratings between the linear model to the

MW model, and the KB model. The KB model and HO model did not show statistically

significant differences in their population medians. After the Bonferroni-Holm correction was

applied results remained statistically significant for α < 0.05.
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3.2.5 Discussion

The purpose of the study was to simulate force feedback of soft tissues in the access

gaining step of an MI spine surgery. This was accomplished by first identifying the force

feedback from a tissue analogue using the dynamic input and output signals seen in Figure 3.4.

These signals were designed to excite the tissue system across a bandwidth of up to 2.5

Hz. This bandwidth was determined from the power spectral density of the position data

obtained from the haptic device from simulations conducted with surgeons during the access

gaining step of the MI spine surgery. The limit represents the maximum frequency at which

the surgeons would excite the tissue resulting in a force response. The excitation signal

that produced the best error metrics in the system identification process was the Schroeder

multisine. This signal was longer than the others to capture its periodic nature. The longer

length of the signal may have contributed to the better error metrics that were observed.

From the input and output data organized into equation (3.6) the MW, KB, and HO

models were identified using equation (3.8). The final models compared to the original data

produced the best error metrics from the HO black box model. This was expected since the

HO blackbox model had the highest number of elements that allows for the most tuning in

the parameters to achieve the closest fit to the original data. Additionally, since the behaviour

being modelled is not simply the viscoelasticity of the tissue but also the force feedback

dynamics of the access-gaining step of the MI spine surgery, the added terms in the HO

model may allow for additional tool-tissue interaction dynamics to be modelled in addition

to the viscoelastic tissue behaviour. However, the HO model increased the accuracy of the

overall results only slightly compared to the KB model. When referencing Table 3.1 the HO

model performed the best when considering NMSE (both testing and training), %VAF, FIT,

and the mean residuals compared to the MW and KB models. However, the HO model had

the poorest conditioning and relative uncertainty. This means that while the HO model may

have provided a better fit to the dynamic behaviour, the parameter values may be more

uncertain and be easily influenced by errors in the system identification experiments. The
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HO model better satisfied the objectives of the experiment, however, with minimal tradeoff

in accuracy, the KB model provided a less uncertain estimation of the system’s dynamic

behaviour. Overall, the quantitative metrics from the system identification experiments

demonstrate that the linear dynamic models can be fit to the input and output data with a

reasonable amount of accuracy and uncertainty.

The final objective was to determine if the models needed to accurately replicate the

dynamic behaviour of the tissue when used in a surgical simulator. The results in Table 3.2

indicated significant improvement in the ratings going from the IL model to the MW model,

and the KB model. The KB model and HO model did not show statistically significant

differences in their population medians. However, it can be noted that in Table 3.2 the

mode count was higher for the HO model and the percentage of people who rated it the best

was the highest. This may indicate that the HO model could have been preferred over the

others. Additionally, there may be other factors that influenced the selection of one model

over another. For example, some participants noted that higher forces in the haptic device

felt mechanical, despite those forces being closer in magnitude to those experienced in the

tissue analogue. This could explain why some selected the MW model as their preferred

choice, as it demonstrated the dynamic behaviour of the tissue but at lower magnitudes than

the KB or HO models. It should also be noted that the IL model had the lowest percentage

of people who rated it as the best, indicating that the implemented/selected haptic feedback

model should mimic the behaviour of the tissues in order to provide realistic tactile and

force feedback during surgical simulator training. The qualitative results validate the system

identification approach using dynamic signals and models when implemented into a spine

surgical simulator.

There were some limitations to the study. Firstly, the focus of this study was to evaluate

dynamic models of the tissue system in a spine surgical simulator, however this work also

utilized a static IL model , in addition to the dynamic MW, KB, and HO models. The

IL model was used to compare the responses from participants for a less representative
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tissue model to the ones built to be representative of the tissue using system identification.

Extending beyond the contributions of this work, future studies should examine additional

models that do not include components that evolve with time, but that are more representative

of the tissue behaviour than the IL model, to evaluate how the performance compares between

static models and dynamic ones. Secondly, the models used for grey-box and black-box

identification were assumed to be linear dynamic equations, however, previous studies have

found that real soft tissue behaviour may be modelled as nonlinear [19, 45]. Additionally, the

soft tissue was modelled as uniform, however, multiple different soft tissues are penetrated

during spine surgeries which may have varying material properties [46]. Using a tissue

analogue for the experiments allowed both objectives of the study to be addressed. However,

using system identification methods with animal or cadaveric models in future studies may

provide more insight into the non-linear behaviour and may indicate any changing properties

of the tissue throughout the access-gaining step. Additionally, models identified from animal

or cadaveric tissues could also be compared to the ones developed from rubber analogues to

see how the force feedback dynamics compare between different materials used in surgical

training. Lastly, the force feedback in the study was restricted to a single degree of freedom

to ensure consistency in the motion of the participants when using the haptic device to

evaluate the models. However, extending the models to multiple degrees of freedom could

provide additional insight on the overall behaviour of the tissue and could allow for the

opportunity to model its anisotropic properties [47].

