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Abstract

In this thesis we develop the θ-augmented Bayes (TAB) method, which refers to Bayesian

inference via the θ-augmented model, as a way of Bayesian semiparametric inference

on functional parameters. It is a method for inferring functionals of the sampling dis-

tribution for the observable, without requiring the target parameter to be a part of the

likelihood specification. We first define the θ-augmented model which augments a “pro-

posal” nonparametric model with the target parameter θ by 1) partitioning the proposal

model space according to the contours of θ and 2) modifying the corresponding probabil-

ity measure via a re-weighting function, in the fashion of change of measure/importance

sampling. This allows us to control the marginal prior distribution for θ while maintain-

ing a fully nonparametric model space. We show asymptotic consistency of TAB poste-

rior inference for functionals defined via estimating equations when the proposal model

is nonparametric and weakly consistent for the data-generating mechanism. This thesis

also documents some recommendations with regards to algorithms for sampling from the

TAB posterior, and suitable proposal models. In general, the θ-augmented model is most

useful when the proposal model is taken to be the Dirichlet process (DP), due to an ease

of implementation for most functional parameters. Given suitable hyperparameters for

the DP proposal model, the TAB posterior approximately extends the Bayesian bootstrap

(BB) with a subjective prior. This behaviour is particularly useful as the BB exhibits good

asymptotic properties. Through simulation, we show that the TAB posterior has good

Frequentist properties in small sample inference, and performs well among competitors.
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Abrégé

Dans cette thèse, nous développons la méthode θ- augmentée de Bayes (TAB), qui réfère à

l’inférence bayésienne à travers la méthode θ-augmentée comme moyen d’inférence semi-

paramétrique bayésienne. Cette méthode est utilisée pour l’inférence de fonctions des dis-

tributions d’échantillonnage pour les observables sans restreindre le paramètre d’intérêt

aux specifications fondées sur la vraisemblance. D’abord, nous définissons la méthode θ-

augmentée qui augmente un modèle non-paramétrique proposé dont le paramètre d’intérêt

est θ en 1) partitionnant l’espace du modèle proposé selon les contours de θ et en 2)

modifiant la mesure de probabilité correspondante par l’intermédiaire d’une fonction

de masse d’une manière analogue à l’échantillonnage préférentiel. Cela nous permet de

contrôler la loi marginale a priori suivie par θ tout en maintenant un espace totalement

non-paramétrique. Nous démontrons la convergence asymptotique de la méthode TAB

a posteriori pour les fonctions définies à travers des équations d’estimation dans le cas

où le modèle proposé est non-paramétrique et faiblement convergent pour le mécanisme

générateur des données. Cette thèse documente certaines recommandations concernant

les algorithmes d’échantillonage de la distribution TAB a posteriori.

En général, le modèle θ-augmenté est le plus utile quand le modele proposé est un

processus de Dirichlet (DP), vue la simplicité de l’implémentation pour la plupart des

paramètres fonctionnels. Étant donnée des hyperparamètres convenables pour le modèle

DP proposé, la méthode a posteriori TAB est approximativement une extension du boot-

strap bayésien (BB) avec une distribution a priori subjective. Ce fait est particulièrement

utile vu que le BB possède de bonnes propriétés asymptotiques. Par le biais de simula-
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tions, nous montrons que la TAB a posteriori possède de bonnes propriétés fréquentistes

dans le cas où l’échantillon est petit et performe bien parmi ses concurrents.

iii



Acknowledgements

I would like to acknowledge Professor David Stephens for his invaluable advice and vi-

sion throughout the development of this thesis. His guidance and patience helped me

persevere through the difficult parts of my research. Many thanks to my family for their

support during this time.

iv



Contribution to Original Knowledge

This thesis contains several original scholarly contributions, primarily with regards to

the construction of the θ-augmented measure in Chapter 3 and methods with which to

carry-out the θ-augmented Bayesian inference (Chapters 4 and 5). Chapter 6 provides a

first comparison of θ-augmented Bayesian inference with existing methods in Bayesian

semiparametrics.

v



Contribution of Author

This thesis is written in its entirety by the named author, Vivian Meng. The author is the

sole person responsible for the literature review, the development of the TAB methodol-

ogy, the development of any theoretical proofs contained herein, the conception of com-

puter schemes for implementation of the methodology, and the construction of all sim-

ulation studies. The interpretations of main findings in this thesis, as presented in the

discussion and conclusion sections, are attributed entirely to the author.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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Chapter 1

Introduction: the case for Bayesian

semiparametric inference based on

functional parameters of the distribution

for observables

The Bayesian paradigm of statistical analysis has yielded an important class of tools

toward the coherent characterization of uncertainty associated with observable events.

Through the axioms of subjective probability and theorems regarding representation,

one’s uncertainty toward an observable quantity is transformed by available data. State-

ments regarding uncertainties are made via probabilities which, even without a true grasp

of the data-generating mechanism, provides an accounting system for quantifying sub-

jective beliefs and acting under uncertainty. This is an important difference between the

Frequentist and Bayesian paradigm; for the Frequentist, inference statements are ascer-

tained based on asymptotic properties associated with an estimator without bridging for

how one should coherently act upon limited information conditional on the data at hand.

An introduction to the Bayesian paradigm and the derivation of coherent actions can be

found in Bernardo and Smith (1994).
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One of the most important theorems for describing uncertainty regarding observables

is de Finetti’s representation theorem. This theorem applies to a sequence of random

observables that is infinitely exchangeable, and makes an explicit connection as to how

the array of possible models for the observable influences one’s assessment of marginal

probability regarding the observable. More specifically, infinite exchangeability implies

that a subjective probability regarding the observed random variable can be represented

as a weighted average over a collection of models for the observable, such that, had we

known which model to place all of our confidence in, the data would be independent and

identically distributed accordingly. The weighting assigned to the space of models for the

observable is referred to as the prior distribution.

Thus the first step in many Bayesian procedures is to identify an appropriate prior

over the space of models for the observable, one which complies with our genuine sub-

jective belief regarding the observables. To be coherent, it is necessary to ensure that the

prior distribution encapsulates one’s true judgments regarding the observed data, so that

statements of posterior probabilities are genuine and meaningful for the analyst.

Often, in a pure inferential problem, some low-dimensional parameter of the distri-

bution for the observable will be the target of inference. The target parameter is often of

scientific importance that we may hold subjective belief over it a priori. To be coherent,

it is necessary to ensure that the prior distribution we assume is compatible with one’s

prior belief regarding the target parameter, which is sometimes difficult to do due to the

structure of the distribution for observables we work with.

In Bayesian analysis the space of models for the observable is typically parametric,

which makes the specification of a marginal prior on the target parameter particularly

easy. However, a parametric model for the observable is subject to misspecification, which

may lead to a lack of consistency of the Bayesian posterior.

As a way to avoid model misspecification, many authors advocate the use of non-

parametric models (Hjort et al., 2010) for analysis of real data. Nonparametric Bayesian

models are well studied and their properties well understood, with key results and mod-
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els summarized by Ghosal and van der Vaart (2017), Ghosh and Ramamoorthi (2003),

among others. Together, the low-dimensional target parameter and the nonparametric

model make up a “semiparametric” inference problem.

There are in general, two ways to structure a semiparametric problem. In one ap-

proach, the target parameter is a general functional of the distribution for the observable,

whereas in the alternative approach a nonparametric model is parameterized by the par-

titioned vector (θ, η) containing the target θ and the remaining nonparametric part η; see

Tsiatis (2007) for elaboration. In the latter case, it is relatively straightforward to control

the prior distribution such that the subjective belief regarding the target parameter is re-

spected; see examples in Bayesian semiparametric regression (Section 4.2 of Müller et al.

(2015) and Section 23.4 of Gelman et al. (2013)). Semiparametric models with a parti-

tioned structure tend to arise from the use of conditional models as building blocks, with

the caveat that these conditional models may require unrealistic assumptions.

If the conditional models are known to be untenable, posterior parametric inference

may not be asymptotically consistent, and probabilities calculated under the given model

would not be appropriate as personal probabilities for decision making for a subjective

Bayesian. For example, to find the line-of-best-fit through the data (X, Y ), we may define

the problem via a partitioned nonparametric model, where

Y = β0 + β1X + ϵ

ϵ ∼ fϵ(·|η1)

E[ϵ|X] = 0

X ∼ fx(·|η2)

so that the semiparametric model is defined by (β0, β1, η1, η2). We may also consider the

problem with the target parameter identified by a functional of the distribution FXY for

the observable (X, Y ), i.e.

(β0, β1) = argmin
(b0,b1)∈Θ

∫
(y − (b0 + b1x))

2dFXY (x, y). (1.1)
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Formulation of the problem by partitioning is in fact more restrictive, as it specifies a lin-

ear form for the conditional mean E[Y |X]; even though this restriction is unlikely to be

true, it has an easier interpretation as the “effect” of X . Whereas, definition as a general

functional via Eqn. (1.1) is valid regardless of the structure of model FXY , though the pa-

rameter is interpreted as the minimizer of an objective function. If we do not believe that

the data follows a conditional linear model then the posterior probabilities based on a con-

ditional linear model formulation are not subjective probabilities for the statistician nor

theoretically optimal. As yet another example, in the context of Bayesian semiparametric

estimation of a mean when data is missing at random, Ray and van der Vaart (2020) in-

troduced a semiparametric likelihood based on propensity scores using both conditional

and nonparametric likelihoods as building blocks, with the target of inference given by

a transformation of the parameters for the conditional likelihood function. As this par-

ticular model asserts explicit assumptions regarding the missing data mechanism in the

conditional likelihood, it is subject to misspecification.

Even though inference based on functional parameters of nonparametric models has

an important advantage in Bayesian inference against likelihood misspecification, very

few methods exist in the current literature to facilitate this task. Existing methods are

either pseudo-Bayesian or lacking in ways to control the marginal prior for the target

parameter. In the present thesis we introduce the θ-augmented Bayesian (TAB) method,

which refers to Bayesian inference via the θ-augmented (TA) model, as a way of perform-

ing Bayesian semiparametric inference on functional parameters. The TA model gives us

an opportunity to specify the required subjective prior for a functional parameter while

maintaining a fully nonparametric model space with minimal assumptions. In the next

chapter we will review existing methods in Bayesian semiparametric inference of general

functional parameters and identify shortcomings of these existing methods in providing

coherent Bayesian semiparametric inference for functional parameters.
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1.1 Specific examples of functional parameters

Prior to presenting a literature review, we wish to present some common functional pa-

rameters that will serve as running examples throughout the thesis. Let there be a distri-

bution function FX , the most general interpretation of a functional parameter θ is simply

a map from FX to Rd. We give two simple examples below.

Example 1.1. (The mean of a distribution µ(·))

For random variable X supported on R with distribution function FX

µ(FX) =

∫
R

xdFX(x).

Example 1.2. (The variance of a distribution σ2(·))

For a random variable X supported on R with distribution function FX

σ2(FX) =

∫
R

x2dFX(x)−
(∫

R

xdFX(x)

)2

.

Functional parameters may also be defined as the solution to an estimating equation.

The estimating equations themselves may have resulted from conditional modelling, or

from optimization of an objective function, etc. We provide some examples below as a

non-exhaustive list.

Example 1.3. (Simple least squares regression parameter β(·)) For Y ∈ R, X ∈ Rm, with

joint distribution FXY the least squares regression coefficient

β(FXY ) :=

{
b ∈ Rm :

∫
(x)⊤(y − x⊤b)dFXY (x, y) = 0

}
= argmin

b∈Rm

∫
(y − x⊤b)2dFXY (x, y).

Example 1.4. (Parameter of the closest logistic regression model ψ(·))

For C ∈ 0, 1, X ∈ Rm, with joint distribution function FXC , the parameter identifying

the closest logistic regression model to FXC is given by

ψ(FXC) :=

{
t ∈ Rm :

∫
x⊤(c− τ(x⊤t))dFXC(x, c) = 0

}
,

5



with τ(z) =
1

1 + exp(−z)
, the logistic function. The functional above is derived based on

maximizing the expectation log-likelihood function of the logistic regression model with

respect to FXC .

Example 1.5. (Parameter of nonlinear least squares regression θNLS(·))

For Y ∈ R, X ∈ Rm, with joint distribution FXY . Let f(x, t) be a nonlinear function,

and define

θNLS(FXY ) := argmin
t∈Rm

∫
(y − f(x, t))2 dFXY (x, y),

which can also be expressed as an estimating equation if the minimum is unique and

occurs where the gradient of the objective function with respect to t is 0.

In general, any Frequentist estimator that can be expressed as a functional of the em-

pirical distribution may be cast as a functional parameter for the purpose of Bayesian

semiparametric estimation by substituting a nonparametric distribution F for the observ-

able in place of the empirical distribution. For further examples and use cases, please

refer to references in empirical likelihood methods (e.g. Owen (2001)).
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Chapter 2

Review of semiparametric Bayesian and

pseudo-Bayesian methods for inferring

functional parameters

We have identified three relevant methods in the field of nonparametric Bayesian esti-

mation of functional parameters, which are the Bayesian bootstrap (BB) (Rubin, 1981),

Bayesian empirical likelihood (BEL) (Lazar, 2003), and finally, the general Bayes (GB)

method (Bissiri et al., 2016). These methods will be discussed in chronological order of

their first appearance in the literature.

2.1 The Bayesian bootstrap

The Bayesian bootstrap refers to the posterior inference conditional on the data whereby

the sampling distribution for the observable is assumed to be multinomial and supported

only on the observed data values, while the parameter of the multinomial likelihood, a

vector of probabilities summing to one, is randomly distributed according to the Dirichlet

distribution with hyperparameters all equal to 1. It was first proposed by Rubin (1981).

Rubin obtained the BB via coupling the multinomial likelihood with a Dirichlet prior with
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common parameter α which tends to 0. The BB posterior can also be constructed via the

Dirichlet process prior, by letting the prior concentration parameter tend to 0. In the BB

posterior, the probability vector for the multinomial distribution is distributed according

to a Dirichlet(1, . . . , 1) distribution. Every point (w1, . . . , wn) in the (n − 1) probability

simplex maps to a model for the observable with the probability mass function FX(x) =∑n
i=1wiδXi

(x), where Xi are the observed data points. The method is nonparametric in

the sense that the support of the observable grows with the number of data points.

Since the target functional parameter is a map θ from the space of distribution func-

tions for the observable toRd, a posterior probability distribution over the space of distri-

bution functions for the observable induces a distribution for the target parameter. While

exact expressions of the BB posterior for functional parameters are often difficult to de-

rive, good approximations may be obtained by repeatedly sampling FX from the pos-

terior Bayesian bootstrap, then transforming the sampled FX to θ(FX). In most cases,

including those listed in Section 1.1, a functional parameter is mapped via an integral

transform with respect to the distribution for the observable. The BB posterior for the

observable, being supported on the space of discrete distributions, lends itself to efficient

computations of the required integrals in the process of mapping FX to θ(FX).

One advantage of the Bayesian bootstrap is its well-behaved asymptotics. Asymp-

totic properties of the BB has been discussed in Lo (1987), Chatterjee and Bose (2005) for

parameters defined via estimating equations, and Cheng and Huang (2010) for general

semiparametric estimation in the case where the nonparametric model admits partition

into a parametric target parameter and a nonparametric part. For these functionals, the

BB is asymptotically consistent and shows distributional convergence to the Gaussian

distribution. Interval estimation via smooth estimating equation are asymptotically also

known to be consistent at the nominal level; for a definition of interval consistency, see

Section 23.2 of van der Vaart (2000).

Despite being well behaved asymptotically, the method has several shortcomings.

Firstly, elements of FX contained in the BB posterior, being discrete and only supported
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on the data points, often draws criticism for lacking in realism as a model for contin-

uous observables. That FX is supported on the data points also results in the “convex

hull” limitation, where the posterior parametric inference is bound by some convex hull

condition given by the support, for example, if the observed data ranges between some

(X(1), X(n)) then the posterior distribution of the mean of FX can never be outside the ob-

served data range; see Owen (2001) for elaboration on the convex hull condition in the

context of empirical likelihood which also uses models supported on the observed data

points. Furthermore, the prior distribution which leads to the BB is improper. One note-

worthy peculiarity with the use of an improper prior is that the prior parameter space

may not be the same as that of the posterior. In this case, the limiting Dirichlet prior is

supported on the vertices of the (n− 1) probability simplex, whereas in the posterior the

Dirichlet distribution is supported on the interior of the (n−1) probability simplex. Lastly,

the method does not provide a way of controlling the marginal prior for a functional pa-

rameter when prior information exists, which could render the method incoherent for

those following a strict Bayesian paradigm.

2.2 Bayesian empirical likelihood

The idea of conducting Bayesian inference with the profile empirical likelihood (PEL)

function as a substitute for the sampling distribution was first described by Lazar (2003).

The PEL is the maximum of the likelihood function over the set of models supported on

the observed data points with the same value for the target parameter of interest. It was

first described in the Frequentist literature by Owen (1990). The PEL is nonparametric

in the sense that the space of models to profile over increases in dimensionality with

increasing number of data points.

Using the notation of F (x; w̃) to denote the distribution function of a model parame-

terized by a weight vector w̃ := (w1, . . . , wn) with wi assigned to data point xi, the profile
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empirical likelihood function, Rn(t), is

Rn(t) = max
w̃∈Sn−1

{
n∏
i=1

wi : θ(F (x; w̃)) = t

}
.

Bayesian (profile) empirical likelihood posterior distribution is the conditional distribu-

tion

πBEL(θ|X1, . . . , Xn) ∝ Rn(t)pθ(t),

where pθ(t) is the statistician’s subjective prior distribution regarding the target parame-

ter.

In the case that definition of the target of inference involves other nuisance parameters,

e.g. in linear regression one may consider the intercept to be a nuisance, BEL inference for

the target parameter may be difficult to obtain when the number of nuisance parameters

is large. One approach is to marginalize πBEL(θ|X1, . . . , Xn) over the nuisance parame-

ters after obtaining a joint posterior for the target and nuisance. A second approach is

to first profile out any nuisance parameters in the PEL function and then couple it with a

marginal prior for the target parameter to obtain direct marginal inference. Either of these

approaches will be computationally challenging. In the first approach we merely trade

the computation burden of profiling out the nuisance parameter from the PEL function

for the burden of sampling from a high-dimensional space and having to specify a high

dimensional prior. Nevertheless, both approaches to BEL inference in the presence of nui-

sance parameters yield asymptotically correct inference, due to the asymptotic properties

of the PEL function (Owen, 1990; Qin and Lawless, 1994). Specifics on the BEL method re-

garding asymptotic consistency and Gaussian tuning is found in Lazar (2003), Yang et al.

(2012), and Zhao et al. (2020) for various use cases.

Despite the noteworthy feature of having good asymptotic performance without the

pitfall of model misspecification, there are several downsides to BEL inference. The PEL

function cannot be defined prior to seeing the data; as such, it does not constitute a true

likelihood function/sampling distribution. Hence BEL inference is typically considered

pseudo-Bayesian even by proponents of the method (Lazar, 2003; Yang et al., 2012; Zhao
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et al., 2020). Lazar (2003) argues that despite being pseudo-Bayesian the method is well

justified based on an idea of Monahan and Boos (1992). However, for the Bayesian purist,

the inferential statements resulting from pseudo-Bayesian methods are not subjective

probabilities and thus incompatible with the theory of Bayesian decision making, and

not subject to advantages of the Bayesian paradigm in small sample inference.

Besides not being a proper Bayesian distribution, another disadvantage of the Bayesian

profile empirical likelihood method has to do with the convex hull condition (Section

10.4 of Owen (2001)) which can lead to significant under-coverage of interval estimates in

small samples, similar to the Bayesian bootstrap. The pseudo-posterior distribution for a

multivariate θ can be tricky to sample from due to the irregular shaped domain arising

from the convex hull condition, which has prompted the development of a Hamiltonian

MCMC algorithm by Chaudhuri et al. (2017) which solves the problem of sampling at the

cost of complexity of the algorithm.

2.3 The general Bayes method of Bissiri et al. (2016)

The general Bayes (GB) method of Bissiri et al. (2016) is a method applicable to a func-

tional parameter that is defined as the minimizer of an expected loss function, such that

the “true value” θ0 is

θ0 := argmin
t∈Θ

∫
l(x, t)dF0(x),

where F0(x) is the distribution function of the true data generating mechanism. The gen-

eral Bayes method proposes the conditional density function

πGB(θ|x1, . . . , xn) ∝ exp

(
−w

n∑
i=1

l(xi, θ)

)
pθ(θ)

as the optimal choice after seeing the data, either according to a given “coherence prop-

erty,” or decision theoretic criteria. The scaling constantw is arbitrary; Bissiri et al. offered

some suggestions for how to choose w in their original paper, though not one strategy

was singled out above others as being more appropriate. Several of the strategies require
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choosing w based on the observed data. Curiously, the coherence property outlined on

p. 1104 of Bissiri et al. (2016) requires that the GB posterior be invariant to the order in

which the data is received, and be amenable to sequential update. Yet if we follow the

suggestions for selecting w based on data, then the loss function weighting changes at

each step of the sequential update, thus violating the coherence property.

The Bayes estimator generated under this method is asymptotically justified due to

lim
n→∞

{
n∑
i=1

l(xi, t)

}
=

∫
l(x, t)dF0(x),

such that the mode of the posterior distribution should converge to the truth at θ0. How-

ever, it is not known if the interval estimates are asymptotically consistent - but it is easy

to see that interval consistency will depend on having the correct w.

Another marketed advantage of the general Bayes update is that it avoids the pitfall

of model misspecification due to not having been derived through de Finetti’s represen-

tation theorem. If πGB(θ|x1, . . . , xn) is indeed a genuine conditional subjective probability,

then, Bayes theorem for conditioning should also hold, such that

πGB(θ|x1, . . . , xn) =
P (x1, . . . , xn|θ)× pθ(θ)

P (x1, . . . , xn)
.

The entity P (x1, . . . , xn) must exist, and when the data are exchangeable, must also be sub-

ject to de Finetti’s representation theorem, which then partially informs P (x1, . . . , xn|θ)

considering that θ is a functional of the distribution for observables. Based on the above

manipulation of probabilities, we found that in many situations, specifying the loss func-

tion for GB inference uniquely identifies the sampling model, and therefore the method

is not actually model-free. For example, using the squared loss in GB inference leads to

an inherent belief that the data came from a parametric Gaussian sampling model; see

Appendix A.1 and A.2. One can examine the implications placed on the model space.

