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Abstract

Previous work has shown that the spatial pattern of amyloid beta (Aβ) deposition
in individuals spanning the sporadic Alzheimer’s disease (AD) spectrum can be
reproduced with high accuracy using an epidemic spreading model (ESM), which
simulates the diffusion of Aβ across neuronal connections and is constrained by
individual rates of Aβ production and clearance. As a biologically constrained
model, the ESM can provide insight into the mechanisms underlying Aβ spread and
can help clarify where Aβ begins to accumulate earliest in the disease process.

While sporadic AD accounts for the bulk of AD cases, AD can also arise as a
result of one of three distinct autosomal dominant mutations, all of which result
in an abnormal amount of Aβ. The primary objective of this thesis is to shed light
on whether the spatial pattern of Aβ in individuals with familial form of AD (fAD)
can also be explained using the ESM, and we split this work into two main parts.
First, we explore whether baseline patterns of Aβ can be reproduced with compa-
rable accuracy to what was reported for sAD. Recent work has suggested that the
methodological choices made regarding reference region and intensity normalization
in PET processing substantially influence Aβ measurements, and we subsequently
compared results across multiple PET processing pipelines, measures of connectivity,
and potential epicenters. We found that as with sAD, the most likely epicenters of
Aβ spread are cortical regions that are part of the default mode network. The top
two models explained 35% and 44% of the group-level variance in regional Aβ levels
(n=249).

Our second aim was to evaluate the utility of ESM in a longitudinal context
for prediction of regional Aβ accumulation within-subject. In this experiment, we
applied the ESM within-subject to learn the relationship, or set of subject-specific ESM
parameters, between two initial timepoints, and we extrapolated this relationship to
predict Aβ patterns of 44 MC who had a third visit. This objective proved difficult,
likely due in part to the underlying heterogeneity in change across time and the
potential noise in our longitudinal measurements. Overall, we were able to explain
on average 11% of the variance in the observed rates of regional Aβ change, and the
performance was highest for subjects who had consistent rates of change between
visits.

Future improvements to the modelling of regional Aβ accumulation may include
improved measurement of Aβ, incorporation of group-level information and the
epicenters gleaned from the cross-sectional ESM application.
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Résumé

Des travaux antérieurs ont montré que la distribution spatiale de dépôts amyloïde
chez les individus atteints de la forme liée à l’âge de la maladie d’Alzheimer (MA)
peut être reproduite avec grande précision au moyen d’un modèle de propagation
épidémique. Ce modèle simule la diffusion d’amyloïde à travers les réseaux de
neurones et est contraint par les taux individuels de production et de clairance
de la protéine. Du fait de ses contraintes biologiques, le modèle de propagation
épidémique fournit un aperçu des mécanismes sous-jacents à la propagation de la
bêta-amyloïde et aide à identifier les cibles précoces d’accumulation de cette protéine
au cours de la maladie.

Bien que la forme liée à l’âge constitue la majorité des cas, la MA peut également
survenir à la suite de l’une de trois mutations autosomiques dominantes distinctes,
toutes résultant en une quantité anormale de bêta-amyloïde. L’objectif principal
de cette thèse est de donner une explication plausible, au moyen du modèle de
propagation épidémique, de la distribution spatiale de dépôts amyloïde chez les
individus atteints de formes familiales héréditaires de la MA. Ce travail se fera en
deux temps. Nous allons d’abord examiner si la distribution spatiale de référence
de l’amyloïde peut être reproduite avec une précision comparable à celle observée
pour la MA liée à l’âge (r2 = 46%). Des travaux récents suggèrent que les choix
méthodologiques concernant la région de référence et la normalisation d’intensité
dans le pré-traitement des données de tomographie par émission de positons (TEP)
influencent de manière importante les mesures de bêta-amyloïde. Nous comparons
ensuite les résultats provenant de plusieurs chaînes de traitement en TEP, les mesures
de connectivité et les épicentres potentiels. Nos résultats montrent que tout comme
dans la forme liée à l’âge, les cibles les plus probables de propagation de l’amyloïde
sont les régions corticales faisant partie du réseau du mode par défaut. Les deux
modèles principaux expliquent 35% et 44% de la variance des niveaux régionaux de
bêta-amyloïde au niveau du groupe (n = 249).

Notre deuxième objectif était d’évaluer le modèle de propagation épidémique
dans un contexte longitudinal pour la prédiction d’accumulation régionale de bêta-
amyloïde intra-sujet. Au cours de cette expérience, nous avons appliqué le modèle
de propagation épidémique pour étudier la relation, ou les paramètres du modèle
spécifiques au sujet, entre deux points initiaux dans le temps et nous avons extrapolé
cette relation pour prédire la distribution de bêta-amyloïde de 44 porteurs de mu-
tation ayant eu trois visites. Cet objectif s’avéra difficile, peut-être dû en partie à
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l’hétérogénéité sous-jacente des changements dans le temps et du bruit dans nos
mesures longitudinales. Nous avons en moyenne pu expliquer 11% de la variance
dans les changements de taux de bêta-amyloïde observés et la performance était plus
élevée pour les sujets ayant des taux de variation consistants entre les visites.

Des améliorations à la modélisation de l’accumulation régionale de bêta-amyloïde
pourraient inclure une meilleure mesure de bêta-amyloïde, l’intégration d’information
au niveau du groupe et des épicentres estimés à partir de l’application transversale
du modèle de propagation épidémique.
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Chapter 1

Introduction

1.1 General context

Alzheimer’s Disease (AD) is the principal neurodegenerative cause of dementia in
the elderly, and its increasing prevalence has resulted in a huge effort to develop
therapies, none of which have been able to successfully reverse the effects of the
disease. AD predominantly affects adults aged 65 and older, and as our population
continues to live longer, the prevalence of AD is expected to keep growing. The
cumulative cost of medical diagnosis, treatment, and long-term care for individuals
afflicted by AD is projected to be $47.1 trillion USD by 2050 (Association, 2018).
Developing a therapy for AD is urgent, but the complexity and heterogeneity of the
disease have made this a difficult goal to achieve.

The sporadic form of AD - or Late Onset Alzheimer’s Disease (LOAD) – accounts
for approximately 95% of all cases. LOAD manifests in a complex way, and its patho-
genesis includes: toxic soluble forms of oligomeric amyloid-β (Aβ), extracellular Aβ

senile plaques composed of insoluble Aβ fibrils, intracellular neurofibrillary tangles
composed of hyperphosphorylated tau protein, grey matter atrophy, and vascular
dysregulation. Thus far there is no consensus on the exact pathophysiological cause(s)
of LOAD, and this has hindered the development of successful therapies.

Two of the leading hypotheses for the cause of AD are the amyloid cascade
hypothesis and the vascular dysregulation hypothesis. The former posits that the
soluble Aβ oligomers are the cause of neurotoxicity and synaptoxicity while the
latter posits that impaired blood flow substrate delivery and neuronal/glial energy
demands are what cause brain dysfunction and the progression of AD (Karran,
Mercken, and Strooper, 2011, Iadecola, 2013, Iadecola, 2004, Zlokovic, 2011). Recently,
a data driven analysis of sporadic AD pointed to vascular dysregulation as one of
the earliest pathological events driving AD progression (Iturria-Medina et al., 2016).
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In tandem, a mechanistic epidemic spreading model was introduced that could
reproduce cross-sectional spatiotemporal patterns of Aβ in individuals along the AD
spectrum, and impaired Aβ clearance was the model parameter most significantly
related to clinical diagnosis (Iturria-Medina et al., 2014). One possible explanation
proposed for reduced clearance is a cerebrovascular dysfunction in the form of the
blood-brain barrier (BBB) permeability breakdown. There is significant evidence
corroborating the presence of vascular dysregulation in preclinical AD; however, age
is a major confounding factor in the study of vascular dysregulation as a cause of AD
development, and not just a non-pathological aging effect (Rius-Pérez et al., 2018).
To address this, we turn to the Dominantly Inherited Alzheimer’s Network, a study
representative of the second form of AD, familial or early-onset autosomal dominant
AD (ADAD). ADAD can arise in individuals with a pathogenic mutation in one of
three genes, coding for amyloid precursor protein (APP), presenilin 1 (PSEN1), and
presenelin 2 (PSEN2). In ADAD mutation carriers will invariably develop dementia.

1.2 Objectives

Aim 1: Cross-sectional
Assess whether the previously developed epidemic spreading model (ESM) can
explain patterns of Aβ in the brains of ADAD mutation carriers. The overall goal
was to determine whether the mechanisms spurring Aβ accumulation are shared by
both forms of AD. We additionally assessed the robustness of the model to different
image processing pipelines and measures of connectivity.
Aim 2: Longitudinal
Using longitudinal data, evaluate the reliability of within subject ESM parameters by
assessing whether they can be used to predict future regional patterns of Aβ.
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Chapter 2

Review of the Literature

2.1 Alzheimer’s disease

To date, there is no cure for AD, the principle neurodenerative cause of dementia.
Treating patients with dementia is costly - in 2009, the average cost for a patient with
AD was roughly 57,000 USD (Burns and Iliffe, 2009). The socioeconomic gravity of
treating AD has spurred research seeking to prevent or mitigate AD by developing
early biomarkers (Shah et al., 2016).

The two main pathological signs of AD are neurofibrillary tau tangles and Aβ

senile plaques, and both are required to definitely confirm AD at autopsy (McKhann
et al., 2011). Aβ peptides are formed by the sequential cleavage of the APP by β-
cleaving amyloid precursor enzyme (BACE) and gamma-secretase. The peptides
vary in length from 40-42 residues, and earlier studies showed that these peptides are
what comprise the primary structural component of insoluble fibrils accumulating
in the Aβ senile plaques found in post-mortem brains of AD patients. Historically,
these insoluble amyloid plaques were posited as being toxic to neuronal cells while
monomeric soluble forms were deemed harmless (Walsh and Selkoe, 2007). However,
the Aβ animal-model literature showed an increasing disconnect between plaque
pathology and memory impairment; this was evidenced by several reports of cogni-
tive deficits appearing before plaque deposition in transgenic mouse models of AD
(Hsia et al., 1999, Mucke et al., 2000, Westerman et al., 2002). More recent research
has identified an intermediate misfolded form of Aβ, soluble Aβ oligomers, as a
potential driver of memory impairment (Klein, 2012).

Most hypothetical models of AD progression, such as the one in Fig 2.1a, have
been rooted in the amyloid cascade hypothesis, which posits that excessive amounts
of soluble Aβ cause a buildup of insoluble Aβ, disrupting synaptic function and
accelerating tau hyperphosphorylation (Hardy, 2002). Ultimately, this causes synaptic
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death and eventual dementia. However, the order proposed in this hypothetical
model has been disputed recently with the development of a data-driven model
seeking to index the order in which biomarkers begin to become pathological in AD.
Intra-brain vascular dysregulation was pointed to as an earlier biomarker of AD
than Aβ plaques and lower CSF Aβ levels (Iturria-Medina et al., 2016). This does not
preclude the possibility of soluble Aβ being the cytotoxic agent but does implicate
vascular dysregulation as a necessary prelude that leads to the buildup of soluble Aβ

in cells and the eventual cytoxicity involving tau protein.

Hypothetical

Data-driven

a

Figure 2.1: (a) Hypothetical model of AD progression, adapted from Jack et al, 2013. Changes in
CSF and PET Aβ measurements come first, followed by changes in CSF tau increases, structural
and metabolic changes, and finally cognitive impairment. (b) Data-driven model of AD progres-
sion, adapted from Iturria-Medina et al, 2016. Though Aβ changes occur early in the disease
process, they are preceded by vascular changes.

2.1.1 Autosomal Dominant Alzheimer’s Disease and Aβ as a core

feature of AD

Most cases of AD are sporadic and are often referred to as late-onset as symptoms
are exhibited later in life and have no definitive pathophysiologial cause. However,
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1% of AD cases are genetic in nature and are caused by mutations in genes coding
for three different proteins - Amyloid Precursor Protein (APP), Presenelin 1 (PSEN1),
and Presenlin 2 (PSEN2). As the name suggests, APP is the precursor protein of
many peptides including Aβ, and it is cleaved by PSEN1 and PSEN2, which are
subunits of a larger catalytic complex (Haass, 2004). Mutations in all three genes
have been shown to cause increased aggreggation of Aβ either by causing an overall
increased production of Aβ peptides or increasing the production of a form of Aβ that
aggreggates more easily (Haass et al., 2012). This finding has served as the foundation
for the amyloid hypothesis, and the similar order of biomarker changes exhibited in
individuals with sporadic AD (sAD) and familial AD (fAD) has lended support to the
amyloid cascade hypothesis. However, as was described in the previous section, the
involvement of Aβ in sporadic AD is much more complex, leading many to argue that
these hypotheses are flawed. Nonetheless, an excellent review by Holtzmann and
Musiek has enumerated a number of reasons for why Aβ is still of critical importance
for sAD and fAD (Musiek and Holtzman, 2015). The greatest genetic risk factor
contributing to sAD pathogenesis is APOE - specifically having at least one copy of
the ApoE4 allele. ApoeE4 modulates AD pathology by promoting Aβ aggreggation
and deposition into plaques, along with reduced Aβ clearance (Castellano et al., 2011,
Fagan et al., 2002, Hudry et al., 2013, Vemuri et al., 2009, Verghese et al., 2013, Morris
et al., 2010). In response to the poor correlation between Aβ load and decline in
cognitive performance in sAD subjects, it is argued that, in both sAD and fAD, there
is no anatomic colocalization of Aβ pathology and neurodegeneration. Furthermore,
while tau pathology is much more anatomically colocalized with neurodegeneration,
Aβ pathology appears to be required for spreading of tau pathology to neocortical
areas in both sAD and fAD, and the presence of both Aβ and tau pathology is most
strongly associated with cognitive decline, compared with either one or the other
alone (Shepherd, McCann, and Halliday, 2009, Bateman et al., 2012, Price and Morris,
1999, Knopman et al., 2003, Tiraboschi et al., 2004).

Aβ is a key biomarker in both sAD and fAD, but where it shows up earliest may
differ between the two. Unlike in sAD, where Aβ deposition is highest in neocortical
areas, several groups have reported significantly increased striatal, thalamic, and
neocortical Aβ deposition in fAD mutation carriers compared with noncarriers
(Cohen et al., 2018, Gordon et al., 2018). One study evaluating differences between
the PSEN1, PSEN2, and APP fAD mutation types found that all mutation types
had high striatal PiB binding while some mutation carriers had higher cortical PiB
binding. Interestingly, the PiB binding in the cortex was found to be lower in fAD
mutation carrers than age-matched subjects with probable sAD (Villemagne et al.,
2009). While the sample size of this study was small (n=30 fAD mutation carriers,
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n=30 sAD subjects), the findings may suggest that the most probable area(s) of earliest
Aβ accumulation may not be homogenous amongst all fAD mutation carriers.

Recently, an event-based model of disease progression was applied to fAD muta-
tion carriers, and the authors found that the biomarker likeliest to exhibit the earliest
deviation from normal levels was an aggreggate cortical Aβ deposition measure, fol-
lowed by Aβ deposition in the caudate, putamen, accumbens, and thalamus (Oxtoby
et al., 2018).

The therapeutic intervention strategies targeting Aβ fall into three main categories:
reducing its production, promoting its clearance, and preventing its aggreggation
into plaques. Determing which of these strategies is likeliest to be effective requires
an understanding of the mechanisms via which soluble Aβ propogates and deposits
in the brain and what is the ideal therapeutic window.

2.2 Modelling spatiotemporal trajectories of Aβ

Investigation into the formation of abnormal aggreggations of misfolded or confor-
mational variants of the Aβ protein led to experimental evidence indicating that
Aβ acts like a prion when misfolded. Specifically, cerebral β-amyloidosis, or the
aggreggation of Aβ, can be induced in-vivo by exposure of APP-transgenic mice
brains to dilute brain extracts containing aggreggated Aβ seeds (Kane et al., 2000,
Walker et al., 2002, Meyer-Luehmann et al., 2006, Eisele et al., 2009, Watts et al., 2011).
This gave rise to the prion-like hypothesis. It explains the progression of AD as being
driven by the intercellular transfer of pathogenic proteins that propagate from initial
host regions (Frost and Diamond, 2010, Frost, Jacks, and Diamond, 2009, Brundin,
Melki, and Kopito, 2010). In the case of AD, the soluble Aβ oligomers are small and
can easily be transferred either by absorption into axonal processes or by diffusion in
the extracellular fluid (Nath et al., 2012, Hallbeck, Nath, and Marcusson, 2013, Song
et al., 2014). Their spread between cells through the extracellular fluid is governed
by principles of molecular diffusion, and as such, the sAβ transfer primarily occurs
between anatomically interconnected areas or neighbouring neurons (Waters, 2010,
Jucker and Walker, 2013, Walker and LeVine, 2012). Because the progression of AD,
and other neurodegenerative disorders such as Parkinson’s disease, are each linked
to the misfolding of different proteins, the network degeneration hypothesis (NDH)
has been proposed. The NDH posits that each disease is associated with its own
anatomical pattern, and the hypothesis was corroborated by the correspondence
between specific functional and anatomical covariance patterns and spatially distin-
guishable atrophy patterns of five different dementia syndromes (Palop, Chin, and
Mucke, 2006, Seeley et al., 2009, Greicius et al., 2004, Buckner et al., 2005, Zhou et al.,
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2012). In addition to addressing how sAβ spreads mechanistically, computational
models developed to predict the macroscopic spread of Aβ must then recapitulate
the spatiotemporal pattern of AD progression. Several models that attempt to do
this have been developed in recent years, and in this section we will first introduce
the neuroimaging methods used in this thesis followed by a comparison of the
computational models.

2.2.1 Neuroimaging modalities and biomarkers of AD

Neuroimaging serves as a window into the brain, where different modalities allow
us to quantify different structural or functional elements in the brain and ultimately
validate computational models. The main elements we need to quantify are Aβ and
connectivity strength between ROIs. For the former we use PET imaging whereas for
the latter we can use either diffusion MRI or functional MRI.

2.2.1.1 PET

Although Aβ exists in both soluble and insoluble forms in the brain, we currently
can only visualize the insoluble Aβ plaques using neuroimaging, specifically using
Positron Emission Tomography (PET). PET uses a radioactive positron emitting
isotope (a radionuclide) either alone or in combination with a larger molecule (a
radiotracer). Different radiotracers bind to different metabolites either in the brain or
body, allowing many different physiological processes to be measured in vivo. Sev-
eral radiotracers currently exist which bind to fibrillar Aβ plaques - e.g. Florbetapir,
the Pittsburgh Compound (PiB), Flumetamol - and they are injected intravenously.
These radiotracers have different properties related to their half-life, specificity, and
differing white and grey matter retention characteristics (Landau et al., 2014).

