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Abstract 

 

 Severe weather (SW) can have a huge impact on someone’s life and 

property. Presently at Environment Canada (EC), there is no useful automated 

tool to help the forecasters in their SW forecast. The goal of this thesis was to 

develop a useful automated tool to help the SW forecasters in their SW 

predictions. A severe weather intensity (SWI) index was created from the 1-km 

Global Environmental Multiscale Limited Area Model (GEM-LAM) outputs. The 

GEM-LAM 1-km was run on summer days in 2008 and 2009 over Alberta, 

Ontario, and Quebec. The dataset of summer 2009 was used to create algorithms 

that use the model’s outputs to detect severe thunderstorm structural features, 

compute the quantity of the ingredients needed to initiate severe thunderstorms, 

and estimate the intensity and the type of SW expected. The post-processed fields 

were subjectively verified with the SW observations and radar images for the 

summer of 2009 leading to a decision tree for the SWI index for each region. An 

object-oriented method was used to verify the SWI index forecasts with the SW 

observations for the summer of 2008. The results showed that the SWI index 

forecast was very accurate over Ontario, accurate over Quebec, and much less 

accurate over Alberta. The lack of SW observations and the model’s spin up 

mainly affected the results. Finally, the skill of the SWI index forecast was 

compared to the forecaster-derived SW forecast to verify if the index could help 

the SW forecasters to improve their SW forecast. The results indicate that the 

SWI index could improve the prediction of SW events, but not the positioning.  
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Résumé 

 

 Le temps violent (TV) estival peut avoir un impact important sur la vie des 

gens et leurs biens. En ce moment, aucun outil n’est assez performant pour aider 

les prévisionnistes à prévoir le TV. Cette thèse a pour but de créer un outil 

automatisé pour aider les prévisionnistes dans leurs prévisions de TV d’été. Un 

indice d’intensité de TV à été créé à partir des données du modèle global 

environnemental à multiéchelles à aire limitée (GEM-LAM) avec une résolution 

horizontale de 1 km. Le GEM-LAM 1-km à été roulé pour tous les jours d’été 

2008 et 2009 sur les régions de l’Alberta, le sud de l’Ontario et le sud du Québec. 

Les données de l’été 2009 ont été utilisées pour créer des algorithmes qui utilisent 

les sorties du modèle pour détecter les structures particulières aux orages violents, 

évaluer les quantités de plusieurs éléments nécessaires à la formation d’orages 

violents, et estimer l’intensité et le type de TV attendu. Les champs post-traités 

ont été subjectivement analysé avec les observations de TV et les images radar 

pour l’été 2009 permettant de bâtir un arbre de décision pour l’indice d’intensité 

de TV pour chaque région. Une méthode par objet a été utilisée pour faire une 

vérification des prévisions de l’indice d’intensité de TV avec les observations de 

TV pour l’été 2008. Les résultats montrent que la prévision de l’indice d’intensité 

de TV est très juste pour l’Ontario, est assez juste pour le Québec, mais l’ai 

beaucoup moins pour l’Alberta. Le faible nombre d’observations de TV et le 

temps d’ajustement du modèle affectent les résultats. Finalement, la précision de 

l’indice d’intensité de TV et celle de la prévision de TV émit par un prévisionniste 
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ont été comparées de façon à vérifier si l’indice peut aider le prévisionniste à 

améliorer sa prévision. Les résultats démontrent que l’indice d’intensité de TV 

pourrait améliorer la prévision d’un évènement, mais pas son positionnement. 
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Chapter 1 

Introduction 

  
 

 Severe weather (SW) such as heavy rain, tornados, strong winds, and large 

hail is a rare event, but it can have huge impact on our lives and any economic 

sector. For the average person, SW normally induces damages to their house, cars, 

and other material goods. On the other hand, industries are mainly affected in 

either work planning, to avoid any inconvenience, or in dealing with the 

consequences of the thunderstorms. The most important consequence of SW is the 

loss of human life. Since severe thunderstorms have repercussions on people and 

every economic sector, it is of high importance of having access to accurate 

severe thunderstorm forecasts.  

 

1.1  Severe weather and its characterization 

1.1.1      Convection review 

 At Environment Canada (EC), a meteorological event is classified as a 

severe thunderstorm if  it produces 50 mm of rainfall (EC, 2013), tornados, hail 

larger than 2 cm in diameter, and wind speeds higher than or equal to 90 km/h 

(Verkaik and Verkaik, 2000). 

 One must be aware that only a few thunderstorms lead to SW, since 

specific elements are required to produce a severe thunderstorm. First, in order to 

get a thunderstorm, we need an unstable air parcel (Byers and Braham, 1949). The 
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stability of an air parcel is defined as its resistance to vertical motion. Trigger 

mechanisms such as lifting and destabilizing mechanisms such as heating of the 

surface and/or cooling aloft, or saturation, can cause an air mass to become less 

stable or even unstable (Byers and Braham, 1949). The next necessary ingredient 

is high moisture content in the air mass (Byers and Braham, 1949). High moisture 

content is needed in order to supply latent heat, as the water vapor condenses, to 

build and strengthen the storm. High moisture content is also needed to produce 

heavy precipitation. The last ingredient, which differentiates a thunderstorm from 

a severe thunderstorm, is the wind shear. One can correlate the longevity of a 

thunderstorm with the wind shear. For example, in an environment with weak 

wind shear, the updraft will not be tilted. In this scenario, the precipitation falls in 

the updraft and suppresses the updraft (Byers and Braham, 1949). This type of 

thunderstorm is called a single cell thunderstorm. These are short-lived and 

usually do not produce SW (Byers and Braham, 1949). However, if many single 

cell thunderstorms pass through the same path over a short period of time, 

flooding may occur. If this scenario occurs, the event will be considered a severe 

thunderstorm event.   

 A type of thunderstorm often associated with intense SW is the supercell 

thunderstorm (Browning, 1965). These storms require the same basic conditions 

to form as any thunderstorms. In contrast to single cell thunderstorms, supercell 

thunderstorms also require strong wind shear, as shown in the numerical 

simulations (eg., Weisman and Klemp, 1982, 1984, 1986; Weisman and Rotunno, 

2000), which allows the supercell to live up to a few hours because the strong 

wind shear tilts the updraft. Consequently, the precipitation does not fall in the 
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updraft, which allows the thunderstorm to be self-sustaining. Supercellular 

thunderstorms have rotation in their updraft, which can be seen as a circular 

motion in the clouds, called a mesocyclone (Burgess and Brown, 1973). The 

mesocyclone is an important feature of the supercellular thunderstorms because 

low-level mesocyclone, once the rotation has extended all the way to the surface, 

is often associated to tornados (Trapp et al., 2005). In addition, supercell 

thunderstorms are prolific producers of tornados and large hail compared to other 

types of thunderstorms, but they also produce strong winds and flooding (Duda 

and Gallus, 2010). 

 The final kind of thunderstorm is the multicell thunderstorm. Multicell 

thunderstorms are many thunderstorm cells at different stages in their 

development (Chen, 1980). The same basic ingredients for a thunderstorm are 

needed, however, multicellular thunderstorms also need low to moderate wind 

shear (Marwitz, 1972). Consequently, the updraft is a bit tilted and the lifetime of 

the cell is longer than a single cell thunderstorm. The wind shear also helps to 

generate new cells along the gust front (Chen, 1980).  In addition, multicell 

thunderstorms can evolve to become a supercell thunderstorm. Multicellular 

thunderstorms can produce SW such as strong winds, flooding, large hail, and 

short-lived tornados. 

 

1.1.2      Overview of indices use to forecast severe weather 

 Some indices were created to help forecasters evaluate the state of the 

atmosphere. SW forecasters use many of them in their daily methodology in order 

to forecast SW. However, it is important to note that the forecaster cannot 
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evaluate whether or not there will be SW from the values of indices alone. These 

indices only give insight as to the area on which the forecaster should focus 

his/her attention.  

 The Lifted Index (LI) is used to evaluate the instability of the atmosphere 

by subtracting the environmental temperature at 500 hPa from the temperature of 

the air parcel lifted from the surface to 500 hPa (Galway, 1956). If LI is negative, 

the air is unstable; the forecaster then evaluates the possibility of having 

thunderstorms in this area by looking for any lifting mechanisms that could start 

convection. The Showalter Index (SI) also characterizes the instability of an air 

parcel (Showalter, 1953). SI is the difference between the temperature of an air 

parcel lifted from 850 hPa to 500 hPa and the environmental temperature at 500 

hPa (Showalter, 1953). The smaller the index, the greater the instability. Both SI 

and LI are useful to evaluate the potential for thunderstorms. However, SI does 

not work in mountainous regions where the 850 hPa level is underground. 

Another index that evaluates the instability of the air is the George Index (K) 

(George, 1960). This index is different from both LI and SI as it also has another 

term to account for the moisture content and the vertical extent of the moist layer. 

K gives the thunderstorm potential, but does not give any information about the 

intensity of the storm (George, 1960). 

 An index that assesses more completely the convective instability, which 

is a necessary ingredient for thunderstorms to be initiated, is the Convective 

Available Potential Energy (CAPE). The CAPE evaluates the positive energy that 

a conditionally unstable air mass would have if lifted to the level of free 

convection (Moncrieff and Miller, 1976). Similarly, the Convective Inhibition 
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(CINH) is the energy needed to lift the air parcel to the level of free convection 

(Colby, 1984). Knowing the CAPE, the CINH, and the lifting mechanisms 

present, the forecaster is able to approximate the strength of the lifting 

mechanisms needed in order to reach the level of free convection. If there is a 

possibility that the level of free convection can be reached, the forecaster will 

assess the intensity of the possible storm. 

 There exist indices that evaluate the intensity of the storm. These indices 

take into account the shear, since, as mentioned previously, severe thunderstorms 

need wind shear to form. The Severe Weather Threat Index (SWEAT) considers 

the instability, the humidity, and the wind shear. By considering all these elements 

together, this index is able to differentiate ordinary and severe convection (Bidner, 

1971). The Storm Relative Helicity (SRH) index is useful to identify where 

supercell thunderstorms might develop (Davies-Jones et al., 1990). If some 

regions are identified as having potential for supercellular thunderstorms to 

develop, the Energy Helicity Index (EHI) can be used to evaluate the potential for 

the occurrence and predict the intensity of tornados (Hart and Korotky, 1991). 

Finally, the last index presented in this research, the Storm Severity Index (SSI), 

also assesses the thunderstorm severity by using the wind shear and the CAPE 

(Turcotte and Vigneux, 1987).  

 

1.1.3      Model available at EC to forecast severe weather 

 The Global Environmental Multiscales Limited Area Model (GEM-LAM) 

is an operational model from EC. The model is available at two different 

operational horizontal resolutions — 10-km and 2.5-km. The operational GEM-
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LAM 10-km, also called REG-LAM, has 80 staggered Charney-Phillips vertical 

coordinates (Charney and Phillips, 1953) with the lid at 0.1 hPa (Vaillancourt et 

al., 2012). It has 996 x 1028 grid points (Vaillancourt et al., 2012) centered on 

North America. It is important to mention that at this resolution, the GEM-LAM 

is a hydrostatic model (Côté et al., 1998), since the hydrostatic assumption holds 

for atmospheric phenomena down to scales around 10 km. In other words, the 

GEM-LAM 10-km assumes that the atmosphere is hydrostatic by using the 

hydrostatic primitive equation (Côté et al., 1998). Therefore, it does not resolve 

convection. The GEM-LAM 10-km uses implicit physical parameterizations for 

sub-grid scale phenomenon such as convection (Côté et al., 1998). At this 

resolution, the GEM-LAM is better at forecasting synoptic scale phenomenon, 

such as fronts and low-pressure systems. On the other hand, the operational GEM-

LAM 2.5-km is a non-hydrostatic model (Côté et al., 1998), and has 58 staggered 

Charney-Phillips vertical coordinates with the lid at 10 hPa (Giguère and 

Milbrandt, 2011). The GEM-LAM 2.5-km explicitly resolves convection 

(Rombough et al., 2010). The grid size of the GEM-LAM 2.5-km depends on the 

domain and this model is run on four domains: West, East, Arctic, and Atlantic 

(Fig. 1.1). A different SW index is used for each resolution. In that way, the 

additional information provided by the higher resolution model can be processed, 

since the model with higher resolution resolves processes that the lower resolution 

model could not. Thus, the SW indices must be interpreted differently as they 

were built to access processes at different scales. 
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Fig. 1.1: The four operational domains of the GEM-LAM 2.5-km. Picture adapted from 

Rombough et al. (2010). 

 

As mentioned earlier, the GEM-LAM at 2.5-km resolution uses explicit 

physical equations to resolve convection (Rombough et al., 2010). Thus, the 

GEM-LAM at 2.5-km should simulate the atmosphere more realistically than with 

a 10-km resolution. The GEM-LAM 2.5-km has been verified subjectively by 

Vaillancourt (2006b), a radar and SW specialist at EC, to evaluate the potential of 

this high-resolution model to forecast convection and SW. His findings show that 

the GEM-LAM 2.5-km is able to simulate convective features horizontally with 

an acceptable time difference from the radar (Vaillancourt, 2006b). One of the 

fields he examined to determine if the model well represented the reality was the 

relative vorticity. He noticed that the GEM-LAM 2.5-km is able to simulate 
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vorticity couplets (Vaillancourt, 2006b). Vorticity couplets are associated with 

supercell storms, which in turn often produce tornados. The correlation between 

the model forecasts and what was observed on the radar was accurate overall 

(Vaillancourt, 2006b). 

 Before this study, atmospheric scientists at EC were wondering if the 

model was able to simulate the vertical structure of a convective storm. To answer 

this question, Vaillancourt (2006b) compared a vertical view of the model with 

the radar. A vertical view of the vorticity field and the cloud liquid and solid 

water content was studied in a region of the model where convection was 

simulated. As one can see in Fig. 1.2, the model is able to simulate an overhang, a 

tilted region of echo overlaying a weaker region of echo on a small portion of its 

horizontal extent due to the environmental wind shear and a strong updraft, which 

is associated with the growth of a supercell. During his study, he also noted that, 

as the supercell intensifies, the rotation intensifies towards the ground. Therefore, 

the model simulates the vertical structure of the storm correctly. From the 

subjective verification done on the GEM-LAM 2.5-km, one can conclude that it 

can capture many processes observed in real storms.  
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Fig. 1.2: Illustration of the ability of the model to simulate convection. In the top picture, 

the wind barbs from different levels, the cloud solid and liquid water content, and the 

relative vorticity from the GEM-LAM 2.5-km are illustrated. Black wind barbs are from 

the 925 hPa level, and the pink wind barbs are from the 800 hPa level. The black contours 

represent the cloud solid and liquid water content and the red contours represent the 

relative vorticity, both at the 0.810 sigma level. The approximate dimension of the image 

is 450 km by 150 km. The bottom picture is the vertical cross-section, indicated by the 

bold arrow in the top picture, of a severe thunderstorm simulated by the GEM-LAM 2.5-

km. It contains the liquid and solid water content in the atmosphere (color) and relative 

vorticity (red) where the cross-section was made (Vaillancourt, 2006b). The vertical axis 

of this cross-section is in sigma level, terrain-following coordinate (Phillips, 1957).   

 

 

1.1.4      Post-processed severe weather indices developed at EC 

A SW probability algorithm was developed by the High Impact Weather 

National Laboratory at EC to detect radar-like SW feature signatures from the 
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outputs of the GEM-LAM 2.5-km (Roy et al., 2007). The algorithm was designed 

to detect SW radar features such as mesocyclones, overhangs, and bounded weak 

echo regions from model outputs (Vaillancourt, 2006b). These SW signatures are 

important when forecasting the occurrence of SW, since these features are mostly 

associated to the structure of supercell thunderstorms which are prolific producer 

of SW. However, it is even more important to forecast and evaluate the potential 

of SW events such as large hail, strong winds, and heavy rain to warn the public 

about what kind of SW is expected in order to better handle emergency. 

Therefore, the algorithm also detects regions that might contain large hail, 

evaluates the maximum wind gusts in the thunderstorm, and evaluates the 

potential for heavy rain (Vaillancourt, 2006b). All the variables computed in this 

algorithm are combined and weighted to produce a probability of having SW at 

any given point (Roy et al., 2007). 

 The High Impact Weather National Laboratory at EC has objectively 

verified all the preceding variables. However, it is important to note that the 

verification was made on an older model version. At that time, the model had 58 

unstaggered vertical eta levels (Taylor and al., 2010) while the operational GEM-

LAM 2.5-km now has 58 staggered Charney-Phillips vertical coordinates 

(Giguère and Milbrandt, 2011). The main difference between the eta and the 

staggered Charney-Phillips vertical level is that Charney-Phillips grid contains 

separated momentum and thermodynamic levels. In that way, dynamical 

constraints can be maintained. However, the most important change is the 

condensation scheme. At the time of this documented verification, the GEM-

LAM 2.5-km had the Milbrandt-Yau single moment microphysics scheme (Taylor 
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et al., 2010), and now it uses the Milbrandt-Yau double moment microphysics 

scheme (Giguère and Milbrandt, 2011). No objective verification has been done 

with the new version, and no report was made from the subjective verification. 

