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Introduction

A sentence X ia the lower predicate calculus 1L is said
to be defined in a set K of sentences in L 1if all the extralogical
symbols of X occur in K. K is said to be complete if every
seatence X in L which is defined in K and which is consistent
witn K, is deduciole from K. Semantically, the completeness of a
set K asserts that any two models of K satisfy the same "axioms"
(sentences) which can be formulated in L using only the
extralogical sywmbols tuat appear ian K. Thus from the facl tuat
tile set K* of axioms for tiie coacept of an algebraically closed
field of specified characteristic is comuiete, 1t follows that
a senteace X in L which is satisficu by the field oi complex
numoers is satisfiea also by all fields of characteristic zero.
Again, tne completcness of the "theory" of real cluseu fields
implies tnat any sentcuance in L wnich is satisfied by tne field
of real aumbers can pbe deduced from the set Kgof axioms for the
coacept of a real closed field.

Tne completeness uf the theories of real closed fields
ana oi algebraically closed fields OfFSpOCified characteristic
was first estaplisncd by A. Tarski (see Tarski[}j} p.p. 54-55)
as a corollary to the coussruction of a decision pgrocedure for
real closed fields. Tarski makes use 0i a generalization of
Sturn's tueoren and of au effective wmecnod of elimination of
gquantifiers. These results were obtained independently of a
detailea procedure of elimination, by A. Rouvinson, using a
modified nocion of comyleteness, called "model-completeness.™
Other i.teresting results on the completeness of algevbraic

tueories were also ovtained (see Rovinson [3] ).
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sriefly, we define a get K of gentences in L to ve

model-complcte 1f, for any model I of K, any two extensions

of & wailch are modelg of K satisfy tane sz.ae ele e tary "axiome"
wnicn can ve Iormulsted in terms of tae relations, opcrations
and eleqents of M. Lany interesting applications of the concept
of model -complaotensss to problems of a metamatnematical and
purely mathemstical (algebraic) nature .ave also bheen ziven by
Robinson in a series of recent puuvlicatioas. (See especially
Robinson(?],&ﬂ Eﬂ, ﬁiﬂ) The purrvose of tiais tiaesis is to
agcencle these rocults. More specificelly, we snall develop
the geaeral tneory of model-complcteness in detail, and give
examples of 1its apnlicanion to questions of completeness of
alzebraic theories on the one nand, and to "concrete" algebraic
probleais on the other,

A central tneme of thig naper is to establish the model-
completenens of tae elecentary theories of real closed and
algeoraically cloced fields. Using tae nocel comoaleteness of
tue tuaeory of real clored fields we snall prosent a geaeralized
solution of Hiloert's 17th problem - "[he Exrression of Definite
Forms oy Squares™ wnich was originall;, solved oy E. Artin.
moreover, we shall strenstaen Arvin's resulb oy nroving the
existence of upper bounas for tne aumier of squares required and
for tne degrees of tae sumnz ids involved.

It will oe shown t.ot tine concept of model-compnleteness 1is
closely corinected witn tue notions of "percistent" and Mnvariant"
predicates in tne lower predicate calculus L. It tunen follows
taat a geceralized version of moydel-completeness, called
relative model-coiplzteness, can we s.ccessfully aprlied to
certain provlems of definasility in L. IFurtaner concrete resalts

in field theory are tnen obtained.
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All tne recults of tnis paner were obtained vy Robinson
using a formal la guage Lg which does not include funccotion symools.
(& &l P S - . - b ~ >
Jince every Tanction of n places may ve regarded as an ntl-ary
relation it followe t:~t every formula inclading fuaction
symbols is "tracslatable" or "interpretable" in Lp. We nave
included function symdols in our langusse L to facilitate tne
formalization of aleeoraic tineorics =2nd the proof of the "extended
completeness trneorem". [Iais theore: and 1ts corollaries which are
proved in ciapbter 3 are of fundamental importance in all suaosequent

cuapters of tae text.
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Chapter O. Mathematical preliminaries.

(0.0) Let A be a set of objects and let @ be a set of n-ary
functions or operations (n = 0,1,2,...) such that the set of
o-ary functions of @ is to be identified with A. We say that
A is closed with respect to @ if for any m-tuple a, ,...8, OF
elements of A (m2 o) and any m-ary function Q(% ,s.e X) in @
we mve ((a, ,... a,) € A whenever each a; € A,1=1,2,...m.
(0.1) By a (mathematical) system M we shall understand

an ordered triple M = (A)¢)(£) where

(1) A is a non-empty set of objects called the constants of M.

(2) @ is a set of n-ary functions or operations (n=0,1,2,...)
such that A is closed with respect to @. The set of n-ary
functions where n2 1 may be empty.

\3)61 is a non-empty set of n-ary relations (n = 1,2,...) such
that every relation ReO{ i well defined on the entire set
A of constauts of M, that is, for every m-tuple a,,..¢au
of constants of M 1§ is definite (although not necessarily
decidable) whether or not R(a; ,...a.) holds in M.

We shall use the familiar notation aeM, G(x. y oo e X )EM

R (%, ,..0%X,)€EM Trather then the more correct notation ae A,GEQ),
Reg to indicate that certain constants, functions or relations
belong to the sets A, @, 6?_ regpectively of the system M.
(0.2) Two systems M = (4,8,K)and M"~=(A',¢',Q/) are said to be
isomorphi¢ ( in symbols M2~ M') if there exist one-one mappings,
A<>a', @< @ and K> & such that
(1)Ce gen(Ve Qﬁl only if ((and (Y are both n-ary functions, for some

nzo.
(2) Ré(?ﬁ—" R‘e‘g’only if R and R'are both m-ary relations Hr some mZ1.
(3) IfGegesG'e ¢ where Cand G’'are both n-ary functions, nz 1

and a,€Ae> a'e A i=1,2,...n then G(a, ,..ea)e e yeeaal ).




-2 -

(4) R(ay ,...a4) holds in M if and only if R'(a}...a.')holds in
Fl
M'where R and R'are any corresponding relations of M and M'
respectively - (mz1) and a; e A<> 2/ € A'i=1,2,...m.
(0.3) Let M£=(A,,¢,}g0be a system. A system M2=(AH¢E§&)
is said to be an exteasion of M, if there exist subsets
Ay CA,, B & 4, R SRsuch. that!
/
(1) M{= (A{,¢ﬁ6ﬁ) is a system.
(2] M= M,

(3) For any m-ary relation.f?eﬂfand for any m-tuple al...al €A,
R' (2{,..a%) holds in M}, if and only if it holds in M,.
Wéhshall employ the familiar notation M,S}M, to indicate
that ¥, is an extension of M,. If, in addition,A] is a proper

subset of A, , thenM, is called a proper extension of M, and we

write M,C M,. We also say that M, 1s a sub-system (proper subsystem)
of M, .

Of special importance are those mathematical systems in
which a relation of equality is defined. With this in mind we
say that:
(0.4) A system M is algebraic if it contains a binary relation
v called a relation of egquality in M such that, for arbitrary

a,b,c, a,5,8,5e0¢ au,b,, by, .esb. , we have:

(1) a £ a holds in M.

(2) a ¥ b holds in M only if b = a holds in M.

(3) If 2a = b and b T ¢ both hold in M then so does a =T c.

(4) If a,% b, ,eee 4T by all hold in M thenG(a,,v.0as )z G(by,...bu)
holds in M, for every n-ary function(eéM , nza.

(5) If a,= b, y...a,7b. all hold in M then R(a,,...0.) holds in M
only if R(b,,...b, ) holds in M where R is any n-ary
relation of M, nzl.

The relation = of an algebraic system M divides the set

A of consténts of M into equivalence ehasses % in the usual way
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and these in turn, define an algebraic system ﬁ, homomorphic with
M with the relation = replaced by the relation = of ordinary
mathematical equality. When discussing a concrete algebraic
system such as a group, field, or (totally) ordered set, we shall
refer to M rather then M and thus replace the relation = by =.

By the cardinality of M we shall understand the cardinal number
of the set A of constants of M.

(0.5) We define a Boolean Algebra to be an algebraic system

B = (A,u,N,%) where v, nare binary operations of B, ¥is a unary
operation of B, satisfying the postulates:

(1) avb = bva

(2) (avd)vc =avibvec)

(3) anb = (a*v b*)*

(4) avb = a if and only if avb* = cuUc*
for arbitrary a,b,céA.

