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Abstract

Fast pick-and-place robots are widely used in industry, e.g., in food-packaging and mi-

croelectronics. A parallel architecture, composed of one moving platform and one base

platform, connected by two serial limbs, was designed and prototyped at McGill Univer-

sity’s Centre for Intelligent Machines. The prototype is dubbed the Peppermill Carrier

(PMC). The objective of the work reported in this thesis is to improve the speed of this

parallel-kinematics machine (PKM), intended for high-speed operations, while considering

its elastodynamics, via modelling, and control. The generalized spring, supported with the

finite element method, are used to obtain the elastodynamics model of the robot. The

natural frequencies of the robot are obtained along a test trajectory, the Adept test cy-

cle, which serves to identify the poor-stiffness postures; the natural frequencies are further

applied to build an enhanced mathematical model of the robot. Along the way, stiffness

indices are defined, to help both the designer and the control engineer meet performance

requirements. The mathematical model of the robot, which takes into account the flexible

nature of the limbs, is formulated. Moreover, a gain-scheduling linear quadratic regulator

combined with an extended Kalman filter is designed and applied to control fast pick-and-

place operations. Based on the gain-scheduling controller, a constant-gain linear quadratic

regulator, combined with a constant-gain extended Kalman filter, is found to be effective

at controlling the robot during fast operations, while tracking a prescribed, representative

trajectory. Inspired by the simulation results obtained by this regulator, a feed-forward

proportional-derivative (PD) controller based on the sliding-mode scheme is also proposed.

The use of these linear controllers helps decrease the computational complexity. The fea-

sibility of a linear controller for a nonlinear system such as the PMC is also discussed.

Finally, a comparison between four control schemes is conducted to analyze their pros and

cons.
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Abrégé

Les robots manipulateurs rapides sont largement utilisés dans l’industrie, par exemple dans

l’emballage alimentaire et la microélectronique. Une architecture parallèle composée d’une

plate-forme mobile et d’une plate-forme de base, reliées par deux membres en série, a été

conçue et prototypée au Centre for Intelligent Machines de l’Université McGill. Le pro-

totype est surnommé le Peppermill Carrier (PMC). L’objectif du travail présenté dans

cette thèse est d’améliorer la vitesse de ce robot, destinée aux opérations à grande vitesse,

tout en tenant compte de son élastodynamique, via la modélisation et la commande. Le

concept de ressort généralisé, renforcé par la méthode des éléments finis, est utilisé pour

obtenir le modèle élastodynamique du robot. Les fréquences propres du robot sont obtenues

le long du cycle Adept de test, qui sert à identifier les postures de faible rigidité ; les

fréquences naturelles sont ensuite appliquées pour construire un modèle mathématique

amélioré du robot. En cours de route, des indices de rigidité sont définis afin d’aider le con-

cepteur et l’ingénieur automaticien à répondre aux exigences de performance. Le modèle

mathématique du robot, qui tient compte de la nature flexible des membrures, est formulé.

De plus, un régulateur quadratique linéaire à programmation du gain, associé à un filtre

de Kalman étendu, est conçu et appliqué pour commander les opérations rapides. Sur la

base du contrôleur d’ordonnancement du gain, un régulateur quadratique linéaire à gain

constant, associé à un filtre de Kalman étendu à gain constant, s’avère efficace pour com-

mander le robot lors d’opérations rapides, tout en suivant une trajectoire représentative

prescrite. Inspiré des résultats de simulation obtenus par ce régulateur, un asservissement

odométrique-tachymétrique à propagation avant, basé sur le schéma en mode glissant est

également proposé. L’utilisation de ces asservissements linéaires permet de réduire la com-

plexité des calculs. La faisabilité d’un asservissement linéaire pour un système non linéaire

tel que le PMC est également discutée. Enfin, une comparaison entre quatre systèmes de

commande est effectuée pour analyser leurs avantages et leurs inconvénients.
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Contributions

Pick-and-place robots have attracted attention in recent years. How to improve the speed

has been the focus of many a research work. The contribution of the author targets the

speed of pick-and-place robots through elastodynamics analysis, modelling, and control.

The elastostatic and elastodynamics analyses of a pick-and-place robot are conducted

based on the concept of generalized spring. The first natural frequency is obtained through

elastodynamics analysis, to evaluate the elastodynamics performance of the robot along the

trajectory and used to build the dynamics model of the robot. Furthermore, the natural

frequency can also be used in the structural optimum design of the robot in the future.

Our analysis should help improve the modelling accuracy, especially for flexible-links with

complex shapes or made of special materials. This method can be applied to other serial

and parallel architectures.

The dynamics model of the PMC is built based on the concept of the natural orthogonal

complement. The link flexibility is not ignorable under high-speed conditions. Therefore, a

virtual-flexible-motor-shaft model is built by taking the link flexibility into consideration.

This research work takes process noise, measurement noise, and parameter uncertainties

into the dynamics model as well, to make it closer to reality, which will be further applied

to test the robustness of the controllers.

Several control schemes are designed to control the PMC tracking the desired trajecto-

ries. A gain-scheduling linear quadratic regulator combined with an extended Kalman filter

is first designed to control the robot. From the design of gain-scheduling control schemes, a

constant-gain linear quadratic regulator combined with a constant-gain extended Kalman

filter, a linear controller is found to be effective to control the robot under a fast operation

speed, three times faster than the record. Inspired by that, another linear controller, a

feed-forward PD controller based on the sliding-mode scheme, is designed. The simula-

tion results show that the tracking performance of these linear controllers is promising,

which means that these controllers can control the nonlinear system even at a high speed.

This contribution should decrease the computational complexity sharply and improve the

real-time performance in practice.
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Chapter 1

Introduction

1.1 Background and Motivation

Robots can be broadly classified as serial and parallel. Serial robots are well developed;

they are known to offer a large workspace with respect to their footprint, dexterous ca-

pabilities and ease of control. However, compared to serial robots, parallel robots offer

many advantages in terms of speed, accuracy, dynamic response, load-carrying capacity,

and stiffness, as required by industry.

Early work on the kinematics of parallel robots was reported by Hunt [1]. In 2000, many

properties of parallel robots, including architecture, kinematics, singular configurations,

workspace, velocity, acceleration, static analysis, dynamics and design were systematically

discussed by Merlet [2].

Selective Compliance Assembly Robot Arm (SCARA) systems make an important class

of parallel robots. The set of motions produced by such systems is known to form a Lie sub-

group [3], the Schönflies subgroup, of the group of rigid-body motions [4, 5]. These systems

are designed with four degrees of freedom (dof), namely three independent translations and

one rotation about one axis of fixed orientation. The first SCARA system, of the serial

type, was proposed by Makino [6] in the early eighties. Such systems were developed in the

late 20th century [7]. SCARA systems targeted fast pick-and-place operations (PPO), as

those found in the assembly of electronic devices with a flat geometry [8]. In order to satisfy

the market demand, namely, faster robots and robots with higher load-carrying capacity,

ABB Robotics came up with a novel architecture, the ABB IRB series, dubbed “a transfer

robot”, which features a kinematic chain that carries a Π-joint, namely, a planar parallelo-

2019/07/04
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gram linkage. The Π-joint was introduced by Wohlhart in 1991 [9], then applied by Hervé

and Sparacino [10] to design a three-dof parallel robot, the Y-Star, to produce translation

of its moving platform (MP). Wohlhart [11] and Dietmaier [12] conducted further work on

mechanical systems with the Π-joint later.

The Schönflies-motion subgroup, first identified by Schönflies [4, 5], includes four degrees

of freedom, namely three independent translations and one rotation about a fixed-direction

axis. Bottema and Roth [5] first named this kind of motion Schönflies. The relationship

between the Schönflies subgroup and the four-dof motion SCARA was stated by Hervé [3].

The H4 robot [13], a parallel Schönflies motion generator (SMG), was first proposed by

a French-Japanese team. It was patented as a four-degree-of-freedom parallel robot in

2001 [14]. The robot has one moving platform, one base platform and four identical limbs.

A detailed review on the structural synthesis of SMG was published by Gogu [15], who

claimed that there are three kinds of methods used for the structural synthesis of SMG,

based on: displacement group theory [16, 17, 18, 19, 20]; screw algebra [21, 22, 23, 24, 25];

and the theory of linear transformations [26, 27]. Kim et al. [28] summarized the state of

the art of SMGs based on their active joints and limb-joint types.

Closely related to SMGs, the Delta robot [29] has one base-platform (BP), one MP and

three identical limbs. The original concept of this robot produces three-dof translations1.

The architecture was enhanced in Clavel’s patent [30] by adding a telescopic Cardan shaft.

The enhanced version is a SMG; many four-limb parallel architectures are based on this

design. This robot has four motors fixed on the BP; three of them are used to produce

three-dof translations of the MP, the fourth one being used to control the rotation of the

gripper on the MP. This design produces an unlimited rotation. Vischer et al. [31] improved

the kinematic accuracy of the Delta robot, whose dynamics was studied by Staicu et al. [32].

More recently, ABB Robotics developed a robot on the basis of Delta, dubbed IRB 340

FlexPicker, whose architecture is a serial-parallel SCARA system.

There are two kinds of parallel SMG architectures, namely, four-limb and two-limb

architectures. The former are plagued with limb interference. Limb interference results

in insufficient rotation ability, limited to an angle smaller than 180◦. From 1999 to 2015,

many attractive four-limb parallel architectures were proposed, such as H4 [13], I4L [33],

I4R [34], Heli4 [35] and PAR4 [36]. The improved version of PAR4 finally became the

Quattro robot [37, 38], produced by Adept Technologies Inc., which is the fastest parallel

1Compared with its workspace



1 Introduction 3

robot nowadays. Gosselin [39] pointed out that Delta has a bulky framework and a large

footprint compared with its workspace volume, besides a low torsional stiffness.

Compared with four-limb SMGs, two-limb SMGs have smaller footprint and virtually

unlimited rotational angular MP, but their stiffness is reduced [7]. There is a scarce litera-

ture on two-limb SMGs. Angeles et al. proposed an overconstrained two-limb SMG [40, 19,

41] and a two-limb isotropic SMG dubbed the McGill SMG [42, 43]. Isotropy, associated

with the condition number of the robot Jacobian matrix [44], offers the maximum dexterity

at a given robot posture. Angeles and his team studied the kinematics and dynamics [45],

home posture [46], kinematic conditioning and the inertial conditioning [47] of the McGill

SMG. Two-limb isoconstrained architectures have many advantages, such as more com-

pact envelope, ease of control and low sensitivity to manufacturing errors [48]. Mechani-

cal isotopy improves the robustness of kinetostatic, elastostatic and elastodynamic perfor-

mance [49]. Friedlander, Harada and Angeles, based on an isoconstrained two-limb SMG,

first disclosed by Lee and Lee [50, 51], designed a two-limb SMG, dubbed the PMC [52]. A

prototype of this robot was built at the Centre for Intelligent Machines (CIM), McGill Uni-

versity. The PMC is driven by two identical drives, each drive, the C-drive [53], designed

with a symmetric architecture, driven by two identical motors, and intended to produce

cylindrical displacements—rotation about one axis and translation in a direction parallel

to the axis. The C-drive design is based on a differential mechanism of the cylindrical

subgroup; it produces rotational motion and independent translational motion in the di-

rection of the axis of rotation. A translating Π-joint was later proposed to enhance the

load-carrying capacity of the C-drive [54]. Moreover, a cable-driven architecture is proposed

for SMGs, which reduces the design constraints brought about by screw joints [55].

In order to measure the performance and the speed of a pick-and-place robot, a standard

industrial test cycle was introduced. This is known as the Adept cycle. This trajectory

involves a vertical upward translation of 25 mm, a horizontal translation of 300 mm and

a final vertical downward translation of 25 mm. The MP of the SCARA system has to

move through this trajectory back and forth with a rotation of 180◦, along the horizontal

segment, in a given cycle time [56]. As the Adept cycle is non-smooth, for it involves

corners, Nabat [57] introduced an improved cycle. The cycle consists in a smoothed path,

along with its time-history, to make it suitable for fast Schönflies-motion generation. To

this end, Nabat proposed a combination of clothoids and a schedule, all intended to reduce

the motor torques required to traverse the path by 50%. The clothoid, also called spiral of
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Cornu, is a curve whose curvature is equal to its arclength2. Garneau et al. [56] in turn,

proposed a smooth blending of the non-smooth Adept curve using cubic Lamé curves and

an optimum selection of the blending points on the vertical and horizontal segments, such

that the kinetic energy of the robot with an archetypical payload undergoes a minimum

variation, which means that the rms value of the time-derivative of the kinetic energy

throughout the whole cycle is minimized. The minimum cycle time of the Quattro robot

is three cycles per second, leading to higher than 15g accelerations and two kilograms of

rated payload.

Paccot et al. [58] published a review on the dynamic control of PKM. The proportional-

integral-derivative (PID) and the computed-torque control are the two most popular control

schemes. These schemes have been developed in the joint and the Cartesian spaces, respec-

tively.

The best known control method is PID control, also called linear single-axis control,

which is widely applied in industry. However, PID control has one serious drawback. PID

control is a linear control method, unable to provide nonlinear compensation, leading to

insufficient accuracy when applied to fast serial [59] and parallel robots [60]. It is not ideal

to use one set of PID gains in the whole workspace because robot dynamics changes from

posture to posture [61]. Therefore, restricting the workspace of parallel robots is a solution,

where the parallel robot has a low dynamic coupling and can operate at its maximum speed

and acceleration [62]. Another solution is trajectory planning, using dynamic modelling

[63, 64] and interpolation in the time domain that takes place at distinct, adapted time-

intervals [65, 66]. The trajectory can be smoothed by such adapted time interpolation

method and feedforward compensation [67]. However, the drawback of this method is a

decrease in speed. Some optimal PID control methods have been proposed, such as gain

tuning with dynamic consideration [68] and time-varying nonlinear gains [60].