In the case that one judges the model space as unrealistic, the GB posterior loses the in-

terpretation as a subjective belief distribution and the advantages of subjective Bayesian

paradigm in small sample inference.
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However the general Bayes method is also purported as an optimal choice based on

the minimization of an empirical risk function, R(ν; F̂n), which, as given by Bissiri et al.

(2016), is

R(ν; F̂n) ≡
∫ n∑

i=1

l(θ, xi)ν(dθ) + dKL(ν||π) =
∫ [

n

∫
l(θ, x)ν(dθ) + dKL(ν||π)

]
F̂n(dx),

(2.1)

with F̂n denoting the empirical data distribution, and π denoting one’s subjective prior

distribution for θ. The concept of minimizing empirical risk is popular in the machine

learning discipline (Vapnik, 1992). Eqn. (2.1) was also the subject of Jiang and Tanner

(2008) through which they developed the same conditional distribution as πGB from the

perspective of best model for classification in data mining. However, as a treatment based

on decision theory, it seems to lack certain elements. For a review of Bayesian and Fre-

quentist decision theory, see Berger (1985). Here we note that a Frequentist decision un-

der the principle of risk minimization (or equally, maximizing the expected utility) would

consider a choice optimal if R(ν;F0) is available. Alternatively, a Frequentist choosing to

employ the minimax principle would choose

argmin
ν

{max
F∈A

R(ν, F )},

where A is the set of all distributions with x1, . . . , xn in its support, and may be problem-

atic if l is unbounded, and if not, regions with extreme values of l would dominate the

selection process.

From the perspective of minimizing Bayes risk, we would have to model uncertainty

in F through Q(F |Data), perhaps nonparametrically if we are not willing to assume a

parametric likelihood, and proceed to minimizing the Bayes risk∫
R(ν;F )Q(dF |Data),

such that the optimal choice is

ν̂ = argmin
ν

∫
R(ν;F )Q(dF |Data).
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The general Bayes solution will be chosen as ν̂ only if the our posterior Q(F |Data) over

the model space is concentrated at F̂n almost surely- which is certainly unrealistic. Fur-

ther, note that regardless of what the form of Q(F |Data) is, there is most likely a dis-

crepancy between ν̂ and the induced distribution of θ based Q(F |Data). If the target

functional of interest is indeed the one defined through θ(F ) = argmint∈Θ
∫
l(x, t)dF (x)

then it would be incoherent to choose anything other than the probability distribution

induced by Q(θ(F )|Data) to represent our belief and there will be not a lot of importance

in identifying ν̂ through minimization of Bayes risk.
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Chapter 3

Theory of θ-augmented Bayesian

inference

Since functional parameters are defined via various mappings from the probability dis-

tribution for the observable to Rd, uncertainties regarding functional parameters are in-

duced by our uncertainties with regards to the probability distribution for the observable.

This thesis presents what we term the θ-augmented Bayesian method as a coherent way to

account for induced uncertainties, via a θ-augmented probability measure over random

measures for the observable.

The theory for θ-augmentation has two prerequisites, that being

1. infinite exchangeability of the observed data, hence applicability of de Finetti’s rep-

resentation theorem to exert existence of a prior distribution over a model space,

and,

2. that all models for the observable in the prior model space be dominated by the

same dominating measure almost surely.

Without loss of generality, let the distribution function for the observable be denoted

by FX . One begins by asserting the existence of a prior distribution over distribution

functions for the observables, which is denoted by Π(FX). When we judge the observed
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quantities x1, . . . , xn as being infinitely exchangeable, we may apply de Finetti’s repre-

sentation theorem, the general form of which is found on p. 177 of Bernardo and Smith

(1994), or p. 83 of Ghosh and Ramamoorthi (2003).

The de Finetti theorem states that, loosely speaking, letting M(R) be the space of all

distribution functions onR, andX1, X2, . . . an infinitely exchangeable sequence of realiza-

tions of real-valued random quantities with probability measure P , there exists a measure

Π(FX) over the space M(R) such that the joint distribution function of x̃n := (x1, . . . , xn)

has the form

P (x̃n) =

∫
M(R)

n∏
i=1

FX(xi)dΠ(FX).

The space M(R) mentioned by the representation theorem is quite general and may

include all nonparametric models as well as parametric ones. We assume the probability

model PΠ := (M(R),Σ,Π), where Σ is the σ-algebra over the space of all random mea-

sures for X . The subscript of PΠ shows our notation for the corresponding measure of

this probability model explicitly. Without loss of generality, suppose that θ : M(R) → R,

i.e. θ is a measurable function which maps elements of M(R) to the real line. Existence of

a prior distribution Π(FX) induces a distribution function for θ.

Letting FΠ
θ denote the distribution function of θ induced by Π, we have

FΠ
θ (t) =

∫
M(R)

I[θ(FX) ≤ t]dΠ(FX).

In the case that the distribution function of θ is absolutely continuous with respect to the

Lebesgue measure, a density function exists s.t.

FΠ
θ (t) =

∫ t

−∞
qΠθ (u)du,

where qΠθ denotes the density function of θ induced by Π.

Let us denote the set of observed data as x̃n := (x1, . . . , xn). Let FΠ
θ|x̃n denote the distri-

bution function of θ conditional on x̃n induced by the measure Π conditional on x̃n, that

is,

FΠ
θ|x̃n(t|x̃n) =

∫
M(R)

I[θ(FX) ≤ t]dΠ(FX |x̃n).
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In the case that that θ is continuous, an induced density function qΠθ|x̃n exists s.t.

FΠ
θ|x̃n(t|x̃n) =

∫ t

−∞
qΠθ|x̃n(u|x̃n)du.

As for the second prerequisite of the TAB method, we require applicability of Bayes

rule for finding (a version of) the conditional distribution Π(FX |x̃n), that is

Π(FX ∈ A|x̃n) =
∫
A

∏n
i=1 FX(xi)dΠ(FX)∫ ∏n
i=1 FX(xi)dΠ(FX)

. (3.1)

Equation (3.1) differs slightly from the way Bayes rule is written in the books by Ghosal

and van der Vaart (2017) and Ghosh and Ramamoorthi (2003) because these books intro-

duced it in the setting of parametric inference. According to Section 1.3 of Ghosal and

van der Vaart (2017), the key is to determine if every distribution FX is dominated by

some σ-finite measure almost surely Π. This is necessarily the case if Π is a prior supported

on the subset of parametric models. However, many nonparametric Bayesian models are

not dominated in this way, leading to the absence of Bayes rule when developing the pos-

terior distributions for these Bayesian nonparametric methods, with the Dirichlet process

prior being a simple example.

Luckily, if we restrict our attention to kernel mixture models with kernels that are

dominated by either the Lebesgue measure or a version of the counting measure, Bayes

rule applies. Specifically, let

f(x) =

∫
K(x|η)dFH(η),

where η parameterizes the mixture kernel K. The observation model f(x) depends on

the measure FH . Regardless of FH being parametric or nonparametric, f(x) will be dom-

inated by the Lebesgue measure (or counting measure) if the kernel K is dominated; see

Section 5.3 of Ghosh and Ramamoorthi (2003).
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3.1 Defining the θ-augmented probability measure and prob-

ability model

The underlying idea of the θ-augmented semiparametric method is to gently modify a

nice proposal measure Π according to the contours of the model space as given by θ.

Without loss of generality, we assume that θ : M(R) → R. Let us further assume some

m : R → R+ such that the composite function m ◦ θ : M(R) → R+ is a Σ-measurable

positive integrable function, that is,

m(θ(FX)) ≥ 0,∫
M(R)

m(θ(FX))dΠ(FX) <∞.

We define a new probability measure Π⋆, the θ-augmented measure, to be,

Π⋆(A) =

∫
M(R)

I[FX ∈ A]m(θ(FX))dΠ(FX)∫
M(R)

m(θ(FX))dΠ(FX)
(3.2)

=

∫
M(R)

I[FX ∈ A]m(θ(FX))dΠ(FX)

ZΠ⋆

,

where

ZΠ⋆ :=

∫
M(R)

m(θ(FX))dΠ(FX),

for any measurable event A ∈ Σ. This is conceptually similar to slicing, or “partitioning”,

of the model space based on θ(FX) = t, and for every model in this subspace, adjusting its

probability content by a factor m(t). Furthermore, the expectation of any Σ-measurable

function g(FX) with regards to Π⋆ is

EΠ⋆ [g(FX)] =

∫
M(R)

g(FX)m(θ(FX))dΠ(FX)

ZΠ⋆

.

We can verify that Π⋆ is a valid measure on (M(R),Σ). The measure of any eventA ∈ Σ

under the unnormalized measure Π⋆ · ZΠ⋆ is equal to the expectation of the measurable

non-negative function m(θ(FX)) × I[FX ∈ A] taken under Π. The countable additivity of

the unnormalized Π⋆ · ZΠ⋆ can easily be verified. Therefore Π⋆ is a probability measure.
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While we see Eqn. (3.2) as a recipe for constructing semiparametric models out of

nonparametric ones via parameter augmentation, the corresponding change of measure

can also be regarded as generalizing the usual approach to importance sampling, with Π⋆

playing the role of the target distribution and Π the biasing distribution. Typically, impor-

tance sampling is not performed with nonparametric distributions. Our construction of

Π⋆ in Eqn. (3.2) ensures that the Radon–Nikodym derivative of the target distribution Π⋆

with respect to Π depends only on the functional parameter θ; in this case that derivative

is (m ◦ θ)/ZΠ⋆ .

The measure Π⋆ as given by Eqn. (3.2) is a distribution over random measures with

parameters m and Π, and it serves as the prior in our Bayesian analysis. As a probability

model for FX , we define the θ-augmented probability model, denoted as

TA(m,PΠ),

to be the probability model which inherits the sample space and σ-algebra of PΠ, and

is equipped with a measure Π⋆ which is a modification of the measure Π of PΠ by m

according to Eqn. (3.2). We will refer to the parameter m as the weighting function, and

refer to PΠ as the proposal model, and Π as the proposal measure. As we do not wish to

overload the symbol Π⋆ with subscripts or superscripts, we will state it as the probability

measure Π⋆ of a TA(m,PΠ) model, as often as needed, so that the parameters m and Π

associated with a Π⋆ are understood clearly. The domain of the weighting function m will

be indicated explicitly in its specification, so that we remove any ambiguity with regards

to the construction of Π⋆.

Suppose that θ is absolutely continuous, and we aim to specify a θ-augmented model

such that the induced marginal density of θ is equal to pθ. To achieve this, we may choose

m =
pθ
qΠθ
,

where pθ/qΠθ denotes pointwise division of pθ by qΠθ . As a convention in this thesis, if f

and g are two functions with the same domain, we shall use fg or f · g to denote the

pointwise product of these functions, and f
g

or f/g to denote pointwise quotient.
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To verify, denote with FΠ⋆

θ the distribution function of θ induced by the measure Π⋆ of

the TA(m = pθ/q
Π
θ ,PΠ) model, we have that

FΠ⋆

θ (t) := Π⋆(θ ≤ t) =

∫
M(R)

I[θ(FX) ≤ t] pθ(θ(FX))

qΠθ (θ(FX))
dΠ(FX)

ZΠ⋆

(3.3)

∝
∫ ∞

−∞
I[u ≤ t]

pθ(u)

qΠθ (u)
· qΠθ (u)du (3.4)

=

∫ t

−∞
pθ(u)du,

i.e. the density function corresponding to FΠ⋆

θ (t) is exactly pθ. The simplification from

Eqn. (3.3) to (3.4) is due to

I[θ(FX) ≤ t]
pθ(θ(FX))

qΠθ (θ(FX))

depending only on the value of θ(FX).

As for the induced distribution of θ|x̃n when FX ∼ TA(m = pθ/q
Π
θ ,Π), because we

restrict ourselves to Π where every FX in the space of random measures is dominated

Π almost surely, Bayes rule applies. We apply Bayes rule to obtain FΠ⋆

θ|x̃n , the distribution

function of θ|x̃n induced by Π⋆, as

FΠ⋆

θ|x̃n(t|x̃n) := Π⋆(θ ≤ t|x̃n) ∝
∫
M(R)

I[θ(FX) ≤ t] ·
n∏
i=1

FX(xi)dΠ
⋆(FX) (3.5)

∝
∫
M(R)

I[θ(FX) ≤ t] · pθ(θ(FX))
qΠθ (θ(FX))

·
n∏
i=1

FX(xi)dΠ(FX) (3.6)

∝
∫
M(R)

I[θ(FX) ≤ t] · pθ(θ(FX))
qΠθ (θ(FX))

· dΠ(FX |x̃n) (3.7)

∝
∫ ∞

−∞
I[u ≤ t]

pθ(u)

qΠθ (u)
· qΠθ|x̃n(u|x̃n)du (3.8)

=

∫ t

−∞

qΠθ|x̃n(u|x̃n)
qΠθ (u)

· pθ(u)du. (3.9)

Bayes rule is important here in order to deduce the form of the posterior distribution of

θ under Π⋆ i.e. Eqn. (3.5). Had it not applied, the form of FΠ⋆

θ|x̃n would have to be found

through other means similar to other non-dominated models in Bayesian nonparametrics,

and the weighting function pθ/qΠθ may not have appeared in FΠ⋆

θ|x̃n as elegantly as it did in

Eqn. (3.9).
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There are several observations to be made based on Eqn. (3.5)-(3.9). Firstly, let qΠ⋆

θ|x̃n

denote the target posterior density function corresponding to FΠ⋆

θ|x̃n , we have that

qΠ
⋆

θ|x̃n ∝
qΠθ|x̃n
qΠθ

· pθ.

This expression shows clearly that, after seeing the data, the subjective prior distribu-

tion pθ is modified by qΠθ|x̃n/q
Π
θ , which we term the effective likelihood. Secondly, for FX ∼

TA(m = pθ/q
Π
θ ,Π), the conditional random variable FX |x̃n is again distributed according

to a θ-augmented model but with the proposal measure updated to Π(·|x̃n).

In the case that the distribution of θ induced by Π is discrete, it is easy to show that,

given a subjective marginal probability mass function (PMF) Pθ for θ, and an induced

PMF QΠ
θ given the proposal measure Π, one would specify

m =
Pθ
QΠ
θ

,

as the weighting function in the θ-augmented model, which results in

Π⋆(θ = t) = Pθ(t),

Π⋆(θ = t|x̃n) ∝
Pθ(t)
QΠ
θ (t)

QΠ
θ|x̃n(t|x̃n),

for t in the support of QΠ
θ .

3.1.1 θ-augmented Bayesian inference

We take the θ-augmented Bayesian (TAB) inference (or method) as referring to inference

with a TA(m = pθ/q
Π
θ ,PΠ) model as the nonparametric prior, unless otherwise specified.

The probability measure Π⋆ associated with a TA(m = pθ/q
Π
θ ,PΠ) model is defined ac-

cording to Eqn. (3.2) while making the appropriate substitutions for the parameters m

and PΠ. In the weighting function pθ/qΠθ , the numerator is specified by the statistician as

their selected model, while the denominator is completely determined by the proposal

measure Π. Any posterior distribution obtained via the TAB method will be termed TAB

posterior.
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To show how the model relates to observables, we may write

X ∼ FX

FX ∼ TA(m = pθ/q
Π
θ ,PΠ).

To conduct TAB inference, we are therefore required to

1. define the target parameter as a functional of the distribution for the observable,

2. select a proposal model PΠ that results in dominated models for the observable Π al-

most surely. Suitable proposal models for semiparametric inference will be discussed

in Section 5,

3. ensure pθ and PΠ are compatible by checking that the resulting weighting function

pθ/q
Π
θ is integrable– an assumption in the definition of a θ-augmented measure,

4. select an algorithm to approximate the conditional distribution of θ|x̃n under the

given TA(m = pθ/q
Π
θ ,PΠ) model, to be discussed in Section 4.

3.2 Multivariate θ and marginal inference

The method of θ-augmentation is not limited to θ ∈ R1. In the case that the target param-

eter is θ ∈ Rd, we require a weighting function m which takes (θ1(FX), . . . , θd(FX)) as the

argument. In specific, as a simple extension to Eqn. (3.3), taking the θ-augmented model

with weighting function

m(θ1, · · · , θd) =
pθ(θ1, . . . , θd)

qΠθ (θ1, . . . , θd)
, (3.10)

as the prior will lead to the prior marginal density of θ being exactly pθ(θ1, . . . , θd) as

required. However, actual implementation utilizing Eqn. (3.10) will be challenging, due

to high dimensionality of the induced joint density function qΠθ (θ1, . . . , θd).

As a compromise, if we limit ourselves to specifying our subjective prior in only one

of the dimensions, say θ1, then the implementation will be a lot more feasible. That is,
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suppose

m(θ1, · · · , θd) =
pθ1(θ1)× qΠ(−θ1)|θ1(θ2, . . . , θd)

qΠθ (θ1, . . . , θd)

=
pθ1(θ1)

qΠθ1(θ1)
, (3.11)

where qΠ(−θ1)|θ1 is the conditional distribution of the remaining parameters given θ1 in-

duced by Π. Then, marginal prior of θ1 under the corresponding θ-augmented model will

be exactly pθ1 as required, but for some other dimension θj , marginal prior under this

θ-augmented model will be

Π⋆(θj ≤ tj) =

∫ ∫
1[θj ≤ tj]

pθ1(θ1)

qΠθ1(θ1)
qΠθ1,θj(θ1, θj)dθ1dθj

=

∫ tj

−∞

[∫ ∞

−∞
qΠθj |θ1(u|θ1)pθ1(θ1)dθ1

]
du,

which shows that construction θ-augmented models through Eqn. (3.11) impacts the

marginal prior (and posterior) of untargeted dimensions of θ. In other words, θ1 will be

informative of θj if qΠθj |θ1(θj|θ1) depends on θ1 under the proposal measure Π. The above

method for inferring multivariate θ preserves coherence between the joint and marginal

distributions. Although coherent, we relinquish our control over all individual margins

except the one that we presume to be the most important.

As yet another an alternative, at the sacrifice of coherence in joint inference, one could

conduct multiple TAB inference via the collection of models {TA(mj,PΠ); j = 1 . . . , d},

where TA(mj,PΠ) fulfills the prior marginal pθj for the j-th dimensions of θ with mj spec-

ified in the fashion of Eqn. (3.11). It is clear that in this approach, each marginal inference

is derived through a different probability model so no joint inference is available. This

method of inferring multiple θj has the advantage of being computationally simple. Ul-

timately, the choice of how to construct weighting function m given the options above

would depend on the application and one’s priorities regarding various aspects of one’s

subjective prior regarding the target parameter vector.
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3.3 Asymptotics

Despite subjective probability being the currency for accounting in the Bayesian world,

Bayesians should also be concerned with recovering truth, and asymptotic consistency,

and worried about misspecification. Though the true data-generating mechanism is un-

known to us, we believe that the subjective nature of Bayesian inference does not preclude

the existence, and one’s quest, of appropriate models that are asymptotic consistent.

In terms of estimator consistency, a Bayes estimator θ̂B,n, which is a function of the

posterior distribution, is said to be consistent for the truth θ0 if

lim
n→∞

∫
1
[
|θ̂B,n − θ0| > ϵ

]
dF0 = 0.

Whereas, asymptotic consistency of a Bayes procedure for a particular parameter typi-

cally refers to a type of convergence in probability. Ghosal (1997) defines consistency for

a Bayesian posterior P (·|x̃n) for a parameter as, for every neighbourhood U of θ0

lim
n→∞

P (U |x̃n) = 1 a.s. PF0 ,

which also appears in Hjort et al. (2010) page 52, in the complement U c,

lim
n→∞

P (U c|x̃n) = 0 a.s. PF0 . (3.12)

It is easy to see that asymptotic consistency of the TAB method is dependent on the

particular proposal model employed. Suppose that the proposal model PΠ equipped with

measure Π satisfies consistency per Eqn. (3.12), that is, for every neighbourhood U of θ0,

lim
n→∞

Π(θ ∈ U c|x̃n) = 0 a.s. PF0 .

If the particular weighting function pθ/qΠθ we use to define a θ-augmented model is bounded

by a numberM , then clearly the induced distribution of θ under the TAB posterior Π⋆(·|x̃)

is consistent for θ0 as

lim
n→∞

Π⋆(θ ∈ U c|x̃n)

= lim
n→∞

∫
1 [θ(FX) ∈ U c] · pθ(θ(FX))/qΠθ (θ(FX))dΠ(FX |x̃n)

≤ lim
n→∞

M

∫
1 [θ(FX) ∈ U c] dΠ(FX |x̃n) = 0
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It is possible to ensure that pθ/qΠθ < M because, as we need to ensure integrability of the

weighting function in a θ-augmented model, in practice we will almost always choose

a proposal measure where the induced qΠθ is more heavy-tailed than pθ, satisfying the

boundedness condition.

For conciseness, let the weighting function pθ/q
Π
θ be denoted again by m. The form

of TAB posterior, which is proportional to qΠθ|x̃n · m(θ), has clear parallels in standard

Bayesian inference with qΠθ|x̃n(θ|x̃n) taking the place of the likelihood function; see p. 287

of Bernardo and Smith (1994) for a development of asymptotics in standard Bayesian in-

ference. Suppose that qΠθ|x̃n has a unique maximum tq,n, and a Hessian matrix at tq,n of

Σ−1
n . We may expand log qΠθ|x̃n about its maximum tq,n to obtain

log qΠθ|x̃n(θ) = log qΠθ|x̃n(tq,n)−
1

2
(θ − tq,n)

⊤(Σ−1
n )(θ − tq,n) +Rn,

with Rn being the remainder term. Suppose that m(θ) has a unique maximum t0, and a

Hessian matrix at t0 of H0. An expansion of logm about its maximum t0 gives

logm(θ) = logm(t0)−
1

2
(θ − t0)

⊤H0(θ − t0) +R0,

where R0 is some remainder term. We assume regularity conditions that make Rn and R0

negligible for large n. Then, the TAB posterior for θ (up to proportionality constant) may

be approximated by

exp

(
−1

2
(θ − tq,n)

⊤(Σ−1
n )(θ − tq,n)−

1

2
(θ − t0)

⊤H0(θ − t0)

)
for large n. Therefore, asymptotically, qΠ⋆

θ|x̃n(θ) is approximately Normal(tn, Hn), where

Hn = H0 + Σ−1
n

and

tn = H−1
n

(
H0t0 + Σ−1

n tq,n
)
.

