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ABSTRACT 

Between 2011-2012, a single Inuit village of Nunavik had 50 culture-confirmed cases of 

tuberculosis (TB), representing an incidence of 5% for that year. Among those with recent 

infection, 20% progressed to active TB disease, compared to the expected attack rate of ~5%. 

Classical molecular typing methods suggested this was a single, point-source outbreak, alarming 

in magnitude to both public health and the community. However, previous molecular studies in 

the Arctic had revealed limited bacterial diversity. Therefore, it was also possible these methods 

simply lacked sufficient resolution to discriminate true transmission events from the absence of 

transmission. Recent work using a newer method, whole genome sequencing (WGS), suggests 

this technique provides higher resolution genotyping data, and thus may more accurately 

discriminate between transmission and reactivation of remote infection. However, while WGS is 

poised to become the leading method for detecting infectious disease transmission, 

bioinformatics pipelines – steps required to covert raw genetic information into useable data for 

epidemiology – lack standardization, with the potential risk that arbitrary decisions during data 

processing may affect epidemiologic inferences. Through this thesis, I have applied WGS to an 

outbreak, and then a population-based study, to evaluate TB transmission in a high-incidence 

setting. In so doing, I have examined both methodological aspects and clinical applications of 

WGS to TB control. 
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RESUMÉ 

Entre 2011 et 2012, 50 cas de tuberculose confirmés par culture ont été recensés dans un village 

Inuit de Nunavik, ce qui représente une incidence de 5% pour cette période. Parmi ceux ayant été 

infectés récemment, 20% ont développé une tuberculose active, alors que l’on s’attendait à ~5%. 

Des méthodes classiques de typage ont suggéré qu’il s’agissait d’une éclosion provenant d’une 

unique source ponctuelle et alarmante à la fois d’un point de vue de santé publique et pour la 

communauté. Cependant, des études moléculaires dans la région Arctique ont révélé une 

diversité bactérienne limitée. Il était donc possible que ces méthodes manquaient tout 

simplement de résolution afin de discriminer de réels événements de transmission d’une absence 

de transmission. De récents travaux utilisant une nouvelle méthode, le séquençage de génomes 

entiers, suggèrent que cette technique fournit des données de meilleure résolution et permettrait 

de discriminer de manière précise la transmission de la réactivation d’une infection précédente. 

Cependant, tandis que le séquençage de génomes devient la méthode de choix pour la détection 

de transmission de maladies infectieuses, les pipelines bio-informatiques – étapes requises 

permettant de traiter les données génétiques brutes en informations utilisables en épidémiologie – 

manquent de standardisation, avec le risque potentiel que le traitement arbitraire des données 

puisse affecter les conclusions épidémiologiques. À travers cette thèse, j’ai appliqué le 

séquençage de génomes entiers à une éclosion, puis une étude des populations, afin d’évaluer la 

transmission de la tuberculose dans le cadre d’une grande incidence. En procédant ainsi, j’ai 

examiné à la fois les aspects méthodologiques et les applications cliniques du séquençage de 

génomes entiers dédiés au contrôle de la tuberculose. 
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CHAPTER 1.  INTRODUCTION 
 
1.1  Background and rationale 

 

In November of 2011, there were two cases of tuberculosis diagnosed in a small Arctic 

community in Nunavik, Québec (Figure 1-1 and 1-2). Despite local efforts to reduce 

transmission, by March of 2012, this had escalated to 17 cases. A massive public health 

response was initiated, resulting in more than 2/3 of the community being investigated for 

contact. Ultimately, a total of 50 individuals were diagnosed with microbiologically-confirmed 

(i.e., culture-positive) disease in this community, representing an incidence of over 5% for that 

year. This event was also characterized by an extraordinarily high attack rate. In contrast to the 

commonly-cited 2-5% which are expected to progress within the years immediately following 

infection, approximately 20% of those with recent infection progressed rapidly to disease in this 

village. It was unclear what had led to such an epidemic of TB in this community or the high 

rate of progression, as there was low HIV prevalence, negligible drug resistance and high 

reported adherence to latent TB prophylaxis. Contact investigations revealed a tangled web of 

epidemiological links between cases, with most having multiple potential sources of 

transmission.  The complexity of these epidemiologic links made it difficult to resolve 

transmission using these data alone. Thus, molecular typing methods were considered. 

 

Since Insertion Sequence 6110 (IS6110) restriction fragment length polymorphism (RFLP, see 

Appendix 1 for a glossary of molecular epidemiology-related terms and acronyms) was first 

proposed as an epidemiologic tool in 1991 (1), molecular genotyping methods have assumed a 

critical role in delineating tuberculosis transmission. Using these tools, pairs of bacterial 

samples (‘isolates’) from patients are considered the result of recent transmission if they share 

an identical or highly similar fingerprint. Conversely, isolates with different fingerprints are 

thought to represent independent progression of disease, without a transmission link between 

them.  When isolates have a unique fingerprint, not matching another in the database, this 

isolate is inferred to be the result of reactivation of an infection acquired in a different time (in 

the past) or place (in a different country). Examining such data in the context of this Arctic 

‘outbreak’ revealed identical patterns for 49/50 isolates, suggestive of a single outbreak. 

However, previous work in this region had shown limited bacterial diversity (2), therefore 
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shared ancestry could provide an alternative explanation for the lack of variation in RFLP. A 

third possible explanation, which could not be evaluated using a low resolution typing 

modality, such as RFLP, would be both limited genetic variability and some recent 

transmission.  

 

At the onset of this work, a single study had applied a newer method – whole genome 

sequencing (WGS) – to investigate a TB outbreak in British Columbia (3). Unlike classical 

genotyping methods, which examine only ~1% of the Mycobacterium tuberculosis genome, 

WGS interrogates all 4.4 million base-pairs. WGS predominantly aims to identify and quantify 

single base changes in the genome compared to a reference, called ‘single nucleotide 

polymorphisms’ (SNPs). These SNPs can then be used to compare isolates for epidemiology. In 

this seminal paper, authors illustrated the potential of WGS to resolve outbreaks beyond the 

capabilities of classical methods. Based on this work, we ultimately applied this new method to 

investigate transmission in the North, to further resolve this unique event.  

 

This thesis is largely comprised of our epidemiological investigations of TB in the Arctic. 

However, it is important to note that large-scale WGS, such as that needed for outbreak 

investigation, has only recently become feasible due to restrictions both in technology and cost. 

As such, the analytic approaches largely lack standardization. When raw data is produced by 

sequencing platforms, for example, there are a number of processing steps (referred to as a 

‘bioinformatics pipeline’) required to produce the final dataset we use in genomic 

epidemiology, with many different software choices available for each. As I learned to work 

with WGS data, questions arose about the analytic choices involved as well as future 

applications of this tool to TB.  

 

The results of this work are presented in the form of a manuscript-based thesis, comprised of 5 

articles (3 published, 1 accepted, and 1 currently under review). Please note that the references 

for each of these manuscripts are retained and distinct from the overall reference list for 

Chapters 1-4 and 10, which represent the Introduction, Reviews of the literature (2), Materials 

and Methods, and the Discussion.   
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The detailed rational for each study included in this thesis is as follows: 

 

Manuscript I, “Reemergence and re-amplification of tuberculosis in the Canadian Arctic” is 

presented in Chapter 5. In this study, WGS was applied in conjunction with field and clinical 

epidemiology to understand transmission during the outbreak. Through this in-depth analysis, it 

was discovered that this singular ‘outbreak’ was actually comprised of at least 6 different 

groups of transmission. As only 20% of non-household contacts with active TB shared the same 

genotype as their putative source, this also indicated that contact investigation beyond the 

household was of limited utility in this context. As a direct consequence of these findings, the 

regional public health unit has initiated village-wide screenings in lieu of extended contact 

investigation during more recent surges of TB in the North. In addition to these substantive 

findings, this was the first study to demonstrate the importance of local strain diversity in ruling 

out transmission using WGS; our validation study revealed that even patients without 

epidemiologic links and from different villages could have isolates with as few 2 SNPs between 

them. Finally, to our knowledge, this was also the first study to demonstrate clonal replacement 

(wherein one strain was completely replaced by another over time), suggesting that it is feasible 

to eradicate strains of TB in this context.  

 

Manuscript II, “Population genomics of Mycobacterium tuberculosis in the Inuit” is presented 

in Chapter 6 and expands on the first study to include all villages of Nunavik. This study was 

conducted in response to village and public health concerns that a new, hyper-virulent strain of 

tuberculosis had arrived in the Canadian North.  This is the first population-based study to use 

WGS to examine transmission in the Canadian Arctic, refuting our own lab’s previous 

interpretation that suggested that there was ongoing transmission between villages of the 

Nunavik (2). The finding that the predominant circulating strain of TB was introduced into the 

region a century ago, with no evidence of increased virulence, suggests that clinical 

management of TB in this region can continue as per usual. As TB has undergone genome-wide 

relaxation of purifying selection since this time, this also challenges an emerging view in TB 

research that the epidemiological success of TB likely depends on underlying virulence of the 

bacteria. Instead, our data suggests that social and environmental conditions favourable to 

transmission may drive TB in this context, independent of bacterial factors. 
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Manuscript III, “Progression to tuberculosis disease increases with multiple exposures” is found 

in Chapter 7 and addresses another public health concern, pertaining to the extraordinary 

attack rate in the ‘outbreak’ village. This work was inspired by the observation that numerous 

cases had contact with multiple potential sources, and simultaneously, with multiple different 

genotypes as identified in Manuscript I. Previous studies have suggested a potential role for 

infectious inoculum in progression to disease, using proxy measures such as close versus casual 

contact (4) or occupational exposure (5). This dichotomous approach may result in substantial 

residual confounding; thus far, no studies have utilized a quantitative exposure metric. While 

many cite a 2-5% risk of progression within the first 5 years after infection (6-9), this study 

suggests that such a single estimate of risk may under-estimate the risk of progression in high-

incidence settings, where multiple exposures frequently occur. Thus, epidemiologic models and 

clinical assessment of risk of progression should potentially take the intensity of exposure into 

consideration.  

 

Overall, these three studies, along with two additional case-controls not included in this thesis 

(10, 11), represent the first comprehensive analysis to apply genomic, classical (via case-control 

design) and boots-on-the-ground field epidemiology to a single TB ‘outbreak’. 

 

Manuscript IV in Chapter 8, “Does choice matter? Reference-based alignment for molecular 

epidemiology of tuberculosis” was developed based on methodological questions that arose 

during the analysis of WGS data. In developing my bioinformatics pipeline for M. tuberculosis, 

one consideration was the choice of reference genome. It had been suggested that the use of a 

reference genome from a different lineage than the isolates under study could result in 

substantial loss of data, as sequenced ‘reads’ cannot be aligned to loci that are absent from the 

reference. However, high-quality, assembled reference genomes are not readily available for all 

lineages of TB.  Therefore, we examined the impact of such a decision on phylogenetic trees 

and estimates of transmission in an epidemiologic ‘outbreak’. Results of this study can easily be 

extrapolated from this unique low-diversity dataset to other environments with high strain 

variability, setting the standard for reference-based analyses of tuberculosis.  
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During the past few years, it has become largely accepted that WGS is the new gold standard 

for genomic epidemiology, despite the remaining questions in bioinformatics analysis. My final 

manuscript (Manuscript V, in Chapter 9), “The implications of whole genome sequencing for 

control of tuberculosis” goes beyond WGS as a tool for epidemiology to consider a new 

application: its potential utility for clinical diagnostics and prediction of drug resistance. While 

this new use of WGS data has recently garnered much interest from both researchers and public 

health departments alike, reviewing the available literature suggests that such applications of 

WGS for tuberculosis, while promising, would presently be premature. It cautions the need for 

ongoing phenotypic drug susceptibility testing until more information is available on resistance-

conferring mutations, an important message as some countries are considering eliminating other 

diagnostics and phenotypic drug susceptibility testing from their clinical workflow (e.g., (12)). 

 

This work was done in collaboration with the Nunavik Regional Board of Health and Social 

Services, and the village council of the community in Nunavik. Manuscripts I through III aim to 

address important questions and concerns expressed by these parties. Results have been 

disseminated back to the community and have ultimately helped inform public health 

interventions in this region. In utilizing WGS for this research, we have not only contributed to 

our understanding of TB transmission in the Canadian North but also addressed important and 

timely issues in the use of such data. As WGS has also become the gold standard for 

epidemiology of other pathogens, this work not only has implications for TB, but other 

infectious diseases as well.  
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FIGURE 1-1. Map of Canada. Nunavik is the Arctic region of Québec, indicated in red. 
Source of image: fr.wikepedia.org. 
 
 

 
FIGURE 1-2. Villages of Nunavik. All 14 communities of Nunavik are indicated. There are 
no roads connecting these communities. Most of the year, travel between these villages is 
restricted to small plane, with flights to and from Montréal connecting via Kuujjuaq. This 
region has two hospitals: one in Purvinituq, which services villages on the Hudson coast (west), 
and one in Kuujjuaq, which services villages on the Ungava coast (east). The remaining villages 
have full-time nursing stations. Source of image: 
https://www.mcgill.ca/hssaccess/trhpp/m1program/projects/17-nunavik 
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1.2  Objectives 

 

The overall aim of this thesis is to explore the use of WGS for the epidemiology of TB, increase 

understanding of transmission in the Canadian Arctic, and investigate methodological aspects 

of WGS data analysis. Specific objectives include:  

1. To resolve transmission in a major TB outbreak in Northern Quebec using WGS and 

clinical epidemiologic data (Manuscript I)  

2. To examine TB transmission within and across the villages of Nunavik, in order to 

address public health concerns about a new, hyper-virulent strain entering this region 

(Manuscript II)  

3. To examine risk factors, including exposure to different genotypes of M. tuberculosis 

as identified by WGS, for progression to active TB during the same outbreak 

(Manuscript III)  

4. To examine the effect of using different reference genomes on epidemiologic 

inferences (Manuscript IV)  

5. To evaluate the feasibility of WGS moving from an epidemiologic tool to a diagnostic 

test, and its potential to affect clinical management decisions (Manuscript V) 
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CHAPTER 2.  REVIEW OF THE LITERATURE PART 1 - TUBERCULOSIS 

 

2.1 Pathogenesis 

2.1.1 Etiology 

Tuberculosis is a disease caused by the bacterium Mycobacterium tuberculosis, in which 

humans are the only known reservoir. Pulmonary tuberculosis is the most frequent and most 

transmissible form of the disease (6). When a person with active pulmonary TB coughs, speaks 

or sings (13, 14), droplet nuclei 1-5 µm in size containing M. tuberculosis become suspended in 

the air, where they can remain for minutes to hours (15). When another individual inhales these 

droplets, M. tuberculosis passes into the lower respiratory tract and terminal alveoli, where 

infection may become established (16). Among immunocompetent hosts, it is often cited that 2-

5% will progress to active TB disease within first few years immediately following this 

infection (‘primary progressive disease’). The remainder enter an asymptomatic state called 

‘latent tuberculosis infection’ (LTBI), with an additional lifetime risk of progression of 5% (6).  

 

2.1.2 Risk factors for tuberculosis 

Exposure to M. tuberculosis is a necessary but not a sufficient cause of infection. Whether an 

individual actually develops infection and progresses to disease may depend on several factors, 

including the characteristics of the host, the source case, the environment and the bacteria.  

 

2.1.2.1 The host  

From the host perspective, the innate immune response is thought to play a critical role in 

preventing infection. It has been shown that establishment of infection is dependent on the 

ability of M. tuberculosis to enter host alveolar macrophages, a form of white blood cell, and 

evade the host immune system by preventing the fusion of phagosomes with lysosomes, 

altering anti-microbial effectors and subverting mechanisms that would usually result in 

programmed cell death (16). Humans with mutations in genes affecting the interferon-ϒ 

pathway, which is involved in priming macrophages (and T cells) in early infection, are not 

only more susceptible to tuberculosis but also highly susceptible to infection even by weakly 

virulent mycobacterium (17). Similarly, deficiencies in pattern-recognition receptors that would 
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usually detect mycobacteria and trigger signalling cascade leading to macrophage activation, 

have been linked to infection with M. tuberculosis and progression to disease (18).  

 

In addition to genetic factors, host immunity to M. tuberculosis infection may be mediated by 

other epidemiological characteristics. A recent meta-analysis showed that cigarette smoking 

was associated with 1.8-fold higher odds of LTBI (95% CI 1.5-2.2) and 1.49-2.87-fold higher 

odds of active TB disease compared to non-smokers (19). The physiological effects of smoking 

on the immune system are reviewed here (20). In brief, smoking impairs the mucociliary 

escalator (wherein microbes are trapped in mucous and subsequently moved up and out of the 

respiratory tract), potentially allowing increased M. tuberculosis bacilli to enter the lung. 

Smoking also drastically increases the number of alveolar macrophages, the target cells of M. 

tuberculosis infection. In addition, smoking impairs the production of pro-inflammatory 

cytokines by these macrophages when they are infected with M. tuberculosis, leading to 

decreased bacterial clearance (21, 22). Alcohol consumption can also mediate host immunity 

(23), and has been associated with both increased risk of infection and progression to disease 

(24). While many suggest this link is causal (24, 25), it is possible that these associations are 

confounded by increased exposure to M. tuberculosis (26). 

 

HIV infection is also an important factor. There is little epidemiologic evidence suggesting HIV 

increases the risk of infection (27), however, persons who are co-infected with TB and HIV are 

at much greater risk of progression to TB disease (28). The annual risk of progression to TB 

disease among those with HIV is estimated at ~10% (29) compared to a lifetime risk of 10% in 

the HIV-negative population. Not surprisingly, other diseases associated with immune 

suppression, such as diabetes or chronic kidney disease have also been associated with TB (30, 

31). 

 

While it is thought nutritional status can influence host immunity, a role for this in infection in 

unclear (16). While several studies have shown lower vitamin D3 levels in subjects with latent 

TB infection versus those without (32-34), for example, these were not consistent and flawed in 

design or analysis. Similarly, the impact (if any) of micronutrient status on progression to active 

TB is currently uncertain (16).  
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Finally, age is associated with active TB. As age and opportunity for exposure increases, the 

prevalence of latent tuberculosis infection increases. Children, particularly those infected under 

2 years of age (35) are at higher risk of progression to disease. The elderly are also at elevated 

risk compared to other age groups, due to declining immune function with age 

(‘immunosenescence’) (36).  

 

2.1.2.2 The source 

A source case is an individual who successfully transmits M. tuberculosis, resulting in 

infection. Pulmonary and laryngeal TB are the most contagious forms of this disease; other 

forms of extra-pulmonary TB are usually only transmitted by aerosolization of bacteria found in 

abscesses (13). The presence of bacteria in expectorated sputum has been associated with 

contagiousness of the source case. A person is classified as having ‘sputum smear positive’ 

disease if bacilli are visible under a microscope after staining with either an acid-fast 

fluorochrome dye (such as auramine O, for fluorescence microscopy) or carbolfuschin acid-fast 

stains (such as Ziehl-Neelsen, for conventional microscopy) (37). Conversely, a person is said 

to have ‘smear negative’ disease when such bacilli are not visible. Persons with sputum smear 

positive pulmonary TB can expectorate as much as 106 to 107 acid-fast bacilli per mL of sputum 

per day (38) and it has been estimated that an untreated sputum smear positive TB case infects 

10 persons per year (39). While persons with smear negative disease expel lower amounts of 

bacteria, at <103 bacilli per mL, they are also contagious - albeit to a lesser degree (40). 

 

Transmission has also been associated with a cavity on chest x-ray (41). As pulmonary 

tuberculosis becomes more advanced, necrosis of lung tissue can result in formation of large, 

air-filled spaces known as cavities. These cavities harbor large numbers of bacilli compared to 

other lung tissue; a single cavity can contain 108 bacteria, while a person with extensive disease 

can have as much as 1012 (6).  

 

The presence of cough has also been suggested as a key factor in transmission (6), though there 

is surprisingly not much supporting evidence (reviewed in detail in (42)). In 1967, a small study 

evaluated nocturnal cough frequency in 63 patients. Increased cough was associated with 
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increased tuberculin skin test (TST) positivity in household contacts under the age of 15, 

however this was not statistically significant (p=0.11). In this study, sputum smear had a 

stronger association with infection (p<0.01) (43). Another more recent study has investigated 

the force of (voluntary) cough in tuberculosis patients; stronger cough and increasing sputum 

smear grade (i.e., greater numbers of bacilli on microscopy) were associated with having 

aerosol-based cultures positive for M. tuberculosis, but neither was included in final 

multivariate analyses (44).   

 

Children are generally considered less contagious as they are thought to have predominantly 

paucibacilliary disease (caused by very few bacteria). However, transmission can rarely occur 

(e.g., (45)).  

 

2.1.2.3 The environment 

Adequate ventilation reduces the amount of droplet nuclei in the air, thereby decreasing the 

number of bacteria to which one is exposed. Modelling studies based on real-life data suggest 

transmission would decrease in prisons and other settings if ventilation were to increase (46, 

47), while lower ventilation, as measured in a hospital setting, was associated  with increased 

risk of M. tuberculosis infection in health care workers (48). 

 

In addition to ventilation, the proximity to the source case plays a role in infection. In an 

outbreak on a naval ship in the 1960s, crew members who resided in the same quarters as 

individuals with active TB disease were more likely to develop infection and progress to active 

TB disease once infected compared to those in other compartments, even with shared 

ventilation (49). A recent meta-analysis continues to support these results, showing that 

infection occurred in ~30-50% of ‘household’ and ‘close’ contacts (though the definitions of 

these varied widely by study) (27), while the risk was ~10% lower for ‘casual’ contacts in high-

income settings.  

 

2.1.2.4 The bacteria 

Seven lineages of M. tuberculosis have been identified (50, 51). It has been suggested that 

different lineages may vary in their ability to cause infection and subsequent disease. This is 
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partly based on animal studies, which have illustrated increased pathogenicity of Beijing strains 

(a subset of lineage 2) (52). Such strains have also been shown to have a higher mutation rate 

and increased frequency of drug resistance mutations in vitro (53). While some epidemiological 

data suggests that this strain or sublineages thereof may contribute to higher rates of 

transmission compared to others (54-56), these data are not consistent across different 

populations or geographical regions (57). Many of these studies also rely on detected cases as a 

measure of transmission, which may reflect increased progression to disease rather than 

increased propensity to infect. In agreement with the latter, a study in The Gambia showed 

similar infectivity but decreased progression to active TB disease with M. africanum compared 

to other TB lineages (58).  

 

2.1.3 Preventing progression to active disease 

It is currently recommended that persons with LTBI undergo a minimum of 6 months of 

isoniazid prophylaxis to prevent future progression to active TB disease (59). A 4-month course 

of rifampin has also been proposed more recently, as an alternative to this treatment (6). In low-

incidence countries, the acceptance of LTBI treatment is thought to be a cornerstone of 

population-level TB control. However, at the level of the patient, the decision to administer 

LTBI prophylaxis depends on the individual’s underlying risk of progression and potential 

contraindications for treatment (6). 

 

2.2 Epidemiology 

2.2.1 The global epidemiology of TB 

Despite being a treatable disease, there were 9 million incident cases of TB worldwide in 2013, 

with 1.1 million deaths in the HIV-negative population (60).  Control of tuberculosis is 

dependent on rapid diagnosis of contagious cases and access to appropriate treatment. However, 

programmatic limitations make this difficult in many countries of the world. Reliance on 

sputum smear microscopy for detection of TB in some regions means that numerous smear 

negative cases who are also capable of infecting others (40) will - at least initially - be missed. 

Detecting and treating latent TB infection is also beyond the current capabilities of many 

countries, potentially exacerbating the problem as it is thought that ~10% of these will progress 

to active TB during the course of their lifetime without prophylaxis. The rise of HIV has also 
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contributed to the TB epidemic, particularly in African countries. In this region, 34% of all TB 

cases were HIV co-infected (60). Multi-drug resistant (MDR) TB, defined as resistance to two 

of the first-line anti-chemotherapeutics, rifampin and isoniazid, is also becoming an increasing 

concern; MDR-TB treatment is considerably longer than conventional therapy, has more side 

effects and is often unsuccessful (61). The World Health Organization (WHO) estimated that 

480,000 individuals were diagnosed with MDR-TB in 2013 (60). It has recently been proposed 

that 95.9% of incident MDR cases are in fact due to transmission of an MDR strain (95% 

uncertainty interval 68.0-99.6) (62), rather than acquired drug resistance (i.e., resistance 

developed during treatment due to inadequate regimes or poor adherence) as was the previous 

contention.  

 

2.2.2 Tuberculosis in Canada 

Classified as ‘low-incidence’ by the WHO, Canada is one of 33 countries and territories in the 

world targeting TB elimination by 2035 (63). Yet, despite an overall rate of 4.4/100,000 in 

2014 (64), certain subpopulations continue to experience much higher rates of TB in Canada. 

Aboriginals and the foreign-born represented 21% and 69% of the TB cases in Canada in 2014 

despite only comprising 4% and 22% of the Canadian population, respectively (64). The causes 

of these high rates of TB are thought to be distinct, with TB in the Aboriginal population 

primarily due to ongoing transmission and TB in the foreign-born primarily due to reactivation 

of remote infection from one’s country of origin (65). The distinction between ongoing 

transmission and reactivation is critical, as different public health interventions are required to 

reduce TB depending on the cause. 

 

2.2.3 Tuberculosis among the Inuit 

The Inuit are one of the 3 Canadian-born Aboriginal populations, along with the Métis and First 

Nations people. Approximately ¾ of Inuit reside in the Arctic, spanning Labrador to North 

West Territories (66). They represent the smallest proportion, at 4.2% compared to the Métis 

(32.3%) and the First Nations (60.8%), and comprise only 0.2% of the total population of 

Canada (66).  
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The first documented TB outbreak in the Canadian Inuit occurred in 1929 in Kugluktuk, in the 

territory now known as Nunavut (67). TB cases were subsequently reported in many Inuit 

communities, particularly those with the most frequent contact with Europeans (68). Before 

1946, there was no systematic treatment of TB in the Canadian Inuit, thus the number of deaths 

attributed to TB in the North West Territories (NWT) was reported at 71.8 per 10,000 in 1950 

(68). In the early 1950s, however, anti-tuberculosis treatment became available and aggressive 

TB control measures were implemented, with Inuit diagnosed with TB sent South to sanatoria 

for treatment. In addition, chest x-ray screening was initiated in some regions to identify active 

cases, and investigation of persons exposed to smear positive cases was conducted to identify 

individuals with prevalent disease (68). In 1968, collection of sputum samples from all persons 

with cough also became part of care (68). Over the course of the 1960s, rates of TB dropped in 

NWT from 109.5/10,000 to 17.7/10,000 (68). Despite this decline, in 1969, the rate of TB was 

still 50 times greater than the general Canadian population (69). 

 

TB incidence in the Inuit plateaued during the 1980s (2). Since this time, however, it has 

steadily increased, such that in 2014, the incidence was 198.3 per 100,000 (64). Despite their 

small population size, the Inuit currently experience the highest burden of TB in Canada, 

approximately 330 times that of the Canadian-born non-Aboriginal population (64). A study in 

Nunavik, the Arctic region of Quebec from 1990-2000 suggested that the majority are due to 

ongoing transmission, as has been seen in other Aboriginal populations (2). It remains unclear 

why the rates of TB continue to be so drastically elevated in the Inuit, as there is no multi-drug 

resistance and minimal HIV co-infection. A better understanding of transmission dynamics and 

associated risk factors in this context is needed. 

 

2.3 Approaches for delineating transmission 

As previously discussed, TB disease can occur rapidly following initial infection, reflecting 

recent transmission, or years later in a process known as ‘reactivation’. A person can also be 

treated for TB and have a recurrence of the disease, either due to relapse or reinfection. The 

ability to discriminate between these events is crucial for TB control, as the population-level 

interventions differ substantially.  
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Clinical medicine predominantly relies on passive case finding, wherein patients self-present 

for evaluation and diagnosis. As the reasons for presenting are most often symptom-related, this 

approach can miss asymptomatic or minimally symptomatic individuals, who are still capable 

of transmitting to others. When most cases in a community are attributable to transmission, TB 

control programs should intensify efforts to find and treat these individuals. This involves a 

shift from conventional passive to active finding. Epidemiologic data can be used to identify 

clusters of transmission and associated risk factors, and therefore target public health 

interventions such as increased surveillance or screening to high-risk groups. In contrast to this, 

where the majority of cases in a community are attributable to reactivation of remote infection, 

TB control programs should focus on detecting persons with LTBI. Subsequent interventions 

should target acceptance of prophylaxis and treatment adherence, to prevent future instances of 

reactivation.  

 

Recurrent TB can occur due to either relapse (of the same infection) or reinfection (with a new 

bacterium). The ability to distinguish relapse from reinfection is critical. Relapse after treatment 

suggests that therapy was inadequate, either due to inappropriate regime, adherence or drug 

malabsorbance, and requires intervention at potentially both patient and population levels. 

Recurrence of TB due to reinfection is more common in high-incidence settings, when there is 

ongoing transmission in the community, and hence, more opportunity for people previously 

treated to become re-infected. 

 

In the following section, I will discuss different approaches that have been used to investigate 

transmission. 

 

2.3.1 Contact investigation 

In countries with low TB incidence such as Canada, contact investigations are routinely 

employed when a person is diagnosed with active TB. Such investigations aim to identify 

prevalent secondary cases as well as screen and treat individuals with M. tuberculosis infection 

(70, 71). Generally, a stone-in-pond principle is applied (72), wherein contacts are prioritized 

by proximity and likelihood of infection. If a contact is found to have TB infection or disease, it 

is typically attributed to the case under investigation. In the special circumstance wherein a 
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young child is first diagnosed with active TB, a ‘reverse’ contact investigation typically ensues, 

in order to identify the likely source of transmission. 

 

There are several limitations to using this approach alone for delineating transmission. Firstly, it 

relies on the naming of contacts by the putative source case. Fear of social stigma, or contact 

associated with illicit behaviours may reduce the willingness of individuals to share such 

information (73-75), thereby limiting its efficacy to detect both secondary infections and 

disease. Secondly, because the investigation is based on proximity of contact to the putative 

source case, i.e., transmission from this source is presumed, additional potential sources of 

transmission (76) may be overlooked. This method is also unable to discriminate recent from 

remote infection. Infection can be detected by administering tuberculin skin tests during contact 

investigation. However, in absence of a recently documented negative test result, a positive 

result at this time could reflect transmission at any point during an individual’s lifetime. 

 

2.3.2 Molecular epidemiology 

2.3.2.1 Methods 

The idea of using repetitive insertion sequences (IS) in the M. tuberculosis genome to delineate 

transmission was first proposed in 1990 (77). IS1081 and IS6110 were shown to be present 

exclusively in species within the M. tuberculosis complex but the latter demonstrated high 

strain-to-strain variability, making this an ideal target for epidemiology (78). 

 

Called ‘restriction fragment length polymorphism’ (RFLP), this molecular genotyping 

technique (described in (78)) involves extracting DNA from cultured M. tuberculosis. DNA is 

then digested using a restriction endonuclease (PuvII), which cleaves at the IS6110 sequence. 

Gel electrophoresis is used to separate the DNA fragments by molecular weight. After transfer 

of these fragments to a membrane, those containing the IS6110 element are identified using a 

DNA probe that tags the IS element on the right side of where it was cleaved. 

Chemiluminescense is then used to detect these probes, resulting in a banding pattern produced 

known as a ‘DNA fingerprint’. Each patient’s bacteria (referred to as an ‘isolate’) has its own 

fingerprint, facilitating comparison between the bacteria from one person and another. 
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In defined outbreaks, isolates from different patients were found to share the same DNA 

fingerprint (79). Conversely, randomly selected isolates from the same community had different 

DNA fingerprints. Thus, it has been inferred that when isolates from different patients share the 

same fingerprint (or have up to 1 difference, in some studies), this represents recent 

transmission. Conversely, when isolates present different fingerprints, transmission between the 

two individuals can be refuted. If no other isolates are identified with the same fingerprint in the 

same geographical location and within a reasonable timeframe, a case is attributed to 

reactivation of remote infection. Studies have shown the half-life of RFLP (a measure of the 

rate of change these patterns have in patients over time) approximately 2-3 years, supporting 

this interpretation (80, 81).  

 

The number of IS6110 bands present on RFLP is an important consideration. Strains with <6 

bands (‘low-copy’) have poor discriminatory power, as there are fewer bands to compare 

between isolates. In this scenario, RFLP should be supplemented with a second molecular 

typing method (82). Such methods include mycobacterial interspersed repetitive units (MIRU) 

and spoligotyping (reviewed in detail in (82)). In brief, MIRU genotyping utilizes polymerase 

chain reaction (PCR) and pulse field gel electrophoresis to examine the size and number of 

repeated sequences in 24 different loci in the genome. The result is a 24-digit ‘fingerprint’ that 

can be utilized in similar fashion as RFLP for delineating transmission. The discriminatory 

power of MIRU is slightly lower compared to RFLP, except when low-copy strains are 

included (83, 84). Spoligotyping,  an alternative method, exploits the presence of spacer 

sequences that separate repeats within the direct-repeat locus of the M. tuberculosis genome 

(82). By examining the presence or absence of specific spacers in the genome, strains can be 

compared. However, convergent evolution of these sequences (85) in unrelated strains can limit 

their utility in molecular epidemiologic studies, as matching patterns may not be indicative of 

recent transmission. 

 

2.3.2.2 Important contributions to TB epidemiology 

Molecular epidemiologic methods have made significant contributions to our understanding of 

TB transmission. Numerous studies have utilized these tools to investigate transmission, either 

to affirm epidemiologic links between patients or identify as yet unknown clusters of 
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transmission. For example, in a study of hospitals in New York, analysis of RFLP revealed that 

a high proportion of TB in health care workers was due to previously unsuspected occupational 

transmission (86). In another study in San Francisco, authors used RFLP to demonstrate that 

sputum smear negative cases, previously considered minimally contagious, were actually 

responsible for 17% of transmission (95% CI 12-24%) (40). Cross-contamination of patient 

samples in the diagnostic laboratory was also identified using RFLP, leading to the 

recommendation that possible laboratory contamination should be investigated in all persons 

with sputum smear negative results and single positive culture (87, 88).  

 

At the population level, these methods have been used to evaluate trends in clustering over time 

(e.g., (89-91)). In San Francisco, Jasmer et al. found clustering decreased from 10.4 cases per 

100,000 in 1991 to 3.8 per 100,000 in 1997 following initiation of additional TB control 

measures (89). Over the same period of time, the incidence of unique (non-clustered) cases was 

stable. This provided a natural control, as the TB control measures implemented would not be 

expected to influence rates of reactivation disease. In another population-based study, 

Borgdorff et al. (91) used RFLP to investigate the factors associated with declining TB rates in 

the Netherlands. Examining all cases diagnosed over 14 years, authors found that the decline 

was predominantly due to fewer instances of reactivation among those born in the Netherlands, 

in line with country-wide data on LTBI prevalence. Using the same dataset, authors also 

estimated the incubation period for progression from infection to disease among secondary 

cases. Out of 1095 epidemiologically-linked secondary cases who developed disease in the 15 

years following exposure, 45% had progressed within the first year, 62% within 2 years and 

83% within 5 years (92). This suggests that the estimated 10% risk of progression among those 

infected with M. tuberculosis is not evenly distributed over time. As risk appears to be highest 

in the first years immediately following infection, administration of LTBI prophylaxis is likely 

most warranted during this time.   

 

In addition to delineating transmission networks and population-level, molecular methods have 

also contributed to our understanding of relapse versus reinfection. Population-based studies in 

low-incidence settings have demonstrated that most recurrent TB is due to relapse, rather than 

reinfection (e.g., (93)). It is not surprising that reinfection correlates with the prevalence of 
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active TB in a community, however other factors such as HIV also influence this risk. Using 

RFLP, a study in Malawi found that reinfection caused 12/23 recurrences of TB in HIV-

positive patients compared to only 1/16 among HIV-negative patients (94). Without molecular 

genotyping techniques, distinguishing between these two events would be impossible. 

 

Despite these important contributions, recent data have challenged the discriminatory ability of 

these tools. A newer method, whole genome sequencing, has shown resolution beyond that 

obtained with identical DNA fingerprints. Discussed in detail in the following chapter, the rise 

of WGS has led to a paradigm shift in the field of molecular epidemiology.  
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CHAPTER 3. REVIEW OF THE LITERATURE PART 2 – WHOLE GENOME 

SEQUENCING AND GENOMIC EPIDEMIOLOGY OF TB 

 

3.1 The new era of “genomic” epidemiology 

The first complete bacterial genome, Haemophilus influenzae, was sequenced in 1995 over a 

period of several months using a method called ‘Sanger sequencing’ (95). The estimated cost of 

sequencing the 1.8 Mega-base genome was 48 cents per base-pair, or ~$864,000. Since this 

time, considerable scientific advances have been made in sequencing technology (96, 97). 

While classical Sanger-based methods relied on first synthesizing and then detecting the DNA 

sequence, ‘next-generation sequencing’ (NGS) performs both tasks simultaneously. The 

development of high-throughout approaches has provided the capacity to sequence large 

numbers of genomes within days, and while was ~120 GBP (12) per genome in 2015, this cost 

continues to decline. This sequencing revolution has fuelled the use of WGS in what has come 

to be termed ‘genomic epidemiology’.  

 

3.2 An introduction to whole genome sequencing 

Classical molecular typing methods interrogate ~1% of the M. tuberculosis genome. In contrast, 

whole genome sequencing allows the interrogation of all 4.4 million base-pairs. The following 

is a brief introduction to this genotyping tool, to facilitate understanding of the epidemiologic 

applications described in this chapter. Please see Chapter 4 for a detailed description of WGS 

methodology and techniques used throughout this thesis. 

 

Notwithstanding the fact that recent attempts have been made to obtain M. tuberculosis 

sequence reads from raw clinical samples (98, 99), (98, 99), to obtain high-quality WGS data 

for epidemiologic purposes, genomic DNA must currently be extracted from pure cultures of 

M. tuberculosis. Once extracted, this DNA is fragmented into segments of a desired size, which 

are amplified, and then sequenced by synthesis. The sequences generated from these fragments 

of DNA are called ‘reads’. Long-read sequencing platforms (such as PacBio) can produce reads 

that are >10 kilobases in length and optimally suited for completing genomes, in a process 

called ‘de novo assembly.’ This entails comparing each read with one another, and using 

overlapping segments to determine the complete genomic sequence. Short-read sequencing 
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platforms, such as the Illumina MiSeq, can produce reads that are up to 300 bp in length. Such 

reads are typically aligned (‘mapped’) to a pre-existing, complete reference genome to re-build 

the genome under investigation. Short-reads tend to have lower error rates per nucleotide than 

long read sequencers (97), but are not optimal for long, repetitive sequences; accurate mapping 

is difficult because short-reads do not span such regions. Therefore, these regions are frequently 

excluded from analysis (100, 101). 