Let B= (A,V,Nn,¥) be a Boolean algebra.

(0.6) A non empty subset J of A is called an ideal in B if the

conditions:

(1) a¢dJ and b ed only if anbed.

(2) a€J only if avb €],
are satisfied for arbitrary a,be A. An ideal J in B is
maximal if J # A and if the only ideal in B of which J is a
proper subset, is A itself.

(0.7) We shall require the following results which are proved

in some detail in Roopninson [l] :

(a) EBvery ideal J # A is included in a m@iximal ideal Jo. (This
follows by a direct application of Zorn's lemma.)

(b) A maximal ideal Jo in B is characterized by the fact that for
any a €A precisely one of the two elements a and a* belongs
to Jo.

It follows thats

(c) If Jo is a maximal ideal of B then avbeJo if and only if
either a € Jo or beJo (or both).
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Chapter 1 The Propositional Calcuius C

The propositional calculus C to which we refer below is that of
Whitehead and Russel ( in Principia Mathematica) as modified by
Bernays. Its properties are discussed fully in Hilbert and Ackerman
(1] ; also in Robinson [1] where a detailed proof.of the.extended
completeness theorem is developed. We shall outline this proof below.

Following Robinson [Illwe admit a set P = {p,q,r,..:i of

propositional variableg of arbitrary transfinite cardinal aumber.

It is assumed that the reader is familiar with the concepts of

(well-formed) formula, theorem, truth function, tautology, disjuctive

(conjunctive) normal form, and with the deductive properties of C.

(1.0) The connectives V and ~~r are regarded as primary and denote
disjunction and negation respectively. The connectivesd, A, =, denote
implication, conjunction, and equivalence respectively; and are to

be regarded as abbreviations. ‘lhus:

(po9= ~PV 5 (PAG= ~(~pv~q) ; (p=q)= (2PN EP).

In what follows K shall denote an arbitrary subset (possibly
empty) of the set r of all formulae of ¢, and Rg shall denote the set
of all propositional variables which appear in (some of tae formulae
ot) K.

61,1) A truth function f(p), peR which assigns truth values

!¢« to the elements of R, that is;which maps R 1into the two element
set V = {O,l} is called a valuation of R .

(1.2) The inductive definitions:

(1) f(~X) =0 if f(X) =1

(2) f(~X) =1 if f(X) =0

(3) £(XvY) = 0 if f£f(X) 0 and f(Y¥) =0

(4) f(XvY)= 1, otherwise,

extend the domain of f to Fp where Fg is the set of all formulae

generated by (that is, containing only) variables of Ry .

(1.3) A valuation f of R, 1is said to be admissible (for given K)
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if the extension (1.2) yields f(X) =1 for all X in K

(1.4) A formyla X is said to be deducible from K if there
exist formulae X, , ...Xp€K 420 such that the formula

I = <(X./\...AXR)D X) is provable in (is a theorem of) C.
We stipulate that ¥ = X for k = o.

The following properties follow readily for arbitrary

formulae X and Y:
(1.9) (a) If X belongs to K then X is deducible from K.
(b) X and Y are both deducible from K if and only if

(X AY) is deducible from K.
(¢) If X is deducible from K then so is (XVY).

(1.6) A set K is said to be contradictory if every formula

is deducible from K. An equivalent condition is that for
some formula X the formula (XA ~X) is ded.icible from K.
Otherwise, K is congigstent. We have:
(1.7) The set K U{X‘ ,...Xu} is contradictory if and only if
the formula ~ (XA...AX, ) is deducible from K. In particular
for X,= X, if follows that the formula~X is deducible from K
if and only if the set KV {X? is contradictory.

We define a relation X&Y in F by the condition that
(X = Y) be provable in C. We then have:
(1.8) The relation A is an'equivalence in F. Moreover, the
relation _&2 1is substitutive with respect to the application of the
connectives ~and V. That is, if X X'and Y& Y' then ~X & ~X'
and (XVY) x (X'vY?)., We are now in a position to prove the
"extended completeness theorem of C".
(1.9) Theorem. If a set K of formulae in C is consistent then
there exists an admissible valuation for the variables Rk of K.
Proof: Let Fp be the set of formulae generated by the variables
Rk » and let A be the set of equivalence ciasses of Fgp modulo
the relation X . On A we introduce the operations V, N, ¥ by the

definitions:



aup = ¢ if XVY % Z
at=bo if~xa=>~Y
anb = ¢ if XAY~Z

for some (and hence for all) formulae Xea, Yeb, Zec.

That these operations do indeed yield unique results follows
from (1.8). It is also easily verified that the system

3 = (Av,n%x) is a Boolean algebra.

By properties (b) and (c) of (1.5) it follows that those
congtants of B (equivalence classes of Fe ) that contain formulae
of Fq which are deducible from K constitute an ideal Jg of B.
Now q<q&j A, as K is consistent, by assumption. Hence by (0.7.)
-(a}/JK is contained in a maximal ideal Jo..Now Jo consists
likewise of equivalence classes of o . Let Ko be the set
theoretical union of all formulae which belong to these classes.
Then, by property (a) of (1.5), we have K € Ko. We now assign
the truth value 1 to all propositional variables which appear in
Ko. It can be shown (by mathematical induction on the length
of X, using properties (b) and (c) of (0.7) for Jo) that this
valuation yields the truth value 1 for all X in Ko and the
truth value O for all remaining formulae of F . As K & Ko, we
have an admissible valuation for the variables Ry of K, as
required.

We mention at this point that (1.9) in conjunction with
(1.7) implies that every tautology in C is provable, that is
C is complete in GOdel's sense. Since the axioms and rules of

2

inference of C are chosen with the result that every theorem
of C is a tautology, we have an effective method for determining
the theorems (tautologies) of C.
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Chapter 2. The languase L (Lower predicate calculus with functors)

(2.0) Our object language L is constructed as follows:

Atomic Symbols:
(a) Individual variables X,¥,Z...constituting a countable set.
(b) Relation symbols of n places n=1,2,...

These congist of Roman Capitals followed by round brackets

in which n empty argument places are indicated by means of
commas. Thus R ( , , ) is a ternary relation symbol. The
number of relation symbols available for each n is supposed
to be transfinite.

(c¢) Functors(function or operation symbols)of n places: n=0,1,...

These shall be denoted by Greek letterSG)tE,?u.followed by
round brackets as in (b). Functors of O places are called

individual constauts. These constitute a set of arbitrary

transfinite cardinal number.
(d) Propositional Connectives:as,V,D,A =

These are interpreted in accordance with (1.0).
(e) Quantifierss () ; (E)

These denote the universal and existential quantifiers

respectively.
The expreéssion (x) is to be read ®For all x"

while (Ex) is to be read "There exists an x"

(f) Square bracketss

These are to be used for grouping the parts of a formula
in the usual way. They shall often be omitted whenever
no ambiguity results.
We shall refer to relation symbpols and functors as the
extralogical-gymbols of L.,

We define a set ¥ of termg of I inductively as follows:-
(2.1) (1) An individual variable is a term.

(11) An individual constant is a term.

(111) If tigetw are terms and ¢ is a functor of n places
n=1,2,.... then thvut¢)is a term.
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A term in which no individual variables appear is called a
constant. Constants will be denoted by small Roman letters
——8,D0,Cy 0000
(2.2) A relation symbol whose places have been filled by terms is
called an Atomic formula. Thus, if R is a binary relation,(fis a
binary functor, T is a unary functor, then R (G ( T(x),a)e) is an

atomic formula.
We define a set of (well-formed) formulae of L inductively

as follows:
(2.3) (a) (Bracketed) Atomic formulae are formulae.

(b) If X and Y are formulae then so are ~ X and XVY, provided
that X and Y do not contain identical variables of which
only one is quantified.

(¢} If X is a formula then (y) X and (Ey) X are formulae
provided X does not already contain the variable y in
a quantifier, _

Thus the expression (Ez) R@XZ))V Q(G(":‘d)) Q.) is a formula.
(2.4)Let (y) X and (Ey)X be formulae.
Whenever the variable y appears in X it is said to be within the
scope of the quantifier ( ) or (E).