From the results of the objective verification done on the old version of the GEM-

LAM 2.5-km, it was concluded that the bounded weak echo region algorithm was 

useless, since bounded weak echo regions are smaller than the model’s resolution, 

and consequently, the model cannot simulate them (Roy et al., 2007). The results 

from the verification also showed that the algorithms that compute the maximum 

wind gust in the thunderstorm, the hail and the potential for heavy rain were 

unable to detect successfully these types of SW. Moreover, the conclusion was 

that the SW probability depended mostly on the mesocyclone and overhang 

variable (Roy et al., 2007). Based on the results of this verification, the algorithms 

were modified in order to increase their accuracy and efficiency. Mesocyclone 

and overhang algorithms were modified in order to forecast fewer mesocyclone 

and overhang (Turcotte, 2007). Furthermore, the SW probability algorithm was 

modified to no longer take into account inefficient variables. It is now computed 

only with the mesocyclone and overhang variables, since the other SW algorithms 

and radar-like structure feature algorithms have no skill (Turcotte, 2007). 

 An algorithm was developed from the GEM-LAM 15-km outputs to 

identify thunderstorm regions and classify them into three categories: ordinary 

thunderstorm, potentially severe thunderstorm, and severe thunderstorm 

(Bachand, 2006). A subjective and objective verification was done to evaluate the 

algorithm (Frenette, 2006). The verification rapport that is available was made 

with the GEM-LAM 15-km. It is now applied to the GEM-LAM 10-km, but we 
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expect the same results since its resolution, as with the GEM-LAM 15-km, is too 

low to simulate convection. First, the program identifies if there is wind shear, 

instability, and available moisture since, as mentioned earlier, these are the three 

ingredients needed for severe thunderstorms. To verify if these elements are 

present, the program considers the wind speed, SWEAT, CAPE, EHI, SSI, and LI 

(Bachand, 2006). Vaillancourt (2006a) objectively and subjectively verified the 

outputs from the algorithm using lightning observations, satellite imagery, radar 

data, and reports from observers (Vaillancourt, 2006a). Frenette (2006) also 

objectively and subjectively verified the outputs from the algorithm with lightning 

observations for the month of August 2005. The results show that the regions 

flagged as thunderstorms are large (Frenette, 2006). The results also indicate that 

the area flagged as a potentially severe thunderstorm should be flagged as an 

ordinary thunderstorm instead, since a potentially severe thunderstorm area 

corresponds to an area where lightning was observed (Vaillancourt, 2006a). These 

are major problems for a forecaster, since the algorithm does not help to reduce 

his/her SW forecast region.  

 

1.1.5      Methodology of the severe weather forecaster 

As mentioned previously, in order to initiate convection, we need a moist, 

conditionally unstable airmass with a trigger mechanism that will lift the airmass 

to its level of free convection. In order to evaluate the potential for convection, the 

forecaster has to identify the presence of lifting mechanisms and mechanisms 

which destabilize the airmass. 
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The first thing that the forecaster needs to be aware of when arriving at the 

office is the current synoptic situation, along with the meteorological events that 

happened before his/her shift. In doing so, the forecaster is informed about the 

previous SW events that could generate other convective cells during his/her shift. 

It is also very important for the forecaster to look at the recent weather in regions 

adjacent to his/her forecast’s regions as well, since SW coming from other 

provinces or countries may reach his/her forecast’s regions. 

Throughout his/her shift, the forecaster keeps an eye on the satellite imagery 

to follow the displacement and location of clouds. It is essential to follow the 

boundary between low-level clouds and observe the period of time that they stay 

over the same region. This is important because, if clouds shade a region, it will 

cause this region to warm up less than a cloud-free adjacent region. If this 

happens for a long enough period of time, differential heating will occur and 

might initiate convection due to convergence along the boundary (Weiss and 

Purdom, 1974). 

Secondly, one of the most important tasks of the SW desk to forecast SW is 

to do a synchronous analysis. The goal of the synchronous analysis is to position 

all thermodynamic and dynamic triggers on a map in order to evaluate where the 

SW is most likely to be. The SW is most likely to occur where many trigger 

mechanisms and destabilizing mechanisms overlap and where the three 

ingredients to produce severe thunderstorms are present: convective instability, 

high moisture availability, and wind shear. The forecaster will do the synchronous 

analysis at a few different times to cover the period of convection of the 

forecasted region with the most recent model outputs, and will re-evaluate his 
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analysis as new model outputs are available. The position of low-pressure systems 

should be indicated first on the analysis. Then, the fronts are drawn. Fronts are 

important to locate, since they can initiate convection (Sanders and Paine, 1975) 

by inducing rising motion due to convergence at the surface and aloft. Also, the 

passage of a cold front destabilizes an air mass, which might lead to convection. 

On the other hand, the warm air advection, associated with a warm front, 

stabilizes an air mass, but it also produces rising motion along its boundary. 

Therefore, in a region of strong conditionally unstable air, the lift along a warm 

front might be sufficient to trigger convection (Maddox and Doswell, 1982). 

Next, the forecaster locates the 500 hPa short wave trough, analyzes its position, 

and draws it on the analysis since it can initiate severe thunderstorms (Galway, 

1958). By looking at the 500 hPa trough, the forecaster indicates the region where 

he/she believes there will be rising motion ahead of the trough caused by positive 

vorticity advection and divergence (Kloth and Davies-Jones, 1980). However, in a 

pattern of weak vorticity, vertical motion will be mainly forced by warm air 

advection (Maddox and Doswell, 1982). Now, at the 250 hPa level, the forecaster 

looks at where the jets are positioned to locate regions of divergence. The right 

entrance and the left exit regions of the high level jet are usually divergent regions 

where there is vertical motion. It has been shown that the rising motion is strong 

enough and extends far enough down into the atmosphere to initiate convection or 

at least be part of the initiation process (Bluestein and Thomas, 1984). In a stable 

atmosphere, the rising motion induced by the divergent regions of a jet decreases 

the stability below the non-divergent level (Uccellini and Johnson, 1979), cools 

the air to saturation and releases the convective instability (Bluestein and Thomas, 
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1984), and brings moisture into the low levels (Bluestein and Thomas, 1984). 

However, the main role of the upper-level jet is to advect cool dry air in the upper 

and middle levels, increase upper-level divergence, and lead to the advection of 

sensible heat downstream from the convective area (Uccellini and Johnson, 1979). 

Thus, the forecaster draws the areas that correspond to the left exit and right 

entrance regions of the upper level jet on the synchronous analysis. Then, he/she 

looks for the presence of a low-level jet and its position. The main role of the low-

level jet is to transport heat and moisture within the low levels (Uccellini and 

Johnson, 1979). One can easily picture that, when a low-level jet is combined 

with an upper-level jet, it produces a region of convective instability, since the 

warm moist air advection in the low-level coupled with dry cool air advection 

aloft destabilizes the airmass. Therefore, the forecaster also indicates the low-level 

jets on his/her analysis and analyses their position according to the upper-level jet. 

Generally, the synoptic lifting does not trigger convection, but it produces an 

environment favorable for convection by destabilizing the airmass (McNulty, 

1995). Generally, not enough time is available to significantly destabilize the 

airmass with the synoptic lift mechanisms (Doswell, 1987), therefore mesoscale 

lift mechanisms supply the extra lift needed to reach the level of free convection 

and trigger convection. Differential heating is one of many mesoscale lift 

mechanisms, so the forecaster indicates regions where solar heating works with 

the topography and creates convergence, such as sea breeze (Chandik and Lyons, 

1971), circulation driven by urban areas (Changnon, 1977), and the boundary 

between clear sky and cloudy sky (Weiss and Purdom, 1974). Convergence can 

also be induced by the interaction of wind and terrain, and trigger convection 
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(Chu and Lin, 2000). As mentioned earlier, one of the most important ingredients 

for deep moist convection is moisture availability. Thus, it is very important to 

verify if there is enough moisture available or if it will become available by 

advection on the region, by looking at the moisture advection, the moist tongue 

(Miller, 1972), an extension of an airmass with high relative humidity into an 

airmass of lower relative humidity, and the moisture convergence flux (Hudson, 

1971). When the forecaster has finished positioning the thermodynamic and 

dynamic triggers, he/she will look in detail at the indices. The main ones are SSI, 

CAPE, LI, SWEAT, and SRH. Once the forecaster has looked at everything 

possible in the amount of time that he/she had, he/she draws a thunderstorm 

region according to where the most important features on his/her synchronous 

analysis are located and where they overlap. 

 In order to determine if thunderstorms will be severe or not, the forecaster 

needs to do a tephigram analysis to see if enough shear is present in the 

atmosphere, and evaluate the depth of the convection. First, the forecaster needs 

to select tephigrams that are representative of the airmass that is currently 

affecting, or will affect, his/her region of forecast. From his/her previous analysis 

he/she modifies the surface temperature and dew point for the one currently 

forecasted. From this, the forecaster evaluates if the solar heating, moisture 

advection, and/or air advection will be enough to trigger convection. The 

forecaster can adjust the surface dew point and temperature until the tephigram 

profile is favorable for convection. In doing so, it gives the forecaster an idea of 

the surface temperature and dew point needed to have convection. While the 

forecaster is adjusting the surface temperature and dew point, he/she is also 
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looking at indices and other fields computed directly from the profile, such as LI, 

CAPE, precipitable water, vertical wind shear, SRH, and EHI. As mentioned 

previously, by analyzing the CAPE and the CINH, the forecaster evaluates the 

depth of the possible convection (Moncrieff and Miller, 1976) and the energy 

needed to achieve convection (Colby, 1984). Moreover, the forecaster verifies 

subjectively if lift mechanisms are strong enough to initiate convection. Up to this 

point, the forecaster has a good idea if deep moist convection can occur. The only 

ingredient left to verify is the wind shear. So, the forecaster looks at the 

hodograph to see if there is wind shear present in the lower troposphere and 

whether it is unidirectional or curved. This is to access the potential of single cell 

thunderstorms, multicellular thunderstorms, and supercellular thunderstorms 

(Klemp and Wilhelmson, 1978; Weisman and Klemp, 1982). However, there are a 

few more things that are useful with the tephigram — the low-level jet and its 

intensity can be located, and the freezing level can be found to access the potential 

for hail (Pappas, 1962). Also, the precipitable water value computed from the 

profile indicates the potential for heavy rain from thunderstorms (Mogil and 

Groper, 1976). 

 At this point, the forecaster, with everything he/she has analyzed, has to 

emit a severe thunderstorm map, which indicates the area where thunderstorms 

are possible, where thunderstorms are expected, and where severe thunderstorms 

are predicted (Fig. 1.3). It is quite obvious that the SW forecast is a long process. 

The analysis is difficult and complex, as there are so many factors to take into 

consideration over a huge region. Therefore, there is a constant need to develop 

useful and precise SW forecast tools to help the forecaster focus his/her process  
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Fig. 1.3: Forecaster-derived day-1 SW forecast. In this case, the region surrounded 

by the dashed arrows indicates where there is a risk of thunderstorms. The region 

surrounded by the solid arrow shows where thunderstorms are expected. Inside the 

dotted box, severe thunderstorms are expected. 

 

over a smaller area. The previous section describes how the present available SW 

forecast tools are inadequate for the SW forecaster. 

 

1.1.6      Severe weather development  

 From the previous section, the SW forecaster has a lot of data to analyze. 

Forced by the forecast deadline and the other duties of his function, the forecaster 

might lack the time to do a thorough analysis of the situation. This is the reason 

why SW algorithms have been created, to facilitate forecaster’s work by merging 

information together and saving some of his/her time to finish other important 

duties. 
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At this moment, many algorithms exist to diagnose SW and evaluate its 

potential from radar data. One of the first radar-based SW potential algorithms 

involved detecting convective cells and associating them with a SW index. This 

index was based on the vertically integrated liquid (VIL) and the horizontal size 

of the storm (Kitzmiller et al., 1995).  However, the developers of the algorithm 

knew that it could be greatly improved by increasing the number of predictors and 

by using Doppler radar (Kitzmiller et al., 1995). The operational Doppler radars 

were installed throughout the United States (US) in the mid 90’s (Evans and 

Weber, 2000). At the time, the major use of Doppler radars was to detect 

microbursts to avoid aviation accidents. The first microburst detection algorithm 

came out with the first experimental Doppler radars, and it kept improving over 

the years (Evans and Weber, 2000). In addition, Doppler radar can detect 

mesocylones, as first noticed by Donaldson et al. (1969). Since the 90’s 

mesocyclone detection algorithms have been invented and continue to improve 

(Desrochers and Donaldson, 1992). Obviously, since it was already possible to 

detect two SW features, it was evident that the algorithms had to be expanded to 

accomplish a storm cell ranking based on detected SW features. The Warning 

Decision Support System (WDSS) and the Canadian Radar Decision System 

(CARDS), to name only two of them, are algorithms that detect many SW 

features (Joe et al., 2004). The CARDS can assess the presence of mesocyclones, 

downbursts, and gust potential, as well as evaluate hail size and the tornado 

potential based on radar data (Joe et al., 2004). On the other hand, the WDSS 

takes many different forms of data as input: radar data, lightning data, surface 

data, and other weather data (Joe et al., 2004). The main difference between 
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WDSS and CARDS is that WDSS, after processing the presence and the intensity 

of mesocyclone, hail, and tornado, will output each detected cell and its rank 

indicating the storm’s severity (Joe et al., 2004). These tools are of great help to 

the forecaster. They alert the forecaster that some cells are potentially dangerous. 

Consequently, to verify the accuracy of the tool and to assess the associated threat 

the forecaster will start analyzing specific storm cells by doing a further 

meticulous analysis of the cells’ structure, features, and VIL. 

However, the index from SW detection radar algorithms provides only a 

short lead time, in the order of a few tens of minutes. Thus, the SW radar 

algorithms are useful in the nowcast of severe thunderstorms. High-resolution 

model outputs are more useful to generate thunderstorm forecasts, since most 

model outputs are available at each hour and for a period of at least 12 hours. It 

has been shown by Kain et al. (2006) that when forecasters had access to a high-

resolution model, there was a small but significant improvement in the human 

forecasts. This suggests that high-resolution models have unique information that 

is very advantageous to forecasters. However, the model used had a 4-km 

resolution and was not able to detect convective scale features accurately (Kain et 

al., 2006). Thus, a cloud convective resolving scale model would give a forecaster 

a great advantage in forecasting SW.  

The resolution of a cloud scale resolution model is close to radar resolution, 

which is 1 km. Therefore, radar algorithms that were designed to detect the 

presence of SW were seen as a good way to forecast SW if they were modified 

and applied to the outputs of a high-resolution model. This has been done at EC 

with the GEM-LAM 2.5-km outputs, and the results were the ones mentioned 
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previously.  One can wonder if better results could have been obtained with a 

higher-resolution model. Simulations done with the GEM-LAM 1-km showed 

that the convection simulated at this resolution was more realistic than at 2.5-km 

(Taylor et al., 2010). Also, one can wonder if SW radar criteria applied directly to 

a model of such resolution allow us to better forecast SW than by other methods. 

 

1.2      Objectives 

There is a huge need to improve the ability to forecast SW at EC. In response 

to the pressing need to improve forecasting ability and to better understand the 

physical processes that lead to the development of thunderstorms, the 

Understanding Severe Thunderstorms and Alberta Boundary Layers Experiment 

(UNSTABLE) project collected data in 2008 and 2009. One of their goals was to 

examine how well a high-resolution model can forecast severe convection (Taylor 

et al., 2008). During the summers of 2008 and 2009, the UNSTABLE project ran 

the experimental GEM-LAM 1-km over the Alberta Foothills. The details of the 

GEM-LAM 1-km are based on the experimental 2010 Vancouver Olympics 

(VO2010) High-Resolution Modelling System (HRMS) with 1-km resolution 

(High Resolution GEM-LAM Visualization Platform, 2009).  Simulations showed 

that the GEM-LAM 1-km simulates a more realistic convective mode than the 

2.5-km (Taylor et al., 2010). This research will use the same model as the 

UNSTABLE project, the GEM-LAM 1-km.  

In this thesis, I will investigate the best way to use the GEM-LAM 1-km 

outputs to produce a severe weather intensity (SWI) index. The most frequently 
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used indices by the forecaster to forecast severe thunderstorms will be computed. 

Algorithms to search for storm structures and features will be designed. The 

model will be run over three windows: Alberta, Southern Ontario, and Southern 

Quebec. The objectives of this thesis are the following: 

- To find the best variables to forecast SW using the observations and the 

model outputs from the summer of 2009.  

- To create a SWI index based on the best predictors. 

- To analyze the skill of our SWI index by comparing it to observations 

from the summer of 2008. 

- To see if the following severe storm features are well-simulated by the 

model: bounded weak echo region, overhang, mesocyclone. 

 

 Chapter 2 will address the observations analyzed in this research and the 

way they were manipulated. The details of the model used in this research will 

also be discussed in Chapter 2. Chapter 3 will cover the algorithms developed to 

detect SW, radar-like severe thunderstorm feature elements, and necessary 

ingredients to develop severe convection from the GEM-LAM 1-km outputs. It 

will also include a brief overview of all the indices computed and other variables 

coming directly from the model outputs. The method used to choose the best 

predictors and to build our SWI index will be discussed in Chapter 4. The 

objective method chosen to verify our index will also be explained in Chapter 4. 

The accuracy of our index will be computed and analyzed in Chapter 5. Chapter 6 

consists of a discussion. Chapter 7 contains a conclusion. 
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Chapter 2 

Data 

 

2.1      Observations 

The Canadian SW observations used in this thesis were taken from the Storm 

Event Data Capture System (SEDCS), which is a web interface database at EC. 