 

The ability to perform a reference-based analysis is dependent on availability of high-quality, 

complete genomes for alignment. Because some such genomes are available for M. tuberculosis 

(e.g., lineage 4 references H37Rv and CDC1551), most genomic epidemiology studies have 

utilized short-read data and aligned results to one of these references genomes. The 

consequences of using a potentially divergent reference, i.e., from a different lineage of M. 

tuberculosis, have not previously been investigated and are therefore examined in Chapter 8. 

As many such aspects of data analysis have yet to be validated, this represents an important step 

needed for bioinformatics pipeline standardization.  

 

The precise steps and tools utilized in current bioinformatics pipelines vary widely between 

studies. However, overall most WGS analyses will perform some degree of quality control both 

before and after the initial alignment. These may include removing PCR duplicates retained 

from the library preparation stage and locally re-aligning around insertions and deletions. 

Single nucleotide polymorphisms (SNPs, differences in a single base) are then identified 

(‘called’) compared to the reference genome. After this, SNPs are then annotated to determine 

the location and functional implications of the mutations identified. These SNPs are then 

filtered for quality to reduce the number of false positives due to mapping or sequencing error, 

or to exclude SNPs from certain genes, as warranted. This final SNP dataset is then used to 

compare different M. tuberculosis genomes for epidemiologic purposes. 

 

3.2.1 Key outputs of whole genome sequencing for epidemiology 

3.2.1.1 SNP matrices  

SNP matrices provide the pairwise distances, measured in single nucleotide polymorphisms, 

between isolates. These may be used to help resolve transmission, discussed further in section 
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3.5. As shown below in Figure 3-1, some isolates may have zero or few SNPs between them, 

while other may have many. The implications of this are discussed below in section 3.2.3.  

 

 
FIGURE 3-1. Example of a pairwise SNP matrix. 

 

3.2.1.2 Phylogenetic trees 

Phylogenetic trees, also known as ‘dendograms’ are visual representations of the relatedness 

between bacterial isolates. These can be produced using data from classical molecular typing 

methods, as well as WGS. In the latter approach, SNPs differentiating each bacterial isolate 

from the reference genome are used to produce these trees via a variety of methods. Closely-

related isolates, which share unique SNPs that are not found in any other isolates, are grouped 

together in ‘clusters’. Phylogenetic trees can be used to help rule out transmission, as patients 

with isolates in different clusters are very unlikely to have transmitted to one another. In 

contrast, transmission from person to person is more likely to have occurred within clusters.  
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   Leaf  Branch        Node    
 
FIGURE 3-2 Example of a phylogenetic tree. Distinct clusters are indicated, with all isolates 
from a cluster depicted in the same colour. Branches with bootstrap proportions under 80% 
(102), have been collapsed as these indicate low accuracy. As such, branch lengths do not 
correspond to absolute genetic distance. However, it can be interpreted that isolates (‘leaves’ or 
‘tips’) that belong to the same cluster are most closely related to one another, as these share the 
same most recent node. Moving proximally in the tree from the orange tips, the first node, 
therefore, indicates a missing recent common ancestor of these orange isolates. The second 
proximal node is shared with the isolates in pink. This indicates a common ancestor between 
the orange and pink, which occurred at some time further in the past. 
 

3.3 Comparing WGS to classical molecular typing methods for tuberculosis  

As discussed, using classical molecular typing methods, recent transmission was a dichotomous 

event; if two patterns on RFLP, MIRU or spoligotyping were the same or highly similar, this 

was suggestive of recent transmission between the pair, while different patterns indicated 

reactivation of remote infection. In 2009, a study by Niemann et al. (103) challenged this 

interpretation.  Applying WGS to two RFLP-identical isolates with differing drug susceptibility 

profiles, authors revealed that the pair were differentiated by 130 SNPs and a large deletion, 

and therefore definitively refuted that they were part of the same transmission network.  
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Shortly afterwards, WGS was applied to a complex TB outbreak in the Netherlands (104). All 

104 isolates within this outbreak, spanning over 18 years, shared identical RFLP fingerprints. 

Contact investigation only detected two probable transmission chains, with directionality of 

transmission between individuals and other potential networks remaining largely unresolved. 

By performing WGS on 3 outbreak isolates, authors were able to identify 8 SNPs that could be 

used to discriminate these isolates. Testing the remaining 101 isolates from the outbreak for 

these 8 SNPs revealed 5 distinct clusters of transmission within the single homogenous group 

previously identified by RFLP, and combined with clinical epidemiologic data, increased 

understanding of chains of transmission.  

 

The following year, in 2011, WGS was utilized for the first time to describe an entire outbreak 

in British Columbia (3), with 32/37 outbreak isolates sequenced as well as 4 historical genomes 

from the same region. Whereas MIRU identified one outbreak with one probable source case, 

WGS revealed two distinct groups of transmission that had been circulating in the community 

for at least 5 years. This study was the initial impetus for using WGS in analysis of the 

Northern outbreak.  Since this time, the higher resolution of WGS in comparison to classical 

methods has since been further substantiated by a number of studies (101, 105-109).  

 

3.4 Using WGS to determine transmission 

In addition to more detailed resolution of clusters, and in contrast with classical molecular tying 

methods which can only suggest or refute transmission, WGS may be used to infer 

directionality of such events. New mutations in the M. tuberculosis genome are acquired over 

time, and are not thought to revert back to wild-type (110). As M. tuberculosis is thought to be 

highly clonal, with minimal horizontal gene transfer (111, 112) or homologous recombination 

outside the repetitive proline-glutamate (PE) and proline-proline-glutamate (PPE) genes (113), 

one can follow the acquisition of SNPs as TB is transmitted from person to person, potentially 

providing greater accuracy in delineating chains of transmission. The maximum number of 

SNPs that can occur during such transmission, however, may depend on a number of factors. 
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3.4.1 The molecular clock of M. tuberculosis and SNP thresholds 

An important consideration in determining transmission via WGS is the rate at which mutations 

occur over time, i.e., the ‘molecular clock’ of M. tuberculosis. Studies in macaques have 

suggested a rate of ~0.39 SNPs per genome per year for active TB (95% CI 0.16-0.80), with 

similar results for during latent infection in these same experimentally infected animals (53) 

Using pairs of human isolates collected longitudinally from the same patients as well as across 

patients in household outbreaks in the UK, Walker et al. estimated the mutation rate of M. 

tuberculosis to be 0.5 SNPs per genome per year (95% CI 0.3-0.7) (105) in accordance with the 

study by Ford et al. (53).  In contrast, during latent infection, a small study involving 4 pairs of 

patients by Colangeli et al. suggested that the mutation rate in humans decades after exposure 

may be one log slower than in the two years preceding active disease (114). 

 

Based on these observations, authors have proposed thresholds for how many SNPs can 

separate cases that are linked by transmission. For instance, Walker et al. classified isolates 

from cases separated by 12 or more SNPs as unlikely to be transmission, called those with 6-12 

SNPs as indeterminate and classified isolates separated by 5 or less SNPs as probable 

transmission. Combining household outbreaks and community-based MIRU clusters, all 69 

pairs of cases with epidemiologic links suggestive of transmission had isolates within 5 SNPs; 

however, 62 of 75 pairs (83%) without epidemiological links also had isolates under this 

threshold making the interpretation of this result unclear.  

 

A similar mutation rate (0.4 SNPs per genome per year) was identified by Roezter et al., 

wherein authors sequenced 86 isolates from a single RFLP-defined outbreak in Germany. 

Classical typing methods suggested a single source, in contrast to both the spatial distribution of 

cases and contact investigation data. Using WGS, authors resolved the ‘outbreak’ into 7 distinct 

clusters of 2 to 24 isolates. The majority of these clusters were closely related (called the 

‘Hamburg clone’). By examining the accumulation of SNPs over time (and deletions), 

transmission events leading to introduction and subsequent dissemination of this clone in two 

other cities were identified. The resolved clusters also agreed with contact investigation data, 

where epidemiological links between 31 patients were resolved in 8 different transmission 
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chains. Within these pairs of patients, a maximum of 3 SNPs distance was seen, however no 

time period between these pairs was provided.  

 

Another study in San Francisco, while not directly estimating the molecular clock, examined 

transmission in a 22-month outbreak involving 9 cases (115). WGS revealed 0-2 SNPs between 

all direct person-to-person transmissions, and facilitated the identification of a previously 

undiscovered epidemiologic link between two cases of probable transmission.  

 

Bryant et al. inferred a slightly slower rate, at ~0.3 SNPs per genome per year, using isolates 

from 199 patients in Amsterdam. However, this rate varied substantially by method used and 

between isolates. 185 of these patients had known epidemiologic links and comprised 42 RFLP-

clusters, while the remaining 14 were from the same clusters, but had no known links. Those 

with epidemiologic links had isolates separated by a median of 2 SNPs (range 0-149 SNPs). As 

in the UK study (105), however, low numbers of SNPs were frequently found between pairs 

lacking epidemiologic support. 82 of such pairs, separated by a maximum of ~5 years, had 0 

SNPs between them. While undetected transmission is a possibility, without epidemiologic 

confirmation, the WGS data alone was insufficient to ‘rule in’ transmission. In contrast, authors 

were able to use WGS to effectively ‘rule out’ such events; one pair of RFLP-identical isolates 

from patients with a known epidemiologic link were 149 SNPs apart as well as 2 independent 

deletions, refuting transmission.  

 

3.4.2 Within-host diversity: micro-evolution and/or mixed infection 

Another variable that may complicate our interpretation of transmission is the potential for 

within-host diversity. Small mutations may occur within a host as M. tuberculosis replicates 

over time, such that some bacteria have the original allele while others in the same host have 

acquired a SNP at that locus. This is called ‘micro-evolution’. Perez-Lago et al. (116) found 

that repeat respiratory specimens obtained within +/- 1 day from the same patients can differ by 

as many as 7 SNPs. SNPs were also found between respiratory and non-respiratory specimens 

from the same patients, albeit to a lesser degree. However, as this study was based on samples 

collected from only 4 patients, it may not be truly representative of within-host diversity across 

different sites. Additionally, while authors suggest this diversity is due to micro-evolution 
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within the host, patients were pre-selected based on MIRU variability between samples. 

Depending on the local strain diversity and prevalence of TB, an alternative explanation for 

such variation might be infection from >1 source (‘mixed infection’), as identified in (117).   

 

Within-patient diversity was also examined in Walker et al. (105), using 49 pairs of cross-

sectional isolates from respiratory and non-respiratory sites collected within the same month. In 

this study, 79% of pairs were 0 SNPs apart, while 96% of pairs (47/49) were <5 SNPs. For the 

remaining 4 isolates, one pair was separated by 11 SNPs, while the other was separated by >400 

SNPs, indicative of either mixed infection or laboratory contamination. No cross-sectional 

comparison was made between respiratory samples from the same patients. Paired longitudinal 

respiratory samples were available from 30 patients, with 28 of these presenting 0-10 SNPs 

difference. However, such samples were taken 6 to 102 months apart with no time-stratified 

data provided. 

 

Transmission does not typically occur from extra-pulmonary sites (excepting during invasive 

medical procedures). The diversity between respiratory samples from the same host, rather than 

between respiratory and non-respiratory sites, is therefore of primary interest as this can 

potentially be transmitted forward. Regardless of the cause, both micro-evolution or mixed 

infection may obscure transmission, influencing epidemiologic inferences. Methods to detect 

such diversity are therefore discussed in Chapter 4. 

 

3.4.3 Sampling 

Molecular (or genomic) epidemiologic studies are typically limited by the number of isolates 

available from cases, as well as the time period and geographical location under study. While 

no studies have been published examining the effects of sampling using WGS data, previous 

work conducted using RFLP indicated that the sampling fraction, (i.e., the proportion of total 

cases included in the study) has the greatest influence on clustering, with a higher proportion of 

clusters identified as sampling fraction increases (118, 119). Identifying a cluster of 

transmission requires that at least 2 isolates from the same group are included in the study. The 

impact of sampling fraction on the proportion of cases clustered and estimates of recent, 

ongoing transmission are greater when the true underlying size of the clusters in a community is 
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small (118). In this scenario, as lower fractions of cases are sampled, a higher proportion of 

‘true’ clustered cases are likely to be misclassified as ‘unique’. Another study, using computer 

simulations to model transmission under settings with varying degrees of TB transmission and 

cluster size, suggested that as sampling fractions decreased, the odds ratios for risk factors 

associated with clustering were systematically biased towards the null (120). Conversely, using 

real data from >12,000 TB cases over 15 years in the Netherlands, Borgdorff et al. found that 

risk factors for clustering were similar in magnitude - albeit less precise – when randomly 

sampling as low as 40% of cases. Authors also compared odds ratios for clustering when 

restricting by study duration (1, 2, 4 or 8 years), or geographical boundaries (the whole country 

vs. by postal code or infectious disease control unit) (119), with generally stable results; 

because risk factors for clustering were also risk factors for belonging to a large cluster, this 

minimized the impact of misclassification of isolates from smaller clusters that were undetected 

at lower sampling fractions. Given these analyses are based on a low-incidence setting, in an 

environment with higher rates of clustering and transmission, such stability of the odds ratios 

may not occur.  

 

3.4.4 Laboratory cross-contamination 

As with classical molecular typing methods, it is important to rule out laboratory cross-

contamination.  This is an issue in mycobacteriology labs, as a number of patient specimens are 

processed together (called ‘batched processing’), with the resultant risk that a single positive 

sample can inadvertently spill into cultures for other specimens if there is a break in laboratory 

technique.  In the WGS era, isolate pairs separated by zero SNPs should be investigated to 

determine if these were processed the same date, as part of the same clinical workflow in the 

same laboratory. Potential cross-contamination should be suspected particularly for patients 

with smear negative disease and a single positive culture. 

 

3.4.5 Local strain diversity 

Local strain diversity may be an important consideration in determining whether cases are due 

to transmission or reactivation. Analysing M. tuberculosis from patients in Arkansas in 1992-

1993, authors found that 78 (33%) of cases with RFLP and secondary probe, pTBN12, shared 
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the same fingerprint with at least one other patient but only 42% of secondary cases had 

epidemiologic links with a member of the same cluster (121). Of those without links, the 

majority (64%) had never resided in the same counties as the other members of their clusters. 

They were also older than those with epidemiologic links (mean age 58 +/-16 versus 45 +/- 14) 

and 31% had a history of previous infection or exposure to TB decades in the past. This 

suggested to public health that their current TB episode was a result of remote activation of 

infection that had occurred decades prior, rather than ongoing transmission. A similar case-

control study in Québec further highlights the importance of local strain diversity in 

interpretation of molecular (or genomic) epidemiologic data (122). Compared to controls, all 77 

cases shared a unique mutation in the pncA gene, conferring resistance to pyrazinamide. These 

cases had similar fingerprints on RFLP, and identical spoligotype patterns. As there were no 

epidemiologic differences between cases and controls, the latter representing a diversity of 

genotypes and lacking the pncA mutation, the appearance of this drug-resistant strain was 

attributed to reactivation of a previously endemic strain rather than ongoing transmission. 

  

3.5 WGS to differentiate relapse from reinfection 

Two studies have utilized WGS to differentiate relapse from reinfection (117, 123). As part of 

the REMoxTB randomized controlled trial, Bryant et al. examined pairs of isolates from 47 

patients diagnosed with recurrent TB in Malaysia, South Africa and Thailand (117). Excluding 

5 pairs wherein the second culture was likely laboratory contamination, 33 pairs were identified 

as ‘relapse’ by WGS. All had fewer than 7 SNPs between them. Surprisingly, 6 of these pairs 

were classified as ‘reinfection’ by MIRU – one with 4 MIRU loci difference despite having 

zero SNPs between isolates. This suggests that misclassification is possible between MIRU-

defined clusters, as well as within. In terms of reinfection, 3 pairs of isolates were classified 

thus by both typing methods, with >1300 SNPs and at least 3 MIRU loci difference between 

them. The remaining 6 pairs were determined to be mixed infection, 4 of which were 

undetected by MIRU. 

 

Similar results were found in a study by Guerra-Assuncao et al. in Malawi (123). Considering 

only pairs of isolates from different episodes of TB (i.e., recurrence), there was a clear divide 

between relapse and reinfection. All pairs classified by WGS as ‘relapse’ were under 9 SNPs 
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while those classified as reinfection were all separated by >100 SNPs. Including pairs of 

isolates from the same episode of TB, all under 9 SNPs had identical RFLP or a single band 

difference, while all with >100 SNPs had more than one band difference on RFLP. No mixed 

infection was identified. 

 

Both studies show a clear distinction between relapse and reinfection with WGS, with two very 

different SNP distributions for each event. While Bryant et al. suggest this may be due to 

immunological protection against reinfection by closely-related strains, it is important to note 

that both studies occurred in high-incidence settings, with substantial strain diversity. An 

alternative explanation is that the probability of being re-infected is greatest with a genetically-

dissimilar strain simply because these are widely circulating in the community.  

 

3.6  Application to surveillance 

In addition to retrospective analyses, several studies have suggested a role for WGS in ongoing, 

real-time TB surveillance. However, as WGS is still more expensive than conventional 

methods, cost is a potential obstacle for many local public health departments. The technical 

expertise both to conduct and analyse WGS data is also limiting, and unlikely to be 

decentralized in the near future. In attempt to alleviate these issues, Stucki et al. developed a 

SNP-based assay for a local outbreak strain, based on WGS of 3 historical outbreak isolates. 

Using this assay, they were able to rapidly screen 1,642 isolates, and identify 68 ‘outbreak’ 

isolates for further analysis and resolution by WGS. A similar study was conducted in Spain, 

using a PCR-based test to identify predominant strains circulating in the community (110). 

While such tests have the ability to rapidly identify known strains and be performed easily in 

local laboratories rather than outsourcing to reference laboratories, it is important to note that 

novel strains would not be captured using this approach. Therefore, periodic monitoring in each 

region via WGS and subsequent updating of the genomic targets of such assays to ‘capture’ 

new, emerging strains would be warranted. Furthermore, as variation between isolates would 

only be detected in the targeted SNPs (‘phylogenetic discovery bias’), the level of 

discrimination and utility of such a tool in epidemiology would be greatly influenced by the 

precise SNPs and number selected.  
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3.7  WGS and the evolution of drug resistance  

WGS has also provided valuable insights into the development and spread of drug resistant 

tuberculosis at the population level. WGS studies have illustrated that drug resistance can occur 

in a step-wise fashion over the course of decades and once developed, spread throughout 

communities (124, 125). In the case of an XDR outbreak that was first documented in 

KwaZulu-Natal in 2005 (125), RFLP and spoligotyping indicated that a single predominant 

drug-resistant strain was transmitting through the community. Using historical isolates as well 

as strains closely related to the XDR strain, authors confirmed the clonal nature of this outbreak 

and examined the sequence at which mutations were acquired in the community over time. 

WGS revealed that resistance to isoniazid and streptomycin was first acquired 50 years earlier, 

with subsequent mutations conferring resistance to ethambutol and ethionamide, followed by 

rifampin and then pyrazinamide. Resistance to second-line drugs in occurred in the 1990s, 

ultimately culminating in the same resistance pattern that would characterize the future XDR 

outbreak in 1995. Importantly, acquisition of resistance to each drug was in line with its 

discovery and introduction into clinical management, and not driven predominantly by current 

TB control or HIV in this population. When authors examined strains that were not part of the 

outbreak, they also observed numerous instances of independent acquisition of multi-drug 

resistance and evolution to pre-XDR status. Resistance consistently commenced with isoniazid, 

which is not targeted by GeneXpert, the current molecular test utilized in this region (125).  

 

Investigation of an outbreak of MDR-TB in Argentina revealed similar findings (124). While 

the outbreak was first documented in the early 1990s and continues today, resistance to 

isoniazid was present in all isolates sequenced, and therefore was present in the most recent 

common ancestor, in 1970 (95% CI 1966-1975). Resistance to rifampin and streptomycin were 

acquired in 1973 (95% CI 1968-1978), while additional resistance to pyrazinamide, ethambutol 

and kanamycin was estimated to have emerged in 1979. For most drugs, emergence of 

resistance was in sequence with wide-spread use in TB treatment. 

 

Mutations conferring drug resistance often come at a cost to bacterial fitness; the extent of the 

effect on fitness determines how frequently such mutations are seen in clinical isolates, i.e., 

how transmissible they are (126). Compensatory mutations, which reduce this fitness cost, can 
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drive epidemiologic success of a bacterium. Using WGS, Casali et al. explored the 

epidemiology of drug resistance and role of such mutations in Russia (127). Of 1,000 

prospectively collected isolates from patients, 64% were closely related, comprising a single 

Beijing sublineage with two predominant clades. As older populations of bacteria are more 

genetically diverse, this suggested a recent introduction and subsequent expansion via 

transmission of this sublineage in the region. High amounts of resistance were identified in 

these isolates, with 74% and 70% having mutations in katG and rpoB, conferring resistance to 

isoniazid and rifampin, respectively. Authors demonstrated that compensatory mutations in 

genes rpoB and rpoC, among others, were associated with the rpoB mutation conferring 

resistance to rifampin, potentially contributing to the success of MDR strains in this population 

(127).  This is in contrast to the Argentinian outbreak (124), wherein no association between 

rpoC and strain fitness was identified, as only 2/21 such mutations were identified in related 

isolates.  

 

3.8 Summary 

When this thesis work was initiated in 2012, the utility of WGS to TB epidemiology was still 

unclear. However, as this tool became more feasible and widely utilized, the increased 

information provided by WGS in comparison to older, classical molecular typing methods was 

evident. Using this method, we are now more accurately able to resolve transmission networks, 

unequivocally identifying source cases (105) within clusters of transmission, and even revealing 

missing (unsampled) cases that had transmitted to others (105, 116). WGS has also 

demonstrated increased ability to discern recent transmission from reactivation, reinfection 

from relapse and identify mixed infection. Finally, WGS has taken on a pivotal role in our 

understanding of the epidemiology of drug resistance. As such, many now consider this the 

‘gold standard’ in molecular epidemiology. However, wide-spread use of this tool outside the 

research domain is still lacking in part due to the complex nature of the analysis. As outlined in 

the following chapter, substantial bioinformatics expertise is required to transform raw genetic 

data into an epidemiologic tool and as yet, this analytic pathway has not been standardized. 
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CHAPTER 4.  MATERIALS AND METHODS 
 

In this chapter, I have provided an overview of methodology used in each manuscript. As 

methods are also presented in the main manuscripts (for I-IV), and supplementary material (for 

I-III), I have aimed to build on what has already been described.  

 

4.1 Study populations and data sources 

The first three Objectives focus on the epidemiology of TB among the Inuit of Nunavik. 

Nunavik is the Arctic region of Quebec. It spans 443,685 km² and is comprised of 14 Inuit 

communities. The total population is 12,090 (128) as of 2011, with little out-migration from 

communities. Each is separated from the nearest village by a median distance of 137 km 

(interquartile range 110-178), with no connecting roads.  

 

In Québec, TB is classified as a “Maladie à déclaration obligatoire”, meaning physicians are 

required to report cases to their local public health department. The Nunavik Regional Board of 

Health and Social Services (NRBHSS) is the public health unit responsible for monitoring TB 

cases in Nunavik, and has collaborated on these projects. In addition, all specimens from TB 

suspects in Nunavik are processed at the mycobacteriology laboratory of the McGill University 

Health Centre (MUHC), ensuring 100% case ascertainment for this remote Artic region. 

 

Objective 4 utilized these data to explore methodological issues related to WGS, while 

Objective 5 is a narrative review. 

 

4.1.1 Genetic data  

All TB samples used in this thesis work were provided by the Mycobacteriology Laboratory of 

the McGill University Health Centre and the Laboratoire de Santé Publique du Québec. 

 

4.1.2 Clinical epidemiologic data 

While assisting with the public health response during the outbreak, I developed a database to 

facilitate clinical follow-up of cases and their contacts in this village. When individuals were 

diagnosed with active TB, they were asked to provide detailed lists of all household and non-
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household contacts. Contacts were then interviewed by trained health care professionals, using 

standardized data collection tools. Data was collected in real-time, including the results of these 

contact investigations, diagnostic test results, demographic data and information on risk factors 

such as cigarette smoking. Cavity on chest x-ray was updated retrospectively, based on a 

blinded clinical review by two independent respirologists after the ‘outbreak’. Discordance was 

resolved using radiology reports from time of diagnosis. Sputum smear and culture results were 

also validated retrospectively with the Mycobacteriology Laboratory of the MUHC. This 

dataset was used with the permission of the NRBHSS for this research, as part of an ongoing 

collaboration with this unit.  

 

For the years preceding the outbreak in this village and other villages of Nunavik, contact 

investigation data were validated and provided by Dr. Jean-Francois Proulx, of the NRBHSS. 

Age, sex, dates of diagnosis, sputum smear and culture results were provided by the 

Mycobacteriology Laboratory of the MUHC. Village at diagnosis was provided by the 

NRBHSS.  

 

4.1.3 Data linkage and ethics 

I performed linkage of genetic and epidemiologic data in nominal form, working under a 

professional mandate from the NRBHSS. All projects were conducted with ethics approval 

from the McGill University Faculty of Medicine’s Internal Review Board, in collaboration with 

the village council and the NRBHSS. Individual patient consent was not required. 
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TABLE 4-1. Overview of sampling frame, by Objective 

 
Objective Study design Sampling frame Time 

Period 
Total number 
of confirmed 
cases 

Total number 
of cases with 
WGS 
successfully 
completed 

Total number 
of pairwise 
SNP 
comparisons 

1 Case-series Villages of 
Nunavik, 
excluding the 
outbreak village 

2006-
2012 

45 42 (93%) a 631 
‘improbable’ 
transmission 
pairs (no 
epidemiologic 
links, from 
different 
villages) 

Case-series Cases from 
outbreak village 

1990-
2010 

32 29 (91%) b 3,003 

2011-
2012 

50 49 (98%) c 

2 Case-series Cases from all 
villages of 
Nunavik 

1990-
2000 

51 26 (51%) d 13,203 

2001-
2013 

149 137 (92%) 

3 Case-control All persons with 
new infection in 
the outbreak 
village  

2011-
2012 

34  34 (100%) e  

4 Case-series Same as 
Objective 2 

    

5 Narrative 
review 

Medline/PubMed 1946 – 
Aug. 2015 

   

a 3 isolates not available for sequencing b 2 isolates not available for sequencing, 1 WGS low-quality. c WGS low-
quality. d Convenience sample e Subset of cases from the outbreak village used in Objective 1 
 

4.2 Inclusion and exclusion criteria 

Objectives 1, 2 and 4:  

As this work involved sequencing of bacterial DNA to track transmission, these studies have 

only included cases with at least one culture positive for M. tuberculosis. Therefore persons with 

clinical diagnoses of TB, without microbiologic confirmation, were not eligible. 
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Cases were classified as ‘pulmonary TB’ if at least one culture from sputum, lung biopsy or 

bronchoalveolar lavage grew M. tuberculosis. All cases during the ‘outbreak’ had exclusively 

pulmonary disease. 

 

Objective 3:  

This study aimed to investigate the association between exposure to active TB (to any case or to 

different genotypes, as identified in Objective I) and the progression to disease after recent 

infection. Therefore, the study population was restricted individuals with documented ‘new’ 

infection. New infection was defined by TST conversion or a documented new positive TST 

without any previous testing. Cases were defined as those with micro-biologically confirmed 

active TB, while controls were those who did not progress to disease. 

 

Objective 5:  

A narrative review was performed to investigate the potential role of WGS in the clinical 

diagnosis workflow for TB. Medline (1946-present, including in-process and non-indexed) and 

PubMed (for articles exclusive to PubMed) were searched on Aug. 6, 2015 using the terms 

“whole genome sequencing” and “tuberculosis” combined with “epidemiology” or “clinical”. No 

language restrictions were applied. Original studies describing the use of WGS in either TB 

diagnostics or prediction of drug resistance were included. Abstracts, conference proceedings, 

letters and review articles were not eligible. Reference lists of included articles and relevant 

review articles were also hand-searched for additional manuscripts.  

 

4.3 Workflow for genetic data 

4.3.1 Collection of M. tuberculosis samples 

In Nunavik, all individuals with clinical suspicion of active TB are asked to provide 3 

spontaneous sputum samples for smear microscopy and culture. During the ‘outbreak’, those 

who were unable to provide spontaneous samples underwent nurse-supervised sputum induction 

using 3% hypertonic saline. Pediatric patients were transported to the nearest hospital for gastric 

aspirate until May 2012. After this time, sputum induction with hypertonic saline and 

nasopharyngeal suctioning was performed at the local CLSC. This method is considered an 

acceptable alternative to gastric aspiration (6) and in some studies has a higher yield for pediatric 
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TB than gastric aspirates (129). Patient samples are transported by plane via Kuujjuaq to 

Montreal, where they are taken to the Biosafety Level 3 facility of the MUHC. Samples are 

stored at 4oC until processing. 

 

4.3.2 Sample processing  

Patient samples were received, they were decontaminated used N-acetyl-L-cysteine and 2% 

sodium hydroxide in order to prevent over-growth by faster growing micro-organisms (130). 

After 20 minutes of treatment, samples were centrifuged and the sediment was re-suspended for 

inoculation into culture media.  

 

4.3.3 DNA extraction 

Mycobacterium tuberculosis was grown in culture using the BACTEC™ MGIT™ 960 

Mycobacterial Detection System (Becton, Dickinson and Company). Isolates were then sub-

cultured once on Middlebrook 7H10 agar supplemented with Oleic acid Albumin Dextrose 

Catalase enrichment media (Becton, Dickinson and Company) and DNA extractions were 

performed as per (131). All colonies on the plate were included, i.e., a full sweep of the plate was 

done. 

 

4.3.4 DNA quantification 

Genomic DNA (gDNA) quantity was first assessed by the McGill University and Génome 

Québec Innovation Centre using a fluorescence assay (the PicoGreen® double-stranded DNA 

Assay Kit from Life Technologies). 1-5 µg of gDNA are recommended by Illumina for 

sequencing. Gel electrophoresis was used to evaluate the condition of the DNA, i.e., to check for 

degradation or RNA contamination.  
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Ladder    DNA degradation 

FIGURE 4-1. Gel electrophoresis for assessment of DNA quality after extraction. Each lane 
represents DNA extracted from a different patient isolate. A 1 kiloBase DNA ladder was run. An 
example of DNA degradation is indicated, wherein all DNA was broken into lower molecular 
weight fragments. Potential RNA contamination is visible at the bottom of some lanes (<75 bp 
according to the ladder). 
 

4.3.5 DNA library preparation  

Library preparation and sequencing were also performed by the McGill University and Génome 

Québec Innovation Centre. All WGS was done using the Illumina MiSeq platform with 250 

base-pair reads were generated. Sequencing was conducted from both ends of the DNA 

fragments (‘paired-end’), using the protocol described below.  

 

DNA ‘libraries’ were prepared for each sample using the TruSeq DNA High-throughput protocol 

(132). First, gDNA was fragmented by sonication into pieces 800 base-pairs (bp) or fewer in 

length (133). This process creates overhanging 5’ and 3’ ends of gDNA, which must then be 

blunted. A DNA polymerase adds bases to the former, while an exonuclease cleaves bases from 

the latter (133). To prevent self-ligation, an ‘A’ was then added to 3’ end of these fragments 
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(133). Short adaptor sequences were then ligated to both the 3’ and 5’ ends of the gDNA 

fragments. For our analyses, TruSeq v1 adaptors were used.  

 

After adaptor ligation, the DNA fragments were then purified by gel electrophoresis, with 

fragments correctly ligated to adaptors selected based on size. For paired-end sequencing with a 

desired read length of 250 bp (denoted as ‘2x250 bp’), Illumina suggests targeting fragments of 

300 bp or greater (133).  

 

After size selection, PCR was then used to amplify these DNA fragments (133). This step was 

used to add a final sequence to the adaptors that facilitates binding to the flowcell, i.e., the solid 

surface on which sequencing is performed, essentially anchoring the DNA fragments in place. 

PCR amplifies the fragments that have adaptors on both ends, necessary for such binding, 

removes any remaining adaptors that have self-ligated and by amplification, provides sufficient 

material for library quantification in the next step (133). 

 

Such quantification was done by fluorescence using the Agilent Technologies 2100 BioAnalyzer. 
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FIGURE 4-2. Fragment size by Agilent Technologies BioAnalyzer. The size distribution of DNA fragments plus adaptors, as 
measured by fluorescence.  
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4.3.6 Whole genome sequencing with Illumina Miseq 

DNA libraries were then normalized to 10 nM and double-stranded DNA fragments were then 

denatured and hybridized (i.e., attached) to the flow cell. Using solid-phase bridge amplification, 

each fragment was then copied up to 1,000 times (134), forming millions of clonal clusters. With 

each cycle, a single nucleotide (A, T, C or G), complementary to the fragment being sequenced, 

was added by DNA polymerase.  These nucleotides had fluorescently-labelled reversible 

terminators (134), which simultaneously prevent more than one nucleotide from being 

incorporated at once and facilitate identification.  As each nucleotide was added, lasers were 

passed over the flow cell. This activated the fluorescent label, which was then detected and 

recorded (134). The amplification and clustering described previously is required to produce a 

signal of sufficient magnitude for detection. Each base was sequenced in succession; after the 

signal was recorded for a single nucleotide, the reversible terminator on this nucleotide was 

cleaved, allowing the next to be incorporated (134). 

 

Sequencing was run in batched fashion. A single Illumina MiSeq run is generally performed on 

multiples of 24 samples, depending on the desired depth of coverage (defined as the average 

number of times each locus in the genome is sequenced). Though it is feasible to run the 

sequencer with fewer samples, the cost is equivalent whether 1 sample or 96 are run on the same 

plate (excluding expenses associated with DNA extraction and library preparation). Our 2x250 

bp analysis required an average depth of coverage of at least 20x, which is thought to be 

sufficient to discern true variation from sequencing error (135). With a genome of 4.4 million bp 

for M. tuberculosis, this meant a maximum of 83 samples theoretically could have been run 

simultaneously (http://support.illumina.com/downloads/sequencing_coverage_calculator.html). 

 

4.3.7 Sequence data storage and data sharing 

Once sequencing was complete, reads from each isolate were saved in the form of ‘fastq’ files. 

These were available for download from Nanuq, a cloud server operated by the McGill 

University and Génome Québec Innovation Centre. All sequence data have been stored locally, 

and as a requirement for publication of these studies, was uploaded to the National Center for 

Biotechnology’s Information Sequence Read Archive under Accession number SRP039605 

(BioProject PRJNA240330). 
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4.3.8 Bioinformatics pipelines – from fastq to VCF 

The bioinformatics pipelines employed in Manuscripts I and II have been described in detail in 

the corresponding supplementary methods (Appendices 2-2 and 3-2, respectively). Dr. Nicolas 

Radomski, a Post-Doctoral Fellow in the laboratory of Dr. Behr, was responsible for the steps 

prior to SNP calling for these 2 manuscripts.  

 

After completing my first Objective, I dedicated the time to teach myself how to conduct 

bioinformatics for WGS data analysis. I subsequently developed a bioinformatics pipeline based 

on lessons learned from published manuscripts, reviewing “Best Practices” from the Broad 

Institute (for human genetic data), attending relevant conferences and discussing with experts at 

these forums. This pipeline has been utilized in Objective 4 and follows the basic workflow 

described in (136) (for human whole genome sequencing projects). Many of these steps were 

additionally recommended in a recent review of SNP calling methods for bacterial WGS data 

(137), further supporting this approach. 

 

4.3.8.1 Trimming 

Each base is given a quality score by the sequencing platform, reflecting the probability of an 

error at that locus. These scores, along with many others provided by bioinformatics tools, are 

Phred-scaled, where Phred = -10*logPerror. Base qualities for each position in the sequenced 

reads were examined using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Reads were then trimmed to remove residual adaptor sequences as well as low-quality bases 

(136) from the 3’ ends (bases with Phred <30, corresponding to >1/1,000 probability of error).  

 

4.3.8.2 Alignment 

Reads were then aligned to the reference genome using the Burrows Wheeler Aligner (BWA) 

MEM algorithm, as this was shown to be more accurate than 6 other alignment tools and optimal 

for reads >70 bp in length (138). Once aligned, reads are stored in Binary Alignment/Map 

(BAM) format; an example of such an alignment, from a single isolate, is shown below. 
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FIGURE 4-3. Screen shot of Integrative Genomics Viewer (139). The alleles at each position 
in the H37Rv reference genome are indicated along the bottom. Grey bars represent individual 
reads, which have been aligned to the corresponding position in H37Rv. At any position, there 
can be ‘reference’ alleles (i.e., the same alleles as in H37Rv) and ‘alternative’ alleles (different 
alleles compared to H37Rv). Reference alleles are not indicated, while alternative alleles are 
represented by coloured letters corresponding to genotype. The alternative allele in blue is found 
in >50 reads at that locus, while in other loci, alternative alleles are found in only one read. 
While the former suggests a true SNP, the latter are more indicative of sequencing error.  
 

 

Each read is assigned a mapping quality score based on the quality of its alignment. Like base 

quality scores, these are Phred-scaled, with lower scores indicating decreased confidence in the 

alignment (137). I excluded reads with mapping quality scores <30 using SAMtools (140). These 
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included reads that mapped ambiguously to >1 locus, which typically involve repetitive regions 

of the genome. PCR duplicates from the library preparation stage and optical duplicates, wherein 

the fluorescent signal from a single base is accidentally counted more than once, were also 

marked for exclusion ((136), done using Picard, available from 

http://broadinstitute.github.io/picard/); these can artificially amplify confidence in SNPs (137) or 

propagate errors in sequencing. Local realignment of reads around insertions and deletions was 

performed using GATK (141) to reduce potential alignment error related to these structural 

variants. This has been shown to greatly improve the positive predictive value of SNPs identified 

in downstream analyses (142). 

 

Following these quality control steps, the percentage of total reads successfully aligned, the 

genome coverage (defined as the percent of the reference genome that has at least 1 read aligned 

to it) as well as the depth of coverage (i.e., the average number of reads aligned to any locus in 

the genome) were reviewed, and compared with other samples. Low values in any of these 

parameters would be a possible indication of contamination with another species, as the reads 

that fail to align are likely highly divergent from the reference. 

 

4.3.8.3 SNP calling 

To date, no studies have examined the sensitivity and specificity of SNP calling algorithms using 

bacterial genomes. Two studies (142, 143) using simulated or human genetic data were identified 

with depth of coverage similar to that obtained in bacterial studies. Overall, these studies found 

that sensitivity and specificity of the Genome Analysis ToolKit (GATK)’s Unified Genotyper 

ranged from 95.87-99.78% and 99.68-99.99%, respectively (142, 143). Comparing Unified 

Genotyper to other popular SNP callers (SAMtools, glf), Liu et al. (143) found that sensitivity 

was consistently higher for Unified Genotyper across a range of sequencing depth (4x, 10x, 20x). 