A variable y which occurs in a formula X is $aid to be free
in X, if it is not within the scope of any quantifier.

A formulpX which contains the n free variables ViV (nzo)
and no other free variables will be called a predicate of order n
or briefly an a-ary predicate. It will be denoted by X (¥.., %)
Predicates of order zero are called sentences. If X (y y ) is
a given predicate of order n> o then X (tv“t¢) shall denote the
formula obtained by substituting the terms by..tuw for the
variables. ¥,y respectively at all occurrences of y,..¥. in X.

In particular X(a”uak ) shall denote the sentence obtained
by substituting the constants a,. ayfor ¥.. V. as above. We ébserve
that X(&,nau) may contain other constants as well. Thus we shall

also make use of the notation X (a,,.a. ) to indicate simply that
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the constants ayssssa, apvear in tne formula X. Then X(x ,...y@) shall
indicate tiie predicate ovtained by replacing 2,;...3, 0Oy VyseooeTu
respectively.

We shall assume that the reader is familiar with the general
deductive theory of tune lower predicate calculus. Most of the results
to follow shall be stated without proof. Following Robinson ﬂl] and 2
we choose axioms and primitive rules of inference which prove to be
most basic in the general tneory. They also suffice to estaonlish all
the "required" semantic properties of L.

Je define a subset T of the set S of sentences of L which we

cail the tneorems or provable sentences of L inductively as follows:

(2.5) (2) Any sentence f(X;...X,) which is obtained from a tautology
(theorem) f(p,,...p,) of the propositional calculus C by substituting
arbitrary sentences X;,...X{, for the proposiuional variables PyseesePy
of C respectively (and oy inserting souare brackets) is a theorem of
L.

(b) If two saiteoiices of the form X and XDY are theorems then
Y is also a theorem.

(c) Any sentence of thne form{zx) F(xﬂC)F(a) or of the form
F(a):)gEx) F(xi]is a theorem wanere F(x) is a nredicate of order one
and a is any constant of L.

(d) A sentence is a theorem if it is obtained from a theorem
by substituting one variable for another provided the result is a
formula in the sense of (2.3).

(e) If a sentence of the form XDF(a) is =2 theorem where F is
a unary oredicate and a is an individual constant which does not occur
in the scentence X or in the vnredicnte F then so is tne sentence
X:)Ky) F(yilprovided that it is a formula.

(f) If t.e sentence F(a)>X is a theorem where F and a are
defined as in (e) then so is the sentenoe(}ﬂy) F(yﬂZDX provided that

it is a formula.
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(g) If (EXI)...(XM)F(XVHXM, @(x,,...ni]:) X is a theorem
wnere F is an m + l-ary predicate; @is a functor of m places, and
X is any sentence in which.?does not appear then th. sentence

[ﬁx‘)...(xw)(Ez) F (X”---XﬁZELDX is a tneorem provided that it
is a formula.

ye observe that by virtue of (a) and (k) of (2.9) all rules
of inference which are valid in the propositional calculus C are
likewise valid in L provided tnat we reolace "formulae in C" by
"sentences in L." Thus we may introduce taie concepts of deducibility,
consistency etc. in L in accordance with (1.4) and(1l.6).

Ne note that every theorem of L is deducivle from an
arvitrary set K of sentences while a sentence X is deducivle from
the empty set of senteices if and only if X is provab.e.

In addition to properties (a), (b), (c¢) of (1.5) the
following can be derived:

(2.6) () Let K, K be sets of sentences in L. Then the sentence
X is deduciole from KU K if and only ;f there exist sentences
i)...YL (nzo) such that the sentence [?;A ..:A f&DX is deducible
from K alone. (It is posgivle that n = o if K is empty or if X is
deducivle from K alone).

(b) If the sentences X and XDY are both deduciole from a
set K then so is Y.

(¢) If a sentence (X,)...(X“)F(XS...XK), where F ig a
predicate of order n 21 is deduciole from a set K thean so is the
sentence F (a‘,...au) for arbitrary constants a,,e...ay.

(d) If a sentence of the form F (a,...a,) is deduciole from
a set K where F is a predicate of order nZ 1 then so is the sentence
(Ex; )...(Exy) F (XU°'°X“)'

(e) If the centence F(a,,...a,) is deducible from K where F
is a predicate of order nZl and a,,...a,are individual constaats
which do not appear in the sentences of K or in the predicate I then

so is the seatence (%) +..(x,) F (% ,...%x)-
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(f) If the sentence X)F(a‘,...au) is deducivle from K where
F is a predicate of order n”Z1 aad 2a,,...2,are individual constants
which do not anpear in X or in the sentences of K or in the predicate
F then so is the sentence X:)[ZX')...(X“)F(X%...Xualc
(g) If the sentence F(a, ,...a,)DX, where F and a,,...a, are defined
as in (f), is deducible from K then so is the sentence
((Bx,) ... (Ex) F (x,,...%)] DX
Again, in addition to (1.7), we have:
(2.7) A set K of sertences is contradictory if and only if some
(finite) subset of K is contradictory, or equivalently, a set K
is consistent if and only if every (finite) subset of K is consistent.
Let K be an arbitrary set (possibly empty) of formulae.
(2.8) A formula Q is said to be defined in K if all the extralogical

gymbols that occur in Q also occur in (some of the formulae of) K.

Q is said to be partially-defined in K if all relation symbols

and functors of nZ1 places that occur in Q also occur in K. (We
note that Q may still contain éonstaats which do not appear in K.)
(2.9) Two predicates Q,and Q,of order mZz o are said to be K-
equivaleat if the sentence (x;)...(xw) [§| (X, yooeX,) = Qa(x.,...xui]
is deducible from K. 1In particular, two sentences X n1d Y are
K-equivalent if the sentence x = ¥ is deducivle from K.
We shall require the following result:

(2.10) If two predicates Q and Q* are K-equivalent then the sentence

(,)(a ) eee(q)QKpeeex,) = (g, )(q)eer(q)Q*(x, ,..0x,)
is deducible from K where n is the order of Q and q,,Q,,...9,
is a..y sequence of quantifiers such that qLcontains the variable
Xy 15 1,2,.000.0
Proof: Let a,,...a,be aay individual constants which do not occur
in either Q or @* or in K. Then by (2.6)-(c), (1.5)-(b) and our
nypothesis the seantence Q(a;,...a,) DQ*(a,,...a,) is deducible
from K. Suopose first that (q,) = (x,) then by (2.6) -(e) the
sentence (X“){é (2, ¢ aw“x“) :)Q*(a‘,...ah‘,xwil

is deduciole from K and hence so is the sentence

@Xw) Q (a‘,...aw.,xw—)]’;) Exw) Q* (a‘,...a“_\,xi):l
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by the rules of deduction of the lower predicate calculus. Using
(2.6)=(d) a similar argument yields the deducibility of the sentence
[KEXw)Q(a.,...aw‘,xuﬂ':>KEXu)Q*(a,,...ahq,xni]from K. Thus in any

case, the sentence{KqW)Q(al,...aww,xaj]ZDQqu)Q*(a\,...awl,Xuz)

is deducivle from K. It followgs by a simple induction argument that

the sentence(ﬁq,)...(qw)Q(x\,...x&?}:)@qw)...(qh)Q*(xl,...xuﬂ is
deducible from K. The conclusion of (2.10) now follows from the
hypothesis by interchanging Q and Q* in the above and by using (1.5)-(b).
(2.11) Two predicates (sentences) Y, and Y,are said to be equivalent

if they are § - equivalent where g denotes the empty set. (We note

that if two predicates Y, and Y,are equivalent then they are K-equivalent
for any set K. We write Y=Y,

(2.12) It is known that the relation of equivalence may be regarded

as an "equality"  on the set of predicates of L in so far as it is
gubstitutive with respect to the propositional connectives and
quantifiers of L (regarded as operatoréﬁ

In fact let X be & predicate whicin contains the predicate R
of order nzo at least once. Let us indicate the dependerce of X on
R oy writing X = X(R). We shall denote by Y(¥)the result of
substituting in X for R the predicate Y of order ng and the following
"rule of replacement" is valid in L&

If Y,and ¥ are equivalent predicates of order n then for any
predicate X = X(R) in L where R is a predicate of order n (as above)
we nave X (Y, )~X(Y].