Reports of thunderstorms having produced tornados, funnel clouds, 

mesocyclones, flash floods, severe winds, and hail are archived in the SEDCS 

web interface database. In the SEDCS database, the majority of the events are 

narratively described. A description of the damage caused by the thunderstorms, a 

comparison to a common object to describe hail size, and/or an adjective to 

describe the intensity of rain, are usually found in the SEDCS database. 

Moreover, only for a few events, the database procures measured values for the 

wind speed, rain amount, or hail size. Thus, for most of the events, one has to 

deduce such quantities from the narrative description of the event. It also includes 

observation of tornados, funnel clouds, and mesocyclones.  

To describe hail size, coins are often used as well as common objects. Table 

2.1 shows the different coins used to describe hail size and their diameter. Table 

2.2 demonstrates the different common objects used to describe hail size, and also 

indicates their diameter. For the purpose of this research, I have rounded up hail 

size according to the measured value or estimated value to the nearest multiple of 

5, so that the hail size in the database of this research ranges from 0 to 110 mm 
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with an increment of 5. In my database, I do not differentiate hail diameter that 

was measured from the one estimated based on the size of common objects. 

Only few severe thunderstorm reports have measured wind speed, the others 

usually have a description of the damage caused by the wind. The Beaufort scale 

is used to estimate the wind speed according to the damage caused by the 

thunderstorm. In our database, the measured wind speed was distinguished from 

the estimated wind speed. The measured wind speeds have positive values, and 

the estimated wind speeds were assigned negative values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Size of Canadian coins used to describe hail size. 

 

 

Coins Diameter (mm) 

Dime 18.03  

Penny 19.05  

Nickel 21.2  

Quarter 23.88  

Dollar coin (Loonie) 26.5  

50 Cent/Half Dollar coin 27.13  

Two Dollar coin (Toonie) 28 
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Object Diameter (mm) 

Pea 6.4   

Marble  13   

Walnut/Ping-pong ball 38  

Golf ball 44  

Lime/Chicken’s egg 51  

Tennis ball 64   

Baseball 70  

Apple/Teacup 76   

Grapefruit 102  

Softball 114   

 

Table 2.2: Table of common objects’ size used to describe hail size. 

 

Moreover, observation reports for tornados, funnel clouds, and mesocyclones 

were also extracted from the SEDCS database for this research. However, I 

separate observations of funnel clouds from tornados. That way, I can easily do 

my verification with or without either observation. Near the Rocky mountain 

foothill, cold core tornados and non-supercell funnel clouds are important 

phenomena (McDonald, 2000). So, during the verification, we might want to 

avoid considering funnel cloud and/or tornado reports for Alberta so as not to be 

biased by the cold core events. Mesocyclone reports are important to keep, since 

http://en.wikipedia.org/wiki/Pea
http://en.wikipedia.org/wiki/Marble_(toy)
http://en.wikipedia.org/wiki/Walnut
http://en.wikipedia.org/wiki/Table_tennis
http://en.wikipedia.org/wiki/Golf_ball
http://en.wikipedia.org/wiki/Lime_(fruit)
http://en.wikipedia.org/wiki/Egg_(food)
http://en.wikipedia.org/wiki/Tennis_ball
http://en.wikipedia.org/wiki/Baseball_(ball)
http://en.wikipedia.org/wiki/Apple
http://en.wikipedia.org/wiki/Teacup
http://en.wikipedia.org/wiki/Grapefruit
http://en.wikipedia.org/wiki/Softball#Ball
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mesocyclones are generally associated with supercell thunderstorms (Burgess and 

Brown, 1973) that often produce SW. 

It was more difficult to extract severe rain events when the intensity of the 

rainfall was subjectively described and no measure was available. In that case, 

archived radar images, if available, were useful to evaluate severe rain potential. 

First of all, I should mention that the severe convective rain criteria changed in 

2010. As mentioned previously, the actual severe convective rainfall criterion is 

50 mm in one hour. However, prior to the summer of 2010, the severe convective 

rainfall criterion was 25 mm in one hour. The severe synoptic rainfall criterion 

has always been 50 mm in less than 24 hours. In this study, we used data from the 

summers of 2008 and 2009. Thus, I am using 25 mm in one hour as a severe 

rainfall criterion. First, I made two categories — one was when 25 mm of rain fell 

in one hour and the second was when 50 mm of rain fell in less than 24 hours. It 

was easy to categorize severe rain events with measured quantities of rain and 

duration. However, with a subjectively and qualitatively described event, I had to 

look at the severity of the terms used and the duration of the event to evaluate the 

possibility of a severe rain event. For example, if an event was described as strong 

rain with a 15-minute duration, I made an evaluation that there was no potential of 

severe rain. However, if an event was described as a heavy downpour with a 15-

minute duration, I evaluated that there was severe rain potential. Also, flooding 

reports of house’s basement were categorized as severe rain events. In my 

database, I distinguish the two categories mentioned previously, as well as the 

measured events from the narratively described events.  
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SW observations from the US are also used in this research 

(http://www.spc.noaa.gov/wcm/#data). SW data, such as hail, tornados, and wind, 

were extracted from the Storm Prediction Center (SPC) as compiled in Storm 

Data. Hail size was converted to millimeters, and the wind speed was converted to 

kilometers per hour.  

SW reports were extracted from the SEDCS and the SPC Storm Data for the 

summers of 2008 and 2009. Canadian SW reports were extracted for these periods 

over the province of Alberta, Ontario, and Quebec. The US’s SW reports were 

extracted for these periods over the states of Washington, Idaho, Montana, 

Michigan, Indiana, Ohio, Pennsylvania, New York, Vermont, New Hampshire, 

and Maine. 

 

2.2      Model 

For this research, the experimental GEM-LAM with a resolution of 1 km is 

used, the same model version as the one used during the Vancouver Olympics of 

2010. It is a one-way nested model (Rombough et al., 2010). Since no mesoscale 

data assimilation is available for high-resolution models at EC, a cascade of 

integrations is made. Figure 2.1 clearly illustrates this procedure. However, the 

following description of the cascade of integration is valid for the years 2008 and 

2009, for which the model will be used. Presently, it follows the same procedure, 

but using the GEM-LAM 10-km instead of the GEM-LAM 15-km.  First, the 

GEM-LAM 15-km run is initialized from the 6-hour forecast of the Regional 

GEM 15-km run, which started at 0000 UTC (Mailhot et al., 2010).  The 

http://www.spc.noaa.gov/wcm/#data
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boundary conditions for the GEM-LAM 15-km are also provided by the regional 

run (Mailhot et al., 2010), and it is integrated for 30 hours. Then, the GEM-LAM 

2.5-km run is initialized at 1200 UTC from the 6-hour forecast of the GEM-LAM 

15-km run, which started at 0600 UTC (Rombough et al., 2010). The GEM-LAM 

2.5-km is initialized six hours after the GEM-LAM 15-km to allow time for the 

model to spin-up (Mailhot et al., 2010). The GEM-LAM 15-km also provides the 

boundary conditions for the GEM-LAM 2.5-km (Mailhot et al., 2010). The GEM-

LAM 2.5-km is integrated for 24 hours (Rombough et al., 2010). Finally, the 

GEM-LAM 1-km run is initialized at 1500 UTC from the 3- hour forecast of the 

2.5-km run. It also provides the boundary conditions for the GEM-LAM 1-km 

that is integrated for 12 hours. Thus, the GEM-LAM 1-km is available from 1500 

UTC to 0300 UTC the following day. The GEM-LAM 1-km is a non-hydrostatic 

 

 

Fig. 2.1: The daytime configuration of the high-resolution modeling. IC is the 

abbreviation for initial condition. LBC is the abbreviation for lateral boundary condition. 



29 

 

model with 58 staggered Charney-Phillips vertical coordinates (Taylor and al., 

2010). It was run over three domains: Alberta, Southern Ontario, and Southern 

Quebec (Fig. 2.2). The position of each 1-km domain was chosen according to the 

position of the GEM-LAM 2.5-km (Fig. 2.2) and the SW observations for the 

summer of 2009 (Fig. 2.3). The Alberta domain has 450 x 520 grid points, the 

Southern Ontario domain has 700 x 600, and the Southern Quebec domain has 

600 x 600 grid points. The GEM-LAM 1-km uses the double moment version of 

the Milbrandt-Yau microphysics scheme (Milbrandt and Yau, 2005) which 

improves precipitation quantities, rates and identification of the type of 

precipitation compared to its single moment version (Mailhot et al., 2010). It also 

has new diagnostic output, such as the wind gust based on the method developed 

by Brasseur (2001). 

 

 

Fig. 2.2: Domains of the GEM-LAM 2.5-km (larger, mainly reddish domains) and the 

experimental GEM-LAM 1-km (smaller, mainly bluish domains). 
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Fig. 2.3: SW observations for the summer of 2009 over the Prairies, Ontario, Quebec, and the 

states of Michigan, Indiana, Ohio, Pennsylvania, New York, Vermont, New Hampshire, Maine, 

Washington, Idaho, and Montana. 

 

 

Chapter 3 

Post-processed fields 

 

Once a model run is completed and the outputs are generated, they can be 

used to detect whether the model has simulated the presence of SW. Many SW 

warning systems or indices have been automated and produced from algorithms 

that process model outputs to evaluate the potential and/or severity of 

thunderstorms. Therefore, for the purpose of this research, algorithms were 
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developed to assess the presence of severe thunderstorms from the GEM-LAM 1-

km model outputs. 

 

3.1      Detection of radar-like severe weather signatures 

 Severe thunderstorms have particular feature elements compared to 

ordinary thunderstorms. Therefore, I believe that, if the GEM-LAM 1-km 

simulates convection well and realistically, the best way to use the model outputs 

is to use them to search for the 3D structure of radar-like feature of severe 

thunderstorm. In this research, we limit ourselves to five radar-like severe 

convection features: mesocyclone, overhang, bounded weak echo region, severe 

updraft, and vorticity couplet. Moreover, algorithms based on the 3D structure 

should be more resilient to the model version’s change, and therefore more 

operationally useful. In addition, algorithms based on the 3D structure do not exist 

at the High Impact Weather National Laboratory at EC. Currently, their 

algorithms use fixed reflectivity criteria at different height ranges and do not use 

the 3D structure of the model outputs to look for specific structures (Turcotte, 

2007; Vaillancourt, 2006).  

 Let us first consider the overhang algorithm, since the bounded weak echo 

region algorithm and the mesocyclone algorithm use its output. An overhang is an 

important severe thunderstorm feature. Long-lived thunderstorms are the result of 

strong environmental wind shear and a strong updraft that cause the precipitation 

to be tilted so that it does not fall into the updraft. An overhang is the radar 

signature of such tilted precipitation. It is associated with multicellular and 
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supercellular thunderstorm. The overhang algorithm uses the following model 

outputs — the equivalent reflectivity, the maximum equivalent reflectivity in the 

vertical above freezing level, and the geopotential height. The geopotential height 

and the equivalent reflectivity are 3D fields, and the maximum equivalent 

reflectivity above freezing level is a 2D field. The overhang algorithm loops 

through the horizontal points and checks if the maximum equivalent reflectivity 

above freezing level is greater than 45 dBZ. If a point has a maximum equivalent 

reflectivity above freezing level greater than 45 dBZ, the algorithm does a 3D 

scan to find all the points connected to it that have an equivalent reflectivity 

greater than 30 dBZ (Fig. 3.1). If the difference between the top height and the 

base height of these points is greater than 5 km, then the algorithm checks if there 

is a weak echo region to identify these points as an overhang. If the algorithm 

identifies a weak echo region below 3 km above ground level (AGL), an 

equivalent reflectivity of less than or equal to 10 dBZ within the horizontal and 

vertical extent of the interconnected points (Fig. 3.1), then the algorithm flags 

these points as an overhang. The overhang field is a 2D field, so only the 

horizontal extent of the interconnected points found earlier is kept. A value of 1 

indicates an overhang, and a value of 0 indicates no overhang. 

The bounded weak echo algorithm is part of the overhang algorithm. If the 

necessary conditions are present to form a thunderstorm with a tilted updraft and 

that the updraft strongly intensifies, on the radar a vault will be noticed in the 

overhang. This vault is commonly named a bounded weak echo region and 

indicates that a thunderstorm has a severe updraft. It is important to mention that 

the overhang and the bounded weak echo region are not mutually exclusive. A  
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Fig. 3.1: Description of the overhang algorithm. First, it finds a point with a maximum vertical 

reflectivity above the freezing level greater than 45 dBZ. Then, it finds all the points 

interconnected to this one that have a reflectivity greater than 30 dBZ. To check if these points 

correspond to an overhang region, their vertical extent needs to be greater than 5 km. Finally, these 

points are identified as an overhang region if there is weak echo region — a region with 

reflectivity less than or equal to 10 dBZ below 3 km AGL and within the horizontal and vertical 

extent of the interconnected points. 

 

bounded weak echo region is a special case of the overhang. Bounded weak echo 

region is mostly associated to supercellular thunderstorm and to large hail event. 

Therefore, once the overhang algorithm has found an overhang, it will look for a 

bounded weak echo region: the algorithm will look for the highest vertical point 

below the overhang with 0 dBZ reflectivity, given a maximum equivalent 

reflectivity above freezing level of at least 40 dBZ. If there is such a point, the 
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algorithm finds the highest point above this horizontal grid point and below the 

overhang where the equivalent reflectivity is less than or equal to 10 dBZ. At this 

vertical level, the algorithm checks within 5 surrounding horizontal grid points if 

the equivalent reflectivity is greater than 30 dBZ. If there is a point with this 

criterion, it also verifies that this point does not belong to the points found with 

the overhang algorithm (Fig. 3.2). If the algorithm has found all these 

requirements, the highest point vertically below the overhang with 0 dBZ 

reflectivity and a maximum equivalent reflectivity above freezing level of at least 

40 dBZ is flagged as a bounded weak echo region. The bounded weak echo field 

is a 2D field, which corresponds to the flagged grid points associated to bounded 

weak echo regions. A value of 1 corresponds to a bounded weak echo region, and 

a value of 0 corresponds to no bounded weak echo region. 

Next, mesocyclone, defined as a rotating updraft, is particular to 

supercellular thunderstorms which are prolific producer of SW. Also, tornados 

can be associated to mesocyclone if its rotation extends all the way to the surface. 

The strong environmental wind shear needed to produce supercell induces vortex 

tubes. The interaction between the updraft and the environmental vortex tubes 

produces a vortex couplet that straddles the updraft (Davies-Jones, 2002). As the 

storm propagates, the updraft becomes nearly positioned with one of the vortices, 

so the updraft acquires rotation which is identified as a mesocyclone (Davies-

Jones, 2002). A rotating updraft at middle altitude corresponds to the first stage of 

a mesocyclone’s evolution (Burgess et al., 1982). The mesocyclone algorithm 

uses the geopotential height, the relative vorticity, and the maximum equivalent 

reflectivity above freezing level. The geopotential height and the relative vorticity  
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Fig. 3.2: Description of the bounded weak echo algorithm. It is a continuity of the overhang 

algorithm. Once an overhang region is found, the algorithm finds the highest point with 0 dBZ 

reflectivity below the overhang, given a maximum vertical reflectivity above the freezing level of 

at least 40 dBZ. Then, from this point, the highest point below the overhang with a reflectivity less 

than or equal to 10 dBZ is found. At this vertical level, the algorithm verifies if within surrounding 

5 horizontal grid points there are points with a reflectivity greater than 30 dBZ that do not belong 

to the overhang region. Given that such points exist, the highest point with 0 dBZ reflectivity and a 

maximum vertical reflectivity above the freezing level greater than or equal to 40 dBZ is 

identified as a bounded weak echo region. 

 

are 3D fields, but the maximum equivalent reflectivity above freezing level is a 

2D field. In addition, the mesocyclone algorithm uses the overhang output from 

the overhang algorithm, which is a 2D field. The algorithm loops through all the 

points in the horizontal plane, and checks at each point if the maximum equivalent 
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reflectivity above freezing level is greater than 40 dBZ, also if an overhang was 

detected by the overhang algorithm. If this is the case, the algorithm does a 3D 

scan to find all the connected points between 2 km and 12 km AGL that have a 

relative vorticity greater than 0.004 s
-1

. As shown by Cai (2005), the 

mesocyclone’s vorticity is dependent on the grid’s resolution of the dual Doppler 

analysis. In Cai’s research, the mesocyclones’ vertical vorticity were 

approximately 0.02 s
-1

 for 1-km grid spacing, 0.005 s
-1

 for 3-km grid spacing and 

0.003 s
-1 

for 5-km grid spacing (Cai, 2005). Even if the model used in this thesis 

has a 1-km resolution, it cannot forecast atmospheric phenomena of scales smaller 

than 3 km, since at least three grid points are needed for a wave representation, 

and five to seven grid points are needed to well represent a wave and its 

discontinuities (Haltiner and Williams, 1980). Thus, based on the literature and 

the phenomenon’s scale that the model can resolve, I took the mean of the 3-km 

and 5-km grid mesocyclone vorticity values from Cai (2005), which is 

approximately 0.004 s
-1

,
 
to identify a mesocyclone’s vertical vorticity. We are 

aware that this value will have to be recalculated and changed whenever the 

resolution of the model changes. However, this happens less frequently than 

model version change. Once all the interconnected points have been found by the 

algorithm, the base and the top of these points have been kept in memory, so that 

the height of this strong vorticity region can be computed. If the height is greater 

than 2 km, the interconnected points found are flagged as a mesocyclone. The 

mesocyclone field is a 2D field: thus, only the horizontal extent of the 

interconnected points flagged as mesocyclone is kept in the mesocyclone field. A 

value of 1 indicates a mesocyclone, and a value of 0 indicates no mesocyclone. 
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 The severe updraft algorithm uses the vertical velocity and the 

geopotential height from the model’s outputs, which are both 3D fields. The 

algorithm loops horizontally and vertically to find points with a vertical velocity 

smaller than -50 Pa/s below 12 km AGL. If the algorithm finds one point reaching 

this criterion, it does a 3D scan to find all interconnected points with a vertical 

velocity smaller than -20 Pa/s below 12 km AGL. The values to locate severe 

updraft were estimated from Auer and Sand (1966). Updraft measurements were 

taken from the base of cumulonimbus clouds, and the average values for the 

updraft ranged from approximately 2 m/s (≈ -20 Pa/s) to 6 m/s (≈ -70 Pa/s), 

depending on rain intensity (Auer and Sand, 1966).  Of course along the region of 

convergence, the updraft will be more severe, and over a short period of time, the 

updraft might be more intense than these average values (Auer and Sand, 1966). 

