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ABSTRACT

ABSTRACT

The fundamental motivation for the work in this thesis is the analysis of the optimal

control of hybrid systems on Riemannian manifolds using the language of differential

geometry. Hybrid systems theory constitutes one of the major frameworks within

which one may model and analyze the behaviour of large and complex systems; in

particular, the optimal control of hybrid systems has been a focus of research over

the last decades resulting in the important generalization of Minimum (Maximum)

Principle of classic optimal control to hybrid systems.

In the work of Shaikh and Caines (2007) and their predecessors, a formulation

for a class of optimal control problems for general hybrid systems with nonlinear

dynamics and autonomous or controlled switchings at switching states and times

is proposed. In this thesis we extend the framework of Shaikh and Caines (2007)

to a general class of hybrid systems defined on Riemannian manifolds. Due to the

formulation generality, this class of hybrid systems covers a vast range of practical

examples arising in such different areas as mechanical systems, chemical processes,

air traffic control systems and cooperative robotic manipulator systems.

In this thesis, a formulation for general hybrid systems on differentiable Riemann-

ian manifolds is first presented. In the case of autonomous switchings, switching

manifolds are modelled by embedded orientable submanifolds of the ambient state

manifold and consequently hybrid optimal control problems are defined for hybrid

systems in this general setting.
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Second, the classic Minimum Principle is extended to the Hybrid Minimum Prin-

ciple (HMP) yielding the optimality necessary conditions for hybrid systems at the

optimal switching states and times. The HMP statement in this thesis is obtained

by employing the so-called needle control variation in the control value space. This

class of control variations results in state trajectory variations along the nominal state

trajectory in the ambient state manifold where the optimality conditions are derived

by analyzing the cost function variation with respect to state variations.

Third, in order to optimize switching states and times, numerical optimization

algorithms (Gradient Geodesic-HMP, Newton Geodesic-HMP) are formulated by em-

ploying the HMP equations on general Riemannian state manifolds. The convergence

analysis for the proposed algorithms is based upon the LaSalle Invariance Theorem.

Technically these algorithms generalize the standard steepest descent and Newton

methods in Euclidean spaces to Reimannian manifolds by employing the notion of

Levi-Civita connections.

Fourth, the derivation of the HMP results for hybrid systems on Riemannian

manifolds is carried out for hybrid systems on Lie groups. The group structure of

the ambient state manifold gives rise to a special form for the adjoint processes and

Hamiltonian functions as the solutions for the optimality equations. In this thesis

hybrid optimal control problems on Lie groups are only considered for the class of

left invariant systems, however, the analysis can be easily modified to right invariant

systems. In the setting of left invariant hybrid systems on Lie groups, the Gradient

Geodesic-HMP and Newton Geodesic-HMP algorithm are modified into algorithms

called the Gradient Exponential-HMP and Newton Exponential-HMP algorithms.

The fifth and last part of the thesis focuses on the problem of optimization of

autonomous hybrid optimal control problems with respect to the geometrical features

of switching manifolds. Such features include first order and second order information

on the switching manifolds such as curvature tensors and normal differential forms.
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RÉSUMÉ

La motivation première du travail accompli dans cette thèse est l’analyse du contrôle

optimal de systèmes hybrides sur les variétés riemanniennes en utilisant le language

de la géométrie differentielle. La théorie des systèmes hybrides constitue un des

cadres majeurs dans lequel on peut modeler et analyser le comportement de systèmes

grands et complexes; en particulier, le contrôle optimal de systèmes hybrides a été le

centre d’intérêt des recherches dans les décennies précédentes ayant comme résultat

une importante généralisation du Principe Minimum (Maximum) du contrôle optimal

classique aux systèmes hybrides.

Le travail de Shaikh et Caines (2007) et leurs prédécesseurs propose une formule

pour une classe de problèmes de contrôle optimal pour les systèmes hybrides généraux

avec des dynamiques non linéaires et autonomes ou des commutations contrôlées aux

états et temps de commutation. Cette thèse élargit le cadre de Shaikh et Caines (2007)

à une classe générale de systèmes hybrides définis sur les variétés riemanniennes. En

raison de la nature générale de la formulation, cette classe de systèmes hybrides couvre

un vaste éventail d’exemples pratiques survenant dans différents domaines tels que les

systèmes mécaniques, les procédés chimiques, le contrôle des systèmes de navigation

aérienne, ainsi que les systèmes de manipulation de la robotique coopérative.

Premièrement, cette thèse présente une formulation pour le cas des systèmes hy-

brides généraux sur les variétés riemaniennes différentielles. Dans le cas des com-

mutations autonomes, les variétés de commutation sont modélisées par les sous-

variétés prolongées et orientables de la variété d’état ambiante et conséquemment,
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les problèmes de contrôle optimal hybrides sont définis pour les systèmes hybrides

dans ce contexte général.

Deuxièmement, le Principe Minimum classique est étendu au Principe Minimum

Hybride (HMP), produisant les conditions nécessaires d’optimalité pour les systèmes

hybrides aux états et temps optimaux de commutation. L’énoncé du Principe Mini-

mum Hybride (HMP) dans cette thèse est obtenu en utilisant la commande de vari-

ation d’aiguille, ainsi nommée, dans l’espace de valeur de contrôle. Cette classe de

variation donne des variations de trajectoire au long de la trajectoire d’état nomi-

nale dans la variété d’état ambiante. Les conditions d’optimalité sont obtenues en

analysant la variation de la fonction de coût en respectant les variations d’état.

Troisièmement, dans le but d’optimiser les états et temps de commutation, des al-

gorithmes numériques d’optimisation (Géodésique Gradient-HMP, Géodésique Newton-

HMP) sont formulés en utilisant les équations du Principe Minimum Hybride (HMP)

sur les variétés d’état riemanniennes générales. L’analyse de convergence pour les

algorithmes proposés est basée sur le théorème d’invariance de LaSalle. Technique-

ment, ces algorithmes généralisent l’algorithme standard de la plus profonde descente

et les méthodes de Newton dans les espaces euclidien aux variétés riemanniennes en

utilisant la notion des connexions Levi-Civita.

Quatrièmement, la dérivation des résultats du Principe Minimum Hybride (HMP)

sur les variétés riemanniennes est appliqué aux systèmes hybrides sur les groupes

de Lie. La structure du groupe de la variété d’état ambiante engendre une forme

spéciale des processus adjoints et des fonctions hamiltoniennes comme solutions pour

les équations d’optimalité. Dans cette thèse, les problèmes de contrôle optimal sur

les groupes de Lie sont seulement considérés pour la classe des systèmes invariants de

gauche. Par contre, l’analyse peut facilement être modifiée pour les systèmes invari-

ants de droite. Dans ce contexte, les algorithmes du Géodésique Gradient-HMP et du

Géodésique Newton-HMP sont développés aux algorithmes du Gradient Exponentiel-

HMP et à l’algorithme Newton Exponentiel-HMP pour les systèmes hybrides invari-

ants de gauche sur les groupes de Lie.
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Finalement, la dernière partie de la thèse met l’accent sur la question d’optimisation

des problèmes de contrôle optimal autonomes hybrides en ce qui concerne les car-

actéristiques géométriques des variétés de commutation. De telles caractéristiques

comprennent des informations de premier et de second ordre sur les variétés de com-

mutation telles que les tenseurs de courbures et les formes différentielles normales.
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Claims of Originality and Published Work

Claims of Originality

The following original contributions are presented in this thesis:

• An extension of the Hybrid Minimum Principle (HMP) derived for hybrid

systems defined on Euclidean spaces to that of impulsive hybrid systems

defined on Riemannian manifolds.

• The design and development of numerical algorithms for the optimization

of switching states and times for a general class of hybrid systems defined

on Riemanian manifolds and Lie groups.

• The convergence analyses of the proposed numerical algorithms based upon

the optimality equations and the geometry of ambient state manifolds.

• The derivation and extension of the HMP for left invariant hybrid systems

defined on Lie groups and modifying the numerical optimization algorithms

in order to take into account the group properties of ambient state mani-

folds.

• The formulation and derivation of necessary conditions for optimality of

hybrid cost functions with respect to the geometry of switching manifolds

in the case of autonomous hybrid systems.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

The key notion of hybrid systems is the continuous and discrete nature of their state

space and dynamics. This fundamental concept has been characterized and crystal-

lized over the last few years (see [15,16,51,58,66,83,84]).

Examples of hybrid systems can be found in a vast area of engineering and indus-

trial applications including telecommunication and transportation networks, mechan-

ical systems, chemical processes and water systems (see [36,47,54]). One important

problem arising in the context of hybrid systems is optimization and optimal control

of hybrid systems. This problem is addressed in [7–9, 22, 26, 27, 31–34, 44, 45, 55,

56,58,66,68,69,84–86,88]. Among these, and [58,66] and [69] present versions of

the Hybrid Minimum Principle (HMP).

Technically the HMP results are extensions of Pontryagin’s Minimum Principle

(often called Pontryagin’s Maximum Principle) for hybrid systems. In particular,

Shaikh and Caines proposed a derivation for the Hybrid Minimum Principle based

upon the control needle variation for autonomous and controlled hybrid systems (see

[66]). Their methods generalize the approaches of [25,87] where optimality conditions

are obtained by analyzing the cost variation propagation along the optimal trajectory.

Employing the HMP results, they also proposed a class of numerical algorithms (HMP

Algorithms) for the optimization of switching states and switching times for both

autonomous and controlled hybrid systems. The efficacy of their HMP algorithm has

1



CHAPTER 1. INTRODUCTION

been illustrated via numerical comparisons with a gradient algorithm proposed by Xu

and Antsaklis in [84].

In the first chapter of this thesis, following [66], we generalize the formulation

of hybrid systems to those on Riemannian manifolds and then we obtain the Hybrid

Minimum Principle for a class of impulsive hybrid systems where the state trajectories

are discontinuous at switching instants. Our development is based on a geometric ver-

sion of Pontryagin’s Minimum Principle for a general class of state manifolds which is

given in [3,6]. It is shown that under appropriate hypotheses on the differentiability

of the hybrid value function, the discontinuity of the adjoint variable at the optimal

switching state and switching time is proportional to a differential form of the hybrid

value function defined on the cotangent bundle of the state manifold. In the case of

open control sets and Euclidean state spaces, these results appeared in [57] without

using the language of differential geometry. The results obtained are also extended to

the cases of time varying switching manifolds, time varying impulse jumps and mul-

tiple switching hybrid systems. The discontinuity equations of the adjoint variables

are also derived in the presence of discrete switching costs at switching states.

Chapter 3 presents numerical algorithms for the optimization of switching states

and switching times for autonomous hybrid systems. However, the analysis can be

carried out for controlled hybrid systems as well. The central core of the proposed

algorithms relies on the extension of the well-known Gradient Descent and Newton

algorithms for cost functions defined on Riemannian manifolds. In a natural way, the

notion of straight lines in Euclidean spaces are generalized to geodesic lines on Rie-

mannian manifolds, see [37,42]. In [37], it is shown that geodesics are locally length

minimizers where the neighbourhoods for which geodesics are length minimizers are

determined by the geometric structure of Riemannian manifolds (see [42] Chapter

10). In general, for a Riemannian manifold (M, gM), geodesics are locally computed

as solutions of a second order differential equation involving the Christoffel symbols

(see [37, 42]). We introduce the so-called Gradient Geodesic HMP algorithm (GG-

HMP) which is an extension of the HMP algorithm in [66] where switching states

2
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are updated along the geodesics in switching manifolds. The convergence analysis is

performed using the Lasalle Invariance Principle (see [60]).

In order to further improve the convergence rate of the GG-HMP, the so-called

Newton Geodesic version of the GG-HMP is formulated in the local coordinate system

of the switching state. In the general case of Reimannian manifolds, it is always not

possible to define a Hessian matrix as can be done in Euclidean spaces, (see e.g. [29],

[67]). However, employing the notion of Levi-Civita connection ∇ on Riemannian

manifolds, the Hessian may be defined as a bilinear symmetric form, [37]. Again the

Lasalle Invariance Principle provides a proof of convergence for the Newton Geodesic

method.

In Chapter 4 we further extend the results of Chapter 2 to hybrid systems defined

on Lie groups. By definition, Lie groups are differentiable manifolds associated with

group structures which are multiplication and inversion (see e.g. [19,38] ). Examples

of dynamical systems on Lie groups can be found in many mechanical systems where

state manifolds constitute group properties. Such examples include rigid body motion

and rotational systems (see [10, 18, 19]). Optimal control of dynamical systems on

Lie groups is presented in [38], Chapter 12, for general left and right invariant control

systems. The theory of Hamiltonian systems on Lie groups is based upon a special

realization of the cotangent bundle of Lie groups. This realization enables us to obtain

the Hamiltonian equations which correspond to the optimality of control systems, in

a special form of differential equations on Lie algebras of state Lie groups. For a

hybrid system defined on a Lie group, it is shown that the difference of the adjoint

variables gives a projection of the hybrid value function differential form on the Lie

algebra of the state manifold.

The numerical algorithms in Chapter 3 are then modified to Gradient Expo-

nential HMP algorithms to optimize switching states and times for hybrid systems

defined on Lie groups. The group properties of state manifolds generate different

possible directions for updating equations in descent algorithms performing on Lie

groups. One of these possibilities is given by the exponential map on Lie groups.

3
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Note that depending upon the metric associated to a Lie group, the exponential flow

may coincide with the geodesic flow on the group, see e.g. [49].

Chapter 5 treats the problem of optimization of autonomous hybrid systems with

respect to the geometry of switching manifolds. The problem presented there con-

siders the variation of the switching manifold configurations which determine the

autonomous (uncontrolled) discrete state switchings. The optimal cost variation (i.e.

derivative) as a function of the switching manifold parameters is described by the

solution of a set of differential equations generating the state and costate sensitiv-

ity functions. This problem is addressed in [11, 12, 61, 62] from different points of

views. In [62] the maximization of a measure of the stability of systems with pe-

riodic behaviour is analyzed in terms of the adjustment of the switching surfaces.

In [11,12] a method for deriving the cost variation induced by shifting the switching

manifold position is proposed. One direct extension of the optimal control problem

for autonomous hybrid systems concerns the notion of switching manifold geometry,

where this is interpreted as the shaping and displacement of switching manifolds in

order to optimize system performance. In this chapter, we analyze HSOC sensitivity

with respect to the parameters determining systems switching manifolds. Similar

to [11, 12], we employ a method for deriving the optimal cost variation as a func-

tion of the switching manifold parameters, but we consider a general class of hybrid

systems for which there are continuous controls in each distinct discrete state.

Finally, in Chapter 6, suggestions for possible future research and extensions are

presented.
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CHAPTER 2. OPTIMAL CONTROL OF HYBRID SYSTEMS ON RIEMANNIAN MANIFOLDS

CHAPTER 2

Optimal Control of Hybrid Systems On

Riemannian Manifolds

In the following definition the standard hybrid systems framework (see e.g. [15, 66,

75]) is generalized to the case where the continuous state space is a smooth manifold,

where henceforth in this paper smooth means C∞.

Definition 2.1. A hybrid system with autonomous discrete transitions is a five-

tuple

H := {H = Q×M,U,F,S,J } (2.1)

where:

Q = {1, 2, 3, ..., |Q|} is a finite set of discrete (valued) states (components) and M is

a smooth n dimensional Riemannian continuous (valued) state (component) manifold

with associated metric gM.

H is called the hybrid state space of H.

U ⊂ Ru is a set of admissible input control values, where U is a compact set in Ru.

The set of admissible input control functions is I := (L∞[t0, tf ), U), the set of all

bounded measurable functions on some interval [t0, tf ), tf <∞, taking values in U .

F is an indexed collection of smooth, i.e. C∞, vector fields {fqi}qi∈Q, where fqi :

5
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M×U → TM is a controlled vector field assigned to each discrete state; hence each

fqi is continuous on M× U and continuously differentiable on M for all u ∈ U .

S := {nkγ : γ ∈ Q × Q, 1 ≤ k ≤ K < ∞, nkγ ⊂ M} is a collection of embedded time

independent pairwise disjoint switching manifolds (except in the case where γ = (p, q)

is identified with γ
′

= (q, p)) such that for any ordered pair γ = (p, q), nkγ is an open

smooth, oriented codimension 1 submanifold of M, possibly with boundary ∂nkγ. By

abuse of notation, we describe the manifolds locally by nkγ = {x : nkγ(x) = 0, x ∈ Rn}.

J shall denote the family of the state jump functions on the manifold M. For an

autonomous switching event from p ∈ Q to q ∈ Q, the corresponding jump function

is given by a smooth map ζp,q :M→M: if x(t−) ∈ S the state trajectory jumps to

x(t) = ζp,q(x(t−)) ∈M, ζp,q ∈ J . The non-jump special case is given by x(t) = x(t−).

We use the term impulsive hybrid systems for those hybrid systems where the con-

tinuous part of the state trajectory may have discontinuous transitions (i.e. jump) at

controlled or autonomous discrete state switching times.

We assume:

A1 : The initial state h0 := (x(t0), q0) ∈ H is such that x0 = x(t0) /∈ S for all

qi ∈ Q. A (hybrid) input function u is defined on a half open interval [t0, tf ), tf ≤ ∞,

where further u ∈ I. A (hybrid) state trajectory with initial state h0 and (hybrid)

input function u is a triple (τ, q, x) consisting of a finite strictly increasing sequence

of times (boundary and switching times) τ = (t0, t1, t2, . . . ), an associated sequence

of discrete states q = (q0, q1, q2, . . . ), and a sequence x(·) = (xq0(·), xq1(·), xq2(·), . . . )

of absolutely continuous functions xqi : [ti, ti+1) →M satisfying the continuous and

discrete dynamics given by the following definition.

Definition 2.2. The continuous dynamics of a hybrid system H with initial

condition h0 = (x0, q0), input control function u ∈ I and hybrid state trajectory

(τ, q, x) are specified piecewise in time via the mappings

(xqi , u) : [ti, ti+1)→M× U, i = 0, ..., L, 0 < L <∞, (2.2)
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where xqi(.) is an integral curve of fqi(., u(.)) :M× [ti, ti+1)→ TM satisfying

ẋqi(t) = fqi(xqi(t), u(t)), a.e. t ∈ [ti, ti+1),

where xqi+1
(ti+1) is given recursively by

xqi+1
(ti+1) = limt↑t−i+1

ζqi,qi+1
(xqi(t)), h0 = (q0, x0), t < tf . (2.3)

The discrete autonomous switching dynamics are defined as follows:

For all p, q, whenever an admissible hybrid system trajectory governed by the controlled

vector field fp meets any given switching manifold np,q transversally, i.e. fp(x(t−s ), t−s ) /∈

Tx(t−s )S, there is an autonomous switching to the controlled vector field fq, equivalently,

discrete state transition p→ q. Conversely, any autonomous discrete state transition

corresponds to a transversal intersection.

A system trajectory is not continued after a non-transversal intersection with a

switching manifold. Given the definitions and assumptions above, standard arguments

give the existence and uniqueness of a hybrid state trajectory (τ, q, x), with initial state

h0 ∈ H and input function u ∈ I, up to T, defined to be the least of an explosion time

or an instant of non-transversal intersection with a switching manifold.

We adopt:

A2 : (Controllability) For any q ∈ Q, all pairs of states (x1, x2) are mutually

accessible in any given time period [0, t], 0 < t < tf , via the controlled vector field

ẋq(t) = fq(xq(t), u(t)), for some u ∈ I = (L∞[0, tf ), U).

A3 : {lqi}qi∈Q, is a family of loss functions such that lqi ∈ Ck(M×U;R+), k ≥ 1,

and h is a terminal cost function such that h ∈ Ck(M;R+), k ≥ 1.
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Henceforth, Hypotheses A1 -A3 will be in force unless otherwise stated. Let L

be the number of switchings and u ∈ I then we define the hybrid cost function as

J(t0, tf , h0;L, u) :=
L∑
i=0

∫ ti+1

ti

lqi(xqi(s), u(s))ds+ h(xqL(tf )),

tL+1 = tf < T, u ∈ I, (2.4)

where we observe the conditions above yield J(t0, tf , h0;L, u) <∞.

Definition 2.3. For a hybrid system H, given the data (t0, tf , h0;L), the Bolza

Hybrid Optimal Control Problem (BHOCP) is defined as the infimization of the hybrid

cost function J(t0, tf , h0;L, u) over the hybrid input functions u ∈ I, i.e.

Jo(t0, tf , h0;L) = infu∈IJ(t0, tf , h0;L, u).

Definition 2.4. A Mayer Hybrid Optimal Control Problem (MHOCP) is defined

as the special case of the BHOCP where the cost function given in (2.4) is evaluated

only on the terminal state of the system, i.e. lqi = 0, i = 1, ..., L.

In general, different control inputs result in different sequences of discrete states

of different cardinality. However, in this chapter, we shall restrict the infimization to

be over the class of control functions, generically denoted U ⊂ I, which generates an

a priori given sequence of discrete transition events.

We adopt the following standard notation and terminology, see [19, 75, 79]. The

time dependent flow associated to a differentiable time independent vector field fqi

is a map Φfuqi
satisfying (fuqi(.) is used here for brevity instead of fqi(., u(t)) since the

calculations are performed with respect to a given control u):

Φfuqi
: [ti, ti+1)× [ti, ti+1)×M→M, (t, s, x)→ Φ

(t,s)
fuqi

(x) := Φfuqi
((t, s), x) ∈M,

(2.5)

8
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where

Φ
(t,s)
fuqi

:M→M, Φ
(s,s)
fuqi

(x) = x, (2.6)

d

dt
Φ

(t,s)
fuqi

(x)|t = fqi
(
Φ

(t,s)
fuqi

(x(s))
)
, t, s ∈ [ti, ti+1). (2.7)

We associate TΦ
(t,s)
fuqi

(.) to Φ
(t,s)
fuqi

:M→M via the push-forward of Φ
(t,s)
fuqi

.

TΦ
(t,s)
fuqi

: TxM→ T
Φ

(t,s)

fuqi
(x)
M. (2.8)

Following [19], the corresponding tangent lift of fuqi(.) is the time dependent vector

field fT,uqi
(.) ∈ TTM on TM

fT,uqi
(vx) :=

d

dt
|t=sTΦ

(t,s)
fuqi

(vx), vx ∈ TxM, (2.9)

which is given locally as

fT,uqi
(x, vx) =

[
fu,iqi

(x)
∂

∂xi
+ (

∂fu,iqi

∂xj
vj)

∂

∂vi

]n
i,j=1

, (2.10)

and TΦ
(t,s)
fuqi

(.) is evaluated on vx ∈ TxM, see [19]. The following lemma gives the

relation between the push-forward of Φ
(t,s)
fqi

and the tangent lift introduced in (2.10).

For simplicity and uniformity of notation, we use fqi instead of fuqi .

Lemma 2.1 ( [6]). Consider fqi(., u(.)) : M× I → TM, I = [ti, ti+1) as a time

dependent vector field on M and Φ
(t,s)
fqi

as its corresponding flow. The flow of fT,uqi
,

denoted by Ψ : I × I × TM→ TM, satisfies:

Ψ(t, s, (x, v)) = (Φ
(t,s)
fqi

(x), TΦ
(t,s)
fqi

(v)) ∈ TM, (x, v) ∈ TM. (2.11)

�
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2.1. The Pontryagin Minimum Principle for Standard Opti-

mal Control Problems

In this section we focus on the Pontryagin Minimum Principle (PMP) for stan-

dard (non-hybrid) optimal control problems defined on a Riemannian manifoldM. A

standard optimal control problem (OCP) can be obtained from a BHOCP, see (2.4),

by fixing the discrete states qi to q, and hence L to the value 0. The resulting opti-

mal control problem in Bolza form becomes that of the infimization of the cost (2.4)

with respect to state dynamics which by suppressing notation of q may be written

ẋ = f(x(t), u(t)), x(t) ∈M, u(t) ∈ U , t ∈ [t0, tf ].

2.1.1. The Relationship between Bolza and Mayer Problems. In Sec-

tion 2 both the BHOCP and the MHOCP were introduced; since the results in this

chapter are only stated for the Mayer problem we now briefly explain the relationship

between them.

In general (see [6]), a Bolza problem can be converted to a Mayer problem with

state variable x̂ := (x, xn+1) by adjoining an auxiliary state xn+1 to the state x, one

then defines the dynamics to be given by

˙̂x(t) =

 ẋ(t)

ẋn+1(t)

 =

 f(x(t), u(t))

l(x(t), u(t))

 , (2.12)

where f and l are respectively the dynamics and the running cost of the Bolza prob-

lem. Then the equivalent Mayer problem is obtained by the infimization of the penalty

function ĥ(.) defined as follows:

ĥ(x̂(tf )) ≡ ĥ(x(tf ), xn+1(tf )) := xn+1(tf ) + h(x(tf )) = J(t0, tf , x0, u), (2.13)

where h is the terminal cost function of the Bolza problem. Note that after such a

transformation from a Bolza problem the state space of the resulting Mayer problem

is M×R, where M is the state manifold of the Bolza problem.

10



2.2.1 THE PONTRYAGIN MINIMUM PRINCIPLE FOR STANDARD OPTIMAL CONTROL PROBLEMS

2.1.2. Elementary Control and Tangent Perturbations. We now present

some results from [3], [6] and [41]. It is essential to note that henceforth in this paper

we treat the general Mayer problem with state space manifold denoted byM. In the

special case where Mayer OCP is derived from a Bolza problem,M takes the product

form given in the previous section.

Consider the nominal control input u(.) and define the associated perturbed con-

trol as

uπ(t1,u1)(t, ε) =

 u1 t1 − ε ≤ t ≤ t1,

u(t) elsewhere,
(2.14)

where 0 ≤ ε < ∞, u1 ∈ U . For brevity in notation uπ(t1,u1)(t, ε) shall be written

uπ(t, ε).

Associated to uπ(., .) we have the corresponding state trajectory xπ(., .) onM. It

may be shown under suitable hypotheses, limε→0xπ(t, ε) = x(t) uniformly for t0 ≤ t ≤

tf , see [30] and [41]. Following (2.6), the flow resulting from the perturbed control

is defined as:

Φ
(t,s),x
π,f (.) : [0, τ ]→M, x ∈M, t, s ∈ [t0, tf ], τ ∈ R+,Φ

(t,s),x
π,f (ε) ∈M,

where Φ
(t,s),x
π,f (.) is the flow corresponding to the perturbed control uπ(t1, ε), i.e.

Φ
(t,s),x
π,f (ε) := Φ

(t,s)

fuπ(t1,ε)
(x(s)). The following lemma gives the formula of the varia-

tion of Φ
(t,s),x
π,f (.) at the limit from the right 0+ := limε↓0ε. We recall that the point

t1 ∈ (t0, tf ) is called a Lebesgue point of u(.) if, ( [3]):

lim
s1↓t1

1

|s1 − t1|

∫ s1

t1
|u(τ)− u(t1)|dτ = 0. (2.15)

For any u ∈ L∞([t0, tf ], U), u may be modified on a set of measure zero so that all

points are Lebesgue points (see [59], page 158, and [63]) in which case, necessarily,

the value of any cost function is unchanged.

Lemma 2.2 ( [6]). For a Lebesgue time t1, the curve Φ
(t1,s),x
π,f (.) := Φ

(t1,s)

fuπ(t1,ε)
(x(s)) :

[0, τ ] → M is differentiable from the right at ε = 0 and the corresponding tangent

11
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vector d
dε

Φ
(t1,s),x
π,f |ε=0 is given by

d

dε
Φ

(t1,s),x
π,f |ε=0 = f(x(t1), u1)− fq(x(t1), u(t1)) ∈ Tx(t1)M. (2.16)

�

The tangent vector f(x(t1), u1)− f(x(t1), u(t1)) is called the elementary perturbation

vector associated to the perturbed control uπ(., .) at (x(t), t). The displacement of

the tangent vectors at x ∈M is given by the push-forward of the vector field fq, see

sections below.

2.1.3. Adjoint Processes and the Hamiltonian. In this section we present

the definitions of the adjoint process and the Hamiltonian function which appear in

the statement of the Minimum Principle. In the caseM = Rn, by the smoothness of

f we may define the following system of differential equations:

λ̇T (t) = −λT (t)
∂f

∂x
(x(t), u(t)), t ∈ [t0, tf ], x(t0) ∈ Rn. (2.17)

The matrix solution ϕ of ϕ̇(t) = ∂f
∂x

(x(t), u(t))ϕ(t), where ϕ(0) = I, gives the trans-

formation between tangent vectors on the state trajectory x(t) from time t1 to t2

(see [41]), in other words, considering v1 as a tangent vector at x(t1), the push-

forward of v1 under Φ
(t2,t1)
f is

v2 = TΦ
(t2,t1)
f (v1) = ϕ(t2 − t1)v1, v1 ∈ Tx(t1)R

n ' Rn, t1, t2 ∈ [t0, tf ]. (2.18)

Evidently the vector v(t) = φ(t)v(0) is the solution of the following differential equa-

tion:

v̇(t) =
∂f

∂x
(x(t), u(t))v(t), v(0) = v0, v(t) ∈ Tx(t)R

n ' Rn. (2.19)
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A key feature of the solution of (2.17) is that along x(.), λT (.)v(.) remains constant

since

d

dt
(λT (t)v(t)) = λ̇T (t)v(t) + λT (t)v̇(t) = −λT (t)

∂f

∂x
v(t) + λT (t)

∂f

∂x
v(t) = 0.

(2.20)

For a general Riemannian manifoldM, the role of the adjoint process λ is played by

a trajectory in the cotangent bundle of M, i.e. λ(t) ∈ T ∗x(t)M. As in the definition

of the tangent lift, we define the cotangent lift which corresponds to the variation of

a differential form α ∈ T ∗M (see [81]):

fT
∗,u(αx) :=

d

dt
|t=−sT ∗Φ(−t,s)

fu (αx), αx ∈ T ∗xM, (2.21)

where x = x(t) = Φ
(t,s)
fu (x(s)). As in (2.10), in the local coordinates, (x, p), of T ∗M,

we have

fT
∗,u(x, p) =

[
fu,i(x)

∂

∂xi
− (

∂fu,it

∂xj
pj)

∂

∂pi

]n
i,j=1

, (2.22)

where T ∗Φ
(−t,s)
fu (.) is the pull back of Φ

(−t,s)
fu applied to differential forms αx ∈ T ∗xM.

The minus sign in front of t in (2.21) is due to the fact that pull backs act in the

opposite sense to push forwards, therefore the variation of a covector αx at x = x(s)

depends upon Φ−1 which notationally corresponds to −t, see [81]. The following

lemma gives the connection between the cotangent lift defined in (2.21) and its cor-

responding flow on T ∗M. Let (T ∗Φ
(t,s)
f )−1 = T ∗Φ

(−t,s)
f , the pull back of Φ−1, whose

existence is guaranteed since Φ :M→M is a diffeomorphism, see [81].

Lemma 2.3 ( [6]). Consider f(x(t), u(t)) as a time dependent vector field on M,

then the flow Γ : I × I × T ∗M→ T ∗M, I = [t0, tf ], satisfies

Γ(t, s, (x, p)) = (Φ
(t,s)
f (x), (T ∗Φ

(t,s)
f )−1(p)), (x, p) ∈ T ∗xM, (2.23)

and Γ is the corresponding integral flow of fT
∗,u.

�
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We now generalize (2.17) and (2.19) to differentiable manifolds. Along a given tra-

jectory λ(.) ∈ T ∗M, the variation with respect to time, λ̇(t), is an element of TT ∗M.

The vector field defined in (2.21) is thus the mapping fT
∗,u : T ∗M→ TT ∗M, which

generalizes (2.17) to a mapping from λ(t) ∈ T ∗M to λ̇(t) ∈ TT ∗M. The generaliza-

tion of (2.20) to M is given in the following proposition.

Proposition 2.1 ( [6]). Let fq(., u(.)) : M × I → TM, I = [t0, tf ], be a

time dependent vector field giving rise to the associated pair fT,u, fT
∗,u; then along an

integral curve of f(., u) on M

〈Γ,Ψ〉 : I → R, (2.24)

is a constant map, where Γ is an integral curve of fT
∗,u in T ∗M and Ψ is an integral

curve of fT,u in TM. �

The integral curves Γ and Ψ are the generalizations of λ(.) and v(.) in (2.19) and

(2.20) in Rn to the case of a differentiable manifold M. The corresponding varia-

tion of the elementary tangent perturbation in Lemma 2.2 is given in the following

proposition.

Proposition 2.2 ( [6]). Let Ψ : [t1, tf ]→ TM be the integral curve of fT,uq with

the initial condition Ψ(t1) = [f(x(t1), u1)− f(x(t1), u(t1))] ∈ Tx(t1)M, then

d

dε
Φ

(t,t1),x
π,f |ε=0 = Ψ(t), t ∈ [t1, tf ]. (2.25)

�

By the result above and Lemma 2.1 we have

d

dε
Φ

(t,t1),x
π,f |ε=0 = TΦ

(t,t1)
f ([f(x(t1), u1)− f(x(t1), u(t1))]) ∈ Tx(t)M. (2.26)
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2.1.4. Hamiltonian Functions and Vector Fields. Here we recall the

notions of Hamiltonian vector fields (see e.g. [5]), which were employed in [3] to obtain

a Minimum Principle for optimal control problems in a geometrical framework.

For an optimal (non-hybrid) control problem defined on the state manifold M

(q fixed, L = 1), with controlled vector field fq(x(t), u(t)) ∈ Tx(t)M, the Hamiltonian

function for the Mayer problem is defined as:

H : T ∗M× U → R, (2.27)

H(p, x, u) = 〈p, fq(x, u)〉, p ∈ T ∗xM, fq(x, u) ∈ TxM. (2.28)

In general, the Hamiltonian is a smooth function H ∈ C∞(T ∗M) with an associated

Hamiltonian vector field
−→
H ∈ X(T ∗M) defined by (see [3])

ωλ(.,
−→
H ) = dH, λ ∈ T ∗M, (2.29)

where ωλ ∈ Ω2(T ∗M) is the symplectic form (see e.g. [28], [43]) defined on T ∗M

(see [3,38]) and X(T ∗M) is the space of smooth vector fields defined on T ∗M). The

Hamiltonian vector field satisfies i−→
H
ωλ = −dH, (see [3]) where i−→

H
is the contraction

mapping (see [37, 43]) along the vector field
−→
H . In the local coordinates (x, p) of

T ∗M, we have:

dH =
n∑
i=1

∂H

∂pi
dpi +

∂H

∂xi
dxi,

−→
H =

n∑
i=1

∂H

∂pi
∂

∂xi
− ∂H

∂xi
∂

∂pi
. (2.30)

So the Hamiltonain system λ̇(t) =
−→
H (λ), λ ∈ T ∗M is locally written as:

ẋ(t) =
∂H

∂pi
, ṗ(t) = −∂H

∂xi
,

where λ(t) = (x(t), p(t)) ∈ T ∗M, x(t0) = x0, λ(tf ) = dh(x(tf )) ∈ T ∗x(tf )M,

(2.31)

where dh =
∑n

i=1
∂h
∂xi
dxi ∈ Ω1(M).
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2.1.5. Pontryagin Minimum Principle. For standard (non-hybrid) opti-

mal control problems defined on a Riemannian manifold M we have the following

result known as Pontryganin Minimum Principle.

Theorem 2.1 ( [41]). Consider an OCP satisfying hypotheses A1-A3 (L =

0, qi = q) defined on a Riemannian manifold M. Then corresponding to an optimal

control and optimal state trajectory pair, (uo, xo) there exists a nontrivial adjoint

trajectory λo(.) = (xo(.), po(.)) ∈ T ∗M, defined along the optimal state trajectory,

such that:

H(xo(t), po(t), uo(t)) ≤ H(xo(t), po(t), v), ∀v ∈ U, t ∈ [t0, tf ],

and the corresponding optimal adjoint trajectory λo(.) ∈ T ∗M satisfies:

λ̇o(t) =
−→
H (λo(t)), t ∈ [t0, tf ].

The Minimum Principle gives necessary conditions for optimality; the conditions

under which the Minimum Principle is sufficient for optimality are discussed in [13]

and [24].