In the present study, the PET data was collected using several different proto-
cols, with one difference being when subjects are put in a PET scanner following
radiotracer injection. Dynamic PET scans are acquired from the time of radiotracer
injection and allow us to quantify the long-term behavior of a radiotracer in the
tissue. Static PET scans are acquired after the radiotracer has reached steady state in
the body, and pharmacokinetic information is thus lost, resulting in less precise final
quantification (K., 2013). As will be presented in Chapter 3.5, there are several choices
that can be made when processing PET data to quantify radiotracer binding, but
firstly, a PET scan is typically co-registered - or aligned - to an individual’s structural
MRI (sMRI) scan which has much greater spatial resolution and anatomical detail.
Poor PET resolution results in "partial volume effects" (PVE), wherein multiple tissue
types - grey matter, white matter, and CSF - can contribute to the PET signal from
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a given voxel, leading to either over- or under- estimation of signal in that voxel.
This issue can be addressed using various partial volume correction (PVC) methods,
and for this study we use the gold standard, the geometric transfer matrix method
(Meltzer et al., 1990, GTM: Rousset, Ma, and Evans, 1998). Following optional PVC,
the PET signal can be regionally quantified. In most AD PET studies, the quantifi-
cation method used is the standard uptake value ratio (SUVR) applied to statically
acquired scans, where the signal in every voxel is divided by the average signal in a
region that is considered to be devoid of any specific radiotracer binding (Lopresti
et al., 2005).

Unlike statically acquired PET scans, dynamically acquired scans are the only ones
that allow for a fully quantitative measurement of radiotracer binding. The volume
of distribution (VT) of a radiotracer is defined as the the ratio of the radiotracer
concentration in an ROI (CT) to the radiotracer concentration in plasma (CP) at
equilibrium. As with the SUVR method, when a reference region is available, the
Vre f

T can be computed for a reference region. The Logan plot method, a compartment
modelling technique that uses linear regression, can be used to estimate the VT and
Vre f

T over the timecourse of a PET scan (Logan et al., 1990). The binding potential
of a radiotracer, i.e. the density of available receptors for a specific radiotracer, is is
computed using Equation 2.1, and the distribution volume ratio (DVR) is equivalent
to BPND + 1.

BPND = (VT/Vre f
T )− 1 (2.1)

DVR = VT/Vre f
T (2.2)

PET Aβ scans that have been normalized using the Logan Plot method with
respect to the cerebellar gray matter reveal individuals who are cognitively normal
typically have little to no Aβ presence in the brain and that the presence of Aβ is
variable in mild cognitively impaired individuals (Fig 2.2, Mathis, Lopresti, and
Klunk, 2007). In patients with greater cognitive deficit we typically observe higher
levels of Aβ in areas such as the precuneus and medial orbitofrontal cortex. However,
it is important to note that this correlation is not absolute. Subjects who are cognitive
normal may have high Aβ levels while the opposite is also found, and different
proportions of amyloid-positive cognitively normal older patients have been reported,
most frequently ranging from 10-30% (Chételat et al., 2013).
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Figure 2.2: From left to right, we see individuals who have varying levels of PiB binding across
the AD spectrum. CN = Cognitively Normal; Reproduced from Mathis, Lopresti, and Klunk, 2007

2.2.1.2 MRI

Broadly speaking, the brain is comprised of grey matter, white matter, and CSF.
The grey matter is where cell bodies of neurons are located whereas the white
matter consists of a high density of myelinated axons, the connective tissue of the
brain. Different MRI techniques all use an external magnetic field to manipulate the
magnetic relaxation properties of white and grey matter to produce different types
of contrast such that we can learn more about the underlying structure or function
of the brain (Pooley, 2005). Here we use T1-weighted sMRI, resting-state functional
MRI (rsfMRI), and diffusion tensor imaging (DTI).

T1-weighted structural MRI scans have contrast based on the longitudinal relax-
ation of tissue, and they provide superior spatial resolution such that we can discern
the different tissue types from one another most clearly. For this thesis we only use
sMRI to identify anatomical regions of interest, as well as grey matter volume and
cortical thickness. These measures can be used to assess whether there has been
cortical atrophy or neurodegeneration, a phenomenon that occurs in the later stages
of AD.

Water molecules travel differently in distinct tissue types, and diffusion MRI
leverages this difference to create contrast. DTI scans are 4D scans where the 4th
dimension is the number of possible diffusion directions of the water molecules.
Each voxel in the scan contains information about a specific direction of diffusion
and the rate of diffusion along that axis. The primary direction of diffusion of water
is most highly correlated with the principle axis of a myelinated axon. As a result,
DTI scans convey the most information about white matter pathways connecting
different regions of the brain. To generate a connectivity matrix, DTI scans need to be
pre-processed, registered to either a subject’s T1-weighted MRI scan or a stereotaxic
template, traced, and segmented into a graph (Soares et al., 2013).
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Functional MRI measures blood flow in the brain as a proxy for neuronal activity.
When neurons are active, oxygenated blood rushes towards areas of activity to
replenish the depleted resources. A localized increase in oxygenated blood is thus
reflected as a localized increase in fMRI signal. As the name suggests, rsfMRI
scans are acquired while a subject is at rest, and the synchronized signal between
regions can be used to infer which regions are correlated and exhibit a "functional
connectivity". As with DTI, fMRI is used to create a template functional connectivity
matrix. The patient’s sMRI scan is spatially normalized such that the brains of all
subjects are in the same 3D "stereotaxic" space, and rsfMRI scans are co-registered
to the sMRI scans. A number of preprocessing steps must be taken to account for
potential artifacts arising from but not limited to physiological activity, motion, white
matter and ventricle signal, and low signal to noise ratio. The preprocessed rsfMRI
scans are parcellated with the ROIs drawn from the sMRI data, and the time-series of
the ROIs are correlated to generate correlation matrices. A combination of confounds
can be regressed out prior to the correlation matrices being averaged to create a
template functional connectivity matrix.

2.2.2 Network Diffusion Model

The first computational model seeking to reproduce the macroscopic spatiotemporal
spread of misfolded proteins is the Network Diffusion Model (NDM, Raj, Kuceyeski,
and Weiner, 2012). In keeping with the NDH, the NDM sought to predict spatially
dissociable "persistent modes" of disease spread for two types of dementia, AD
and the behavioral variant of frontotemporal dementia (bvFTD). Cortical atrophy
quantified using voxelwise morphometry was used as a proxy of misfolded protein
presence. The spread of AD pathology was modelled as a diffusive process across an
anatomical brain network whose nodes represent cortical or subcortical grey matter
structures and whose edges represent white matter fiber pathways connecting the
structures. The overall brain-wide hypothesized atrophy was taken as the sum of
the atrophy patterns contributed by individual eigenmodes, i.e. the eigenvectors
corresponding to specific sets of brain regions that explain the most variance in
the data. The authors found that the eigenmodes corresponded to brain regions
known to be implicated in AD and bvFTD, reaffirming the NDH. The same team
subsequently applied the NDM to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, and they were able to capture future changes in regional atrophy
and metabolic states with a correlation of 90% to 96% across clinical diagnoses. (Raj
et al., 2015).
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2.2.3 Epidemic Spreading Model

The NDM did not actually reproduce the propagation of misfolded proteins (MP).
Seeking to address the limitations of the NDM, an Epidemic Spreading Model (ESM)
of AD was developed to stochastically reproduce Aβ propagation and deposition.
Unlke the NDM which only accounts for misfolded proteins being deposited by
macroscopic regions, the ESM allows for an ROI to be endogenously or exogenously
infected and, importantly, for misfolded proteins to be cleared from a region. The
overarching non-linear differential equation of the model posits that the change in
MP deposition in an ROI is equal to the probability of endogenously producing and
exogenously receiving MP from connected ROIs minus the probability of clearing
the deposited MP. A more thorough explanation of the mathematical modelling is
provided in Chapter 3.4.

When applied to over 700 subjects in the ADNI dataset, the ESM was able to
explain 46-57% of the variance in the mean regional Aβ deposition probabilities of
the distinct subgroups and identified starting seed regions for Aβ propagation, the
posterior and anterior cingulate cortices. These seed regions are in agreement with
what has been established in the literature (Palmqvist et al., 2017). To compare the
NDM and ESM, the authors implemented the NDM for the same dataset and found
that the NDM was able to explain 27-33% of the variance in the mean regional SUVR
values of the distinct subgroups and identified the same starting seed regions for Aβ

propagation.
Perhaps the most interesting findings from the ESM analysis was the significant

association between individuals’ Aβ clearance rates and their clinical diagnosis. As a
clinical predictor, the clearance rate did significantly better than the Aβ production
rate. Aβ can be cleared a number of ways, many of which are mediated by glial cells.
In brief - glial cells can produce proteases that hydrolyze Aβ at different cleavage sites,
release extracellular chaperones that facilitate the exit of Aβ across the blood brain
barrier (BBB), either independently or in association with receptors/transporters,
or by phagocytosis of Aβ in the case of astrocytes and microglia (Ries and Sastre,
2016). As was mentioned previously, reduced clearance could be driven by vascular
dysregulation that may in fact precede a build-up of toxic soluble Aβ in the brain.

One aim of this thesis is to apply the ESM to baseline PiB-PET data of fAD muta-
tion carriers to assess whether the regional pattern of Aβ can in fact be reproduced
using the ESM and to compare mechanistic differences between fAD and sAD using
the ESM model parameters.



CHAPTER 2. REVIEW OF THE LITERATURE 12

2.2.4 Time-Varying Accumulation, Clearance, and Propagation

Model

As had been pointed out with the introduction of ESM, one drawback of NDM is that
the underlying differential equations in NDM assume a constant rate of change in MP
behaviour, and a diffusion model may accurately capture MP propagation dynamics
over the short term but not over the long-term disease timecourse. An Accumula-
tion, Clearance, and Propagation (ACP) model has been introduced recently which
addresses this issue by modelling MP progression with a Gaussian process (GP),
where short term changes in MP concentration in a given ROI are used to estimate
group-level long-term trajectories, and the dynamics of overall MP progression are
constrained by a non-linear differential equation that considers biologically feasible
dynamics of MP accumulation, clearance, and propagation much like the ESM does
(Garbarino, Lorenzi, and for the Alzheimer’s Disease Neuroimaging Initiative, 2019).
Briefly, a GP is a probability distribution over possible functions that can describe
some set of observations. With more observations, Bayesian inference can be used
to narrow iteratively the distribution of possible functions such that predictions
about future observations can be made more accurately. Using this methodology,
the authors were able to fit long-term trajectories of ROI accumulation in a set of 11
macroscopic ROIs using longitudinal observations from the ADNI cohort.

While the ESM is fit individually for each subject and only uses group-level model
fit to infer probable epicenters of MP spread, the ACP makes use of longitudinal
observations across all subjects to obtain a set of group-level model parameters that
also vary with time. The ACP is ultimately able to reconstruct within ROI long-term
trajectories more accurately than a simpler diffusion model, and when applied to
unseen data of individual subjects, the mean RMSE across the 11 ROIs ranges from
0.11-0.21.

One drawback of the ACP is that it assumes that everyone follows the same
disease progression pattern. Several recent data-driven models have shown that
alterations in distinct biomarkers including Aβ do not occur uniformly across indi-
viduals (Iturria-Medina, Carbonell, and Evans, 2018). In particular, one such model,
Subtype and Stage Inference (SuStain), has been applied to volumetric MRI data
from the ADNI cohort to show that the phenotypic heterogeneity observed between
individuals can be mapped to three distinct subtypes (Young et al., 2018).

For Aim 2, we assess whether fitting the ESM within subject between two visits -
without incorporation of group-level information, as in ACP - allows us to accurately
predict future regional patterns of Aβ.
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Chapter 3

Materials and methods

3.1 Participants

Participants of this study represented a selection of individuals from one multi-
center study, the Dominantly Inherited Alzheimer’s Network (DIAN; https://dian.
wustl.edu). The DIAN dataset is comprised of individuals from families known to
have mutations in the presenilin 1 (PSEN1), presenilin 2 (PSEN2). Both mutation
carriers and non-carriers were used for different stages of the analysis, and we used
all individuals from the 12th semiannual DIAN datafreeze who passed imaging
quality control and had at least one PiB PET scan. In total, 215 mutation carriers
were included for the baseline analysis. For the longitudinal analysis, 115 mutation
carriers had two scans available, and 34 of them had a third scan available. Dementia
status was determined using the clinical dementia rating (CDR), and mutation status
was determined Bateman et al., 2012. The CDR is a five point scale ranging from 0-3:
no dementia (CDR=0), very mild dementia (CDR=0.5), mild cognitive impairment
(CDR=1), moderate cognitive impairment (CDR=2), and severe dementia (CDR=3).
Demographic information can be found in Table 3.1. Estimated years to symptom
onset (EYO) are calculated as the age of the participant minus the age of their parent
when the parent began to exhibit symptoms. Thus, negative EYO indicates that a
participant was scanned before symptom onset.

https://dian.wustl.edu
https://dian.wustl.edu


CHAPTER 3. MATERIALS AND METHODS 14

Table 3.1: Demographic information.

1st Timepoint 2nd Timepoint 3rd Timepoint
N (Mutation Carriers) 215 121 44
N (Noncarriers) 0 72 10
Age (SD) 39.01 (10.68) 42.12 (9.71) 46.8 (7.98)
% Women 56.28% 60.1% 61.36%
Education (SD) 14.26 (2.88) 14.44 (2.66) 13.98 (2.31)
EYO (SD) -7.28 (10.98) -4.7(9.83) 2.15 (4.84)
% ApoE4 28.84% 29.53% 43.18%
PET Reference Region CC/Brainstem Brainstem Brainstem

EYO

= estimated years to symptom onset; AD = Alzheimer’s disease dementia, SD =
Standard Deviation

3.2 Structural MRI and quality control

Whole-brain T1-weighted MPRAGE images (TR = 2300 ms, TE = 2.95 ms, flip angle
= 9) with 1.1 mm x 1.1 mm x 1.2 mm voxel size were acquired. In addition to
performing manual QC, we tested the generalizability of MRIQC, an automatic MRI
quality control tool that generates image quality metrics (IQMs) related to noise,
information theory, and specific artifacts (Esteban et al., 2017). Subsequently, we
ran MRIQC’s built-in Random Forrest Classifier to predict whether a scan should
be rejected or used for further analysis based on its associated IQMs. Manual QC
was found to be necessary to validate MRIQC’s predictions to determine whether
scans were failed by MRIQC due to atrophy or actual motion artifacts. Scans that
were failed due to atrophy were kept.

3.3 PET Acquisition and Pre-processing

Aβ imaging was performed with a bolus injection of 15 mCi of [11C]PiB. Scans were
either acquired dynamically, starting at injection for 70 minutes, or statically, starting
at 40 minutes post-injection for 30 minutes. For analysis, only the PiB data between
40-70 minutes were used.

To assess how sensitive modelling is to preprocessing choices, we used two differ-
ent pipelines to preprocess PET scans. The first of these was the PET Unified Pipeline
(PUP; https://github.com/ysu001/PUP) (Su et al., 2013), and the second was the Au-
tomated Pipeline for PET Imaging Analysis (APPIAN; https://github.com/APPIAN-
PET/APPIAN.git) (Funck et al., 2018).

With PUP, the processing steps used include smoothing, inter-frame motion cor-
rection and co-registration. Specifically, PET images in the 4dfp format are smoothed
to achieve a common spatial resolution of 8mm to minimize inter-scanner differences
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(Joshi et al., 2009). For scans that are dynamic, inter-frame motion correction is per-
formed using standard image registration techniques (Hajnal et al., 1995) (Eisenstein
et al., 2012). PET-MR registration is performed using a vector-gradient algorithm
(VGM) (Rowland et al., 2005).

Prior to performing PET processing, APPIAN does structural preprocessing of T1
scans by coregistering the T1 MR image to stereotaxic space, which by default is the
ICBM 152 6th generation non-linear brain atlas (Mazziotta et al., 2001). Coregistration
is performed using an iterative implementation of minctracc (Collins et al., 1994
Mar-Apr). Brain tissue extraction is performed in stereotaxic space using BEaST
followed by T1 tissue segmentation (Eskildsen et al., 2012, Avants et al., 2011).
Subsequent PET processing steps include coregistration of the T1 image to the PET
image using minctracc, masking, partial-volume correction, and quantification. The
partial volume correction (PVC) method tested is the GTM method. The superiority
of dynamic over static PET imaging was discussed in 2.2.1.1, and DVR images have
demonstrated better performance in evaluating the accumulation of Aβ with the PiB
radiotracer (Fujiwara et al., 2016). Thus, we also tested intensity normalization of the
PET signal using the SUVR and Logan Plot DVR methods with the cerebellar cortex
as the reference region.

3.4 Epidemic Spreading Model

The spread of Aβ was simulated using ESM, a diffusion model that has previously
been used to simulate the spread of Aβ (or tau) in the ADNI dataset from an initial
epicenter and through ROIs that the epicenter is connected to (Iturria-Medina et al.,
2014; Vogel et al., 2019). In addition to the connectivity between ROIs, subject-specific
propagation parameters dictate the spreading pattern. These parameters correspond
to a global clearance rate, global production rate, and age of onset. These are fit by
solving a non-linear differential equation designed to reproduce the overall regional
pattern of Aβ deposition. ESM is fit by searching the parameter space, and the set
of parameters that yield the regional pattern of Aβ deposition most similar to the
reference (observed) pattern is selected.

3.4.1 Cross-sectional ESM

The main data input to the ESM is an ROI by Subject matrix reflecting the level of
Aβ deposition in each region for each subject. The ESM is a probabilistic model, so
each entry in this matrix is between [0, 1]. The ESM can also be run by pre-specifying
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epicenter(s) or by allowing the model to select the most likely epicenter(s) in a data-
driven way. When the latter is the case, based on how many epicenters the model is
allowed to select, the ESM simulates the spread of Aβ using each combination of n
epicenters and selects the combination that best explains the regional Aβ deposition
at the group-level.

The overarching equation of the model is as follows:

dPi

dt
= (1− Pi(t))εi(t)− δi(t)Pi(t) + ℵ (3.1a)

In (3.1a), the variables are:

ε =
N

∑
j=1

β j(t− τij)Cij(t− τij)Pj(t− τij)

Cij = probability of fiber connections

β = MP production rate

δ = MP clearance rate or the probability of being clean of MP at time t

τij = time delay which depends on MP propagation speed and length of fiber tracts

Pj = Probability of ROI j being infected some time delay before time t

ℵ = e.g. effect of therapy being administered at time t

(3.1b)

Equation 3.1a posits that the change in probability of Aβ deposition in ROI ai
is equal to the probability of receiving MP from ROIs connected to it or from itself
minus the probability of clearing the deposited MP plus or minus some stochastic
noise.