The average values are sufficient for the purpose of this algorithm, since severe 

peaks in an updraft are mostly at a smaller scale that the GEM-LAM 1-km can 

resolve, and last for shorter time periods than the interval between model outputs. 

The interconnected points must have a vertical extent of at least three vertical 

levels to be flagged as a severe updraft by the algorithm. The severe updraft is a 

2D field that corresponds to the horizontal extent of the interconnected points 

found. A value of 1 corresponds to a severe updraft, and a value of 0 corresponds 

to a non-severe updraft. 

As mentioned in the mesocyclone algorithm section, the vorticity couplet 

is associated to supercellular thunderstorm as it is prior the first stage of a 

mesocyclone’s formation. Therefore, vorticity couplets are important to detect the 

potential of a storm’s rotation. The vorticity couplet algorithm uses the relative 
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vorticity and the geopotential height from the model’s outputs. First, the algorithm 

searches for positive vortices. It loops through all the grid points between 1 km 

and 8 km AGL and verifies if there are points with a relative vorticity value 

greater than 0.004 s
-1

. If it finds such a point, the algorithm does a 3D scan to find 

all the interconnected points with a relative vorticity value greater than 0.002 s
-1

. 

If this set of points extends over at least three vertical levels,  it is considered to be 

a positive vortex. Next, the algorithm searches for negative vortices by looping 

through all the grid points between 1 km and 8 km AGL and verifying if there are 

points with a relative vorticity value of less than -0.003 s
-1

. If it finds such a point, 

the algorithm does a 3D scan to find all the interconnected points with a relative 

vorticity value of less than -0.002 s
-1

. If this set of points extends over at least 

three vertical levels, it is considered to be a negative vortex. The vorticity values 

from Cai (2005) were used to estimate the vorticity threshold to identify the 

vorticity couplet for the same reasons explained in the mesocyclone algorithm 

section and are in accordance with value used for the mesocyclone algorithm. The 

discrepancy of the relative vorticity value between the negative and positive 

vortex is due to the subjective analysis of the model outputs and its ability to 

realistically simulate severe thunderstorm structure. It was noticed that the 

negative vortex of a vorticity couplet is usually weaker than the positive vortex, 

which agrees with literatures because clockwise curved wind shear, commonly 

observed in the Northern Hemisphere, favor the positive vortex (Davies-Jones, 

2002).  Finally, the algorithm compares the position, as well as the horizontal and 

vertical extent of the positive and negative vortices, to identify vorticity couplets. 

In order to be considered a vorticity couplet, the positive and the negative vortices 
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must have common horizontal grid points and share common vertical levels (Fig. 

3.3). The vorticity couplet is a 2D field, which contains the horizontal extent of 

the positive and negative vortices that were considered to be vorticity couplets. 

The value 1 indicates that a vorticity couplet was found, and the value 0 means 

that there was no vorticity couplet found. 

 

 

Fig. 3.3: Description of the vorticity couplet algorithm. First, the algorithm identifies the positive 

vortices by finding points with a relative vorticity greater than 0.004 s
-1

 and all interconnected 

points with a relative vorticity value greater than 0.002 s
-1

. Then, it finds the negative vortices by 

finding points with a relative vorticity smaller than -0.003 s
-1

 and all interconnected points with a 

relative vorticity value smaller than -0.002 s
-1

. Finally, it identifies vorticity couplets by locating 

positive and negative vortices that share common horizontal and vertical grid points. 
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3.2      Indices  

 The most frequently used indices operationally to forecast SW are computed 

in order to identify the best approach to use a high-resolution model to forecast 

SW. The STRATUS library available at EC was used to compute the indices 

needed and other fields from vertical profiles of atmospheric fields. The 

STRATUS library is part of a visualization tool used at the Quebec Storm 

Prediction Centre (QSPC) to visualize atmospheric soundings. The STRATUS 

library can be used on any vertical set of points. In order to use the STRATUS 

library, a vertical profile of pressure, temperature, dew point temperature, height, 

wind speed, wind direction, x-component of the wind, and y-component of the 

wind was provided at every horizontal grid point. In order to compute the CAPE 

and the CINH, a tephigram analysis was made for each horizontal grid point. That 

way, I could compare the CAPE calculated from the tephigram analysis done with 

the STRATUS library to the CAPE directly calculated by the model. The CAPE is 

sensitive to the details of the calculation (Doswell and Rasmussen, 1994). 

Therefore, there could be differences between the two computation methods, 

since the STRATUS library uses the most complete equation for each index, 

while, the model often uses approximation to save computer time, as is the case 

with LI as shown by Frenette (2006). The stratus library was also used to compute 

LI (Galway, 1956), SI (Showalter, 1953), K (George, 1960), TT (Miller, 1972), 

SWEAT (Bidner, 1971), SRH (Davies-Jones et al., 1990), EHI (Hart and Korotky, 

1991), and SSI (Turcotte and Vigneux, 1987) in agreement with the 

corresponding literature. However, some indices, such as TT, K, and SWEAT are 
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computed only when the surface pressure is greater than or equal to 850 hPa. 

Thus, in the Alberta window, a major part of our window will not have these 

indices due to the Rockies being present.  

 

3.3      Additional ingredients for severe thunderstorms 

 In this section, algorithms that compute additional ingredients required to 

make convection severe will be presented. As mentioned previously, the 

necessary ingredients are instability, moisture, and wind shear. In the previous 

section, many stability indices among the indices were computed for this research. 

Therefore, up to this point, algorithms to quantify the condensed water content 

and the wind shear are needed. 

Moisture availability is of great importance for severe convection. Thus, I 

have two algorithms that compute the convergence of humidity. The first one 

calculates the convergence of humidity at 700 hPa at each grid point. The second 

one finds the convergence of humidity at its maximum in each column, and keeps 

the value and height. They both use the specific humidity and the divergence 

fields from the model’s outputs. The first algorithm also uses the pressure field, 

and the second one also uses the geopotential height.  

Next, we also need an algorithm that computes wind shear in the 

atmosphere, which is the only ingredient to differentiate severe convection from 

ordinary convection. There is an algorithm that calculates wind shear between 0-3 

km and 0-6 km. The algorithm adds the magnitude of the wind shear vector 

between two consecutive levels from the surface to 3 km, and from the surface to 
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6 km. From these calculations, the total directional wind shear and speed shear is 

obtained. In other words, the algorithm considers the change in wind direction 

with height and the change of wind speed with height, which a simple addition of 

wind shear vectors does not. This algorithm uses the geopotential height, the wind 

speed, and the wind direction from the model’s outputs.  

 

3.4      Type of severe weather expected 

In this section, algorithms that can be used to identify the type of SW 

expected — hail, heavy rain, strong winds, and tornados —  and its severity will 

be introduced.           

         First, the algorithms that can be used to forecast hail and evaluate its size 

will be presented. There is an algorithm that computes the supercooled liquid 

water in every column. The value of the integrated supercooled liquid water is 

operationally useful to evaluate the potential for hail. The model’s double moment 

microphysics scheme computes the cloud’s supercooled liquid water, which can 

also be useful to evaluate the potential for hail. The other interesting algorithm to 

evaluate the potential for hail computes the vertical ice flux. It uses the vertical 

velocity, the mixing ratio of ice crystals, the hail mixing ratio, and the graupel 

mixing ratio, which are all 3D fields from the model’s outputs. The algorithm 

calculates a sum of the vertical ice flux in each column above the -15°C level. 

Also, with the double moment microphysics scheme, the hail’s diameter is 

available as a 3D model’s output. Thus, there is an algorithm that finds the 

maximum hail size in each column based on the hail’s diameter field.  
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Next, the algorithms that evaluate the microburst potential and the gust 

intensity are presented. The approach by Brasseur (2001) that provides an 

estimation of the range of the wind gust at the surface caused by the deflection of 

winds by turbulent mixing was recently added to the model’s outputs. I wanted to 

evaluate its efficiency and compare it to other wind intensity algorithms. The 

gusts based on Brasseur’s method consist of the estimated wind gust and the 

maximum wind gust. There is an algorithm that checks if Brasseur’s method has 

forecasted near-severe gusts (larger than 70 km/h). If it has, it keeps the values for 

the estimated and maximum gust. I wanted to compare Brasseur’s method to a 

wind index called the WINDEX. The WINDEX is a wind index from which the 

wet microburst potential can be estimated. The WINDEX is an approximation of 

the wind intensity in knots. There is also an algorithm that computes the 

WINDEX. For more information about this wind index, please consult McCann 

(1994). Also, since dry microburst is very important for the Prairies, there is an 

algorithm that verifies the operational criteria for dry microburst. Necessary 

atmospheric conditions for dry microburst are dry low-level with moisture present 

in the mid-level of the atmosphere (Wakimoto, 1985). Thus, the algorithm verifies 

if the dew point spread is greater than or equal to 8°C for every level below 3 km 

AGL, and if the dew point spread is smaller than or equal to 5°C for every level 

between 4 km and 7 km AGL. If these two conditions are met, the grid point will 

be flagged. A value of 1 corresponds to dry microburst, and a value of 0 

corresponds to no microburst. However, for Ontario and Quebec, wet microburst 

is important. Thus, an algorithm to compute the operational criteria for wet 

microburst is needed. The operational way to evaluate the wet microburst 
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potential is to compare the potential temperature between the low-level and the 

mid-level of the atmosphere (Atkins and Wakimoto, 1991). Our algorithm 

calculates the difference between the potential temperature at 700 hPa and 500 

hPa at each grid point. Values greater than 20 are considered to be at great risk of 

wet microburst (Atkins and Wakimoto, 1991).  

Let us consider the algorithms evaluating the potential and the intensity of 

heavy rain. There are two model outputs that I use to evaluate the heavy rain 

potential and severity — the liquid water content in the column, and the liquid 

water content of 700 hPa and above at each grid point. There is also an algorithm 

that verifies if the accumulated rain forecasted by the double moment 

microphysics scheme is greater than or equal to 25 mm for the past hour, or if it is 

greater than or equal to 50 mm. In addition, the vertical moisture flux field can 

also be used to evaluate flash flood potential. Thus, the vertical moisture flux 

algorithm computes the total vertical moisture flux in each column. It uses the 

specific humidity and the vertical velocity from the model’s outputs.  

Finally, there is one algorithm to identify tornados. It passes through the 

relative vorticity field below 2 km AGL and checks if, on at least three 

consecutive levels, the relative vorticity has a value greater than or equal to 

0.0037 s
-1 

in agreement with the mesocyclone algorithm and the vorticity 

measurements from Cai (2005). If these conditions are reached, the grid point will 

be flagged. A value of 1 implies that a tornado was detected, and a value of 0 

means that no tornado was detected. 
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Chapter 4 

Evaluation methodology 

 

The methodology chapter is long and quite complex. Figure 4.1 is a flow 

chart that describes the important steps of this research. It is a useful chart to help 

the reader to navigate through the complex processes and their technical details. 

Therefore, people who are not familiar with the explained processes might have to 

refer to this figure often while reading the Chapter 4. 

 

4.1      Execution of the model 

The GEM-LAM 1-km was executed each day of the summers (June, July, 

and August) of 2008 and 2009 over the three regions shown previously in Chapter 

2: Southern Quebec, Southern Ontario, and Alberta. As mentioned in Chapter 2, 

each run is initialized at 15 UTC and is integrated for a period of 12 hours. The 

model outputs are available for every hour from 15 UTC to 03 UTC the following 

day of the initialization. A list of the model outputs can be viewed in Table 4.1. 

When the runs for the summer of 2009 were completed, a subjective analysis was 

performed on the model outputs for a few SW days to evaluate which severe 

thunderstorm features are resolved by the model (described in Section 4.2). 

Afterwards, I started developing the algorithms presented in Chapter 3 to detect 

the severe thunderstorm features resolved by the model that were observed during 

the analysis of the model outputs for those few SW cases. In order to verify that  
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Fig. 4.1: Key processing steps of this research. 
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Name Description Unit Dimension 

MX Filtered geopotential topography m
2
/s

2
 2D 

ME Mountain m 2D 

PN Sea level pressure hPa 2D 

TT Air temperature °C 3D 

TD Dew point temperature °C 3D 

HU Specific humidity kg/kg 3D 

UU X-component of the wind  kt 3D 

VV Y-component of the wind  kt 3D 

UV Wind modulus kt 3D 

WW Vertical motion Pa/s 3D 

WD Meteorological wind direction degree 3D 

GZ Geopotential height Dam 3D 

PX Pressure hPa 3D 

QR Relative vorticity s
-1 

3D 

DD Divergence s
-1

 3D 

QBT1 Cloud droplets mixing ratio  kg/kg 3D 

QLT1 Rain drops mixing ratio  kg/kg 3D 

QIT1 Mixing ratio of ice kg/kg 3D 

QNT1 Mixing ratio of snow  kg/kg 3D 

QJT1 Graupel particles mixing ratio  kg/kg 3D 

QHT1 Mixing ratio of hail  kg/kg 3D 

NCT1 Number concentration of cloud droplets  m
-3 

3D 

NRT1 Number concentration of rain drops  m
-3

 3D 

NIT1 Number concentration of ice crystals  m
-3

 3D 

NNT1 Number concentration of snow crystals  m
-3

 3D 

NGT1 Number concentration of graupel particles  m
-3

 3D 

NHT1 Number concentration of hail particles  m
-3

 3D 

P0 Surface pressure                                              hPa 2D 

LA Geographical latitude degree 2D 

LO Geographical longitude degree 2D 

IH  Water vapor vertical integration kg/m
2
 2D 

IY Integral of upper troposphere (700hPa) water vapor m 2D 

WGE Wind gust estimate from turbulent kinetic energy m/s 2D 

WGX Wind gust maximum from turbulent kinetic energy m/s 2D 

U4 CAPE from the convection scheme J/kg 2D 

K6 Maximum vertical velocity in convective cloud m/s 2D 

BE Buoyant energy J/kg 2D 

IB Integrated supercooled liquid water kg/m
2
 2D 

SLW Total supercooled liquid water content kg/m
3
 3D 

PR Quantity of precipitation m 2D 

SN Snow  m 2D 

A2 Accumulation of stratiform liquid precipitation m 2D 

A4 Accumulation of stratiform solid precipitation m 2D 

PZ Shallow convection precipitation rate m/s 2D 

RRN1 Precipitation rate-liquid drizzle  m/s 2D 

RRN2 Precipitation rate-liquid rain  m/s 2D 

RFR1 Precipitation rate-freezing drizzle  m/s 2D 

RFR2 Precipitation rate-freezing rain  m/s 2D 

RSN1 Precipitation rate-ice crystals  m/s 2D 

RSN2 Precipitation rate-snow  m/s 2D 

RSN3 Precipitation rate-graupel  m/s 2D 

RPE1 Precipitation rate-ice pellets  m/s 2D 
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RMX Precipitation rate-mixed precipitation   m/s 2D 

RN1 Accumulated liquid drizzle  m 2D 

RN2 Accumulated liquid rain  m 2D 

FR1 Accumulated freezing drizzle  m 2D 

FR2 Accumulated freezing rain  m 2D 

SN1 Accumulated ice crystals  m 2D 

SN2 Accumulated snow  m 2D 

SN3 Accumulated graupel  m 2D 

PE1 Accumulated ice pellets  m 2D 

PE2 Accumulated hail  m 2D 

PE2L Accumulated large hail  m 2D 

AMX Accumulated mixed precipitation  m 2D 

EI Outgoing infrared energy exiting the atmosphere W/m
2 

2D 

FV Upward surface latent heat flux W/m
2
 2D 

FC Upward surface sensible heat flux W/m
2
 2D 

FQ Momentum flux at surface Pa 2D 

FI Surface incoming infrared flux   W/m
2
 2D 

EV Outgoing visible energy exiting the atmosphere W/m
2
 2D 

H Height of boundary layer m 2D 

DMR Mean mass diameter of rain   m 3D 

DMG Mean mass diameter of graupel m 3D 

DMH Mean mass diameter of hail m 3D 

ZET Total equivalent reflectivity    dBZ 3D 

RT Total precipitation rate m/s 2D 

P2 Stratiform liquid precipitation rate   m/s 2D 

P4 Stratiform solid precipitation rate m/s 2D 

RPE2 Precipitation rate-hail  m/s 2D 

RPEL Precipitation rate-large hail  m/s 2D 

ZEC Maximum equivalent reflectivity in a vertical column dBZ 2D 

 

Table 4.1: List of the fields available from the GEM-LAM 1-km. 