2.2. The Hybrid Minimum Principle for Autonomous Impul-

sive Hybrid Systems

Here we consider a simple impulsive autonomous hybrid system consisting of

one switching manifold. Consider a hybrid system with a single switching from the

discrete state q0 to the discrete state q1 at the unique switching time ts on the optimal

trajectory xo(.) associated with the dynamics:

ẋq0(t) = fq0(x(t), u(t)), a.e. t ∈ [t0, ts), (2.32)

ẋq1(t) = fq1(x(t), u(t)), a.e. t ∈ [ts, tf ], (2.33)
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where x(t0) = x0 and

fqi(., u(.)) :M× [ti, ti+1)→ TM, i = 0, 1, (2.34)

together with a smooth state jump ζ := ζq0,q1 :M→M with the following action:

xo(ts) = ζ(xo(t−s )) = limt→t−s ζ(x(t)), xo(t−s ) ∈ S ⊂M. (2.35)

We shall assume the switching manifold S is an embedded n−1 dimensional subman-

ifold S := Sq0,q1 which consists of a single switching manifold (see Section 2). Follow-

ing [66], the control needle variation analysis is performed in two distinct cases. In

the first case, the variation is applied after the optimal switching time, therefore there

is no state variation propagation through the state trajectory before the switching

manifold, while in the second case, the control needle variation is applied before the

optimal switching time. In this case there exists a state variation propagation along

the state trajectory which passes through the switching manifold, see [66] and Figure

2.1. Recalling assumption A2 in the Bolza problem and assuming the existence of

optimal controls for each pair of given switching state and switching time, let us define

v(x, t) for a hybrid system with one autonomous switching, i.e. L = 1, as follows:

v(x, t) = infu∈UJ(t0, tf , h0, u), x ∈M, t ∈ (t0, tf ), (2.36)

where

x = Φ
(t−,t0)
fq0

(x0) ∈ S ⊂M. (2.37)

2.2.1. Non-Interior Optimal Switching States. In this subsection, we

show that the optimal switching state for an MHOCP derived from a BHOCP (see

(2.12)) cannot be an interior point of the attainable switching set A(x0, ts) ⊂ S, t0 <

ts < tf , for an MHOCP which is defined as

A(x0, ts) =
{
x ∈ S s.t. ∃u ∈ U ,Φ(t−s ,t0)

fuq0
(x0) = x

}
.

17
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Figure 2.1. Hybrid State Trajectory On the Sphere

Note that the state manifold of a Mayer problem derived from a Bolza problem

is MB ×R where MB is the state manifold of the Bolza problem. In this paper, for

simplicity and uniformity of notation, the state manifold and the switching manifold

of a Mayer problem shall also be denoted by M and S respectively.

Lemma 2.4. Consider an MHOCP derived from a BHOCP as in (2.12), (2.13)

with a single switching from the discrete state q0 to the discrete state q1 at the

unique switching time ts on the optimal trajectory (xo(.), uo(.)) and an n dimensional

switching manifold S = SB × R := nq0,q1 defined in an n + 1 dimensional manifold

M = MB × R, where SB ⊂ MB is the switching manifold of the BHOCP. Then

an optimal switching state xo(t−s ) ∈ S at the optimal switching time ts cannot be an

interior point of A(x0, ts) in the induced topology of S from M.

Proof. If A(x0, ts) has empty interior in the topology induced on S fromM the

result is immediate. Assume xo(t−s ) is an interior point of A(x0, ts), i.e. there exists

18
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an open neighbourhood Bxo(t−s ) ⊂ A(x0, ts) of xo(t−s ) ∈ S. Let us denote a coordinate

system around xo(t−s ) by (xo1, ..., x
o
n+1), where xon+1 corresponds to the running cost of

the Bolza problem, see (2.12). Since the switching manifold of the MHOCP is defined

by S = SB × R, we may choose a neighbourhood Bxo(t−s ) of xo(t−s ) in the induced

topology of S with the last coordinate xn+1 free to vary in an open set in R. Hence

fixing xo1(t−s ), ..., xon(t−s ), there exists y ∈ Bxo(t−s ) such that

yi = xoi (t
−
s ), i = 1, ..., n, yn+1 < xon+1(t−s ),

which is accessible by fq0 subject to a new control û(t), t0 ≤ t < ts, where û is not

necessarily equal to uo. Set the control u(t) = uo(t), ts ≤ t ≤ tf ; then u(.) results

in an identical state trajectory on [ts, tf ] for the Bolza problem (since the variables

x1, ..., xn do not change). However, the final hybrid cost corresponding to the new

switching state y is

J(t0, tf , (x0, q0); 1, (û, uo)) = yn+1 +

∫ tf

ts

l1(xo(t), uo(t))dt+ h(xo(tf )) < v(xo(t−s ), ts),

where yn+1 =
∫ ts
t0
l0(x̂(t), û(t))dt < xon+1 =

∫ ts
t0
l0(xo(t), uo(t))dt, contradicting the

optimality of xo(t−s ); we conclude xo(t−s ) lies on the boundary of A(x0, ts). �

However the lemma above implies that the hybrid value function defined by (2.36)

cannot be differentiated in all directions at the optimal switching state for MHOCPs

derived from BHOCPs. Hence the main HMP Theorem 2.2 for MHOCPs below ap-

plies in potential to all MHOCPs derived from BHOCPs. The general HMP statement

given below employs a differential form dNx corresponding to the normal vector to the

switching manifold S ⊂ M at the optimal switching state xo(ts). Now in the special

case where the value function can be differentiated in all directions at xo(ts) ∈ S, it

may be shown that dNxo(ts) = µdv(xo(ts), ts) for some scalar µ, see [70], Lemma A.1;

this fact has significant implications for the theory of HMP as is shown in [71,72,80].

19



CHAPTER 2. OPTIMAL CONTROL OF HYBRID SYSTEMS ON RIEMANNIAN MANIFOLDS

2.2.2. Preliminary Lemmas. In order to use the methods introduced in

[3, 6, 41], we establish Lemma 2.5 using the perturbed control uπ(., .) and the asso-

ciated state variation at the final state xo(tf ). Denote by ts(ε) the switching time

corresponding to uπ(t, ε). Note that, in general, Φ
(t,t0)
π,fq

(x0) does not necessarily inter-

sect the switching manifold at ts. Hence, we introduce the following perturbed control

to guarantee that eventually the state trajectory meets the switching manifold.

uπ(t, ε) =



uo(t) t ≤ t1 − ε

u1 t1 − ε ≤ t ≤ t1

uo(t) t1 < t ≤ ts

uo(ts) ts ≤ t < ts(ε)

, (2.38)

The following lemma shows that under the control above, the hybrid state trajectory

always intersects the switching manifold for sufficiently small ε ∈ R+.

Lemma 2.5. For an MHOCP satisfying A1-A3 with a single switching from

the discrete state q0 to the discrete state q1 at the unique switching time ts on the

optimal trajectory xo(.), the state trajectory associated to the control needle variation

uπ(t1, ε) in (2.38) intersects the n− 1 dimensional switching manifold S ⊂M for all

sufficiently small ε ∈ R+ and the corresponding switching time ts(ε) is differentiable

with respect to ε.

Proof. The proof is given in Appendix A.1. �

Lemma 2.6. For an MHOCP satisfying hypotheses A1-A3 with a single switching

from the discrete state q0 to the discrete state q1 at the unique switching time ts on the

optimal trajectory xo(.), the state variation at the switching time ts, i.e.
dΦ

(ts(ε),t
1),x

π,fq1

dε
|ε=0,

is given as follows:

dΦ
(ts(ε),t1),x
π,fq1

dε
|ε=0 = Tζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

+(
dts(ε)

dε
|ε=0).

(
Tζ
[
fq0(x

o(t−s ), uo(t−s ))
]
− fq1(xo(ts), uo(ts))

)
,

t1 ∈ [t0, ts). (2.39)
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Proof. The proof is obtained by the differentiation of the state flow combination;

it is given in Appendix A.2. �

The following lemma gives a variational inequality as a necessary condition for

the minimality of the Mayer hybrid cost function h(x(tf )) = J(t0, tf , x0, u) defined

by (2.13) where for the simplicity in notation the Mayer cost function ĥ(.) is replaced

by h(.) . This inequality enables us to construct an adjoint curve λ(.) ∈ T ∗M which

satisfies the HMP equations.

In order to prove the following lemma we use the Taylor expansion of a smooth

function defined on a Riemannian manifold, see [4] and [67]. For a given smooth

function h : M → R and a vector field X ∈ X(M), where X(M) defines the space

of all smooth vector fields on M, the Taylor expansion of h around p ∈ M along a

tangent vector Xp ∈ TpM is given by (see [67]):

h(exppθXp) = h(p) + θ(∇Xh)(p) + ...+
θn−1

(n− 1)!
× (∇n−1

X h)(p)

+
θn

(n− 1)!

∫ 1

0

(1− t)n−1(∇n
Xh)(expptθX)dt, 0 < θ < θ∗,

(2.40)

where exppθXp is the geodesic emanating from p ∈ M with the velocity Xp ∈ TpM,

X(p) = Xp and θ∗ is the upper bound of the existence of geodesics on the Riemannian

manifold M. The existence of θ∗ is guaranteed by the fundamental theorem of exis-

tence and uniqueness of geodesics (see [37]). In (2.40), ∇ : X(M)×X(M)→ X(M) is

the Levi-Civita connection onM which satisfies the following characteristic relations:

XgM(Y, Z) = gM(∇XY, Z) + gM(Y,∇XZ), ∀X, Y, Z ∈ X(M),

(i) : ∇XY −∇YX = [X, Y ], (ii) : ∇Xf = X(f) ∀X, Y ∈ X(M), f ∈ C∞(M).

(2.41)
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Based on the fundamental theorem of existence of geodesics on M (see [37]), for

each vπ(tf ) ∈ Tx(tf )M there exists a geodesic emanating from x(tf ) with the velocity

vπ(tf ).

Lemma 2.7. For an MHOCP satisfying A1-A3 with a single switching from the

discrete state q0 to the discrete state q1 at the unique switching time ts on the optimal

trajectory (xo(.), uo(.)),

〈dh(xo(tf )), vπ(tf )〉 ≥ 0, ∀vπ(tf ) ∈ Ktf , (2.42)

where

Ktf = K1
tf
∪K2

tf
, (2.43)

and where

K1
tf

=
⋃

ts≤t≤tf

⋃
u1∈U

TΦ
(tf ,t)

fq1
[fq0(x

o(t), u1)− fq0(xo(t), uo(t))] ⊂ Txo(tf )M,

(2.44)

and

K2
tf

=
⋃

t0≤t<ts

⋃
u1∈U

TΦ
(tf ,ts)

fq1
◦ Tζ ◦ TΦ

(t−s ,t)
fq0

[fq0(x
o(t), u1)− fq0(xo(t), uo(t))]

+
(dts(ε)

dε
|ε=0

)
TΦ

(tf ,ts)

fq1

(
Tζ
[
fq0(x

o(t−s ), uo(t−s ))
]
− fq1(xo(ts), uo(ts))

)
⊂ Txo(tf )M. (2.45)

Proof. To apply (2.40) to h, one needs to extend vπ(tf ) ∈ Tx(tf )M to a smooth

vector field denoted by Ṽπ ∈ X (M) such that Ṽπ(x(tf )) = vπ(tf ). It is shown in [43]

that this extension always exists.
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Employing (2.40) on h along vπ(tf ) and using the extended smooth vector field

Ṽπ ∈ X (M), we have

h(expxo(tf )θvπ(tf )) = h(xo(tf )) + θ(∇Ṽπ(x(tf ))h)(xo(tf )) + o(θ), 0 < θ < θ∗.

(2.46)

Here we show that Ktf , defined in Lemma 2.7, contains all the state perturbations

at tf . Lemma 2.2 and Proposition 2.2 together imply that

K1
tf

=
⋃
ts≤t≤tf

⋃
u∈U TΦ

(tf ,t)

fq1
[fq0(x

o(t, u))−fq0(xo(t), uo(t))] contains all the state per-

turbations at x(tf ) for all the elementary control perturbations inserted after ts. For

all the control perturbations applied at t0 < t < ts, either ts(ε) < ts or ts ≤ ts(ε),

where ts(ε) is the switching time corresponding to uπ(t, ε).

Following Lemma 2.6, in a local chart around x(ts), the differentiability of ts(ε)

with respect to ε implies

dΦ
(ts(ε),t1),x
π,fq1

dε
|ε=0 = Tζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

+(
dts(ε)

dε
|ε=0)

(
Tζ
[
fq0(x

o(t−s ), uo(t−s ))
]
− fq1(xo(ts), uo(ts))

)
∈ Txo(ts)M, (2.47)

therefore

K2
tf

=
⋃

t0<t<ts

⋃
u∈U

{
TΦ

(tf ,ts)

fq1
◦ Tζ ◦ TΦ

(t−s ,t)
fq0

[fq0(x
o(t, u1))− fq0(xo(t), uo(t))]

+(
dts(ε)

dε
|ε=0).TΦ

(tf ,ts)

fq1

(
Tζ
[
fq0(x

o(t−s ), uo(t−s ))
]
− fq1(xo(ts), uo(ts))

)}
⊂ Txo(tf )M, t ∈ (t0, ts), (2.48)

contains all the state variations at xo(tf ) corresponding to all elementary control

perturbations at t ∈ (t0, ts).
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Since Ktf contains all the state perturbations at xo(tf ), choosing vπ(tf ) ∈ Ktf ⊂

Tx(tf )M implies that at least at one particular time, one particular elementary control

variation
(
uπ(t(vπ), ε), u1(vπ)

)
results in the final state variation vπ(tf ) ∈ Ktf .

Note that choosing ε = θ, h(expxo(tf )θvπ(tf )) and h(xε(tf )), where xε(tf ) is the

final state curve obtained with respect to ε variation, are equal to first order since

they have the same first order derivative with respect to ε. By the construction of

uπ(t, ε) ∈ U , xε(tf ) is a curve in the reachable set of the hybrid system at tf . The

minimality of xo(tf ) consequently implies that h(xo(tf )) ≤ h(xε(tf )); then h(xε(tf ))−

h(expxo(tf )εvπ(tf )) = o(ε) together with (2.46) implies

0 ≤ (∇Ṽπ(x(tf ))h)(xo(tf )), Ṽπ(xo(tf )) = vπ(tf ), ∀vπ(tf ) ∈ Ktf . (2.49)

For the smooth function h :M→ R, (2.41) (ii) implies

Ṽπ(h) = ∇Ṽπh(xtf ) =
n∑
i=1

viπ(x(tf ))
∂h

∂xi
, (2.50)

where the second equality uses local coordinates. Therefore by the definition of dh

we have

∇Ṽπh(xtf ) = 〈dh(x(tf )), vπ(x(tf ))〉, (2.51)

which implies

〈dh(x(tf )), vπ(x(tf ))〉 ≥ 0, ∀vπ(tf ) ∈ Ktf , (2.52)

and completes the proof. �

2.2.3. Statement of the Hybrid Minimum Principle. Generalizing the

results for M = Rn in [66], we have the following theorem which gives the HMP for

autonomous hybrid systems with only one autonomous switching which occurs on the

switching manifold S ⊂M.
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For an MHOCP with a single switching from the discrete state q0 to the discrete

state q1 at the unique switching time ts on the optimal trajectory (xo(.), uo(.)), where

the switching manifold is an n− 1 dimensional oriented submanifold of M, we have

∀X ∈ TxS, gM(Nx, X) = 0, (2.53)

where Nx ∈ T⊥x S ⊂ TxM is the normal vector at xo(t−s ) (the metric gM is positive

definite). For use below we define a one form dNx, corresponding to Nx by

dNx := gM(Nx, .) ∈ T ∗xM, (2.54)

where the linearity of dNx follows from the bi-linearity of gM.

Theorem 2.2. Consider an impulsive MHOCP satisfying hypotheses A1-A3.

Then corresponding to an optimal control and optimal state trajectory, uo and xo

with a single switching state at (xo(ts), ts), there exists a nontrivial adjoint trajectory

λo(.) = (xo(.), po(.)) ∈ T ∗M, defined along the optimal state trajectory, such that:

Hqi(x
o(t), po(t), uo(t)) ≤ Hqi(x

o(t), po(t), u1), ∀u1 ∈ U, t ∈ [t0, tf ], i = 0, 1,(2.55)

and the corresponding optimal adjoint trajectory λo(.) ∈ T ∗M satisfies:

λ̇o(t) =
−→
H qi(λ

o(t)), t ∈ [t0, tf ], i = 0, 1, (2.56)

for optimal switching state and switching time (xo(ts), ts), there exists dNx ∈ T ∗xM

such that

po(t−s ) = T ∗ζ(po(ts)) + µdNxo(t−s ),

po(t−s ) ∈ T ∗
xo(t−s )

M, po(ts) ∈ T ∗xo(ts)M,

xo(ts) = ζ(xo(t−s )), (2.57)

xo(t0) = x0, p
o(tf ) = dh(xo(tf )) ∈ T ∗xo(tf )M, dh =

n∑
i=1

∂h

∂xi
dxi ∈ T ∗xM, (2.58)
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where µ ∈ R and T ∗ζ : T ∗M → T ∗M. The continuity of the Hamiltonian at

(xo(ts), ts) is given as follows

Hq0(x
o(t−s ), po(t−s ), uo(t−s )) = Hq1(x

o(ts), p
o(ts), u

o(ts)). (2.59)

Proof. The proof is based on the control needle variation along the optimal state

trajectory and employs the results of Lemma 2.7; it is given in Appendix A.3. �

In the case where dim(S) < n − 1, the normal vector at the optimal switching

state is not uniquely defined and (2.57) becomes

po(t−s )− T ∗ζ(po(ts)) ∈ T ∗
⊥

x0(t−s )
S po(t−s ) ∈ T ∗

xo(t−s )
M, po(ts) ∈ T ∗xo(ts)M,(2.60)

where T ∗
⊥

x S := {α ∈ T ∗xM, s.t. ∀X ∈ TxS, 〈α,X〉 = 0}.

2.2.4. Interior Optimal Switching States. Here we specify a hypothesis

for MHOCP which expresses the HMP statement based on a differential form of the

hybrid value function.

A4 : For an MHOCP, the value function v(x, t), x ∈ M, t ∈ (t0, tf ), is assumed

to be differentiable at the optimal switching state xo(t−s ) in the switching manifold

S, where the optimal switching state is an interior point of the attainable switching

states on the switching manifold.

We note that A4 rules out MHOCPs derived from BHOCPs (see Lemma 2.3). The

following theorem gives the HMP statement for an accessible MHOCP satisfying A4 .

Theorem 2.3. Consider an impulsive MHOCP satisfying A1-A4. Then cor-

responding to the optimal control and optimal state trajectory uo, xo with a single

switching state at (xo(ts), ts), there exists a nontrivial adjoint trajectory λo(.) =
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(xo(.), po(.)) ∈ T ∗M defined along the optimal state trajectory such that:

Hqi(x
o(t), po(t), uo(t)) ≤ Hqi(x

o(t), po(t), u1),∀u1 ∈ U, t ∈ [t0, tf ], i = 0, 1, (2.61)

and the corresponding optimal adjoint variable λo(.) ∈ T ∗M satisfies:

λ̇o(t) =
−→
H qi(λ

o(t)), t ∈ [t0, tf ], i = 0, 1. (2.62)

At the optimal switching state and switching time xo(ts), ts, we have

po(t−s ) = T ∗ζ(po(ts)) + µdv(xo(t−s ), ts),

po(t−s ) ∈ T ∗
xo(t−s )

M, po(ts) ∈ T ∗xo(ts)M,

xo(ts) = ζ(xo(t−s )), (2.63)

where µ ∈ R, T ∗ζ : T ∗M→ T ∗M, and

dv(xo(t−s ), ts) =
n∑
j=1

∂v(xo(t−s ), ts)

∂xj
dxj ∈ T ∗xo(ts)M. (2.64)

The continuity of the Hamiltonian at (xo(ts), ts) is given as follows

Hq0(x
o(t−s ), po(t−s ), uo(t−s )) = Hq1(x

o(ts), p
o(ts), u

o(ts)). (2.65)

Proof. The proof closely parallels the proof of Theorem 2.2 with the role of

dNx(t) being replaced by dv(x, t) whose existence is guaranteed by A4 ; this is pre-

sented in Appendix A.4. �

2.3. Time Varying Switching Manifolds and Discontinuity of

the Hamiltonian

In this section we extend the results obtained in the previous section to impulsive

autonomous hybrid systems with time varying switching manifolds. The HMP proof

parallels the proof of time invariant cases with a modification in the variation of the

value function v(x, t) with respect to the switching time. Since S is time varying, we
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decompose the metric of M×R as

gM×R = gM ⊕ gR, (2.66)

where gR is the Euclidean metric of R. Now the one form corresponding to the normal

vector N(x,t) at (x, t) ∈ S ⊂M×R is defined as

dN(x,t) := gM×R(N(x,t), .) ∈ T ∗(M×R) = T ∗M⊕ T ∗R. (2.67)

Based on the special form of gM×R, we can decompose dN(x,t) as

dN(x,t) = dNx ⊕ dNt, dNx ∈ T ∗M, dNt ∈ T ∗t R ' R. (2.68)

Theorem 2.4. Consider an impulsive MHOCP satisfying hypotheses A1-A3

where the switching manifold is an n dimensional embedded time varying switching

submanifold S ⊂ M × R and where the switching state jump is given by a smooth

function ζ : M → M whenever (x(t−), t) ∈ S. Then corresponding to the optimal

control and optimal trajectory uo, xo with a single switching state at (xo(ts), ts), there

exists a nontrivial adjoint trajectory λo(.) = (xo(.), po(.)) ∈ T ∗M defined along the

optimal state trajectory such that:

Hqi(x(t), po(t), uo(t)) ≤ Hqi(x(t), po(t), u1), ∀u1 ∈ U, t ∈ [t0, tf ], i = 0, 1,

(2.69)

and the corresponding optimal adjoint variable λo(.) ∈ T ∗M, (locally given by λo(.) =

(xo(.), po(.))) satisfies:

λ̇o(t) =
−→
H qi(λ

o(t)), t ∈ [t0, tf ], i = 0, 1. (2.70)

At the optimal switching state and switching time (xo(ts), ts), there exists dNx ∈ T ∗xM

such that
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po(t−s ) = T ∗ζ(po(ts)) + µdNxo(t−s ),

po(t−s ) ∈ T ∗
xo(t−s )

M, po(ts) ∈ T ∗xo(ts)M,

xo(ts) = ζ(xo(t−s )), (2.71)

x(0) = xo0, p
o(tf ) = dh(xo(tf )) ∈ T ∗xo(tf )M, dh =

n∑
i=1

∂h

∂xi
dxi ∈ T ∗xM, (2.72)

where µ ∈ R and T ∗ζ : T ∗M → T ∗M. The discontinuity of the Hamiltonian at

(xo(ts), ts) is given by

Hq0(x
o(t−s ), po(t−s ), uo(t−s )) = Hq1(x

o(ts), p
o(ts), u

o(ts))− µ〈dNts ,
∂

∂t
〉,

(2.73)

where dNts is the differential form corresponding to the time component of the normal

vector at (x(t−s ), ts) on the switching manifold S.

Proof. The proof is given in Appendix A.5. �

2.3.1. Time Varying Impulsive Jumps. In this section we investigate the

HMP equations in the case of time varying impulsive jumps. For a HOCP with

two discrete states, consider the state jump function as a smooth time varying map

ζ̂ :M×R→M. Therefore T ζ̂ : TM⊕ TR→ TM and T ∗ζ̂ : T ∗M→ T ∗M⊕ TR.

we denote T ζ̂ = Tζ ⊕Dtζ, where

Tζ : TM→ TM, Dtζ : TR→ TM, (2.74)

where Tζ and Dtζ are the pushforwards of ζ̂ with respect to t ∈ R and x ∈ M

respectively. The following theorem gives the HMP for hybrid impulsive systems in

the case of time varying impulse jumps which is consistent with the results presented

in [57].
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Theorem 2.5. Consider an impulsive MHOCP satisfying hypotheses A1-A3.

The switching manifold is assumed to be an n dimensional embedded time varying sub-

manifold S ⊂M×R and the switching state jump is given by a time varying smooth

function ζ̂ :M×R→M which is enabled whenever (x(t−), t) ∈ S; then correspond-

ing to the optimal control and optimal trajectory uo, xo, with a single switching state

at (xo(ts), ts), there exists a nontrivial adjoint trajectory λo(.) = (xo(.), po(.)) ∈ T ∗M

defined along the optimal state trajectory such that:

Hqi(x
o(t), po(t), uo(t)) ≤ Hqi(x

o(t), po(t), u1), ∀u1 ∈ U, t ∈ [t0, tf ], i = 0, 1,

(2.75)

and the corresponding optimal adjoint trajectory λo(.) ∈ T ∗M, locally given by λo(.) =

(xo(.), po(.)), satisfies

λ̇o(t) =
−→
H qi(λ

o(t)), t ∈ [t0, tf ], i = 0, 1. (2.76)

At the optimal switching state xo(ts) and switching time ts, there exists dNx ∈ T ∗xM

such that

po(t−s ) = T ∗ζ(po(ts)) + µdNxo(t−s ),

po(t−s ) ∈ T ∗
xo(t−s )

M, po(ts) ∈ T ∗xo(ts)M,

xo(ts) = ζ(xo(t−s )), (2.77)

xo(t0) = x0, p
o(tf ) = dh(xo(tf )) ∈ T ∗xo(tf )M, dh =

n∑
i=1

∂h

∂xi
dxi ∈ T ∗xM, (2.78)

where µ ∈ R,

T ∗ζ̂ = T ∗ζ ⊕D∗t ζ : T ∗M→ T ∗M⊕ T ∗R, (2.79)
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and

T ∗ζ : T ∗M→ T ∗M, D∗t ζ : T ∗M→ T ∗R. (2.80)

The discontinuity of the Hamiltonian at (xo(ts), ts) is given by

Hq0(x
o(t−s ), po(t−s ), uo(t−s )) =

Hq1(x
o(ts), p

o(ts), u
o(ts))−D∗t ζ(po(ts))− µ〈dNts ,

∂

∂t
〉. (2.81)

Proof. The proof is given in Appendix A.6. �

2.4. Extension to Multiple Switchings Cases

In this section we obtain the HMP theorem statement for multiple switching hy-

brid systems where switching manifolds are time invariant. The standing assumption

in this section is that xo(.) is an optimal trajectory under the optimal control uo(.)

for a given MHOCP; it is further assumed that this is a sequence of autonomous tran-

sitions along xo(.) at the distinct time instants t0, t1, ..., tL and Si is a time invariant

switching manifold subcomponent of M.

Lemma 2.8. Without loss of generality, assume that for all sufficiently small

0 ≤ ε the needle variation uπ(t, .) applied at t1, tj−1 < t1 < tj, the resulting perturbed

trajectories intersect only Si, i = 0, ..., L and assume further that switching times are

greater than the optimal switching times, i.e. ti ≤ ti(ε), i = j, ..., L. Then the state

variation at tf is given as

d

dε
Φ

(tf ,t
1),x

π |ε=0 =
( L−j∏
i=0

TΦ
(ti+j+1,ti+j)
fqi+j

◦ Tζi+j
)
◦ TΦ

(tj ,t
1)

fqj

×
(
fqj(x(t1), u1)− fqj(x(t1), u(t1))

)
+

L−j∑
i=0

( L−j∏
l=i

TΦ
(tl+j+1,tl+j)

fql+j
◦ Tζl+i

)
×
(dti+j(ε)

dε
|ε=0(fqi+j+1

− Tζi+jfqi+j)
)
∈ Tx(tf )M, (2.82)

where TζL+1 = I and for simplicity we use ζi instead of ζqi,qi+1
for i = 0, ..., L.
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Proof. The proof is based on the results of Lemma 2.2 and an extension of

(A.24) and (A.25) to the case where ti+j(ε) is the (i+j)th switching time correspond-

ing to uπ(t, ε). �

Employing the Lemma above, Lemma 2.7 can be generalized to multiple switching

hybrid systems as follows:

Lemma 2.9. For a HOCP corresponding to a given sequence of event transitions

i = 0, ..., L, we have

〈dh(xo(tf )), vπ(tf )〉 ≥ 0, ∀vπ(tf ) ∈ Ktf , (2.83)

where

Ktf =
L⋃
r=1

Kr
tf
, (2.84)

and

Kr
tf

=
⋃

tr−1≤t<tr

⋃
u∈U

( L−r∏
i=0

TΦ
(ti+r+1,ti+r)
fqi+r

◦ Tζi+r
)
◦
{
TΦ

(tr,t)
fqr

(
fqr(x(t), u1)

−fqr(x(t), u(t))
)}

+
⋃

tr−1≤t<tr

⋃
u∈U

L−r∑
i=0

( L−r∏
l=i

TΦ
(tl+r+1,tl+r)
fql+r

◦ Tζl+i
)
(
dti+r(ε)

dε
|ε=0(fqi+r+1

− Tζi+rfqi+r)),

(2.85)

Proof. The proof is parallel to that of Lemma 2.7 and employs the results of

Lemma 2.8. �

The following theorem gives the HMP statement for the case of multiple switch-

ings impulsive hybrid systems.

Theorem 2.6. Consider a multiple switching impulsive MHOCP satisfying hy-

potheses A1-A3. Then corresponding to the optimal control and optimal state tra-

jectory uo, xo, there exists a nontrivial λo(.) ∈ T ∗M along the optimal state trajectory
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such that:

Hqi(x
o(t), po(t), uo(t)) ≤ Hqi(x

o(t), po(t), u1), ∀u1 ∈ U, t ∈ [t0, tf ], (2.86)

and the corresponding optimal adjoint trajectory λo(.) ∈ T ∗M, locally given by λo(.) =

(xo(.), po(.)), satisfies:

λ̇o(t) =
−→
H qi(λ

o(t)), t ∈ [t0, tf ], i = 0, ..., L. (2.87)

At the optimal switching state and switching time (xo(ti), ti), there exists dN i
x ∈ T ∗xSi

such that

po(t−i ) = T ∗ζi(p
o(ti)) + µidN

i
xo(t−i )

,

po(t−i ) ∈ T ∗
xo(t−i )

M, po(ti) ∈ T ∗xo(ti)M,

xo(ti) = ζi(x
o(t−i )), (2.88)

where µi ∈ R and T ∗ζi : T ∗M → T ∗M. The continuity of the Hamiltonian at the

switching instants (xo(t−i ), ti), i = 0, ..., L, is given by

Hqi(x
o(t−i ), po(t−i ), uo(t−i )) = Hqi+1

(xo(ti), p
o(ti), u

o(ti)), i = 0, ..., L. (2.89)

Proof. The proof parallels the proof of Theorem 2.2 employing the results of

Lemma 2.9. �

2.5. Simulation Results

To illustrate the results above we consider an HOCP and employ the Gradient

Geodesic-HMP (GG-HMP) algorithm (see [77]).

33



CHAPTER 2. OPTIMAL CONTROL OF HYBRID SYSTEMS ON RIEMANNIAN MANIFOLDS

Figure 2.2. Hybrid State Trajectory On the Torus

The HOCP is defined on a torus with the following parametrization:

x(ζ, w) = (R + rcos(w))cos(ζ),

y(ζ, w) = (R + rcos(w))sin(ζ),

z(ζ, w) = rsin(w), w, ζ ∈ [0, 2π). (2.90)

where R = 1, r = 0.5. The induced Riemannian metric is given by

gT 2(ζ, w) = (R + rcos(w))2dζ ⊗ dζ + r2dw ⊗ dw. (2.91)

The hybrid system trajectory goes through each discrete state in numerical order

and the dynamics are given in the local parametrization space of the torus T 2 as
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follows:

q0

 ζ̇

ẇ

 =

 1.5 0

0 1

 ζ

w

+

 1

1

u, (2.92)

q1

 ζ̇

ẇ

 =

 5 0

0 1

 ζ

w

+

 1

1

u, (2.93)

q2

 ζ̇

ẇ

 =

 3 0

0 4

 ζ

w

+

 1

1

u, (2.94)

q3

 ζ̇

ẇ

 =

 1 0

0 3

 ζ

w

+

 1

1

u, (2.95)

q4

 ζ̇

ẇ

 =

 1 0

0 2

 ζ

w

+

 1

1

u, (2.96)

q5

 ζ̇

ẇ

 =

 1 0

0 3

 ζ

w

+

 1

1

u. (2.97)

The switching submanifolds and the cost function are defined as follows:

nq0,q1 = {0 ≤ w < 2π, ζ = 0}, nq1,q2 = {0 ≤ w < 2π, ζ =
π

6
}, (2.98)

nq2,q3 = {0 ≤ w < 2π, ζ =
π

3
}, nq3,q4 = {0 ≤ w < 2π, ζ =

π

2
}, (2.99)

nq4,q5 = {0 ≤ w < 2π, ζ =
2π

3
}, J =

1

2

∫ 8

0

u2(t)dt, (2.100)
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and the boundary conditions are given as:

x0 = (1.4117,−0.4367,−0.1478) ∈ R3, (2.101)

xf = (−0.1478,−0.49980, 0.10130) ∈ R3.

The hamiltonian functions are given as

Hqi(

 ζ

w

 , p(t), u(t)) = (p1(t), p2(t))

 ζ̇

ẇ

+
1

2
u2(t), i = 0, ..., 5, t ∈ [ti, ti+1).

(2.102)

The GG-HMP algorithm is an extension to Riemannian manifolds of the HMP algo-

rithm introduced in [66]; this is done by introducing a geodesic gradient flow algorithm

on S and constructing an HMP algorithm along geodesics on S. Figure 2.2 shows

the state trajectory on the torus and Figure 2.3 depicts the adjoint variable with the

discontinuity at the optimal switching times

ts = [1.2137, 2.6250, 4.0145, 5.2821, 6.6382].
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CHAPTER 3

Gradient Geodesic and Newton Geodesic

HMP Algorithms

In this chapter we consider hybrid systems defined on M = Rn+1 and switching

manifolds are given by N = M := {mi,j = 0, i, j ∈ Q}. The following theorem

gives the Hybrid Maximum Principle in an extended class of the cases treated in [66],

specifically the autonomous switchings case is extended to the time varying switching

manifold case. It is shown that the discontinuity of the Hamiltonian functions and

adjoint variables at an optimal switching state and switching time gives important

information about the geometry of the switching manifold M at switching states.

Theorem 3.1 ( [66]). Consider a hybrid system satisfying the assumptions A1-

A3 in Chapter 2 and define

Hq(x, σ, u, λ) = λT fσ(q)(x, u) + lσ(q)(x, u), λ ∈ Rn+1, u ∈ U, q ∈ Q.

Assume that the hybrid system contains only autonomous switchings and let

Jo(t0, tf , h0, L) = infu∈UJ(t0, tf , h0, L, u)

be the infimized cost function with infimizing control uo and trajectory (xo, qo) which

are both assumed to exist. Let us assume we have L autonomous switchings and let
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t1, t2, ..., tL, denote the switching times along the optimal trajectory.

Finally, assume that almost everywhere along an optimal trajectory, the continuous

state x, satisfies the controllability condition given in [66]. Then:

(i) There exists a piecewise absolutely continuous adjoint process satisfying

λ̇oj = −∂Hj

∂x
(xo, σo, λ, uo), uot ∈ U a.e., t ∈ (tj, tj+1).

(ii) At the switching times the adjoint process and Hamiltonain function satisfy

λj(t
−
j ) = λj+1(tj) + pj∇xmj,j+1(x(tj), tj), 1 ≤ j ≤ L,

(3.1)

Hj(t
−
j ) = Hj+1(tj)− pj∇tmj,j+1(x(tj), tj), 1 ≤ j ≤ L.

(3.2)

(iii) Along the optimal trajectory the Hamiltonian minimization condition is sat-

isfied

Hj(x
o(t), σo(t), λj(t), u

o(t)) ≤ Hj(x
o(t), σo(t), λj(t), v),

∀v ∈ U, t ∈ [tj, tj+1), j ∈ [0, 1, , ..., L]. (3.3)

i.e.