Overall, the contributions of this work demonstrated that the better the model captured

the dynamic behaviour of the signals in Figure 3.4 dictated by the error metrics in Table 3.1,

the more realistically it was perceived by the operator within the limitations of the results

presented in Table 3.2. The objectives were validated both quantitatively from the numerical

results in the system identification experiments, and qualitatively using the results from the

surveyed study participants. In a broader context this study demonstrates that to adequately

model the force feedback of soft tissues for surgical simulation it may be necessary to consider
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the dynamics. Additionally, by modelling a dynamical equation, the results have real physical

interpretations that may make the implementation of the models tractable in other related

systems. With further work on understanding the physical interpretation of the model

parameters the models could potentially be tuned to the force feedback dynamics of soft

tissues for other surgical simulators as well. In order to create such scalable systems they

may need to first be accurate to the real force feedback dynamics as outlined in this study.

Modelling the force feedback dynamics involves both generating signals along a bandwidth

of frequencies to realize the system model, and also ensuring the system models themselves

contain components that evolve with time.

3.2.6 Conclusion

This study modelled tissue force response during the access-gaining step of an MI spine

surgery using classical system identification techniques. The models were programmed into

a simulation and rated by participants. The results demonstrated that the tissue force

response may need to be modelled using dynamic input and output signals. The results from

the experiments that were conducted with participants demonstrate that the models may

also need to accurately replicate the dynamic behaviour of tissue to provide realistic tactile

feedback when programmed into a haptic device for surgical simulation. Overall, the study

demonstrated the benefits of both accurate and dynamic models to be used in the simulation

of the access-gaining step of an MI spine surgery.
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3.2.9 Summary

Surgical simulators offer a means to train surgical skills at a low cost. This study focuses

on developing and evaluating force feedback models for soft tissue during the access-gaining

step of a minimally invasive spine interbody fusion surgery. During the access-gaining step

the surgeon relies almost entirely on somatosensory feedback, so the force feedback models are

important in a simulation setting. Previous studies have focused largely on static methods

and this study examines force feedback tissue dynamics using system identification.

The models were built using data collected from tests with a tissue analogue. From the

input and output signals, three models were fit to the system. Two models were grey-box

models, the Kelvin Boltzmann (KB) and Maxwell (MW) models, which were selected based

on the viscoelastic properties of the tissue. The third model was a black-box higher-order

(HO) model that was selected based on the dynamic equation with the best error metrics.

The systems were identified using classical system identification and Tikhonov regularization.

The identified models were integrated into a haptic device and tested with study participants

who rated them based on how they matched the behaviour of the rubber tissue analogue. The

study participants were a selection of research scientists, practicing healthcare professionals,

and individuals with an interest in soft tissue composition and dynamics.

Several error metrics, including percent variance accounted for (%VAF), were used to

determine solution accuracy. Additionally, solution uncertainty was characterized using

matrix conditioning and parameter covariance. The highest %VAF was observed as 82.64%

when the tissue is modelled as the HO model, but it also had the highest condition number

and parameter covariance. There was a total of 45 participants who tested the models in the

study. The highest percentage of individuals rated the HO model as the best. The median

and mode for the KB and HO models were the highest as well, with the mode count being

higher for the HO model than the KB model.

The best error metrics were from the HO black box model. However, the HO model

increased the accuracy of the overall results only slightly compared to the KB model, while
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having higher numerical conditioning and parameter uncertainty compared to the KB model.

This means that while the HO model may have provided a better fit to the dynamic behaviour,

the parameter values may be more uncertain and be easily influenced by errors in the system

identification experiments. While the KB and HO models had the same median ratings, the

mode count was higher for the HO model and the percentage of people who rated it the best

was the highest. This may indicate that the HO model could have been preferred over the

others by the study participants. Overall, the contributions of this work demonstrated that

the better the model captured the dynamic behaviour of the signals, the more realistically it

was perceived by the operator.
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Chapter 4

Basin of Attraction Estimate for
Analyzing Manual Materials Handling

Tasks

4.1 Framework of Additional Study

The previous study in Chapter 3 focused on applying concepts from systems and control

engineering to surgical interventions for LBP specifically in the context of MI LIF surgical

simulation. However, ideally preventative measures for LBP would be utilized to delay or

prevent surgical intervention. This study focuses on characterizing manual materials handling

(MMH) tasks, which is relevant to the objectives of this thesis as MMH tasks impose high

forces on the lower back that can lead to pain. As discussed in Chapter 2, a factor that can

cause low back pain (LBP) is incorrect technique during occupational lifting. Therefore, a

preventative measure for LBP could be to improve lifting techniques used in MMH tasks.

Adequately characterizing lifting and depositing could provide a means of evaluating the

technique used by individuals who regularly do MMH tasks and prevent occupational hazards.

The depositing of MMH tasks was characterized in this study using a basin of attraction

(BOA). The results from this study are preliminary and the methodology could provide a

framework that could be utilized in future work. This work is presented as an alternative

to existing work that evaluates stability about a static EP, as well as work that utilizes

51



Lyapunov exponents. The use of a basin of attraction (BOA) to quantify perturbations

about a trajectory for MMH is a novel framework presented in this additional study. Ethics

approval was obtained from necessary review boards (see Appendix A). This work was made

in collaboration with Dr. Larièviere and retrospectively utilizes data obtained from previous

studies [1, 2]. As this is preliminary work, these results are unpublished.