Using exome array as the gold standard, Unified Genotyper with multi-sample calling had an 

overall positive predictive value (PPV) of 99.3%, while SAMtools and GlfMultiples had PPVs of 

97.8% and 97.9%, respectively (143). Similarly, Pirooznia et al. also found a higher PPV with 

Unified Genotyper compared to SAMtools, albeit PPV was lower compared to the other study, at 

92.6% and 80.4%, respectively (142). 
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Therefore, to identify (‘call’) SNPs with respect to the reference genome, Unified Genotyper 

algorithm was used. Unified Genotyper utilizes a Bayesian genotype likelihood model, which is 

expressed as (141): 

 

  
 
where p represents a probability or probability density (if the variable is continuous); 
D represents the data, i.e., the bases across each read at a given locus in the genome; 
G represents the genotype;  
p(G|D) is the posterior probability of the genotype; 
p(G) is the prior probability of the genotype, based on previous knowledge about its prevalence 
in the population;  
p(D|G) is the likelihood; 
and p(D) is a normalizing constant, i.e., this does not vary across genotypes. 
 
Diploid models have been used with (haploid) bacterial genomes to facilitate detection of mixed 

infection (e.g., (144, 145)); this would resemble a ‘heterozygous’ base call (146). Under a 

diploid model, there are 10 possible genotypes (A/A, T/T, C/C, G/G, A/T, A/C, A/G, T/C, T/G, 

C/G).  

 

For each of these genotypes, the probability of the base identified in each read is calculated. This 

is repeated across all bases (i.e., across all reads in the ‘pileup’) for a given locus in the genome. 

The products of these probabilities equal the likelihood of the genotype. Mathematically,   

 
where b is the base in that locus (141).  

 

The probability of each base given a particular genotype is 

p(b|G) = ½ p(b | A1) + ½ p(b | A2) for each allele in {A1,A2}  

where 

p(b | A) =       ε/3 : b ≠ A 

               1-ε : b = A 

and variant discovery approaches that
incorporate more realistic read-mapping
error and base-miscall models. An
improved framework could also handle
samples or regions of the genome where
the ploidy is not two, such as in tumor
samples or regions of copy-number vari-
ation. This simple Bayesian genotyper
serves both as the starting point for more
advanced statistical inference tools and
also as an ideal place to highlight the
shared memory and distributed paral-
lelization capabilities of the GATK core
engine.

In brief, our example genotyper
computes the posterior probability of each
genotype, given the pileup of sequencer
reads that cover the current locus, and
expected heterozygosity of the sample.
This computation is used to derive the
prior probability each of the possible 10
diploid genotypes, using the Bayesian
formulation (Shoemaker et al. 1999):
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where D represents our data (the read
base pileup at this reference base) and G
represents the given genotype. The term
p(G) is the prior probability of seeing this
genotype, which is influenced by its
identity as a homozygous reference, het-
erozygous, or homozygous nonreference
genotype. The value p(D) is constant over
all genotypes, and can be ignored, and
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where b represents each base covering
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base given the genotype is defined as
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and the epsilon term e is the reversed phred scaled quality score at
the base. Finally, the assigned genotype at each site is the genotype
with the greatest posterior probability, which is emitted to disk if
its log-odds score exceeds a set threshold.

The algorithm was implemented in the GATK as a locus based
walker, in 57 lines of Java code (Fig. 4). Along with implementing
the locus walker strategy, it also implements the Tree-Reducible
interface, which allows the GATK to parallelize the MapReduce
calls across processors. We applied the genotyping algorithm above
to Pilot 2 deep coverage data for the CEU daughter, sample
NA12878, on chromosome 1 of the 1000 Genomes Project data
using Illumina sequencing technology. On a single processor, this
calculation requires 863 min to process the 247,249,719 million loci
of chromosome 1.

Moreover, the GATK’s built-in support for shared memory
parallelization allows us to quickly add CPU resources to reduce the
run-time of target analyses. The elapsed time to genotype
NA12878s chromosome 1 drops nearly exponentially through the
addition of only 11 additional processing nodes, with no change to
the analysis code. The 12 processor version takes only slightly
more than one-twelfth the time of the single processing version
(Fig. 5). This flexibility allows end users to allocate CPU resources
to a pool of analyses based on the priority of their completion, or to
quickly complete an analysis by assigning large computing re-
sources to a single run. Using the distributed parallelization
scheme (see Supplemental material), the GATK can be partitioned
to even large computational clusters, further reducing elapsed time
for end user analyses.

Even this naı̈ve genotyper performs reasonably well at iden-
tifying variants—315,202 variants were called on chromosome 1,
with 81.70% in dbSNP and a concordance figure of 99.76%. This
compares well against previous single individual genotyping ef-
forts, which have seen concordance values for an individual of
86.4% and 99.6% (Wang et al. 2008; Wheeler et al. 2008). For

Figure 4. Code sample for the simple genotyper walker. The map function uses a naı̈ve Bayesian
method to generate genotypes, given the pileup of reference bases at the current locus, and emits a call
containing the likelihoods for each of the 10 possible genotypes (assuming a diploid organism). This is
then output to disk. The implementation of the tree-reduce function provides directions to the GATK
engine for reducing two in-order parallel reduce results, allowing parallelization of the genotyper.
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and the epsilon term e is the reversed phred scaled quality score at
the base. Finally, the assigned genotype at each site is the genotype
with the greatest posterior probability, which is emitted to disk if
its log-odds score exceeds a set threshold.

The algorithm was implemented in the GATK as a locus based
walker, in 57 lines of Java code (Fig. 4). Along with implementing
the locus walker strategy, it also implements the Tree-Reducible
interface, which allows the GATK to parallelize the MapReduce
calls across processors. We applied the genotyping algorithm above
to Pilot 2 deep coverage data for the CEU daughter, sample
NA12878, on chromosome 1 of the 1000 Genomes Project data
using Illumina sequencing technology. On a single processor, this
calculation requires 863 min to process the 247,249,719 million loci
of chromosome 1.

Moreover, the GATK’s built-in support for shared memory
parallelization allows us to quickly add CPU resources to reduce the
run-time of target analyses. The elapsed time to genotype
NA12878s chromosome 1 drops nearly exponentially through the
addition of only 11 additional processing nodes, with no change to
the analysis code. The 12 processor version takes only slightly
more than one-twelfth the time of the single processing version
(Fig. 5). This flexibility allows end users to allocate CPU resources
to a pool of analyses based on the priority of their completion, or to
quickly complete an analysis by assigning large computing re-
sources to a single run. Using the distributed parallelization
scheme (see Supplemental material), the GATK can be partitioned
to even large computational clusters, further reducing elapsed time
for end user analyses.

Even this naı̈ve genotyper performs reasonably well at iden-
tifying variants—315,202 variants were called on chromosome 1,
with 81.70% in dbSNP and a concordance figure of 99.76%. This
compares well against previous single individual genotyping ef-
forts, which have seen concordance values for an individual of
86.4% and 99.6% (Wang et al. 2008; Wheeler et al. 2008). For

Figure 4. Code sample for the simple genotyper walker. The map function uses a naı̈ve Bayesian
method to generate genotypes, given the pileup of reference bases at the current locus, and emits a call
containing the likelihoods for each of the 10 possible genotypes (assuming a diploid organism). This is
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and ε is the reversed Phred-scaled quality score for the base (141). 

 

p(G) is specified by the software, and is influenced by whether the genotype is homozygous for 

either reference or alternative alleles, or heterozygous . Heterozygous genotypes have a prior 

probability of 0.001 or 1 per 1,000 bp (141).  

 

In summary, given the prior probability of the genotype in the population, and the bases on each 

read at a specific locus, a posterior probability is determined for each possible genotype. Log-

odds scores then are calculated by comparing the genotype with the greatest posterior probability 

to the second highest. If the log-odds score exceeds a set threshold, the genotype is reported, 

along with summary data, in Variant Call Format (VCF) (141). 

 

4.3.8.4 Filtering SNPs  

As base quality and mapping quality scores might not detect all sequencing or alignment errors, 

filtering is performed to ensure only high-confidence SNPs are included in analysis (135). SNPs 

were filtered using VCFtools (147) and SnpSift (148) based on Phred quality score, as well as 

minimum depth of coverage (137). SNPs were also assessed for strand bias, wherein all bases 

supporting the SNP were exclusively on forward or reverse reads; this is indicative of systematic 

sequencing error, rather than true variation (149). SNPs were also excluded if they were 

clustered within 12 bp of one another or within 20 bp of small insertions/deletions, as these are 

also more likely due to sequencing error. Furthermore, because of difficulty in accurately 

aligning to repetitive regions, SNPs found in the PE_PGRS and PPE genes of M. tuberculosis as 

well as transposable elements were excluded, as recommended by (100, 101).  

 

It is important to note that, with the application of such filters to reduce false positive calls, true 

SNPs may be inadvertently overlooked (137). All phylogenetic trees based on these final SNP 

datasets were therefore validated by comparison to a deletion-based phylogeny constructed in 

Objective 2 (see the published supplemental data in Appendix 3-2). 
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4.3.8.5  Annotation 

SNPs were annotated with their genomic locations (e.g., in gene X, intergenic, upstream or 

downstream of gene X, 3’ or 5’ untranslated region) using SnpEff (148). This software then 

predicts the functional impact of each SNP, based on these locations and the type of SNP. 

Nonsynonymous SNPs change the amino acid causing a change in the protein produced, and can 

therefore have high functional consequence, especially if they result in new start or stop codons. 

In contrast, synonymous SNPs (for the most part) are silent mutations. They are substitutions that 

do not change the amino acid, however, they may affect the expression level of the protein 

through regulatory effects.  

 

4.3.9 Sanger Sequencing of SNPs 

In addition to the filters applied above to reduce the risk of false positives, cluster-defining SNPs 

in Rv0828c, carB, Rv1835c, and Rv3263 were also confirmed for 6 randomly-selected isolates 

from each cluster (IIIA, IIIB, IIIC) using Sanger sequencing (150). Primers were designed by Dr. 

Radomski to target each cluster-defining SNP. A minimum of 100 bp was required between the 

target SNP and both forward and reverse primers to ensure the target base was sequenced. 

Sequencing was performed at the McGill University and Génome Québec Innovation Centre. 

 

4.3.10 Assessing for contamination and/or mixed infection 

Contamination or mixed infection with species other than M. tuberculosis was evaluated using 

BLASTn (151) for a random sample of ~10,000 reads from each isolate.  

 

This approach cannot discriminate mixed infection by different strains of M. tuberculosis, 

therefore a SNP-based approach was utilized. The distribution of heterozygous alleles was first 

reviewed across all isolates to assess for outliers, wherein mixed infection might be likely (123) 

(see published supplemental data, Appendix 2-2).  

 

In addition to reviewing the distribution of heterozygous base calls, all loci defining clusters or 

subgroups in the ‘outbreak’ village were manually inspected to determine underlying base 

frequencies. Low-frequency bases (i.e., minority alleles that were not sufficient to classify the 
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base ‘heterozygous’) are typically indicative of sequencing/mapping error, but may also 

represent true variation, due to a subpopulation of bacteria within the host. 

 

To investigate these two possibilities, all loci with >1 allele detected were reviewed manually in 

IGV and underlying base quality in each read was assessed. Where clinical epidemiologic data 

supported the possibility of mixed infection or micro-evolution and assessment of individual 

base calls did not rule this out, deep sequencing (re-sequencing to >150x depth of coverage) was 

performed. This approach has been recommended as an optimal way to detect mixed infection 

(152). The same SNP loci were then re-examined using these data.  

 

4.4 Statistical modeling  

The following section elaborates on the statistical modeling utilized in each Objective. While 

each manuscript clearly states the approaches used, the theoretical underpinnings of these have 

not previously been discussed.  

 

4.4.1 Models of nucleotide substitution for inferring phylogenies 

Throughout this thesis, maximum likelihood methods were used to estimate phylogenetic trees 

with the highest probability of yielding the included sequences (153). For this approach, it is 

necessary to first specify an underlying probability model of nucleotide substitution (154). 

Nucleotide substitution models describe the rate of change in bases at each locus over time, 

where each site is considered independent (155). A number of evolutionary models based on 

continuous time-reversible Markov processes have been developed to reflect different levels of 

complexity (154).  
 

The choice of evolutionary model is critical, as incorrect models can lead to errors in tree 

topology (e.g., (156, 157)). In the accompanying analyses, 24 different model comparisons were 

performed to facilitate model selection, considering a combination of 6 different models of 

nucleotide substitution, uniform or gamma-distributed rates across sites, and invariant positions. 

The final models were selected based on the lowest Bayesian Information Criterion, using 

Molecular Evolutionary Genetics Analysis (158). These included the General Time Reversible 

(GTR, (159)) and the Tamura 3-parameter model (160). Considering the following matrix (155): 
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In the above, each row (i) and column (j) is arranged in order of A, C, G and T; ‘ri’ represents the 

rate of change from these alleles to the nucleotide indicated by the corresponding subscript. The 

GTR model assumes unequal base frequencies (πA ≠ πC ≠ πG ≠ πT) and estimates 6 different rate 

parameters for nucleotide substitution (r1πA = r2πC; r3πA  =  r4πG; r5πA  =  r6πT; r7πC  = r8πG; r9πC  = 

r10πT; r11πG  = r12πT). The Tamura 3-parameter model is a less complex, nested model (160) 

which estimates both the transition-transversion rate ratio (i.e., the ratio of the substitution rates 

for purine-to-purine versus pyrimidine-to-pyrimidine) and the frequency of πC, where πC = πG and 

πA = πT = (1- πC)/2. 

 

4.4.2 Nonparametric bootstrap 

When Frequentist approaches are used for phylogenetics (e.g., maximum likelihood methods), 

nonparametric bootstrap is the most frequently employed method to assess confidence in tree 

topology. Nonparametric bootstrap performed by randomly sampling nucleotides (with 

replacement) from the original DNA sequences of each isolate. These random samples are then 

used to generate artificial, pseudo-sequences. Phylogenetic trees are produced, applying the same 

statistical procedure as previous, and concordance with the original tree is assessed (161). This 

process is repeated typically 100 to 1,000 times, with higher numbers of samples yielding higher 

precision. The distribution of these replicate trees around the observed data is considered an 

valid approximation of the sampling distribution of the observed data, i.e., it approximates the 

distribution that would have been obtained had sampling been repeated from the same 

underlying population (161). Each internal node in the original maximum likelihood tree is 

assigned a P value, which corresponds to the proportion of bootstrap replicate trees that 

supported the same phylogeny. Nodes with high bootstrap are considered to have higher 

confidence. While initially proposed as a measure of repeatability (102), the bootstrap P value is 

commonly used to assess accuracy of phylogenetic trees. Using simulations as well as real viral 
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4.4.1 Models of nucleotide substitution  

When maximum likelihood methods are used to estimate phylogenetic trees, it is necessary to 

first specify an underlying probability model of nucleotide substitution. Such models describe 

the rate of change in nucleotides at each locus over time, where each site is considered 

independent {Huelsenbeck:1997vi}. A number of evolutionary models based on continuous 

time-reversible Markov processes have been developed to reflect different levels of complexity 

{Posada:2001wh}.  

 

The choice of evolutionary model is critical, as incorrect models can lead to errors in tree 

topology (e.g., {Posada:2001tr, Rzhetsky:1996vw}). In the accompanying analyses, 24 different 

model comparisons were performed, considering a combination of 6 different models of 

nucleotide substitution, uniform or gamma-distributed rates across sites, and invariant positions. 

The final, best-fitting models were selected based on the lowest Bayesian Information Criterion 

in Molecular Evolutionary Genetics Analysis {Tamura:2013eo} and included the General Time 

Reversible (GTR, {Waddell:1997fd}) and the Tamura 3-parameter model {Tamura:1992wh}. 

Considering the following matrix: 

   . r2πC r4πG r6πT 

   r1πA . r8πG r10πT 

Q = {qij} =  r3πA r7πC . r12πT 

   r5πA r9πC  r11πG . 

In the above, each row and column is arranged in order of A, C, G and T; ‘ri’ represents the rate 

of change to the nucleotide indicated. The GTR model assumes unequal base frequencies (πA ≠ 

πC ≠ πG ≠ πT) and estimates 6 different rate parameters for nucleotide substitution (r1πA =  r2πC ; 

r3πA  =  r4πG ; r5πA  =  r6πT  ; r7πC  = r8πG ; r9πC  = r10πT ; r11πG  = r12πT). The Tamura 3-parameter 

model is a less complex, nested model {Tamura:1992wh} which estimates both the transition-

transversion rate ratio (i.e., the ratio of the substitution rates for purine-to-purine versus 

pyrimidine-to-pyrimidine) and the frequency of πC, where πC = πG and πA = πT = (1- πC)/2. 

 

4.4.2 Nonparametric bootstrap 

In phylogenetics, nonparametric bootstrap is commonly used to assess confidence in tree 

topology. Nonparametric bootstrap performed by randomly sampling nucleotides (with 
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DNA sequences, Hillis and Bull (162) illustrated that bootstrap P values >70% represent true 

phylogenetic relationships over >95% of the time, while P values >80% reflected nearly 100% 

accuracy.  

 

4.4.3 Bayesian inference for molecular dating 

Bayesian molecular dating was used in Objective 2 to address the public health concern that a 

new strain had been introduced and was transmitting throughout the North. In this study, isolates 

from 163 patients over 23 years were examined and two predominant sublineages were identified 

(the ‘Major’ and ‘Minor’ sublineage, responsible for 153 and 10 cases, respectively). Estimating 

the timing of introduction of these strains in the North required extrapolating back from the 

sequences of these isolates to their most recent common ancestor (MRCA, representing the 

imputed ancestral sequence) and estimating the time at which divergence from this ancestor 

occurred (tMRCA). Bayesian molecular dating represents the predominant approach for 

estimating divergence times using next-generation sequencing data (163).  

 

4.4.3.1 Bayesian molecular dating and Markov chain Monte Carlo methods 

Bayesian statistics utilize a continuous form of Bayes’ Theorem. In phylogenetics, this is 

expressed as: 

 

f(θ|D) = f(θ) * p(D|θ) 
         p(D) 
 
where D is the sequence data from the included isolates; 
θ represents the unknown parameters in the model (including the parameters in the model of 
nucleotide substitution, the molecular clock and parameters of the demographic model); 
f(θ|D) is the posterior distribution; 
f(θ) is the prior distribution, which is a joint prior over all parameters in θ; 
p(D|θ) is the likelihood; 
P(D) is a constant, representing the marginal likelihood of D (modified from (164)). 
 

Ignoring the constant p(D), as this does not have to be calculated, 

f(θ|D) α f(θ) * p(D|θ) 
 

The principles behind Bayesian inference are as follows (informed by Bayesian statistics courses 

taught by Dr. Lawrence Joseph in the Department of Epidemiology at McGill University): in 
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brief, prior distributions represent what is already known about the parameters of interest, 

including previous evidence from the literature about their distributions (e.g., their means and 

standard deviations). By specifying an independent prior for each parameter in θ, one can 

explicitly incorporate this evidence into the current analysis. The strength of a prior is described 

by the variance assigned to its prior density, with smaller variance suggesting greater support for 

the proposed means. If there is weak or no evidence from the literature to inform the prior, a non-

informative prior can be used, such that the probability is equally distributed over a wide range 

of values (165). An example of a non-informative prior is the following:  

X ~ uniform[-inf,+inf] 

where X represents a random variable and equal probability is given to any value between 

negative infinity and positive infinity.  

 

Once individual priors are specified, they are multiplied together to form a joint prior 

distribution. These will then be ‘updated’ based on the data, as expressed by the likelihood 

function p(D|θ). The likelihood function is often the same as function utilized in Frequentist 

statistics. In phylogenetics, this is frequently Felsenstein’s likelihood (153, 164).  

 

To derive the posterior density, the joint prior distribution and the likelihood are multiplied. If 

non-informative priors are used, the posterior distribution will be based solely on the data 

(expressed in the likelihood function). The resulting 95% credible intervals obtained will be 

approximately numerically equivalent to Frequentist 95% confidence intervals, provided the 

sample size is large (165). However, if an informative prior is utilized, the weight given to the 

data in calculating the posterior is dependant both on the strength of the prior and the sample size 

of the data. As sample size increases, the weight given to the likelihood (i.e., the data) compared 

to the prior increases (165). 

 

In the case of Bayesian molecular dating, the age of the MRCA is inferred. However, as in many 

other Bayesian analyses, solving the exact posterior distribution is analytically intractable (161). 

Therefore, Markov chain Monte Carlo methods (MCMC) are utilized to obtain random samples 

from the posterior distribution. As explained in (164), a starting position (‘state’) is chosen for all 

parameters in θ. A new state is then proposed, given the previous state, through the proposal 
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distribution q(θ’|θ).  If the new state explains the observed data with higher probability than the 

previous state, it is accepted. If the new state has lower probability than the previous state, a 

random number is drawn from a uniform distribution between (0, 1). If this random number is 

less than or equal to f(θ’|D)/f(θ|D), the new state is accepted. If this number is greater than 

f(θ’|D)/f(θ|D), the new state is rejected. Therefore, if the new state is significantly worse, it will 

be rejected (164).  

 

In conditions where the proposal distribution is not symmetric (i.e., q(θ’|θ) ≠ q(θ|θ’)), 

reversibility is maintained via the Hastings ratio; if a proposed state in this instance is worse, the 

random number is now compared with (f(θ’|D)/f(θ|D))*(q(θ|θ’)/q(θ’|θ) (164). 

 

As each state depends on the previous, with only small changes between them, adjacent states 

are highly correlated. In order to account for this, the chain length of the MCMC (i.e., the 

number of states generated) must be large enough to ensure independent samples can be taken. In 

Bayesian Evolutionary Analysis by Sampling Trees (BEAST, (166)), an effective sample size 

(ESS) of 100 independent samples from the posterior distribution for each parameter is 

considered adequate, with higher ESS indicating higher confidence.  

 

Samples should only be taken after the Markov chain has reached stationarity, i.e., when it has 

converged on the target posterior distribution. Samples taken prior to reaching convergence 

should be discarded. This is called the ‘burn-in’ period (167). As the initial values used to start 

the MCMC may be highly divergent from the true posterior distribution or relatively close, the 

number of states needed to reach convergence varies. A burn-in of 10% is often considered 

adequate, but this should be assessed using trace plots of the values taken for each continuous 

parameter across all samples (Figure 4-4) (164, 168). Those with similar mean and variance 

throughout indicate stationarity. Adequate mixing (i.e., how well the MCMC moves through the 

sample space) can also be assessed, to ensure the chain is sampling a range of values from the 

posterior distribution. 
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FIGURE 4-4. Values for a single parameter, across all samples in Tracer, (169). This is an 
example of adequate mixing and stationarity of the MCMC, with ESS >200. Burn-in is sufficient 
(in grey), as there are no overall upward or downward trends visible.  
 

Once convergence and adequate mixing are confirmed, mean/median values and 95% highest 

posterior density (HPD) intervals can be obtained for the posterior probability of each parameter. 

The latter represents the most narrow interval containing X% of the posterior probability (164).  

 

4.4.3.2 Choosing prior distributions  

Prior distributions on the parameters represented by θ are informed by previous knowledge, 

including results from similar studies. When such knowledge is limited, non-informative prior 

distributions are used.  

 

Among parameters requiring specification of a prior distribution is the molecular clock, i.e. the 

rate of substitution over time. As mentioned in Chapter 3, previous studies using different 

datasets have estimated a molecular clock of ~0.5 SNPs per genome per year or 1.3x10-7 per site 

(53, 101). However, as indicated in Bryant et al. (106), there can be substantial variation around 

this estimate. Therefore, to assess the validity of applying a strict (i.e., a single) clock across our 

whole dataset, a likelihood ratio test was performed in MEGA (158). The probability of a strict 

clock was rejected at p <0.05. Based on this, a uncorrelated relaxed log-normal clock (170) prior 
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was used, allowing for variation across branches of the phylogenetic tree. A rate was then 

estimated, overall and for both Major and Minor sublineages. The initial value was set at  

1.3x10-7 per site to reduce time to convergence of the MCMC, as - even if variable - clock rates 

would be expected to be in this numerical range. 

 

In order to estimate divergence times, a tree prior must also be specified. Tree priors are 

population demographic models, used to describe changes in size of a bacterial population over 

time. In all analyses, a coalescent tree prior was used, which assumes that all isolates in the 

sample will ultimately ‘coalesce’, i.e., they all share a common ancestor at some point in history. 

This is ideal when samples arise from the same population (164) and by using such a prior, this 

accounts for the dependence between the genetically-related sampled isolates (168). Model 

selection was performed using the posterior-simulation based analogue of Akaike’s Information 

Criterion (AICM, (171)). Among parametric models of population demographics, a coaelescent 

prior with a constant population size was selected based on the lowest AICM (168). This model 

was used for the first two MRCA analyses, with a non-informative Jeffery’s prior for the 

population size parameter. A third analysis applied a non-parametric coalescent model (the 

Bayesian skyline) (172) to infer the estimated population size as a function of time, without 

specification of a functional form for population size.  

 

Default, non-informative priors were used for the rates estimated by the model of nucleotide 

substitution (GTR, as previous).  

 

4.4.3.3 Constructing time trees 

Along with all parameters, phylogenetic trees and branch lengths were also sampled from the 

posterior distribution. These phylogenetic trees are directed, meaning all isolates are thought to 

descend from a single imputed ancestor (the MRCA). This is the ‘root’ of the tree, with relative 

time of 1.0. Time 0 is the most recently-collected isolate. Extrapolating from the genetic 

diversity in the contemporaneous sequences, ancestral nodes are identified where at least 1 

isolate diverged from another. There are n-1 such ancestral nodes, where n represents the number 

of isolates (168). Divergence times are calculated relative to the root MRCA for each node. To 
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convert divergence times to absolute time (i.e., into years rather than relative to the root MRCA), 

additional dating information is required.  

 
 

Root MRCA   Tips (sampled isolates, undated) 

FIGURE 4-5. Example of a relative time tree. The root of the tree is assigned a divergence 
time of 1.0, with all isolates at the tips assigned a relative time of 0. Different clusters of isolates 
are indicated in red, blue and green. The most recent common ancestors between all isolates are 
inferred. These nodes are indicated in orange and assigned a relative time compared to the root.   
 

In our analyses, relative time was converted into absolute time by calibrating the ancestral node 

of all isolates in the Major sublineage. This calibration was based on the previously reported 

substitution rate of 0.5 SNPs per genome per year and the extremities of reported 95% 

confidence intervals (0.3-0.7 SNPs per genome per year) (101, 105). To assess the robustness of 

our findings and influence of this prior, two additional analyses did not include a calibration 

node, relying solely on the dates isolates were sampled (i.e., the years they were collected from 

the patients) to convert relative into absolute divergence times.  

 

1.0 0.0 



    

! 56!

Based on the sampled trees, a maximum clade credibility tree was generated. This is the tree that 

has the highest product of all posterior clade probabilities (173). Median divergence times (i.e., 

tMRCAs) and HPD intervals were reported for all nodes with posterior density >0.8 (174), 

which corresponds to nodes that are found in at least 80% of sampled trees. This ensured high 

confidence in the distal branches of phylogeny and therefore the corresponding tMRCAs.  
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CHAPTER 5.  OBJECTIVE 1 – Manuscript I 
 
Lee RS, Radomski N, Proulx J-F, Manry J, McIntosh F, Desjardins F, Soualhine H, Domenech 
P, Reed MB, Menzies D, Behr MA. Reemergence and re-amplification of tuberculosis in the 
Canadian Arctic. J Infect Dis 2015;211(12):1905-1914 
 

5.1 Preamble 

 

In a single year, one village in Nunavik had 50 cases of microbiologically-confirmed TB 

(population 933). With an incidence of TB higher than anywhere else in the world for that year, 

and an extraordinary attack rate of ~20%, this outbreak was alarming in many ways to both the 

community and local health care providers. A massive public health response helped identify, 

diagnose and treat patients as rapidly as possible, as well as start patients on LTBI prophylaxis.  

 

Several of the authors herein, myself included, were directly involved in the public health 

response to this ‘outbreak’. Following this, once no further waves of cases were being diagnosed, 

we collaborated with the village council to investigate this extraordinary event.  

 

The first aim of this thesis work, to resolve transmission networks in this village, is described in 

the following manuscript. The published reprint of this manuscript is enclosed in Appendix 2-1. 

This is followed by the accompanying supplementary data, which includes detailed methods, in 

Appendix 2-2.  
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5.2 Manuscript I 
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Abstract 
Between November 2011 and November 2012, a Canadian village of 933 persons had 50 

culture-positive cases of tuberculosis, with 49 sharing the same genotype. 

Methods 

We performed Illumina-based whole-genome sequencing on Mycobacterium tuberculosis 

isolates from this village, during and before the outbreak. Phylogenetic trees were generated 

using the maximum likelihood method. 

Results 

Three distinct genotypes were identified. Strain I (n = 7) was isolated in 1991-1996. Strain II (n 

= 8) was isolated in 1996-2004. Strain III (n = 62) first appeared in 2007 and did not arise from 

strain I or II. Within strain III, there were 3 related but distinct clusters: IIIA, IIIB, and IIIC. 

Between 2007 and 2010, cluster IIIA predominated (11 of 22 vs. 2 of 40; P <.001), whereas in 

2011-2012 clusters IIIB (n = 18) and IIIC (n = 20) predominated over cluster IIIA (n = 11). 

Combined evolutionary and epidemiologic analysis of strain III cases revealed that the outbreak 

in 2011-2012 was the result of ≥6 temporally staggered events, spanning from 1 reactivation case 

to a point-source outbreak of 20 cases. 

Conclusions 

After the disappearance of 2 strains of M. tuberculosis in this village, its reemergence in 2007 

was followed by an epidemiologic amplification, affecting >5% of the population. 
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Introduction 

Between November 2011 and November 2012, there were 50 cases of microbiologically proven 

active tuberculosis in an Arctic village in Nunavik, Québec. With a population of only 933, the 

incidence of culture-confirmed tuberculosis was >5% of the community for that year - 1000 

times the overall Canadian incidence. This outbreak occurred in a setting with a very low 

prevalence of human immunodeficiency virus infection and no previous resistance to 

antituberculosis drugs, leading to concern in the populace of a newly emerged hyper-virulent 

strain of Mycobacterium tuberculosis. 

 

As part of the response to the outbreak, the Nunavik Regional Board of Health and Social 

Services (NRBHSS) conducted extensive contact investigations of all newly diagnosed active 

tuberculosis cases, including household and social contacts. During this response, it was 

observed that many persons had contacts with multiple tuberculosis cases, indicating that it 

would be extremely difficult to identify transmission links using standard epidemiologic 

methods. An alternative approach would involve molecular typing of patient isolates. 

 

In work published elsewhere, a combination of classic molecular epidemiology tools (restriction 

fragment length polymorphism [RFLP] and mycobacterial interspersed repetitive units [MIRUs]) 

revealed extremely limited bacterial diversity in this region, both within and across villages [1]. 

One potential interpretation of these findings is that this represents ongoing transmission. 

However, an alternative hypothesis is that patients share similar bacterial genotypes due to 

ancestry. With the advent of whole-genome sequencing (WGS), a higher-resolution molecular 

epidemiologic tool [2–6], it is now possible to test whether bacteria that are otherwise 

indistinguishable indicate recent transmission of M. tuberculosis. Furthermore, because WGS 

provides information on lineage-specific polymorphisms, this genotyping method can also 

determine whether a new, potentially more virulent M. tuberculosis strain had been introduced 

into this community. 

 

To address these 2 questions, we conducted WGS on M. tuberculosis isolates from this village. 

To validate WGS data in this setting, we tested epidemiologically unrelated isolates from other 

villages of the same region, over 6 years. Then, to situate WGS data from 2011 to 2012 in the 
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context of a village with high rates of tuberculosis over many years, we extended our analysis to 

the 2 decades before the outbreak. In this setting with limited variability by conventional 

genotyping modalities, WGS provided improved analytic resolution, revealing the 

disappearance, reemergence, and amplification of M. tuberculosis over time. 

 

Methods 

Study Population 

Nunavik, the arctic region of Québec, spans 443 685 km2 and comprises 14 Inuit communities. 

The outbreak village, henceforth denoted village K, is >150 km from the nearest village, with no 

road connecting the communities. 

 

Bacteria 

Specimens from tuberculosis suspects in Nunavik are processed at the mycobacteriology 

laboratory of the McGill University Health Centre (MUHC). Culture-positive isolates are 

forwarded to the reference laboratory, Laboratoire de Santé Publique du Québec, for drug 

susceptibility testing. These laboratories provided isolates for the years 1991–2012. 

 

Genomics 

DNA extraction [7] and WGS have been described elsewhere [8], with details in the 

Supplementary Data. In brief, M. tuberculosis isolates were sequenced using the MiSeq 250 

System (Illumina). Reads with a minimum length of 50 base pairs (bp) were retained and 

deposited in the National Center for Biotechnology Information's Sequence Archive (accession 

No. SRP039605, i.e. BioProject PRJNA240330). After alignment to the H37Rv reference 

genome (accession No. NC_000962.3), single-nucleotide polymorphisms (SNPs) were identified 

using a Bayesian likelihood model (Unified Genotyper; Genome Analysis ToolKit, version 

2.7.4); SNPs with a minimum Phred score >50 were retained (where Phred is −10 · log10Perror). 

Phylogenetic analysis was done using Molecular Evolutionary Genetics Analysis (MEGA, 

version 5, [9]), with the number of differences method used to compute evolutionary distance 

[10]. Maximum likelihood trees were generated using the model of nucleotide substitution that 

yielded the lowest Bayesian information criterion (Tamura 3-parameter model, [11]). As a 

sensitivity analysis, we also generated maximum likelihood trees using the Jukes–Cantor model 
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[12]. 

 

Validation of SNP Threshold for Recent Transmission 

Given the limited genetic diversity in Nunavik [1], we evaluated the lowest SNP threshold that 

could occur in the absence of transmission. To do so, we sequenced M. tuberculosis isolates from 

cases residing in other villages of Nunavik (2006–2012). Contact investigation data were 

obtained from the NRBHSS. Case pairs without epidemiologic links who resided in different 

villages were designated as improbable transmission, and the SNPs between these case pairs 

were compared. 

 

Application of WGS to Village K 

The SNPs between village K isolates were identified, including those from cases diagnosed 

during the 20 years before the outbreak. Phylogenetic trees were generated while blinded to 

epidemiologic data. 

 

Clinical Epidemiologic Analysis Combined With WGS 

For the outbreak, clinical epidemiologic data were collected by clinical staff in village K. Links 

between cases were identified using a database of all household and named contacts. Using date 

of diagnosis/treatment initiation, symptoms, sputum smear status, and cavity on chest radiograph 

as indicators of contagion [13], we looked for potential index cases in each cluster. For the years 

preceding the outbreak, epidemiologic data for cases from 2007 to 2010 were provided by the 

NRBHSS. Smear microscopic results were obtained from the MUHC laboratory. 

 

Statistical Analysis 

A 2-sample z test and the exact binomial test were used to compare proportions. The F* test for 

samples with unequal variance was used to compare the number of pairwise SNPs within 

clusters. Analyses were conducted using Stata software (version 11, StataCorp 2009). 

 

Ethical Approval 

Ethical approval was obtained from the McGill University Faculty of Medicine's institutional 

review board and the NRBHSS. Individual patient consent was not required, but the study was 
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done in collaboration with the village K council. 

 

Results 

The Outbreak 

Between November 2011 and November 2012, there were 50 microbiologically confirmed cases 

of tuberculosis in village K. There were no cases between January and October of 2011. All 

cases were pulmonary, with no instances of tuberculosis meningitis or disseminated disease. 

Seven of the 50 cases were diagnosed based on symptoms. Of the remaining 43 cases, 40 were 

found to have active disease during contact investigation, and 3 developed tuberculosis after a 

documented positive tuberculin skin test conversion; 1 had refused isoniazid and the other 2 

demonstrated low adherence. The epidemiologic links between cases were highly complex 

(Figure 5-1). All cases except one shared the same MIRU pattern; RFLP provided similar 

resolution (Supplementary Figure 1). 

 

Tuberculosis in Village K Over 22 Years 

Between 1991 and 2012 (i.e., including the outbreak year), 82 cases of culture-positive 

tuberculosis were diagnosed in village K (Figure 5-2), yielding an average annual incidence of 

>450 per 100 000 (population denominators from Statistics Canada). The majority of cases were 

male (47 of 82), with a median age of 22 years (interquartile range, 16–35 years), consistent with 

the age distribution of this population [14]. 

 

Of the 82 confirmed cases in village K, 80 (97.6%) had isolates available for genotyping, 78 of 

which provided high-quality WGS data: 49 of 50 outbreak isolates, 14 of 15 isolates from 2007 

to 2010, and all 15 isolates from 1991 to 2004 (there were no cases in 2005–2006). Average 

genome coverage among the 78 isolates was 99.7% (standard deviation [SD], 0.11%), with an 

average depth of coverage of 42× (SD, 13). The majority of Phred scores were between 500 and 

1000 for SNPs, indicating minimal ascertainment bias, and there was no evidence supporting 

infection with multiple M. tuberculosis strains (Supplementary Figure 2). A review of isolates 

without SNPs between them revealed that the specimens were processed in separate batches, 

arguing against laboratory cross-contamination. 
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Validation of SNP Threshold for Recent Transmission 

WGS was successful for 42 of 45 cases in other villages of Nunavik (2006–2012). Consistent 

with our observation of limited genetic diversity in this region, the 631 “improbable 

transmission” case pairs from other villages of Nunavik were separated by as few as 2 SNPs, but 

none were separated by 0 or 1 SNP (Supplementary Figure 3). From this finding, supported by 

studies published elsewhere, we defined a new cluster when a group of isolates shared ≥2 of the 

same SNPs compared with the reference group. 

 

Application of WGS to Village K 

The SNPs from all isolates of village K were used to infer maximum likelihood trees, with the 

bootstrap consensus tree from 1000 replicates shown in Figure 5-3 [11, 15]. Results were robust 

to use of an alternate model of nucleotide substitution (unpublished data). All isolates were 

lineage 4 (Euro-American, with the reported 7-bp deletion in the pks15/1 gene) [16], and 3 

distinct strains were evident, designated strains I, II, and III (Figure 5-3). Neither strain I nor 

strain II gave rise to strain III; strain I has 16 unique SNPs not seen in strain III, whereas strain II 

has 18 unique SNPs plus a 1102-bp deletion (2 963 340–2 964 352) that is intact in strain III 

isolates. 