λoT (t)fσo(qo(t−))(x
o
t , u

o
t ) + lσo(qo(t−))(x

o
t , u

o
t ) ≤

λoT (t)fσo(qo(t−))(x
o
t , v) + lσo(qo(t−))(x

o
t , v), ∀v ∈ U.

�

For simplicity of the analysis we only consider the case of one autonomous switch-

ing from q0 ∈ Q to q1 ∈ Q, and so uo ≡ (uo1, u
o
2); the extension to the general case is

straightforward but engenders significant complexity, see [66].
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3.1. The HMP Algorithm

In this section we review the HMP algorithm presented in detail in [66].

By the assumption of the existence of solutions for the Hybrid Optimal Control

Problem (HOCP), there exists a switching time ts and a switching state xs ∈M which

locally minimize the hybrid cost function. As stated in Theorem 3.1, the boundary

conditions for the Hamiltonian and the adjoint variables are as follows: λj(t
−
j ) =

λj+1(tj)+pj∇xmj,j+1(x(tj), tj), Hj(t
−
j ) = Hj+1(tj)−pj∇tmj,j+1(x(tj), tj), pj ∈ R,

where, by the Pontryagin Maximum Principle (PMP), λ̇ = −Hx, ẋ = Hλ, together

with the appropriate boundary conditions ( [66]).

In the case of an autonomous hybrid system consisting of two phases, separated

by a switching manifold M , the optimal hybrid cost is

J∗ = infts,xs [infu∈UJ(t0, tf , h0, L, u, ts, xs)], (3.4)

where xs, ts are the switching state and switching time on the switching manifold

M . The HMP algorithm proceeds with initializing (xs, ts) and taking εf such that

0 < εf << 1. Setting the iteration number k to zero, the optimal control uk1(t), 0 <

t < ts and uk2(t), ts ≤ t < tf , are evaluated. Incrementing k by 1, ∇xM(xk−1
s , tk−1

s )

and ∇tM(xk−1
s , tk−1

s ) are evaluated at the previous switching state and switching time

respectively. The updating procedure is given as follows:

tks = tk−1
s − rk

(
Hk

1 (tk−1
s )−Hk

2 (tk−1
s )

−∂M
∂t

(tk−1
s , xk−1

s )pk
)
− rk

∂M

∂t
(tk−1
s , xk−1

s )M(tk−1
s , xk−1

s ),

(3.5)

xks = xk−1
s − rk

(
λk2(tk−1

s )− λk1(tk−1
s )

−∂M
∂x

(tk−1
s , xk−1

s )pk
)
− rk

∂M

∂x
(tk−1
s , xk−1

s )M(tk−1
s , xk−1

s ),

(3.6)
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where

pk = (QT
kQk)

−1QT
k

 Hk
1 (tk−1

s )−Hk
2 (tk−1

s )

λk2(tk−1
s )− λk1(tk−1

s )

 , (3.7)

and

Qk =

 Hk
1 (tk−1

s )−Hk
2 (tk−1

s )

λk2(tk−1
s )− λk1(tk−1

s )

 . (3.8)

By the algorithm above, the necessary conditions for the optimality are satisfied

whereby the switching state and switching time lie on the switching manifold, [66]. A

disadvantage of the HMP algorithm is that it does not guarantee xks ∈M at each step

k. The last terms in (3.5, 3.6) are added in order to enforce the approach of xks , t
k
s to

the switching manifold in the limit. In the next section the general geodesic gradient

flow algorithm is defined on M , and then is used to construct an HMP algorithm on

the hybrid switching surface M .

3.2. Geodesic-Gradient Flow Algorithm

3.2.1. Formulation and Analysis of the GG-HMP Algorithm. In the

modified version of the HMP algorithm the initial x0
s is chosen such that x0

s ∈M and

this constraint is maintained by moving along geodesics on M by recursively choosing

the hybrid value function gradient to initialize the geodesic search directions (see [74]).

For a hybrid control problem which consists of two distinct phases with a time

invariant switching manifold M , the hybrid value function v(., .) is defined as:

v(x, t) = infu∈UJ(t0, tf , h0;xts , ts, u)|ts=t,xts=x, xts ∈M. (3.9)

In this chapter we shall always assume v(., .) ∈ Ck,l(M,R) for sufficiently large k, l to

make the analysis under discussion valid. The following lemmas, respectively, give the

relations between the sensitivity of the hybrid value function and the discontinuity of

the Hamiltonian function and adjoint variables at the switching state and switching

time.
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Lemma 3.1 ( [80]). Let (x(ts), ts) = (x(tos), t
o
s) be the optimal switching state and

switching time subject to the hypotheses of the HSOC problem and of Theorem 3.1,

then

(i)
∂v(x, t)

∂t
|(x(tos),t

o
s) = 0, (3.10)

(ii) ∇xv(x, t)|(x(tos),t
o
s) ⊥ Tx(tos)M, (3.11)

where Tx(ts)M is the tangent space at the switching state x(ts).

Proof. The proof is given in Chapter 5 (Lemma 5.1). �

Lemma 3.2 ( [1,80]). For the HSOC problem defined in Theorem 3.1 the following

relations hold for all (x(ts), ts) ∈ Rn+1 ×R,

∂v(x, t)

∂t
|(x(ts),ts) = H1(t−s )−H2(ts), (3.12)

∇xv(x(ts), ts) = λ2(ts)− λ1(t−s ). (3.13)

�

The basic notions of Riemannian manifolds needed for the rest of the chapter are

as follows: For a given n dimensional switching manifold M , a Riemannian metric

g(x) ∈ T ∗xM ⊗ T ∗xM is defined as (T ∗M is the cotangent bundle of the switching

manifold M):

g(x) =
n∑

i,j=1

gij(x)dxi ⊗ dxj, i, j = 1, ..., n. (3.14)

For a given curve γ : [a, b]→M which is locally described as γ(t) = (x1(t), ..., xn(t)),

the associated length with respect to the Riemannian metric g is defined as

L(γ) :=

∫ b

a

(
n∑

i,j=1

gij(x(s))ẋi(s)ẋj(s))
1
2ds. (3.15)
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Fixing the initial and final points γ(a), γ(b) ∈ M , a minimal length curve which

connects γ(a) to γ(b) is called geodesic, [37]. The solution of the Euler-Lagrange

variational problem associated with (3.15) shows that all the geodesics on M con-

necting γ(a), γ(b) must satisfy the following system of ordinary differential equations:

ẍi(s) +
n∑

j,k=1

Γij,kẋj(s)ẋk(s) = 0, i = 1, ..., n, (3.16)

where

Γij,k =
1

2

n∑
l=1

gil(gjl,k + gkl,j − gjk,l), gjl,k =
∂

∂xk
gjl.

(3.17)

All the indices i, j, k here run from 1 up to n and [gij] = [gij]
−1. The existence of the

geodesics on the switching manifold M is given by the following theorem.

Theorem 3.2 ( [37]). Let M be a Riemannian manifold, choose p ∈ M and

v ∈ TpM , then there exist, ε > 0 and precisely one geodesic γ such that γ : [0, ε]→M

and γ(0) = p, γ̇(0) = v. �

The assumption that the Riemannian manifold is complete as a metric space

implies that it is geodesically complete [37], that is to say the interval [0, ε] can be

extended to R for all x ∈M and all v ∈ TpM . For the sake of simplicity in notation

we consider x alone as the optimization variable. However all the results can be

modified by extending the state variable by tks . Here we formulate the projection of

the value function gradient on the tangent space of the switching manifold. Following

[29] and [46] we consider a time invariant switching manifold M as an embedded n

dimensional surface in Rn+1, x(.) ∈ Rn+1. Similar to the HMP algorithm, the analysis

and the algorithms in this chapter can be extended to the case where the switching

manifold M is time varying, i.e. locally described by M(x, t) = 0.

We assume the switching manifold M to be an n dimensional Riemannian em-

bedded connected submanifold of Rn+1 with metric g(., .) induced by the Euclidean
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metric of Rn+1, i.e

g(ϕx, ωx) :=< ϕx, ωx >, ∀ϕx, ωx ∈ TxM, (3.18)

where <,> is the corresponding Euclidean inner product in Rn+1. Then the projected

gradient of the value function v(x) is defined as the unique vector ∇γ
Mv(x) ∈ TxM ,

such that (see [29])

g(∇γ
Mv(x), ωx) =< ∇xv(x), ωx >, ∀ωx ∈ TxM, (3.19)

where ∇xv(x) is the Euclidean gradient of v(.) in Rn+1 given by Lemma 3.2. It is

important to notice that ∇γ
Mv(x) satisfying (3.19) can be defined for an arbitrary g,

which is not necessarily induced by the Euclidean metric

Definition 3.1. Let M be a geodesically complete Riemannian manifold, p ∈M

and Vp = {w ∈ TpM ; γw is defined on [0, θ]}, then exppθ : Vp → M is defined by

exppθ(w) = γw(θ), where γw is the geodesic emanating from p and γ̇w = w. �

Here we give a continuous version of the HMP algorithm along geodesics (GG-

HMP) and prove the convergence by using the Lasalle Theory. By initializing the

switching state xks on the switching manifold M , we solve two boundary value prob-

lems to obtain optimal controls for (x0, x
k
s) and (xks , xf ) and compute ∇γ

Mv(xks) via

Lemma 3.2.

The Geodesic-Gradient flow is defined as follows:

Definition 3.2. (Geodesic-Gradient Flow) Let θ0 = 0, and x(θ0) = x0 ∈ M ,

then for all 0 ≤ k and all xk such that ∇γ
Mv(xk) 6= 0, define

x(θ) = γxk(θ) = expxk(−θ∇γ
Mv(xk(θk))),

θ ∈ [θk, θk+1), x(θ) ∈M, (3.20)
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where

θk+1 = sup
s
{s; dv(x(t))

dt
≤ 0, t ∈ [θk, s), s ∈ [θk, θk + 1)},

(3.21)

where γxk(s) is the geodesic emanating from xk with velocity −∇γ
Mv(xk) given by

(3.19). �

The next switching state is specified as

xk+1 = x(θk+1), 0 ≤ k <∞, (3.22)

and is the origin of the next step geodesic unless ∇γ
Mv(xk+1) = 0, in which case

xk+1 = x(θk+1) is defined to be a finite iteration equilibrium point of the flow.

In other words, using (3.20) and (3.21) we construct a flow ϕ on the switching manifold

M which is differentiable from the right at all points x ∈ ϕ(θ, x0). The derivative

from the right of ϕ at the switching state xi is given as

dv(xi(s))

dθ
|s=0 = L−∇γMv(xi)v(xi(s))|s=0

= < ∇xv(xi),−∇γ
Mv(xi) >

= −g(∇γ
Mv(xi),∇γ

Mv(xi))

≡ −||∇γ
Mv(xi)||2, x(0) = xi, (3.23)

where the third equality is given by (3.19). The equation above turns into the fol-

lowing formula for the derivative from the right of the value function at the point x

which is not a switching state.

dv(x(s))

dθ
|s=0 = LXv(x(s))|s=0, (3.24)

where X is the tangential vector field to the geodesic curve γ at x as:

X =
dγ(s)

ds
|s=0, γ(0) = x, s ∈ [θk, θk+1), k ≥ 0. (3.25)
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Over the interval of existence [0, ω) we denote the total flow induced by (3.20)-

(3.23) as

ϕ(θ, x0) = Πn
i=1ψi(θ

i−1, θi, xi−1) ◦ ψn(θn, θ, xn), (3.26)

where

ψi(θ
i−1, θi, xi−1) = γxi−1(θi − θi−1)), (3.27)

θi is the switching time to the next iteration and n is the index number of the last

switching before θ. By the continuity of the geodesic flows {ψi, 1 ≤ i}, ϕ is a

continuous map on [0, ω). In the notation of topological dynamics, and in particular

Lasalle Theory (see e.g. [20, 60]), the limit set of the initial state x0 is denoted as

Ω(x0), where

y ∈ Ω(x0)⇒ ∃θn, n ≥ 1, s.t. limn→∞x(θn) = y, (3.28)

when limn→∞(θn) = ω. Note the sequence {θn} is in general distinct from {θn}.

H1 : There exists 0 < b < ∞ such that the associated sublevel set Nb = {x ∈

M ; v(x) < b} is (i) open (ii) connected, (iii) contains a strict local minimum x∗

which is the only local minimum in Nb, and (iv) Nb has compact closure.

Now choose x0 ∈ Nb−ε for 0 < ε < b. By the construction of ϕ, for all 0 < θ < θ
′

we

have

v(ϕ(θ
′
, x0)) ≤ v(ϕ(θ, x0)) ≤ v(x0) < b− ε < b, (3.29)

and hence for Φ+ := {ϕ(θ, x0); 0 ≤ θ < ω}

Φ+ ⊂ N b−ε ⊂ Nb. (3.30)

Hence the flow ϕ is defined everywhere in N b−ε ⊂ Nb, where N b−ε is compact

since N b is compact. So for all x ∈ Nb−ε we have an extension of ϕ(., x0) in Nb,

therefore the maximum interval of existence of ϕ(., x0) in Nb is infinite.
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Theorem 3.3. Subject to the hypothesis H1 on Nb and with an initial state x0

such that x0 ∈ Nb−ε ⊂ M , 0 < ε < b, either the Geodesic-Gradient flow, ϕ, reaches

an equilibrium after a finite number of switchings, or it satisfies

ϕ(θ, x0)→ Ω(x0) ⊂ v−1(c), c ∈ R, (3.31)

as θ →∞, for some c ∈ R, where

∀y ∈ Ω(x0),
dv(y)

dθ
|θ=0 = 0, (3.32)

and, furthermore, the switching sequence {x}∞0 = {x0, x1, · · · , } converges to the limit

point x∗ ∈ Ω(x0) ⊂ Nb, where x∗ is the unique element of Nb such that ∇γ
Mv(x∗) = 0.

Proof. The first statement of the theorem is immediate by Definition 3.2. To

prove the second statement, similar to the proof of the Lasalle Theorem, we proceed

by showing that v(.) is constant on the set Ω(x0). The precompactness of Φ+ ((i):

Φ+ ⊂ N b (ii): there does not exist θi → ω, i → ∞, such that ϕ(θi, x
0) → ∂Nb, i.e.

Φ+
⋂
∂Nb = �), imply Ω(x0) 6= �, see [20]. By the definition of Ω(x0) we have

∀y ∈ Ω(x0)⇒ ∃θn, n ≥ 1, s.t. ϕ(θn, x
0)→ y, θn →∞, (3.33)

and since v(.) ∈ C1,

limn→∞v(x(θn)) = limn→∞v(ϕ(θn, x
0)) = v(y) =: c.

(3.34)

Now choose y
′ ∈ Ω(x0), y

′ 6= y, then by the existence of a convergent sequence x(θ
′
n)

to y
′

we have

∀ε > 0⇒ ∃n, ni, k s.t. θn < θ
′

ni
< θn+k

c− ε < v(x(θn+k)) ≤ v(x(θ
′

ni
)) ≤ v(x(θn)) < c+ ε,

(3.35)
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i.e. v(y
′
) = c, hence Ω(x0) ⊂ v−1(c). To prove stationarity, i.e (3.32), we observe that

Ω(x0) is positive invariant under the flow ϕ, i.e

ϕ(θ,Ω(x0)) ⊂ Ω(x0), θ > 0. (3.36)

This follows from the continuity of ϕ(., .), see [20]. Differentiability from the right

for all x ∈ ϕ(θ, x0), 0 < θ, implies

dv

dθ
|θ=0 = limθ→0+

v(ϕ(θ, y))− v(ϕ(0, y))

θ

= limθ→0+
c− c
θ

= 0, y ∈ Ω(x0),

(3.37)

since ϕ(θ, y) ∈ Ω(x0) by (3.36) and v(Ω(x0)) = c by (3.35).

It remains to prove the statement for the sequence of the switching states {x}∞0 =

{x0, x1, · · · }. The switching sequence {x}∞0 consists of the switching points on ϕ(θ, x0)

which by (3.21) is an infinite sequence.

The precompactness of Φ+ with respect toNb implies the existence of a convergent

subsequence of {x}∞0 such that

limi→∞ϕ(θni , x
0) = x∗ ∈ Ω(x0), Ω(x0) ⊂ Φ+ ⊂ Nb−ε.

(3.38)

Since v ∈ C∞(Nb)

limi→∞∇γ
Mv(ϕ(θni , x

0)) = ∇γ
Mv(x∗), (3.39)

and

limi→∞
dv(ϕ(θni , x

0))

dθ
|θ=0 =

dv(x∗)

dθ
|θ=0. (3.40)
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But since the state ϕ(θni , x
0)) is a switching state chosen from the switching sequence

{x}∞0 ,

dv(ϕ(θni , x
0))

dθ
|θ=0 = < ∇ϕ(θni ,x

0)v(x),∇γ
Mv(ϕ(θni , x

0)) >

= −||∇γ
Mv(ϕ(θni , x

0))||2, (3.41)

As is stated in (3.38), the limit point x∗ is an element of the limit set Ω(x0), therefore

by (3.37) we have

dv(x∗)

dθ
|θ=0 = 0. (3.42)

From (3.39)-(3.41) we have

0 =
dv(x∗)

dθ
|θ=0 = limi→∞

dv(ϕ(θni , x
0))

dθ
|θ=0

= limi→∞(−||∇γ
Mv(ϕ(θni , x

0))||2) = −||∇γ
Mv(x∗)||2.

(3.43)

Hence

∇γ
Mv(x∗) = 0. (3.44)

But by H1 , x∗ is the unique point in Nb−ε ⊂ Nb for which this holds, hence all

subsequences of {x}∞0 converge to x∗ = x∗ an hence so does the sequence. �

Definition 3.3. (Conceptual GG-HMP Algorithm)

Consider the hybrid system with two phases separated by the switching manifold M ,

and the performance function v(.).

Generate the Geodesic-Gradient flow, (3.20)-(3.22), on M with ∇γ
Mv(x), x ∈

M , evaluated by (3.12), (3.13), (3.18), (3.19).

Stopping rule: for a given 0 < β, if ||∇γ
Mv(x)|| < β stop. �

Theorem 3.4. Assume H1 holds for Nb ⊂M , for the HOCP with the switching

manifold M and the performance function v(.), then the GG-HMP with data (M, v, β)
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halts at xk(β)(β), where either xk(β)(β) is a finite equilibrium point of the Geodesic-

Gradient flow, and hence ∇γ
Mv(xk(β)(β)) = 0 and xk(β)(β) = x∗, where x∗ is the

unique point of Nb ⊂M such that ||∇γ
Mv(x∗)|| = 0, or xk(β)(β) is such that

xk(β)(β)→ x∗, k(β)→∞, as β → 0. (3.45)

Proof. The first statement is immediate by Definition 3.3. The second holds

since v(.) has a unique local minimum at x∗, and v(.) ∈ C1(Nb) with ||∇γ
Mv(x∗)|| = 0;

hence

ρβ(x∗) := sup{dM(x, x∗); ||∇γ
Mv(x)|| < β, x ∈M},

(3.46)

where d(., .), the geodesic distance on M , is such that ρβ(x∗) → 0 as β → 0. Hence

by Theorem 3.3, xk(β)(β)→ x∗ as β → 0. �

3.2.2. Simulation Results. Here we simulate the GG-HMP for a simple

example and compare the results with the HMP algorithm in [66]. Consider the

following Hybrid system which consists of two different phases

S1


ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

1 0 0




x1

x2

x3

+


1

1

0

u, (3.47)

S2


ẋ1

ẋ2

ẋ3

 =


0 0 1

1 0 0

0 1 0




x1

x2

x3

+


0

1

1

u, (3.48)

where

x0 = (2, 1, 4), xf = (4, 1, 3), J =
1

2

∫ 10

0

u2(t)dt, (3.49)
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and the switching manifold M is considered to be the time invariant plane m(x, y, z) =

x + y − z = 0 and the geodesic curves on M are straight lines. Figure 3.1 shows

the convergence rate of the HMP and GG-HMP algorithms. As is evident, in this
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Figure 3.1. HMP and GG-HMP Convergence Rates

example the GG-HMP converges faster than the HMP to the optimal switching state

and switching time. It is entirely likely that this is because the switching and gradient

evaluation points are all on the switching surface and they are connected through the

shortest path by the GG-HMP. Figure 3.2 shows the state space evolution of the

example above derived by the optimal hybrid control; the optimal switching time is

5.5678s and the optimal switching state is (−0.3801,−0.7268,−1.1069). Both GG-

HMP and HMP start from an initial switching point (0, 2, 2).

3.3. GG-HMP Algorithm Along Local Parameterizations

In this section we present a simplified version of the GG-HMP algorithm in order

to reduce the computational load. As stated in the second step of the GG-HMP

algorithm, the updating equations require a solution of (3.16) on the given manifold

M . In general solving (3.16) imposes a significant computational load and slows down

the computational rate. In order to reduce this complexity, we propose an algorithm

which searches for the critical values of the value function in the local coordinates of

the switching manifold [71].
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Figure 3.2. A Switching Manifold and the Corresponding Hybrid State Trajectory

Consider an n dimensional smooth differentiable manifold M and x ∈ M for

which the local coordinate chart and the associated neighbourhood are denoted as

(x−1, V ); by their definitions x and x−1 are continuous maps which are furthermore

assumed to be smooth:

x−1 : V ⊂M → Rn, x : W ⊂ Rn →M ⊂ Rn+1, (3.50)

where V and W are open sets in M and Rn respectively. The mapping x is called

the local parametrization of the switching manifold M . By the results of elementary

differential geometry, the tangent space at the point x ∈M is spanned by ( ∂x
∂x1
, ..., ∂x

∂xn
)

or equivalently ( ∂
∂x1
, ..., ∂

∂xn
). The hybrid value function minimization problem in the

local coordinates of the switching manifold converts to an unconstrained optimization

problem and we have the following lemma:

Lemma 3.3. Consider the hybrid system defined in Theorem 3.1 with the associ-

ated time invariant switching manifold M , where by assumption the optimal switching

state and time (xo, to) is an interior point of M × R. Then, in the local coordinates

of the optimal switching state and switching time,

∂v(x, t)

∂xi
|x=xo = 0,

∂v(x, t)

∂t
|t=to = 0, i = 1, ..., n. (3.51)
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Proof. Applying the chain rule in the ordinary differential equations implies

∂v(x, t)

∂xi
|x=xo =

∂v(x, t)

∂x
|x=xo

∂x

∂xi
.

By the results of Lemma 3.1, ∂v(x,t)
∂x
|x=xo is normal to the tangent space of the switching

manifold at xo, which proves the first statement. The second statement holds since

the optimization with respect to the switching time is unconstrained. �

In this chapter we assume that the optimization process is performed in an open

subset of the switching manifold which is covered by a single chart. Hence the

parametrization is unchanged during the optimization process. The resulting GG-

HMP algorithm along local parameterizations, (denoted as the GGAP-HMP Algo-

rithm), for a time varying switching manifold which is considered locally as m(x, t) =

0, has the following specifications:

Definition 3.4. GGAP-HMP (Multiple Autonomous Switchings) Algorithm

For a hybrid system with one switching manifold:

(1) Initialize the switching state xks and switching time tks on the time varying

switching manifold m(x, t) and compute g(∇γ
Mv(xks , t

k
s),

∂
∂xki

) =< ∇γ
Mv(xks , t

k
s),

∂
∂xki

>=

∇xiv(xk), i = 1, ..., n + 1, where (xk1, ..., x
k
n) are local coordinates for xks , xkn+1 = tks

and ∇xv(xk) = [∇x1v(xk), ...,∇xn+1v(xk)]T .

(2) Update the local coordinates of (xks , t
k
s) by the following equation:

xk+1
i = xki − τ kg(∇γ

Mv(xks , t
k
s),

∂

∂xki
), i = 1, ..., n+ 1,

(3.52)

which is equivalent to

xk+1
i = xki − τ k(λ+(tks)− λ−(tks)).

∂x

∂xi
|x=xk , i = 1, ...n,

(3.53)
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tk+1
s = tks − τ k(H1(xks , λ

−(tks))−H2(xks , λ
+(tks))), (3.54)

and

τ k+1 = sup
s
{dv(x(t))

dt
≤ 0}, t ∈ [τ k, s), s ∈ [τ k, τ k + 1).

(3.55)

(3): If ||∇xv(xk)|| < β, where β is a predefined bound then stop, otherwise go to

step (1) with the next initial state (xk+1
s , tk+1

s ). �

The proof for the convergence of the continuous version of the GGAP-HMP is

same as the proof of Theorem 3.3. Since the optimization problem is unconstrained

in the local coordinates of x, by Lemma 3.3 the updating step for (xks , t
k
s) are given

by (3.53),(3.54). It should be noted that the geodesic curves are straight lines in Rn

( [37]).

3.3.1. Simulation Results. We simulate the GGAP-HMP algorithm for the

given hybrid system in the first example with the switching manifold m(x, y, z) =

x2 + y2 − z = 0. As is obvious from Figure 3.3, the convergence rate of the GGAP-
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Figure 3.3. HMP and GGAP-HMP Convergence Rates

HMP algorithm is significantly faster than the HMP algorithm for the given example.

The state trajectory is shown in Figure 3.4. The optimal switching state and switching
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time are (0.0886, 0.1428, 0.0282) and 4.88s respectively. Both the HMP and GGAP-

HMP start with the initial switching state (2, 2, 8) on the switching manifold.
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Figure 3.4. A Switching Manifold and the Corresponding Hybrid State Trajectory

Remark: Following [37], we see that geodesic curves in M are given in a spe-

cial coordinates system (normal coordinates) for which they satisfy the differential

equations ẍi(0) = 0, i = 1, ..., n.

3.4. NG-HMP Algorithm

3.4.1. Formulation and Analysis of the NG-HMP Algorithm. In this

section we define a version of Newton’s method along geodesics (NG-HMP) for hybrid

systems as a search algorithm to find the critical points of the hybrid value function

v. The update equation based on the standard Newton method for a function h(.) ∈

C2(Rn) is as follows:

xk+1 = xk − (H̃−1
k )∇xh(xk), (3.56)

where H̃k denotes the (assumed nonsingular) Hessian matrix of h.

In the general case of Reimannian manifolds, it is not possible to define a Hessian

matrix as can be done in Euclidean spaces, (see e.g. [29], [67]). However, employing

the Levi-Civita connection ∇ on a Riemannian manifold, the Hessian H̃ may be

defined as a bilinear symmetric form, [37]. We recall for all f, l ∈ C∞(M) and
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X, Y, Z ∈ X (M), where X (M) is the space of smooth vector fields on M , the Levi-

Civita connection on M with respect to the Riemannian metric g is uniquely specified

by the following axioms:

∇Xf = X(f), f ∈ C∞(M), (3.57)

∇XfY = X(f)Y + f∇XY, (3.58)

∇fX+lZY = f∇XY + l∇ZY, (3.59)

∇XY −∇YX = [X, Y ], (3.60)

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). (3.61)

For a vector field X ∈ X (M) the covariant derivative is defined as ∇X : TM →

TM, where

∇X(Y )|x = ∇X(x)Y, Y ∈ X (M). (3.62)

The Taylor expansion on a Riemannian manifold for the value function v is then given

as follows ( [67]):

v(expxθX) = v(x) + θ(∇Xv)(x) + ...+
θn−1

(n− 1)!
×

(∇n−1
X v)(x) +

θn

(n− 1)!

∫ 1

0

(1− t)n−1 ×

(∇n
Xv)(x)(expxtθX)dt, 0 < θ < θ∗, (3.63)
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which is equivalent to

v(expxθX) = v(x) + θ(dv(X))|x + ...+
θn−1

(n− 1)!
×

(∇n−2
X dv)(X)|x +

θn

(n− 1)!

∫ 1

0

(1− t)n−1 ×

(∇n−1
X dv)(X)|x(expxtθX)dt, 0 < θ < θ∗, (3.64)

where dv is the differential one form of v. As before we assume that x∗ is a strict

local minimum of v on M , then (3.63) implies

(∇Xv)|x∗ = 0, 0 < (∇2
Xv)|x∗ , ∀X ∈M, (3.65)

where

∇X∇Y v = ∇Xdv(Y ) =: H̃v(X, Y ), ∀X, Y ∈ TxM,

(3.66)

and H̃v(
∂
∂xi
, ∂
∂xj

) may be obtained from (3.68) below. The following lemma gives the

covariant derivative of the one form dv:

Lemma 3.4 ( [37]). On a smooth Riemannian manifold M , for all C∞ one forms

dxi, i = 1, ..., n, the covariant derivative ∇ ∂
∂xj

dxi is given as follows:

∇ ∂
∂xj

dxi = −
n∑

i,j=1

Γki,jdxk, (3.67)

where Γki,j are introduced in (3.17). �

Then Lemma 3.4 and (3.66) together imply

H̃v =
n∑

i,j=1

(
(
∂2v

∂xi∂xj
)−

n∑
k=1

Γkj,i
∂v

∂xk

)
dxi ⊗ dxj ∈ T ∗xM ⊗ T ∗xM. (3.68)

The following lemma is essential for the proof of the local convergence of the version

of Newton’s method presented below.
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Lemma 3.5. For a strict local minimum x∗ of the value function v, there exists

a neighbourhood Nx∗ such that 0 < H̃v(X,X)|x∈Nx∗ for all X ∈ X (M), X 6= 0.

Proof. As in (3.65, 3.66), x∗ a strict local minimum implies that 0 < H̃v(X,X)|x∗ ;

the result then follows from the smoothness of both v and the Riemannian metric g

on M . �

For any given X, Y ∈ X (M), by (3.65) and (3.66), ∇dv(X) = H̃v(X, .) which

induces an isomorphism between TxM and T ∗xM , where ∇dv : X (M)→ X ∗(M), and

X ∗(M) is the space of all smooth covectors defined on M . (The functionality, one

to one and onto properties of ∇dv can be verified from (3.65) and (3.66).) Therefore

H̃−1 : T ∗xM → TxM. The Newton recursion along geodesics in M is given by the

following update equation:

xk+1 = expxk(−θH̃−1
k dv|xk), x1 = x0, 1 ≤ k <∞. (3.69)

Similar to the flow defined for the GG-HMP algorithm, we define a flow for the

Newton HMP algorithm on the switching manifold M as follows:

Definition 3.5. (The Newton-Geodesic Flow) Let θ0 = 0, and x(θ0) = x0 ∈M ,

then for all 0 ≤ k <∞ and all xk such that H̃−1
k is nonsingular, define

x(θ) = γxk(θ) = expxk(−θH̃−1
k dv|xk),

θ ∈ [θk, θk+1), x(θ) ∈M, 1 ≤ k <∞ (3.70)

where

θk+1 = sup
s
{s; dv(x(t))

dt
≤ 0, t ∈ [θk, s), s ∈ [θk, θk + 1)},

(3.71)

where γxk(s) is the geodesic emanating from xk with velocity −H̃−1
k dv|xk . �

The switching state in (3.70) is defined as

xk+1 = x(θk+1), 0 ≤ k <∞, (3.72)
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and is the origin of the subsequent geodesic segment unless H̃−1
k dv|xk = 0, in which

case xk+1 = x(θk+1) is defined to be a finite iteration equilibrium point of the flow.

Over the interval of existence [0, ω) we denote the total flow induced by (3.69))

as

ϕ(θ, x0) = Πn
i=1ψi(θ

i−1, θi, xi−1) ◦ ψn(θn, θ, xn), (3.73)

where

ψi(θ
i−1, θi, xi−1) = γxi−1(θi − θi−1), γx0(θ

1 − θ0) = γx0(θ
1), θ0 = 0, (3.74)

θi− θi−1 is the elapsed time between the switching times θi, θi−1 to the next iteration

and n is the index number of the last switching before the instant θ. By the continuity

of the geodesic flows {ψi, 1 ≤ i <∞}, ϕ is a continuous map on [0, ω).

H2 : There exists 0 < b < ∞ such that the associated sublevel set Nb = {x ∈

M ; v(x) < b} is (i) open (ii) connected, (iii) contains a strict local minimum x∗

which is the only local minimum inNb, (iv)Nb has compact closure and (v)Nx∗ ⊂ Nb.

Without loss of generality, we assume Nx∗ ⊂ Nb−ε for some ε > 0, then by

selecting x0 ∈ Nx∗ ⊂ Nb−ε ⊂ Nb we prove ω =∞ by the following lemma:

Lemma 3.6. For an initial state x0 ∈ Nx∗, the existence interval of the flow

defined in (3.73) is unbounded.

Proof. By H2 we have Nx∗ ⊂ Nb−ε. Choose 0 < θ < θ
′

then if θ is not a

switching time by the construction of φ, i.e. (3.71)

v(ϕ(θ
′
, x0)) ≤ v(ϕ(θ, x0)) ≤ v(x0) < b− ε < b. (3.75)

We need to prove the statement above when θ is a switching time. The derivative

from the right of the flow ϕ, which is the combination of the flows defined in (3.70)
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at the switching state xk, is given by

dv(xk(θ))

dθ
|θ=0 = dv(−H̃−1

k dv|xk) = −dv(H̃−1
k dv|xk).

(3.76)

By the definition of H̃ we have

∇Xdv = H̃(., X), X ∈ X (M), (3.77)

therefore ∇−H̃−1dvdv = −∇H̃−1dvdv = H̃(.,−H̃−1dv) = −dv, as may be seen by

evaluating the expression on any Y ∈ TxM . Hence

−dv(H̃−1
k dv|xk) = −∇H̃−1

k dvdv(H̃−1
k dv)|xk = −H̃k(H̃

−1
k dv, H̃−1

k dv)|xk , (3.78)

where the last equality holds by (3.77). By H2 and Lemma 3.5 we have

dv(xk(θ))

dθ
|θ=0 = −H̃k(H̃

−1
k dv, H̃−1

k dv)|xk ≤ 0. (3.79)

It follows by the construction of ϕ in (3.73), that for all 0 < θ < θ
′
,

v(ϕ(θ
′
, x0)) ≤ v(ϕ(θ, x0)) ≤ v(x0) < b− ε < b, (3.80)

and hence for Φ+ := {ϕ(θ, x0); 0 ≤ θ < ω}

Φ+ ⊂ N b−ε ⊂ Nb. (3.81)

So the flow ϕ is defined everywhere inNb−ε, whereNb has compact closure. Hence

for all x ∈ Nb−ε we have an extension of ϕ in Nb, therefore the maximum interval of

existence of ϕ(., x0) in Nb is infinite.

�

Theorem 3.5. Subject to the hypothesis H2 on Nb and with an initial state x0

such that x0 ∈ Nx∗ ⊂ M , either the Newton geodesic flow, ϕ, reaches an equilibrium

after a finite number of switchings, or it satisfies

ϕ(θ, x0)→ Ω(x0) ⊂ v−1(c), c ∈ R, (3.82)
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as θ →∞, for some c ∈ R, where

∀y ∈ Ω(x0),
dv(y)

dθ
|θ=0 = 0, (3.83)

and, furthermore, the switching sequence {x}∞0 = {x0, x1, · · · , } converges to the limit

point x∗ ∈ Ω(x0) ⊂ Nb, where x∗ is the unique element of Nx∗ such that ∇γ
Mv(x∗) = 0.

Proof. This follows by the same argument as in the proof of Theorem 3.3. �

3.4.2. Convergence Rate of the NG-HMP Algorithm. In this section

we discuss the convergence rate of the NG-HMP algorithm based upon the analysis

given in [67]. As is shown in [43], for a given curve γ : I →M and a tangent vector

V0 ∈ Tγ(t0)M , there exists a unique parallel vector field V along γ such that V (t0) =

V0. This parallel translation defines a linear isomorphism Pt0t1 : Tγ(t0)M → Tγ(t1)M .

The corresponding dual map is denoted by P ∗t0t1 : T ∗γ(t1)M → T ∗γ(t0)M .