4.2 Additional Study: Basin of Attraction Estimate for the Analysis

of Manual Materials Handling Tasks

4.2.1 Abstract

Introduction: In this work, BOAs were used to evaluate the depositing techniques of

individuals performing manual materials handling. Methods: Two lifters were evaluated,

one novice and one expert. The BOAs were determined for each subject using Lyapunov

systems theory and sum of squares programming. Results: It was found that the novice

lifter had changes in the size of their BOAs when the mass they were depositing changed. It

was also found that there were differences in the size of the BOA between expert and novice

lifters. Conclusion: These results indicated that the novice lifter may select trajectories

about their centres of mass that make them more susceptible to perturbations than exert

lifters. These preliminary results are limited, but could be promising for future work related

to this study.

4.2.2 Introduction

Lifting tasks in MMH create high stresses on the back, making those who do occupational

MMH vulnerable to chronic LBP. In particular, incorrect lifting techniques have been identified

as a potential cause of LBP, resulting in occupational hazards if workers do not adopt adequate

lifting strategies [3, 4]. Depositing objects with heavy masses can also cause strain on the

back, which may lead to injury [5]. Spine stability is critical for the ability to bear loads
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[6]. Therefore, characterizing spine stability during lifting is pertinent for preventing LBP

in workers doing MMH. Previous studies have used data from expert and novice lifters to

examine differences in lifting technique, with the expert lifters having differences in technique

from the novice lifters [1, 2].

Spine stability has multiple definitions depending on context. The mechanical definition

of stability describes how the spine and its associated systems (e.g., passive and active

components, and the neurological system) respond to a perturbation [7]. By this definition,

the spine is considered stable when, in response to a perturbation, it is able to return to

approximately the same original position [7]. If it is able to return to its exact position it is

considered asymptotically stable [7]. In comparison, if it is unable to return to its original

position then it is considered unstable [7]. This definition aligns with Lyapunov stability as

defined in control theory [8]. As a result, the stability of the spine has been investigated

about an equilibrium point using concepts from control theory. Xu et al. investigated

optimal control strategies of the spine during an unstable seated balance task. During this

task, a subject is seated on a semi-circular ball, and is subjected to a perturbation where

they attempt to return to a neutral position [9]. The authors modelled this behaviour by

evaluating the linear quadratic regulator (LQR) controller cost using the H2 norm [9]. While

this study may have proposed a potentially effective framework for defining spine stability

about equilibrium point, it did not consider stability along a trajectory. Since MMH tasks

are concerned with movement along a trajectory, this framework proposed in the previous

study could be improved by evaluating the movement along a trajectory instead.

Characterizing spine stability along a trajectory provides a means of modelling nonlinear

system behaviour while taking into consideration dynamic effects such as inertia. Previous

literature has characterized stability along a trajectory using Lyapunov exponents [10]. The

Lyapunov exponents have been evaluated using repetitive tasks such as unweighted repetitive

trunk movements and repetitive lifting [10–12]. The maximum Lyapunov exponent was then

measured from the divergence of position, velocity, and acceleration between repetitive tasks.
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A negative Lyapunov exponent indicates a system that converges to the trajectory and a

positive Lyapunov exponent indicates that it diverges [10]. While the Lyapunov exponents

effectively characterize divergence or convergence of the nonlinear system, they have an

abstract interpretation. A method with a more intuitive interpretation in physical space may

be more useful in practice.

Another way to characterize stability along a trajectory is using a basin of attraction

(BOA). Intuitively, a BOA for a system represents how much the system can be perturbed and

still converge to a goal region, referred to as the goal set. BOAs have been previously used to

assess controller robustness and generate motion primitives for nonlinear autonomous systems

[13–15]. BOAs have more recently been applied to biomechanical tasks, particularly to the

sit-to-stand task [16, 17]. Holmes et al. validated these BOAs using cable-pull experiments

to demonstrate their effectiveness for quantifying perturbations along a trajectory for the

sit-to-stand task [16]. This method requires a system model to estimate the dynamics and

has been used effectively with inverted pendulum models to represent centers of mass [16,

17]. Additionally, this method requires that there be a controller, with studies assuming a

finite-time horizon LQR control structure [16, 17]. This is the finite-time horizon case of the

controller that has previously been applied by Xu et al. to the spine about an equilibrium

point [9]. The BOA has yet to be applied as a means of characterizing lifting strategies

during MMH to quantify spine stability along a trajectory.

This work serves as a proof of concept for the use of BOAs to quantify spine stability

along a trajectory during an MMH task. The objectives of this preliminary study are:

• to build a simple model for trunk movements during the depositing stage of MMH;

• to define a BOA for the trunk movements along the trajectory; and,

• to compare the BOA from a novice and an expert lifter.