If we have parametric consistency under the proposal model, then the curvature of log qΠθ|x̃n

about its maximum as given by Σ−1
n must increase with sample size. As n → ∞, H0
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will be negligible compared to Σ−1
n , which warrants an approximation of qΠ⋆

θ|x̃n based on

Normal(tq,n,Σ−1
n ).

It is clear that asymptotic behaviour of the TAB posterior for the parameter θ depends

on the behaviour of qΠθ|x̃n . In the next section we will examine the asymptotic behaviour of

functionals identified via estimating equations when the proposal model corresponding

is a weakly consistent Bayesian nonparametric model.

3.3.1 Parametric consistency of TAB posterior for parameters defined

via estimating equations when the proposal model is weakly con-

sistent

Conditions for asymptotic consistency of Bayesian nonparametric models can be found

throughout standard references in Bayesian nonparametrics, e.g. Ghosal and van der

Vaart (2017) and Ghosh and Ramamoorthi (2003). In this section we identify the con-

ditions for parametric consistency of TAB posterior for functional parameters defined

via estimating equations, while assuming weak consistency of the nonparametric pro-

posal model. We assume that the data-generating distribution has a density f0, and the

nonparametric proposal probability model with the measure Π, is supported on random

measures admitting density functions f . Generalization of the results to probability mod-

els supported on random distribution functions is straightforward.

We have that, for functional parameters defined via an estimating equations g(x, t),

θ(f) :=

{
t ∈ Θ s.t.

∫
g(x, t)f(x)dx = 0

}
,

boundedness of g(x, t), continuity of g(x, t) in x and t, integrability of
∫
g(x, t)f(x)dx for

all f in the support of Π, integrability of
∫
g(x, t)f0(x)dx at any given t, and weak consis-

tency of the proposal model together imply parametric consistency under the proposal

model.

This stems from the definition of weak consistency (Definition 1 of Ghosal et al. (1999)).

Given a probability measure Π with sample space F , let ϕi, i = 1, . . . , k be bounded con-
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tinuous functions on R. Let

U =

{
f ∈ F :

∣∣∣∣∫ ϕi(x)f(dx)−
∫
ϕi(x)f0(dx)

∣∣∣∣ < ϵ, i = 1, 2, . . . , k

}
(3.13)

be a weak neighbourhood of f0. A probability model with measure Π is said to be weakly

consistent for f0 if with Pf−0 probability 1

Π(U |X1, X2, . . . , Xn) → 1

for all weak neighbourhoods U of f0. The boundedness condition for ϕi’s that define a

weak neighbourhood may not be satisfied by g(x, t) when the domain of the function

is not compact at any given t. In this case, a workaround is to truncate x to be within

some bounds – this is generally possible to do when the observables are natural/physical

phenomena. It is therefore assumed that g(x, t) at any given t can be used to define weak

neighbourhoods in the development of the subsequent proof.

For estimating equations that lead to explicit solutions for the parameter, in the form

of θ(f) =
∫
k(x)f(dx) for some general function k(x), parametric consistency is immedi-

ately apparent. For example, when θ(f) :=
∫
xf(dx), weak consistency of a model for f0

implies, for all ϵ > 0,

lim
n→∞

Π

({
f ∈ F :

∣∣∣∣∫ xf(dx)−
∫
xf0(dx)

∣∣∣∣ < ϵ

}
|X1, X2, . . . , Xn

)
= 1,

due to {
f ∈ F :

∣∣∣∣∫ xf(dx)−
∫
xf0(dx)

∣∣∣∣ < ϵ

}
being a weak neighbourhood per definition given in Eqn. (3.13). Similar arguments apply

to show parametric consistency for estimating the k-th moment, variance/covariance, co-

efficients for linear regression or, in general, simple functions of moments when Slutsky’s

theorem applies.

Now consider the case that the parameter θ is defined as the solution to some estimat-

ing function. Without loss of generality assume θ ∈ R. Let

h0(t) :=

∫
g(x, t)f0(x)dx

s.t. h0(θ0) = 0,
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i.e. the estimating function identifies the true parameter θ0 under the true data generating

mechanism f0. We assume that θ0 is unique, and sgn h0(θ0 + δ) ̸= sgn h0(θ0 − δ), i.e. the

function h0 has opposite signs at the two sides of θ0. By the continuity of g(x, t) in t for

any x, the function h0 is continuous. Then there exist for ϵ small enough

Ca(ϵ) := {t ∈ Θ : h0(t) = ϵ}

Cb(ϵ) := {t ∈ Θ : h0(t) = −ϵ}

ta(ϵ) := argmin
t∈Ca

|t− θ0|

tb(ϵ) := argmin
t∈Cb

|t− θ0|,

i.e. ta, tb are the closest points to θ0 with |h0(t)| equal to ϵ. Due to continuity of h0(t),

ϵ1 < ϵ2 =⇒ |ta(ϵ1) − θ0| ≤ |ta(ϵ2) − θ0|, similarly for tb, so that these points can only get

closer to θ0 when we decrease the deviation ϵ.

Define

Uta,tb(ϵ) :={
f ∈ F :

∣∣∣∣∫ g(x, ta(ϵ))(f(x)− f0(x))dx

∣∣∣∣ < ϵc AND
∣∣∣∣∫ g(x, tb(ϵ))(f(x)− f0(x))dx

∣∣∣∣ < ϵc
}
,

which are weak neighbourhoods of f0 indexed by ϵ, for arbitrary c. We will set c according

to ϵ, such that when ϵ < 1, c > 1, whereas when ϵ ≥ 1, c < 1.

We have that

ϵ < 1, c > 1, and f ∈ Uta,tb(ϵ) OR ϵ > 1, c < 1, and f ∈ Uta,tb(ϵ)

=⇒
∫
g(x, ta(ϵ))f(x)dx ∈ (ϵ− ϵc, ϵ+ ϵc) > 0 and∫
g(x, tb(ϵ))f(x)dx ∈ (−ϵ− ϵc,−ϵ+ ϵc) < 0

=⇒ θ(f) ∈ (min (ta(ϵ), tb(ϵ)) ,max (ta(ϵ), tb(ϵ)))

=⇒ |θ(f)− θ0| < max(|ta(ϵ)− θ0|, |tb(ϵ)− θ0|),
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the second to last implication is due to continuity of g(x, t) hence that of
∫
g(x, t)f(x)dx.

Define

e(ϵ) = max(|ta(ϵ)− θ0|, |tb(ϵ)− θ0|),

Hence

Uta,tb(ϵ) ⊆ {f ∈ F : |θ(f)− θ0| < e(ϵ)},

i.e. Uta,tb(ϵ) is a subset of the right-hand-side expression. Recall that both ta(ϵ) and tb(ϵ)

→ θ0 as ϵ → 0 (monotonically), such that e(ϵ) → 0 monotonically as ϵ → 0. Then, given

weak consistency of the proposal model PΠ with measure Π, ∀ϵ > 0, we have,

lim
n→∞

Π(Uta,tb(ϵ) | X1, X2, . . . , Xn) = 1

=⇒ limΠ(|θ(f)− θ0)| < e(ϵ)|X1, X2, . . . , Xn) = 1.

Hence, posterior TAB parametric inference for a parameter defined via estimating

equation g(x, t) that is continuous in t and integrable will be consistent if the proposal

nonparametric model is at least weakly consistent for the true data-generating distribu-

tion f0. The result above easily extends to the case where the data-generating distribution

is discrete or a mixed distribution, by considering the definition of weak neighbourhoods

of distribution functions which appears on p. 81 of Ghosh and Ramamoorthi (2003).

3.3.2 Parametric consistency of TAB posterior for parameters defined

via estimating equations when the proposal model is the Dirich-

let process

In the case that PΠ is the Dirichlet process, we have that for functional parameters defined

via an estimating equations g(x, t), that is,

θ(F ) :=

{
t ∈ Θ s.t.

∫
g(x, t)dF (x) = 0

}
,

parametric consistency does not require a boundedness condition on g(x, t). We have that

continuity of g(x, t) in t, integrability of
∫
g(x, t)dF (x) for all F in the support of Π, and
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integrability of
∫
g(x, t)dF0(x) at any given t together imply the parametric consistency of

the Dirichlet process proposal model.

To see this, the proof contained in Section 3.3.1 can be used, with the only modification

being the definition of the neighbourhood Uta,tb(ϵ) as

Uta,tb(ϵ) :={
F ∈ F :

∣∣∣∣∫ g(x, ta(ϵ))d(F (x)− F0(x))

∣∣∣∣ < ϵc AND∣∣∣∣∫ g(x, tb(ϵ))d(F (x)− F0(x))

∣∣∣∣ < ϵc
}
.

When PΠ is the Dirichlet process, Proposition 4.3 of Ghosal and van der Vaart (2017)

implies that

1 = lim
n→∞

Π

(∣∣∣∣∫ g(x, ta(ϵ))d(F (x)− F0(x))

∣∣∣∣ ≤ ϵc | X1 . . . , Xn

)
≤ lim

n→∞
Π(Uta,tb(ϵ) | X1, . . . , Xn) ,

∀ϵ > 0 at arbitrary c, as long as g(x, t) is a integrable function at any fixed t.
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Chapter 4

Algorithms for sampling from the

posterior θ-augmented probability model

for Bayesian inference

If we take FX ∼ TA(m = pθ/q
Π
θ ,PΠ), then the TAB posterior for θ has the density function

qΠ
⋆

θ|x̃n(θ|x̃n) ∝
pθ(θ)

qΠθ (θ)
· qΠθ|x̃n(θ|x̃n) (4.1)

when the induced distribution for θ is absolutely continuous. If the induced distribution

for θ is discrete, we would use the model FX ∼ TA(m = Pθ/QΠ
θ ,PΠ), which results in the

TAB posterior

Π⋆(θ = t|x̃n) ∝
Pθ(t)
QΠ
θ (t)

QΠ
θ|x̃n(t|x̃n),

We note the similarities between these two versions. The following discussion on sam-

pling focuses on the continuous version of the posterior distribution for θ but easily gen-

eralizes to the discrete version.

We discuss two types of sampling strategies, direct sampling and Markov chain Monte

Carlo (MCMC) for drawing samples from qΠ
⋆

θ|x̃n when our prior is the TA(m = pθ/q
Π
θ ,PΠ)

model. In most scenarios, closed-form expressions for qΠθ and qΠθ|x̃n are not known. While

we can easily sample from these densities, the samples only provide us with estimates
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of these functions, denoted as q̂Πθ and q̂Πθ|x̃n , via common density estimation methods.

Regardless, we describe both direct sampling and MCMC algorithms in the following

sections, and provide some insights with regards to our ability to approximate posteri-

ors given a TA(m = pθ/q
Π
θ ,PΠ) prior. Throughout this section, inference will be based

on using the Normal-Inverse-Gamma (NIG) prior with normal likelihoods as PΠ, which

gives us the benefit that exact expressions for qΠθ|x̃n and qΠθ are known for some functional

parameters. We show that, under natural and agreeable limitations to the choice of PΠ,

differences in posterior TAB inference due to the use of q̂Πθ and q̂Πθ|x̃n in place of exact ex-

pressions are negligible.

4.1 Direct sampling

The marginal posterior density of θ under the TA(m = pθ/q
Π
θ ,PΠ) model is proportional

to a multiplication of three terms, shown in Eqn. (4.1). If we have the expressions for

these three components, direct sampling of Π⋆ will be possible based on either a grid ap-

proximation or the inverse cumulative distribution function (CDF) method. Grid approx-

imation is the subject of the following study as it is quick to perform in low-dimensional

space, and works well given enough grid points. Under the scheme of grid approxima-

tion, we will study the conditions that affect our ability to produce good approximations

to TAB posterior densities based on a comparison of qΠθ|x̃n/q
Π
θ , the effective likelihood, and

q̂Πθ|x̃n/q̂
Π
θ , the estimated effective likelihood, as this allows us to make comparisons without

specifying pθ.

Suppose that we are interested in estimating the mean parameter and the proposal

model is one which assumes a normal sampling distribution and an NIG prior. In this case

exact expressions for qΠθ and qΠθ|x̃n are known to be the density functions of t-distributions.

The density functions q̂Πθ and q̂Πθ|x̃n are estimated separately, via the R package ks (Duong,

2020) with 1 × 106 samples each. Samples over a fine grid with sampling probability

proportional to an (approximate) effective likelihood function were obtained to visualize
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this function. Several hyperparameter settings for the proposal model PΠ were tested to

identify the conditions under which the use of estimated q̂Πθ and q̂Πθ|x̃n led to good approx-

imation of the exact effective likelihoods. In this study, we used the same dataset of 10

observations drawn from a Gaussian distribution, and the resulting effective likelihoods

for the mean parameter are shown in Figures 4.1 and 4.2.

Figures 4.1 and 4.2 show, with each row corresponding to a particular hyperparameter

setting for the TAB proposal model, the estimated and exact versions of the effective likeli-

hood (right-hand-side panels), along with the corresponding qΠθ|x̃n and qΠθ (right-hand-side

panels). When the proposal prior qΠθ had heavier tails than the proposal posterior qΠθ|x̃n ,

the approximate effective likelihood accurately tracked the exact expression. When qΠθ|x̃n

had fatter tails than qΠθ , or was situated in the tail of qΠθ , then the approximate version

of the effective likelihood was quite inaccurate; this is to be expected since the approx-

imate effective likelihood is calculated based on a division by the estimated q̂Πθ therefore

inherently unstable for small values of q̂Πθ which are estimated less accurately to begin

with. This result can be translated to the approximation of the posterior density function

of θ under the TA(m = pθ/q
Π
θ ,PΠ) model; that is, due to the same limitations in density

estimation in tail regions, we require qΠθ to be heavier tailed than qΠθ|x̃n · pθ in order for pos-

terior inference based on a TA model with an estimated weighting function to be a good

approximation to inference based on an exact weighting function.

Note that, in the third row of Figure 4.2, the effective likelihood has a peculiar (”M”)

shape. We are reminded by this peculiar example to keep in mind the scale of qΠθ when in-

terpreting an effective likelihood. In this case, the proposal qΠθ is extremely precise, and as

a result of the integrability condition of weighting function pθ/qΠθ , this particular proposal

model can only be appropriate if our subjective prior pθ is even more precise. Coupled

with a pθ of high precision, bi-modality of the effective likelihood does not translate to the

TAB posterior inference.

In the case of joint inference of multivariate θ the situation is similar. The R library

ks provides density estimation of a multivariate random variable for up to 6 dimensions.
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However, to estimate multivariate density well enough via grid approximation requires

increasingly more samples as the number of dimensions increases. We conducted a sim-

ulation, again, using the Gaussian likelihood and a NIG prior as the proposal model. The

target of inference was the vector of mean and variance parameters. Figure 4.3a shows

the estimated contours of the effective likelihood superimposed on the exact contours for

the same data set as in Figure 4.1. The estimated contours of the likelihood function was

generated based on 106 samples from q̂Πθ and 107 samples from q̂Πθ|x̃n via grid approxima-

tion over a (8× 102)× (8× 102) rectangular grid between µ ∈ [−5, 10] and σ2 ∈ [10−5, 80].

Inaccuracies in the estimated contours of the effective likelihood can be visually detected

in the region where qΠθ|x̃n was high yet qΠθ was low (bottom centre of Figure 4.3a). In com-

parison, in Figure 4.3b, when the qΠθ was more spread-out than theqΠθ|x̃n in every direction,

the estimated contour of the effective likelihood function matched the exact contours very

well with just 106 samples from each of q̂Πθ and q̂Πθ|x̃n .

We note that the 95th percent contour of the effective likelihood and that of qΠθ|x̃n occu-

pied only a moderate portion of the the region (−5, 10) × (0, 80) in the parameter space,

which suggests that sampling of the TAB posterior qΠ⋆

θ|x̃n via grid approximation is likely

inefficient in high-dimensional space. An alternative approach in this case is to approxi-

mate the TAB posterior qΠ⋆

θ|x̃n via Markov chain Monte Carlo sampling; see Section 4.2.

In summary, our results show that direct sampling via grid approximation from the

posterior qΠ⋆

θ|x̃n or the effective likelihood works well when the distribution qΠθ induced by

a proposal measure Π is well dispersed compared to qΠ⋆

θ|x̃n and qΠθ|x̃n .

4.2 Markov chain Monte Carlo sampling

Again, assume that FX ∼ TA(m = pθ/q
Π
θ ,PΠ) a priori. A simple Metropolis-Hastings (MH)

algorithm to sample from the TAB posterior proposes moves in the space of FX based on

the conditional measure Π(·|x̃n) of a given proposal model. In the case that independent

sampling of FX from Π(·|x̃n) is possible, the acceptance ratio of a move from FX to F ′
X is
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Figure 4.1: Approximating the effective likelihood under a NIG model. Estimated effec-

tive likelihoods were accurate as long as qΠθ|x̃n was not in the tail region of qΠθ . Each row in

the figure corresponds to a particular specification for PΠ, with parameters given above

each subplot. The left-hand-side plot within a row show qΠθ (dotted lines) and qΠθ|x̃n (solid

lines) of a proposal model. The right-hand-side plot within a row show the effective like-

lihoods obtained two ways, either estimated (red line) or exact (blue line).
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Figure 4.2: Approximating the effective likelihood under a NIG model. Estimated effec-

tive likelihoods were inaccurate whenever qΠθ|x̃n was in the tail region of the qΠθ . Each row

in the figure corresponds to a particular specification for PΠ, with parameters given above

each subplot. The left-hand-side plot within a row show qΠθ (dotted lines) and qΠθ|x̃n (solid

lines) of a proposal model. The right-hand-side plot within a row show the effective like-

lihoods obtained two ways, either estimated (red line) or exact (blue line).
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Figure 4.3: Contours of estimated likelihood functions (black solid lines) by grid approx-

imation, superimposed over the exact likelihood functions (red solid lines). Grid points

with invalid estimates of a likelihood function are blacked out in the figure. Grey solid

lines show the contours of estimated q̂Πθ|x̃n , and grey dotted lines show that of estimated

q̂Πθ . The left-hand-side panel shows a situation where grid approximation of the likeli-

hood function was inaccurate in a low-density region of qΠθ . The right-hand-side panel

shows a situation where grid approximation of the likelihood function worked well in

general, when qΠθ is more dispersed than qΠθ|x̃n . The estimated effective likelihoods were

generated based on a minimum of 106 samples from each of qΠθ|x̃n and qΠθ .
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A(F ′
X , FX) = min

(
1,

Π⋆(F ′
X |x̃n)

Π⋆(FX |x̃n)
· Π(FX |x̃n)
Π(F ′

X |x̃n)

)
= min

(
1,
pθ(θ(F

′
X))/q

Π
θ (θ(F

′
X))Π(F

′
X |x̃n)

pθ(θ(FX))/qΠθ (θ(FX))Π(FX |x̃n)
· Π(FX |x̃n)
Π(F ′

X |x̃n)

)
= min

(
1,
pθ(θ(F

′
X))/q

Π
θ (θ(F

′
X))

pθ(θ(FX))/qΠθ (θ(FX))

)
.

In our algorithm the MCMC proposal distribution will, in most cases, be wider than

the MCMC target distribution as the weighting function pθ/q
Π
θ is necessarily integrable.

However, the algorithm may be inefficient if the MCMC proposal distribution is too dis-

persed, or if qΠ⋆θ|x̃n is concentrated in a region of qΠθ|x̃n with low density.

In most situations, a substitution of q̂Πθ for qΠθ in the acceptance ratio is necessary. The

accuracy with which pθ/q̂
Π
θ tracks pθ/qΠθ is low in the tail regions of qΠθ , due to a lack

of accuracy in density estimation for tail regions. We can general avoid problems if the

proposal measure Π is selected such that qΠθ|x̃n is not located near the tail of qΠθ – a condition

that can be checked visually for low-dimensional θ.

Figure 4.4 shows the contours of various target posteriors estimated with 106 MCMC

samples, with marginal priors and posteriors of TAB inference (pθ and qΠ
⋆

θ|x̃n) shown in

blue, and marginal priors and posteriors of the proposal measure (qΠθ and qΠθ|x̃n) shown in

grey. As expected, we observed that sampling efficiency depends how well qΠθ|x̃n resem-

bles qΠ⋆

θ|x̃n , but regardless of efficiency, the MCMC approximation of the target posteriors

were quite accurate in all cases tested.

It is possible to use other MCMC proposal distributions, but the advantage of using

exactly Π(·|x̃n) as the MCMC proposal is that the acceptance ratio involves only values of

θ, thus we need not keep track of the full FX when running the Markov chain.

To run any MCMC we require a proper probability density as the target distribution.

Therefore, when implementing the algorithm it is necessary to assume a particular pθ,

and check that it satisfies the integrability condition of pθ/qΠθ . The integrability condition

may be difficult to verify when θ is of high dimensionality. One workaround is to match

partial subjective information for a single dimension of θ, for which the weighting func-
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Figure 4.4: Two-dimensional joint inference of θ = (µ, σ2) based on MCMC approxima-

tion (106 samples) to qΠ⋆

θ|x̃n . The panels represent inference under θ-augmented models that

differ in pθ but share the same PΠ. In each panel, pθ is shown with blue dotted lines, and

approximated qΠ
⋆

θ|x̃n is shown with blue solid lines. The exact contours of the target pos-

terior distributions are shown with black solid lines. Contours relating to PΠ are shown

in grey (dotted= prior, solid= posterior). With the same number of MCMC iterations for

approximating the target posterior, the estimated target posteriors (blue solid lines) ap-

pear slightly smoother in the top row of figures, due to the proposal posteriors being a lot

more dispersed than the target posteriors.
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tion is m = pθj/q
Π
θj

, as per Eqn. (3.11). This partial specification allows us to check the

integrability condition based on marginal distributions in 1 or 2 dimensions which can

usually be done visually.

Having an effective likelihood function is useful for situations when we want to try

out various subjective priors without having to perform another MCMC. Although it

may be possible to obtain an approximate effective likelihood based on a division of the

estimated density of the TAB posterior by the exact pθ used in the MCMC, estimation of

the effective likelihood function in the tail region of the TAB posterior is challenging, as

seen in Figure 4.5. Even though an estimate of the effective likelihood function can be

regarded as a by-product of having performed a density estimation for the TAB posterior,

we are likely better off obtaining the effective likelihood directly by the calculation of

qΠθ|x̃n/q
Π
θ .
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Figure 4.5: Contours of effective likelihoods estimated based on MCMC approximations.