 

Strain I predominated for 6 years (n = 7; 1991–1996), then disappeared. Strain II predominated 

for 9 years (n = 8; 1996–2004), then disappeared (Figure 5-2). Strains I and II were unique to 

village K. Strain III was first detected in village K in 2007, though it was subsequently found in 

2 cases diagnosed in other villages. One of these cases was a child adopted from village K to 

another community, and the other was an adult who had been a close family contact of a smear-

positive case in village K before developing active tuberculosis the following year. 

Within strain III, 3 clusters were observed, designated IIIA, IIIB, and IIIC (Figure 5-4). Cluster 

IIIA isolates (n = 22) had the reference alleles for the genes carB, Rv3263, Rv0828c, and 

Rv1835c. Cluster IIIB isolates (n = 20) had cluster-defining SNPs in carB and Rv3263 but were 

wild type for Rv0828c and Rv1835c; cluster IIIC isolates (n = 20) had cluster-defining SNPs in 

Rv0828c and Rv1835c but were wild-type for carB and Rv3263. Of the 3 clusters, IIIC had the 

least bacterial diversity (mean pairwise SNP difference between isolates, 1.7 [95% confidence 

interval, 1.5–1.8] within IIIA, 1.6 (1.4–1.8) within IIIB, and 0.4 (0.3–0.5) within IIIC; P < .001). 
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Clinical Epidemiologic Analysis Combined With WGS 

Whereas WGS alone revealed 3 different clusters (IIIA, B, C), further analysis in conjunction 

with epidemiologic data identified more complex transmission networks over time, with ≥6 

distinct subgroups from 2011 to 2012 (Figure 5-5, across the bottom). Cluster IIIA was first seen 

in 2007–2008 and was initially divided into 2 groups—those with the C allele in mce1B (n = 4) 

and those with an alternative T allele in this gene (n = 18). 

 

Between 2011 and 2012, there were 11 cluster IIIA isolates. One had the C allele in mce1B and 

was from a familial contact of previous cases whose isolates had the same genotype in 2008, 

suggestive of an isolated reactivation event. The 10 remaining isolates had the T allele in mce1B. 

Two of these isolates also had an alternative C allele in Rv0331. In this latter subgroup, 1 case 

was diagnosed in November 2011 and had smear-positive (3+) cavitary disease (MT-5531), 

while the other was a household contact. The remaining 8 IIIA isolates were first observed in 

May 2012. Within this subgroup, there were 3 smear-positive cases (4+ for MT-3074, 3+ for 

MT-3341, and 2+ for MT-3673) diagnosed in June 2012 plus 5 more cases diagnosed at about 

the same time or soon afterward. Nearly all secondary cases were friends or family, with no 

obvious trend in locations of contact. Thus, the 11 cluster IIIA isolates from 2011 to 2012 are 

unlikely to represent a single transmission event, because ≥2 discrete transmission chains plus 1 

isolated reactivation event are better supported by the combined genetic and epidemiologic data. 

 

Cluster IIIB was first seen in 2009 and had the reference mce1B C allele, plus cluster-defining 

SNPs in carB and Rv3263. In 2011–2012, there were 18 cluster IIIB isolates. Five of these had 

an alternative C allele in fadE4, and the other 13 had the reference A allele at this position. The 

former subgroup was first seen in December 2011, when a single case was diagnosed with 

smear-positive (4+) cavitary disease (MT-504). The remaining 4 cases with this genotype were 

teenagers with shared attendance at the same “gathering house,” a venue of socialization 

identified by public health during the outbreak. The latter subgroup (with the reference A allele 

in fadE4) was first detected 3 months later, in March 2012. Although it is possible that MT-504 

had a mixed infection and contributed to both subgroups, we also note that cases with the 

alternative C allele were diagnosed months before those with the reference A allele. Moreover, 
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the group of 13 cases with the reference A allele included a patient with smear-positive (3+) 

cavitary disease diagnosed in May 2012 (MT-2474) who had definitive epidemiologic links to 4 

of the remaining 12 cases. The combination of WGS and epidemiology together suggest that the 

18 cluster IIIB isolates from 2011 to 2012 represent ≥2 transmission chains. 

 

Cluster IIIC was not seen in the community before 2012. The first case was diagnosed in January 

2012 with sputum smear–positive (3+) cavitary disease (MT-0080). Fifteen of the remaining 19 

cases were epidemiologically linked to this case (4 household contacts, 3 friends, and 8 contacts 

at gathering houses). This putative source reported symptoms for 4 months before diagnosis, 

possibly explaining the large number of IIIC cases observed early in 2012 (8 additional cases in 

January–February 2012 and 3 in March–April). Of these cases, 2 were smear positive (2+ for 

MT-1838 and 2+ for MT-2151). Hence, some of the remaining cases with diagnoses between 

May and November 2012 may have been infected by these secondary cases. These data suggest 

that cluster IIIC represents, at a minimum, 1 discrete transmission chain. 

 

The epidemiologic curve of the outbreak shows, at the village level, a bimodal distribution of 

cases diagnosed over time (Figure 5-6A). When outbreak cases were stratified by the 

aforementioned subgroups, the bimodal distribution was largely attributable to differences in the 

temporal presentation of the different clusters and their subgroups (Figure 5-6B). When 

examining the contact data on the most transmissible cases in each of the subgroups, we can 

tabulate the number of household and non-household contacts who developed active tuberculosis 

with the same genotype. As seen in Table 5-1, of named household contacts who developed 

tuberculosis, 56% shared the same genotype as the epidemiologically identified source. In 

contrast, among non-household contacts who developed tuberculosis, only 19% shared the same 

genotype as their putative source, which was no better than chance alone (exact binomial for 

comparison to 1/6, given 6 subgroups; P = .32). 

 

Discussion 

Using WGS, we have been able to reveal the complexity of tuberculosis control in a unique 

environment, where there is virtually no loss to follow-up and little to no in- or out-migration. 

On the scale of decades, 2 dominant strains have disappeared, not to be seen again after 1996 and 
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2004. Unfortunately, the reemergence of tuberculosis in or around 2007 was followed by a series 

of secondary and tertiary cases, culminating in an explosion of tuberculosis cases in 2011–2012. 

Whereas WGS alone revealed 3 clusters in the 2011–2012 outbreak, the combination of WGS 

with epidemiologic data allowed us to resolve this into a minimum of 6 events—5 transmission 

chains and 1 isolated case of reactivation. Together, these findings suggest that (1) even a single 

reactivation event can lead to numerous cases in this community and (2) the outbreak of 2011–

2012 was not a single, rare occurrence but rather multiple smaller concurrent events. This 

suggests that this community is highly vulnerable to tuberculosis outbreaks, such that ongoing 

surveillance and vigilance against tuberculosis are warranted. 

 

Our analysis of the outbreak leads us to several important conclusions. First, the outbreak was 

not due to the introduction of a new M. tuberculosis lineage. The isolates circulating in 2011–

2012 differed by a maximum of 8 SNPs from those already present in 2007, and both IIIA and 

IIIB cases were documented in the years before the outbreak. Although we cannot exclude the 

possibility that the 2 nonsynonymous SNPs in strain IIIC affect bacterial fitness or virulence, this 

strain was responsible for less than half of the outbreak cases. It is therefore unlikely that these 

few mutations, on their own, accounted for the dramatic case rate of 2012. Rather, our findings 

suggest that the 2011–2012 outbreak involved the expansion of extant bacteria, consistent with a 

historical study of tuberculosis in Western Canada [17]. 

 

Second, both the WGS data and the clinical/epidemiologic data point to multiple transmission 

events, rather than a single outbreak. Although it remains possible that a single patient harbored 

a diversity of strains [18] and was therefore the sole source, such an explanation is neither likely 

nor necessary to explain the outbreak. Within a few years of the introduction of strain III, there 

were highly contagious carriers of each of IIIA, IIIB, and IIIC, each with epidemiologic links to 

multiple contacts sharing the same genotype. The knowledge that there are 3 clusters (IIIA, IIIB, 

and IIIC) in combination with epidemiologic data has also helped identify a case of exogenous 

reinfection that would otherwise have been overlooked given the absence of MIRU variability. In 

addition, the cluster-defining SNPs of IIIA/B/C are now being used to investigate the sources of 

2013–2014 cases and to distinguish relapse from reinfection in recurrent cases. 
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Finally, whereas MIRU and RFLP of this community would suggest that there is, and has been, 

ongoing transmission in this village for decades [1], WGS data challenge this interpretation. 

Strains I and II disappeared in 1996 and 2004, respectively, before the introduction of strain III. 

Given that strain III was first seen in village K and differs from strains I and II by approximately 

40 SNPs, the most plausible explanation is a single reactivation case due to an organism acquired 

in the same village, decades before the period sampled. The majority of adults in the village have 

positive tuberculin skin test results, and many have chronic pulmonary diseases, so it is possible 

that one such individual developed transmissible disease without medical suspicion of 

tuberculosis, leading to the introduction of strain IIIA in 2007. 

 

It remains unclear why this population was at such a high risk after the reappearance of 

tuberculosis in 2007. Given that one of the potential source cases in the outbreak presented to the 

clinic 4 months after symptom onset, patient delay may be a considerable factor in this 

population. Furthermore, although the majority of household contacts with tuberculosis shared 

the same genotype as the most transmissible cases within each subgroup, 44% of these 

household contacts did not, supporting the findings of Verver et al. [19] that in an environment 

with high tuberculosis transmission, the traditional stone-in-pond principle may not suffice for 

identifying and interrupting transmission. As implemented in 1954 in Alaska [20], community-

wide interventions, such as chest radiographic screening, may be needed to halt tuberculosis 

transmission in this setting. BCG vaccination was already reinstituted in the village in response 

to this outbreak after its cessation in 2005. 

 

The primary limitation of this study is the relatively small sample size of the subgroups revealed 

by WGS. Despite the extraordinary incidence of disease, there was insufficient power to conduct 

a rigorous statistical comparison between cases in the different transmission chains. Another 

potential limitation is that we were unable to sequence 4 of 82 isolates. However, because we 

successfully sequenced 95% of all isolates from village K between 1991 and 2012, there is 

minimal risk of sampling bias. Finally, from a public health perspective, we were unable to 

identify a single, unifying cause of the 2011–2012 outbreak; this is not surprising, however, 

given that in-depth analysis revealed the outbreak was in fact due to ≥6 epidemiologically 

distinct events. 
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There are a number of important strengths of this study. The unique environment, with nearly all 

isolates sharing the same MIRU pattern, provided the opportunity to examine how limited classic 

genotyping methods can actually be. We have demonstrated that although isolates in a 

transmission chain share the same MIRU, the converse does not necessarily hold true—a fact 

that may have important implications for public health investigation of MIRU-defined clusters. 

The analysis by WGS of a single geographically isolated village provided an unexpected 

opportunity to witness both the disappearance and reemergence of tuberculosis over time. 

Isolates sequenced had a minimum coverage of 21x, and 97% of the SNPs identified had a Phred 

score of >100, equivalent to a 1 in 1010 chance of error. The results for the outbreak obtained 

using the maximum likelihood method were concordant with both the previously established rate 

of mutation of M. tuberculosis [3, 5, 21, 22] and independent results from Nunavik outside 

village K (Supplementary Figure 3). Our phylogeny also proved robust to use of an alternate 

model of nucleotide substitution. We obtained independent confirmation of the 4 cluster-defining 

SNPs for clusters IIIA, IIIB, and IIIC using Sanger sequencing, and a previous study by 

Domenech et al [8] also showed very low false-positive rates using the same WGS pipeline. 

Finally, detailed clinical epidemiologic data were available for all cases, facilitating the 

verification of transmission identified by WGS. 

 

In summary, the use of WGS permitted a fine-level analysis of an ongoing tuberculosis epidemic 

in this vulnerable population. The reappearance of M. tuberculosis was followed several years 

later by an epidemiologic amplification, leading to a multipronged outbreak affecting >5% of the 

population. Further consideration of the potential mechanisms of tuberculosis spread in this 

village, and other communities in Nunavik, is warranted to derive strategies to help these and 

other vulnerable communities control and ultimately eliminate tuberculosis. 
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FIGURES 

 
FIGURE 5-1. Epidemiologic links between outbreak cases.  
Links between household/named contacts, as well as shared attendance (or residence) of com- 
munity “gathering houses” identified by contact investigation are indicated. Orange circles 
represent sputum smear-positive cavitary cases; navy circles, sputum smear-positive non-
cavitary cases; pink circles, sputum smear-negative cavitary cases; gray circles, sputum smear-
negative non-cavitary cases.  
  

diagnosed based on symptoms. Of the remaining 43 cases, 40
were found to have active disease during contact investigation,
and 3 developed tuberculosis after a documented positive tuber-
culin skin test conversion; 1 had refused isoniazid and the other
2 demonstrated low adherence. The epidemiologic links be-
tween cases were highly complex (Figure 1). All cases except
one shared the same MIRU pattern; RFLP provided similar res-
olution (Supplementary Figure 1).

Tuberculosis in Village K Over 22 Years
Between 1991 and 2012 (ie, including the outbreak year), 82
cases of culture-positive tuberculosis were diagnosed in village
K (Figure 2), yielding an average annual incidence of >450 per

100 000 (population denominators from Statistics Canada).
The majority of cases were male (47 of 82), with a median
age of 22 years (interquartile range, 16–35 years), consistent
with the age distribution of this population [14].

Of the 82 confirmed cases in village K, 80 (97.6%) had
isolates available for genotyping, 78 of which provided high-
quality WGS data: 49 of 50 outbreak isolates, 14 of 15 isolates
from 2007 to 2010, and all 15 isolates from 1991 to 2004 (there
were no cases in 2005–2006). Average genome coverage among
the 78 isolates was 99.7% (standard deviation [SD], 0.11%), with
an average depth of coverage of 42× (SD, 13). The majority of
Phred scores were between 500 and 1000 for SNPs, indicating
minimal ascertainment bias, and there was no evidence

Figure 1. Epidemiologic links between outbreak cases. Links between household/named contacts, as well as shared attendance (or residence) of com-
munity “gathering houses” identified by contact investigation are indicated. Orange circles represent sputum smear-positive cavitary cases; navy circles,
sputum smear-positive noncavitary cases; pink circles, sputum smear-negative cavitary cases; gray circles, sputum smear-negative noncavitary cases.
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FIGURE 5-2. Microbiologically confirmed tuberculosis in village K (1990– 2012).  
The numbers of confirmed tuberculosis cases reported in village K from 1990 to 2012 are shown 
by year of diagnosis. Strains of isolates are indicated, as identified by whole-genome sequencing 
(WGS): diagonal stripes indicate strain I; solid white, strain II; horizontal stripes, strain III; and 
vertical stripes, not clustered; solid black represent isolates for which WGS was not available.  

supporting infection with multiple M. tuberculosis strains
(Supplementary Figure 2). A review of isolates without SNPs be-
tween them revealed that the specimens were processed in sepa-
rate batches, arguing against laboratory cross-contamination.

Validation of SNP Threshold for Recent Transmission
WGS was successful for 42 of 45 cases in other villages of
Nunavik (2006–2012). Consistent with our observation of lim-
ited genetic diversity in this region, the 631 “improbable trans-
mission” case pairs from other villages of Nunavik were
separated by as few as 2 SNPs, but none were separated by 0
or 1 SNP (Supplementary Figure 3). From this finding, support-
ed by studies published elsewhere, we defined a new cluster
when a group of isolates shared ≥2 of the same SNPs compared
with the reference group.

Application of WGS to Village K
The SNPs from all isolates of village K were used to infer max-
imum likelihood trees, with the bootstrap consensus tree from
1000 replicates shown in Figure 3 [11,15].Results were robust to
use of an alternate model of nucleotide substitution (unpub-
lished data). All isolates were lineage 4 (Euro-American, with
the reported 7-bp deletion in the pks15/1 gene) [16], and 3 dis-
tinct strains were evident, designated strains I, II, and III (Fig-
ure 3). Neither strain I nor strain II gave rise to strain III; strain I
has 16 unique SNPs not seen in strain III, whereas strain II has
18 unique SNPs plus a 1102-bp deletion (2 963 340–2 964 352)
that is intact in strain III isolates.

Strain I predominated for 6 years (n = 7; 1991–1996), then
disappeared. Strain II predominated for 9 years (n = 8; 1996–

2004), then disappeared (Figure 2). Strains I and II were unique
to village K. Strain III was first detected in village K in 2007,
though it was subsequently found in 2 cases diagnosed in
other villages. One of these cases was a child adopted from vil-
lage K to another community, and the other was an adult who
had been a close family contact of a smear-positive case in
village K before developing active tuberculosis the following
year.

Within strain III, 3 clusters were observed, designated IIIA,
IIIB, and IIIC (Figure 4). Cluster IIIA isolates (n = 22) had
the reference alleles for the genes carB, Rv3263, Rv0828c, and
Rv1835c. Cluster IIIB isolates (n = 20) had cluster-defining
SNPs in carB and Rv3263 but were wild type for Rv0828c and
Rv1835c; cluster IIIC isolates (n = 20) had cluster-defining SNPs
in Rv0828c and Rv1835c but were wild-type for carB and
Rv3263. Of the 3 clusters, IIIC had the least bacterial diversity
(mean pairwise SNP difference between isolates, 1.7 [95% con-
fidence interval, 1.5–1.8] within IIIA, 1.6 (1.4–1.8) within IIIB,
and 0.4 (0.3–0.5) within IIIC; P < .001).

Clinical Epidemiologic Analysis Combined With WGS
Whereas WGS alone revealed 3 different clusters (IIIA, B, C),
further analysis in conjunction with epidemiologic data identi-
fied more complex transmission networks over time, with ≥6
distinct subgroups from 2011 to 2012 (Figure 5, across the bot-
tom). Cluster IIIA was first seen in 2007–2008 and was initially
divided into 2 groups—those with the C allele in mce1B (n = 4)
and those with an alternative T allele in this gene (n = 18).

Between 2011 and 2012, there were 11 cluster IIIA isolates.
One had the C allele in mce1B and was from a familial contact
of previous cases whose isolates had the same genotype in 2008,
suggestive of an isolated reactivation event. The 10 remaining
isolates had the T allele in mce1B. Two of these isolates also
had an alternative C allele in Rv0331. In this latter subgroup,
1 case was diagnosed in November 2011 and had smear-positive
(3+) cavitary disease (MT-5531), while the other was a house-
hold contact. The remaining 8 IIIA isolates were first observed
in May 2012. Within this subgroup, there were 3 smear-positive
cases (4+ for MT-3074, 3+ for MT-3341, and 2+ for MT-3673)
diagnosed in June 2012 plus 5 more cases diagnosed at about
the same time or soon afterward. Nearly all secondary cases
were friends or family, with no obvious trend in locations of
contact. Thus, the 11 cluster IIIA isolates from 2011 to 2012
are unlikely to represent a single transmission event, because
≥2 discrete transmission chains plus 1 isolated reactivation
event are better supported by the combined genetic and epide-
miologic data.

Cluster IIIB was first seen in 2009 and had the reference
mce1B C allele, plus cluster-defining SNPs in carB and Rv3263.
In 2011–2012, there were 18 cluster IIIB isolates. Five of these
had an alternative C allele in fadE4, and the other 13 had the
reference A allele at this position. The former subgroup was

Figure 2. Microbiologically confirmed tuberculosis in village K (1990–
2012). The numbers of confirmed tuberculosis cases reported in village
K from 1990 to 2012 are shown by year of diagnosis. Strains of isolates
are indicated, as identified by whole-genome sequencing (WGS): diagonal
stripes indicate strain I; solid white, strain II; horizontal stripes, strain III;
and vertical stripes, not clustered; solid black represent isolates for which
WGS was not available.
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FIGURE 5-3. Bootstrap consensus tree of Mycobacterium tuberculosis isolates from village 
K.  
The evolutionary history was inferred by using the maximum likelihood method based on the 
Tamura 3-parameter model [11] and a bootstrap consensus tree was generated with 1000 
replicates [15]. The percentage of trees in which the associated genome clustered together is 
shown next to the branches. Branches reproduced in <80% of bootstrap replicates are collapsed. 
Initial trees for the heuristic search were obtained by applying the neighbor-joining method to a 
matrix of pairwise distances estimated using the maximum composite likelihood approach. The 
analysis involved 78 genomes compared with the H37Rv reference genome. Light blue triangles 
represent strain I isolates; dark blue circles, strain II; pink diamonds, strain III, cluster A; orange 
circles, strain III, cluster B; green triangles, strain III, cluster C; black circle, not clustered.  
 

first seen in December 2011, when a single case was diagnosed
with smear-positive (4+) cavitary disease (MT-504). The re-
maining 4 cases with this genotype were teenagers with shared
attendance at the same “gathering house,” a venue of socializa-
tion identified by public health during the outbreak. The latter
subgroup (with the reference A allele in fadE4) was first detect-
ed 3 months later, in March 2012. Although it is possible that
MT-504 had a mixed infection and contributed to both sub-
groups, we also note that cases with the alternative C allele were
diagnosed months before those with the reference A allele.
Moreover, the group of 13 cases with the reference A allele

included a patient with smear-positive (3+) cavitary disease di-
agnosed in May 2012 (MT-2474) who had definitive epidemio-
logic links to 4 of the remaining 12 cases. The combination of
WGS and epidemiology together suggest that the 18 cluster IIIB
isolates from 2011 to 2012 represent ≥2 transmission chains.

Cluster IIIC was not seen in the community before 2012. The
first case was diagnosed in January 2012 with sputum smear–
positive (3+) cavitary disease (MT-0080). Fifteen of the remaining
19 cases were epidemiologically linked to this case (4 household
contacts, 3 friends, and 8 contacts at gathering houses). This pu-
tative source reported symptoms for 4 months before diagnosis,

Figure 3. Bootstrap consensus tree of Mycobacterium tuberculosis isolates from village K. The evolutionary history was inferred by using the maximum
likelihood method based on the Tamura 3-parameter model [11] and a bootstrap consensus tree was generated with 1000 replicates [15]. The percentage of
trees in which the associated genome clustered together is shown next to the branches. Branches reproduced in <80% of bootstrap replicates are collapsed.
Initial trees for the heuristic search were obtained by applying the neighbor-joining method to a matrix of pairwise distances estimated using the maximum
composite likelihood approach. The analysis involved 78 genomes compared with the H37Rv reference genome. Light blue triangles represent strain I isolates;
dark blue circles, strain II; pink diamonds, strain III, cluster A; orange circles, strain III, cluster B; green triangles, strain III, cluster C; black circle, not clustered.
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Figure 4. Strain and cluster-defining single-nucleotide polymorphisms (SNPs) for strains I, II, and III. Strain and cluster-defining SNPs shown. Reference
and alternative alleles are highlighted in white and gray, respectively. From a progenitor strain, strains I and II have evolved distinctly from strain III, itself
further subdivided into clusters IIIA, IIIB, and IIIC. Alleles in the genes Rv0828c, carB, Rv1835c, and Rv3263 (H37Rv loci 1 558 108, 3 644 579, 921 390 and
2 082 436, respectively) were confirmed by Sanger sequencing for 6 isolates from each of clusters IIIA, IIIB, and IIIC.

1910 • JID 2015:211 (15 June) • Lee et al

 at M
cG

ill U
niversity Libraries on M

arch 7, 2016
http://jid.oxfordjournals.org/

D
ow

nloaded from
 



    

! 75!

 

FIGURE 5-4. Strain and cluster-defining single-nucleotide polymorphisms (SNPs) for 
strains I, II, and III.  
Strain and cluster-defining SNPs shown. Reference and alternative alleles are highlighted in 
white and gray, respectively. From a progenitor strain, strains I and II have evolved distinctly 
from strain III, itself further subdivided into clusters IIIA, IIIB, and IIIC. Alleles in the genes 
Rv0828c, carB, Rv1835c, and Rv3263 (H37Rv loci 1 558 108, 3 644 579, 921 390 and 2 082 
436, respectively) were confirmed by Sanger sequencing for 6 isolates from each of clusters 
IIIA, IIIB, and IIIC.  
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possibly explaining the large number of IIIC cases observed
early in 2012 (8 additional cases in January–February 2012
and 3 in March–April). Of these cases, 2 were smear positive
(2+ for MT-1838 and 2+ for MT-2151). Hence, some of the re-
maining cases with diagnoses between May and November 2012
may have been infected by these secondary cases. These data
suggest that cluster IIIC represents, at a minimum, 1 discrete
transmission chain.

The epidemiologic curve of the outbreak shows, at the village
level, a bimodal distribution of cases diagnosed over time
(Figure 6A). When outbreak cases were stratified by the afore-
mentioned subgroups, the bimodal distribution was largely at-
tributable to differences in the temporal presentation of the
different clusters and their subgroups (Figure 6B). When exam-
ining the contact data on the most transmissible cases in each of
the subgroups, we can tabulate the number of household and non-
household contacts who developed active tuberculosis with the

same genotype. As seen in Table 1, of named household con-
tacts who developed tuberculosis, 56% shared the same geno-
type as the epidemiologically identified source. In contrast,
among nonhousehold contacts who developed tuberculosis,
only 19% shared the same genotype as their putative source,
which was no better than chance alone (exact binomial for com-
parison to 1/6, given 6 subgroups; P = .32).

DISCUSSION

Using WGS, we have been able to reveal the complexity of tu-
berculosis control in a unique environment, where there is vir-
tually no loss to follow-up and little to no in- or out-migration.
On the scale of decades, 2 dominant strains have disappeared,
not to be seen again after 1996 and 2004. Unfortunately, the re-
emergence of tuberculosis in or around 2007 was followed by
a series of secondary and tertiary cases, culminating in an

Figure 5. The microevolution of strain III in village K over time, involving a total of 7 single-nucleotide polymorphisms (SNPs). Numbers in circles indicate
numbers of cases at each stage of evolution. The years of all isolates in each group are indicated below the circles, with time scaled from the top (2007) to
the bottom (2012). Arrows indicate bacterial microevolution, and SNPs are identified by the gene name and the corresponding allele; to highlight certain
lineages with the reference allele, the gene name and allele are in parentheses. Starting with the ancestral genome (top), cluster IIIA had 2 initial sub-
groups, one with the reference allele C at mce1B (4 cases; middle panel, left) and the other with alternative allele T at mce1B (18 cases; middle panel, right).
Within the latter 18 cases, there were 2 subgroups: 3 with an additional variant at Rv0331 and 15 that retained the reference allele, A. Cluster IIIB (bottom
left) was derived from strain IIIA with the mce1B C reference allele, with 2 additional mutations (in Rv3263, carB). A subgroup of 5 had an additional variant
in fadE4. Cluster IIIC (bottom right) was derived from cluster IIIA, with the alternative T allele at mce1B and 2 additional mutations (in Rv1835c, Rv0828c). At
the bottom, the concatenated genotype for the 7 SNPs is presented for each of the 6 subgroups identified during the outbreak year.
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FIGURE 5-5. The microevolution of strain III in village K over time, involving a total of 7 
single-nucleotide polymorphisms (SNPs).  
Numbers in circles indicate numbers of cases at each stage of evolution. The years of all isolates 
in each group are indicated below the circles, with time scaled from the top (2007) to the bottom 
(2012). Arrows indicate bacterial microevolution, and SNPs are identified by the gene name and 
the corresponding allele; to highlight certain lineages with the reference allele, the gene name 
and allele are in parentheses. Starting with the ancestral genome (top), cluster IIIA had 2 initial 
subgroups, one with the reference allele C at mce1B (4 cases; middle panel, left) and the other 
with alternative allele T at mce1B (18 cases; middle panel, right). Within the latter 18 cases, 
there were 2 subgroups: 3 with an additional variant at Rv0331 and 15 that retained the reference 
allele, A. Cluster IIIB (bottom left) was derived from strain IIIA with the mce1B C reference 
allele, with 2 additional mutations (in Rv3263, carB). A subgroup of 5 had an additional variant 
in fadE4. Cluster IIIC (bottom right) was derived from cluster IIIA, with the alternative T allele 
at mce1B and 2 additional mutations (in Rv1835c, Rv0828c). At the bottom, the concatenated 
genotype for the 7 SNPs is presented for each of the 6 subgroups identified during the outbreak 
year.  
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FIGURE 5-6. Epidemiologic curves of the outbreak.  
A, Overall. The numbers of cases during the outbreak are shown by date of diagnosis (year-
month-date). Blue represents isolates for which whole-genome sequencing (WGS) was 
successful; black, isolates without WGS. There were no cases before November in 2011. B, 
Epidemiologic curve of the outbreak, stratified by WGS/epidemiologic subgroup. The numbers 
of cases during the outbreak are shown by date of diagnosis (year-month-date), in biweekly 
intervals. Cases are stratified by subgroup genotype, as indicated. explosion of tuberculosis cases in 2011–2012. Whereas WGS

alone revealed 3 clusters in the 2011–2012 outbreak, the com-
bination of WGS with epidemiologic data allowed us to resolve
this into a minimum of 6 events—5 transmission chains and 1
isolated case of reactivation. Together, these findings suggest
that (1) even a single reactivation event can lead to numerous
cases in this community and (2) the outbreak of 2011–2012
was not a single, rare occurrence but rather multiple smaller
concurrent events. This suggests that this community is highly
vulnerable to tuberculosis outbreaks, such that ongoing surveil-
lance and vigilance against tuberculosis are warranted.

Our analysis of the outbreak leads us to several important
conclusions. First, the outbreak was not due to the introduction
of a new M. tuberculosis lineage. The isolates circulating in
2011–2012 differed by a maximum of 8 SNPs from those al-
ready present in 2007, and both IIIA and IIIB cases were doc-
umented in the years before the outbreak. Although we cannot

exclude the possibility that the 2 nonsynonymous SNPs in
strain IIIC affect bacterial fitness or virulence, this strain was re-
sponsible for less than half of the outbreak cases. It is therefore
unlikely that these few mutations, on their own, accounted for
the dramatic case rate of 2012. Rather, our findings suggest that
the 2011–2012 outbreak involved the expansion of extant
bacteria, consistent with a historical study of tuberculosis in
Western Canada [17].

Second, both the WGS data and the clinical/epidemiologic
data point to multiple transmission events, rather than a single
outbreak. Although it remains possible that a single patient har-
bored a diversity of strains [18] and was therefore the sole
source, such an explanation is neither likely nor necessary to
explain the outbreak. Within a few years of the introduction
of strain III, there were highly contagious carriers of each of
IIIA, IIIB, and IIIC, each with epidemiologic links to multiple con-
tacts sharing the same genotype. The knowledge that there are 3

Figure 6. Epidemiologic curves of the outbreak. A, Overall. The numbers of cases during the outbreak are shown by date of diagnosis (year-month-date).
Blue represents isolates for which whole-genome sequencing (WGS) was successful; black, isolates without WGS. There were no cases before November
in 2011. B, Epidemiologic curve of the outbreak, stratified by WGS/epidemiologic subgroup. The numbers of cases during the outbreak are shown by date of
diagnosis (year-month-date), in biweekly intervals. Cases are stratified by subgroup genotype, as indicated.
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TABLES 

TABLE 5-1.  Household and Social Contacts With Active Tuberculosis of the Same 

Genotype for Each Smear-Positive Case by WGS Epidemiologic Subgroup a 
 Date of diagnosis  Contacts with same genotype/total contacts, 

No. (%)b 

Subgroup by 

WGS and 

Epidemiology 

1st case Smear 

positive 

cases 

Smear 

grade 

Household contacts  Social contacts  

IIIA, n=1 May 2012 - - 0/0 (-) 0/18 (0) 

IIIA, n=2 Nov. 2011 Nov. 2011 3+ 1/4 (25) 0/30 (0) 

IIIA, n=8 May 2012 Jun. 2012 4+ 0/0 (-) 3/10 (30) 

  Jun. 2012 3+ 1/1 (100) 4/9 (44) 

  Jun. 2012 2+ 1/1 (100) 1/3 (33) 

IIIB, n=5 Dec. 2011 Dec. 2011 4+ 0/0 (-) 4/32 (13) 

  Oct. 2012 3+ 0/3 (0) 2/22 (9) 

IIIB, n=13 Mar. 2012 May 2012 2+ 2/2 (100) 3/21 (14) 

IIIC, n=20 Jan. 2012 Jan. 2012 3+ 3/3 (100) 12/31 (39) 

  Apr. 2012 2+ 1/3 (33) 5/20 (25) 

  May 2012 2+ 1/1 (100) 8/23 (35) 

      

Total (n/N)    10/18 (56) 42/219 (19)c 

Abbreviation: WGS, whole-genome sequencing. a Smear positive was defined as 1+ or higher, except the first subgroup 
comprised only 1 person, who had smear-negative disease. b Because different sources named the same contacts, the 
denominators of contacts who developed active tuberculosis exceed the number of unique cases in the year. c A 2-sample z test 
was used to assess difference in proportions (P < .001).  
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5.3 Additional unpublished analyses 

 

To assess for mixed infection or within-host microevolution which could affect inferences of transmission, the SNPs that distinguished 

the 6 different subgroups were investigated manually for all isolates in strain III from 2007-2012.  

 

 

 
FIGURE 5-7 Cluster and subgroup – defining SNP loci in strain III. Alleles are shown, relative to the H37Rv reference genome, 
for all strain III isolates from the ‘outbreak’ village (i.e., 2007-2012). Each cluster is indicated (orange=IIIA, pink=IIIB, green=IIIC), 
with different shades within each cluster representing the different subgroups. Month/year of diagnosis are indicated for each isolate. 
SNPs defining clusters and subgroups are indicated in grey. Isolates identified for deep sequencing are indicated with arrows. From 
left to right, these are: MT-4942, 73787, MT-2184 and MT-504. 
 

Isolates were selected for deep sequencing based on this site-by-site inspection and/or epidemiological significance and are indicated 

in Table 5-2. All other isolates had either unanimous base calls or were supported by >95% of reads.  
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TABLE 5-2 Allelic frequency for SNP loci defining clusters or subgroups by standard 

sequencing 

H37Rv 

position 

Gene 

name 

Reference 

allele 

Alternative 

allele 

MT-4942 73787 MT-

2184 

MT-504 

200530 mce1B C T 0,53 72,2 45,0 64,0 

276685 fadE4 A C 73,0 74,0 69,3 5,70 

396246 Rv0331 A C 48,5 81,1 59,1 70,1 

921390 Rv0828c T C 87,0 70,0 53,0 77,0 

1558108 carB C T 67,0 1,71 0,69 0,60 

2082436 Rv1835c C T 62,1 68,0 53,0 88,0 

3644579 Rv3263 G A 96,0 0,68 0,66 0,58 

The number of reads with the reference and alternative alleles for each position are indicated 
(ref,alt). 73787 selected for deep sequencing based on position at node in Figure 5-5.  
 

Considering the above, it was possible that MT-4942, a smear positive case with strain IIIA 

diagnosed in 2007, exhibited micro-evolution and harboured bacteria with both the reference and 

alternative allele in Rv0331 (48 reads were the reference allele and 5 reads were the alternative 

allele). Three individuals in cluster IIIA had the alternative allele in Rv0331. One (MT-5337) 

was diagnosed in 2010 and had an additional SNP in Rv0630. MT-5531 had TST conversion in 

early 2008, and subsequently developed disease in 2011, transmitting to MT-5983 within the 

same household. As MT-5531 lacked the SNP in Rv0630, this suggests that MT-4942 – who also 

lacked this SNP in Rv0630 - was the original source of transmission. While it is possible that 

both MT-5337 and MT-5531 independently acquired SNPs in Rv0331, a more likely explanation 

is that MT-4942 carried bacteria with both reference and alternative alleles at this locus. 

 

The above allelic frequencies suggested that micro-evolution was possible for MT-504 as well. 

This patient was diagnosed in December of 2011 with smear-positive cavitary disease, and 

represents the first case diagnosed in the n=5 subgroup of strain IIIB in Figure 5-5. While the 

majority of alleles (93%) support the alternative allele and this position was not called 

heterozygous, it is possible this patient initially had the reference allele, and subsequently 

acquired a SNP at this locus, which ultimately became the majority strain. In this scenario, MT-

504 could have been transmitted to the n=13 subgroup of IIIB as well as the n=5 subgroup.  



 

	   84	  

 

As alternative alleles in fadE4 were noted for MT-2184 who was a smear-negative case 

diagnosed in 2012 (IIIB, n=13 subgroup in Figure 5-5), this isolate was also subjected to deep 

sequencing. 73787 (IIIB) was diagnosed in 2010 and selected based on its position (Figure 5-5).  

 

TABLE 5-3 Allelic frequency for SNP loci defining clusters or subgroups by deep sequencing 

H37Rv 

position 

Gene 

name 

Reference 

allele 

Alternative 

allele 

MT-

4942 

73787 MT-

2184 

MT-504 

200530 mce1B C T 0,281 177,0 193,1 151,0 

276685 fadE4 A C 246,0 193,1 177,5 8,144 

396246 Rv0331 A C 290,6 157,0 238,0 164,0 

921390 Rv0828c T C 282,0 151,0 214,0 165,1 

1558108 carB C T 277,0 0,161 0,229 0,169 

2082436 Rv1835c C T 293,0 153,0 223,0 170,0 

3644579 Rv3263 G A 265,0 0,148 0,206 0,162 

The number of reads with the reference and alternative alleles for each position are indicated 
(ref,alt). 73787 selected for deep sequencing based on position at node in Figure 5-5.  
 
Overall, deep sequencing results do not provide strong evidence to support within-host 

heterogeneity, either due to mixed infection from >1 strain subgroup or micro-evolution. MT-

4942 has 6 alternative alleles out of 296 reads (2%), while MT-504 has 8 reference alleles out of 

152 reads (5%) at fadE4. While this is more indicative of sequencing or alignment error, it is not 

conclusive. Therefore, as epidemiologic data also support the possibility of micro-evolution, this 

cannot at present be ruled out. 



 

	   85	  

CHAPTER 6.  OBJECTIVE 2 – Manuscript II  

Lee RS, Radomski N, Proulx J-F, Levade I, Shapiro BJ, McIntosh F, Soualhine H, Menzies D, 
Behr MA. Population genomics of Mycobacterium tuberculosis in the Inuit. Proc Natl Acad Sci 
USA 2015;112(44):13609-13614 
 

6.1 Preamble 

 

This Objective is an extension of our investigation of the ‘outbreak’ in the North. In the 

preceding decade, the maximum number of confirmed cases experienced by this community in a 

single year was 7, compared to 50 between 2011-2012. Coupled with the extraordinarily high 

attack rate among those with recent infection, this led to the concern that a new, hyper-virulent 

strain of M. tuberculosis had arrived in this village. These apprehensions were heightened by the 

occurrence of another apparent outbreak of similar scale in different Inuit community the 

following year. 

  

To address these concerns, we conducted a population-based study of TB transmission in 

Nunavik over 23 years. The following manuscript describes the results of this study, and sheds 

light on the origins and epidemiology of TB in Nunavik. 