Computed-torque control is based on the inverse-dynamics model [59]. The integral

gain is applied to compensate for unmodelled phenomena and to improve the positioning

accuracy. The biggest advantage of this method is that the dynamic response of the system

is compensated for in the whole workspace. However, this advantage is only achievable

when the dynamic model is accurate enough, which can be achieved by means of inertial-

parameter identification. Identification methods of this kind were reviewed byWu et al. [69].

2The parametric formula of the clothoid: (
∫
t

0
cos(x2/2)dx,

∫
t

0
sin(x2/2)dx)
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Moreover, a more complex model is one more alternative solution to cope with the modelling

error. Kock and Schumacher [70] proposed a dynamics model of a flexible body with

deformable, as opposed to rigid, links, which improved the modelling accuracy. Oen and

Wang [64] proposed a model taking task-influence and external torques into account.

There is an extensive related literature [71, 72, 73, 74] for the control of PKMs in

Cartesian-space. Firstly, the equivalent of PID control in Cartesian-space will be discussed.

Some work only considered the MP dynamics. A numerical, estimated model is usually

added in the control loop, thereby leading to a decrease in accuracy and stability, with

an increase in control complexity. Only the MP inertia is considered and leg inertia is

neglected, which is obviously not applicable when the legs are as heavy, or even heavier,

than the MP. Some work has only considered leg dynamics, which is neither applicable.

When both MP and leg dynamics are considered, compensation will be more efficient.

Vivas and Poignet [75] applied predictive control to a high-speed PKM, but this calls for a

heavy computational load.

However, computed-torque control in Cartesian-space is computationally less demand-

ing and offers a better or equal performance than PID control, because the only compu-

tational burden is mapping the dynamics of Cartesian-space into the active joint-space by

means of the transposed Jacobian [76]. The computational complexity is lower than that

required by the forward-kinematics problem.

Therefore, compared with joint-space control [58], Cartesian-space control is state-

feedback control, ensuring a better accuracy and a lower computational burden. Cartesian-

space control provides the error between desired and actual MP trajectory. It ensures a

more direct task control than joint-space control, which improves the accuracy. Moreover,

the MP pose will change if there is a disturbance in the joint trajectory, while Cartesian-

space control observes the pose of the MP and brings it back to its reference trajectory.

However, it should be noted that even though Cartesian-space control offers many

advantages over joint-space control, it is still applied occasionally because the accurate

measurement of the MP pose is hard [77]. In most of the literature, forward kinematics is

applied to estimate the MP pose. However, forward kinematics is computationally highly

demanding [78]. An adaptive algorithm was proposed by Merlet [79], while metrological

redundancy was proposed by Baron and Angeles [80] and Marquet et al. [81], which can

improve stability and control accuracy. Model accuracy plays an important role in forward

kinematics. The parameters of the dynamics model carry uncertainty, which strongly affects
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the performance of control algorithms, especially under high-speed operations. Therefore,

inertial-parameter identification plays an important role in model-based control algorithms.

Wu et al. [69] reviewed the methods and models on dynamic identification, optimal trajec-

tory, validation and applications. Inverse dynamics control offers a good performance if all

the inertial parameters are known accurately. Laser tracking and computer vision are two

main methods to measure the MP pose directly. However, laser tracking is expensive and

cannot measure the MP attitude. Therefore, laser tracking is out of the question in our

case. Newman et al. [82] applied this tool to kinematic identification. Computer vision, i.e.,

visual servoing, is more widely used in control, even though it is not as fast and accurate as

laser tracking. Kino et al. [83] and Dallej [84] applied this method successfully to PKMs.

Fast visual servoing was applied to a serial robot by Ginhoux et al. [85].

In the last ten years, the literature on PKM control has surged. Control based on

PD/PID is the most widely applied method because it is simple to use and offers good

performance [86, 87]. Literature on PID control, combined with model-based control,

is availiable [88, 89, 90]. Model-based control algorithms are often used in robotics be-

cause these algorithms can improve the reliability and precision of the system [91, 92].

Some control techniques, while not widely studied, still offer some attractive features,

namely, fuzzy control [93, 94, 95]; cascade control [94, 96]; switch control [97, 98]; itera-

tive learning control [91, 99]; decoupling control [100]; sliding-mode control [101]; active

joint-synchronization control [86]; and active vibration control [102].

In the realm of parallel pick-and-place robots, the control schemes applied on the fastest

one, the Quattro robot, has attracted the most attention. Three different kinds of control

schemes have been applied on the Quattro, namely, sensor-based dynamic control [103],

control based on the MP pose [104] via leg-posture observation, and virtual visual servoing

control law [105].

We aim at manipulators designed as rigid as possible, but deformation is inevitable

due to the inertia forces brought about by high-speed operations. Therefore, manipulator

flexibility must be considered in our case. Flexible-link manipulators have been applied

in many realms: microsurgical devices [106]; high-precision PPO in industry [107] and

decontamination in nuclear sites [108]. However, the flexible components of a parallel

manipulator will bring about vibration when high-speed and high-acceleration operations

are conducted. Therefore, the residual vibration after the motion stops will lead to longer

settling times and lower positioning accuracy. Moreover, vibration impacts trajectory-
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tracking precision and system stability [109].

The control of flexible serial manipulators is well recorded in the literature. Benosman

and Le Vey [110] reviewed the control of flexible multi-link manipulators between 1983

and 2003. Dwivedy and Eberhard [111] published a survey on the modelling of flexible

manipulators and referenced the work related to control. Kiang et al. [112] reported on the

control and the pertinent sensor systems of flexible-link manipulators and summarized the

advantages and disadvantages of a broad range of flexible-manipulator control methods.

Rahimi and Nazemizadeh [113] carried out a review on the “intelligent” control of flexible-

manipulators up to 2013, including fuzzy logic, neural networks and genetic algorithms.

However, publications on the control of parallel manipulators with flexible links are

scarce. The control of 3-PRR manipulators with three flexible links is well developed.

Zhang et al. applied independent modal-space control, input shaper [109], PD feedback

control combined with feed-forward computed-torque control [114] to suppress the residual

vibration and the structural vibration of the flexible links. Moreover, Lagrange equations,

assumed-mode and modal-control [115] are also reportedly applied. Zhang et al. [116, 117,

102, 118, 119, 120] applied several control schemes on the 3-PRR manipulator. The main

methods applied by this team are strain-rate feedback control, modal strain-rate feedback

control, assumed-mode method and optimal active vibration control.

Except for 3-PRR manipulators, many other kinds of parallel architectures have been

studied. Chu and Cui [121] applied input-shaper and adaptive positive position-feedback

control to suppress the vibrations of a two-link planar flexible-manipulator. Kozak et

al. [122] applied input-shaper to suppress the vibrations of a two-dof parallel manipulator.

Burkhardt et al. [123, 124] applied feed-forward control to suppress the vibration of a

two-flexible-link manipulator.

1.2 Thesis Organization

Chapter 1 includes the literature review and the motivation of the reported research work.

A broad class of pick-and-place robots are discussed in this chapter, while highlighting

their pros and cons. The state-of-the-art control schemes for parallel robots and flexible-

link parallel robots, a motivation for this research work, are thoroughly discussed in this

opening chapter.

Chapter 2 provides the elastostatic analysis of the PKM motivating this work. The
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limbs are modelled as flexible bodies in the presence of high-speed operations. The concept

of the six-degree-of-freedom generalized spring and the finite element analysis are applied

to model the flexible links. This methodology improves the modelling accuracy, especially

for flexible links with complex shapes or links made of materials with complex constitutive

relations. The stiffness matrix of the PMC is calculated in this chapter. Moreover, the

rotational and translational stiffness indices of the Cartesian stiffness matrix of the robot

are obtained and plotted along the Adept cycle, which serves to identify the poor-stiffness

postures.

Chapter 3 pertains to the elastodynamics analysis of the PKM. This analysis requires

the stiffness and mass matrices of the robot. The stiffness matrix is obtained in Chapter 2.

The mass matrix is calculated as the Hessian matrix of the kinetic energy generated by

the flexible-component motion. The objective of elastodynamics analysis is to obtain the

natural frequencies of the robot. The elastodynamics analysis is essential because the nat-

ural frequencies should lie far from the excitation frequency spectrum of a highly repetitive

mechanical system, to avoid resonance. The elastodynamics analysis of the PMC, as an

illustrative example, is conducted. The natural frequencies and the excitation spectrum

are plotted along the test cycle of the pick-and-place operation. Finally, the elastodynamic

performance of the robot is evaluated, then incorporated into the dynamics model of the

robot. These results should be useful in the robot structural optimum design.

Chapter 4 is devoted to building the dynamics model of the PMC. Firstly, the rigid-link

dynamics model is obtained by means of the concept of the natural orthogonal complement.

In order to make the model closer to reality, joint friction, process noise, measurement

noise and parameter uncertainties are added into the dynamics model. Moreover, the

flexibility of the arms, forearms and the harmonic drives cannot be ignored in high-speed

operations. Therefore, link flexibility is taken into consideration to improve the accuracy of

the dynamics model. The flexibility of arms and forearms are not included directly in the

dynamics model. The arms and the forearms are modelled as rigid links, their flexibilities

transferred to the corresponding motor shafts. The motor shafts are considered connected

to the motors by massless torsional springs, namely, lumped spring-mass systems, whose

first natural frequency is the same as that of the flexible-link PMC. The dynamics model of

the PMC with virtual flexibilities of the motor shafts is built, which has a higher modelling

accuracy than that of its rigid-link couterpart.

In Chapter 5, the control scheme design of the PMC is described. Two kinds of gain-
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scheduling linear quadratic regulator (LQR) control schemes are proposed, then applied

to lead the robot through high-speed operations. In the design of the gain-scheduling

controller, a constant-gain LQR control scheme is found to be effective and robust to

control the robot in the presence of nonlinear dynamics. Inspired by the constant-gain

control scheme, a feed-forward PD controller based on the sliding mode scheme is proposed.

Compared with their nonlinear counterparts, linear controllers offer smaller computational

complexity and improve the real-time response. The reason why a linear controller is

eligible to control a nonlinear system is elucidated. The pros and cons of all four control

schemes are discussed.

Chapter 6 summarizes the research work and provides suggestions for future work.
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Chapter 2

Elastostatic Analysis

2.1 Introduction

This chapter is devoted to the elastostatic analysis of the PMC. The limbs are considered as

flexible bodies under high-speed operations. The concept of six-degree-of-freedom general-

ized spring, combined with the finite-element analysis, is applied to model the flexible-links.

This method improves the modelling accuracy, especially for flexible-links with complex

shapes or made of special materials. The stiffness matrix of the PMC is then calculated.

Moreover, the rotational and translational stiffness indices are defined and plotted along

the Adept test cycle, which serves to identify the poor-stiffness postures.

2.2 Research Methodology

This section includes the research methodology related to the elastostatic analysis. First,

the small-amplitude rotation matrix and the corresponding six-dimensional small-amplitude

displacement screw are introduced. Afterwards, the concept of the generalized spring is

recalled. Moreover, the small-amplitude displacements between two articulated generalized

springs are discussed.

2.2.1 The Small-amplitude Rotation Matrix

The natural invariants [125] are invoked to represent a rigid-body rotation from an initial

attitude to a new one. These invariants are the angle of rotation φ and the unit vector e

2019/07/04
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parallel to the axis of rotation. The rotation matrix Q is then given as [125]

Q = 1+ (sinφ)E+ (1− cosφ)E2 (2.1)

where E represents the cross-product matrix (CPM) [125] 1 of e, and 1 the 3 × 3 identity

matrix. The angular velocity of a rigid body is obtained as the axial vector ω of Ω, defined

as Ω = Q̇QT = −QQ̇T . Hence,

ω = [(sinφ)1+ (1− cos(φ)E) e]

[
ė

φ̇

]
(2.2)

If φ is small, then sin φ→ φ and cos φ→ 1, Q then becoming

Q = 1+ φE (2.3)

and the angular velocity reducing, in this case, to

ω = [φ1 e]

[
ė

φ̇

]
= φ̇ = φė+ φ̇e ≡

d

dt
(φe) (2.4)

where φ ≡ φe ≡ vect(Q− 1)2.

The Plücker coordinates [126] of a line L are included in the array
[
aT (r× a)T

]T
,

where a denotes the unit vector parallel to the line, and r the position vector of a point R

in the line. The unit screw s is a line with a pitch, namely,

s =

[
a

r× a+ pa

]
(2.5)

where p represents the pitch of the screw, measured in m/rad in this paper.

A six-dimensional small-amplitude displacement (SAD) screw u is the product of a unit

screw s by a “small” angle of rotation φ, i.e.3,

u =

[
φa

r× φa+ pφa

]
=

[
φ

p

]
, |φ| << 1 (2.6)

1The definition of cross-product matrix V of vector v: v × x = Vx. ∀x,v ∈ R
3.

2Denote Vx = v × x. ∀x,v ∈ R
3, then vect(V) = v

3φ is the “small-amplitude” rotation and p the “small” concomitant translation.
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2.2.2 Generalized Spring

Flexible parts can be modelled as six-dimensional generalized springs [127]. The elastic

potential energy is generated by the linearly elastic deformation of the flexible parts.

Broadly speaking, a generalized spring is a lump of a massless, linearly elastic material

coupling two rigid plates (or bodies, for that matter), i and j, as depicted in Fig. 2.1(a).

If the rigid plate j is fixed, then the stiffness matrix K of the generalized spring is a 6× 6

symmetric positive-definite matrix. This matrix is displayed below in block form:

K =

[
K11 K12

KT
12 K22

]
(2.7)

where K11, K12, and K22 are 3 × 3 blocks, carrying the units of Nm, N and N/m. Then,

we will consider the situation in which the two rigid plates can move independently.