As was mentioned in Chapter 2, an ROI can be endogenously or exogenously
infected according to the ESM. Hence, εi(t) breaks down into:

εi(t) = ∑
j 6=i

Paj→iβ
ext
j (t− τij)Pj(t− τij) + Pai→iβ

int
i (t)Pi(t) (3.2)

The two parts of the equation refer to the exogenous and endogenous causes of
Aβ accumulation in an ROI i. The exogenous influence is the product of the weighted
anatomical connection probability between ROI i and ROI j (Paj→i), the extrinsic
"infection" rate of ROI j with some time delay accounting for time it takes Aβ to
propagate (βext

j (t− τij)), and the probability of ROI j being infected at time t minus
the delay (Pj(t− τij)). The endogenous/intrinsic cause of MP accumulation captures
intra-regional Aβ spread.

The extrinsic and intrinsic probabilities of soluble Aβ staying within an ROI or
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diffusing out to other ROIs are governed by the basic principles of diffusion; Aβ

propagates from regions of high concentration to regions with low Aβ concentrations.
The equations for these probabilities are the following:

βext
i (t) = g(t)βi(t)

βint
i (t) = (1− g(t))βi(t)

βi(t) = βext
i (t) + βint

i (t)

(3.3)

g(t) is modeled after the classic Gini coefficient, a measure of variability in data.
The value ranges from [0, 1] where 0 corresponds to perfect equality and 1 corre-
sponds to a total inequality. In other words, g(t) dictates how likely it is that some
amount of Aβ will either stay within an ROI or propagate to other ROIs. βi(t) denotes
the regional MP deposition probability, and it is modelled as a sigmoidal function of
the regional Aβ probability. This leaves us with:

βi(t) = βi(Pi, β0) = 1− e−β0Pi(t) (3.4)

Finally, δi(t) describes the probability of a region being clean of Aβ following
"infection". Regional Aβ presence causes cell death by negatively impacting mito-
chondrial function - thus, regional capacity to clear deposited Aβ is reduced with an
increased presence of Aβ (Readnower, Sauerbeck, and Sullivan, 2011). With that in
mind, regional MP clearance was modeled with a decreasing sigmoidal function:

δi(t) = δi(Pi, δ0) = e−δ0Pi(t) (3.5)

Note that both β0 and δ0 are unknown constant parameters that vary from [0,
+∞] and are expected to be influenced by the disease factor being assessed. ℵ, the
variable representing noise, is assumed to have a Gaussian distribution with mean µ

and standard deviation σ.

3.4.2 Longitudinal ESM

To test the ESM longitudinally, we made several modifications to the ESM workflow.
We now use the Aβ pattern at the first timepoint as the initialization and Aβ pattern
at the second timepoint as the reference pattern to simulate. For each subject, the
parameter combination that results in a pattern most similar to the reference pattern
is selected (Figure 3.1).
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Figure 3.1: (a) Cross-sectional workflow. (b) Longitudinal workflow.

3.4.3 Pre-processing choices

As was shown in Vogel et al., 2019, ESM performance may be affected by the steps
taken to preprocess PET data, the method used to quantify Aβ probabilities, the
connectivity measure used, and the composition of the subjects. In 3.5, we describe
the different probability metrics we applied to either co-registered PET images or
parametric SUVR or DVR issues.

In 3.6, we describe the two measures of connectivity used in this thesis.

3.5 Regional Aβ Quantification

To quantify PiB PET signal regionally, we created subject-specific segmentations
differently based on the PET processing pipeline used. For use with PUP, Freesurfer
was used to derive subject-specific segmentations corresponding to regions in the
Desikan-Killiany-Tourville atlas (DKT, Desikan et al., 2006). Only cortical and subcor-
tical regions overlapping with the Mindboggle DKT atlas were used, for a total of
78 regions (Klein and Tourville, 2012). For APPIAN, users can define ROIs using a
stereotaxic atlas, so we used the Mindboggle atlas and each subject’s transform from
their native T1 space to stereotaxic space to create subject-specific parcellations.

Traditionally, static PET processing involves quantifying co-registered PET images
using standardized uptake value ratios (SUVR) for each ROI with respect to the
average signal in a reference region devoid of specific tracer binding. The reference
region typically used in AD Aβ PET imaging studies is the cerebellar cortex; however,
amyloid deposition has been observed in the cerebellar cortex of individuals with
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fAD (Bateman et al., 2010). Based on recent work seeking to clarify what an optimal
reference region is for Aβ measurement using PiB-PET and the DIAN cohort, we
tested both cerebellar cortex and brainstem as reference regions (Su et al., 2016,
landauOptimizingLongitudinalAmyloidv2018). For the longitudinal ESM we used
the brainstem as the reference region and provide justification for this in ??. In
addition to differences encountered using the two reference regions, the final regional
Aβ probabilities may differ based on the data normalization method used to quantify
them. Depending on how the PET data was processed, we can either use a voxelwise
or regional normalization method. For instance, we did not have parametric SUVR or
DVR images provided by PUP, so we could use a voxelwise probability metric with
the co-registered PET scans or a regional probability metric with the mean regional
SUVR or DVR values provided by the DIAN team.

The original ESM paper introduced a voxelwise probability metric, which we
will refer to as V ECDF, RR EVD. This approach creates a bootstrapped sampling
consisting of 40,000 subsamples in the 5-95% of values in the reference region. Subse-
quently, an extreme value distribution (EVD) is created using the maximum value
observed in each bootstrapped sampling. The EVD is used to create an extreme
cumulative distribution function (Fig 3.2b), and for each voxel in the PET image, the
probability of it being greater than every value in the EVD is computed (Fig 3.2c). A
final regional Aβ deposition value is calculated as the average of the probabilities
corresponding to each voxel in the ROI. Given the overall higher PiB-PET signal
in the brainstem than the cerebellar cortex, we use the 75th percentile value rather
than the maximum in each bootstrap sampling to create the EVD when using the
brainstem as the reference region.

When processing the data using PUP, we observed that the PiB signal in non-
carrers was negligible in all regions except for the globus pallidus, thalamus, and
putamen. Subsequently, for each ROI across all available timepoints, the noncarriers’
signal was used to create a ROI-specific null distribution, and for each mutation
carrier, we calculated a z-score for their Aβ binding probability in the ROI with
respect to the ROI-specific null distribution. Within each ROI, we min max scaled the
absolute values of the z-scored signal across all timepoints to have probabilities in
the [0,1] range again.

As described in 3.3, we used the GTM PVC method in a subset of the process-
ing workflows. A caveat of using a regional PVC method is that we subsequently
cannot use a voxelwise data normalization strategy, so we used a Gaussian mixture
modelling approach which has been shown to be effective in detecting different
distributions of Aβ (Villeneuve et al., 2015, Grothe et al., 2017). A regional GMM
was first applied in Vogel et al., 2019, and this approach assumes that pathological
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Figure 3.2: (A) An example mutation carrier’s plot showing their PET signal distribution for the
cerebellar cortex (CC) and DKT regions. (B) Bootstrapped distribution of max values in CC. (C)
Distribution of DKT regional probabilities after creating an ECDF of the red signal in A with
respect to the one in B.

signal can be described using a bimodal distribution where pathological signal is
skewed while non-specific signal follows a normal distribution. For each region,
one-component model and two-component models are fit, and the fit of each model
is evaluated using Aikake’s information criterion (AIC). If a one-component model is
selected, that suggests that there is no pathological signal for the given region across
the population. However, if a two-component model is selected, that suggests that
there is indeed a pathological level of Aβ in a subset of the population. For regions
whose distribution is best described using a two-component model, a region-specific
SUVR or DVR threshold can be selected above which signal can be considered patho-
logic. As with the voxelwise reference strategy, we need to compute probabilistic
values for use with the ESM. Thus, we compute the probability of each subject’s ROI
SUVR/DVR value falling onto the rightmost Gaussian distribution of that ROI. An
example of the regional GMM method being applied to the left precuneus is depicted
in Fig 3.3.
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Figure 3.3: For each region - e.g. the left precuneus - a one component and two component
model is fit. In this case, the best fitting one is the two-component one, and the one-component is
rejected. Probabilities for every subject’s value in the left precuneus is computed with respect to
the rightmost distribution in the two-component model.

3.6 Connectivity Measures

In order to propagate Aβ signal across the brain, the ESM requires a matrix of
pairwise relationships between ROIs. This informs the final regional pattern of
Aβ. The original ESM paper tested whether Aβ spreads along synapses by using
a structural connectivity matrix. Using a functional connectivity matrix, we can
also test whether Aβ spreads indirectly. We can also use a relationship matrix
corresponding to Euclidean distance to test whether Aβ spreads throughout the
extra-cellular space, simply via spacial proximity.

3.6.1 Structural Connectivity

We used a structural connectivity matrix derived from diffusion spectrum imaging
(DSI) scans of 60 young healthy subjects from the CMU-60 DSI template (Yeh and
Tseng, 2011). The acquisition and preprocessing have been described in detail in
the original ESM paper and were based on methodology developed in an earlier
paper (Iturria-Medina et al., 2007, Iturria-Medina et al., 2014). Briefly, all images
were nonlinearly co-registered to MNI space and orientation distribution functions

http://www.psy.cmu.edu/coaxlab/data.html
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(ODF) representing nerve fiber orientations were calculated. All intravoxel fiber ODF
maps were averaged to create an ODF template, and an automated fiber tractography
method was used to calculate probabilistic axonal connectivity values for each voxel
and the surface of each grey matter region in the DKT atlas. Previously described
anatomical connection probabilities were then generated for each ROI-ROI pair.

3.6.2 Functional Connectivity

To create a functional connectivity matrix, we used all resting-state fMRI (rs-fMRI)
scans available for non-carriers in the DIAN dataset. We pre-processed the scans
using the default settings of fMRIPrep (Esteban et al., 2019).

After performing quality control for motion and registration, we were left with
200 scans. For each time-series, we used Nilearn (https://nilearn.github.io/) to
regress out the following set of confounds computed by fMRIPrep - the average signal
within anatomically-derived eroded CSF and white matter masks, six rigid-body
motion parameters, framewise displacement, along with anatomical and temporal
noise. Using the signal that has undergone confound regression, we computed
a correlation matrix for each pair of 78 ROIs. We averaged across all correlation
matrices to create an average resting state connectivity matrix specific to the DIAN
dataset. All values were min max scaled to be between 0 and 1.

Figure 3.4: (a) Structural connectivity matrix from CMU-60 DSI dataset. (b) Functional connectiv-
ity matrix from DIAN participants. The functional connectivity matrix has fewer highly weighted
connections. Unlike the FC matrix, the SC matrix does not exhibit homotopic connections.

https://nilearn.github.io/
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3.7 CSF measures

In addition to PET based detection of Aβ load in the brain, CSF measures of Aβ1-42,
tau, and phosphorylated tau have served as useful early biomarkers of AD and
can often be detected earlier than a buildup of Aβ plaques in the brain. Mounting
evidence has pointed to Aβ further spurring tauopathy, and the original application
of the ESM to the ADNI dataset demonstrated that model parameters related to Aβ

progression can in fact explain a substantial amount of variance in CSF tau as well as
Aβ.

In addition the neuroimaging measures of Aβ, we used CSF measures Aβ1-42,
tau, and phosphorylated tau in subsequent statistical analysis. All CSF samples were
analyzed by the DIAN Biomarker Core at Washington Universtiy. CSF concentrations
of Aβ1-42, tau, and ptau181 were measured by immunoassay using Luminex bead-
based multiplex technology (INNO-BIA AlzBio3, Innogenetics, Ghent, Belgium).
Detailed processing steps have previously been described (Fagan et al., 2014).

3.8 Statistical Analysis

3.8.1 Cross-sectional Analysis

Using the different connectivity and PET preprocessing methods we evaluate how
well the ESM reproduces baseline Aβ deposition patterns across different input
combinations. We evaluate model performance both within-subject and at the group-
level. Within-subject accuracy is defined as the r2-value between the observed and
predicted regional Aβ probabilities for a given subject, and we report the average
within-subject accuracy as well as a comparison of performance between the PSEN1,
PSEN2, and APP mutation types. (3.6a).

r2
n = ρ(re fn, predn)

2

r2
n,avg =

N

∑
n=0

(r2
n)/N

(3.6a)

In 3.6a, the variables are:

re fn = reference regional Aβ pattern for a subject

predn = predicted regional Aβ pattern for a subject
(3.6b)
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Group-level performance is calculated as how well the ESM reproduces the
baseline aggregated Aβ deposition patterns, where we compute the r2 between
the average observed and predicted regional Aβ levels (3.7a). To assess statistical
significance of our results given the connectivity matrix used, we create 100 random-
ized versions of the original structural connectivity matrix where the distribution of
strength, degree, and weight is preserved. Using each of these randomized matrices,
we fit the ESM again. A p-value for our original model is computed based on whether
its aggreggated performance is higher than that of the models using the randomized
matrices. Because we use 100 randomized matrices, the lowest p-value can be 0.01.
Additionally, we evaluate how well the ESM does at an individual level based on
how much cortical Aβ a subject has.

re fROIi,group =
N

∑
n=0

(re fROIi,n)/N

predROIi,group =
N

∑
n=0

(predROIi,n)/N

r2
group = ρ(re fgroup, predgroup)

2

(3.7a)

In 3.7a, the variables are:

re fROIi,n = reference Aβ probability for a given subject n at ROI i

predROIi,n = predicted Aβ probability for a given subject n at ROI i
(3.7b)

Because most mutation carriers at baseline are cognitively normal, we define
mutation carriers who have a global CDR > 0 as symptomatic and those with a
global CDR = 0 as asymptomatic. Using a t-test, we compare whether there are group
differences in the subject-level ESM parameters between those who are asymptomatic
vs symptomatic.

We ascertain whether there is a significant relationship between regional Aβ

probabilities and the average effective anatomical distance between ROIs and the
epicenters for both asymptomatic and symptomatic subjects. Effective anatomical
distances were estimated as the length of the shortest path linking each region i with
the epicenters from the best-fitting model.

In Iturria-Medina et al., 2017, the authors propose that if the ESM can accurately
recapitulate intra-brain spatial patterns of Aβ, then it follows that the subject-specific
parameters governing Aβ production and clearance may reflect individual levels
of Aβ in the CSF. Furthermore, given the interplay between Aβ and tau, the ESM
parameters may explain CSF levels of tau and phosphorylated tau. Subsequently, we
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performed a six-way ANOVA test, considering the Aβ production rate, Aβ clearance
rate, Aβ onset age, age, gender and educational level as modulatory factors of the
three aforementioned CSF measures.

3.8.2 Longitudinal analysis

Using the combination of preprocessing choices that allowed us to best reproduce Aβ

deposition patterns cross-sectionally (Aim 1), we sought to now use the ESM longitu-
dinally to evaluate parameter differences between individuals who are accumulating
Aβ and assess whether parameters fit between two timepoints can be used to predict
the regional rate of change in Aβ between timepoints (Aim 2).

As described in 3.4.2, we use data from multiple timepoints to run the ESM
longitudinally. Here we evaluate how well the ESM can reproduce not the overall
reference pattern but the regional rate of change in Aβ probabilities between the first
and second timepoint. We compute the r2 between the average observed and average
predicted regional rate of change for prefrontal, orbitofrontal, parietal, temporal,
anterior cingulate, and posterior cingulate/precuneus ROIs for each subject. To test
how significant our results are, we once again fit the ESM over 100 randomized
versions of the original structural connectivity matrix.

Ultimately, we are interested in whether ESM can reproduce regional Aβ accu-
mulation, and for simpler visualization, we opted to split all MC into those who
are accumulating Aβ between timepoints and those who are not accumulating. We
defined mutation carriers whose mean rate of change in Aβ probabilities was greater
than twice the standard deviation (SD) of the noncarriers’ average rate of change
for the cortical regions between for the first two timepoints as accumulators. We
assessed ESM parameter differences between accumulating versus non-accumulating
mutation carriers using an independent two-tailed t-test.

ESM uses a grid-search method to select the best subject-specific global clearance
and production parameters, and we were interested in evaluating how much better
ESM performs using the selected parameters compared with the whole range of
possible clearance and production parameter combinations. The ESM cost function
is the reciprocal of the Euclidean distance (ED) between the observed and predicted
pattern, so for each subject, we normalized the reciprocal of the ED for every produc-
tion and clearance combination to be between [0,1]. To account for how well ESM
explained the short-term change in Aβ probabilities for each subject, we normalized
all of the subjects’ performance to be between [0,1] and multiplied each subject’s
normalized ED value at every parameter value combination by their normalized
within subject r2-value.
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To assess whether parameters fit between the first two timepoints can be used to
predict the rate of change in Aβ between the second timepoint and a future timepoint,
we compute the r2 between the observed and predicted within subject regional rate
of change in Aβ probabilities between timepoints 2 and 3.
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Chapter 4

Results

4.1 Conversion to Aβ deposition probabilities

For the mutation carriers whose baseline scans were available, we created subject
by ROI Aβ deposition probability matrices using the different strategies presented
in section 3.5. Figure 4.1 illustrates the matrix produced from applying the V ECDF,
RR EVD method introduced in Iturria-Medina et al., 2014. In this case, using the
brainstem as the reference region, the raw co-registered PET signal was converted
to regional probabilities of Aβ deposition. With the subjects with the least to most
Aβ across all regions sorted from top to bottom and regions with the least to most
Aβ across all subjects sorted from right to left, we can visualize a pseudotemporal
progression of Aβ deposition. In keeping with recently proposed ordering of Aβ

accumulation in LOAD patients (Mattsson et al., 2019), we see that regions such
as the posterior cingulate, medial orbitonfrontal cortex and precuneus have high
levels of Aβ, suggesting that they accumulate Aβ earlier in the disease timecourse.
However, we note that the subcortical regions such as the thalamus, globus pallidus,
caudate, and putamen also have high binding.
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Figure 4.1: Aβ data following conversion using voxelwise EVD reference strategy. Matrix is
sorted with subjects with the highest Aβ probabilities (p) across all regions towards the bottom
and regions with the highest Aβ probabilities across all subjects towards the left. Neocortical ar-
eas such as the posterior and caudal anterior cingulate, precuneus, rostral anterior cingulate and
caudate exhibit the highest levels of Aβ across all subjects.