 

The published reprint of this manuscript is enclosed in Appendix 3-1. This is followed by the 

accompanying supplementary data, including detailed methods, in Appendix 3-2. 

Supplementary datasets, for reader interest, are available open-access at 

http://www.pnas.org/content/112/44/13609.abstract?tab=ds 
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Abstract 

Nunavik, Québec suffers from epidemic tuberculosis (TB), with an incidence 50-fold higher than 

the Canadian average. Molecular studies in this region have documented limited bacterial genetic 

diversity among Mycobacterium tuberculosis isolates, consistent with a founder strain and/or 

ongoing spread. We have used whole-genome sequencing on 163 M. tuberculosis isolates from 

11 geographically isolated villages to provide a high-resolution portrait of bacterial genetic 

diversity in this setting. All isolates were lineage 4 (Euro-American), with two sublineages 

present (major, n = 153; minor, n = 10). Among major sublineage isolates, there was a median of 

46 pairwise single-nucleotide polymorphisms (SNPs), and the most recent common ancestor 

(MRCA) was in the early 20th century. Pairs of isolates within a village had significantly fewer 

SNPs than pairs from different villages (median: 6 vs. 47, P <0.00005), indicating that most 

transmission occurs within villages. There was an excess of nonsynonymous SNPs after the 

diversification of M. tuberculosis within Nunavik: The ratio of nonsynonymous to synonymous 

substitution rates (dN/dS) was 0.534 before the MRCA but 0.777 subsequently (P = 0.010). 

Nonsynonymous SNPs were detected across all gene categories, arguing against positive 

selection and toward genetic drift with relaxation of purifying selection. Supporting the latter 

possibility, 28 genes were partially or completely deleted since the MRCA, including genes 

previously reported to be essential for M. tuberculosis growth. Our findings indicate that the 

epidemiologic success of M. tuberculosis in this region is more likely due to an environment 

conducive to TB transmission than a particularly well-adapted strain. 
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Introduction 

The tubercule bacillus, Mycobacterium tuberculosis, is a highly successful, medically important 

human-adapted pathogen. Studies of diverse strain collections reveal a geographic aggregation of 

the principal M. tuberculosis lineages (1) consistent with a dissemination of this organism around 

the world with the paleo-migration (2). Ancient DNA studies also support the notion that M. 

tuberculosis has caused disease in humans for thousands of years. Thus, it can be inferred that M. 

tuberculosis has evolved in step with its human host, successfully responding to changes in the 

host and its environment that could affect the capacity to cause transmissible disease. 

 

In contrast to the global diversity of M. tuberculosis strains (1–3), we have previously observed 

limited genetic diversity in the Nunavik region of Québec (4). One possible explanation is a 

founder strain, wherein genetic similarity is due to a single recent introduction of a bacterium 

and may not necessarily represent ongoing spread between communities. In this scenario, 

isolates might have indistinguishable genotypes by conventional genotyping modalities 

(restriction fragment length polymorphism, mycobacterial interspersed repetitive units, 

spoligotyping) but distinct genotypes when assessed using a higher-resolution method, namely 

whole-genome sequencing (WGS) (5). An additional explanation is that a single clone of M. 

tuberculosis is currently spreading both within and between villages; however, the great 

distances between these communities that are not linked by roads make intervillage spread less 

likely. These possible explanations need not be mutually exclusive. 

 

To evaluate these possibilities, we conducted WGS on M. tuberculosis isolates from Nunavik 

isolated over 23 y. Estimation of the divergence date of the most recent common ancestor 

(MRCA) provided evidence that tuberculosis (TB) was introduced into this region in the early 

20th century, following which time there has been substantial ongoing transmission, 

predominantly within villages. This setting provides a unique opportunity to study the genomic 

characteristics of an epidemiologically successful strain of M. tuberculosis over time. 

 

Results 

Whole-Genome Sequencing and Lineage Identification 

There were 149 microbiologically confirmed TB cases diagnosed in Nunavik between 2001 and 
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2013; we obtained high-quality WGS data for 137/149 (92%). An additional 26 genomes were 

successfully sequenced from strains previously sampled between 1990 and 2000 (4). In total, 

WGS was conducted on 163 M. tuberculosis isolates. The average depth of coverage was 44.6× 

across 99.6% of the H37Rv reference genome. 

 

All 163 genomes from the Nunavik region presented the 7-bp deletion in polyketide synthase 

(pks) 15/1 that characterizes lineage 4 of M. tuberculosis (the Euro-American lineage) (6). By 

comparing the Nunavik isolates with three genomes from each of the M. tuberculosis lineages 

(1–7), we observed that the 163 genomes were tightly clustered in two distinct sublineages: one 

consisting of 153 isolates (major; Mj) and the other consisting of 10 isolates (minor; Mn) (Fig. 6-

1). Phylogenetic analyses based on single-nucleotide polymorphisms (SNPs) (Figs. 6-1 and 6-2) 

were supported by deletions confirmed by PCR (Fig. S1 and Dataset S1). 

 

Excluding SNPs in PE/PGRS and PPE genes, as well as mobile elements, as these may be at 

higher risk of false positives (5, 7), 1,288 single-nucleotide polymorphic loci were included 

comparing all genomes together against H37Rv (Dataset S2). The 153 isolates of the Mj 

sublineage had an average of 674 SNPs compared with H37Rv; the 10 isolates of the Mn 

sublineage had an average of 451 SNPs. There were 442 SNP loci shared across all Mj isolates, 

unique to this sublineage, and 214 SNP loci shared by all 10 Mn isolates that were not present in 

the Mj sublineage. According to the barcode proposed by Coll et al. (8) and the PhyTb tool of the 

PhyloTrack library (pathogenseq.lshtm.ac.uk/phytblive/index.php), the Mj and Mn sublineages 

can be classified as M. tuberculosis 4.1.2 and 4.8, respectively. 

 

Phylogenetic analysis and the geographic distribution of isolates further distinguished the Mj and 

Mn sublineages (Fig. 6-2). To quantify diversity, we determined the number of pairwise SNPs 

within each sublineage. Among isolates of the Mj sublineage, the median number of pairwise 

SNPs was 46 [interquartile range (IQR) 13–49], with a maximum of 72. For isolates of the Mn 

sublineage, the median number of pairwise SNPs was 1 (IQR 0–2), with a maximum of 22. Nine 

of the 10 isolates from this sublineage were from the same village. 
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Transmission Occurs Mostly Within Villages.  

To evaluate where most ongoing transmission occurs, we examined pairwise SNPs between 

isolates of the Mj sublineage, within and between villages, as these comprised over 90% of the 

cases in this region. The median number of pairwise SNPs was significantly lower for 

intravillage pairs (6, IQR 3–46) than for intervillage pairs (47, IQR 44–50, Wilcoxon–Mann–

Whitney, P <0.00005). For both intra- and intervillage comparisons, a bimodal distribution was 

evident (Fig. 6-3). For the intravillage pairs (n = 3,689), the first mode comprised 61% of all 

pairwise comparisons and had a median of 3 SNPs (IQR 2–5). For the intervillage pairs (n = 

7,939), the first mode comprised only 12% of all pairwise comparisons, and had a median of 9 

SNPs (IQR 6–13). For both intra- and intervillage pairs, the second mode had similar 

distributions (median 47, IQR 45–49 and median 48, IQR 45–50, respectively), consistent with 

the star-like pattern shown in Figs. 6-1 and 6-2. 

 

We also considered thresholds for transmission based on published M. tuberculosis substitution 

rates (0.5 SNPs per genome per y, 95% confidence interval 0.3–0.7) (5, 9). For a study spanning 

23 y (1991–2013 inclusive), we expected that epidemiologically linked cases would be separated 

by no more than 12 SNPs. Applying this threshold, 2,208 of 3,689 (60%) intravillage pairs were 

separated by 12 or fewer SNPs, compared with 683 of 7,939 (9%) intervillage pairs (two-sample 

z test for difference in proportions, P <0.00005). Sensitivity analyses applying substitution rates 

of 0.3 and 0.7 SNPs per genome per y yielded similar results. 

 

M. tuberculosis diversified in Nunavik during the 20th Century 

Relative to the global genetic diversity of M. tuberculosis, the total diversity of strains in 

Nunavik was low, consistent with a recent introduction of TB into this region. To evaluate this 

hypothesis, we estimated the MRCAs for each sublineage using Bayesian molecular dating (10, 

11). Constraining the substitution rate of M. tuberculosis based on previous estimates (5, 9) we 

inferred the MRCA of the Mj sublineage to be 1919 [95% highest posterior density interval 

(HPD) 1892–1946], with other divergence dates within the Mj sublineage scattered over the 20th 

century (Table 6-1, analysis 1). The Mn sublineage was found to have an MRCA of 1976 (95% 

HPD 1951–1994). Repeating these analyses without constraining the substitution rate yielded 

similar results (Table 6-1, analyses 2 and 3). 
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Natural selection of M. tuberculosis in a new environment 

The M. tuberculosis population may have experienced a new regime of natural selection upon its 

introduction into Nunavik. First, M. tuberculosis could have experienced a population bottleneck 

upon introduction, reducing the efficacy of natural selection and allowing the fixation of 

deleterious mutations. Second, upon entry into a new environment, M. tuberculosis could have 

experienced positive selection, retaining fitter variants over time. Third, if the environment was 

conducive to transmission of M. tuberculosis, there may have been a relaxation of purifying 

selection across the entire genome. These scenarios are not mutually exclusive, and other 

scenarios are possible as well. 

 

To measure natural selection at the protein level, we used the ratio of nonsynonymous to 

synonymous substitution rates (dN/dS), reasoning that this should remain stable over time in the 

absence of changing regimes of natural selection (12). Specifically, we tested the null hypothesis 

that dN/dS remained the same pre- and postdiversification of each M. tuberculosis sublineage. 

We first reconstructed the ancestral sequences of the MRCA for each sublineage, along with that 

of the common ancestor for these two sublineages (denoted “Mj–Mn”). We then compared the 

nonsynonymous and synonymous SNPs (nsSNPs and sSNPs, respectively) between these 

reconstructed ancestors (Mj–Mn versus Mj, Mj–Mn versus Mn) to obtain the dN/dS for each 

sublineage prediversification. To calculate the dN/dS postdiversification (i.e., subsequent to the 

MRCAs for each sublineage), we generated a concatenated sequence of codons for both the Mj 

and Mn sublineages that included all SNP loci and compared each sequence with that of its 

respective ancestor. In this phylogenetic approach, each independent SNP was counted exactly 

once (i.e., SNPs present in multiple isolates were not recounted). In total, for the Mj sublineage, 

we identified 229 nsSNPs and 154 sSNPs before its introduction into Nunavik, compared with 

238 nsSNPs and 107 sSNPs that occurred subsequently (Dataset S2). The dN/dS ratio for SNPs 

prediversification was 0.534, consistent with published estimates for M. tuberculosis (13), 

whereas the dN/dS postdiversification was 0.777 (Table 6-2, analysis 1a; G test based on 

numbers of nsSNPs and sSNPs pre- and postdiversification, P = 0.010). Singleton SNPs, present 

in only one isolate, are expected to be enriched in nonsynonymous mutations destined to be 

purged by purifying selection. To evaluate whether the increased dN/dS was attributable to these 
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transient mutations, we restricted our analysis to SNPs present in ≥2 isolates. We still observed a 

significant increase in the dN/dS, going from 0.534 prediversification to 0.928 

postdiversification (Table 6-2, analysis 1b). There was no significant difference in 

postdiversification nsSNPs and sSNPs comparing analyses with and without singletons (Fisher’s 

exact test, P = 0.472). As an alternative method of calculating the dN/dS postdiversification, we 

conducted a pairwise analysis wherein the median dN/dS was obtained by comparing each of the 

153 Mj isolates with its respective ancestral sequence. This yielded similar results, whether 

singletons were included or excluded (Table 6-2, analysis 2). Compared with the Mj sublineage, 

the dN/dS ratios for the Mn sublineage were more stable over time (Table 6-2). 

 

The efficiency of purifying selection to remove deleterious nonsynonymous mutations is reduced 

when populations undergo dramatic size fluctuations due, for example, to bottlenecks or 

exponential growth. To investigate whether the increased dN/dS ratio in the Mj sublineage was 

due to an expanding bacterial population size over time, we constructed Bayesian skyline plots 

(Fig. S2). Model comparison using Akaike’s information criterion for Markov chain Monte 

Carlo samples [AICM (14)] rejected an exponential population growth in favor of a constant 

population size or Bayesian skyline model (Table S1). Together, these results suggest that the 

genome-wide increase in dN/dS was not due to a population bottleneck followed by exponential 

growth, nor to a lack of time for purifying selection to purge deleterious nsSNPs. 

 

Genes affected by SNPs and/or deletions 

Unlike genome-wide relaxation, wherein the whole genome is affected, positive selection is 

thought to target specific genes (15, 16). Across the 153 genomes of the Mj sublineage, we 

identified 218 and 227 genes with nsSNPs pre- and postdiversification, respectively (Dataset S2). 

To evaluate whether any particular categories of M. tuberculosis genes were unusually variable 

postdiversification, we tabulated these SNPs according to gene categories described in the 

literature (Fig. 6-4 and Datasets S3 and S4). There was no statistically significant difference 

between the proportion of genes with nsSNPs in any categories pre- versus postdiversification 

(two-sample z test for difference in proportions, P >0.05). However, genes predicted to be 

conditionally essential for M. tuberculosis survival in vitro, in macrophages, or in vivo were not 

spared nsSNPs (Dataset S5). Mutations in essential genes often affected a residue that is 
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conserved in the closely related mycobacterial species Mycobacterium canettii (17) and 

Mycobacterium kansasii (18), with three genes (Rv0338c, echA5, and murC) incurring distinct 

nsSNPs in different strains (Dataset S5). 

 

In addition to these potentially deleterious SNPs, all Mj isolates lacked eight regions, resulting in 

13 deleted genes. Certain strains also suffered a further seven deletions, disrupting 28 genes 

(Dataset S1). Certain gene categories appeared overrepresented in postdiversification deletions 

(e.g., genes acquired through lateral gene transfer, mobile elements), but the low number of 

deleted genes precluded robust statistical analysis (Fig. 6-4 and Dataset S1). Four genes 

predicted to be essential in genomic screens were completely (Rv2335) or partially (Rv1939, 

Rv2885c, and Rv3135) deleted in some isolates of the Mj sublineage (Dataset S3). Rv2335 (i.e., 

cysE) codes for a serine acetyltransferase, predicted to be essential for survival in vivo (19), that 

was absent in eight isolates. Rv2885c codes for a transposase in the IS1539 insertion sequence 

that is predicted to be essential for survival in vivo (19), whereas Rv3135 codes for PPE50 and is 

predicted to be essential for survival in vitro (20). Rv1939 codes for an oxydoreductase predicted 

to be essential for survival in vivo (19) that was deleted in one isolate (18421) (Dataset S1). 

 

Discussion 

The Inuit originally came from eastern Siberia, via the Bering Strait, in two waves over several 

thousands of years (21). Given the recognized close association between M. tuberculosis and 

human populations, it is theoretically possible that they brought an East Asian lineage of M. 

tuberculosis with them to the Canadian Arctic. Our data refute this scenario by revealing only 

lineage 4 (Euro-American) isolates. The low amount of genetic diversity among isolates from 

different villages indicates that the vast majority of TB cases in this region are the consequence 

of a single introduction of M. tuberculosis, perhaps from Europe, around the early 20th century. 

The introduction and diversification of a single dominant clone in Nunavik provide an 

unobstructed view of M. tuberculosis over time, enabling us to draw certain inferences about the 

epidemiology and evolution of this highly successful human-adapted pathogen. 

 

The Inuit have had casual interactions with Europeans since the 17th century, most notably with 

whalers and explorers who sailed along the coasts of Hudson’s Bay and Labrador (22). However, 
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the first permanent settlements of the Hudson’s Bay Company in the region now known as 

Nunavik date to the late 19th and early 20th centuries, following which there were more 

sustained interactions between the Inuit and traders (23). Our MRCA estimates support an 

introduction of TB into this region during this period, which is consistent with some, but not all, 

historical accounts of when TB was first observed (24). The apparent lack of TB before the early 

20th century, despite several centuries of Inuit–European interactions, supports that TB is 

generally not spread through casual contact, as is the case for measles or chickenpox. This is also 

consistent with our analysis of the pairwise SNPs between isolates across villages; only a small 

proportion of intervillage case pairs had low SNP differences, arguing against transmission 

during casual contact, as can occur at cultural gatherings that bring together members of different 

villages. Supporting this, villages often had one predominant strain, and individual strains were 

mostly confined to one village (Fig. 6-2). This observation presents both an opportunity and a 

challenge for public health; whereas TB should in theory be amenable to control through scaled-

up efforts, it may be that village-by-village, rather than regional, interventions will be needed to 

interrupt transmission in this setting. 

 

In a number of high-incidence countries, the emergence of an epidemiologically successful strain 

has been attributed to virulence features encoded in the bacterial genome (25). For instance, the 

polyketide synthase-derived phenolic glycolipid (PGL) coded by the intact pks15/1 locus of 

strain HN878 (Beijing genotype) induces hyperlethality in murine disease models (26), 

potentially explaining the emergence of the Beijing strain in a number of settings worldwide 

(27). Furthermore, compared with other clinical strains, strains 1471 and HN878 (Beijing 

genotypes) result in increased macrophage necrosis (28) and more progressive pathology in 

experimental infections (29). However, although certain strains have a propensity to cause 

accelerated life-threatening pathology in experimental models, it is not yet clear whether this 

property predicts epidemiologic success, as a strain that causes chronic, nonprogressive 

pathology may be the most likely to transmit. 

 

In Nunavik, we observed a set of related strains that meet the epidemiologic criterion of success, 

without any clear genomic indicators of increased bacterial virulence. Instead, for the Mj 

sublineage, we observe an enrichment of nsSNPs since its introduction into this region, some of 
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which are expected to affect the function of proteins that contribute to the survival of M. 

tuberculosis during infection. There are a number of potential causes of an increased dN/dS, 

including insufficient time for purifying selection to act, positive selection, relaxed purifying 

selection, and genetic drift. Whereas an increased dN/dS at the tips of a phylogenetic tree may 

indicate insufficient time for purifying selection (13), the postdiversification inflation of dN/dS 

holds even with the exclusion of evolutionarily recent singleton SNPs. Therefore, a simple time 

dependence is unlikely to be the only explanation. Positive selection is unlikely to inflate the 

dN/dS across the entire genome but rather should target genes with specific functions (15, 16). 

Although we did not identify any particular functional category of genes enriched in nsSNPs, 

this does not exclude positive selection on a small number of genes. However, it suggests that 

positive selection was not the pervasive force leading to a high dN/dS genome-wide. The 

remaining potential explanations for the dN/dS elevation are a genome-wide relaxation of 

purifying selection and genetic drift. The nsSNPs and deletions in putatively essential genes 

provide further support for these two interpretations. 

 

The global M. tuberculosis population has been previously shown to evolve through mostly weak 

selection and strong drift (30); here we show that the same is true on a local level, to an even 

greater extent. Given that drift will have stronger effects when effective populations are reduced 

(31) and that our data suggest that population size remained more or less constant, we 

hypothesize that relaxation of purifying selection has contributed significantly to the evolution of 

the Nunavik strain of M. tuberculosis. Further investigation in this and other similar populations 

is needed. Regardless of the forces that have driven the elevated dN/dS, our findings suggest that 

M. tuberculosis has not thrived in Nunavik due to a unique virulence profile of the bacteria. It 

follows that M. tuberculosis control in this region, and in similar settings, will require looking 

beyond the bacterial culprit to the social conditions that foster TB. 

 

Materials and Methods 

Detailed methods can be found in SI Materials and Methods. In brief, the Nunavik region is 

composed of 14 Inuit communities, with a total population of 12,090 (in 2011). Between 1990 

and 2013, there were 200 cases of TB in Nunavik, of which 163 were available for whole-

genome sequencing using the MiSeq 250 System (Illumina). Reads were assembled and 
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compared as previously described (32). The final dataset of SNPs excluded those in PE/PGRS 

and PPE genes, as well as mobile elements, as these may be prone to false positives (5, 7). 

Deletion events were identified with the Integrative Genomics Viewer (33) and confirmed by 

PCR and Sanger sequencing. Concatenated sequences of the SNPs were used to generate 

phylogenetic trees via the maximum likelihood method in Molecular Evolutionary Genetics 

Analysis [MEGA (34)]. Divergence times for the 163 Nunavik isolates were estimated using 

Bayesian Markov chain Monte Carlo methods [Bayesian Evolutionary Analysis by Sampling 

Trees (10, 11)], with H37Rv used as an outgroup. 

 

We used three approaches to derive MRCAs. Using the concatenated sequences of SNPs across 

the 163 genomes, we first conducted an analysis that incorporated prior knowledge of the 

substitution rate of M. tuberculosis in the form of a calibration node for the Mj sublineage 

(analysis 1). We then performed an analysis agnostic to the reported substitution rate (i.e., 

without calibration), also using concatenated sequences (analysis 2). We then repeated this 

second analysis but applied a correction for the constant sites across the genomes (analysis 3). 

Different coalescent models were tested to explore changes in effective population size over time 

(35). The AICM (14) was used to select the model providing the best fit. Bayesian skyline plots 

were generated (Fig. S2). 

 

To calculate the dN/dS ratios, the ancestral sequences for each MRCA (Mj–Mn, Mj, and Mn) 

were reconstructed manually (Dataset S2). We then calculated the dN/dS pre- and 

postdiversification for the Mj and Mn sublineages, using both a phylogenetics-based approach 

(analysis 1) and a pairwise dN/dS analysis (analysis 2) (7). For both analyses, we repeated the 

dN/dS calculations after excluding SNPs that were present only once across all 163 genomes 

(singletons). 

 

Ethical approval for this work was obtained from the McGill University Faculty of Medicine 

Institutional Review Board. 
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FIGURES 

 
FIGURE 6-1. Maximum likelihood tree of 163 M. tuberculosis isolates from Nunavik and 
21 representative genomes of lineages 1–7. Phylogenetic clusters based on 9,016 single-
nucleotide polymorphic loci identified across 184 genomes compared with H37Rv (solid black 
circle). The scale bars represent the number of substitutions per site. Bootstrap values from 1,000 
replicates are shown for branches within the Mj and Mn sublineages. For clarity, only values ≥98 
are shown.  
 

the Nunavik isolates with three genomes from each of the
M. tuberculosis lineages (1–7), we observed that the 163 genomes
were tightly clustered in two distinct sublineages: one consisting
of 153 isolates (major; Mj) and the other consisting of 10 isolates
(minor; Mn) (Fig. 1). Phylogenetic analyses based on single-
nucleotide polymorphisms (SNPs) (Figs. 1 and 2) were sup-
ported by deletions confirmed by PCR (Fig. S1 and Dataset S1).
Excluding SNPs in PE/PGRS and PPE genes, as well as mobile

elements, as these may be at higher risk of false positives (5, 7),
1,288 single-nucleotide polymorphic loci were included comparing
all genomes together against H37Rv (Dataset S2). The 153 isolates
of the Mj sublineage had an average of 674 SNPs compared with
H37Rv; the 10 isolates of the Mn sublineage had an average of 451
SNPs. There were 442 SNP loci shared across all Mj isolates,
unique to this sublineage, and 214 SNP loci shared by all 10 Mn
isolates that were not present in the Mj sublineage. According to
the barcode proposed by Coll et al. (8) and the PhyTb tool of the
PhyloTrack library (pathogenseq.lshtm.ac.uk/phytblive/index.php),
the Mj and Mn sublineages can be classified asM. tuberculosis 4.1.2
and 4.8, respectively.
Phylogenetic analysis and the geographic distribution of isolates

further distinguished the Mj and Mn sublineages (Fig. 2). To
quantify diversity, we determined the number of pairwise SNPs
within each sublineage. Among isolates of the Mj sublineage, the
median number of pairwise SNPs was 46 [interquartile range
(IQR) 13–49], with a maximum of 72. For isolates of the Mn
sublineage, the median number of pairwise SNPs was 1 (IQR 0–2),
with a maximum of 22. Nine of the 10 isolates from this sublineage
were from the same village.

Transmission Occurs Mostly Within Villages. To evaluate where most
ongoing transmission occurs, we examined pairwise SNPs between
isolates of the Mj sublineage, within and between villages, as these
comprised over 90% of the cases in this region. The median
number of pairwise SNPs was significantly lower for intravillage
pairs (6, IQR 3–46) than for intervillage pairs (47, IQR 44–50,

Wilcoxon–Mann–Whitney, P < 0.00005). For both intra- and in-
tervillage comparisons, a bimodal distribution was evident (Fig. 3).
For the intravillage pairs (n = 3,689), the first mode comprised
61% of all pairwise comparisons and had a median of 3 SNPs
(IQR 2–5). For the intervillage pairs (n = 7,939), the first mode
comprised only 12% of all pairwise comparisons, and had a me-
dian of 9 SNPs (IQR 6–13). For both intra- and intervillage pairs,
the second mode had similar distributions (median 47, IQR 45–49
and median 48, IQR 45–50, respectively), consistent with the star-
like pattern shown in Figs. 1 and 2.
We also considered thresholds for transmission based on pub-

lishedM. tuberculosis substitution rates (0.5 SNPs per genome per y,
95% confidence interval 0.3–0.7) (5, 9). For a study spanning 23 y
(1991–2013 inclusive), we expected that epidemiologically linked
cases would be separated by no more than 12 SNPs. Applying this
threshold, 2,208 of 3,689 (60%) intravillage pairs were separated
by 12 or fewer SNPs, compared with 683 of 7,939 (9%) intervillage
pairs (two-sample z test for difference in proportions, P < 0.00005).
Sensitivity analyses applying substitution rates of 0.3 and 0.7 SNPs
per genome per y yielded similar results.

M. tuberculosis Diversified in Nunavik During the 20th Century.
Relative to the global genetic diversity of M. tuberculosis, the to-
tal diversity of strains in Nunavik was low, consistent with a recent
introduction of TB into this region. To evaluate this hypothesis,
we estimated the MRCAs for each sublineage using Bayesian
molecular dating (10, 11). Constraining the substitution rate of
M. tuberculosis based on previous estimates (5, 9) we inferred the
MRCA of the Mj sublineage to be 1919 [95% highest posterior
density interval (HPD) 1892–1946], with other divergence dates
within the Mj sublineage scattered over the 20th century (Table 1,
analysis 1). The Mn sublineage was found to have an MRCA of
1976 (95% HPD 1951–1994). Repeating these analyses without
constraining the substitution rate yielded similar results (Table 1,
analyses 2 and 3).

Natural Selection of M. tuberculosis in a New Environment. The
M. tuberculosis population may have experienced a new regime of
natural selection upon its introduction into Nunavik. First, M. tu-
berculosis could have experienced a population bottleneck upon
introduction, reducing the efficacy of natural selection and allowing
the fixation of deleterious mutations. Second, upon entry into a new
environment, M. tuberculosis could have experienced positive se-
lection, retaining fitter variants over time. Third, if the environment
was conducive to transmission of M. tuberculosis, there may have
been a relaxation of purifying selection across the entire genome.
These scenarios are not mutually exclusive, and other scenarios are
possible as well.
To measure natural selection at the protein level, we used the

ratio of nonsynonymous to synonymous substitution rates (dN/dS),
reasoning that this should remain stable over time in the absence of
changing regimes of natural selection (12). Specifically, we tested
the null hypothesis that dN/dS remained the same pre- and post-
diversification of each M. tuberculosis sublineage. We first recon-
structed the ancestral sequences of the MRCA for each sublineage,
along with that of the common ancestor for these two sublineages
(denoted “Mj–Mn”). We then compared the nonsynonymous and
synonymous SNPs (nsSNPs and sSNPs, respectively) between these
reconstructed ancestors (Mj–Mn versus Mj, Mj–Mn versus Mn) to
obtain the dN/dS for each sublineage prediversification. To calcu-
late the dN/dS postdiversification (i.e., subsequent to the MRCAs
for each sublineage), we generated a concatenated sequence of
codons for both the Mj and Mn sublineages that included all SNP
loci and compared each sequence with that of its respective an-
cestor. In this phylogenetic approach, each independent SNP was
counted exactly once (i.e., SNPs present in multiple isolates were
not recounted). In total, for the Mj sublineage, we identified 229
nsSNPs and 154 sSNPs before its introduction into Nunavik,
compared with 238 nsSNPs and 107 sSNPs that occurred sub-
sequently (Dataset S2). The dN/dS ratio for SNPs prediversification
was 0.534, consistent with published estimates for M. tuberculosis
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Fig. 1. Maximum likelihood tree of 163 M. tuberculosis isolates from
Nunavik and 21 representative genomes of lineages 1–7. Phylogenetic
clusters based on 9,016 single-nucleotide polymorphic loci identified across
184 genomes compared with H37Rv (solid black circle). The scale bars
represent the number of substitutions per site. Bootstrap values from
1,000 replicates are shown for branches within the Mj and Mn sublineages.
For clarity, only values ≥98 are shown.
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FIGURE 6-2. Maximum likelihood tree of 163 M. tuberculosis isolates from Nunavik. 
Phylogenetic clusters were identified based on 1,288 single-nucleotide polymorphic loci 
compared with H37Rv. Solid and dashed lines indicate isolates of the Mj and Mn sublineages, 
respectively. Colored shapes represent the reference genome (bordered black square) and the 
villages of Nunavik: A (bordered blue triangle), B (full orange square), C (bordered purple 
circle), D (full green diamond), E (bordered purple diamond), K (full pink triangle), and other 
(full green circle). *Genome with a unique single-nucleotide polymorphism profile. 
#Phylogenetic clusters defined previously in ref. 32. Years of diagnosis are indicated. Bootstrap 
support from 1,000 replicates is shown. Branches supported by less than 80% of bootstrap 
replicates are collapsed.  
 

(13), whereas the dN/dS postdiversification was 0.777 (Table 2,
analysis 1a;G test based on numbers of nsSNPs and sSNPs pre- and
postdiversification, P = 0.010). Singleton SNPs, present in only one
isolate, are expected to be enriched in nonsynonymous mutations
destined to be purged by purifying selection. To evaluate whether
the increased dN/dS was attributable to these transient mutations,
we restricted our analysis to SNPs present in ≥2 isolates. We still
observed a significant increase in the dN/dS, going from 0.534
prediversification to 0.928 postdiversification (Table 2, analysis
1b). There was no significant difference in postdiversification
nsSNPs and sSNPs comparing analyses with and without singletons
(Fisher’s exact test, P = 0.472). As an alternative method of cal-
culating the dN/dS postdiversification, we conducted a pairwise
analysis wherein the median dN/dS was obtained by comparing
each of the 153 Mj isolates with its respective ancestral sequence.
This yielded similar results, whether singletons were included or

excluded (Table 2, analysis 2). Compared with the Mj sublineage,
the dN/dS ratios for the Mn sublineage were more stable over
time (Table 2).
The efficiency of purifying selection to remove deleterious non-

synonymous mutations is reduced when populations undergo dra-
matic size fluctuations due, for example, to bottlenecks or exponential
growth. To investigate whether the increased dN/dS ratio in the Mj
sublineage was due to an expanding bacterial population size over
time, we constructed Bayesian skyline plots (Fig. S2). Model
comparison using Akaike’s information criterion for Markov chain
Monte Carlo samples [AICM (14)] rejected an exponential pop-
ulation growth in favor of a constant population size or Bayesian
skyline model (Table S1). Together, these results suggest that the
genome-wide increase in dN/dS was not due to a population bottle-
neck followed by exponential growth, nor to a lack of time for pu-
rifying selection to purge deleterious nsSNPs.

Fig. 2. Maximum likelihood tree of 163 M. tuberculosis isolates from Nunavik. Phylogenetic clusters were identified based on 1,288 single-nucleotide
polymorphic loci compared with H37Rv. Solid and dashed lines indicate isolates of the Mj and Mn sublineages, respectively. Colored shapes represent the
reference genome (bordered black square) and the villages of Nunavik: A (bordered blue triangle), B (full orange square), C (bordered purple circle), D (full
green diamond), E (bordered purple diamond), K (full pink triangle), and other (full green circle). *Genome with a unique single-nucleotide polymorphism
profile. #Phylogenetic clusters defined previously in ref. 32. Years of diagnosis are indicated. Bootstrap support from 1,000 replicates is shown. Branches
supported by less than 80% of bootstrap replicates are collapsed.
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FIGURE 6-3. Pairwise SNPs between isolates of the major sublineage of Nunavik. There 
were a total of 11,628 pairwise comparisons: 3,689 intravillage case pairs and 7,939 intervillage 
case pairs.  
 

 

 Genes Affected by SNPs and/or Deletions. Unlike genome-wide re-
laxation, wherein the whole genome is affected, positive selection is
thought to target specific genes (15, 16). Across the 153 genomes of
the Mj sublineage, we identified 218 and 227 genes with nsSNPs
pre- and postdiversification, respectively (Dataset S2). To evaluate
whether any particular categories of M. tuberculosis genes were
unusually variable postdiversification, we tabulated these SNPs
according to gene categories described in the literature (Fig. 4 and
Datasets S3 and S4). There was no statistically significant dif-
ference between the proportion of genes with nsSNPs in any
categories pre- versus postdiversification (two-sample z test for
difference in proportions, P > 0.05). However, genes predicted to
be conditionally essential for M. tuberculosis survival in vitro, in
macrophages, or in vivo were not spared nsSNPs (Dataset S5).
Mutations in essential genes often affected a residue that is
conserved in the closely related mycobacterial species Myco-
bacterium canettii (17) and Mycobacterium kansasii (18), with
three genes (Rv0338c, echA5, and murC) incurring distinct
nsSNPs in different strains (Dataset S5).
In addition to these potentially deleterious SNPs, all Mj isolates

lacked eight regions, resulting in 13 deleted genes. Certain strains
also suffered a further seven deletions, disrupting 28 genes (Dataset
S1). Certain gene categories appeared overrepresented in post-
diversification deletions (e.g., genes acquired through lateral gene
transfer, mobile elements), but the low number of deleted genes
precluded robust statistical analysis (Fig. 4 and Dataset S1). Four
genes predicted to be essential in genomic screens were completely
(Rv2335) or partially (Rv1939, Rv2885c, and Rv3135) deleted in some
isolates of the Mj sublineage (Dataset S3). Rv2335 (i.e., cysE) codes
for a serine acetyltransferase, predicted to be essential for survival

in vivo (19), that was absent in eight isolates. Rv2885c codes for a
transposase in the IS1539 insertion sequence that is predicted to be
essential for survival in vivo (19), whereas Rv3135 codes for PPE50
and is predicted to be essential for survival in vitro (20). Rv1939
codes for an oxydoreductase predicted to be essential for survival
in vivo (19) that was deleted in one isolate (18421) (Dataset S1).

Discussion
The Inuit originally came from eastern Siberia, via the Bering
Strait, in two waves over several thousands of years (21). Given
the recognized close association between M. tuberculosis and
human populations, it is theoretically possible that they brought
an East Asian lineage of M. tuberculosis with them to the
Canadian Arctic. Our data refute this scenario by revealing only
lineage 4 (Euro-American) isolates. The low amount of genetic
diversity among isolates from different villages indicates that the
vast majority of TB cases in this region are the consequence of a
single introduction ofM. tuberculosis, perhaps from Europe, around
the early 20th century. The introduction and diversification of a
single dominant clone in Nunavik provide an unobstructed view of
M. tuberculosis over time, enabling us to draw certain inferences
about the epidemiology and evolution of this highly successful
human-adapted pathogen.
The Inuit have had casual interactions with Europeans since the

17th century, most notably with whalers and explorers who sailed
along the coasts of Hudson’s Bay and Labrador (22). However,
the first permanent settlements of the Hudson’s Bay Company in
the region now known as Nunavik date to the late 19th and early
20th centuries, following which there were more sustained in-
teractions between the Inuit and traders (23). Our MRCA esti-
mates support an introduction of TB into this region during this
period, which is consistent with some, but not all, historical ac-
counts of when TB was first observed (24). The apparent lack of TB
before the early 20th century, despite several centuries of Inuit–
European interactions, supports that TB is generally not spread
through casual contact, as is the case for measles or chickenpox.
This is also consistent with our analysis of the pairwise SNPs be-
tween isolates across villages; only a small proportion of intervillage
case pairs had low SNP differences, arguing against transmission
during casual contact, as can occur at cultural gatherings that bring
together members of different villages. Supporting this, villages
often had one predominant strain, and individual strains were
mostly confined to one village (Fig. 2). This observation presents
both an opportunity and a challenge for public health; whereas TB
should in theory be amenable to control through scaled-up efforts, it
may be that village-by-village, rather than regional, interventions
will be needed to interrupt transmission in this setting.
In a number of high-incidence countries, the emergence of an

epidemiologically successful strain has been attributed to virulence
features encoded in the bacterial genome (25). For instance, the
polyketide synthase-derived phenolic glycolipid (PGL) coded by the
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Fig. 3. Pairwise SNPs between isolates of the major sublineage of Nunavik.
There were a total of 11,628 pairwise comparisons: 3,689 intravillage case
pairs and 7,939 intervillage case pairs.