A six-dimensional wrench array wi =
[
nT
i fTi

]T
is now introduced as acting on plate i,

where ni is a moment with respect to the plate center of mass (COM) and fi is a force acting

at the plate COM. A balancing wrench wj acts on plate j. Due to the two wrenches acting

on the lump of elastic material, the two coupled plates undergo corresponding SAD screws,

ui and uj. The SAD screw arrays are now cast in the 12-dimensional array u =
[
uT
i uT

j

]T
.

Similarly, wi and wj are cast in the 12-dimensional array w =
[
wT

i wT
j

]T
. The wrench

array w is the image of the SAD screw array u under a 12 × 12 transformation given by

the symmetric stiffness matrix K, partitioned into four 6×6 blocks: w = Ku. This matrix

is displayed below in block form:

K =

[
Kii Kij

KT
ij Kjj

]
(2.8)

The potential energy of the generalized spring is, thus,

V =
1

2

[
uT
i uT

j

] [Kii Kij

KT
ij Kjj

][
ui

uj

]
(2.9)

While the stiffness matrix K is of 12 × 12, its rank is six. The physical meaning of its

six-dimensional null space is that the two plates can undergo displacements that leave the

lump of elastic material undeformed. This happens when the two plates move as one single
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rigid body.

2.2.3 The Small-amplitude Displacements of Two Articulated Generalized

Springs

When two generalized springs are coupled by a passive kinematic pair, some dof will be

constrained. Each generalized spring has six elastic dof, two uncoupled generalized springs

then having 12 elastic dof. If a passive kinematic pair4 bringsm < 6 constraints, the number

of elastic dof of the two coupled generalized springs is 12−m. Taking the revolute (R) joint

as an example, it constrains two rotational and three translational dof of the coupled plates,

which is interpreted as follows: with plate i fixed, a wrench wl is applied on plate l, shown

in Fig. 2.1(b). In the absence of the R joint, plates j and k would be welded, which would

lead to u = u′, where u and u′ represent the SAD screw of plates j and k, respectively.

Under these conditions, the system has 12 elastic dof, six for each generalized spring. The

presence of the R joint introduces five constraint-wrenches components, transmitted by

plate k onto plate j, which means that only one component of the wrench wj transmitted

by the R joint to the left-hand generalized spring is independent from those of wk, acting

on plate k. This is the moment transmitted by the R joint, with the right-hand generalized

spring acting as a motor that drives this joint. As a consequence, the number of elastic dof

of the system of two articulated generalized springs is 12 − 5 = 7. The difference between

u and u′ can only be a screw with a small-amplitude angle β. This angle is associated with

the free motion allowed by the R joint. It is “small” because it is assumed that one plate,

e.g., i, is fixed, while plate l undergoes a SAD screw. Therefore, the relation between u

and u′ is

u′ = u+ βs, s =
[
eT 0T

]T
, |β| << 1 (2.10)

where e is the unit vector parallel to the axis of the R joint, 0 the three-dimensional zero

vector and β the small-amplitude angle of relative rotation, shown in Fig. 2.1(b). Different

lower kinematic pairs (LKPs) have different s and different variable(s) β [128]5.

4Any of the six lower kinematic pairs: revolute (R), prismatic (P), helical (H), cylindrical (C), planar
(F) and spherical (S).

5More than one variable is needed in the case of a multi-dof kinematic pair.
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Plate i

Plate j

A generalized spring

(a)

Plate i

Plate j

U U ′

Plate k Plate l

e
β

(b)

Fig. 2.1: The concept of generalized spring: (a) two rigid plates coupled by a generalized
spring; (b) the coupling of two generalized springs via a R joint

2.3 Case Study: Peppermill Carrier

This section is devoted to the elastostatic analysis of the PMC. First, the elastostatic

model of the PMC is built, which is applied to obtain the stiffness matrix. Afterwards, the

elastostatic analysis is conducted to obtain the stiffness indices, which are used to identify

the poor-stiffness postures.

2.3.1 Elastostatics Model

The hypothesis underlying the elastostatic model of the PMC is summarized as: all links

are modelled as rigid bodies, except for the arms and forearms. The reason for this hypoth-

esis lies in that the arms and the forearms are much more flexible, than the other links.

Notice that the screws of the C-drives and the screws of the Peppermill cannot be assumed

flexible, because the PMC cannot work if the screws deform. Moreover, the flexibility of

the harmonic drive is taken into consideration.

The kinematic chain of the PMC is shown in Fig. 2.2(a). The robot is modelled as

an elastostatic system, like the one in Fig. 2.2(b). Each of the four springs of the figure

represents, in fact, a generalized spring.

The two arms and the two forearms are thus modelled as massless generalized springs.

In following Zou [129], the stiffness matrices of arms and forearms are obtained by finite

element analysis (FEA) in their own body-fixed frames. It is assumed that the generalized

spring is coupled by two rigid plates. In order to obtain the stiffness matrix of the gen-
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Fig. 2.2: The models of the PMC: (a) kinematics chain (b) elastostatic model

eralized spring in FEA, one rigid plate is locked and an external wrench is added on the

other rigid plate to obtained the small-amplitude displacement array. Then, the array and

the external wrench are further used to calculate the stiffness matrices of the generalized

spring. Therein, qJ1 is the SAD screw defined at point PJ1, where J is the limb label,

for J = 1, 2, as depicted in Fig. 2.2(b). Furthermore, qJ2 is the SAD screw defined at

point PJ2. By virtue of the presence of the RJ1 joint, the SAD screw, defined at point P ′

J1,

becomes

q′

J1 = qJ1 + δβJsJ , sJ =
[
eTJ 0T

]T
(2.11)

where eJ is the unit vector parallel to the axis of the RJ1 joint and δβJ the small-amplitude

relative rotation about the same axis.

The forearms are connected to the nuts via R joints of horizontal axes. The SAD screws

defined at the COM of the nuts (PJ2) and the COM of the Peppermill (C) are represented

by qnJ and qm, respectively. According to the rigidity assumption and the presence of the

R joint, the relationship between qJ2 and qnJ is

qJ2 = qnJ + δγJsJ (2.12)
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where δγJ is the small-amplitude angle of rotation of the RJ2 joint, and sJ is defined in

eq. (2.11).

The nuts are connected to the Peppermill via H joints of nominally vertical axes. The

relationship between qnJ and qm is

qnJ = GJqm + δαJsHJ , sHJ =
[
eTHJ pJe

T
HJ

]T
(2.13)

where δαJ is the small-amplitude angle of rotation of the HJ joint with respect to the

direction of its axis, eHJ the unit vector of its axis and pJ the pitch of the HJ joint.

Moreover, GJ is the SAD screw transfer matrix that transfers the SAD screw of one

given rigid body from one point to another point of the same body. In the case at hand,

from point C to point PJ2 of the Peppermill, which is given by

GJ =

[
1 0

−AJ 1

]
(2.14)

where AJ = CPM (aJ ), vector aJ stemming from C and ending at PJ2.

2.3.2 Elastostatic Analysis

The objective of elastostatic analysis is to obtain the stiffness performance of the PMC

along the test trajectory. The Cartesian stiffness matrix Ke ∈ R
6×6 maps the SAD screw

of the Peppermill into the external wrench applied onto it, which is given by

wext = Keq (2.15)

where wext is the external wrench and q the SAD screw of the Peppermill. If we apply

a unit external wrench on the six different directions of the wrench space, separately,

the corresponding SAD screws are nothing but the columns of the inverse matrix of the

Cartesian stiffness matrix.

Firstly, a unit external force in the x-direction, wfx, is applied at the centre of mass

C of the Peppermill. From the mechanical structure of the PMC, we can find that wfx

will bring about a deformation of the arm and the forearm of limbs 1 and 2. Through the

force analysis of the Peppermill, balancing forces ff1p and ff2p are added on the Peppermill

at points P12 and P22, respectively. Since the effects of a force are mutual, reactive forces
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fpf1 = −ff1p and fpf2 = −ff2p are applied on the forearms of limbs 1 and 2, henceforth

termed forearm 1 and forearm 2. Therefore, we can obtain the SAD screws of the two

forearms in the forms

qf1 = (KF1)−1wpf1, qf2 = (KF2)−1wpf2 (2.16)

where KF1 and KF2 are the Cartesian stiffness matrices of forearm 1 and forearm 2, re-

spectively, while wpf1 =
[
mT

pf1 fTpf1

]T
and wpf2 =

[
mT

pf2 fTpf2

]T
.

On the other hand, the forces acting on forearm 1 and forearm 2 will be transferred to

arm 1 and arm 2 via corresponding passive revolute joints. The SAD screws of arm 1 and

arm 2 are given by

qa1 = (KA1)−1wf1a1, qa2 = (KA2)−1wf2a2 (2.17)

where KA1 andKA2 is the Cartesian stiffness matrix of the corresponding arm, and wf1a1 =

wpf1 and wf2a2 = wpf2. A SAD-screw transfer matrix GJc is defined as

GJc =

[
1 0

−AJc 1

]
(2.18)

where AJc = CPM (aJc), vector aJc stemming from PJ2 and ending at C. GJc transfers

the SAD screw of point PJ2 to point C, the COM of the Peppermill. Therefore, the total

deformation caused by the external wrench wfx is

qwfx = G1c(qa1 + qf1) +G2c(qa2 + qf2) (2.19)

The SAD screws, qwfy, qwmx, qwmy and qwmz, caused by the unit external wrenches

wfy, wmx, wmy and wmz can be obtained likewise.

The deformation qwfz, caused by the unit external force in the z-direction, will be

analyzed separately because it is related to the flexibility of the harmonic drive.

A unit external force wfz, is applied at the center of mass C of the Peppermill in

the z-direction. Because of the symmetric mechanical structure, the wrenches acting on

the Peppermill by forearm 1, wf1p, and forearm 2, wf2p, equals half of wfz, respectively.

Therefore, the deformation of forearms 1 and 2 are given by

qf1 = (KF1)−1wpf1 (2.20)



2 Elastostatic Analysis 18

qf2 = (KF2)−1wpf2 (2.21)

where wpf1 = −wf1p and wpf2 = −wf2p.

On the other hand, the deformation of arms 1 and 2 are given by

qa1 = (KA1)−1wf1a1 (2.22)

qa2 = (KA2)−1wf2a2 (2.23)

where wf1a1 = wpf1 and wf2a2 = wpf2.

As for the angular displacements of the harmonic drives, which are given by

α1 = ff1a1cos(θ1)r/kharm (2.24)

α2 = ff2a2cos(θ2)r/kharm (2.25)

where ff1a1 and ff2a2 are the force components in the z direction of wf1a1 and wf2a2, θ1

and θ2 defined in Fig. 2.2(a), kharm the torsional stiffness of the harmonic drive. Therefore,

the deformation caused by the harmonic drives at points P11 and P21 are

qh1 =
[
0T dT

h1

]T
, dh1 =

[
0 −α1rsin(θ1) α1rcos(θ1)

]T
(2.26)

qh2 =
[
0T dT

h2

]T
, dh2 =

[
α2rsin(θ2) 0 α2rcos(θ2)

]T
(2.27)

where 0 is the three-dimensional zero vector.

The total deformation caused by the unit external wrench wfz is

qwfz = G1c(qa1 + qf1 + qh1) +G2c(qa2 + qf2 + qh2) (2.28)

Since the unit external forces and moments are applied at the COM of the Peppermill, the

SAD screws are nothing but the columns of the inverse matrix of the Cartesian stiffness

matrix of the PMC. Therefore, matrix Ke is given by

Ke =
[
qwmx qwmy qwmz qwfx qwfy qwfz

]
−1

(2.29)

In the above analysis, KAJ and KFJ are defined in the base frame and K̄AJ and K̄FJ



2 Elastostatic Analysis 19

denote the stiffness matrices of arms and forearms defined in the body-fixed frame. K̄AJ

and K̄FJ are posture-independent, obtained by FEA. KAJ andKFJ are posture-dependent,

derived from K̄AJ , K̄FJ by means of similarity transformations in terms of 6 × 6 rotation

matrices, as described below.

The coordinate frames of arms and forearms are shown in Fig. 2.3. F0 represents the

fixed frame. QJ10 is the rotation matrix that carries FJ1 into F0. Similarly, QJ21 and QJ20

b

b

θ2

λ2

φ

Gripper

θ1

λ1

F0

z0

y0

x0

F21

z21

y21

x21

F22

z22

y22

x22

F11

z11

y11

x11

F12

z12y12

x12

Fig. 2.3: Cartesian coordinate and body-fixed coordinates

are the rotation matrices that carry FJ2 into FJ1 and FJ2 into F0, respectively.

A 6×6 rotation matrix RJ10 is now introduced to transfer six-dimensional SAD screws

from FJ1 into F0:

RJ10 =

[
QJ10 O

O QJ10

]
(2.30)

Likewise, the 6× 6 rotation matrices RJ21 and RJ20 are further introduced:

RJ21 =

[
QJ21 O

O QJ21

]
, RJ20 =

[
QJ20 O

O QJ20

]
(2.31)
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where RJ21 and RJ20 carry FJ2 into FJ1 and FJ2 into F0, respectively.

Therefore, the relationships between KAJ (KFJ) and its counterpart K̄AJ (K̄FJ) are

readily derived:

KAJ = RT
J10K̄

AJRJ10, KFJ = RT
J20K̄

FJRJ20 (2.32)

2.3.3 Stiffness Indices

In order to characterize how stiff the PKM is, stiffness indices are introduced. The Carte-

sian stiffness matrix is dimensionally inhomogeneous, and hence, cannot admit a norm6.

Therefore, a normalization of the Cartesian stiffness matrix is needed.