4.2 Reproducing baseline Aβ deposition patterns in

DIAN

4.2.1 Cross-sectional model performance

The ESM was fit to the baseline data of mutation carriers, simulating the spread of Aβ

from a set of seed regions. The ESM was fit using PiB data using different pipelines
and methods to compute regional Aβ positivity. In addition to (i) PET processing,
we tested the impact of (ii) seed regions and (iii) choice of connectivity measure.
Different numbers of subjects were available depending on the type of processing
done. The results for all tested combinations of model parameters is reported in Table
4.1.

4.2.1.1 Structural Connectivity

Overall, models performed better when fit over a structural connectivity matrix.
Performance was further improved using PiB scans preprocessed using PUP. When
using APPIAN to pre-process PET scans, better ESM performance was achieved
using the V ECDF, RR method introduced in 3.5.
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The seed regions explaining the most variance in the baseline group-level spatial
pattern of Aβ were the medial orbitofrontal cortex, precuneus, and posterior cingu-
late, irrespective of the reference region used for PET processing. The best-fitting
model using the cerebellar cortex as the reference region (model A) explained 44%
(null model mean r2 [95% CI] = 0.11 [0.077, 0.157]; p < 0.01) of the aggregated pattern
of Aβ and on average explained 22% (null model mean r2 [95% CI] = 0.092 [0.077,
0.11]; p < 0.01) of the regional pattern of Aβ in individual subjects.

The best-fitting model using the brainstem as the reference region (model B)
explained 35% (null model mean r2 [95% CI] = 0.088 [0.057, 0.128]; p < 0.01) of the
aggregated pattern of Aβ and on average explained 17% (null model mean r2 [95%
CI] = 0.065 [0.054, 0.082]; p < 0.01) of the regional pattern of Aβ in individual subjects.

4.2.1.2 Functional Connectivity

Recently it has been shown that the spread of tau can be reproduced using both
functional and structural connectivity, so we sought to assess whether just changing
the source of connectivity information would result in comparable ESM performance
(Vogel et al., 2019). Using the set of cortical epicenters that explained the most vari-
ance, we were not able to achieve similar subject-level or group-level performance
using functional connectivity (4.1). Depending on whether the Aβ deposition prob-
abilities were computing using the cerebellar cortex or brainstem as the epicenter,
the accuracy was 1% and 12% for reproducing the aggregate baseline Aβ pattern,
respectively.

4.2.1.3 Group-level ESM performance

In addition to evaluating group-level performance across the disease timecourse,
we binned subjects into groups based on their estimated years to symptom onset.
In 4.2, we show a qualitative and quantitative assessment of ESM performance
staggered across the set of EYO ranges (-20 to -10, -10 to 0, 0 to 10, and 10 to 20
EYO) for models A and B. In 4.2A,C, we see that for both models, the ROIs that
appear to accumulate Aβ most quickly are in fact the posterior cingulate, precuneus,
and medial orbitofrontal cortex, those ROIs that have been identified as areas of
early accumulation (Mattsson et al., 2019). There is an initial discord between the
observed and predicted pattern for the cuneus and lingual gyrus, regions that have
been pinpointed as areas of intermediate and late accumulation, but they do in fact
appear to have higher Aβ probabilities later in the disease timecourse compared with
the aforementioned early accumulating regions.

One discernable difference between Model A and Model B is that the Aβ deposi-
tion probabilities are lower in Model B as a result of the reference region being used,
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and this appears to negatively impact the group-level performance in EYO ranges
that are further from estimated symptom onset.
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Figure 4.2: (a) Model A: A qualitative evaluation of model performance depicting the average
observed regional probabilities (left) and the values predicted by the ESM (right) for model and
(b) the quantitative evaluation within the same EYO ranges. (c) Model B: A qualitative evaluation
of model performance depicting the average observed regional probabilities (left) and the values
predicted by the ESM (right) for model and (d) the quantitative evaluation within the same EYO
ranges.

4.2.1.4 Within-subject performance across mutation types and epicenters

Given the fact that Model B appears to be more sensitive than Model A to the non-
negligible presence of Aβ, we opted to split subjects into those who are Aβ positive vs
Aβ negative for an average Aβ deposition probability across a set of cortical ROIs that
have previously been used by the DIAN Imaging Core to determine Aβ positivity
using SUVR values. These cortical regions are comprised of the precuneus, superior
frontal, rostral middle frontal, lateral orbitofrontal, medial orbitofrontal, superior
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temporal, and middle temporal cortex. In the ESM, only the initial epicenters are
assumed to have Aβ, and they are assigned an Aβ deposition probability of 0.1. Thus,
for this analysis, we categorize individuals as Aβ positive if they have an average
probability of 0.1 across these cortical ROIs.

In Figure 4.3, we compare within-subject performance using either the caudate
and putamen or the set of best-performing cortical regions as epicenters. The only
mutation type for whom performance is high using the caudate and putamen as the
epicenter is PSEN1, and this holds only for individuals who are Aβ negative with
respect to cortical regions. Overall, the within-subject performance is significantly
higher in 4.3A.

We only show the results from experiments that used Aβ deposition probabilities,
but the results were comparable with those using the cerebellar cortex as the reference
region.

A B

Figure 4.3: (a) Within subject performance as a function of mean cortical Aβ probabilities. Using
the brainstem as the reference region results in more subjects being considered Aβ negative, and
ESM fit is negatively impacted by that. However, Model B’s performance is consistently higher
for Aβ positive individuals. (b) Model B performance for four exemplary subjects, all of whom
are cognitively normal. Each dot is an ROI and is colored according to its status in the Mattsson
staging system.
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Table 4.1: Baseline results using different models

Pipeline N (MC) Ref
Region

Quant PET
Method PVC Normalization Conn

Matrix Seed Regions Data-driven
seeds Mean Subject R2 Global R2

APPIAN 78 CC SUVR No V ECDF, RR ACP L Pericalcarine, R Post Cing Yes 0.131 0.19
APPIAN 82 CC DVR No V ECDF, RR ACP L/R Precuneus, PC, MOF No 0.135 0.175
APPIAN 108 CC SUVR No V ECDF, RR ACP L/R Precuneus, PC, MOF No 0.118 0.185
APPIAN 82 CC DVR No GMM ACP L/R Precuneus, PC, MOF No 0.085 0.17
APPIAN 82 CC DVR No GMM ACP L/R Entorinal Yes 0.083 0.031
APPIAN 108 CC SUVR No V ECDF, RR ACP R Pericalcarine, L RAC Yes 0.189 0.247
APPIAN 84 CC DVR Yes GMM ACP L/R Precuneus, PC, MOF No 0.104 0.214
APPIAN 84 CC DVR Yes GMM FC L/R Precuneus, PC, MOF No 0.072 0.128
APPIAN 84 CC DVR Yes GMM FC L Entorinal, R Hypothalamus Yes 0.161 0.019
APPIAN 84 CC DVR Yes GMM ACP L Entorinal, R Hypothalamus Yes 0.124 0.0003
PUP 134 CC DVR Yes GMM ACP L/R Precuneus, PC, MOF No 0.093 0.262
PUP 215 CC None No V ECDF, RR EVD ACP L/R Precuneus, PC, MOF No 0.22 0.44
PUP 215 CC None No V ECDF, RR EVD FC L/R Precuneus, PC, MOF No 0.15 0.12
PUP 249 BS None No V ECDF, RR EVD FC L/R Precuneus, PC, MOF No 0.08 0.01
PUP 215 CC None No V ECDF, RR EVD ACP L PC, R CAC No 0.16 0.27
PUP 249 BS None No V ECDF, RR EVD ACP L/R PC, CAC No 0.16 0.27
PUP 215 BS None No V ECDF, RR EVD ACP L/R Putamen, Caudate No 0.15 0.22
PUP 249 CC None No V ECDF, RR EVD ACP L/R Putamen, Caudate No 0.09 0.06
PUP 249 BS None No V ECDF, RR EVD ACP L/R Precuneus, PC, MOF No 0.17 0.35

The best performing models (model A and model B) are highlighted.
V ECDF, RR = Voxelwise ECDF with respect to reference region signal; GMM = Gaussian Mixture Model
ECDF NN = ECDF with respect to noncarriers’ regional probabilities
V ECDF, RR EVD = Voxelwise ECDF with respect to extreme value distribution of reference region signal
ACP = Anatomical Connectivity Probability; FC = Functional Connectivity; ED = Euclidean Distance
PC = Posterior Cingulate; MOF = Medial Orbitofrontal Cortex; RAC = Rosterior Anterior Cingulate; CAC = Caudal Anterior Cingulate
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4.2.2 Predicting regional Aβ arrival time with effective anatomical

distance to outbreak region and connectivity degree

Previous application of the ESM to the Aβ probabilities of ADNI participants showed
a significant negative association between effective anatomical distance to epicenter
seed regions and regional Aβ probabilities, and we observed the same association
with fAD mutation carriers, both for symptomatic and asymptomatic individuals
(Fig 4.4). As was seen with the different clinical diagnoses in ADNI, the best fit lines
for asymptomatic and symptomatic individuals are collinear. This result supports the
idea that there are regions that serve as epicenters of Aβ accumulation, propagating
Aβ to those regions that are connected to them.

Figure 4.4: Regional Aβ probabilities for asymptomatic and symptomatic subjects vs effective
anatomical distance.

4.2.3 Cross-sectional parameter analysis

We further extend our exploratory analysis of the effect of different PET processing
methods by reporting the results from the statistical analyses described in 3.8 using
subject-specific ESM parameters from both models A and B.

4.2.3.1 Clinical diagnosis is not driven by ESM subject-specific parameters

In Figure 4.5, we compare the production and clearance parameters across Aβ positive
mutation carriers who are asymptomatic and symptomatic. While clinical changes
in sporadic AD were related to reduced clearance (Iturria-Medina et al., 2014), we
don’t observe the same effect for ADAD mutation carriers. We are limited here by
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a smaller sample size and a predominantly cognitively normal dataset, and cannot
draw any conclusions about whether over-production or under-clearance of Aβ is
linked to the emergence of cognitive symptoms. Since individuals who develop fAD
are significantly younger than those who develop sAD, modulatory factors such as
cognitive reserve have a more significant effect on when an individual will begin
to exhibit cognitive symptoms. A six way ANOVA exploring the effects of the Aβ

production rate, Aβ clearance rate, Aβ onset age, age, gender and educational level
on Mini Mental State Examination (MMSE) scores showed that the only significant
modulator was age, explaining 8.78% (P=3.55e-02, F=4.655) of the variance in MMSE
scores. These results were consistent across Model A and Model B.

Figure 4.5: From left to right - clearance, production, production/clearance ratio, and mean corti-
cal Aβ probability for asymptomatic vs symptomatic mutation carriers who are Aβ positive. Nei-
ther the subject-specific clearance nor production parameters are significantly different between
the cohorts. *p < 0.05.
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4.2.3.2 CSF measures

We performed a six-way ANOVA test, considering the Aβ production, Aβ clearance
rate, Aβ onset age, age, gender, and educational level as modulatory factors of CSF
Aβ1-42, tau, and phosphorylated tau.

The ANOVA results vary across Model A and Model B. For Model A, Aβ produc-
tion rates explained 5.82% (P=1e-03, F=11.5) of the variance in CSF Aβ1-42 levels.
For the CSF tau levels, age, and education explained 2.77% (P=2.2e-02, F=5.36) and
3.99% (P=6e-03, F=7.72), respectively. For CSF p-tau, the Aβ production rate and Aβ

clearance rate explained 2.23% (P=4e-02, F=4.29) and 2.52% (P=2.9e-02, F=4.85). The
relationships between the CSF measures and ESM parameters derived using Model
B were weaker and are depicted in Table 4.2.

Across the different models whose results we analyzed, there are notable discrep-
ancies between the modulatory effects of the Aβ progression parameters, and it is
difficult to definitively conclude which relationships are the most meaningful given
the lack of consistency.

Figure 4.6: We assessed the relationship between model parameters, demographic variables and
CSF levels of Aβ, tau, and p-tau across the best-fitting models. While Aβ production appears to
be strongly related to CSF Aβ1-42 and p-tau levels in Model A, this effect is not reproduced in
Model B.
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Table 4.2: % Variance Explained in CSF Aβ1-42, tau, and p-tau by model parameters (all subjects)

Gender AB Prod. AB Clear. AB Onset Age Education
CSF AB42 (A) 0.04 (ns) 5.89 (***) 0.02 (ns) 2.48 (*) 1.22 (ns) 1.75 (ns)
CSF Tau (A) 0.3 (ns) 0.77 (ns) 1.18 (ns) 0.09 (ns) 2.77 (*) 3.99 (**)
CSF PTau (A) 0.76 (ns) 2.23 (*) 2.52 (*) 1.41 (ns) 0.45 (ns) 1.82 (ns)
CSF AB42 (B) 0.18 (ns) 0.29 (ns) 1.63 (ns) 2.11 (*) 1.47 (ns) 2.1 (*)
CSF Tau (B) 0.43 (ns) 0.1 (ns) 3.33 (**) 0.00 (ns) 3.11 (**) 5.83 (**)
CSF PTau (B) 1.17 (ns) 0.23 (ns) 2.90 (*) 0.03 (ns) 1.92 (*) 4.08 (**)

Each entry corresponds to the % variance explained by the modulatory variable on the CSF variable
of interest (p-value).
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, **** ≤ 0.0001. A = Model A;
B = Model B;
AB Prod = Aβ production rate; AB Clear = Aβ clearance rate; AB Onset = Aβ onset age.

4.3 Longitudinal model training and validation

4.3.1 Selecting a reference region

The results of Table 4.1 indicate that Model A and B perform best, and we decided to
use the combination of processing steps used in Model B for all longitudinal analysis
because the brainstem has previously been shown to be a better reference region for
distinguishing between mutation carriers and noncarriers longitudinally (Su et al.,
2016), and we show that that holds in Figure A1. In Figure 4.7, we depict the average
rate of change in Aβ in mutation carriers within a set of cortical ROIs with respect to
their years to symptom onset and the baseline Aβ deposition in those ROIs.

4.3.2 Training

As described in section 3.4, we fit a subject’s regional Aβ pattern at the second scan
to that at the first, and let the ESM select the parameters that best explain the change
in regional values over time. We will refer to the longitudinal ESM as Model C.

Model C explained on average 75.2% of the regional pattern of Aβ within subjects
at timepoint 2. However, what we assess now is how well the model can explain
the regional rate of change in individual subjects since a subject’s scans are highly
correlated between visits. Model performance was very variable; the mean individual
r2 was 30.9% with an SD of 24.1% (mean RMSE = 0.048, SD = 0.031). Unlike what we
observed with the cross-sectional analysis, longitudinal ESM fit was not significantly
better using the original structural connectivity matrix rather than the randomized
versions of this matrix (null model mean individual r2 = 27.1% and SD = 34.5%; p =
0.98).

As we can see in Figure 4.7, many subjects do not show much change between
visits, so we explored whether there were specific trends amongst individuals or
regions for whom the ESM performed well. We found that for individuals who
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Figure 4.7: Both within and across individuals, there is substantial heterogeneity in rates of Aβ
accumulation across the disease timecourse.

consistently had positive or no change in regional Aβ levels, the ESM performed
well (Fig 4.8). The ESM did not perform as well for subjects who had inconsistent
amounts of negative and positive change, and we attribute this to the ESM being
unable to simulate some regions undergoing atrophy while others accumulate Aβ.

The ESM was able to explain changes in regional Aβ values best for those regions
that tend to have higher PiB-PET signal, e.g. the precuneus, caudal anterior cingulate,
posterior cingulate (Fig 4.9). Conversely, for regions that have lower PiB-PET signal
across all mutation carriers, the ESM was not able to explain the rate of change
between visits as well.
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a b

Figure 4.8: (a) Each dot is a subject, and we show the association between each subject’s average
rate of change in cortical regions and Model C’s performance in reproducing these rates of change
within subject. (b)Performance for individual subjects, each dot is an ROI. A line is drawn at 0
to help distinguish subjects who have an overall positive rate of change in all regions. Model
C performs very well for those subjects who are consistently accumulating Aβ (subs 0, 1, 2) or
showing no change between visits (subs 4, 5). Within subject performance for those subjects who
show decreases in Aβ is not consistently high (subs 3,6), and the model cannot reproduce regional
rates of change that are both negative and positive (subs 7, 8).

a b

Figure 4.9: (a) Each dot is an ROI, and we show the association between average Aβ deposition in
an ROI and longitudinal model performance for the ROI. (b) Performance on exemplar regions,
each dot is a subject.
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4.4 Longitudinal parameter evaluation

An important question is which model parameters best explain the change in amyloid
load between scans. With a two-tailed t-test, we see that the clearance parameter is
significantly lower in subjects accumulating Aβ while the production parameter is
not significantly different between visits. As has previously been shown, an increased
production over clearance ratio is what drives the increase in Aβ load in symptomatic
mutation carriers. This may further suggest that an impaired clearance system is the
main contributor to increased Aβ load.

Figure 4.10: From left to right we show differences in the probabilistic production, clearance,
and log-spaced production over clearance ratio for accumulators vs non-accumulators between
timepoints 1 to 2. 0.01 < *p < 0.05 ****p < 10-4

In Figure 4.11 we show the longitudinal ESM performances for an exemplar
accumulator and non-accumulator across every production and clearance parameter
value combination. It’s evident that for both subjects, there is a separable space in
which the ESM performs best, but the space spans more than one possible combina-
tion. This suggests that the parameters selected for each individual are not wholly
interpretable, but that the overall parameter space for which the ESM performs best
for a subject can be used to infer general trends. Indeed, the exemplar accumula-
tor’s best-performing space lies within the positive production/clearance ratio space
whereas the non-accumulator’s lies in the negative space. This may suggest that the
nonaccumulator has a balanced production to clearance ratio or sufficiently high
clearance of Aβ that hinders accumulation while the accumulator is not adequately
clearing Aβ.



CHAPTER 4. RESULTS 40

Figure 4.11: From left to right we show differences in the probabilistic production, clearance,
and log-spaced production over clearance ratio for accumulators vs non-accumulators between
timepoints 1 to 2. The arrows point to the production, clearance combinations that yield approxi-
mately equivalent ESM performance for a subject.

