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ABSTRACT

Heat and mass transfer phenomena in nanofluids are studied using numerical ex-

periments. The main focus of this study is to determine the contribution of nanopar-

ticle Brownian motion-induced micro-convection currents on the effective thermal

conductivity and effective mass diffusivity.

The mathematical model developed is based on the fluctuating lattice Boltzmann

method (fLBM) to simulate nanoparticle Brownian motion, the multiple relaxation

time lattice Boltzmann method (MRT-LBM) to provide a description of micro-

convection currents, and the finite volume method (FVM) to calculate the evolu-

tion of a scalar field (mass or temperature) subject to the effect micro-convection

currents. Finally, two averaging methods to calculate effective thermal conductivity

and effective mass diffusion coefficient are presented and validated.

The results from numerical experiments on heat transfer show that nanoparticle

Brownian motion-induced micro-convection currents are not significant enough to

justify any notable enhancements in thermal conductivity above the values estimated

using classical models for composite materials.

In the case of mass transfer, the numerical experiments show that nanoparticle

Brownian motion-induced micro-convection currents cause significant enhancements

of the effective mass diffusion coefficient. This result is in general agreement with the
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conclusion drawn by Veilleux and Coulombe (2010, J. Appl. Phys.) using scaling ar-

guments based on the heat and mass transfer Péclet numbers, that Brownian motion

has a much larger effect on the mass diffusivity than on the heat diffusivity.

The numerical experiments on mass transfer are summarized by a simplified model

based on dispersion. The parameters considered in the numerical experiments are:

particle size, particle density, fluid viscosity, fluid density and temperature. The sim-

plified model adds two important terms to Maxwell’s model: a new dimensionless

number NBM (defined as the ratio of the nanoparticles Brownian self-diffusion coef-

ficient over the molecular diffusion coefficient) and a particle interaction term.

Although the simplified model fails to predict the order of magnitude increase in

mass diffusivity for Rhodamine 6G in 10 nm Al2O3-water nanofluids (Deff/Dm = 1.2

compared to the experimental value of 10), the form of the simplified model is used

to provide possible explanations for the effective mass diffusivity increase/decrease

with nanoparticle volume fraction observed experimentally.

This thesis concludes by extending the current analysis to polydisperse nanopar-

ticle suspensions. Numerical experiments on bidisperse suspensions highlight the

importance of the interaction term in the simplified model.
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ABRÉGÉ

Les phénomènes de transfert de chaleur et de masse dans les nanofluides sont

étudiés à l’aide d’expérimentations numériques. L’intérêt principal de cette étude est

de déterminer la contribution des courants de micro-convection induits par mouve-

ment Brownien de nanoparticules sur la conductivité thermique et le coefficient de

diffusion massique effectifs.

Le modèle mathématique développé est fondé sur la méthode de lattice Boltzmann

fluctuante (fLBM) pour simuler le mouvement Brownien des nanoparticules, sur la

méthode de lattice Boltzmann à temps de relaxation multiple (MRT-LBM) pour four-

nir une description des courants de micro-convection et sur la méthode de volume fini

(FVM) pour calculer l’évolution d’un champ scalaire (masse ou température) sujet à

l’effet des courants de micro-convection. Finalement, deux méthodes d’établissement

de la moyenne pour calculer les coefficients de conductivité thermique et de diffusion

massique effectifs sont présentés et validés.

Les résultats d’expérimentations numériques sur le transfert thermique démontrent

que les courants de micro-convection induits par mouvement Brownien de nanoparti-

cules ne sont pas suffisamment significatifs pour justifier l’amélioration de la conduc-

tivité thermique jusqu’à des valeurs dépassant celles obtenues avec les modèles clas-

siques pour les matériaux composites.
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Dans le cas du transfert de masse, les expérimentations numériques démontrent

que les courants de micro-convection induits par mouvement Brownien de nanopar-

ticules provoquent une amélioration du coefficient de diffusion massique effectif. Ce

résultat concorde avec la conclusion obtenue par Veilleux et Coulombe (2010, J.

Appl. Phys.) à partir d’analyse dimensionnelle basée sur le nombre de Péclet pour

les transferts de masse et de chaleur ; le mouvement Brownien a un bien plus grand

effet sur la diffusion massique que sur la conductivité thermique.

Les expérimentations numériques sur le transfert de masse sont synthétisées par un

model simplifié basé sur la dispersion. Les paramètres considérés dans les expérimentations

numériques sont : la taille des particules, la densité des particules, la viscosité du

fluide, la densité du fluide et la température. Le modèle simplifié ajoute deux termes

importants au modèle de Maxwell : un nouveau nombre sans dimension NBM (défini

comme étant le rapport du coefficient d’auto-diffusion Brownien des nanoparticules

sur le coefficient de diffusion moléculaire) et le terme représentant l’interaction entre

les particules.

Bien que le modèle simplifié échoue à prédire l’ordre de grandeur de l’augmen-

tation du coefficient de diffusion massique pour la Rhodamine 6G dans un nano-

fluide comportant des nanoparticules de 10 nm de Al2O3 en suspension dans l’eau

(Deff/Dm = 1.2, comparé à une valeur expérimentale de 10), il est utilisé pour four-

nir des explications possibles à l’augmentation et la baisse du coefficient de diffusion

massique effectif par rapport à la fraction de particules.
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Cette thèse se conclut avec l’approfondissement de l’analyse actuelle des suspen-

sions polydispersées dans les nanofluides. Les expérimentations numériques portant

sur des suspensions bidispersées soulignent l’importance du terme représentant l’in-

teraction entre les particules dans le modèle simplifié.
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Chapter 1
Introduction

1.1 Background

Nanofluids are engineered colloidal suspensions composed of nanoparticles in a

base fluid (Choi, 1995). The presence of nanoparticles in the base fluid imparts

unique properties to these fluids, including enhanced energy, momentum and mass

transfer rates, as well as reduced tendency for sedimentation and erosion of the

containing surfaces (when compared to µm and mm size particles). These unique

properties make nanofluids appealing new materials for applications such as heat

management, solar power collection, drug delivery, cancer treatment, amongst oth-

ers (Taylor et al., 2013). Despite the fact of being solid/liquid systems, traditional

models for composites fail to explain the unique transport properties of nanoflu-

ids.

Regardless of the large efforts made during the last two decades, the common

denominator in the study of nanofluids is the lack of phenomenological understanding

of the atypical properties of these fluids. Several modeling approaches have been

proposed with relative success at different scales. At the molecular scale, molecular

dynamics has proven to accurately estimate interfacial resistance (nanoparticle-fluid

interface). However, this approach is limited to very small scales and the interactions

between nanoparticles are difficult to incorporate into this framework (Sarkar and

2



Selvam, 2007). At larger scales the fluid around the nanoparticles can be regarded

as a continuum, and the standard equations for fluid mechanics can be applied.

However, since these equations rely on transport coefficients, these studies are limited

to order-of-magnitude estimates (Bhattacharya et al., 2004).

Nanoparticle Brownian motion-induced micro-convection currents have been pro-

posed as a possible explanation for the enhancement of thermal conductivity and

mass diffusion coefficient measured in nanofluids (Krishnamurthy et al., 2006; Micha-

elides, 2014). During the course of this thesis project a numerical model was devel-

oped to study the importance of particle Brownian motion on the effective thermal

conductivity and mass diffusivity of nanofluids.

1.2 Objectives

The main objective of this thesis is to study the contribution of nanoparticles

Brownian motion-induced micro-convection currents on the effective heat and mass

diffusion coefficients in nanofluids. The following specific objective are addressed:

1. To develope and implement a mathematical model capable of describing the

evolution of nanoparticle Brownian motion-induced micro-convection currents.

2. To develop an averaging procedure to estimate macroscopic or effective thermal

conductivity and mass diffusivity from the scalar field solution at a microscopic

scale.
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3. To validate the proposed model by comparing the results with the known so-

lutions for thermal conductivity and mass diffusivity for composite materials.

4. To study the effect of different parameters (temperature, nanoparticle size and

density, fluid viscosity and fluid density) on the effective thermal conductivity

and effective mass diffusivity for nanofluid systems.

5. To develop a simplified model to describe the relationship between the different

parameters studied and the effective mass diffusivity of nanofluids.

1.3 Organization of the thesis

This thesis manuscript was divided in four parts: Introduction, Mathematical

Model, Applications and Conclusion. Background information and the objectives of

this thesis are stated in chapter 1. chapter 2 contains a brief review of the nanofluid

literature with a focus on numerical studies performed on the subject of heat and

mass transfer phenomena.

The second part of this manuscript covers the details of the numerical model

developed. chapter 3 gives a general overview of the methodology chosen. The de-

tails of this methodology are discussed in the three subsequent chapters. chapter 4

describes the implementation of the fluctuating lattice Boltzmann method (fLBM)

and the methods used for simulating particles under Brownian motion. The lattice

Boltzmann method (LBM, without fluctuations) is then described. chapter 5 intro-

duces the hybrid LBM-FVM used to calculate the time evolution of a scalar field.
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The mathematical model description concludes in chapter 6, where the macroscopic

averaging operators are introduced. These operators are used to transform the micro-

scopic information obtained from the hybrid LBM-FVM into macroscopic effective

transport coefficients, i.e. thermal conductivity or mass diffusion coefficient.

The third part starts with a validation of the numerical method proposed. This

is done in chapter 7 where the heat transfer and mass transfer across composite

materials are considered. In chapter 8 the model is applied to the study of heat

transfer in nanofluids. The main application of the model proposed here is presented

in chapter 9, where mass transfer in nanofluids is considered. In the same chapter

a simplified mathematical model that summarizes the numerical results obtained is

proposed. The chapter concludes with a preliminary study of bidisperse nanoflu-

ids.

The work presented in this manuscript is summarized in chapter 10, followed by

original contribution and suggestions for future work.
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Chapter 2
Literature Review

Colloidal suspensions of particles in the nanometer range are commonly known

as “nanofluids”. This name was introduced by Choi (1995) to refer specifically to

suspensions of metallic nanoparticles in conventional heat transfer fluids (e.g. water,

ethylene glycol). Over the years, the term “nanofluid” has been accepted by the

scientific community (Das et al., 2006) to refer to a wider range of nanoparticle sus-

pensions, including, not only metallic nanoparticles but also non-metallic particles,

carbon nanotubes (CNT), etc. Thanks to their enhanced thermal conductivity at

low particle concentrations, nanofluids have been the subject of intensive research

during the last few years (Keblinski et al., 2005).

Although an innovative approach, the concept of using inclusions of metallic parti-

cles to modify bulk properties of materials has been used for over a century (Maxwell,

1892). However, technological limitations have restricted the analysis of these com-

posite systems to inclusions down to the micrometer range. These types of particles

sediment out of solution and cause high erosion rates in flowing systems, making

them unattractive for practical applications.

The recent developments in nanotechnology have permitted the study of com-

posite systems with inclusions in the nanometer range. At this scale, the increased

importance of nanoparticle Brownian motion in the system reduces sedimentation
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rates; while erosion rates in flowing systems are reduced because of the smaller size

of the inclusions and the lower particle load needed to achieve a significant increase

in thermal conductivity (Heris et al., 2007).

The following sections briefly describe the most common methods of preparation

of nanofluids, some of the experimental measurements reported in the literature, and

the existing theoretical and numerical models developed to gain a better understand-

ing of the unusual properties of nanofluids. The review presented below touches the

subjects of nanofluid preparation and experimental measurements, however the main

focus is numerical studies. For a through discussion on the subject of nanofluids see

the recent work by Michaelides (2014).

2.1 Preparation of Nanofluids

Although nanofluids seam to be simple solid-liquid mixtures, the synthesis of these

materials need to satisfy special requirements; for example stability. Despite the

contribution of Brownian motion, nanoparticles suspensions may also agglomerate

and sediment out of solution. Different factors such as agglomeration (Prasher et al.,

2006a), pH, among others affect the stability of nanofluids. Proper preparation to

ensure stability of the solid phase is a key element in any experimental study or in

the production of nanofluids.

Nanofluids are commonly prepared by either single-step or two-step methods

(Wang and Mujumdar, 2007). As its name indicates, single-step preparation meth-

ods only need one step to produce and suspend the particles in the base fluid. In this
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method the particles are normally produced by the contact of a hot vapor with the

base fluid. Particles can also be produced by chemical reaction of selected reactants

dissolved in the base fluid (Zhu et al., 2004). Two common single-steps methods are:

a) VEROS (Vacuum Evaporation onto a Running Oil Substrate) (Akoh et al., 1978)

and b) Vacuum-SANSS (Submerged Arc Nanoparticle Synthesis System) (Lo et al.,

2005). The main advantage of single-step methods is that the particle agglomeration

during synthesis is minimized, compared to other methods. However, one of the

disadvantage is the restriction to low vapor pressure base fluids.

In two-step methods the nanoparticles are first produced and then dispersed into

the based fluid. This method is extensively used because of the rather available

commercial sources of nanopowders. However, the critical step in the preparation of

nanofluids by two-step methods is the suspension of the nanoparticles. Typically, this

is done by using ultrasound equipment, which not only helps to suspend the particles,

but also to reduce agglomeration (Kwak and Kim, 2005). Other techniques include

the use of surfactant agents (Mao et al., 2014) or particle coating (Coulombe and

Tavares, 2007). The two-step method has been used for suspending different types of

nanoparticles, including Al2O3, TiO2, Au, Ag, CNTs, among others (Eastman et al.,

1997; Wang et al., 1999; Chon et al., 2005; Lee et al., 2007)

More recently, Taylor et al. (2013) published a review on nanofluids. An entire

section was dedicated to synthesis methods of nanofluids. This section includes

synthesis of nanoparticles (physical and chemical methods), stabilization and direct

nanofluid synthesis.
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2.2 Experimental Measurements

2.2.1 Heat Transfer

Thermal conductivity is the nanofluid property most widely studied. The interest

in this particular transport property arose from the early observations of thermal con-

ductivity enhancement of nanofluids (Masuda et al., 1993) and their potential bene-

fits to heat transfer applications. For example, pumping power in a heat exchanger

necessary to satisfy heat transfer requirements could be reduced by increasing the

thermal conductivity of the fluid using nanofluids (Choi, 1995).

The Transient Hot-Wire method (THW) (Healy et al., 1976; Haarman, 1971) is

the experimental technique most extensively used for measuring the thermal conduc-

tivity in nanofluids. However, since nanofluids are in general electrically conductive

materials a modified version of the THW method is often used (Nagasaka and Na-

gashima, 1981). Other techniques such as the steady-state parallel-plate (Wang et al.,

1999), the temperature oscillation (Santucci and Verdini, 1986; Bhattacharya et al.,

2006), and the optical beam-deflection technique (Rusconi et al., 2006) have also

been employed to address some of the practical drawbacks related to THW measure-

ments (e.g. convective effects, accumulation of conducting ions near the hot wire,

among others).

The review by Wang and Mujumdar (2007) includes a concise summary of experi-

mental measurements of thermal conductivity of nanofluids reported in the literature.
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Although sometimes contradicting, in general this review shows the existence of ex-

perimental evidence that the thermal conductivity of nanofluids is higher than that

of the base fluid. Few of these important results are discussed below.

In sum, the review from Wang and Mujumdar (2007) indicates that particle sur-

face chemistry plays an important role in the thermal conductivity enhancement of

nanofluids (Xie et al., 2002). Also, the thermal conductivity of the suspended parti-

cles does not necessarily have a direct relation with the effective enhancement of the

nanofluid (Hong et al., 2005), as would have been expected from the relation pro-

posed by Maxwell (1892). Furthermore, the dependence of the thermal conductivity

enhancement on particle size (Jang and Choi, 2007) and temperature (Das et al.,

2003b; Chon et al., 2005) indicates the possible influence of nanoparticle Brownian

motion. Another important observation is the fact that certain nanofluids present

significant enhancements at very low nanoparticle volume fractions (∼0.3%) (East-

man et al., 2001). Finally, the highest enhancement reported in the literature was

achieved by suspending single wall carbon nanotubes in epoxy. A 300% enhancement

was obtained with only 1% nanotube volume fraction (Choi et al., 2001).

Controversially, recent studies of commonly used nanofluid systems have reported

no abnormal enhancement of the thermal conductivity (Rusconi et al., 2006; Venerus

et al., 2006; Putnam et al., 2006; Zhang et al., 2007; Eapen et al., 2007) when

compared with the thermal conductivity model for composite materials proposed

by Hamilton and Crosser (1962). However, no clear explanation has been given for

the discrepancy with the abnormal enhancement found in previous measurements.
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Whether preparation, measurement, or interpretation of the results is the cause of

these discrepancies, it is not known for the moment.

The potential improvement of nanofluid technology to heat transfer equipment

has led to investigations of more realistic systems, where the principal mechanisms

of heat transport are forced convection (Daungthongsuk and Wongwises, 2007), nat-

ural convection (Tzou, 2008) or pool boiling (Das et al., 2003a). Although, thermal

conductivity plays an important role in these types of systems, other transport prop-

erties such as viscosity are also important. The real enhancement of heat transfer

capability of nanofluids when used under convective condition is expected to be much

higher than the enhancement on thermal conductivity alone, as observed for suspen-

sions of micron-size particles (Ahuja, 1975, 1980; Sohn and Chen, 1981; Liu et al.,

1988).

The work of Wang and Mujumdar (2007) also includes a good review on natu-

ral and convective heat transfer experiments using nanofluids. From the literature

reviewed, the authors conclude that particle shape is a significant parameter that

needs to be carefully examined to facilitate the proper understanding of the scat-

tered experimental results. Furthermore, the heat transfer behavior of nanofluids is

very complex and the influence of different parameters other than thermal conduc-

tivity alone should also be considered. Pool boiling was also covered in this review,

leading to the conclusion that surface properties such as roughness, wettability and

contamination should be considered in future studies.
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Buongiorno et al. (2009) published the results from the International Nanofluid

Property Benchmark Exercise (INPBE). Over 30 organizations worldwide contrib-

uted to this study using a variety of experimental approaches, including THW,

steady-state methods, and optical methods. It was found that the thermal conduc-

tivity increases with particle concentration and aspect ratio. The increase observed

can be described by the effective medium theory developed by Maxwell (1873) and

recently generalized by Nan et al. (1997); all tests can be predicted with less than

17% error. No anomalous thermal conductivity enhancement was observed for the

nanofluids tested in the INPBE. Therefore, Brownian motion, liquid layering and ag-

gregation theories were not required to interpret the results from the INPBE.

Another interesting review paper was published by Ozerinc et al. (2010). This re-

view is organized by the effect of different characteristics of the nanofluid in question:

volume fraction, particle type, base fluid, particle size, particle shape, temperature,

clustering and pH are discussed. The review concludes by indicating that significant

discrepancies in the experimental data exist. Furthermore, from the experimental

point of view, the average particle size is not sufficient to characterize a nanofluid,

because non-linear relations exist between size and thermal transport. The authors

also highlight the fact that additives, pH, and sonication techniques should be re-

ported in the studies because these affect clustering and in turn, the effective particle

size.

Branson et al. (2013) measured the thermal conductivity of nano-diamond based

nanofluids using the short hot-wire probe method. The authors found a 2 to 4 fold
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enhancement with respect to Maxwell’s theory (see Equation 2.1), with nanoparticle

volume fractions as low as 1%. One interesting contribution in this publication is

the use of particle size distributions in terms of volume percent instead of particle

count. However, when considering the solid-fluid interface heat transfer mechanism

for nanofluids, Myers et al. (2013) suggested that the THW technique could give

misleading measurements of anomalous thermal conductivity enhancement if a static

heat flow model applied over an infinite domain is used instead of applying a dynamic

model over a finite domain.

Similar to the INPBE (Buongiorno et al., 2009), the work by Barbes et al. (2014)

on CuO nanofluids (water and ethylene glycol) also indicates that classical mod-

els (Hamilton and Crosser, 1962), or their generilized version (Nan et al., 1997),

give a good estimation of the effective thermal conductivity of nanofluids. In this

study the heat capacity was also measured. The experimental apparatus used was a

differential heat-flow microcalorimeter. Experiments were conducted with different

nanoparticle volume fractions and different temperatures. Besides finding that ther-

mal conductivity follows classical models, the authors also suggested the increase in

the effective thermal conductivity with temperature is related to the thermal con-

ductivity increase of the base fluid and not to the presence of the particles. One of

the main arguments of Barbes et al. (2014) work is that the differential heat-flow

microcalorimeter technique eliminates possible sources of error, because the measure-

ments are made with very small temperature gradients and with practical absence

of natural convection.
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Despite the widely accepted conclusions from the INPBE, more recent publica-

tions continue to report anomalous enhancements of thermal conductivity in na-

nofluids. One example is the case of nanodiamonds in mineral oil (ND/MO) based

nanofluids reported by Taha-Tijerina et al. (2014). In this study, nanoparticle volume

fractions as low as 0.100 wt % registered an enhancement in thermal conductivity

close 70% at 373 K. While the results at room temperature (296 K) from Taha-

Tijerina et al. (2014) agree with the INPBE, at higher temperatures a significant

deviation from the mean field theory was measured. This led the authors to sug-

gest that Brownian motion may play an important role in abnormally enhancing the

thermal conductivity of nanofluids.

2.2.2 Momentum Transfer

The study of fluid flow of nanoparticles suspensions is closely related to the po-

tential applications of heat transfer enhancement nanofluids have to offer. Initially,

the study of momentum transfer focused mainly on determining the effect of vol-

ume fraction on pumping power. Early measurements of viscosity indicate that the

penalty in pressure drop for suspending the nanoparticles was very low compared

with the gain in heat transfer enhancement (Masuda et al., 1993; Choi, 1995).

Li et al. (2002) measured the viscosity of CuO-water nanofluids at different tem-

peratures. The measurements indicated a decrease in viscosity with temperature,

with a less important dependency on nanoparticle volume fraction. Das et al. (2003a)
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measured the dynamic viscosity of Al2O3-water nanofluids. They found that this par-

ticular nanofluid shows an increase of viscosity with particle concentration but re-

mains Newtonian in nature. Similar results were obtained by Prasher et al. (2006c)

on Al2O3-PG (propylene glycol) nanofluids; however, the viscosity measured was

much higher than the value predicted by Einstein’s model, but this was likely due to

aggregation of the nanoparticles as pointed out by the authors.