The posterior qΠ⋆

θ|x̃n was approximated with 106 MCMC samples. Subplots present re-

sults from different θ-augmented models, corresponding to respective panels of Figure

4.4. Contours relating to proposal model are shown in grey (dotted= qΠθ , solid= qΠθ|x̃n).

Contours of effective likelihoods obtained via q̂Π⋆

θ|x̃n/pθ are shown in black, while those of

exact effective likelihoods are shown in red. Visualization of the contours is done via grid

sampling. Locations where q̂Π⋆

θ|x̃n/pθ resulted in invalid values are blacked out in the plots.

Estimation of the effective likelihood based on a division of MCMC estimated target pos-

terior distribution by the subjective prior appear rather unstable.
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Chapter 5

Proposal models for θ-augmented

Bayesian semiparametric inference

Although a θ-augmented model may be specified with either a parametric or nonpara-

metric proposal model, we focus on nonparametric proposal models in this thesis. Em-

ploying a nonparametric proposal model in the specification of a θ-augmented model

effectively produces semiparametric Bayesian inference.

The theory of θ-augmentation limits compatible proposal models to ones that are dom-

inated. One well-studied class of dominated nonparametric models is the Dirichlet pro-

cess mixture (DPM) model. The DPM can be represented as an infinite mixture of kernels.

It is typically implemented with Gaussian kernels for ease of computation. In the limit

with kernel variance approaching 0, we recover the Dirichlet process model. Thus the

DP may be represented as an infinite mixture of kernels, but with kernels that are Dirac

measures. One needs to be cautious as, in general, the DP is not dominated and vio-

lates the prerequisite of TAB inference. A simple workaround is to instead consider the

data as measured to finite precision which results in a dominated DP with a discrete base

distribution. As we will demonstrate, the practical difference induced by rounding of

observed data is minimal in finite sample inference. Furthermore, limitations in com-

puter architecture leads to most mathematical calculations being performed with finite
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precision arithmetic in practice.

Depending on the type of proposal model, the difficulty of calculating θ(FX) will vary.

In general, calculation of θ(FX) will be simple when FX is discrete. If we take PΠ to be

a DP, discreteness of FX is guaranteed, and the sampling algorithm will be simpler to

implement than that of DPM. In this section, we aim to compare the use of DP versus

DPM as the proposal model for inferring various functional parameters. We will discuss

differences in the resulting TAB posterior and in implementation difficulty.

Without loss of generality, we describe the candidate proposal models for an observ-

able X ∈ R in Model 5.1 and Model 5.2. These models can be extended to an observable

vector in higher dimensions while maintaining the same overall structure.

Model 5.1. (Dirichlet process mixture model with absolutely continuous kernels)

Assume K(x|η) is an absolutely continuous density function for x,

fX(x) =

∫
K(x|η)dFH(η)

FH ∼ DP(ϕ,G0).

Model 5.2. (DP with discrete base distribution)

For a fixed bin-width h,

FX ∼ DP(ϕ,G′
0)

G′
0 = Discretized version of continuous distribution G0,

with mass assigned to points {ih|i ∈ Z} for fixed bin width h s.t.

G′
0(X = ih) =

∫
1

[
x ∈

(
ih− h

2
, ih+

h

2

)]
dG0(x).

5.1 Sampling of random measures from the proposal model

Both DP and DPM models rely on the Dirichlet process at some level. In order to sample

from the prior Dirichlet process, we may use the stick-breaking construction (Sethura-

man, 1994). Sampling from the prior PΠ, regardless of it being DP or DPM, is relatively
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straightforward as no data is involved. In practice one terminates the stick-breaking pro-

cess (SBP) after a sufficient number of components have been realized, resulting in an

approximation of a random measure from PΠ; see Ishwaran and James (2001) for some

algorithms. To obtain good approximations, the level of truncation of the stick-breaking

process should depend on the precision ϕ. When ϕ < 1 we can typically terminate the

SBP fairly quickly.

Under a DP prior, posterior distribution of FX is again a Dirichlet process, i.e. Model

5.2, but updated with a new base distribution,

FX |x̃n ∼ DP
(
(ϕ+ n),

(
ϕ

ϕ+ n
G′

0 +
n

ϕ+ n
F̂n

))
,

where F̂n denotes the empirical distribution of the observed data and n denotes sample

size. We may draw approximately from the posterior DP via the truncated SBP. While

this is conceptually simple, there are some ways to make the algorithm efficient, as the

posterior precision parameter (ϕ + n) can be large. For an efficient algorithm to sample

approximately from the posterior DP, we may extend the results of Lemma 3 of Paisley

and Jordan (2016), which also appears in Paisley et al. (2010); see Appendix A.3.

Sampling of FX |x̃n under a DPM prior, however, is more computationally involved

than under a DP prior. Dirichlet process mixture models, especially with Gaussian ker-

nels, are well studied in the literature. Section 23.3 of Gelman et al. (2013) gives an ex-

tensive account of the DPM with Gaussian kernels, and a blocked Gibbs Sampler (p. 553)

for generating approximate samples from the posterior DPM. The kernels are continuous

densities supported on the real line, hence membership of a data point in each mixture

component is not certain. A blocked Gibbs sampler alternates between the sampling of

cluster membership given data and kernel parameters, and subsequently the sampling of

kernel parameters given cluster membership and data. A slice sampler (Kalli et al., 2011)

can be used to generate exact samples from a posterior DPM. However, mixing problems

can be extreme under the fringe case where kernels of the DPM resemble degenerate dis-

tributions with practically no chance of clustering. This is a highly unrealistic model for

density estimation purposes, but will be explored here to present the continuum of infer-
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ences possible between DPM and DP. Label-switching moves can alleviate the problem

of poor mixing in this extreme scenario, or alternatively, an approximate algorithm built

on the Polya urn representation of DP; see Appendix A.4.

5.1.1 Estimating the mean and variance

Calculating the mean functional is an example where the integral of the estimating equa-

tion presented in Example 1.1 has a simple closed form expression for FX sampled from

either a DP or DPM; the same goes for moments in general. Every random measure sam-

pled from a DP or DPM model can be expressed as an infinite weighted sum of kernels,

denoted with Ki of unspecified form. Therefore

µ(FX) =

∫
xdFX(x)

=

∫
x

∞∑
i=1

wiKi(x)dx

=
∞∑
i=1

wi

∫
xKi(x)dx

=
∞∑
i=1

wiEKi
[X],

when the above integral is finite (Fubini’s Theorem). The expected value of kernel Ki can

be obtained easily for common kernels because the first moment of a common distribu-

tion is typically well known. The variance of FX can be derived similarly due it being

σ2(FX) = E[X
2]− (E[X])2.

Example

We performed a simulation study to highlight the effects of varying proposal model

specification on the posterior inference for mean and variance parameters. We obtained

marginal posterior inference for the mean and variance functionals separately. When in-

ferring the mean, we used the model

TA(m = pµ/q
Π
µ ,PΠ)

45



as the Bayesian prior. Whereas, for inferring variance, we used the model

TA(m = p2σ/q
Π
σ2 ,PΠ)

as the Bayesian prior. The data was distributed according to a skewed distribution, de-

tailed in Model 5.3. The density function for the observable is shown in Figure 5.1. We

drew 20 samples from Model 5.3. The data points are represented as open circles in Figure

5.3.

Model 5.3. (Data-generating mechanism of a skewed random observable, Section 5.1.1)

T1 ∼ Normal(µ = 5, σ2 = 5)

T2 ∼ Normal(µ = −1, σ2 = 1)

L ∼ Bernoulli(0.3)

X = LT1 + (1− L)T2.

Model 5.4. (DPM proposal model for estimating mean and variance, Section 5.1.1)

fX(x) =

∫
N(x|µ, σ2)dFH(µ, σ

2)

FH ∼ DP(ϕ,G0)

G0 = NIG(µ0, λ0, α0, β0),

where N(x|µ, σ2) denotes the Gaussian density function.

Model 5.5. (DP proposal model for estimating mean and variance, Section 5.1.1)

FX ∼DP(ϕ,G′
0)

G′
0 = Discretized version of continuous distribution G0,

with mass assigned to points {ih|i ∈ Z} for fixed bin-width h s.t.

G′
0(X = ih) =

∫
1

[
x ∈

(
ih− h

2
, ih+

h

2

)]
dG0(x)

G0 = Normal(µ0, σ
2
0).
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Figure 5.1: Density function of Model 5.3, the data-generating distribution for the exam-

ple in Section 5.1.1. The dataset that was used in Section 5.1.1 is shown as open circles on

the x-axis.
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Table 5.1: Proposal model hyperparameters for the example in Section 5.1.1. The hyper-

parameters are tested in combination for estimation of mean and variance parameters.

The proposal DPM and DP models are described in detail in Model 5.4 and Model 5.5.

DPM Model 5.4 DP Model 5.5

precision ϕ ∈ {0.3, 0.75, 1.5} precision ϕ ∈ {0.3, 0.75, 1.5}

base measure G0 ∈ {G0,1, G0,2, G0,3} base measure prior to discretization

G0,1 = G0 ∈ {G0,1, G0,2}

NIG(µ0 = 0, λ0 = 1.25× 10−4, α0 = 3, β0 = 1× 10−1) G0,1 = Normal(µ0 = 0, σ2
0 = 202)

G0,2 = G0,2 = Normal(µ0 = 1, σ2
0 = 102)

NIG(µ0 = 1, λ0 = 1.25× 10−8, α0 = 3, β0 = 1× 10−5)

G0,3 =

NIG(µ0 = 1, λ0 = 5× 10−8, α0 = 3, β0 = 1× 10−5)

discretization precision h ∈ {h1, h2}

h1 = 1× 10−1

h2 = 1× 10−4

Two types of proposal models were employed, one of which is a DPM model (Model

5.4), and the other a DP, (Model 5.5). Several values of hyperparameters for the proposal

models were used in combination to examine the effect of hyperparameter specification

on posterior TAB inference. The selected hyperparameter values are detailed in Table 5.1.

Examples of random measures we drew from posterior DPMs with varying hyperparam-

eter specifications are shown in Figure 5.2.

The results are presented in terms of effective likelihoods, qΠµ|x̃n/q
Π
µ and qΠσ2|x̃n/q

Π
σ2 ,

which were estimated via kernel density estimation using the R package ks. The re-

sults based on using DPM as PΠ are summarized in Figures 5.3 and 5.5. The results from

using DP as PΠ are summarized in Figures 5.4 and 5.6. We also provide the BB posterior

in these Figures as a point of reference.

Algorithmically, the DP was much easier to implement and sample from. We found
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Figure 5.2: Random draws of FX conditional on the data given Model 5.4, a DPM of Gaus-

sian kernels, Section 5.1.1. The subplots correspond to various hyperparameter specifi-

cations for the same model, which are given above each subplot. Within a subplot, the

samples of FX from the same posterior DPM are differentiated by colour. Detailed hyper-

parameter specification is found in Table 5.1.
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Figure 5.3: TAB effective likelihood curves for inferring the mean with PΠ being Model

5.4, a DPM of Gaussian kernels, Section 5.1.1. Black curves represent effective likeli-

hoods obtained under various hyperparameter specifications, the line types of which

correspond to different base distributions. The three panels are arranged in the order

of increasing DPM precision parameter from left to right. The Bayesian bootstrap poste-

rior is shown in grey in each panel for comparison. Note that a decreased ϕ resulted in an

increased resemblance of the effective likelihood to the BB posterior. Within each panel,

the curve corresponding to the model with G0,3 as the base distribution is the most sim-

ilar to the BB posterior, due to the induced variance of qΠµ|x̃n being the smallest. Detailed

hyperparameter specification is found in Table 5.1.
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Figure 5.4: TAB effective likelihood curves for inferring the mean with PΠ being Model

5.5, a DP with discrete base distribution, Section 5.1.1. Black curves represent the effective

likelihoods obtained under various hyperparameter specifications. The rows of subplots

are arranged such that the precision parameter ϕ increases from top to bottom, while the

columns of subplots represent different base distributions. Bandwidth of discretization,

as controlled by parameter h, is indicated by the line type, which seems to have little

effect on finite sample parametric inference. The Bayesian bootstrap posterior is shown

in grey in each panel for comparison. Details regarding hyperparameter specification is

given in Table 5.1. Since G0,2 has a smaller variance than G0,1, it seems that decreasing the

spread of the base distribution increased the resemblance of TAB effective likelihood to

the Bayesian bootstrap posterior. Decreasing ϕ also led to increased resemblance of the

effective likelihoods to the BB.
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Figure 5.5: TAB effective likelihood curves for inferring the log of variance with PΠ being

Model 5.4, a DPM of Gaussian kernels, Section 5.1.1. Black curves represent effective

likelihoods obtained under various hyperparameter specifications, the line types of which

correspond to different base distributions. The three panels are arranged in the order of

increasing DPM precision parameter from left to right. The Bayesian bootstrap posterior

is shown in grey in each panel for comparison. Note that a decreased ϕ resulted in an

increased resemblance of the effective likelihood to the BB posterior. Within each panel,

the curve corresponding to the model withG0,3 as the base distribution is the most similar

to the BB posterior, due to the induced variance of qΠlog σ2|x̃n being the smallest. Detailed

hyperparameter specification is found in Table 5.1.
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Figure 5.6: TAB effective likelihood curves for inferring the log of variance with PΠ be-

ing Model 5.5, a DP with discrete base distribution, Section 5.1.1. Black curves represent

the effective likelihoods obtained under various hyperparameter specifications. The rows

of subplots are arranged such that the precision parameter ϕ increases from top to bot-

tom, while the columns of subplots represent different base distributions. Bandwidth of

discretization, as controlled by parameter h, is indicated by the line type, which seems

to have little effect on finite sample parametric inference. The Bayesian bootstrap pos-

terior is shown in grey in each panel for comparison. Details regarding hyperparameter

specification is given in Table 5.1. Decreasing ϕ and decreasing the spread of the base

distribution both increased the resemblance of TAB effective likelihood to the Bayesian

bootstrap posterior.
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the level of precision, h, of the observable had little effect on the posterior inference. We

found that the effective likelihoods became more and more similar to the Bayesian boot-

strap when the value of ϕ was reduced, regardless if we used DP or DPM as the proposal

model. Reduction in the kernel variance of DPM proposal models also tuned the effective

likelihoods toward the BB. As the BB is known to have good properties, selecting ϕ as

small as computationally feasible may be a good starting point for TAB inference unless

we suspect a severe under-coverage of BB credibility intervals.

5.1.2 Linear least squares

Without loss of generality, let X = (1, X1)
⊤, Y ∈ R. We adopt the functional defined in

Example 1.3 for estimating the coefficients of linear regression, β := (β0, β1)
⊤.

For any random measure FXY in the sample space of infinite kernel mixture models

based on the DP, β can be found by solving

0 =E[XY −XX⊤β]

=E[XY ]− E[XX⊤]β,

which leads to

β = E[XX⊤]−1E[XY ] =

(
∞∑
j=1

wjEj[XX
⊤]

)−1( ∞∑
i=1

wiEi[XY ]

)
. (5.1)

The solution requires calculation of cross moments of the random variables under the

chosen multivariate kernel, which may be nontrivial. When PΠ is a DP, calculation of

cross moments is simple, since the kernel is a product of Dirac measures δXk
(x)δYk(y) for

the k-th mixture component.

When the multivariate kernels are continuous in every dimension, one can potentially

simplify the calculation in Eqn. (5.1) if the kernel are jointly independent in X and Y ,

that is, K(x, y|η) = KX(x|ηX)KY (y|ηY ). For a Dirichlet process mixture of multivariate

Gaussian kernels with diagonal covariance matrices, its asymptotic behaviour and the

conditions for consistency were studied by Wu and Ghosal (2010). However, we were
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unable to find results on the asymptotic behaviour of other types of jointly independent

multivariate kernels. In general, if jointly independent multivariate Gaussian kernels

suffice for the application, β(FXY ) will be simple to calculate, as all cross moments under

this type of multivariate kernel will be 0.

Example

We performed a simulation study to highlight the effects of varying proposal model spec-

ification on posterior inference for regression coefficients. The functional of interest was

β = {β0, β1} as defined by Example 1.3. We focused on marginal inference of β0 and β1

separately. When inferring β0, we used the model

TA(m = pβ0/q
Π
β0
,PΠ)

as the Bayesian prior. When inferring β1, we used the model

TA(m = pβ1/q
Π
β1
,PΠ)

as the Bayesian prior.

The data (X, Y ) was generated according to Model 5.6. A contour plot of the data-

generating density function of (X, Y ) is given in Figure 5.7. The DPM model shown in

Model 5.7 and DP model shown in Model 5.8 were used as PΠ. Several values of hyper-

parameters for the proposal models were tested in combination to examine the effect of

hyperparameter specification on posterior TAB inference. The results of our simulation

are presented in terms of effective likelihoods. This allows us to discuss the marginal

prior-to-posterior update mechanism without selecting a specific subjective prior for the

regression coefficients.
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Figure 5.7: Scatter plot of the data used in Section 5.1.2, along with contours of the data-

generating distribution given by Model 5.6. Data points in the dataset are shown as open

circles.
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Model 5.6. (Data-generating mechanism for observable (X, Y ) in Section 5.1.2)

T1 ∼ Normal(µ = 2, σ2 = 5)

T2 ∼ Normal(µ = −1, σ2 = 1)

L ∼ Bernoulli(0.3)

X = LT1 + (1− L)T2

Y = 5 + 5X + ϵ

ϵ|X ∼ Normal(µ = 0, σ2 = X4/3).

Model 5.7. (DPM proposal for estimating linear regression parameters in Section 5.1.2)

fXY (x, y) =

∫
N(x|µx, σ2

x)N(y|µy, σ2
y)dFH(µx, µy, σ

2
x, σ

2
y)

FH ∼DP(ϕ,G0)

G0 = G0X ×G0Y

G0X = NIG(µ0,X , λX , αX , βX)

G0Y = NIG(µ0,Y , λY , αY , βY ),

with kernel parameters (µx, σ2
x) sampled fromG0X , and (µy, σ

2
y) sampled fromG0Y . N(·|µ, σ2)

denotes the Gaussian density function.

Model 5.8. (DP proposal for estimating linear regression parameters in Section 5.1.2)

FXY (x, y) ∼DP(ϕ,G′
0)

G′
0 = Discretized version of the distribution G0X ×G0Y ,

with mass assigned to points {(ih, jh)|i, j ∈ Z} for fixed bin width h s.t.

G′
0(X = ih, Y = jh) =

∫ ∫
1

[
x ∈

(
ih− h

2
, ih+

h

2

)]
×

1

[
y ∈

(
jh− h

2
, jh+

h

2

)]
dG0X(x)dG0Y (y)

G0X = Normal(µX , σ2
X)

G0Y = Normal(µY , σ2
Y )

h = a constant
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Table 5.2: Proposal model hyperparameters for the example in Section 5.1.2, which were

tested in combination for estimation of linear regression parameters. The proposal DPM

and DP models are described in detail in Model 5.7 and Model 5.8.

DPM Model 5.7 DP Model 5.8

DPM precision ϕ ∈ {0.3, 1.5} DP precision ϕ ∈ {0.3, 1.5}

DPM base measure for the DP base measure prior to

sampling of kernel parameters discretization

G0X ∈ {G0X,1, G0X,2} G0X ∈ {G0X,1, G0X,2}

G0Y ∈ {G0Y,1, G0Y,2} G0Y ∈ {G0Y,1, G0Y,2}

G0X,1 =

NIG(µ0,X = x̄n, λX = 1× 10−3, αX = 3, βX = 1× 10−3) G0X,1 = Normal(µX = 0, σ2
X = 102)

G0X,2 = G0X,2 = Normal(µX = 0, σ2
X = 0.52)

NIG(µ0,X = x̄n, λX = 4× 10−3, αX = 2, βX = 1× 10−4) G0Y,1 = Normal(µY = 1, σ2
Y = 102)

G0Y,1 = G0Y,2 = Normal(µY = 1, σ2
Y = 202)

NIG(µ0,Y = ȳn, λY = 2× 10−2, αY = 3, βY = 15)

G0Y,2 =

NIG(µ0,Y = ȳn, λY = 1.5× 10−2, αY = 3, βY = 5)

h = 1× 10−4

We were interested in studying the conditions that lead to the effective likelihood,

qΠθ|x̃n/q
Π
θ , of TAB inference being approximately the same as the BB. Since we knew that DP

and DPM posterior distributions would be approximately equal to the Bayesian bootstrap

with ϕ set close to 0, ϕ was chosen to be 0.3 and 1.5 for the simulation. As for the base

distributions, we thought of these as primarily influencing the flatness of qΠβ0 and qΠβ1 .

Although, given that ϕ cannot be 0, we had to make sure that when a base distribution

led to qΠβ0 and qΠβ1 being flat, it did not cause qΠβ0|x̃n and qΠβ1|x̃n to become excessively wide.

The discovery of suitable hyperparameters took some trial and error due to the numerator

and denominator of an effective likelihood being affected simultaneously by changes in

the hyperparameter specification. The selected hyperparameter values are detailed in
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Table 5.2. The results for marginal parametric TAB inference based on these proposal

models and hyperparameter values are shown in Figures 5.8 - 5.11.

We saw in the results that, as expected, decreasing ϕ towards 0 had the effect of tuning

the effective likelihoods toward Bayesian Bootstrap posteriors. When ϕwas increased, the

effective likelihoods became more spread out, reflecting a decrease in the informativeness

of data, as expected. The effect of base distribution specification on the effective likelihood

was less straight forward.

We detail our observations of the effects of changing base distribution specification on

the effective likelihood. For the DP proposal, when we set the variance of base distribu-

tion G0X to be much smaller than the sample variance, the proposal prior for β1 became

extremely spread out, which led to the effective likelihood of β1 being approximately the

Bayesian bootstrap posterior. The choice of a base distribution G0X with variance smaller

than the sample variance seemed counter intuitive, but it was necessary because a smaller

variance of X translated to a larger covariate effect, when the spread of G0Y was kept the

same. The base distribution G0Y also had an effect on the effective likelihood, in that

increasing the variance of G0Y led to a widening of the induced proposal prior for β0

and β1 when G0X was kept the same. An appropriate specification for approximating the

Bayesian bootstrap was found with the variance of G0Y being approximately equivalent

to or slightly larger than that of the observed values, and the variance of G0X artificially

smaller than that of the observed x values, while matching the means of these base distri-

butions to the sample means.