 

the algorithms were well designed and that there were no coding problems, the 

algorithms were run for those same SW days to see if the algorithms detected 

every feature that I detected visually. When the algorithms were working well, I 

executed my program over the three regions for the summer of 2009. The 

program involves using my algorithms and taking the model’s outputs as inputs to 

produce post-processed fields. 
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4.2      Subjective analysis 

 A subjective analysis was done on the post-processed fields of the summer 

of 2009 for the Alberta, Southern, Ontario and Southern Quebec regions in order 

to choose the best predictors among the post-processed fields to build our SWI 

index. A subjective analysis was also necessary to evaluate our algorithms and 

verify if some adjustments were needed before using them for the summer of 

2008’s dataset. Usually, subjective analysis is not the most robust analysis since it 

procures no statistics, and an objective analysis is preferred by researchers. In our 

case, a subjective analysis was the most robust method to choose the best 

predictors and to evaluate our algorithms due to the high-resolution of our grids, 

the scarcity of SW observations, and the limited radar products available for past 

events. It was impossible to get archived radar data for the summer of 2009 over 

the three regions to compare it with the model and the post-processed fields, 

because it required a lot of resources that the Cloud Physics and Severe Weather 

Research Section of the Meteorological Research Division at EC did not have. 

Only the CAPPI radar images were archived and easily accessible on the EC 

website. Therefore, the construction of a decision tree with a statistical tool from 

the SW observations and the post-processed fields was not the most efficient 

method in this case, due to the limitations of a point-by-point comparison on high-

resolution grids with rare events (Brown et al., 2002). A point-by-point 

comparison does not allow any tolerance in time and space (Brown et al., 2002), 

which is a major problem because even if a model simulates a severe 

thunderstorm well, it will rarely be at the exact same place and time that it was 
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observed, if observed at all. Even doing an upscaling of the observations and the 

post-processed fields would not have worked because the thresholds found for 

continuous fields by the decision tree statistic tool after the upscaling would have 

been biased. Therefore, the only way that I could compare the post-processed 

fields to the SW observations and the CAPPI radar images, in order to get a more 

complete analysis, was to do a subjective analysis. In addition, a subjective 

analysis allows some tolerance in space and time. 

 There were 45 post-processed fields to analyze and compare with the SW 

observations and the CAPPI radar images. The list of the post-processed fields 

can be seen in Table 4.2. Each day of the summer of 2009 was analyzed 

thoroughly over the three regions. It is important to specify that notes were taken 

about the value of each post-processed field and whether or not SW was observed 

or possible from the radar images.  

Once the subjective analysis was done, some adjustments were made to a 

few algorithms according to the results of the analysis. However, the main 

changes were due to some coding errors in the algorithms. For example, before 

the adjustments, no vorticity couplets were detected, since there was a problem in 

the vorticity couplet algorithm where it associates a positive vortex with a 

negative vortex to identify them as a vorticity couplet. 
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Name Description Unit 

SI Showalter index °C 

SSI Severe storm index — 

LI Lifted index °C 

ITT Total Totals index °C 

K George index °C 

SRH Storm relative helicity m
2
/s

2
 

EHI Energy helicity index — 

SWEA Severe weather threat index — 

CAPT CAPE calculated from the tephigram analysis J/kg 

CINT CINH calculated from the tephigram analysis J/kg 

MXRT Maximum equivalent reflectivity above freezing level dBZ 

ZEC Maximum equivalent reflectivity in a vertical column dBZ 

OH Overhang occurrence — 

SU Severe updraft occurrence — 

CH Maximum convergence of humidity g/kg·s 

HCH Height of the maximum convergence of humidity m 

VMF Vertical moisture flux Pa·g/kg·s
 

MESO Mesocyclone occurrence — 

MESB Height of the base of the mesocyclone m 

WER Bounded weak echo region occurrence — 

WDX Wind index (WINDEX) kt 

TOR Tornado occurrence — 

HL Hail occurrence in a vertical column — 

CV Vorticity couplet occurrence — 

HLS Hail size at the surface mm 

HLX Maximum hail size in a vertical column mm 

SHR3 0-3 km wind shear  kt 

SHR6 0-6 km wind shear kt 

ACC Accumulated rain in the past hour mm 

ACCT Total accumulated rain  mm 

SVR Severe rain occurrence — 

CH7 Convergence of humidity at 700 hPa g/kg·s 

PV Positive vortex occurrence — 

NV Negative vortex occurrence — 

TETA Potential temperature difference between 700 hPa and 500 hPa K 

2DB Downburst occurrence — 

VIF Vertical ice flux Pa·g/kg·s 

SLW Integrated supercooled liquid water g/m
3 

WGE Wind gust estimate  km/h 

WGX Wind gust maximum  km/h 

CAPM CAPE from the convection scheme J/kg 

K6 Maximum vertical velocity in convective cloud m/s 

CSLW Cloud supercooled liquid water g/m
2
 

LWC Integrated liquid water content g/m
2
 

LWC7 Integrated liquid water content from 700 hPa g/m
2
 

 

Table 4.2: List of the post-processed fields. 
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4.3      Building the index 

 To build our SWI index, the best predictors to forecast severe 

thunderstorms needed to be chosen from the post-processed fields. The purpose of 

the subjective analysis was to permit the ranking of the best predictors of severe 

thunderstorms. With the notes of the analysis, the best predictors and their 

associated thresholds, for non-binary predictors, were chosen. The 12 best 

common predictors can be seen in Table 4.3. As expected, the post-processed 

fields associated with the thunderstorm’s structure were the best predictors for the 

three regions. Even if the best predictors are the same for the three regions, the 

thresholds for the continuous predictors are slightly different, since each region 

has, on average, a type of SW that is more frequent than the others. Moreover, it 

is important to mention that our index does not identify the SW expected, but 

predicts the occurrence of SW and evaluates its intensity based on the 

thunderstorm’s structure and the basic ingredients for severe thunderstorms. 

 

Names Description Unit 

 

OH Overhang occurrence — 

SU Severe updraft occurrence — 

MESO Mesocyclone occurrence — 

WER Bounded weak echo region occurrence — 

MXRT Maximum equivalent reflectivity above freezing 

level 

dBZ 

VMF Vertical moisture flux Pa·g/kg·s 

LWC Integrated liquid water content g/m
2 

LWC7 Integrated liquid water content from 700 hPa g/m
2
 

SHR3 0-3 km wind shear  kt 

SHR6 0-6 km wind shear kt 

SWEA Severe weather threat index — 

VIF Vertical ice flux Pa·g/kg·s 

 

Table 4.3: List of the best severe thunderstorm predictors. 
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Using these best predictors, a SWI index with values ranging from 0 to 100 

was designed, 0 being a very low SWI and 100 being a high SWI. The SWI index 

is a cumulative index. In other words, each grid point is given an SWI index for 

the entire forecast period, which in our case, is from 15 UTC to 03 UTC. First, the 

SWI index algorithm goes through all the predictors listed in Table 4.3 every hour 

from 15 UTC to 03 UTC to find points where the maximum equivalent 

reflectivity is greater than 40 dBZ, and where there is also at least one of the 

following: overhang, severe updraft, mesocyclone. Then, the algorithm finds all 

the interconnected points that also have an overhang, a severe updraft, or a 

mesocyclone. Finally, the SWI index is given a value according to the decision 

tree of the region, which is based on the subjective analysis of the summer of 

2009. The SWI index value depends on which and how many predictors were 

found in each set of points and the value of the continuous predictors. For the two 

highest classifications of the decision tree, the higher the number of predictors 

found associated to the thunderstorm’s structure, the higher the SWI index. 

Mainly for the other classification, in a case where the same structure predictors 

are found, if the value of the continuous predictors increases (the basic ingredients 

for severe thunderstorms), the value of the SWI increases as well, although an 

increase in the value of some severe thunderstorm ingredients can compensate for 

a smaller number of structure predictors found. These behaviors can be seen in 

Tables 4.4, 4.5, 4.6 that describes the decision tree for each region. For example, 

in the decision tree developed for Quebec, if all the radar-like features of severe 

thunderstorms are found — an overhang, a severe updraft, a mesocyclone, and a 

bounded weak echo region — the SWI index has a value of 100. However, if only 
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an overhang, a severe updraft, and a bounded weak echo region are detected and 

that the vertical moisture flux, the liquid water content, and the SWEAT are 

greater than the highest threshold of the decision tree, the SWI index has a value 

of 80. It has a lower value than the previous one, since less structural features of 

severe thunderstorm were detected. In addition, if the same radar-like features are 

found — an overhang, a severe updraft, and a bounded weak echo region —, but 

that the vertical moisture flux, the liquid water content, and the SWEAT are lower 

than previously and are only higher than the lower threshold of the decision tree, 

the SWI index has a value of 50. In this case, the SWI index has a lower value 

because the moisture availability, which is a necessary ingredient to get severe 

convection, is lower than the previous case. However, the SWI index also has a 

value of 50 if an overhang and a severe updraft are detected and that the vertical 

moisture flux, the liquid water content, and the SWEAT have a value greater than 

the previous case. Even though less radar-like features are detected, the moisture 

availability is greater than the previous case. Thus, it compensate for the fewer 

number of structural features found.  

The SWI index was generated for each day of the summer of 2009 over each 

region. Then, it was verified objectively using the Method for Object-Based 

Diagnostic Evaluation (MODE) tool from the Model Evaluation Tools package 

(MET), which was developed by the Verification Group at the Research 

Applications Laboratory at National Center for Atmospheric Research (NCAR). 

The MODE tool will be explained in the next section. The MODE tool was used 

to verify if the classification of our decision tree was designed correctly, so the  



 

  SWI OH   SU   MESO   WER   LWC  LWC7  VMF   SHR3   SHR6   VIF SWEAT 

 100    ×    ×    ×    ×    −    −    −    −    −    −    − 

  90    ×    ×    ×    −    −    −    −    −    −    −    − 

  80    ×    ×    −    ×   >25000   >10000  >4000    −    −    −    − 

  70    ×    −    ×    ×   >20000 >10000  >3500    −    −    −    − 

  70    −    ×    −    −   >30000 >12000  >5000   >60    −  >100    − 

  70    −    ×    −    −   >30000 >12000  >5000    −      >90  >100    − 

  60    ×    ×    −    ×   >20000 >10000  >3500    −    −    −    − 

  60    ×    ×    −    −   >25000 >10000  >4000    −    −    −    − 

  50    ×    ×    −    −   >20000 >10000  >3500    −    −    −    − 

  50    −    ×    −    −   >25000 >11000  >4000    −    −  >150    − 

  40    ×    −    ×    −   >20000 >10000  >3500    −    −    −    − 

  40    ×    −    −    −   >25000 >10000  >4000    −    −    −    − 

  40    −    ×    −    −   >25000 >10000  >4000 >60    −  >100    − 

  40    −    ×    −    −   >25000 >10000  >4000    − >90  >100    − 

  30    ×    −    −    ×   >20000 >10000  >3500    −    −    −    − 

  20    ×    −    −    −   >20000 >10000  >3500    −    −    −    − 

  20    ×    −    −    −   >25000 >10000  <4000    −    −    −    − 

  10    ×    −    −    −   >20000 >10000  <4000    −    −    −    − 

  10    −    ×    −    −   >25000 >10000  >4000       >60    −    −    − 

  

Table 4.4: Decision tree for the SWI index over the Alberta window. The first column is the value of the SWI index based on which predictors 

were found and their corresponding value. For the binary predictors, an ‘×’ indicates that the predictor in the corresponding column is needed in 

order to assign the corrresponding value of the row of the SWI index and an ‘−’ indicates that the predictor in the corresponding column is not 

needed. For the continous predictors, in order to assign the corrresponding value of the SWI index of the row the predictor needs to have a value 

greater than the value indicated its column.   

 

 

 

 

 

 



 

SWI    OH   SU MESO WER LWC LWC7 VMF SHR3 SHR6 VIF SWEAT 

100    ×    ×    ×    ×    −    −    −    −    −    −    − 

90    ×    ×    ×    −    −    −    −    −    −    −    − 

80    ×    ×    −    ×   >40000  >10000   >6000    −    −    − >200 

70    ×    ×    −    ×   >35000    >9000   >5000    −    −    − >200 

70    ×    −    ×    ×   >35000   >9000   >5000    −    −    − >300 

60    −    ×    −    −   >40000  >10000   >5000       >60      >90    − >200 

50    ×    ×    −    ×   >30000   >8000   >5000    −    −    − >200 

50    ×    ×    −    −   >35000       >10000   >5000    −    −    − >200 

40    −    ×    −    −   >30000   >9000   >5000       >60      >90    − >200 

30    ×    −    −    ×   >35000 >10000   >5000    −    −    − >200 

30    ×    −    −    −   >40000 >10000   >5000    −    −    − >300 

20    ×    −    ×    −   >35000   >9000   >5000    −    −    − >200 

10    −    ×    −    −   >25000   >8000   >5000       >60      >90    − >200 

 

Table 4.5: Decision tree for the SWI index over the Quebec window. The same convention as Table 4.4 is used. 

 

  SWI  OH  SU  MESO  WER   LWC LWC7 VMF  SHR3  SHR6  VIF SWEAT 

100    ×    ×    ×    ×    −    −    −    −    −    −   − 

  90    ×    ×    ×   −    −    −    −    −    −    −   − 

  80    ×    ×    −    ×  >40000 >10000   >6000    −    −    − >200 

  70    ×    ×    −    −  >35000 >10000   >6000    −    −    − >200 

  70    ×    ×    −    −  >30000  >9000   >5000    −    −    − >300 

  60    ×    −    −    −  >40000 >10000   >6000    −    −    − >300 

  60    ×    −    −    ×  >35000 >10000   >5000    −    −    − >200 

  50    ×    ×    −    ×  >35000  >9000   >5000    −    −    − >200 

  50   −    ×    −   −  >40000 >12000   >6000    −    −    − >200 

  40    ×   −    ×    ×  >35000  >9000   >5000    −    −    − >200 

  40    ×    ×    −    −  >30000  >9000   >5000    −    −    − >200 

  30    ×    ×    −    −  >30000  >9000   <5000    −    −    − >200 

  30    ×    ×    −    ×  >30000  <9000   >5000    −    −    − >200 

  30    ×    ×    −    −  <30000  >9000   >5000    −    −    − >200 

  20    ×   −    ×    −  >40000 >10000   >5000    −    −    − >200 

  20    ×    ×   −    −  >30000  >9000   >5000    −    −    − <200 

  10    ×    −    ×    −  <40000 >10000   >6000    ×    −    − >200 

  10    ×    −    ×    −  >40000 <10000   >6000    ×    −    − >200 

  10    ×    −    ×    −  >40000 >10000   <6000    ×    −    − >200 

 

Table 4.6: Decision tree for the SWI index over the Ontario window. The same convention as Table 4.4 is used. 
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verification was performed on the SWI index having a value equal to 10, 20, …, 

100, and greater than or equal to 10, 20, …, 100.  

Statistics such as the 90% confidence interval (CI) of the POD, FAR, and the 

entries of the 2×2 contingency table were then derived from the object-oriented 

verification for each value. The CIs were analyzed to decide whether the 

classification was correct. Finally, minor changes were made to the classification 

of the decision tree. 

 

4.4      Objective analysis 

 The MODE tool from the MET package from NCAR is used for the 

objective analysis. We chose this method of verification because traditional 

verification measures, based on simple grid overlay, would have greatly penalized 

the skill of our SWI index forecast due to small location errors (Brown et al., 

2002). Moreover, results from standard verification methods would not have 

agreed with the forecast’s quality perceived by a forecaster (Davis et al., 2006). 

See Brown et al. (2002) for more details on the inadequacies of the measures-

oriented method for convective forecasts. The major advantage of the object-

oriented method is that it merges the traditional method with the subjective 

analysis by identifying features of the forecast and the observation and then 

deciding whether a given forecast feature reproduces an observation feature, but 

still deriving statistics. In other words, the object-oriented method resembles the 

forecast evaluation skill by a human analyst, but also provides meaningful 

statistical results (Brown et al., 2007). The MODE tool is an automated process 
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using the object-based approach. It takes as input a gridded forecast file, a gridded 

observation file, and a configuration file to set the criteria and thresholds defined 

by the user, and goes through the following steps: object identification, the 

computation of object attributes, the merging of forecasted and observed objects, 

the matching of forecasted objects with observed objects, a comparison of 

forecasted and observed object attributes, and the summarization and comparison 

of many cases. The MODE automated process will be summarized in the 

following paragraphs. For more details and information, please refer to Brown et 

al. (2007) and to the following website: http://www.dtcenter.org/met/users/docs/ 

users_guide/MET_Users_Guide_v1.0.pdf.  

 For the first step, MODE will identify objects on a 2D scalar forecasted 

and observed field. The forecast and the observation field need to be on the same 

grid. To begin the object definition process, the forecast and the observation field 

are convolved with a circular shape with a radius defined by the user (Brown et 

al., 2007). The choice of radius depends on the goal of the user and the data that 

he/she is using. In our case, the convolution-disk radius is different for the 

observation and the forecast field. I have defined a larger convolution radius for 

the observation field than the forecast field because the forecast field is 

continuous, while the observation field is scattered and made of discrete points. 