4.5 Longitudinal performance analysis

We sought to assess if parameters fit between subjects’ first two timepoints can be
used to predict the regional Aβ patterns at subjects’ subsequent scans. Despite the
better test-retest reliability observed when using the brainstem as the reference region,
we found that the annual rates of accumulation for mean cortical Aβ probabilities
were often variable between visits (Fig 4.12a). Due to this variability, parameters fit
between the first two scans could not consistently explain the regional pattern of
Aβ measured at a third scan, and the model performed best for those individuals
for whom a consistently positive rate of change was observed. The average within
subject performance was 11.9% (SD=22.3%). We observed that for subjects who did
not accumulate Aβ between timepoints 1 and 2 but accumulated between timepoints
2 and 3, ESM underestimated the change observed between the second set of time-
points (NA-A). Similarly, ESM overestimated change for those subjects (A-NA) who
accumulated between timepoints 1 and 2 but not between timepoints 2 and 3 (Fig
4.12c).
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A

B

Figure 4.12: (a) Histogram of longitudinal validation performance across all subjects. (b)
The observed and predicted regional rate of change between the 2nd and 3rd scan is shown
for three example subjects in three categories, Accumulator-Nonaccumulator, Nonaccumulator-
Accumulator, Accumulator-Accumulator across three visits.



42

Chapter 5

Discussion

With the advent of neuroimaging we have been better able to test hypotheses of
Aβ spread in humans. While the trans-neuronal spread of misfolded proteins such
as tau and α-synuclein has been supported by both studies in mice and humans,
whether Aβ definitively spreads trans-neuronally as opposed to extracellulary is
still contested. Throughout this thesis we have explored how well a model that
simulates the trans-neuronal spread of Aβ under biologically feasible constraints
of Aβ production and clearance can explain regional Aβ probabilities for subjects
spanning the AD time-course. In this chapter we first discuss how using different
PET preprocessing choices and connectivity measures affect the ESM’s ability to
reproduce cross-sectional data, followed by an exploration of how the ESM results
can be interpreted in the context of the broader field of AD disease progression
modelling. Lastly, we discuss the ESM’s performance when used to predict future
regional patterns of Aβ, limitations of the model, and recommendations for future
work.

5.1 Effect of processing pipelines and connectivity

measures on cross-sectional model performance

In our cross-sectional application of the ESM, we sought to evaluate how well the ESM
performs across different PET processing pipelines, seed regions, and connectivity
measures. A major difference between PUP and APPIAN is that PUP performs
inter-frame motion correction and smoothing, and this may have contributed to
the higher performance observed for ESM experiments which used data processed
with PUP (Table 4.1). As discussed in Chapter 2.2.1.1, PET imaging is privy to a
number of artifacts related to low spatial resolution and signal detection. Smoothing
increases the signal to noise ratio at the expense of decreased resolution. Likewise,
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inter-frame motion correction has been shown to be essential for sporadic AD studies
where head motion frequently occurs and significantly impacts regional radiotracer
binding quantification (Ikari et al., 2011). There is no gold standard for processing
PET data in the context of familial AD, and previous work has reported that there are
significant quantitative differences when using distinct reference regions (Su et al.,
2019). In line with this study, we found that the reference region selection was most
important for longitudinal analysis, as evidenced by the low test-retest reliability for
the noncarriers of fAD mutations (Section 4.3.1).

5.1.1 Regional Aβ quantification

The processing choice that made the most substantial impact on model performance
was the method used for computing Aβ deposition probabilities. As shown in
Chapter 4 the method that yielded the best results was the voxelwise reference
strategy introduced in the original ESM paper (V-ECDF-RR-EVD). The ESM assumes
that network proximity governs regional levels of Aβ, so it follows that regions that
are most proximal to the epicenter regions are expected to have the highest levels
of Aβ. In Figure 4.4 we show that this is the case for the regional Aβ deposition
probabilities and structural connectivity measure used for Model B. Compared with
the other normalization methods we tested, this one is the most aggressive one
with regard to how the null distribution is computed, suggesting that this method
maximizes the signal to noise ratio.

5.1.2 Connectivity measures

Because structural and functional covariance patterns of healthy individuals have
previously been shown to be associated with spatial patterns of AD, we simulated
the spread of Aβ over both structural and functional connectivity matrices. As we
can see in Figure 3.4, the structural connectivity matrix has stronger connections than
the functional connectivity matrix, and are also more strongly correlated with the
regional patterns of Aβ. ESM was able to explain the most variance in aggreggated
Aβ patterns when fit over the structural connectome as opposed to the functional
connectome. To test the hypothesis that Aβ spreads between brain regions that are
spatially most proximal, we used a Euclidean distance matrix and found that the
model was least successful using this measure of connectivity.

It is important to note that we did not exhaustively test every possible combination
of preprocessing steps and measures of connectivity. With PUP we only used co-
registered PET scans as we did not have access to parametric SUVR or DVR scans
and subsequently could not use any of the voxelwise reference strategies to create Aβ
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probabilites. The structural connectivity matrix we used is the same one used in the
original application of the ESM, and the dataset used to create it is comprised of only
60 subjects. We could have additionally tested how the model would have performed
using a structural connectivity matrix created using a much larger dataset such as the
Human Connectome Project (HCP). With regard to functional connectivity, a recent
preprint shed light on how processing of a single task-based fMRI dataset varied
significantly across 70 labs (Botvinik-Nezer et al., 2019). There is no gold standard
for processing rs-fMRI or DTI data, and the necessity of steps such as global signal
regression and thresholding based on some amount of connectivity are contested.
Future work could test how different post-processing steps impact the final functional
connectivity matrix and ESM performance.

5.2 A deeper dive into the cross-sectional ESM results

Even with the best-performing models, Model A and B, we were only able to explain
between 35-44% of the variance in aggregated regional Aβ patterns and on average,
between 17-22% of the within subject patterns. This could be driven by multiple
factors; in addition to the presence of measurement error, the model may not be a
perfect descriptor of the underlying processes spurring the spatiotemporal spread
of Aβ. Connectivity alone cannot perfectly explain the pattern as gene expression
and molecular profiles of regions partly determine whether they will be vulnerable
to Aβ accumulation. Using transcriptomic data from the Allen Brain atlas, Grothe et
al showed that there is significant positive correlation between regional APP gene
expression levels in cognitively normal subjects and those regions that typically
exhibit Aβ accumulation in AD subjects. (Grothe et al., 2018). In a disease such as
AD where two misfolded proteins, Aβ and tau, are at play and interact with one
another, modelling one without taking into account the other may hinder our ability
to fully explain the regional Aβ probabilities. For instance, when the ESM was used
to model the spread of tau in the ADNI dataset, it was found that in regions where
Aβ was present as well, tau probabilities were underestimated (Vogel et al., 2019).
When applied cross-sectionally, the ESM is limited by its use of just one snapshot of a
subject’s disease trajectory to infer what happened prior to that scan. Specifically, it is
argued a major drawback of using cross-sectional data is that it represents end-stage
pathology; however, the DIAN dataset is unique in that it covers a much wider range
of the disease timecourse, from more than 20 years before symptom onset to 20 years
after symptom onset (Oxtoby and Alexander, 2017). Another drawback of cross-
sectional data is that it is noisy, and incorporating group-level information could
mitigate that issue. That being said, there are limitations to solely using group-level
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information to model spatiotemporal changes as doing so requires disregarding the
underlying heterogeneity of AD.

We note that the ESM did reproduce aggreggated regional Aβ patterns with more
accuracy in the ADNI dataset than in the DIAN cohort (46% compared with 35-44%).
One possible explanation is that the phenomena modelled by the ESM is happening
to a larger extent in individuals spanning the AD spectrum for ADNI. However, it
is difficult to definitively conclude that this is true given that the ADNI and DIAN
PET data were also acquired using different radiotracers and were processed using
different pipelines.

Ultimately, our results lend support to the hypothesis that Aβ propagates through
neuronal connections. Keeping the aforementioned limitations in mind, we discuss
the results of our statistical analysis comparing mechanisms driving Aβ propagation
in fAD and sAD.

5.2.1 Seed regions

Although we did not test every region or combination of regions as the set of seed
regions, we primarily were interested in learning if in fAD, neocortical regions can
be used to reproduce the the baseline Aβ deposition pattern with high accuracy. In
ADNI, the posterior cingulate and caudal anterior cingulate yielded the best results;
however, we found that this was not the case for DIAN. The regions that yielded
the highest performance were the medial orbitofrontal cortex, posterior cingulate,
and precuneus. In fact, these regions were found to be the areas of earliest Aβ ac-
cumulation in sAD (Mattsson et al., 2019). Briefly - CSF and PET signal were used
to stage subjects according to Aβ accumulation status, i.e. subjects who were both
CSF and Aβ negative according to a set of data-driven thresholds were deemed to
be nonaccumulators whereas those who were CSF positive but Aβ negative were
deemed to be early Aβ accumulators. Regions pinpointed as areas of earliest accu-
mulation were those that had significantly increased Aβ signal in early accumulators
compared with non-accumulators. According to this system, the precuneus, medial
orbitofrontal cortex, and posterior cingulate were all categorized as regions of early
accumulation whereas the caudal anterior cingulate was pinpointed as an area of
intermediate accumulation.

Because fAD mutation carriers have been repeatedly shown to have high Aβ sig-
nal in subcortical regions, particularly the caudate and putamen, we tested those out
as well. Across all mutation types, we found that the performance was consistently
higher using the aforementioned cortical epicenters, suggesting that while there may
be high signal early on in the striatum, thalamus, and globus pallidus, the eventual
spread of Aβ to other regions of the brain is most likely from the cortical epicenters.
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5.2.2 Interpreting model parameters

It has long been hypothesized that the increased Aβ pathology in AD patients is
caused by an imbalance of Aβ production and clearance - in particular, it has been
assumed that in individuals with fAD mutations, this imbalance is driven by an
over-production of the Aβ peptide. Being able to more definitively characterize
the mechanism(s) via which Aβ pathology accumulates in those afflicted with sAD
vs fAD was made possible with the development of the stable isotope labelling
kinetics technique (SILK) which is a metabolic labeling technique that facilitates the
measurement of real-time Aβ synthesis and clearance rates (Paterson et al., 2019).
This technique has previously elucidated that sAD is characterized by reduced
clearance of the Aβ-42 peptide while the production rate is not significantly different
between controls (n=12) and sporadic AD patients (n=12) (Mawuenyega et al., 2010).
In familial AD mutation carriers, the same team showed that Aβ accumulation is
characterized by both over-production and reduced clearance in 11 mutation carriers
compared with 12 controls (Potter et al., 2013).

In the present study, we use the results of a mathematical model to make infer-
ences about the global processes of clearance and production. As such, within subject
ESM performance dictates how strongly we can trust the model parameters. As
discussed in Section 5.1, the performance of Model B was substantially negatively
impacted by Aβ negativity. Unfortunately, due to the very small number of mutation
carriers who could be classified as having late MCI or severe AD, we were limited
to exploring parameter differences for a binary classification of asymptomatic vs
symptomatic. Both global clearance and production rates were not significantly
different between asymptomatic and symptomatic mutation carriers (Figure 4.5).
Both clearance and production rates were quite low across all mutation carriers, and
the low production rate can be attributed to a "saturation" effect where increasing
sequestering of soluble Aβ agents into insoluble plaques, coupled with reduced
clearance, results in a reduction of Aβ accumulation (Iturria-Medina et al., 2014).

Our results do not conclusively point to either Aβ over-production or under-
clearance being significantly linked with cognitive symptomology or CSF levels of
Aβ. Though a significant modulatory effect is observed for Aβ over-production on
CSF Aβ, tau, and phosphorylated tau levels using ESM parameters gleaned from
Model A, this effect is diluted when we look at only those individuals for whom
the ESM was able to reproduce their regional Aβ patterns (Figure 4.6). The model
parameters computed from the longitudinal application of the ESM suggest that
short-term accumulation of Aβ may be linked to under-clearance, but the lack of
significance of the original structural connectivity matrix undermines the certainty
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with which we can make this assertion.
Ultimately, if we conclude that reduced Aβ clearance causes short-term accumu-

lation of Aβ, the ESM’s reduction of Aβ clearance to a single phenomenon hinders
us from gaining further insight about the exact clearance mechanism(s). Multiple
pathways for Aβ clearance from the brain exist: phagocytosis and endocytosis by
various cell types including microglia, perivascular macrophages, astrocytes, oligen-
drocytes, and neurons; proteolytic degradation by enzymes; transportation across
the BBB (Wang et al., 2017). Furthermore, Aβ exists in the peripheral nervous system
as well, and effective clearance of Aβ from the brain has been linked to its clearance
from the peripheral system in mice (Xiang et al., 2015). Thus, reduced clearance
in AD can be driven by vascular dysregulation, impaired systemic or adaptive im-
munity, inflammation, and other systemic abnormalities. Immune therapy in the
form of auto-antibodies that bind to specific antigens on Aβ aggreggates have been
proposed a possible way to ameliorate reduced clearance in AD patients. Ultimately,
what we are most interested in is whether targetting the reduced clearance of Aβ

will also improve the cognitive symptoms characteristic of AD, and we would be
remiss not to mention the latest news about Aducanumab, an anti-Aβ autoantibody,
which has just been shown to improve CDR and MMSE scores in one cohort of older
individuals with mild cognitive impairment in a phase 3 clinical trial(“EMERGE and
ENGAGE Topline Results: Two Phase 3 Studies to Evaluate Aducanumab in Patients
With Early Alzheimer’s Disease”). While this drug did not demonstrate the same
effects of in a separate replication study, the limited success of Aducanumab lends
support to the hypothesis that Aβ under-clearance is a more important target than
Aβ over-production.

5.3 Utility of the ESM for making out of sample

predictions

In addition to clarifying mechanistic similarities or differences between sAD and
ADAD, in Aim 2 we sought to validate the ESM’s predictive ability. Unfortunately,
when we looked at the performance for the longitudinal ESM fitting across all subjects
and regions, overall model performance was not significant with respect to whether
the actual structural connectivity matrix or randomized connectivity matrices were
used. Given the large degree of similarity between timepoints 1 and 2, it’s possible
that a simpler (more regularized) model would have higher performance. Two
potential solutions to reduce model complexity would be for one joint production
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over clearance ratio to be used and for the size of the connectivity matrix to be
reduced to the more informative regions.

When we used model parameters fit between individuals’ first two scans to
predict the Aβ pattern at the third scan, we encountered the issue of variable rates
of change for a given subject across multiple visits. This prevents the ESM from
generalizing to future Aβ patterns as it expects a consistent rate of change.

5.4 Future work

Improvements to the current work can be made with respect to both the data-driven
modelling and neuroimaging processing methods. To better compare the model
results for ADNI and DIAN datasets, we can either use Florbetapir PET data for
the DIAN dataset and ensure that the PET data of both cohorts are processed with
exactly the same pipeline.

While discussing both the cross-sectional and longitudinal results, we’ve called
for the integration of group-level information to make more stable predictions at
an individual level. As was shown with Garbarino et al’s ACP model (Garbarino,
Lorenzi, and for the Alzheimer’s Disease Neuroimaging Initiative, 2019), machine
learning techniques such as Gaussian processes can be used to merge information
from individuals across the disease time-course to make more informed predictions.
The current implementation of the ACP makes the assumption that disease progres-
sion is homogenous for all individuals, but this can be addressed using unsupervised
learning models that cluster individuals into subtypes. Group-level modelling could
subsequently be done within these different subtypes.

5.5 Conclusion

5.5.1 Aim 1

1. The regional pattern of Aβ in both fAD and sAD is predominantly driven by
white matter connectivity to an epicenter of Aβ accumulation.

2. The large dependence of cross-sectional model performance on data pre-processing
should motivate future studies aimed at assessing the reproducibility of model
performance across this and various other axes traditionally viewed as con-
founds.

3. We were unable to reproduce the significant relationship observed between Aβ

clearance and clinical diagnosis in the ADNI dataset.
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5.5.2 Aim 2

1. Our project is the first to validate ESM longitudinally.

2. The dynamic nature of Aβ progression hinders the ability of model parameters
fit between two timepoints to consistently explain the regional pattern of Aβ

observed at a future timepoint.

3. Future improvements to the ESM and other data-driven models of Aβ pro-
gression should incorporate genetic information about regional vulnerability,
cross-sectional information to capture information along the full disease time-
course, and improved measures of connectivity.



50

Bibliography

Association, Alzheimer’s (2018). “2018 Alzheimer’s Disease Facts and Figures”. In: Alzheimer’s &
Dementia 14.3, pp. 367–429. ISSN: 1552-5260. DOI: https://doi.org/10.1016/j.jalz.2018.02.
001. URL: http://www.sciencedirect.com/science/article/pii/S1552526018300414.

Avants, Brian B. et al. (Dec. 2011). “An Open Source Multivariate Framework for N-Tissue Segmenta-
tion with Evaluation on Public Data”. In: Neuroinformatics 9.4, pp. 381–400. ISSN: 1539-2791, 1559-
0089. DOI: 10.1007/s12021-011-9109-y. URL: http://link.springer.com/10.1007/s12021-
011-9109-y (visited on 11/07/2019).

Bateman, Randall J et al. (2010). “Autosomal-Dominant Alzheimer’s Disease: A Review and Proposal
for the Prevention of Alzheimer’s Disease”. In: Alzheimer’s Research & Therapy 3.1, p. 1. ISSN:
1758-9193. DOI: 10.1186/alzrt59. URL: http://alzres.biomedcentral.com/articles/10.
1186/alzrt59 (visited on 12/16/2019).

Bateman, Randall J. et al. (Aug. 30, 2012). “Clinical and Biomarker Changes in Dominantly Inherited
Alzheimer’s Disease”. In: New England Journal of Medicine 367.9, pp. 795–804. ISSN: 0028-4793,
1533-4406. DOI: 10.1056/NEJMoa1202753. URL: http://www.nejm.org/doi/abs/10.1056/
NEJMoa1202753 (visited on 07/05/2018).

Biogen. “EMERGE and ENGAGE Topline Results: Two Phase 3 Studies to Evaluate Aducanumab
in Patients With Early Alzheimer’s Disease”. URL: https://investors.biogen.com/static-
files/ddd45672-9c7e-4c99-8a06-3b557697c06f.

Botvinik-Nezer, Rotem et al. (Nov. 15, 2019). Variability in the Analysis of a Single Neuroimaging Dataset by
Many Teams. preprint. Neuroscience. DOI: 10.1101/843193. URL: http://biorxiv.org/lookup/
doi/10.1101/843193 (visited on 12/07/2019).

Brundin, Patrik, Ronald Melki, and Ron Kopito (Apr. 2010). “Prion-like Transmission of Protein Aggre-
gates in Neurodegenerative Diseases”. In: Nature Reviews Molecular Cell Biology 11.4, pp. 301–307.
ISSN: 1471-0072, 1471-0080. DOI: 10.1038/nrm2873. URL: http://www.nature.com/articles/
nrm2873 (visited on 11/18/2019).