Table 1. Estimated year of divergence of M. tuberculosis sublineages and clusters of Nunavik

Phylogenetic sublineages and clusters Analysis 1* Analysis 2 Analysis 3

Mj–Mn 1053 (602–1450) 1243 (836–1575) 744 (230–1216)
Mj 1919 (1892–1946) 1922 (1890–1950) 1904 (1873–1930)
Mj-I-II† 1942 (1919–1964) 1947 (1921–1967) 1925 (1898–1948)
Mj-V 1952 (1929–1973) 1956 (1932–1978) 1935 (1909–1958)
Mj-IV 1965 (1949–1978) 1966 (1951–1980) 1958 (1941–1973)
Mj-III.a.b.c† 1999 (1993–2004) 1999 (1993–2004) 2000 (1993–2004)
Mj-VI 1999 (1995–2000) 1999 (1995–2000) 1999 (1995–2000)
Mn 1976 (1951–1994) 1979 (1953–1997) 1969 (1943–1987)

All numbers are expressed in calendar years, rounded to the nearest whole number. Analysis 1: calibration
point, concatenated alleles. Analysis 2: no calibration point, concatenated alleles. Analysis 3: no calibration point,
weighting for constant sites. The median date of divergence is shown in years, with corresponding 95% highest
posterior density intervals.
*Results of this analysis are reported in the text.
†Strain code per Lee et al. (32).
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FIGURE 6-4. Proportion of genes with nonsynonymous single-nucleotide polymorphisms 
(Top) and the number of deleted genes (Bottom) for the major sublineage, pre- and post-
diversification. Gene categories are as defined in the publications: M. tuberculosis (MTB) 
deletions (36), bacillus Calmette–Guérin (BCG) deletions (37), essential genes in vitro (20), in 
macrophages (38), or in vivo (19), M. tuberculosis-specific genes (39), lateral gene transfer or 
duplication acquisition (39), human T-cell epitopes (7), genes coding membrane proteins (40), 
mobile elements (7), and genes coding PPE family proteins (7). Genes designated as PE/PGRS, 
PPE, or mobile elements were excluded from the SNP analysis (7).  
  

intact pks15/1 locus of strain HN878 (Beijing genotype) induces
hyperlethality in murine disease models (26), potentially explaining
the emergence of the Beijing strain in a number of settings world-
wide (27). Furthermore, compared with other clinical strains, strains
1471 and HN878 (Beijing genotypes) result in increased macro-
phage necrosis (28) and more progressive pathology in experimental
infections (29). However, although certain strains have a propensity
to cause accelerated life-threatening pathology in experimental
models, it is not yet clear whether this property predicts epidemi-
ologic success, as a strain that causes chronic, nonprogressive pa-
thology may be the most likely to transmit.
In Nunavik, we observed a set of related strains that meet the

epidemiologic criterion of success, without any clear genomic in-
dicators of increased bacterial virulence. Instead, for the Mj sub-
lineage, we observe an enrichment of nsSNPs since its introduction
into this region, some of which are expected to affect the function of
proteins that contribute to the survival of M. tuberculosis during
infection. There are a number of potential causes of an increased

dN/dS, including insufficient time for purifying selection to act,
positive selection, relaxed purifying selection, and genetic drift.
Whereas an increased dN/dS at the tips of a phylogenetic tree may
indicate insufficient time for purifying selection (13), the post-
diversification inflation of dN/dS holds even with the exclusion of
evolutionarily recent singleton SNPs. Therefore, a simple time de-
pendence is unlikely to be the only explanation. Positive selection is
unlikely to inflate the dN/dS across the entire genome but rather
should target genes with specific functions (15, 16). Although we did
not identify any particular functional category of genes enriched in
nsSNPs, this does not exclude positive selection on a small number of
genes. However, it suggests that positive selection was not the per-
vasive force leading to a high dN/dS genome-wide. The remaining
potential explanations for the dN/dS elevation are a genome-wide
relaxation of purifying selection and genetic drift. The nsSNPs and
deletions in putatively essential genes provide further support for
these two interpretations.
The global M. tuberculosis population has been previously shown

to evolve throughmostly weak selection and strong drift (30); here we
show that the same is true on a local level, to an even greater extent.
Given that drift will have stronger effects when effective populations
are reduced (31) and that our data suggest that population size
remained more or less constant, we hypothesize that relaxation of
purifying selection has contributed significantly to the evolution of
the Nunavik strain of M. tuberculosis. Further investigation in this
and other similar populations is needed. Regardless of the forces
that have driven the elevated dN/dS, our findings suggest
that M. tuberculosis has not thrived in Nunavik due to a unique
virulence profile of the bacteria. It follows thatM. tuberculosis control
in this region, and in similar settings, will require looking beyond the
bacterial culprit to the social conditions that foster TB.

Materials and Methods
Detailed methods can be found in SI Materials and Methods. In brief, the
Nunavik region is composed of 14 Inuit communities, with a total population
of 12,090 (in 2011). Between 1990 and 2013, there were 200 cases of TB in
Nunavik, of which 163 were available for whole-genome sequencing using the
MiSeq 250 System (Illumina). Reads were assembled and compared as pre-
viously described (32). The final dataset of SNPs excluded those in PE/PGRS and
PPE genes, as well as mobile elements, as these may be prone to false positives
(5, 7). Deletion events were identified with the Integrative Genomics Viewer
(33) and confirmed by PCR and Sanger sequencing. Concatenated sequences of
the SNPs were used to generate phylogenetic trees via the maximum likeli-
hood method in Molecular Evolutionary Genetics Analysis [MEGA (34)]. Di-
vergence times for the 163 Nunavik isolates were estimated using Bayesian
Markov chain Monte Carlo methods [Bayesian Evolutionary Analysis by Sam-
pling Trees (10, 11)], with H37Rv used as an outgroup.

Fig. 4. Proportion of genes with nonsynonymous single-nucleotide poly-
morphisms (Top) and the number of deleted genes (Bottom) for the major
sublineage, pre- and postdiversification. Gene categories are as defined in the
publications:M. tuberculosis (MTB) deletions (36), bacillus Calmette–Guérin (BCG)
deletions (37), essential genes in vitro (20), in macrophages (38), or in vivo (19),
M. tuberculosis-specific genes (39), lateral gene transfer or duplication acquisi-
tion (39), human T-cell epitopes (7), genes coding membrane proteins (40),
mobile elements (7), and genes coding PPE family proteins (7). Genes designated
as PE/PGRS, PPE, or mobile elements were excluded from the SNP analysis (7).

Table 2. dN/dS of M. tuberculosis sublineages pre- and postdiversification in Nunavik

Mj sublineage Mn sublineage

Analysis Prediversification Postdiversification P value Prediversification Postdiversification P value

1a: all SNPs 0.534 0.777 0.010 0.547 0.615 0.873
1b: excluding singletons 0.534 0.928 0.005 0.547 0.759 0.767*
2a: all SNPs 0.534 0.947 <0.00005 0.547 0.759 0.006
2b: excluding singletons 0.534 0.953 <0.00005 0.547 0.759 0.006

Ancestral sequences were reconstructed for the MRCA of the Mj–Mn sublineages, as well as the Mj sublineage and the Mn
sublineage. Prediversification: 229 nonsynonymous SNPs and 154 synonymous SNPs identified in the Mj sublineage, and 113 nsSNPs
and 75 sSNPs in the Mn sublineage. Analysis 1a: dN/dS prediversification was calculated by comparing ancestral sequences. For post-
diversification, concatenated sequences of codons for each sublineage were generated based on all SNP loci identified, with SNPs in
more than one isolate only contributing once. Overall, there were 238 nsSNPS and 107 sSNPs in the Mj sublineage, and 13 nsSNPs and 8
sSNPs in the Mn. These concatenated sequences were then compared with their respective ancestral sequences to obtain dN/dS. The
raw counts of nonredundant nsSNPs and sSNPs pre- and postdiversification were compared for each sublineage using the G test, with P
values shown. Analysis 1b: excluding singleton SNPs. The G test was based on 120 nsSNPs and 46 sSNPs for Mj and 8 nsSNPs and 4 sSNPs
for Mn postdiversification. Analysis 2a: dN/dS was calculated for each isolate compared with its respective ancestral sequence (i.e., 153
Mj isolates were compared with the imputed ancestral sequence for Mj). Within each sublineage, the median dN/dS was calculated and
is shown above. Analysis 2b: excluding singleton SNPs. The Wilcoxon signed-rank test was used to compare the median dN/dS post-
diversification for each sublineage with its respective prediversification estimate.
*Fisher’s exact test due to cell counts <5.
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TABLES 

TABLE 6-1. Estimated year of divergence of M. tuberculosis sublineages and clusters of Nunavik.  

Phylogenetic 
sublineages and 
clusters 

Analysis 1 * Analysis 2 Analysis 3 

Mj-Mn 1053 (602-1450) 1243 (836-1575) 744 (230-1216) 
Mj 1919 (1892-1946) 1922 (1890-1950) 1904 (1873-1930) 
Mj-I-II# 1942 (1919-1964) 1947 (1921-1967) 1925 (1898-1948) 
Mj-V 1952 (1929-1973) 1956 (1932-1978) 1935 (1909-1958) 
Mj-IV 1965 (1949-1978) 1966 (1951-1980) 1958 (1941-1973) 
Mj-III.a.b.c# 1999 (1993-2004) 1999 (1993-2004) 2000 (1993-2004) 
Mj-VI 1999 (1995-2000) 1999 (1995-2000) 1999 (1995-2000) 
Mn 1976 (1951-1994) 1979 (1953-1997) 1969 (1943-1987) 
All numbers expressed in calendar years, rounded to the nearest whole number. Analysis 1: 
Calibration point, concatenated alleles.  Analysis 2: No calibration point, concatenated alleles.  
Analysis 3: No calibration point, weighting for constant sites. The median date of divergence is 
shown in years, with corresponding 95% highest posterior density intervals. * Results of this 
analysis are reported in text. # Strain code as per Lee et al. 2015 (34). 
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TABLE 6-2. dN/dS of M. tuberculosis sublineages pre and post-diversification in Nunavik.  
 

 Mj sublineage Mn sublineage 
Analysis Pre-diversification Post-diversification P value Pre-diversification Post-diversification P value 

1a – all SNPs 0.534 0.777 0.010 0.547 0.615 0.873 

1b – excluding 
singletons 

0.534 0.928 0.005 0.547 0.759 0.767* 

2a – all SNPs 0.534 0.947 <0.00005 0.547 0.759 0.006 

2b – excluding 
singletons 

0.534 0.953 <0.00005 0.547 0.759 0.006 

Ancestral sequences were reconstructed for the MRCA of the Mj-Mn sublineages, as well as the Mj sublineage and the Mn 
sublineage. Pre-diversification: 229 nonsynonymous (ns)SNPs and 154 synonymous (s)SNPs identified in the Mj sublineage, and 113 
nsSNPs and 75 sSNPs in the Mn sublineage. Analysis 1a: The dN/dS pre-diversification was calculated by comparing 
ancestral sequences. For post-diversification, concatenated sequences of codons for each sublineage were generated based on all SNP 
loci identified, with SNPs in more than isolate only contributing once. Overall, there were 238 nsSNPS and 107 sSNPs in the Mj 
sublineage and 13 nsSNPs and 8 sSNPs in the Mn.  These concatenated sequences were then compared to their respective ancestral 
sequences to obtain a dN/dS. The raw counts of non-redundant nsSNPs and sSNPs pre- and post-diversification were compared for 
each sublineage using the G-test, with p values shown. Analysis 1b: Excluding singleton SNPs. G-test based on 120 nsSNPs and 46 
sSNPs for Mj and 8 nsSNPs and 4 sSNPs for Mn post-diversification. Analysis 2a: dN/dS was calculated for each isolate compared to 
its respective ancestral sequence (i.e. 153 Mj isolates were compared to the imputed ancestral sequence for Mj). Within each 
sublineage, the median dN/dS was calculated and is shown above. Analysis 2b: Excluding singleton SNPs. The Wilcoxon Signed 
Rank Test was used to compare the median dN/dS post-diversification for each sublineage with its respective pre-diversification 
estimate. *Fisher’s Exact Test due to cell counts <5.
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6.3 Additional analyses 

The tMRCAs presented for each sublineage in Table 6-2 were extracted from the following time 

tree, which has been converted to time in years using a calibration node and dates of collection 

for each of the isolates (analysis 1).  
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FIGURE 6-5. Maximum clade credibility tree of 163 M. tuberculosis isolates from Nunavik. 
This tree was produced using Bayesian Evolutionary Analysis by Sampling Trees (175), as 
described in the Methods of Manuscript II (analysis 1). All isolates are coloured by cluster, based 
on cluster assignments from the main manuscript using the maximum likelihood (ML) method. 
While some variation is evident compared to the ML tree, isolates remained with the same 
clusters. Two exceptions are MT-4942, indicated near the top with an arrow; this isolate moved 
from Mj-III.a to the an ancestral position in Mj-III.c despite having 0 SNPs from many in IIIA 
and a minimum of 2 SNPs difference compared to any III.a isolate. Isolate 14508 also moved 
from the closely-related Mj-V.a to Mj-V.c (also indicated with an arrow). 95% highest posterior 
density intervals are shown at nodes that had posterior density >0.8, i.e., these nodes (and 
isolates contained therein) were present in at least 80% of the sampled trees. A scale in calendar 
years is indicated. 
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CHAPTER 7.  OBJECTIVE 3 – Manuscript III 

Lee RS, Proulx J-F, Menzies D, Behr MA. Progression to tuberculosis disease increases with 
multiple exposures. Under review at Eur Respir J. 
 

7.1 Preamble 

 

This Objective represents the final investigation of the 2011-2012 ‘outbreak’ in Nunavik. In the 

previous manuscript, analyses did not support the recent introduction of a hyper-virulent strain in 

this region. Two case-control studies conducted in this village in 2013 suggested housing 

occupancy might play a role in progression to disease; however, this was only among those 

residing with smear positive cases, of which there were few. Thus, we had not identified a 

potential risk factor that could account for the elevated attack rate in this community. Given the 

observation that many cases had multiple contacts with other cases during the ‘outbreak’, we 

considered an alternative hypothesis: that multiple exposures were associated with increased 

odds of progression.  

 

The accompanying supplemental data, which includes detailed methods and additional analyses, 

can be found in Appendix 4.  
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Abstract  

During a single year, a Canadian village had 34 individuals with microbiologically-confirmed 28	  

TB among 169 with new infection (20%). Contact investigation revealed multiple exposures for 29	  

each person. We investigated whether intensity of exposure might contribute to this 30	  

extraordinary risk of disease. 31	  

Materials and methods Case-control study. Among those with new infection, 34 had culture-32	  

confirmed TB (cases) and 118 did not progress (controls), excluding 17 with probable disease.  33	  

Contact investigation data were utilized to tabulate the number of potential sources (total 34	  

exposures). Generalized estimating equations with a logit link were used to identify associations 35	  

between exposures and progression, and investigate other potential risk factors. 36	  

Results The median total exposures was 15 (IQR: 3-23) for cases and 3 (2-12) for controls 37	  

(p=0.001). The adjusted OR for disease was 1.11 (95% CI 1.06-1.16) per additional exposure, 38	  

corresponding to an OR of 3.4 for disease when comparing the medians of 15 versus 3 total 39	  

exposures. This association increased when restricting to TST conversions.  40	  

Conclusions Increased exposure may be a marker of greater risk of progression to TB disease. 41	  

Therefore, this risk may not be transportable across epidemiologic settings with variable 42	  

exposure intensities.  43	  
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Introduction 

Between November of 2011 and March 2012, there were 23 individuals diagnosed with 44	  

tuberculosis in a Canadian village of only 933. In response to this crisis, public health and local 45	  

clinical staff conducted extensive contact investigations of all persons diagnosed with active TB, 46	  

to identify and treat those with prevalent disease, and identify infected individuals at risk of 47	  

progression. In all, 50 people were diagnosed with culture-confirmed TB by November 2012 48	  

(5% of the village), including 34 of 169 newly infected contacts (20%). This is in stark contrast 49	  

to the 2-5% risk of progression that has previously been reported for the years immediately 50	  

following TB infection [1-4]. Our previous studies on housing, nutrition and behavioral 51	  

characteristics in this community [5, 6], which has a low prevalence of HIV, did not identify 52	  

factors that could potentially account for this extraordinary rate of disease. 53	  

 54	  

Public health data indicated that newly-infected individuals had been in contact with multiple 55	  

persons with active TB. Furthermore, molecular epidemiologic analysis revealed that what 56	  

appeared at the level of the village to be a single ‘outbreak’ was in fact the result of multiple 57	  

contemporaneous transmission networks within the same community [7]. Given limited in- and 58	  

out-migration, and the small size of the community, we could infer that many infected contacts 59	  

had been repeatedly exposed. These observations led us to hypothesize that the intensity of 60	  

exposure might explain the elevated risk of active TB disease. To investigate this possibility, we 61	  

compared newly-infected subjects who progressed to disease with those that did not develop 62	  

active TB. 63	  

   64	  

Materials and methods 65	  

 66	  

Study design  67	  

We conducted a case-control study using a public health database provided by the Nunavik 68	  

Regional Board of Health and Social Services (NRBHSS). This database includes all individuals 69	  

with active TB diagnosed in this community between November 2011 – November 2012 and 70	  

their contacts.  71	  

 72	  

 73	  
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Active TB disease 74	  

Individuals with ≥ 1 culture positive for M. tuberculosis were defined as ‘confirmed TB’. Culture 75	  

results were assessed for potential cross-contamination as described in [7]. Persons with clinical 76	  

and radiographic findings consistent with TB, absent culture confirmation, were classified as 77	  

‘probable’ TB. 78	  

 79	  

Contact investigation  80	  

Persons with confirmed TB were interviewed upon diagnosis by trained health care providers to 81	  

obtain lists of household and non-household contacts. Individuals were also asked about 82	  

attendance at local ‘gathering houses’, wherein public health suspected transmission might be 83	  

occurring. These were homes of residents that also served as venues of socialization, as there are 84	  

no restaurants or bars in this community.  85	  

 86	  

Study inclusion criteria. To assess the proximal risk of progression from infection to active TB, 87	  

we included only villagers with new TB infection. 88	  

New infection  89	  

A person was considered to have ‘new’ TB infection if he/she had a positive TST, either with no 90	  

previous TST or with a previously documented negative TST (TST conversion).  91	  

 92	  

Cases and Controls  93	  

Individuals with new infection who had confirmed TB were included as cases. Contacts with 94	  

new infection who did not progress to active TB in the year following infection were included as 95	  

controls. A one year follow-up for progression was chosen based on two considerations: 1) the 96	  

highest proportion of TB disease occurs in the first year following exposure [2, 8] and 2) because 97	  

of renewed TB transmission in this village in 2014, we sought to avoid confusing 2011-2012 risk 98	  

factors with those of the next wave of transmission. 99	  

 100	  

Exposure ascertainment  101	  

To assess intensity of exposure, we examined the number of times an individual was listed as a 102	  

contact of a potential source (‘total exposures’). Clinical/demographic characteristics of these 50 103	  

potential source cases are provided in the online supplementary material (Table S1). Each time a 104	  
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contact was listed by an individual with active TB, this was counted as one exposure for the 105	  

contact (i.e., this was done in a unidirectional fashion). This included household and non-106	  

household contact. Total exposures also included shared attendance or residence at gathering 107	  

houses. The precise intensity of contact (i.e., duration and frequency) could not be included in 108	  

modeling of exposure, as these data were not obtained in a consistent manner throughout the 109	  

‘outbreak’. Additional details are provided in the Supplementary Material.  110	  

 111	  

One person was never listed as a contact; this person was assigned one total exposure.  112	  

 113	  

Covariates  114	  

Data were collected during the ‘outbreak’ as part of routine contact investigation.  Covariates 115	  

were selected for inclusion from available data based on a priori consideration as determinants 116	  

of TB. These included age at infection, sex, cigarette smoking, residing with a person with smear 117	  

positive disease, the number of persons per room (as a measure of housing occupancy), Bacillus 118	  

Calmette-Guerin (BCG) vaccination and HIV/other comorbidities/immunosuppressive disorders. 119	  

Precise definitions of each and how these were calculated (if applicable) have been provided in 120	  

the online supplementary material. 121	  

 122	  

Analysis  123	  

Main analytic approaches and their respective sample sizes are outlined in Figure 1. In all 124	  

analyses, the outcome of interest was progression to active TB disease. Our preliminary analysis 125	  

(analysis 1a) included cases and controls as previously defined. Our secondary analysis (analysis 126	  

2a) restricted exposure to contact with individuals with smear positive disease only, in order to 127	  

assess whether the potential exposure-outcome relationship varied by smear status of potential 128	  

sources.  129	  

 130	  

We then performed several sensitivity analyses. Firstly, for contacts with a new positive TST that 131	  

had not been previously tested, it is possible that some of these individuals were already positive 132	  

before 2011-2012. To address this, we restricted the previous analyses to those with documented 133	  

TST conversion (analysis 1b and 2b). 134	  

 135	  
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Secondly, we repeated the above analyses (1ab, 2ab) using an alternative metric of exposure: the 136	  

number of different genotypes to which an individual was exposed (‘genotypic exposures’). Such 137	  

exposures were tabulated again based on contact investigation data. The genotypes of each 138	  

individual with confirmed TB previously identified in [7]. Notably, while there were sufficient 139	  

genetic differences to assign the multiple chains of transmission, isolates were derived from a 140	  

strain of M. tuberculosis first seen in this village in 2007, therefore it is unlikely that major 141	  

differences in virulence had developed in the ensuing 6 years [7]. For further details on how 142	  

these exposures were determined, please see the online supplementary material.  143	  

 144	  

Finally, because the public health response was amplified as of May 1, 2012, with extra clinical 145	  

staff arriving to assist with contact investigations, we also assessed whether this change 146	  

influenced results by stratifying analysis 1a by time.  147	  

 148	  

Statistical approaches 149	  

Descriptive statistics were conducted and generalized estimating equations with a logit link were 150	  

used to evaluate the association between potential risk factors and progression to TB disease, 151	  

accounting for clustering by household. Multiple imputation with chained equations was used to 152	  

estimate missing data (Table S2).  Variables with p<0.2 on univariate analysis were assessed in 153	  

multivariate analysis. Based on previously reported results [6], we evaluated for an interaction 154	  

between residing with a person with smear positive disease and the number of persons per room; 155	  

in order to maintain hierarchy, both of these variables were included in preliminary multivariate 156	  

models regardless of significance on univariate analysis. Final models were selected using the 157	  

Quasi-Information Criterion (QICu) [9]. All analyses were conducted in Stata (v.13, StataCorp 158	  

2013). 159	  

 160	  

Ethics  161	  

Ethics approval was obtained from the McGill University Faculty of Medicine Institutional 162	  

Review Board and the NRBHSS. Individual patient consent was not required. All research was 163	  

done in collaboration with the village council. Databases were linked and analyzed in nominal 164	  

form, under a professional mandate from the NRBHSS. 165	  

 166	  
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Results 167	  

 168	  

Between November 2011 and November 2012, 695 of 933 (74%) villagers, including those with 169	  

active TB, were investigated by the NRBHSS. Of 169 identified with new infection, 17 170	  

individuals were classified as ‘probable TB’. These individuals presented distinct characteristics 171	  

compared to those with confirmed disease (Table S3) and controls (shown in Table 1), and thus 172	  

they were excluded from analyses. Of the remaining 152 newly infected individuals, 34 had 173	  

confirmed active TB – 31 with prevalent disease and 3 who developed disease within the year 174	  

following identification of infection. Two of the latter had agreed to INH prophylaxis, but did 175	  

not complete therapy. All individuals had pulmonary TB. The remaining 118 subjects were 176	  

classified as controls. 177	  

 178	  

Summary characteristics of cases with confirmed TB and controls with new infection are shown 179	  

in Table 1 for analysis 1a. All additional analyses used subsets of these individuals.  Three 180	  

controls were missing address, and were therefore excluded. Overall, cases and controls were 181	  

similar in terms of age, sex, current cigarette smoking, BCG vaccination status and residing with 182	  

a person with smear positive disease (p>0.05). There was only one person with HIV, who was 183	  

diagnosed with active TB; otherwise, no relevant comorbidities were identified in either cases or 184	  

controls. Compared to controls, cases reported higher total exposures (p=0.001) and resided in 185	  

dwellings with higher occupancy, as measured by persons per room (p=0.036). Genotypic 186	  

exposures were also higher for cases compared to controls (p=0.005).  187	  

 188	  

Tables 2 and 3 show univariate and multivariate results for analysis 1 and 2, respectively. HIV 189	  

and other comorbidities were not modeled, due to low/zero cell counts. All continuous variables 190	  

had linear associations with the outcome (p>0.05), except for genotypic exposures in analysis 1a 191	  

(Table S4). The maximum number of total exposures to any potential source (analysis 1) was 28, 192	  

while the maximum number of total exposures to sources with smear positive disease only 193	  

(analysis 2) was 8. Univariate analysis showed a significant association between total exposures 194	  

and disease, irrespective of type of contact (analysis 1 and 2) or definition of new infection 195	  

(analysis 1b and 2b). Persons per room was also significantly associated with disease in both 196	  

analyses.  197	  
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 198	  

In all multivariate analyses (1a, 1b, 2a, 2b), total exposures were associated with progression to 199	  

active TB disease, with adjusted ORs ranging from 1.11-1.53 for each one-person increase in 200	  

contact (Tables 2 and 3). Persons per room was also significantly associated with progression; 201	  

the addition of one person to a 5-room dwelling was associated with adjusted ORs from 1.18-202	  

1.40 (analysis 1a, 2a, and 2b). When restricted to TST conversions (analysis 1b), an interaction 203	  

between persons per room and residing with a smear positive was detected; the odds of 204	  

progression were higher with increased occupancy when a smear positive individual lived in the 205	  

same residence compared to houses without such individuals. However, as the 95% CIs overlap, 206	  

this was inconclusive.  207	  

 208	  

Similar results were obtained when the number of different genotypes was used instead as the 209	  

exposure variable (Tables S4 and S5). There were a maximum of 7 genotypic exposures when 210	  

considering contact with any potential source versus 6 genotypic when analyses were restricted 211	  

to smear positive sources only. 212	  

 213	  

To assess the potential influence of clinical staffing changes on May 1, 2012, we conducted 214	  

separate analyses restricting to contact with persons diagnosed (and therefore interviewed) 215	  

before or after this date. The number of exposures, and their association with progression to 216	  

active TB, were similar across time periods (Table 4).  217	  

 218	  

Discussion 219	  

 220	  

Our analysis revealed a significant association between the number of times an individual with 221	  

recent infection was exposed to active TB and progression to disease. Adjusting for housing 222	  

occupancy, we found the odds of disease were ~1.1-fold higher for each additional exposure, 223	  

corresponding to an OR of 3.4 when comparing the median exposures actually experienced by 224	  

individuals in this community. These results were consistent across all analyses, including when 225	  

we imposed a more rigorous definition for infection, restricting to TST conversions, and when 226	  

we restricted our exposure measurement to smear positive sources only. These findings were also 227	  

unaffected by changes in staffing during the ‘outbreak’.  228	  
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 229	  

We propose two possible explanations for the observed association, which need not be mutually 230	  

exclusive. A first possibility is that the number of exposures is a marker of increased probability 231	  

of encountering a highly transmissible source. It has been proposed that 20% of all infectious 232	  

disease cases are responsible for 80% of transmission [10], with the majority of cases either not 233	  

transmitting at all or very minimally. Such ‘super-spreading’ has been reviewed in [11] and 234	  

reported for Severe Acute Respiratory Syndrome, Middle East Respiratory Syndrome and other 235	  

pathogens. Anecdotal evidence [12, 13] and the high heterogeneity observed in cluster sizes on 236	  

genotyping [14] suggests this phenomenon also occurs in TB. Our data were consistent with such 237	  

an explanation, as there were highly contagious cases with smear-positive, cavitary disease 238	  

within each subgroup of transmission (identified in [7]).   239	  

 240	  

Another possible explanation is that repeated exposures directly influence progression. 241	  

Increasing exposure (via inoculum size) has been shown to result in more extensive pathology in 242	  

animals [15-17], however the role dose plays in the development of disease has not been fully 243	  

elucidated. Experimental human challenges have not been done for TB, nor to our knowledge for 244	  

other respiratory bacterial pathogens. In other infectious diseases, a dose-response from infection 245	  

to disease has been reported for Salmonella [18, 19], but not Campylobacter [20] or 246	  

Cryptosporidium [21, 22]. To ethically investigate this in TB, observational data has been 247	  

necessary. Previous studies (reviewed in [23]) relying on categorical measures of exposure, such 248	  

as close versus casual contact [2, 24, 25], household versus non-household [26] or the nature of 249	  

occupational exposure [27] have also supported an association with progression to disease.  250	  

 251	  

Regardless of the mechanism, we propose that the number of exposures could serve as a useful 252	  

marker of risk for progression in those with recent infection. Unlike exposure to a super-253	  

spreader, which is only known retrospectively following genotyping, the number of times a 254	  

person is identified as a contact is tabulated in real-time during public health investigations. 255	  

From a clinical and public health perspective, closer monitoring could be warranted for 256	  

repeatedly-exposed individuals as they may be at higher risk of progressing to disease.  257	  

 258	  
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There were a number of strengths of this study. The dichotomous approach used previously to 259	  

assess exposure may result in substantial residual confounding. In this study, we were able to 260	  

obtain continuous metrics of exposure to quantify whether there is an association between 261	  

increased exposure and risk of disease. Using contact investigation data collected in real-time 262	  

and building on our molecular epidemiologic analyses [7], we tabulated the total number of 263	  

exposures to different potential sources of TB, as well as the number of genotypic exposures. For 264	  

both metrics, there were increased odds of progression from infection to disease with higher 265	  

exposure. An additional strength was the limited out-migration from this region, which 266	  

facilitated collection of complete contact investigation data and 100% follow-up for progression 267	  

to active TB. Finally, as most persons had resided in the village since birth, we also had access to 268	  

complete, life-long medical records to assess for comorbidities and TB risk factors.  269	  

 270	  

This study has several limitations. Sample size was limited by the extent of the public health 271	  

crisis, with 34 individuals diagnosed with active TB among those with new infection during the 272	  

study period. This may have reduced our power to detect associations between other covariates 273	  

and progression to disease. Data were also collected as part of the public health response to the 274	  

outbreak, rather than to test specific research hypotheses. As such, we could only assess 275	  

variables routinely collected during a TB control investigation. Standardized contact 276	  

investigation tools ensured that key covariates such as age and sex were consistently 277	  

documented, however, and we note that follow-up studies in this village have similarly reported 278	  

lack of association between these covariates and progression to active TB [5, 6]. Unlike most 279	  

environments where contact investigation has been studied, the epidemiologic context is more 280	  

homogeneous; as >90% of villagers were Inuit [28], residing in the same isolated Northern 281	  

community, many social characteristics were similar, potentially reducing the ability detect 282	  

associations with disease. Smoking, for example, is quite prevalent in this community; without 283	  

an exposure gradient, we could not detect an association in this context, despite smoking being 284	  

linked to TB disease in many other populations. In accordance with the previous studies in this 285	  

village, we found that housing occupancy was associated with progression, thereby strengthening 286	  

confidence in our results. Finally, while the small size of the community and limited migration 287	  

has made it feasible to detect all cases and subsequently perform large-scale contact 288	  
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investigations, this may not be as feasible in other settings with greater migration and loss to 289	  

follow-up.  290	  

 291	  

Through this analysis, we have shown that multiple exposures to TB are associated not only with 292	  

increased infection, but increased progression to disease as well. From a public health standpoint, 293	  

such exposures could therefore serve as a marker of increased risk of progression to disease. 294	  

Given the unique nature of this outbreak, these findings need to be validated in other settings. If 295	  

exposure intensity is a marker of progression to TB disease, then attack rates from low-296	  

prevalence settings may under-estimate the risk of disease in settings where multiple exposures 297	  

are more likely, and vice-versa.  298	  
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 FIGURES 

 
FIGURE 7-1. Main analytic approaches.  
The number of cases and controls included in each analysis are indicated. Note that 3 controls 299	  
were excluded from analyses due to missing address. Fewer subjects are also present in analysis 300	  
2 as some individuals did not have contact with a smear positive source. One person who did not 301	  
have any reported contact was assigned a single total (and single genotypic) exposure as a 302	  
minimum; this individual was not included in the smear positive analysis as the contagiousity of 303	  
his/her potential source was unknown.  304	  
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TABLES 

TABLE 7-1. Characteristics of individuals with exposure to any potential source, 

new infection (analysis 1a). 
Variables of interest Confirmed TB disease 

(cases, n=34) 
No disease 
(controls, n=115)* 

p value  

Age at infection, median 
(interquartile range, IQR), y 

19.5 (15.3-28.1)$ 19.9 (12.4-25.5) 0.654† 

  No. (%) under 5 y age 4 (12) 6 (5) 0.237# 
No. (%) male sex  18 (53) 63 (55) 0.850‡ 
No. (%) current smoking 23 (77) 65 (65) 0.246‡ 
No. (%) Bacillus Calmette-Guerin 
(BCG) 

25 (76) 96 (83) 0.192‡ 

No. (%) residing with a person with 
smear positive disease 

7 (21) 13 (11) 0.163‡ 

No. (%) co-morbidities (HIV, 
diabetes, renal dysfunction, other 
immunosuppressive disorders) 

1 (3) 0 (0) 0.228# 

Total exposures, median (IQR) 15 (3-23) 3 (2-12) 0.001† 
Genotypic exposures, median (IQR) 5 (2-6) 2 (1-4) 0.005† 
Persons per room, median (IQR)  1.8 (1.3-2.7) 1.7 (1.2-2.3) 0.036† 
*Three controls excluded from analysis as missing address of residence.  $Age range for cases: 1.1-54.8 
years, age range for controls: 0.5-59.4 years). †Mann-Whitney ranksum test. ‡Chi-square test with 2 degrees 
of freedom. #Fisher’s Exact test. Non-missing data are used for the denominator of proportions. A two-
sided p value of <0.05 is considered statistically significant. 
 

  305	  
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TABLE 7-2. Exposure to any potential source and progression to active TB.  
 306	  
  Univariate  Multivariate  
 Odds 

ratio 
95% CI p value Odds ratio 95% CI 

Analysis 1a – Contact with any potential source, newly diagnosed infection 
Age at infection 1.00 0.97-1.03 0.806 Not in final model  
Male sex  0.93 

 
0.44-1.94 0.844 

 
Not in final model  

Current smoking 1.63 
 
 

0.58-4.54 0.351 
 

Not in final model  

BCG 0.65 0.24-1.75 0.391 
 

Not in final model  

Residing with a 
person with smear 
positive disease 

2.03 0.67-6.14 0.208 
 

Not in final model  

Total exposures 1.09 1.05-1.14 <0.0005 1.11 1.06-1.16 
Persons per room* 1.12 0.98-1.28 0.086 

 
1.18 1.04-1.34 

 
Analysis 1b - Contact with any potential source, tuberculin skin test conversion only 
Age at infection 1.01 0.98-1.04 0.593 Not in final model  
Male sex  0.72 0.31-1.67 0.442 Not in final model  
Current smoking 2.19 0.61-7.90 0.231 Not in final model  
BCG 1.30 0.33-5.21 0.707 Not in final model  

Residing with a 
person with smear 
positive disease 

3.17 0.85-11.79 0.085 0.27 0.02-4.59 

Total exposures 1.12 1.06-1.18 <0.0005 1.14 1.08-1.21 
Persons per room*  1.13 1.00-1.28 0.056   
Persons per room* 
when not residing 
with a person with 
smear positive 
disease 

   1.15 1.03-1.28 

Persons per room* 
when residing with a 
person with smear 
positive disease 

   1.49† 1.06-2.10 

*For comparability to [6]. Persons per room scaled such that odds ratio corresponds to a 1 person increase 307	  
in a 5-person house. †p=0.027 for interaction between persons per room and residing with a person with 308	  
smear positive disease; this OR represents the joint effect of adding 1 person to a 5-person house when 309	  
residing with an individual with smear positive disease. Age and persons per room are centered at the 310	  
overall mean for analysis 1a, at 20.8 years and 1.7 persons per room, respectively. Total exposures centered 311	  
at 1, as all individuals had at least 1 contact. 312	  
 313	  
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TABLE 7-3. Exposure to potential sources with smear positive disease only and 

progression to active TB. 

 314	  
  Univariate  Multivariate  
 Odds ratio 95% CI p value Odds ratio 95% CI 
Analysis 2a – Potential sources with smear positive disease only, newly diagnosed infection 
Age at 
infection 

1.01 0.97-1.05 0.603 Not in final model  

Male sex 1.23 0.54-2.81 0.623 Not in final model  
Current 
smoking 

1.26 0.36-4.38 0.719 Not in final model  

BCG 0.93 0.23-3.71 0.922 Not in final model  
Residing with 
a person with 
smear positive 
disease 

1.40 0.44-4.43 0.572 Not in final model  

Total 
exposures 

1.34 1.11-1.60 0.002 1.44 1.18-1.76 

Persons per 
room* 

1.24 1.09-1.41 0.001 1.33 1.15-1.54 

 
Analysis 2b – Potential sources with smear positive disease only, tuberculin skin test conversion only 
Age at 
infection 

1.01 0.97-1.06 0.574 Not in final model  

Male sex  1.00 0.40-2.52 1.000 Not in final model  
Current 
smoking 

1.42 0.36-5.64 0.621 Not in final model  

BCG 1.28 0.23-6.95 0.778 Not in final model  
Residing with 
a person with 
smear positive 
disease 

2.10 0.54-8.15 0.284 Not in final model  

Total 
exposures 

1.39 1.14-1.71 0.001 1.53 1.24-1.88 

Persons per 
room* 

1.29 1.12-1.48 0.001 1.40 1.18-1.66 

For comparability to [6]. Persons per room scaled such that odds ratio corresponds to a 1 person increase in 315	  
a 5-person house. Age and persons per room are centered at the overall mean for analysis 1a, at 20.8 years 316	  
and 1.7 persons per room, respectively. Total exposures centered at 1, as all individuals had at least 1 317	  
contact. 318	  
 319	  
 
 

320	  
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TABLE 7-4. Exposure to any potential source and progression to active TB (analysis 321	  
1a), stratified by time of diagnosis of the source 322	  
 Cases Controls 
November 2011-April 2012 
N 31 85 
Total 
exposures, 
median (IQR) 

8 (2-10) 2 (1-7) 

May 2012-November 2012 
N 29 98 
Total 
exposures, 
median (IQR) 

9 (2-15) 3 (1-6) 

 
  Univariate  Multivariate  
 Odds ratio 95% CI p value Odds ratio 95% CI 
November 2011-April 2012 
Age at 
infection 

1.01 0.97-1.04 0.759 Not in final model  

Male sex  0.75 0.34-1.64 0.466 Not in final model  
Current 
smoking 

1.36 0.46-3.98 0.577 Not in final model  

BCG 0.76 0.25-2.31 0.627 Not in final model  
Residing with a 
person with 
smear positive 
disease 

1.96 0.63-6.16 0.248 Not in final model  

Total 
exposures 

1.08 1.04-1.14 0.001 1.10 1.05-1.15 

Persons per 
room* 

1.10 0.96-1.26 0.186 1.16 1.01-1.32 

 
May 2012-November 2012 
Age at 
infection 

1.01 0.98-1.05 0.352 Not in final model  

Male sex  1.03 0.46-2.28 0.945 Not in final model  
Current 
smoking 

2.12 0.67-6.72 0.202 Not in final model  

BCG 0.75 0.23-2.50 0.642 Not in final model  
Residing with a 
person with 
smear positive 
disease 

2.06 0.61-7.03 0.208 Not in final model  

Total 
exposures 

1.11 1.06-1.16 <0.0005 1.12 1.07-1.18 

Persons per 
room* 

1.12 0.98-1.28 0.086 1.18 1.04-1.33 

For comparability to [6]. Persons per room scaled such that odds ratio corresponds to a 1 person increase in 323	  
a 5-person house. Age and persons per room are centered at the overall mean for analysis 1a, at 20.8 years 324	  
and 1.7 persons per room, respectively. Total exposures centered at 1, as all individuals had at least 1 325	  
contact. 326	  
 

 327	  
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CHAPTER 8.  OBJECTIVE 4 – Manuscript IV  

Lee RS and Behr MA. Does choice matter? Reference-based alignment for molecular 
epidemiology of tuberculosis. Accepted J Clin Micro on April 5, 2016. 
 