Consider the map P ∗t0(.)dv : R → T ∗γ(t0)M , where dv ∈ T ∗γ(t)M , then we can apply

the Taylor expansion on P ∗t0(.)dv(V ) where V ∈ Tγ(t0)M . For a given X ∈ Tx0M we

set x(θ) = x(θ, x0) = expx0(θX) then for a differential form dvxθ ∈ T ∗expx(θX)M we

have

P ∗θ dvxθ = dvx + θ(∇Xdv)x + ...+
θn−1

(n− 1)!
(∇n−1

X dv)x

+
θn

(n)!
(∇n

Xdv)xα ◦ Pα, (3.84)

where α ∈ [0, θ] and without loss of generality we assume t0 = 0. Let us consider

xk, xk+1 for a sufficiently large k. As proved in Theorem 3.5, xk converges to x∗,

the unique local minimum of v(.) in Nb, hence limk→∞ d(xk, xk+1) = 0, where d is

the minimum length of the curves connecting xk and xk+1. Employing the Normal

Neighbourhood Lemma in [43], we may select k large enough such that xk, xk+1, x∗ ⊂

Uk, where Uk denotes a normal neighbourhood corresponding to xk, see [37]. Let

θk = θk+1 − θk, the running time of the geodesic flow from xk to xk+1, where xk+1 =
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expxk(−θkH̃−1
k dv|xk). Since xk+1, x∗ ⊂ Uk

∃Xk ∈ TxkM,Xk+1 ∈ Txk+1M, s.t x∗ = expxk(Xk),

x∗ = expxk+1(Xk+1), (3.85)

where the existence of Xk+1 is guaranteed since xk+1 is close enough to x∗.

As is shown in [67], we have

Xk = −θkH̃−1
k dv|xk + P−1

θk
Xk+1 + E , (3.86)

where E ∈ TxkM is the additional third order displacement term ( [67]). By applying

H̃ on both sides of (3.86) we have

H̃k(P
−1
θk
Xk+1) = θkdv|xk + H̃k(Xk)− H̃k(E). (3.87)

The Taylor expansion of dvx at x∗ gives

dvxk = −H̃k(Xk)−
1

2
∇2
X̃k
dvxk ◦ Pα, α ∈ [0, 1], (3.88)

where inserting (3.88) into (3.87) yields

H̃k(P
−1
θk
Xk+1) = H̃k(Xk)(1− θk)

1

2
∇2
X̃k
dvxk ◦ Pα − H̃k(E). (3.89)

As is shown in [67], the smoothness of v and g gives

δ1||Xk|| ≤ ||H̃k(Xk)|| ≤ δ2||Xk||,

||∇2dvxk(Xk, Xk)|| ≤ δ̂||Xk||2, 0 < δ1, δ2, δ̂, (3.90)

for some δ1, δ2, δ̂. Therefore in the case where θk 6= 1 we have a linear convergence

rate as follows:

∃δk ∈ R+ s.t d(xk+1, x∗) ≤ δkd(xk, x∗). (3.91)

In the case θk = 1, a quadratic convergence rate can be obtained from (3.88) and

(3.90).
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3.4.3. NG-HMP Algorithm for Embedded Surfaces in Rn+1. In order

to implement the Newton Geodesic algorithm, the second derivative terms in (3.68)

must be computed. In this subsection a system of differential equations is introduced

in order to compute these quantities. Let us define the state and the adjoint variations

in a local coordinate system of the switching state for a hybrid system consisting of

two distinct phases as follows:

yxi (t) = limδxi→0
δx(t)

δxi
, i = 1, ..., n, t ∈ [0, tf ], (3.92)

zxi (t) = limδxi→0
δλ(t)

δxi
, i = 1, ..., n, t ∈ [0, tf ], (3.93)

where δx, δλ are state and adjoint variations with respect to the variation of the ith

component of the local coordinate of x(ts). In [71] it is shown that yxi (t), zxi (t) satisfy

the following differential equations (see Appendix B):

ẏxi (t) =
∂f1

∂x
yxi (t) +

∂f1

∂λ
zxi (t), t ∈ [t0, ts), (3.94)

żxi (t) = −∂
2H1

∂x2
yxi (t)− ∂2H1

∂λ∂x
zxi (t), t ∈ [t0, ts), (3.95)

ẏxi (t) =
∂f2

∂x
yxi (t) +

∂f2

∂λ
zxi (t), t ∈ [ts, tf ] (3.96)

żxi (t) = −∂
2H2

∂x2
yxi (t)− ∂2H2

∂λ∂x
zxi (t), t ∈ [ts, tf ], (3.97)

where Hi, i = 1, 2 is the associated Hamiltonian function corresponding to f1 and f2.

For a fixed end point optimal hybrid trajectory the boundary conditions for (3.92)

and (3.93) are given as follows:

yxi (0) = yxi (tf ) = 0, yxi (ts) =
∂x

∂xi
|x(ts). (3.98)
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The following theorem gives the relations between the second order variation of the

hybrid value function v and geometrical properties of the switching manifold involving

the second fundamental forms.

Theorem 3.6. At the optimal switching state xos on the switching manifold M,

and at the switching time tos the following holds:

−Hik = µ
∂xT

∂xi

∂2v(xos, t
o
s)

∂x2

∂x

∂xk
+ Ti

∂x

∂xk

= µ
∂xT

∂xk

∂2v(xos, t
o
s)

∂x2

∂x

∂xi
+ Tk

∂x

∂xi
, i, k = 1, ..., n,

(3.99)

where Ti, Tk ∈ TxoM , µ is the discontinuity parameter appearing in the adjoint pro-

cess boundary condition at the switching time (see [58, 66]) and Hik is the second

fundamental form of the switching manifold at xo, see [40].

Proof. A proof is given in Chapter 5 (Theorem 5.3). �

Based upon the relations given in Theorem 3.6, the following corollary is estab-

lished:

Corollary 3.1. In the local coordinates of the optimal switching state xos we

have

∂xT

∂xi

∂2v(xos, t
o
s)

∂x2

∂x

∂xk
=
∂2v(xos, t

o
s)

∂xi∂xk
− µ−1Hik, i, k = 1, ..., n. (3.100)

Proof. A proof is given in Chapter 5 (Corollary 1). �

The second variation of the hybrid value function v at the optimal switching state

xos and switching time tos is given in the following lemma by using the results derived

in Theorem 3.6.

Lemma 3.7. The local Hessian matrix components of the value function of the

hybrid system at the optimal switching state xos satisfy the following equations for
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i, k = 1, ..., n:

∂2v(xos, t
o
s)

∂xi∂xk
= yxi (t)(zxk (to

+

s )− zxk (to
−

s )) + µ−1Hik

= yxk(to)(zxi (to
+

s )− zxi (to
−

s )) + µ−1Hki

(3.101)

where (zxk (to
+

s )− zxk (to
−
s )) is the discontinuity of the z solution of (3.95),(3.97).

Proof. A proof is given in Chapter 5 (Lemma 5.4). �

For an arbitrary given switching state x which is not necessarily optimal, the

local Hessian matrix of the hybrid value function is given as follows:

Lemma 3.8 ( [73]). The local Hessian matrix of the value function of the hybrid

system at a non-optimal state xs and the switching time ts satisfies the following

equations for i, k = 1, ..., n:

∂2v(xs, ts)

∂xi∂xk
= yxi (t)(zxk (t+s )− zxk (t−s )) + (λ+(ts)− λ−(ts))

∂2x

∂xi∂xk
, (3.102)

where (zxk (t+s )− zxk (t−s )) is the discontinuity of the z solution of (3.95),(3.97).

Proof. The proof parallels the proof of Lemma 3.7 where the analysis is per-

formed at a generic switching state xs. �

The following lemma gives the second order variation of the hybrid value function

v with respect to the local coordinates of the switching state xi, i = 1, ..., n and the

switching time ts.
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Lemma 3.9 ( [73]). The components ∂2v(x,t)
∂xi∂ts

, i = 1, ..., n of the Hessian matrix

H(v(xs, ts)) =

 ∂2v(xs,ts)

∂x2i

∂2v(xs,ts)
∂xi∂ts

∂2v(xs,ts)
∂ts∂xi

∂2v(xs,ts)
∂t2s

 is computed as

∂2v(xs, ts)

∂xi∂ts
=
∂H1(t−s )

∂x
yxi (t−s )− ∂H2(t+s )

∂x
yxi (t+s ) +

∂H1(t−s )

∂λ
zxi (t−s )− ∂H2(t+s )

∂λ
zxi (t+s ),

(3.103)

where H1 and H2 are the corresponding Hamiltonians of the hybrid phases before and

after switching time respectively.

Proof. The proof parallels the proof of Lemma 3.8 where the analysis is per-

formed at a generic pair of switching state xs and switching time ts. �

Similar to the variations defined in (3.94) and (3.96), the state and adjoint vari-

ations with respect to ts are defined as follows:

yts(t) := limδts→0
δx(t)

δts
, t ∈ [t0, tf ], (3.104)

zts(t) := limδts→0
δλ(t)

δts
, t ∈ [t0, tf ]. (3.105)

The following lemma gives ∂2v(xs,ts)
∂t2s

which appears in the Hessian of the hybrid value

function.

Lemma 3.10 ( [73]). The component ∂2v(xs,ts)
∂t2s

of the Hessian matrix H(v(xs, ts))

satisfies

∂2v(xs, ts)

∂t2s
=
∂H1(t−s )

∂x
yti(t

−
s )− ∂H2(t+s )

∂x
yti(t

+
s ) +

∂H1(t−s )

∂λ
zti(t

−
s )− ∂H2(t+s )

∂λ
zti(t

+
s ),

(3.106)
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where zts(t) is the solution of

ẏts(t) =
∂2Hi(x, λ)

∂x∂λ
yts(t) +

∂2Hi(x, λ)

∂2λ
zts(t), (3.107)

żts(t) = −∂
2Hi(x, λ)

∂2x
yts(t)−

∂2Hi(x, λ)

∂x∂λ
zts(t), (3.108)

where yts(t0) = yts(tf ) = 0, yts(t
−
s )− yts(t+s ) = f2(u(ts), x(ts))− f1(u(ts), x(ts)).

Proof. The proof parallels the proof of Lemma 3.8 where the analysis is per-

formed at a generic switching time ts. �

Definition 3.6. NG-HMP (Newton-Geodesic-HMP) Algorithm

For a hybrid system with one switching manifold:

(1) Initialize the switching state xks on the switching manifoldM and the switching

time tks then compute ∇γ
Mv(xks , t

k
s), where (xk1, ..., x

k
n) are local coordinates for xks ,

xkn+1 = tks .

(2) Compute yxi , z
x
i as the solution of (3.94) and (3.95) and yti and zti as the solution

of (3.107) and (3.108). Compute Hk =

 ∂2v(xks ,t
k
s )

∂xi2
∂2v(xks ,t

k
s )

∂xi∂ts

∂2v(xks ,t
k
s )

∂ts∂xi
∂2v(xks ,t

k
s )

∂t2s

 using Lemmas 3.8-

3.10.

(3) Update the local coordinates of (xks , t
k
s) by the following equation:

(xk+1
s , tk+1

s ) = exp(xks ,t
k
s )(−H̃−1

k dv|xks ,tks ), (3.109)

where H̃k is computed by (3.68) together with Hk which is the second order variation

of the value function in (3.68).

(4) If ||∇xv(xk)|| < β, where β is a predefined bound then stop, otherwise go to

step (1) with the next initial state (xk+1
s , tk+1

s ). �
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3.4.4. Simulation Results. Consider the following hybrid system which

possesses the two phases:

S1 :


ẋ1

ẋ2

ẋ3

=


−.01 1 1

0 − .01 1

0 0 − .01




x1

x2

x3

+


1

1

0

u,

(3.110)

S2 :


ẋ1

ẋ2

ẋ3

=


−.01 0 0

1 − .01 0

1 1 − .01




x1

x2

x3

+


0

1

1

u,

(3.111)

with the initial and terminal conditions and the cost function given by

x0 = (2, 1, 4), xf = (4, 1, 3), J =
1

2

∫ 10

0

u2(t)dt, (3.112)

The switching manifold M is taken to be m(x, y, z) = x2 + y2 − z = 0. Figure 3.6

shows the convergence rate of the NG-HMP and GG-HMP algorithms.

Simulations of the GG-HMP and NG-HMP algorithms for the given hybrid system

with the switching manifold m(x, y, z) = x2 +y2−z = 0 resulted in the state and cost

trajectories shown in Figures 3.5 and 3.6 respectively. As is obvious from Figure

4
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Figure 3.5. The Switching Manifold and the Corresponding Hybrid State Trajectory
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Figure 3.6. NG-HMP and GG-HMP Convergence

3.6, the convergence rate for the NG-HMP algorithm is significantly faster than the

GGAP-HMP algorithm for the given example.

The optimal switching state and switching time generated by the algorithms were

respectively

(1.1787, 0.1837, 1.4232) and 2.5353s. Here both the NG-HMP and GGAP-HMP start

with the same initial switching state (2, 2, 8) on the switching manifold.
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4.4.1 CONTROL SYSTEMS ON LIE GROUPS

CHAPTER 4

The Hybrid Minimum Principle On Lie

Groups

4.1. Control Systems on Lie Groups

In this section we introduce control systems on Lie groups and then extend the

definition of hybrid systems to that of hybrid control systems defined on Lie groups

(see [76,78]).

4.1.1. Lie Groups and Lie Algebras.

Definition 4.1. A group (G, ?) is called a Lie Group if, (see [82]):

(1): G is a smooth manifold,

(2): The group operations are smooth.

(The group operations are associative multiplication and inversion, i.e. ∀g1, g2, g3, g ∈

G, g1 ? (g2 ? g3) = (g1 ? g2) ? g3 ∈ G, g−1 ∈ G, g−1 ? g = g ? g−1 = e). �

In this chapter it is assumed that the continuous part of the hybrid system evolves

on a Lie group G.

Definition 4.2. A Lie Algebra V is a real vector space endowed with a bilinear

operation [., .] : V × V → V such that (see [19,82]):
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(1): ∀ζ, η ∈ V, [ζ, η] = −[η, ζ]

(2):[ζ, [η, γ]] + [η, [γ, ζ]] + [γ, [ζ, η]] = 0 ∀ζ, η, γ ∈ V �

The Lie algebra L of a Lie group G may be identified with the tangent space at

the identity element e with the associated Lie bracket defined on the tangent space

of G, i.e. L = TeG. A vector field X on G is called left invariant if

∀g1, g2 ∈ G, X(g1 ? g2) = TLg1X(g2), (4.1)

which immediately implies X(g?e) = X(g) = TLgX(e) where Lg : G→ G, Lg(h) =

g ? h where TLg : ThG→ Tg?hG.

Definition 4.3. Corresponding to a left invariant vector field X, we define the

exponential map as follows:

exp : L → G, exp(tX(e)) := Φ(t,X), t ∈ R, (4.2)

�

where Φ(t,X) is the solution of ġ(t) = X(g(t)) with the boundary condition

g(0) = e. The following theorem gives the flow of a left invariant vector field with an

arbitrary initial state g ∈ G.

Theorem 4.1 ( [82]). Let G be a Lie group with the corresponding Lie algebra

L, then for a left invariant vector field X

Φ(t,X, g) = Lg ◦ exp(tX(e)), t ∈ R, (4.3)

where Φ(t,X, g) is the flow of X starting at g ∈ G. �

A left invariant control system defined on a given Lie group G is defined as follows:

(see [19,21,38])

ġ(t) = f(g(t), u) = TLg(t)f(e, u), g(t) ∈ G, u ∈ Ru, (4.4)
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where f(g(t), u) is a left invariant vector field on G. Similar to left invariant systems,

right invariant systems are defined. In this chapter we only consider hybrid systems

where the associated vector fields are left invarian, however the analysis can also be

applied to right invariant hybrid systems.

4.1.2. Left Invariant Optimal Control Systems. A left invariant optimal

control system is an optimal control problem where the ambient state manifoldM is

replaced by a Lie group G.

The corresponding vector field fq is a left invariant vector field defined on G for

any given u ∈ U such that

fq(., u(.)) : G× [t0, tf ]→ TG, (4.5)

and the cost function is defined as

J :=

∫ tf

t0

lq(g(s), u(s))ds, u ∈ U , (4.6)

where lq(g(s), u(s)) is assumed to be left invariant i.e. lq(Lhg(s), u(s)) = lq(g(s), u(s)).

In general, a Bolza problem can be converted to a Mayer problem using an auxiliary

state variable in the dynamics, see [66] and [6]. The following lemma shows the

equivalence of a Bolza problem defined on a Lie group G and its Mayer extension.

Lemma 4.1. Consider a left invariant Optimal Control Problem (OCP) defined

on a Lie group G with the following dynamics and cost function:

ġ(t) = f(g(t), u), g(t) ∈ G, u ∈ Ru, (4.7)

J =

∫ tf

t0

l(g(s), u(s))ds. (4.8)

Then the Mayer problem associated to the optimal control problem above is defined

on the Lie group G×R and the corresponding dynamics are left invariant.
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Proof. The state space equation of the Mayer problem concerning the Bolza

problem is given as follows: ġ

ż

 =

 f(g(t), u(t))

l(g(t), u(t))

 = F (ḡ(t), u), (4.9)

where ḡ = (g, z), g ∈ G, z ∈ R. The group action defined on G × R is given as

follows:

(g1, z1)?̄(g2, z2) = (g1 ? g2, z1 + z2), (4.10)

where ? corresponds to the group action of G and ?̄ is the group action of G × R.

Since G is a Lie group it follows that (G× R, ?̄) is also a Lie group. It only remains

to show F (ḡ, u) is left invariant. The left translation on G×R is defined by

Lḡ(h̄) = (Lgh, zg + zh), ḡ = (g, zg), h̄ = (h, zh), (4.11)

therefore

TLḡF (h̄, u) = TLgf(h, u)⊕ l(Lgh, u) = f(g ? h, u)⊕ l(g ? h, u), (4.12)

which yields F (h̄, u) is left invariant since f(g, u) and l(g, u) are both left invariant.

�

4.2. Optimal Control Problems On Lie Groups

The optimal control problem on Lie groups has been addressed in [17,18,38,39].

In this section we give the Minimum Principle results presented in [39] for optimal

control problems defined on a Lie group G. As shown in [38], the left translation gives

an isomorphism between TG and G×L. Since Lg−1 maps g to e, then TLg−1 : TgG→

TeG = L is the corresponding isomorphism. This statement also holds between T ∗G

and G × L∗ where L∗ is the dual space of the Lie algebra L. The corresponding

isomorphism is given by T ∗Lg : T ∗gG → T ∗eG = L∗. We use the equivalence T ∗G ≈
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G × L∗ associated to the isomorphism above to construct Hamiltonian functions on

Lie groups.

4.2.1. Hamiltonian Systems on T ∗M and T ∗G. By definition, for an

optimal control problem defined on an n dimensional differentiable manifold M, a

Hamiltonian function is defined as a smooth function H : T ∗M×U → R, see [3,38].

The associated Hamiltonian vector field
−→
H is defined as follows (see [3]):

σλ(.,
−→
H ) = dH, λ ∈ T ∗M, (4.13)

where σ is the symplectic form defined on T ∗M which is locally written as follows:

σ =
n∑
i=1

dζi ∧ dxi, (4.14)

and (ζ, x) is the local coordinate representation of λ in T ∗M.

The Hamiltonian system of the ODE corresponding to H is

λ̇ =
−→
H (λ), (4.15)

where locally we have  ẋi = ∂H
∂ζi
, i = 1, ..., n,

ζ̇i = − ∂H
∂xi
, i = 1, ..., n.

(4.16)

Similar to Hamiltonian systems on smooth manifolds we can define Hamiltonian

functions for left invariant vector fields on the cotangent bundle of a Lie group G.

This is done by using the isomorphism between L∗ × G and T ∗G introduced above

which is denoted by I:

(1) I(X, g) ∈ T ∗G, X ∈ L∗, g ∈ G, (4.17)

(2) I(., g) : L∗ → T ∗gG is a linear isomorphism. (4.18)
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A Hamiltonian function for a left invariant vector field X on G is defined as

HX(g, λ) := 〈λ,X(e)〉 = 〈λ, TLg−1X(g)〉, λ ∈ L∗. (4.19)

The preceding identification realizes that TT ∗G ' T (G×L∗) = (G×L)× (L∗×L∗),

therefore the tangent vector at (g, λ) ∈ G × L∗ is an element of L × L∗ denoted by

T = (X, γ). The symplectic form σ along a given curve Γ(t) ∈ T ∗G satisfies the

following equation, see [3,38]:

σΓ(T1(Γ), T2(Γ)) = 〈γ2(t), X1(t)〉 − 〈γ1(t), X2(t)〉 − 〈λ(t), [X1(t), X2(t)]〉,

(4.20)

where Ti = (Xi, γi). Similar to Hamiltonian systems on T ∗M, the Hamiltonian vector

field
−→
H on G× L∗ satisfies the following equation

dH = σΓ(t)(.,
−→
H ). (4.21)

The following theorem gives the Minimum Principle for optimal control problems

defined on Lie groups.

Theorem 4.2 ( [38]). For a left invariant optimal control problem defined by

(4.5) and (4.6), along the optimal state and optimal control go(t), uo(t), there exists

a nontrivial adjoint curve λo(t) ∈ L∗ such that the following equations hold:

H(go(t), λo(t), uo(t)) ≤ H(go(t), λo(t), u), ∀u ∈ U, (4.22)

and locally

dgo

dt
= TLgo(t)

(∂H
∂λ

)
, (4.23)

dλo

dt
= −(ad)∗∂H

∂λ

(λo(t)), (4.24)

where H(g, λ, u) := 〈λ, TLg−1f(g, u)〉.
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Proof. The proof is by employing (4.21) and applying the symplectic form σ

given by (4.20). A complete proof can be found in [38], Chapter 12, Theorem 1. �

For each η, ζ ∈ L we have the following definition

adζ : L → L, adζ(η) = [ζ, η]. (4.25)

For each ζ, η ∈ L, γ ∈ L∗, ad∗ is defined as

〈ad∗ζ(γ), η〉 := 〈γ, adζ(η)〉. (4.26)

For more information about the definition above see [2, 82]. It should be noted

that, in general, for a Hamiltonian function defined on G× L∗, the integral curve of

the Hamiltonian vector field, i.e. (4.23) and (4.24), satisfies the following equations

(see [38]):

dg

dt
= TLg(t)

(∂H
∂λ

)
, (4.27)

dλ

dt
= −T ∗Lg(t)

(∂H
∂g

)
− (ad)∗∂H

∂λ

(λ(t)). (4.28)

In our framework since the Hamiltonian function is g invariant then T ∗Lg(t)
(
∂H
∂g

)
does not appear in the statement of Theorem 4.2. Since the tangent space of T ∗G is

identified with L × L∗, by the definition of the Hamiltonian H : G × L∗ → R, it is

noted that ∂H
∂λ
∈ L∗∗ = L and ∂H

∂g
∈ T ∗gG.

4.3. Hybrid Systems on Lie Groups

The definition of hybrid systems on Lie groups is similar to that of hybrid systems

given in Definition 2.1 for which the ambient manifoldM is replaced by a Lie group

G. Here we only consider a hybrid system consisting of two different phases with the

associated left invariant vector fields f1, f2 as follows:

ġ(t) = f1(g(t), u(t)), ġ(t) = f2(g(t), u(t)), u(t) ∈ U . (4.29)
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The switching manifold N associated to the autonomous phase change is considered

to be a submanifold of G which is by definition a regular Lie subgroup. The hybrid

cost function is defined as

J =
1∑
i=0

∫ ti+1

ti

lqi(gqi+1
(s), u(s))ds+ h(gqL(tf )), u ∈ U , (4.30)

where li, i = 1, 2 are left invariant smooth functions on G. The hybrid optimal control

problem is to find the optimal switching state gos ∈ N , optimal switching time ts ∈ R

and the associated optimal controls uo1 and uo2 in order to minimize the hybrid cost

defined by (4.30). Here we assume the state variable for both dynamics evolve on

the same Lie group G. Similar to the proof in [75], we apply the needle control

variation in two different parts. First, the control needle variation is applied after

the optimal switching time so there is no state propagation along the state trajectory

through the switching manifold. Second, the control needle variation is applied before

the optimal switching time. In this case there exists a state variation propagation

through the switching manifold, see [66], [73]. With the assumption of accessibility of

ġ(t) = fq1(g(t), u(t)), for a hybrid system with one autonomous switching, we define

the hybrid value function v(g, t) same as the definition given in Chapter 2.

v(g, t) = infu∈UJ(t0, tf , h0, u), g ∈ G, t ∈ R, (4.31)

where g(t, t0, g0) = g ∈ G. We use the value function v to explain the discontinuity

of the adjoint process appears in the statement of the Hybrid Minimum Principle in

the next sections.

4.4. Non-Interior Optimal Switching States

In general the hybrid value function for a Mayer type problem attains its minimum

on the boundary of the attainable switching states on the switching manifold hence

is not differentiable. In this case the discontinuity of the adjoint process in the HMP

statement is given based on a normal vector at the switching time on the switching

manifold. In order to have a normal vector N the switching manifold we need to
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define a Riemannian metric on G. A left invariant Riemannian metric G on (G, ?) is

defined as follows:

G(g)(X, Y ) = G(h ? g)(TLh(X), TLh(Y )), (4.32)

where X, Y ∈ TgG. An inner product I on L is given by I : L × L → R. Then the

following theorem gives a Riemannian metric on G with respect to the inner product

I defined on L.

Lemma 4.2. ( [19]) The inner product I on L determines a smooth left invariant

Riemannian metric G on G as follows:

G(g)(X, Y ) = I(TLg−1X,TLg−1Y ), (4.33)

where X, Y ∈ TgG. �

It is also shown that a left invariant Riemannian metric G on G determines an

inner product I via left translation operation, see [19], Theorem 5.38. A normal

vector N at the switching state g(ts) on N satisfies

G(g)(N, Y ) = 0, ∀Y ∈ Tg(ts)N ⊂ Tg(ts)G, (4.34)

where by Lemma 4.2 we have I(TLg−1N, TLg−1Y ) = 0. By the linear property of the

inner product I on the vector space L we can defined the following one form

DgN : L → R, DgN = I(TLg−1N, .) ∈ L∗. (4.35)

The following lemma shows that the one form Gg(N, .) is the pullback of I(TLg−1N, .)

under the map TLg−1 .

Lemma 4.3. For a Lie group (G, ?) associated with an inner product I on L we

have

∀g ∈ G, G(g)(N, .) = T ∗Lg−1DgN ∈ T ∗gG, (4.36)
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Proof. We show ∀X ∈ TgG, G(g)(N,X) = 〈T ∗Lg−1DgN,X〉. As is obvious

TLg−1 : TgG→ L therefore

〈T ∗Lg−1DgN,X〉 = 〈T ∗Lg−1I(TLg−1N, .), X〉, (4.37)

By the definition of pullbacks, see [41], we have

〈T ∗Lg−1I(TLg−1N, .), X〉 =

〈I(TLg−1N, .), TLg−1X〉 =

I(TLg−1N, TLg−1X) = G(g)(N,X), (4.38)

where the second equality comes from the definition of I. �

The following theorem gives the HMP statement for hybrid systems defined on

Lie groups in the case of non-differentiability of the value function.

Theorem 4.3. Consider a hybrid system satisfying the hypotheses presented in

A1, A2, A3 (presented in Chapter 2) on a Lie group G and an embedded switching

submanifold N ⊂ G with an associated inner product I : L × L → R. Then corre-

sponding to the optimal control and optimal state trajectory uo(t), go(t), there exists

a nontrivial λo ∈ L∗ along the optimal state trajectory such that:

Hqi(g
o(t), λo(t), uo(t)) ≤ Hqi(g

o(t), λo(t), u1), ∀u1 ∈ U, t ∈ [t0, tf ], i = 1, 2, (4.39)

and at the optimal switching state and switching time go(ts), ts we have

λ(t−os ) = λ(t+os ) + µI(TLgo−1 (ts)
N, .) ∈ L∗. (4.40)

and the continuity of the Hamiltonian is given as follows:

Hq1(g
o(t−s ), λo(t−s ), uo(t−s )) = Hq2(g

o(ts), λ
o(ts), u

o(ts)). (4.41)
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The optimal adjoint variable λo satisfies

dgo

dt
= TLgo(t)

(∂Hqi

∂λ

)
,

dλo

dt
= −(ad)∗∂Hqi

∂λ

(λo(t)), t ∈ [ti, ti+1), qi ∈ Q, (4.42)

where

Hqi(g, λ, u) := 〈λ, TLg−1fqi(g, u)〉. (4.43)

�

It should be noted that in the case which the normal vector is not uniquely given,

the discontinuity of the adjoint process is given by

λo(t−s )− λo(ts)) ∈ T ∗Lgo(ts)(T ∗
⊥

g0(t−s )
N ), (4.44)

where

T ∗
⊥

g N := {α ∈ T ∗gG, s.t. ∀X ∈ TgN , 〈α,X〉 = 0}. (4.45)

In order to prove Theorem 4.5, we employ the notion of control needle variation

which has been used in the optimal control literature, see [3,6,41].

4.4.1. Control Needle Variation. Similar to the control needle variation

introduced in the proof of the Hybrid Maximum Principle in [66], we introduce the

following control needle variation for a left invariant control system.

uπ(t1, ε) =

 u1 t1 − ε ≤ t ≤ t1

uo(t) elsewhere
, (4.46)

where u1 ∈ U . Let us denote the state flow of the left invariant control system

ġ(t) = f(g, u) as g(t) = g(t, s, g0) where s is the initial time and g0 is the initial state.

Due to the needle variation, the perturbed control system is given by

ġ(π,ε)(t) = f(g(π,ε)(t), uπ(t)), t ∈ [t0, tf ]. (4.47)
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The following theorem gives the state variation of a left invariant control system with

respect to a control needle variation.

Lemma 4.4. For a Lebesgue time t1, the curve

g
(t,s),g
π,f (ε) : [0, τ ] → G is differentiable at ε = 0 and the corresponding tangent vector

d
dε
g

(t1,s),g
π,f |ε=0 is

d

dε
g

(t1,s),g
π,f |ε=0 = TLg(t1)

(
f(e, u1)− f(e, uo(t1))

)
. (4.48)

Proof. The proof is based on the left invariance property of f . As is shown by

Lemma 2.3 the state variation with respect to the control needle variation is given by

f(g(t1), u1)− f(g(t1), uo(t1)) = TLg(t1)

(
f(e, u1)− f(e, uo(t1))

)
, (4.49)

which completes the proof �

The following lemma gives the state variation at an arbitrary time t, where t1 < t,

for a non-hybrid left invariant control system.

Lemma 4.5. Let g(π,ε)(t) : [t0, tf ]→ G be a solution of ġ(π,ε)(t) = f(g(π,ε)(t), uπ(t))

then for t1 < t ≤ tf

d

dε
g

(t,t1),x
π,f |ε=0 = TRexp((t−t1)f(e,uo)) ◦

TLg(t1)

(
f(e, u1)− f(e, uo(t1)) ∈ Tg(t)G, (4.50)

where TRexp((t−t1)f(e,uo)) is the push forward of the right translation Rexp((t−t1)f(e,uo))

at g(t1).

Proof. As is shown in [6] for a given control system on a differentiable manifold

M, the state variation at time t where t1 < t is given as follows:

d

dε
Φ

(t,t1),x
π,fq

|ε=0 = TΦ
(t,t1)
fq

([fq(x(t1), u1)− fq(x(t1), u(t1))]) ∈ Tx(t)M, (4.51)

where Φ
(t,t1),x
π,fq

is the flow initiates form x and corresponds to the control uπ, see [6].

The push-forward of Φ
(t,t1),x
fq

, i.e. TΦ
(t,t1)
fq

is computed along the nominal control u(t)
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and is evaluated at x(t1). For a left invariant control system evolving on G, based on

Definition 4.5 and Theorem 4.1 we have

g(π,ε)(t) = g0 ◦ exp(tf(e, uπ)) = g0 ◦ exp((t1)f(e, uπ) + (t− t1)f(e, uπ)). (4.52)

Since uπ(t) = uo(t), t ∈ [t1, tf ], by the one parameter subgroup property of exp

(see [82]) we have

g(π,ε)(t) = g(π,ε)(t
1) ◦ exp((t− t1)f(e, uo)), t1 < t ≤ tf . (4.53)

Therefore, by evaluating the push forward of composition maps, we have

d

dε
g

(t,t1),x
π,f |ε=0 = TRexp((t−t1)f(e,uo))

( d
dε
g

(t1,s),g
π,f |ε=0

)
, (4.54)

which together with Lemma 4.4 and (4.49) yields the statement. �

We analyze the HOCP with the cost defined in (4.29) and (4.30) by defining a

differential form of the penalty function h(.) which is differentiable by the hypotheses.

Let us denote

dh :=
∂h

∂g
∈ T ∗gG. (4.55)

In order to use the method introduced in [3, 6, 41], we prove the following lemma

using the optimal control uo(.) and the associated final state go(tf ). We denote ts(ε)

as the associated switching time corresponding to uπ(t, ε) which is assumed to be

differentiable with respect to ε for all u ∈ U .

Lemma 4.6. For a Hybrid Optimal Control Problem (HOCP) defined on a Lie

group G, at the optimal final state of the trajectory go(t) we have

〈I−1
go(tf )

(
dh(go(tf ))

)
, TLgo−1 (tf )

(
vπ(tf )

)
〉 ≥ 0,∀vπ(tf ) ∈ Ktf , (4.56)
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where

K1
tf

=
⋃

ts≤t<tf

⋃
u1∈U

TRexp((tf−t)f(e,uo))

◦TLg(t)
(
f(e, u1)− f(e, uo(t))

)
⊂ Tg(tf )G, t ∈ [ts, tf ],

(4.57)

and

K2
tf

=
⋃

t0≤t<ts

⋃
u1∈U

TRexp((tf−ts)f2(e,uo)) ◦

TRexp((ts−t)f1(e,uo)) ◦ TLg(t)
(
f(e, u1)− f(e, uo(t))

)
+
dts(ε)

dε
|ε=0TRexp((tf−ts)f2(e,uo)) ◦

TLg(ts)
(
fq2(e, u

o(ts))− fq1(e, uo(ts))
)

⊂ Tg(tf )G, t ∈ [t0, ts), (4.58)

and

Ktf = K1
tf

⋃
K2
tf
. (4.59)

Proof. Based on the definition of pull backs (see [2,19]), we have

〈I−1
go(tf )

(
dh(go(tf ))

)
, TLgo−1 (tf )

(
vπ(tf )

)
〉 =

〈T ∗Lgo(tf ) ◦ I−1
go(tf )

(
dh(go(tf ))

)
, vπ(tf )

〉
, (4.60)

and since by the definition Ig = T ∗Lg−1 , then

〈I−1
go(tf )

(
dh(go(tf ))

)
, TLgo−1 (tf )

(
vπ(tf )

)
〉 = 〈dh(go(tf )), vπ(tf )〉. (4.61)

As shown in [73, 75], 〈dh(go(tf )), vπ(tf )〉 ≥ 0 for all vπ(tf ) ∈ Ktf . The set Ktf , as

is constructed above, contains all the possible final state variation of go(tf ) ∈ G,

therefore the statement follows. �
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The following lemma gives the relation between G(go(ts))(N, .)) ∈ T ∗go(ts)G and

any tangent vector X ∈ Tgo(ts)N ⊂ Tgo(ts)G.

Lemma 4.7. Consider an autonomous HOCP consisting of two different regimes

separated by a k dimensional embedded switching manifold N ⊂ G; then at the optimal

switching state go(ts) ∈ N and switching time ts we have

〈I−1
go(ts)

(
G(go(ts))(N, .)

)
, TLgo−1 (ts)

X〉 = 0,∀X ∈ Tgo(ts)N . (4.62)

Proof. The proof is same as the proof given in [75] since

〈I−1
go(ts)

(
G(go(ts))(N, .)

)
, TLgo−1 (ts)

X〉 = G(go(ts))(N,X) = 0. (4.63)

�

Here we give the proof for the HMP theorem on G.