Hyperparameter specification for the DPM proposal model worked in a similar fash-

ion as for the DP. However, due to a location scale kernel being used, there were many

more parameters in the base distribution of a DPM model, making hyperparameter tun-

ing and selection comparatively more difficult. The complexity of the algorithm for im-

plementing a DPM model for the 2-dimensional observable was not much more than that

of a DPM for a 1-dimensional observable. We note that all combinations of base distribu-

tions used for the DPM in this study resulted in some clustering of the data, which made
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the resulting density estimation model more plausible. However, this likely was the rea-

son why effective likelihoods of DPM proposals (Figures 5.8 and 5.10) did not track the

Bayesian bootstrap very closely. Regardless, TAB posteriors based on a DPM proposal

model that leads to clustering of data would still be considered genuine if we belief clus-

tering of data to be likely a priori.

We also tested an additional scenario where the posterior DPM proposal model re-

sulted in no clustering of the data, with kernels approaching point-mass. In this case,

shown in Figure 5.12, the effective likelihoods track the Bayesian bootstrap posteriors

very closely.

5.1.3 Logistic regression

When PΠ is a DPM of continuous kernels, the calculation of nonlinear functionals of ran-

dom distributions sampled from this model tends to be difficult. As an example, we take

the target of inference to be the coefficients of logistic regression. Suppose the observable

random variables are C ∈ {0, 1} and X = (1, X1)
⊤, with target parameter ψ = (ψ0, ψ1)

⊤

defined according to Example 1.4. We denote a distribution function for the observable

(X,C) with FXC .

The observable C is a Bernoulli random variable, which does not have a density. The

application of DP and DPM to model this type of data is somewhat unorthodox. Com-

putationally, we do not encounter too much difficulty. For a DP proposal model, we can

posit a base distribution G0 = G0X × G0C where G0C is supported on {0, 1}. When the

precision parameter ϕ → 0, the limiting posterior inference based on a DP prior is the

Bayesian bootstrap, which is commonly used as posterior inference for functional param-

eters regardless if the observed variable is discrete or continuous.

As for suitable specifications of a DPM proposal model, one possibility with regards

to the kernel is

K(x, c) = KX(x|η)×
[
θc(1− θ)(1−c)

]
,

which has a jointly independent structure. The mapping from FXC to ψ(FXC) requires
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Figure 5.8: TAB effective likelihood curves for inferring regression parameter β0 with

PΠ being Model 5.7, a DPM of jointly independent Gaussian kernels. Black curves cor-

respond to the effective likelihoods under various hyperparameter specifications. The

figure contains several panels, arranged into rows and columns, with panels in the same

column sharing the same specification for the parameter G0Y , and panels in the same

row sharing the same specification for the parameter G0X . The line type of an effective

likelihood curve indicates the value of parameter ϕ. The Bayesian bootstrap (in grey) is

overlaid for comparison. Detailed hyperparameter specifications are given in Table 5.2.

Out of the four panels, the effective likelihoods shown in the bottom-right panel are most

similar to the BB. This is due to the prior variance observable X under parameter G0,X2

being smaller than that of G0,X1. The prior variance of observable Y under parameter

G0,Y 2 is smaller than that of G0,Y 1.
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Figure 5.9: Marginal inference for the β0 parameter of linear regression, Section 5.1.2. TAB

effective likelihood curve for inferring the regression parameter β0 with the DP (Model

5.8) as PΠ. Black curve correspond to effective likelihoods under varying sets of hyperpa-

rameters. The panels are arranged into rows and columns with panels in the same column

sharing the same specification for the parameter G0Y , and panels in the same row shar-

ing the same specification for the parameter G0X . The line type of an effective likelihood

curve indicates the value of parameter ϕ. The Bayesian bootstrap (in grey) is overlaid for

comparison. Detailed hyperparameter specifications are given in Table 5.2. Out of the

four panels, the effective likelihoods shown in the bottom-right panel are the most simi-

lar to the BB. This is due to the prior variance observable X under parameter G0,X2 being

smaller than that of G0,X1. The prior variance of observable Y under parameter G0,Y 2 is

smaller than that of G0,Y 1.
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Figure 5.10: TAB effective likelihood curves for inferring regression parameter β1 with the

DPM (Model 5.7) as PΠ. Black curves correspond to effective likelihoods under varying

sets of hyperparameters. The panels are arranged into rows and columns with panels

in the same column sharing the same specification for the parameter G0Y , and panels

in the same row sharing the same specification for the parameter G0X . The line type of

an effective likelihood curve indicates the value of parameter ϕ. The Bayesian bootstrap

(in grey) is overlaid for comparison. Detailed hyperparameter specifications are given

in Table 5.2. Out of the four panels, the effective likelihoods shown in the bottom-right

panel are most similar to the BB. This is due to the prior variance observable X under

parameter G0,X2 being smaller than that of G0,X1. The prior variance of observable Y

under parameter G0,Y 2 is smaller than that of G0,Y 1.
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Figure 5.11: Marginal inference for the β1 parameter of linear regression, Section 5.1.2.

TAB effective likelihood curve for inferring the regression parameter β0 with the DP

(Model 5.8) as PΠ. Black curve correspond to effective likelihoods under varying sets

of hyperparameters. The panels are arranged into rows and columns with panels in the

same column sharing the same specification for the parameter G0Y , and panels in the

same row sharing the same specification for the parameter G0X . The line type of an effec-

tive likelihood curve indicates the value of parameter ϕ. The Bayesian bootstrap (in grey)

is overlaid for comparison. Detailed hyperparameter specifications are given in Table 5.2.

Out of the four panels, the effective likelihoods shown in the bottom-right panel are most

similar to the BB. This is due to the prior variance observable X under parameter G0,X2

being smaller than that of G0,X1. The prior variance of observable Y under parameter

G0,Y 2 is smaller than that of G0,Y 1.
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Figure 5.12: Plots of TAB effective likelihoods based on a specification of the DPM pro-

posal (Model 5.7) which induced no clustering of data points. The left-hand-side panel

shows induced distributions of β0 and the right-hand-side shows that of β1. The line

type of a curve corresponds to a particular type of distribution (proposal prior, proposal

posterior, and the BB posterior) as indicated by the plot legend. Base distribution param-

eters are ϕ = 0.3, G0X = NIG(µ0,X = x̄n, λX = 1.2 × 10−5, αX = 20, βX = 1 × 10−5) and

G0Y = NIG(µ0,Y = ȳn, λY = 3.3 × 10−9, αY = 15, βY = 1 × 10−5). In each subplot, we

observe that the TAB proposal prior is essentially flat over the region of interest, which

means the proposal posterior shown in each panel may also be interpreted as the TAB

effective likelihood.
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that we solve the following estimating equation,

0 = E[X⊤(C − τ(X⊤ψ))]

=
∞∑
j=1

wjEj[X
⊤C]−

∞∑
i=1

wiEi[X
⊤τ(X⊤ψ)],

where τ(z) =
1

1 + exp(−z)
. We found the integral Ei[X⊤τ(X⊤ψ)] particularly challenging

to calculate for the Gaussian kernel, even with the aid of symbolic math software. One

could approximate the integral via numerical integration. However, the required compu-

tation time does not seem realistic as Ei[X⊤τ(X⊤ψ)] needs to be calculated repeatedly in

a Monte Carlo approximation of the posterior.

As a workaround, the calculation of Ei[X⊤τ(X⊤ψ)] is typically feasible when the in-

tegration is performed with respect to an uniform distribution. Exact expressions for the

definite integrals of estimating functions with respect to a uniform distribution may be

found with the help of computer programs for symbolic mathematics.

In the context of modelling (X,C), we propose as the DPM (partial) kernel the uniform

distribution

KU(x|µ, h) =
1

h
I

[
x ∈

[
µ− 1

2
h, µ+

1

2
h

]]
.

The complete kernel is jointly independent in x and c, that is,

K(x, c) = KU(x|µ, h)×
[
θc(1− θ)(1−c)

]
,

and the kernel parameters are (µ, h, θ). Based on this partially uniform kernel, the es-

timating equation for logistic regression can be simplified, and the exact expressions of

the relevant integrals are shown in Appendix A.6. We may further simplify the sampling

algorithm with the following DPM base distribution:

G0 = G0µ ×G0h ×G0θ

G0θ = Beta(αθ, βθ)

G0µ =
J∑
j=1

pj
1

(bj − aj)
I[µ ∈ (aj, bj)]

G0h = Gamma(αh, βh).
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Sampling from this DPM model can be performed with a blocked Gibbs algorithm,

with the conditional distributions given in Appendix A.5.

Example

We performed a simulation study to highlight the effects of varying proposal model spec-

ification on posterior inference for logistic regression. The functional of interest was

ψ = {ψ0, ψ1} as defined by Example 1.4. We focused on marginal inference of ψ0 and

ψ1 separately. When inferring ψ0, we used the model

TA(m = pψ0/q
Π
ψ0
,PΠ)

as the Bayesian prior. When inferring ψ1, we used the model

TA(m = pψ1/q
Π
ψ1
,PΠ)

as the Bayesian prior.

In this example, we generated the data according Model 5.9. Twenty data points were

drawn from the data-generating mechanism. Figure 5.13 shows a scatter plot of the data,

overlaid with a curve showing the true Pr(C = 1|X), and a curve showing the best fitting

logistic model for Pr(C = 1|X) as given by maximum likelihood.

Model 5.9. (Data-generating model for the logistic regression example, Section 5.1.3)

X ∼ Normal(µ = 5, σ2 = 25)

pc(X) = 1/(1 + exp(−(5−X)))

C|X ∼ Bernoulli(pc(X)).

The DPM and DP models we chose as PΠ for conducting TAB inference are detailed,

respectively, in Model 5.10 and Model 5.11. Specifications for the hyperparameters of the

DP proposal, i.e. Model 5.11, is given in Table 5.3. Specifications for the hyperparameters

of the DPM proposal is given directly in Model 5.10. The DPM proposal was only studied

under one set of hyperparameter values as an attempt to demonstrate the feasibility of our
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Figure 5.13: Logistic regression in Section 5.1.3. A scatter plot of the data (n=20) used in

the example, with each data point represented by an open circle. The best fitting logistic

model pc(X) for this particular sample is shown in solid line, and the true model is shown

in dotted line.
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method. Under the chosen hyperparameters, our DPM proposal introduced a moderate

amount of clustering in the data points, which provided some contrast to our DP proposal

model. Please refer to Figure 5.18 for examples of random draws of FX from the posterior

DPM. The results for TAB inference are again presented in terms of effective likelihoods,

and are summarized in Figures 5.14- 5.16.

Model 5.10. (DPM proposal for estimating logistic regression parameters in Section 5.1.3)

f(x, c) =

∫
1

h
I

[
x ∈

[
µ− 1

2
h, µ+

1

2
h

]] [
θc(1− θ)(1−c)

]
dFH(µ, h, θ)

FH ∼ DP(ϕ,G0)

ϕ = 0.5

G0 = G0µ ×G0h ×G0θ

G0θ = Beta(αθ = 1× 10−5, βθ = 1× 10−5)

G0µ =
3∑
j=1

pj
1

(bj − aj)
I[µ ∈ (aj, bj)]

(a1, a2, a3) = (−20,−10,−6)

(b1, b2, b3) = (50, 30, 16)

(p1, p2, p3) = (0.001, 0.01, 0.989)

G0h = Gamma(αh = 10, βh = 10).
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Model 5.11. (DP proposal for estimating logistic regression parameters in Section 5.1.3)

FXC(x, c) ∼DP(ϕ,G′
0)

G′
0 =a discrete distribution with mass assigned to

points {(ih, c)|i ∈ Z, c ∈ {0, 1}} for fixed bin width h s.t.

G′
0(X = ih, C = c|h) =∫

1

[
x ∈

(
ih− h

2
, ih+

h

2

)]
dG0X(x)× p1[c=1]

c (1− pc)
1[c=0]

G0X = Normal(µ, σ2)

G0C = Bernoulli(pc)

h = a constant.

As with previous examples, the effective likelihoods based on a DP proposal model

with small ϕ approximated BB posteriors closely. We were able to make the denominators

of the effective likelihoods, i.e. qΠψ0
and qΠψ1

, relatively flat by choosing a DP base distri-

bution G0X with small variance, since X was the covariate in the logistic regression. We

kept the mean of G0X the same as the sample mean throughout the simulation, which

helped maintain the resemblance of the effective likelihoods to BB posteriors. The same

base distribution G0C was used throughout this study, as it seemed to have little effect

on the effective likelihoods under the chosen structure for the DP proposal model. More

investigation is needed to understand the effect of G0C on the coefficients of logistic re-

gression.

The posterior DPM proposal, Model 5.10, introduced a fair amount of clustering in the

data (Figures 5.17 and 5.18). For FXC sampled from this DPM proposal mode, calculation

of ψ(FXC) was quite tricky numerically, as different root finding/optimization algorithms

often led to different solutions, suggesting that the estimating equation for logistic regres-

sion gave rise to a highly complex surface. The effective likelihoods for ψ0 and ψ1 under

the DPM proposal model are shown in Figure 5.16.The effective likelihoods of TAB in-

ference based on using DPM Model 5.10 as PΠ also tracked BB posteriors closely in the
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Table 5.3: Specifications of the hyperparameters in DP proposal, Model 5.11, in Section

5.1.3; the parameters are tested in combination.

DP Model 5.11

DP precision ϕ ∈ {0.3, 1.5}

DP base measure

G0C = Bernoulli(0.5)

G0X ∈ {G0X,1, G0X,2}

G0X,1 = Normal(µ = x̄n, σ
2 = 102)

G0X,2 = Normal(µ = x̄n, σ
2 = 2.52)

Bandwidth of discretization

h = 1× 10−4

marginal parametric inference for both ψ0 and ψ1. The difference in parametric TAB in-

ference between the use of DP versus DPM as PΠ was minor, despite a moderate amount

of clustering in the data under the posterior DPM.
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Figure 5.14: Marginal inference for logistic regression parameter ψ0 in Section 5.1.3 using

DP Model 5.11 as the TAB proposal model. Black curves represent TAB effective likeli-

hoods. The panels are arranged into rows and columns with panels in the same column

sharing the same specification for the parameter G0X , and panels in the same row share

the same specification for the parameter ϕ. The Bayesian bootstrap posterior is shown in

grey in each subplot for comparison. Detailed hyperparameter specifications are given

in Table 5.3. We note that G0,X2 has a smaller variance than G0,X1, which shows that de-

creasing the spread of the base distribution increased the resemblance of TAB effective

likelihood to the Bayesian bootstrap posterior. Decreasing ϕ also led to increased resem-

blance of the effective likelihoods to the BB.
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Figure 5.15: Marginal inference for logistic regression parameter ψ1 in Section 5.1.3 using

DP Model 5.11 as the TAB proposal model. Black curves represent TAB effective likeli-

hoods. The panels are arranged into rows and columns with panels in the same column

sharing the same specification for the parameter G0X , and panels in the same row share

the same specification for the parameter ϕ. The Bayesian bootstrap posterior is shown in

grey in each subplot for comparison. Detailed hyperparameter specifications are given

in Table 5.3. We note that G0,X2 has a smaller variance than G0,X1, which shows that de-

creasing the spread of the base distribution increased the resemblance of TAB effective

likelihood to the Bayesian bootstrap posterior. Decreasing ϕ also led to increased resem-

blance of the effective likelihoods to the BB.
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Figure 5.16: Marginal TAB inference for logistic regression parameter ψ0 (left-hand-side

panel) and ψ1 (right-hand-side panel) in Section 5.1.3 using DPM Model 5.10 as the pro-

posal model. TAB effective likelihoods are shown with dotted lines while the Bayesian

bootstrap posteriors are shown with solid lines.
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Figure 5.17: Fitting of DPM Model 5.10 in Section 5.1.3 to the example data: plot of maxi-

mum occupied kernel index and numbers of latent kernels over MCMC iterations. Max-

imum occupied kernel index is shown in black solid line and the total number of latent

clusters is shown in grey dotted line.
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Figure 5.18: Fitting of DPM Model 5.10 in Section 5.1.3 to the example data: random

measures for the observed X drawn from the posterior DPM. The observed X values are

overlaid as black dots on the x-axis. Each panel shows a random measure for X obtained

at the MCMC iteration indicated above the panel.
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Chapter 6

Comparison of semiparametric Bayesian

methods via simulations

The philosophical gain of the θ-augmented Bayesian method over its competitors is clear.

It is fully Bayesian, in contrast with existing methods which are at best pseudo-Bayesian.

This section explores the practical differences between existing methods and the TAB

method. The evaluation of competing methods is performed under a Frequentist frame-

work.

Four methods – the θ-augmented Bayesian method, Bayesian bootstrap, general Bayes

method, and Bayesian empirical likelihood inference, are compared. Prior to the simu-

lations we have identified several weaknesses of the competing methods. The Bayesian

bootstrap does not allow one to incorporate a subjective prior, and as such, actual per-

formance should be worse than competing methods that incorporate a correctly specified

prior. The GB method sometimes assumes implicit parametric likelihood models, such

that, when the random observable being modelled deviates from this implicit model, the

estimation is likely inefficient. The Bayesian empirical likelihood posterior can be com-

putationally challenging to implement when the number of nuisance parameters is large.

Both BB and BEL posteriors are bound by the convex hull condition which suggests diffi-

culty with coverage of interval estimates in small sample inference.
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Given the considerations above, we chose to highlight the strength of TAB via two

examples. The first example is a problem of estimating the mean and variance parame-

ters, the second example is a problem of estimating the mean of a population when some

of the observations are missing at random. The variety of problems includes scenarios

where all estimators perform quite well practically, typically when the estimating equa-

tion involves a summary variable which is more or less unimodal with little skew, and

scenarios where the performance of competing methods is quite varied.

The results for TAB inference were obtained based on a TA model with Dirichlet pro-

cess as PΠ. We chose the DP due to the sampling algorithm being simple to implement,

and the ease with which we calculate functionals based on random measures drawn from

the DP. We believe these qualities will positively influences the adoption rate of TAB in-

ference in future applications. Secondly, in Chapter 5 we saw that inference via a DP

proposal model did not differ significantly from inference via a DPM proposal model

when there was minimal clustering.

Under a Frequentist framework, we evaluated each method via estimates of the fol-

lowing metrics. For joint inference, we considered the expected size and coverage prob-

ability of credible regions. For marginal inference, we considered the expected length

and coverage probability of credible intervals, bias of the posterior mean, and expected

quadratic risk for predicting the truth. Depending on the method being evaluated, sam-

ples from a posterior distribution were drawn either by direct sampling or MCMC. Upon

obtaining samples from a posterior distribution, the joint credible regions was identified

via the kde function from the R package ks (Duong, 2020). Marginally, credible inter-

vals were chosen to be highest posterior density (HPD) intervals, and calculated via the

R package HDInterval (Meredith and Kruschke, 2020). The bias of posterior mean was

defined as EF0 [(θ̂n−θ0)], with expectation taken over the true data-generating mechanism

F0, where θ̂n denotes the mean of a posterior distribution conditional on a sample of size

n. The expected quadratic risk was defined as EF0 [
∫
(θ − θ0)

2fθ(dθ|x̃n)]. The expected

quadratic risk measured how well random conditional posterior distributions captured
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Figure 6.1: Comparison study of Section 6.1: marginal density functions of random ob-

servable X and X2 generated by Model 6.1. The density function of X is shown on the

left-hand-side, and that of X2 is shown on the right-hand-side.

the true value. Estimation of the above performance metrics were based on 300 to 1,000

resampling events.

6.1 Estimating mean and variance parameters

In this example we generated the data from a slightly skewed distribution, as given by

Model 6.1, the density function of which is shown in Figure 6.1.

Model 6.1. (Data-generating mechanism in Section 6.1)

X = −6Z + T

T ∼ Normal(µ = 5, σ2 = 4)

Z ∼ Bernoulli(0.25).

For methods requiring a subjective prior distribution, the same prior was utilized.

We wished to emulate Bayesian inference with good prior information, and therefore

chose the subjective prior, as specified in Model 6.2, to be distributed according to the
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Figure 6.2: Comparison study of Section 6.1: marginal density functions of subjective

prior according to Model 6.2. The marginal subjective prior for µ is shown on the left, and

for σ2 on the right.

Normal-Inverse-Gamma distribution with the marginal prior mean of variance parameter

matching the variance of data-generating distribution, and the marginal prior mean of

mean parameter matching the mean of data-generating distribution.

Model 6.2. (Joint subjective prior pµ,σ2(µ, σ2) in Section 6.1)

1/σ2 ∼ Gamma(α = 6.623, β = 60.442)

µ|σ2 ∼ Normal(µ0 = 3.5, σ2
0 = σ2).

The marginal densities of the above prior distribution are shown in Figure 6.2. In

the simulation study, for each test dataset, θ-augmented Bayesian posterior inference was

obtained via MCMC according to the method outlined in Section 4.2 with 4 × 105 runs,

using the proposal model:
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Model 6.3. (Proposal model for implementing θ-augmented method in Section 6.1)

FX ∼DP(ϕ,G′
0)

G′
0 = Discretized version of continous distribution G0,

with mass assigned to points {ih|i ∈ Z} for fixed bin width h s.t.

G′
0(X = ih) =

∫
1

[
x ∈

(
ih− h

2
, ih+

h

2

)]
dG0(x)

G0 = Normal(µ0 = 0, σ2
0 = 100)

ϕ = 0.5

h = 1× 10−5.

Let qΠµ,σ2 denote the parametric joint distribution induced by the TAB proposal prior

(Model 6.3). Noting pµ,σ2 to be the density function of the actual subjective prior (Model

6.2). TAB inference was performed based on the following model:

Model 6.4. (Bayesian Prior for obtaining TAB inference in Section 6.1)

X ∼ FX

FX ∼ TA(m = pµ,σ2/qΠµ,σ2 ,PΠ = Model 6.3).

Marginal inference on µ and σ2 was obtained by marginalization of the joint TAB pos-

terior.

Figure 6.3 shows the subjective prior pµ,σ2 as being more concentrated than qΠµ,σ2 . Hence

we believe that substitution of estimated q̂Πµ,σ2 for qΠµ,σ2 in the MCMC provided a good ap-

proximation to the exact TAB posterior. Each MCMC chain for approximating a TAB

posterior distribution was obtained with 4× 105 iterations.

As for general Bayes inference for the mean and variance parameter, we note that

there does not exist any distribution-free M-estimator for the variance parameter directly.