We note that if R occurs more than once in X tnen the
replacement of R by Y and ¥ need not take place everywhere provided
only that it is carried out at the same places of X for both Y and Y .

(2.13) By a syntactical trangform T we shall understand a correspondence

which associates with each eleument X of a certain class of predicates
another predicate %/ = T(X) by a definite or effective formal rule.
We define a syntactical transform N on the sget of =211

predicates of L, inductively, as follows:
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N(X) =X if X is atomic
N(~X) = X _
N(XVY) = N(X)A(Y) ; N(XAY) = N(X)VN(Y).
N ([E2)X]) = (2)N(X)
N([(z)x])= (Ez)N(X)

Thus w(X) is the predicave obtained from X (where X contains
only the connectiﬁes\/,h,hv) by interchanging the connectives V
and A, then interchanging universal and existential quaatifiers,
and finally replacing all atomic formulae in X by their negations.
we shall call N(X) the negation of xX. In fact, the following
result is well xKnown:
(2.14) ror every predicate X we have m(X)CZ{EJﬁ]

A predicate X in L is said to be in prenex normal form if it
is of the ferm A = (qJ...\q*)[Z]where nzo, the % are quantifiers

with respect to different variables, 4 is a predicate that is
free of quantifiers, and the scope of each quantifiey is the
entire part of the formula which follows it. <thus, the sentence
Lky) (X)EKX)\/Q(y) is in prenex normal form, wiile the sentence
(Ey) EX)P'(X]V Q(y% is not.

The quantifiers q:, j = 1,2,...n are said to form the prefix
of X while the formula Z is called tue nntrix of X.

We note that every predicate that is free of quantifiers
is in prenex normal Torm.
With every vredicete X (which contains only the connectives
V, A,~) we associate a predicate P(X) in prenex normal form by
the syntactical transform P defined inductively as follows:
(2.15) (1) P(X) = X if X is free of quantifiers; Otherwise,
(2) P(~3X) = PQN(X)) . -
(3) P(X*‘(qz)ﬂ) = p([(gz) [X*Y )
P ([lg)¥ % }E_\)=P (q,) [ ¥ )
where (qz) denotes either an existential or universal quantifier

With variable z that does not appear in X; Y is a predicate of
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order one with free variable Z, and tne symbol ¥ denotes either
the connective V or the connectiveA(it being understood that the

same con:ective appears on both sides of the identity).
(4) P (Wz 9. ) Y]) = { 92) P(Y) where ( 97) and Y are defined
as in (3)

Morepover, it is well known that
\2.16) For every predicate X we have
(1) P(X) = X.
(2) P(X) contains only extralogical symbols that appear already
in X.

We shall now classify all predicates X which are in prenex
normal form in a natural way according to the number of blocks
of quantifiers of the same type which appear in the prefix.

(217) A predicate X in prenex normal form is called existential

(universal) if it contains no universal (existential) quantifiers.
A predicate X is said. to belong to Clags O if it is free
of quantifiers.
We note that a predicate of Class O is both universal and
existential.
We now define inductively:
A predicate X in prenex normal form is said to be of class n
(nzt) if X is of class n-I or if, in reading the prefix of X
from one end to the other, exactly n-ychanges from universal to

existential or existential to universal quantifier occur.

(2.18) We haveg-
(a) Class M is contained in classom for all n< m.

(b) Class1 consists precisely of the existential and universal
predicates of L.

Thus for example the sentence.

X= (Ex)(g) (z) (Ew) q (x,y,2z,w) belongs to all classes nz3
while the senténce

Y= (x) (EBy) (2) (Ew) Q (x,y,z,w) belongs to all classes mzy



and the sentence
Z = (%) (y) (Bz) (Bw) Q (x,y,2,w) belongs to all classes nzZ-

Given the one-place relation R we define a syntactical
transform X-3Xgoon tie set S of sentences of L inductively as follows:
(2.19) Xg = X if X is atomic

(~X)g = ~Xe

(XVY)K= VY

() 2 (1= () [R(3)D Gyl

(Ey) Z (y) = (Ey) TR(y) A [2(y)e
X&is called the relativised transform of X with resrect to R and is

said to be obtained from X by relativisation with respect to R.

For example if
X = (80)_(x) [(Ey) F (x,7,0)D(2) G (y,2,)] then
X =(EW)[_/R(W)/\(X)[1-3(X)DEEY) R(YIAF (x,y,me[(Z) R(z)D> G(Y,Z,aﬂx_

We note that the property of " provability" is not invariant
under relativization. Indeed the sentence
X = (Ex) (Ey) [@(x,y)VvQ(x,Y} is a theorem while
Xe= (8x) [RG0) AEy) (R AfQ (x5, Vvalx,v]])| s not.

However we do have the following result;
(2.20) If the sentence X does not include any constants then Xgeis
a theorem only if the sentence E(x) R(x) D XRis a theorem. If
X does include a number of individual constants a ,...a, (nz1)
then X is a theorem only if the sentence [é(a,)A...AR(aWZIt>XQ
is a theoren.
Proof (2.20) is easily seen to hold for all axioms X of L and is
in fact, preserved under =21l rules of inference. 1t follows that:
(2.21) If a sentence X ig defined in a set of sentences K and if
X is deducible from K then X& is defined in the set Kp and Xgis
deducible from Kpwhere Kgis given by K, = {?leeK}U{%(a)‘ a is an
individual constant which occurs in K§ , if K includes some
individual constant., Otherwise, Kp = {YKIYG I%U{KEX) R(XE&.
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Let K be a non-empty set of sentences in prenex normal
form. We shall introduce a set of functors of order n Zo which
are not contained in K by the following procedure:

(2.22) For any sentence X = ( q; )..,(q) Z(x,,.. X ) in K, let g
be an existential quantifier in X,(q;)=(Exi) where 1=s(sw
Let m be the number of universal quantifiers which precede §¢
(reading from left to right) in the prefix of X o= w =

We then introduce a functor q% of m places called the Herbrand
functor associated with{;subject to the conditions that

(1) different functors correspond to different integers (

for which{{is an existential quantifier in the particular
sentence X under consideration.

(2) Different functors correspond to different X in K,

Given the set ?'of Herbrand functors assiciated with the
set K; in particular, given the set i¢d}of Herbrand functors
associated with an arbitrary sentence X in K we define a
syntactical transform H on tne set of sentences K (the sentence X)
as follows:

(2.23) (1) H(X) = X, if X is universal (see 2.17) Otherwise

(2) Let X = (9 )..{ Qu) Z (4. %) then

H(X) = ( Q4 ). (G5,) 2 (eee %)

where‘hh“.qhdenote the universal quantifiers of X in the order in
which they appear in the prefix of X {<w and the symbols Y{ are
given by:
X/ =Yy if 4 is a universal quantifier in X; -otherwise
W= G006, - %5) where (), is the Herbrand functor associated
with qé and %y, ... %), are the variables in universal quantifiers
which precede q}in the prefix of X.
H (X) is called the Herbrand transform of X with respect to the
set{‘?c}
Thus if X = (Ey, ) (% (Ey,) (%) (Byy) (Ewy) Z (%, X, ¥, ¥,,95,3)
Taen H(X ) = (%) (%) [2(n,%, @, fw), ¢ (o), @06, %)))

We note that (), is a functor of o placeslthat is an individual

constante.
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The set »f sentences {? (X)‘ XéKg will be denoted by KH. We now
prove:

(2.24) If tae cet K of sentences in prenex normal form is consistent
then so is Ky.

Proof: Suppose tnat Ky is contradictory.

Tnen there exist sentences §,...Y, ¥21 in K such that the sentence
EQA ...’\YAZ>W'is provable where W = W%ﬁvw/is c:.0sen so that w'does
not contain any functors (constants) which appear in ¥y,...¥r.