Kwak and Kim (2005) measured the zero shear and the shear-dependent viscosity

for CuO-EG (ethylene glycol) nanofluids. The particles in this system were rod-like

with an aspect ratio of 3. They found that at concentrations above the dilute limit

(φ = 0.20%) the zero-shear viscosity increases drastically with nanoparticle volume

fraction. The measurements of shear-dependent viscosity indicate a shear thinning

behavior with a infinite shear viscosity similar to that of the base fluid. A similar

shear thinning behavior was observed by Ding et al. (2006) in the study of CNT

nanofluids. They also reported a viscosity increase with CNT concentration and a

decrease with temperature.

Zhou et al. (2010) investigated experimentally shear rate and temperature depen-

dencies of viscosity on alumina (nanospheres and nanorods) polyalphaolefin (PAO)

nanofluids. Nanofluids with low particle concentration (1 and 3%) show Newtonian

behavior and no temperature dependency, except for the case of nanorods at 3%

volume fraction, which showed non-Newtonian features (shear thinning) and strong

dependency on temperature.
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Li et al. (2013) studied a viscoelastic fluid-based nanofluid (VFBN) composed of

cetyltrimethyl ammonium chloride/sodium salicylate as base fluid and multi-walled

carbon nanotubes (MWCNTs) as nanoparticles. Thermal conductivity and shear vis-

cosity were studied experimentally. The VFBNs behaves similarly to the viscoelastic

base fluid, as a shear-thinning non-Newtonian fluid. A significant increase in the

shear viscosity at low shear rates was observed. Furthermore, the authors reported a

significant increase in thermal conductivity with nanoparticle volume fraction.

More recently, Taha-Tijerina et al. (2014) investigated nanodiamond in mineral

oil (ND/MO) based nanofluids for potential thermal management applications; in

particular studying viscoelastic properties. It was determined that the ND/MO based

nanofluids behave like Newtonian fluids at the concentrations studied (≤ 0.100 wt %).

The temperature dependency of the dynamic viscosity revealed the importance of

considering ND nanoparticle interactions in these studies.

2.2.3 Mass Transfer

Despite the promising results reported by Ahuja (1976) and Mehra (1988) for

micro-meter size particle suspensions, the study of mass transfer in nanofluids have

received significantly less attention than heat transfer has. However, over the past

few years the attention is slowly being shifted towards the promising mass trans-

port enhancement of nanofluids. Ali et al. (2004) investigated the heat and mass

transfer between air and falling ultrafine Cu particle solution film in a cross flow

configuration. This study indicated that the ultrafine particles enhance heat and
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mass transfer. Furthermore, increasing particle volume fraction increases dehumidi-

fication and cooling capabilities.

Wen et al. (2005) studied the gas holdup and the gas-liquid volumetric mass

transfer coefficient in an airlift reactor with dispersed 12 nm TiO2 nanoparticles.

The authors found a decrease in the volumetric mass transfer coefficient with particle

volume fraction. This decrease was attributed to the reduced interfacial area caused

by the easy coalescence of bubbles in the presence of nanoparticles.

Olle et al. (2006) reported a 600% oxygen mass transfer enhancement using mag-

netite (Fe3O4) nanofluids. They showed that the mass-transfer coefficient and the

interfacial area are enhanced in the presence of nanoparticles, with the interfacial en-

hancement being more important. Furthermore, the enhancement in the volumetric

mass transfer coefficient showed a strong temperature dependence.

Krishnamurthy et al. (2006) visualized dye diffusion in a 20 nm Al2O3-water

nanofluid. They observed that dye diffuses up to 14 times faster in the presence

of nanoparticles, with a peak enhancement at φ = 0.5%. An important conclusion

from this work is that “an order-of-magnitude analysis suggests that the Brownian

motion of the nanoparticles is not directly responsible for the observed mass transport

enhancement. Rather, it is the velocity disturbance field in the fluid, created by the

motion of the nanoparticles, that could be responsible for such enhancement”.

Fan et al. (2007) conducted experiments to study the effect of nanofluids on bubble

behavior. They used hydrophilic nanoparticles with bubble flows in bubble columns
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and microchannels. The experimental measurements revealed a significant increase

in the gas holdup in bubble columns. Also, the microchannel experiments showed

a reduction of bubble size in the presence of the nanofluid, which would yield an

entirely different flow regime map compared to the base fluid.

Fang et al. (2009) studied diffusion of Rhodamine B in Cu-water nanofluids using a

method based on Taylor dispersion. They found a strong dependency of the effective

mass diffusivity on nanoparticle volume fraction and temperature; 10.71 fold increase

at 15◦C and 26 times increase at 25◦C. These results led them to conclude that

Brownian motion induced micro-convection inside the suspension fluid remarkably

enhances the mass transfer process.

The many-fold increase in mass diffusivity for nanofluids was put in question when

measurements of self-diffusion on SiO2-water nanofluid gave a decrease in the effective

mass diffusivity with nanoparticle volume fraction (Turanov and Tolmachev, 2009).

The measured decrease was faster than predicted by effective medium theory, and it

was attributed to interaction of water with the silica particles and water retention

by the nanoparticles. Similar results were also obtained for Al2O3-water nanofluids

(Gerardi et al., 2009). In this case the authors concluded that two effects could be

responsible for the observed decrease with nanoparticle volume fraction: tortuosity

of the diffusion path, or the presence of an ordered layer on the surface of the particle

with lower diffusion coefficient than the free molecules.

Ozturk et al. (2010) used a microfluidic approach to measure tracer diffusion of 20-

nm Al2O3-water nanofluids, with experimental conditions similar to Krishnamurthy
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et al. (2006). The results from these experiments showed that the nanoparticles did

not enhance dye diffusion and reported the presence of a zone of highly fluorescent

dye-nanoparticle complexes at the interface between dye and nanofluid. Ozturk et al.

(2010) also suggest that the anomalous threadlike spreading patterns reported by

Krishnamurthy et al. (2006) primarily depict flow-induced deformation of the droplet

front, which are effects introduced by physical phenomena and not by enhancements

in molecular diffusion.

Veilleux (2010) measured the diffusion of Rhodamine 6G in Al2O3-water nanoflu-

ids using a new technique based on Total Internal Reflection Fluorescence (TIRF)

microscopy (Veilleux and Coulombe, 2010a,b, 2011). The authors found a 10-fold

maximum dye diffusivity at 2% volume fraction, compared to diffusivity in pure

water. The significant increase in mass diffusivity was explained using a dispersion-

based model. Temperature, particle density, particle size and nanoparticle volume

fraction dependency of the effective mass diffusivity in terms of the dispersion model

were discussed. The dispersion model proposed is based on the postulate that micro-

convection takes place due to the nanoparticle Brownian motion, and suggests that

mass diffusivity in nanofluids depends on the Péclet number. While the dispersion

model predicts an observable increase in mass diffusivity with nanoparticle volume

fraction, by extending the dispersion model to heat transfer, the authors concluded

that the the enhancements in heat diffusivity are expected to be within measurement

error.
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Subba-Rao et al. (2011) studied dye diffusion of Alexa-488 in silica-water and

Rhodamine 6G in alumna-water nanofluids, using Fluorescence Correlation Spec-

troscopy (FCS). The studies indicated no significant changes in mass diffusivity at

the nanoparticle volume fractions studied (1% for alumina and 1.7% for silica).

Ashrafmansouri and Nasr Esfahany (2014) published a review on mass transfer

in nanofluids. This review is not limited to studies in mass diffusivity as discussed

above, but it also includes convective mass transfer with many types of equipment:

agitated absorption reactor, falling film absorption system, amongst others. The

authors also suggest particle Brownian motion and associated micro-convection as

a possible mechanisms for mass diffusivity enhancement. This review also included

publications where a decrease on mass diffusivity with nanoparticle volume fraction

was observed. This reduction in mass diffusivity was explained by: aggregation/-

clustering and increase in tortuosity in diffusion path in the presence of nanoparti-

cles.

The important mass transfer enhancements reported by Olle et al. (2006) and

Krishnamurthy et al. (2006) have opened a new door in nanofluids research. Potential

applications of nanofluids in areas other than heat transfer are now being considered.

Some examples include improving mass transfer limited systems such as bioreactors,

reacting systems, microfluidics, amongst others. Fundamental understanding of this

particular phenomena is currently an important area for research.
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2.3 Theoretical Developments

This section presents relevant theoretical developments towards understanding

heat and mass transfer phenomena in nanofluids. Although studies have been pub-

lished in nanofluids momentum transfer, this section focuses on heat and mass trans-

fer and in particular on thermal conductivity and mass diffusivity. First, models de-

veloped to estimate the thermal conductivity of composite materials are introduced.

Then, recently suggested modifications of these models to account for the nanofluid’s

unique behavior are presented, followed by one of the few models proposed to ex-

plain mass diffusivity characteristics of nanofluids. Finally, the section concludes

with some numerical studies performed to get a better understanding of the heat

transfer mechanisms in nanofluids at different scales.

2.3.1 Composite Materials

Also known as “classical” models, these were developed to calculate the ther-

mal (and electrical) conductivity of composite materials. They are often compared

against experimental measurements on nanofluids. The discrepancy between exper-

imental measurements and the estimation using these classical models is what is

called “abnormal” or “anomalous” enhancement in the literature. Some of these

classical models are presented next.

Maxwell (1873) presented a generalized theory for conduction through heteroge-

neous media. Although, it was presented mainly for electric conduction, the analogy

to heat conduction is straightforward. Using this theory, the author developed a
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formula to calculate the effective resistance of an heterogeneous medium with non

interacting spheres, i.e. the radius of the sphere is much smaller than the distance

between them:

λeff

λf

=
λp + 2λf + 2(λp − λf)φ

λp + 2λf − (λp − λf)φ
(2.1)

Equation (2.1) has been rearranged from the original publication to represent the

effective conductivity ratio (λeff/λf) for a solid-liquid composite, i.e. ratio between

the effective conductivity λeff and the conductivity of the base fluid λf . Also, λp

represents the particle conductivity and φ the volume fraction. This formula indi-

cates that the effective conductivity of a medium composed of particles suspended

in a liquid depends only on the conductivities of the fluid and particles, and the

volume fraction occupied by the particles. Equation (2.1) is only valid for dilute

systems; however, when particle interactions are important other terms enter into

the equation. Note that Eq. (2.1) is indicated as Maxwell’s equation through out

this work.

The case of insulating spherical particles (λp = 0) is of particular interest in the

study of mass diffusion in composites with impermeable inclusions. The effective

mass diffusion coefficient for a composite material can be obtained from Eq. (2.1)

by replacing λeff with Deff , the effective mass diffusivity, and λf with Dm, the molec-

ular mass diffusivity of solute A in medium B (dilute binary diffusion). Using the

assumption of a dilute suspension (φ < 1 and φ2 ≈ 0), Eq. (2.1) becomes:

Deff

Df

= 1− 3

2
φ (2.2)
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Hamilton and Crosser (1962) extended the approach use by Maxwell (1892) to

mixtures containing particles of arbitrary shapes; Eq. (2.3). In this equation, n is a

shape constant that must be determined empirically. A mathematical expression for

n for ellipsoidal particles had already been developed by Fricke (1924); however, close

forms for other particle shapes were not feasible. Instead, the authors correlated

the experimental data obtained for non spherical particles to Eq. (2.3) by setting

n = 3/Ψ, where Ψ is the sphericity (ratio of the surface area of a sphere with a

volume equal to that of the particle, to the surface area of the particle).

λeff

λf

=
λp + (n− 1)λf − (n− 1)(λf − λp)φ

λp + (n− 1)λf + (λf − λp)φ
(2.3)

Besides being applicable only to dilute suspensions, Eq. (2.3) also assumes that all

particles have similar shape and that they are randomly oriented. Furthermore, when

studying more complex systems, the authors suggest to assume Eq. (2.3) to account

for the conductive heat transfer of the heterogeneous array and then incorporate the

contributions from other factors that may cause an abnormal behavior.

Jeffrey (1973) extended the work of Maxwell (1892) to calculate the heat flux

exactly to order φ2 by using the renormalization method described by Batchelor

(1972). Using this approach, the problem can be reduced to the pair interactions of

particles. The result obtained depends on the way pairs of spheres are distributed.

Equation (2.4) presented below corresponds to the case of randomly distributed
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particles; with β = (α− 1)/(α + 2) and α = λp/λf .

λeff

λf

= 1 + 3βφ+ φ2

(
3β2 +

3β3

4
+

9β3

16

α + 2

2α + 3
+

3β4

26
+ ...

)
(2.4)

Yamada and Ota (1980) developed a new model based one the work of Fricke

(1924) and Hamilton and Crosser (1962) by representing each particle as a paral-

lelepiped of dimensions a, b, c. The modifications introduced to these models account

for other particle shapes and mutual interactions between neighboring particles. The

form of the unit-cell model, as named by the authors, is the same as Eq. (2.3) with

a different expression for n given by Eq. (2.5).

(n− 1) = M
( a
L

)n1
( b
L

)n2
( c
L

)n3

(2.5)

In Eq. (2.5), the term L is define as L = (abc/φ)1/3. The constants M,n1, n2,

and n3 in Eq. (2.5) are not easy to determine theoretically. Therefore, the authors

proposed a method to find them from experimental data using linear regression.

Furthermore, for particles with non-parallepiped shapes a method for calculating the

equivalent parallelepiped dimensions was also proposed. The unit-cell model fitted

well experimental data available in the literature; except for the cases of cylinders

with large aspect ratios and some results with spherical particles.

Davis (1986) obtained an expression for the thermal conductivity of a composite

material containing spherical inclusions, accurate to order φ2. The expression ob-

tained was similar to the one presented by Jeffrey (1973). However, this method

has the particularity that a decaying temperature field is used. As a result, only
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convergent integrals are encountered, and the renormalization factor proposed by

Batchelor (1972) is not needed.

Bonnecaze and Brady (1990) presented a general method to predict the effective

conductivity of an infinite statistically homogeneous suspension of particles in an

arbitrary (ordered or disordered) configuration. The method follows closely that of

“stokesian dynamics” and captures both far-field and near-field particle interactions

accurately with no convergence difficulties. This method was applied to random

suspensions of spherical particles (Bonnecaze and Brady, 1991) with very good results

when compared with experimental data.

2.3.2 Nanofluid Models: Thermal Conductivity

Modifications to the classical models have been proposed to account for the abnor-

mal thermal conductivity reported in the literature. In general, these modifications

intent to account for phenomena irrelevant at the micrometer range, but perhaps

significant at the nanometer scale. Four mechanisms for this abnormal enhancement

are often found in the literature (Keblinski et al., 2002): 1) Brownian motion of the

nanoparticles, 2) molecular-level layering of the liquid at the liquid/particle interface,

3) the nature of heat transport in the nanoparticles, and 4) effects of nanoparticle

clustering. Some of the models presented below include these mechanisms.

Particle Brownian motion originates form thermal energy fluctuations of the fluid

molecules. Even though Brownian motion also affects micrometer size particles, as

the size of the particle decreases the importance of these fluctuations on the random
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motion of the particle increases. The effective thermal conductivity dependance on

particle size (Jang and Choi, 2007) and temperature (Das et al., 2003b; Chon et al.,

2005) suggests that particle Brownian motion plays an important role in the heat

transfer mechanism in nanofluids.

One of the first modifications to Maxwell model to include particle Brownian

motion and particle aggreagtion was proposed by Xuan et al. (2003).

λeff

λf

=
λp + 2λf + 2(λp − λf)φ

λp + 2λf − (λp − λf)φ
+
ρpφcp

2λf

√
λBT

2πacη
(2.6)

where λB is the Boltzmann constant, ac is the cluster apparent radius, ρp is the

particle density, cp is the particle specific heat capacity, and η is the fluid viscosity.

Two important facts are captured by this model: a) the thermal conductivity of

nanofluids increases with temperature, and b) the formation of aggregates reduces the

efficiency of the energy transport enhancement of the suspended particles. However,

the temperature dependence of this model (T 1/2) was not in agreement with the

experimental data from Das et al. (2003b).

To account for the strong thermal conductivity dependence on temperature, Ku-

mar et al. (2004) proposed a model based on the Stokes-Einstein formula, thus in-

cluding the Brownian motion of the particles Eq. (2.7). The model also captures the

dependance on particle size.

λeff

λf

= 1 + c
2λBT

πηd2
p

φdf

λf(1− φ)dp

(2.7)
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where c is a constant found to be of the order of unity, η is the dynamic viscosity

of the base fluid, dp is the diameter of the particles, and df is the diameter of the

base fluid molecules, assumed to be spheres. This model indicates that the effective

thermal conductivity of nanofluids varies in proportion to T/η and 1/dp. Even though

a good agreement with experimental data was found, not enough information was

given about c and df in the calculations presented, which might have been used as

fitting parameters.

The model proposed by Koo and Kleinstreuer (2004) accounts for the static parti-

cles thermal conductivity enhancement using Maxwell’s model, and for the dynamic

contribution by considering the surrounding liquid traveling with Brownian moving

nanoparticles Eq. (2.8).

λeff

λf

=
λp + 2λf + 2(λp − λf)φ

λp + 2λf − (λp − λf)φ
+ 5× 104γφρpcp

√
λBT

ρpdp

f(T, φ) (2.8)

f(T, φ) = (−6.04φ+ 0.4705)T + (1722.3φ− 134.63) (2.9)

where γ is related to particle motion and can be obtained by fitting experimental data

obtained at constant temperature. This model was found to be in good agreement

with experimental data. However, the use of the empirical functions γ and f(T, φ)

restrict the extrapolation of the model to other systems.

Another interesting modification to Maxwell’s model to include the effect of parti-

cle Brownian motion was proposed by Prasher et al. (2005); presented in Eq. (2.10).

In this publication, Brownian motion was proposed as the primary mechanism re-

sponsible for the enhancement in the effective thermal conductivity. Maxwell’s model

27



was modified by introducing the convection of the liquid near the particles through

a new correlation proposed by the authors:

λeff

λf

=

[
λp + 2λf + 2(λp − λf)φ

λp + 2λf − (λp − λf)φ

] (
1 + ARem Pr0.333φ

)
(2.10)

where A and m are fluid dependent constants, Pr is the Prandtl number (Pr = η/α,

where α is the thermal diffusivity), and Re is the Reynolds number:

Re =
1

η

√
18λBT

πρpdp

(2.11)

Models including molecular-level layering of the liquid at the liquid-particle in-

terface have also been proposed in the literature. They exploit the increase in sur-

face area with decrease in particle size to explain the size-dependent enhancement

observed experimentally. The models developed using this approach are normally

modifications to the Maxwell or Hamilton-Crosser models, where the particle con-

ductivity is replaced by an effective particle conductivity representing the particle

and the interfacial layer (Yu and Choi, 2003, 2004; Leong et al., 2006).

Despite the fact that experimental evidences have proven the existence of a liquid-

particle interface layering (Yu et al., 1999), the values of the layer thickness needed

to explain experimental data are much higher than the ones estimated using non-

equilibrium molecular dynamics (Xue, 2003; Xue et al., 2004). This suggests that

the abnormal nanofluid thermal conductivity enhancement cannot be explained by

thermal transport in the liquid-solid interface layer.
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The ballistic phonon transport proposed by Keblinski et al. (2002) could con-

tribute to the abnormal thermal conductivity enhancement of nanofluids. Since the

mean free path of a phonon is comparable to the nanoparticle diameter (∼35 nm),

important enhancements in the conductivity are expected when particle are close,

thus phonons can propagate directly from one particle to the other.

Aggregation kinetics was proposed by Prasher et al. (2006b) as a possible ex-

planation for the observed anomalies reported in experimental work. They found

that aggregation decreases the Brownian motion due to the increase in the mass of

the aggregates, whereas it can increase the thermal conductivity due to percolation

effects in the aggregates (enhanced heat transfer by touching particles in the aggre-

gate). This study introduced other important parameters that had received little

attention in the past studies of nanofluids. For example the Hamaker constant, the

zeta potential, pH, and ion concentration. These parameters influence the formation

of aggregates, thus the thermal conductivity of the nanofluid.

Two independent groups developed models to study heat transfer in nanofluids,

and in particular to study the results from hot transient wire measurements. Myers

et al. (2013) developed a time-dependent model to determine the thermal conductiv-

ity of a nanofluid. The model does not require contribution from Brownian motion or

nanolayers to explain the abnormal enhancements measured. The proposed equation

for the effective thermal conductivity considering transient terms is

λeff =
λf

(1− φ1/3)2

[
(1− φ) + φ

ρpcPp

ρfcP f

]
n− 1

2(n+ 1)

[
1 + φ1/3

2
− 1

n+ 1

]−1

(2.12)
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where n = 2.233 is a fix value, because the formula is only valid for cases where the

particle to base fluid conductivity ratio is much larger than one. For particle volume

fractions higher than 1% this model shows a greater enhancement than Maxwell

model.

Maŕın et al. (2014) constructed a model from experimental measurements of two

immiscible fluids using THW. The experimental results were explained by an im-

proved series model that takes into account the interfacial resistance. The proposed

model relies on a single fitting parameter. In the case of nanofluids this parameter

depends on particle size. Using the improved model the authors conclude that exper-

imental measurements using THW techniques cannot be interpreted using classical

models; instead the improved series model needs to be used.

An alternative interpretation of the results form Myers et al. (2013) and Maŕın

et al. (2014) would be that the THW techniques for measuring thermal conductivity

of nanofluids would lead to an overestimation of this property. The effective con-

ductivity given by Eq. (2.12) would not be a property of the macroscopic fluid, but

a characteristic of the system; closer to a heat transfer coefficient than a thermal

conductivity.

2.3.3 Nanofluid Models: Mass Diffusivity

The study of mass transfer had a late start. One of the early models to explain the

abnormal enhancement on mass diffusivity in nanolfuids was published by Veilleux

and Coulombe (2010a). The main idea behind this model is that the enhancement
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is due to Brownian motion induced dispersion, similar to Taylor dispersion phenom-

ena on straight tubes. The model was developed as an analogy with dispersion in

diluted fixed beds, using Brinkman velocity profile. Particle velocities are obtained

by sampling the Maxwell-Boltzmann distribution. The dispersion model obtained

shows a strong dependence on the Péclet number, which explains why nanofluids

exhibit larger enhancements on mass diffusivities compared to thermal diffusivity. If

Brownian motion is responsible for enhancement, it would be too small to be de-

tected in heat transfer situations. This in in agreement with the generally accepted

view that there is no observable “abnormal” increase of the heat conductivity past

the values predicted by classical “composite” models.