 

8.1 Preamble 

 

In Manuscripts I and II, WGS was utilized to investigate TB transmission. As this method 

has only recently become feasible – for both cost and technical reasons – there is 

currently no standardized approach to data analysis. As epidemiologists rely on these 

SNPs to discern relationships between isolate, it is critical to understand how different 

analytic decisions made can influence these results. The following manuscript therefore 

examines one of the bioinformatics decisions for analysis of M. tuberculosis. 

 

Additional analyses in the form of supplementary data (accepted for publication) can be 

found in Appendix 5.  
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Abstract  

When using genome sequencing for molecular epidemiology, short sequence reads are 

aligned to an arbitrary reference strain to detect single nucleotide polymorphisms. We 

investigated whether reference genome selection influences epidemiologic inferences of 

Mycobacterium tuberculosis transmission, by aligning sequence reads from 162 closely-

related Lineage 4 (Euro-American) isolates to 7 different genomes. Phylogenetic trees 

were consistent using all but the most divergent genomes, suggesting that reference 

choice can be based on considerations other than M. tuberculosis lineage. 
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Whole genome sequencing (WGS) has become the gold standard for molecular 

epidemiology studies of Mycobacterium tuberculosis, demonstrating higher resolution 

than classical molecular typing methods (e.g.,(1-5)). Epidemiologic inferences depend on 

the detection of single nucleotide polymorphisms (SNPs) that distinguish isolates. 

Identifying SNPs using short-read data typically involves alignment (‘mapping’) of reads 

to a single reference genome (e.g., M. tuberculosis H37Rv). As the difference between 

the genome of the reference strain and the clinical isolates increases (e.g. insertions / 

deletions / SNPs), fewer sequence reads are successfully mapped against the reference 

genome. As these data are essentially lost, the results are potentially biased and true 

differences may go undetected. One solution in studies of other bacterial pathogens has 

been de novo assembly of a closely-related isolate; this is then used in lieu of existing, 

more genetically distant reference genomes (6). However, this approach requires 

additional resources, in terms of cost, technical expertise and time; if short-read data is 

used for de novo assembly, a much greater sequencing depth is required (>100x (7)) to 

ensure sufficient overlap of reads to facilitate accurate assembly, while alternative 

sequencing platforms are necessary to generate longer reads.  

 

We asked whether the use of different reference genomes influences phylogenetic trees 

and epidemiologic inferences of M. tuberculosis transmission, utilizing an existing 

dataset of 163 Lineage 4 (Euro-American) isolates from Northern Quebec. DNA 

extraction and MiSeq-based WGS were performed as previously described ((8), National 

Center for Biotechnology Information’s Sequence Read Archive Accession SRP039605, 

Bioproject PRJNA240330). Mixed infection with Mycobacterium avium was identified in 
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1 isolate using the Basic Local Alignment Search Tool (9); while this had no influence on 

previous phylogenies, it was excluded from the current analysis to avoid bias in coverage 

calculations (below). Read quality was assessed with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed using 

Trimmomatic (v.0.32 (10)), with minimum length of 70 base-pairs (bp), then aligned 

using the Burrows-Wheeler Aligner (BWA) MEM algorithm (11)  to 7 different reference 

genomes (Table 8-1, divergence in average nucleotide identity given in Table S1). PCR 

and optical duplicates were marked using PicardTools (v.1.118, available at 

http://broadinstitute.github.io/picard/) and reads were locally re-aligned around 

insertions/deletions (indels). Reads aligning to >1 locus in the reference, or with mapping 

quality <30 were excluded. The proportion of reads that aligned to each reference was 

calculated using Samtools (v.1.2, (12)). Genome coverage and average depth of coverage 

were calculated excluding duplicates in QualiMap (v.2, (13) and Integrative Genomics 

Viewer (14) (Tables S2 and S3).  

 

The highest proportion of reads mapped to the CDC1551 (Lineage 4) reference, followed 

by H37Rv (Table 8-1). As both are lineage 4, this is unsurprising. The mean proportions 

of the CDC1551 and H37Rv references that had at least 1 read aligned (‘genome 

coverage’) were also highest across all analyses. As the reference strain became more 

genetically divergent from the sequenced isolates (Lineage 2 M. tuberculosis, 

Mycobacterium africanum, Mycobacterium bovis and Mycobacterium canettii), a minor 

decline in the percent of total reads aligned and genome coverage was evident. When 
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aligning against Mycobacterium kansasii, these values decreased by 45.5% and 64.8%, 

respectively, when compared to CDC1551. 

 

SNPs and indels were then identified (‘called’) for each reference analysis using the 

Genome Analysis Toolkit (GATK v.3.3, (15)). SNPs were filtered for quality based on 

GATK recommendations, including assessment of strand bias. In addition, we required a 

Phred ≥50 (where Phred = -10*log Perror, corresponding to a 1/100,000 probability of 

error) for all loci, a minimum depth of coverage (i.e., the number of reads that are aligned 

to that locus) of 8 bp and individual Phred-scaled genotype quality ≥15 to confidently call 

a SNP. SNPs within 12 bp of one another or indels and heterozygous calls were excluded. 

Concatenated SNPs from each alignment were then used to generate phylogenetic trees 

using the maximum likelihood method (16) with 1000 bootstrap replicates (17). The 

model of nucleotide substitution was chosen based on the Bayesian Information 

Criterion. As repetitive PE_PGRS, PPE genes and mobile elements were not consistently 

annotated across all reference genomes, SNPs in these regions were included; however 

any bias due to these SNPs should be non-differential across references. Trees from each 

analysis were compared qualitatively and were largely consistent with a previous, 

deletion-based phylogeny (8). As illustrated in Fig. 8-1 and S1, small changes in 

clustering became evident at the level of M. canettii, while resolution was almost entirely 

lost with M. kansasii.  

 

To examine whether reference choices influenced our interpretation of direct patient-to-

patient transmission, we restricted our analysis to 49 isolates from a well-defined 
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epidemiologic ‘outbreak’ in a single Quebec community. All cases were diagnosed 

within a 1-year time period and previous work (5) suggested a threshold for recent, direct 

transmission of 0-1 SNP. Matrices of pairwise SNPs between isolates were generated. 

Using classifications with CDC1551 as the gold standard, due to its closest genetic 

similarity to our isolates, we calculated the sensitivity and specificity for classifying each 

pair as ‘probable recent transmission’, or not. As shown in Table 8-2, the sensitivity and 

specificity for detecting recent transmission was 100% across all reference genomes, 

excepting M. kansasii. In the latter, nearly all SNPs that formerly ruled out transmission 

between some pairs were missed because of low mapping to the reference, yielding an 

unacceptably high number of false positives.  

 

Overall, we have shown that that the choice of reference genome – within the M. 

tuberculosis complex – has negligible influence on phylogeny and epidemiologic studies 

of M. tuberculosis transmission. Because we were able to demonstrate the robustness of 

these analyses using a dataset with very limited strain diversity (153/163 isolates were 

separated by a maximum distance of 72 SNPs and clusters were distinguished by as few 

as 2 SNPs (5, 8), this suggests our findings are generalizable to settings with greater 

genetic diversity and robust to differences in M. tuberculosis lineage. Therefore, 

epidemiologic studies of TB can base reference choices on aspects such as quality of 

annotation, rather than matching strain lineage. 

 

Our findings also indicate that there is a threshold of genome coverage beyond which 

transmission can no longer be accurately discriminated. This can particularly have 
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implications for non-clonal pathogens, which have greater genetic diversity than M. 

tuberculosis. One approach with such organisms restricts short read alignment to the core 

genome region (e.g. in Escherichia coli, this represents only 40% of all possible genes 

(18)), while another restricts to variation within pre-selected genes (e.g. ‘housekeeping 

genes’ used for multilocus sequence typing). These subsets are then used to build 

phylogenetic trees and delineate clusters of transmission. When limiting to only a subset 

of the genome, epidemiologically-relevant genetic diversity can be overlooked, as 

demonstrated when aligning to M. kansasii. A more optimal approach might involve 

aligning to both core and accessory genes and >1 reference from the same species, to 

capture a more complete portrait of bacterial diversity. To facilitate this, efforts must be 

made to further sequence, close and annotate such genomes. 
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FIGURES 

 
 

FIGURE 8-1. Impact of reference genome choice on phylogeny. 
Maximum likelihood trees with 1000 bootstrap replicates. Branches below 80% bootstrap 
threshold are collapsed (branch lengths are therefore not to scale). For clarity, bootstrap p 
values are indicated up until the most proximal node defining each cluster. Isolates were 
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Figure 1. Impact of reference genome choice on phylogeny. 
Maximum likelihood trees with 1000 bootstrap replicates. Branches below 80% bootstrap threshold are collapsed (branch lengths are 
therefore not to scale). For clarity, bootstrap p values are indicated up until the most proximal node defining each cluster. Clusters originally 
identified in (7) are indicated with a unique colour. Isolates were coloured according to their original clustering using lineage 4 references, 
CDC1551 and H37Rv. A – Reference M. tuberculosis Lineage 4 CDC1551, using the Tamura 3-parameter (17) model of nucleotide 
substitution with 1,522 SNP loci. B – Reference M. canettii, using the GTR model of nucleotide substitution (18) with 17,406 SNP loci. A 
single isolate changed clusters, indicated with an arrow. C – Reference M. kansasii, using the GTR model of nucleotide substitution with 
34,127 SNP loci. 
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coloured for their respective clusters identified according to CDC1551 (and H37Rv (8)). 
Isolates were then kept the same colour across all panels, to facilitate quick comparison 
between the new reference analysis and CDC1551. See Table S4 for cluster names. A – 
Reference M. tuberculosis Lineage 4 CDC1551, using the Tamura 3-parameter (19) 
model of nucleotide substitution with 1,522 SNP loci. B – Reference M. canettii, using 
the GTR model of nucleotide substitution (20) with 17,406 SNP loci. Using M. canettii as 
a reference, a single isolate changed clusters, indicated with an arrow. C – Reference M. 
kansasii, using the GTR model of nucleotide substitution with 34,127 SNP loci. 
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TABLES 
TABLE 8-1 Alignment and genome coverage across various reference genomes within the genus Mycobacteria. 
 
Reference 
genome 
species 

Reference 
genome 
name 

Accession 
number 

Citation Reference 
genome 
length 
(base 
pairs) 

Percent of 
reads 
successfully 
a aligned to 
reference, 
median 
(IQR) 

Genome 
coverage at 
≥ 1x depth, 
median 
(IQR) b 

Genome 
coverage at 
≥ 10x depth, 
median 
(IQR) b 

Genome 
coverage at 
≥ 20x depth, 
median 
(IQR) b 

Mycobacterium 
tuberculosis, 
lineage 4  

H37Rv NC_000962.3 (21) 4,411,532 98.0 (97.9-
98.1) 
 

98.9 (98.8-
98.9) 
 

98.1 (98.0-
98.3) 
 

97.2 (96.8-
97.5) 

Mycobacterium 
tuberculosis, 
lineage 4 

CDC1551 NC_002755.2 (22) 4,403,837 98.2 (98.1-
98.3) 
 

99.3 (99.2-
99.3) 
 

98.5 (98.4-
98.7) 
 

97.6 (97.2-
97.9) 
 

Mycobacterium 
tuberculosis, 
lineage 2 

CCDC5079 CP001641 (23) 4,398,812 97.8 (97.7-
97.9) 
 

98.8 (98.7-
98.8) 

98.1 (97.9-
98.2) 
 

97.1 (96.8-
97.4) 
 

Mycobacterium 
africanum 

GN041182 FR878060.1 (24) 4,389,314 97.5 (97.4-
97.5) 

98.9 (98.8-
98.9) 

98.1 (98.0-
98.3) 

97.2 (96.8-
97.4) 

Mycobacterium 
bovis 

AF2122/97 NC_002945.3 (25) 4,345,492 97.6 (97.5-
97.7) 

99.3 (99.2-
99.3) 

98.5 (98.4-
98.7) 

97.6 (97.2-
97.9) 

Mycobacterium 
canettii 

CIPT 
140010059 

NC_015848.1 (26) 4,482,059 96.5 (96.3-
96.6) 

95.1 (95.0-
95.1) 

94.3 (94.2-
94.4) 

93.4 (93.0-
93.8) 

Mycobacterium 
kansasii d 

ATCC 
12478 

NC_022663.1 (27) 6,432,277 52.7 (51.6-
53.4) 

34.5 (34.2-
35.5) 

28.4 (27.8-
29.1) 

25.5 (24.6-
26.4) 

a Calculated using Samtools –flagstat- as (total mapped – secondary alignments – duplicate reads)/(total reads surviving trimming - duplicate reads).  
b QualiMap includes secondary alignments marked by BWA MEM (range: 1-3% of total mapped), double-counted in coverage calculations. Duplicates excluded. 
c pMK plasmid sequence not used for alignment. 
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TABLE 8-2 Comparing pairwise single nucleotide polymorphisms (SNPs) and probable recent 
transmission by reference genome, using CDC1551 as the gold standard. 
 
Reference genome 
species 

Reference 
genome name 

Median 
pairwise 
SNPs 
compared to 
the reference 
(IQR) a  

Median 
pairwise 
SNPs 
between 
isolates 
(IQR) b   

Sensitivity for 
recent 
transmission 
(95% CI) 

Specificity for 
recent 
transmission 
(95% CI) 

Mycobacterium 
tuberculosis, 
lineage 4  

H37Rv 781 (780-
781) 

3 (2-6) 100 (98.7-100)  100 (99.6-100) 

Mycobacterium 
tuberculosis, 
lineage 4 

CDC1551 619 (618-
619) 

3 (2-6) - - 

Mycobacterium 
tuberculosis, 
lineage 2 

CCDC5079 1,247 (1,246-
1,247) 

3 (2-6) 100 (98.7-100) 100 (99.6-100) 

Mycobacterium 
africanum 

GN041182 1,908 (1,907-
1,908) 

3 (2-6) 100 (98.7-100) 100 (99.6-100) 

Mycobacterium 
bovis 

AF2122/97 2,000 (1,999-
2,000) 

3 (2-6) 100 (98.7-100) 100 (99.6-100) 

Mycobacterium 
canettii 

CIPT 
140010059 

16,637 
(16,636-
16,637) 

3 (2-6) 100 (98.7-100) 100 (99.6-100) 

Mycobacterium 
kansasii 

ATCC 12478 34,081 
(34,081-
34,081) 

0 (0-0) 100 (98.7-100) 0.1 (0.0-0.06) 

a  49 pairwise comparisons with the reference genome. b 1,176 pairwise comparisons.  
 

  



	  

	   142	  

References 

1. Niemann S, Köser CU, Gagneux S, Plinke C, Homolka S, Bignell H, Carter RJ, 

Cheetham RK, Cox A, Gormley NA, Kokko-Gonzales P, Murray LJ, Rigatti R, 

Smith VP, Arends FPM, Cox HS, Smith G, Archer JAC. 2009. Genomic diversity 

among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with 

identical DNA fingerprints. PLoS One 4:e7407. doi:10.1371/journal.pone.0007407 

2. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S, Moore 

R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K, Jones SJM, 

Brinkman FSL, Brunham RC, Tang P. 2011. Whole-genome sequencing and social-

network analysis of a tuberculosis outbreak. N Engl J Med 364:730-739. 

3. Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, 

Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, 

Monk P, Smith EG, Peto TE. 2013. Whole-genome sequencing to delineate 

Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect 

Dis 13:137-146. 

4. Lee RS, Radomski N, Proulx JF, Manry J, McIntosh F, Desjardins F, Soualhine H, 

Domenech P, Reed MB, Menzies D, Behr MA. 2015. Reemergence and amplification of 

tuberculosis in the Canadian arctic. J Infect Dis 211(12):1905-14. 

5. Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, Wirth T, Jaenicke S, 

Schuback S, Rüsch-Gerdes S, Supply P, Kalinowski J, Niemann S. 2013. Whole 

genome sequencing versus traditional genotyping for investigation of a Mycobacterium 

tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 

10:e1001387. doi:10.1371/journal.pmed.1001387 



	  

	   143	  

6. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, 

Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA. 2013. Whole-

genome sequencing to identify transmission of Mycobacterium abscessus between 

patients with cystic fibrosis: a retrospective cohort study. Lancet 381:1551-1560. 

7.  Ekblom R, Wolf JBW. 2014. A field guide to whole-genome sequencing, assembly and 

annotation. Evol Appl 7(9):1026-1042. 

8. Lee RS, Radomski N, Proulx J-F, Levade I, Shapiro BJ, McIntosh F, Soualhine H, 

Menzies D, Behr MA. 2015. Population genomics of Mycobacterium tuberculosis in the 

Inuit. Proc Natl Acad Sci U S A 112(44):13609-13614. 

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment 

search tool. J Mol Biol 215:403-410. 

10. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina 

sequence data. Bioinformatics 30:2114-2120. 

11. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-

MEM. arXiv http://arxiv.org/abs/1303.3997  

12. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, 

Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence 

Alignment/Map format and SAMtools. Bioinformatics 25:2078-2079. 

13. Okonechnikov K, Conesa A, García-Alcalde F. 2015. Qualimap 2: advanced multi-

sample quality control for high-throughput sequencing data. Bioinformatics 32(2):292-4. 

14.  Thorvaldsdottir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer 

(IGV): high-performance genomics data visualization and exploration. Brief Bioinform 

14(2):178–192. 



	  

	   144	  

15. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, 

Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The Genome 

Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA 

sequencing data. Genome Res 20:1297-1303. 

16. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood 

approach. J Mol Evol 17:368-376. 

17. Felsenstein J. 1985. Confidence-limits on phylogenies - an approach using the bootstrap. 

Evolution 39:783-791. 

18. Mira A, Martín-Cuadrado AB, D'Auria G, Rodríguez-Valera F. 2010. The bacterial 

pan-genome: a new paradigm in microbiology. Int Microbiol 13:45-57. 

19. Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are 

strong transition-transversion and G+C-content biases. Mol Biol Evol 9:678-687. 

20. Waddell PJ, Steel MA. 1997. General time-reversible distances with unequal rates across 

sites: mixing Γ and inverse gaussian distributions with invariant sites. Mol Phylogenet 

Evol 8:398-414. 

21. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, 

Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, 

Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, 

Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, 

Osborne J, Quail MA, Rajandream M-A, Rogers J, Rutter S, Seeger K, Skelton J, 

Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the 

biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 

393:537-544. 



	  

	   145	  

22. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, 

Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, 

Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, 

Mikula A, Bishai W, Jacobs WR, Venter JC, Fraser CM. 2002. Whole-genome 

comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 

184:5479-5490. 

23. Zhang Y, Chen C, Liu J, Deng H, Pan A, Zhang L, Zhao X, Huang M, Lu B, Dong H, 

Du P, Chen W, Wan K. 2011. Complete genome sequences of Mycobacterium 

tuberculosis strains CCDC5079 and CCDC5080, which belong to the Beijing family. J 

Bacteriol 193:5591-5592. 

24. Bentley SD, Comas I, Bryant JM, Walker D, Smith NH, Harris SR, Thurston S, 

Gagneux S, Wood J, Antonio M, Quail MA, Gehre F, Adegbola RA, Parkhill J, de 

Jong BC. 2012. The genome of Mycobacterium africanum West African 2 reveals a 

lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS 

Negl Trop Dis 6(2):e1552. doi:10.1371/journal.pntd.0001552. 

25. Garnier T, Eiglmeier K, Camus J-C, Medina N, Mansoor H, Pryor M, Duthoy S, 

Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes 

R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson 

RG. 2003. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci 

U S A 100:7877-7882. 

26. Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, 

Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui 

W, Simeone R, Boritsch EC, Debrie A-S, Willery E, Walker D, Quail MA, Ma L, 



	  

	   146	  

Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, 

Gutierrez M-C, Leclerc C, Bentley S, Stinear TP, Brisse S, Medigue C, Parkhill J, 

Cruveiller S, Brosch R. 2013. Genomic analysis of smooth tubercle bacilli provides 

insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 

45:172-179. 

27. Wang J, McIntosh F, Radomski N, Dewar K, Simeone R, Enninga J, Brosch R, 

Rocha EP, Veyrier FJ, Behr MA. 2015. Insights on the emergence of Mycobacterium 

tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol Evol 7:856-870. 

28. Richter M, Rosselló-Móra R. 2009 Shifting the genomic gold standard for the prokaryotic 

species definition. Proc Natl Acad Sci U S A 106(45):19126-19131. 

29. Delcher AL, Phillippy A, Carlton J, Salzberg SL. 2002. Fast algorithms for large-scale 

genome alignment and comparison. Nucleic Acids Res 30(11):2478-2483. 

30. Chan JZM, Halachev MR, Loman NJ, Constantinidou C, Pallen JM. 2012. Defining 

bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol 

12:302. 

31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 

2007. DNA–DNA hybridization values and their relationship to whole-genome sequence 

similarities. Int J Syst Evol Microbiol 57(1):81–91. 

 

  



	  

	   147	  

8.3 Additional unpublished analyses  

8.3.1 Mixed species infection 

One isolate from outside the outbreak village was classified as mixed infection based on 

BLASTn (151). In this isolate, both M. tuberculosis (4,204/10,004 reads) and Mycobacterium 

avium (5,551/10,004 reads) were detected. Therefore, to avoid bias in depth of coverage 

calculations, this isolate was excluded from the current analysis. 

 

8.3.2 Use of an alternative SNP calling algorithm 

To assess the impact of using a different SNP calling algorithm, I repeated SNP calling against 

the M. tuberculosis CDC1551 reference genome, using SAMtools’ mpileup command and 

bcftools call. SNPs were filtered for quality using the same parameters as Unified Genotyper. 

Quality depth and the Mapping Quality RankSum were not calculated by SAMTools, and thus 

were not used for filtering. SNPs were filtered for strand bias using VCFtools –annotate- (147). 

SNPs identified by both callers are compared below. 

 
 

  



	  

	   148	  

Unified Genotyper      SAMtools 

 
FIGURE 8-2 Venn Diagram of SNP loci 
92.2% of SNP loci were identified by both callers. 5.0% were identified by Unified Genotyper 
alone, and 2.8% were identified by SAMtools alone. 
 

To assess these minor differences would influence phylogenetic trees, I then produced the 

following maximum likelihood tree based on the SNPs identified by SAMtools, using the 

Tamura 3-parameter (160) model of nucleotide substitution: 
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FIGURE 8-3 Maximum likelihood tree based on SNPs identified using SAMtools  
SNPs were called using SAMtools mpileup and bcftools call, compared to the CDC155 reference 
genome. Isolates are coloured according to clusters identified with Unified Genotyper. Bootstrap 
proportions are indicated, starting proximally until the cluster-defining nodes. Branches are 
collapsed at 80% bootstrap threshold, and therefore branch length does not correspond directly to 
genetic distance. 
 
All isolates are clustered in the same groups as they were previously, with SNPs called by 

Unified Genotyper, indicating that the phylogeny is robust to use of a different SNP calling 

algorithm.  
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CHAPTER 9.  OBJECTIVE 5 – Manuscript V  

 
Lee RS and Behr MA. The implications of whole genome sequencing in the control of 
tuberculosis. 2016. Ther Adv Infect Dis;3(2):47-62. 
 

9.1 Preamble 

During the course of this thesis work, WGS has gone from being applied to a single outbreak (3) 

to the gold standard for epidemiologic studies of tuberculosis, as well as many other infectious 

diseases (e.g., (145, 176-181)). Thus far, its use has been restricted predominantly to the research 

domain, though several regional public health departments and countries are currently 

implementing it as part their routine TB surveillance (e.g., British Columbia, Canada; the United 

Kingdom (UK), among others). As the use of WGS is increasing, many have proposed a new 

role for this tool in TB diagnostics, for both the detection of TB disease and prediction of drug 

resistance.  

 

The following manuscript is an invited review that discusses the current status of WGS and its 

potential utility in the realm of diagnostic microbiology. While the focus of this replace is the 

application of WGS to clinical medicine, it is important to note that, should WGS replace 

conventional diagnostics, this has substantial implications for all epidemiologic studies of 

tuberculosis.  

 

The reprint of this manuscript can be found in Appendix 6.  
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Abstract 

The availability of whole-genome sequencing (WGS) as a tool for the diagnosis and clinical 

management of tuberculosis (TB) offers considerable promise in the fight against this stubborn 

epidemic. However, like other new technologies, the best application of WGS remains to be 

determined, for both conceptual and technical reasons. In this review, we consider the potential 

value of WGS in the clinical laboratory for the detection of Mycobacterium tuberculosis and the 

prediction of antibiotic resistance. We also discuss issues pertaining to data generation, 

interpretation and dissemination, given that WGS has to date been generally performed in 

research labs where results are not necessarily packaged in a clinician-friendly format. Although 

WGS is far more accessible now than it was in the past, the transition from a research tool to 

study TB into a clinical test to manage this disease may require further fine-tuning. 

Improvements will likely come through iterative efforts that involve both the laboratories ready 

to move TB into the genomic era and the front-line clinical/public health staff who will be 

interpreting the results to inform management decisions.  
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Introduction  

Owing to advances in technology and reductions in cost, whole-genome sequencing (WGS) has 

been transformed from a centralized service used by a select few to interrogate single genomes 

into a relatively decentralized lab technique used by many to detect and track infectious 

pathogens [Long et al. 2014; Price et al. 2014; SenGupta et al. 2014; Snitkin et al. 2012; Quick 

et al. 2014, 2015]. This transformation has not spared the mycobacterial genus, with a number of 

papers presenting its application to the characterization of Mycobacterium tuberculosis cases and 

outbreaks [Walker et al. 2013; Bryant et al. 2013; Gardy et al. 2011; Lee et al. 2015; Casali et al. 

2014; Jamieson et al. 2014b; Stucki et al. 2015; Roetzer et al. 2013; Guerra-Assuncao et al. 

2015]. In this review, we will consider the opportunities presented by WGS for clinical 

management of tuberculosis (TB) across two conceptual spaces: diagnosis (M. tuberculosis 

detection) and treatment (prediction of antibiotic resistance). We recognize that the greatest 

utility for WGS will likely lie in countries with the highest TB burdens; however, as WGS 

requires substantial financial and technical infrastructure, we have situated this review in the 

setting of a high-resource country where this method may be more imminently implemented.  

 

A brief description of WGS  

WGS begins at the bench, with the extraction and purification of genomic DNA. In very brief 

detail, this DNA is typically fragmented into shorter pieces, which are then sequenced in ‘reads’ 

of 100-500 base pairs (bp) for bench-top sequencers. There are a number of different sequencing 

platforms available [Loman et al. 2012a; Kwong et al. 2015; Heather and Chan, 2015]. The 

choice of platform depends largely on the question, which in turn is dictated by clinical needs. If 

the aim is to identify unknown organisms or to characterize a novel bacterium, one might prefer 

a sequencer that generates longer reads (such as the PacBio RS by Pacific Biosciences, Menlo 

Park, CA, USA), as such reads enable more accurate de novo assembly [Loman et al. 2012a]. If 

the goal is to speciate the microorganism, determine drug resistance or resolve transmission 

networks, sequencers producing short reads can be used. Among the benchtop sequencers 

generating short read data, the most accurate platform currently available is the Illumina MiSeq 

(Illumina, San Diego, CA, USA) [Loman et al. 2012b] (though whether the difference in 

accuracy compared with another platform, the Ion Torrent PGM from ThermoFisher Scientific, 

Waltham, MA, USA, ultimately affects clinical inferences has been questioned [Harris et al. 
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2013]). In the analysis of such short read data, a reference-based approach is preferred [Loman et 

al. 2012a], wherein these reads are aligned (‘mapped’) to a reference genome. This is ideal for 

analysis of M. tuberculosis, given the absence of horizontal gene transfer in this species and the 

existence of complete, well-annotated reference genomes. Such a workflow for M. tuberculosis 

is illustrated in Figure 9-1.  

 

With the Illumina MiSeq platform, short reads of up to 300 bps in length are produced. To 

identify the microorganism in question based on these reads, a variety of tools can be utilized. 

The Basic Local Alignment Search Tool (BLAST [Altschul et al. 1990]) compares reads with 

existing microbial DNA databases and uses an algorithm to identify the most likely 

microorganism. Other methods include classifying the microorganism based on how well reads 

align to conserved coding sequences within phyla or species (‘clade-specific marker sequences’ 

[Segata et al. 2012]) or k-mer-based approaches [Wood and Salzberg, 2014]. In the latter, reads 

are divided into segments of k bases in length (called ‘k-mers’) that are compared with a 

database of known k-mer sequences from selected microorganisms. The best identification is 

determined as the microorganism with the highest proportion of matching k-mers.  

 

Once reads have been assigned the identity ‘M. tuberculosis’, they are subsequently mapped to 

the corresponding sequence on the reference genome to identify differences (i.e. variants) in the 

sample compared with this reference. There are several key considerations when performing 

such reference-based analyses. First, the choice of an appropriate reference genome is crucial; if 

the reference is too dissimilar from the isolate in question, large numbers of reads will not be 

mapped and these data (and all variation therein) will be ignored. Second, alignment to GC-rich 

repetitive regions can be difficult, as reads may map to more than one location, thereby 

producing inconclusive matches. Such regions include the PE-PPE family proteins, which 

comprise ~10% of the coding sequence of M. tuberculosis [Cole et al. 1998]. To reduce the risk 

of false- positive results, the PE-PPE regions and mobile elements are typically excluded from 

analyses [Comas et al. 2010; Roetzer et al. 2013]. Alternatively, one could perform targeted 

sequencing using a platform capable of generating longer reads that span repetitive regions. 

However, this would incur additional expense, as well as technical/bioinformatics requirements, 

and may not provide additional information of use for clinical applications.  
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Using a reference-based approach, single nucleotide polymorphisms (SNPs; i.e. a difference in a 

single base in the genome compared to the reference) and insertions/deletions (indels) present in 

the test isolate can be identified (‘called’) compared with the referent. This process, the quality 

control steps therein and the different tools used for identifying SNPs are reviewed in detail 

elsewhere in [Pabinger et al. 2014; Olson et al. 2015]. For the purposes of this work, we have 

focused on the utility of WGS for the clinician and, in particular, the use of these SNPs to predict 

drug resistance. In M. tuberculosis research, SNPs have also been used to extensively to 

delineate transmission networks, however, an in-depth discussion of this utility is beyond the 

scope of this review. The interested reader is directed to the several examples in the literature of 

its use in TB outbreak investigations [Gardy et al. 2011; Stucki et al. 2015; Lee et al. 2015; 

Torok et al. 2013; Kato-Maeda et al. 2013; Schurch et al. 2010; Ocheretina et al. 2015; Walker 

et al. 2013; Roetzer et al. 2013]. It is worth noting at this point that genotyping is occasionally 

required for clinical care, for instance, to rule out laboratory cross-contamination as a false-

positive cause of a positive culture, or when trying to determine when a TB recurrence is due to 

relapse of the original infection versus exogenous reinfection. For both of these applications, the 

lessons of outbreak investigation indicate that WGS has higher resolution than traditional typing 

methods, such as spoligotyping, mycobacterial interspersed repetitive units (MIRUs), or 

restriction fragment length polymorphism (RFLP) [Gardy et al. 2011; Lee et al. 2015; Walker et 

al. 2013; Roetzer et al. 2013]. Therefore, it can be inferred that, for both situations, if the 

traditional method returns a result of ‘different strain’, WGS is likely not necessary to answer the 

clinical question. If, however, the traditional typing method returns a matched pattern, WGS may 

be required to confidently distinguish a related strain due to ancestry from a true match, with the 

latter being observed during laboratory cross-contamination or relapse.  

 

Regardless of the application, the quality of WGS data depends on a number of factors, including 

the desired length of the sequencing reads and the cycle time [Quick et al. 2015]. These 

parameters in turn affect the turnaround time for results. Considering the most frequently used 

benchtop sequencers, raw sequencing results can be available in a clinically attractive span of 

just a few hours (for the Ion Torrent PGM) to as much as 39 hours with MiSeq for paired end 

250 bp reads. By adjusting the sequencing protocol for MiSeq, it may be feasible to reduce this 
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time frame without affecting key inferences, such as species and strain assignments [Quick et al. 

2015]. An important consideration when making such adjustments is the ‘depth of coverage’; the 

more reads that span a position in the reference genome, the more support there is for the base 

identified. The optimal depth of coverage to detect clinically relevant variants needs to be 

determined.  

 

Another factor influencing the time to obtain these data is whether samples are batched or run 

independently. According to Quick and colleagues [Quick et al. 2015], the MiSeq can sequence 

up to ~100 isolates simultaneously. In our experience, the MiSeq 250 bp paired-end sequencing 

can generate a minimum of 10 million reads; if 20x coverage is desired, only ~57 isolates of M. 

tuberculosis can be run simultaneously [Lander and Waterman, 1988]. A batched approach such 

as this is typical in research labs and is clearly less expensive on a per-unit basis, as running a 

single isolate would cost the same as the whole collection of samples. Unfortunately, waiting 

until a queue of specimens has accumulated is not ideal for clinical labs, which need to process 

samples immediately on arrival and send reports 24 hours a day. A newer method, the Nanopore 

MinIon (Oxford Nanopore Technologies, Oxford, UK), offers much promise in addressing this 

problem. The MinIon runs a single sample at a time and was able to correctly speciate two 

Salmonella enterica isolates as well as place them in epidemiologic context within 2h [Quick et 

al. 2015]. Earlier diagnosis and detection of SNPs connoting drug resistance could allow for 

more rapid initiation of treatment, compared with waiting for results from a batched analysis. 

However, the advantage of rapid results offered by the MinIon is currently offset by high error 

rates as reported by [Laver et al. 2015; Mikheyev and Tin, 2014; Quick et al. 2015]. While 

sequencing chemistry is improving and bioinformatics approaches are being developed to 

increase accuracy [Jain et al. 2015], further studies are needed to evaluate this method. As of yet, 

the MinIon has not been utilized for M. tuberculosis. It might be that these different platforms 

offer complementary opportunities for the clinical lab, for instance by using the Nanopore 

technology to rapidly speciate pathogenic organisms and the MiSeq for ongoing epidemiologic 

surveillance.  

 

WGS for detection of M. tuberculosis, including the prediction of drug resistance 

 In the clinical mycobacteriology lab, the goal is to secure a diagnosis of active TB and to 
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provide clinicians with guidance on which antibiotics they should or should not prescribe for 

their patients. These two goals have classically been achieved with phenotypic tests, some dating 

to the 19th century. This begs the obvious question of whether WGS can help modernize the TB 

lab, with the goal of offering faster and more accurate results.  

 

The current clinical workflow for detection of M. tuberculosis in Canada is illustrated in Figure 

9-2. Variations of this pathway may be seen in comparable high-resource countries. For more 

detailed reviews of M. tuberculosis laboratory diagnosis, the reader is referred to the literature 

[Parrish and Carroll, 2008, 2011; Drobniewski et al. 2013; Noor et al. 2015]. In brief, specimens 

from TB suspects are sent for smear microscopy to ascertain the presence of acid-fast bacilli. 

This test identifies the most infectious patients (i.e. with ‘smear-positive’ disease) [Behr et al. 

1999]. Results of smear microscopy should be available within 24h of receipt [Parrish and 

Carroll, 2011], however this method has low sensitivity [Steingart et al. 2006a, 2006b] and 

cannot distinguish M. tuberculosis from non-tuberculous mycobacterium. Regardless of the 

results of microscopic examination, the same specimens are processed for culture, as detailed by 

Parrish and Carroll [Parrish and Carroll, 2011]. The culture is usually done using both solid and 

liquid media (typically mycobacterial growth indicator tubes [MGITs]), with growth usually 

observed in 1-3 weeks, depending on the mycobacterial inoculum in the sample [Chihota et al. 

2010; Fadzilah et al. 2009]. Once growth is observed (on solid media) or flagged by the machine 

(in the case of MGITs), a positive culture can be assigned a presumptive identification as M. 

tuberculosis complex using a DNA probe, usually within 24h [Ichiyama et al. 1997]. Cultures 

are then sent to a reference laboratory for formal species confirmation and for drug susceptibility 

testing (DST) by phenotypic (i.e. growth-based) assays.  

 

Superimposed on this classic workflow (smear microscopy, culture, then DST), laboratories have 

overlaid molecular testing over the past two decades, using a variety of different platforms and 

clinical strategies. The first molecular tests approved were only licensed for the speciation of 

smear microscopy-positive samples [Parrish and Carroll, 2011], so their key role was in 

assigning a microbial name to such a sputum sample [Vuorinen et al. 1995; Carpentier et al. 

1995]. Then, with time and experience, it became recognized that nucleic acid amplification 

testing could be offered on smear-negative samples where there was a high clinical suspicion of 
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TB [Centers for Disease Control and Prevention (CDC) 2009]. To reduce costs of controls, these 

‘rapid’ first generation tests were generally batched and as a result, might only have been done 

twice or three times per week, depending on laboratory volume. More recently, the GeneXpert 

(Cepheid Inc., Sunnydale, CA, USA) has offered a random-access real-time nucleic acid 

amplification test, which can be done on a single sample, without having to wait for samples 

from other patients. GeneXpert is conducted directly on the clinical specimen to detect both the 

presence of M. tuberculosis DNA and mutations in the rpoB gene that predict resistance to the 

first-line drug, rifampin. In principle, results can be available in under 2h [Boehme et al. 2010]. 

In practice, turnaround time depends on logistics; most testing is done in laboratories rather than 

clinics, necessitating delays due to shipping and handling [Alvarez et al. 2015]. The specificity 

of GeneXpert for M. tuberculosis detection is high, reported at >98%, but the sensitivity varies 

by smear status [Boehme et al. 2010; Steingart et al. 2014; Sohn et al. 2014], site (e.g. 

respiratory versus extrapulmonary) and type of sample (e.g. lymph node versus pleural 

[Maynard-Smith et al. 2014; Denkinger et al. 2014]). While GeneXpert is currently the fastest 

and arguably most useful diagnostic test in many parts of the world, it may be that its enduring 

legacy is catalyzing a paradigm shift away from phenotypic testing, towards genetic detection of 

M. tuberculosis as the primary goal of the TB lab. If true, then the same pre-analytic principles 

(collecting sputum, delivering to lab, rendering the sample safe, extracting DNA) can serve as 

the basis for a more comprehensive interrogation of the mycobacterial genome, going beyond the 

rpoB gene to characterize the complete genome of the causative organism.  

 

WGS for diagnosis  

Until recently, the utility of WGS for de novo diagnosis of M. tuberculosis was unclear. WGS 

had relied exclusively on enriched DNA obtained from a pure bacterial culture, at which point 

the patient would have already been diagnosed. More recently, studies have examined the 

feasibility of sequencing M. tuberculosis directly from the clinical specimen [Doughty et al. 