It follows by the deductive theory of the propositional calculus

that the sentence g@? 9“ is provable for every integer/a =1, 2y...
where %Mis defined by the ideantity QMA= EQA...A¥;,AY A... qu:>w.
Let %Mbe the sentence of K which corresponds to'&k/u = 1,2,600

We shall snow that the sentence X,2 Q

MM
Let m = n —{ be the number of existential quantifiers which appear

is likewise provable.

in %M,(where n is the total number of quantifiers). If m = o then

%M,= %%and there is nothing to prove.
If m21 then X = ..... (qh) e e e (k) ee e Z(x) 5o vexn)

where we have indicated only the existential quantifiers q%which
appear in X 3= 1, 2,...m.

We now define the sentences Qg,...Q,, inductively as follows:

Q = %= (4)...(9,) z.

To define Q,we replace the term Q&J ..... ) in the matrix Z of Q
by the variable Xy, and we insert the quantifier (Exp, ) = ( %)
among the quantifiers Qy,... 93 in the order in which these
quantifiers appear in the prefix of X.

We note that(ﬂhis the Herbrand functor of W, which corresponds
to the quantifier (Cph) in %M, In general we obtain QP from Qp-1
p=1,2,...m by replacing the term q&é.....) t = m-p+l of Qp-1
by the variable X*t and inserting among the quantifiers of Qp-!
the existential quantifier (EX&t) according to the order in which
these quantifiers appear in X . Thus if

Qp-1 = (xa‘)...(xis) AN (x5, 5eeeXye» Gil®y, 5eeexyg)
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where(xw)“.@qg) are the universal quaatifiers which precede
(Exy, ) in X, then
Qp = (x5, )y, ) (Bxae ) 27 (X X, 5 Xae)
It is easily seen that Q, = ‘ne Hence in order to show thatﬂ%w>q%]

S

is a theorem of L is suffices to show that the provebility of
@,_.--D Q;,:_\entails that of [QP > Q/u.] (since [Q,2 94]18 provable by
assumption). This in turn, follows directly by a simple
application of the rule of deduction (2.5)- (g) since, by the
assumption of (2.22))the sentence 9w does not contain the
functor ¥ht

Thus CXMC)GL;l is provable for each mu=1,2,:«%
Transforming, by the rules of the propositional calculus}if
follpws that the set {%}, YZ,'°'¥#'U X#)¥%ﬂ“..Yr}
obtained by replacing ;L by %u in the set {YU...Yr}
is contradictory, and again/since)u is arbitrary a repeated
application of the above argument for = 1,2,V
enables us to establish that the set{?i‘..Xé} is contradictory.
This ,in accordance with (2.7))contradiots the consistency.of Ke Hence
Ky i®m consistent.

In concluding this chapter we introduce the following
definitions:

(2.25) A set K of sentences is said to be disjunctive if for any

sentences X, Y in K we also have XVY 1in K. K is guasi-disjunctive

if for any sentences X,Y in K there exists a sentence Z in K
such that Z2 @VY__\ . Conjunctive and quasi-conjunctive sets
are defined similarly.

With each non-empty set K of formulae (sentences)in L we

agsociate a setﬁbf constants called the set of constants
agssociated with K inductively as follows:
(2.26) (1) aeYPx for any constant a which appears in (some of the)
formulae of)K.
(2) If a,, ...au€Y(n>0) and Gis a functor of n places




=19~

which appears in K then (§ (2, goeayu)€ ¥k

We note that{may be eméty. In fact Ycis empty when and
only when the set IKéf individual constants that appear in K
is empty. If we include in IK(in the event that Igis empty)
an arbitrary but fixed individual constant ¢ of L we thus ensure
that the resulting setqf<3f constants associated with K is
non-empty.
Thus if we define: $k =¥k if I is non-empty

P = Vs if Icis empty,

we may (and shall) assume that the set’of constants associatéd

with a given set K is always non—-empty.
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Chapter 3: Semantic theory of the language L

In tnis chapter we shall be concerned with the semantic
theory of the language L. Our aim is to establish the important
result, via the extended completeness theorem of the lower predicate
calculus, that a set K of senteaces in L can be'&nterpreted" or
Prealized" in a mathematical system if and only if K is consistent.
We have assumed that our formal language L is sufficiently
comprehensive so that, for any given mathematical system M (see 0.1)
we can correlate the constants, functions (operations), and relations
of M in one-one correspondence with some of the constants, functors,
and relation symbols of L. In view of tnis correspondence, we
may (and shall), for simplicity's sake, identify tnese constants,
functors, aad relation symbols of L with their images in M. (We
shall however continue to employ the terms "functor" and "relation
symbol" when referring explicity to extralogical symbols of L.)
It is thus assumed (when no ambiguity results) that tne constants,
functions, and relations of a system M actually occur in L and
denote themselves; so that the expressions R(a,,...au) where

R(x,,...x»L ) €M and a,,...a, €M are regarded as atomic sentences

of L.
(3.0} A formula X in L is said to be defined in a gystem M if

all the extralogical symbols that appear in X belong to M.
(3.1) For any sentence X which is defined in a system M, we
define the gatisfiability of X by M, inductively as follows:

(1) An atomic sentence X = R(a,, ...a,) is satisfied by M precisely
when it holds in M.

(2) A sentence of the form X =~X' is satisfied by M if and only
if X'is not satisfied by M.

(3) A sentence of the form X = X,V X, is satisfied by M if and
only if either X, or X, (or both) is (are) satisfied by M.

(4) A sentence of the form X =(y) F (y) where F is a unary
predicate is satisfied by M if and only if the sentence F(a)
is satisfied by M for all constants a€M.
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(5) A sentence of the form X = (Ey) F(y) where F is a unary
predicate is savisfied by M if and only if the sentence F(a) is
satisfied by M for gome constant a € M.

(3.2) Let K be a set of sentences in L. A system M is said to
be a model of K if every sentence X in K is satisfied by M. We

note that any system M'isemorphic to M is a gain a model of K.

In general a model 1 of a set K may include n-ary functions
and relations (n=2 1) which do not occur as extralogical symbols in
K, but if we delete these from the system M the modified'system M!
is again a model of K. Hence we may (and shall) assume, for the sake
of simplicity, that a model M of K contains only n-ary functions and
relations(nz 1) which appear in K. For emphasis, we shall occasionally
refer to sucn a model as a K-model.

(3.3) A sentence X is aaid to be universally valid if it is satisfied

by all systems M in which it is defined, that is if any system M
in which X is defined is a model of 4.

It is easily seen that all "axioms" (primitive Theorems, of L are
universally valid. Now if a sentence X in which the R-ary functor 4P
occurs (vklo)/is provable in L, it is easily seen tunat the sentence
Al obtained by replacingﬂfby any other k—-ary functorly(at all occurrences
of ? in X) is likewise provable in L. It follows then (see Robinson
[2} p.p. 61-62) that the property of universal validity is preserved
by the rules of inference (2.5)-(e), (f),(g) of L. Thus we have:
(3.4) Every theorem of L is universally valid. As a corollary
it follows that:

(3.5) Iwo sentences X and Y are equivalent (X=Y) only if any
gsystem M in which both X and Y are defined either satisfies botu X
and Y or satisfies neither X nor Y.

It is easily seen tanat no contradictory set K of sentences can
possess a model, in other WOrds:

(3.6) If K possesses a model, then K is consistent. We now prove:
(3.7) Every non-empty and consictent set K of sentences in L which

is free of quantifiers possesses a model.
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Praaf: The sentences of K are all obtained by applying
connectives to atomic suntences. Let Sk be the set of atomic
sentences which appear in the sentences of K. With every X €S,
we associate a propositional variable Px of the propositional
calculus C such that different Px correspond to different X€ S,
For every Y€K we define a formula.'i(Y) of C, inductively,
as follows:

(1) 3(Y) = § , if Y is atomic.

(2) §(¥YV2) = YV (2) ; §rT) =~ 1)
Let K'=9 %(Y) YG'K}. By (2.5) - (a), if K'is contradictory

then so is K so that our assumption implies that K is consistent,
it follows by (1.9) that there exists an admissible valuation W
for the propositional variables tnat occur in K

Let Ag be the set of all constants associated with K

(see 2.26) and let ¢& be the set of all functors of order nzo
tnat occur in K. (We note that K includes some constants since
it is non-empty and free of quantifiers by assumption).Clearly
Ag is closed with respect to g& . let &k be the set of relation
symbols that appear in the sentences of K. Then Rk is non-empty.
We shall show that M, = (A, , #, Kk) is a K-model.