2.4 Numerical Investigations

Numerical experiments have become a popular tool to study phenomena that oc-

curs at scales (i.e. time and length) where experimentation may be limited. For

example, Molecular Dynamics (MD) simulations have been used in the study of na-

nofluids to estimate the importance of thermal resistance at the liquid-solid interface

(Xue et al., 2003), to validate the existence of a liquid layering at the interface (Xue

et al., 2004), and to study the importance of particle Brownian motion (Keblinski

and Thomin, 2006; Sarkar and Selvam, 2007). However, MD simulations are limited

to molecular scale interactions and particle interactions cannot be easily integrated

into this framework.

Taking a different approach to overcome some of the limitations of MD simula-

tions, Bhattacharya et al. (2004) used Brownian dynamics simulations to compute
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the effective thermal conductivity. The good agreement with the experimental data

indicates that particle Brownian motion plays an important role in the thermal con-

ductivity enhancement of nanofluids. However, two fitting parameters were needed

for the model to be compared with the experimental data. Unfortunately, this pub-

lication only presented the results from the model fitting and no validation was

performed to test if the model also accounts for temperature and particle size de-

pendency.

Qiao and He (2007) used Dissipative Particle Dynamics (DPS) to study energy

transfer in a nanocomposite. Even though, this method has only been used for

nanocomposites where Brownian motion is not important, there is a clear potential

to extend this approach to nanofluids. Similar to the Lattice Boltzman Method

(Xuan and Yao, 2005), DPD uses the interaction of groups of molecules to model a

system. This permits the modeling of different scales within the same framework,

making these approach very attractive in the study of nanofluids. The study of

nanoparticle suspensions was performed subsequently by the same group (He and

Qiao, 2008). “Brownian motion of nanoparticles play a negligible role in determining

the thermal conductivity” was the main conclusion from this study on nanofluids

using DPD.

Many of the Lattice Boltzmann Method (LBM) based models for nanofluids have

considered the entire fluid-particles as a continuum (Xuan and Yao, 2005; Wu and
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Kumar, 2005). In these cases particle Brownian motion is introduced into the simu-

lations as random noise, force term, in the LBM equations. In these cases the Nusselt

number is the parameter of interest.

Khiabani et al. (2010) used the LBM to study heat transfer in microchannels

with suspended particles. In this case the particles and the fluid are treated as

separate entities. However, the particles are stationary or allowed to move with the

fluid. Brownian motion is not included in the simulation and the system simulated

is two dimensional, limiting the analysis to cylindrical particles. As for previous uses

of the LBM to study nanofluids, the Nusselt number is the parameters of interest.

The authors concluded that the presence of the particles increased the local Nusselt

number, thus enhancing heat transfer to the microchannel.

Cui et al. (2012) used the LBM to estimate the effective diffusion coefficient of na-

nofluids. The method is divided in two parts; first particle and fluid are considered as

separate entities and the root mean square velocity of the particle is calculated. The

limitation of this first approach to only a few particles insitated the second approach.

In the second part, particles are considered point sources, a similar approach to that

of Wu and Kumar (2005), where the contribution of Brownian motion is included as

a random force. The authors concluded that the micro-perturbation of nanoparticles

greatly enhances mass transfer.

Zarghami et al. (2013) proposed a model based on LBM to simulate nanofluids in

plane Poiseuille and backward-facing step flows. As indicated before, the main part

of LBM applied to nanofluids has focused on a macroscopic view of the problem.
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In this work the effective thermal conductivity is given by a complex equation that

includes classical models for composite materials, Brownian motion, and effects of

inter-particle potentials. Zarghami et al. (2013) focused the attention on calculating

the Nusselt number. They found that low thermal conductivity particles lead to a

more pronounced enhancement of the Nusselt number within the vortex zone, while

high-conductivity particles are more effective outside the vortex zone.

In a more recent publication, Babaei et al. (2013) used equilibrium molecular

dynamics to provide “proof” that the contribution form Brownian motion-induced

micro-convection to the thermal conductivity enhancement on nanofluids is insignif-

icant. The simulations were done with a single Cu sphere carved into a matrix of

methane atoms, at a temperature around 100K. The authors also show that equi-

librium molecular dynamics can lead to erroneous high estimation of the effective

thermal conductivity: “while the individual terms in the heat current autocorrela-

tion function associated with nanoparticle diffusion achieve significant values, these

terms essentially cancel each other if correctly defined average enthalpy expressions

are subtracted”.
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Chapter 3
Methodology

The general methodology implemented to estimate the effective thermal conduc-

tivity and mass diffusivity of nanofluids is summarized in this chapter. The differ-

ent constituents of the methodology are presented in detail in the following chap-

ters.

3.1 Method of Solution

This study begins with the postulate that the effective thermal (λeff) and mass

(Deff) diffusivities are affected by micro-convection currents generated by the parti-

cles under Brownian motion. This proposition sets the requirements for the math-

ematical model: 1) micro-convection currents due to Brownian motion need to be

fully resolved, and 2) an average or effective coefficient, time and space independent,

is to be calculated from the simulation results.

Figure 3–1 describes the main parts of the computational method selected. The

first step of the process is to simulate Brownian motion. This is accomplished by the

use of the fluctuating Lattice Boltzmann Method (fLBM), where the fluid molecular

fluctuations are directly included in the simulation. These fluctuations interact with

the particles making them move in a Brownian-like fashion. The final objective of
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Particle
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Forces/Torques

Velocity Field

Scalar Field
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Particle Brownian motion
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AVERAGING
Fix gradient method
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Figure 3–1: Schematic representation of numerical model proposed to calculate ef-
fective diffusion coefficients, λeff and Deff .
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this part of the simulation is to calculate the forces and torques that affect each

particle at a given time step.

In the second part of the simulation the fluid flow field is calculated. This is

accomplished by performing another Lattice Boltzmann step (MRT-LBM), this time

without molecular fluctuations. In this case, the forces and torques calculated in the

previous part are used to move the particles using Newton’s second law of motion.

The output of this step is a velocity field that does not contain molecular fluctuations.

More details of the first and second steps are given in chapter 4 (Fluid Flow and

Particle Motion).

The third step uses energy or species conservation equations to calculate temper-

ature or concentration fields. The velocity field from the second step is used here to

describe the convective part of the conservation law. The solution of the conservation

equations gives a scalar field that describes temperature or concentration changes in

time and space. The transport equations are solved using the Finite Volume Method

(FVM). Details on the implementation and integration with the LBM are presented

in chapter 5 (Scalar Transport).

The final step in the process is to calculate effective λeff and Deff from the scalar

field calculated in the previous step. This is accomplished by special averaging over

time and space. For this purpose, two methods of estimating the effective diffusivities

were developed: 1) the fixed gradient method, and 2) the Gaussian pulse method.

Both of these methods are described in detail in chapter 6 (Estimation of Effective

Diffusivities).
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3.2 Computational Domain

The computational domain used for the simulations is a cubic volume filled with

fluid and spherical particles. The size of the cubic volume and the number of particles

used in the simulations depend on particle volume fraction, φ. Examples of different

computational domains are shown in Figure 3–2. Two different particle arrangements

were used in the simulations: primitive cubic and random. The primitive cubic

arrangement is shown on the left side of Figure 3–2 for three different particle volume

fractions. Random arrangements are shown on the right side of Figure 3–2 at the

same particle volume fractions as the primitive cubic arrangements.

Particle size was controlled by changing the lattice size, therefore the same ar-

rangements shown in Figure 3–2 would be used for the simulation with different

particle sizes. The study of mono-disperse suspensions is not a restriction of the

methodology, it was a choice made in this exploratory analysis. The case of bidis-

perse suspensions will be briefly discussed in chapter 9.

Particles were discretized using a staircase-like approximation. The domain is

discretized into cubic cells; each cell can represent a volume of fluid or a volume of

particle. This imposes the staircase-like representation of the particles, adding limi-

tations to particle movement that will be briefly discussed in the next chapter.

The number of cells representing a particle is given by the diameter of the particle

in lattice units (LU). There is a trade off-between discretization error and size of the

computational domain. The larger the number of cells used to represent a particle

39



φ = 0.2%

φ = 2.5%

φ = 5.4%

Figure 3–2: Representation of the computational domain for three different parti-
cle volume fractions. Particles in primitive cubic arrangement (left) and random
arrangement (right).
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the smaller the discretization error, thus better representing the geometry. However,

this would also imply a larger domain would be needed to represent the same number

of particles.

Tests were performed using different particle diameters. A particle diameter of

10 LU was found to be a good compromise between geometry discretization and the

size of the domain needed for the particle volume fractions studied.

3.3 Boundary and Initial Conditions

In general, periodic boundary conditions were used in the simulations. There

are few exceptions, but these will be indicated when needed. Periodic boundary

conditions are used with the objective of approximating an infinite domain. However,

periodic boundaries imply the repetition of the same domain in all directions. If

only one particle were to be simulated, then the larger domain would be an array of

particles, similar to the arrays in Figure 3–2 (left). When particle motion is added,

the simulation would represent the motion of an array.

To reduce the impact of the symmetry introduced by the periodic boundaries

on particle motion, the domain simulated needs to include many particles. In most

simulations the random arrangement of particles is used for this purpose. Even if the

particles were placed in an array arrangement, the simulation with moving particles

would not behave as a single moving array.

Due to limitation of the LBM solver used (see next chapter), the particles are

confined to the computational domain, because periodic boundaries for the particles
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have not been implemented. This means that particles cannot leave the domain

through one side while another particle enters the opposite boundary. To avoid

having particles crossing the boundaries, the initial position of the particles was set

at least 2 cells from the boundary. Also, an artificial force was included to push

the particles towards the interior if they get too close to the boundary. This issue

only affects simulations with a random arrangement of particles. In simulations with

array arrangements the particles are already far form the boundaries. Since both

types of arrangements give similar results, the array arrangement is used mainly for

validation.

3.4 General Assumptions

The main assumption made in developing the model presented in the following

chapters is that macroscopic conservation laws for heat and mass transfer apply. This

carries with it the assumption that the fluid phase can be considered a continuum.

Furthermore, no slip between the particles and the fluid was also assumed. The

validity and impact of this assumption on the results have not been studied. However,

this assumption was made based on the work by Einstein (1905), where the mobility

term is obtained by using Stoke’s law.

From the thermodynamic point of view the entire domain is at the same temper-

ature, thus all physical properties are constant (i.e. density, viscosity, conductivity,

heat capacity), they only depend on the material, fluid or particle. This assumption

has no impact in mass transfer simulations, but it would be inconsistent with heat
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transfer simulations. In the case of heat transfer, particle and fluid motions are cal-

culated using this assumption. When solving the energy equation, the temperature

changes are small enough that physical properties can be assumed constant.

Added to the assumption of constant properties, thermophoresis and diffusio-

phoresis are also ignored in the model. This is one interesting characteristic of

numerical experiments, where the phenomenon of interest, Brownian motion in this

case, can be isolated from other phenomena always present in physical experiments.

Other phenomena that have been excluded from the simulations are: viscous dissi-

pation, coagulation or agglomeration, and van der Waals forces.

The particles are assumed to be well dispersed and far from each other. This

assumption constrains the applicability of the model to dilute dispersion. In this

work the maximum particle volume fraction simulated is of the order of φ = 5%.

Even at this low concentration the dilute system assumption does not hold, because

particle approach each other to a distance smaller than 6 cells. When the distance

between the particles is too small, the hydrodynamic forces are not well captured

by the model. The lubrication approximation is commonly used to solve this issue

(Dünweg and Ladd, 2009), however this has not been used in this work.
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Chapter 4
Fluid Flow and Particle Motion

The procedure to calculate particle motion and fluid flow is described in this chap-

ter. A brief introduction to the fLBM technique is presented here for completeness.

Some of the details presented in this section will be used in the following chapters.

For a complete description of the LBM see Succi (2001) and for fLBM see Ladd

(1994a,b). Dünweg and Ladd (2009) is a good starting point when considering simu-

lation of colloidal systems. This publication focuses on the LBM and the fluctuating

LBM (fLBM), and includes a good summary of other available simulation techniques

for colloidal systems.

The software implementation was obtained from waLBerla framework (widely

applicable Lattice Boltzmann from Erlangen, Feichtinger (2012)). WaLBerla is a

software framework suitable for multi-physics simulations centered around the lattice

Boltzmann method. This framework has been designed to be extendable and scalable

on massively parallel supercomputers. The waLBerla framework allows to include

physical phenomena not available by default. One example is the FVM included

as part of the solution steps (see chapter 5). This framework can also be used in

many types of supercomputers available through Compute Canada. Since its design

is centered on parallel execution, it is easily scalable to many processors in a wide

range of hardware, including GPUs.
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Although, the fLBM is the first step in the method of solution, the fLBM is a

particular case of the LBM. Therefore, the LBM is introduced first, followed by the

modifications on the LBM needed to obtain the fLBM. Only a brief description of

these methods is presented here. The objective is to present the important parts for

the development of the hybrid LBM-FVM presented in chapter 5.

4.1 Lattice Boltzmann Method (LBM)

An alternative to the macroscopic view given by the Navier-Stokes equation is

the Boltzmann transport equation (BTE). The probability density or distribution

function f(~x, ~p, t) describes the probable number of particles with momentum ~p near

a small volume about the point ~x at time t. The differential equation describing the

spatial and temporal evolution of f is the BTE Succi (2001). Practically, the BTE is

composed of two parts, a streaming motion of molecules along trajectories associated

with the force field around the volume in question, and a second part describing the

two-body collisions taking molecules in and out of the streaming trajectories.

The lattice Boltzmann equation given by Eq. (4.1) is obtained after linearizing

the collision term and discretizing the BTE. This is achieved by discretizing space

into a cubic lattice with constant length ∆x. The phase space ~p is discretized by

allowing only few velocity/momentum directions. These directions are called the

lattice velocity ~ci and the distribution function associated with it is denoted by fi.

Finally, time is discretized by taking fixed time steps ∆t. The lattice velocities are

selected in a way that after a complete time step the distribution fi moves to the
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neighbor cell pointed by the direction of ~ci.

fi(~x+ ~ci∆t, t+ ∆t)− fi(~x, t) = ∆i(f − f eq); i = 1, ..., N (4.1)

The number of lattice velocities allowed, N , depens on the dimensionality of the

problem and the physics involved. In this work only the classical D3Q19 is used.

This indicates space discretization for a three dimensional case (D3), using nineteen

lattice velocities (Q19). The directions of each ~ci component are indicated graphi-

cally in Figure 4–1. The upper left box represents a single cubic cell of the lattice

discretization. The arrows shown in the figure correspond to eighteen discretized

velocities, plus i = 0 corresponding to the distributions not streamed after a time

step is taken. The numbers in Figure 4–1 correspond to the index i of the velocities

ci or the distributions fi.

The graphical representation of the discretized velocities in Figure 4–1 differs

from the typical representations found in the literature, since a precise description

of the velocities should go from one node to the next neighbor in the direction of

the velocity in question. In this representation the velocities are shown to go only to

the sides of the cell, in other words, the arrow in Figure 4–1 represents only half of

the velocities ~ci. This representation will become handy when discussing the hybrid

LBM-FVM.

The left-hand side of Eq. (4.1) is known as the stream operator because it rep-

resents the displacement of the distribution fi to the next neighbor in the direction

~ci. A graphical representation of this operator for the D2Q9 case is presented in
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Figure 4–1: Graphical representation of discretized velocities for the LBM (D3Q19).
All components in a single cell (top left), xy components (top right), yz components
(bottom left), and xz components (bottom right).
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Figure 4–2. In this figure the post-collision distributions are denoted by the f̂i and

the standard fi indicate the pre-collision distributions. The center cell is indicated

as the gray zone in the center of the grid. The nodes of the grid are indicated by

the black circles in the center of the cells. It is also common to refer to the neighbor

cells using cardinal directions, as shown in the figure.
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Figure 4–2: Graphical representation of the stream step for the LBM (D2Q9).

The arrows in Figure 4–2 are labeled with the corresponding distribution, however,

the arrow corresponds to �ci, indicating the streaming direction for a given distribu-

tion. Similar to Figure 4–1, these arrows only indicate half the distance streamed

by �ciΔt. One important characteristic of the stream operator is that all distribution

functions, except f0, cross the walls of the lattice cell. Also, the stream operator

does not change f0, thus, f0 = f̂0.
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The term Δi represents the discrete collision operator applied to (f − f eq). This

operator is defined depending on the type of simulation, however it must satisfy mass

and momentum conservation in the hydrodynamic limit, i.e. macroscopic scale. In

general, this operator should describe the tendency of fi to go towards its equilibrium

f eq
i .

A graphical representation of the collision operator is shown in Figure 4–3. In this

figure, only a single cell is shown with three different sets of distributions. The left

most square represents the post-stream distributions. The equilibrium distributions

are represented by the square in the middle, and finally the square on the right are the

new distributions calculated from the post-stream and the equilibrium distributions.

The arrows in Figure 4–3 indicate the direction of the lattice velocity, but in this case

the length of the arrow indicates the magnitude of the corresponding distribution.

This figure is a representation of distribution relaxation towards equilibrium.
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Figure 4–3: Graphical representation of the collide step for the LBM (D2Q9).

One of the most important characteristics of the collision operator is that none of

the distributions crosses the cell boundaries during collision, therefore it is inherently
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mass conserving. Although not shown in Figure 4–3, the collision operator is the

only one that can change the value of f0.

The most common representation of the collision operator is the BGK model

(Bhatnagar, Gross and Krook), which uses a single relaxation time to describe the

evolution of fi towards equilibrium. In this thesis, however, the MRT (Multiple

Relaxation Time) model is used instead (d’Humieres et al., 2002). The MRT also

relaxes fi towards equilibrium, however, each mode (i.e. the moments describing

mass, momentum and stresses) can be relaxed using different relaxation times. The

MRT collision term is given by (MRT-LBM)

∆i(f − f eq) = E>DE(fi − f eqi ); i = 1, ..., N (4.2)

where, D is a diagonal matrix composed of the relaxation times (λ1, ..., λN), and E

is an orthogonal transformation matrix that transfers fneq = (fi− f eqi ) from velocity

space to moment space.

The equilibrium distribution f eq can be derived from the Maxwell-Boltzmann

distribution. For the LBM the equilibrium distribution is given by

f eqi = wiρ

(
1 +

~ci · ~u
c2
s

+
(~ci · ~u)2

2c4
s

− ~u2

2c2
s

)
(4.3)

where cs = 1√
3

∆x
∆t

is the speed of sound on the lattice and wi are model dependent

weights (see Succi (2001) for details).

Since the local equilibrium distribution function in Eq. (4.3) depends on macro-

scopic variables, density ρ(~x, t) and velocity ~u(~x, t), these are calculated from the
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moments of the distribution

ρ =
18∑
i=0

fi (4.4)

ρ~u =
18∑
i=0

~cifi (4.5)

In short, the LBM is composed of two operators, the stream operator and the

collision operator. The collision operator requires the local equilibrium distribution

to be known. At every time step the LBM performs a collision step followed by a

stream step. The time evolution of the macroscopic variables, density and velocity

is then obtained from the moments of the distribution, Eq. (4.4) and Eq. (4.5),

respectively. These steps are repeated for every time step, thus obtaining the time

evolution of the density and velocity fields. Some examples of these results are shown

at the end of the chapter.

In contrast to Navier-Stokes equation solvers, boundary conditions for the LBM

are imposed by setting the distribution functions. In this work only the bounce

back type of boundary conditions are used at the particle surface (see section 4.4).

All other boundaries are set to periodic, which implies copying the distributions to

the proper neighbor cell. See Succi (2001) for details on other types of boundary

conditions.
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4.2 The Fluctuating Lattice Boltzmann Method (fLBM)

The fluctuating LBM was developed by Ladd (1993, 1994a,b). Over the last years

the general methodology has changed very little. One of the important contributions

to the subject was done by Dünweg et al. (2007), where the fluctuating LBM is

presented from the statistical mechanics point of view.

The main objective of the fLBM is to incorporate thermal fluctuations into the

LBM to simulate the continuous random motion of molecules. This is done by in-

corporating a stochastic collision operator into the LBM. The fluctuation-dissipation

is satisfied by enforcing consistency with fluctuating hydrodynamics (Landau and

Lifshitz, 1959). See Dünweg and Ladd (2009) for detail on the fLBM. The new form

of the collision operator including the stochastic contribution, R̃ is

∆i(f − f eq) = E>DE(fi − f eqi ) + R̃; i = 1, ..., N (4.6)

The new collision operator mush still conserve mass and momentum, and conform

to some statistical properties such as vanishing mean and a covariance matrix giving

the correct fluctuations at the hydrodynamic level. It is assumed to be local in space

and time, no correlation with other cells or times. The variance of the fluctuations

in the fLBM is given by

µ =
kBT∆t2

cs∆x5

A practical advantage of the fLBM is that the MRT-LBM is recovered if the

stochastic collision is removed. Therefore, MRT-LBM or fLBM can be simulated
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with the same code; switching from fLBM to MRT-LBM can be done by simply

removing the random noise. The details of the implementation within the waLBerla

framework can be found in Neumann (2008).

Similar to the MRT-LBM, the fLBM can be used to calculate the time evolu-

tion of the velocity and density fields. However, the velocity field in the fLBM also

includes the fluctuations from the molecules. This field cannot be used in the con-

servation equations of energy or species because of the fluctuations. For this reason

a MRT-LBM is used after, this time without the stochastic collision term. The

MRT-LBM provides an estimation of the average velocity, that without molecular

fluctuations.

4.3 Dimensionless form of the LBM

Since the grid used is a regular lattice with a single dimension and a single time

step, it is customary to normalize the equations in the MRT-LBM. A proper selection

of length, time and mass scales will help eliminate many terms, thus simplifying

the software implementation and the analysis. The scales selected depend on the

computational domain at hand and not on the physical problem. This is different

from the normalization usually done when solving transport equations.