The objectives were addressed by evaluating the trajectories of a novice and an expert lifter

depositing a box. The subjects (N = 2) were modelled using a mass inverted pendulum about

their centers of mass (COM). The dynamics were then controlled to the trajectory using
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finite-time horizon LQR to initialize the BOA. It is hypothesized that there will be differences

in the BOAs for each task and between novice lifters and expert lifters. Specifically, it is

expected that novice lifters will be more susceptible to perturbations than expert lifters.

4.2.3 Methods

The data used in this study was obtained from previous studies on MMH, where subjects

were expected to handle boxes of masses between 15 - 23 kg [1, 2]. The original study

methods are summarized as follows. A group of male novice lifters and a group of male

expert lifters were recruited based on level of experience in occupational MMH and incidence

of LBP. The lifters were asked to perform MMH while wearing optical markers to study

their biomechanical movement. The MMH was further subdivided into three tasks: lifting,

carrying, and depositing boxes.

Leveraging the data presented in the study by Plamondon et al., the additional study

presented in this dissertation selected two participants, one novice and one expert lifter, for a

preliminary analysis [1]. The MMH optical marker data was used to build trajectories to

perform this analysis. An inverted pendulum was used to model the lifters about different

centers of mass as depicted in Figure 4.1.
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Figure 4.1: The inverted pendulum model of the total body center of mass for flexion/extension.
Figure modified from [18].

The simple damped pendulum dynamics take on the form of

mℓ2θ̈(t) + bθ̇(t) +mgℓ sin θ(t) = u0(t), (4.1)

where ℓ is the length of the pendulum, m is the mass of the pendulum, b is the damping

coefficient, and g is the gravitational acceleration. The length of the pendulum was de-

termined from the average Euclidian distance along the subject’s trajectory, and the mass

was determined from anthropometric data and subject mass [19]. The pendulum states are

then x(t) =
[
θ(t) θ̇(t)

]T
. Formulating the BOA using the pendulum model then has the

following workflow: building the state trajectory, fitting the model to the trajectories with a

feedforward term and a finite-time horizon linear quadratic regulator (LQR), and computing

the BOA computation.
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4.2.3.1 Trajectory Generation

The trajectory was generated by calculating the COM from optical marker data. Markers

were placed at different landmarks along the body with a subset of those points defining

the vertices of specific segments of the torso, as in [19]. The associated masses were then

calculated from subject mass weighted with anthropometric data, similar to [16, 19]. To

model the torso, three centers of mass were defined: the thorax, the abdomen, and the pelvis.

As shown in Figure 4.2 the thorax is between C7/T1 - T12/L1, the abdomen is between

T12/L1 - L4/L5, and the pelvis is between L4/L5- the greater trochanter [19].

Abdomen

Thorax

Pelvis

C7/T1

Manubrium

Xyphoide Process

T12/L1

Shoulder (L)Shoulder (R)

Sacrum

Hip (L)Hip (R)

Front

Back

Figure 4.2: The markers on the torso and their corresponding segments: thorax, abdomen,
and pelvis. Figure modified from [20].
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The COM trajectories were segmented according to the three tasks in MMH: the lift, the

carry, and the deposit. The end of the lifting task was segmented using the first toe off the

ground and beginning of the deposit task was segmented using the minimum velocity of the

wrist holding the box. The carrying task was the task between the lift and the deposit. In

this study a single expert and a single novice were selected to evaluate the depositing task.

The 3D trajectories were then projected onto the xz- and yz-planes to accommodate

the planar pendulum model. The trajectories were then transformed to the corresponding

pendulum states of θ(t), θ̇(t) forming reference trajectories (x0(t)). Each trajectory was

interpolated to be 1000 points using cubic spline interpolation to non-dimensionalize time.

This was done to allow comparison of BOA sizes when they are the same length [16].

4.2.3.2 Feedback Controller

Once the reference trajectories (x0(t)) were established, a reference control input (u0(t))

was built as a feedforward term using the inverse dynamics. A finite-time horizon LQR

feedback controller was then calculated to adjust for deviations from the feedforward term

[21]. The feedback controller was then generated using Euler integration of the differential

Riccati equation (DRE) from the terminal state weighting matrix Sf = Qf [21]

−Ṡ(t) = Q − S(t)B(t)R−1BTS(t) + S(t)A(t) + ATS(t), (4.2)

where A and B are the time-varying linearization of the dynamics specified by

x(t) = x(t)− x0(t), u(t) = u(t)− u0(t),

ẋ(t) ≈ A(t)x(t) + B(t)u(t).
(4.3)

The Q and R matrices are the state weighting and control input weighting matrices, respec-

tively. The state weighting and control input weighting matrices were tuned to both control

the pendulum to the state trajectories. These matrices were also tuned to ensure that the

BOA was within the same order of magnitude as the original states, as they implicitly define

the goal set. They were kept the same between both subjects and their corresponding COMs.
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The feedback law was then implemented as

u∗(t) = −R−1BT (t)S(t)x(t) = −K(t)x(t). (4.4)

4.2.3.3 BOA Computation

The BOA is solved using a sum of squares (SOS) optimization with free polynomial

multiplier terms. One application of SOS programming is to determine whether a polynomial

is positive. A positive polynomial can be given any arbitrary input, and yield a positive

output [22]. In the case of this work, the search for SOS polynomials can be rewritten as a

semi-definite program, which was solved using MOSEK, a commercial semi-definite program

solver [23]. A feasible solution to the SOS problems provides a certificate of positivity [22].