Iet R be an m~ary relation of ﬂK (nZz1) and let a,, ...a,€Ac.

If the atomic sentence R(a,, ...a. ) belongs to Sk then we define

that R(a,, +..2w ) holds or does not hold in My according as

the correspondiang propositional variableg (@(a, y ...a%‘)_\ obtains
the truth value 1 or O uader W. If R(g, ... a, ) does not
belong to SK then we define aroitrarily that it holds in Mg
It follows readily that Mg is a mathematical system in which the
set K (e¥pry sentence of K) is defined aad waich contains only
functions and relations of n21 places which avpear in K.
Also every seantence Y in K is satisfied in My since W is an

admissible valuation of K. Hence Mg is a K—model}as required.
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It follows that:
(3.8) Every non-empiy and consistent set G of uaiversal
sentences (see 2.17) in L possesses a model.
Proof: Given the set G of universal sentences in L, let Ag be
the set of all constants associated with G. We define a set
G' of senternces in L which are free of quantifiers as follows:
(1) Y& G for.any.sentence.Y €G which is free of quantifiers.
(2) If Y= (x,).ee(x) 2(x , «..x,) where nZl is any sentence
in G then we include in G'all different sentences of the
form Y'= Z (2, +«. a,) where Byseeele € Ag.
For each sentence Y& G and for each sentence Y' associated
with Y by (2) the senteace YDY' is provable by (2.5) —(c).
It follows/by the rules of deduction of the propositional
calculus, that a sentence of the form CY,'/\... /\Y,.']Z)W where Y{eG'
L= 1,2, «...r and W is arbitrary, is provable only if the sentence
[Y./\.../.\Yr]:)w is provable where Y; €G. Thus G'is consistent
since G is consistent by assumption. By (3.7) G'possesses a
model M = (Ay ,¢&;&Q). It is easily seen that M, by definition
of G', is a model of G as required.
we are now in a position to prove the extended completeness
theorem of the lower predicate calculus (the language L):
(3.9) Theorem: There exists a model M for every non-empty and
consistent set K of sentences in L.
Proof: By (2.16) and (3.5) we may assume ,without loss of
generality, that the sentences of K are in prenex normal form,
LetTPbe a set of Herbrand functors (see 2.22) associated with
the existential quantifiers that occur in K. TLet Ky be the set
of all Herbrand transforms (see 2.23) of the sentences of K
with respect to'gj. Then Ky is consistent by (2.24). Also the
sentences of K, are all universal (by definition of K, ) so that,

in view of (3.8) it suffices to show that every model of K, 1is

a model of K.
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Let X be any sentence of K. Tnen X may be obtained from
a seatence Y €Ky by tne chain of senteaces Qy = Y, o X
as described in the proof of (2.24). Suppose that tne sentence
Qp—1 |=p=m is satisfied by a system M. It follows immediately
from tne definition of QP that QP is likewise defined in and
satisfied by M. I% follows by induction, th=t the sentence X = Qu,
igs satisfied by every model M of ¥ = Qo. This completes the proof
of (3.9).

The following results may be regarded as corollaries to (3.9).
We first prove the converse of (3.4)-the so-called "Godel's
completeness theorem".
(3.10) Every universally valid sentence is provable in L.
Proof: Suppose that the universally valid sentence X is not provable
in L. It follows by (1.7) that the set 8 -{—vx} is consistent,
so that by (3.9) there exists a system M which does not satisfy
X altnough X is defined in M (as~X is defined in M} This
contradicts the universal validity of X.

The converse of (3.5) now follows readily:
(3.11) If X and Y are two sentences which are simultaneously satisfied
or not satisfied in every system M in which both X and Y are defined,
then XxY,

We may generalize (3.4), (3.5), (3.10), and (3.11) in the
following resulty
(3.12) Let K be a wonsistent set (possibly empty) of sentences in L.
Then any sentence X which is deducible from K is satisfied by all
models of K in which it is defined. Conversely any seanteuice Y
which is satisfied by every model of K in which it is defined
is deducible from K. Thus, the sente:ces of L which are satisfied
by all models of K in which they are defined are precisely the
sentences that can be deduced from K.
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Chapter 4 Formalized Algebraic Theories

In this chapter we shall show that certain algebraic
criteria and various algebraic systems can be formalized or
axiomatized within the language L. This will enable us to
apply the semantic theory of L to certain results in the
metamathematics of algebra and conseguently to certain results
in algebra as well.

(4.0) Let K be a consistent and non-empty set of senteices
in L. A binary relation symbol 1 is called a relation of
equality (with respect to K) if:

(a) The sentences-

(iy (x)(T (x,X)]

(1) (=) (N[I(x,3) DI(y,x)]

(iii) (X)(y)(Z)[l:I(x,y)/\I(y,ZZ]DI(x,za
are deducible from K.

(b) For every functor of n places (n=zo0) which appears in
K the senteuce-

(iv) (%), . (& }{5) ./ (M[@(&, 27998 I(x..,y.,.-)].’_)i@c('x,’ -, )y, ..yu))]
is deducible from K,

(c) For every relation symbol R of n places (n21) which

appears in K the sentence~-
OICIERIENCR (11EF TSR = CEIERELICRIAY|

is deducible {from K.

(4.1) A consistent and non-empty set K of sentences (where,
for syntactical simplicity, it is assumed that tihe sentences
are in prenex normal form) is called an L—-theory if a relation
of equality appears in K. The sentences that belong to an
L-theory are called its axioms. It is clear by (3.12) that a
set K is an L-theory if and only if every model of K is an
algebraic system.
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We note that the relation = of an algebraic system M
is unique; that 1s any binary relation of M satisfying the
postulates(l)-6)of (0.4) must coincide with = . Likewise,
it is easy to show that any two relations of equality with
respect to a given set K are K-equivalent. We may (and shall)
therefore assuise that aeanly one relation of equality appears in
a given I-theory K. 1In conformity with (0.4) we shall denote
it by = so that the expression L, = tywhere t t are any terms
of L denotes an atomic formula of L.

We shall now exhibit a series of L-theories which are
associated  with certain "concrete" algebraic systems. 1n
subsequent cnapters of tuis paper we shall be concerned with
the deductive properties of such theories as well as certain
properties of consistency and completeness. It can oe shown
that such properties are (in a sense which is made precise
in Robinson [2]p.p. 72-74; Robinson [3]p.p. 28—3l)independent
of the particuler formalization of the concept under consideration,
that is, of the particular form of tne symbols that appear in the
theories. Thus 1t is our inteu:tion to merely point out thne
existence of such theories, the particular form or structure
of the axioms being irrelevant to our purposes.

vet G4 be an IL-theory which, in addition to (4.0)--
(1),(ii),(iii), includes the axioms®
(4.2) (1) (%) (y)(2)(u) [[(xz z) ANy = u}]D [G(x,y) = C(z,u):n

(11)(x) [G(x,0) = x]

(1ii) (x) (Ey) [_C(x,y) = O]

(i) Gtz (GG Clz)) = (0w, 7))
(v) (0 [Uxy) = Cly,x)
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The term GKx,y) is called the sum of X and y while the

individual constant o is the neutral element with respect to G:
It is clear that G is an I~theory for the concept of an (additive)
abelian group; that is)tne class of all models of up coincides
with the class of all abelion groups. We say that the concept

of an abelian group is elementarily defined in I by the set Gi.