The scales used in the normalization of Eq. (4.1) are: a) length scale ∆x, b)

time scale ∆t, and c) mass scale ρ0. Using these scales the following dimensionless
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quantities are obtained:

∆x∗ =
∆x

∆x
= 1; ∆t∗ =

∆t

∆t
= 1 ρ∗0 =

ρ0

ρ0

= 1

~u∗ = ~u
∆t

∆x
ν∗ = ν

∆t

(∆x)2

The quantities with full dimensions are used throughout this work, except on

chapter 5, where the hybrid LBM-FVM is developed, and in some figure in the rest

of this chapter. In chapter 5 the ∗ notation which indicates dimensionless quantities

is dropped to improve readability. Dimensionless quantities are indicated in figures

and tables when using lattice units, [LU].

4.4 Particle Motion

Particle motion is obtained by calculating forces on the surface of the particle and

integrating Newtons’s second law of motion to obtain the velocity and displacement of

each particle. Particle motion is handled by a different framework called the Physics

Engine (PE) (Iglberger et al., 2008). This framework allows parallel simulation of

a large number of particles. However, one of the main drawbacks with the version

used in this work is the lack of periodic boundaries for the particles.

From the fluid point of view two calculations are required when dealing with

particles. First, calculate the forces the fluid exerts on the surface of the particle,

and second, apply boundary conditions to account for the moving particles.
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The forces on the surface of the particles are summarized using a single force and

torque at the center of mass, ~R. The force and torque information is then used to

move the particles using the PE.

Once the particles are moved, the next step is to recalculate the fluid field. At

this point the boundary conditions at the surface of the particle are updated. The

only requirements to calculate the distributions at the particle-fluid interfaces are

the velocities of the particle, linear (~U) an angular (~Ω). The implementation of

the moving boundary condition is similar to the classical bounce back boundary

conditions, but the motion of the particle is considered by modifying the mirroring

distributions

fi(~x, t+ ∆t) = fi(~x, t)−
2wiρ~ub · ~ci

c2
s

The local velocity of the particle surface, ~ub, is given by

~ub = ~U + ~Ω× (~xb − ~R)

Brownian motion takes place in the simulation thanks to thermal fluctuations

introduced during the fLBM step. Molecular fluctuations exert uneven forces on the

surface of the particle. The forces and torques for each particle at each time step are

then stored. In the second step, the MRT-LBM uses the forces and torques stored to

move the particles, which in turn move the fluid, thus obtaining the micro-convection

currents.
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4.4.1 Force and Torque Characteristics

Forces and torques on the particles have very specific characteristics, an example

is presented in this section. The particles under consideration are 2 nm in diameter,

with specific gravity of 4.0 and particle volume fraction of 0.82%. To obtain the

forces and torques only the fLBM part is required. The simulation was run for 30000

time steps and the position, velocity, angular velocity, force and torque values for

the particle were stored.

The histogram of the force and torque data is shown in Figure 4–4. The thick

line in the figure represents the continuous normal probability function calculated

from the mean and standard deviation of the data. The objective of this line is to

compare graphically the histogram to a normal distribution. As shown in Figure 4–4,

forces and torques are both normally distributed with zero mean and their respective

standard deviations, σF = 0.3403 for the force and στ = 0.7723 for the torque; both

in dimensionless or lattice units.

Another important characteristic of forces and torques is given by their correlation

functions. The auto-correlation function (ACF) and the cross-correlation function

(XCF) for the force component are presented in Figure 4–5. The ACF corresponds

to the x component and the XCF corresponds to the x/y pair. The curves shown

in Figure 4–5 correspond to the average of 500 particles. Similar graphs where

obtained for other components and combinations of them. This figure indicates that

the random forces and torques acting on the particles are autocorrelated, but they

are uncorrelated with the orthogonal components. Therefore, for the length and
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Figure 4–4: Forces and torques histogram from the fLBM simulation.

time scales used in the simulations the forces and torques cannot be prescribed by a

simple Gaussian random number generator.

The negative values of the ACF shown in Figure 4–5 correspond to the fluid resis-

tance to particle motion. At the same time that particles move due to the thermal

fluctuations, the molecules around the particle oppose to this movement.

4.4.2 Particle Velocity and the Maxwell-Boltzmann Distribution

Similar to the analysis done for forces and torques, the linear and angular velocity

histogram is shown in Figure 4–6. The linear velocity is normally distributed with

zero mean and 7.53 × 10−4 standard deviation. The angular velocity is also nor-

mally distributed with zero mean and 3.10 × 10−4 standard deviation, both values

dimensionless.
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Figure 4–5: Force auto correlation function (ACF) and cross correlation function
(XCF). Average of 500 particles.
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Figure 4–6: Linear and angular velocity histogram from the fLBM simulation.
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The ACF for the linear and angular velocities are presented in Figure 4–7. This

figure clearly indicates that the velocity vectors are auto-correlated. The linear

velocity autocorrelation extends for a larger number of time lags compared to the

angular velocity autocorrelation. This indicates that the particle velocity at a given

time depends on previous values of the velocity. The cross-correlation (not shown

in Figure 4–7) indicates that the velocity components are not correlated for either

linear and angular velocity components.
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Figure 4–7: Linear and angular velocity auto-correlation function (ACF) and cross-
correlation function (XCF). Single particle.

The auto-correlation obtained for the velocity vectors are expected results, since

the velocity of the particle is determined by the second law of motion. The slow

decay of the autocorrelation function can be used to calculate the particle diffusion

coefficient. This is done in the next section.
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4.4.3 Mean Square Displacement and Particle Self-Diffusion Coefficient

The particle self-diffusion coefficient is given by a well-known relation (Einstein,

1905)

Ds = lim
t→∞

〈
|~ri(t)− ~ri(0)|2

〉
6t

=
〈∆R2(t)〉

6 t
(4.7)

where 〈∆R2(t)〉 is the mean squared displacement (MSD). Although, it is possible

to calculate the MSD from the position information of each particle, it is common to

use the velocity autocorrelation function (VACF) instead (Ladd, 1994b). The MSD

can be calculated using the VACF by using the following relationship (Lowe and

Frenkel, 1996).

〈∆R2(t)〉
6Ds t

=

〈
|~ri(t)− ~ri(0)|2

〉
6Ds t

=
1

Ds

∫ t

0

(
1− s

t

)
Z(s) ds (4.8)

where the velocity autocorrelation function, Z(t), is defined as

Z(t) =
1

3
〈~u(t) · ~u〉 = 〈u(t)x · ux〉

See Hansen and McDonald (2006, sec. 7.2) for derivation details of Eq. (4.8). Note

that Eq. (4.8) has been normalized by the MSD limiting value, 6Ds t, thus giving a

single curve between 0 and 1 when plotted against the reduced time t/τ . This scaling

is commonly used when studying the evolution of the MSD at short-times (Dünweg

and Ladd, 2009). Figure 4–8 shows the scaled MSD against the reduced time for

a typical simulation. Besides highlighting the important relationship between the

VACF and the MSD, the main objective of this analysis was to validate the proper

60



simulation of particle Brownian motion by the waLBerla and PE frameworks. The

results obtained agree with the ones presented by Dünweg and Ladd (2009).
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Figure 4–8: Normalized MSD vs. reduced time for 125 evenly placed particles at
1.0% volume fraction.

The results shown in Figure 4–8 follow closely those reported by Dünweg and Ladd

(2009), thus the waLBerla and PE frameworks together can be used for simulating

particle Brownian motion.

4.4.4 Particle Size and Velocity

Another interesting characteristic of the particle velocity is that the diameter of a

Brownian particle can be calculated from the variance of the particle velocity. Based

on the equipartition of energy theorem, each particle should have a component speed
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that is normally distributed with zero mean and a standard deviation given by

σui =

√
kBT

m

Given the standard deviation of each component speed, the equivalent hydrodynamic

particle diameter can be calculated from

dHp = 3

√
6kBT

ρπσ2
ui

This characteristic is used here as a validation test. Simulations with different

particle diameters in lattice units and physical units were performed to determine

if particles move in a Brownian-like fashion. The results from these simulations are

presented in Table 4–1. This table compares the particle diameter, dp, with the

equivalent hydrodynamic particle diameter, dHp . In all cases the equivalent diameter

ratio is larger than one, indicating the particles behave as if they were larger than in-

tended. The difference between the diameter set and the hydrodynamic diameter can

be attributed to discretization error of the geometry and the staircase approximation

of the spherical particles.

In general, all simulations with a particle diameter of 5 LU give almost the same

ratio. Also, increasing the particle size in lattice units shows no effect on the ratio

for values above 10. Although, any particle size could be used in the simulations

because of the small error introduced, the 10 LU diameter will be used for all simu-

lations.
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Table 4–1: Particle diameter (dp) and hydrodynamic diameter (dHp ) for different
particle discretization settings.

ID d∗p [LU] dp [nm] dHp [nm] Ratio

1 5 5 5.4 1.087
2 10 10 10.4 1.041
3 15 15 15.4 1.028
4 20 20 20.7 1.033
5 25 25 26.4 1.055
6 5 10 10.9 1.087
7 5 15 16.3 1.087
8 5 20 21.7 1.086
9 5 25 27.2 1.086
10 5 100 108.7 1.087
11 5 1000 1087 1.087
12 10 5 5.2 1.038

4.5 Fluid Flow Field Around Brownian Particles

Typical velocity fields obtained from the fLBM and MRT-LBM are shown in

Figure 4–9. This figure shows isosurfaces of the magnitude of the velocity. The darker

the surface the higher the magnitude of the velocity. The particles are indicated by

the solid spheres (no transparency).

Figure 4–9 is a representation of the Brownian motion-induced micro-convection

currents calculated by the MRT-LBM. These currents extend from the particle and

occupy the entire domain, even for particle volume fractions as low as 0.5% shown

in this figure. The vast amount of information provided by these currents are not

studied in detail in this project. The flow field is an intermediate result in the

calculation of the scalar field evolution over time, discussed in the next chapter.
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Figure 4–9: Evolution of micro-convection currents on a 0.5% volume fraction
nanofluid. Isosurfaces for the velocity magnitude. Darker shade of gray indicates
higher velocity magnitude.
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Chapter 5
Scalar Transport

In the previous chapter the LBM was used to obtain the velocity field. In this

chapter the conservation equations for heat and mass transport are discretized using

the FVM. The FVM implementation is briefly discussed, however the most important

contribution of this chapter is the introduction of a new approach to integrate the

fluid field from the LBM (or MRT-LBM) into the FVM: the Hybrid LBM-FVM.

5.1 Finite Volume Method (FVM)

The FVM is a well-known discretization method used for solving conservation

equations. The method used here is the one introduced by Patankar (1980). Another

practical reference for the FVM is the book by Versteeg and Malalasekera (1995).

The details of this method are not discussed here, only a few important concepts

needed for the development of the hybrid LBM-FVM are presented. In general, the

nomenclature used in this chapter follows that of Patankar (1980). Some alterations

were made to avoid confusion with the LBM nomenclature.

The FVM uses the following general conservation equation for the dependent

variable ψ, assuming the source term is negligible

∂

∂t
(ρ ψ) +∇ · (ρ ~u ψ) = ∇ · (Γ∇ψ) (5.1)
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Placing the energy conservation equation is this form, one obtains:

∂

∂t
(ρcP T ) +∇ · (ρcP ~u T ) = ∇ · (k∇T ) (5.2)

Similarly, for mass transfer the conservation of species can be written as

∂

∂t
(ρ ωA) +∇ · (ρ ~u ωA) = ∇ · (ρDm∇ωA) (5.3)

The discretization of the general conservation equation also implies that the con-

tinuity equation is satisfied. For the general case the continuity equation is given by

∂ρ

∂t
+∇ · (ρ~u) = 0 (5.4)

The discretization of Eq. (5.1) gives a series of algebraic linear equations. The

convection-diffusion terms were discretized using central-differences, while time de-

rivatives were discretized using the Crank-Nicolson method. The resulting linear

equations were solved using an iterative solver, a parallel geometric multi-grid solver

with a Jacobi smoother (Köstler, 2011). Boundary and initial conditions are dis-

cussed in the next chapter.

5.2 The Velocity Field on Staggered Grids

On important characteristic of the FVM is the use of staggered grids for the

velocity field. This is done to avoid pressure fields satisfying mass and momentum

conservation but that are physically unreal. This is only required when solving the
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fluid field using the FVM. A typical 2D control volume is shown in Figure 5–1. The

quantities Fe, Fw, Fn and Fs correspond to the integrated total mass flow over the

control volume faces.

(δx)w (δx)e

(δy)s

(δy)n

P

N

S

EW ew

n

s

FeFw

Fn

Fs

∆x

∆y

(i,j)

Figure 5–1: Representation of a 2D FVM grid and control volume.

The empty circles in Figure 5–1 indicate the gird points, where the dependent

variable is calculated. These points are the same for the LBM solver, therefore the

velocity values are also available at the grid points. The control volume for point P is

represented as the gray square. The four faces (e, w, n and s) are represented by the

dotted lines. The discretized continuity equation for the case shown in Figure 5–1 is

given by

ρk+1 − ρk
∆t

∆x∆y = Fw + Fs − Fe − Fn
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where Fe, Fw, Fn and Fs are the mass flow rates across the control volume faces and

correspond to

Fe = (ρu)e∆y Fw = (ρu)w∆y

Fn = (ρv)n∆x Fs = (ρv)s∆x

5.3 Normalization

Since the grid used during the discretization is regular and the cells are cubic, it

is customary to normalize the equations before discretization. The normalization is

done in a similar way as it was done for the LBM. The characteristic length and time

scale of the simulations are used. Choosing ∆x as the characteristic length and ∆t

as the characteristic time gives ∆x = ∆y = ∆z = ∆t = 1. This approach simplifies

the discretization significantly, for example the continuity equation is now written

as

ρk+1 − ρk = Fw + Fs − Fe − Fn

The notation used here is not strict, physical and dimensionless quantities are

both expressed with the same symbol. This is done here to simplify the notation.

From the rest of the chapter all quantities are dimensionless.

5.4 The Hybrid LBM-FVM

In this section, a new approach to integrate the LBM (MRT-LBM in chapter 4)

and the FVM (section 5.1) is described. The hybrid LBM-FVM combines the LBM
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and the FVM into a single method to calculate the values of a scalar field subject to

a time varying convection-diffusion conservation equation. The merge of these two

methods is commonly referred in the literature as hybrid LBM methods, in this case

the Hybrid LBM-FVM method. In the Hybrid LBM-FVM method discussed here

the velocity field is calculated using the LBM, while the evolution of the scalar field

is computed using the FVM method. The main properties of the method introduced

here are: 1) satisfies continuity in the FVM grid, and 2) uses a single grid.

5.4.1 Problem Description

The FVM method requires the specification of diffusion and convection fluxes

at the cell walls of the control volume. The diffusion fluxes are estimated using a

geometric mean (see section 5.1), while the convection fluxes require the specification

of the velocity and scalar fields at the interface. The value of the scalar field is

determined by the convection-diffusion scheme selected, i.e. central differences in this

case. In the classical FVM method (Patankar, 1980) the velocity field is calculated

at the interface by using a staggered grid for the different velocity components.

However, for the Hybrid LBM-FVM method the velocity field is calculated at the

center of the control volume.

Figure 5–2 shows a 2D representation of the grids used in the LBM (left) and

the FVM method (right). The LBM calculates the velocity field at the center of the

control volume (uP and vP ), while the FVM method requires the velocity field at the

cell walls (ue, uw, vn and vs). Typically, grids for LBM and FVM are represented

by connecting the grid points by lines. However, the explicit representation of the
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control volumes is preferred in this section; it will be useful in developing the Hybrid

LBM-FVM method presented below.
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Figure 5–2: Comparison between 2D LBM and FVM velocity field locations.

A way to calculate the intercell velocities given the velocity field values at the

center of the control volumes is needed. A detailed solution to this problem is

presented in the remaining of this section.

5.4.2 Intercell Fluxes: Existing Approaches

The literature presented below can be divided in two subjects: a) the Finite

Volume formulation of the LBM (FV-LBM) and b) the hybrid LBM. The references

presented are not divided by subject because these two intersect in some cases;

instead, the references are presented in non-strict chronological order.
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Early developments on the Finite Volume formulation of the LBM (FV-LBM)

were done by Benzi et al. (1992). The main objective of the FV-LBM is to extend

the LBM to non-uniform grids. The problem with unstructured grids is that an

inertial force term appears in the LB equation. This term reflects the change of

direction of the particles during streaming. The first step in obtaining the FV-

LBM is to use the Gauss theorem to express the LB equation in integral form over

a control volume. The main problem with this formulation is that one depends

on knowing the distributions at the volume surface. Therefore one would need to

interpolate the node points to obtain these values. The interpolation method is not

unique and controls the degree of accuracy of the method. However, the fact that

the interpolation method is not unique is a concern.

The basic concepts of the volumetric formulation of the LBE are presented by

Chen (1998). The approach is based on the work by Benzi et al. (1992), but it

is introduced in a systematic way. Some difficulties with point-wise interpolation

are discussed: a) detailed balance relations are lost and b) 3D interpolation is com-

putationally intensive. In the FV-LBM formulation, instead of thinking that the

distribution function belongs to a single mesh point, one can think of these distribu-

tions as averages over the entire cell.

Xi et al. (1999) presented the finite-volume formulation for the LBM (FV-LBM).

Although different from the hybrid LBM family, some concepts are useful for the

development of the hybrid approach. In particular, the authors present in detail an
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easy to implement FV-LBM. The method relies heavily on bilinear interpolation (in

2D) for estimating the distributions at the unknown locations.

A classical reference for LBM and Finite Difference (FD) method is the work of

Lallemand and Luo (2003). The authors introduce the Hybrid Thermal Lattice Boltz-

mann Equation (HTLBE). Mass and momentum conservation equations are solved

by using the MRT-LBM while the diffusion-convection equation for the temperature

is solved separately using FD. One important argument presented is the need of a

special stencil for the FD method when using the information from the LBM. The

authors also highlight the fact that interpolations destroy local conservation laws

and that they should be used with care.

Ubertini et al. (2003) present further developments on the FV-LBM formulation,

referred to as Unstructured LBE technique. The authors show that ULBE tolerates

significant stretching without introducing any appreciable numerical viscosity effect,

which permits a time accurate description of transitional flows. The approach is

similar to Peng et al. (1998), where the populations at the non-nodes are interpolated

from the populations at the nodes.

Huang et al. (2007) use the FD-LBM for the study of axisymmetric flows. The

hybrid approach presented in the study uses the 2D LBM to resolve the axial and

radial velocities, while using FD for the azimuthal velocity and temperature.

Another use of the hybrid LBM-FVM-FDM was used by Mondal et al. (2008)

to simulate a localized fire in a tunnel in 3D. In this work the fluid flow (density
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and velocity fields) is obtained form the LBM. The radiation term in the equation

is solved using the FVM, while the temperature field (macroscopic energy equation)

is calculated using the FDM (Finite Difference Method). The solution of the energy

equation requires the information of the fluxes at the interfaces, thus the velocities.

This problem is solved in their study by using the upwind scheme. Also, the control

volume is staggered with respect to the LBM cell (Mondal and Mishra, 2009a,b)

Joshi et al. (2010) propose a hybrid FVM-LBM for compressible flows. In this

method the inter-cell quantities are calculated using a LBM method for two different

grids, one in each dimension, containing the inter-cell points. This approach is equiv-

alent to the staggered grids in the classical FVM method. The main disadvantage

of this approach becomes clear when dealing with 3D cases, because a second set of

LBE need to be solved.

The use of Hybrid LBM has also been used for cases when the LBM and Finite

Volumes (FV) are used on adjacent domains (Luan et al., 2012). In cases like this the

coupling at the interfaces is very delicate, because the velocity distribution functions

at the interfaces need to be obtained directly from the FV.

Although not presented as a hybrid approach, the FVM-LBM for irregular grids

introduced by Zarghami et al. (2012) addresses the issue of calculating fluxes at the

edges of a 2D control volume. The equations are presented for general irregular

grids. Using these equations for regular fields reduces the algorithm to an average

of neighbor distributions to obtain the distributions at the face. Velocities are then

obtained from these distributions. The authors highlight stability issues with this
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approach and then correct the problem by using an upwind second order pressure

biasing factors as flux correctors for the calculation of the inter-cell edges.

Huang et al. (2012) presented a hybrid LBM-FVM to simulate droplet motion

under electrowetting control. The LBM is used to represent hydrodynamics, while

the FVM is used for solving the evolution of the droplet interface. As most hybrid

LBM methods, the fluxes at the boundaries are calculated as the averages of the

values in two neighboring cells.

Recently, Li et al. (2014) presented a hybrid LBM-FVM applied to the study of

natural convection. Two approaches are discussed for solving the problem with LBM

velocities and the FVM faces being at different locations. The first approach is to

interpolate the LBM velocities. The second approach is to use a coarser grid for the

FVM. In this case the fluxes at the faces of the control volume are obtained directly

from the LBM grid. Since the second approach is less computationally intensive, this

method is preferred. However, the issue with mass conservation is not addressed in

either approach.

In summary, the FV-LBM formulation provides methods to calculate fluxes at the

interface. However, these methods do not satisfy conservation equations in the FVM

grid. The case of hybrid LBM-FVM also addresses the issue of inter-cell fluxes, but

the common approach is to use nearest neighbor interpolation. The details of mass

conservation on the FVM grid and the problems with interpolation are discussed in

detail in the next section.
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5.4.3 Mass Balances for LBM and FVM

Simplified diagrams of the quantities used for mass balance calculations in the

LBM and the FVM are presented in Figure 5–3. This figure introduces special

indexation used in this section. The LBM distribution densities f̂i indicate the post-

collision distribution, while fi represent pre-collision distributions, all for the grid

point P (subscript omitted). Distributions on grid points other than P are indicated

using a subscript, for example fi,NE; these are not shown in Figure 5–3. Since the

time step is taken during the streaming operation fk
7 corresponds to f̂k+1

7,NE, where k

indicates the time step.
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Figure 5–3: Quantities used in mass balance calculations for the LBM and FVM
(2D).

In the case of the FVM the only information needed to calculate mass balances are

the mass fluxes across the edges of the control volume (Fe, Fw, Fn, Fs) at time step
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k + 1 and the density for time steps k and k + 1, ρk and ρk+1. To keep the notation

compact, all geometric factors, ∆x, ∆y, and time step length, ∆t, have been omitted

in the derivations below. This is equivalent to starting the development from the

normalized equations, where all these factors are equal to one.