Buckner, Randy L. et al. (2005). “Molecular, Structural, and Functional Characterization of Alzheimers
Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory”. In:
Journal of Neuroscience 25.34, pp. 7709–7717. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.2177-
05.2005. eprint: https://www.jneurosci.org/content/25/34/7709.full.pdf. URL: https:
//www.jneurosci.org/content/25/34/7709.

Burns, Alistair and Steve Iliffe (Feb. 5, 2009). “Dementia”. In: BMJ 338. ISSN: 0959-8138, 1468-5833. DOI:
10.1136/bmj.b75. pmid: 19196746. URL: https://www.bmj.com/content/338/bmj.b75 (visited
on 11/18/2019).

https://doi.org/https://doi.org/10.1016/j.jalz.2018.02.001
https://doi.org/https://doi.org/10.1016/j.jalz.2018.02.001
http://www.sciencedirect.com/science/article/pii/S1552526018300414
https://doi.org/10.1007/s12021-011-9109-y
http://link.springer.com/10.1007/s12021-011-9109-y
http://link.springer.com/10.1007/s12021-011-9109-y
https://doi.org/10.1186/alzrt59
http://alzres.biomedcentral.com/articles/10.1186/alzrt59
http://alzres.biomedcentral.com/articles/10.1186/alzrt59
https://doi.org/10.1056/NEJMoa1202753
http://www.nejm.org/doi/abs/10.1056/NEJMoa1202753
http://www.nejm.org/doi/abs/10.1056/NEJMoa1202753
https://investors.biogen.com/static-files/ddd45672-9c7e-4c99-8a06-3b557697c06f
https://investors.biogen.com/static-files/ddd45672-9c7e-4c99-8a06-3b557697c06f
https://doi.org/10.1101/843193
http://biorxiv.org/lookup/doi/10.1101/843193
http://biorxiv.org/lookup/doi/10.1101/843193
https://doi.org/10.1038/nrm2873
http://www.nature.com/articles/nrm2873
http://www.nature.com/articles/nrm2873
https://doi.org/10.1523/JNEUROSCI.2177-05.2005
https://doi.org/10.1523/JNEUROSCI.2177-05.2005
https://www.jneurosci.org/content/25/34/7709.full.pdf
https://www.jneurosci.org/content/25/34/7709
https://www.jneurosci.org/content/25/34/7709
https://doi.org/10.1136/bmj.b75
19196746
https://www.bmj.com/content/338/bmj.b75


BIBLIOGRAPHY 51

Castellano, J. M. et al. (June 29, 2011). “Human apoE Isoforms Differentially Regulate Brain Amyloid-
Peptide Clearance”. In: Science Translational Medicine 3.89, 89ra57–89ra57. ISSN: 1946-6234, 1946-
6242. DOI: 10.1126/scitranslmed.3002156. URL: http://stm.sciencemag.org/cgi/doi/10.
1126/scitranslmed.3002156 (visited on 11/25/2019).

Chételat, Gaël et al. (2013). “Amyloid Imaging in Cognitively Normal Individuals, at-Risk Populations
and Preclinical Alzheimer’s Disease”. In: NeuroImage. Clinical 2, pp. 356–365. ISSN: 2213-1582. DOI:
10.1016/j.nicl.2013.02.006. pmid: 24179789.

Cohen, Ann D. et al. (June 2018). “Early Striatal Amyloid Deposition Distinguishes Down Syn-
drome and Autosomal Dominant Alzheimer’s Disease from Late-Onset Amyloid Deposition”.
In: Alzheimer’s & Dementia 14.6, pp. 743–750. ISSN: 15525260. DOI: 10.1016/j.jalz.2018.01.002.
URL: http://doi.wiley.com/10.1016/j.jalz.2018.01.002 (visited on 03/22/2020).

Collins, D. L. et al. (1994 Mar-Apr). “Automatic 3D Intersubject Registration of MR Volumetric Data in
Standardized Talairach Space”. In: Journal of Computer Assisted Tomography 18.2, pp. 192–205. ISSN:
0363-8715. pmid: 8126267.

Desikan, Rahul S. et al. (July 2006). “An Automated Labeling System for Subdividing the Human
Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest”. In: NeuroImage 31.3, pp. 968–
980. ISSN: 10538119. DOI: 10.1016/j.neuroimage.2006.01.021. URL: https://linkinghub.
elsevier.com/retrieve/pii/S1053811906000437 (visited on 10/31/2019).

Eisele, Yvonne S. et al. (2009). “Induction of Cerebral B-Amyloidosis: Intracerebral versus Systemic
AB Inoculation”. In: Proceedings of the National Academy of Sciences 106.31, pp. 12926–12931. ISSN:
0027-8424. DOI: 10.1073/pnas.0903200106. eprint: https://www.pnas.org/content/106/31/
12926.full.pdf. URL: https://www.pnas.org/content/106/31/12926.

Eskildsen, Simon F. et al. (Feb. 2012). “BEaST: Brain Extraction Based on Nonlocal Segmentation
Technique”. In: NeuroImage 59.3, pp. 2362–2373. ISSN: 10538119. DOI: 10.1016/j.neuroimage.
2011.09.012. URL: https://linkinghub.elsevier.com/retrieve/pii/S1053811911010573
(visited on 11/07/2019).

Esteban, Oscar et al. (Sept. 2017). “MRIQC: Advancing the Automatic Prediction of Image Quality
in MRI from Unseen Sites”. In: PLOS ONE 12.9, pp. 1–21. DOI: 10.1371/journal.pone.0184661.
URL: https://doi.org/10.1371/journal.pone.0184661.

Esteban, Oscar et al. (Jan. 2019). “fMRIPrep: A Robust Preprocessing Pipeline for Functional MRI”. In:
Nature Methods 16.1, pp. 111–116. ISSN: 1548-7091, 1548-7105. DOI: 10.1038/s41592-018-0235-4.
URL: http://www.nature.com/articles/s41592-018-0235-4 (visited on 11/08/2019).

Fagan, A. M. et al. (Mar. 5, 2014). “Longitudinal Change in CSF Biomarkers in Autosomal-Dominant
Alzheimer’s Disease”. In: Science Translational Medicine 6.226, 226ra30–226ra30. ISSN: 1946-6234,
1946-6242. DOI: 10.1126/scitranslmed.3007901. URL: http://stm.sciencemag.org/cgi/doi/
10.1126/scitranslmed.3007901 (visited on 07/05/2018).

Fagan, Anne M. et al. (Apr. 2002). “Human and Murine ApoE Markedly Alters AB Metabolism before
and after Plaque Formation in a Mouse Model of Alzheimer’s Disease”. In: Neurobiology of Disease
9.3, pp. 305–318. ISSN: 09699961. DOI: 10.1006/nbdi.2002.0483. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0969996102904833 (visited on 11/25/2019).

Frost, Bess and Marc I. Diamond (Mar. 2010). “Prion-like Mechanisms in Neurodegenerative Diseases”.
In: Nature Reviews Neuroscience 11.3, pp. 155–159. ISSN: 1471-003X, 1471-0048. DOI: 10.1038/
nrn2786. URL: http://www.nature.com/articles/nrn2786 (visited on 11/18/2019).

Frost, Bess, Rachel L. Jacks, and Marc I. Diamond (May 8, 2009). “Propagation of Tau Misfolding from
the Outside to the Inside of a Cell”. In: Journal of Biological Chemistry 284.19, pp. 12845–12852. ISSN:

https://doi.org/10.1126/scitranslmed.3002156
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3002156
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3002156
https://doi.org/10.1016/j.nicl.2013.02.006
24179789
https://doi.org/10.1016/j.jalz.2018.01.002
http://doi.wiley.com/10.1016/j.jalz.2018.01.002
8126267
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://linkinghub.elsevier.com/retrieve/pii/S1053811906000437
https://linkinghub.elsevier.com/retrieve/pii/S1053811906000437
https://doi.org/10.1073/pnas.0903200106
https://www.pnas.org/content/106/31/12926.full.pdf
https://www.pnas.org/content/106/31/12926.full.pdf
https://www.pnas.org/content/106/31/12926
https://doi.org/10.1016/j.neuroimage.2011.09.012
https://doi.org/10.1016/j.neuroimage.2011.09.012
https://linkinghub.elsevier.com/retrieve/pii/S1053811911010573
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1038/s41592-018-0235-4
http://www.nature.com/articles/s41592-018-0235-4
https://doi.org/10.1126/scitranslmed.3007901
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3007901
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3007901
https://doi.org/10.1006/nbdi.2002.0483
https://linkinghub.elsevier.com/retrieve/pii/S0969996102904833
https://linkinghub.elsevier.com/retrieve/pii/S0969996102904833
https://doi.org/10.1038/nrn2786
https://doi.org/10.1038/nrn2786
http://www.nature.com/articles/nrn2786


BIBLIOGRAPHY 52

0021-9258, 1083-351X. DOI: 10.1074/jbc.M808759200. URL: http://www.jbc.org/lookup/doi/
10.1074/jbc.M808759200 (visited on 11/25/2019).

Fujiwara, Ken et al. (May 1, 2016). “Which Parametric Images of PiB-PET Shows Superior Perfor-
mance? : A Comparative Study among SUVR and DVR Images.” In: Journal of Nuclear Medicine 57
(supplement 2), pp. 2633–2633. URL: http://jnm.snmjournals.org/content/57/supplement_
2/2633.abstract.

Funck, Thomas et al. (Sept. 26, 2018). “APPIAN: Automated Pipeline for PET Image Analysis”. In:
Frontiers in Neuroinformatics 12, p. 64. ISSN: 1662-5196. DOI: 10.3389/fninf.2018.00064. URL:
https://www.frontiersin.org/article/10.3389/fninf.2018.00064/full (visited on
11/07/2019).

Garbarino, Sara, Marco Lorenzi, and for the Alzheimer’s Disease Neuroimaging Initiative (2019).
“Modeling and Inference of Spatio-Temporal Protein Dynamics Across Brain Networks”. In:
Information Processing in Medical Imaging. Ed. by Albert C. S. Chung et al. Vol. 11492. Cham:
Springer International Publishing, pp. 57–69. ISBN: 978-3-030-20350-4 978-3-030-20351-1. DOI:
10.1007/978-3-030-20351-1_5. URL: http://link.springer.com/10.1007/978-3-030-
20351-1_5 (visited on 11/19/2019).

Gordon, Brian A et al. (Mar. 2018). “Spatial Patterns of Neuroimaging Biomarker Change in Individuals
from Families with Autosomal Dominant Alzheimer’s Disease: A Longitudinal Study”. In: The
Lancet Neurology 17.3, pp. 241–250. ISSN: 14744422. DOI: 10.1016/S1474- 4422(18)30028- 0.
URL: https://linkinghub.elsevier.com/retrieve/pii/S1474442218300280 (visited on
10/25/2019).

Greicius, Michael D. et al. (2004). “Default-Mode Network Activity Distinguishes Alzheimers Disease
from Healthy Aging: Evidence from Functional MRI”. In: Proceedings of the National Academy of
Sciences 101.13, pp. 4637–4642. ISSN: 0027-8424. DOI: 10.1073/pnas.0308627101. eprint: https:
//www.pnas.org/content/101/13/4637.full.pdf. URL: https://www.pnas.org/content/
101/13/4637.

Grothe, Michel J. et al. (Nov. 14, 2017). “In Vivo Staging of Regional Amyloid Deposition”. In: Neu-
rology 89.20, pp. 2031–2038. ISSN: 0028-3878, 1526-632X. DOI: 10.1212/WNL.0000000000004643.
URL: http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000004643 (visited on
11/10/2019).

Grothe, Michel J et al. (July 16, 2018). “Molecular Properties Underlying Regional Vulnerability to
Alzheimer’s Disease Pathology”. In: Brain. ISSN: 0006-8950, 1460-2156. DOI: 10.1093/brain/
awy189. URL: https://academic.oup.com/brain/advance-article/doi/10.1093/brain/
awy189/5054650 (visited on 12/06/2019).

Haass, C. et al. (May 1, 2012). “Trafficking and Proteolytic Processing of APP”. In: Cold Spring Har-
bor Perspectives in Medicine 2.5, a006270–a006270. ISSN: 2157-1422. DOI: 10.1101/cshperspect.
a006270. URL: http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.
a006270 (visited on 11/22/2019).

Haass, Christian (Feb. 11, 2004). “Take Five—BACE and the Gamma-Secretase Quartet Conduct
Alzheimer’s Amyloid B-Peptide Generation”. In: The EMBO Journal 23.3, pp. 483–488. ISSN: 0261-
4189, 1460-2075. DOI: 10.1038/sj.emboj.7600061. URL: http://emboj.embopress.org/cgi/
doi/10.1038/sj.emboj.7600061 (visited on 11/22/2019).

Hallbeck, Martin, Sangeeta Nath, and Jan Marcusson (Dec. 2013). “Neuron-to-Neuron Transmission
of Neurodegenerative Pathology”. In: The Neuroscientist 19.6, pp. 560–566. ISSN: 1073-8584, 1089-
4098. DOI: 10.1177/1073858413494270. URL: http://journals.sagepub.com/doi/10.1177/
1073858413494270 (visited on 11/18/2019).

https://doi.org/10.1074/jbc.M808759200
http://www.jbc.org/lookup/doi/10.1074/jbc.M808759200
http://www.jbc.org/lookup/doi/10.1074/jbc.M808759200
http://jnm.snmjournals.org/content/57/supplement_2/2633.abstract
http://jnm.snmjournals.org/content/57/supplement_2/2633.abstract
https://doi.org/10.3389/fninf.2018.00064
https://www.frontiersin.org/article/10.3389/fninf.2018.00064/full
https://doi.org/10.1007/978-3-030-20351-1_5
http://link.springer.com/10.1007/978-3-030-20351-1_5
http://link.springer.com/10.1007/978-3-030-20351-1_5
https://doi.org/10.1016/S1474-4422(18)30028-0
https://linkinghub.elsevier.com/retrieve/pii/S1474442218300280
https://doi.org/10.1073/pnas.0308627101
https://www.pnas.org/content/101/13/4637.full.pdf
https://www.pnas.org/content/101/13/4637.full.pdf
https://www.pnas.org/content/101/13/4637
https://www.pnas.org/content/101/13/4637
https://doi.org/10.1212/WNL.0000000000004643
http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000004643
https://doi.org/10.1093/brain/awy189
https://doi.org/10.1093/brain/awy189
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awy189/5054650
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awy189/5054650
https://doi.org/10.1101/cshperspect.a006270
https://doi.org/10.1101/cshperspect.a006270
http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a006270
http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a006270
https://doi.org/10.1038/sj.emboj.7600061
http://emboj.embopress.org/cgi/doi/10.1038/sj.emboj.7600061
http://emboj.embopress.org/cgi/doi/10.1038/sj.emboj.7600061
https://doi.org/10.1177/1073858413494270
http://journals.sagepub.com/doi/10.1177/1073858413494270
http://journals.sagepub.com/doi/10.1177/1073858413494270


BIBLIOGRAPHY 53

Hardy, J. (July 19, 2002). “The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems
on the Road to Therapeutics”. In: Science 297.5580, pp. 353–356. ISSN: 00368075, 10959203. DOI:
10.1126/science.1072994. URL: http://www.sciencemag.org/cgi/doi/10.1126/science.
1072994 (visited on 11/21/2019).

Hsia, A. Y. et al. (Mar. 16, 1999). “Plaque-Independent Disruption of Neural Circuits in Alzheimer’s
Disease Mouse Models”. In: Proceedings of the National Academy of Sciences 96.6, pp. 3228–3233.
ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.96.6.3228. URL: http://www.pnas.org/cgi/
doi/10.1073/pnas.96.6.3228 (visited on 11/18/2019).

Hudry, E. et al. (Nov. 20, 2013). “Gene Transfer of Human Apoe Isoforms Results in Differential
Modulation of Amyloid Deposition and Neurotoxicity in Mouse Brain”. In: Science Translational
Medicine 5.212, 212ra161–212ra161. ISSN: 1946-6234, 1946-6242. DOI: 10.1126/scitranslmed.
3007000. URL: http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3007000
(visited on 11/25/2019).

Iadecola, Costantino (May 2004). “Neurovascular Regulation in the Normal Brain and in Alzheimer’s
Disease”. In: Nature Reviews Neuroscience 5.5, pp. 347–360. ISSN: 1471-003X, 1471-0048. DOI: 10.
1038/nrn1387. URL: http://www.nature.com/articles/nrn1387 (visited on 12/16/2019).

Iadecola, Costantino (Nov. 2013). “The Pathobiology of Vascular Dementia”. In: Neuron 80.4, pp. 844–
866. ISSN: 08966273. DOI: 10 . 1016 / j . neuron . 2013 . 10 . 008. URL: https : / / linkinghub .
elsevier.com/retrieve/pii/S0896627313009112 (visited on 12/16/2019).

Ikari, Yasuhiko et al. (May 1, 2011). “Head Motion Evaluation and Correction for PET Scans with 18F-
FDG in the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) Multi-Center Study”.
In: Journal of Nuclear Medicine 52 (supplement 1), pp. 2091–2091. URL: http://jnm.snmjournals.
org/content/52/supplement_1/2091.abstract.

Iturria-Medina, Y. et al. (July 2007). “Characterizing Brain Anatomical Connections Using Diffusion
Weighted MRI and Graph Theory”. In: NeuroImage 36.3, pp. 645–660. ISSN: 10538119. DOI: 10.
1016/j.neuroimage.2007.02.012. URL: https://linkinghub.elsevier.com/retrieve/pii/
S105381190700105X (visited on 11/01/2019).

Iturria-Medina, Y. et al. (June 21, 2016). “Early Role of Vascular Dysregulation on Late-Onset Alzheimer’s
Disease Based on Multifactorial Data-Driven Analysis”. In: Nature Communications 7, p. 11934.
ISSN: 2041-1723. DOI: 10.1038/ncomms11934. URL: http://www.nature.com/doifinder/10.
1038/ncomms11934 (visited on 07/05/2018).

Iturria-Medina, Yasser, Félix M. Carbonell, and Alan C. Evans (Oct. 2018). “Multimodal Imaging-Based
Therapeutic Fingerprints for Optimizing Personalized Interventions: Application to Neurodegen-
eration”. In: NeuroImage 179, pp. 40–50. ISSN: 10538119. DOI: 10.1016/j.neuroimage.2018.06.
028. URL: https://linkinghub.elsevier.com/retrieve/pii/S1053811918305354 (visited on
07/05/2018).