The Cartesian stiffness matrix Ke maps a SAD screw u into an external wrench w,

namely,

w =

[
n

f

]
=

[
K11 K12

KT
12 K22

][
θ

σ

]
= Keu (2.33)

where n and f denote the external moment and force, θ and σ the “small”-amplitude

rotation and its translation counterpart, the latter being “small” when compared with the

dimensions of the link in question. Moreover, the submatrices K11, K12 and K22 have units

of Nm, N and N/m, respectively. Equation (2.33) is now rewritten in term of its individual

blocks:

f = K11θ +K12σ, n = KT
12θ +K22σ (2.34)

Firstly, dimensionless parameters will be obtained by the normalization method pro-

posed by Kövecses and Ebrahimi [130], as illustrated in the example below. Let Cηzη = τη,

η = 1, . . . , d. A physically meaningful quadratic form zTηC
T
ηCηzη = τ T

η τη, defines a gen-

eralized force/torque ellipse in the linear space of the parameter set grouped in η. The

eigenvalues of the matrix CT
ηCη are then used to define a natural coordinate system in pa-

rameter space η. The units of the parameter set η can be transferred into the base vectors

of the coordinate system. Dimensionless parameters sη can be obtained as

zη = Vηsη (2.35)

where Vη is an orthogonal matrix whose columns are the eigenvectors of CT
ηCη. Moreover,

6The putative norm would involve additions, or comparisons, of quantities that carry different units.
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Vη has the units of the parameter set η.

By resorting to this method, we have, for the force equation,

[
θ

σ

]
=

[
Sθ O

O Sσ

][
ζθ

ζσ

]
(2.36)

while, for the moment equation,

[
θ

σ

]
=

[
Hθ O

O Hσ

][
ηθ

ησ

]
(2.37)

where ζθ, ζσ, ηθ and ησ are dimensionless parameters, Sθ, Sσ, Hθ and Hσ being orthogonal

matrices whose columns are the eigenvectors of KT
11K11, K

T
12K12, K12K

T
12 and KT

22K22,

respectively. Substitution of eqs. (2.36) and (2.37) into eq. (2.34) leads to

n =
[
K11 K12

] [Sθ O

O Sσ

][
ζθ

ζσ

]
= Gnζ (2.38a)

f =
[
KT

12 K22

] [Hθ O

O Hσ

][
ηθ

ησ

]
= Gfη (2.38b)

Matrices GT
nGn and GT

f Gf have three mutually orthogonal eigenvectors corresponding to

three positive eigenvalues. These eigenvalues characterize the distortions of the ||n|| = 1

(Nm) and ||f || = 1 (N) unit spheres. Let the positive square roots of the eigenvalues of

GT
nGn and GT

f Gf be λi and µi, i = 1, 2, 3, respectively. The rotational and translational

stiffness indices λmin and µmin are the minima of λi, i = 1, 2, 3 and µi, i = 1, 2, 3, respectively,

i.e.,

λmin = min
i
λi, µmin = min

i
µi (2.39)

2.3.4 Numerical Results

The stiffness performance indices of the PMC are computed and plotted along the Adept

test cycle, as introduced in this subsection. The rotational and translational square root

eigenvalues λi and µi, i = 1, . . . , 3, are plotted along the test cycle trajectory in Fig. 2.4.

The rotational and translational stiffness indices λmin and µmin are plotted in Fig. 2.5.

These indices serve to identify the poor-stiffness postures along the trajectory, the smallest



2 Elastostatic Analysis 22

stiffness index corresponding to the weakest stiffness posture. According to Fig. 2.5, the

rotational and translational stiffness indices attain their minima at t = 0.5 s and t = 0 s,

respectively, which means that at the “place” posture (t = 0.5 s), the rotational stiffness

of the robot is the weakest. Meanwhile, at the “pick” posture, the translational stiffness

performance of the robot is the weakest.
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Fig. 2.4: The rotational and translational square root eigenvalues along the Adept test
cycle trajectory



2 Elastostatic Analysis 23

0   0.25 0.5 0.75 1   

t (s)

(a)

2900

2920

2940

2960

2980

3000

3020

m
in

 (
N

m
)

0   0.25 0.5 0.75 1   

t (s)

(b)

6.5

7

7.5

8

8.5

9

m
in

 (
N

)

10
5

Fig. 2.5: The rotational and translational stiffness indices along the Adept test cycle
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Chapter 3

Elastodynamics Analysis

3.1 Introduction

The elastodynamics analysis requires the stiffness and mass matrices of the robot. The

stiffness matrix was obtained in Chapter 2. The mass matrix is calculated as the Hessian

matrix of the kinetic energy generated by the flexible-component motion with the motors

locked. The objective of elastodynamics analysis is to obtain the natural frequencies of the

robot, which vary from posture to posture. To this end, the motors are assumed to be locked

at every posture along the prescribed trajectory, while the inertia forces act as the loads

on the elastostatic system thus resulting. This is a crucial step in the modelling because

the natural frequencies should be placed far from the excitation frequency spectrum of a

highly repetitive mechanical system to avoid resonance. The elastodynamics analysis of the

PMC, as an illustrative example, is conducted. The natural frequency and the excitation

spectrum are plotted along the test cycle of the pick-and-place operation. The natural

frequency will be further applied to build the dynamics model of the PMC in Chapter 4.

3.2 Calculation of the Mass Matrix

In this section, the mass matrix of the PMC is calculated as the Hessian of the kinetic

energy, generated by the flexible-component motion with the motors locked, with respect

to the generalized velocities.

To formulate the kinetic energy, the generalized coordinates and the generalized veloc-

ities are defined below.

2019/07/04
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The independent generalized-coordinate array is defined as

q =
[
qT
m qT

11 qT
21 δγ1 δγ2 δβ1 δβ2 δα1 δα1

]T
(3.1)

the corresponding generalized velocity array q̇ being

q̇ =
[
q̇T
m q̇T

11 q̇T
21 δγ̇1 δγ̇2 δβ̇1 δβ̇2 δα̇1 δα̇1

]T
(3.2)

Since all the motors are locked at a particular posture, the motion is generated by the

deformation of the flexible components. As for the PMC, the kinetic energy is generated

by the elastic motion of the arms, the forearms, the nuts and the Peppermill, as displayed

in Fig. 2.2(a). Let q̇J1, q̇
′

J1, q̇J2, q̇nJ and q̇m denote the corresponding twists defined at

the points PJ1, P
′

J1, PJ2, P
′

J2 and C, respectively, as shown in Fig. 2.2(b).

The schematic of the side view of limb J is shown in Fig. 3.1, where the points RcJ and

LcJ are the COM of the arm and the forearm, respectively. Let q̇aJ and q̇fJ denote the

twists defined at the points RcJ and LcJ , respectively.

Harmonic Drive

rc

PJ1

RcJ

lc

LcJ

PJ2

Fig. 3.1: Side view of limb J

The relationship between q̇J1 and q̇aJ is

q̇aJ = GJ1q̇J1, GJ1 =

[
1 0

−RJ 1

]
(3.3)

where RJ = CPM (rcJ), vector rcJ stemming from PJ1 and ending at RcJ .
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Similarly, the relationships among q̇′

J1, q̇J2 and q̇′

fJ are readily derived:

q̇fJ = GJ2q̇
′

J1 +GJ3q̇J2, GJ2 =

[
1 0

−LJ 1

]
, GJ3 =

[
1 0

−L′

J 1

]
(3.4)

where LJ = CPM (lcJ), L
′

J = CPM (l′cJ), vector lcJ stemming from P ′

J1 and ending at LcJ ,

vector l′cJ stemming from PJ2 and ending at LcJ . The inertia dyad was introduced by von

Mises [131], given by

M =

[
IC O

O m1

]

where m and IC are the mass and the moment of inertia, defined at the centre of mass of

a rigid body, O and 1 the 3× 3 zero and identity matrices.

The kinetic energy of the arm J is

TA
J =

1

2
q̇T
aJM

AJ q̇aJ , MAJ =

[
IAJ O

O mAJ1

]
(3.5)

where MAJ , IAJ and mAJ are the inertia dyad, inertia tensor and mass of the arm J ,

respectively. Similarly, the kinetic energy of the forearm, the nut and the Peppermill are

further introduced:

T F
J =

1

2
q̇T
fJM

FJ q̇fJ , TN
J =

1

2
q̇T
nJM

NJ q̇nJ , T P =
1

2
q̇T
mM

P q̇m (3.6)

where MFJ , MNJ and MP are the inertia dyads of the forearm and the nut of limb J , and

the Peppermill, respectively, given by

MFJ =

[
IFJ O

O mFJ1

]
, MNJ =

[
INJ O

O mNJ1

]
, MP =

[
IP O

O mP1

]
(3.7)

The kinetic energy of the PMC is the sum of the kinetic energies, generated by the

arms, the forearms, the nuts and the Peppermill:

Te =
2∑

J=1

(TA
J + T F

J + TN
J ) + T P (3.8)



3 Elastodynamics Analysis 27

Substitution of eqs. (3.3–3.6) into eq. (3.8), the kinetic energy of the PMC becomes,

Te =
1

2

2∑

J=1

[(GJ1q̇J1)
TMAJ (GJ1q̇J1) + (GJ2q̇

′

J1 +GJ3q̇J2)
TMFJ(GJ2q̇

′

J1 +GJ3q̇J2)

+ q̇T
nJM

NJ q̇nJ ] +
1

2
q̇T
mM

P q̇m

(3.9)

Moreover, differentiation of the two sides of eq. (2.11), the relationship between q̇J1 and

q̇′

J1 is obtained:

q̇′

J1 = q̇J1 + δβ̇JsJ (3.10)

By resorting to eqs. (2.12) and (2.13), the relationships between q̇J2 (q̇nJ) and its

counterpart q̇nJ (q̇m) are readily derived:

q̇J2 = q̇nJ + δγ̇JsJ , q̇nJ = GJ q̇m + δα̇JsHJ (3.11)

Substitution of eqs. (3.10) and (3.11) into eq. (3.9), leads to

Te =
1

2

2∑

J=1

[(GJ1q̇J1)
TMAJ(GJ1q̇J1) +GJ2(q̇J1 + δβ̇JsJ)

+GJ3(q̇nJ + δγ̇JsJ))
TMFJ(GJ2(q̇J1 + δβ̇JsJ) +GJ3(q̇nJ + δγ̇JsJ)

+ (GJ q̇m + δα̇JsHJ)
TMNJ(GJ q̇m + δα̇JsHJ)] +

1

2
q̇T
mM

P q̇m

(3.12)

The generalized mass matrix of the PMC is the Hessian matrix of Te with respect to the

generalized velocities. This matrix maps the generalized velocity array into the generalized

momentum array:



3 Elastodynamics Analysis 28




pm

p1

p2

p12

p22

p11

p21

p13

p23




=




M11 M12 M13 m14 m15 m16 m17 m18 m19

MT
12 M22 O m24 0 m26 0 m28 0

MT
13 O M33 0 m35 0 m37 0 m39

mT
14 mT

24 0T m44 0 m46 0 m48 0

mT
15 0T mT

35 0 m55 0 m57 0 m59

mT
16 mT

26 0T m46 0 m66 0 m68 0

mT
17 0T mT

37 0 m57 0 m77 0 m79

mT
18 mT

28 0T m48 0 m68 0 m88 0

mT
19 0T mT

39 0 m59 0 m79 0 m99







q̇m

q̇11

q̇21

δγ̇1

δγ̇2

δβ̇1

δβ̇2

δα̇1

δα̇1




(3.13)

where pm, pJ , pJ1, pJ2 and pJ3 are, respectively, the six-dimensional generalized momenta

defined are C, PJ1 and the generalized angular momenta about the RJ1, RJ2 and HJ joints,

O the 6×6 zero matrix, 0 the six-dimensional zero vector, the non-zero blocks of the mass

matrix being defined below:

M11 = GT
1G

T
13M

F1G13G1 +GT
1M

N1G1 +GT
2G

T
23M

F2G23G2 +GT
2M

N2G2 +MP

M12 = GT
1G

T
13M

F1G12, M13 = GT
2G

T
23M

F2G22, m14 = GT
1G

T
13M

F1G13s1,

m15 = GT
2G

T
23M

F2G23s2, m16 = GT
1G

T
13M

F1G12s1, m17 = GT
2G

T
23M

F2G22s2,

m18 = GT
1G

T
13M

F1G13sH1 +GT
1M

N1sH1, m19 = GT
2G

T
23M

F2G23sH2 +GT
2M

N2sH2,

M22 = GT
11M

A1G11 +GT
12M

F1G12, m24 = GT
12M

F1G13s1,

m26 = GT
12M

F1G12s1, m28 = GT
12M

F1G13sH1, M33 = GT
21M

A2G21 +GT
22M

F2G22,

m35 = GT
22M

F2G23s2, m37 = GT
22M

F2G22s2, m39 = GT
22M

F2G23sH2,

m44 = sT1G
T
13M

F1G13s1, m46 = sT1G
T
13M

F1G12s1, m48 = sTH1G
T
13M

F1G13s1,

m55 = sT2G
T
23M

F2G23s2, m57 = sT2G
T
23M

F2G22s2, m59 = sTH2G
T
23M

F2G23s2,

m66 = sT1G
T
12M

F1G12s1, m68 = sTH1G
T
13M

F1G12s1, m77 = sT2G
T
22M

F2G22s2,

m79 = sTH2G
T
23M

F2G22s2, m88 = sTH1G
T
13M

F1G13sH1 + sTH1M
N1sH1,

m99 = sTH2G
T
23M

F2G23sH2 + sTH2M
N2sH2

(3.14)

RJ1, RJ2 and HJ being passive joints, the angular momentum acting on them vanishes,
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i.e., pij = 0. The Cartesian mass matrix Me ∈ R
6×6, mapping the twist of the Peppermill

into the momentum applied onto it, namely, pJ = 0. From eq. (3.13), the Cartesian mass

matrix is obtained:

Me = M11 −Mb1M
−1
b2 M

T
b1 (3.15)

where

Mb1 =




MT
12

MT
13

mT
14

mT
15

mT
16

mT
17

mT
18

mT
19




T

, Mb2 =




M22 O m24 0 m26 0 m28 0

O M33 0 m35 0 m37 0 m39

mT
24 0T m44 0 m46 0 m48 0

0T mT
35 0 m55 0 m57 0 m59

mT
26 0T m46 0 m66 0 m68 0

0T mT
37 0 m57 0 m77 0 m79

mT
28 0T m48 0 m68 0 m88 0

0T mT
39 0 m59 0 m79 0 m99




(3.16)

3.3 Fourier Analysis

In this section, the excitation frequency spectrum is obtained by Fourier analysis, which will

be used to compare with the natural frequency to analyze the existence of the resonance.