Mass conservation is one of the main characteristic of the LBM. While oversimpli-

fying, one could consider the streaming operation as the equivalent to the continuity

equation, while momentum conservation is handled by the collision operator. Distri-

bution functions only cross the control volume boundaries during streaming; while

there is no material exchange between control volumes during collision.

LBM mass conservation characteristic is presented below as an exercise to help

understand the need for a special procedure when developing the hybrid LBM-FVM.

Starting from the integral form of the continuity equation

∂

∂t

∫
ρ dV +

∮
ρ~u · dS = 0 (5.5)

the mass balances for the LBM can be described by

ρk+1 − ρ̂k =
∑
i=1

fk+1
i −

∑
i=1

f̂ki

Using the definition of ρ (chapter 4) in terms of the distribution functions gives(∑
i=1

fk+1
i + fk+1

0

)
−
(∑

i=1

f̂ki + f̂k0

)
=
∑
i=1

fk+1
i −

∑
i=1

f̂ki (5.6)
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In Eq. (5.6), fk+1
0 and f̂k0 are the same, because the streaming operator does not

change the distributions. Therefore, the collision-streaming operations of the LBM

satisfy the continuity equation.

In the case of the FVM expressing Eq. (5.5) in terms of the densities and velocities

shown in Figure 5–3 gives:

ρk+1 − ρ̂k = Fw + Fs − Fe − Fn (5.7)

Expressing Eq. (5.7) in terms of the LBM distribution function requires defining

the fluxes (F ) at the inter-cell edges in terms of the distributions themselves. The

typical approach taken in the literature is to interpolate the velocity field at the

nearest neighbors.

Fe =

∑
fPi ci +

∑
fEi ci

2
(5.8)

Expanding the density variables in terms of distribution functions and replacing

Eq. (5.8) into Eq. (5.7) gives

8∑
i=5

fi −
8∑
i=5

f̂i =

∑
fWi ci +

∑
fSi ci −

∑
fEi ci −

∑
fNi ci

2
(5.9)

The term
∑8

i=5 f̂i corresponds to distribution functions streamed to the diagonal

neighbors of the control volume P . These terms do not have a counterpart on the

right-hand side of Eq. (5.9). Furthermore, some of the distributions on the right-

hand side cannot be balanced by the remaining distribution on the left-hand side.

Only in very specific situations the mass balance in Eq. (5.7) is satisfied. Therefore,
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the use of near-neighbor interpolation to determine the inter-cell flux gives values

that do not satisfy mass balances in the FVM grid.

5.4.4 Inter-Cell Flux Calculation

The main objective of this section is to develop a systematic way of calculating

inter-cell fluxes from LBM distribution functions, that satisfy continuity in the FVM

grid Eq. (5.7).

One of the main problems identified in subsection 5.4.3 is the presence of diagonal

distributions that cannot be cancelled out in the FVM continuity equation. This

problem appears because the mass fluxes in the FVM only pass to adjacent cells and

not to the diagonal ones. This development starts by proposing the interpretation

of diagonal distribution functions shown in Figure 5–4.
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α5f̂5
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α5f̂5

ii− 1 i+ 1
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j − 1

j + 1

ew

n

s

Figure 5–4: Decomposition of diagonal distributions. Example: D2Q9 component f̂5
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This interpretation is compatible with FVM discretization of the continuity equa-

tion because the diagonal components are decomposed in two contributing mass

fluxes that are aligned with the existing fluxes in the FVM. Only the case for f̂5 is

presented, all other distributions follow the same approach.

The weights α and β have been added to indicate that diagonal component do

not contribute mass to the direct neighbors, they only contribute to the diagonal

neighbors. In the case of the north edge the contribution to N is subtracted as a

contribution from N to NE. Furthermore, the constraint α+ β = 1 ensures that f̂5

is transferred completely from P to NE during streaming, in the FVM sense.

The values of α and β are selected based on the geometry. Since the grid is

uniform, all diagonal components are assumed to contribute equally to the adjacent

edges. Therefore the values of α = β = 1/2 is used in the rest of the develop-

ment.

The mass fluxes at each edge of the control volume are calculated as the sum of

all distribution crossing the edge during streaming. The distributions used in the

calculation of the east wall flux, Fe, are represented in Figure 5–5 (left). The indexes

for all distributions have been left out to facilitate readability of the figure.

Ten distribution functions are needed in the calculation of Fe in the 2D case.

The equation to calculate Fe for the 3D case, shown in Figure 5–5, is given by

Eq. (5.10). However, for the rest of the F components the corresponding figures

can be considered graphical equations. The flux can be calculated as the sum of
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Figure 5–5: Distributions needed for calculating Fe for D3Q19.

all components in the figure, multiplied by the normal vector of the edge or face in

question. For Figure 5–5 the equation is:

Fe = f1 +
f5
2

+
f8
2

+
f8,N
2

+
f5,S
2

− f3,E − f6,E
2

− f7,E
2

− f7,NE

2
− f6,SE

2
(5.10)

This approach can be directly extended to the case of LBM D3Q19. The equations

for fluxes on all faces are presented in Figures 5–5 to 5–7. Only the east, north and

top components are shown. The other components are calculated as part of the

adjacent control volumes.

This approach gives conservative mass fluxes at the control volume faces, which

are required by the FVM, i.e. Eq. (5.7) is satisfied. If the velocities at the faces of

the control volume are needed, an estimation of the density at the interface would

be required.
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Chapter 6
Estimation of Effective Diffusivities

Two methods for calculating effective diffusivities (effective thermal conductivity

or effective mass diffusion coefficient) from their respective scalar fields (tempera-

ture and concentration) are presented in this chapter. The first step to calculate the

effective diffusivity is to define a macroscopic view of the system. For the case of na-

nofluids the macroscopic view is an homogeneous fluid at rest. Initial and boundary

conditions for the microscopic system are then set depending on the characteristics

of the macroscopic model selected.

6.1 Fixed Gradient Method

6.1.1 Macroscopic Model

In this method it is assumed that the macroscopic system follows Fourier’s law

of heat conduction. The case of mass transfer will be discussed later. Furthermore,

the dimensionality is decreased to a 1D system, thus giving the following form of

Fourier’s law:

q̂x = −λeff(∇xT )

This macroscopic view of the system imposes the boundary conditions on the mi-

croscopic model. However, two options are available in this case: a) fixed gradient
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or b) fixed flux qx. As indicated by the name of the model, the fixed gradient was

chosen. In this case, the gradient in the x direction is set by fixing the temperatures

on the west and east boundaries (Dirichlet type) and maintaining all other bound-

aries as periodic. Then, the only quantity needed to estimate the effective thermal

conductivity is the effective flux across the domain.

λeff = − q̂x
∇xT

(6.1)

The effective flux across the domain is calculated by averaging the conductive

flux for the entire east and west boundaries over time. Although the instantaneous

convective flux is not zero, the expected value of the average velocity is zero, thus

giving a zero average convective flux. Therefore, the convective flux is not considered

in the calculation of the effective thermal conductivity.

Figure 6–1 shows a simplified representation of the fixed gradient method for the

case of heat transfer. The macroscopic view (left) is governed by heat conduction

across an homogeneous substance. A fixed temperature gradient (dT/dx) is applied

by setting the boundaries to prescribed temperatures, Th and Tc. The temperature

gradient is also represented by isotherms. The microscopic system (right) is simulated

with the same temperature gradient. Then, the effective heat flux (q̂x) is calculated

from the microscopic temperature field. The effective thermal conductivity is given

by minus the ratio of the calculated effective flux and temperature gradient imposed

Eq. (6.1). The presence of particles and variations in the flow field (micro-convection

currents) would deform the isotherms at the microscopic level.
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Figure 6–1: Representation of the macroscopic (left) and microscopic (right) views
of the fixed gradient method.

6.1.2 Boundary and Initial Conditions

The macroscopic model imposes the boundary conditions, in this case the east

and west boundary are Dirichlet type, where the temperatures are set to values to

obtain the prescribed gradient. However, the macroscopic model does not impose

any restriction on the initial conditions of the system, only that the averaging should

only be done after all transients have died out.

Determining the time for the transients to die out is possible for the study of

composite materials, were the temperature field achieves a final form and does not

change over time. However, for the case of nanofluids the temperature field is contin-

uously changing and a “steady state” is impossible to determine. An approximation

is to use the solution when the average temperature of the system oscillates around

a point.

84



The temperature field was initialized with the steady state solution with the

particles at rest. This is the solution for the equivalent composite material case.

This initial condition was selected because the transients are very long, and starting

the system from a known solution decreases the time needed to achieve the equivalent

“steady state”.

Validation of this method was done by comparing with the theoretical equation

by Maxwell (1892). The procedure is presented as one of the applications in Part

III, chapter 7.

6.1.3 Extension to Mass Transfer

The fixed gradient method can also be used to study mass transfer in nanofluids.

In this case the macroscopic equation is given by Fick’s law. The macroscopic view

assumes an homogeneous, single phase fluid with effective mass diffusivity Deff , where

diffusion across a fixed concentration gradient is governed by:

Ĵx = −Deff∇xcA (6.2)

Once again, the average flux across the boundaries, Ĵx, is calculated from the

time average of the diffusive fluxes from the microscopic concentration field. Similar

to the heat transfer case, the boundary conditions set for the microscopic model

are Dirichlet type on the east and west walls, thus forcing a prescribed gradient,

∇xcA.
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6.1.4 Limitations of the Fixed Gradient Method

One of the main disadvantages of the fixed gradient method is that variations

in the center of the domain have to propagate to the boundaries before changes

in the effective diffusivities can be observed. The large thermal diffusivity for the

systems studied make this method viable for heat transfer studies. However, in the

case of mass transfer, the diffusivity is comparatively 100 to 10000 times smaller.

The increase in computation time required for the mass transfer simulations is of

the same order, thus making mass transfer simulations via fixed gradient method

unattractive.

Another issue that affects both, heat and mass transfer simulations, is the loss of

periodicity when applying the Dirichlet type boundary conditions. It is possible to

recover the periodicity by placing an internal boundary condition (through the use

of a sink), where the temperature decreases from the west wall to the center of the

domain to follow a prescribed gradient (He and Qiao, 2008). The same is done for

the east wall, thus recovering the periodicity of the system. In this case the east

and west wall are at the same temperature, thus giving a periodic system. However,

comparison of both types of boundary conditions show no significant difference in the

study of heat transfer in nanofluids. Therefore, the boundary conditions described in

subsection 6.1.2 were used. An alternative method inspired on conserving periodicity

is presented in the next section.
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6.2 Gaussian Pulse Method

Two of the main disadvantages of the fixed gradient method developed in the

previous section are: a) the loss of periodicity with the imposed gradient, and b) the

need for very long simulations in the case of mass transfer. The approach in this

section is designed to overcome these two difficulties, thus providing a way to study

mass diffusion in nanofluids.

6.2.1 Macroscopic Model

The 1D diffusion of a drop of dye would normally give a spreading Gaussian

concentration profile over time. The diffusion coefficient is related to the mean

square displacement of the solute molecules, which, for a Gaussian distribution can

be obtained from the time evolution of the standard deviation (Culbertson et al.,

2002; Krishnamurthy et al., 2006; Fang et al., 2009)

〈(∆x)2〉 = σ2 = 2Dmt (6.3)

The 2D and 3D diffusion cases are similar but the coefficient of 2 in Eq. (6.3) de-

pends on the dimensionality of the problem. The concentration profile for each case

are:

1D : cA(x, t) = N
1

(4πDmt)1/2
e−x

2/4Dmt 〈x2〉 =

∫ ∞
−∞

x2 cA(x) dx = 2Dmt (6.4)

2D : cA(ρ, t) = N
1

(4πDmt)1
e−ρ

2/2Dmt 〈ρ2〉 =

∫ ∞
0

ρ2 cA(ρ) dρ = 4Dmt

3D : cA(r, t) = N
1

(4πDmt)3/2
e−r

2/4Dmt 〈r2〉 =

∫ ∞
0

r2 cA(r) dr = 6Dmt
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This particular characteristic is used here to develop a procedure to estimate

effective diffusion coefficients. Similar to the method employed to estimate Taylor

diffusion in tubes (Taylor, 1953), the idea is to follow the evolution of a Gaussian

concentration profile over time and use this information to estimate the effective

mass diffusion coefficient.

The macroscopic system is represented by a purely diffusive process, where the

convection fluid velocity is zero and the effective diffusion coefficient Deff is constant.

In the present case the macroscopic model is given by following conservation equation

and boundary conditions:

∂

∂t
cA = Deff

∂2

∂x2
cA, cA(x, 0) = c0

A and cA(±∞, t) = 0 (6.5)

Where the boundary conditions enforce zero concentration at ±∞, a limitation

for numerical implementation discussed below. The initial condition c0
A is given by

Eq. (6.6). This choices helps to avoid initial transients associated to a square pulse

initial conditions.

c0
A(x) =

1

σ0

√
2π
e−(x−x0)2/2σ2

0 (6.6)

where σ0 is selected such that the pulse is contained within the computational do-

main. The pulse location, x0, is placed in the center of the domain. This constraint

on the pulse location is not necessary and will be discussed in the study of composite

materials in subsection 6.2.5. A graphical representation of Eq. (6.6) for different

values of the initial spread, σ0, on a typical simulation domain is presented in Fig-

ure 6–2.
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Figure 6–2: Concentration profiles for different initial standard deviations σ0. Legend
is the standard deviation σ0 in nanometers.

As indicated before, one of the main limitations is the finite domain simulated.

The initial concentration profile needs to decay quickly to zero, that way the pres-

ence of periodic boundary conditions will not affect the results. Figure 6–2 suggests

a maximum initial standard deviation of 25 nm to avoid pulse interaction with the

boundaries. This settings give concentration in the order of 1×10−5 at the bound-

aries.

The curves in Figure 6–2 can also be interpreted as the evolution of the concentra-

tion field over time. Note that Eq. (6.6) can be obtained from Eq. (6.4) by replacing

σ2
0 by 2Dmt and setting x0 = 0. Therefore, the curves in Figure 6–2 also represent

solutions at t = σ2
0/2Dm.
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6.2.2 Effective Diffusion Coefficient

The standard deviation of the Gaussian pulse can be calculated from the moments

of the concentration profile. The nth moment about a point x∗ of a real value function

f(x) is given by:

Mn =

∫ ∞
−∞

(x− x∗)n f(x)dx

For a Gaussian distribution only the zeroth, first and second moments are relevant.

In particular, the variance of the distribution is given by the second moment about

the mean value or first moment.

σ2 = M2 =

∫ ∞
−∞

(x−M1)2 f(x) dx

By defining the raw moments with primed letters, given by:

M ′
0 =

∫ ∞
−∞

cA(x) dx (6.7)

M ′
1 =

∫ ∞
−∞

x cA(x) dx

M ′
2 =

∫ ∞
−∞

x2 cA(x) dx

then, the central moments for normalized concentration profile

f(x) =
cA(x)

M ′
0

=
cA(x)∫∞

−∞ cA(x) dx
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are given by

M0 =
M ′

0

M ′
0

= 1 (6.8)

M1 =
M ′

1

M ′
0

(6.9)

M2 =
M ′

2

M ′
0

−
(
M ′

1

M ′
0

)2

(6.10)

The zeroth moment in Eq. (6.8) is of no importance because it is always one.

However, the zeroth raw moment in Eq. (6.7) corresponds to the overall conservation

of species, and it gives the total mass of component A inside the domain. This value

should be constant over the length of the simulations.

The first moment as given by Eq. (6.9) is not strictly a central moment, instead it

represents the position of the average value or center of the pulse. The time derivative

of this moment would give the average velocity of the fluid. Since the overall fluid

velocity is zero, this moment should be constant and equal to the center of the initial

Gaussian pulse.

The second moment given by Eq. (6.10) represents the standard deviation of the

pulse. The effective diffusion coefficient is calculated from the slope (m) of M2 vs. t

by:

Deff =
m

2
(6.11)

So far, the calculations have been done on the one dimensional concentration

profiles. However, the field obtained from the calculations in chapter 5 varies in
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the three dimensions. The 1D concentration profiles cA(x) is obtained from the

concentration field by averaging over the y and z directions:

cA(x) =

∫
cA(x, y, z) dy dz∫

dy dz

Typical curves for the evolution of the standard deviation over time are shown

in Figure 6–3. This figure shows the evolution of the second moment for: a) homo-

geneous materials, b) composite materials and c) nanofluids. The cases presented

here correspond to mass transfer simulations, where the mass diffusivity inside the

particles was set to zero. The effective coefficient is estimated from the slope of the

curve.
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Figure 6–3: Typical evolution of the second moment over time for: a) homogeneous
fluid, b) composite material and c) nanofluid (2nm Al2O3-Water at 295 K).
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The slope of the curve is obtained by linear regression. Only the regression line for

the nanofluids case is presented in Figure 6–3. The other two cases are indistinguish-

able from the regression lines. The characteristics of these lines will be discussed in

more detail in chapter 7 and chapter 9.

6.2.3 Extension to Heat Transfer

This approach is also applicable to heat transfer. However, the macroscopic con-

servation of energy for a purely diffusive process is give by:

∂T

∂t
=

λeff

(ρ cP )eff

∂2T

∂x2
= αeff

∂2T

∂x2

Here, the effective thermal diffusivity αeff has been replaced by the effective thermal

conductivity divided by the effective volumetric heat capacity.

Since we are interested in the thermal conductivity, the effective thermal conduc-

tivity can be calculated from the slope (m) of the M2 vs. t curve:

λeff =
m

2
(ρ cP )eff

The extra term (ρ cP )eff is then calculated as (Nomura and Chou, 1986):

(ρ cP )eff = φ(ρ cP )p + (1− φ)(ρ cP )f
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6.2.4 Taylor Dispersion: Parallel Plates

Validation of the Gaussian pulse method was done in two parts. First, the method

was validated against composite materials, where the particle and fluid are static.

This is discussed in details in chapter 7. The second validation introduces fluid

motion. In this case the objective is to simulate diffusion of a solute in a normal

fluid in the presence of a velocity gradient between two parallel plates. Two cases

are considered: a) Couette flow and b) Plane Poiseuille flow. The effective diffusion

coefficient for both cases are known results of the general Taylor dispersion theory

(Mazo, 2002):

Deff

Dm

= 1 +
Pe2

30
Couette flow (6.12)

Deff

Dm

= 1 +
Pe2

210
Plane Poiseuille flow (6.13)

The results from the simulations are compared to the theoretical calculations

using equations Eq. (6.12) and Eq. (6.13), and these are presented as a function of

the Péclet number in Figure 6–4. In Figure 6–4 the simulation results are represented

by the symbols, while the theoretical equations are shown as solid lines. It is clear

that the simulations reproduce the theoretical behavior.

The central difference scheme used in the FVM is limited to small cell Péclet

numbers (Patankar, 1980). In the particular case of Taylor dispersion for parallel

plates simulated here, the constraint is translated into a small time step requirement.

Other methods that can allow larger time steps exist (Boris, 2013), however, for the
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Figure 6–4: Normalized effective diffusion coefficient as a function of Péclet number
for Couette and planar Poiseuille flows. Solid symbols indicate simulations results,
and the solid lines represent theoretical calculations using Eq. (6.12) and Eq. (6.13).

case of nanofluids, the small time step constraint is already imposed by the fLBM

step.

6.2.5 Heterogeneous Systems: Solid Particles

The method developed above can be used to estimate the effective diffusivities of

homogeneous systems, as shown for the cases of Taylor dispersion for Couette and

planar Poiseuille flows between parallel plates. However, when solid particles are

included in the simulations additional factors need to be considered.

Figure 6–5 shows a typical computational domain along with an initial Gaussian

pulse placed in the center of the domain (left). Even though, particles are evenly
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distributed across the entire domain, when the Gaussian pulse is placed in the center

of the domain, it would only sample a portion of the domain. For example, in

the extreme case where a single particle is placed near the east boundary, the center

pulse would not sample the effect of this particle correctly, and the effective diffusivity

would be close to the value of the fluid. If the particle is placed in the center of the

domain, the calculated effective diffusivity would be closer to the theoretical value

for composite materials.
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Figure 6–5: Left: computational domain and initial Gaussian pulse; darker indicates
higher concentration. Right: comparison of particle size with initial Gaussian pulses
with different σ0 (legend).

Figure 6–5 also shows a comparison of possible initial Gaussian pulses with a

typical particle placed in the center of the domain. An additional constraint when

simulating domains with particles is that the size of the inclusion should be smaller

than the size of the pulse used. If larger domains could be simulated this restriction
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would disappear. However, at the moment it is impractical to simulate much larger

domains, therefore another solution is needed.

Tests were conducted with different pulse widths and particle sizes. The tests

were performed on the simulation of composite materials, where a theoretical result

is available for comparison. It was determined that the standard deviation of the

initial Gaussian pulse should be at least the diameter of the particles for the results

to be consistent with theory. More details on the simulation of composite materials

are given in chapter 7.

Instead of simulating larger domains, the macroscopic or effective diffusivities are

obtained by averaging samples from the entire domain. This is done by placing

the Gaussian pulse at different initial locations, as depicted in Figure 6–6 (left). An

infinite number of pulses would be ideal, however this approach would be impractical.

Instead, for a typical domain of 192 lattice cells across, four pulses of σ0 = 20 LU

are used at four equidistant locations.

The evolution of the Gaussian pulse variance over time is shown in Figure 6–6

(right). The thin lines represent the results obtained for each of the pulses. The

thick line is the average from all four pulses. The expected monotonic increase over

time is observed for the average. This average line is then used for the calculation of

the effective diffusivity for the domain.

Note that the initial pulse also respects the periodic boundary conditions imposed.

In Figure 6–6 the pulses that cross one of the boundaries continue in the opposite
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Figure 6–6: Left: representation of four pulses used in the simulations. Correspond-
ing shades of gray indicate a single pulse. Right: time evolution of the second moment
for each initial pulse (thin lines). The thick line represents the average of the four
curves.

boundary. This is equivalent to having a train of pulses separated by a distance

equal to the size of the domain. Each pulse is simulated individually, while assuming

it does not interact with neighboring pulses. This assumption places a limit on

the size of the pulse that can be used and on the maximum variance that can be

simulated. A good value for the initial pulse width is to make σ0 one tenth of the

total domain.