Therefore we chose to estimate the mean and second moment via the 2-dimensional loss
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Figure 6.3: Comparison study of Section 6.1: Contour plots comparing qΠµ,σ2 , in solid lines,

versus the pµ,σ2 , in dotted lines. In this plot, distributions are parameterized in terms of

mean and log variance.
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Figure 6.4: Comparison study of Section 6.1: contour plot of a TAB target posterior, in

black, and that of the corresponding TAB proposal posterior, in grey, based on a par-

ticular dataset with 20 samples. The black dot marks the true mean and variance. The

contours are shown under (µ, σ2) parameterization because the posterior densities do not

concentrate around 0 for σ2 to necessitate a conversion to log variance scale.
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functions l(x,m1,m2) := (l1(x,m1), l2(x,m2)), where

l1(x,m1) = (x−m1)
2

l2(x,m2) = (x2 −m2)
2;

the first coordinate l1 is a loss function targeting the first moment, whereas l2 is a loss

function targeting the second moment (denoted as µ(2)). The subjective prior p(µ, σ2) was

reparameterized and a joint density in the first two moments was obtained via the change

of variable formula. The tuning parameter, w, of GB loss function was chosen based on

each dataset; specifically it was set to the inverse of sample variance covariance matrix of

(x, x2). This choice was made based on asymptotic tuning and similar in spirits as Section

3.2 of Bissiri et al. (2016). Each MCMC for approximating a GB posterior distribution was

obtained with a multivariate normal proposal distribution with mean of (x̄n, 1
n

∑n
i=1 x

2
i )

and variance of w/n, and ran for 1× 105 iterations.

Lastly, Bayesian empirical likelihood inference was obtained with the profile empirical

likelihood function Rn defined as

Rn(µ, σ
2) := max

w̃∈Sn−1

{
n∏
i=1

wi :
∑
i=1

(xi − µ) = 0 and
n∑
i=1

1

n
(xi − µ)2 − σ2 = 0

}
,

and BEL posterior being proportional to Rn(µ, σ
2)p(µ, σ2). The PEL function Rn was ob-

tained via the iterative least squares technique described in Section 3.14 of Owen (2001).

Due to a lack of explicit formula forRn, finding good proposal distribution for the MCMC

approximation of a BEL posterior requires trial-and-error. On a first pass, we chose the

MCMC proposal distribution based on the posterior NIG distribution that would have

resulted from a misspecified normal likelihood with a conjugate NIG prior equivalent to

our subjective prior, while scaling the shape and rate parameters by 0.25 to ensure that

the proposal distribution was disperse enough. This method of setting the proposal dis-

tribution worked well most of the time; we show a plot comparing the default MCMC

proposal for BEL inference to the target BEL posterior of a particular dataset in Figure 6.5.

Due to the low dimensionality of the target parameter, it was feasible to visually check for
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Figure 6.5: Comparison study of Section 6.1: contour plot of a BEL posterior distribu-

tion (solid lines) and that of the corresponding BEL MCMC proposal distribution (in grey

dotted lines) based on a particular dataset. Square dots mark the locations (on a grid)

outside of valid parameter space as given by the convex hull condition. The figure shows

the contours under (µ, σ2) parametrization since the BEL posterior in question is not con-

centrated around 0 for σ2 to necessitate a conversion to log variance scale.

the quality of the MCMC proposal distribution. When the aforementioned MCMC pro-

posal did not work well the proposal was adjusted individually until it was wider than

the BEL posterior. Due to the time intensive nature of the iterative least squares algorithm

for finding Rn at given values of (µ, σ2), each MCMC chain contained just 1× 104.

Performance of the four competing methods were explored at two sample sizes (n =

20, n = 50). At each sample size level, 300 resampling events were performed, and the

performance metrics were calculated based on the average from these resampling events.

The chosen number of resampling events is not large and therefore some stochastic errors

in the results are expected. Results from the simulation study is summarized in Table 6.1

for joint inference and Table 6.2, Table 6.3 for marginal inference.
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Table 6.1: Comparison study of Section 6.1: results for estimating µ and σ2 jointly. Perfor-

mance metrics were computed based on 300 resampling events at each sample size n.

Estimated coverage Average size

Method probability of 95% CR of 95% CR

n = 20

TAB 0.980 30.129

BB 0.803 30.009

BEL 0.837 25.755

GB 0.783 25.946

n = 50

TAB 0.96 14.571

BB 0.880 14.009

BEL 0.893 13.330

GB 0.87 13.476

Table 6.2: Comparison study of Section 6.1: results for marginal inference of µ. Perfor-

mance metrics were computed based on 300 resampling events at each sample size n.

Estimated coverage Average size Estimated Average

Method probability of 95% CI of 95% CI bias quadratic risk

n = 20

TAB 0.947 2.611 -0.051 0.917

BB 0.930 2.695 -0.095 1.027

BEL 0.947 2.592 -0.084 0.914

GB 0.933 2.633 -0.064 0.934

n = 50

TAB 0.937 1.726 0.039 0.398

BB 0.923 1.759 0.009 0.422

BEL 0.943 1.788 0.015 0.423

GB 0.937 1.768 0.053 0.408
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Table 6.3: Comparison study of Section 6.1: results for marginal inference of σ2. Perfor-

mance metrics were computed based on 300 resampling events at each sample size n.

Estimated coverage Average size Estimated Average

Method probability of 95% CI of 95% CI bias quadratic risk

n = 20

TAB 1.000 9.597 -0.607 10.537

BB 0.830 9.857 -1.010 16.709

BEL 0.877 8.316 -0.863 9.924

GB 0.817 8.370 -1.596 10.551

n = 50

TAB 0.98 7.206 -0.425 6.324

BB 0.883 7.094 -0.558 7.587

BEL 0.907 6.380 -0.501 5.700

GB 0.857 6.776 -1.083 6.462

We note that small sample Frequentist properties of Bayesian procedures are depen-

dent on the prior distribution, that had the prior been exceptionally strong then all of

results (except those for the BB) would be concentrated at the correct value, and the 95%

credibility region would always cover the true value. However, we had assumed a sub-

jective prior distribution with a moderate amount of uncertainty (Figure 6.2), and as such

the coverage of the methods under comparison was less than certain.

In joint inference, only the TAB method achieved a coverage level close to nominal

at the sample sizes tested. Average size of the 95% credible region for TAB posterior was

similar to competing methods while having achieved much better coverage. For marginal

inference on the variance parameter, the estimated coverage probability of TAB method

was closest to nominal among competitors, while the average length of the credible inter-

val stayed small. The estimated bias and expected quadratic risk were also small relative

to that of competing methods. Poor performance of GB estimator for variance parameter

was likely due to the skewness of X2 (see Figure 6.1) conflicting with the implications of

the loss function on the likelihood model as being Gaussian. Similarly, posteriors for BB
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and BEL are related to the empirical distribution, which was likely unrepresentative of

the variance of the population given the skewness of the distribution of X2. Interestingly,

the TAB method may have accounted for this with the weighting by pµ,σ2/qΠµ,σ2 , with the

induced proposal prior qΠµ,σ2 capturing the behaviour of variance parameter when random

measures for the observable put large weights on a small number of support points.

In marginal inference of the mean, all methods performed well. The results in Table 6.2

did not highlight one method above others as being superior if we factor in the stochastic

error from the relatively low number of resampling events.

6.2 Estimating the mean with data missing at random

Let us consider the problem of estimating the mean of some random variable Y when

some observations are missing at random (MAR), while an auxiliary variable X is ob-

served always. Let C be the indicator for whether variable Y is observed. When Y is

said to be missing at random, it means that C ⊥ Y |X , or equivalently, that P[C|X, Y ] =

P[C|X]. The observed data is

(ciyi, ci, xi), i = 1, . . . , n.

Many of the methodologies for dealing with missing data can be found in Molenberghs

et al. (2014).

To aid the view of parameters as functionals of the distribution for observables, we let

E(F )[·] denote integral transform of measurable functions with respect to F , a distribution

for the observable; we hope this notation makes clear that F itself is an argument of

the integral transform. Under a Frequentist semiparametric setting, the target parameter

E0[Y ] can be identified via several candidate estimating equations. Letting P0[C|X] be

the true conditional probability of Y being observed given X , and E0[Y |X] be the true

conditional mean of Y given X.

We consider the following estimating functions,
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gIPW(my,P0[C = 1|X], F0) := E(F0)

[
CY

P0[C = 1|X]

]
−my, (6.1)

gIPW2(my,P0[C = 1|X], F0) := E(F0)

[
C

P0[C = 1|X]
(Y −my)

]
, (6.2)

gAIPW(my,P0[C = 1|X],E0[Y |X], F0) := E(F0)

[
CY

P0[C = 1|X]
− C − P0[C = 1|X]

P0[C = 1|X]
E0[Y |X]−my

]
.

(6.3)

When set to equal to 0, the above estimating equations all identify E0[Y ] if E0[Y |X]

and P0[C = 1|X] of the data-generating mechanism are known.

In most applications, P0[C = 1|X] and E0[Y |X], and F0 are unknown. A more useful

construction of the estimating equations is obtained when we substitute proxy models for

E0[Y |X] and P0[C = 1|X]. We let

p̂(x|ψ0, ψ1) = [1 + exp{−(ψ0 + ψ1x)}]−1

be a class of proxy models of P0[C = 1|X], and

ζ̂(x|β0, β1) = β0 + β1x

be a class of proxy models of E0[Y |X]. We can further define “closest” proxy models by

metrics given in terms of estimating equations, for example

glogistic(ψ0, ψ1, F0) := E(F0)[(1 X)⊤(C − (1 + exp(−ψ0 + ψ1X))−1)]

gLM(β0, β1, F0) := E(F0)[(1 X)⊤(Y − (β0 + β1X))],

such that {(ψ̂0, ψ̂1) ∈ R2 : glogistic(ψ0, ψ1, F0) = 0} further specifies p̂(x|ψ̂0, ψ̂1) to be the

closest logistic regression model to P0[C = 1|X]. Setting {(β̂0, β̂1) ∈ R2 : gLM(β0, β1, F0) =

0} specifies ζ̂(x|β̂0, β̂) as the closest linear model to E0[Y |X].

When approximating models are used in Eqn. (6.1) - (6.3) instead of the data-generating

model, we have the following functionals of F̂n which are asymptotically consistent for

E0[Y ] when either p̂ or ζ̂ is correct:

µIPW(F̂n) :=

my ∈ R;

 gIPW

(
my, p̂(·|ψ0, ψ1), F̂n

)
glogistic(ψ0, ψ1, F̂n)

 = 03×1

 , (6.4)
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µIPW2(F̂n) :=

my ∈ R;

 gIPW2

(
my, p̂(·|ψ0, ψ1), F̂n

)
glogistic(ψ0, ψ1, F̂n)

 = 03×1

 , (6.5)

and

µAIPW(F̂n) :=

my ∈ R;


gAIPW (my, p̂(·|ψ0, ψ1) , ζ̂(·|β0, β1), F̂n)

glogistic(ψ0, ψ1, F̂n)

gLM(β0, β1, F̂n)

 = 05×1

 . (6.6)

These functionals of F̂n in fact correspond to famous Frequentist estimators of E0[Y ]

(Robins et al., 1994; Horvitz and Thompson, 1952). Although Eqn. (6.4) - (6.6) are stated

with the arguments being F̂n, they indicate the form of the functionals µIPW, µIPW2, and

µAIPW for any F that is a distribution for the observable.

In a Bayesian formulation, we may obtain consistent Bayesian inference with µIPW,

µIPW2, and µAIPW when our prior distribution over the space of random measures for the

observables is weakly consistent, based on Section 3.3 of this thesis. In this case, the

induced posterior distributions for µIPW and µIPW2 will be asymptotically consistent for

the mean of the data-generating distribution when the form of p̂ is correct, whereas µAIPW

will be consistent if either p̂ or ζ̂ is correctly specified. Bayesian/Frequentist inference for

the mean of the data-generating distribution works well in practice with any of the above

functionals, with µAIPW being very efficient when the true model has conditional mean

E[Y |X] = β0 + β1X .

To begin our simulation study, let us consider the following data generating distribu-

tion with the true E0[Y ] = 6,

Model 6.5. (Data-generating distribution in Section 6.2)

X ∼ Normal(µ = 10, σ2 = 100)

e ∼ Normal(µ = 0, σ2 = 4)

Y |X, e = 1 + 0.5X + e

C|X ∼ Bernoulli
(
p = {1 + exp (1− 0.1X)}−1)
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In this data-generating model, C|X follows a logistic regression model, and Y |X fol-

lows a linear regression model, therefore the functionals µIPW, µIPW2 and µAIPW are all

asymptotically consistent, and µAIPW is of optimal efficiency. Here, we provide yet an-

other functional, µAIPW2, defined as

µAIPW2(F ) :=

my ∈ R;


gAIPW (my, p̂(·|ψ0, ψ1) , ζ̂(·|β0, β1), F )

glogistic(ψ0, ψ1, F )

g⋆LM(β1, F )

 = 04×1

 ,

which uses an incorrect class of proxy regression model E[Y |X] = β1X , defined via esti-

mating equation

g⋆LM(β1, F ) := E(F )[(1 X)⊤(Y − (β1X))].

The estimator µAIPW2 can be thought of as the intermediate between assuming no regres-

sion relationship between X and Y , i.e. µIPW, and assuming a fully correct relationship

between X and Y , i.e. µAIPW. All four functionals, µIPW, µIPW2, µAIPW, and µAIPW2, are

examined in the simulation study to follow.

Given the data-generating mechanism above, we also present the population distri-

bution of Y/P0(C = 1|X) and (Y − E0[Y |X])/P0(C = 1|X) in Figure 6.6. Note that the

density function of Y/P0(C = 1|X) is highly skewed, with extremely long left tail.

We assumed the same subjective prior distribution for all functionals under exami-

nation, for any method requiring a subjective prior distribution. This marginal prior is

given in Model 6.6. We assumed different Bayesian priors for modelling the observables

depending on the functional of interest. The Bayesian prior for inferring µIPW is given in

Model 6.7. The Bayesian priors for inferring the other functionals all had the same form

as Model 6.7, but with the weighting function modified accordingly, e.g. m = pµIPW2/q
Π
µIPW2

if inferring µIPW2, and so forth. The proposal model we used to construct our TA model is

given in Model 6.8.
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Figure 6.6: Comparison study of Section 6.2: density functions of Y/P0(C = 1|X) and

(Y − E0[Y |X]/P0(C = 1|X)) according to the MAR mechanism under Model 6.5.

Model 6.6. (Subjective prior for the unconditional mean of Y in Section 6.2)

pµIPW = pµIPW2 = pµAIPW = pµAIPW2 =

Normal(µ = 6, σ2 = 9).

Model 6.7. (Bayesian prior for TAB inference on µIPW in Section 6.2)

(X,C,CY ) ∼ FX,C,CY

FX,C,CY ∼ TA(m = pµIPW/q
Π
µIPW

,PΠ = Model 6.8).
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Model 6.8. (TAB proposal model in Section 6.2)

FX,C,CY ∼ DP(ϕ,G′
0)

ϕ = 0.5

h = 1× 10−4

G′
0 = Discretized version of G0X ×G0C ×G0CY (·|C),

with mass assigned to points {(ih, c, jh)|i, j ∈ Z} for fixed bin width h s.t.

G′
0(X = ih, C = c, CY = jh|h) = G0C(c)×∫ ∫

1

[
x ∈

(
ih− h

2
, ih+

h

2

)]
×

1

[
cy ∈

(
jh− h

2
, jh+

h

2

)]
dG0X(x)dG0CY (y|c)

G0X = Normal(µ = 10, σ2 = 1)

G0C = Bernoulli(0.2)

G0CY (·|C = 1) = Normal(µ = 0, σ2 = 502)

G0CY (·|C = 0) = 0 with probability 1.

The hyperparameters of the TAB proposal model were selected based on an examina-

tion of prior-to-posterior update mechanism. As ϕ tends to 0 the TAB proposal posterior

becomes more similar to the Bayesian bootstrap, while the TAB proposal prior becomes

harder to sample from. Therefore we chose ϕ of 0.5, which has worked well in past experi-

ence. Several considerations influenced our choice of a base distribution for the TAB pro-

posal model. We noted that the functionals of interest involve weighting either Y or the

residuals of linear regression by the inverse of p̂. As such, these functionals are extremely

sensitive to extreme values of X in the support of the distribution for observables. We

chose a TAB base distribution G0X with a small variance as to not place too much weight

in the extreme values of the observableX . Secondly, we decided thatG0CY (·|C,X) should

be sufficiently wide to reflect our relative lack of information in Y a priori. G0C curiously

played a role in terms of how much our DP base distribution contributed to the posterior

distribution of the functionals– when G0C(C = 1) is small, the proposal posterior will be
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more data driven. Hence we chose G0C to be a Bernoulli(0.2) distribution. Given the cho-

sen DP proposal model, Figure 6.7 show a comparison of the induced prior to posterior

distributions for the various functionals under consideration, conditional on a randomly

chosen set of data points. Note that the induced prior for µIPW has a probability density

function that is increasing to the left. Therefore under small sample sizes, we expected the

TAB posterior of µIPW to assign more weight to larger values of µIPW as compared to the BB

posterior. In the simulation, each TAB posterior distribution was obtained via an MCMC

chain with 1 × 105 runs. The performance of TAB inference over repeated sampling is

summarized in Table 6.5.

Bayesian bootstrap was implemented by direct sampling in the simulation study. We

approximated each BB posterior with 5 × 104 samples. The performance of BB inference

is shown in Table 6.4. As for GB inference, we had to cast the functionals as M -estimators

to conform to the GB framework. While the original estimating equations defined these

functionals via solving for roots, we casted them as the argmin of loss functions by noting,

for example,

µIPW,GB(F̂n) = argmin
t∈R

∑
i

(
(CY )i

p̂(Xi, ψ̂0(F̂n), ψ̂1(F̂n))
− t

)2

.

Since the tuning parameter of a GB loss function is arbitrary chosen, we chose it based on

asymptotic arguments. Using µIPW,GB as an example, as n→ ∞, the terms (CY )i
p̂(Xiψ̂0(F̂n),ψ̂1(F̂n))

become approximately independent. Therefore we let the tuning parameter for µIPW,GB

be 0.5 times the inverse of the sample variance of (CY )i
p̂(Xiψ̂0(F̂n),ψ̂1(F̂n))

. The resulting GB poste-

riors for the target functionals all had a Gaussian form, therefore we were able to sample

from them directly and efficiently. The performance of GB inference is summarized in

Table 6.6.

It was rather challenging to obtain the BEL inference. The dimensionality of estimat-

ing equations for the target functionals was between R3 to R5, which meant that in the

worst case we had four nuisance parameters. As we had specified the subjective prior

marginally for the mean of Y , we had to profile over any nuisance parameters in the set
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of {β0, β1, ψ0, ψ1} in the PEL prior to running the MCMC, to provide an apples-to-apples

comparison of the BEL to its competitors. Unfortunately, profiling of the PEL function

over nuisance parameters is rather computationally difficult and time consuming. As a

compromise, the BEL posterior distribution was obtained for only two datasets. These

results are shown, along with inference obtained under competing methods for the same

data, in Figures 6.8 and 6.9.

Results from the simulation study show that, regardless of method chosen, inference

based on µAIPW and µAIPW2 exhibited good Frequentist properties. The GB method under-

performed when it came to inference based on either µIPW or µIPW2, having much longer

interval estimates on average than its competitors, and subsequently much higher than

nominal coverage probability. This behaviour was anticipated, given that the skewness

in the distribution of Y/P0(C = 1|X) (Figure 6.6) under the data-generating mechanism

conflicted with an assumption of Gaussian likelihood that is implicated by the GB loss

function. As for the Bayesian bootstrap, its coverage probabilities were lower than nomi-

nal in general, and were much lower than nominal for the functionals µIPW and µIPW2; this

observation conforms with the deficiency of not utilizing subjective prior information. In

contrast, the TAB method performed fairly well in all metrics for each of the functional

parameters we investigated. Due to the few number of examples we obtained for BEL,

we can only suspect that its performance is likely somewhere in between TAB and GB,

judging from on the two examples given in Figures 6.8 and 6.9. However, the computa-

tional difficulty of obtaining BEL posteriors in the presence of nuisance parameters is a

big disadvantage of BEL over its competitors.
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Figure 6.7: Comparison study of Section 6.2: induced TAB proposal prior/posterior dis-

tributions on the target functionals for an example dataset with 20 samples generated

under MAR mechanism under Model 6.5. Each panel represents the results for the func-

tional given by corresponding subplot caption. Black solid lines represent proposal pos-

teriors, black dotted lines represent proposal priors, while grey solid lines show Bayesian

bootstrap posteriors, provided for comparison purposes.
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Table 6.4: Comparison study of Section 6.2: results from Bayesian bootstrap marginal

inference of the mean of Y with data missing at random. Performance metrics were com-

puted based on 1000 resampling events at each sample size n.

Estimated coverage Average size Estimated Average

Method probability of 95% CI of 95% CI bias quadratic risk

n = 20

µAIPW 0.918 5.111 -0.006 3.949

µAIPW2 0.926 5.121 0.013 3.816

µIPW 0.915 4.950 0.072 4.218

µIPW2 0.809 4.789 0.314 4.952

n = 50

µAIPW 0.920 3.223 -0.016 1.500

µAIPW2 0.924 3.280 -0.012 1.540

µIPW 0.908 3.279 0.017 1.792

µIPW2 0.868 3.511 -0.012 2.132

Table 6.5: Comparison study of Section 6.2: results from θ-augmented Bayes marginal

inference of the mean of Y with data missing at random. Performance metrics were com-

puted based on 1000 resampling events at each sample size n.