3.3.1 Methodology

It is essential to obtain the frequency spectrum of a highly repetitive mechanical system

because the natural frequencies should be placed far from it to avoid resonance. The

frequency spectrum is obtained by means of Fourier analysis [132].

A periodic function f(t) with a fundamental frequency ω can be represented as:

f(t) =
a0
2

+
∞∑

i=1

ai cos(iωt) +
∞∑

i=1

bi sin(iωt)

where

a0 =
1

T

∫ T/2

−T/2

f(t)dt, ai =
1

T

∫ T/2

−T/2

f(t) cos(iωt)dt, bi =
1

T

∫ T/2

−T/2

f(t) sin(iωt)dt

in which i and T are the harmonic index and the period of function f(t), respectively.
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In this case, the periodic functions are the trajectory functions of the MP, namely, the

translations along the x-, the y- and the z-axes along with the rotation about the z-axis.

The trajectory introduced in Subsection 1.1, is depicted in Fig. 3.2.
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Fig. 3.2: The test trajectory plots: (a) the translation along the x-axis, (b) the translation
along the y-axis, (c) the translation along the z-axis , and (d) the rotation about the z-axis

3.3.2 Numerical Results

In order to obtain the excitation frequency spectrum and find the highest operation speed

whose excitation frequency spectrum is under the first natural frequency of the PMC, the

distribution of normalized parameters |āxn|, |āyn|, |āzn| and |āφn| with respect to the fre-

quency f when the speed is 1 and 2 cycles/s are plotted in the Figs. 3.3 and 3.4, respectively.

3.4 Modal Analysis

In this section, the modal analysis is conducted to obtain the natural frequencies of the

PMC.
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Fig. 3.3: Amplitudes of the harmonics of the four independent motions vs. frequency (1
cycle/s): (a) translation along the x-axis; (b) translation along the y-axis; (c) translation
along the z-axis; (d) rotation about the z-axis
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Fig. 3.4: Amplitudes of the harmonics of the four independent motions vs. frequency (2
cycles/s): (a) translation along the x-axis; (b) translation along the y-axis; (c) translation
along the z-axis; (d) rotation about the z-axis
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3.4.1 Methodology

Modal analysis calls for the stiffness and mass matrices, obtained above. The mathematical

model of the robot, at an equilibrium posture, is

Mẍ +Kẋ = 0 (3.17)

where M and K are the mass and stiffness matrices, while x is the SAD screw. To obtain

the natural frequencies of the system, the well-known dynamic-matrix is recalled. One has

(λM+K)u = 0 (3.18)

where λ and u are, respectively, the eigenvalue and the corresponding eigenvector. There-

fore, by computing the eigenvalues of the dynamic matrix M−1K, −ω2 is obtained, with ω

being an eigenfrequency. It should be noted, however, that the last three components of the

six-dimensional eigenvector u carry units of length, while the first three are nondimensional.

3.4.2 Numerical Results

Now we let the PMC conduct the pick-and-place operation along the Adept test cycle

and evaluate the first natural frequency, as displayed in Fig. 3.5. Only the first natural

frequency is shown, as the subsequent frequencies are well above the first, and, hence, are

not significant.

The minimum value of the first natural frequency is 52.5 Hz. According to Fig. 3.4, the

excitation frequency spectrum of an operation at 2 cycles/s, we can find that the translation

along the x- and y-axis as well as the rotation about the z-axis are obviously on the safe

side. The translation along the z-axis has already reached its limit; hence, resonance will

ensue if the operation speed is 3 cycles/s.
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Fig. 3.5: The evolution of the first natural frequency of the PMC along the test trajectory
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Chapter 4

Dynamics Modelling

4.1 Introduction

After the derivation of the elastodynamics model in the previous section, the pertinent

dynamics models are formulated as described in this chapter. A rigid-link conservative

dynamics model of the PMC is first built. Then, process noise, measurement noise, and

parameter uncertainty are taken into consideration to make the model realistic. In the

end, the first natural frequency of the PMC obtained from the elastodynamics analysis is

applied to build the dynamics model of the virtual flexible motor shaft of the PMC.

4.2 Rigid-link Conservative Dynamics Model

In this section, a rigid-link conservative dynamics model of the PMC is built, which is used

to design the control schemes in Chapter 5. The dynamics of the original-version PMC was

reported by Karimi Eskandary and Angeles [133] and Karimi Eskandary et al. [134]. The

current version of the PMC is shown in Fig. 4.1. Compared with the original-version, the

current-version robot structure has six more rigid bodies, as described below. Each screw

is connected to the belt through a pulley. The robot has four pulleys in total, one for each

screw. The belt-pulley transmission system is connected to a harmonic drive through a

sliding base in each limb. The four pulleys and the two sliding bases are considered in the

model.

2019/07/04
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Fig. 4.1: Current versoin of the PMC

The dynamics of the current-version PMC is given by

τ = Iψ̈ +Cψ̇ − γ (4.1)

with

τ ≡
[
τ1R τ1L τ2R τ2L

]T
, ψ ≡

[
ψ1R ψ1L ψ2R ψ2L

]T
, I ≡

17∑

i=1

Ti
TMiTi,

C ≡
17∑

i=1

(Ti
TMiṪi +Ti

TWiMiTi), γ ≡
17∑

i=1

Ti
Twi

G, Mi ≡

[
Ii O

O mi1

]
,

Wi ≡

[
Ωi O

O O

]
, Ti ≡

∂ti

∂ψ̇

(4.2)

where 1 and O are the 3 × 3 identity and zero matrices; τ the four-dimensional motor-

torque array; γ the four-dimensional generalized gravity-force array, which appears with a

negative sign because gravity opposes the actuator torques; ψ the four-dimensional motor

angular displacement array; Ti the twist-shaping matrix, mapping the joint rates of the

motors into the twist vector ti of the ith body [135]; Ii the inertia tensor defined at the

centre of mass (COM) of the ith body and mi the mass of the ith body. Moreover, wG
i is
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the gravitational wrench acting on the ith body, while Ωi is the angular-velocity matrix,

defined as the CPM of the angular-velocity vector ωi. Furthermore, ti and wi are defined

as,

ti ≡

[
ωi

vi

]
, wi ≡

[
ni

fi

]
(4.3)

where ωi and vi are the angular velocity and the velocity of the COM of the ith body,

while ni and fi are the moment and the force acting on the ith body. As well, fi acts at

the COM of the ith body. The six-dimensional twist vectors are

tsL1 =




ψ̇1L

0

0

0

0

0




, tsR1 =




ψ̇1R

0

0

0

0

0




, tsL2 =




0

ψ̇2L

0

0

0

0




, tsR2 =




0

ψ̇2R

0

0

0

0




, tpU1 =




ψ̇1L

0

0

u̇1

0

0




,

tpD1 =




ψ̇1R

0

0

u̇1

0

0




, tpU2 =




0

ψ̇2L

0

0

u̇2

0




, tpD2 =




0

ψ̇2R

0

0

u̇2

0




, tb1 =




0

0

0

u̇1

0

0




, tb2 =




0

0

0

0

u̇2

0




,

ta1 =




θ̇1

0

0

u̇1

−raθ̇1 sin(θ1)

raθ̇1 cos(θ1)




, ta2 =




0

θ̇2

0

−raθ̇2 sin(θ2)

u̇2

−raθ̇2 cos(θ2)




, tn1 =




0

0

0

u̇1

u̇2

ḣ1




, tn2 =




0

0

0

u̇1

u̇2

ḣ2




,
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tf1 =




λ̇1

0

0

u̇1

−rθ̇1 sin(θ1)− rf λ̇1 sin(λ1)

rθ̇1 cos(θ1) + rf λ̇1 cos(λ1)




, tf2 =




0

λ̇1

0

−rθ̇2 sin(θ2)− rf λ̇2 sin(λ2)

u̇2

−rθ̇2 cos(θ2)− rf λ̇2 cos(λ2)




,

tp =




0

0
π
pp
(ḣ1 − ḣ2)

u̇1

u̇2
1
2
(ḣ1 + ḣ2)




with

ui =
p(ψiL − ψiR)

4π
, θi =

ψiL + ψiR

2G
, hi = (−1)i+1(r sin(θi) + l sin(λi)), i = 1, 2

λ1 = 2π − arccos
(u2
r

− cos(θ1)
)
, λ2 = arccos

(u1
r

− cos(θ2)
)

where i indicates the ith limb of the PMC, tsLi, tsRi, tpUi, tpDi, tbi, tai, tni, tfi and tp

the twists of the left-hand screw; the right-hand screw; the up and the down pulleys; the

sliding base; the arm; the nut; the forearm of the ith link, and the twist of the Peppermill,

respectively. Moreover, G is the total gear-reduction ratio due to the belt-pulley transmis-

sion and the harmonic drive. As well, pp is the pitch of the Peppermill. Furthermore, rc

and lc denote the distances of the COM of the arm and the forearm, as depicted in Fig. 4.2.

The principle of conservation of energy is applied to verify the effectiveness of the model:

the total output energy of the actuators should equal the change of the system energy within

any time interval. ∫ T

T0

τ T ψ̇ dt =

17∑

i=1

(∆Ki +∆Ui) (4.4)

where τ and ψ̇ are the motor torque array and the array of motor joint rates, respectively.

Furthermore, in the above principle, energy loses are neglected. As well, ∆Ki and ∆Ui are

the changes of the kinetic energy and the potential energy of the ith body for t ∈ [T0, T ].
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Harmonic Drive

rc

PJ1

RcJ

lc

LcJ

PJ2

Fig. 4.2: Side view of limb J

The total energy of the PMC and the total energy generated by the actuators are shown in

Fig. 4.3. It can be seen that the error between the two plots is negligible, which validates

Fig. 4.3: PMC total energy and the actuators work

the model.
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4.3 Model Enhancement

In the foregoing section, the rigid-link conservative dynamics model of the PMC was built.

In this section, joint friction, parameter uncertainty, process noise, and measurement noise

are all taken into account in order to make the model realistic.

Friction plays an important role in robot performance. It is crucial to compensate for

friction in the robot control schemes, which becomes crucial in high-speed operations. The

tracking performance of the control scheme is decisively affected by friction compensation.

In our case, Rayleigh damping is introduced to model power losses, without taking stiffness

matrix into consideration. To this end, we introduce the damping friction matrix, namely,

D(t) = αI(t) (4.5)

where I(t) is defined in eq. (4.1) as the inertia tensor, while α is the mass proportional

Rayleigh damping coefficient. Therefore, the enhanced dynamics model of the PMC, taking

friction into consideration, is obtained as

τ (t) = I(t)ψ̈(t) +C(t)ψ̇(t) +D(t)ψ̇(t)− γ(t) (4.6)

Some parameters in the dynamics model of the PMC are known only through their

nominal design values, their actual values deviating from nominal in practice. In our case,

these parameters include the mass and the length of the arms and the forearms of the PMC.

These values are assumed to deviate from the nominal design values by small amounts that

follow a Gaussian distribution with a standard deviation of 5%, which is higher than the

one would find upon considering standard tolerances.

Moreover, process noise and measurement noise are introduced in the model. The

former comes from the rotor imbalance and friction in the motors, the latter from encoder

uncertainty due to their discrete nature. The covariance matrix of the process noise is

related to the maximum motor torques, arrayed in vector τmax; the covariance matrix of

the measurement noise is related to the resolution of the encoder ǫ. Noise has a significant

influence on controller design. In our case, a Kalman filter and an extended Kalman filter

are applied and optimized to mitigate the impact noise. Based on the three-sigma model,

the assumption is that the standard deviation of the process noise and measurement noise

are σp = (1/30)τmax and σm = 2ǫ. The mean and covariance matrices of process and
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measurement noise are

E[w] = E[v] = O, E[wwT ] = diag(σ2
p1, σ

2
p2, σ

2
p3, σ

2
p4), E[vvT ] = σ2

m1,

where w is the process noise, v the measurement noise, σpi the standard deviation of the

ith motor, O the 4× 4 zero matrix and 1 the 4× 4 identity matrix.

4.4 Dynamics Model of the Virtual Flexible Motor Shaft

In this section, the dynamics model of the virtual flexible motor shaft (VFMS) of the PMC

is built, which takes link flexibility into consideration to make the model realistic. The

flexibility of the arms and the forearms is transferred to the motor shafts. Then, the model

represents a robot with rigid arms and forearms, but flexible motor shafts. It is assumed

that the motor and the shaft are connected by a massless torsional spring, as shown in

Fig. 4.4. The natural frequency of this motor-shaft system is assumed to coincide with the

m
y y

Motor

k

Motor Shaft

Torsional Spring

m
t t

Fig. 4.4: VFMS model

natural frequency of the flexible-link robot structure, obtained in Section 3.4. This model

is developed on the basis of the rigid-link model, as shown in eq. (4.6).