This work was solved in Julia, in particular by using the SumOfSquares library [24, 25].

The polynomial multiplier terms (labelled as Li in this work) are added to enforce bounded

Lyapunov constraints using the generalized S-procedure. The generalized S-procedure takes

on the form of

q(x) := p(x)−

r(x)︷ ︸︸ ︷
Neq∑
i=1

Leq,i(x)geq ,i(x)−
Nineq∑
j=1

Lineq,j(x)gineq,j(x) is SOS,

Lineq ,j(x) is SOS,∀j ∈
{
0, . . . , Nineq

}
(4.5)

where Leq,i(x) and Lineq ,j(x) are free polynomial terms that exist to modify polynomial equali-

ties and inequalities. When the equalities and inequalities are geq,i(x) = 0 and gineq,i (x) ≥ 0,

it implies that for the q(x) to be SOS, p(x) must be positive since r(x) is negative [14,

22]. The generalized S-procedure thereby allows additional nonnegativity constraints to be

incorporated into the SOS program. The BOA can then be computed using the following
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optimization problem, obtained from [13–15]

maximize
ρ(ti),Li(x̄),

N∑
i=1

ρ (ti)

subject to − V̇i(x̄) + ρ̇ (ti) + Li(x̄) (Vi(x̄)− ρ (ti)) is SOS.

(4.6)

This optimization problem scales the bounds of the invariant set approximated by the solution

to the DRE at each timestep by a coefficient ρ, as Si/ρi. The optimization is non-convex,

so it was solved as a bilinear alternation problem. The bilinear alternation problem starts

by finding a feasible polynomial multiplier for each point along the trajectory. This is done

by solving equation (4.6) with fixed values for ρ(t). The ρ(ti) is decreased as a geometric

progression until a feasible solution is returned [26]. Then the maximization is solved for

each feasible point, with the modified ρ(ti) from the geometric progression to approximate ρ̇

and the feasible Li. For both steps Vi is defined as

Vi(t, x̄) = (x − x0(t))
TS(t)(x − x0(t)) = x̄TS(t)x̄, (4.7)

where S(t) can be found by solving equation 4.2 [13–15, 21].

4.2.4 Results

The solution from the finite-time horizon LQR was expanded using the SOS bilinear

alternation to produce Figure 4.3 for the abdomen COM of an expert lifter. The BOA in

Figure 4.3 expands away from the goal set, while staying within the order of magnitude of

the initial solution. For each subject, and each COM, the solution was produced across 1000

points using two alternations of feasible expansion points [15]. The output of the optimization

is a ρ(t) that can scale the solutions to Equation 4.2
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Figure 4.3: Finite-time horizon LQR solution with expanded BOA over the abdomen COM
trajectory projected onto θ, θ̇.

The trajectories were projected onto the yz-plane (flexion/extension) and the xz-plane

(lateral bending) then transformed to the θ, θ̇ region of state space. For the expert and

novice lifters the BOA was determined for the depositing task in flexion/extension and lateral

bending. The remaining BOAs from the expert subject are shown in Figure 4.4.
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Thorax

Abdomen

Pelvis

Flexion/Extension Lateral Bending

𝜃
𝜃

𝜃

Figure 4.4: BOA around trajectories of each COM of an expert lifter: thorax, abdomen,
pelvis. BOAs are projected onto the θ, θ̇ region of state space. Figure modified from [20]

The average BOA cross-section was determined for each COM for both the novice lifter

and the expert lifter. The percent difference of the average cross-sectional area was determined

between an experienced lifter and novice lifter. The percent difference was also found for each

experience-level when the mass of the box was decreased from 23 kg to 15 kg. The results of

the percent differences are presented in Table 4.1.
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Table 4.1: Percent difference in average cross-sectional area of the basin of attraction for
each COM, in the depositing task, between an expert and novice, and for a decrease in mass
(DM) from 23 kg to 15 kg

COM Lateral Bending (%) Flexion/Extension (%)

Expert and Novice
Thorax 2.27 -0.02
Abdomen 2.92 -0.09
Pelvis 4.44 -0.81

DM: Expert
Thorax 0.04 0.07
Abdomen -0.07 -0.10
Pelvis -0.87 -0.13

DM: Novice
Thorax 1.19 -0.51
Abdomen 5.02 -1.55
Pelvis 7.51 -2.84

4.2.5 Discussion

This study examined three COM trajectories during the depositing stage of an MMH task.

The hypothesis was that novice lifter will select trajectories about their COMs that are more

susceptible to perturbations than the expert lifter. As this is a preliminary study, subjects (N

= 2) were modelled using a simple mass inverted pendulum. The mass was defined at their

thoracic, abdominal, and pelvic COMs. The finite-time horizon LQR was then used to fit

the dynamics to the depositing trajectories, and the solution provided an initial guess for the

BOA computation. From the results, a feasible ρ was obtained that expanded the finite-time

LQR solution at each point from the initial conditions to the goal set. In Figure 4.3, the

BOA expanded within the order of magnitude of the initial guess and the trajectory states,

demonstrating a potentially reasonable solution to the expansion.