Therefore, a convolution radius larger for the observation field than the forecast 

field takes into consideration the scarcity of the observations. During the 

convolution process, the value at each grid point will be replaced with an average 

value within a disk whose center is placed at each grid point (Davis et al., 2006). 

http://www.dtcenter.org/met/users/docs/users_guide/MET_
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In other words, the convolution process acts like a smoothing process. At this 

point, a threshold is applied on the convolved field in order to generate objects 

that look like objects that would have been drawn by a human analyst (Brown et 

al., 2007) — these are called single objects. The object generation process’ final 

step is the restitution of the original data into the defined objects (Brown et al., 

2007). Outside the defined objects, the value of the grid points is zero. The 

convolution process is demonstrated in Fig. 4.2. In this research, the forecasted 

objects are created from the SWI index forecast and the observed objects are 

created from SW observations.  SW observations are binary — a value of 0 for no 

SW and a value of 1 for a SW occurrence of any type. A SW occurrence of any 

type is defined as either a tornado, a mesocyclone, hail with diameter larger than 

20 mm, wind speeds higher than or equal to 90 km/h, or 25 mm of rainfall in less 

than one hour. Before the convolution process, a threshold is applied on the raw 

forecasted field in order to keep only the forecasted SWI index value in which we 

are interested. For our verification purpose, the following thresholds are used on 

the raw forecast before the convolution process: ≥ 10, ≥ 20, ≥ 30, ≥ 40, ≥ 50, ≥ 60, 

≥ 70, ≥ 80, ≥ 90, and 100. No threshold is used on the observed field, since our 

SW observations are binary. Then, the convolution process is applied on the 

forecasted and observed fields. The convolution radius of the forecast field is 20 

grid squares (approximately 20 km), and 35 grid squares (approximately 35 km), 

for the observation field. Also, the convolution threshold used to generate the 

objects is defined as any value greater than 0 will be kept. After the convolution 

process, the observed data and masked raw forecast data are restored into the  
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Fig. 4.2: Example of the application of object-identification approach to a particular WRF      

precipitation forecast grid: (a) original precipitation grid, with intensity presented as the vertical 

dimension; (b) convolved grid, after the smoothing operation has been applied; (c) masked grid, 

following the application of the intensity threshold; and (d) filtered grid, showing the precipitation 

intensities inside the identified objects (Davis et al., 2006). 
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objects. 

The next step in the MODE automated process is the measurement of 

objects’ attributes. The single objects are associated with a simple geometric 

shape, so that attributes can be computed for every single object (Davis et al., 

2006). The attributes computed for single objects are: 

 

 Intensity:    A set of quantiles for each field to provide a good  

     representation of the field’s distribution. 

 Area:     Number of grid squares that the object occupies. 

 Centroid:     Center of mass of the object. 

 Axis angle:    Orientation of the object major axis. 

 Curvature:     Deviation from straightness by fitting a circular arc  

   to the object. 

 Complexity:  Comparison of the object’s area to its convex hull area 

 Aspect ratio:  Ratio of  the width of a rectangle that just fits the  

   object and has the same axis angle as the object by 

   its length. 

 

The boundary of an object is the line that defines its border. In the case of a 

composite object composed of many single objects, there will be several such 

outlines, one for each object. The convex hull is a shape that envelops an object or 

a set of objects, which can be visualized by the shape that a rubber band would 

have if it is stretched to fit an object or a set of objects. Figure 4.3 illustrates the 

convex hull and the boundary of an object. At this point, objects of the same field 

are compared to each other. Moreover, each object from the forecast field is 

compared to each object in the observation field. When two objects are compared  
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Fig. 4.3: The convex hull of this object is identified by the dashed line, and 

the black contour identifies the boundary of the object. The image is from the 

Developmental Testbed Center. 

 

to each other they are called a paired object. Attributes also need to be computed 

for paired objects. Therefore, single object’s attributes are used to compute the 

paired object’s attributes. The attributes calculated for pairs of objects are: 

 

 Centroid distance:   Distance between the objects’ centroids. 

 Convex hull distance:  Distance between the objects’ convex hulls. 

 Boundary distance:     Distance between the objects’ boundaries. 

 Angle difference:   Difference between the objects’ axis angles. 

 Area ratio:   Ratio of the area of the paired objects. 

 Intensity ratio:   Ratio of the percentile intensity of two objects. 

 Complexity ratio:   Ratio of the complexity of two objects. 

 Union area:   Total area in either objects. 

 Intersection area:  Area inside both objects. 

 Symmetric difference: Area inside one object, but not both. 
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Next, MODE matches and merges objects. The matching process associates 

objects from two different fields together. Merging objects consists in associating 

objects from a same field together to create larger composite objects, called a 

cluster. Presently, the MODE tool uses the fuzzy logic method (Yager et al., 

1987) to match and merge objects. One of the main advantages of the fuzzy logic 

method is that it can take a large number of attributes into consideration to match 

and merge objects (Brown et al., 2007). Another advantage is that it objectively 

simulates how a human analyst would match objects (Brown et al., 2007). To 

achieve merging and matching, an interest map, Ii(αi), is defined for each attribute, 

i, to specify the range over which the attribute is important and the range over 

which it is not (Brown et al., 2007). Figure 4.4 illustrates an interest map used in 

MODE. Also, confidence maps, Ci(α), are defined for each attribute to determine 

how confident the user is in the value of the attribute i (Brown et al., 2007). 

Confidence maps have values ranging from 0 to 1. However, in MODE, only the 

angle difference has a confidence map because this paired attribute is the most 

likely to have a large forecast error; all the other attributes have their confidence  

 

 

Fig. 4.4: Interest map (y) for the centroid distance (x). Here, we 

can see that the interest map is constant from 0 to X1, then the 

interest map decreases linearly down to 0 between X1 and X2.  
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maps set to a constant, 1. In addition, a scalar weight, wi, is assigned by the user to 

each attribute, according to the importance that the user gives to each attribute for 

the matching process to follow (Brown et al., 2007). Finally, the interest maps, 

confidence maps, and weights are combined to compute to the total interest 

function T(α): 

 (4.1) 

The user defines the total interest threshold that is applied to the total interest 

value computed with the total interest function when two objects are compared 

during matching or merging (Brown et al., 2007). If the value of the total interest 

is greater than or equal to the threshold, the object will be considered a good 

match and will be matched or merged.  

In this research, we are mainly interested in the distance separating the 

forecasted and the observed objects, since we only had access to discrete point 

observations. Consequently, results from the geometric attributes would be 

meaningless. Also, since we are comparing an index to an occurrence, intensity 

attribute are useless. Thus, the following paired attributes are the most important 

for this research, and they are listed by order of importance: the convex hull 

distance, the boundary distance, and the centroid distance. Equations 4.2 to 4.4 

show the equations of the interest map of these three important paired attributes. 

According to the level of importance of each paired attribute, we give a weight of 

four to the convex hull distance, two to the boundary distance, and one to the  
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Eqn. 4.2: The equation of the centroid 

distance’s interest map, where α correspond 

to the centroid distance in grid size unit. 

 

 

Eqn. 4.3: The equation of the boundary 

distance’s interest map, where α correspond 

to the boundary distance in grid size unit. 

 

 

Eqn. 4.4: The equation of the convex hull 

distance’s interest map, where α correspond 

to the convex hull distance in grid size unit. 

 

centroid distance. As mentioned earlier, a total interest value is computed using 

the total interest function, which uses the interest map and the weights, and is 

compared to the total interest threshold to decide which objects will be merged 

and matched. For the objectives of this study, the total interest threshold was set 

to 0.55. However, what does a total interest threshold value of 0.55 mean 

concretely? By looking to the interest map of our three important paired 

attributes; convex hull distance, boundary distance, and centroid distance, we can 

approximate the maximum distance separation of two paired single objects, 

created by the convolution process from a single point forecast and a single point 
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observation, that have a total interest of 0.55. The reader should refer to the 

equations in Eqns. 4.2 to 4.4 and to the total interest function equation (4.1). By 

plugging different distances into the total interest function, we find that a total 

interest threshold of 0.55 corresponds to a distance of approximately 190 km 

between two objects. The same threshold is applied for the merging process and 

the matching process. Therefore, in this research, if two objects are less than 

roughly 200 km apart, they will be merged or matched together. A distance of less 

than or equal to approximately 200 km is a reasonable distance. From a 

forecaster’s point of view, 200 km roughly corresponds to the distance between 

the western edge of the island of Montréal and Trois-Rivières. In addition, the 

geometric shape of most Quebec warning regions has a diagonal that is 

approximately 200 km long. Figure 4.5 illustrates these previous arguments. 

Therefore, it seems to be a good distance to use to match observed and forecasted 

objects. 

At this point, to get a better understanding of the merging process, we will 

go through an example. Figure 4.6 shows the raw forecast field and Fig. 4.7 

illustrates the forecasted objects after the convolution process. In this example, six 

single objects are found in the forecast field. First, each single object is assigned 

an identification number from 1 to 6. In the merging process, all six objects are 

compared to each other and a total interest value is computed each time, 

according to the total interest function described earlier. Figure 4.8 demonstrates 

the merging process.  The compared objects that have a total interest value greater 

than or equal to the total interest threshold are merged together. In Fig. 4.8, we  
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Fig. 4.5: Warning public regions of Quebec (EC). The red dot is positioned on the 

western edge of Montréal Island, the green dot is positioned on Trois-Rivières, and 

the distance between the two corresponds to approximately 180 km, close to our 

threshold distance differencing a good and a bad match. The gray lines delimitate 

the Quebec warning public region.  

 

can see that objects two to six are all merged together, since they all had a total 

interest value of greater than 0.55 when compared together. Object number one 

had a total interest value of less than 0.55 when compared to the other objects. 

Therefore, it is not merged with any object. In this case, the result of the merging 

process is two composite objects. The first composite object is composed of the 

single object number 1, and the second composite object is composed of the 

single objects numbers 2 to 6. The MODE tool makes it easy to visualize which 

objects are merged together, since all objects with the same color are merged 

together and a thick solid contour black line, called the convex hull, encloses the 

resulting compound objects. 
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Fig. 4.6: The SWI index forecast for
 
July 28, 2009 as the 

forecast field. 

 

 

 

 

Fig. 4.7: The convolved forecast field. Each forecast object is 

identified by a closed blue contour. Thus, in this case, there 

are six forecast objects. 
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Fig. 4.8: The merging process. Each forecasted object is assigned an identification number (top 

image). All six forecasted objects will be compared to each other. Each time that a comparison is 

done between two forecasted objects a total interest value is computed. Objects with a higher total 

interest value than the total interest threshold will be merged together. Each object comparison is 

listed in the column to the right of the images. The total interest threshold is indicated by the 

dashed line in the column to the right of the images. Thus, every object comparison that is above 

the dashed line has a total interest value greater than the threshold, and the compared objects will 

be merged together. The bottom image illustrates the final forecasted clusters, identified by a thick 

solid contour line. Objects of same color belong to the same cluster. 
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Now, an example of the first step of the matching process is presented and 

illustrated in Fig. 4.9. It is very important to be aware that this is not the final 

matching step. The final matching step matches the forecasted clusters with the 

observed clusters while, on the other hand, the first step of the matching process 

matches the single forecasted objects with the single observed objects. The first 

step of the matching process verifies the potential of matching forecasted clusters 

with observed clusters. If there are single forecasted objects that could be matched 

with single observed objects, the MODE tool will go to the final matching step to 

match clusters together. Otherwise, it stops there. Let us go through an example of 

the first step of the matching process illustrated in Fig. 4.9. First, each single 

object in the forecast field and the observation field has been assigned an ID 

number. There are six single forecasted objects and two single observed objects 

defined by the convolution process. During the first step of the matching process, 

each forecast object is compared to each observation object. For each comparison 

between the two fields, a total interest value is calculated. If the total interest 

value is greater than or equal to the total interest threshold, MODE will go to the 

final step of matching once every comparison is done. 

The final step of the matching process matches the forecasted clusters to 

the observed clusters. Figure 4.10 demonstrates the cluster matching process. 

First, each cluster’s attributes are computed. Then, the paired clusters’ attributes 

are computed. The paired clusters are deduced from the previous comparison 

between the forecasted single objects and the observed single objects. MODE 

looks to previous comparisons that had a total interest value higher than the total  
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 Fig. 4.9: The first step of the matching process. The top left image is the raw forecast field, and 

the top right image is the raw observation field. The left centered image is the convolved 

forecasted field, and the right centered image is the convolved observed field. In the centered 

image, a closed blue contour identifies an object. Thus, there are six single forecasted objects and 

two single observed objects. Each object of the forecasted field is compared to each object in the 

observed field, and at every comparison, a total interest value is computed. In the column to the 

right of the images, each comparison is listed along with their corresponding total interest value. 

The total interest threshold is indicated by the dashed line. Thus, the first step of the matching 

process found that forecasted objects could be matched to the observed objects, since there are a 

few comparisons that have a total interest value greater than the total interest threshold. Therefore, 

the MODE tool will go through the final matching step. 
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interest threshold and identifies the clusters to which each compared single object 

belongs. With this information, the clusters are paired together and their paired 

attributes are calculated. Then, the paired attributes are used tocompute a total 

interest value for each paired cluster. If the paired clusters have a total interest 

value greater than the total interest threshold, the paired clusters are considered a 

match, and they are matched together. In MODE output files, it is easy to  

 

 

Fig. 4.10: The cluster matching process. The first column of images represents the forecast 

clusters. The second column of images represents the observation clusters. Paired clusters are 

chosen based on the comparison between the observed and forecasted single objects and their 

corresponding total interest values showed in Fig. 4.9. The paired cluster attributes are calculated 

and can be seen below the images. A total interest value is computed from the paired cluster 

attributes for each paired cluster. The paired cluster having a total interest value greater than the 

total interest threshold are matched together. Observed and forecasted clusters of the same colors 

are identified as being matched together.  
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visualize if any observation clusters have been matched to forecast clusters, since 

they will have the same color. Thus, in Fig. 4.10, one can clearly see that the 

forecast cluster combining the single forecast objects two to six is matched to the 

observed cluster containing the single observed object number two, and that the 

forecast object number one is matched to the observation object number one. 

Finally, we want to accumulate and compare many cases to get significant 

statistics. In our case, we will use the MODE-Analysis tool that rapidly gets the 

practical information that we need from the MODE output files. This process is 

explained in the next section. 

 

4.5      Scores 

 As mentioned previously, the MODE-Analysis tool is used to get the data 

that we need from the MODE output files. The MODE-Analysis tool will allow us 

to build a 2×2 contingency table from the MODE output files in order to compute 

skill scores. The MODE-Analysis tool provides the number of grid points of 

matched and unmatched single objects for the forecast, the observation, and both. 

Figure 4.14 illustrates how a 2×2 contingency table is built from the MODE-

Analysis tool. 

Once the MODE tool followed by the MODE-Analysis tool have run for 

all three regions on each summer day, producing a contingency table for each day, 

a bootstrap is done on the contingency tables in order to generate more 

meaningful statistical CI for the scores. The bootstrap method is a resampling 

technique that allows us to build CI, which would normally be difficult because 
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Fig. 4.11: Contingency table built from the object-oriented method verification. Each entry of the 

contingency table contains the sum of the number of grid points of that particular entry. 

 

the distribution of the data is unknown, and provide an estimation of the 

distribution’s uncertainty (Kyselý, 2008). More precisely, the nonparametric 

bootstrap method is used in this research. A summary of this method follows, but 

for a more detailed explanation, please consult Chernick (1999). First of all, the 

nonparametric bootstrap method makes no assumptions about the distribution of 

the data. The first step of the nonparametric bootstrap method is that a sample of 

the same size as the original dataset is randomly drawn from the original dataset 

with replacements, without considering that the sample taken is removed from the 

set. In our case, if there are n summer days over which the model was run for a 

region, there are n contingency tables. The original dataset contains the n 

contingency tables. Thus, during the first step of the nonparametric bootstrapping 

method, there will be n contingency tables that will be randomly selected from the 

original dataset, the n contingency tables, with replacements.  The next step is to 

compute the sample’s statistics of interests. In our case, the statistics of interest 

are scores such as the Probability of Detection. The scores used in this research 

will be discussed in the next section. The statistics of interests are kept in memory 
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for later use. These two steps are repeated a large number of times, N. As showed 

by Efron and Tibshirani (1993), N should be at least 1000. Therefore, in this 

study, N is 1000. Finally, the statistics of interests computed from the samples are 

used to generate a bootstrap CI for each statistic of interests. For this study, the 

bootstrap 90% CI was calculated for each score. 