The dynamics model of this system is represented as

Jψ̈m(t) +K[ψm(t)−ψ(t)] = τm(t) (4.7)

where

J = J1, K = k1 (4.8)

with 1 denoting the 4 × 4 identity matrix, while ψm the angular displacement vector of

the motors, ψ the angular displacement vector of the motor shafts, τm the motor torque
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vector, J and k the moment of inertia of the motor shaft and the torsional stiffness of the

virtual spring. The torque τ is generated by the elastic torsional deformation of the spring,

namely,

τ (t) = K[ψm(t)−ψ(t)] = k[ψm(t)−ψ(t)] (4.9)

Substitution of eqs. (4.7) and (4.9) into eq. (4.6) leads to the VFMS dynamics model of

the PMC:

τm(t) = I(t)ψ̈(t) +C(t)ψ̇(t) +D(t)ψ̇(t)− γ(t) + Jψ̈m(t) (4.10)
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Chapter 5

Control Schemes

5.1 Introduction

Based on the mathematical models derived in the previous sections, the pertinent control

schemes are formulated as described in this chapter. Four kinds of control schemes are

designed based on the rigid-link mathematical model and introduced in Sections 5.2–5.5.

Process and measurement noise are applied to the VFMS model to validate the control

schemes. Moreover, several trajectories are designed to test the robustness of the schemes.

Their tracking performance, pros and cons, are discussed in Section 5.6. In Section 5.7, the

eligibility of a linear controller for this nonlinear system is discussed.

5.2 Gain-scheduling: Linear Quadratic Regulator and Kalman

Filter

This section is devoted to the gain-scheduling linear quadratic regulator combined with

the Kalman filter control scheme. First, the concept of a gain-scheduling control scheme is

introduced. The design details of this scheme are introduced in the balance of the chapter.

5.2.1 Introduction of the Gain-scheduling Controller

The gain-scheduling method is one of the most widely used control schemes for nonlinear

systems. It is based on linearization and interpolation. The gain-scheduling control scheme

of the PMC is taken as an example to illustrate the design process. Firstly, the nonlinear

2019/07/04
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mathematical model is linearized at several operation points along the desired trajectory

to obtain a family of linear plant models. The output of the PMC is the vector array of

the motor angular displacements. Because joint positions are only measured, an observer

is designed to estimate the joint rates. Secondly, the controller and observer gains are

tuned for each linear plant model. Thirdly, a gain-scheduling architecture is designed, with

the controller and observer gains tuned according to a scheduling variable, i.e., the output

of the plant. Lastly, the output of the feedback controller is obtained by multiplying the

controller gain by the state error. The motor torque is obtained through the sum of the

feed-forward desired torque and the output torque of the feedback controller. The process

noise d and the measurement noise n are taken into account as introduced in Section 4.3.

The control scheme diagram is shown in Fig. 5.1. The design details of the gain-scheduling

ψ

n

τ

L

x̂
K

L

xd

e

τc

τd

τ

d

Fig. 5.1: Control scheme diagram

LQR combined with the Kalman filter (KF) are introduced below.

5.2.2 Operation Points

The operation trajectory under study is called the Adept cycle [56, 57, 56]. The trajectory

involves a vertical upward translation of 25 mm of the gripper, followed by a horizontal

translation of 300 mm and a final vertical downward translation of 25 mm, then back to

the starting pose along the same path. During the horizontal section, the gripper has to
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undergo a rotation of 180◦ about a vertical axis, then come back to the original orientation,

as depicted in Fig. 3.2. There are iN operation points in total, and hence jN = iN − 1

segments, distributed along the path. In our case, 11 operation points are chosen. There

are only six points on the spatial path because another five points, printed in red, overlap

in the space domain, as shown in Fig. 5.2.

Fig. 5.2: Operation points of the path

5.2.3 Linearization

A nonlinear system, in general, is described as

ẋ(t) = f(x(t),u(t)), x(0) = x0, (5.1a)

y(t) = g(x(t),u(t)), (5.1b)

where x(t) ∈ R
q is the state, u(t) ∈ R

p the input, y(t) ∈ R
m the output. The relationships

between a nominal trajectory, x̄(t), ū(t) and ȳ(t), and perturbations, δx(t), δu(t) and

δy(t), to the nominal trajectory are

x(t) = x̄(t) + δx(t) (5.2)

u(t) = ū(t) + δu(t) (5.3)

y(t) = ȳ(t) + δy(t) (5.4)

Substitution of eqs. (5.2) and (5.3) into eq. (5.1a), then expansion of f(x(t),u(t)) using

a Taylor-series expansion leads to

˙̄x(t) + δẋ(t) = f(x̄(t) + δx(t), ū(t) + δu(t)) = f(x̄(t), ū(t)) + Ã(t)δx(t) + B̃(t)δu(t) + HOT

(5.5)
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where

Ã(t) =
∂f(x(t),u(t))

∂x(t)

∣∣∣∣
x(t)=x̄(t),u(t)=ū(t)

(5.6)

B̃(t) =
∂f(x(t),u(t))

∂u(t)

∣∣∣∣
x(t)=x̄(t),u(t)=ū(t)

(5.7)

and HOT stands for the higher-order terms.

Substitution of eqs. (5.2–5.4) into eq. (5.1b), then expansion of g(x(t),u(t)) using a

Taylor-series expansion leads to

ȳ(t) + δy(t) = g(x̄(t) + δx(t), ū(t) + δu(t)) = g(x̄(t), ū(t)) + C̃(t)δx(t) + D̃(t)δu(t) +HOT

(5.8)

where

C̃(t) =
∂g(x(t),u(t))

∂x(t)

∣∣∣∣
x(t)=x̄(t),u(t)=ū(t)

(5.9)

D̃(t) =
∂g(x(t),u(t))

∂u(t)

∣∣∣∣
x(t)=x̄(t),u(t)=ū(t)

(5.10)

Neglecting the HOT, the linearized system is represented as

δẋ(t) = Ã(t)δx(t) + B̃(t)δu(t) (5.11)

δy(t) = C̃(t)δx(t) + D̃(t)δu(t) (5.12)

In our case, the rigid-link dynamics model of the PMC is

τ (t) = I(t)ψ̈(t) +C(t)ψ̇(t)− γ(t) (5.13)

as defined in eq. (4.1).

Rearrangement of eq. (5.13) leads to

ψ̈(t) = I(t)−1(τ (t)−C(t)ψ̇(t) + γ(t)) = f(x(t), τ (t)) (5.14)

where x(t) =
[
ψ(t)T ψ̇(t)T

]T
.

By resorting to eqs. (5.6) and (5.7), the linearized model of the PMC is

δψ̈(t) = Ãb1(t)δψ(t) + Ãb2(t)δψ̇(t) + B̃b(t)δτ (t) (5.15)
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with the definitions below:

Ãb1(t) =
∂f(x(t), τ (t))

∂ψ(t)

∣∣∣∣
x(t)=x̄(t),τ (t)=τ̄ (t)

(5.16)

Ãb2(t) =
∂f(x(t), τ (t))

∂ψ̇(t)

∣∣∣∣
x(t)=x̄(t),τ (t)=τ̄ (t)

(5.17)

B̃b(t) =
∂f(x(t), τ (t))

∂τ (t)

∣∣∣∣
x(t)=x̄(t),τ (t)=τ̄ (t)

(5.18)

5.2.4 State-space Form

By resorting to eq. (5.15), the state-space form is represented as

[
δψ̇(t)

δψ̈(t)

]
=

[
O 1

Ãb1(t) Ãb2(t)

][
δψ(t)

δψ̇(t)

]
+

[
0

B̃b(t)

]
δτ (t) = Ã(t)

[
δψ(t)

δψ̇(t)

]
+B̃(t)δτ (t) (5.19)

where O is the 4 × 4 zero matrix, 1 the 4 × 4 identity matrix and 0 the four-dimensional

zero vector. In the developments below, Ãi and B̃i, i = 1, 2, . . . , itol, denote the values of

Ã and B̃ at the ith operation point.

5.2.5 Linear Quadratic Regulator and Kalman Filter

LQR is a controller based on the theory of optimal control. The optimal controller is

obtained upon minimization of the quadratic cost function given by [136]

J(K) =

∫
∞

0

(xT (t)Qx(t) + uT (t)Ru(t)) dt (5.20)

where Q = QT ≥ O and R = RT > O are the weight matrices, penalizing the state

x(t) and control input u(t), respectively. The LQR is tuned based on these two matrices.

The choice of Q and R depends on how we want to penalize the states and the control

inputs. Therefore, the idea of the LQR is to seek the maximum return from the system at

a minimum cost. In our case, the minimization of the above cost functional leads to the

algebraic Riccati equation, namely,

ÃT
i Pi +PiÃi −PiB̃iR

−1B̃T
i Pi +Q = 0, i = 1, 2, . . . , itol (5.21)
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which results in the feedback gain matrix Ki = −R−1B̃T
i Pi at the ith operation point. The

LQR requires that all the states be available for feedback, but, in our case, the angular rates

of the motors are not available. Therefore, an observer needs to be designed to estimate

them. In particular, a KF will be used to estimate the states.

A time-varying linear system, taking the measurement noise and process noise into

consideration, is given by

ẋ(t) = A(t)x(t) +B(t)u(t) +Gw, x(0) = x0

y(t) = C(t)x(t) + v

where w and v are Gaussian, stationary white process and measurement noise. Matrix G

is often set equal to the identity matrix, which means that the process noise goes directly

into the state-variables. The mean and covariance matrices of w and v are

E[w] = E[v] = O, E[wwT ] = W, E[vvT ] = V

The optimal state estimate x̂(t), given by the KF, is obtained upon integration of

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + L(t)(y(t)−C(t)x̂(t)), x̂(0) = x0

Key to the synthesis of the KF is the solution of the Riccati equation [137]

A(t)S(t)+S(t)AT (t)−S(t)CT (t)V−1C(t)S(t)+G(t)WGT (t) = Ṡ(t), S(0) = S0 (5.22)

which results in the observer gain matrix L(t) = S(t)CT (t)V−1.

In our case, C =
[
1 O

]
, where 1 is the 4 × 4 identity matrix, while O the 4 × 4

zero matrix. In our case, the problem formulation leads to a sequence of algebraic Riccati

equations, namely,

ÃiSi + SiÃ
T
i − SiC

TV−1CSi +GWGT = 0, i = 1, 2, . . . , itol (5.23)

which results in the observer gain Li = SiC
TV−1 at the ith operation point.
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5.2.6 Gain-scheduling Method

In order to obtain the controller and observer gains between operation points, a linear

gain-scheduling method is introduced in this subsection, based on [138]. The estimated

state variable x̂(t) =
[
ψT (t) ψ̇T (t)

]T
is chosen as the scheduling variable. The estimated

state variable is an eight-dimensional vector, as only the four-dimensional angular position

vector ψ(t) is used as the scheduling variable. This vector is applied to obtain the estimated

platform pose p̂(t) = [x̂c(t) ŷc(t) ẑc(t) φ̂c(t)]
T . In our case, there are iN operation

points along the path, distributed evenly in the x-direction. The length of the path in

the x-direction is xN . The path is divided into iN − 1 segments. In the ith segment, the

controller and observer gains Kip
i (x̂c(t)) and L

ip
i (x̂c(t)) are

K
ip
i (x̂c(t)) = si(x̂c(t))Ki + si+1(x̂c(t))Ki+1 (5.24)

L
ip
i (x̂c(t)) = si(x̂c(t))Li + si+1(x̂c(t))Li+1 (5.25)

where
si(x̂c(t)) = 1− (x̂c − (xN/(iN − 1))(j − 1))/(xN/(iN − 1))

si+1(x̂c(t)) = 1− si(x̂c(t))
(5.26)

Moreover, in the ith segment, the state-space matrices Ã
ip
i (x̂c(t)) and B̃

ip
i (x̂c(t)) are ob-

tained as convex combinations of Ãi, Ãi+1, B̃i and B̃i+1, i.e.,

Ã
ip
i (x̂c(t)) = si(x̂c(t))Ãi + si+1(x̂c(t))Ãi+1 (5.27)

B̃
ip
i (x̂c(t)) = si(x̂c(t))B̃i + si+1(x̂c(t))B̃i+1 (5.28)

Since state-space matrices, controller and observer gains are obtained in different segments,

the next step is to combine them together into a closed-loop system.

5.2.7 Combination

The combination of controller and observer are shown in the diagram of Fig. 5.1.
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5.3 Linear Quadratic Regulator and Extended Kalman Filter

The second control scheme is introduced in this section. The KF observer, used in the

first control scheme, is replaced by the extended Kalman filter (EKF). Compared with the

linear observer KF, the EKF is a nonlinear observer that takes the nonlinear dynamics of

the plant into the account. The EKF can be designed as a semi-real-time or a real-time

observer. The real-time extended Kalman filter (REKF) updates the observer gain by

solving the Riccati equation in real-time. Therefore, the REKF has a high computational

burden, especially in high-speed operations. Compared with the REKF, the semi-real-time

extended Kalman filter (SEKF) updates the observer gains by interpolating the observer

gains between the operation points according to the estimated state x̂(t), which sacrifices

the property of updating the observer gain in real-time to achieve a smaller computational

complexity. Therefore, the SEKF is more suitable for real-time control in practice. The

EKF is introduced below.