The average cross-sectional areas (aCSA) of the BOAs were then evaluated to determine

the differences between the novice and expert lifters, and the response to different masses

that were used in the depositing task. A BOA is defined by a terminal goal, in this case, that

represents the region where the box is deposited. A larger BOA indicates that the subject

can be perturbed more while still being able to reach the terminal goal, while a smaller
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BOA indicated that a subject can be perturbed less. The percent differences between aCSAs

are summarized in Table 4.1. The largest differences in the aCSAs was observed in lateral

bending. In particular, the aCSAs were larger for the expert than the novice, with the percent

difference being as much as 4.44% in the pelvic COM. This indicates that the expert during

the depositing task could withstand larger perturbations than the novice on average along

the trajectory. Additionally, decreasing mass lead to almost no change in the aCSA of the

BOA for the expert, but a larger change in that of the novice particularly in lateral bending.

In this case, the aCSA increased upon a decrease in mass, with up to a 7.51% increase in

size. This indicates that the novices may be more susceptible to changes in mass than the

expert lifters.

While these preliminary results are promising, they have several limitations. The system

dynamics are under-constrained, which could be constrained further through more rigorous

experimentation and system identification. The mass inverted pendulum models are simple

compared to existing models of regions of the torso, which could be leveraged in future studies

[27]. A model that depends on states in physical space, instead of phase space, would provide

a more intuitive representation of the BOA as well, as has been done with other autonomous

systems [14]. Some dynamics may also be lost when using a planar pendulum, model, so

extending the model to three dimensions could capture more system behaviour as well. The

parameters of the finite-time horizon LQR were also tuned to the problem, although using a

controller that is identified from the data could provide a more realistic representation of the

controller inherent to the subject [28]. Additionally, actuator limits could also be determined

experimentally based on limitations of human movement during the task and integrated

into the cost function to further constrain the problem [14]. Actuator limits and improved

models would provide a more realistic representation of the closed-loop system. Moreover,

this additional study used a small sample size, so increasing the number of participants

could provide statistical measurements of uncertainty and significance to draw conclusions

from. Finally, while the SOS programs certify that the BOAs form invariant sets around
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the trajectories, additional validation studies could be performed in future work. Studies

similar to the cable-pull experiments by Holmes et al., which perturbed subjects along their

trajectories would validate the use of BOAs to measure stability [16]. The BOAs could also

be validated numerically in future studies using Monte Carlo simulations to ensure that they

are adequately capturing the trajectories that converge to the goal and to test the sensitivity

of different model assumptions. Overall, the preliminary results demonstrate potential but,

with additional work, a more comprehensive definition of the BOA for the trunk could be

defined.

4.2.6 Conclusion

In conclusion, this preliminary study demonstrated a successful implementation of BOAs

for evaluating the stability of trunk COMs along a trajectory. While there are limitations that

leave many opportunities for future work, the results demonstrate that there are potentially

differences in BOA shape depending on the expertise of the lifter.
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Chapter 5

Discussion

The spine is a system that relies on multiple structures to maintain stability and mitigate

pain. Low back pain (LBP) can occur from a variety of factors including degenerative diseases

of the spine and environmental and genetic factors. LBP is a leading cause of disability and

workplace absence, and being able to prevent or alleviate LBP is an active area of research.

LBP can be prevented by mitigating environmental factors that lead to pain and encourage

a healthy spine. In the event that preventative measures are not effective, then surgical

intervention is often prescribed to minimize the major symptoms associated with LBP.

Surgical intervention of LBP often takes the form of a minimally invasive (MI) lumbar

interbody fusion (LIF) procedure. However, surgical errors can lead to complications during

treatment that can cause longterm harm to the patient[25, 26]. High-fidelity simulators use

realistic tissue force feedback when the surgeon is first gaining access to the target structure

for surgery. During this time, the surgeon receives almost no visual cues and relies on the

tactile feedback from the soft tissue. A high-fidelity surgical simulation platform that provides

comprehensive surgical training can help reduce complications from difficult steps in the LIF

procedures.

Preventative measures can be improved by by determining comprehensive evaluation

metrics for activities with a high likelihood of causing LBP. One such activity is manual

materials handling (MMH), which when done with incorrect technique, has a high incidence

of LBP [20]. MMH can be characterized in terms of the lifting trajectories. This is different
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from other biomechanical tasks, such as the unstable seated balance task, which are concerned

with spine stability about a static EP [96].

Techniques adopted from systems and control engineering can be leveraged to model the

dynamics that govern the spine during lifting, and the tissues appended to the spine that are

navigated during surgical treatment. These techniques from systems and control engineering

were leveraged in this thesis and resulted in the following novel contributions to the research

field:

• Chapter 3: dynamic soft tissue models of the spine were developed using system

identification (ID) and were implemented in a LIF surgical simulator. The novel

contribution of this study was using and validating dynamic models and signals to

represent the force feedback dynamics of soft tissues in a spine LIF surgical simulator.