Estimated coverage Average size Estimated Average

Method probability of 95% CI of 95% CI bias quadratic risk

n = 20

µAIPW 0.976 4.951 0.017 2.837

µAIPW2 0.979 4.986 -0.019 2.842

µIPW 0.972 4.678 0.216 2.647

µIPW2 0.933 4.869 0.276 3.420

n = 50

µAIPW 0.962 3.352 -0.017 1.402

µAIPW2 0.959 3.391 -0.027 1.431

µIPW 0.951 3.274 0.095 1.399

µIPW2 0.959 3.588 0.109 1.776
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Figure 6.8: Comparison study of Section 6.2: example of posterior inference for various

functionals estimating the mean of Y with data missing at random. Each panel represents

the conditional posterior distribution for the functional indicated below the plot. Four

methods of inference, Bayesian empirical likelihood, Bayesian bootstrap, θ-augmented

Bayes, and general Bayes, are presented for each target functional. All posterior inference

is based on data set no.1 with 20 samples drawn from the data generating distribution of

Model 6.5.
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Figure 6.9: Comparison study of Section 6.2: example of posterior inference for various

functionals estimating the mean of Y with data missing at random. Each panel represents

the conditional posterior distribution for the functional indicated below the plot. Four

methods of inference, Bayesian empirical likelihood, Bayesian bootstrap, θ-augmented

Bayes, and general Bayes, are presented for each target functional. All posterior inference

is based on data set no.2 with 20 samples drawn from the data generating distribution of

Model 6.5.
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Table 6.6: Comparison study of Section 6.2: results from general Bayes marginal inference

of the mean of Y with data missing at random. Performance metrics were computed

based on 1000 resampling events at each sample size n.

Estimated coverage Average size Estimated Average

Method probability of 95% CI of 95% CI bias quadratic risk

n = 20

µAIPW 0.935 4.516 0.030 2.688

µAIPW2 0.957 4.784 -0.016 2.743

µIPW 0.996 6.048 0.087 3.337

µIPW2 0.996 6.212 0.259 3.833

n = 50

µAIPW 0.938 3.119 -0.011 1.307

µAIPW2 0.947 3.249 -0.023 1.363

µIPW 0.995 4.235 0.050 1.809

µIPW2 0.987 4.256 0.112 2.047
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Chapter 7

Discussion

The theory of Bayesian inference based on θ-augmented models builds on de Finetti’s

representation theorem in a simple manner. As a Bayesian prior for modelling a sequence

of exchangeable observables (X1, . . . , Xn), θ-augmented Bayesian inference proceeds by

specifying

X ∼ FX

FX ∼ TA
(
m =

pθ
qΠθ
,PΠ

)
,

which guarantees the marginal prior density function of θ under this model to be exactly

pθ. The construction of the TA model with a θ-augmented measure provides a way to

adjust any dominated proposal model PΠ, via a simple weighting function, to achieve

the desired marginal prior distribution for a functional parameter that is not part of the

parametrization of the likelihood function of the model space. The weighting which hap-

pens when defining a θ-augmented measure can be regarded as a change of measure

while indexing the proposal model space via subspaces generated by the functional.

Posterior TAB inference relates to the proposal model in an extremely elegant way,

where

qΠ
⋆

θ|x̃n ∝ qΠθ|x̃n
pθ
qΠθ
,

with qΠθ|x̃n denoting the induced density function of θ|x̃n under the proposal model, and
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qΠ
⋆

θ|x̃n denoting the induced density function of θ|x̃n under the TA model. In practice, the

induced functions qΠθ and qΠθ|x̃n will have to be estimated. However we showed in Chapter

4 that, even when qΠθ and qΠθ|x̃n are estimated, our proposed sampling schemes can produce

samples that approximate the posterior densities well as long as qΠθ|x̃n does not have too

much density in the tail regions of qΠθ .

The method provides an alternative to Bayesian conditional models for semiparamet-

ric inference. When conditional models are subject to misspecification, inference based

on functional parameters of nonparametric models has the advantage that probability

statements are not generated by taking the misspecified model to be true. Instead, the

TAB method differentiates between a model for the observable and a “proxy” conditional

model, so that posterior probabilities are generated under a well behaved model for the

observable, while the proxy model helps identify the functional of interest. The trade-off

being that the interpretation of what the target parameter represents is less straightfor-

ward. For example, when the target is inspired by some conditional mean model with

the conditional mean given by f(Y |X, t), a parameter defined as

θ(F ) = argmin
t∈Θ

{EF [(f(Y |X, t)− Y )2]},

may be interpreted as identifying the “closest” proxy model F̂ with the smallest expected

squared distance between Y and f(Y |X, t), for which the conditional mean satisfies some

parametric form, and F̂ (X) = F (X). Sometimes, the interpretation can be much more

complicated as is the case with estimating the mean with data missing at random, Section

6.2.

In Chapter 5, we outlined two candidate TAB proposal models for semiparametric

inference, which are the Dirichlet process model (with a discrete base measure) and the

Dirichlet process mixture model. While the DPM has a better level of realism as a model

for continuous observables, it is computationally more cumbersome. In many situations,

the mapping from density model FX to the target functional may be difficult to compute.

This problem is sometimes alleviated by choosing a uniform mixing kernel for the DPM,

as we did in the example of inferring the coefficients for logistic regression, but in gen-
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eral it is not certain if adopting a uniform kernel can help us in the calculation of every

conceivable functional parameter. Furthermore, under the DPM, parametric consistency

of a functional parameter defined via an estimating equation is only guaranteed when ei-

ther the estimating equation is bounded or the support of the observed random variable

can be perceived as bounded. Although the DP model is not very realistic as a model

for continuous observables, it has proven to induce good parametric TAB inference for

various target parameters. The robustness of DP as a proposal model for a while range

of problems is not surprising, given that a huge amount of dimensionality reduction oc-

curs when a nonparametric random measures for the observable is collapsed down to a

low-dimensional target parameter. As yet another benefit of using a DP as the proposal

model, parametric consistency of a functional parameter defined via an estimating equa-

tion is guaranteed as long as the estimating equation is integrable.

Since the behaviour of TAB posterior for a target parameter depends on the chosen

proposal model, we must make an appropriate choice for the exact specification of PΠ. We

are reminded of the view that commitment to a particular model is equivalent to commit-

ment to the corresponding prior-to-posterior update mechanism (Chapter 1, Hjort et al.

(2010)). One can potentially compare proposal models based on effective likelihoods, that

is, qΠθ|x̃n/q
Π
θ , as a way to compare prior-to-posterior mechanisms in a standard way, con-

centrating on how marginal subjective prior pθ is modified by data. Also relating to the

selection of PΠ, since the TAB weighting function m must be integrable, if we commit

to a particular proposal model we inherently believe that our subjective prior pθ is more

concentrated than the qΠθ that is induced by the proposal model. Model selection should

be restricted to the collection of proposal models with qΠθ wider than our subjective prior

pθ.

In Chapter 5, we observed that the TAB effective likelihood based on the class of in-

finite kernel mixture models, with carefully chosen hyperparameters, can be made to

approximate the Bayesian bootstrap posterior. Let the Bayesian bootstrap posterior of a

functional parameter be denoted as BB(θ). When the effective likelihood of TAB infer-
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ence is approximately proportional to the BB, the TAB posterior for the target parameter

is approximately proportional to BB(θ)pθ(θ), which should perform well in small sample

and asymptotically as the BB is known to behave well in general.

In a sense, the Bayesian bootstrap represents, within the general class of infinite kernel

mixture models, the limiting prior-to-posterior update mechanism when the data is at its

most informative. This behavior is seen throughout the examples in Chapter 5, where

the effective likelihood functions of various DPM/DP proposal models tend towards the

BB when we place more confidence in the data. When setting the hyperparameter of

the DPM proposal model, we can make the data more informative by committing to a

mechanism with less clustering, and smaller variance of the kernels, and, at the same

time, reducing the DP precision parameter. By doing so we tune the effective likelihood

of the proposal model towards the BB. Conversely, as the BB is neither compatible with

subjective prior distribution nor equipped with a proper Bayesian prior, the TA model

may also be viewed as a way to extend the Bayesian bootstrap to equip it with a sub-

jective prior. Given this aim, we wonder whether a full TAB analysis is necessary over

the simplification of approximating the TAB posterior with BB(θ)p(θ). Although we save

computation time by approximating a TAB posterior with BB(θ)p(θ), the BB is bound by

the convex-hull condition, which may be disadvantageous when we suspect the data to

be unrepresentative of the population for certain functionals.

Interestingly, in some situations, specification of the hyperparameters of a proposal

model may depend on the target of inference if we require the effective likelihood to ap-

proximate the BB. As an example, suppose we observe (Xi, Yi), i = 1 . . . , n, taking the DP

model to be the TAB proposal model, increasing the variance of the DP base distribution

for X results in an increased variance of the induced prior for the mean of X . However,

when the same X is used as a covariate for regression purposes, increasing the variance

of the base distribution for X translates to a reduced range in the regression coefficients.

Hence to flatten the induced prior density function qΠθ when θ is a regression coefficient,

one would decrease the variance of the base distribution for covariate X . We may find
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ourselves choosing different DP base distribution for the same observable random vari-

able depending on the parameter of interest, if our goal is to produce a TAB posterior that

is approximately proportional to BB(θ)p(θ).

For the purist, as the TAB method is rooted in de Finetti representation theorem, it

would feel incoherent to change the model specification when estimating different pa-

rameters if the observables have not changed. If theoretical coherence is desired, we

could specify the DP base distribution to adhere to our prior views regarding the observ-

able, which usually produces very sensible results, especially if the base distribution is

not too different from the empirical distribution for the data. Though given how well

the BB performs under Frequentist metrics we may end up sacrificing good Frequentist

behavior for the gain of coherence.

Compared to existing (pseudo-)Bayesian semiparametric methods, TAB performs well

in small sample inference under the Frequentist metrics mentioned in Chapter 6. We saw

the TAB method excel in providing joint inference, while others faired poorly. In es-

timation of variance parameter, which was the only setting not involving a “location”

parameter in our comparison study, TAB was the only method to have achieved close to

nominal coverage probability. The BB showed significantly lower than nominal coverage

probability in joint inference, which was likely due to the “convex hull condition” being

detrimental in small sample inference. Generally speaking, when the BB posterior inter-

val estimates are too short, using the TAB posterior for inference can improve coverage,

bias, etc., if quality prior information is present. As for the GB method, we note that it

exhibited several downsides. Firstly, implementation of GB inference requires fixing an

arbitrary tuning parameter. Secondly, results from Chapter 6 show that the performance

of GB posterior could be worse than other methods that involve data-driven likelihoods

when the shape of the data is incompatible with the shape of the loss function. This is

expected as the GB method did not stem from an attempt to model the observables. BEL

posterior can be difficult and time-consuming to implement when there is a large num-

ber of nuisance parameters, either due to performing iterative least squares optimization
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repeatedly to profile out the nuisance parameters in the PEL function and/or requiring

sampling in a high dimensional space with irregular domain. In comparison, in TAB

inference, subjective prior belief regarding nuisance parameters need not enter the calcu-

lations at all, and the MCMC algorithm proposed in Section 4.2 tends to work efficiently

when the TAB target posterior is not too different from qΠθ|x̃n . We note that the simulations

in Chapter 6 were only performed at a few sample sizes, and with a low number (between

300-1000) of repeated sampling events. As such, the measures of performance which we

reported are only estimates and are subject to stochastic error.

An issue with asymptotics arises in the non-standard use of DPM for modeling a joint

vector of observables where one part of the observable is continuous and another part is

discrete, as was the case in Section 5.1.3 for logistic regression. The DPM proposal model

we used in Section 5.1.3 was devised with the goal of examining the effects of clustering

in data points on parametric inference. The particular DPM proposed in Section 5.1.3 is

by no means a well-studied nonparametric model for mixed observables, and therefore,

further investigation regarding asymptotic consistency is required.
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Chapter 8

Conclusion

In this thesis, a fully Bayesian method of semiparametric inference for functional param-

eters was developed. The TAB model is most useful when coupled with a nonparametric

proposal model, to provide a fully Bayesian semiparametric inference. The proposal non-

parametric distribution should be well-behaved. In several important use cases, we have

shown that the asymptotic consistency of the proposal model for the data-generating dis-

tribution guarantees the TAB posterior for the induced functional to be asymptotically

consistent.

TAB inference is easy to implement, and directly targets a low-dimensional parameter

even when a large number of nuisance parameters are involved in defining the target,

requiring only marginal prior for valid statistical inference. On the flip side, technical

difficulties currently exist for the joint estimation of a parameter vector of high dimen-

sionality. The denominator, qΠθ , of a TAB weighting function is an induced probability

density or mass function which most of the time has no closed-form expression and must

be estimated. There exists R library ks which provides computer functions for density

estimation of a parameter in Rd, d ≤ 6. For the moment it seems that joint inference of a

target parameter vector in 7-dimensions or more will require that we program our own

density estimation algorithm, possibly via Bayesian mixtures of Gaussian kernels (via a

DP), which is a significant task in itself that will likely prevent a wide-scale adoption
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of TAB inference for high-dimensional parameter vectors. Further research is needed to

tackle this problem either from the algorithmic or theoretical front.

We note that the TAB method may be used to translate many existing Frequentist tools

into a Bayesian setting, provided that the Frequentist procedure/estimator is expressed

as a functional of the empirical data distribution. With the TAB method at our disposal

we may begin tackling a wide range of important problems that may not have had a

Bayesian solution previously. This broadens the scope of the Bayesian paradigm signifi-

cantly as Frequentist estimators need not be motivated by a likelihood function. Although

we are accustomed to tackling Bayesian inference by firstly analyzing the structure of the

sampling distribution/likelihood function, writing it down explicitly as involving the pa-

rameter of interest, this mindset can produce less than desirable posterior inference when

the likelihood function is known to be misspecified or unavailable. However, it could

be that the problem has a simple and well accepted Frequentist solution. For example,

the problem of confounding in treatment effects is typically addressed by inverse proba-

bility of treatment (IPT) weighting under a Frequentist framework. Application of TAB

to this type of problem removes the need for correct structuring of the likelihood func-

tion, and the need for specifying a prior distribution for nuisance parameters. Further

work is needed to quantify any additional advantages with regards to performance of the

TAB method compared with likelihood-based Bayesian methods. The examples included

in this thesis are far from comprehensive, and work remains to apply the TAB method

to real datasets and under settings where appropriate likelihood functions do not exist.

Some of the applications we look forward to include causal inference, survey sampling,

longitudinal studies, etc.

While a great variety of functional parameters are compatible with the theory of TAB

inference, the number of compatible proposal models is limited based on algorithmic

practicality. For the moment, the Dirichlet process model with a discrete base distribution

is the only proposal model for which mapping from the distribution for the observable to

any general functional parameter can be performed with ease. The limitation to discrete
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base distribution is necessary so that the DP model is dominated, which is a require-

ment of TAB inference. Discretization of base distribution is justifiable by the practical

limitation that all real world measurements are made with finite precision, as are most

computer arithmetic schemes, and is likely not an issue with small sample inference. For

better understanding of the theory, it may be interesting to characterize the tolerable pre-

cision of measurement at various sample sizes, based on both asymptotic consistency and

practical significance.

Even though the Dirichlet process mixture model with Gaussian kernels has been a

favourite model for density estimation purposes and well studied, it sees limited use as

the proposal model in TAB, due to the difficulty in obtaining closed-form expressions for

general functionals of the Gaussian distribution. More research is needed to find fast and

reliable ways of approximating any general functional of the Gaussian distribution, so

that we may utilize the DPM with Gaussian kernels as the TAB proposal model in a wide

range of applications.

We saw in Chapter 5 that TAB inference could be sensitive to hyperparameter specifi-

cation of the proposal model. In order to generate a particular prior-to-posterior mecha-

nism, often the specification of hyperparameters will depend on the functional of interest.

Our investigation into the effects of hyperparameter specification on posterior inference

was rather brief; more work can be done to gain better understanding of how to specify

the proposal model for various functionals of interest.

This thesis contains some insight regarding the asymptotic behaviour of the TAB pos-

terior for functionals defined via continuous estimating equations when a weakly con-

sistent nonparametric model or the DP is used as the TAB proposal model PΠ. Work

on asymptotics remains for other types of functionals and proposal distributions should

these be involved in future applications.

We have, in the examples throughout this thesis, assessed the small sample perfor-

mance of the TAB posterior. We focused on small sample inference, where a prior distri-

bution has a big role in the posterior inference, as an attempt to showcase the advantages
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of Bayesian inference. Future work with regards to the evaluation and quantification of

large sample performance and computation efficiency of the TAB method is still needed

to have a better understanding of the practical merits and demerits of the TAB method.

Last but not least, by requiring that the TAB proposal models be necessarily domi-

nated, we are limited in the class of nonparametric models that can be used to describe

the observable random variable. A re-examination of the theory of TAB inference may

be interesting to see how this requirement may be relaxed to make more nonparametric

methods available as the starting point of Bayesian semiparametric inference for func-

tional parameters.
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Appendix A

A.1 Implications of general Bayes loss function l(θ, x) on

the likelihood model when it matches the kernel of a

location-shift family

Suppose the general Bayes posterior, πGB(θ|x), is considered to be a genuine subjective

probability. Suppose we acknowledge that x is variable and hold subjective belief π(x).

If the data is regarded as infinitely exchangeable, then de Finetti’s representation the-

orem applies, to provide a structure for π(x). Let the representation be

π(x1, . . . , xn) =

∫ n∏
i=1

f(xi; θ, η)dπ(θ, η).

Note that when θ is a general functional parameter and η fully specifies the sampling

likelihood, i.e. f(x; η, θ) = f(x; η), the above representation theorem is still coherent. The

joint prior in this case extends from the prior over η, and is

π(θ ∈ A, η ∈ B) :=

∫
1[θ(f(·; η)) ∈ A]1[η ∈ B]dπ(η).

The joint distribution π(θ, x) exists due to θ being a functional f(x; η). The conditional

distribution by definition is π(θ|x) := π(θ, x)/π(x).

Suppose the general Bayes posterior, πGB(θ|x) ∝ exp(−l(θ, x))× π(θ), is interpreted as

one’s genuine conditional probability, then,

π(x|θ) = πGB(θ|x) · π(x)/π(θ) =
exp(−l(θ, x))× π(θ)∫
exp(−l(θ, x))π(θ)dθ

× π(x)

π(θ)
=

exp(−l(θ, x))∫
exp(−l(θ, x))π(θ)dθ

× π(x),

(A.1)
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When there are multiple samples, (x1, . . . , xn), by the coherence property in Bissiri

et al. (2016),

π(x1, . . . , xn|θ) =
exp(−

∑n
i=1 l(θ, xi))∫

exp(−
∑n

i=1 l(θ, xi))π(θ)dθ
π(x1, . . . , xn) (A.2)

On the other hand, as we can only hold one genuine subjective belief, we equate the

usual marginal Bayesian posterior and the GB posterior for θ. In the case of π(θ, η) giving

rise to dominated f(x; θ, η), we have that

π(θ|x) =
∫
f(x; θ, η)π(η, θ)dη

π(x)

=

[∫
f(x; θ, η)π(η|θ)dη

]
π(θ)

π(x)

=
exp(−l(θ, x))× π(θ)∫
exp(−l(θ, x))π(θ)dθ

,

dividing both sides by π(θ) and multiplying by π(x), we have that

Eη|θ[f(x; θ, η)] :=

∫
f(x; θ, η)π(η|θ)dη = exp(−l(θ, x))× π(x)∫

exp(−l(θ, x))π(θ)dθ
.

Next, we integrate Eη|θ[f(x; θ, η)] by dx, and notice that f(x; θ, η) is a distribution in x,∫
Eη|θ[f(x; θ, η)]dx = Eη|θ

[∫
f(x; θ, η)dx

]
= 1

=

∫
exp(−l(θ, x))× π(x)∫

exp(−l(θ, x))π(θ)dθ
dx,

passing integration into the expectation by Tonelli’s theorem. (Tonelli’s theorem requires

that the measure of x and the measure of (θ, η) be σ-finite, and that f(x; θ, η) be a measur-

able non-negative function from the product space. The measure π(θ, η) over the sample

space of (θ, η)) is σ-finite due to being a probability measure.)

And if exp(−l(θ, x)) is proportional to a distribution of x (call this h(x; θ)) with nor-

malizing constant c(θ), and denoting z(x) :=
∫
exp(−l(θ, x))π(θ)dθ

1 =

∫
π(x)

z(x)
× c(θ)× h(x; θ)dx.
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If h is a location shift family (e.g. Gaussian, or Laplace), then c(θ) = c, i.e does not depend

on θ. Then,

1

c
= Eh(x;θ)

[
π(X)

z(X)

]
,∀θ,

and we seek some function of x which has the same expected value regardless of the

location of the distribution (while the shape stays the same). This implies that
π(x)

z(x)
=

1

c
.

Substituting into Equation (A.1), we have that π(x|θ) = exp(−l(θ, x))/c.

Extending the argument to arbitrary sample size n, we start with the fact that

π(θ|x1, · · · , xn) =
Eη|θ[

∏n
i=1 f(xi; θ, η)]π(θ)

π(x1, · · · , xn)
=

exp(−
∑n

i=1 l(θ, xi))× π(θ)∫
exp(−

∑n
i=1 l(θ, xi))π(θ)dθ

,

and proceed to dividing both sides by π(θ) and multiplying by π(x1, · · · , xn), followed by

the multiple integration of Eη|θ[
∏n

i=1 f(xi; θ, η)] in x1 to xn, which leads to

π(x1, . . . , xn)∫
exp(−

∑n
i=1 l(θ, xi))π(θ)dθ

=
1

cn
.

Noting Eq. (A.2), we have that

π(x1, . . . , xn|θ) =
n∏
i=1

(exp(−l(θ, xi)))/cn.

It seems that, when the GB loss function exp(−l(θ, x)) corresponds to some location-shift

family in x, the loss function uniquely indicates the likelihood model. The use of GB

update did not yield a model-free inference if the GB posterior distribution were taken as

a genuine subjective probability, under the assumptions that the samples (x1, . . . , xn) are

exchangeable and f(x; θ, η) is dominated π(θ, η) almost surely.

A.2 Investigating the form of likelihood models that fol-

low coherence property

The goal of general Bayesian inference had been to provide a genuine Bayesian poste-

rior while bypassing having to identify a particular likelihood function in order to avoid
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model misspecification. The proposition is useful, but it was not explicitly stated if the GB

inference is to be taken as a “genuine” posterior belief in the traditional Bayesian sense.

To be a genuine posterior belief distribution, it is clear that one must necessarily quan-

tify their belief distribution regarding the observable data via probabilities and via de

Finetti’s representation theorem or other assumptions on the model for the observable, as

according to the theory of subjective belief, see Bernardo and Smith (1994).

While the likelihood function for any GB inference is unspecified, it is possible that the

GB procedure leads to genuine belief distributions in the classical sense by corresponding

to an extremely broad and flexible class of likelihood functions without committing to one

any of them in particular.