 The scores that are computed include the Probability of Detection (POD), 

False Alarm Ratio (FAR), Heidke Skill Score (HSS), Peirce Skill Score (PSS), 

Bias (BIAS), and Equitable Threat Score (ETS). The POD represents the 

proportion of events that were correctly forecasted (Donaldson et al., 1975). The 

FAR is the proportion of forecasted events that were not observed (Donaldson et 

al., 1975). The HSS is the proportion of correctly forecasted events and non-

events, but also takes into account the proportion of correct forecasts predicted by 

chance without skill (Heidke, 1926). The PSS is the proportion of correctly 

forecasted events minus the proportion of incorrectly forecasted events (Peirce, 

1884). The BIAS is the ratio of forecasted events and observed events (Donaldson 

et al., 1975). The ETS can be seen as the conditional probability that an event was 

correctly forecasted, given that the event was either forecasted, observed, or both, 

but it also takes into consideration the number of hits obtained by chance (Gilbert, 

1884). 
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Chapter 5 

Results 

 

5.1      Forecasts v. observations 

As explained in Section 4.4, the object-oriented method was used to verify 

the SWI index forecasts against the SW observations for each domain of interest: 

Southern Ontario, Southern Quebec, and Alberta. The configurations for the 

MODE tool were the ones mentioned in Section 4.4. During the analysis, the only 

variable that was changed in the MODE configuration was the raw threshold used 

before the convolution process, because we wanted to verify the skill of the 

different SWI index values. An objective verification of the forecasts with the 

observations was achieved for these different SWI index values: ≥ 10, ≥ 20, ≥ 30, 

≥ 40, ≥ 50, ≥ 60, ≥ 70, ≥ 80, ≥ 90, and 100. Once the objective analysis was 

achieved, the bootstrap method, described in Section 4.5, was used to generate the 

90% bootstrap CI for the scores for each SWI index value.  

First, the results of the verification of the SWI index forecasts with the SW 

observations for Southern Ontario are presented. Figure 5.1 contains a graph of 

the POD and the FAR bootstrap means, as well as 90% bootstrap CIs for different 

values of the SWI index. We expect a low FAR, since an accurate forecast has a 

FAR value of 0 and a bad forecast has a value of 1. We also desired a high POD, 

since a good forecast has a POD value of 1 and a bad forecast has a POD value of 

0. We will go through these two scores presented in Fig. 5.1. For the Southern 
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Ontario window, the SWI index forecasts appear to match the SW observations 

very well, since they have an overall high POD and very low FAR, and the 90% 

bootstrap CIs of the POD and the FAR are extremely far from each other for all 

SWI index values. The FAR is, in 95% of the cases, lower than 0.15 for every 

value of the SWI index. On the other hand, the POD has two major ranges as we 

change the SWI threshold value (Fig. 5.1): for the SWI index values from ≥10 to 

≥50, the POD is, in 95% of the cases, greater than 0.8. Also, for the SWI index 

values from ≥60 to ≥90, the POD is, in 95% of the cases, approximately greater 

than 0.65. In addition, the drastic drop in the POD curve between the SWI index 

values of ≥90 and 100 is as expected, since it indicates that the SWI index with a 

value of 100 is predicted less often than any other intensity value. Moreover, the 

90% CI of the FAR for a SWI index value of 100 is smaller than for every other 

SWI index value. Therefore, even if there is a drop in the POD between SWI 

index values of ≥90 and 100, the SWI index with a value of 100 still has skill. The 

POD and the FAR show that the Southern Ontario forecasts of the SWI index are 

very accurate overall. Figure 5.1 also contains the bootstrap means and the 90% 

bootstrap CIs of the HSS and the PSS. Ideally, the HSS should have a positive 

value and tend towards 1, since an HSS with a value of 1 is a perfect forecast and 

an HSS with a value of zero is a bad forecast. The PSS behaves the same way as 

the HSS — if the PSS has a value of 1, the forecast is perfect, and if it has a value 

of 0, the forecast has no skill. An important thing of which to be aware is that if 

the HSS is equal to the PSS, the forecast is unbiased. In Fig. 5.1, the value of the 

HSS and PSS are very close to each other for SWI index values from ≥10 to ≥50, 
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Fig. 5.1: Southern Ontario’s scores. The left image corresponds to the 90% bootstrap CIs of the 

POD and the FAR. The POD is in blue and the FAR is in red. The right image corresponds to the 

90% bootstrap CIs of the HSS and the PSS. HSS is in blue and PSS is in red. In both images, the 

straight lines represent the bootstrap means, while the lower and upper dashed lines are the 90% 

bootstrap CIs. 

 

but the curves moves farther apart as the SWI index contains a narrower range of 

intensity. Therefore, the forecast of the SWI index is a little biased for values 

from ≥10 to ≥50, but becomes more biased as the range of intensity of the SWI 

index becomes narrower and contains higher intensity. Moreover, we can deduce 

that the SWI index forecasts have skill, since the HSS and PSS have positive 

values that are closer to 1 than 0.  95% of the time, both scores are greater than 

0.8 for SWI index values from ≥10 to ≥50. Also, in 95% of the cases, both scores 

have values approximately greater than 0.65 for SWI index values from ≥60 to 

≥90. Finally, let us look at the last score graph for Southern Ontario. Figure 5.2 

illustrates the bootstrap means and the 90% bootstrap CIs of the BIAS and ETS. 

The BIAS indicates the forecast’s bias — a BIAS with a value greater than 1 
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implies that the SWI index over-forecasts SW events, and a value smaller than 1 

indicates that the index under-forecasts SW events. A forecast with an ETS value 

of 1 is a good forecast, while a value of 0 indicates a bad forecast. From Fig. 5.2, 

we notice that there is no clear tendency in the BIAS for SWI index values from 

≥10 to ≥50. Depending on the sample, the SWI index forecast can over-forecast or 

under-forecast SW events since the 90% bootstrap CIs contain values smaller and 

larger than 1. However, SW events are under-forecasted for SWI index values 

from ≥60 to 100. The ETS curve indicates that the forecast has skill because, in 

95% of the cases, its value is approximately greater than 0.75 for SWI index 

values from ≥10 to ≥50, and its value is approximately greater than 0.60 for SWI 

index values from ≥60 to ≥90. Thus, ETS is always positive, and is usually closer 

to 1 than to 0. In addition, the ETS, just like the other scores, shows that there is 

an important difference in the score between SWI index values of ≥10 and ≥20 

and that there is almost no change in the score for SWI index values from ≥20 to 

≥50. Also, there is an important drop in the score between SWI index values of 

≥50 and ≥60, but little change from ≥60 to ≥90. Moreover, the most important 

difference in the score is between SWI index values of ≥90 and =100. Therefore, 

it shows that there are four more important values for the SWI index for which 

there are more difference in the scores comparatively to other values: 10, 50, 90, 

and 100. These values have the most impact on the scores. All the scores seen for 

the Southern Ontario region imply that the SWI index could be a very good 

forecast tool for the SW forecasters of Ontario, since every useful score with rare 

events indicates that the SWI index forecasts were accurate when compared to the 
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Fig. 5.2: The 90% bootstrap CIs of the BIAS and the ETS for Southern Ontario. The 

straight lines represent the bootstrap means. The lower and upper dashed lines are 

the 90% bootstrap CIs. The BIAS is in blue and the ETS is in red. 

 

SW observations for every value of the SWI index. In addition, a subjective 

verification was done to compare the SWI index forecasts over Southern Ontario 

with the SW observations and radar images. There were a few SW events missed 

by the SWI index forecasts that we believe were mainly caused by a wrong 

initialization of the GEM-LAM 1-km. In other words, the data used to initialize 

the GEM-LAM 1-km, which came from the GEM-LAM 2.5-km, was not good 

because the GEM-LAM 1km did not see any convection or weaker convection for 

those SW events. However, further investigation is required to verify this 

hypothesis. In addition, for the days where there was no SW observation, but a 

SWI index value greater than zero was forecasted, SW was usually observed just 

outside the domain. Therefore, the subjective verification confirms the accuracy 
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of the SWI index forecasts. In conclusion, the SWI index could be a very good 

forecast tool for the SW forecasters of Ontario. 

Next, the result of the verification of the SWI index forecasts with the SW 

observations for Southern Quebec is presented. One of the graphs in Fig. 5.3 

shows the POD and FAR bootstrap means and 90% bootstrap CIs for different 

values of the SWI index. The SWI index forecasts have skill for all SWI index 

values, since the POD is always greater than the FAR and the CIs do not overlap. 

In fact, they are distinctively apart from each other. In addition, we notice that the 

FAR means and the 90% CIs decrease as the index’s range of intensity becomes 

narrower to contain the highest intensities. This indicates that, as desired, the SWI 

index value of 100 is forecasted less often than the SWI index value of 10, but 

also when a SWI index value of 100 is forecasted, it will most likely be accurate 

as opposed to a value of 50. Next, Fig. 5.3 also contains the bootstrap means and 

the 90% bootstrap CIs for the HSS and PSS. For SWI index values from ≥10 to 

≥40, the SWI index forecasts have relatively high skill for these two scores. Then, 

the skill decreases slowly from ≥40 to ≥70. Up to this point, the forecasts have 

less skill, but still have some from ≥80 to 100. Also, the forecasts are a little 

biased from ≥10 to ≥40 and become more biased as the SWI index value tends 

toward ≥90. This is because, when the SWI index’s range is broader, the HSS and 

PSS curves are closer, and move farther apart as the index becomes narrower. 

Next, some interesting observations can be made about the BIAS of the forecast 

in Fig. 5.4. We can clearly notice that over Southern Quebec, the SWI index 

forecast is likely to under-forecast SW events. For SWI values from ≥10 to ≥40, 
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Fig. 5.3: Southern Quebec’s scores. The left image corresponds to the 90% bootstrap CIs of the 

POD and the FAR. The POD is in blue and the FAR is in red. The right image corresponds to the 

90% bootstrap CIs of the HSS and the PSS. HSS is in blue and PSS is in red. In both images, the 

straight lines represent the bootstrap means, while the lower and upper dashed lines are the 90% 

bootstrap CIs. 

 

 

 

Fig. 5.4: The 90% bootstrap CIs of the BIAS and the ETS for Southern Quebec. The 

straight lines represent the bootstrap means. The lower and upper dashed lines are 

the 90% bootstrap CIs. The BIAS is in blue and the ETS is in red. 
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the SWI index forecasts slightly under-forecasted SW events, but for values ≥50 

to 100, the SWI index forecasts pass slowly from slightly under-forecasting SW 

events to highly under-forecasting SW events. On the other hand, the ETS curve 

shows the same thing as observed previously and, just like the other scores, it 

shows that there are four important values for the SWI index for which there are 

more difference in the scores comparatively to other values: 50, 60, 90, and 100. 

These values have the most impact on the scores. If we compare the scores of 

Southern Quebec with those of Southern Ontario, we can observe that the POD, 

HSS, PSS, and ETS have overall smaller values for Southern Quebec than for 

Southern Ontario for every SWI index value. Therefore, we can conclude that the 

SWI index performs better over Southern Ontario than over Southern Quebec. We 

can also notice that the FAR values for Southern Quebec are usually smaller than 

those of Southern Ontario. However, this is mainly due to the fact that the SWI 

index forecast developed for Southern Quebec actually under-forecasts SW 

events: the SWI index forecast is accurate for the Southern Quebec region when 

compared with the SW observations, but overall, the index under-forecasts SW 

events over this region. Therefore, the SWI index can be useful to guide SW 

forecasters, but it is not as accurate over Southern Quebec as it is for Southern 

Ontario. A subjective verification of the SWI index forecasts with the SW 

observations and the radar images was made over Southern Quebec. The 

subjective verification showed that most of the missed SW events by the SWI 

index forecast were caused by the spin up of the model. Initially, the 

microphysical variables of the model are zero. Thus, it takes some time to the 
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model to create its precipitation (Clark et al., 2007). Therefore, when the 

convection is simulated in the first few hours of the model run, the liquid water 

content will be lower than the thresholds of the SWI index decision tree. 

Moreover, when a SW event was forecasted by the index, but not observed, most 

of the time, we could observe near-severe cells on the radar that were likely to 

produce SW. In conclusion, the spin up of the model affects our scores, but the 

SWI index would be a useful index to guide SW forecasters. 

Lastly, the results of the verification of the SWI index forecasts with the SW 

observations for Alberta are presented. Figure 5.5 illustrates the POD and FAR 

bootstrap means and 90% bootstrap CIs for the different values of the SWI index. 

It is easy to notice that the SWI index has less skill over Alberta than over 

Southern Ontario and Southern Quebec (see Figs. 5.1, 5.3, and 5.5). In Fig. 5.5, 

the SWI index forecasts have some skill for SWI index values from ≥10 to ≥50, 

even if the lower limit of the POD CI slightly overlaps with the upper limit of the 

FAR CI. By comparing Fig. 5.5 to Figs. 5.1 and 5.3, we can confirm that the SWI 

index forecast has some skill over Alberta, but less than over Southern Ontario 

and Southern Quebec because, for these two regions, the POD and FAR CIs are 

far apart, and most importantly, do not overlap. Also, in Fig. 5.5, we can see that 

the skill decreases slowly from ≥10 to ≥50, and decreases rapidly from ≥60 to 

100. However, for a SWI index equal to 100, the lowest limit of the POD CI tends 

towards 0, which implies that when the SWI index equals 100, it has almost no 

skill. By looking at the HSS and PSS in Fig. 5.5 and by comparing them to the 

equivalent graph for Southern Ontario (Fig. 5.1) and Southern Quebec (Fig. 5.3), 
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Fig. 5.5: Alberta’s scores. The left image corresponds to the 90% bootstrap CIs of the POD and 

the FAR. The POD is in blue and the FAR is in red. The right image corresponds to the 90% 

bootstrap CIs of the HSS and the PSS. HSS is in blue and PSS is in red. In both images, the 

straight lines represent the bootstrap means, while the lower and upper dashed lines are the 90% 

bootstrap CIs. 

 

we come to the same observations previously made. The values for these two 

scores are a little smaller than the values of the corresponding scores for Southern 

Quebec for almost every SWI index value. Thus, the SWI index has a little less 

skill for Alberta than for the Southern Quebec region. However, some new 

observations can be made with Fig. 5.6. In this figure, the bootstrap means and the 

90% bootstrap CIs for the BIAS and ETS for every value of the SWI index are 

presented. It is interesting to note that there is no clear tendency about the BIAS 

for almost every value of the SWI index. The SWI index forecast can over-

forecast or under-forecast SW events, depending on the sample for every SWI 

index value from ≥10 to ≥70. However, the forecasted SWI index with values 

from ≥80 to 100 clearly under-forecast SW events. The ETS brings no new  
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Fig. 5.6: The 90% bootstrap CIs of the BIAS and the ETS for Alberta. The straight 

lines represent the bootstrap means. The lower and upper dashed lines are the 90% 

bootstrap CIs. The BIAS is in blue and the ETS is in red. 

 

information, it only confirms what was observed in the previous graphs and shows 

that there are four important values for the SWI index for which there are more 

difference in the scores comparatively to other values: 50, 60, 90, and 100. These 

values have the most impact on the scores. In conclusion, it is evident that the 

SWI index is less accurate over Alberta than over Southern Quebec and Southern 

Ontario. It still has some skill for SWI index values ranging from ≥10 to ≥50, but 

beyond these values, the skill decreases as the range of intensity becomes 

narrower and contains higher intensity. In order to identify the causes of such bad 

scores, I did a subjective evaluation of the SWI index forecasts, the post-

processed outputs, the SW observations, and the radar images. The low POD and 

the high FAR are mainly due to the lack of SW observations. By comparing the 

SW index forecasts with the radar, I noticed that the SWI index forecast was quite 
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accurate. This is because, if we would have had access to the radar, the number of 

days where SW was forecasted and observed would have almost doubled. On the 

radar, most of the days where there was no SW observation available but our 

index forecasted SW, we could observe very strong thunderstorms with very high 

reflectivity, which is a good hail indicator. Therefore, the SWI index forecast is 

very good over Alberta to identify days where there will be intense thunderstorms 

and to determine whether they will be localized or not. Therefore, from the 

subjective evaluation, I do think that the SWI index over Alberta would help SW 

forecasters. However, the index misses a lot of events. From the subjective 

verification of the index with the radar images, I noticed that the thunderstorms on 

the radar images that produced SW missed by the index had reflectivity weaker 

than one would normally expect for severe thunderstorms. For most of the SW 

event missed by the index, the model did simulate weaker thunderstorm cells with 

less moisture available. The SWI index over Alberta might be missing near severe 

events and/or low precipitation supercell. However, further investigation is 

required to verify this statement. In conclusion, the SWI index would help the 

Alberta SW forecasters to forecast severe thunderstorms, but the lower category 

of the decision tree for this region could be modified to include near-severe events 

and low precipitation supercell in order to miss fewer SW events. 

 

5.2      Forecasts v. severe thunderstorm watches 

The goal of this master thesis is to develop a useful automated tool to help SW 

forecasters emit their SW forecast. To examine if the SWI index could improve 
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the SW forecast done by a SW forecaster, the SWI index needs to be compared to 

SW watches from a SW forecaster. Therefore, an objective verification will be 

performed on both products. The results of the verification of the SW forecasts 

against the SW observations will be compared to the results of the verification of 

the SWI index forecasts against the SW observations. This was performed for the 

Southern Quebec region only. As mentioned previously, at 15 UTC, after having 

done a thorough analysis of the atmospheric situation, the SW forecaster emits 

SW watches for every public region (Fig. 1.3) where there is a high probability of 

having severe thunderstorms. The watches are valid until 02 UTC and the SWI 

index forecast is valid from 15 UTC to 03 UTC. Thus, they cover almost the same 

time period, and they can easily be compared to each other. However, the SWI 

index forecast has a higher resolution than the SW watches. In order to have 

meaningful results, the data compared needs to be at the same scale. Therefore, an 

upscaling of the SWI index forecasts and the SW observations to the public 

regions is required, so that every product is at the same scale. The upscaling is 

performed in the following way: when the SWI index is greater than a specified 

value at one grid point, the public region containing this point is flagged to 1, 

otherwise the region is flagged to 0 (Fig. 5.7). The same procedure is applied to 

upscale the SW observations. 