Iturria-Medina, Yasser et al. (Nov. 20, 2014). “Epidemic Spreading Model to Characterize Misfolded
Proteins Propagation in Aging and Associated Neurodegenerative Disorders”. In: PLoS Computa-
tional Biology 10.11. Ed. by Olaf Sporns, e1003956. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.
1003956. URL: http://dx.plos.org/10.1371/journal.pcbi.1003956 (visited on 07/05/2018).

Iturria-Medina, Yasser et al. (May 2017). “Multifactorial Causal Model of Brain (Dis)Organization and
Therapeutic Intervention: Application to Alzheimer’s Disease”. In: NeuroImage 152, pp. 60–77. ISSN:
10538119. DOI: 10.1016/j.neuroimage.2017.02.058. URL: https://linkinghub.elsevier.
com/retrieve/pii/S1053811917301684 (visited on 12/07/2019).

Jucker, Mathias and Lary C. Walker (Sept. 2013). “Self-Propagation of Pathogenic Protein Aggregates
in Neurodegenerative Diseases”. In: Nature 501.7465, pp. 45–51. ISSN: 0028-0836, 1476-4687. DOI:

https://doi.org/10.1126/science.1072994
http://www.sciencemag.org/cgi/doi/10.1126/science.1072994
http://www.sciencemag.org/cgi/doi/10.1126/science.1072994
https://doi.org/10.1073/pnas.96.6.3228
http://www.pnas.org/cgi/doi/10.1073/pnas.96.6.3228
http://www.pnas.org/cgi/doi/10.1073/pnas.96.6.3228
https://doi.org/10.1126/scitranslmed.3007000
https://doi.org/10.1126/scitranslmed.3007000
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3007000
https://doi.org/10.1038/nrn1387
https://doi.org/10.1038/nrn1387
http://www.nature.com/articles/nrn1387
https://doi.org/10.1016/j.neuron.2013.10.008
https://linkinghub.elsevier.com/retrieve/pii/S0896627313009112
https://linkinghub.elsevier.com/retrieve/pii/S0896627313009112
http://jnm.snmjournals.org/content/52/supplement_1/2091.abstract
http://jnm.snmjournals.org/content/52/supplement_1/2091.abstract
https://doi.org/10.1016/j.neuroimage.2007.02.012
https://doi.org/10.1016/j.neuroimage.2007.02.012
https://linkinghub.elsevier.com/retrieve/pii/S105381190700105X
https://linkinghub.elsevier.com/retrieve/pii/S105381190700105X
https://doi.org/10.1038/ncomms11934
http://www.nature.com/doifinder/10.1038/ncomms11934
http://www.nature.com/doifinder/10.1038/ncomms11934
https://doi.org/10.1016/j.neuroimage.2018.06.028
https://doi.org/10.1016/j.neuroimage.2018.06.028
https://linkinghub.elsevier.com/retrieve/pii/S1053811918305354
https://doi.org/10.1371/journal.pcbi.1003956
https://doi.org/10.1371/journal.pcbi.1003956
http://dx.plos.org/10.1371/journal.pcbi.1003956
https://doi.org/10.1016/j.neuroimage.2017.02.058
https://linkinghub.elsevier.com/retrieve/pii/S1053811917301684
https://linkinghub.elsevier.com/retrieve/pii/S1053811917301684


BIBLIOGRAPHY 54

10.1038/nature12481. URL: http://www.nature.com/articles/nature12481 (visited on
11/18/2019).

K., Karmen (Dec. 18, 2013). “Basic PET Data Analysis Techniques”. In: Positron Emission Tomography
- Recent Developments in Instrumentation, Research and Clinical Oncological Practice. Ed. by Sandro
Misciagna. InTech. ISBN: 978-953-51-1213-6. DOI: 10.5772/57126. URL: http://www.intechopen.
com/books/positron-emission-tomography-recent-developments-in-instrumentation-
research-and-clinical-oncological-practice/basic-pet-data-analysis-techniques
(visited on 12/13/2019).

Kane, Michael D. et al. (2000). “Evidence for Seeding of B-Amyloid by Intracerebral Infusion of
Alzheimer Brain Extracts in B-Amyloid Precursor Protein-Transgenic Mice”. In: Journal of Neu-
roscience 20.10, pp. 3606–3611. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.20-10-03606.2000.
eprint: https://www.jneurosci.org/content/20/10/3606.full.pdf. URL: https://www.
jneurosci.org/content/20/10/3606.

Karran, Eric, Marc Mercken, and Bart De Strooper (Sept. 2011). “The Amyloid Cascade Hypothesis
for Alzheimer’s Disease: An Appraisal for the Development of Therapeutics”. In: Nature Reviews
Drug Discovery 10.9, pp. 698–712. ISSN: 1474-1776, 1474-1784. DOI: 10.1038/nrd3505. URL: http:
//www.nature.com/articles/nrd3505 (visited on 12/16/2019).

Klein, Arno and Jason Tourville (2012). “101 Labeled Brain Images and a Consistent Human Cortical
Labeling Protocol”. In: Frontiers in Neuroscience 6. ISSN: 1662-4548. DOI: 10.3389/fnins.2012.
00171. URL: http://journal.frontiersin.org/article/10.3389/fnins.2012.00171/
abstract (visited on 10/31/2019).

Klein, William L. (Dec. 27, 2012). “Synaptotoxic Amyloid-B Oligomers: A Molecular Basis for the
Cause, Diagnosis, and Treatment of Alzheimer’s Disease?” In: Journal of Alzheimer’s Disease 33.s1.
Ed. by George Perry et al., S49–S65. ISSN: 18758908, 13872877. DOI: 10.3233/JAD-2012-129039.
URL: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-
2012-129039 (visited on 12/13/2019).

Knopman, D. S. et al. (Nov. 2003). “Neuropathology of Cognitively Normal Elderly”. In: Journal of
Neuropathology and Experimental Neurology 62.11, pp. 1087–1095. ISSN: 0022-3069. DOI: 10.1093/
jnen/62.11.1087. pmid: 14656067.

Landau, S. M. et al. (July 2014). “Amyloid PET Imaging in Alzheimer’s Disease: A Comparison of Three
Radiotracers”. In: European Journal of Nuclear Medicine and Molecular Imaging 41.7, pp. 1398–1407.
ISSN: 1619-7070, 1619-7089. DOI: 10.1007/s00259-014-2753-3. URL: http://link.springer.
com/10.1007/s00259-014-2753-3 (visited on 12/16/2019).

Logan, J. et al. (Sept. 1990). “Graphical Analysis of Reversible Radioligand Binding from Time-Activity
Measurements Applied to [N-11C-Methyl]-(-)-Cocaine PET Studies in Human Subjects”. In: Journal
of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood
Flow and Metabolism 10.5, pp. 740–747. ISSN: 0271-678X. DOI: 10.1038/jcbfm.1990.127. pmid:
2384545.

Lopresti, Brian J. et al. (Dec. 1, 2005). “Simplified Quantification of Pittsburgh Compound B Amyloid
Imaging PET Studies: A Comparative Analysis”. In: Journal of Nuclear Medicine 46.12, pp. 1959–
1972. URL: http://jnm.snmjournals.org/content/46/12/1959.abstract.

Mathis, Chester A., Brian J. Lopresti, and William E. Klunk (Oct. 2007). “Impact of Amyloid Imaging
on Drug Development in Alzheimer’s Disease”. In: Nuclear Medicine and Biology 34.7, pp. 809–822.
ISSN: 09698051. DOI: 10.1016/j.nucmedbio.2007.06.015. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0969805107001771 (visited on 12/16/2019).

https://doi.org/10.1038/nature12481
http://www.nature.com/articles/nature12481
https://doi.org/10.5772/57126
http://www.intechopen.com/books/positron-emission-tomography-recent-developments-in-instrumentation-research-and-clinical-oncological-practice/basic-pet-data-analysis-techniques
http://www.intechopen.com/books/positron-emission-tomography-recent-developments-in-instrumentation-research-and-clinical-oncological-practice/basic-pet-data-analysis-techniques
http://www.intechopen.com/books/positron-emission-tomography-recent-developments-in-instrumentation-research-and-clinical-oncological-practice/basic-pet-data-analysis-techniques
https://doi.org/10.1523/JNEUROSCI.20-10-03606.2000
https://www.jneurosci.org/content/20/10/3606.full.pdf
https://www.jneurosci.org/content/20/10/3606
https://www.jneurosci.org/content/20/10/3606
https://doi.org/10.1038/nrd3505
http://www.nature.com/articles/nrd3505
http://www.nature.com/articles/nrd3505
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.3389/fnins.2012.00171
http://journal.frontiersin.org/article/10.3389/fnins.2012.00171/abstract
http://journal.frontiersin.org/article/10.3389/fnins.2012.00171/abstract
https://doi.org/10.3233/JAD-2012-129039
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2012-129039
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2012-129039
https://doi.org/10.1093/jnen/62.11.1087
https://doi.org/10.1093/jnen/62.11.1087
14656067
https://doi.org/10.1007/s00259-014-2753-3
http://link.springer.com/10.1007/s00259-014-2753-3
http://link.springer.com/10.1007/s00259-014-2753-3
https://doi.org/10.1038/jcbfm.1990.127
2384545
http://jnm.snmjournals.org/content/46/12/1959.abstract
https://doi.org/10.1016/j.nucmedbio.2007.06.015
https://linkinghub.elsevier.com/retrieve/pii/S0969805107001771
https://linkinghub.elsevier.com/retrieve/pii/S0969805107001771


BIBLIOGRAPHY 55

Mattsson, Niklas et al. (July 17, 2019). “Staging B-Amyloid Pathology With Amyloid Positron Emission
Tomography”. In: JAMA Neurology. ISSN: 2168-6149. DOI: 10.1001/jamaneurol.2019.2214. URL:
http://archneur.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2019.2214
(visited on 10/25/2019).

Mawuenyega, K. G. et al. (Dec. 24, 2010). “Decreased Clearance of CNS -Amyloid in Alzheimer’s
Disease”. In: Science 330.6012, pp. 1774–1774. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.
1197623. URL: http://www.sciencemag.org/cgi/doi/10.1126/science.1197623 (visited on
12/08/2019).

Mazziotta, J et al. (Aug. 29, 2001). “A Probabilistic Atlas and Reference System for the Human Brain:
International Consortium for Brain Mapping (ICBM).” In: Philosophical Transactions of the Royal
Society of London. Series B 356.1412, pp. 1293–1322. ISSN: 0962-8436. DOI: 10.1098/rstb.2001.0915.
pmid: 11545704. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088516/ (visited
on 11/07/2019).

McKhann, Guy M. et al. (2011). “The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommen-
dations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic
Guidelines for Alzheimer’s Disease”. In: Alzheimer’s & Dementia 7.3, pp. 263–269. ISSN: 1552-5260.
DOI: https://doi.org/10.1016/j.jalz.2011.03.005. URL: http://www.sciencedirect.com/
science/article/pii/S1552526011001014.

Meltzer, C. C. et al. (July 1990). “Correction of PET Data for Partial Volume Effects in Human Cerebral
Cortex by MR Imaging”. In: Journal of Computer Assisted Tomography 14.4, pp. 561–570. ISSN:
0363-8715. DOI: 10.1097/00004728-199007000-00011. pmid: 2370355.

Meyer-Luehmann, Melanie et al. (2006). “Exogenous Induction of Cerebral B-Amyloidogenesis Is
Governed by Agent and Host”. In: Science 313.5794, pp. 1781–1784. ISSN: 0036-8075. DOI: 10.1126/
science.1131864. eprint: https://science.sciencemag.org/content/313/5794/1781.full.
pdf. URL: https://science.sciencemag.org/content/313/5794/1781.

Morris, John C. et al. (Jan. 2010). “APOE Predicts Amyloid-Beta but Not Tau Alzheimer Pathology in
Cognitively Normal Aging”. In: Annals of Neurology 67.1, pp. 122–131. ISSN: 03645134, 15318249.
DOI: 10.1002/ana.21843. URL: http://doi.wiley.com/10.1002/ana.21843 (visited on
11/25/2019).

Mucke, Lennart et al. (2000). “High-Level Neuronal Expression of aB1–42 in Wild-Type Human
Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation”. In:
Journal of Neuroscience 20.11, pp. 4050–4058. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.20-11-
04050.2000. eprint: https://www.jneurosci.org/content/20/11/4050.full.pdf. URL:
https://www.jneurosci.org/content/20/11/4050.

Musiek, Erik S and David M Holtzman (June 2015). “Three Dimensions of the Amyloid Hypothesis:
Time, Space and ’Wingmen’”. In: Nature Neuroscience 18.6, pp. 800–806. ISSN: 1097-6256, 1546-
1726. DOI: 10.1038/nn.4018. URL: http://www.nature.com/articles/nn.4018 (visited on
11/25/2019).

Nath, S. et al. (June 27, 2012). “Spreading of Neurodegenerative Pathology via Neuron-to-Neuron
Transmission of -Amyloid”. In: Journal of Neuroscience 32.26, pp. 8767–8777. ISSN: 0270-6474, 1529-
2401. DOI: 10.1523/JNEUROSCI.0615-12.2012. URL: http://www.jneurosci.org/cgi/doi/10.
1523/JNEUROSCI.0615-12.2012 (visited on 11/18/2019).

Oxtoby, Neil P. and Daniel C. Alexander (Aug. 2017). “Imaging plus X: Multimodal Models of
Neurodegenerative Disease”. In: Current Opinion in Neurology 30.4, pp. 371–379. ISSN: 1350-7540.
DOI: 10.1097/WCO.0000000000000460. URL: http://Insights.ovid.com/crossref?an=
00019052-201708000-00002 (visited on 12/07/2019).

https://doi.org/10.1001/jamaneurol.2019.2214
http://archneur.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2019.2214
https://doi.org/10.1126/science.1197623
https://doi.org/10.1126/science.1197623
http://www.sciencemag.org/cgi/doi/10.1126/science.1197623
https://doi.org/10.1098/rstb.2001.0915
11545704
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088516/
https://doi.org/https://doi.org/10.1016/j.jalz.2011.03.005
http://www.sciencedirect.com/science/article/pii/S1552526011001014
http://www.sciencedirect.com/science/article/pii/S1552526011001014
https://doi.org/10.1097/00004728-199007000-00011
2370355
https://doi.org/10.1126/science.1131864
https://doi.org/10.1126/science.1131864
https://science.sciencemag.org/content/313/5794/1781.full.pdf
https://science.sciencemag.org/content/313/5794/1781.full.pdf
https://science.sciencemag.org/content/313/5794/1781
https://doi.org/10.1002/ana.21843
http://doi.wiley.com/10.1002/ana.21843
https://doi.org/10.1523/JNEUROSCI.20-11-04050.2000
https://doi.org/10.1523/JNEUROSCI.20-11-04050.2000
https://www.jneurosci.org/content/20/11/4050.full.pdf
https://www.jneurosci.org/content/20/11/4050
https://doi.org/10.1038/nn.4018
http://www.nature.com/articles/nn.4018
https://doi.org/10.1523/JNEUROSCI.0615-12.2012
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0615-12.2012
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0615-12.2012
https://doi.org/10.1097/WCO.0000000000000460
http://Insights.ovid.com/crossref?an=00019052-201708000-00002
http://Insights.ovid.com/crossref?an=00019052-201708000-00002


BIBLIOGRAPHY 56

Oxtoby, Neil P et al. (May 1, 2018). “Data-Driven Models of Dominantly-Inherited Alzheimer’s Disease
Progression”. In: Brain 141.5, pp. 1529–1544. ISSN: 0006-8950, 1460-2156. DOI: 10.1093/brain/
awy050. URL: https://academic.oup.com/brain/article/141/5/1529/4951528 (visited on
07/05/2018).

Palmqvist, Sebastian et al. (Dec. 2017). “Earliest Accumulation of B-Amyloid Occurs within the
Default-Mode Network and Concurrently Affects Brain Connectivity”. In: Nature Communications
8.1, p. 1214. ISSN: 2041-1723. DOI: 10.1038/s41467-017-01150-x. URL: http://www.nature.
com/articles/s41467-017-01150-x (visited on 12/13/2019).

Palop, Jorge J., Jeannie Chin, and Lennart Mucke (Oct. 2006). “A Network Dysfunction Perspective
on Neurodegenerative Diseases”. In: Nature 443.7113, pp. 768–773. ISSN: 0028-0836, 1476-4687.
DOI: 10.1038/nature05289. URL: http://www.nature.com/articles/nature05289 (visited on
11/19/2019).

Paterson, Ross W. et al. (July 2019). “SILK Studies — Capturing the Turnover of Proteins Linked to
Neurodegenerative Diseases”. In: Nature Reviews Neurology 15.7, pp. 419–427. ISSN: 1759-4758, 1759-
4766. DOI: 10.1038/s41582-019-0222-0. URL: http://www.nature.com/articles/s41582-
019-0222-0 (visited on 12/08/2019).

Pooley, Robert A. (July 2005). “Fundamental Physics of MR Imaging”. In: RadioGraphics 25.4, pp. 1087–
1099. ISSN: 0271-5333, 1527-1323. DOI: 10.1148/rg.254055027. URL: http://pubs.rsna.org/
doi/10.1148/rg.254055027 (visited on 12/16/2019).

Potter, R. et al. (June 12, 2013). “Increased in Vivo Amyloid- 42 Production, Exchange, and Loss
in Presenilin Mutation Carriers”. In: Science Translational Medicine 5.189, 189ra77–189ra77. ISSN:
1946-6234, 1946-6242. DOI: 10.1126/scitranslmed.3005615. URL: http://stm.sciencemag.
org/cgi/doi/10.1126/scitranslmed.3005615 (visited on 12/08/2019).

Price, J. L. and J. C. Morris (Mar. 1999). “Tangles and Plaques in Nondemented Aging and "Preclinical"
Alzheimer’s Disease”. In: Annals of Neurology 45.3, pp. 358–368. ISSN: 0364-5134. DOI: 10.1002/
1531-8249(199903)45:3<358::aid-ana12>3.0.co;2-x. pmid: 10072051.

Raj, Ashish, Amy Kuceyeski, and Michael Weiner (2012). “A Network Diffusion Model of Disease
Progression in Dementia”. In: Neuron 73.6, pp. 1204–1215. ISSN: 0896-6273. DOI: https://doi.org/
10.1016/j.neuron.2011.12.040. URL: http://www.sciencedirect.com/science/article/
pii/S0896627312001353.

Raj, Ashish et al. (Jan. 2015). “Network Diffusion Model of Progression Predicts Longitudinal Patterns
of Atrophy and Metabolism in Alzheimer’s Disease”. In: Cell Reports 10, pp. 359–369. DOI: 10.
1016/j.celrep.2014.12.034. URL: http://linkinghub.elsevier.com/retrieve/pii/
S2211124714010638 (visited on 07/05/2018).