Proof. Step 1 : First consider ts < t1 where the needle variation is applied at

time t1. As shown in [75], we have

0 ≤ 〈dh, vπ(tf )〉, ∀vπ ∈ Ktf , (4.64)

where dh ∈ T ∗g(tf )G. As mentioned before the cotangent bundle of the Lie group is

identified by G× L therefore

I−1
g(tf )(dh) ∈ L∗. (4.65)

By employing (4.64), we have

0 ≤ 〈I−1
g(tf )(dh), TLg−1(tf ) ◦ TRexp((tf−t1)f(e,uo)) ◦

TLg(t1)

(
f(e, u1)− f(e, uo(t1))〉. (4.66)

The flow of the left invariant system on G implies

g(tf ) = Lg(t)exp((tf − t)f(e, u)), (4.67)
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then by the vector space properties of L and one parameter subgroups property of

exp we have

g(t) = Lg(tf )exp(−(tf − t)f(e, u)), (4.68)

which finally gives

0 ≤ 〈T ∗Lg(t1) ◦ T ∗Rexp((tf−t1)f(e,u))(dh), f(e, u1)− f(e, uo(t1))〉. (4.69)

Therefore ∀u ∈ U

〈T ∗Lg(t1) ◦ T ∗Rexp((tf−t1)f(e,u))(dh), f(e, uo(t1))〉 ≤

〈T ∗Lg(t1) ◦ T ∗Rexp((tf−t1)f(e,u))(dh), f(e, u1)〉,

(4.70)

and

T ∗Lg(t1) ◦ T ∗Rexp((tf−t1)f(e,u))(dh) ∈ L∗. (4.71)

The adjoint variable is then defined as

λ(t) = T ∗Lg(t) ◦ T ∗Rexp((tf−t)f(e,u))(dh) ∈ L∗, ts ≤ t ≤ tf . (4.72)

Step 2 : Second consider t0 ≤ t1 < ts where t1 is the needle variation time. Similar

to the approach in [75] we introduce the value v(gs, ts) function with respect to the

switching state and switching time (gs, ts), gs ∈ G, ts ∈ R. For a given switching time

t, the differential form of the value function is then given by dv(g, t) ∈ T ∗gG. In the

case for which ts(ε) < ts = tos we have (see Lemma 2.6)

dg
(ts(ε),t1),g(t1))
π,f1

dε
|ε=0 = (

dts(ε)

dε
|ε=0)

×TLg(ts)
(
f1(e, uo(ts))

)
+TRexp(ts−t1)f1(e,uo) ◦ TLg(t1)

(
f1(e, u)− f1(e, uo(t1))

)
⊂ Tg(ts)G. (4.73)
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Note that the differentiability of ts(ε) with respect to ε is shown in Lemma 2.5 for

hybrid systems on Riemannian manifolds.

And for the case in which ts < ts(ε) we have

dg
(ts(ε),t1),g(t1))
π,f1

dε
|ε=0 = −(

dts(ε)

dε
|ε=0)TLg(ts)

(
f1(e, uo(ts))

)
+TRexp(ts−t1)f1(e,uo) ◦ TLg(t1)

(
f1(e, u)− f1(e, uo(t1))

)
⊂ Tg(ts)G. (4.74)

Equation (4.62) together with Lemma 4.5 implies that

dts(ε)

dε
|ε=0 = −〈I−1

g(ts)

(
G(g(ts))(N, .)

)
, f1(e, uo(ts))〉−1

+〈T ∗Lg(t1) ◦ T ∗Rexp((ts−t1)f(e,u))

(
G(g(ts))(N, .)

)
,

f1(e, u1)− f1(e, uo(t1))〉,

(4.75)

since g
(ts(.),t1,g(t1))
π,f1

: [0, ε] → N and
dg

(ts(ε),t
1),g(t1))

π,f1

dε
|ε=0 ∈ Tg(ts)N ⊂ Tg(ts)G. In the

second case

dts(ε)

dε
|ε=0 = 〈I−1

g(ts)

(
G(g(ts))(N, .)

)
, f1(e, uo(ts))〉−1 ×

〈T ∗Lg(t1) ◦ T ∗Rexp((ts−t1)f(e,u))

(
G(g(ts))(N, .)

)
, f1(e, u1)− f1(e, uo(t1))〉.

(4.76)

In order to obtain the state variation at ts in the case (ii) we use the push-forward of

the combination of the flows before and after ts as follows:

dg
(ts,ts(ε))
π,f2

◦ g(ts(ε),t1,g(t1))
π,f1

dε
|ε=0 = TRexp(ts−t1)f1(e,uo)

◦TLg(t1)

(
f1(e, u1)− f1(e, uo(t1))

)
+
dts(ε)

dε
|ε=0TLg(ts)

(
f1(e, uo(t1))− f2(e, uo(t1))

)
∈ Tg(ts)G, (4.77)
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and for case (i)

dg
(ts(ε),ts)
π,f2

◦ g(ts,t1,g(t1))
π,f1

dε
|ε=0 = TRexp(ts−t1)f1(e,uo)

◦TLg(t1)

(
f1(e, u1)− f1(e, uo(t1))

)
+
dts(ε)

dε
|ε=0

×TLg(ts)
(
f2(e, uo(t1))− f1(e, uo(t1))

)
∈ Tg(ts)G. (4.78)

The final state variation at the final time tf is now given as follows:

dg
(tf ,t

1,g(t1))

π,f2
(ε)

dε
|ε=0 = TRexp(tf−ts)f2(e,uo)

dg
(ts(ε),ts)
π,f2

◦ g(ts,t1,g(t1))
π,f1

dε
|ε=0. (4.79)

Therefore

0 ≤ 〈dh(go(tf )), TRexp(tf−ts)f2(e,uo)

×
[dts(ε)
dε
|ε=0TLg(ts)

(
f2(e, uo(ts))− f1(e, uo(ts))

)
+TRexp(ts−t1)f1(e,uo) ◦ TLg(t1)

(
f1(e, u1)− f1(e, uo(t1))

)]
〉 , (4.80)

Hence

0 ≤ 〈dh(go(tf )), TRexp(tf−ts)f2(e,uo)

×
[
− 〈I−1

g(ts)

(
G(g(ts))(N, .)

)
, f1(e, uo(ts))〉−1

×〈T ∗Lg(t1) ◦ T ∗Rexp((ts−t1)f(e,u))

(
G(g(ts))(N, .)

)
,

f1(e, u1)− f1(e, uo(t1))〉

×TLg(ts)
(
f2(e, uo(ts))− f1(e, uo(ts))

)
+TRexp(ts−t1)f1(e,uo) ◦ TLg(t1)

(
f1(e, u1)− f1(e, uo(t1))

)]
〉 ,

(4.81)
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equivalently

0 ≤ −〈I−1
g(ts)

(
G(g(ts))(N, .)

)
, f1(e, uo(ts))〉−1

×〈T ∗Lg(t1) ◦ T ∗Rexp((ts−t1)f(e,u))

(
G(g(ts))(N, .)

)
,

f1(e, u1)− f1(e, uo(t1))〉

×〈dh(go(tf )), TRexp(tf−ts)f2(e,uo) ◦ TLg(ts)(
f2(e, uo(ts))− f1(e, uo(ts))

)
〉

+〈dh(go(tf )), TRexp(tf−ts)f2(e,uo)

◦TRexp(ts−t1)f1(e,uo) ◦ TLg(t1)

(
f1(e, u1)− f1(e, uo(t1))

)
〉,

(4.82)

Let us denote µ by

µ = −〈I−1
g(ts)

big(G(g(ts))(N, .)
)
, f1(e, uo(ts))〉−1

〈dh(go(tf )), TRexp(tf−ts)f2(e,uo)TLg(ts)
(
f2(e, uo(ts))− f1(e, uo(ts))

)
〉,

(4.83)

therefore

0 ≤ 〈dh(go(tf )), TRexp(tf−ts)f2(e,uo)

◦TRexp(ts−t1)f1(e,uo) ◦ TLg(t1)

(
f1(e, u1)− f1(e, uo(t1))

)
〉+ µ〈T ∗Lg(t1)

◦T ∗Rexp((ts−t1)f(e,u))

(
G(g(ts))(N, .)

)
, f1(e, u1)− f1(e, uo(t1))〉. (4.84)

Similar to step 1 we have

〈dh(go(tf )), TRexp(tf−ts)f2(e,uo) ◦ TRexp(ts−t1)f1(e,uo) ◦ TLg(t1)(
f1(e, u1)− f1(e, uo(t1))

)
〉 = 〈T ∗Lg(t1) ◦ T ∗Rexp(ts−t1)f1(e,uo)

◦T ∗Rexp(tf−ts)f2(e,uo)

(
dh(go(tf ))

)
,
(
f1(e, u1)− f1(e, uo(t1))

)
〉, (4.85)
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Combining (4.84) and (4.85) we have

0 ≤ 〈T ∗Lg(t1) ◦ T ∗Rexp(ts−t1)f1(e,uo) ◦ T ∗Rexp(tf−ts)f2(e,uo)

(
dh(go(tf ))

)
,(

f1(e, u1)− f1(e, uo(t1))
)
〉+ µ〈T ∗Lg(t1)

◦T ∗Rexp((ts−t1)f(e,u))

(
G(g(ts))(N, .)

)
, f1(e, u1)− f1(e, uo(t1))〉. (4.86)

The adjoint process λ is defined as follows:

λ(t) = T ∗Lg(t) ◦ T ∗Rexp(ts−t)f1(e,uo)

◦T ∗Rexp(tf−ts)f2(e,uo)

(
dh(go(tf ))

)
+ µT ∗Lg(t) ◦ T ∗Rexp((ts−t)f(e,u))

(
G(g(ts))(N, .)

)
.

(4.87)

At time t = ts we have

λ(t−os ) = λ(t+os ) + µT ∗Lg(ts)(G(g(ts))(N, .)) ∈ L∗. (4.88)

It only remains to show

dg

dt
= TLg(t)

(∂Hqi

∂λ

)
,

dλ

dt
= −(ad)∗∂Hqi

∂λ

(λ(t)), t ∈ [ti, ti+1), qi ∈ Q. (4.89)

The first part of (4.89) is obvious by the definition of Hqi := 〈λ, TLg−1(t)fqi(g(t), u)〉,

since fqi is left invariant and dg
dt

= TLg(t) ◦ TLg−1(t)fqi(g(t), u) = fqi(g(t), u).

Step 3 : In order to invoke results from [38], it is sufficient to show that for the

constructed adjoint variable λ(.), we have λ(t) = Ad∗g(t)(λ(0)) where Ad∗ is defined

below. For a given g ∈ G we define the conjugate map Ig : G → G as follows

(see [2,19]):

Ig(h) = g ? h ? g−1. (4.90)

The adjoint map Adg : L → L is defined by

Adg = TIg = TLg ◦ TRg−1 , (4.91)
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where the dual of the adjoint map Ad∗g is calculated as Ad∗g = T ∗Lg ◦ T ∗Rg−1 . As is

obtained in the step 1, λ(t) = −T ∗Lg(t) ◦T ∗Rexp((tf−t)f(e,u))(dh) ∈ L∗, then in order to

show the second claim of (4.89), it is enough to show that λ(t) = Ad∗g(t)(λ(0)) where

without loss of generality we set ts = 0 and λ(0) = λ(ts). Therefore we should show

T ∗Lg(t) ◦ T ∗Rexp((tf−t)f(e,u))(dh) =

T ∗Lg(t) ◦ T ∗Rg−1(t) ◦ T ∗Lg(0) ◦ T ∗Rexp((tf )f(e,u))(dh).

(4.92)

Employing the group operation we have

g(tf ) = g(0) ? exp(tff2(e, uo)) = g(0) ? g(t) ? g−1(t) ? exp(tff2(e, uo)), (4.93)

and also

g(tf ) = g(t) ? exp((tf − t)f2(e, uo)), (4.94)

then

Rexp((tf−t)f2(e,uo))(g(t)) = Rexp(tff2(e,uo)) ◦ Lg(0) ◦Rg−1(t)(g(t)), ∀g(t) ∈ G,

(4.95)

which implies

T ∗Rexp((tf−t)f2(e,uo)) = T ∗Rg−1(t) ◦ T ∗Lg(0) ◦ T ∗g(0)Rexp(tff2(e,uo)), (4.96)

which shows (4.92). As is shown in [38], λ(t) = Ad∗g(t)(λ(0)) implies

dλ

dt
= −ad∗dg

dt

(λ(t)) = −ad∗∂Hi
∂λ

(λ(t)), (4.97)

and completes the proof. Same argument holds for λ(t), t0 ≤ t < ts. �

4.4.2. Interior Optimal Switching State. Here we specify a hypothesis

for MHOCP which expresses the HMP statement based on a differential form of the

hybrid value function.
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A5 : For an MHOCP, the value function v(g, t), g ∈ G, t ∈ (t0, tf ), is assumed

to be differentiable at the optimal switching state go(t−s ) in the switching manifold

N , where the optimal switching state is an interior point of the attainable switching

states on the switching manifold.

We note that A5 rules out MHOCPs derived from BHOCPs. The following the-

orem gives the HMP statement for an accessible MHOCP satisfying A5 .

Theorem 4.4. Consider a hybrid system satisfying the hypotheses presented in

A1, A2, A3, A5 on a Lie group G and an embedded switching submanifold N ⊂ G.

Then corresponding to the optimal control and optimal state trajectory uo(t), go(t),

there exists a nontrivial λo ∈ L∗ along the optimal state trajectory such that:

Hqi(g
o(t), λo(t), uo(t)) ≤ Hqi(g

o(t), λo(t), u1),

∀u1 ∈ U, t ∈ [t0, tf ], i = 1, 2, (4.98)

and at the optimal switching state and switching time go(ts), ts we have

λ(t−os ) = λ(t+os ) + µT ∗Lg(ts)(dv(gos , ts)) ∈ L∗. (4.99)

and the continuity of the Hamiltonian is given as follows

Hqi(g
o(t−s ), λo(t−s ), uo(t−s )) = Hqi+1

(go(ts), λ
o(ts), u

o(ts)). (4.100)

The adjoint variable λ satisfies

dg

dt
= TLg(t)

(∂Hqi

∂λ

)
,

dλ

dt
= −(ad)∗∂Hqi

∂λ

(λ(t)), t ∈ [ti, ti+1), qi ∈ Q, (4.101)

where

Hqi(g, λ, u) := 〈λ, TLg−1fqi(g, u)〉, (4.102)
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and

dv(go(t−s ), ts) =
∂v(gos , t

−
s )

∂g
∈ T ∗

go(t−s )
G. (4.103)

�

Proof. The proof is a repetition of the proof of Theorem 4.5 where G(g)(N, .)

is replaced by dv(g, t) where G is the Riemannian metric associated with the inner

product I, see Lemma 4.2. As shown in Theorem 4.3, the adjoint process discontinuity

is given by

λ(t−s ) = λ(ts) + µT ∗Lg(ts)dv(g(ts), ts). (4.104)

�

4.5. Exp-Gradient HMP Algorithm

In this section we introduce an algorithm which is based upon the HMP algorithm

first introduced in [66] and then extended on Riemannian manifolds in [77]. The

algorithm presented in [77] is an extension of the Steepest decent algorithm along

the geodesics on Riemannian manifolds. As known (see [37]), geodesics are defined

as length minimizing curves on Riemannian manifolds. The solution of the Euler-

Lagrange variational problem associated with the length minimizing problem shows

that all the geodesics on M connecting γ(a), γ(b) ∈ M must satisfy the following

system of ordinary differential equations:

ẍi(s) +
n∑

j,k=1

Γij,kẋj(s)ẋk(s) = 0, i = 1, ..., n, (4.105)

where

Γij,k =
1

2

n∑
l=1

gil(gMjl,k + gMkl,j − gMjk,l), gMjl,k =
∂

∂xk
gMjl ,

(4.106)
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where gM is the Riemannain metric corresponding to M and all the indices i, j, k

here run from 1 up to n = dim(M) and [gij] = [gMij ]−1.

In order to introduce the gradient of the value function on a Lie group G we

employ the notion of inner product on a finite dimensional Lie algebra L defined in

Section 4.4. For a given value function v : G→ R on a Lie group G we have

dv|g :=
∂v

∂g
∈ T ∗gG. (4.107)

The gradient of v, i.e. ∇v, is defined as

〈dv,Xg〉 = G(g)(∇v,Xg), ∀Xg ∈ TgG, (4.108)

which can be written as

〈dv,Xg〉 = 〈dv, TLgX〉 = 〈T ∗Lgdv,X〉

= I(TLg−1∇v, TLg−1Xg), ∀Xg ∈ TgG.

(4.109)

We call TLg−1∇v the projected gradient of v on L. Similar to the geodesic gradient

flow defined on Riemannian manifold M in [77], we introduce Exp-Gradient Flow

on Lie groups as follows:

Definition 4.4. (Exp-Gradient Flow) Let θ0 = 0, and g(θ0) = g0 ∈ G, then for

all 0 ≤ k and all gk such that TLgk−1∇v(gk) 6= 0, define

γgk(θ) = g(θ) = gk ? exp(−θTLgk−1∇v(gk)),

θ ∈ [θk, θk+1), g(θ) ∈ G, (4.110)

where

θk+1 = sup
s
{s; dv(g(t))

dt
≤ 0, t ∈ [θk, s), s ∈ [θk, θk + 1)}. (4.111)

�
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Over the interval of existence [0, ω) we denote the total flow induced by (4.110))

as

ϕ(θ, g0) = Πn
i=1ψi(θ

i−1, θi, gi−1) ◦ ψn(θn, θ, gn), (4.112)

where

ψi(θ
i−1, θi, gi−1) = γgi−1(θi − θi−1), γg0(θ

1 − θ0) = γg0(θ
1), θ0 = 0, (4.113)

θi− θi−1 is the elapsed time between the switching times θi, θi−1 to the next iteration

and n is the index number of the last switching before the instant θ. By the continuity

of geodesic flows {ψi, 1 ≤ i < ∞}, ϕ is a continuous map on [0, ω). In the notation

of topological dynamics, and in particular Lasalle Theory (see e.g. [20,60]), the limit

set of the initial state x0 is denoted as Ω(g0), where

y ∈ Ω(g0)⇒ ∃θn, n ≥ 1, s.t. limn→∞g(θn) = y,

(4.114)

when limn→∞(θn) = ω. Note the sequence {θn} is in general distinct from {θn}.

H1 : There exists 0 < b < ∞ such that the associated sublevel set Nb = {g ∈

M ; v(g) < b} is (i) open (ii) connected, (iii) contains a strict local minimum g∗ which

is the only local minimum in Nb, (iv) Nb has compact closure and (v) Ng∗ ⊂ Nb.

Without loss of generality, we assume Ng∗ ⊂ Nb−ε for some ε > 0, then by

selecting g0 ∈ Ng∗ ⊂ Nb−ε ⊂ Nb we prove ω =∞ by the following lemma:

Lemma 4.8. For an initial state g0 ∈ Ng∗, the existence interval of the flow

defined in (4.112) goes to ∞.

Proof. By H1 we have Ng∗ ⊂ Nb−ε. Choose 0 < θ < θ
′

then if θ is not a

switching time by the construction of φ, i.e. (4.111)

v(ϕ(θ
′
, g0)) ≤ v(ϕ(θ, g0)) ≤ v(g0) < b− ε < b. (4.115)
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We need to prove the statement above when θ is a switching time. The derivative

from the right of the flow ϕ which is the combination of the flows defined in (4.110)

at the switching state gk is given by

dv(gk(θ))

dθ
|θ=0 = 〈dv,−TLgkTLgk−1∇v〉

= −〈T ∗Lgkdv, TLgk−1∇v〉

= −I(TLgk−1∇v, TLgk−1∇v) < 0.

(4.116)

It follows by the construction of ϕ in 4.112, for all 0 < θ < θ
′
, that

v(ϕ(θ
′
, g0)) ≤ v(ϕ(θ, g0)) ≤ v(g0) < b− ε < b, (4.117)

and hence for Φ+ := {ϕ(θ, g0); 0 ≤ θ < ω}

Φ+ ⊂ N b−ε ⊂ Nb. (4.118)

So the flow ϕ is defined everywhere inNb−ε, whereNb has compact closure. Hence

for all g ∈ Nb−ε we have an extension of ϕ in Nb, therefore the maximum interval of

existence of ϕ(., g0) in Nb is infinite. �

Theorem 4.5. Subject to the hypothesis H1 on Nb and with an initial state g0

such that g0 ∈ Nb−ε ⊂ M , 0 < ε < b, either the Geodesic-Gradient flow, ϕ, reaches

an equilibrium after a finite number of switchings, or it satisfies

ϕ(θ, g0)→ Ω(g0) ⊂ v−1(c), c ∈ R, (4.119)

as θ →∞, for some c ∈ R, where

∀y ∈ Ω(g0),
dv(y)

dθ
|θ=0 = 0, (4.120)

and, furthermore, the switching sequence {g}∞0 = {g0, g1, · · · , } converges to the limit

point g∗ ∈ Ω(g0) ⊂ Nb, where g∗ is the unique element of Nb such that ∇γ
Mv(g∗) = 0.
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Proof. The first statement of the theorem is immediate by Definition 4.4. To

prove the second statement, similar to the proof of the Lasalle Theorem, we proceed

by showing that v(.) is constant on the set Ω(x0). The precompactness of Φ+ ((i):

Φ+ ⊂ N b (ii): there does not exist θi → ω, i → ∞, such that ϕ(θi, g
0) → ∂Nb, i.e.

Φ+
⋂
∂Nb = �), imply Ω(g0) 6= �, see [20]. By the definition of Ω(g0) we have

∀y ∈ Ω(g0)⇒ ∃θn, n ≥ 1, s.t, ϕ(θn, g
0)→ y, θn →∞, (4.121)

and since v(.) ∈ C1,

limn→∞v(g(θn)) = limn→∞v(ϕ(θn, g
0)) = v(y) =: c.

(4.122)

Now choose y
′ ∈ Ω(g0), y

′ 6= y, then by the existence of a convergent sequence g(θ
′
n)

to y
′

we have

∀ε > 0⇒ ∃n, ni, k s.t θn < θ
′

ni
< θn+k

c− ε < v(g(θn+k)) ≤ v(g(θ
′

ni
)) ≤ v(g(θn)) < c+ ε,

(4.123)

i.e. v(y
′
) = c, hence Ω(x0) ⊂ v−1(c). To prove stationarity, i.e. (4.120), we observe

that Ω(x0) is positive invariant under the flow ϕ, i.e.

ϕ(θ,Ω(g0)) ⊂ Ω(g0), θ > 0. (4.124)

This follows from the continuity of ϕ(., .), see [20]. Differentiability from the right

for all g ∈ ϕ(θ, g0), 0 < θ, implies

dv

dθ
|θ=0 = limθ→0+

v(ϕ(θ, y))− v(ϕ(0, y))

θ

= limθ→0+
c− c
θ

= 0, y ∈ Ω(g0),

(4.125)
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since ϕ(θ, y) ∈ Ω(g0) by (4.124) and v(Ω(g0)) = c by (4.123).

It remains to prove the statement for the sequence of the switching states {g}∞0 =

{g0, g1, · · · }. The switching sequence {g}∞0 consists of the switching points on ϕ(θ, g0)

which by (4.110) is an infinite sequence.

The precompactness of Φ+ with respect toNb implies the existence of a convergent

subsequence of {g}∞0 such that

limi→∞ϕ(θni , g
0) = g∗ ∈ Ω(g0),Ω(g0) ⊂ Φ+ ⊂ Nb−ε.

(4.126)

Since v ∈ C∞(Nb)

limi→∞∇v(ϕ(θni , g
0)) = ∇v(g∗), (4.127)

and

limi→∞
dv(ϕ(θni , g

0))

dθ
|θ=0 =

dv(g∗)

dθ
|θ=0. (4.128)

But since the state ϕ(θni , g
0)) is a switching state chosen from the switching sequence

{g}∞0 ,

dv(ϕ(θni , g
0))

dθ
|θ=0 = −I(TLϕ(θni ,g

0)−1∇v, TLϕ(θni ,g
0)−1∇v),

(4.129)

As is stated in (4.126), the limit point g∗ is an element of the limit set Ω(g0), therefore

by (4.125) we have

dv(g∗)

dθ
|θ=0 = 0. (4.130)

From (4.127)-(4.129) we have

0 =
dv(x∗)

dθ
|θ=0 = limi→∞

dv(ϕ(θni , x
0))

dθ
|θ=0

= limi→∞
(
− I(TLϕ(θni ,g

0)−1∇v, TLϕ(θni ,g
0)−1∇v)

)
. (4.131)
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Hence

∇v(g∗) = 0, (4.132)

or equivalently

dv|g∗ = 0. (4.133)

But by H1 , g∗ is the unique point in Nb−ε ⊂ Nb for which this holds, hence all

subsequences of {g}∞0 converge to g∗ = g∗ an hence so does the sequence. �

Definition 4.5. (Conceptual EG-HMP Algorithm)

Consider the hybrid system (4.29) with two phases and the performance function v(.).

Generate the Exp-Gradient flow, (4.110)-(4.112), on G with ∇v(g), g ∈ M ,

evaluated by (4.109).

Stopping rule: for a given 0 < β, if I(TLgk−1∇v, TLgk−1∇v) < β stop. �

Theorem 1. Assume H1 holds for Nb ⊂ G, for the HOCP with the perfor-

mance function v(.), then the EG-HMP with data (G, v, β) halts at gk(β)(β), where

either gk(β)(β) is a finite equilibrium point of the Geodesic-Gradient flow, and hence

∇v(gk(β)(β)) = 0 and gk(β)(β) = g∗, where g∗ is the unique point of Nb ⊂ G such that

||∇v(g∗)|| = 0, or gk(β)(β) is such that

gk(β)(β)→ g∗, k(β)→∞, as β → 0. (4.134)

Proof. The first statement is immediate by Definition 4.5. The second holds

since v(.) has a unique local minimum at g∗, and v(.) ∈ C1(Nb) with ∇v(g∗) = 0,

ρβ(g∗) : = sup
{
dG(g, g∗); I(TLg−1∇v, TLg−1∇v) < β, x ∈ G

}
,

(4.135)

where d(., .) is the geodesic distance on G, is such that ρβ(g∗) → 0 as β → 0, hence

gk(β)(β)→ g∗, as β → 0. �
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4.6. Satellite Example

In this section we give a conceptual example on SO(3) to clarify the notion of

left invariant hybrid systems optimal control.

As known SO(3) is the rotation group in R3 which is given by

SO(3) =
{
g ∈ GL(3)| g.gT = I, det(g) = 1

}
, (4.136)

where GL(n) is the set of nonsingular n×n matrices. The Lie algebra of SO(3) which

is denoted by so(3) is given by (see [82])

so(3) =
{
X ∈M(3)| X +XT = 0

}
, (4.137)

whereM(n) is the space of all n×nmatrices. The Lie group operation ? is given by the

matrix multiplication and consequently TLg2 is also given by the matrix multiplication

g2X, X ∈ Tg1G.

A left invariant dynamical system on SO(3) is given by

ġ(t) = gX, g(0) = g0, X ∈ so(3). (4.138)

The Lie algebra bilinear operator is defined as the commuter of matrices, i.e.

[X, Y ] = XY − Y X, X, Y ∈ so(3). (4.139)

The kinematic equations expressing the state trajectory g(.) for a satellite is given by

ġ(t) = g(t)X(t),
˙̂
X(t) + I−1(X̂(t)× IX̂(t)) = I−1τ(t),

g(t) ∈ SO(3), X(t) ∈ so(3), (4.140)

where .̂ : so(3) → R3 is an isomorphism, I is the inertia tensor and τ(t) ∈ R3 is the

input torque. For more details of the modelling above see [19], Page 281. The second

part of (4.140) is the controlled Euler-Poincare equation and (4.140) is the geodesic

equation on G in the presence of external forces, see [5,19].
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A controlled left invariant system on SO(3) is defined as

ġ(t) = g(t)


0 u1(t) u3(t)

−u1(t) 0 u2(t)

−u3(t) − u2(t) 0

 ,

g(t) ∈ SO(3), (u1, u2, u3) ∈ R3. (4.141)

The Lie algebra so(3) is spanned by e1 =


0 1 0

−1 0 0

0 0 0

 , e2 =


0 0 0

0 0 1

0 − 1 0

 , e3 =


0 0 1

0 0 0

−1 0 0

. One can check that

[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1. (4.142)

By the controllability results presented in [38] since all the Lie algebras generated by

(e1, e2), (e2, e3), (e1, e3) span the tangent space of the Lie group then all the systems

derived by each pair of controls are controllable. Here we define a hybrid system on

SO(3) as follows: The continuous dynamics are given by

ġ1(t) = g1(t)


0 u1(t) 0

−u1(t) 0 u2(t)

0 − u2(t) 0

 , t ∈ [t0, ts)

ġ2(t) = g2(t)


0 u1(t) u3(t)

−u1(t) 0 0

−u3(t) 0 0

 , t ∈ [ts, tf ]

g1(t), g2(t) ∈ SO(3), (u1, u2, u3) ∈ R3, (4.143)
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Figure 4.1. Hybrid State Trajectory Phase 1
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Figure 4.2. Hybrid State Trajectory Phase 2

where

J1 =
1

2

∫ ts

t0

u2
1(t) + u2

2(t)dt, J2 =
1

2

∫ ts

t0

u2
1(t) + u2

3(t)dt.

(4.144)

102



4.4.6 SATELLITE EXAMPLE

0 200 400 600 800 1000
1.5

1

0.5

0

0.5

1

1.5

Time Sample

1(t)

Figure 4.3. Hybrid Adjoint Trajectory Phase 1
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Figure 4.4. Hybrid Adjoint Trajectory Phase 2

The Hamiltonians corresponding to the left invariant dynamics are

H1(λ, u1, u2) = 〈λ, u1e1 + u2e2〉+
1

2
(u2

1 + u2
2), (4.145)

H2(λ, u1, u3) = 〈λ, u1e1 + u3e3〉+
1

2
(u2

1 + u2
3), (4.146)
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Figure 4.5. EX-HMP Convergence

where λ = λ1e
∗
1 + λ2e

∗
2 + λ3e

∗
3 and 〈e∗i , ej〉 = δi,j, i, j = 1, 2, 3. By the Minimum

Principle, the optimal controls are obtained as

u∗1(t) = −λ1(t), u∗2(t) = −λ2(t), t ∈ [t0, ts), (4.147)

u∗1(t) = −λ1(t), u∗3(t) = −λ3(t), t ∈ [ts, tf ]. (4.148)

We can put the elements X ∈ L into one to one correspondence with the vectors in R3

via the unique coefficients of the linear expansion of any X in terms of ei, i = 1, 2, 3,

i.e.

X =
3∑
i=1

αiei, X → (α1, α2, α3), (4.149)

which yields in particular ei → ei ∈ R3, i = 1, 2, 3.
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Using the identification above and by (4.142) we can identify the ad operators as

3× 3 matrices as follows:

ade1 =


0 0 0

0 0 − 1

0 1 0

 , ade2 =


0 0 1

0 0 0

−1 0 0

 , (4.150)

ade3 =


0 − 1 0

1 0 0

0 0 0

 , (4.151)

where for example

ade1(e2) =


0 0 0

0 0 − 1

0 1 0

×


0

1

0

 =


0

0

1

 = e3. (4.152)

We note that (4.152) and related expressions display the correspondence between the

operators adei and rotations around the ith axis in R3, i = 1, 2, 3.

Equations (4.145) and (4.146) together imply

∂H1

∂λ
= u1e1 + u2e2,

∂H2

∂λ
= u1e1 + u3e3, (4.153)

therefore

ad ∂H1
∂λ

= u1ade1 + u2ade2 =


0 0 u2

0 0 − u1

−u2 u1 0

 , ad ∂H2
∂λ

=


0 − u3 0

u3 0 − u1

0 u1 0

 . (4.154)
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Hence the differential equations corresponding to the adjoint variable λ are given by

λ̇1(t) = λ3(t)u∗2(t),

λ̇2(t) = −λ3(t)u∗1(t),

λ̇3(t) = −λ1(t)u∗2(t) + λ2(t)u∗1(t), t ∈ [t0, ts),

(4.155)

λ̇1(t) = −λ2(t)u∗3(t),

λ̇2(t) = λ1(t)u∗3(t)− λ3(t)u∗1(t),

λ̇3(t) = λ2(t)u∗1(t), t ∈ [ts, tf ].

(4.156)

Definition 4.6. For a finite dimensional Lie algebra so(3), we define the Killing

Form B as

B(X, Y ) = tr(adXadY ), X, Y ∈ so(3). (4.157)

�

The Killing Form is invariant in the sense that

B([X, Y ], Z) = B(X, [Y, Z]). (4.158)

Now corresponding to B we introduce an inner product IB on so(3) as

IB(X, Y ) = −tr(adXadY ). (4.159)

Lemma 4.2 implies that B induces a left invariant metric on G. By (4.150)-(4.151)

we have

IB =


2 0 0

0 2 0

0 0 2

 (4.160)
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By the realization above, T ∗Lgdv = λ1e
∗
1 + λ2e

∗
2 + λ3e

∗
3 ∈ so∗(3) implies that

TLg−1∇v =
λ1

2
e1 +

λ2

2
e2 +

λ3

2
e3 ∈ so(3). (4.161)

The algorithm initiates from t0 = 0, tf = 10, g0 =


0 0 1

0 − 1 0

1 0 0

, ts = 5.8s

and gs =


0 1 0

−1 0 0

0 0 1

 and gf =


1 0 0

0 1 0

0 0 1

. The algorithm converges to

gs =


0.3039 0.9574 − 0.1194

−0.3688 0.1508 − 0.9165

−0.8604 0.3156 0.3988

 and ts = 5.9733. The state trajectory and

adjoint variables are shown in Figures 4.1-4.4 and Figure 4.5 shows the convergence

of the Exp-HMP algorithm.
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5.5.1 PROBLEM FORMULATION

CHAPTER 5

The Geometry and Deformation of

Switching Manifolds

5.1. Problem Formulation

The hypotheses of Theorem 2.1 restrict attention to hybrid systems without con-

trolled discrete state switchings, that is to say, switching occurs if and only if the

state trajectory meets a switching manifold.

Now let us consider switching manifolds as structures defined by time and state

variables, as in the definition ofN = M , and in addition, depending upon a parameter

α ∈ Rm. Such a definition gives us the ability to parametrize families of manifold

configurations by changing α. It is assumed that any local equation description of

M , generically denoted by m(x, t, α) is such that m(x, t, α), x ∈ Rn, t ∈ R,α ∈ Rm,

depends C2-smoothly on its arguments. Similar to the method in [66], the optimal

cost variation is obtained here by perturbing the manifold parameter around the

nominal parameter. First consider the nominal manifold described locally by

mp,q(x, t, α) = 0, x ∈ Rn, α ∈ Rm, p, q ∈ Q (5.1)
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and the perturbed family by

mp,q(x, t, β) = 0, x ∈ Rn, β ∈ N (α) ⊂ Rm, (5.2)

where N (α) is an open neighbourhood of α. Changes in the nominal switching

manifold will generally result in deviations of the nominal hitting time and state of

the optimal trajectory on the switching manifold from those of the nominal manifold.

In this setting, the motivating problem of this work is to find values of α which

infimize the total α dependent value function

infα∈RmV (t0, tf , h0, α), x ∈ Rn, α ∈ Rm, (5.3)

where

V (t0, tf , h0, α) = inf
u∈U

J(t0, tf , h0, u, α),

(5.4)

which J(t0, tf , h0, u, α) denotes the cost function corresponding to the switching man-

ifold with parameter α.

A0: It is assumed that the discrete states (σ0, σ1) along the associated optimal tra-

jectories do not depend upon α as α varies in Rm. It is further assumed that the

minimizing values (xα(.), uα(.), tα), where tα, for (3.4) is unique. �

5.2. Definition of the Sensitivity Function

In this section we formulate the differentials of the state and adjoint variables with

respect to the switching time. Here for both the nominal and perturbed manifolds,

the controls are taken to be optimal. Let us write xα(.), xβ(.) for the optimal state

trajectories corresponding to the nominal and perturbed parameters respectively, and

let uα(.), uβ(.) be the associated optimal controls, i.e.

uα(.) = Argminu∈UJ(t0, tf , h0, u, α). (5.5)
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and similarly for uβ(.). Define the state and adjoint variables variations for the

nominal and perturbed manifold parameters as:

y(t) = lim
δtα→0

δx(t)

δtα
, t ∈ [0, tf ] (5.6)

z(t) = lim
δtα→0

δλ(t)

δtα
, t ∈ [0, tf ] (5.7)

where

δx(t) := xβ(t)− xα(t), δλ(t) := λβ(t)− λβ(t), δtα := tβ − tα. (5.8)

�

We note that in the definition above δtα → 0 does not necessarily imply β → α. The

following result deals with the restricted single switching case.