Once all data are on the same scale, the object-oriented method is used to 

evaluate the SWI index forecasts and the forecaster-made severe thunderstorm 

watches against the SW observations. The configurations for the MODE tool are 

the same as the ones mentioned in Section 4.4, except for the total interest  
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Fig. 5.7: The upscaling process. To the left is the SWI index forecast before the upscaling process, 

where the blue indicates where the SWI index is zero and the red indicates where the SWI index is 

greater than zero. To the right is the result of the upscaling process. Regions in red contain at least 

one point where the SWI index is greater than zero. Regions in blue are where no point with an 

SWI index greater than zero was found.   

 

threshold and the convolution radius. Since we are working with data that were 

upscaled to the public region, the convolution process was not used. In this 

objective analysis, we want to see which forecast is more accurate in the 

positioning and the occurrence of an event. Thus, an objective analysis for two 

different total interest thresholds is needed. The first total interest threshold is 

equal to 0.99, which corresponds to a match when two objects share at least 

onepublic region. The objective analysis with this total interest threshold will 

indicate which forecast is more accurate in the positioning. The second total 

interest threshold is equal to 0.75, which roughly corresponds to a match when 

two objects are less than 100 km apart. In terms of public regions, the forecast 

object will be matched to the observation object if there is approximately less than 
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one, or if there is one public region that separates them. The objective analysis 

with this total interest threshold will indicate which forecast is more accurate for 

the occurrence of an event.  

During each objective analysis, only one raw threshold, greater than zero, is 

used for the SW forecast. For the SWI index, the following raw thresholds are 

used: ≥ 10, ≥ 20, ≥ 30, ≥ 40, ≥ 50, ≥ 60, ≥ 70, ≥ 80, ≥ 90, and 100. Many different 

raw thresholds are used for the SWI index because we want to compare each 

different SWI index value to the SW forecast. Once the objective analysis is done 

for every forecast, the bootstrap method is used to compute the difference 

between the mean scores of the SWI index forecast and the mean scores of the 

SW forecast, and generate 90% bootstrap CI for the mean scores’ difference.    

The results of the bootstrap CI for the difference between the POD, FAR, 

HSS, PSS, ETS, and BIAS of the SWI index forecast and the SW forecast for the 

two different total interest thresholds can be seen in Figs. 5.8 and 5.9. The 

difference between the scores is always computed in the following way: the 

scores of the SWI index minus the scores of the SW forecast. For the scores that 

range from 0 to 1, 1 being a perfect forecast and 0 being a bad forecast, such as 

the POD, HSS, PSS, and ETS, to conclude that the SWI index forecast would 

improve the SW forecast, the 90% bootstrap CI of the mean score difference 

needs to contain only positive values. This would imply that the mean score of the 

SWI index forecast is always greater than the mean score of the SW forecast for 

every sample. In other words, it would mean that the SWI index forecast is 

usually better than the SW forecast. On the other hand, for the FAR, which ranges 
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from 0 to 1 — 0 being a perfect forecast and 1 being a bad forecast — to conclude 

that the SWI index forecast is better than the SW forecast, the 90% bootstrap CI 

of the mean score difference needs to contain only negative values. This would 

imply that the mean FAR of the SWI index forecast is always smaller than the 

mean FAR of the SW forecast for every sample and that the SWI index forecast is 

usually better than the SW forecast. 

First, let us look to the images in the left column of Figs. 5.8 and 5.9 which 

correspond to the 90% bootstrap CIs of the mean scores’ difference of the SWI 

index forecasts and the SW forecasts when the total interest threshold is 0.99.  

One can notice that the 90% bootstrap CIs of the score difference for the POD, 

HSS, PSS, and the ETS contain mostly negative values for almost every value of 

the SWI index. Therefore, for a total interest threshold of 0.99, the SW forecast 

done by a forecast is better than the SWI index forecast. In other words, the SW 

forecast is more accurate in the positioning of an SW event than the SWI index. 

 Now, we will focus on the images in the right column of Figs. 5.8 and 5.9, 

which correspond to the 90% bootstrap CIs of the mean scores’ difference of the 

SWI index forecasts and the SW forecasts when the total interest threshold is 

0.75. A clear tendency can be drawn from these images. For SWI index values 

from ≥10 to ≥60, the 90% bootstrap CIs of the mean score difference of the SWI 

index forecasts and the SW forecasts for the POD, HSS, PSS, and ETS are above 

the zero line, containing only positive values. Moreover, for SWI index values 

from ≥10 to ≥60, the 90% bootstrap CIs of the mean score’s difference of the SWI 

index forecasts and the SW forecasts for the FAR contain mostly negative values.  
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Fig. 5.8: The 90% bootstrap CI of the scores’ difference of the SWI index forecasts and the SW 

watches for Quebec. The straight lines represent the bootstrap means. The lower and upper dashed 

lines are the 90% bootstrap CIs. In the top row, the difference between the POD of the SWI index 

forecasts (PODf) and the POD of the SW watches (PODw) is in blue, and the difference between 

the FAR of the SWI index forecasts (FARf) and the FAR of the SW watches (FARw) is in red. In 

the bottom row, the difference between the HSS of the SWI index forecasts (HSSf) and the HSS of 

the SW watches (HSSw) is in blue, and the difference between the PSS of the SWI index forecasts 

(PSSf) and the PSS of the SW watches (PSSw) is in red. Forecast or watch regions are matched to 

observation regions if they share at least one public region in common in the left column and if 

there is less than or one public region that separates them in the right column. 
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Fig. 5.9: The 90% bootstrap CI of the scores’ difference of the SWI index forecasts and the SW 

watches for Quebec. The straight lines represent the bootstrap means. The lower and upper dashed 

lines are the 90% bootstrap CIs. The difference between the ETS of the SWI index forecasts 

(ETSf) and the ETS of the SW watches (ETSw) is in blue. Forecast or watch regions are matched 

to observation regions if they share at least one public region in common in the left column and if 

there is less than or one public region that separates them in the right column. 

 

 

These results imply that the SWI index forecast for SWI index values from ≥10 to 

≥60 is usually more accurate than the SW forecast. Therefore, the SWI index 

forecast is more accurate than the SW forecast done by a forecaster in the 

occurrence of a SW event. 

Finally, the results of the objective analysis with the smaller distance 

tolerance show that the SWI index forecast would not improve the positioning of 

the SW forecast. However, the objective analysis with a greater distance tolerance 

clearly demonstrates that the SWI index forecast more accurately predicts the    

occurrence of SW in comparison to the SW forecast. Therefore, the SWI index 

forecast would be useful to a SW forecaster, since it indicates the likelihood of 
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SW occurrence and would give confidence to the forecasters in situations where it 

is difficult to decide whether or not to emit a SW watch. It seems clear that the 

SW forecaster’s ability to position the SW watches cannot be improved with the 

approach proposed in this thesis. 

 

 

Chapter 6 

Discussions 

 

6.1       Forecasts v. observations 

In general, it is hard to get significant scores and statistics for rare events 

since there is not enough data available to do the verification, as was observed in 

the results from Section 5.1. The scarcer the data, the less representative the 

scores will be. Another important fact to keep in mind for SW observations is that 

there are no SW observations if there is nobody on location to report it. Therefore, 

SW observations are closely related to population density. This is quite obvious 

when Figs. 6.1 and 6.2 are compared. As a result, our domain of interest had to be 

chosen in order to focus on areas with a high population density. Our three 

domains of interest all have some areas that are less populated. However, this is 

less important over the Southern Ontario and Southern Quebec domain than over 

the Alberta domain. Another important fact for the Southern Ontario and Southern 

Quebec region is that the SW observations over the US compensate for the lack of 



 

 

 

Fig. 6.1: SW observations for the summer of 2008 and the three domains of interest. The SW observations of the summer of 2008 over 

Alberta, Ontario, Quebec, and the states of Michigan, Indiana, Ohio, Pennsylvania, New York, Vermont, New Hampshire, Maine, 

Washington, Idaho, and Montana are identified as blue dots. The three domains of interest — Alberta, Southern Ontario, and Southern 

Quebec — are identified by the light purple square. 



 

 

 

Fig. 6.2: Population density in 2006. The image is from the Natural Resource of Canada. 
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observations over the Canadian portion of the domain, because the US SW 

observations are really dense over these two domains. On the other hand, 1/3 of 

the Alberta domain has a very low population density. It is easily noticeable by 

observing Fig. 6.1 that the Alberta domain contains a lot less SW observations 

than the other two domains. This can partly explain the reason that over the 

Ontario domain, the SWI index forecast has the best scores, the one over Southern 

Quebec has the second best scores, and the one over the Alberta domain has the 

worst scores. When it was time to choose my domains of interest, I really chose 

the domain according to the population density and the domain of the GEM-LAM 

2.5-km for Southern Ontario and Southern Quebec. However, for the Alberta 

domain, I took the domain used by the UNSTABLE project and this was the best 

choice since by including the Rockies the model better capture the important 

mesoscale processes in its foothills that often lead to severe convection. However, 

for the summer of 2008 and 2009, the eastern edge of the GEM-LAM 2.5-km 

domain limited us to position our Alberta domain. Presently, it would be possible 

to increase the size of the Alberta domain to include more populated regions 

because the GEM-LAM 2.5-km domains have been enlarged since the fall of 

2011 (Rombough et al., 2010; Giguère and Milbrandt, 2011). It would be 

interesting in the near future to change the Alberta domain and redo an objective 

analysis for a more recent summer to compare the results. 

 For the three domains, the scores were affected by the scarcity of the SW 

observations. As we have concluded earlier, this is not really important for the 

Southern Ontario domain and has little importance for the Southern Quebec 

region, but it is really important for the Alberta domain. Therefore, it would have 
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been really interesting to have the radar data for the summer of 2008, because it 

could have compensated for the lack of data for certain regions as observed in the 

subjective analysis. We would certainly have different scores if we would have 

had access to radar data. Presently, at the High Impact Weather National 

Laboratory of EC, there is a project called the Canadian Precipitation Analysis 

(CaPA), and for the needs of this project, all the Canadian and US radar data has 

been archived since the summer of 2012. Therefore, it would be important in the 

near future to run the model and our SWI index algorithms for more recent years 

for which we have access to archived radar data, to do a more complete objective 

analysis. Radar data could be used in many different ways. Radar algorithms 

could be applied on the radar data to detect and identify SW features. In addition, 

they could be used to complete the SW observations by associating a 

thunderstorm line on the radar to a SW observation. In that way, we would no 

longer have point observation. Moreover, a threshold applied to the reflectivity 

could be used to detect severe echoes and high accumulation areas to associate 

them to SW. However, further investigation is needed before using the radar data 

in order to identify the best way to use these data for this research. Then, one 

could compare the new scores to the ones from our previous analysis and see if 

better results are obtained. If no better results are obtained over Alberta with the 

new analysis, it could mean that there is something wrong with the decision tree 

of our SWI index for Alberta and that we did not identify the important severe 

thunderstorm elements as  well as we did for the other two regions. On the other 

hand, it could mean that the model is less accurate over this region. 
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 The spin up of the model has had some impact on our scores, as observed 

with the objective analysis. The GEM-LAM 1-km is initialized at 15 UTC for all 

three domains. Moreover, it takes approximately three hours for the model to 

spin-up. For Alberta, 15 UTC correspond to 9 AM locally, and it corresponds to 

11 AM locally for Southern Ontario and Southern Quebec. As we can see, the 

spin up time does not really affect the Alberta domain, since the convection is 

usually initiated after the spin up period of the model. However, for Southern 

Ontario and Southern Quebec, the convection can be initiated during the spin up 

period of the model. In the near future, the GEM-LAM 2.5-km will be pan-

Canadian and will have multiple runs. Therefore, we will be able to initialize the 

GEM-LAM 1-km earlier for Southern Ontario and Southern Quebec, so that the 

spin up period would usually not fall during the initiation of convection.  

 In addition, we did not have a complete model dataset for the summer of 

2008. We used the experimental GEM-LAM 1-km, but more importantly, it was 

one of the first versions of this model. As we were using it, we discovered that 

there were some problems in the code. On some days, the model run could not 

come to completion due to a division by zero. Most days where the model failed 

to complete its run were severe thunderstorms days. Therefore, for some of the 

few SW observations that we had, we could not even do the verification of our 

index because we did not have any model outputs for that day. It certainly had an 

impact on our scores. I suggest for future works to use the more recent version of 

the GEM-LAM 1-km, which hopefully will be problem-free and will give us a 

model run for every day that we need.   
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 Finally, for all three regions, the results from the objective verification 

show that, on then different values of the SWI index, there are approximately four 

or five for which there is larger difference in the scores. Therefore, it is possible 

that our decision tree should not have as many categories. Mainly for the three 

domains, the most difference in the scores is observed for these groups of SWI 

index values: from 10 to 50, 60 to 90, and 100. Consequently, a color chart index 

indicating three categories of intensity for severe thunderstorms — weak, 

moderate, high — might be more adequate. 

 

6.2      Forecasts v. severe thunderstorm watches 

 As mentioned earlier, high-resolution models are rarely accurate in the 

position of an event. However, they are often useful to determine the occurrence 

of an event. As mentioned in the previous discussion section, having access to the 

radar data would have most certainly impacted the results when comparing the 

position accuracy of the SWI index forecasts with the SW forecasts. For example, 

severe thunderstorm lines could have been identified, which could have impacted 

the results on the location accuracy of the index, since a line can affect more than 

one public region as opposed to a point observation. Thus, it would be interesting 

to perform the same objective analysis from Section 5.2 with a dataset where the 

radar data is available, to see if there is a difference in the accuracy of the 

position. Moreover, it would be interesting to do the same comparison, but for 

Southern Ontario and Alberta. It was easier to do the comparison for the Southern 
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Quebec domain, since SW forecasts at the QSPC are archived on paper and I had 

physical access to them.  

One of the main objectives of the Next Generation Weather Prediction 

System project at EC is to provide the users with forecasts and other information 

on higher-resolution grids to give more precision on the location and size of the 

region affected by an event. During the subjective analysis of the SWI index with 

the SW observations and the radar images, I noticed that the SWI index forecast 

usually indicates whether the severe thunderstorms will be localized or 

widespread. Therefore, the SWI index forecast might not help the forecaster to 

position a SW event, but it could give an insight to the forecasters if the expected 

severe thunderstorms are extensive or localized. Therefore, if in the near future, 

the warning public regions are either decreased in scale or are transformed to 

warning/watch objects drawn by a forecaster, the high-resolution SWI index 

forecast could help the forecasters to refine the watch area, since the GEM-LAM 

1-km simulates severe thunderstorm lines and localized severe thunderstorms 

well.      

Having access to radar data would enable us to include another important 

object’s attribute during the verification: the object’s area. It would be really 

interesting to statistically measure the accuracy of the SWI index to indicate 

whether the severe thunderstorms will be localized or widespread. Also, it would 

be important to compare the accuracy of the area of the SWI index forecast and 

the SW watch area to see if the SWI index could help the forecaster to refine a 

SW watch area. If it could, it would be a major step toward the objectives of the 

Next Generation Weather Prediction System project at EC. 
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Chapter 7 

Conclusions 

 

 In conclusion, the scores and their 90% bootstrap CIs calculated from the 

objective verification of the SWI index forecasts with the SW observations 

demonstrate that the SWI index has skill for the Southern Ontario and Southern 

Quebec domains, but much less for the Alberta domain. However, the subjective 

analysis of the SWI index forecasts with the SW observations and radar images 

demonstrates that, as mentioned in the discussion, it is partly due to the scarcity of 

the SW observations and further verification needs to be done for more recent 

years which have available radar data. Mostly from the subjective verification, we 

can conclude that the SWI index forecast would be useful to Alberta SW 

forecasters. On the other hand, from the results of objective and subjective 

verification of the SWI index forecasts with the SW observations for the Southern 

Ontario and Southern Quebec domain, we can conclude that the SWI index 

forecast would be helpful for SW forecasters to forecast SW. 

 To verify that the SWI index forecast would help the SW forecasters to 

improve their SW forecasts, an objective verification of the SW forecasts done by 

a forecaster with the SW observations, and the SWI index forecasts with the SW 

observations was done. The results showed that the SWI index forecast would 

help the SW forecasters to forecast the occurrence of SW events, but would not 

improve the localization of an event. However, as mentioned earlier, since the 

model forecasts severe thunderstorm lines and localized severe thunderstorms 
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well, the SWI index forecast may help the forecasters to refine smaller watch 

regions when the next generation of the weather prediction system is implemented 

at EC. 

The goal of this thesis was to develop an automated tool from a high-

resolution model to help the forecaster to forecast SW. From the results of this 

research, I truly believe that the SWI index could greatly help the Alberta, 

Ontario, and Quebec SW forecasters to forecast SW. Therefore, the next step 

should be to introduce the index to the operational forecaster at EC and make an 

experimental forecast of the SWI index available.  

 My future work will concentrate on the adaptation of my algorithms to the 

operational GEM-LAM 2.5-km to generate a SWI index forecast from the GEM-

LAM 2.5-km outputs. Afterward, the object-oriented method will be used to 

verify the accuracy of the SWI index forecasts from the GEM-LAM 2.5-km 

outputs with the SW observations, and most probably the radar data as well. I also 

wish to be able to run the GEM-LAM 1-km over the same period as the GEM-

LAM 2.5-km and perform the same objective verification as performed on the 

GEM-LAM 2.5-km to compare their scores and deduce if the SWI index is more 

accurate for one model than the other.  
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