Readnower, Ryan D., Andrew D. Sauerbeck, and Patrick G. Sullivan (2011). “Mitochondria, Amyloid
B, and Alzheimer’s Disease”. In: International Journal of Alzheimer’s Disease 2011, pp. 1–5. ISSN:
2090-0252. DOI: 10.4061/2011/104545. URL: http://www.hindawi.com/journals/ijad/2011/
104545/ (visited on 12/15/2019).

Ries, Miriam and Magdalena Sastre (July 5, 2016). “Mechanisms of AB Clearance and Degradation
by Glial Cells”. In: Frontiers in Aging Neuroscience 8. ISSN: 1663-4365. DOI: 10.3389/fnagi.2016.
00160. URL: http://journal.frontiersin.org/Article/10.3389/fnagi.2016.00160/
abstract (visited on 11/20/2019).

Rius-Pérez, S. et al. (2018). “Vascular Pathology: Cause or Effect in Alzheimer Disease?” In: Neu-
rología (English Edition) 33.2, pp. 112–120. ISSN: 2173-5808. DOI: https://doi.org/10.1016/
j.nrleng.2015.07.008. URL: http://www.sciencedirect.com/science/article/pii/
S2173580816301298.

https://doi.org/10.1093/brain/awy050
https://doi.org/10.1093/brain/awy050
https://academic.oup.com/brain/article/141/5/1529/4951528
https://doi.org/10.1038/s41467-017-01150-x
http://www.nature.com/articles/s41467-017-01150-x
http://www.nature.com/articles/s41467-017-01150-x
https://doi.org/10.1038/nature05289
http://www.nature.com/articles/nature05289
https://doi.org/10.1038/s41582-019-0222-0
http://www.nature.com/articles/s41582-019-0222-0
http://www.nature.com/articles/s41582-019-0222-0
https://doi.org/10.1148/rg.254055027
http://pubs.rsna.org/doi/10.1148/rg.254055027
http://pubs.rsna.org/doi/10.1148/rg.254055027
https://doi.org/10.1126/scitranslmed.3005615
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3005615
http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3005615
https://doi.org/10.1002/1531-8249(199903)45:3<358::aid-ana12>3.0.co;2-x
https://doi.org/10.1002/1531-8249(199903)45:3<358::aid-ana12>3.0.co;2-x
10072051
https://doi.org/https://doi.org/10.1016/j.neuron.2011.12.040
https://doi.org/https://doi.org/10.1016/j.neuron.2011.12.040
http://www.sciencedirect.com/science/article/pii/S0896627312001353
http://www.sciencedirect.com/science/article/pii/S0896627312001353
https://doi.org/10.1016/j.celrep.2014.12.034
https://doi.org/10.1016/j.celrep.2014.12.034
http://linkinghub.elsevier.com/retrieve/pii/S2211124714010638
http://linkinghub.elsevier.com/retrieve/pii/S2211124714010638
https://doi.org/10.4061/2011/104545
http://www.hindawi.com/journals/ijad/2011/104545/
http://www.hindawi.com/journals/ijad/2011/104545/
https://doi.org/10.3389/fnagi.2016.00160
https://doi.org/10.3389/fnagi.2016.00160
http://journal.frontiersin.org/Article/10.3389/fnagi.2016.00160/abstract
http://journal.frontiersin.org/Article/10.3389/fnagi.2016.00160/abstract
https://doi.org/https://doi.org/10.1016/j.nrleng.2015.07.008
https://doi.org/https://doi.org/10.1016/j.nrleng.2015.07.008
http://www.sciencedirect.com/science/article/pii/S2173580816301298
http://www.sciencedirect.com/science/article/pii/S2173580816301298


BIBLIOGRAPHY 57

Rousset, O. G., Y. Ma, and A. C. Evans (May 1998). “Correction for Partial Volume Effects in PET:
Principle and Validation”. In: Journal of Nuclear Medicine: Official Publication, Society of Nuclear
Medicine 39.5, pp. 904–911. ISSN: 0161-5505. pmid: 9591599.

Seeley, William W. et al. (2009). “Neurodegenerative Diseases Target Large-Scale Human Brain
Networks”. In: Neuron 62.1, pp. 42–52. ISSN: 0896-6273. DOI: https://doi.org/10.1016/
j.neuron.2009.03.024. URL: http://www.sciencedirect.com/science/article/pii/
S0896627309002499.

Shah, Hiral et al. (2016). “Research Priorities to Reduce the Global Burden of Dementia by 2025”. In:
The Lancet Neurology 15.12, pp. 1285–1294. ISSN: 1474-4422. DOI: https://doi.org/10.1016/
S1474- 4422(16)30235- 6. URL: http://www.sciencedirect.com/science/article/pii/
S1474442216302356.

Shepherd, Claire, Heather McCann, and Glenda Margaret Halliday (July 2009). “Variations in the
Neuropathology of Familial Alzheimer’s Disease”. In: Acta Neuropathologica 118.1, pp. 37–52. ISSN:
0001-6322, 1432-0533. DOI: 10.1007/s00401-009-0521-4. URL: http://link.springer.com/10.
1007/s00401-009-0521-4 (visited on 11/25/2019).

Soares, José M. et al. (2013). “A Hitchhiker’s Guide to Diffusion Tensor Imaging”. In: Frontiers in
Neuroscience 7, p. 31. ISSN: 1662-4548. DOI: 10.3389/fnins.2013.00031. pmid: 23486659.

Song, Ha-Lim et al. (2014). “B-Amyloid Is Transmitted via Neuronal Connections along Axonal Mem-
branes”. In: Annals of Neurology 75.1, pp. 88–97. ISSN: 1531-8249. DOI: 10.1002/ana.24029. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.24029 (visited on 11/18/2019).

Su, Yi et al. (Nov. 6, 2013). “Quantitative Analysis of PiB-PET with FreeSurfer ROIs”. In: PLoS ONE
8.11. Ed. by Kewei Chen, e73377. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0073377. URL:
http://dx.plos.org/10.1371/journal.pone.0073377 (visited on 10/30/2019).

Su, Yi et al. (Mar. 24, 2016). “Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s
Disease: Results from the DIAN Study Group”. In: PLOS ONE 11.3. Ed. by Karl Herholz, e0152082.
ISSN: 1932-6203. DOI: 10.1371/journal.pone.0152082. URL: http://dx.plos.org/10.1371/
journal.pone.0152082 (visited on 10/31/2019).

Su, Yi et al. (Dec. 2019). “Comparison of Pittsburgh Compound B and Florbetapir in Cross-Sectional
and Longitudinal Studies”. In: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
11, pp. 180–190. ISSN: 23528729. DOI: 10.1016/j.dadm.2018.12.008. URL: https://linkinghub.
elsevier.com/retrieve/pii/S2352872918300903 (visited on 10/30/2019).

Tiraboschi, P. et al. (June 8, 2004). “The Importance of Neuritic Plaques and Tangles to the Development
and Evolution of AD”. In: Neurology 62.11, pp. 1984–1989. ISSN: 1526-632X. DOI: 10.1212/01.wnl.
0000129697.01779.0a. pmid: 15184601.

Vemuri, Prashanthi et al. (2009). “Effect of APOE on Biomarkers of Amyloid Load and Neuronal
Pathology in AD”. In: Annals of Neurology, NA–NA. ISSN: 03645134, 15318249. DOI: 10.1002/ana.
21953. URL: http://doi.wiley.com/10.1002/ana.21953 (visited on 11/25/2019).

Verghese, P. B. et al. (May 7, 2013). “ApoE Influences Amyloid- (A ) Clearance despite Minimal
apoE/A Association in Physiological Conditions”. In: Proceedings of the National Academy of
Sciences 110.19, E1807–E1816. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.1220484110. URL:
http://www.pnas.org/cgi/doi/10.1073/pnas.1220484110 (visited on 11/25/2019).

Villemagne, Victor L. et al. (Dec. 1, 2009). “High Striatal Amyloid B-Peptide Deposition Across
Different Autosomal Alzheimer Disease Mutation Types”. In: Archives of Neurology 66.12. ISSN:
0003-9942. DOI: 10.1001/archneurol.2009.285. URL: http://archneur.jamanetwork.com/
article.aspx?doi=10.1001/archneurol.2009.285 (visited on 03/22/2020).

9591599
https://doi.org/https://doi.org/10.1016/j.neuron.2009.03.024
https://doi.org/https://doi.org/10.1016/j.neuron.2009.03.024
http://www.sciencedirect.com/science/article/pii/S0896627309002499
http://www.sciencedirect.com/science/article/pii/S0896627309002499
https://doi.org/https://doi.org/10.1016/S1474-4422(16)30235-6
https://doi.org/https://doi.org/10.1016/S1474-4422(16)30235-6
http://www.sciencedirect.com/science/article/pii/S1474442216302356
http://www.sciencedirect.com/science/article/pii/S1474442216302356
https://doi.org/10.1007/s00401-009-0521-4
http://link.springer.com/10.1007/s00401-009-0521-4
http://link.springer.com/10.1007/s00401-009-0521-4
https://doi.org/10.3389/fnins.2013.00031
23486659
https://doi.org/10.1002/ana.24029
https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.24029
https://doi.org/10.1371/journal.pone.0073377
http://dx.plos.org/10.1371/journal.pone.0073377
https://doi.org/10.1371/journal.pone.0152082
http://dx.plos.org/10.1371/journal.pone.0152082
http://dx.plos.org/10.1371/journal.pone.0152082
https://doi.org/10.1016/j.dadm.2018.12.008
https://linkinghub.elsevier.com/retrieve/pii/S2352872918300903
https://linkinghub.elsevier.com/retrieve/pii/S2352872918300903
https://doi.org/10.1212/01.wnl.0000129697.01779.0a
https://doi.org/10.1212/01.wnl.0000129697.01779.0a
15184601
https://doi.org/10.1002/ana.21953
https://doi.org/10.1002/ana.21953
http://doi.wiley.com/10.1002/ana.21953
https://doi.org/10.1073/pnas.1220484110
http://www.pnas.org/cgi/doi/10.1073/pnas.1220484110
https://doi.org/10.1001/archneurol.2009.285
http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneurol.2009.285
http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneurol.2009.285


BIBLIOGRAPHY 58

Villeneuve, Sylvia et al. (July 2015). “Existing Pittsburgh Compound-B Positron Emission Tomography
Thresholds Are Too High: Statistical and Pathological Evaluation”. In: Brain 138.7, pp. 2020–2033.
ISSN: 0006-8950. DOI: 10.1093/brain/awv112. pmid: 25953778. URL: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4806716/ (visited on 11/10/2019).

Vogel, Jacob W. et al. (Feb. 20, 2019). Spread of Pathological Tau Proteins through Communicating Neurons in
Human Alzheimer’s Disease. preprint. Neuroscience. DOI: 10.1101/555821. URL: http://biorxiv.
org/lookup/doi/10.1101/555821 (visited on 10/30/2019).

Walker, Lary C. and Harry LeVine (Sept. 28, 2012). “Corruption and Spread of Pathogenic Proteins
in Neurodegenerative Diseases”. In: Journal of Biological Chemistry 287.40, pp. 33109–33115. ISSN:
0021-9258, 1083-351X. DOI: 10.1074/jbc.R112.399378. URL: http://www.jbc.org/lookup/doi/
10.1074/jbc.R112.399378 (visited on 11/25/2019).

Walker, Lary C et al. (2002). “Exogenous Induction of Cerebral B-Amyloidosis in B-APP-Transgenic
Mice”. In: Peptides 23.7, pp. 1241–1247. ISSN: 0196-9781. DOI: https://doi.org/10.1016/
S0196- 9781(02)00059- 1. URL: http://www.sciencedirect.com/science/article/pii/
S0196978102000591.

Walsh, Dominic M. and Dennis J. Selkoe (2007). “AB Oligomers – a Decade of Discovery”. In: Journal of
Neurochemistry 101.5, pp. 1172–1184. ISSN: 1471-4159. DOI: 10.1111/j.1471-4159.2006.04426.x.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2006.04426.x
(visited on 11/18/2019).

Wang, Jun et al. (Oct. 2017). “A Systemic View of Alzheimer Disease — Insights from Amyloid-B
Metabolism beyond the Brain”. In: Nature Reviews Neurology 13.10, pp. 612–623. ISSN: 1759-4758,
1759-4766. DOI: 10.1038/nrneurol.2017.111. URL: http://www.nature.com/articles/
nrneurol.2017.111 (visited on 12/08/2019).

Waters, Jack (2010). “The Concentration of Soluble Extracellular Amyloid-b Protein in Acute Brain
Slices from CRND8 Mice”. In: PLoS ONE 5.12, p. 16.

Watts, Joel C. et al. (2011). “Bioluminescence Imaging of AB Deposition in Bigenic Mouse Models of
Alzheimers Disease”. In: Proceedings of the National Academy of Sciences 108.6, pp. 2528–2533. ISSN:
0027-8424. DOI: 10.1073/pnas.1019034108. eprint: https://www.pnas.org/content/108/6/
2528.full.pdf. URL: https://www.pnas.org/content/108/6/2528.

Westerman, Marcus A. et al. (2002). “The Relationship between aB and Memory in the Tg2576 Mouse
Model of Alzheimers Disease”. In: Journal of Neuroscience 22.5, pp. 1858–1867. ISSN: 0270-6474. DOI:
10.1523/JNEUROSCI.22-05-01858.2002. eprint: https://www.jneurosci.org/content/22/5/
1858.full.pdf. URL: https://www.jneurosci.org/content/22/5/1858.

Xiang, Yang et al. (Oct. 2015). “Physiological Amyloid-Beta Clearance in the Periphery and Its Ther-
apeutic Potential for Alzheimer’s Disease”. In: Acta Neuropathologica 130.4, pp. 487–499. ISSN:
0001-6322, 1432-0533. DOI: 10.1007/s00401-015-1477-1. URL: http://link.springer.com/10.
1007/s00401-015-1477-1 (visited on 12/08/2019).

Yeh, Fang-Cheng and Wen-Yih Isaac Tseng (Sept. 2011). “NTU-90: A High Angular Resolution Brain
Atlas Constructed by q-Space Diffeomorphic Reconstruction”. In: NeuroImage 58.1, pp. 91–99. ISSN:
10538119. DOI: 10.1016/j.neuroimage.2011.06.021. URL: https://linkinghub.elsevier.
com/retrieve/pii/S1053811911006392 (visited on 11/01/2019).

Young, Alexandra et al. (Dec. 2018). “Uncovering the Heterogeneity and Temporal Complexity of
Neurodegenerative Diseases with Subtype and Stage Inference”. In: Nature Communications 9.1,
p. 4273. ISSN: 2041-1723. DOI: 10.1038/s41467-018-05892-0. URL: http://www.nature.com/
articles/s41467-018-05892-0 (visited on 11/21/2019).

https://doi.org/10.1093/brain/awv112
25953778
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806716/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806716/
https://doi.org/10.1101/555821
http://biorxiv.org/lookup/doi/10.1101/555821
http://biorxiv.org/lookup/doi/10.1101/555821
https://doi.org/10.1074/jbc.R112.399378
http://www.jbc.org/lookup/doi/10.1074/jbc.R112.399378
http://www.jbc.org/lookup/doi/10.1074/jbc.R112.399378
https://doi.org/https://doi.org/10.1016/S0196-9781(02)00059-1
https://doi.org/https://doi.org/10.1016/S0196-9781(02)00059-1
http://www.sciencedirect.com/science/article/pii/S0196978102000591
http://www.sciencedirect.com/science/article/pii/S0196978102000591
https://doi.org/10.1111/j.1471-4159.2006.04426.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-4159.2006.04426.x
https://doi.org/10.1038/nrneurol.2017.111
http://www.nature.com/articles/nrneurol.2017.111
http://www.nature.com/articles/nrneurol.2017.111
https://doi.org/10.1073/pnas.1019034108
https://www.pnas.org/content/108/6/2528.full.pdf
https://www.pnas.org/content/108/6/2528.full.pdf
https://www.pnas.org/content/108/6/2528
https://doi.org/10.1523/JNEUROSCI.22-05-01858.2002
https://www.jneurosci.org/content/22/5/1858.full.pdf
https://www.jneurosci.org/content/22/5/1858.full.pdf
https://www.jneurosci.org/content/22/5/1858
https://doi.org/10.1007/s00401-015-1477-1
http://link.springer.com/10.1007/s00401-015-1477-1
http://link.springer.com/10.1007/s00401-015-1477-1
https://doi.org/10.1016/j.neuroimage.2011.06.021
https://linkinghub.elsevier.com/retrieve/pii/S1053811911006392
https://linkinghub.elsevier.com/retrieve/pii/S1053811911006392
https://doi.org/10.1038/s41467-018-05892-0
http://www.nature.com/articles/s41467-018-05892-0
http://www.nature.com/articles/s41467-018-05892-0


BIBLIOGRAPHY 59

Zhou, Juan et al. (2012). “Predicting Regional Neurodegeneration from the Healthy Brain Functional
Connectome”. In: Neuron 73.6, pp. 1216–1227. ISSN: 0896-6273. DOI: https://doi.org/10.1016/
j.neuron.2012.03.004. URL: http://www.sciencedirect.com/science/article/pii/
S0896627312002279.

Zlokovic, Berislav V. (Dec. 2011). “Neurovascular Pathways to Neurodegeneration in Alzheimer’s
Disease and Other Disorders”. In: Nature Reviews Neuroscience 12.12, pp. 723–738. ISSN: 1471-003X,
1471-0048. DOI: 10.1038/nrn3114. URL: http://www.nature.com/articles/nrn3114 (visited on
12/16/2019).

https://doi.org/https://doi.org/10.1016/j.neuron.2012.03.004
https://doi.org/https://doi.org/10.1016/j.neuron.2012.03.004
http://www.sciencedirect.com/science/article/pii/S0896627312002279
http://www.sciencedirect.com/science/article/pii/S0896627312002279
https://doi.org/10.1038/nrn3114
http://www.nature.com/articles/nrn3114


60

Appendix A

Supplementary Section

A.1 Cerebellum vs Brainstem as Longitudinal

Reference Region

A B

Figure A.1: On the left we show the average longitudinal changes for a set of cortical ROIs using
the CC as the reference region. Noncarriers are in blue while mutation carriers are in red. On the
right, we have the longitudinal changes using the brainstem as the epicenter. We note that the
signal for the noncarriers’ is much more stable using the brainstem as the reference region.
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