5.3.1 Extended Kalman Filter

A nonlinear system is given by eq. (5.1a), its output being given by

y(t) = g(x(t)) (5.29)

The EKF is constructed as

˙̂x(t) = f(x̂(t),u(t)) + L(t)(y(t)− g(x̂(t))), x̂(0) = x0 (5.30)

where L(t) is the observer gain matrix updated in real-time. To obtain L(t), the Riccati

equation given in eq. (5.22) must be solved, where A(t) and C(t) are given in eqs. (5.6)

and (5.9) and, in this case G = 1. The observer gain is represented as

L(t) = S(t)CT (t)V−1 (5.31)

5.4 Constant-gain Controller

In this section, the third control scheme is introduced. During the process of finding the

minimum operation points of the gain-scheduling controller, it is found that the PMC can
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be controlled by a controller designed using one operation point, namely, a constant-gain

controller combined with a constant-gain observer. The constant controller and observer

gains are designed at the middle operation point of the path. The reason why this point

is chosen as the only one, instead of any other points, will be explained in Section 5.7. In

general, a nonlinear system is controllable by means of a nonlinear controller. A mechanical

system is controllable by a PD controller because of its skew-symmetry property [139]. In

our case, a constant-gain LQR, combined with the constant-gain KF, is applied to control

the robot. Then, an constant-gain EKF is applied to substitute the constant-gain KF to

improve the tracking performance of the controller. In order to find the limitations of this

controller, a higher-speed operation trajectory is applied to verify the relationship between

controllability and operation speed. Moreover, a sine-wave trajectory, is designed and

applied to test the tracking performance of this linear controller, as shown in Section 5.6.

5.5 Feed-forward PD Controller Based on the Sliding Mode

Scheme

The fourth control scheme is introduced in this section. Inspired by the constant-gain

controller, one more linear controller—the feed-forward PD controller, based on the sliding-

mode scheme—is designed based on an adaptive control scheme [140]. The dynamics of a

general manipulator with n rigid links is given by the model

M(q)q̈ +C(q, q̇)q̇+ g(q) = τ (5.32)

where q is the n-dimensional joint displacement vector array, τ the n-dimensional motor

torque array, M(q) the n × n generalized inertia matrix of the manipulator, C(q, q̇) the

n×n matrix of Coriolis-and-centrifugal force and g(q) the n-dimensional generalized-force

vector, stemming from gravity. The manipulator is guided to operate along a desired

trajectory qd.

A sliding surface is defined as

ė+Λe = 0 (5.33)

where e is the tracking error of joint positions, given by

e = q− qd (5.34)
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while ė is the tracking error of the joint velocities, given by

ė = q̇− q̇d (5.35)

Moreover, Λ is a n× n positive-definite matrix and 0 is the n-dimensional zero vector.

A reference trajectory qr is then defined as

qr = qd −Λ

∫ t

0

e dt (5.36)

Accordingly,

q̇r = q̇d −Λe (5.37)

q̈r = q̈d −Λė (5.38)

If a sliding surface is defined as

s = ėr = q̇− q̇r = ė+Λe (5.39)

then, the control law becomes

τ = M(q)q̈r +C(q, q̇)q̇r + g(q)−KDs (5.40)

where KD is a n× n positive-definite matrix.

To demonstrate the global convergence of the tracking scheme, a Lyapunov function

candidate is considered as

V (t) =
1

2
sTM(q)s (5.41)

whose derivative is

V̇ (t) = sTM(q)ṡ +
1

2
sTṀ(q, q̇)s (5.42)

where ṡ is given by

ṡ = q̈− q̈r (5.43)

Upon substitution of eqs. (5.32) and (5.43) into eq. (5.42), we obtain

V̇ (t) = sT (τ −C(q, q̇)q̇− g(q)−M(q)q̈r) +
1

2
sTṀ(q, q̇)s (5.44)
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Further, substitution of eqs. (5.39) and (5.40) into eq. (5.44) leads to

V̇ (t) = −sTKDs+
1

2
sT [Ṁ(q, q̇)− 2C(q, q̇)]s (5.45)

Since the matrix Ṁ(q, q̇)− 2C(q, q̇) is skew-symmetric, we have

V̇ (t) = −sTKDs < 0 (5.46)

which shows that the output error converges to the sliding surface s = 0. Since Λ is

positive-definite, e and ė converge to the n-dimensional zero vector as t → ∞. Therefore,

the controller defined by eq. (5.40) is globally, asymptotically stable, thereby guaranteeing

a zero steady-state error for joint position and velocity.

5.6 Simulation

This section provides the results obtained when applying different kinds of schemes to con-

trol the PMC. Four kinds of controllers are designed based on the rigid-link dynamics model

of the robot. We used the simplest plant model to design the controllers and used the most

complex model to test their robustness. Joint friction, link flexibility, measurement plus

process noise, and parameter uncertainty are all included in the test model. Furthermore,

different kinds of trajectories are applied to verify the robustness of the control schemes

and to find the limitations of linear control schemes.

5.6.1 1 Cycle Per Second

The simulation is conducted at one Adept cycle per second. The maximum translational

tracking error of gain-scheduling LQR combined with KF controller is about 1.7 × 10−4

meter while the maximum rotational error is about −0.05 rad, as shown in Fig. 5.3. Then,

the KF observer is substituted by the SEKF observer, which results in a lower rotation error,

as shown in Fig. 5.4. The REKF observer is better than the SEKF observer, as introduced.

From the simulation results, shown in Fig. 5.5, the translational and rotational tracking

errors of gain-scheduling LQR combined with the REKF controller are smaller than the

errors shown in Fig. 5.4. The constant-gain LQR combined with the constant-gain EKF

controller is applied to control the robot. The maximum translational tracking error is
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1 × 10−4 m larger than the gain-scheduling controller, which is still good, as plotted in

Fig. 5.6. However, another linear controller, namely, the feed-forward PD controller, based

on the sliding-mode scheme, is not as good as the constant-gain LQR controller. The

maximum translational tracking error is about twice as big as that of the constant-gain

LQR controller, as shown in Fig. 5.7.

(a) (b)

Fig. 5.3: The tracking errors of a 1-cycle/s operation in Cartesian space of the gain-
scheduling LQR combined with the KF controller: (a) translational tracking errors; (b)
rotational tracking error

In order to verify the design quality of the observers, the relationships between 3σ

and estimation errors of four motor angular positions ψi of the KF, the SEKF, and the

REKF are shown in Figs. 5.8–5.10, respectively. From these results, it is apparent that

our observers are suitably designed, because the estimation error of the state variables are

located inside the 3σ curves.

From the simulation results, we can observe that the tracking performance of these

controllers is promising when the speed is 1 cycle per second. The best controller is the

constant-gain LQR combined with the constant-gain EKF controller, which has almost the

minimum tracking errors and the lowest computational complexity.
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(a) (b)

Fig. 5.4: The tracking errors of a 1-cycle/s operation in Cartesian space of the gain-
scheduling LQR combined with the SEKF controller: (a) translational tracking errors; (b)
rotational tracking error

(a) (b)

Fig. 5.5: The tracking errors of a 1-cycle/s operation in Cartesian space of the gain-
scheduling LQR combined with the REKF controller: (a) translational tracking errors; (b)
rotational tracking error

5.6.2 10 Cycles Per Second

It is necessary to test the performance of the linear controllers under high-speed because

our aim is a high-speed pick-and-place robot to break the current record of three cycles
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(a) (b)

Fig. 5.6: The tracking errors of a 1-cycle/s operation in Cartesian space of the constant-
gain LQR combined with the constant-gain EKF controller: (a) translational tracking
errors; (b) rotational tracking error

(a) (b)

Fig. 5.7: The tracking errors of a 1-cycle/s operation in Cartesian space of the feed-
forward PD controller, based on the sliding-mode scheme: (a) translational tracking errors;
(b) rotational tracking error

per second. Moreover, we want to investigate whether our controller is effective under high

operation speeds. The linear controllers were tested at 10 cycles per second, which is three

times the record. A friction-matrix term is added to the model to account for power losses.
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(a) (b)

(c) (d)

Fig. 5.8: Estimation errors of angular positions of the KF: (a) δψ1; (b) δψ2; (c) δψ3; and
(d) δψ4
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(a) (b)

(c) (d)

Fig. 5.9: Estimation errors of angular positions of the SEKF: (a) δψ1; (b) δψ2; (c) δψ3;
and (d) δψ4
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(a) (b)

(c) (d)

Fig. 5.10: Estimation errors of angular positions of the REKF: (a) δψ1; (b) δψ2; (c) δψ3;
and (d) δψ4
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The Cartesian space tracking errors are displayed in Figs. 5.11 and 5.12. Simulation results

show that the linear controllers have an excellent tracking performance even at 10 cycles

per second.

(a) (b)

Fig. 5.11: The tracking errors at 10 cycles/s in Cartesian space of the constant-gain LQR
combined with the constant-gain EKF controller: (a) translational tracking errors; (b)
rotational tracking error

5.6.3 Sine-wave Trajectory

The horizontal translation length of the Adept cycle, 300 mm, is much longer than that in

the vertical direction, 25 mm. The short vertical direction occludes the nonlinearity of the

dynamics of the PMC, when the robot tracks that trajectory. Therefore, a more complex

trajectory, dubbed the sine-wave trajectory is designed. One more objective when designing

this trajectory is to verify whether the linear controllers are suitable for a more demanding

task. The trajectory is depicted in Fig. 5.13. The Cartesian space tracking errors of the

two linear controllers are shown in Figs. 5.14 and 5.15. The simulation results show that

the linear controllers can still have a good tracking performance even in the presence of a

trajectory richer in nonlinearities.
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(a) (b)

Fig. 5.12: The tracking errors at 10 cycles/s in Cartesian space of the feed-forward PD con-
troller, based on the sliding-mode scheme: (a) translational tracking errors; (b) rotational
tracking error

Fig. 5.13: The sine-wave trajectory plots: (a) the translation along the x-axis, (b) the
translation along the y-axis, (c) the translation along the z-axis , and (d) the rotation
about the z-axis
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(a) (b)

Fig. 5.14: The tracking errors of the sine-wave trajectory in Cartesian space of the
constant-gain controller: (a) translational tracking errors; (b) rotational tracking error

(a) (b)

Fig. 5.15: The tracking errors of the sine-wave trajectory in Cartesian space of the feed-
forward PD controller, based on the sliding-mode scheme: (a) translational tracking errors;
(b) rotational tracking error

5.7 Discussion

The reason why a linear controller is capable of controlling a nonlinear system is discussed

in this section. First of all, we want to find whether the feed-forward signal counteracts the
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nonlinearity of the PMC so that the constant-gain controller is eligible to control the robot.

The feed-forward signal is obtained through the dynamics model. However, there are some

ignored factors, when the dynamics model is constructed, such as friction and parameter

uncertainty. Therefore, the feed-forward signal is not reliable, i.e., it is not the exact input

to produce the prescribed output. Based on this consideration, the feed-forward signal is

cancelled in the control loop to test the robustness of the constant-gain controller at 10

cycles per second. The simulation result is shown in Fig. 5.16.

(a) (b)

Fig. 5.16: The tracking errors at 10 cycles/s in Cartesian space of the constant-gain
LQR combined with the constant-gain EKF controller and no feed-forward signal: (a)
translational tracking errors; (b) rotational tracking error

From the above simulation result, the performance of the constant-gain controller with-

out the feed-forward signal is still promising. Therefore, the reason why a linear controller

can control a nonlinear system does not lie in the feed-forward signal.

According to the introduction of the constant-gain controller, we know that it is de-

signed based on one specific operation point. Different operation points correspond to

different controller gain matrices. During the process of designing the constant-gain con-

troller, simulation results show that the choice of a specific operation point doesn’t have

a significant influence on the tracking errors, which motivates us to investigate the vari-

ation of the controller gain matrix Ki at the ith operation point along the Adept cycle.

Since matrix K is a dimensionally inhomogeneous, it is partitioned into blocks K1 and K2,
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carrying units Nm and Nms−1, respectively:

K =
[
K1 K2

]
(5.47)

The Frobenius norms ofK1 andK2 are shown in Fig. 5.17, which indicates thatK undergoes

“small” variations along the Adept cycle. These results help explain the reason why the

choice of a specific operation point does not have a significant influence on the tracking

performance. No matter which operation point we choose, the controller gain matrix K

changes a very small amount over time. In fact, for all intents and purposes, K is constant

over time. Furthermore, matrix K is obtained as the solution of the algebraic Riccati

equation that is related with matrices Q, R, A, and B, as per eq. (5.21). In our case,

the weighting matrices Q and R are constant. Therefore, we focus on the variation of

the matrices A and B in order to find the reason why matrix K is constant over time.

The matrices A and B are dimensionally inhomogeneous. They are partitioned into blocks

carrying the same units, as shown below:

A =

[
O 1

A1 A2

]
, B =

[
0

B1

]
(5.48)

whereA1, A2, and B1 carry the units s−2, s−1, and N−1m−1s−2, respectively. The Frobenius

norms of the various blocks are shown in Figs. 5.18 and 5.19. Given that the Forbenius

norms of A1, A2, and B do not vary significantly over time, it is logical that K will not

vary significantly over time, which is exactly what is seen in Fig. 5.17. This is the reason

why the PMC can be controlled by a constant-gain controller.

In conclusion, two gain-scheduling control schemes and two linear control schemes are

designed in this chapter. The linear controllers are the constant-gain LQR combined with

the constant-gain EKF control scheme and the feed-forward PD controller, based on the

sliding-mode scheme. It is found that the associated nonlinear system can be controlled

by a linear controller. The effectiveness of the proposed control schemes was shown on the

PMC when undergoing a high-speed Adept test cycle, higher than three times the record,

while also tracking a more demanding sine-wave trajectory. Moreover, the constant-gain

controller with no feed-forward signal was tested, which showed that the effectiveness of the

constant-gain controller does not rely on the feed-forward signal. Simulations show that

the performance of the linear control schemes is promising. Compared with their nonlinear
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(a) (b)

Fig. 5.17: The Frobenius norms of (a) K1 and (b) K2 along the 1 cycle/s Adept trajectory

(a) (b)

Fig. 5.18: The Frobenius norms of (a) A1 and (b) A2 along the 1 cycle/s Adept trajectory

counterparts, linear controllers have a lower computational complexity. Therefore, they

have better real-time performance in practice.
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Fig. 5.19: The Frobenius norm of B1 along the 1 cycle/s Adept trajectory
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Chapter 6

Conclusions and Recommendations

for Future Work

6.1 Conclusions

The main motivation of this work was to increase the speed of a fast pick-and-place robot.