Theorem 5.1. Under the standing assumption, A0, and the hypotheses of The-

orem 2.1, consider a hybrid system possessing two modes:

ẋ1 = f1(x1(t), u1(t)), t ∈ [0, tα]. (5.9)

ẋ2 = f2(x2(t), u2(t)), t ∈ (tα, tf ], (5.10)

and for which the cost function is defined as

J(0, tf , h0, u, α) =

∫ tα

0

l1(x1(t), u1(t))dt+

∫ tf

tα
l2(x2(t), u2(t))dt+ h(x(tf ))

(5.11)

where tα is the switching time which is assumed to be unique.

Let the switching manifold be locally defined by m(x, t, α) = 0, x ∈ Rn, α ∈ Rm;

then for the nominal manifold parameter α, the optimal state and adjoint variable

variations with respect to the switching time are given by

y(t) =

∫ t

0

F1(x,λ)(y(τ), z(τ))dτ, t ∈ [0, tα), (5.12)
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y(t) =

∫ tα

0

F1(x,λ)(y(τ), z(τ))dτ +R1 +

∫ t

tα
F2(x,λ)(y(τ), z(τ))dτ, t ∈ [tα, tf ],

(5.13)

and by

z(t) =
∂2h

∂x2
y(tf ) +

∫ tf

tα
H2

2(x,λ)(y(τ), z(τ))dτ +

∫ tα

t

H2
1(x,λ)(y(τ), z(τ))dτ

+H̄(1,2)(x, λ) +
∂pα∇xm(xα, tα)

∂xα
(y(tα) + f1(x(tα), λα1 (tα)))

+
∂pα∇xm(xα, tα)

∂λ1

(z−(tα)− ∂H1

∂x
(xα(tα), λα1 (tα)))

+
∂pα∇xm(xα, tα)

∂λ2

(z+(tα)− ∂H2

∂x
(xα(tα), λα2 (tα)))

+
∂pα∇xm(xα, tα)

∂tα
, t ∈ [0, tα), (5.14)

z(t) =

∫ tf

t

H2
2(x,λ)(y(τ), z(τ))dτ +

∂2h

∂x2
(xα(tf ))y(tf ), t ∈ [tα, tf ],

(5.15)

where pα is the adjoint variable discontinuity parameter and

R1 = f1(xα(tα), λα1 (tα))− f2(xα(tα), λα2 (tα)), (5.16)

F1(x,λ)(y(t), z(t)) = ∇(x,λ)f1(xα(tα), λα1 (tα)).[y(t), z(t)]T , (5.17)

H̄(1,2)(x, λ) =
∂H1

∂x
(xα(tα), λα1 (tα))− ∂H2

∂x
(xα(tα), λα2 (tα)). (5.18)

H2
i(x,λ)(y(t), z(t)) =

∂∇(x,λ)Hi

∂x
(xα(t), λαi (t)).[y(t), z(t)]T , i = 1, 2. (5.19)

Proof. See Appendix B �
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5.3. Sensitivity of the Optimal Cost Functions

This section connects the previous formulation of z(.), y(.) to the variation of

the optimal hybrid cost (i.e. value function) with respect to manifold parameter

variation. Using (5.4) we define the new function Ṽ in order to study the variation

of value function; we set

Ṽ (t, t0, tf , h0) := infu∈U(

∫ t

0

l1(x(s), u(s))ds+

∫ tf

t

l2(x(s), u(s))ds+ h(x(tf )),

(5.20)

where t denotes the switching time from discrete state q = 1 to q = 2, but x(t) is not

assumed to lie on m(., ., α) = 0. By the uniqueness assumption on the minimizing tα

in A0, the switching time tα is

tα = t(α) = Argmin0≤t≤tf (Ṽ (t, t0, tf , h0); x(t) ∈ mp,q(x, t, α)), (5.21)

where in this chapter t(.) is assumed to be C1 with respect to α. Then the value

function corresponding to the manifold parameter α is

V (t0, tf , h0, α) = Ṽ (t, t0, tf , h0)|t=tα . (5.22)

So

V (t0, tf , h0, α) =

∫ tα

0

l1(xα(t), uα(t))dt+

∫ tf

tα
l2(xα(t), uα(t))dt+ h(xα(tf )),

(5.23)

and similarly for the manifold parameter β. Then we have the expression (5.24) below

based on y(.), z(.) for the optimal cost variation.

Theorem 5.2 ( [71]). Subject to A0 and the hypotheses of Theorem 2.1, the

optimal cost variation with respect to the switching time, tα of the hybrid system

113



CHAPTER 5. THE GEOMETRY AND DEFORMATION OF SWITCHING MANIFOLDS

(2.3)

∂Ṽ

∂t
|t=tα =

∫ tα

0

∂l1
∂x

((xα(t), λα(t))y(t) +
∂l1
∂λ

((xα(t), λα(t))z(t)dt

+(l1(xα(tα), λα(tα))− l2(xα(tα), λα(tα)))

+

∫ tf

tα

∂l2
∂x

((xα(t), λα(t))y(t) +
∂l2
∂λ

((xα(t), λα(t))z(t)dt

+
∂h

∂x
y(tf ), (5.24)

where li(x
α(.), λα(.)), i = 1, 2, is expressed as a function of optimal adjoint process

λα(.).

Proof. The proof parallels the proof of Theorem 5.1 by extending the hybrid

cost function along the nominal trajectory xα. �

We may now compute the optimal cost variation as a function of the switching

manifold parameter. The first step is to apply the chain rule to the value function

variation to obtain (see [71])

∂V

∂α
=
∂V

∂t
|t=tα

∂tα

∂α
(5.25)

where ∂V
∂t
|t=tα is the optimal cost derivative with respect to the switching time as

presented in (5.24) and the second term is the switching time derivative with respect

to the manifold parameter α. Taking derivatives of the nominal manifold equation

with respect to the manifold parameter α, we have

∂m(x, α, tα)

∂x

∂x

∂tα
∂tα

∂α
+
∂m(x, α, tα)

∂tα
∂tα

∂α
+
∂m(x, α, tα)

∂α
= 0 (5.26)

So

∂tα

∂α
= −(

∂m(x, α, tα)

∂x

∂x

∂tα
+
∂m(x, α, tα)

∂tα
)−1∂m(x, α, tα)

∂α
, (5.27)
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subject to the assumption that (∂m(x,α,tα)
∂x

∂x
∂tα

+ ∂m(x,α,tα)
∂tα

) is non zero and it is shown

that

∂x

∂tα
= y(tα) + f1(x(tα), u(tα)), 0 ≤ tα ≤ tf . (5.28)

We conclude that the value function variation with respect to the manifold parameter

perturbation is computable via (5.24),(5.25),(5.26),(5.27) and (5.28).

5.4. Example

Here we present an example in order to illustrate the results above. In the case

below, since analytic solutions are not available, the optimal switching time and state

for the nominal α are obtained numerically via the HMPC algorithm [66]. Consider

the hybrid system with two modes given by:

ẋ(t) = x(t) + u(t), t ∈ [0, tα), (5.29)

ẋ(t) = −x(t) + u(t), t ∈ [tα, 2], (5.30)

where the switching manifold is the following time varying structure:

m(x(t), α, t) = x− t− α = 0, t ∈ [0, 2] (5.31)

The cost function for the hybrid system is chosen to be

J(0, 2, h0, u) =
1

2

∫ tα

0

u2(t)dt+
1

2

∫ 2

tα
u2(t)dt, (5.32)

where L = 1 and h0 = (0, 1). Let us define the corresponding Hamiltonian function

in the first discrete state to be

H1(x(t), u(t), λ(t)) =
1

2
u2

1(t) + λ1(t)(x1(t) + u1(t)), t ∈ [0, tα). (5.33)

The optimal control is then given as the minimizer of the Hamiltonian function:

u∗(t) = Argminu∈UH(x∗(t), λ∗(t), u), t ∈ [0, tα), (5.34)
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and we get the following equation relating the optimal control and optimal adjoint

process

u∗1(t) + λ∗1(t) = 0, t ∈ [0, tα). (5.35)

The optimal state and optimal adjoint differential equations are

ẋ∗1(t) = x∗1(t)− λ∗(t), t ∈ [0, tα), (5.36)

λ̇∗1(t) = −λ∗1(t), t ∈ [0, tα). (5.37)

In the second discrete state the Hamiltonian function is

H2(x(t), u(t), λ(t)) =
1

2
u2

2(t) + λ2(t)(−x2(t) + u2(t)), t ∈ [tα, 2]. (5.38)

As in the first discrete state the optimal control is derived by minimizing the Hamil-

tonian function, giving

u∗2(t) + λ∗2(t) = 0, t ∈ [tα, 2], (5.39)

and the optimal state and adjoint differential equations are then

ẋ∗2(t) = −x∗2(t)− λ∗2(t), t ∈ [tα, 2], (5.40)

λ̇∗2(t) = λ∗2(t), t ∈ [tα, 2]. (5.41)

By taking derivative of y(.) and z(.), given by Theorem 5.1, with resect to time

we obtain

ẏ(t) = y(t)− z(t), t ∈ [0, tα), (5.42)

ẏ(t) = −y(t)− z(t), t ∈ [tα, 2], (5.43)
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Figure 5.1. Optimal Cost as a Function of Switching Time
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Figure 5.2. Optimal Cost as a Function of Manifold Parameter

ż(t) = −z(t), t ∈ [0, tα), (5.44)

ż(t) = z(t), t ∈ [tα, 2], (5.45)

y(0) = y(2) = 0. (5.46)
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Figure 5.3. Optimal Cost Derivative versus Switching Time
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Figure 5.4. Optimal Cost Derivative versus Manifold Parameter

For this numerical example we consider x(0) = 1, x(2) = 0; then for α = 0, for

instance, the HMP algorithm [66] yields the optimal switching time and state values

tα = 0.834, xα = 0.834, (5.47)

and the value function at α = 0 is

V (0, 2, h0, 0) = 0.5624. (5.48)
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The adjoint variables for the first and second system phases at the switching time are

as follows:

λ1(tα) = 0.6825, λ2(tα) = 0.1796 (5.49)

And furthermore

∂pα1∇xm(xα, tα)

∂λ1

(z−(tα)− ∂H1

∂x
(xα(tα)) = 6.4830.10−4,

∂pα1∇xm(xα, tα)

∂λ2

(z+(tα)− ∂H2

∂x
(xα(tα)) = 1.3744, (5.50)

∂pα1∇xm(xα, tα)

∂xα
(y(tα) + f1(x(tα), λα1 (tα))) = 1.0157. (5.51)

The boundary conditions are respectively:

y(0) = y(2) = 0, (5.52)

y−(tα) = y+(tα)− 1.1657, (5.53)

and

0.9994z−(tα) = 2.3744z+(tα) + 1.0157y−(tα) + 1.2624. (5.54)

The final solution for the state and adjoint variation function are

y(t) = 0.9989
e−t − et

2
, t ∈ [0, .834), (5.55)

and

y(t) = 0.2327e−t+0.834 − 0.025(et−0.834 − e−t+0.834), t ∈ [0.834, 2].

(5.56)

with

z(t) = 0.9989e−t, t ∈ [0, .834), (5.57)
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z(t) = 0.05et−0.834, t ∈ [.834, 2]. (5.58)

The state and adjoint variables variations have been computed so far with respect to

the switching time variation. This is motivated by the simplicity of the use of the

chain rule in (5.25) for the computation of ∂V
∂α

. The optimal cost variation based on

the switching time variation is then given by

∂Ṽ

∂t
|t=tα =

∫ 0.834

0

λ(τ)z(τ)dτ +

∫ 2

0.834

λ(τ)z(τ)dτ +
1

2
(λ2
−(0.834)− λ2

+(0.834))

=

∫ 0.834

0

1.5715× 0.9989e−2τdτ

+

∫ 2

0.834

0.1796× 0.05e2(τ−.834)dτ + 0.2168, (5.59)

where tα = 0.834 and l1(x(t), u(t)) = 1
2
u2(t) = 1

2
λ2

1(t) and l2(x(t), u(t)) = 1
2
u2(t) =

1
2
λ2

2(t). Now

∂tα

∂α
= −(1− ∂x

∂tα
)−1, (5.60)

where

∂x

∂tα
= y(tα) + f1(xα, λα) = −.9331 + .834− .6825 = −0.7816. (5.61)

So we see that at α = 0, ∂V
∂α

can be easily computed and so it is plausible that starting

from an initial nominal value for α one could find the optimal α by a gradient method.

In Figure 5.1 the optimal cost function is displayed as a function of the switching time

tα. In this example we vary α between 0 to 0.5 and the optimal cost is then obtained

as a function of the manifold parameter.

Figure 5.2 shows the optimal cost plotted against the manifold parameter α, while

Figure 5.3 displays the optimal cost variation (i.e. derivative) displayed as a function

of the switching time tα. In Figure 5.4 the optimal cost variation (i.e. derivative)

as a function of the manifold parameter α is shown. In both Figures 5.3 and 5.4

numerical results obtained from both the method above and by direct calculation

are indicated by the solid and dashed lines respectively. The close approximation of
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each curve by the other corroborates the theory presented in this chapter. As Figure

5.2 indicates the optimal hybrid value function is attained on the boundary of the

manifold parameter set, i.e. α = 0.5. In general a local optimal manifold parameter

αo satisfies at least one of the following conditions:

∂v

∂x
(x(t(αo)), t(αo)) = 0, or

∂m

∂α
(x(t(αo)), t(αo)) = 0. (5.62)

5.5. Geometrical Representation of Switching Manifolds and

Optimality

5.5.1. Geometrical Preliminaries. As stated in the literature, for a hybrid

system with state space Rn+1, time invariant switching manifolds are defined as n di-

mensional surfaces. Considering hybrid trajectories in state×time space, time variant

and time invariant switching manifolds are both defined as n+1 dimensional surfaces

in Rn+2, see e.g. [65]. Based on the discussion above, we define an n dimensional

smooth differentiable manifold M as a surface for which the local coordinate chart

and the associated neighbourhood will be generically defined by (ϕ, V ) , where ϕ is

a local homeomorphism, see [14,40].

ϕ : VM ⊂M → Rn, x = ϕ−1 : URn ⊂ Rn →M ⊂ Rn+1, (5.63)

where VM and URn are open sets in M and Rn respectively. The definition above is

helpful as we mostly work with x instead of ϕ. The tangent space TxM , at x ∈M , is

then represented as a linear space spanned by the vectors [ ∂x
∂xi
, i = 1, ..., n], see [40].

Using the same notation as in [40], by the assumption of differentiability of x, the

fundamental forms of the switching manifold in the local coordinates are defined as:

gij = 〈 ∂x
∂xi

,
∂x

∂xj
〉, i, j = 1, ..., n, (5.64)

Hij = 〈N, ∂2x

∂xi∂xj
〉 = −〈∂N

∂xi
,
∂x

∂xj
〉, i, j = 1, ..., n. (5.65)

121



CHAPTER 5. THE GEOMETRY AND DEFORMATION OF SWITCHING MANIFOLDS

where 〈., .〉 is the inner product in Rn+1, g and h are the first and second fundamental

forms and N is the unit length normal vector, [40]. By reversing the direction of the

definition above, equation (5.64) can be interpreted as the Riemannian metric defined

for general Riemannian manifolds, that is to say, manifolds which are not necessarily

embedded in Euclidean space, [40]). Let Y be a differentiable vector field, defined on

an open set of Rn+1, and let X be a fixed directional vector at some fixed point p of

this open set. Then the directional derivative of the vector field Y in the direction X

is defined as

DXY |p := lim
t→0

1

t
(Y (p+ tX)− Y (p)). (5.66)

Here the vector fields X, Y are not necessarily tangential to the manifold and are

defined as X, Y ∈ Tx(R
n+1) ∼= Rn+1. Moreover, in the special case where X, Y ∈

TxM , the directional derivative is itself not necessarily tangential to the manifold; to

be specific the tangential derivative on the manifold, i.e. the covariant derivative of

Y in the X direction, is defined to be the tangential component of the directional

derivative defined above. Then the covariant derivative has the following definition

∇XY := DXY − 〈DXY,N〉N. (5.67)

The last term above is the normal component of the directional derivative which is

subtracted from the total vector, DXY . Now we briefly introduce the Christoffel

symbols (see [14,40]). Consider a tangential vector field Y as

Y =
n∑
j=1

ηj
∂x

∂xj
. (5.68)

The covariant derivative of Y in direction X, where X =
∑n

i=1 ξ
i ∂x
∂xi

is

∇XY =
n∑
i=1

ξi(
n∑
j=1

∇ ∂x

∂xi
(ηj

∂x

∂xj
)). (5.69)
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Based on the tangential property of the covariant derivative which is given by (5.67),

we define

∇ ∂x

∂xi

∂x

∂xj
:=
∑
k

Γkij
∂x

∂xk
, (5.70)

and

Γij,k := 〈∇ ∂x

∂xi

∂x

∂xj
,
∂x

∂xk
〉, (5.71)

where Γij,k and Γkij are called first and second kind of the Christoffel symbols, see [40].

Using the notation above we get:

Γij,k =
n∑

m=1

Γmijgmk. (5.72)

Hence (see [40])

∇XY =
n∑

i,k=1

ξi(
∂ηk

∂xi
+

n∑
j=1

ηjΓkij)
∂x

∂xk
. (5.73)

5.5.1.1. Necessary Conditions for Optimality. Here in this subsection we repre-

sent the results presented in [80] and formulate the necessary conditions of optimality

of autonomous hybrid systems consisting of two modes associated with a time invari-

ant switching manifold. The hybrid value function is defined as follows:

v(x, t) = infu∈UJ(t0, tf , h0;xts , ts, u)|ts=t,xts=x, xts ∈M.

This formulation shows that the hybrid value function depends on the switching state

and switching time on the switching manifold M . The next lemma gives necessary

conditions for optimality of HSOC problems.

Lemma 5.1. Let (x(ts), ts) = (x(tos), t
o
s) be the optimal switching state and time

subject to the hypotheses for the HSOC problem and the hypotheses of Theorem 5.1,

then (x(ts), ts) satisfies the local stationarity conditions.

∂v(x, t)

∂t
|(x(ts),ts) = 0, (5.74)
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∇xv(x, t)|(x(ts),ts)⊥Tx(ts)M, (5.75)

where Tx(ts)M is the tangent space at the switching state on the manifold M .

Proof. By the Principle of Optimality we know that the variation of the value

function around the optimal time state pair must be positive therefore

v(x, t)− v(x(ts), ts) ≥ 0, x ∈ Bx(ts)(η), t ∈ (ts − ε, ts + ε),

(5.76)

where Bx(ts)(η) is defined by the induced topology on the manifold m(x) = 0. The

value function variation is written as the summation of variations around the optimal

switching time and the optimal state. The point here is that the state variation must

be defined with respect to the switching manifold, then:

v(x, t)− v(x(ts), ts) = ∇xv(x(ts), ts).(x− x(ts))

+
∂v(x, t)

∂t
|(x(ts),ts)δt+ o(δx) + o(δt) ≥ 0, (5.77)

Fixing x = x(ts) and varying t we have

∂v(x, t)

∂t
|(x(ts),ts) = 0. (5.78)

Setting t = ts i.e. δt = 0, (5.77) yields ∇xv(x(ts), ts).ψ =
∑n

j=1 ψj
∂v(x(ts),ts)

∂xj
≥ 0,

∀ψ ∈ Tx(ts)m(x) which completes the proof since ψ,−ψ ∈ Tx(ts)m(x). �

It should be noted that switching manifolds in this chapter are considered time

invariant and we can see very close similarities between (5.75) and (3.1). The next

lemma presents the relation between these equations.

Lemma 5.2 ( [1,72]). For the HSOC problem defined in Theorem 5.1 the following

relations hold:

∂v(x, t)

∂t
|(x(ts),ts) = H1(t−s )−H2(ts), (5.79)
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∇xv(x(ts), ts) = λ2(ts)− λ1(t−s ). (5.80)

�

The results of Lemma 5.1 and the chain rule imply

∂v(xo, to)

∂xi
= 〈∇xv(xo, to),

∂x

∂xi
〉 = 0. (5.81)

The following theorem is a generalization of a theorem which appeared in [80].

Theorem 5.3. At the optimal switching state xo and optimal switching time to

we have

−Hik = µ
∂xT

∂xi
∂2v(xo, to)

∂x2

∂x

∂xk
+ Ti

∂x

∂xk

= µ
∂xT

∂xk
∂2v(xo, to)

∂x2

∂x

∂xi
+ Tk

∂x

∂xi
, (5.82)

where Ti, Tk ∈ TxM and µ is the discontinuity parameter appearing in the adjoint

process boundary condition at the switching time, i.e. λ2 − λ−1 = µ−1N(xo), see

[58,66].

Proof. Applying Lemma 5.1 we have

∇xv(xo, to) = µ−1N(xo), µ ∈ R. (5.83)

Since the normal vector N(x) is unit length we have

d

dxi
(NT (x).N(x)) = NT (x).Nxi(x) +NT

xi(x).N(x) = 0, i = 1, ...n, (5.84)

where

Nxi(x) = lim
δxi→0

N(x+ δxi)−N(x)

δxi
, i = 1, ...n. (5.85)

Then 〈N(x), Nxi(x)〉 = NT (x).Nxi(x) = NT
xi(x).N(x) = 0, i = 1, ...n, and,

NT (x).
∂x

∂xi
= 0, i = 1, ...n. (5.86)
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The derivative of the last equation with respect to xi implies

〈Nxi(x),
∂x

∂xj
〉 = NT

xi(x).
∂x

∂xj
= −NT (x).

∂2x

∂xixj
= −Hij, i, j = 1, ...n. (5.87)

perturbing xi to xi + δxi gives ∇xv(xo + δx, to) in the new coordinate xo + δx. Since

by the assumed uniqueness of the optimal trajectory the new switching state is not

optimal, the perturbed vector is not necessarily normal to the switching manifold .

The normal vector at xo + δx is estimated as follows:

N(xo + δxo) = (µ+ δµ)∇xv(xo + δx, to) + δψxi , δψxi ∈ Txo+δxoM

(5.88)

hence

Nxi = lim
δxi→0

(µ+ δµ)∇xv(xo + δx, to) + δψxi − µ∇xv(xo, to)

δxi
,

(5.89)

where δψxi ∈ Txo+δxiM, i = 1, ..., n.

Finally, (5.87) together with (5.89) yield

−Hik = µxi∇xv(xo, to).
∂x

∂xk
+ µ

∂Tx

∂xi
.∇2

(x,x)v(xo, to).
∂x

∂xk
+ Ti.

∂x

∂xk
, (5.90)

where

Ti = lim
xi→0

δψxi

δxi
, i = 1, ..., n. (5.91)

The optimality of (xo, to), i.e (5.75), yields

∇xv(xo, to).
∂x

∂xk
= 0, k = 1, ..., n, (5.92)

and hence

−Hik = µ
∂Tx

∂xi
.∇2

(x,x)v(xo, to).
∂x

∂xk
+ Ti.

∂x

∂xk
, (5.93)
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which proves the theorem statement. By changing the role of i and k and symmetrical

properties of the Hessian matrix and second fundamental forms, the second statement

is proved. �

Proposition 1. In the local coordinates of the optimal switching state xo we

have

∂xT

∂xi
∂2v(xo, to)

∂x2

∂x

∂xk
=
∂2v(xo, to)

∂xi∂xk
− µ−1Hik, i, k = 1, ..., n. (5.94)

Proof. In the local coordinates of xo we have

∂v(x, to)

∂xi
=
∂v(x, to)T

∂x

∂x

∂xi
, (5.95)

taking derivative with respect to xk we obtain

∂2v(x, to)

∂xi∂xk
=

∂

∂xk
(
∂v(x, to)

∂x
)T
∂x

∂xi
+ (

∂v(x, to)T

∂x
)
∂2x

∂xixk
. (5.96)

where we have

∂

∂xk
(
∂v(xo, to)

∂x
)T = (

∂Tx

∂xk
)
∂2v(xo, to)

∂x2
. (5.97)

(5.96),(5.99),(5.83) and (5.87) imply (5.94) and completes the proof. �

The vectors Ti, Tk which appear in the statement of Theorem 5.3 are still un-

known and needed to be computed. The following lemma and theorem give us a

mathematical description of those vectors in a specific coordinate (coordinates of the

sensitivity function of the value function) system around the optimal switching state.

Lemma 5.3. The local components of the vector Ti =
∑n

j=1 tij
∂x
∂xj
, i = 1, .., n in

Theorem 5.3 satisfy

tij = −µ∂η
i

∂xj
, i, j = 1, ..., n, (5.98)

where η̄ = [η1, ..., ηn] is the tangential local representation of the sensitivity function

of the value function with respect to the switching state at the optimal switching state.
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Proof. As shown in the proof of Theorem 5.3, Ti ∈ TxoM,

i = 1, ..., n, then by the symmetryl properties of the Hessian matrix, the definition of

the second fundamental forms Hij and (5.93) we have

〈Ti,
∂x

∂xk
〉 = Ti.

∂x

∂xk
= Tk.

∂x

∂xi
= 〈Tk,

∂x

∂xi
〉 i, k = 1, ..., n. (5.99)

The sensitivity of the value function with respect to state x is defined in a neighbour-

hood of the optimal state xo with the following local representation:

∂v(x, to)

∂x
=

n∑
j=1

ηj
∂x

∂xj
+ ηn+1N, (5.100)

The derivative of (5.100) with respect to xk is

∂

∂xk
(
∂v(x, to)

∂x
) =

∂2v(x, to)

∂x2

∂x

∂xk

=
n∑
j=1

(
∂ηj

∂xk
∂x

∂xj
+ ηj

∂2x

∂xj∂xk
) +

∂ηn+1

∂xk
N + ηn+1 ∂N

∂xk
. (5.101)

Based on the Gauss formula, see [40], we have

∂2x

∂xj∂xk
=

n∑
l=1

Γljk.
∂x

∂xl
+Hjk.N j, k = 1, ..., n, (5.102)

Applying the inner product with ∂x
∂xi

on (5.101) and using (5.102) it follows

∂xT

∂xi
∂2v(x, to)

∂x2

∂x

∂xk
=

n∑
j=1

(
∂ηj

∂xk
gij + ηj

n∑
l=1

Γljkgli)− ηn+1Hki. (5.103)

Hence from (5.93) and (5.99) we have

−µ−1Hik − µ−1Tk.
∂x

∂xi
=

n∑
j=1

(
∂ηj

∂xk
gij + ηj

n∑
l=1

Γljkgli)− ηn+1Hki, (5.104)

where

Tk.
∂x

∂xi
=

n∑
j=1

tkjgij. (5.105)
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Using (5.105),(5.104) and the fact that at the optimal switching state η̄ = [η1, ..., ηn] =

0 (tangential components of the sensitivity function), µ−1 = ηn+1 (Lemma 5.1) we

get

tkj = −µ∂η
j

∂xk
. (5.106)

The same argument evidently holds with i replacing k in the statement. �

It should be mentioned here that all the results above are valid only at the optimal

switching state which optimize (minimize) the hybrid value function on the switching

manifold. The following theorem gives the behaviour of the tangential component of

the value function sensitivity on a neighbourhood of the optimal state at the switching

manifold.

Theorem 5.4. Consider a vector field Y = ∂v(x,to)
∂x

on a neighbourhood of an

optimal switching state xo of the switching manifold, then there exist local coordinates,

x1, ..., xn, in which the tangential components of the defined vector field satisfy the

following differential equations:

∂η̄

∂xk
= G−T


Ω1,1,k ... Ω1,n,k

...
...

...

Ωn,1,k ... Ωn,n,k


T

η̄ +G−T [0, ..., 2k, 0, ..., 0]T , k = 1, ..., n,

(5.107)

where

η̄ = [η1, ..., ηn], G = [gij], (5.108)

and

Ωi,j,k =
1

2

n∑
l=1

(Γlikglj + Γljkgli), i, j, k = 1, ..., n, (5.109)

and [0, ..., 2k, 0, ..., 0] has 2 in the kth position.
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Proof. Using the statement of Proposition 1 and (5.103) we have

∂2v(x, to)

∂xi∂xk
− µ−1Hik =

n∑
j=1

(
∂ηj

∂xk
gij + ηj

n∑
l=1

Γljkgli)− ηn+1Hki.

By Lemma 5.1 we have µ−1 = ηn+1 and the symmetry properties of the second

fundamental form give Hik = Hki, then

∂2v(x, to)

∂xi∂xk
=

n∑
j=1

(
∂ηj

∂xk
gij + ηj

n∑
l=1

Γljkgli). (5.110)

By an application of the Morse Lemma, [50,52], and the positivity assumption of the

value function Hessian matrix, there exist a system of local coordinates around the

optimal state xo such that

∂2v(x, to)

∂xi∂xk
= 2δik, i, k = 1, ..., n. (5.111)

where δik is the Kronecker delta. (5.110) and (5.111) together prove the theorem

statement. �

The coordinates in the Theorem 5.4 are the Morse coordinates which appear in

the Morse theory for critical points of a scalar function defined on a manifold [50,52].

One direct result of Theorem 5.4 is that if two value functions are minimized at the

same point x on a manifold and have the same Morse coordinates then they both

have same tangential components on the switching manifold. Combining the results

of Lemma 5.1, Theorem 5.4 and (5.110) we get:

[tli]l=1,...,n = −µG−1[0, 0, ..., 0, 2i, 0, , ..., 0]T , i = 1, ..., n. (5.112)

In order to compute the tangential vector η̄ we apply a method similar to the state

transition matrix in the linear systems. The main point here is that we have n

different coordinate variations, consequently we propose the following method which

starts from the initial condition 0 and will finally attains the coordinates x1, ..., xn in

the neighbourhood of the optimal state x. Let us denote ϕ(x1, ..., xn, x1(x), ..., xn(x))
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as the state transition matrix corresponding to the linear system described in Theorem

5.4. Starting from the optimal point we have [72]

η̄(x1, 0, ..., 0) = ϕ(x1, 0, ..., 0)η̄(0, ..., 0)

+

∫ x1

0

ϕ(x1, 0, ..., 0, σ, 0, ..., 0)G−T [2, 0, ..., 0]Tdσ,

=

∫ x1

0

ϕ(x1, 0, ..., 0, σ, 0, ..., 0)G−T [2, 0, ..., 0]Tdσ, (5.113)

now applying the same method to the new initial condition η̄(x1, 0, ..., 0) we have

η̄(x1, x2, 0, ..., 0) = ϕ(x1, x2, 0, ..., x1, 0, ..., 0)η̄(x1, 0, ..., 0)

+

∫ x2

0

ϕ(x1, x2, ..., x1, σ, 0, ..., 0)G−T [0, 2, 0, ..., 0]Tdσ,

and finally we have

η̄(x1, x2, ..., xn) =

ϕ(x1, x2, ..., xn, x1, , ..., un−1, 0)η̄(x1, x2, ..., un−1, 0)

+

∫ xn

0

ϕ(x1, x2, ..., xn, x1, x2, ..., un−1, σ)G−T [0, ..., 2]Tdσ.

Remark: In this chapter the value function arguments are x, t which are assumed

to be independent of the local representation of the switching manifold which is also

assumed to be time invariant and independent of the switching time t. Perturbing

the switching state x to x+ δx generally results in a change to the optimal switching

time t. Employing the hypotheses introduced in the first section, the switching state

x and switching time t are considered independently therefore the sensitivity formulas

derived before are valid as long as x and t are treated independently. If the value

function is defined as the infimized cost with respect to the switching time for a given

state on the switching manifold by, i.e.

ṽ(x) = inft∈[0,tf ]v(x, t), (5.114)
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then the sensitivity of ṽ(.) with respect to the switching state x is

dṽ(x)

dx
=
∂v(x, t)

∂x
+
∂v(x, t)

∂t

∂t

∂x
, (5.115)

where ṽ(x) = v(x, t(x)). At the optimal (xo, to), we have ∂v(xo,to)
∂t

= 0 then

dṽ(xo)

dx
=
∂v(xo, to)

∂x
= µ−1N. (5.116)

Henceforth the argument of Theorem 5.3 holds for ṽ(.). Finally, Theorem 5.4

statment holds for the value function ṽ(.).

5.6. Local Variation of the Value Function

In this section we present a numerical method in order to compute the second

order derivative of the value function v(x, t) with respect to the coordinates x1, ..., xn.

As proved in Lemma 5.1, the sensitivity of the value function with respect to the state

variable is the discontinuity of the adjoint process at the switching time. Based on

a method in [66], the optimal state and adjoint process are solutions of a two point

boundary value problem which satisfy the boundary conditions at the final time and

on the switching manifold. Here in this chapter the hybrid problem is considered in

the context of the fixed end point optimal control therefore the total hybrid trajectory

is a sequence of solutions of two point boundary value problems between the switching

state pairs on switching manifolds, see [66].

By the controllability assumption of the hybrid system, we only perturb the ith

coordinate of the optimal switching state xo where the switching time is fixed. The

state and adjoint variable variations with respect to the corresponding perturbation

are defined similar to [71] as follows:

yxi (t) = lim
δxi→0

δx(t)

δxi
, i = 1, ..., n, t ∈ [0, tf ], (5.117)

zxi (t) = lim
δxi→0

δλ(t)

δxi
, i = 1, ..., n, t ∈ [0, tf ], (5.118)
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where yxi (t), zxi (t) satisfy the following differential equations:

ẏxi (t) =
∂fq
∂x

yxi (t) +
∂fq
∂λ

zxi (t), t ∈ [ts−1, ts), (5.119)

żxi (t) = −∂
2Hq

∂x2
yxi (t)− ∂2Hq

∂λ∂x
zxi (t), t ∈ [ts−1, ts), (5.120)

where Hq is the Hamiltonian function in the time interval [ts−1, ts). Since the final

state is given, the boundary conditions for (5.117) and (5.118) are given as follows:

yxi (0) = yxi (tf ) = 0, yxi (ts) =
∂x

∂xi
. (5.121)

The following Lemma gives the second derivative of the value function evaluated at

optimal switching states on switching manifolds.

Lemma 5.4. At an optimal switching state, the local Hessian matrix of the value

function of the hybrid system satisfies the following equations ( i, k = 1, ..., n):

∂2v(x, t)

∂xi∂xk
= yxi (ts)(z

x
k (ts)− zxk (t−s )) + µ−1Hik

= yxk(ts)(z
x
i (ts)− zxi (t−s )) + µ−1Hki (5.122)

where (zxk (ts)− zxk (t−s )) is the discontinuity of the z solution of (5.119),(5.120).

Proof. The chain rule in ordinary differentiation gives

∂(λ2(ts)− λ1(t−s ))

∂xi
=
∂(λ2(ts)− λ1(t−s ))

∂x
.
∂x

∂xi
. (5.123)

As given by Lemma 5.1, ∇xv(xo, ts) = λ2(ts)− λ1(t−s ) hence

∂xT

∂xi
.∇2

(x,x)v(xo, ts).
∂x

∂xk
= (

∂xT

∂xi
)(
∂(λ2(ts)− λ1(t−s ))

∂xk
)

= (
∂xT

∂xk
)(
∂(λ2(ts)− λ1(t−s ))

∂xi
),

and by the definition, yi(t) = ∂x(t)
∂xi

and zi(t) = ∂λ(t)
∂xi

, therefore

yxi (ts)(z
x
k (ts)− zxk (t−s )) = yxk(ts)(z

x
i (ts)− zxi (t−s )), (5.124)
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where together with Proposition 1, the lemma statement is proved. �

Corollary 1. (i): If in (5.122) the positive Hessian Condition
[∂2v(x,t)
∂xi∂xj

]
≥

0, i, j = 1, ..., n, (
[∂2v(x,t)
∂xi∂xj

]
> 0, i, j = 1, ..., n) holds, the local stationary state xo is

locally (strictly locally) optimal on M .

(ii): The local optimality of xo ∈M implies (5.122) holds.

We observe that equation (5.122) gives the Hessian matrix in any given parametriza-

tion of the switching manifold at the optimal switching state.