To the author’s knowledge, this is the first study to provide a framework for this

procedure that utilizes both dynamic signals and dynamic models for this procedure.

• Chapter 4: the stability of trunk movements for MMH tasks along a trajectory were

examined using a basin of attraction (BOA). The novel contribution of this additional

study was that it provided a framework for characterizing dynamic stability of trunk

movements during MMH tasks using BOAs. To the author’s knowledge, this is the first

application of BOAs to characterize the MMH task.

The specific objectives addressed in the studies presented in this thesis are summarized in

Table 5.1. The discussion on methodologies and limitations related to those objectives are

described in Chapters 3 and 4. Beyond the specific objectives, both studies exploited dynamics

and optimization to characterize systems related to the spine. In the first manuscript, this

was accomplished by identifying dynamic viscoelastic models with least squares optimization.

In the additional study, this was accomplished using SOS programming to define a BOA

about a trajectory. The topics of dynamics, numerical computing, and optimization were

discussed with reviewers of the first manuscript, and were integral to both works. These

topics are further elaborated on below.
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Table 5.1: Objectives addressed in this thesis. The manuscript explored modelling of spine soft
tissue force feedback while the additional study modelled trunk stability along a trajectory.

Modelling spine tissue force feedback Modelling trunk stability along a tra-
jectory

• to identify the tissue force feedback re-
sponse as the dynamic systems outlined
in Figure 3.2 and,

• to examine the tradeoff between the
accuracy of the force feedback models
with respect to the tissue dynamic be-
haviour, and how the models are rated
by the operator when programmed into
a surgical simulator.

• build a simple model for trunk move-
ments during the depositing stage of
MMH,

• define a BOA for the trunk movements
along the trajectory and,

• compare the BOA from a novice and an
expert lifter.

Modelling system dynamics is an important component of both works showcased in this

thesis, as dynamics play a key role in describing many systems. Thus, techniques from systems

and control engineering are often focused on characterizing a system’s dynamics. The first

manuscript is concerned with exploiting the property of viscoelasticity to identify soft tissue

force feedback models. The system identification procedure performed in the first manuscript

inherently identifies dynamic models. Since the identified models had components that depend

on time, and thus frequency, they can be categorized as dynamic models. Additionally, the

input signals used to identify these models were designed to excite the tissue analogue across

a bandwidth of frequencies to capture the behaviour of the frequency-dependent components

of the model. This was presented as an alternative to procedures in surgical simulation and

surgical robotics that do not identify dynamic models and identification procedures that use

static signals [56, 57, 97]. The additional study presented in this thesis is concerned with

dynamics as well. Spine stability is often characterized in terms of a static equilibrium point

[77, 96]. However, this work presents a novel way of characterizing trunk movements along

a trajectory using a BOA. Quantifying trunk movements in terms of perturbations along a

trajectory provides a novel way of representing MMH tasks that could not be done similarly

about a static equilibrium.
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In addition to dynamics, both of the studies presented in this thesis exploit optimization

and numerical computing techniques. Despite many recent efforts in imaging and medical

technology, many behaviours of the human body cannot be easily observed [77]. Work

in systems and control theory implement optimization procedures to generate models and

characterize systems from data. In this work, optimization and numerical computing provided

a means to determine information from data that is otherwise not easily determined through

experimentation alone. In the first study, system identification was employed to model

the complex interaction dynamics between the surgeon and soft tissue that results in force

feedback. System identification was able to capture the interaction dynamics by utilizing

least squares optimization to build dynamic system models. The viscoelastic parameters of

materials can be determined purely experimentally through several material testing procedures

[98]. However, the methodologies of this study were designed to model the dynamics of the

access-gaining step of the surgery specifically. The tool tip feedback during the surgery is

not simply a function of the viscoelasticity, but also includes material fracture, deformation,

and friction which are difficult to determine from mechanical testing alone [99]. Adjustments

to the identification cost function were made to incorporate Tikhonov regularization, which

encourages system stability and numerical conditioning. Hyperparameter optimziation was

used to identify the weight of regularization term. Regularization was particularly important

for the higher order (HO) model which was a fourth order biproper transfer function, as it

helped improve the numerical conditioning for the higher number of force and system elements.

Therefore, least squares and corresponding regularization techniques played an integral role

in adequately modelling the force feedback dynamics of the soft tissue. In the additional

study, BOAs were used as means of assessing the trunk’s response to perturbations along a

trajectory. Perturbations about an equilibrium point (EP) have been measured for postural

sway about a person’s COM using only data obtained from experiments, called a cone of

economy [100]. The cone of economy has been clinically relevant for demonstrating sway

about an EP, but not for perturbations along a trajectory [101]. Additionally, stability along
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a trajectory has been quantified from experimental data, without implementing optimization

procedures, using Lyapunov exponents [82]. However, the Lyapunov exponents also do not

give an indication to how much an individual can be perturbed along the trajectory, they

measure the rate of separation between closely diverging trajectories. Quantifying the extent

to which an individual can be perturbed along a trajectory can thus not be easily obtained

from experimental data without leveraging optimization. The use of Sum of squares (SOS)

programming plays a large role in the ability to create BOAs. SOS programming provides a

means of certifying polynomial positivity through semidefinite programming [85]. This can

be applied to searching for Lyapunov functions parameterized as sum-of-squares polynomials

[85]. Therefore, utilizing SOS tools was important in this work to reveal information from

trajectory and subject data. In conclusion, while experiments and imaging in biomechanical

research provide valuable insight into how the human body behaves, numerical optimization

tools can provide information that cannot be easily observed using raw data alone.