In order to avoid the resonance caused by the high speeds, an elastodynamics analysis was

conducted to verify that the frequency spectrum of the robot lies above that of the desired

trajectory. The industry standard Adept test cycle was used to complete the analysis. The

model and the analysis proposed in this thesis showed that an operation frequency under 3

cycles per second is not problematic. For higher operation frequencies, the robot structure

needs to be optimized to have a higher frequency spectrum.

Issues related to vibrations having been settled, control scheme design must also be

taken into account to be able to increase the velocitity of the robot. A conservative dy-

namics model of the robot was derived to design the control schemes while a complex

dynamics model is obtained to test the control schemes. It was shown via simulation that

the designed gain-scheduling LQR control schemes can achieve good trajectory tracking,

while fighting against deviations from the motors and the encoders. Furthermore, the

proposed linear controllers, a constant-gain controller and a feed-forward PD controller

based on the sliding mode scheme, are found to be effective to track the trajectory with

a high operation frequency, three times faster than the record, and a nonlinear sine-wave

trajectory. Therefore, linear control schemes are eligible to control the nonlinear system.

2019/07/04
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Compared with their nonlinear counterparts, linear control schemes have the same tracking

performance but are less complex. In the end, the eligibility of a linear controller for this

nonlinear system is discussed.

6.2 Future Work

Recommendations for future work are listed below:

• According to the elastodynamics analysis of the current PMC version, the first natural

frequency is not high enough to be away from the excitation frequency spectrum for

speeds higher than 3 cycles/second. Therefore, the structural optimum design of the

links is necessary to make them stiffer for a given mass than the current version.

• In order to improve the accuracy of the dynamics model of the PMC, a more accurate

elastodynamics model should be built by means of the finite element analysis and the

Lagrange equations. The deformation of the links will have a significant influence on

the positioning accuracy in high-speed operations.

• In our case, the control scheme is designed in the joint space. However, the posture

of the gripper obtained by the forward-kinematics model is biased because of the

modelling error and the link flexibility. Therefore, it is better to use computer vision

to obtain the posture of the gripper and design the control scheme in Cartesian space.
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[16] J. M. Hervé, “Design of parallel manipulators via the displacement group,” in Pro-
ceedings of the Ninth World Congress on the Theory of Machines and Mechanisms,
vol. 3, pp. 2079–2082, 1995.
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du Languedoc, 2007.

[58] F. Paccot, N. Andreff, and P. Martinet, “A review on the dynamic control of parallel
kinematic machines: Theory and experiments,” The International Journal of Robotics
Research, vol. 28, no. 3, pp. 395–416, 2009.

[59] W. Khalil and E. Dombre, Modeling, identification and control of robots. Butterworth-
Heinemann, 2004.

[60] P. R. Ouyang, W.-J. Zhang, and F.-X. Wu, “Nonlinear PD control for trajectory
tracking with consideration of the design for control methodology,” in IEEE Interna-
tional Conference on Robotics and Automation, 2002. Proceedings. ICRA’02., vol. 4,
pp. 4126–4131, IEEE, 2002.

[61] C. Brecher, T. Ostermann, and D. Friedrich, “Control concept for PKM considering
the mechanical coupling between actors,” International Journal of Machine Tools
and Manufacture, vol. 48, no. 3, pp. 427–436, 2008.

[62] G. Barrette and C. M. Gosselin, “Determination of the dynamic workspace of cable-
driven planar parallel mechanisms,” Transactions of the ASME-R-Journal of Me-
chanical Design, vol. 127, no. 2, pp. 242–248, 2005.

[63] H. Abdellatif and B. Heimann, “Adapted time-optimal trajectory planning for par-
allel manipulators with full dynamic modelling,” in 2005 IEEE International Con-
ference on Robotics and Automation, 2005. ICRA 2005. Proceedings., pp. 411–416,
IEEE, 2005.

[64] K.-T. Oen and L.-C. T. Wang, “Optimal dynamic trajectory planning for linearly
actuated platform type parallel manipulators having task space redundant degree of
freedom,” Mechanism and Machine Theory, vol. 42, no. 6, pp. 727–750, 2007.

[65] K. Erkorkmaz and Y. Altintas, “High speed CNC system design. part I: jerk lim-
ited trajectory generation and quintic spline interpolation,” International Journal of
Machine Tools and Manufacture, vol. 41, no. 9, pp. 1323–1345, 2001.

[66] R. V. Fleisig and A. D. Spence, “A constant feed and reduced angular acceleration
interpolation algorithm for multi-axis machining,” Computer-Aided Design, vol. 33,
no. 1, pp. 1–15, 2001.

[67] P. Lambrechts, M. Boerlage, and M. Steinbuch, “Trajectory planning and feedforward
design for electromechanical motion systems,” Control Engineering Practice, vol. 13,
no. 2, pp. 145–157, 2005.



References 74

[68] Y. Zhiyong and H. Tian, “A new method for tuning PID parameters of a 3-DOF
reconfigurable parallel kinematic machine,” in 2004 IEEE International Conference
on Robotics and Automation, 2004. Proceedings. ICRA’04., vol. 3, pp. 2249–2254,
IEEE, 2004.

[69] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter identification of
robots,” Robotics and Computer-integrated Manufacturing, vol. 26, no. 5, pp. 414–
419, 2010.

[70] S. Kock and W. Schumacher, “A mixed elastic and rigid-body dynamic model of
an actuation redundant parallel robot with high-reduction gears,” in IEEE Interna-
tional Conference on Robotics and Automation, 2000. Proceedings. ICRA’00., vol. 2,
pp. 1918–1923, IEEE, 2000.

[71] S. Kock and W. Schumacher, “Control of a fast parallel robot with a redundant chain
and gearboxes: experimental results,” in IEEE International Conference on Robotics
and Automation, 2000. Proceedings. ICRA’00., vol. 2, pp. 1924–1929, IEEE, 2000.

[72] F. Marquet, S. Krut, O. Company, and F. Pierrot, “Archi: a new redundant parallel
mechanism-modeling, control and first results,” in 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001. Proceedings., vol. 1, pp. 183–
188, IEEE, 2001.

[73] F. Caccavale, B. Siciliano, and L. Villani, “The tricept robot: dynamics and
impedance control,” IEEE/ASME Transactions on Mechatronics, vol. 8, no. 2,
pp. 263–268, 2003.

[74] M. Callegari, M.-C. Palpacelli, and M. Principi, “Dynamics modelling and control of
the 3-RCC translational platform,” Mechatronics, vol. 16, no. 10, pp. 589–605, 2006.

[75] A. Vivas and P. Poignet, “Predictive functional control of a parallel robot,” Control
Engineering Practice, vol. 13, no. 7, pp. 863–874, 2005.

[76] B. Dasgupta and P. Choudhury, “A general strategy based on the Newton–Euler
approach for the dynamic formulation of parallel manipulators,” Mechanism and
Machine Theory, vol. 34, no. 6, pp. 801–824, 1999.

[77] S.-H. Lee, J.-B. Song, W.-C. Choi, and D. Hong, “Position control of a Stewart
platform using inverse dynamics control with approximate dynamics,” Mechatronics,
vol. 13, no. 6, pp. 605–619, 2003.

[78] J.-P. Merlet, Parallel robots, vol. 128. Springer Science & Business Media, 2006.



References 75

[79] J.-P. Merlet, “Solving the forward kinematics of a Gough-type parallel manipulator
with interval analysis,” The International Journal of Robotics Research, vol. 23, no. 3,
pp. 221–235, 2004.

[80] L. Baron and J. Angeles, “The direct kinematics of parallel manipulators under joint-
sensor redundancy,” IEEE Transactions on Robotics and Automation, vol. 16, no. 1,
pp. 12–19, 2000.

[81] F. Marquet, O. Company, S. Krut, and F. Pierrot, “Enhancing parallel robots ac-
curacy with redundant sensors,” in IEEE International Conference on Robotics and
Automation, 2002. Proceedings. ICRA’02., vol. 4, pp. 4114–4119, IEEE, 2002.

[82] W. S. Newman, C. E. Birkhimer, R. J. Horning, and A. T. Wilkey, “Calibration of
a Motoman P8 robot based on laser tracking,” in IEEE International Conference on
Robotics and Automation, 2000. Proceedings. ICRA’00., vol. 4, pp. 3597–3602, IEEE,
2000.

[83] H. Kino, S. Yabe, C. C. Cheah, S. Kawamura, and S. Arimoto, “A motion con-
trol scheme in task oriented coordinates and its robustness for parallel wire driven
systems,” Journal of the Robotics Society of Japan, vol. 18, no. 3, pp. 411–418, 2000.

[84] T. Dallej, N. Andreff, Y. Mezouar, and P. Martinet, “3D pose visual servoing re-
lieves parallel robot control from joint sensing,” in 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4291–4296, IEEE, 2006.

[85] R. Ginhoux, J. Gangloff, M. De Mathelin, L. Soler, M. M. A. Sanchez, and
J. Marescaux, “Beating heart tracking in robotic surgery using 500 Hz visual ser-
voing, model predictive control and an adaptive observer,” in 2004 IEEE Interna-
tional Conference on Robotics and Automation, 2004. Proceedings. ICRA’04., vol. 1,
pp. 274–279, IEEE, 2004.

[86] W. Shang and S. Cong, “Nonlinear computed torque control for a high-speed planar
parallel manipulator,” Mechatronics, vol. 19, no. 6, pp. 987–992, 2009.

[87] Q. Xu, Y. Li, and N. Xi, “Design, fabrication, and visual servo control of an XY
parallel micromanipulator with piezo-actuation,” IEEE Transactions on Automation
Science and Engineering, vol. 6, no. 4, pp. 710–719, 2009.

[88] C. Yang, Q. Huang, H. Jiang, O. O. Peter, and J. Han, “PD control with gravity
compensation for hydraulic 6-DOF parallel manipulator,” Mechanism and Machine
Theory, vol. 45, no. 4, pp. 666–677, 2010.

[89] A. Müller and T. Hufnagel, “Model-based control of redundantly actuated parallel
manipulators in redundant coordinates,” Robotics and Autonomous Systems, vol. 60,
no. 4, pp. 563–571, 2012.



References 76

[90] P.-L. Yen and C.-C. Lai, “Dynamic modeling and control of a 3-DOF Cartesian
parallel manipulator,” Mechatronics, vol. 19, no. 3, pp. 390–398, 2009.

[91] H. Abdellatif and B. Heimann, “Advanced model-based control of a 6-DOF hexapod
robot: A case study,” IEEE/ASME Transactions On Mechatronics, vol. 15, no. 2,
pp. 269–279, 2010.

[92] I. Davliakos and E. Papadopoulos, “Model-based control of a 6-DOF electrohydraulic
Stewart–Gough platform,”Mechanism and Machine Theory, vol. 43, no. 11, pp. 1385–
1400, 2008.

[93] O. Linda and M. Manic, “Uncertainty-robust design of interval type-2 fuzzy logic
controller for Delta parallel robot,” IEEE Transactions on Industrial Informatics,
vol. 7, no. 4, pp. 661–670, 2011.

[94] L. Vermeiren, A. Dequidt, M. Afroun, and T.-M. Guerra, “Motion control of planar
parallel robot using the fuzzy descriptor system approach,” ISA Transactions, vol. 51,
no. 5, pp. 596–608, 2012.

[95] B. Zi, B. Duan, J. Du, and H. Bao, “Dynamic modeling and active control of a
cable-suspended parallel robot,” Mechatronics, vol. 18, no. 1, pp. 1–12, 2008.

[96] Y. Pi and X. Wang, “Observer-based cascade control of a 6-DOF parallel hydraulic
manipulator in joint space coordinate,” Mechatronics, vol. 20, no. 6, pp. 648–655,
2010.

[97] J. Wu, J. Wang, L. Wang, and T. Li, “Dynamics and control of a planar 3-DOF
parallel manipulator with actuation redundancy,” Mechanism and Machine Theory,
vol. 44, no. 4, pp. 835–849, 2009.

[98] L. Wang, J. Wu, J. Wang, and Z. You, “An experimental study of a redundantly ac-
tuated parallel manipulator for a 5-DOF hybrid machine tool,” IEEE/ASME Trans-
actions on Mechatronics, vol. 14, no. 1, pp. 72–81, 2009.

[99] P. M. Aubin, M. S. Cowley, and W. R. Ledoux, “Gait simulation via a 6-dof parallel
robot with iterative learning control,” IEEE Transactions on Biomedical Engineering,
vol. 55, no. 3, pp. 1237–1240, 2008.

[100] C. Yang, Q. Huang, and J. Han, “Decoupling control for spatial six-degree-of-freedom
electro-hydraulic parallel robot,” Robotics and Computer-Integrated Manufacturing,
vol. 28, no. 1, pp. 14–23, 2012.

[101] Y. Pi and X. Wang, “Trajectory tracking control of a 6-DOF hydraulic parallel robot
manipulator with uncertain load disturbances,” Control Engineering Practice, vol. 19,
no. 2, pp. 185–193, 2011.



References 77

[102] X. Zhang, J. K. Mills, and W. L. Cleghorn, “Experimental implementation on vi-
bration mode control of a moving 3-PRR flexible parallel manipulator with multiple
PZT transducers,” Journal of Vibration and Control, vol. 16, no. 13, pp. 2035–2054,
2010.
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