We now define terms C;jx), n=0,l,... by the following

recursion scheme:

(4.3) i) G(x) =0
(31)  C(x) = (0. (x),x)

Then lek).is the term "nx" in ordinary algebraic notation. Thus
the sentence (x)(Ey) (x = (Lﬁy{} is satisfied by a system M if and
only if for all aeM there exists a constant b €M such that nb = a (n=zo0)
Let N be defined by the following (infinite) set of axioms:
(4.4) (1) (Ex (Ey) ~(x = ¥)
(ii) (x) (By) (x z C.¥)] 3 n=0,1,...
(iii) (x)(y)[[y— ClxA~(x z olPey 26 5 1 = 0,1,...
Then G = GyVN is an L-theory for the concept of a completely
divisible (arlom (11))tor81on—free (éx1om (111))abe11an group which
contains at least two different elements. We note that axiom (111)
asserts in ordinary algebraic notation, that nx # o for akl x # o
that is every non zero element has infinite order.
Let 5, consist of the axioms]

(4.5) (i) (Ex) [x z x

(i1) (x)(3)(2) (W) [[QGo,y) A  AAE = VD alz,w)

(iii) (x)(¥)(z) (@ (x,7)AQ (3,202 Q (x,2)

(iv) (0 (v) [(xzv v axy) vay,x)]

v) (X)) {Q(x,y>:>~gc 71|
together witn axioms (1),(11),(111) of (4.0). It is clear that S,
is an IL-theory for the concept of a (totally) ordered set waere
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Q(x,y) denotes, in ordinary algebraic notation, the ordering
relation"x<y”
(4.6) Let us define tne axioms Y and Z by tne ideititiess
Y = (x) (By) Q(x,y); Z =(x)(y)(z) [Q(X;Y)DQ(C(X,Z), C(Y,Z))‘I
then we haves ]

(a) S; = So%ﬂ?is an L-theory for tne concept of an (infinite)

ordered set which contains no last element.

(b) G4 = GAL)SOU{% }is an L-theory for the concept of an

ordered abelian group.

Again if we adjoin to S, the axioms:
(4.7) (1) (Bx) (En)~(x z¥)
(ii) (x) (y) (Ez) @(X,Y)D [Q(x,z')/\Q(Z,y)_ﬂ
then we obtain the I-theory 84" for the concept of an (infinite)
densely ordsred set.
Let us now define a sequence {Xg¥n= 1,2,... of axioms
by the identity:
X = (Bx,)...(Exy ) [Q(X,,X,L)I\ /\Q(XM_‘)XW)]
It is clear that 8,* = Sobikug n=1,2,... is an IL~theory for
the concept of an infinite ordered set.
(4.8) We leave 1t to tne reader to verify that the concept of
a commutative ring with distinct unity and zero elements is
elementarily defined in L by an L-theory Re containing tne
functors ( and (€ (where the term U (x,y) denotes the product of
X and y) and the individual constants o and 1 (where 1 now
denotes the neutral element with respect toT). It follows
readily tnat there exist L-theories J snd Kg which arg
defined in RC and such that the concepts of an integral domain
a1d (commutative) field are elementarily defined in L by the
sets J and Kp respectively.
We now define terms W,(x) n = 0,1,... by the recursion

scheme:
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()T, (x) =1
(1) Wy (x) = W Tulx), x)
Tren M, (x) is tane term ux”uin ordinary algebraic notation.
(4.9) It is now easily seen that for every non-negative
integer n tne equation X, ¥ + Xu, ¥ 4+ .00 # X, ¥ = X,

written in ordinary algebraic notation ( regarding the
 coefficients X; as variables) can be formalized in L as
an (atomic)predioate Ry (Xoy Xyy »o+Xu,y) of the variables
Xos Xy seeeX,,y which is defined in R,.
Thus, for n=2 we have,
R (%, X, %, ¥y) = [C(f((x_._, ay) 5 ((ACHY (y))ﬂ X%,
(4.10) In order to obtain an L-theory Ke* for the concept of
an algebraically closed field it sufficeé?%djoin to Kg the
infinite sequence {xwg of axioms n = 2,3,... defined by:
X = (%) (x,)+..(x,) (Ey) (:(X“z QV[RK(X,,X,,--.n,Y)]]

We now define an infinite sequence YK? of axioms

n=1,2,... by the identity:
T o= (x () [(Go=z v| >0 z 9
where p denotes tine n'" prime number in order of magnitude;
that is, p=2, p, = 3, Py, = 5 etc.

(4.11) It is clear that Kp, = K; U Y, 1is an L-theory for the
concept of a field of characteristic f, (nz1) while the
infinite set Kp, = AQJ{}VY;} n=1,2,... is an L-theory for
the concept of a field of canaracteristic zero. Hence the
concept of a field of specified characteristic p2z o can be
formalized in L.

By way of example illustrating tae importance of (3.12)

We now proves
Iheorem: TLet X be a sentencewich igdefined in the set Kg of
axioms for the concept of a field and which is satisfied by all
fields of characteristic zero. Then thnere exists an integer q
such tnat X is satisfied by all fields of -characterist:c pZq.
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Proof: Let Kp be defined by (4.11). Then X is defined in Kp,
and hence, by our assumption is satisfied by all models of Kp,.
It follows by (3.12) that X can be deduced from the set Kg>=KFU£;Yu}
n=1,2,... Hence there must exist a finite subset H =£V$;,~ Y%..?Yﬁ}
such that X is deducible from the set K,V H.

New the set K.VH is satisfied by all fields of characteristic
P7q. It follows, by (3.12) again, that X is likewise satisfied
by all such fields. |
(4.12) Let Z be defined by (4.6) and let 72" ve given bys
2= (0 (g @) [[xyAae,2]D o (T, T(z,))
It is then clear that if we adjoin to R, or Ky the axioms of S,
together with the axioms Z and z’ then we obtain an L-theory Rgor K,
for the concept of an ordered ring or ordered field respectively.

(4.13) By a real closed field we shall understand an ordered

field in which every non-negative element has a square root and
every polynomial of odd degree has at least one root. It is then
clear that if Y is defined by the identity;

Y = (y) (E2) [(~aly,0)] D[ (z,2) = v]

tnen KFKJYU{XQ, ) R ..:} where X; is defined by (4.10)

]
is an L-theory for the concept of a real closed field.



Chapnter 5 Convleteness and Model-Completeness
2 L P

In thiis chapter we shall iatroduce the concepts of
completeness and model-completeness and extablish some of their
properties. Whenever we deal with a set K of sentences in L
we chall, in order to avoid trivial cases, ascume that K is
non- enpty and consistent.

(5.0) A gentence X is snid to be decidable in a set K of

sentences if eitner X or~X is deducibple from K. (e observe

tnat this notion does not entail the existence of a concrete
decision rroced.ire). By (3.12) we obtain an enuivalent semantical
charactoerization of the notion of decidability namely:

(5.1) A sentence X is decidable in a set K if and only if

either X is snatisfied by all models of K in which it is defined

or it is satiafied »y none.

(5.2) A set K is ¢aid to be comwnlete 1f every seate ce which is
defined in K (see 2.8) is also decidable in K. In view of (2.16)
we may say, without loss of generality, thst a set K i complete

if and only if every sentence in urenex normal form which is

defined in K is also decidable in K. We may therefhre introduce
a modified notion of completeness called "n-completeness" as follows.
(5.3) A set K ig s52id to be n-complese (nZo) if every seatence
of class n (see 2.18) which is defined in K is also decidanle in
K. Wwe note by tne above remark, that a set K is complete if and
only if it is n-complete for every nZo. It follows from (2.14)
that:

(5.4) A set K is l-comnlete if and only if every existential
(univercal) sente:ce which is defined in K is also decidable in K.
(5.5) Let ¥ be a given(mathematical) system. Let D(}) be the
set of all atomic sentesces of the form R(a,,...8,) n=1 which
are defined in M (that is Re&M and a,...a, € M) and which hold in
M togetner with the set of 2ll sentences of the form/~/R(a|,...au)
where R(a,,...an) is an atomic sentence which is defined in M but
which does not hold in M. D(M) is called the diagram of M. Thus
if M is a model of K ( see 4.12),




then the senteaoeSAJ[l T d] and Q (TZf(l,O,b Cr(O,l) are incladed
in D(M).

The following results follow readily from (6.1) and 6.5).
(5.6) Let M, and M, be two systems, Then M, is a (proper)extension
of M,if and only if D(M,) is a (proper) sudbset of D (M, ). In
syubols,M, &M, if and oniy if D(M,)&D(M,).

\5.7) Every model of D(M)is an extension of I and coaversely,
every extension of M is a model of D(M) ; that is, the models of
D(M) are precisely the extensions of M. Hore generally, for any
congsistent set K, the models of KUD(M) are precisely tne models
of K which are extensions of M.

We note that an exteusion M* of a given model M of a fixed
set K need not be a model of K. Indeed the ordered field ¥ of
real aumbers is a model of K, (above) aand if we let M¥* be the
field of complex numbers we may define a relation a+bi = cédi in
M* which holds in M* if and only if atb=c+d holds in M. Then M*
is an extension of M in the sense of (G.l)‘but clearly, M* is not
a model of Ka.