Suppose that there exist a prior distribution of the parameters, π(θ, η), where π(θ) has

some density, but η may exist in some general space equipped with a σ-algebra and a

measure to better accommodate the situation that η may be infinite dimensional. The

conditional probability formula still applies, where measure π(θ, η) = π(η|θ)π(θ), where

π(θ) is a density function, but π(η|θ) is a general measure. We let the likelihood f(x; θ, η),

(θ, η) ∼ π(θ, η), be dominated almost surely.

After one sample,

π(θ|x1) ∝
∫
f(x1; θ, η)π(θ, η)dη ∝ Eη|θ [f(x1; θ, η)] π(θ) := f̄(x1; θ)π(θ)

= πGB(θ|x1) ∝ exp(−l(x1, θ))π(θ),

where Eη|θ denotes the integral with respect to the conditional measure π(η|θ).

By Bissiri’s coherence property requirement, we deduce that receiving a second piece

of data,

π(θ|x1, x2) ∝ exp(−l(x1, θ)) exp(−l(x2, θ))π(θ) ∝
f̄(x2; θ)

[
f̄(x1; θ)π(θ)

]∫
f̄(x2; θ)

[
f̄(x1; θ)π(θ)

]
dθ
. (A.3)

Moreover, because f is assumed to produce genuine posterior belief in the classical

sense, then by exchangeability,

π(θ|x1, x2) =
Eη|θ

[∏2
i=1 f(xi; θ, η)

]
π(θ)∫

Eη|θ
[∏2

i=1 f(xi; θ, η)
]
π(θ)dθ

, (A.4)
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with Eη|θ indicating an expectation with regards to the conditional prior distribution

π(η|θ).

If we assume that the likelihood is factorizable, with the form being

f(x; θ, η) = gx · gθ · gη · gxθ · gxη · gθη · gxθη,

where the subscripts denote the variables/parameters that appear in that term. In both

Equation (A.3) and (A.4), factors of f(x; θ, η) that depend on only x will be appear in both

numerator and denominator, whereas terms that depend on θ in Equation (A.3) and (A.4)

will equate, so that the same posterior is obtained via GB sequential update and via full

likelihood update.

Just to make things clear, we are interested in equating the terms that depend on θ in

E

[
2∏
i=1

f(xi; θ, η)

]
= gx1gx2g

2
θgx1θgx2θ

∫
g2ηgx1ηgx2ηg

2
θηgx1θηgx2θηπ(η|θ)dη

IA

,

and
2∏
i=1

E [f(xi; θ, η)] = gx1gx2g
2
θgx1θgx2θ

∫
gηgx1ηgθηgx1θηπ(η|θ)dη

IB

×
∫
gηgx2ηgθηgx2θηπ(η|θ)dη.

Case 1: π(η|θ) ̸= π(η)

Suppose π(η|θ) ̸= π(η), then the integrals IA and IB are both functions of θ, Except in the

fringe case where π(η|θ) cancels out the other terms involving θ in IA and/or IB. Letting

the arbitrary x1 = x2 = x, Eη|θ [(gηgxηgθηgxθη)2] = Eη|θ [gηgxηgθηgxθη]
2 which implies that the

variance will be 0, =⇒ π(η|θ) = 1[η = η(θ)], that η is a mapping of θ. Either way, the

likelihood function is defined by θ only and therefore f is fully parametrized by θ and the

GB loss function fully identifies the likelihood.

Case 2: π(η|θ) = π(η), but gθη ̸= 1 or gxθη ̸= 1

if gθη ̸= 1 or gxθη ̸= 1 then both IA and IB will still be functions of θ and we will still

require Eη|θ [(gηgxηgθηgxθη)2] = Eη|θ [gηgxηgθηgxθη]
2. To have this, either π(η) is a point mass
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distribution, which means we have the likelihood fully parametrized by θ and GB loss

function identifying the likelihood fully, or the integrand is constant which implies gθη = 1

and gxθη = 1, leading to Case 3 below.

Case 3: π(η|θ) = π(η), gθη = 1 and gxθη = 1

In this case, IA and IB are no longer functions of θ, only functions of x. There seem to be

no contradictions with our assumptions. In this case, likelihood models compatible with

the coherence property of Bissiri et al. have the form

f(x; θη) = PL1(x; θ)× PL2(x; η),

which indicates that the likelihood model must be strictly factorizable. Furthermore,

the exponentiated negative GB loss function exp(−l(θ, x)) identifies the partial likelihood

PL1(x; θ).

The conclusion is that, if the GB posterior were to be taken as a genuine belief distri-

bution following the axioms of subjective probability (Bernardo and Smith, 1994), then it

corresponds (at the minimum) to the class of likelihood models that are strictly factoriz-

able and the partial likelihood involving θ in particular must be fully identified by the GB

loss function.

A.3 Extension of Paisley and Jordan (2016) for efficient sam-

pling from a posterior DP

Under a DP prior, posterior distribution of FX is again a Dirichlet process, but updated

with a new base distribution,

FX ∼ DP
(
(ϕ+ n),

(
ϕ

ϕ+ n
G′

0 +
n

ϕ+ n
F̂n

))
, (A.5)

where F̂n denotes the empirical distribution of the observed data and n denotes sample

size. We can also view the posterior DP as having a base distribution that is a mixture of

G′
0 and δxk , k = 1, . . . , n, i.e. Dirac measures at the observed data values.
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To obtain an efficient algorithm for drawing approximately from this posterior DP, we

first note that, Lemma 3 of Paisley and Jordan (2016) states that, if

Vi ∼ Beta(1, a+ b), i = 1, . . .

Yi ∼ Bernoulli
(

a

a+ b

)
, i = 1, . . .

π =
∞∑
i=1

{
Vi

i−1∏
j=1

(1− Vj)I[Yi = 1]

}

then π has a Beta(a, b) distribution. We take the random variables Vi, i = 1, . . ., to be the

ones that define a stick breaking process in the usual way. If we take the random variable

Yi to indicate that the i-th atom of FX is drawn from one of δxk , k ∈ {1, . . . , n}, then the

parameters a = n and b = ϕ + n, and π represents the total weights assigned to δxk for

a random FX . If, instead, the variable Yi is used to indicate that the i-th atom of FX is

drawn from G′
0, then the parameters a = ϕ and b = ϕ+ n.

By the symmetry in the resulting Beta distribution for π, we deduce that, if we define

a sequence of random vectors (Yi,1, . . . , Yi,n+1), i = 1, 2, . . . where

Yi,1 = I[i-th atom of FX is drawn from G′
0],

Yi,k+1 = I[i-th atom of FX is drawn from δxk ], k = 1, . . . , n, (A.6)

then, the SBP in Eqn. (A.5), can thought of as tagged according to (Yi,1, . . . , Yi,n+1). We

have that

Vi ∼ Beta(1, ϕ+ n), i = 1, . . .

(Yi,1, . . . , Yi,n+1) ∼ Categorical
(

ϕ

ϕ+ n
,

1

ϕ+ n
, . . . ,

1

ϕ+ n

)
, i = 1, . . .

πl =
∞∑
i=1

{
Vi

i−1∏
j=1

(1− Vj)I[Yi,l = 1]

}
, l = 1, . . . , n+ 1,

where (π1, . . . , πn+1) has a Dirichlet(ϕ, 1, . . . , 1) distribution. Note that π1 represents the

weight assigned to all atoms of FX sampled from G′
0.

Let (B1, . . . , Bm) be a measurable partition of the sample space of the Dirichlet process
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described in Eqn. (A.5). Suppose we now expand the tagging variable to be

(Y ⋆
i,1, . . . , Y

⋆
i,m+n), i = 1, 2, . . .

where

Y ⋆
i,j = I[i-th atom of FX is drawn from G′

0 and its value falls in Bj], j = 1, . . . ,m

Y ⋆
i,m+k = I[i-th atom of FX is drawn from δxk ], k = 1, . . . , n.

We tag the SBP corresponding to the DP of Eqn. (A.5) with (Y ⋆
i,1, . . . , Y

⋆
i,m+n). We have that

Vi ∼ Beta(1, ϕ+ n), i = 1, . . .

(Y ⋆
i,1, . . . , Y

⋆
i,m+n)

∼ Categorical
(

ϕ

ϕ+ n
G′

0(B1), . . . ,
ϕ

ϕ+ n
G′

0(Bm),
1

ϕ+ n
, . . . ,

1

ϕ+ n

)
, i = 1, . . .

pl =
∞∑
i=1

{
Vi

i−1∏
j=1

(1− Vj)I[Y
⋆
i,l = 1]

}
, l = 1, . . . ,m+ n,

which leads to (p1, . . . , pm+n) having a Dirichlet(ϕG′
0(B1), . . . , ϕG

′
0(Bm), 1, . . . , 1) distribu-

tion. By elementary properties of the Dirichlet distribution, this means(
p1

1−
∑m+n

j=m+1 pj
, . . . ,

pm

1−
∑m+n

j=m+1 pj

)
|(pm+1, . . . , pm+n)

∼ Dirichlet(ϕG′
0(B1), . . . , ϕG

′
0(Bm)).

Since (B1, . . . , Bm) is any partition of the sample space of G′
0, and pj, j ∈ {1, . . . ,m} rep-

resents the weights of all atoms of a random FX that is attributable to G′
0 and falls within

partition Bj , by definition of the Dirichlet process, we have that the conditional random

measure generated by the normalized sub-sequence of SBP with atoms drawn from G′
0

follows a DP(ϕ,G′
0) model; we denote this conditional measure as FX |

∑n
k=1(Yi,k+1) = 0,

noting equivalence of Y ⋆
i,m+k and Yi,k+1 defined in Eqn. (A.6). A similar line of reasoning

leads us to conclude that the conditional measure FX |
∑n

k=1(Yi,k+1) = 1 is supported on

the observed data values with weight vector distributed according to the Dirichlet(1, . . . , 1)

distribution.
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We can draw an approximate sample of the conditional measure FX |
∑n

k=1(Yi,k+1) = 0

by a truncated SBP. An algorithm for efficient approximate sampling from the posterior

DP given by Eqn. (A.5) therefore alternates between drawing of conditional random mea-

sure FX |
∑n

k=1(Yi,k+1) = 0 fromG′
0, and FX |

∑n
k=1(Yi,k+1) = 1 from F̂n, and then combining

the two parts via weighting by a sample of

πobs ∼ Beta(n, ϕ+ n),

that is,

FX =

(
FX |

n∑
k=1

(Yi,k+1) = 0

)
(1− πobs) +

(
FX |

n∑
k=1

(Yi,k+1) = 1

)
πobs,

to construct a draw of random measure FX from approximately the posterior DP.

A.4 Approximating the DPM when there is practically no

clustering

As an approximation to the DPM, we propose the following. Let η̃n := (η1, . . . , ηn) denote

the collection of latent kernel parameters for the data points, where ηi is the latent kernel

parameter for the observation xi. With slight change in notation to match that of Model

5.1, we note that, based on p. 144 of Ghosh and Ramamoorthi (2003), given the latent

kernels η̃n, the posterior distribution of the kernel parameter is

DP

(
ϕ+ n,

ϕ

ϕ+ n
G0 +

1

ϕ+ n

n∑
i=1

δηi

)
.

This suggests that we may first sample η̃n|x̃n according to the Gibbs sampling algo-

rithm for the Polya urn, then, given a sample of η̃n|x̃n, we sample additionally

FX |η̃n, x̃n ∼ DP

(
ϕ+ n,

ϕ

ϕ+ n
ϕG0 +

1

ϕ+ n

n∑
i=1

δηi

)
,

for a joint sample of (FX , η̃n)|x̃n. The limitation here is that FX can only be sampled

approximately. However, using the algorithm in Appendix A.3, we can efficiently obtain

122



an approximation to FX with a small number of stick breaking moves even if the number

of data points is large.

A.5 DPM with uniform kernel

Let the kernel of a DPM model be

KU(x;µ, h) =
1

h
I

[
x ∈

[
µ− 1

2
h, µ+

1

2
h

]]
.

For the kernel parameter vector (µ, h) we assume it is sampled from the Dirichlet process,

with the base distribution,

G0 = G0µ ×G0h

G0µ(µ) =
J∑
j=1

pj
1

(bj − aj)
I[µ ∈ (aj, bj)]

G0h = Gamma(αh, βh).

To implement the blocked Gibbs sampling algorithm with truncated DP, we require

the following expressions. Given latent label Si for each observation xi. For each cluster

k,

f(µk, hk|S̃n, x̃n) ∝ G0µ(µk)×G0h(hk)
∏
Si=k

K(xi;µk, hk)

=

(
J∑
j=1

pj
I[µk ∈ (aj, bj)]

(bj − aj)

)
fh(hk)

∏
Si=k

1

hk
I

[
xi ∈

[
µk −

1

2
hk, µk +

1

2
hk

]]

=
J∑
j=1

pj
I[µk ∈ (aj, bj)]

(bj − aj)
fh(hk)

1

hnk

(∏
Si=k

I

[
xi ∈

[
µk −

1

2
hk, µk +

1

2
hk

]])
.
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Therefore conditionally,

f(hk|µk, S̃n, x̃n) ∝

(
J∑
j=1

pj
I[µk ∈ (aj, bj)]

(bj − aj)

)
fh(hk)

1

hnk
k

(∏
Si=k

I

[
xi ∈

[
µk −

1

2
hk, µk +

1

2
hk

]])

∝ fh(hk)
1

hnk
k

I
[
hk > 2(µk −X(1)) and hk > 2(X(nk) − µk)

]
= I

[
hk > 2(µk −X(1)) and hk > 2(X(nk) − µk)

]
× f ⋆h(hk)

Z(µk;X(1), X(nk))
,

where f ⋆h is the Gamma distribution with the updated parameter α⋆ = αh − nk, β⋆ = βh,

and

Z(µk;X(1), X(nk)) =

∫
(I
[
hk > 2(µk −X(1)) and hk > 2(X(nk) − µk)

]
)f ⋆h(h)dh.

The conditional distribution of hk given µk, S̃n, x̃n is therefore a truncated Gamma distri-

bution which can be sampled by the inverse CDF method. Note that αh has to be greater

than nk in order to be a proper distribution.

As for the marginal distribution of f(µk|S̃n, x̃n), it is

f(µk|S̃n, x̃n) ∝

(
J∑
j=1

pj
I[µk ∈ (aj, bj)]

(bj − aj)

)
×∫

fh(h)
1

hnk
I
[
hk > 2(µk −X(1)) and hk > 2(X(nk) − µk)

]
dh

∝

(
J∑
j=1

pj
I[µk ∈ (aj, bj)]

(bj − aj)

)
Z(µk;X(1), X(nk)).

This distribution is piecewise continuous, and supported on a finite range. It can also be

sampled via inverse CDF method. Numerical integration can be highly time consuming,

we may wish to do this via MCMC, e.g. Metropolis-Hastings.

As for the multivariate kernel for modeling observable (X,C), X ∈ R, C ∈ {0, 1}, we

may choose K(x, c) = KU(x;µ, h)×
[
θc(1− θ)(1−c)

]
To update θk for a cluster k, it is

Pr(θk|S̃n, c̃n) ∝ G0θ(θk)×
∏
Si=k

[
θcik (1− θk)

(1−ci)
]

= G0θ(θk)θ
∑

Si=k ci

k (1− θk)
nk−

∑
Si=k ci .
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Let us further assume that G0θ is a Beta(αθ, βθ) distribution,

θk|S̃n, c̃n ∼ Beta(aθ +
∑
Si=k

ci, bθ + nk −
∑
Si=c

ci).

A.6 Expressions involved in the logistic regression estimat-

ing equation for DPM with uniform kernel

Assume the following kernel: K(x, c) = 1
h
I
[
x ∈

[
µ− 1

2
h, µ+ 1

2
h
]]

× [θc(1− θ)1− c]

To find the transformation ψ(FXC) where FXC are mixtures of the kernel above, the

following integrals are required.

For each kernel k, the integrals of interest appearing the estimating equation for logis-

tic regression are:

Ek

[
1

1 + exp (−(ψ0 + ψ1X))

]
=

∫ µk+0.5hk

µk−0.5hk

1

hk

1

1 + exp (−(ψ0 + ψ1x))
dx

=
1

hk

1

ψ1

log
(
1 + e(ψ0+ψ1x)

)∣∣∣∣bk
ak

,

where bk = µk + 0.5hk, ak = µk − 0.5hk. This expression was obtained via Wolfram Alpha

and Mathematica.

Similarly, we found that

Ek

[
X

1 + exp (−(ψ0 + ψ1X))

]
=

∫ µk+0.5hk

µk−0.5hk

1

hk

x

1 + exp (−(ψ0 + ψ1x))
dx

=
1

hk

1

ψ2
1

{
Li2
(
−e(ψ0+ψ1x)

)
+ ψ1x log

(
1 + e(ψ0+ψ1x)

)}∣∣∣∣bk
ak

,

where Li2 denotes the dilogarithm function.

A.7 Comparison of Bayesian semiparametric methods for

linear regression

As yet another comparison of the performance of various Bayesian semiparametric meth-

ods for inferring functional parameters, we conducted a simulation study with the target
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Figure A.1: Comparison study of Section A.7 estimating linear regression parameters:

contour plot of the data-generating distribution as given by Model A.1.

of inference being the parameters of linear regression. The data was generated according

Model A.1, with contour plot for (X, Y ) under this model shown in Figure A.1.

Model A.1. (Data-generating mechanism for Appendix A.7)

X ∼ N (µ = 10, σ2 = 9),

Y ∼ 5 + 10x+ ϵ

ϵ ∼ Normal(µ = 10, σ2 = X2).

The functional

β(FXY ) = argmin
(b0,b1)∈R2

∫
(y − (b0 + b1x))

2 dFXY ∈ R2

defines the parameter of interest. As the structure of FY |X from the data generating model

is indeed linear, we expect good Bayesian procedures to be consistent for the true regres-

sion parameter values, that is, (5, 10).

We let the subjective prior distribution p(β0, β1) be
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Model A.2. (Subjective prior in Appendix A.7)

pβ0,β1(β0, β1) = p0(β0)× p1(β1)

p0(β0) = Normal(µ = 5, σ2 = 100)

p1(β1) = Normal(µ = 10, σ2 = 25).

Whereas, TAB proposal model was chosen to be the following DP model:

Model A.3. (Prior proposal model for θ-augmented Bayes method in Appendix A.7)

FXY ∼ DP (ϕ,G′
0)

ϕ = 0.5

G′
0 = Discretized version of the distribution G0,

with mass assigned to points {(ih, jh)|i, j ∈ Z} for fixed bin width h s.t.

G′
0(X = ih, Y = jh) =

∫
1

[
x ∈

(
ih− h

2
, ih+

h

2

)]
×

1

[
y ∈

(
jh− h

2
, jh+

h

2

)]
dG0(x, y)

G0 = BivariateNormal

µ = (0, 0)⊤,Σ =

402 0

0 0.52


h = 1× 10−4.

The Bayesian prior for modelling the observables was:

Model A.4. (Bayesian prior for observables in Section A.7)

(X, Y ) ∼ FXY

FXY ∼ TA(m = pβ0,β1/q
Π
β0,β1

,PΠ).

We sampled from the TAB target posterior via the MCMC algorithm documented in

Section 4.2. A contour plot of the Statistician’s prior pβ0,β1 compared to that of an estimate

of the distribution qΠβ0,β1 can be found in Figure A.2. The plot shows that qΠβ0,β1 was much

more spread out than pβ0,β1 , which suggests that the sampling mechanism described in
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Section 4.2 functioned well. Each TAB posterior was obtained via an MCMC chain with

4e5 runs. The GB posterior and BB posterior were obtained through direct sampling with

1e6 samples. BEL posteriors were obtained via MCMC with 104 runs due to the time-

consuming nature of the algorithm. The results are shown in Tables A.1 to A.3.
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Figure A.2: Comparison study of Section A.7 estimating linear regression parameters:

contour plot of the prior over regression coefficients induced by Π (in solid lines) com-

pared that of the required subjective prior distribution (in grey dotted lines).

Examining the results for joint inference, TAB and GB performed very well, with cov-

erage probabilities close to nominal level and small credible regions. Whereas, the cover-

age probabilities of the BB were much lower than nominal level.

However, the playing field was much more level when it came to marginal inference

of the regression coefficients. TAB, GB and BEL methods all showed over-coverage of

the credibility intervals. This seems to suggest that the subjective prior that was used

was extremely informative relative to the data. The use of BB was adequate for marginal

inference in terms of coverage, but the average length of confidence intervals were much

longer than the competitors, due to not incorporating the subjective prior. Based on these
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Table A.1: Comparison study of Section A.7 estimating linear regression parameters: re-

sults for joint inference. Performance metrics were computed based on 300 resampling

events at each sample size n.

Estimated coverage Average size

Method probability of 95% CR of 95% CR

n = 20

TAB 0.957 34.416

BB 0.833 43.131

BEL 0.917 28.669

GB 0.946 31.641

n = 50

TAB 0.953 17.651

BB 0.887 19.949

BEL 0.945 17.369

GB 0.940 16.687

Table A.2: Comparison study of Section A.7 estimating linear regression parameters: re-

sults for marginal inference of β0. Performance metrics were computed based on 300

resampling events at each sample size n.

Estimated coverage Average size Estimated Average

Method probability of 95% CI of 95% CI bias quadratic risk

n = 20

TAB 1.000 34.371 -0.200 95.725

BB 0.910 46.457 -0.860 349.842

BEL 0.973 28.752 -0.045 85.707

GB 0.997 30.566 -0.156 82.957

n = 50

TAB 1.000 26.424 0.355 61.926

BB 0.940 30.896 0.381 137.768

BEL 1.000 25.499 0.0746 63.709

GB 0.983 24.948 0.256 64.588

129



Table A.3: Comparison study of Section A.7 estimating linear regression parameters: re-

sults for marginal inference of β1. Performance metrics were computed based on 300

resampling events at each sample size n.

Estimated coverage Average size Estimated Average

Method probability of 95% CI of 95% CI bias quadratic risk

n = 20

TAB 1.000 3.496 0.016 1.077

BB 0.897 4.710 0.078 3.649

BEL 0.960 2.991 -0.004 0.979

GB 0.987 3.075 0.012 0.945

n = 50

TAB 1.000 2.696 -0.036 0.685

BB 0.917 3.181 -0.035 1.477

BEL 0.99 2.632 0.003 0.687

GB 0.967 2.478 -0.023 0.698

results it appears that the problem and data-generating mechanism were well-behaved

as to allow all semiparametric methods we examined to perform relatively well.
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