The main disadvantage of this method compared to the fixed gradient method is

that the macroscopic view is somehow lost, because the the Gaussian pulse width has

to be smaller than the dimensions of the computational domain. Therefore, Gaussian

pulse method requires larger domains than the fixed gradient method.
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The modular characteristic of the mathematical model proposed facilitates the

calculations of the four pulses for the same domain. In this case the particle motion

is calculated for a set of initial particle positions (fLBM). Forces and torques are

then stored in a file, which is used for the four Gaussian pulses simulated. This way,

the motion of the particles is the same for all four simulations, plus, the simulations

can be executed at the same time since they are independent from each other.

In summary, when studying systems with particles four independent pulses are

simulated. The effective diffusion coefficient is calculated from the average evolution

of the second moment over time. Validation of this approach is presented separately

in chapter 7.
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Part III

Applications
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Chapter 7
Composite Materials

In this chapter, the fixed gradient method and the Gaussian pulse method intro-

duced in the previous chapter are used to estimate the effective thermal conductivity

and diffusion coefficient in composite materials. Although, the analysis is presented

as an application, the main objective is to validate the methods.

One of the main particularities of composite materials, in terms of the simulation

methods used here, is that the particles and fluid are static (i.e. velocity field). In

this case the LBM is no longer needed and only the FVM is used to determine the

effective heat and mass diffusivities.

The results from numerical experiments are compared to theoretical values for

composite materials. The theoretical model used for comparison is Maxwell’s equa-

tion for composite materials (Maxwell, 1892).

7.1 Fixed Gradient Method Application to Heat Conduction

The fixed gradient method has the particularity that, during the first time step

of the simulation, the composite material case is solved. This is achieved by setting

the velocity field to zero everywhere and solving the steady state heat conduction

equation. Switching from transient to steady state solution can be done by setting

the time step in the discretization to a very large value.
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Simulations with different particle thermal conductivities, different particle vol-

ume fractions and with randomly placed spherical particles were conducted. The

thermal conductivity of the host medium was λf = 0.58 W/(m K). The results from

these simulations are shown in Figure 7–1. The symbols in this figure represent the

simulation results, while the lines represent Maxwell’s equation at the corresponding

particle thermal conductivity.
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Figure 7–1: Normalized effective thermal conductivity vs. particle volume fraction
for composite materials using the fixed gradient method. Numerical experiments
represented by the symbols, and Maxwell’s equation at corresponding λp indicated
by dashed lines.

The case of zero particle thermal conductivity is an alternative representation

for mass transfer studies. In the case of mass transfer, the particles are considered

to be impermeable to the solute. In terms of heat transfer, impermeable particles

correspond to perfect insulator particles, (i.e. no conductivity).
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The simulation results showed in Figure 7–1 indicate the fixed gradient method

can be used for estimation of effective heat and mass diffusivities in composite ma-

terials with spherical inclusions.

Cases with higher particle thermal conductivities were also considered. Values up

to λp = 400 W/(m K) were simulated (e.g. Cu particles). These are not included in

the figure because they are very close to the value obtained for λp = 17 W/(m K) (e.g.

CuO particles). Additionally, not all simulations for higher thermal conductivity

were completed. Problems with jumping coefficients in thermal conductivity, from

the fluid phase to the particle phase, slow down the iterative solver in the FVM,

making this approach unattractive for cases where the ratio of thermal conductivities,

particle-to-fluid, is larger than 100.

Although, the fixed gradient method can be used to estimate the effective mass

diffusion coefficient of composite materials, its extension to nanofluids is not practical

because a large number of time steps are required (section 6.1). The case of composite

materials is different because the system is solved at steady state. This implies that

only a single cycle of the FVM is executed. Results from these simulations are

equivalent to the zero thermal conductivity values shown in Figure 7–1.
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7.2 Gaussian Pulse Method

7.2.1 Modifications for Composite Materials

The method to estimate effective coefficients for composite materials is more com-

plicated than for homogeneous materials discussed in the previous chapter. For ho-

mogeneous materials the evolution of the second moment over time has a single

slope; it only decreases when the Gaussian profile starts to interact with the periodic

boundaries. The diffusion coefficient for the material in question can be calculated

from the value of the slope. In the case of homogeneous materials this process does

not give any extra information, because the diffusion coefficient is known and is part

of the input parameters for the numerical experiments.

For composite materials the effective heat or mass diffusion coefficient is unknown.

The objective is to calculate the coefficient from the evolution of the second moment

over time, more precisely, from the slope. However, for composite materials the slope

changes over time.

An example of these changes is shown in Figure 7–2. This particular case corre-

sponds to particles with λp = 1.3 W/(m K) in water with λf = 0.58 W/(m K). The

absolute size of the particles is irrelevant for composite materials, but the dimen-

sionless size is important for the numerical simulations; Figure 7–2 shows the results

for simulations with particles 5 LU in diameter and a particle volume fraction of

0.5%. The dark line in Figure 7–2 corresponds to the normalized effective thermal
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conductivity. This value is proportional to the slope of the second moment over

time.

The light gray line in Figure 7–2 corresponds to the change in the slope over time.

The line is presented in arbitrary units (A.U.) because the absolute value of this

curve is irrelevant for the analysis. Similarly, the time axis is in lattice units or time

steps.
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Figure 7–2: Time evolution of the normalized effective thermal conductivity and
time derivative of the slope used in the calculation of the thermal conductivity for
composite materials.

For composite materials the initial slope changes very quickly, then settles or

plateas. Finally, this is followed by decreasing even further, as shown in Figure 7–2.

This is characteristic of all simulations for composite materials performed. Three

zones were identified and named as follows:
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1. Transient to Pseudo-Gaussian: the decrease in slope happens because the dif-

fusion of a composite material is not of Fourier type. The presence of the

particles disrupt the imposed Gaussian profile. This could be considered as a

transient to pseudo-Gaussian profile, one that accounts for the presence of the

inclusions.

2. Plateau: once the pseudo-Gaussian profile is reached the slope stops changing.

The evolution of this profile over time would behave as a macroscopic homo-

geneous material, thus giving the plateau region. The plateau region is char-

acterized by a slow changing slope. Although this region is poorly represented

in Figure 7–2, it is useful for estimating the effective thermal conductivity, as

indicated below.

3. Pulse interaction: the final zone exists as part of the size of the domain. The

further decrease in the slope is related to the interaction of pulses because of

the periodic boundary conditions imposed. This also occurs for simulations

with homogeneous materials.

The light gray line in Figure 7–2 indicates the presence of a maximum point. If

the computational domain was infinite, pulses would not interact and the change

in slope would reach the value of zero, the inflection point. However, since the

Gaussian pulses always interact in a finite domain, the value used for estimating the

effective thermal conductivity is when the change in the slope is at its maximum.

Note that this corresponds to small slope changes, since the slope is always negative,

the maximum corresponds to values close to zero change in the slope, the plateau

region.
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This analysis highlights one important limitation of the Gaussian pulse method.

Simulations using the Gaussian pulse method have to be long (in time) enough to

overcome the initial transient, but not too long that Gaussian pulse interaction would

bias the results. The selection of the pulse width discussed in subsection 6.2.5 was

done because of this constraint. Furthermore, it was observed that the pulse width

(standard deviation of the Gaussian profile) should be at least the same size as the

particle diameter in the simulations.

Another option considered was to compare the dynamic response at longer times,

that is, including Gaussian pulse interactions. This would give a better estimate of

the steady state value. However, since using the inflection point gives similar results,

it does not justify the longer simulations.

7.2.2 Heat Transfer

The method described above was used to estimate the effective thermal conduc-

tivity of composite materials. Two different particle thermal conductivities were

simulated, SiO2 with λp = 1.3 W/(m K) and Cu with λp = 400 W/(m K). Parti-

cles were evenly distributed across the computational domain, simple or primitive

cubic array. Five different particle volume fractions were considered. The results

from these simulations are compared to Maxwell’s equation in Figure 7–3. The solid

circles correspond to results from particles with λp = 1.3 W/(m K) and the squares

to λp = 400 W/(m K). The corresponding line were calculated using Maxwell’s

equation.
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Figure 7–3: Normalize effective thermal conductivity vs. particle volume fraction
for composite materials using the Gaussian pulse method. Numerical experiments
represented by the symbols, and Maxwell’s equation at corresponding λp indicated
by lines. λp in W/(m K).

In this particular case the number of Gaussian pulses used were 48 in a 96 lattice

domain. Each pulse was shifted 2 lattice units from the one before to cover the

entire domain. Figure 7–3 also includes box plots for each set of simulations. These

box plots give an indication of the spread in the estimation of a single average. The

spread is related to local variations of the particle volume fraction due to the finite

size of the pulse used. The estimation of the macroscopic thermal diffusivity is given

by the average value; only this value is considered in the rest of this thesis.

Figure 7–3 can be considered as a validation that the Gaussian pulse method

can be used to estimate the effective thermal conductivity of composite materials

with spherical inclusions. This estimation requires careful selection of domain size
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and pulse width to ensure initial transients are completed during the simulation and

that the results are not affected by pulse interactions due to the periodic boundary

conditions imposed.

7.2.3 Mass Transfer

Applying the Gaussian pulse method to mass transfer simulations requires special

attention as well. One of the main differences with heat transfer simulations is that

mass transfer requires a larger number of time steps to reach the plateau region, in

the order of 1000 times longer. Comparing to Figure 7–2 the number of time steps

required would be in the order of 300k. Even though simulations with 300k time

steps can be performed, this is not practical for an exploratory study, where the

main objective is to study trends and the effect of different parameters, while the

absolute value may not be of importance.

The number of time steps for mass transfer simulations was set to 3k. This was

found to be a good compromise between simulation time and accuracy (compared

to Maxwell’s equation for composite materials). The results obtained for 3k and 30k

time steps are compared in Figure 7–4. This figure shows the normalized effective

mass diffusivity as a function of particle volume fraction. The squares correspond to

short simulations with 3k time steps, while the circles correspond to longer simula-

tions, 30k time steps. The box plot information in Figure 7–4 have been left out on

purpose to improve legibility of the figure. The magnitude of the box plots are of

the same size as in Figure 7–3.
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Figure 7–4: Normalized effective mass diffusion coefficient vs. volume fraction for
composite material using the Gaussian pulse method. Results from short and long
numerical experiments (symbols) and Maxwell’s equation (dashed line).

Figure 7–4 clearly indicates a bias for the results from short simulations. How-

ever, short simulations can be obtained in one tenth the time long simulations would

take. Note that the main feature for composite materials, a decrease of the effec-

tive mass diffusivity with particle volume fraction, is well captured by the short

simulations.

The bias in the estimated effective coefficient is of the order of 0.5%. Although

precise, this is not a fair estimation of the error introduced by the short simula-

tions. Considering that the deviation from the molecular diffusivity is what is being

estimated, the bias introduced by using short simulations in the order of 20%.
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The difference between the estimation (squares) and Maxwell’s equation (dashed

line) is referred to as a bias because this difference is always in the same direction,

underestimating the deviation from the molecular mass diffusivity. Mass transfer

simulations are different from heat transfer in the sense that particles are insulators,

i.e. zero mass diffusivity. Therefore, the initial evolution of the Gaussian peak would

be prescribed by the molecular mass diffusivity and will evolve during the pseudo-

transient towards the effective value of the effective coefficient. In contrast, heat

transfer simulations with conductive particles would give an initial increase in the

second moment that is affected by the thermal conductivity and the heat capacity

of the inclusion. This initial increase in heat transfer simulations may be larger than

the effective thermal conductivity.

Therefore, all results from short simulations are expected to be biased towards

the value of molecular mass diffusivity. This corresponds to a bias towards one in

the normalized effective mass diffusivity.

Despite the large bias in the estimation, all numerical experiments (composite

materials or nanofluids in chapter 9) were done using short simulations. Since the

main objective is to perform an exploratory analysis, the fact that the main features

are captured by the numerical model justifies using short simulations. Therefore,

the results from short simulations should be compared to the biased results and not

to the theoretical model. For instance, Maxwell’s equation for insulating inclusions

reduces to:

Deff

Dm

= 1 +B2φ
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Where B2 = −3
2

for Maxwell’s equation. This equation corresponds to the dashed

line in Figure 7–4. A linear regression of the squares in Figure 7–4 (short simulations)

gives a different coefficient of the particle volume fraction, B2 = −1.27. These results

will be further discussed in chapter 9.
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Chapter 8
Heat Transfer in Nanofluids

Both methods introduced in chapter 6 were utilized to estimate the effective ther-

mal conductivity of nanofluids. Furthermore, the temperature dependency of the

effective thermal conductivity was also studied. The results from these simulations

are discussed in the sections below.

8.1 Temperature Field

The evolution of the temperature field over time is represented in Figure 8–1.

The results shown in this figure correspond to Gaussian pulse simulations. The

intersecting plane shown in the figure is taken from the center of the pulse. For

a homogeneous material the entire field should have the same temperature across,

however, the presence of the particles modify the field and produce the variations

shown in Figure 8–1.

The computational domain used in the simulations shown in Figure 8–1 corre-

spond to a 0.5% nanofluid. The particles in front of the intersecting plane have

been made semitransparent to improve readability. The gray scale in the figure cor-

responds to temperature, the darker the higher the temperature for a given cross

section. Each domain in the figure has been normalized independently of the others,

therefore, they cannot be compared with each other.
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Figure 8–1: Evolution of the temperature field for a 0.5% volume fraction nanofluid.
Simulation using the Gaussian pulse method. The intersecting plane is placed at the
center of the pulse. Darker indicates higher temperature.
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Very little information can be extracted from Figure 8–1. It is presented here as a

visualization of the intermediate results obtained as part of the process of calculating

the effective thermal conductivity. Although, only results from the Gaussian pulse

method are shown, the results from the fixed gradient method are similar.

8.2 Using the Fixed Gradient Method

The fixed gradient method was used to estimate the effective thermal conductivity

of two types of water-based nanofluids: CuO with λp = 17 W/(m K) and SiO2

with λp = 1.3 W/(m K). The particle size for all simulations was set to 10 nm.

The temperature was set to 295 K, which also sets the fluid properties used, see

Appendix A. Particle densities and heat capacities were also constant, also indicated

in Appendix A. The results from these simulations are shown in Figure 8–2.
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Figure 8–2: Normalized effective thermal conductivity vs. volume fraction for 10 nm
CuO and 10 nm SiO2 nanofluids. Estimation using the fixed gradient method.
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The effective thermal conductivity for 10 nm CuO-Water (suquares) and 10 nm

SiO2-Water (circles) nanofluids are shown in Figure 8–2. The dashed lines in the

figure correspond to Maxwell’s equation for composite materials using the corre-

sponding particle thermal conductivity for the inclusions.

Figure 8–2 is practically the same as Figure 7–1, but the results shown here cor-

respond to the thermal conductivity calculated while particles move. This similarity,

and the fact that both curves follow Maxwell’s equation indicates that the effec-

tive thermal conductivity of nanofluids can be described using Maxwell’s equation.

In a more conservative way, this indicates that Brownian motion-induced micro-

convection currents cannot account for the high enhancements observed experimen-

tally.

Although, only one particle size has been presented in Figure 8–2, the conclusions

are the same for other particle sizes. This will be discussed in the next section.

8.3 Using the Gaussian Pulse Method

The Gaussian pulse method was also used to estimate the effective thermal con-

ductivity of water-based nanofluids using CuO and SiO2 nanoparticles. The fluid and

particle physical properties are similar to the previous section. In these simulations

the particle diameter was varied between 2 nm and 1000 nm. The results from these

simulations are shown in Figure 8–3.

Similar to Figure 8–2, the symbols in Figure 8–3 indicate the results from numer-

ical simulations while the dashed lines are calculated from Maxwell’s equation at the
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Figure 8–3: Normalized effective thermal conductivity vs. volume fraction for CuO
and SiO2 nanofluids. Particle size between 2 and 1000 nm. Estimation using the
Gaussian pulse method (symbols). Maxwell’s equation (lines)

corresponding particle thermal conductivity. Each symbol in the graph corresponds

to the mean value of at least 6 repeats. The error bars indicate the 95% confidence

interval on the mean. In most cases the error bars are not visible because the inter-

val is too small for the scale used. Despite the random nature of the simulation the

estimated values are very close to the line given by Maxwell’s equation.

Figure 8–3 indicates that there is no particle size dependency on the effective

thermal conductivity of nanofluids. Even the smaller particles simulated (2 nm) give

the same enhancement as calculated from Maxwell’s equation.
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8.4 Temperature Dependency

A series of simulations at different temperatures was also conducted. The 275

to 365 K range was covered. The simulations were done with 10 nm SiO2 particles

and water properties at the temperature indicated (see Appendix A). The Gaussian

pulse method was used to calculate the effective thermal conductivity. The results

from these simulations are shown in Figure 8–4 (solid symbols). The dashed lines in

this figure correspond to Maxwell’s equation.
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Figure 8–4: Normalized effective thermal conductivity vs. temperature for 10 nm
SiO2 nanofluid at three different particle volume fractions. Estimation using the
Gaussian pulse method (symbols). Lines correspond to estimation using Maxwell’s
equation.

The slight decrease in the effective thermal conductivity with temperature is ex-

plained by the thermal conductivity increase of the fluid with temperature. For

this particular case, where the particle’s thermal conductivity is close to the fluid’s
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thermal conductivity, Maxwell’s equation inherits temperature dependency through

the thermal conductivity of the fluid. The increase of λf with temperature gives

a decrease in the ratio λeff/λf , thus explaining the small decrease observed in the

simulations.

Despite the large changes in fluid viscosity with temperature (see chapter 9), the

effective thermal conductivity of nanofluids, as estimated by the numerical exper-

iments conducted, is well described by Maxwell’s equation for composite materi-

als.

The analysis done in this chapter sustains the hypothesis that Brownian motion-

induced micro-convection currents cannot explain the high enhancement in ther-

mal conductivity measured in nanofluids. This conclusion has also been reached by

Babaei et al. (2013) using molecular dynamics, by He and Qiao (2008) using dissi-

pative particle dynamics and by Buongiorno et al. (2009) through experimentation.

The explanations given by Veilleux (2010) is that the Péclet number for heat transfer

is smaller than 1, thus heat convection is too small compared to heat diffusion to

induce dispersion. This dispersion perspective will be discussed in the next chapter,

where mass transfer is considered.
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Chapter 9
Mass Transfer in Nanofluids

9.1 Implementation

In this section, the Gaussian pulse method is used to study mass transfer in

nanofluids. The computational domain, equations and boundary conditions have

been described in Chapters 3 and 5. In particular, the size of domain is 192 cells in

each direction while particles are 10 LU in diameter. The real size of the particles

depends on the cell size ∆x; for dp = 10 nm a ∆x = 1 nm is required. The initial

Gaussian pulse standard deviation was set to σ0 = 20∆x.

Two types of particle position distributions were considered. First, the particles

were arranged as an array, where all particles are equidistant from each other. In the

second approach, the particles are placed randomly in the domain. The restriction

of having the particles 2 LU from the boundaries was used. Since the results from

both types of simulations were similar, only the results for the random distribution

are presented.

The simulations were done in two steps. First, the fLBM is used to calculate

torque and forces for each particle. These values are stored in a file for use in the

second step. For the second step, the hybrid LBM-FVM method is used to solve
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the concentration field with periodic boundaries and the initial conditions indicated

below.

The second step consists of four pulses, each simulated independently of the others,

but using the same forces and torques; this way all simulations follow the same

particle trajectories. The evolution of the variance (Gaussian pulse) is then used to

calculate the effective mass diffusivity Deff . The results are presented as the ratio of

the effective mass diffusion coefficient over the molecular diffusivity: Deff/Dm.

A total of 6k time steps were simulated for each case. Longer simulations, 100k

time steps, were also done for extreme cases where changes are significant. It was ob-

served that the results were similar to those simulations with only 6k time steps.

The system used in this section is similar to the one studied experimentally

by Veilleux and Coulombe (2010b): rhodamine 6G (R6G) in water-based alumina

(Al2O3) nanofluid. The molecular diffusion coefficient for R6G used in the analyses

below is Dm = 3.3× 10−10 (Veilleux and Coulombe, 2010a). The dye diffusivity in-

side the nanoparticles is zero. Numerically, this was achieved by setting the diffusion

coefficient inside the particle to a value close to zero (1×10−30).

9.2 Concentration Field and Evolution of M2

A typical evolution of the concentration field over time is represented in Fig-

ure 9–1. The intersecting plane showed in the figure is taken from the center of the

pulse. For a homogeneous material the entire field should have the same concentra-

tion across, however, the presence of the nanoparticles and Brownian motion-induced
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micro-convection currents modify the field and produce the variations shown in Fig-

ure 9–1.

The computational domain used in the simulations showed in Figure 9–1 corre-

spond to a 5.0% nanofluid. The particles in front of the intersecting plane have

been made semitransparent to improve readability. The gray scale in the figure

corresponds to concentration, the darker the higher the concentration for a given

intersecting plane. Each domain in the figure has been normalized independently of

the others, therefore, they cannot be compared with each other.

Very little information can be extracted from Figure 9–1. It is presented here as

a visualization of the intermediate results obtained as part of effective mass diffusion

coefficient calculation process.

9.3 Effective Mass Diffusion Coefficient

The effective mass diffusion coefficient was calculated for different conditions. The

effects of particle size, temperature, fluid viscosity and density, and particle density

were studied. The results from these simulations are presented next. Due to the

stochastic nature of the simulations each condition was simulated between 6 and 10

times. Only the mean value and its 95% confidence interval are presented in the

figures below.

The base conditions for the simulations discussed below are:
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Figure 9–1: Evolution of the concentration field for a 5.0% volume fraction nanofluid.
Simulation using the Gaussian pulse method. Concentration profile at the center of
the pulse. 123



Table 9–1: Base conditions for parametric studies.

Parameter Value
Particle size dp 2 nm
Particle density (Al2O3) ρp 4000 kg/m3

Fluid density ρ 1000 kg/m3

Kinematic viscosity ν 1.0×10−6 m2/s
Temperature T 295 K

9.3.1 Particle Size

Particle diameter was varied from 2 to 100 nm. For each diameter a set of particle

volume fractions in the range 0.1% to 5.0% was simulated. All simulations were done

at a temperature T = 295 K. Figure 9–2 shows the normalized effective mass diffusion

coefficient as a function of particle volume fraction for different particle diameters.

The dashed line in Figure 9–2 corresponds to Maxwell’s equation. Each point in the

figure corresponds to the mean of 6 to 10 observations. Confidence intervals on the

mean are also indicated in Figure 9–2. The solid lines correspond to a multilinear

regression model, presented later on (see Eq. (9.5)).