(5.8) A (non—empty and congsistent) set K of sentencus is said to
be model-complete if the set KVD(M) is complete for every model

M of K. It follows from (5.7) and (5.1) that:

(5.9) A set K is model-complete if and only if, for every sentence

X which is defined in any given model M of K, if X is satisfied by
M, then X is satisfied by all extensions of M which are models of K.

By way of example let S, be an L-theory for the concept of
an infinite ordered set (see 4.5). It can be shown by a direct
application of (5.4) that S, is l-complete. (Since the proof is
somewhat detailed and since this result is not esseatial for our
purposes we refer the interested reader to Robinson [41). It is
easily seen however that the sentence Z = (Ex)(y) [& T y\/Q(x,y{]
(which asserts, in ordinary mathematical terminology that
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there exists a first elemeat for tne set) is not decidaole in Se -
indeed Z is satisfied oy tune ordered set of positive integers but
is not satisfied, by the ordered set of interers. Tous, oy (5.1)
S is not 2-complete and nwnce oy (5.3), is certainly not complete.

Again, the ordered set i: of positive integers and the ordered
set M¥ of non-negative integers are voth modc'g H>f Sps M¥ oeing an
extension of M. Yet tae sentence Z =(x) [Kx = l)wJ Q (1, xi] is
satisfied by M 2ut not by M¥*; so that vy (5'9);80 is not model-
complete,

It is to be noted that the concepts of completeness and
model-conpleteness are not comparable., That is, there exists sets
K which are model-complete but not complete, and vice versa. In
fact, let K¥ be an L-theory for the concept of an algeoraically
closed field. (see 4.10). Since thne characteristic of an arbitrary
model M of K¥ is not agpecified it follows that any sentence defined
in K¥ which touches upon the characteristic of M, [for example, the
sentence (x) (¥) [G(x,x) VDV zs_'which asserts that the field
is of characteristic 2) is undecidable in K¥, Thus K¥ is not
complete. OUn the other hand, it will be sghown in chapter 8 that
K* is model complete.
(5.10) Conversely, we shall now specify a set K which is complete
pbut not model-complete. Let M = (A,¢,&l) be any system such taat
A= {é,, al...} is a denumerable set of constants and consists
of the single biary relation P such that the atomic sentences of
the form P (a2, , @un ), 2nd only those, hold in M. n=1, 2, ...

Let K be the set of all sentences waich contain no constanis

and which contain only tihe relation symbol P and which are satisfied
by M. K is non-empty since it contains thne sentence Y = (Ex) (Ey)P(x,y).
Also K is consistent by (3.6)since M is a model of K. Moreover
K is comrlete since, for every sentence Y waich contains only the
relation 7 and is free of constants, eitner Y or~Y is satisfied

by M. That is, either Y or~Y is contained in K and, a fortiori,
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deduciple from that set.
We now define a system M* by tne conditions: A¥ = nu{ao}

)zf* =g, D(1*) = D(M) U{[I':’(ao, a, )]} . ~hen MCM* by (5.6).
Moreover M* is also..a model of K sincre 1t 1is in fact, isomorphic
to M under the one-—one correspondeace indicated by:
8, Mesa, €M*, n = 1,2,3,... The sentence Y* = (Ex) P(x,q ) is
defined in M but is not satisfied by M although it is satisfied
by an extension M* of M which is a model of K. This, in conjunction

with (5.9), Saows tnat K is not model complete, as required.

It can be shown that, under certain conditioas, tne model~
completeness of a set K entails the completeness of K (Robinson[?]
pp. 72-77). We shall now investigate one of these conditions which
will prove to be useful in the sequel.

(5.11) A system M is said to be a prime model of a set of
sentences K if :

(1) Mg is a model of K

(2) Mg can be embedded in any model M of K. That is, every model
M of K is an extension of My. (It is understood that, if K
includeg any constants, then these shall corregspond to themselves
in the isomorphism from Mg into M).

For example, tne field of rational numbers is a prime
model of tane L-theory Kp, for the concept of a field of
characteristic zero (see 4.11). w~No prime model exists if the
cnaracteristic of thie field is not specified,

It is quite possible that a prime model Mg of a given set
K be a proper extension of another prime model M, of the same
set K. Indeed let Sé be an L-theory for tne concept of an ordered
set which contains no last element (see (4.6)-(a). It is clear
tnat any ordered set M of ordinal type w (for example, the
natural numbers) is a prime model of S; yet M has a proper
subsystem M, (of the same type GD) which is isemorphic to M.

It is also possible tnat a set K possess two prime models
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Mo and Mé which are not isomorphic. Indeed, let sZ be an
L-theory for the concept of a densely ordered set (see 4.7)

Let My be a densely ordered set with first and last elements,
and let M) be a densely ordered set without first and last
elements. Then clearly both M, and Mg are prime models of

So . We now prove:

(5.12) Theorem: (The prime-model test). Every model-complete
set K of the sentences which possesses a prime model M, is
complete.

rroof: Let X be any sentence which is defined in K. Then X is
defined also in Mg and so either X or ~X is satisfied by My.

If X is satisfied by My then X is satisfied by all models of K
which are extensions of My since K is model-complete, by
agsumption. That is, X is satisfied by all models of K so that
X is deducible from K. Similarly, if~X is satisfied by M,, then

~X 1s deducible from K. Tnus X is decidable in K, as required.
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Chapter 6 Modei-Completeness and rersistence

We snhall now introduce an alternative approach to the
concept of model-completeness, via the notion of persistence.

Let K be a consistent set (possibly empty) of sentences.
In what follows we shall consider only predicates which are
partially defined in K (see 2.8). This apparent restriction is
in accordance with the remark following (3.2)

(6.0) A predicate Q(x,,...X,) nZo is said to be persistent with

respect to K if for any n-tuple 8y «..2,0f constants which

belong to a model M of K the senteiice Q (a,,...au) can be deduced
from the set KUD(M);;that is by (5.7) and (3.12) Q(a;,...au)
is satigfied by a model M of K only if it is also satisfied by
all models of K which are extensions of M. In particular, a
gsentence X is persistent with respect to K if X is deducible
from the set KVUD(M) for every model M of K which satisfies X.

For example, every sentence X which is deducible from K
is persistent with respect to K. Again, if K 1is a set of axioms
for the concept of a field then the predicate — o ‘
Q (x,y) = (Eu) (Ev) [C(T,%) =y N TWv,v) = u]
which asserts that the difference "y-x" possesses a square root
ig persistent with respect to Kj while the predicate ~ Q(x,y) is
not. DMore generally it is easy to show (see Robinson(B]p. lS)that:
(6.1) Bvery existeatial predicate is persistent with respect to
the empty set é(and hence with respect to any consistent set K).
Using (6.1) we now prove:
(6.2) The diagram D(M) of any model M of K is o-complete.
Proof: We must show that every sentence X which is defined in an
arbitrary model M of K and which is free of quantifiers is decidable
in the set D(M).

Suppose then that X is defined in M so that either X or~X
is satisfied by M. If X is satisfied by M then X is also satisfied
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by all extensioas of M by (6.1). Since X is free of quantifiers.
Thus X is deducible from D(M) by (5.7) and (3.12). Similarlya X
is satisfied by M only if ~ X is deducible from D(M) (s.nce ~X is
likewise free of quantifiers). In any case, X is decidable in D(M).

We note that since the negation of an existential sentence
whicn contains at least one quantifier is not existential, the
set D(M) is not in general, l-complete. Indeed, if M is tne field
of rational numbers then the sentence (Ex) Et((x,x) - 2] is not
decidable in D(M ) since it is satisfied by the field of real
numbers (which is an extension of M ) but it is not satisfied
by M itself.

We now prove the converse of (6.1) namely that any predicate
which is persistent with respect to a given set K is K-equivalent
to an exigstential predicate. More precisely:

(6.3) Let Q(x{,...xu) be a predicate which is persistent with
respect to a ziven set K. Then there exists an existential
predicate QE(X, ,eeeXn) =(Ey‘)...(Emﬂ)R(x.,...x%yl,...y@)
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