5.7. Example

Consider a hybrid system consisting of two modes with the following dynamics:

S1


ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

1 0 0




x1

x2

x3

+


1

1

0

u (5.125)

S2


ẋ1

ẋ2

ẋ3

 =


0 0 1

1 0 0

0 1 0




x1

x2

x3

+


0

1

1

u, (5.126)

for which the cost function and boundary conditions are defined as:

J =
1

2

∫ 10

0

u2(t)dt, x0 = (0, 0, 0), xf = (4, 1, 3).

The simulation is performed with respect to the following switching manifold:

M = {(x1, x2, x3); x2
1 + 2x2

2 − x3 = 4}, (5.127)

By direct calculation we have

H =
1√

(1 + 4x2
1 + 16x2

2)

 −2 0

0 − 4

 , (5.128)
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Figure 5.5. State Trajectory of Example 1

By applying the GG-HMP algorithm introduced in [77] to the example above,

the optimal switching time and state are computed as follows:

to = 6.1900s, xo = [−1.1771,−0.8307,−1.23420], µ = −27.8, (5.129)

where at xo we have

Ho =

 −0.4770 0

0 − 0.9539

 , (5.130)

(GG-HMP algorithm denotes the Geodesic-Gradient Hybrid Maximum Principle

algorithm whose convergence properties are proven in [77]). The evolution of the

state trajectory in the example is shown in Figure 5.5 and the Hessian of the value

function at xo is obtained by direct calculation as

∂2v(xo, to)

∂x2
=


2.8235 − 1.5010 0.7973

−1.4993 4.5418 − 1.4824

0.7987 − 1.4827 2.8875

 . (5.131)
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Employing Theorem 5.3, Proposition 1 and the solution of (5.117,5.118) we get

T1 = [16.0188, 40.2344,−171.4023], (5.132)

T2 = [−155.4266, 207.9389,−325.0340].

Inserting T1, T2 and ∂2v(xo,to)
∂x2

in (5.82) we obtain

[Hij] =

 −0.4458 − 0.0521

0.0500 − 1.0430

 ∼=
 −0.4770 0

0 − 0.9539

 , (5.133)

which (to two decimal places) is consistent with (5.130). The lack of symmetry in

(5.133) results from the lack of symmetry in (5.131) which is due to the level of

precision chosen in the numerical calculation.

5.8. Local Deformation of Switching Manifolds

In this section we analyze the deformation of switching manifolds with the ob-

jective of reducing the HOCP value function via changes in the design of the switch-

ing manifold configuration. This problem can be studied within the two different

frameworks of global or local deformations and both will be considered in this sub-

section. The question is how we can deform the switching manifold to reduce the

value function. This problem can be studied in two different classes of global or local

deformations.

In principle, the study of the global deformation of a switching manifold neces-

sitates a global parametrization for manifolds. As discussed in Section 5.1 and [71],

if we parametrize the manifold perturbation by a variable α we can proceed by a

gradient algorithm to find the optimal parameter αo which minimizes the value func-

tion. Here we assume that the nominal manifold is parametrized around the nominal

optimal switching state by x, and we search for a perturbation in the parametrization

space to reduce the value function. This perturbation is defined by the following
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formula:

xε(x1, ..., xn) = x(x1, ..., xn) + εβ(x1, ..., xn), (5.134)

where

β(x1, ..., xn) ∈ Rn+1, β(x1, ..., xn) = 0 ∀(x1, ..., xn) /∈ URn . (5.135)

One possible perturbation candidate is changing the switching manifold along the

normal direction of the switching manifold, therefore, the perturbed parametrization

is given as follows:

xε(x1, ..., xn) = x(x1, ..., xn) + εθ(x1, ..., xn).N(x1, ..., xn). (5.136)

The following lemma shows that by choosing small enough ε we can always find a

normal deformation to reduce the hybrid value function.

Lemma 5.5. For a nominal parametrization x around the nominal optimal switch-

ing state x of a nominal switching manifold for a given HOCP such that λ − λ− =

pN 6= 0, there exists a parameter ε and a function θ by which the perturbation of the

nominal parametrization with

xε(x1, ..., xn) = x(x1, ..., xn) + εθ(x1, ..., xn).N(x1, ..., xn), results in a deformation of

the switching manifold which yields a decrease in the HOCP value function for all

δ, 0 ≤ δ < ε.

Proof. Here we give a proof in three dimensional Euclidean spaces. A proof

for general n dimensional Euclidean spaces can be obtained by the generalization

of the presented method. The switching manifold is defined in R3 then the new

parametrization is given as

xε(x1, x2) = x(x1, x2) + εθ(x1, x2).N(x1, x2). (5.137)

Consider (x, t) as the nominal optimal state and time (for the simplicity in the nota-

tions we drop the superscript o). Consequently the perturbed optimal switching state
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and switching time will be (x+ δx, t+ δt). Expanding the value function around the

nominal switching state, time implies

v(x+ δx(ε), t+ δt(ε)) = v(x, t) +
∂v(x, t)

∂x
δx(ε) +

∂v(x, t)

∂t
δt(ε) +O(δt2) +O(δx2).

(5.138)

Lemma 5.1 gives v(x+ δx, t+ δt) = v(x, t) + ∂v(x,t)
∂x

δx+ o(δt) + o(δx) since ∂v(x,t)
∂t

= 0.

The new coordinates of the perturbed optimal state is given as (x1 + δx1, x2 + δx2)

where δx = xε − x is as follows:

δx = xε(x1 + δx1, x2 + δx2)− x(x1, x2)

= x(x1 + δx1, x2 + δx2) + εθ(x1 + δx1, x2 + δx2)N(x1 + δx1, x2 + δx2)

−x(x1, x2)

= xx1(x
1, x2)δx1 + xx2(x

1, x2)δx2 + εθx1(x
1, x2)N(x1, x2)δx1

+εθx2(x
1, x2)N(x1, x2)δx2

+εθ(x1, x2)Nx1(x
1, x2)δx1 + εθ(x1, x2)Nx2(x

1, x2)δx2 + εθ(x1, x2)N(x1, x2)

+o(δx1) + o(δx2). (5.139)

By the first order optimality properties of the hybrid value function given in Lemma

5.1 and geometrical properties of the switching manifold we have

∂v(x, t)

∂x
⊥TxM, xx1 , xx2 , Nx1 , Nx2 ∈ TxM, (5.140)

where xxi = ∂x
∂xi
, i = 1, 2.

Theorem 3.1 and Lemma 5.2 together imply

v(x+ δx, t+ δt) = v(x, t) + (λ− λ−)(εθx1(x
1, x2)N(x1, x2)δx1

+εθx2(x
1, x2)N(x1, x2)δx2 + εθ(x1, x2)N(x1, x2)).
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We shall choose the function θ such that

θx1(x
1, x2) = θx2(x

1, x2) = 0, xo = x(x1, x2). (5.141)

Since λ− λ− = pN(x1, x2), p ∈ R, therefore

v(x+ δx, t+ δt) = v(x, t) + εpθ(x1, x2)||N(x1, x2)||2

= v(x, t) + εpθ(x1, x2). (5.142)

The statement of lemma is proved if we choose ||ε|| as small as (5.138) is valid and

sign of ε as εpθ(x1, x2) < 0. �

Remark: One important consequence of the previous lemma is that for all au-

tonomous hybrid control systems there exists a normal perturbation around the nom-

inal optimal point such as to reduce the hybrid value function unless p = 0, which is

an optimal controlled switching point of hybrid systems, see [80].

Subject to the smoothness constraints, the arbitrary class of functions generically

denoted θ are chosen to be stationary with respect to epsilon (at the nominal optimal

state x). Such functions are usually referred to in differential geometry as bump

functions (at a given nominal point).

5.8.1. Simulation Results. Here we consider a simple example in two di-

mensional Euclidean space to confirm the existence of the normal deformation of

switching manifolds. Consider the hybrid system consisting of two phases with the

following dynamics:

S1

 ẋ1

ẋ2

 =

 1 0

1 0

 x1

x2

+

 1

0

u, (5.143)

S2

 ẋ1

ẋ2

 =

 0 1

0 1

 x1

x2

+

 0

1

u, (5.144)
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Figure 5.6. Hybrid Optimal Trajectory

The dynamics are both controllable and the boundary conditions and cost function

are given as follows:

x(0) =

 0

0

 , x(10) =

 −2

−2

 , J =
1

2

∫ 10

0

x2dt. (5.145)

The switching manifold is considered as a simple one dimensional line in two dimen-

sional space:

(x, y) = (x, 1) ∈ R2, x ∈ R. (5.146)

The hybrid state trajectory and switching manifold are shown in Figure 5.6. The HMP

algorithm, see [66], gives the following results for the nominal switching manifold:

to = 3.69, xo = (0.4498, 1.0088), Jo = 0.3082, p = 2.6875. (5.147)

Based on (5.142) we can choose θ(x) = 1 which satisfies (5.141) at the nominal

optimal switching state xs = (0.4498, 1.0088) so just by choosing small negative ε we
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Figure 5.7. Deformation Functions

will end up a hybrid system with a lower value function. By choosing ε = −.038 we

have the following results:

to = 3.7092, xo = (0.4041, 0.9084), Jo = 0.2517, (5.148)

which obviously gives a less cost function than the nominal one. Another candidate

for the deformation function is a bell function which also satisfies (5.141) and is given

by

θ(x) = exp(−(x−xs(1))2

2σ2 ). Figures 5.7 and 5.8 show the perturbed and nominal hy-

brid trajectories for the perturbed and nominal switching manifold applying θ(x) =

exp(−(x−xs(1))2

2σ2 ) as a deformation function. By choosing ε = −.03, x = .6 results in

the following parameters:

to = 3.5957, , xo = (0.4707, 0.9749), Jo = 0.2783, (5.149)

where again the new optimal cost function is lower than the nominal optimal cost,

Jo = 0.3082.
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Figure 5.8. Hybrid Optimal Trajectory for Perturbed Systems

5.9. Global Deformation of Switching Manifolds

In this section we introduce hybrid systems for which the total cost is the sum-

mation of the cost defined by (3.4) and the energy of the switching manifold deforma-

tion mapping (as originally introduced in [73]). As shown in Lemma 5.5, for a given

switching manifold it is in general possible to decrease the value function by a local

perturbation around the optimal switching state xo. In practice, changing the switch-

ing manifold may impose an extra cost. Consider an automatic gear changing system

which changes at a certain speed. Changing the speed level at which the switching

happens requires a change in the mechanical structure of the gear box which may not

be feasible or may make its manufacture more expensive.

This motivates us to include an extra term in hybrid cost which corresponds

to the cost of deformations of switching manifolds. This extra cost depends on the

nature of the hybrid system and may differ from one system to another. We shall
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assign a positive cost for changing the nominal switching manifold M to a new switch-

ing manifold F (M). Figure 5.9 provides a picture of such deformations in a three

dimensional space.
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Figure 5.9. Switching Manifold Deformation

We now define an energy function for the mapping F : M → N, F ∈ C∞(M,N).

We note that in this section N is the image Riemannian manifold and is not the nor-

mal vector to the switching manifold M . In general, we consider (M, g) to be an m

dimensional domain Riemannian manifold with the corresponding Riemannian metric

g and (N, h) to be an n dimensional image Riemannian manifold with the correspond-

ing Riemannian metric h. The push forward of the mapping F at point x ∈ M is

defined to be the linear map from TxM to TF (x)N given by:

TF := dFx : TxM → TF (x)N. (5.150)

The local coordinates on TxM at x ∈ M and at TyN at y are given respectively by

{( ∂
∂xi

)}i=1,...,m and {( ∂
∂yα

)}α=1,...,n, the push forward of F applied on a base tangent

vector is given locally as follows:

dFx((
∂

∂xi
)) =

n∑
α=1

(
∂Fα

∂xi
)(x)(

∂

∂yα
), i = 1, ...,m. (5.151)
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The space Hom(TxM,TF (x)N), i.e. the space of all linear maps from TxM to TF (x)N ,

is linearly isomorphic to T ∗xM ⊗ TF (x)N , (see [37]), therefore dFx can be locally

described as an element of T ∗xM ⊗ TF (x)N .

dFx ∈ Hom(TxM,TF (x)N) ∼= T ∗xM ⊗ TF (x)N, (5.152)

where

dFx =
m∑
i=1

n∑
α=1

(
∂Fα

∂xi
)(x)(dxi)⊗ (

∂

∂yα
). (5.153)

The norm g∗ on T ∗xM and h on N induce an inner product on the tensor product

space T ∗xM ⊗ TF (x)N given by

〈dxi ⊗ (
∂

∂yα
), dxj ⊗ (

∂

∂yβ
)〉 = gijhαβ(F (x)), (5.154)

where

g∗ = [gij]
−1, i, j = 1, ..., n. (5.155)

Employing (5.153) and (5.154), the norm squared of dFx is defined as follows:

|dFx|2 = 〈dFx, dFx〉

=
m∑

i,j=1

n∑
α,β=1

gij(x)hαβ(F (x))(
∂Fα

∂xi
)(x)(

∂F β

∂xj
)(x),

and the mapping dF is defined as the following section:

dF ∈ Γ(T ∗M ⊗ F−1TN), (5.156)

where F−1TN is the induced tangent bundle by F and Γ is a cross section of the

vector bundle T ∗M ⊗ F−1TN . The norm squared of dF over the manifold M is

written as

|dF |2 =
m∑

i,j=1

n∑
α,β=1

gijhαβ(F )(
∂Fα

∂xi
)(
∂F β

∂xj
), (5.157)
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where hαβ is the metric on N . The energy density of F is finally defined as

e(F )(x) =
1

2
|dF |2(x), x ∈M, (5.158)

with the corresponding energy functional

E(F ) =

∫
M

e(F )dµg, (5.159)

where µg is the Lebesgue measure defined by gij on M , see [37].

The minimization of the energy functional E with respect to a parametrized map-

ping may be analyzed using the variational methods, [37,53].

Consider a variation F̂ of F as follows:

F̂ : I ×M → N, I = (−ε, ε) ∈ R,

F̂ (x, 0) = F (x) ∈ N, ∀x ∈M, F̂ ∈ C∞(I ×M,N). (5.160)

We shall write Fs = F̂ (., s), s ∈ (−ε, ε). Harmonic maps are solutions to the differ-

ential equation d
ds
E(Fs)|s=0 = 0.

The corresponding tension field τ(F ) in the induced bundle F−1TN is written

as (see [37,53] ):

τ(F )α :=
m∑

i,j=1

gij(
∂2Fα

∂xi∂xj
−

m∑
k=1

Γkij
∂Fα

∂xk
+

n∑
β,γ=1

Γαβγ(F )
∂F β

∂xi
∂F γ

∂xj
),

α = 1, ..., n, (5.161)

where Γkij,Γ
α
βγ are the Christoffel symbols defined on (M, g) and (N, h) respectively.

The following theorem gives an expression for the first variation of energy of maps

from M to N .

Theorem 5.5 ( [37] , Eq 8.1.13, [53]). Let Fs = F̂ (., s) be a C∞ variation of

F = F0 : M → N , then

d

ds
E(Fs)|s=0 = −

∫
M

〈Y, τ(F )〉dµg, (5.162)
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where Y = d
ds
Fs|s=0 is a variation vector field of F and τ(F ) is the tension field of F

defined in (5.161).

�

5.10. Extended Hybrid Optimal Control Problems

Employing the notion of the energy of mappings among manifolds, we modify the

cost function defined in (3.4) to the following formula which includes the energy of

deformations:

JF (t0, tf , u) :=

∫ ts

t0

lq1(xq1(s), u(s))ds+

∫ tf

ts

lq2(xq2(s), u(s))ds

+h(xqL(tf )) + ||E(FM→N)− E(IM→N)||2, (5.163)

where IM→N is the identity map from M to N . For a given Fs, the corresponding

value function is defined as:

v(x, t, Fs) := infu∈UJ
Fs(t0, tf , u)|xs=x,ts=t,

x ∈M, t, s ∈ R,Fs ∈ C∞(M,N). (5.164)

Since the first two terms on the right hand side of (5.163) are computable separately,

the value function defined in (5.164) can be split into two independent terms as

follows:

v(x, t, F ) = vF (x, t) + ||E(F )− E(IM→N)||2, (5.165)

where vF (x, t) is the value function of the hybrid system without considering

the deformation cost. In order to be able to compute the sensitivity of v(x, t, Fs) at

(x, t, Fs) we use the variation of F , introduced in (5.160). The sensitivity of v(x, t, Fs)

with respect to (x, t, Fs) is given as follows:

∂v(x, t, Fs)

∂x
=
∂vFs(x, t)

∂x
+
∂||E(Fs)− E(IM→N)||2

∂x
, (5.166)
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and similarly for t and s we have

∂v(x, t, Fs)

∂t
=
∂vFs(x, t)

∂t
+
∂||E(Fs)− E(IM→N)||2

∂t
, (5.167)

∂v(x, t, Fs)

∂s
=
∂vFs(x, t)

∂s
+
∂||E(Fs)− E(IM→N)||2

∂s
. (5.168)

By definition, E(Fs) does not depend on x and t therefore the second terms in (5.166)

and (5.167) vanish; hence

∂v(x, t, Fs)

∂x
=
∂vFs(x, t)

∂x
=
∂v(Fs(x), t)

∂Fs(x)
W (x), (5.169)

where v(Fs(x), t) is the hybrid value function given at the switching time t and the

switching state Fs(x) ∈ F (M), therefore

∂v(Fs(x), t)

∂Fs(x)
= λ− λ−, W (x) :=

∂Fs(x)

∂x
, (5.170)

where W (x) is the Jacobian matrix of the coordinate change and λ−λ− is the adjoint

process discontinuity at Fs(x).

By the results of Lemma 5.2, the first term on the right hand side of Equation

(5.168) is given by the following lemma:

Lemma 5.6. For the extended hybrid cost function defined in (5.163), ∂vF (x,t)
∂s

is

given by

∂vFs(x, t)

∂s
|s=0 = 〈(λ− λ−), Y (x)〉, (5.171)

where (λ − λ−) is the adjoint process discontinuity at F0(x) = F (x) ∈ F (M) and

Y (x) = dFs(x)
ds
|s=0.

Proof. In the case of general Riemannian manifolds M and N , the sensitivity

function defined in (5.166) is a linear map from the tangent space of M to R. By

definition 2.1, x ∈ Rn+1 and so in our analysis N = Rn+1. Since by the definition

147



CHAPTER 5. THE GEOMETRY AND DEFORMATION OF SWITCHING MANIFOLDS

(5.164), t and x are chosen independently of s, we have

∂vFs(x, t)

∂s
|s=0 = lim

s→0

v(x, t, Fs(x))− v(x, t, F0(x))

s
,

(5.172)

where Fs(x) is the switching state on Fs(M). Applying the chain rule we have

∂vFs(x, t)

∂s
=
∂v(x, t, Fs(x))

∂Fs(x)
|s=0.

dFs(x)

ds
. (5.173)

Lemma 5.2 gives

∂v(x, t, Fs(x))

∂Fs(x)
|s=0 = λ− λ−, (5.174)

hence (5.174) and Y (x) = dFs(x)
ds
|s=0 yield (5.171). �

The following theorem gives the optimal mapping characteristics for the extended

hybrid cost function defined in (5.163).

Theorem 5.6. A mapping F0 which passes through the optimal controlled switch-

ing state, at which necessarily, λ−λ− = 0, and which is a harmonic map, i.e. a map

satisfying d
ds
E(Fs)|s=0 = 0, satisfies the necessary conditions for a solution to the

extended HOCP.

Proof. We observe that Theorem 5.5 implies that the second term of the right

hand side of (5.168) is given by:

∂||E(Fs)− E(IM→N)||2

∂s
= −2(E(Fs)− E(IM→N)).

∫
M

〈Y, τ(F )〉dµg.

(5.175)

Now if (x, t, F0) corresponds to the minimum of v(x, t, F ) then

∂v(x, t, F0)

∂x
⊥ TxM,

∂v(x, t, F0)

∂t
= 0, (5.176)
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and

∂v(x, t, Fs)

∂s
|s=0 = 0, (5.177)

where (5.176) holds by Lemma 5.1.

(5.177), Lemma 5.6 and Theorem 5.5 yield

0 =
∂v(x, t, Fs)

∂s
|s=0 = (λ− λ−).Y (x)− 2(E(F0)− E(IM→N)).

∫
M

〈Y, τ(F0)〉dµg,

(5.178)

and consequently

(λ− λ−).Y (x) = 2(E(F0)− E(IM→N))×
∫
M

〈Y, τ(F0)〉dµg. (5.179)

We observe that equation (5.179) must be satisfied for all C∞ variational vector fields

Y (.), the left hand side of (5.179) only depends on Y (.) at the optimal x and the right

hand side of (5.179) is independent of x.

Clearly λ − λ− = 0, τ(F0) = 0, satisfy both (5.176) and (5.177). Hence the

necessary condition (5.179) for optimally with respect to joint hybrid control and

switching manifold perturbations is satisfied for the mapping F0 for which F0(M)

passes through the optimal controlled switching state, i.e λ− λ− = 0 (see [80]), and

for which F0 is a harmonic map, i.e. τ(F0) = 0, (see [37]). �

Remark : It should be noted that such a mapping always exists since, for example

in R3, a simple shift is a harmonic map and it is always possible to obtain a shift

for which the initial manifold M passes through one of the states for which λ−λ− = 0.
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CHAPTER 6

Future Research

Proposed Research on Hybrid Minimum Principle

In the Hybrid Minimum Principle discussed in Chapters 2, it is assumed that (i)

all dynamical equations are defined on a same ambient Riemannian manifoldM; and

(ii) all switching manifolds N are smoothly embedded orientable submanifolds ofM

(see [66,75]).

These assumption can be relaxed so as to generalize the HMP framework and in

particular to extend the HMP results to hybrid systems with non-smooth switching

manifolds.

Proposed Research on GG-HMP and NG-HMP Algorithms

and HMP on Lie Groups

So far, the GG-HMP and NG-HMP algorithms mainly focus on the minimization

of the hybrid value function along geodesics. It is of interest and of potential value

to extend these algorithms to hybrid systems where switching manifolds do not have

pre-specified geometric structures. In that case geodesic curves are necessarily a priori

defined.
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The GG-HMP algorithm was modified for hybrid systems in such a way that flows

along exponential curves were utilized in the specification of the algorithm [76]. In

this connection, the general extension of the NG-HMP algorithm to hybrid systems on

Lie groups is a most important candidate for the further application and development

of optimization techniques on Riemannian manifolds.

Proposed Research on Hybrid Dynamic Programming on Man-

ifolds

It is known that the sufficient conditions for optimality can be derived by applying

dynamic programming to optimal control problems. A generalization of the standard

dynamic programming approach to hybrid systems was introduced by Shaikh and

Caines in [64]. In this case the hybrid value function is defined by the optimization of

hybrid cost function with respect to continuous and discrete controls; in principle, this

hybrid dynamic programming approach can be extended to hybrid systems defined

on Riemannian manifolds by employing the language of differential geometry and in

this connection we note a generalization of classic dynamic programming to optimal

control problems defined on manifolds is given in [23].

Proposed Research on Hybrid Systems with Uncertainty

All the analyses presented in this thesis are based upon full information about the

continuous and discrete dynamics. The analysis of hybrid systems where uncertainty

appears in both the continuous and the discrete dynamics constitutes a generalization

of the hybrid systems framework considered in this thesis. These problems can be

divided into two classes: (i) robust hybrid systems, and (ii) stochastic hybrid systems.

In the first case, within the framework of this thesis, one would analyze hybrid

systems on manifolds where uncertain parameters are constrained to lie within pre-

specified sets; in this setting the use of robust control methods such as H∞ and

µ-synthesis is to be investigated to obtain optimal performance under dynamical

uncertainties.
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In the second case, uncertainty is modelled within the framework of stochastic

dynamical systems, see [35,36,48]. Consequently the fundamental methods of Sto-

chastic Dynamic Programming and the Stochastic Minimum Principle would be used

for the construction of a theory of the optimization of stochastic hybrid systems on

manifolds.

A paradigm problem illustrating both cases above is that of a controlled rotating

satellite (see Section 4.6) whose mechanical parameters are not exactly known and

which is subject to random disturbances in the functioning of its thrusters.

Second Order Variation of the Energy of Deformation maps

In Chapter 5 we obtained the necessary conditions for the optimal deformation of

switching manifolds for autonomous hybrid systems in order to minimize the extended

hybrid cost function. However results presented by Theorem 5.6 do not guarantee

the minimization of the extended hybrid cost function introduced in (5.163). Similar

to standard optimization problems, sufficient conditions of optimality could be given

by the second order variation of the extended hybrid cost function with respect to

the optimization variables. In this connection, an investigation of the second order

variation of the extended hybrid value function is an important candidate for future

research, in particular this could be based upon the analysis of the second order

variation of the energy of maps presented in [53], Section 3.5.
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A.A.1

APPENDIX A

Proofs and Extended Results for

Chapter 2

A.1. Proof of Lemma 2.5

Proof. Since S is a smooth embedded submanifold of M the inclusion i : S →

M is a topological embedding and hence its rank is constant (see [43]). By the Rank

Theorem for Manifolds (see [42]), i may be locally given as

i(x1, ..., xn−1) = (x1, ..., xn−1, 0).

Hence, S is locally homeomorphic to Rn−1. As stated in Subsection 2.1.2, Φ
(ts,t0)
π,fq0

(x0)

converges to xo(ts) ∈ S as ε ↓ 0 (see [30]), therefore Φ
(ts,t0)
π,fq0

(x0) converges into any

neighbourhood of xo(ts) ∈ S as ε ↓ 0. Let us denote the coordinate domain neigh-

bourhood given by the Rank Theorem as Uxo(t−s ), where xo(t−s ) = Φ
(t−s ,t1)
fq0

(x(t1)) ∈ S.

Consider 0 < δt such that Φ
(ts+δt,ts)
fq0

(xo(t−s )) ∈ Uxo(t−s ). In the local coordinate

system around xo(t−s ) defined above, the switching manifold S separates Uxo(t−s ) into

two subsets U1
xo(t−s )

, U2
xo(t−s )

, where U1
xo(t−s )

= {x ∈ Uxo(t−s ), xn < 0} and U2
xo(t−s )

=

{x ∈ Uxo(t−s ), xn > 0}. For definiteness, we assume that first, the state trajectory

enters U1
xo(t−s )

and second, it enters U2
xo(t−s )

after meeting the switching manifold;
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Figure A.1. Nominal and Perturbed State Trajectories

therefore Φ
(ts+δt,ts)
fq0

(xo(t−s )) ∈ U2
xo(t−s )

for all sufficiently small δt > 0. The conver-

gence of Φ
(ts+δt,ts)
π,fq0

(x(ts)) to Φ
(ts+δt,ts)
fq0

(xo(t−s )) implies that for sufficiently small ε,

Φ
(ts+δt,ts)
π,fq0

(x(ts)) ∈ U2
xo(t−s )

, hence by the continuity of the trajectory there exists a

switching time, ts(ε), such that Φ
(ts(ε),ts)
π,fq0

(x(ts)) ∈ S, see Figure A.1.

Furthermore by the continuity of the state trajectory, we may choose 0 ≤ ε suffi-

ciently small that Φ
(ts(ε),ts)
π,fq0

(x(ts)) ∈ Uxo(t−s ). Let us define Ψ : R+ × R → R by

Ψ(ε, t) = xn ◦ Φ
(t,t1)
π,fq0

(x(t1)), where xn is the last coordinate function. Hence, the

differentiability of Ψ with respect to t is immediate by the construction of Ψ since

dΨ(ε,t)
dt
|ts(ε) = fnq0(x(ts(ε))), where fnq0 is the corresponding coefficient of the last coor-

dinate of fq0 .

In order to show the differentiability of Ψ with respect to ε the following needle
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variation is applied

uπ(t, ε) =



uo(t) t ≤ t1 − ε

u1 t1 − ε ≤ t ≤ t1

uo(t) t1 < t ≤ ts

uo(ts) ts ≤ t < ts(ε)

, (A.1)

We recall that Φ
(t,s),x
π,fq

(ε) := Φ
(t,s)

f
uπ(t,ε)
q

(x(s)) then one can verify that, by the results

of Proposition 2.2, the needle variation control uπ(t, ε), given in (2.14), results in the

following tangent perturbation vector at t1, where ε ∈ [0, ε0) for some ε0 > 0.

d

dε
Φ

(t1,s),x
π,fq0

|ε = lim
δ→0

Φ
(t1,s),x
π,fq0

(ε+ δ)− Φ
(t1,s),x
π,fq0

(ε)

δ

= TΦ
(t1,t1−ε)
π,fq0

(
fq0(x(t1 − ε), u1)− fq0(x(t1 − ε), u(t1 − ε))

)
∈ Tx(t1)M = T

Φ
(t1,s),x
π,fq0

(ε)
M.

(A.2)

That implies the differentiability of Ψ on [0, ε0), where (see Figure A.2)

d

dε
Φ

(t,t1),x
π,fq0

|ε = TΦ
(t,t1)
fq0

(
d

dε
Φ

(t1,s),x
π,fq0

|ε), t ∈ [t1, t−s (ε)).

The transversality hypothesis at the intersection of the state trajectory and the

switching manifold implies that fnq0(x(ts(ε))) 6= 0; then by employing the Implicit

Function Theorem (see [43], Theorem 7.9) we have

Ψ(ε, ts(ε)) = 0⇒ ∃κ : R→ R, s.t. κ(ε) = ts(ε),

and κ and Ψ both are C1; then the derivative of κ(.) with respect to ε is given as

dκ(ε)

dε
= −(

∂Ψ

∂t
)−1|t=ts(ε).

∂Ψ

∂ε
= −fn−1

q0
(x(ts(ε))).T

nΦ
(ts(ε),t1)
fq0

(
d

dε
Φ

(t1,s),x
π,fq0

|ε),

(A.3)

where T nΦ
(ts(ε),t1)
fq0

( d
dε

Φ
(t1,s),x
π,fq0,u1

|ε) is the nth coordinate of TΦ
(ts(ε),t1)
fq0

( d
dε

Φ
(t1,s),x
π,fq0

|ε).
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Figure A.2. Nominal and Perturbed State Trajectories

This completes the proof of differentiability of ts(ε) with respect to ε. The proof

for the differentiability of ts(ε) in the case where ts(ε) < ts parallels the proof given

above. �

A.2. Proof of Lemma 2.6

Proof. Without loss of generality assume ts ≤ ts(ε), then

Φ
(ts(ε),t1),x
π,fq1

(ε) = ζ ◦ Φ
(t−s (ε),t1),x
π,fq0

(ε), t1 ∈ [t0, ts), (A.4)

where Φ
(t−s (ε),t1),x
π,fq0

(ε) = Φ
(t−s (ε),ts)
π,fq0

◦Φ
(t−s ,t1),x
π,fq0

(ε) and x(t1) = x, then in a local coordinate

system of x(ts) we have

ζ ◦ Φ
(t−s (ε),ts)
π,fq0

◦ Φ
(t−s ,t1),x
π,fq0

(ε)− Φ
(ts(ε),ts)
fq1

◦ ζ ◦ Φ
(t−s ,t1),x
fq0

(ε) ={
ζ
( ∫ ts(ε)

ts

fq0(xε(t), u
o(ts))dt+ xε(ts)

)}
−
{∫ ts(ε)

ts

fq1(x
o(t), uo(t))dt+ ζ(xo(t−s ))

}
.

(A.5)

Since u(t) = uo(ts), t ∈ [ts, t
−
s (ε)), fq0(xε(t), u

o(ts)) is differentiable with respect

to t. Hence by the Taylor expansion of ζ around xε(ts) and the Mean Value Theorem
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we have {
ζ
( ∫ t−s (ε)

ts

fq0(xε(t), u
o(ts))dt+ xε(ts)

)}
=

ζ(xε(ts)) + (ts(ε)− ts)× Tζ.fq0(xε(t̂), uo(ts)) + o(δx),

(A.6)

where t̂ ∈ (ts, t
−
s (ε)). Applying the Taylor expansion of ζ around xo(ts) imples

ζ(xε(ts))− ζ(xo(t−s )) = Tζ(xε(ts)− xo(t−s )) + o(δx), (A.7)

where by the definition of the derivatives we have

dΦ
(ts(ε),t1),x
π,fq1

dε
|ε=0 = lim

ε↓0

Φ
(ts(ε),t1),x
π,fq1

− Φ
(ts(ε),t1),x
fq1

ε

= lim
ε↓0

ζ ◦ Φ
(t−s (ε),ts)
π,fq0

◦ Φ
(t−s ,t1),x
π,fq0

− Φ
(ts(ε),ts)
fq1

◦ ζ ◦ Φ
(t−s ,t1),x
fq0

ε
,

(A.8)

therefore as ε ↓ 0, Lemma 2.5 and (A.8) together yield

dΦ
(ts(ε),t1),x
π,fq1

dε
|ε=0 = Tζ ◦ TΦ

(t−s ,t1)
fq0

◦
dΦ

(t1,t0),x0
π,fq0

dε
|ε=0

+
dts(ε)

dε
|ε=0.

(
Tζ(fq0((x

o(t−s ), uo(t−s )))− fq1(xo(ts), uo(ts))
)
.

(A.9)

Lemma 2.2 and Proposition 2.2 complete the proof for the case ts ≤ ts(ε). The same

argument holds for ts(ε) < ts with a sign change for dts(ε)
dε
|ε=0. It should be noted that

the derivative in (A.8) gives the state variation at ts(ε), therefore the nominal flow is

subtracted from the perturbed one up to ts(ε). �

A.3. Proof of Theorem 2.2

Proof. We split the proof into the following steps: First, the needle variation is

applied at t1, where ts < t1 ≤ tf and ts is the optimal switching time on the switching
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manifold from q0 to q1, hence there is no switching phenomena after t1. At this stage

the proof is same as the proof presented in [3] and [6]. Second, the needle variation

is applied at t1, t0 ≤ t1 < ts. Third, we show that the constructed adjoint variable,

λ, satisfies the Hamiltonian equations and, fourth, the continuity of the Hamiltonian

at the optimal switching state and time (xo(ts), ts) is obtained.

Step 1 : Choose the following control needle variation:

uπ(t, ε) =

 u1 t1 − ε ≤ t ≤ t1

uo(t) elsewhere
, (A.10)

where ts < t1 ≤ tf , u1 ∈ U . By Lemma 2.2 the state variation at t1 is

[fq1(x
o(t1), u1)− fq1(xo(t1), uo(t1))] ∈ Txo(t1)M. By the definition of Ktf we have

TΦ
(tf ,t

1)

fq1
([fq1(x

o(t1), u1)− fq1(xo(t1), uo(t1))]) ∈ K1
tf
⊂ Txo(tf )M. (A.11)

Lemma 2.7 implies that

0 ≤ 〈dh(xo(tf )), TΦ
(tf ,t

1)

fq1
([fq1(x

o(t1), u1)− fq1(xo(t1), uo(t1))])〉 , (A.12)

and by Proposition 2.1

0 ≤ 〈dh(xo(tf )), TΦ
(tf ,t

1)

fq1
fq1(x

o(t1), u1)− fq1(xo(t1), uo(t1))〉

= 〈T ∗Φ(tf ,t
1)

fq1
dh(xo(tf )), fq1(x

o(t1), u1)− fq1(xo(t1), uo(t1))〉,

ts < t1 < tf . (A.13)

Therefore

〈T ∗Φ(tf ,t
1)

fq1
dh(xo(tf )), fq1(x

o(t1), uo(t1)〉

≤ 〈T ∗Φ(tf ,t
1)

fq1
dh(xo(tf )), fq1(x

o(t1), u1))〉, ts < t1 < tf , (A.14)

for all u1 ∈ U and setting po(t) := T ∗Φ
(tf ,t)

fq1
dh(xo(tf )) yields a trajectory po(.) satis-

fying the minimization statement of the theorem.
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Step 2 : Here we use the needle variation before the optimal switching time ts i.e:

uπ(t, ε) =

 u1 t1 − ε ≤ t ≤ t1

uo(t) elsewhere
, (A.15)

where t1 < ts, u1 ∈ U . Similar to the first step, the derivative of the state trajectory

with respect to ε at t1 is obtained as [fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))] ∈ TxM and

d
dε

Φ
(t,s),x
π,fq0
|ε=0 = Ψ(t), t ∈ [t1, ts). In order to use the method introduced in the first

step, we describe the evolution of the perturbed state, Φ
(t,s),x
π,fq

, after the switching

time. Note that each elementary control variation, uπ(t1, ε), results in a different

switching time ts which depends upon both of ε and u1. Now let us consider a state

mapping from x(t1) to the switching state x(t−s (ε)) induced by the needle control

variation; then the state variation at the optimal switching state xo(t−s ) is obtained

as the push forward of

Φ
(t−s (.),t1),x
π,fq0

: [0, τ ]→ S, x ∈M, x(ts(ε)) ∈ S, (A.16)

where Φ
(t−s (ε),t1),x
π,fq0

:= Φ
(t−s (ε),t1)
π,fq0

(x(t1)) ∈ S and ts(ε) is the switching time corresponding

to the selected ε. Here we have two possibilities, (i): ts ≤ ts(ε) and (ii): ts(ε) < ts.