Based on Maxwell’s equation the effective mass diffusion coefficient is independent

of particle size. Since the diffusion coefficient inside the particles is zero, a decrease

in the effective mass diffusion coefficient with particle volume fraction would also be

expected, as indicated by the dashed line in Figure 9–2.

A clear deviation from Maxwell’s equation can be observed for particles smaller

than 20 nm. The cases of 2 and 5 nm particles give values of the effective coefficient
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Figure 9–2: Normalized effective mass diffusion coefficient vs. volume fraction for
nanofliuds with different particle size. Numerical simulations indicated by sym-
bols and simplified model by thin lines, Eq. (9.5). The dashed line corresponds to
Maxwell’s equation, Eq. (2.2).
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that are larger than the molecular diffusion. As particle size increases, the effective

mass diffusion coefficient approaches Maxwell’s equation.

The small differences between Maxwell’s equation and the values for 100 nm

particles are related to the short simulations used to estimate these values. This was

discussed in chapter 7, where the solution to the discrepancy with Maxwell’s equation

was to perform longer simulations to determine the point where the Gaussian peak

starts to interact significantly with the boundaries. In chapter 7 this was possible

because the evolution of M2 was smooth. For the case of nanofluids the evolution is

no longer smooth and the estimation of the plateau region is impossible. However,

the set for 100 nm particles in Figure 9–2 is similar to the results shown in Figure 7–

4. Therefore, the enhancement for systems containing particles larger than 100 nm

can be considered to be well represented by Maxwell’s equation.

Another way to visualize the data presented in Figure 9–2 is to use the particle

diameter in the abscissa. Figure 9–3 shows the normalized effective mass diffusion

coefficient as a function of particle diameter for three values of the particle volume

fraction. This figure shows that the effective mass diffusion coefficient decreases with

particle size. The mass diffusivity decreases asymptotically towards the value given

by Maxwell’s equation at the corresponding particle volume fraction.

As indicated before, the lines in Figure 9–2 and Figure 9–3 correspond to a multi-

linear regression model introduced later (see Eq. (9.5)). The objective of this model
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Figure 9–3: Normalized effective mass diffusion coefficient vs. particle diameter for
nanofliuds at three particle volume fractions. Numerical simulations (symbols), sim-
plified model (solid lines), and Maxwell’s equation (dashed lines).

is to simplify the analysis. Assuming that Brownian motion is responsible for the en-

hancement and that the Stokes-Einstein diffusion coefficient (DBM) for the nanoparti-

cles appears in the equation, one would expect to see an inverse relationship between

enhancement and particle diameter.

DBM =
kBT

3πηdp

Furthermore, the enhancement should increase linearly with temperature and change

inversely proportional to the dynamic viscosity. The results shown in Figure 9–2 and

Figure 9–2 were obtained from simulations at different particle volume fractions

and particle diameters, while maintaining all other parameters constant. Therefore,
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the following simplified model can be used to analyze the dependency on particle

diameter and particle volume fraction.

Deff

Dm

=
A(φ)

dp
+B(φ) (9.1)

Initially, Eq. (9.1) was used to fit each set in Figure 9–3 and also the sets from

Figure 9–2 not shown in Figure 9–3. It was noticed that B(φ) followed the expected

Maxwell’s equation for composite material, while A(φ) seems to follow a simple

second order polynomial.

For the case of large particles, the model should give Maxwell’s equation. When

there is no diffusion inside the particles Maxwell’s equation simplifies to Deff/Dm =

1 − 3
2
φ. This corresponds to B(φ) in Eq. (9.1). The form of the numerator A(φ)

is unknown, however, one property is that it should give zero at φ = 0. A second

order function with zero intercept was arbitrarily selected to represent this term,

A(φ) = A1φ+ A2φ
2. The multilinear model used is:

Deff

Dm

= A1 φ

(
1

dp

)
+ A2 φ

2

(
1

dp

)
+B1 φ+ 1 (9.2)

The independent variables, φ and 1/dp are indicated in parentheses. Instead of us-

ing the simplified Maxwell equation, the coefficient B1 was introduced to account for

numerical discrepancies. An R2 of 0.997 was obtained for the multilinear regression,

indicating a good agreement between the numerical experiments and the simplified
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multilinear model. The expected value for B1 is −3
2
, while the fitted value gives

B1 = −1.26. Furthermore, this analysis indicates that the enhancement is inversely

proportional to particle diameter.

Equation (9.2) can be rearrange in the following form

Deff

Dm

= 1 +

[
B1 +

A1

dp
(1 + A3φ)

]
φ (9.3)

Where A3 = A2/A1. The A coefficients for the multilinear model are: A1 = 15.01,

A2 = −112.5 and A3 = −7.50. The form presented in Eq. (9.3) (second term inside

the square brackets) can be compared with the self-diffusion coefficient of interacting

Brownian particles (Batchelor, 1976; Veilleux and Coulombe, 2011)

A3

dp
(1 + A5φ) DBM (1− 1.83φ) (9.4)

Although A3 = −7.50 differs from −1.83, the value given by Batchelor (1976), the

negative sign of A3 suggests that the slope decrease of the effective mass diffusion

coefficient with particle volume fraction is related to particle interactions. The term

A3φ is related to the rate of change of mean-squared displacement of one particle

due to the presence of similar particles (Batchelor, 1976).

Besides indicating that theA3 term is related to particle interactions, Eq. (9.4) also

suggests that A1/dp should be related to the self-diffusion coefficient of a Brownian

particle, DBM. Incorporating this information into the model gives:

Deff

Dm

= 1 + [B2 + C1NBM (1 + C2φ)]φ (9.5)
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Where NBM is a dimensionless quantity defined as the ratio of the diffusion trans-

port rate by Brownian motion over the diffusion transport rate by molecular diffusion.

Equation (9.5) is referred as the simplified model through out this work. In the case

of mass transport NBM is given by:

NBM =
DBM

Dm

=
kBT

3πνρdp

1

Dm

(9.6)

So far, only the inverse relationship with particle diameter has been identified. The

other relationships, temperature, viscosity and fluid/particle density, are discussed

below. The model presented in Eq. (9.5) was used to produce the solid lines in

Figure 9–2 and other figures in this chapter. The values for the coefficients in Eq. (9.5)

are: B2 = −1.27, C1 = 10.5, and C2 = −6.68. These were obtained from multilinear-

regression of all the points in Figure 9–2 through Figure 9–8 and Eq. (9.5) as the

model (R2 = 0.995).

9.3.2 Temperature

Based on Eq. (9.5) the effective mass diffusion coefficient should increase linearly

with temperature. Simulations were performed for different temperatures and three

different particle volume fractions. The other parameters were kept at the base

settings indicated in Table 9–1. The results from these simulations are shown in

Figure 9–4.

In Figure 9–4 the simulated data (symbols) indicate an increase of the effective

mass diffusion coefficient with temperature. When considering the model prediction
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Figure 9–4: Normalized effective mass diffusion coefficient vs. temperature for nano-
fluids at three particle volume fractions. Numerical simulations (symbols), simplified
model (lines).

the imposed linear increase accurately describes the simulated data. Increasing the

temperature of the system increases the velocity of the particles, therefore increasing

the effective mass diffusion coefficient.

9.3.3 Viscosity

The effective mass diffusion coefficient is expected to have an inverse relationship

with fluid viscosity. In this case the kinematic viscosity, ν, is considered because this

is the natural input parameter for the fLBM simulations. Simulations with different

viscosities and three different particle volume fractions were performed; all other

parameters were kept at the base settings (Table 9–1).
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Similar to the previous figures, in Figure 9–5 the mean from the simulations are

indicated with symbols, while the model predictions are shown as solid lines. For a

given particle volume fraction the effective mass diffusion coefficient decreases as the

fluid viscosity increases. The fluid viscosity represents the resistance to motion, the

lower the viscosity the faster the average velocity of the particle would be, therefore

the higher the effective mass diffusion coefficient.

For very high viscosities the particles move very little and the effective mass

diffusion coefficient should follow Maxwell’s equation for composite materials. This

phenomenon can be observed in Figure 9–5, where the high viscosity values all follow

Maxwell’s equation.
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Figure 9–5: Normalized effective mass diffusion coefficient vs. fluid viscosity for
nanofliuds at three particle volume fractions. Numerical simulations (symbols), sim-
plified model (lines).
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The model lines shown in Figure 9–5 accurately describes the simulated results,

thus indicating that the effective mass diffusion coefficient for nanofluids increases

with the inverse of the fluid viscosity.

9.3.4 Fluid Density

The effective mass diffusion coefficient is expected to depend on the inverse of

the fluid density (constant kinematic viscosity, ν). Simulations with different fluid

densities were performed, the results are shown in Figure 9–6.
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Figure 9–6: Normalized effective mass diffusion coefficient vs. fluid density for
nanofliuds at three particle volume fractions. Numerical simulations (symbols), sim-
plified model (lines).

Similar to the analysis for viscosity, Figure 9–6 indicates that the inverse re-

lationship imposed by Eq. (9.5) accurately describes the data from the numerical

experiments.
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9.3.5 Particle Density

Numerical experiments with different particle densities were also conducted. The

results from these simulations are presented in Figure 9–7. Similar to previous figures,

Figure 9–7 shows the mean value along with the 95% confidence intervals. Only one

line corresponding to Eq. (9.5) is shown in the figure. The lines for the other densities

overlap the line shown. The particle densities chosen for these simulations correspond

to typical nanofluids.
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Figure 9–7: Normalized effective mass diffusion coefficient vs. volume fraction. Three
types of nanofliuds with different particle densities (SiO2, Al2O3 and CuO). Numer-
ical simulations (symbols), simplified model (line).

Assuming that the only influence on the effective mass diffusion coefficient is

Brownian motion of the particles, the effective mass diffusion coefficient is expected

to be independent of particle density, as indicated by Figure 9–7. This is clear for

SiO2 and Al2O3 particles. The mean effective mass diffusion coefficient for CuO
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particles is slightly higher compared to the other two data sets. However, the large

variance in the results prevents from drawing a final conclusion for the dependency

of the effective mass diffusion coefficient on particle density.

Throughout the simulations, it was observed that the current model gives very

high variances when simulating particles with high density and at high temperatures.

In situations where both cases are encountered the resulting concentration field shows

oscillations, a common behavior when the central-difference scheme is used beyond

its limits.

The simulation issues with particle density can be better observed in Figure 9–8.

In this figure the results from numerical experiments with different particle densities

are shown. The normalized effective mass diffusion coefficient is shown as a function

of particle specific gravity. The cases of particles of lower and higher density than

the fluid are shown in this figure. Note the large confidence intervals on the mean for

the high density cases. These large variances are due to problems with the numerical

simulations and the limits of the central-difference scheme discussed above.

Although, small variations can be observed, in general Figure 9–7 and Figure 9–8

suggest that the effective mass diffusion coefficient is independent of particle density.

This results contradicts the model by Veilleux and Coulombe (2011), were it was

proposed that particle density would have a significant effect on the effective mass

diffusion coefficient.
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Figure 9–8: Normalized effective mass diffusion coefficient vs. particle density for
nanofliuds at three particle volume fractions. Numerical simulations (symbols), sim-
plified model (lines).

9.3.6 Summary: Parametric Analysis

In summary, the effective mass diffusion coefficient for nanofluids is affected by

three principal components. First, the contribution from the composite material

given by Maxwell’s equation and represented by the coefficient B2 in Eq. (9.5). This

term ensures that, when particles are not moving the default behavior is Maxwell’s

equation. Although, B2 was found to be -1.27, the theoretical value of −3
2

should be

used instead.

The second contribution to the effective mass diffusion coefficient comes from

Brownian diffusion, term C1NBM in Eq. (9.5). This term increases the effective mass
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diffusion coefficient depending on the relative strength of the Brownian diffusion to

the molecular diffusion.

The third contribution accounts for particle interactions, term (1 + C2φ). This

term reduces the effect of Brownian diffusion when particles interact with each other

(Batchelor, 1976). This term is only valid for dilute suspensions, thus highlighting

one of the main limitation of the simplified model in Eq. (9.5). For high particle

volume fractions Eq. (9.5) would estimate effective mass diffusion coefficients lower

than Maxwell’s equation, because the Brownian diffusion with interaction gives a

negative number, which is not physically possible.

Finally, one important finding from the previous exercise is that the effective mass

diffusion coefficient for nanofluids is independent of particle density.

9.4 Diffusion of Rhodamine 6G on Al2O3-Water Nanofluid

In the previous section, Equation (9.5) was proposed as a simplified model to

summarize all numerical experiments performed while changing a single parameter

at the time. In this section a more realistic situation is explored, where an increase in

temperature is also accompanied by changes in fluid density and viscosity. The sys-

tem being simulated is the diffusion of R6G in Al2O3-Water nanofluid, in particular

the effect of temperature is explored in this section.

Numerical experiments were conducted at different temperatures and particle vol-

ume fractions. The fluid properties dependencies on temperature are indicated in
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Appendix A. The results from these simulations are shown in Figure 9–9 and Fig-

ure 9–10.
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Figure 9–9: Normalized effective mass diffusion coefficient vs. temperature for nano-
fluids at three particle volume fractions. Numerical simulations (symbols), simplified
model (lines). Fluid properties from Appendix A.

The normalized effective mass diffusion coefficient as a function of temperature is

presented in Figure 9–9, where each curve corresponds to a different particle volume

fraction. The symbols indicate the mean value for the numerical experiments along

with the 95% confidence interval on the mean. The solid lines correspond to Eq. (9.5).

Only the temperature between 275 and 325 K are shown. Simulations at higher

temperature are outside of the range of the LBM-FVM model. For the case of

water, the FVM solver gives oscillatory concentration fields at temperatures above

325 K.
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The temperature dependency of the effective mass diffusion coefficient follows

Eq. (9.5). If only the direct temperature effect is considered, a linear increase with

temperature would be expected. Furthermore, comparing with Figure 9–4 the ex-

pected increase due to temperature change should not be larger than 0.05 in Deff/Dm

for φ = 5%. However, the observed change is in the order 0.45 units in Deff/Dm for

the same particle volume fraction. The increase in the effective mass diffusion coef-

ficient with temperature is mainly related to the decrease of the fluid viscosity with

temperature.

The viscosity changes from ν = 1.6× 10−6 m2/s at 275 K to ν = 5.3× 10−7 m2/s

at 325 K. Comparing this change with the results presented in Figure 9–5 indicates

that the large changes with temperature are related to the indirect change in fluid

viscosity.

A different view of the effect of temperature on the effective mass diffusion coef-

ficient is presented in Figure 9–10. In this figure, the normalized effective coefficient

is presented as a function of particle volume fraction with the temperature as the

fixed parameter for each curve shown. The typical second order in particle volume

fraction shape is maintained for the three temperatures presented.

The comparison presented for Figures 9–9 and 9–10 can be considered as the

validation of Eq. (9.5). The simulation results in these figures have not been used

in the estimation of the coefficients of Eq. (9.5). Although, the entire ranges of

temperature, viscosity, particle size, density and particle volume fraction have not
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Figure 9–10: Normalized effective mass diffusion coefficient vs. volume fraction for
nanofliuds at three temperatures. Numerical simulations (symbols), simplified model
(lines), and Maxwell’s equation (dashed line). Fluid properties from Appendix A.

been explored, the simplified model depicted by Eq. (9.5) accurately predicts the

results from numerical simulations.

One important outcome of this analysis is that, for the case of water based na-

nofluids, the decrease in water viscosity with increasing temperature represents the

main contribution to the effective mass diffusivity increase with temperature. This

indicates that experiments with different temperatures are not expected to show a

linear increase with temperature. Instead, the increase will be mainly dictated by the

relationship of temperature and viscosity for the fluid in question. In other words,

fluid viscosity must be considered when studying temperature dependency of mass

transfer in nanofluids.
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9.5 Comparison with Experimental Data

In this section, the simplified model in Eq. (9.5) is compared to experimental

measurements from Veilleux and Coulombe (2010b) and the model proposed by

Veilleux and Coulombe (2011). The main objective is to try to provide an explanation

to the experimental measurements using the result discussed above.

The experimental measurements by Veilleux and Coulombe (2010b) indicate up

to a 10 fold increase in the effective mass diffusion coefficient for the R6G, 10 nm

Al2O3-water nanofluid. These measurements also indicate a maximum enhancement

at around 2% particle volume fraction.

The numerical simulations and the simplified model proposed cannot account

for the 10 fold increase in the effective mass diffusion coefficient. The maximum

normalized effective mass diffusion coefficient calculated using Eq. (9.5) and the

condition for the experimental measurements by Veilleux and Coulombe (2010b) is

Deff/Dm = 1.17. The large discrepancy cannot be explained at the moment. One

possible explanation is that the simulations do not capture correctly the fluid field

used in the LBM-FVM step. When simulating particle motion using MRT-LBM,

the integration of the hydrodynamic force over a time step may produce artificial

dissipation (Dünweg and Ladd, 2009). This could translate in a smaller magnitude

of the velocity field, thus numerical experiments would estimate smaller enhancement

compared to experiments.
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Despite not estimating the proper order for the enhancement, Eq. (9.5) estimates

the existence of a maximum enhancement with particle volume fraction. As the par-

ticle volume fraction increases, the interaction term decreases the contribution from

Brownian motion, to the point that, mathematically, the contribution of Brownian

motion can be completely cancelled by particle interactions. Beyond this point, the

mathematical estimation is unrealistic, i.e. values below Maxwell’s equation.

In the following analysis it is assumed that the main phenomena responsible for the

enhancement measured by Veilleux and Coulombe (2010b) is Brownian motion. The

enhancement is then governed by a function similar to Eq. (9.5) but the coefficients

are allowed to change to accommodate possible modeling errors. Coefficient B2 is set

to its theoretical value of −3
2
, while C1 and C2 will be estimated by fitting Eq. (9.5)

to experimental data.

The experimental measurements from Veilleux and Coulombe (2010b) are shown

in Figure 9–11 (symbols). The curves in this figure are discussed later. The data

shows two different behaviors, below a particle volume fraction of 2% the effec-

tive mass diffusion increase seems to follow the second order curve predicted by

Eq. (9.5). For particle volume fractions above 2% the behavior does not follow the

decrease given by Eq. (9.5), which should be a mirror (approximately) to the first

part (φ < 2%). Two possible explanations for this behavior are discussed: a) particle

agglomeration and b) particle interaction/hindering.
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9.5.1 Particle Agglomeration

At higher volume fractions particles are closer from each other and the probability

of particle colliding and forming agglomerates increases. If it is assumed that the

agglomeration onset takes place near 2%, the measurement above this point can be

explained by the same model but with a larger effective particle diameter.

The coefficients for Eq. (9.5) were estimated from measurements below a volume

fraction of 2% (Table 9–2). The fitted model corresponds to the dp = 10 nm curve

shown in Figure 9–11. The other curves in the figure were obtained by selecting the

particle diameter that would cross the points volume fractions larger than 2%. One

interesting fact is that the size of the agglomerates needed to explain the decrease

are within the experimentally observed sizes (Veilleux, 2010). The nanofluid used

in these experiments showed a bimodal distribution with one mode near 9 nm and

the second mode near 30 nm. These modes are only visible in the size distribution

function when presented as percent volume and not for particle count. These results

are only available in Veilleux (2010).

Table 9–2: Agglomeration hypothesis. Fitted values for simplified model coefficients.

Parameter Value 95% CI
C1 790.4 638.9, 941.9
C2 -21.55 -28.72, -14.38

The coefficients presented in Table 9–2 do not agree with the ones obtained from

the simulations. The larger value for both coefficients may be related to simulation

errors when calculating the velocity field. A possible explanation is the artifical

dissipation discussed at the beginning of this section (section 9.5). The larger C1
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indicates that the Brownian motion of the particles has a larger influence in the

enhancement than estimated by the numerical experiments. If the velocity field

around the particle extends for larger distances than estimated by the MRT-LBM

model, the value of C1 would be larger. Similarly, particle interactions or hindering

would be more important, thus giving also a larger C2, in magnitude.
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Figure 9–11: Agglomeration hypothesis. Comparison of experimental results from
Veilleux and Coulombe (2010b) (symbols) and the simplified model (lines). Particle
diameter selected to match experimental data above 2%.

Practically, any point below the maximum can be estimated by the model assum-

ing that agglomeration takes place. The good fit of the model without agglomeration

for volume fractions below 2% suggests that the model proposed by Eq. (9.5) could

explain these results. Further studies are required to validate this hypothesis. These

studies would require changing particle size and measuring particle size distributions

for each point sampled to determine if agglomeration has taken place.
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9.5.2 Particle Interaction/Hindering

The second possible explanation for the unusual decrease above 2% volume frac-

tion is particle interaction or particle hindering. For the measurements by Veilleux

and Coulombe (2010b) this is very important since the enhancement was measured

near the wall; particle-particle and particle-wall interactions affect the Brownian

diffusion coefficient.

The model proposed by Eq. (9.5) only accounts for particle-particle interactions.

One of the main limitations of this model is that it is only valid for dilute suspensions.

Particle-wall interaction further decreases Brownian diffusion (Banerjee and Kihm,

2005), depending on the distance to the wall. Although it is possible to incorporate

particle-wall interactions into Eq. (9.5), this has not been done.

Since Eq. (9.5) is only valid for dilute suspensions (φ < 5%), for large particle

volume fractions the predictions are unrealistic. Considering the parameters in Ta-

ble 9–2, volume fractions above 4.7% would give values below Maxwell’s equation.

The expected behavior would be to have the interaction increase to the point that

(1 +C2φ) decrease to zero, which indicates that Brownian motion does not influence

the system. To incorporate this desired behavior a sigmoid type function was added

to Eq. (9.5):

h(φ) = 1− 1

1 + e
−φ−A4

A5

The new model is

Deff

Dm

= 1 +

[
−3

2
+ C1NBM (1 + C2φ) h(φ)

]
φ (9.7)
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The sigmoid function added to Eq. (9.5) has no physical meaning, but it has

been chosen to mimic the desired behavior of smoothly decreasing the interaction

term to zero. This produces a smooth transition between Eq. (9.5) and Maxwell’s

model. Four parameters are estimated from the experimental data. The value of

these parameters are shown in Table 9–3. A visual comparison of the fitted model

and the experimental data is shown in Figure 9–12.