5.1 Future Work

There were several limitations from the studies outlined in this thesis. The limitations

regarding the specific objectives and methodologies in the study are described in Chapters 3

and 4. However, the broad limitations of this work are from modelling real systems, and

assumptions are made in both the first and additional study to accommodate the study

objectives. In the first study, the force feedback was assumed to act in only a single direction.

This assumption was made to keep movements between study participants consistent. However,

tissue force feedback occurs in all degrees of freedom in physical space. In the additional

study, an inverted pendulum was used to model the subject’s COM. This assumption was

made to obtain preliminary results and further validation is needed before scaling up the

number of model states.

Both study methodologies have limitations on how many components can be included

in the models. In the first study, there was a tradeoff between how many elements were
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in the tissue force feedback models, and how well conditioned the system was. Eventually,

the accuracy obtained from higher model complexity was outweighed by the high model

uncertainty. In the additional study, there was a tradeoff between the number of system

states and the computational complexity of the SOS program. Thus, the more system states

that are considered, the longer the computational time. In general, it is not possible to

model a real system without assumptions, which is particularly true for high-dimensional

nonlinear systems such as human beings. A model may not capture every possible component

of the human body, but instead can be simplified to consider only what is necessary for its

application. Therefore, it is important to validate models adequately within the context that

it is used and scale the model complexity appropriately to the problem.

There are multiple avenues that can be pursued to expand the fidelity of this work and

validate proposed methodologies in future studies. The following are suggestions for future

work to extend beyond what is presented in this thesis:

• Models presented in the first study could be extended to more degrees of freedom

to capture the surgeons movement in higher dimensions and model the anisotropic

properties of tissue.

• Models in the first study could be determined from organic simulators such as cadavers

or animal models.

• The model in the additional study could be made more representative of the behaviour

from humans than an inverted pendulum such as by using a finite element model.

• Models in the first study could be trained at different frequencies to investigate the

role of haptic interaction rate on the stiffness and model fidelity.

• The model in the additional study could be further constrained with additional data

on MMH.

• The BOA procedure could be validated with perturbation tests on human subjects

performing MMH tasks.

• The BOA in the additional study could incorporate system identification to identify a

controller from a spine model for the nonlinear closed loop system.
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Chapter 6

Conclusion

The work in this thesis applied concepts from system and control engineering to surgical

interventions and preventative measures for low back pain (LBP). The literature review in

Chapter 2 motivated the objectives and discussed the pertinent background and state of the

art. Specifically, anatomy and physiology of the spine and underlying mechanisms of LBP,

surgical intervention of LBP in the context of surgical simulation, and preventative measures

in the context of characterizing tasks that may cause LBP were discussed in the literature

review. The subsequent objectives were to develop dynamic soft tissue force feedback models

for a lumbar interbody fusion (LIF) surgical simulation, and to develop estimates for a BOA

to evaluate MMH tasks.

Chapter 3 presented the study related to surgical simulation. In this study, tissue force

feedback was treated as a dynamic system. Classical system ID was performed on a tissue

analogue across a bandwidth of frequencies, the input and output signals were fit with

dynamic viscoelastic models with a varying number of springs and dampers. The viscoelastic

models were then integrated into a haptic device and evaluated by clinical professionals. It

was found that the closer the dynamic model was to the dynamic signals, the more favoured it

was by the operator, thus demonstrating the potential need for considering tissue dynamics.

Chapter 4 presented a preliminary study related to characterizing lifting technique. An

expert and a novice lifter were tracked with markers during a lifting task. The center of mass

(COM) of their trunk segments were determined from anthropometric data and modelled as
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a simple pendulum. The BOAs were then built using SOS programming with constraints

based on Lyapunov’s direct method. Differences in the average cross-sectional area of the

BOAs were found for each lifter. The results demonstrated that the expert and novice lifters

had differences in their average cross-sectional area such that the novice lifter may select

trajectories about their COMs that make them more susceptible to perturbations than the

expert lifter. This was a preliminary study and therefore has many limitations, but the

results lay the groundwork for future studies.

The objectives are therefore satisfied in Chapters 3 and 4. The implications, limitations,

and opportunities for future work are then elaborated on in Chapter 5. In this chapter, the

role of dynamics, optimization, and numerical computing are discussed in connection to both

studies. Future research can expand the complexity of this work using more advanced models

and by establishing rigorous experimental validation procedures.

In conclusion, this thesis provided two novel contributions by applying concepts from

system and control engineering to spine biomechanics. Firstly, this work used and validated

dynamic models and signals to represent the force feedback dynamics of soft tissues in a

spine LIF surgical simulator. Secondly, this work provided a framework for characterizing

dynamic stability of trunk movements during MMH tasks using BOAs.
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