The corresponding control needle variations for these two possibilities are given as

follows:

(i) : ts ≤ ts(ε), uπ(t, ε) =



uo(t) t ≤ t1 − ε

u1 t1 − ε ≤ t ≤ t1

uo(t) t1 < t ≤ ts

uo(ts) ts ≤ t < ts(ε)

, (A.17)

and

(ii) : ts(ε) < ts, uπ(t, ε) =



uo(t) t ≤ t1 − ε

u1 t1 − ε ≤ t ≤ t1

uo(t) t1 < t < ts(ε)

uo(ts) ts(ε) ≤ t ≤ ts

. (A.18)
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Notice that uo(ts) in (i) corresponds to fq0 under the optimal control and in (ii)

corresponds to fq1 under the optimal control. The right differentiability of ts(ε) with

respect to ε at 0 by Lemma 2.5 (since the needle variation is defined for 0 ≤ ε) and

Lemma 2.6, in case (i), together imply

dΦ
(t−s (ε),t1),x
π,fq0

dε
|ε=0 =

(dts(ε)
dε
|ε=0

)
.fq0((x

o(t−s ), uo(t−s )))

+TΦ
(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))] ∈ Txo(t−s )S ⊂ Txo(t−s )M.

(A.19)

And in case (ii) we have

dΦ
(t−s (ε),t1),x
π,fq0

dε
|ε=0 = −

(dts(ε)
dε
|ε=0

)
.fq0((x

o(t−s ), uo(t−s )))

+TΦ
(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))] ∈ Txo(t−s )S ⊂ Txo(t−s )M.

(A.20)

In the first case, (2.53) and (A.19) together yield

dts(ε)

dε
|ε=0 = −〈dNxo(t−s ), fq0((x

o(t−s ), uo(t−s )))〉−1

×〈dNxo(t−s ), TΦ
(ts,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]〉,

(A.21)

and in the second case, (2.53) and (A.20) together yield

dts(ε)

dε
|ε=0 = 〈dNxo(t−s ), fq0((x

o(t−s ), uo(t−s )))〉−1

×〈dNxo(t−s ), TΦ
(ts,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]〉,

(A.22)
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where due to the transversality assumption in Definition 2.2,

〈dNxo(t−s ), fq0((x
o(t−s ), uo(t−s )))〉 6= 0.(

We notice that (A.21) coincides with (A.3) since in the coordinate system given

in the proof of Lemma 2.5, dNxo(t−s ) = (0, ..., 0, 1) therefore

〈dNxo(t−s ), fq0((x
o(t−s ), uo(t−s )))〉−1〈dNxo(t−s ), TΦ

(ts,t1)
fq0

[fq0(x
o(t1), u1)

−fq0(xo(t1), uo(t1))]〉 = fn
−1

q0
(x(ts)).T

nΦts,t1

fq0
[fq0(x

o(t1), u1)− fq0(xo(t1), uo(t1))].
)

Based on (A.19) and (A.20), we have

dΦ
(t−s (ε),t1),x
π,fq0

dε
|ε=0 ∈ Txo(t−s )S, where for the simplicity of notation Ti is omitted. The

variation of the state trajectory at ts is obtained by evaluating Tζ on

(dts(ε)
dε
|ε=0).fq0((x

o(t−s ), uo(t−s )))+TΦ
(ts,t1)
fq0

[fq0(x
o(t1), u1)−fq0(xo(t1), uo(t1))], where by

definition, Tζ : TM→ TM is the push forward of ζ. Therefore

Tζ

(
(
dts(ε)

dε
|ε=0).fq0((x

o(t−s ), uo(t−s ))) + TΦ
(t−s ,t1)
fq0

[fq0(x
o(t1), u1)

− fq0(x
o(t1), uo(t1))]

)
∈ Txo(ts)M. (A.23)

Parallel to the results in [66], and following Lemma 2.6, in case (i), the state variation

at ts is

dΦ
(ts,ts(ε))
π,fq1

◦ Φ
(t−s (ε),t1)
π,fq0

(x(t1))

dε
|ε=0 = Tζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

+
dts(ε)

dε
|ε=0[Tζ(fq0(x

o(t−s ), uo(t−s )))− fq1(xo(t−s ), uo(t−s ))] ∈ Txo(ts)M,

(A.24)

and in case (ii)
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dΦ
(ts(ε),ts)
π,fq1

◦ Φ
(t−s ,t1)
π,fq0

(x(t1))

dε
|ε=0 = Tζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

+
dts(ε)

dε
|ε=0[fq1(x

o(ts), u
o(ts))− Tζ(fq0(x

o(t−s ), uo(t−s )))] ∈ Txo(ts)M.

(A.25)

Due to the sign change in (A.21) and (A.22), both of the cases (i) and (ii) give

the same results as in (A.25) and (A.24) respectively. Henceforth, we only consider

the second case. (A.22) and (A.25) together imply

dΦ
(ts(ε),ts)
π,fq1

◦ Φ
(t−s ,t1)
π,fq0

(x(t1))

dε
|ε=0 = Tζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

+〈dNxo(t−s ), fq0((x
o(t−s ), uo(t−s )))〉−1〈dNxo(t−s ), TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)

−fq0(xo(t1), uo(t1))]〉[fq1(xo(ts), uo(ts))− Tζ(fq0(x
o(t−s ), uo(t−s )))] ∈ Txo(ts)M,

(A.26)

where TΦ
(tf ,ts)

fq1

(dΦ
(ts(ε),ts)
π,fq1

◦Φ(t−s ,t
1)

π,fq0
(x(t1))

dε
|ε=0

)
∈ K2

tf
and by Lemma 2.7, we have

0 ≤ 〈dh(xo(tf )), TΦ
(tf ,ts)

fq1

(dΦ
(ts(ε),ts)
π,fq1

◦ Φ
(t−s ,t1)
π,fq0

(x(t1))

dε
|ε=0

)
〉, (A.27)

therefore

0 ≤
〈
dh(xo(tf )), TΦ

(tf ,ts)

fq1

{
Tζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

+〈dNxo(t−s ), fq0((x
o(t−s ), uo(t−s )))〉−1

×〈dNxo(t−s ), TΦ
(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]〉

[fq1(x
o(ts), u

o(ts))− Tζ(fq0(x
o(t−s ), uo(t−s )))]

}〉
,

(A.28)

which implies
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0 ≤ 〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), T ζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

+〈dNxo(t−s ), fq0((x
o(t−s ), uo(t−s )))〉−1 ×

{
〈dNxo(t−s ), TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]〉

}
×[fq1(x

o(ts), u
o(ts))− Tζ(fq0(x

o(t−s ), uo(t−s )))]〉.

(A.29)

By the linearity of push-forwards (see [43]), (A.29) becomes

0 ≤ 〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), T ζ ◦ TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]〉

+〈dNxo(t−s ), fq0((x
o(t−s ), uo(t−s )))〉−1

×〈dNxo(t−s ), TΦ
(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]〉

×〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), fq1(x

o(ts), u
o(ts))− Tζ(fq0(x

o(t−s ), uo(t−s )))〉,

(A.30)

where one may write this as

0 ≤ 〈T ∗Φ(t−s ,t1)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), fq0(x

o(t1), u1)− fq0(xo(t1), uo(t1))〉

+µ〈T ∗Φ(t−s ,t1)
fq0

dNxo(t−s ), fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))〉,

(A.31)

where

µ = 〈dh(xo(tf )), TΦ
(tf ,ts)

fq1
[fq1((x

o(ts), u
o(ts))− Tζ(fq0((x

o(t−s ), uo(t−s )))]〉

×〈dNxo(t−s ), fq0((x
o(t−s ), uo(t−s )))〉−1 ∈ R.

(A.32)
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Applying Proposition 2.1 to (A.31) on [t1, t−s ], we have

〈T ∗Φ(t−s ,t1)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf ))

+µT ∗Φ
(t−s ,t1)
fq0

dNxo(t−s ), fq0(x
o(t1), uo(t1))〉

≤ 〈T ∗Φ(t−s ,t1)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf ))

+µT ∗Φ
(t−s ,t1)
fq0

dNxo(t−s ), fq0(x
o(t1), u1)〉; (A.33)

then, as in the first step, define

po(t) := T ∗Φ
(t−s ,t)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf ))

+µT ∗Φ
(t−s ,t)
fq0

dNxo(t−s ), t ∈ [t0, ts). (A.34)

Since T ∗Φ
(t−s ,ts)
fq0

= I, choosing t1 = ts gives

po(t−s ) = T ∗ζ(po(ts)) + µdNxo(t−s ). (A.35)

Following (2.28) in the non-hybrid case, the Hamiltonian function is defined as

Hq0(x
o(t), po(t), uo(t)) = 〈

{
T ∗Φ

(t−s ,t)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf ))

+ µT ∗Φ
(t−s ,t)
fq0

dNxo(t−s )

}
, fq0(x

o(t), uo(t)〉, t ∈ [t0, ts).

(A.36)

Step 3 : We need to show λo(t) = (xo(t), po(t)) = (xo(t), T ∗Φ
(tf ,t)

fq1
dh(xo(tf ))), t ∈

[t0, ts) and

λo(t) = (xo(t), T ∗Φ
(t−s ,t)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf )) + µT ∗Φ

(t−s ,t)
fq0

dNxo(t−s ), t ∈ [ts, tf ]

satisfy (2.31). By the definition of Hamiltonian functions given by (2.27) and (2.28),

it is obvious that ẋ(t) = ∂Hi
∂p
, i = 0, 1. To prove ṗo(t) = −∂Hi

∂x
, i = 0, 1, first we use

the adjoint curve expression λ(t), t ∈ [ts, tf ] given by (A.14). Therefore we have

ṗo(t) =
d

dt
T ∗Φ

(tf ,t)

fq1
dh(xo(tf ))), (A.37)

176



A.A.3

where together with Lemma 2.3 and 2.22 implies

ṗo(t) =

[
−(
∂f iq1
∂xj

pj)

]n
i,j=1

= −∂Hq1(x
o(t), po(t))

∂x
. (A.38)

Same argument holds for po(t) = T ∗Φ
(t−s ,t)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf ))

+ µT ∗Φ
(t−s ,t)
fq0

dNxo(t−s ), t ∈ [t0, ts).

Step 4 : Here we complete the proof by obtaining the continuity of the Hamilton-

ian at the optimal switching time ts. In [66], the Hamiltonian continuity based on

the control needle variation approach is derived only for controlled switching hybrid

systems. We give a continuity proof in the case of autonomous switching hybrid sys-

tems via the following algebraic steps.

Notice that

〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), [fq1((x

o(ts), u
o(ts))− Tζ(fq0((x

o(t−s ), uo(t−s )))]〉 =

〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), 〈dNxo(t−s ), fq0(x

o(ts), u
o(ts))〉−1 ×

〈dNxo(t−s ), fq0(x
o(ts), u

o(ts))〉 ×

[fq1((x
o(ts), u

o(ts))− Tζ(fq0((x
o(t−s ), uo(t−s )))]〉.

(A.39)
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Therefore by (A.39) we have

Hq1(x
o(ts), p

o(ts), u
o(ts)) = 〈p(ts), fq1((xo(ts), uo(ts))〉

= 〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), fq1((x

o(ts), u
o(ts))〉 by A.14

= 〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), T ζ(fq0((x

o(t−s ), uo(t−s )))〉

+ 〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )),

〈dNxo(t−s ), fq0(x
o(ts), u

o(ts))〉−1

× [fq1((x
o(ts), u

o(ts))− Tζ(fq0((x
o(t−s ), uo(t−s )))]〉

× 〈dNxo(t−s ), fq0(x
o(ts), u

o(ts))〉 by A.39

= 〈T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), fq0((x

o(t−s ), uo(t−s ))〉

+ µ〈dNxo(t−s ), fq0(x
o(ts), u

o(ts))〉 by A.32, (A.40)

hence by the definition of p in (A.14) and (A.34) we have

〈p(ts), fq1((xo(ts), uo(ts))〉 = 〈p(t−s ), fq0((x
o(t−s ), uo(t−s ))〉, (A.41)

which gives the continuity of the Hamiltonian at the switching time ts. �

It should be noted that setting ζ = I above subsumes the results obtained in [66]

for non-impulsive autonomous hybrid systems.

A.4. Proof of Theorem 2.3

The following results for the variation of the hybrid value function is presented

and then a complete proof of Theorem 2.3 is provided.

Since S is an embedded submanifold ofM, necessarily there exists an embedding

i from S to i(S) ⊂M. The push-forward of i is given as

Ti : TxS → TxM. (A.42)

For any tangent vector X ∈ TxS, the image vector Ti(X) ∈ TxM is a tangent vector

onM. There exists a local coordinate representation ofX, i.e. X =
∑n

j=1X
j ∂
∂xj

, such
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that X ∈ TxS if and only if Xj = 0, j > k, where k is the dimension of S, see [43].

The following lemma gives a relation between dv(xo(t−s ), ts) =
∑n

j=1
∂v(xo(ts),ts)

∂xj
dxj ∈

T ∗
xo(t−s )

M where v(xo(ts), ts) is smooth by A4 and a tangent vector X ∈ Txo(t−s )M

which is also a tangent vector in Txo(t−s )S in the local coordinate system given above.

The statement of the following lemma is given for a general embedded submanifold

S which is not necessarily n− 1 dimensional.

Lemma A.1. Consider an MHOCP with a single switching from the discrete state

q0 to the discrete state q1 at the unique switching time ts on the optimal trajectory

xo(.) and a k dimensional embedded switching manifold S ⊂ M satisfying A1-A4;

then at the optimal switching state xo(ts) ∈ S and switching time ts, we have

〈dv(xo(t−s ), ts), X〉 = 0, ∀X ∈ Ti(Txo(t−s )S). (A.43)

Proof. Since X ∈ Ti(Txo(t−s )S) there exists XS ∈ Txo(t−s )S such that X =

Ti(XS). By applying the same extension method employed in Lemma 2.7, we ex-

tend XS to a vector field X
′
S ∈ X (S) such that X

′
S(xo(t−s )) = XS .

Let us denote the induced Riemannian metric from M to S as gS . By the fun-

damental theorem of existence of geodesics and the Taylor expansion on Riemannian

manifolds we have

v((expxo(t−s )θXS), ts) = v(xo(t−s ), ts) + θ(∇′
X
′
S
v)(xo(t−s ), ts) + o(θ),

0 < θ < θ∗, (A.44)

where ∇′ is the Levi-Civita connection of S with respect to the induced metric gS .

Since S is an embedded submanifold of M, the inclusion map is a full rank homeo-

morphism from S to i(S), therefore, for each X ∈ Ti(Txo(t−s )S) the corresponding XS

is unique. The vector space property of Txo(t−s )S implies −XS ∈ Txo(ts)S, hence, by

the optimality of xo(t−s ) on S and the accessibility of ẋ(t) = fq0(x, u), an application

of (A.44) to v along −XS gives

∇′
X
′
S
v = 0, ∀X ′S ∈ Txo(t−s )S. (A.45)
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(A.45) and (2.41) (ii) together imply

∂v

∂xj
(xo(t−s ), ts) = 0, j = 1, ..., k, (A.46)

where k is the dimension of S. In the local coordinates of xo(ts) ∈M, (A.46) yields

〈dv(xo(t−s ), ts), X〉 = 〈
n∑
j=1

∂v(xo(t−s ), ts)

∂xj
dxj,

n∑
j=1

Xj ∂

∂xj
〉, (A.47)

where (A.46) together with Xj = 0, j > k completes the proof. �

The proof of Theorem 2.3 is then given as follows:

Proof. The proof is parallel to the proof of Theorem 2.2 where by Lemma A.1,

dNxo(t−s ) is replaced by dv(xo(t−s ), ts). �

A.5. Proof of Theorem 2.4

Proof. The first step of the proof of Theorem 2.2 is unchanged. For the control

needle variation before the optimal switching time ts, i.e. step 2, in case (i): ts ≤ ts(ε),

we have

dΦ
(t−s (ε),t1),x
π,fq0

dε
|ε=0 ⊕

dts(ε)

dε
|ε=0

∂

∂ts
= (

dts(ε)

dε
|ε=0)

×fq0((xo(t−s ), uo(t−s ))) + TΦ
(t−s ,t1)
fq0

[fq0(x
o(t1), u1)

−fq0(xo(t1), uo(t1))]⊕ dts(ε)

dε
|ε=0

∂

∂ts
∈ T(xo(ts),ts)S.

(A.48)

And in case (ii), i.e. ts(ε) ≤ ts, we have

dΦ
(t−s (ε),t1),x
π,fq0

dε
|ε=0 ⊕

dts(ε)

dε
|ε=0

∂

∂ts
= −dts(ε)

dε
|ε=0

×fq0((xo(t−s ), uo(t−s ))) + TΦ
(t−s ,t1)
fq0

[fq0(x
o(t1), u1)

−fq0(xo(t1), uo(t1))]⊕ dts(ε)

dε
|ε=0

∂

∂ts
∈ T(xo(ts),ts)S.

(A.49)
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Therefore by (2.67) we have

〈dN(xo(t−s ),ts)
,
dΦ

(t−s (ε),t1),x
π,fq0

dε
|ε=0 ⊕

dts(ε)

dε
|ε=0

∂

∂ts
〉 =

〈dN o
x(t−s ),

dΦ
(t−s (ε),t1),x
π,fq0

dε
|ε=0〉+

dts(ε)

dε
|ε=0〈dNts ,

∂

∂t
〉 = 0,

(A.50)

and finally in case (i) we have

dts(ε)

dε
|ε=0 = −

(
〈dNxo(t−s ), fq0(x

o(ts), u
o(ts))〉+ 〈dNts ,

∂

∂t
〉
)−1

×
〈
dNxo(t−s ), TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

〉
,

(A.51)

and in case (ii)

dts(ε)

dε
|ε=0 =

(
〈dNxo(t−s ), fq0(x

o(ts), u
o(ts))〉+ 〈dNts ,

∂

∂t
〉
)−1

×
〈
dNxo(t−s ), TΦ

(t−s ,t1)
fq0

[fq0(x
o(t1), u1)− fq0(xo(t1), uo(t1))]

〉
,

(A.52)

where µ in (A.34) is given as

µ =
〈
dh(xo(tf )), TΦ

(tf ,ts)

fq1
[fq1((x

o(ts), u
o(ts))− Tζ(fq0((x

o(t−s ), uo(t−s )))]
〉

×
(
〈dNxo(t−s ), fq0((x

o(t−s ), uo(t−s )))〉+ 〈dNts ,
∂

∂t
〉
)−1

.

(A.53)

Following the steps of the proof of Theorem 2.2 we have

po(t−s ) = T ∗ζ(po(ts)) + µdNxo(t−s ),

po(t−s ) ∈ T ∗
xo(t−s )

M, po(ts) ∈ T ∗xo(ts)M,

xo(ts) = ζ(xo(t−s )), (A.54)
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where

po(t) := T ∗Φ
(t−s ,t)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf ))

+µT ∗Φ
(t−s ,t)
fq0

dv(xo(t−s ), ts), t ∈ [t0, ts), (A.55)

and

po(t) := T ∗Φ
(tf ,t)

fq1
dh(xo(tf )), t ∈ [ts, tf ]. (A.56)

Step 3 in the proof of Theorem 2.2 also holds for time varying switching cases.

To analyze the possible discontinuity of the Hamiltonian we employ the same method

as that used in step 4 of the proof of Theorem 2.2. Therefore

〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), [fq1((x

o(ts), u
o(ts))− Tζ(fq0(x

o(t−s ), uo(t−s )))]〉 =〈
T ∗Φ

(tf ,ts)

fq1
dh(xo(tf )),

[
〈dNxo(t−s ), fq0(x

o(t−s ), uo(t−s ))〉

+〈dNts ,
∂

∂t
〉
]−1 ×

(
〈dNxo(t−s ), fq0(x

o(t−s ), uo(t−s ))〉+ 〈dNts ,
∂

∂t
〉
)

×[fq1((x
o(ts), u

o(ts))− Tζ(fq0(x
o(t−s ), uo(t−s )))]

〉
,

(A.57)
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which implies

Hq1(x
o(ts), p

o(ts), u
o(ts)) = 〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), fq1((x

o(ts), u
o(ts))〉 by A.14

= 〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), T ζ(fq0((x

o(t−s ), uo(t−s )))〉

+
〈
T ∗Φ

(tf ,ts)

fq1
dh(xo(tf )),{(

〈dNxo(t−s ), fq0(x
o(ts), u

o(ts))〉+ 〈dNts ,
∂

∂t
〉
)−1

×[fq1((x
o(ts), u

o(ts))− Tζ(fq0((x
o(t−s ), uo(t−s )))]

}〉
×
(
〈dNxo(t−s ), fq0(x

o(ts), u
o(ts))〉+ 〈dNts ,

∂

∂t
〉
)

by A.57

= 〈T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), fq0((x

o(t−s ), uo(t−s ))〉

+µ〈dNxo(t−s ), fq0(x
o(ts), u

o(ts))〉+ µ〈dNts ,
∂

∂t
〉 by A.53,

(A.58)

and finally we have

〈po(ts)), fq1((xo(ts), uo(ts))〉 = 〈po(t−s )), fq0((x
o(t−s ), uo(t−s ))〉+ µ〈dNts ,

∂

∂t
〉,

(A.59)

or equivalently

Hq0(x
o(t−s ), po(t−s ), uo(t−s )) = Hq1(x

o(ts), p
o(ts), u

o(ts))− µ〈dNts ,
∂

∂t
〉,

(A.60)

which completes the proof. �

A.5.1. Interior Optimal Switching States, Time Varying Switching Man-

ifolds and Impulsive Jumps. In this section we extend Theorem 2.4 to MHOCPs

satisfying A4 where the switching manifold S and the impulsive jump ζ̂ are both
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time varying. The results here are consistent with the results presented in [57].

In the case where the switching manifold is a time variant submanifold S ⊂M×R,

we have

d̂v(x, t) ∈ T ∗(x,t)(M×R) = T ∗xM⊕ T ∗t R, (A.61)

where locally

d̂v(xo(t−s ), ts) =
n∑
j=1

∂v(xo(t−s ), ts)

∂xj
dxj +D∗t v(xo(t−s ), ts)dt ∈ T ∗xo(t−s )

M⊕ T ∗tsR.

(A.62)

The following lemma is an extension of Lemma A.1 on time varying switching mani-

folds.

Lemma A.2. For an MHOCP with a single switching from the discrete state q0 to

the discrete state q1 at the unique switching time ts on the optimal trajectory xo(.) and

an embedded time varying switching manifold S ⊂M×R of dimension k ≤ dim(M);

then at the optimal switching state and time (xo(t−s ), ts) ∈ S,

〈d̂v(xo(t−s ), ts), X〉 = 0, ∀X ∈ T(xo(t−s ),ts)
S. (A.63)

Proof. The proof is parallel to the proof of Lemma A.1 concerning the extra

variable ts. �

Theorem A.1. Consider an impulsive MHOCP satisfying hypotheses A1-A4;

then corresponding to the optimal control and optimal trajectory uo, xo, there exists

a nontrivial adjoint trajectory λo(.) = (xo(.), po(.)) ∈ T ∗M defined along the optimal

state trajectory such that:

Hqi(x(t), po(t), uo(t)) ≤ Hqi(x(t), po(t), u1), ∀u1 ∈ U, t ∈ [t0, tf ], i = 0, 1,

(A.64)
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and the corresponding optimal adjoint variable λo(.) ∈ T ∗M, locally given as λo(.) =

(xo(.), po(.)), satisfies

λ̇o(t) =
−→
H qi(λ

o(t)), t ∈ [t0, tf ], i = 0, 1. (A.65)

At the optimal switching state and switching time, (xo(ts), ts), we have

po(t−s ) = T ∗ζ(po(ts)) + µdv(xo(t−s ), ts),

po(t−s ) ∈ T ∗
xo(t−s )

M, po(ts) ∈ T ∗xo(ts)M,

xo(ts) = ζ(xo(t−s )), (A.66)

xo(t0) = x0, p
o(tf ) = dh(xo(tf )) ∈ T ∗xo(tf )M, dh =

n∑
i=1

∂h

∂xi
dxi ∈ T ∗xM, (A.67)

where µ ∈ R,

T ∗ζ̂ = T ∗ζ ⊕D∗t ζ : T ∗M→ T ∗M⊕ T ∗R, (A.68)

and

T ∗ζ : T ∗M→ T ∗M, D∗t ζ : T ∗M→ T ∗R. (A.69)

The discontinuity of the Hamiltonian at (xo(t−s ), ts), is given as follows:

Hq0(x
o(t−s ), po(t−s ), uo(t−s )) =

Hq1(x
o(ts), p

o(ts), u
o(ts))−D∗t ζ(po(ts))− µD∗t v(xo(t−s ), ts). (A.70)

Proof. The proof is parallel to that of Theorem 2.4 and employs the results of

Lemma A.2. �
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A.6. Proof of Theorem 2.5

Proof. The proof closely parallels the proof of Theorem 2.4 where

po(t) := T ∗Φ
(t−s ,t)
fq0

◦ T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf ))

+µT ∗Φ
(t−s ,t)
fq0

dNxo(t−s ), t ∈ [t0, ts), (A.71)

and

po(t) := T ∗Φ
(tf ,t)

fq1
dh(xo(tf )), t ∈ [ts, tf ], (A.72)

where

µ = 〈dh(xo(tf )), TΦ
(tf ,ts)

fq1
[fq1(x

o(ts), u
o(ts))− Tζ(fq0(x

o(t−s ), uo(t−s )))

−Dtζ(xo(ts), ts)]〉 ×
(
〈dNxo(t−s ), fq0((x

o(t−s ), uo(t−s )))〉+ 〈dNts ,
∂

∂t
〉
)−1

.

(A.73)

It should be noted that Dtζ(xo(ts), ts)(
∂
∂t

) ∈ TM and for simplicity we drop ∂
∂t

. To

prove the Hamiltonian discontinuity we have〈
T ∗Φ

(tf ,ts)

fq1
dh(xo(tf )),

{
fq1(x

o(ts), u
o(ts))

−Tζ(fq0(x
o(t−s ), uo(t−s )))−Dtζ(xo(ts), ts)

}〉
=
〈
T ∗Φ

(tf ,ts)

fq1
dh(xo(tf )),

(
〈dv(xo(t−s ), ts), fq0(x

o(t−s ), uo(t−s ))〉

+〈dNts ,
∂

∂t
〉
)−1 ×

(
〈dNxo(t−s ), fq0(x

o(t−s ), uo(t−s ))〉+ 〈dNts ,
∂

∂t
〉
)

×[fq1(x
o(ts), u

o(ts))− Tζ(fq0(x
o(t−s ), uo(t−s )))−Dtζ(xo(ts), ts)]

〉
,

(A.74)
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which implies

Hq1(x
o(ts), p

o(ts), u
o(ts)) =

〈
T ∗Φ

(tf ,ts)

fq1
dh(xo(tf )), fq1(x

o(ts), u
o(ts))

〉
by A.14

=
〈
T ∗Φ

(tf ,ts)

fq1
dh(xo(tf )), T ζ(fq0((x

o(t−s ), uo(t−s )))
〉

+〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), Dtζ(xo(ts), ts)〉

+
〈
T ∗Φ

(tf ,ts)

fq1
dh(xo(tf )),

(
〈dNxo(t−s ), fq0(x

o(ts), u
o(ts))〉+ 〈dNts ,

∂

∂t
〉
)−1

×[fq1(x
o(ts), u

o(ts))− Tζ(fq0(x
o(t−s ), uo(t−s )))]

〉
×
(
〈dNxo(t−s ), fq0(x

o(ts), u
o(ts))〉+ 〈dNts ,

∂

∂t
〉
)

by A.74

= 〈T ∗ζ ◦ T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), fq0(x

o(t−s ), uo(t−s ))〉

+µ〈dNxo(t−s ), fq0(x
o(t−s ), uo(t−s ))〉

+D∗t ζ(T ∗Φ
(tf ,ts)

fq1
dh(xo(tf ))) + µ〈dNts ,

∂

∂t
〉 by A.73

= Hq0(x
o(t−s ), po(t−s ), uo(t−s )) +D∗t ζ(T ∗Φ

(tf ,ts)

fq1
dh(xo(tf ))) + µ〈dNts ,

∂

∂t
〉,

(A.75)

where by the definition of pullbacks (see [43])

〈T ∗Φ(tf ,ts)

fq1
dh(xo(tf )), Dtζ(xo(ts), ts)〉 = D∗t ζ(T ∗Φ

(tf ,ts)

fq1
dh(xo(tf ))) ∈ R, (A.76)

and po(ts) = T ∗Φ
(tf ,ts)

fq1
dh(xo(tf )). The remaining of the proof is similar to that of

(A.59) and (A.60). �
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APPENDIX B

Proofs and Extended Results for

Chapter 5

B.1. Proof of Theorem 5.1

Proof. The state variation is derived by subtracting the perturbed and nominal

states as follows

xβ(tf )− xα(tf ) =

∫ tα

0

(
f1(xβ(τ), uβ(τ))− f1(xα(τ), uα(τ))

)
dτ

+

∫ tβ

tα

(
f1(xβ(τ), uβ(τ))− f2(xα(τ), uα(τ))

)
dτ

+

∫ tf

tβ

(
f2(xβ(τ), uβ(τ))− f2(xα(τ), uα(τ))

)
dτ. (B.1)

The problem here is the dependency on the optimal controls in the integral equations.

To be able to expand the terms above we replace the optimal controls with the

corresponding optimal adjoint variables. The formal optimal control definition is

given by

u∗(t) = Argminu∈UH(x, u, λ), (B.2)

where U is the set of admissible controls. (B.2) suggests to write the optimal control

as a function of optimal state and adjoint process, so u∗(.) at time t is computed by
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x∗(.), λ∗(.) at time t. Here we write the optimal control by

u∗(t) = u∗(x∗(t), λ∗(t)). (B.3)

Rewriting (B.1) we have (for simplicity in our notation we drop ∗)

xβ(tf )− xα(tf ) =

∫ tα

0

(
f1(xβ(τ), λβ(τ))− f1(xα(τ), λα(τ))

)
dτ

+

∫ tβ

tα

(
f1(xβ(τ), λβ(τ))− f2(xα(τ), λα(τ))

)
dτ

+

∫ tf

tβ

(
f2(xβ(τ), λβ(τ))− f2(xα(τ), λα(τ))

)
dτ. (B.4)

Now expanding (B.4) around the nominal trajectories xα, λα we have

xβ(tf )− xα(tf ) =

∫ tα

0

∂f1

∂x
(xα(τ), λα(τ))δx+

∂f1

∂λ
(xα(τ), λα(τ))δλdτ

+
(
f1(xβ(τ), λβ(τ))− f2(xα(τ), λα(τ))

)
δt

+

∫ tf

tβ

∂f2

∂x
(xα(τ), λα(τ))δx+

∂f2

∂λ
(xα(τ), λα(τ))δλdτ + o(δx) + o(δλ).

(B.5)

So in the limit we have

y(tf ) =

∫ tα

0

∂f1

∂x
(xα(τ), λα(τ))y(τ) +

∂f1

∂λ
(xα(τ), λα(τ))z(τ)dτ

+
(
f1(xβ(τ), λβ(τ))− f2(xα(τ), λα(τ))

)
+

∫ tf

tα

∂f2

∂x
(xα(τ), λα(τ))y(τ) +

∂f2

∂λ
(xα(τ), λα(τ))z(τ)dτ. (B.6)

Therefore we have

y(t) =

∫ t

0

∂f1

∂x
(xα(τ), λα(τ))y(τ) +

∂f1

∂λ
(xα(τ), λα(τ))z(τ)dτ t ∈ [0, tα),

(B.7)
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and

y(t) =

∫ tα

0

∂f1

∂x
(xα(τ), λα(τ))y(τ) +

∂f1

∂λ
(xα(τ), λα(τ))z(τ)dτ

+
(
f1(xβ(τ), λβ(τ))− f2(xα(τ), λα(τ))

)
+

∫ t

tα

∂f2

∂x
(xα(τ), λα(τ))y(τ) +

∂f2

∂λ
(xα(τ), λα(τ))z(τ)dτ, t ∈ [tα, tf ].

(B.8)

For the adjoint variables the evolution equations are given as follows:

λα,β(t) = λα,β(tf ) +

∫ tf

t

∂H2

∂x
(xα,β(τ), λα,β(τ))dτ, t ∈ (tα,β, tf ]. (B.9)

Therefore z(.) satisfies the following equation

z(t) =

∫ tf

t

∂2H2

∂x2
(xα(τ), λα(τ))y(τ)dτ

+

∫ tf

t

∂2H2

∂x∂λ
(xα(τ), λα(τ))z(τ) +

∂2h

∂x2
y(tf ) t ∈ (tα, tf ]. (B.10)

For t < tα equations need little modification on the switching time in order to be

computable. Writing the backward equation for the adjoint variables we have

λα,β(t) = λα,β(tα,β) +

∫ tα,β

t

∂H1

∂x
(xα,β(τ), λα,β(τ))dτ, t ∈ [t0, t

α,β). (B.11)

Applying the results of Theorem 3.1 on the adjoint process discontinuity at switching

times we have

λβ(t)− λα(t) = λβ(tβ)− λα(tα)− pβ∇xm(xβ, tβ) + pα∇xm(xα, tα)

+

∫ tα

t

∂H1

∂x
(xβ(τ), λβ(τ))− ∂H1

∂x
(xα(τ), λα(τ))dτ

+

∫ tβ

tα

∂H1

∂x
(xβ(τ), λβ(τ))dτ, (B.12)
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and

λβ(tβ)− λα(tα) =

∫ tf

tβ

∂H2

∂x
(xβ(τ), λβ(τ))− ∂H2

∂x
(xα(τ), λα(τ))dτ

−
∫ tβ

tα

∂H2

∂x
(xα(τ), λα(τ))dτ +

∂h

∂x
(xβ(tf ))−

∂h

∂x
(xα(tf )).

(B.13)

The discontinuity parameters pα and pβ are parameters of (xα,β, λα,β, tα,β). Therefore

pβ∇xm(xβ, tβ)− pα∇xm(xα, tα) =
∂(p∇xm(x, t))

∂x
(xα, tα)δx+

∂(p∇xm(x, t))

∂λ1

(xα, tα)δλ1

+
∂(p∇xm(x, t))

∂λ2

(xα, tα)δλ2 +
∂(p∇xm(x, t))

∂t
(xα, tα)δt

+ o(δx) + o(δλ1) + o(δλ2) + o(δt), (B.14)

where

δλ1 = λβ(t−β)− λα(t−α), (B.15)

δλ2 = λβ(t+β)− λα(t+α), (B.16)

and

δx = xβ(tβ)− xα(tα). (B.17)

It is shown that

∂x

∂tα
= y(tα) + f1(xα(tα), λα(tα)),

∂λ1

∂tα
= z(t−α)− ∂H1

∂x
(xα(tα), λα(tα)),

∂λ2

∂tα
= z(tα)− ∂H2

∂x
(xα(tα), λα(tα)). (B.18)

Employing (B.14,B.18) in (B.12) the proof is obtained. �
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