Table 9–3: Particle hindering hypothesis. Fitted values for simplified model with
sigmoid adjustment.

Parameter Value 95% CI
C1 754.9 599.5, 910.4
C2 -14.25 -31.00, 2.491
A4 2.676 2.096, 3.256
A5 0.4835 0.3538, 0.6132
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Figure 9–12: Particle interaction hypothesis. Comparison of experimental results
from Veilleux and Coulombe (2010b) (symbols) and the simplified model (line). Sim-
plified model with sigmoid function.
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The new model with the sigmoid function represents some of the main character-

istics of the experimental measurements. A maximum is reached near 2% volume

fraction, followed by a long-tail decrease towards Maxwell’s equation. However, look-

ing carefully at the confidence intervals in Table 9–3 (C2 parameter) reveals that an

increasing function of φ without interaction term, would be a reasonable fit for the

available data. This issue and the fact that the sigmoid function used has no known

physical meaning limit the analysis. This discussion is presented here with the hope

that it will help to focus research efforts in the study of mass transfer in nanoflu-

ids. In particular, this analysis reveals the importance of understanding particle

interaction for suspensions that are not in the dilute limit.

In summary, two hypotheses for explaining the decrease in the effective mass

diffusion coefficient in nanofluids have been presented: particle agglomeration and

particle hindering. Both can be used to explain the experimental results of Veilleux

and Coulombe (2010b), however further experimentation would be needed to deter-

mine which hypothesis is correct.

9.6 Relationship to Dispersion Model

The principles used in developing the numerical model used in this work are very

similar to the ones considered in the dispersion model by Veilleux and Coulombe

(2011). The idea behind both models is that particle Brownian motion generates

micro-convective currents. These currents or perturbations of the velocity field on

the fluid contribute to the increase in mass diffusion much similar to what is known

as Taylor dispersion (Taylor, 1953).
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Most types of Taylor-like dispersion are characterized by the presence of the Péclet

number in their relationships between the effective and molecular diffusivities. This

is true for many systems, including the initial propositions by Veilleux and Coulombe

(2010b), where the effective mass diffusion coefficient was found to be proportional

to the square of the Péclet number.

Veilleux and Coulombe (2011) proposed calculating the Péclet number by sam-

pling velocities from the Maxwell-Boltzmann distribution, then averaging. However,

to obtain a simple relation between the Péclet number and the important parameters

in the analysis, the particle velocity was replaced by the root mean square (RMS)

velocity, thus giving the following

Pe2 =

(
U0a

Dm

)2

=
3kBT

4πaρp

1

D2
m

(1− 1.83φ) (9.8)

To facilitate the comparison with Eq. (9.6), the Péclet number without the inter-

action term is represented by P̂e, thus

Pe2 = P̂e
2
(1− 1.83φ)

Comparing with Eq. (9.6), the following relationship between the NBM and the

Pe numbers can be established

NBM =
2

9
P̂e

2
Sc−1

(
ρp

ρ

)
(9.9)

where Sc is the Schmidt number (Sc = ν/Dm), which is the ratio between viscous

diffusion and molecular mass diffusion rates. The density ratio is needed to eliminate
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the particle density introduced by the Pe2 in the equation. This ratio is known as the

momentum interaction parameter in the field of particulate flows, and it governs the

relative acceleration experienced by the particles (Marble, 1963). Writing Eq. (9.5)

in terms of the Péclet number gives

Deff

Dm

= 1 +

[
B2 +

(
2

9

C1

Sc

ρp
ρ

)
P̂e

2
(1 + C2φ)

]
φ (9.10)

The Schmidt number of Eq. (9.9) is in the order of 104 for the nanofluids in ques-

tion, and the density ratio is of the order of 10, thus giving a factor of the order

of Sc−1ρp/ρ ≈ 10−3. Considering the values obtained for C1, the term in paren-

theses before P̂e would be smaller than one, a common value for Taylor dispersion

cases.

The form presented in Eq. (9.10) is similar to equations representing Taylor dis-

persion. In the model presented here dispersion is the only phenomenon affecting

mass diffusion. The exercise done in this section only aims at presenting Eq. (9.5)

in a more familiar form, where the Péclet number appears explicitly in the equa-

tion.

Similar to the conclusion reached by Veilleux and Coulombe (2011), the model

presented here indicates that micro-convection currents cannot explain the high en-

hancement observed for the thermal conductivity measurement on nanofluiuds. The

Péclet number for heat transfer is small compared to its mass transfer counterpart

(PeM ≈ 1000 PeH), thus making the dispersion contribution negligible compared to
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the other terms in the equation. This is in agreement with the results obtained from

the numerical experiments in chapter 8.

9.7 Bidisperse Nanofluids

The issue of polydisperse nanofluids is addressed in this section. The development

done up to this point requires the size of the particle to be known. However, for

nanofluids it is common to have a distribution of particle sizes instead of a single

size. Even though, the LBM-FVM model developed above is capable of simulating

polydisperse nanofluids, only the bidiperse nanofluids have been considered, i.e. only

two particle sizes.

The main idea behind studying bidisperse cases is to simplify the problem and to

determine what kind of mixing rules can be applied in the study of the polydisperse

cases.

Simulations using the LBM-FVM and the Gaussian pulse method were performed

with different particle volume fractions of two particles sizes. Size A corresponds to 2

nm particles, while size B corresponds to 4 nm particles. The fraction of B particles,

xB, is defined to characterize the ratio of large particles in the domain.

xB = φB/φ (9.11)

where, φ = φA + φB. Also, φA is the volume fraction of A particles and φB the

fraction of B particles.

φA =
VA
VT

; φB =
VB
VT

(9.12)
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therefore,

xB =
VB

VA + VB
(9.13)

Graphical representations of different particle volume fractions, φ, and B fraction,

xB, are shown in Figure 9–13. The particle volume fractions from top to bottom are

1, 3 and 5%. The domains on the left correspond to B fractions of xB = 0.2, while

the ones on the right are at xB = 0.7. Despite having the same particle volume

fraction, the domains on the right have less particle, compared to the domains on

the left.

Fluid density and viscosity were computed from the equations for water properties

in Appendix A at 295 K. Particles are Al2O3 with the two sizes indicated above.

Simulations for three different particle volume fractions were performed (1, 3 and

5%), with at least eight repeats for each condition. The entire range of xB fractions

was covered, from 0 to 1. The results from these simulations are shown in Figure 9–

14. Similarly to previous figures, the symbols indicate the mean values with their

respective 95% confidence intervals.

The large confidence intervals shown in Figure 9–14 would justify using a linear

model to explain the change. However, the mean value seems to follow a curve

systematically above what a linear interpolation between extreme values would give.

The solid lines in this figure correspond to a mixing model where the enhancements

due to Brownian motion are assumed to be additive. Although mathematically

incorrect, this mixing model highlights the importance of the interaction term, and
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φ = 1%
xB = 0.2

φ = 1%
xB = 0.7

φ = 3%
xB = 0.2

φ = 3%
xB = 0.7

φ = 5%
xB = 0.2

φ = 5%
xB = 0.7

Figure 9–13: Typical computational domains for bidisperse systems. Particle volume
fractions of 1, 3 and 5% (top to bottom). Particle B fraction xB = 0.2 (left) and
xB = 0.7 (right).
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Figure 9–14: Normalized effective mass diffusion coefficient vs. particle fraction (xB)
for nanofliuds at three particle volume fractions. Numerical simulations (symbols),
mixing model Eq. (9.14) (lines).

it is presented below in the hope that it will serve as starting point in future studies

of polydisperse suspensions.

The mixing model used in Figure 9–14 assumes that the total enhancement due

to the motion of the particles can be represented by the sum of the contribution

by type A particles plus the contribution by type B particles. From the model in

Eq. (9.5) the enhancement due to Brownian motion for type A particles, E(φA), is

obtained by removing the parts corresponding to Maxwell’s equation.

E(φA) = [C1NBM (1 + C2φA)]φA
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The total enhancement of the bidisperse suspension can be calculated by adding

the contributions from both types of particles

Deff

Dm

= 1 +B2φ+ E(φA) + E(φB)

This simple approach gives surprisingly good results, considering that no extra

parameters were needed. The mixing model gives good estimations of the effective

mass diffusivity at low particle volume fractions, φ = 1% and φ = 3% in Figure 9–14.

For higher particles volume fraction the results only capture reasonably well mixtures

with high ratios of one type of particle.

If this mixing model was correct, it could be extended to cases of polydisperse

suspensions by simply summing the contributions from all particles

Deff

Dm

= 1 +B2φ+
∑
i

E(φ gi) (9.14)

where gi can be obtained from the particle-size distribution function. It represents

the volume fraction of particles of type i in the system. This model is mathematically

incorrect, as demonstrated below.

One extreme case that can be used to test the model is the case of a bidisperse

suspension with two identical particles, technically monodisperse. The model should

reduce to the case of a single type of particle given by Eq. (9.5). Using the definition

of E(φi) into Eq. (9.14) gives

Deff

Dm

= 1 +B2φ+
∑
i

[C1NBM (1 + C2φ gi)]φ gi
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since
∑
gi = 1, this equation can be expressed as

Deff

Dm

= 1 +

[
B2 + C1 NBM

(
1 + C2φ

∑
i

g2
i

)]
φ

For the equation above to be the same as Eq. (9.5) the term
∑
g2
i must be equal

to 1, which can only be satisfied if gi = 1 (monodisperse case). Note that
∑
g2
i is

always smaller than one for distributions with more than one type of particles. Since

this ill-posed mixing model gave satisfactory results when comparing with the results

from numerical simulations, it indicates that the magnitude of the interaction term

decreases when considering the bidisperse suspensions shown in Figure 9–14.

If the assumption of additive enhancements is correct, then the interaction coeffi-

cient C2 would need to be a function of particle type fraction, such that the following

constraint is satisfied for the case of two particles of equal size

C2 =
∑
i

C∗2g
2
i

The decrease in the interaction term for bidisperse suspensions was expected,

because the smaller and faster moving particles (A) would encounter less often the

larger and slower moving ones (B), compared to the cases of particles A interacting

with other A particles. This decrease in the interaction term can be visualized in

Figure 9–13, where the domains with higher xB have a smaller number of particles,

thus reducing the interaction term. Note that the C2 coefficient is negative, therefore

a decrease in the interaction term implies an increase in the effective mass diffusivity.

Therefore, giving values above the interpolation line between the extreme cases, as
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shown in Figure 9–14. For the case of φ = 5% and near xB = 0.1 the numerical

results and the mixing model give values larger than the xB = 0 case. The large

error bars in the numerical results prevent from drawing strong conclusions about

this possible phenomena. Therefore, experimental validation of the existence of this

phenomena may be a more viable route at this point.

At the moment, the numerical results available are limited to the ones presented

above. A concise study of bidisperse nanofluids and the extension to polydisperse

suspensions cannot be continued. These partial results and thoughts are presented

here in the hope that they will serve as inspiration for future research, both numerical

and experimental.
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Part IV

Conclusion
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Chapter 10
Conclusions

10.1 Summary

The controversial subject of anomalous increase in thermal conductivity and mass

diffusion coefficient in nanofluids was studied using numerical experiments. The

main objective was to determine the contribution of Brownian motion-induced micro-

convection currents in the enhancement of heat and mass diffusivities in nanoparticle

suspensions.

A four-steps numerical model was developed. First, the fluctuating lattice Boltz-

mann method (fLBM) was used to simulate particle Brownian motion. This is

achieved by introducing thermal fluctuations in the fluid collision term. Particles

move because of the imbalanced random stresses on the particle surface. These

stresses were summarized by storing forces and torques at the center of mass of each

particle.

In the second step the multiple relaxation time (MRT) lattice Boltzmann method

(LBM) was used to calculate the fluid field, thus providing a field description of

Brownian motion-induced micro-convection currents. This was done by moving the

particles using the forces and torques from the previous step.
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The third step uses the finite volume method (FVM) to describe the evolution of

a scalar field (temperature or concentration) over time, given the fluid flow field rep-

resenting the micro-convection currents. The mismatch of the velocity grids between

LBM and FVM led to the proposition of the hybrid LBM-FVM, which satisfies mass

conservation in both LBM and FVM grids.

Finally, the overwhelming amount of information obtained from these simulations

was summarized by averaging the scalar fields to obtain a macroscopic view of the

problem, where the fluid-particle system can be viewed as an homogeneous system

at rest. Two averaging methods were proposed and used in the analysis. First, the

fixed gradient method was based on Fourier’s law for heat transfer or Fick’s law for

mass transfer as the macroscopic views of the system. This method was used in

the study of heat transfer, but was found to be impractical for the study of mass

transfer.

The second averaging method developed was the Gaussian pulse method. In

this method the evolution of a Gaussian pulse is tracked over time. The increase

in the pulse variance was then used to estimate the effective thermal conductivity

or effective mass diffusion coefficient. This method was found to be practical for

studying heat and mass transfer phenomena in nanofluids, thus overcoming some of

the drawbacks of the fixed gradient method. One important limitation of this method

is that the macroscopic view of the system is obtained by sampling the domain with

different Gaussian pulses, thus increasing the computational effort compared to the

fixed gradient method.
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Some interesting applications were studied using the numerical methodology de-

veloped. First, heat and mass transfer in composite materials were studied. This

was done as a part of model validation. Both methods (fixed gradient and Gaussian

pulse) reproduce Maxwell’s equation for composite materials. Some limitations of

the Gaussian pulse method were discussed. In particular, short mass transfer sim-

ulations would give the proper tendency but the effective mass diffusion coefficient

would be biased towards the value of molecular mass diffusivity.

Heat diffusion phenomena was studied using both averaging methods. The same

conclusions were reached with both methods, indicating that micro-convection cur-

rents generated by particle Brownian motion are not significant enough to justify any

anomalous increases in thermal conductivity with particle volume fraction.

The case of mass transfer in nanofluids was studied in more detail. Only the

Gaussian pulse method was used in these studies. The results indicate that the

abnormal increase in the mass diffusivity observed experimentally can be explained

by the presence of Brownian motion-induced micro-convection currents. However,

the numerical model cannot explain the 10 fold increased or the location of the

maximum observed experimentally (Veilleux and Coulombe, 2010b). The numerical

model, however, predicts the nonlinear increase with particle volume fraction.

A parametric study was performed to determine the dependency of the effective

mass diffusivity on different variables. A simplified model was then constructed to

summarize the findings. A new dimensionless number was proposed, NBM, defined
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as the ratio of the Brownian diffusion coefficient over the molecular diffusion coef-

ficient. The simplified model is composed of three terms: 1) Maxwell’s equation

simplified for the case of zero diffusivity inside the particles, 2) the contribution by

Brownian motion describe by the NBM number, and 3) the nanoparticle interaction

term, which is a decreasing function with particle volume fraction. The NBM number

captures the dependencies of the effective diffusion coefficient with fluid and particle

properties: inversely proportional to particle size, viscosity, fluid density, and propor-

tional to temperature. One interesting finding is that the effective mass diffusivity

is independent of particle density.

The simplified model was used to explain the experimental results from (Veilleux

and Coulombe, 2010b). It was assumed that the simplified model gives the proper

form but the coefficients could be different. These were then determined by curve

fitting the experimental data available. Two hypothesis were considered to explain

the sharp decrease after φ = 2% observed experimentally. First, agglomeration can

increase the effective particle diameter thus decreasing NBM and the effective mass

diffusivity. The second hypothesis highlights the need for a better understanding of

particle interaction. In this case the interaction term would decrease to a point where

the Brownian contribution is negligible (particle hindering), thus decreasing the ef-

fective mass diffusivity. Confirmation of either hypothesis requires experimentation,

for which the simplified model proposed can provide guidelines for the experiments

to be perform.
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The simplified model was then rewritten in terms of the Péclet number to high-

light the relationship with Taylor dispersion. This led to the relationship between

the NBM and Pe numbers, which also includes the the Sc number and the momen-

tum interaction parameter (density ratio). Extending the simplified model to the

case of heat transfer suggests that the dispersion contribution to the effective ther-

mal conductivity would be negligible compared to the other terms of the equation.

Therefore, the abnormal enhancements reported in the literature cannot be explained

by Brownian motion-induced micro-convection currents.

The final application studied using the numerical methodology introduced in this

work was the case of bidisperse nanofluids. The objective was to attempt to extend

the analysis to polydisperse suspensions. The relationship between the effective mass

diffusivity and the fraction of particles of a given size was found to be nonlinear. Due

to the limited data available, this study was left open as an incentive for future studies

towards understanding the effective properties of polydisperse nanofluids.

In summary, the study of the bidisperse system highlights the importance of

the interaction term. For polydisperse suspensions, this term needs to account for

all interactions between particles, both for equal and different sizes. In general,

the interaction term is expected to decrease for polydisperse suspensions, compared

to monodisperse suspensions. This decrease explains the deviation from a linear

mixing rule and also introduces the possibility of encountering effective mass diffusion

coefficients for polydisperse suspensions that are larger than the monodisperse case
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with the smaller particle; though, strong evidence of this phenomenon has not been

confirmed.

10.2 Original Contributions

The following original contributions to the field of heat and mass transport phe-

nomena in nanofluids were done as part of this project.

1. A new model capable of resolving fluid flow at the microscale was proposed

and developed. The model is based on the LBM and can be used to calculate

micro-convection currents around nanoparticles.

2. A variation of the hybrid LBM-FVM was proposed. In this new approach the

staggered velocity field in the FVM is calculated directly from the distributions

from the LBM. The main advantage of this method is that the continuity

equation is satisfied in both grids, LBM and FVM.

3. Two methods for estimating macroscopic or effective heat and mass diffusivities

for composite materials were proposed and validated: a) fixed gradient method

and b) Gaussian pulse method. Important limitations for each of these methods

were discussed.

4. The three previous contributions together constitute the main work of this

project, a numerical model to study the contribution of Brownian motion-

induced micro-convection currents on the effective heat and mass diffusivities

in nanofluids.

5. In the field of heat transfer in nanofluids, the results from this study supports

the theory that Brownian motion-induced micro-convection currents are not
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significant enough to justify any abnormal enhancement. This conclusion con-

firms the generally accepted view that the heat diffusivity of nanofluids is not

abnormal and in fact, it is well-predicted by Maxwell’s model.

6. A simplified model was proposed to explain the abnormal enhancement of the

mass transfer coefficient in nanofluids. In this case, the presence of micro-

convection currents could explain the values higher than the Maxwell’s model

prediction reported by other researchers. The simplified model also introduced

a new dimensionless quantity, NBM, believed to play an important role when

studying mass transfer in nanofluids. It indicates that dispersion plays an

important role in the enhancement, while particle density does influence mass

diffusivity.

7. The methodology developed in this work was also applied to study bidisperse

system. The development and discussion on this subject are only preliminary.

Partial results were presented in this work with the objective of highlighting the

importance of the particle interaction term when studying effective diffusion

coefficients of polydisperes suspensions.

10.3 Recommendations for Future Work

The studies performed as part of this project were done based on a very specific

numerical model where many phenomena are ignored. As it is usual with numer-

ical studies, they require to be validated by extensive experimental measurements.

Validation of the current model requires work in two fronts: parameters dependency
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(particle size, particle density, fluid viscosity and temperature) and particle interac-

tion. The relationships identified in Eq. (9.5) could be used as a guide for designing

experiments to study the dependency of mass diffusivity on the parameters listed

above.

Besides the need for extensive experimental measurements, the following sugges-

tions are made to extend and improve the work started in this project:

1. Proper validation of the LBM for estimation of micro-convection currents is

needed. Some of the assumptions that need to be verified are: the no-slip

condition used at the particle surface and the use of a slightly compressible

model to describe the fluid field. The current model should be extended by

using the incompressible LBM and by considering different slip factors. The

incentive for performing this validation is that the numerical model used may

suffer of numerical viscosity, thus the simulation may behave as if the viscosity

was higher than the value set. This would affect the micro-convection currents

calculated by the LBM, thus potentially explaining why the effective mass diffu-

sivity calculated from the numerical model were smaller than the experimental

observations.

2. The fLBM can be improved by implementing periodic boundaries for the par-

ticles. This should reduce the variability observed throughout the simulations,

because the gap near the boundaries would no longer be needed. This would

in turn produce a more homogeneous view of the computational domain.
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3. Implementation of the lubrication approximation (Dünweg and Ladd, 2009) for

cases when particles are close to each other is highly recommended. Besides al-

lowing the current methodology to be used for higher particle volume fractions,

it may also explain the experimentally-observed decrease of the effective mass

diffusivity with particle volume fraction (Veilleux and Coulombe, 2010b). A

better description of the interaction term could be obtained if the lubrication

approximation was implemented.

4. One of the main limitations in the numerical method presented in this work

is the FVM. In some cases the central-difference scheme used for discretizing

the diffusion-convection equation was unstable, giving oscillations in the con-

centration field. The suggestion here is to use a different discretization scheme

such as the Flux-corrected transport (Kuzmin et al., 2005). This improvement

should help to extend the analysis to higher temperatures and oddly enough,

this may allow for studying suspensions of particles with larger densities than

the ones considered in this work.

5. The preliminary study of bidisperse suspensions presented in this dissertation

is only a small fraction of the work needed in this subject. A vast number

of simulations with different conditions would be the first step, followed by

an analysis focussed on the interaction term. Ideally, the results from this

analysis should be extendable to describe polydisperse suspensions. The direct

simulation of polydisperse suspensions with the current model should also be

considered.
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Appendix A
Physical Properties

Temperature-dependent water properties are shown in Figure A–1 and Figure A–

2. These values were obtained from the National Institute of Standards and Tech-

nology (NIST) WebBook: http://webbook.nist.gov/chemistry/fluid/ (Wagner

and Pruss, 2002; Kestin et al., 1984; IAPWS, 1998, 1997). The physical properties

for the solid particles shown in Table A–1 were obtained from the literature reviewed

in chapter 2.
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Figure A–1: Physical properties of water: viscosity and density vs. temperature.
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Figure A–2: Physical properties of water: thermal conductivity and heat capacity
vs. temperature.

Table A–1: Physical properties for solid particles at 295 K.

Material α [W/(m K)] cP [J/(kg K)] ρ [kg/m3]
Al2O3 40 775 4000
SiO2 1.3 703 2648
Cu 400 385 8960

CuO 17 578 6315
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