2014; Brown et al. 2015]. Sequencing eight smear positive samples, Doughty and colleagues 

obtained only 0.002x to 0.7x depth of coverage, with 20-99% of reads sequenced mapping to the 

human genome rather than M. tuberculosis [Doughty et al. 2014]. Brown and colleagues 

obtained similar results when sequencing directly from clinical samples, but when an 

oligonucleotide enrichment protocol was applied, they were able to obtain at least 20x depth of 
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coverage on 20/24 smear positive, culture positive isolates, providing sufficient sequence depth 

to confidently speciate the organism present [Brown et al. 2015].  

 

If WGS is to be applied on the patient sample, the conceptual advantage is a more rapid result. 

However, the vast majority of samples are negative for M. tuberculosis, even in a high-incidence 

setting [Demers et al. 2012], so some form of triage is needed to select the samples most likely to 

benefit from direct WGS. Furthermore, sputum is contaminated with host and other bacterial 

DNA, complicating bioinformatics analyses and reducing the overall depth of coverage obtained 

for the M. tuberculosis genome [Doughty et al. 2014]. While low coverage may not preclude the 

ability to confidently detect M. tuberculosis, it could seriously undermine the capacity to detect 

mutations associated with drug resistance (as shown by Doughty and colleagues [Doughty et al. 

2014]), where the greatest clinical value of WGS may lie. In sum, these studies provide proof-of-

principle that WGS of M. tuberculosis directly from clinical specimens is feasible, but the cost of 

the enrichment protocol (USD$350 per sample), the requirement for technical expertise and 

equipment, and the need for real-time bioinformatics to convert sequence files into clinically 

meaningful lab reports all present challenges to WGS supplanting smear microscopy and nucleic 

acid amplification as the primary test performed on clinical specimens.  

 

If instead WGS is applied on the positive culture, then the benefit of rapidity has been lost, as the 

patient should already be isolated and started on treatment, based on either smear microscopy, a 

nucleic acid amplification test or the Accuprobe result on the culture. In this case, WGS may 

offer a different opportunity, which is a more rapid identification of antibiotic resistance.  

 

WGS for resistance  

In 2013, 3.5% of incident TB cases worldwide (95% confidence interval [CI] 2.2-4.7%) were 

estimated to have multidrug-resistant (MDR) TB, with an enrichment to 20.5% in cases with 

previous treatment (95% CI 13.6-27.5%) [World Health Organization, 2015]. As there is no 

evidence for ongoing acquisition of foreign DNA by M. tuberculosis, resistance occurs due to 

mutations in the chromosomal DNA, some of which have been mapped and mechanistically 

linked to the resistance phenotype [Nebenzahl-Guimaraes et al. 2014]. Phenotypic testing of a 

positive culture (called indirect DST) is the current gold standard for M. tuberculosis. The need 
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for level 3 containment facilities and the requirement to perform an appropriate number of tests 

to maintain competence, however, have conspired to direct this most clinically meaningful assay 

to reference labs, entailing delays due to transport and handling. Therefore, while it is stated that 

first-line susceptibility results can be obtained in 2-4 weeks [Perkins and Cunningham, 2007; 

Migliori et al. 2008], such estimates reflect the time for work to be performed in the reference 

lab. When considering the time from sample acquisition to a final report, others provide longer 

timeframes, up to 2 months [Parrish and Carroll, 2008]. Until this information is available, the 

clinician faces an immediate dilemma, which is: ‘What do I prescribe now?’. Inappropriate 

treatment risks generating further drug resistance, but delaying treatment until a final report is 

provided risks deleterious treatment outcomes [Park et al. 1996]. While one option is to attempt 

phenotypic testing directly on the patient sample (called ‘direct DST’), there are still delays with 

the time to obtaining cultures, and susceptibility testing on the sputum sample brings its own 

challenges, since it is difficult to standardize the inoculum for such assays. It is at this moment of 

indecision that a molecular test could provide the most immediate clinical guidance, as 

exemplified by the GeneXpert test. For examples of molecular tests, along with sensitivity and 

specificity for respective drugs, see Table 9-1.  

 

As most rifampin-resistant isolates are also isoniazid-resistant, the GeneXpert uses rpoB 

mutations associated with rifampin-resistance as a proxy for multi-drug resistance. However, not 

all rifampin-resistant organisms are isoniazid- resistant (i.e. there can be rifampin mono-

resistance) and indeed, not all isolates predicted to be rifampin-resistant are confirmed on 

phenotype-based testing [Steingart et al. 2014]. In addition, not all rifampin-resistant isolates are 

detected based on the currently assessed mutations [Sanchez-Padilla et al. 2015; Jamieson et al. 

2014a]. Finally, GeneXpert may fail to detect hetero-resistance, i.e. resistance-connoting 

mutations present in subpopulations within the patient [Zetola et al. 2014]. For all of these 

reasons, a broader-based assay, such as WGS, could offer the greatest clinical utility at this point 

in the diagnostic process, by looking beyond the targets of the current molecular assays.  

 

By sequencing the whole genome, in theory all resistance-connoting mutations that can guide 

clinical treatment can be identified by comparing the genome of the patient isolate with detailed 

databases of known resistance markers [Sandgren et al. 2009; Flandrois et al. 2014]. In practice, 
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this will work, if (a) these markers accurately predict in vitro phenotypic resistance, and (b) these 

markers predict clinical outcome. For the latter, we are unaware of studies that have directly 

assessed the utility of WGS data for predicting patient response to treatment. For the proximal 

goal of linking WGS to phenotypic resistance, there are emerging data which present a mixed 

message. Using online databases, supplemented with an updated search of the literature, Coll and 

colleagues [Coll et al. 2015] developed a mutation library and examined the concordance 

between genotypic predictions and phenotypic data for 788 isolates from diverse geographic 

settings. Among the drugs with sufficient phenotypic data (rifampin (RIF), isoniazid (INH), 

ethambutol (EMB), pyrazinamide (PZA) and streptomycin (STR)) as well as second-line drugs 

(amikacin (AMK), capreomycin (CAP), ethionamide (ETH), kanamycin (KAN), moxifloxicin 

(MOX), ofloxacin (OFX)), the sensitivity of WGS for predicting resistance was highest for INH 

and RIF at 92.8% (95% CI 89.9-95.7) and 96.2 (95% CI 93.9-98.5). At the other end of the 

spectrum, the sensitivity of WGS for PZA resistance was only 70.9% (95% CI 62.4-79.4). Thus, 

if WGS replaced phenotypic testing, one-twelfth of INH-resistant and one-third of PZA-resistant 

cases would receive these potentially hepatotoxic drugs, with little or no benefit. Specificity of 

WGS was highest for INH and RIF at 100% (95% CI 100-100%) and 98.1% (95% CI 96.8-

99.4%), respectively, but for other drugs, specificity was as low as 81.7% (EMB).  

 

In the same manuscript [Coll et al. 2015], Coll and colleagues also compared the performance of 

their database with KvarQ, a software that uses pre-specified ‘testsuites’ of known resistance- 

connoting mutations and other regions of interest to predict resistance [Steiner et al. 2014]. 

Using phenotypic data as the gold standard, sensitivity was substantially lower for nearly all 

drugs using the KvarQ method (though 95% CIs overlapped for all except EMB and KAN). 

Among first-line drugs, only RIF yielded similar point estimates to those obtained with Coll and 

colleagues’ mutation library, with sensitivity of 95.8% (95% CI 93.4-98.2%), while sensitivity 

for INH was only 86.9% (95% CI 83.1-90.7%). No results were available for ETH and CAP 

using the KvarQ software. Specificity was generally higher using KvarQ, though this difference 

was only significant for EMB and STR. Specificity for RIF was similar to that obtained with the 

mutation database, at 97.9% (95% CI 96.5-99.3%).  

 

In a similar study [Walker et al. 2015], Walker and colleagues selected 23 candidate resistance- 
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associated genes from the literature [Sandgren et al. 2009] and then used an algorithm to 

characterize mutations (SNPs and indels) within these genes and their promoter regions as 

resistance-connoting or benign. In a training dataset of 2099 isolates, 120 resistance-connoting 

mutations were identified, 772 were classified as benign and 101 could not be classified as either 

(called ‘uncharacterized’). The resistance-connoting and benign mutations identified in this 

training dataset were then used in a validation study on an additional 1552 genomes, 29% of 

which were resistant to at least one drug on drug susceptibility testing (DST). Using these 

mutations, authors were able to predict 89.2% of phenotypes as resistant or susceptible. 10.8% of 

phenotypes could not be predicted, as these contained mutations that had not been characterized. 

Among those where phenotype could be predicted and considering predictions for each drug 

independently, 112 of 6892 with drug-sensitive DST were predicted to be resistant based on 

WGS (1.6%), while 94 of 1221 with drug-resistant DST were erroneously predicted to be drug-

sensitive (7.7%). The latter may be due to mutations with unknown function outside the 23 

candidate genes interrogated. This is similar to Farhat and colleagues [Farhat et al. 2013]; in this 

study, authors performed targeted deep sequencing of known resistance genes to verify that 

resistance mutations were absent in subpopulations within isolates. They found that 13/47 

isolates with phenotypic resistance had no previously known mutations. Unexplained resistance, 

wherein phenotypic resistance is present but known resistance-connoting mutations are absent 

has been most pronounced for PZA [Hewlett et al. 1995] and second-line drugs. For example, 

Farhat and colleagues [Farhat et al. 2013] found that, among isolates resistant to ciprofloxacin, 

KAN and CAP, 2/3, 6/18 and 1/ 6 isolates, respectively, had unexplained resistance. As the 

reliability of phenotypic testing is least well established for these drugs [Horne et al. 2013], this 

is where there is the greatest need for WGS, but presently also the greatest knowledge gap.  

 

In clinical medicine, the physician wants to know whether the isolate has a resistance-connoting 

mutation or not, so that treatment can be tailored accordingly. Indeterminate test results offer 

little clinical guidance, and often steer clinicians to other antibiotics, where feasible. While it is 

logical to exclude isolates with uncharacterized mutations from a scientific paper that aims to 

understand resistance, in a clinical laboratory, these have to be reported one way or the other. 

Analyses that classified such uncharacterized mutations as predictive of phenotypic susceptibility 

greatly affected test parameters; the sensitivity of WGS for INH and RIF resistance dropped 



	  

	   163	  

from 94.2% (95% CI 91.1-96.5%) and 96.8% (95% CI 94.1-98.5%) with uncharacterized 

mutations excluded to 85.2% (95% CI 81.1-88.7%) and 91.7% (95% CI 87.9-94.5%) with 

uncharacterized mutations included, respectively. Sensitivity for PZA resistance in the latter 

analysis was the lowest overall, at only 24% (95% CI 17.9-30.9%). Until such mutations can be 

confidently assigned to the appropriate phenotype, it would seem that parallel, or at the least, 

sequential phenotypic testing should remain part of the diagnostic pathway.  

 

Furthermore, these publications generally included biased samples, with relatively high 

proportions of drug-resistant isolates. As many clinical labs identify primarily drug-sensitive 

isolates, the operating parameters of WGS for this purpose may change when evaluated against 

more representative samples. While authors had generally high specificity for most drugs, the 

predictive value depends on the underlying prevalence of drug resistance. In a country such as 

Canada, which detected RIF resistance among only 17 of 1380 M. tuberculosis complex isolates 

analyzed in 2013 [Public Health Agency of Canada, 2015], a specificity of 98.1-99.2% and 

sensitivity of 91.7-96.2% based on the results of Coll and colleagues [Coll et al. 2015] and 

Walker and coworkers [Walker et al. 2015] would equate to ~18 false positives per year, with a 

positive predictive value of only ~46%. Without subsequent phenotypic testing, these cases 

would be subject to second-line treatment, with prolonged, unnecessary hospitalization. Thus, 

WGS may be best reserved only for individuals in which there was a higher pretest probability of 

resistance (based on some a priori criteria for the use of WGS, e.g. previous treatment).  

 

Despite these limitations, it is clear that WGS offers magnitudes more information than the 

molecular methods listed in Table 9-1, with the potential of greatly advancing clinical 

diagnostics for M. tuberculosis. While the WGS database of Coll and colleagues [Coll et al. 

2015] performed similarly to GeneXpert for RIF resistance, it also allowed for determination of 

INH mutations, and had an overall accuracy of 95.8%, as compared to 93.1% for MTBDRplus 

(Hain Lifescience, Nehren, DE) (p<0.0004). Accuracy was also higher for second-line drugs 

compared with MTBDRsl (Hain Lifescience, Nehren, DE) (96.3% versus 93.7%, p<0.0047). 

Walker and colleagues [Walker et al. 2015] showed similar sensitivity and specificity of their 

algorithm for determining the correct phenotype using WGS as the collective results of 

MTBDRplus, MTBDRsl and AID (AID Diagnostika, Strassberg, DE) line probe assays (LPAs). 
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In addition, while synonymous SNPs can present as false positives on both LPA or GeneXpert, 

Walker and colleagues were able to classify these as benign.  

 

Overall, these data support the great potential of WGS as a tool to predict resistance. However, 

databases of M. tuberculosis genomes, along with associated phenotypic data, are essential to 

identify unrecognized and emerging mutations. In addition, our ability to accurately predict 

phenotypic resistance is limited by our understanding of epistasis (the interaction between 

mutations, which can influence phenotype [Trauner et al. 2014]); mutations associated with 

resistance have been found in phenotypically sensitive bacteria [Walker et al. 2015], in some 

cases potentially due to interaction with other mutations in the genome. Until additional data are 

gathered, it can be foreseen that WGS may serve as an added, rather than a replacement test, on 

the diagnostic pipeline (Figure 9-2). This would incur added costs to the lab, something that is 

clearly less attractive than WGS simply replacing drug susceptibility testing (DST), with all its 

labor and reagent costs. One need look no further than the example of HIV treatment to imagine 

a world where genotype-based data are used to predict drug resistance, and hence treatment 

decisions. However, for all of the aforementioned reasons, we submit that reference labs need to 

maintain competence in phenotypic DST for the foreseeable future.  

 

Another issue for clinical application of WGS is timeliness of reporting. As of yet, two papers 

reported on the application of WGS in ‘real-time’ to clinical cases: a case report of a patient 

[Koser et al. 2012] with extremely drug-resistant (XDR) TB (defined as MDR TB plus resistance 

to an injectable second-line drug and a fluoroquinolone) and a prospective cohort of patients in 

the United Kingdom suspected of having XDR TB [Witney et al. 2015]. Koser and colleagues 

successfully obtained sequence data from a 3-day-old MGIT culture, identifying two concurrent 

but distinct strains of M. tuberculosis [Koser et al. 2013]. Predicted resistance and sensitivity 

concurred with phenotypic results for all drugs tested, while WGS predicted resistance to an 

additional five drugs. While WGS results had no impact on treatment, WGS did identify a 

mutation in the gene activating para-aminosalicylic acid (PAS) in the minority strain, despite a 

phenotypic determination of PAS-sensitive. Unfortunately, the functional impact of this was 

unknown. Witney and colleagues [Witney et al. 2015] selectively applied WGS to six cases with 

potential XDR TB, identified over 6 years in London, with multiple isolates sequenced per 
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patient. Results for five out of six cases were available in a clinically actionable time frame. 

Genotypic and phenotypic resistance were 100% concordant for INH and RIH, while 

discrepancies were reported in PZA, EMB, fluoroquinolones (OFX and MOX), AMK, KAN, 

CAP, PRO and PAS. In terms of clinical utility, WGS data helped guide treatment decisions by 

confirming PZA resistance in one case, and refuting an XDR diagnosis in favor of MDR in 

another. For another case, clinicians decided to continue with treatment with EMB, despite 

development of phenotypic resistance, as WGS failed to identify mutations in embA or embB that 

could explain the change in DST.  

 

The Witney and colleagues study also illustrated that for WGS data to be used clinically, the 

results need to be analyzed rapidly and presented in a clear, easily interpretable manner. Several 

groups have produced online tools (e.g. ‘PhyResSE’ [Feuerriegel et al. 2015] and ‘TB Profiler’ 

[Coll et al. 2015]) wherein raw sequencing data for an isolate can be uploaded and analyzed for 

resistance-connoting mutations. As mentioned previously, the KvarQ software can also predict 

resistance from raw sequencing data; in contrast to PhyResSE and TB Profiler, this can be done 

on a local server [Steiner et al. 2014]. Yet, despite efforts to make these reports accessible to the 

wider scientific community, knowledge of genomics and/or bioinformatics is still required to 

interpret results. As an example, the quality of SNPs is provided with details such as depth of 

coverage, a parameter that most clinicians would be uncomfortable judging. Presently, 

PhyResSE and TB profiler are explicitly for research purposes only, which poses regulatory 

hurdles to the delivery of results destined for the clinical chart. Witney and colleagues [Witney et 

al. 2015] piloted a WGS report during the course of their study, but, unfortunately, clinician 

perception of this report and its interpretability was not assessed. Furthermore, though ‘best 

practices’ have been proposed for identifying SNPs [Olson et al. 2015], the current 

bioinformatics workflows used to analyze WGS data remain largely unstandardized. For 

implementation in the clinical lab, appropriate quality control measures [Clinical and Laboratory 

Standards Institute, 2014] and a standardized workflow need to be established. The lessons of the 

past five decades of emerging antibiotic resistance have demonstrated that even a simple 

dichotomous test result, i.e. resistant or susceptible, does not always predict appropriate care. 

Therefore, the application of WGS-based results to clinical care may benefit from evaluations 

done by experts in implementation science, rather than genomics or microbiology.  
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Conclusion  

Offering increased resolution and substantially more data compared with conventional methods, 

WGS has revolutionized the arena of molecular epidemiology. Now, it seems poised to do the 

same for the clinical microbiology laboratory. The appeal of WGS for M. tuberculosis (and other 

pathogens) lies in the quantity of data provided; with one test, an organism can be speciated, 

resistance mutations can be detected and the strain can be placed in the context of the local 

epidemiology. The challenge of WGS also lies in the quantity of data provided; the same test can 

occupy a team of bioinformaticians, yet generate results that few clinicians can currently 

interpret. Furthermore, for WGS data to be clinically useful, results must be available in 

sufficient time to guide patient care. Recent advances such as sequencing directly from clinical 

samples and the rapid workflow of the Nanopore MinIon may facilitate this. The decision to 

whom this ‘test’ will be applied is also critical. Though no studies to date have examined cost-

effectiveness of implementing WGS, it can be predicted that application of this test to all, 

unselected samples without removing other steps in laboratory workflow could be prohibitively 

expensive. Therefore, it can be foreseen that WGS will be applied selectively, for instance, on 

patients with Rifampin resistance mutations detected by the GeneXpert assay.  

 

The issues raised above are only further amplified when contemplating the countries of the world 

that suffer the greatest burden of TB and have the highest prevalence of drug-resistant strains. 

While it is clearly feasible to ship sequencing machines around the world, as has already been 

done with the GeneXpert platform, it is not as simple to distribute the technical and 

bioinformatic expertise required for next-generation sequencing where it is needed. A potential 

solution to the latter is open-source coding and online data treatment, but this is currently lacking 

for clinical use, even in settings with expertise in these methods. Ultimately, what is needed is an 

easy-to-use software complete with a graphical user interface that is capable of converting data- 

intense sequence files into a simple, concise clinical message. As done with GeneXpert [Theron 

et al. 2014b], these outputs then need to be field-tested in settings with a sufficient burden of 

drug-resistant TB to enable evaluation of whether test results altered treatment decisions and 

clinical outcomes. The relatively small number of MDR TB patients in countries such as Canada 

may preclude a formal evaluation of patient outcomes, simply due to sample size considerations. 
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In order to assess its clinical utility for resource-rich countries where its use has been pioneered, 

we may need to first embed WGS in treatment studies conducted in the developing world, where 

the challenge posed by TB and drug resistance remains the greatest.  
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FIGURES 

 
FIGURE 9-1. WGS workflow for Mycobacterium tuberculosis.  In brief, whole-genome 
sequencing (WGS) begins in the wet lab (top panel), wherein genomic DNA (gDNA) is 
extracted. For a M. tuberculosis culture, this is done in a biosafety level 3 laboratory. After DNA 
extraction, library preparation is conducted, wherein genomic DNA is fragmented into pieces. 
Uneven ends of gDNA are blunted and adaptor sequences are added. After passing quality 
control, libraries are advanced to sequencing. Further analysis occurs in the dry lab (bottom 
panel). Potential contamination is assessed and the quality of sequencing is evaluated on a per 
isolate basis, including the examination of Phred quality scores of the sequenced bases (where 
Phred=-︎10*logPerror). FastQC, for example, is a software that can be used for such quality 
control, and is applied directly on raw sequence data (available from 
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/, shown in the screenshot). Adaptors (and 
potentially low-quality base pairs) are trimmed and reads of length under a prespecified limit 
(e.g. 70 base pairs used by the 1000 Genomes Project) may be excluded (not shown). High-
quality reads are aligned to a reference genome (this can be visualized in Integrative Genomics 
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Figure 1. WGS workflow for Mycobacterium tuberculosis.
In brief, whole-genome sequencing (WGS) begins in the wet lab (top panel), wherein genomic DNA (gDNA) is
extracted. For a M. tuberculosis culture, this is done in a biosafety level 3 laboratory. After DNA extraction,
library preparation is conducted, wherein genomic DNA is fragmented into pieces. Uneven ends of gDNA are
blunted and adaptor sequences are added. After passing quality control, libraries are advanced to sequencing.
Further analysis occurs in the dry lab (bottom panel). Potential contamination is assessed and the quality of
sequencing is evaluated on a per isolate basis, including the examination of Phred quality scores of the
sequenced bases (where Phred¼!10*logPerror). FastQC, for example, is a software that can be used for
such quality control, and is applied directly on raw sequence data (available from http://www.bioinfor-
matics.bbsrc.ac.uk/projects/fastqc/, shown in the screenshot). Adaptors (and potentially low-quality base
pairs) are trimmed and reads of length under a prespecified limit (e.g. 70 base pairs used by the 1000
Genomes Project) may be excluded (not shown). High-quality reads are aligned to a reference genome (this
can be visualized in Integrative Genomics Viewer, also shown in screenshot [Thorvaldsdottir et al. 2013]), and
metrics such as genome coverage (the percentage of the reference genome that has at least one read mapped
to it) and depth of coverage (the average number of reads mapped to each locus) are evaluated. Isolates are
retained if a priori quality measures are met. Reads are excluded if they map to more than one locus in the
genome, and additional quality measures may be applied such as removing polymerase chain reaction dupli-
cates and local realignment around indels. Once quality control steps are conducted, single-nucleotide poly-
morphisms and indels can then be ‘called’ compared with the reference genome. Low-quality variants are then
removed using various filtering parameters to reduce the number of false positives. Genes are then annotated
and repetitive regions and mobile elements may be filtered out of further analyses.
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Viewer, also shown in screenshot [Thorvaldsdottir et al. 2013]), and metrics such as genome 
coverage (the percentage of the reference genome that has at least one read mapped to it) and 
depth of coverage (the average number of reads mapped to each locus) are evaluated. Isolates are 
retained if a priori quality measures are met. Reads are excluded if they map to more than one 
locus in the genome, and additional quality measures may be applied such as removing 
polymerase chain reaction duplicates and local realignment around indels. Once quality control 
steps are conducted, single-nucleotide polymorphisms and indels can then be ‘called’ compared 
with the reference genome. Low-quality variants are then removed using various filtering 
parameters to reduce the number of false positives. Genes are then annotated and repetitive 
regions and mobile elements may be filtered out of further analyses.  
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FIGURE 9-2. Clinical diagnostic workflow for Mycobacterium tuberculosis.  The three main 
steps in the current diagnostic workflow for M. tuberculosis are shown. As described in the text, 
whole-genome sequencing may have a potential role at each of these steps: (1) by being applied 
directly to the unprocessed clinical specimen or (2) by being conducted on the positive culture to 
predict drug resistance.  

in the sample [Chihota et al. 2010; Fadzilah et al.
2009]. Once growth is observed (on solid media)
or flagged by the machine (in the case of
MGITs), a positive culture can be assigned a pre-
sumptive identification as M. tuberculosis complex
using a DNA probe, usually within 24 h
[Ichiyama et al. 1997]. Cultures are then sent to
a reference laboratory for formal species confirm-
ation and for drug susceptibility testing (DST) by
phenotypic (i.e. growth-based) assays.

Superimposed on this classic workflow (smear
microscopy, culture, then DST), laboratories
have overlaid molecular testing over the past
two decades, using a variety of different platforms
and clinical strategies. The first molecular tests
approved were only licensed for the speciation of
smear microscopy-positive samples [Parrish and
Carroll, 2011], so their key role was in assigning a
microbial name to such a sputum sample
[Vuorinen et al. 1995; Carpentier et al. 1995].
Then, with time and experience, it became recog-
nized that nucleic acid amplification testing could
be offered on smear-negative samples where
there was a high clinical suspicion of TB
[Centers for Disease Control and Prevention
(CDC) 2009]. To reduce costs of controls,
these ‘rapid’ first generation tests were generally
batched and as a result, might only have been

done twice or three times per week, depending
on laboratory volume. More recently, the
GeneXpert (Cepheid Inc., Sunnydale, CA,
USA) has offered a random-access real-time
nucleic acid amplification test, which can be
done on a single sample, without having to wait
for samples from other patients. GeneXpert is
conducted directly on the clinical specimen to
detect both the presence of M. tuberculosis DNA
and mutations in the rpoB gene that predict
resistance to the first-line drug, rifampin. In prin-
ciple, results can be available in under 2 h
[Boehme et al. 2010]. In practice, turn-around
time depends on logistics; most testing is done
in laboratories rather than clinics, necessitating
delays due to shipping and handling [Alvarez
et al. 2015]. The specificity of GeneXpert for
M. tuberculosis detection is high, reported at
>98%, but the sensitivity varies by smear status
[Boehme et al. 2010; Steingart et al. 2014; Sohn
et al. 2014], site (e.g. respiratory versus extrapul-
monary) and type of sample (e.g. lymph node
versus pleural [Maynard-Smith et al. 2014;
Denkinger et al. 2014]). While GeneXpert is cur-
rently the fastest and arguably most useful diag-
nostic test in many parts of the world, it may be
that its enduring legacy is catalyzing a paradigm
shift away from phenotypic testing, towards gen-
etic detection of M. tuberculosis as the primary
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Figure 2. Clinical diagnostic workflow for Mycobacterium tuberculosis.
The three main steps in the current diagnostic workflow for M. tuberculosis are shown. As described in the
text, whole-genome sequencing may have a potential role at each of these steps: (1) by being applied directly to
the unprocessed clinical specimen or (2) by being conducted on the positive culture to predict drug resistance.
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TABLES 

TABLE 9-1. Examples of molecular diagnostics for drug resistance in M. tuberculosis 
 

Molecular 
test 

Drug Gene(s) 
targeted 

Test performed 
on? 

Sensitivity Specificity Turnaround 
time  

Publication 
Type 

Reference 

GeneXpert 
(Cepheid Inc.) 

Rifampin rpoB  Raw clinical 
specimen 
(sputum + other 
respiratory 
specimens) 

95 (95% 
CrI 90-97); 
range 33-
100 

98 (95% 
CrI 97-99); 
range 83-
100 

1h-4 d (run time 
<2h) 

Meta-analysis [Steingart 
KR et al. 
2014] 

MTBDRplus 
(Hain 
Lifesciences) 

Rifampin rpoB Combined data 
for DNA from 
clinical 
specimen 
(respiratory+ 
non-respiratory 
samples) + 
purified DNA 
from culture  

98.4 (95% 
CI 95.1-
99.5); 
range 94-
100* 

98.9 (95% 
CI 96.8-
99.7); 
range 95-
100* 

6h-2d* Meta-analysis [Ling et al. 
2008] 

Isoniazid katG, inhA Combined data 
for DNA from 
clinical 
specimen 
(respiratory+ 
non-respiratory 
samples) + 
purified DNA 
from culture 

88.7 (95% 
CI 82.4-
92.8); 
range 57-
100* 

99.2 (95% 
CI 95.4-
99.8); 
range 92-
100* 

6h-2d* Meta-analysis [Ling et al. 
2008] 

INNO-LiPA 
RifTB 
(Innogenetics) 

Rifampin rpoB DNA from 
clinical 
specimen 
(including non-
respiratory) 

Range 80-
100% 

All 100% Not reported Meta-analysis [Morgan et 
al. 2005] 

  Purified DNA 
from culture 

Range 82-
100% 

Range 92-
100% 

Not reported Meta-analysis [Morgan et 
al. 2005] 
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MTBDRsl 
(Hain 
Lifesciences) 

Fluoroquinolones 
(including 
oxyfloxacin and 
levofloxacin)  

gyrA  DNA from 
clinical 
specimen (smear 
positive sputum) 
 

85.1 (95% 
CI 71.9-
92.7); 
range 50-
100 

98.2 (96.8-
99.0); 
range 91-
100 

8h-2d, 2 
studies 

Meta-analysis [Theron et 
al. 2014a] 

  Purified DNA 
from culture 

83.1 (95% 
CI 78.7-
86.7); 
range 57-
100 

97.7 (95% 
CI 94.3-
99.1); 
range 77-
100 

1d (after 1st 
line)-10d, 2 
studies 

Meta-analysis [Theron et 
al. 2014a] 

Aminoglycosides 
(including 
kanamycin, 
amikacin, 
capreomycin)  

rrs DNA from 
clinical 
specimen (smear 
positive sputum) 
 

94.4 (95% 
CI 25.2-
99.9); 
range 9-
100 

98.2 (95% 
CI 88.9-
99.7); 
range 67-
100  

8h-2d, 2 
studies 

Meta-analysis [Theron, et 
al. 2014a] 

  Purified DNA 
from culture 

76.9 (95% 
CI 61.1-
87.6); 
range 25-
100 

99.5 (95% 
CI 97.1-
99.9); 
range 86-
100  

1d (after 1st 
line)-10d, 2 
studies 

Meta-analysis [Theron et 
al. 2014a] 

Ethambutol embB, DNA from 
clinical 
specimen 
(sputum) 
 

55 (95% 
CI 47-63) 

78 (95% 
CI 69-85) 

Not reported Meta-analysis [Cheng et al. 
2014] 

  Purified DNA 
from culture 

64 (95% 
CI 60-67) 

70 (95% 
CI 67-74) 

Not reported Meta-analysis (Cheng et al. 
2014) 

AID TB 
Resistance 
(AID 
Diagnostika) 

Rifampin rpoB DNA from 
clinical 
specimen 
(respiratory, 
95% smear 
positive) 
 

100 (95% 
CI 89.8-
99.0) 

100 (95% 
CI 77.1-
100) 

Not reported, 
“similar to 
MTBDRplus/
MDRTBsl” 

Individual 
study 

[Molina-
Moya et al. 
2015] 

  DNA from 
clinical 
specimen 
(respiratory + 

*** 100 (95% 
CI  95.9-
100) 

<1 d Individual 
study 

[Ritter et al. 
2014] 
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non-respiratory, 
smear positive) 

  MGIT culture 100% 
(95% CI 
29-100) 

100% 
(95% CI 
92-100) 

<1 d Individual 
study 

[Ritter et al. 
2014] 

Isoniazid katG, inhA DNA from 
clinical 
specimen 
(respiratory, 
95% smear 
positive) 

97.8 (95% 
CI 87.0-
99.9) 

100 (95% 
CI 73.2-
100) 

Not reported, 
“similar to 
MTBDRplus/
MDRTBsl” 

Individual 
study 

[Molina-
Moya et al. 
2015] 

  DNA from 
clinical 
specimen 
(respiratory + 
non-respiratory, 
smear positive) 

*** 100 (95% 
CI  95.9-
100) 

<1 d Individual 
study 

[Ritter et al. 
2014] 

  MGIT culture 100% 
(95% CI 
29-100) 

100% 
(95% CI 
92-100) 

<1 d Individual 
study 

[Ritter et al. 
2014]** 

Fluoroquinolones gyrA DNA from 
clinical 
specimen 
(respiratory, 
95% smear 
positive) 

33.3 (95% 
CI 6.0-
75.9) 

98.1 (95% 
CI 88.6-
99.9) 

Not reported, 
“similar to 
MTBDRplus/
MDRTBsl” 

Individual 
study 

[Molina-
Moya et al. 
2015] 
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 DNA from 
clinical 
specimen 
(respiratory + 
non-respiratory, 
smear positive) 

No  
resistance 

100 (95% 
CI 88-100) 

<1 d Individual 
study 

[Ritter et al. 
2014] 

Ethambutol embB DNA from 
clinical 
specimen 
(respiratory, 
95% smear 
positive) 
 

60.0 (95% 
CI 42.2-
75.6) 

91.7 (95% 
CI 71.5-
98.5) 

Not reported, 
“similar to 
MTBDRplus/
MDRTBsl” 

Individual 
study 

[Molina-
Moya et al. 
2015] 

  DNA from 
clinical 
specimen 
(respiratory + 
non-respiratory, 
smear positive) 

100 (95% 
CI 3-100) 

100 (95% 
CI 87.7-
100) 

<1 d Individual 
study 

[Ritter et al. 
2014] 

Aminoglycosides 
(kanamycin and 
capreomycin) 

rrs DNA from 
clinical 
specimen 
(respiratory, 
95% smear 
positive) 
 

100 (95% 
CI 77.1-
100) 

100 (95% 
CI 87.4-
100) 

Not reported, 
“similar to 
MTBDRplus/
MDRTBsl” 

Individual 
study 

[Molina-
Moya et al. 
2015] 

  DNA from 
clinical 
specimen 
(respiratory + 
non-respiratory, 
smear positive) 

- 100 (95% 
CI 89.7-
100) 

<1 d Individual 
study 

[Ritter et al. 
2014] 
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Streptomycin RpsL, rrs DNA from 
clinical 
specimen 
(respiratory, 
95% smear 
positive) 

100 (95% 
CI 81.5-
100) 

96.6 (95% 
CI 80.4-
99.8) 

Not reported, 
“similar to 
MTBDRplus/
MDRTBsl” 

Individual 
study 

[Molina-
Moya et al. 
2015] 

   DNA from 
clinical 
specimen 
(respiratory + 
non-respiratory, 
smear positive) 

- 100 (95% 
CI 89.7-
100) 

<1 d Individual 
study 

[Ritter et al. 
2014] 

For meta-analyses: if available, ranges are shown in addition to pooled estimates, to indicate potential heterogeneity. All tests shown, with exception of 

GeneXpert, are line probe assays. Where no sensitivity is reported, no isolates were identified with resistance to the target drug. *Includes studies using MTBDR 

(first-generation). **Results not shown for second-line drugs, as only testing was only conducted on the 3 samples with resistance to first-line drugs. AID 

predicted 3/3 isolates to be susceptible to second-line, confirmed with phenotypic DST. ***Study did not report separate test results for positive RIF and INH 

resistance.  

 

 



	  

	   176	  

References 

Altschul, S., Gish, W., Miller, W., Myers, E. and Lipman, D. (1990) Basic local alignment 

search tool. J Mol Biol 215: 403-410.  

 

Alvarez, G., Van Dyk, D., Desjardins, M., Yasseen, A. III, Aaron, S., Cameron, D. et al. (2015) 

The feasibility, accuracy, and impact of Xpert MTB/RIF testing in a remote aboriginal 

community in Canada. Chest 148: 767-773.  

 

Behr, M., Warren, S., Salamon, H., Hopewell, P., Ponce de Leon, A., Daley, C. et al. (1999) 

Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. 

Lancet 353: 444-449.  

 

Boehme, C., Nabeta, P., Hillemann, D., Nicol, M., Shenai, S., Krapp, F. et al. (2010) Rapid 

molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363: 1005-1015.  

 

Brown, A., Bryant, J., Einer-Jensen, K., Holdstock, J., Houniet, D., Chan, J. et al. (2015) Rapid 

whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical 

samples. J Clin Microbiol 53: 2230-2237.  

 

Bryant, J., Schurch, A., van Deutekom, H., Harris, S., de Beer, J., de Jager, V. et al. (2013) 

Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome 

sequencing data. BMC Infect Dis 13: 110.  

 

Carpentier, E., Drouillard, B., Dailloux, M., Moinard, D., Vallee, E., Dutilh, B. et al. (1995) 

Diagnosis of tuberculosis by Amplicor Mycobacterium Tuberculosis Test - a multicenter study. J 

Clin Microbiol 33: 3106-3110.  

 

Casali, N., Nikolayevskyy, V., Balabanova, Y., Harris, S., Ignatyeva, O., Kontsevaya, I. et al. 

(2014) Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat 

Genet 46: 279-286.  

 



	  

	   177	  

Centers for Disease Control and Prevention (CDC). (2009) Updated guidelines for the use of 

Nucleic Acid Amplification Tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly 

Rep 58: 7-10.  

 

Cheng, S., Cui, Z., Li, Y. and Hu, Z. (2014) Diagnostic accuracy of a molecular drug 

susceptibility testing method for the antituberculosis drug ethambutol: a systematic review and 

meta-analysis. J Clin Microbiol 52: 2913-2924.  

 

Chihota, V., Grant, A., Fielding, K., Ndibongo, B., van Zyl, A., Muirhead, D. et al. (2010) 

Liquid versus solid culture for tuberculosis: performance and cost in a resource-constrained 

setting. Int J Tuberc Lung Dis 14: 1024-1031.  

 

Clinical and Laboratory Standards Institute. (2014) Nucleic acid sequencing methods in 

diagnostic laboratory medicine; Approved guideline - second edition. CLSI document MM09-

A2. Clinical and Laboratory Standards Institute: Wayne, PA.  

 

Cole, S., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D. et al. (1998) Deciphering 

the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 

537-544.  

 

Coll, F., McNerney, R., Preston, M., Afonso Guerra- Assuncao, J., Warry, A., Hill-Cawthorne, 

G. et al. (2015) Rapid determination of anti-tuberculosis drug resistance from whole-genome 

sequences. Genome Med 7: 51.  

 

Comas, I., Chakravartti, J., Small, P., Galagan, J., Niemann, S., Kremer, K. et al. (2010) Human 

T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42: 

498-503.  

 

Demers, A., Verver, S., Boulle, A., Warren, R., van Helden, P., Behr, M. et al. (2012) High yield 

of culture-based diagnosis in a TB-endemic setting. BMC Infect Dis 12: 218.  

 



	  

	   178	  

Denkinger, C., Schumacher, S., Boehme, C., Dendukuri, N., Pai, M. and Steingart, K. (2014) 

Xpert MTB/RIF Assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and 

meta-analysis. Eur Respir J 44: 435-446.  

 

Doughty, E., Sergeant, M., Adetifa, I., Antonio, M. and Pallen, M. (2014) Culture-independent 

detection and characterization of Mycobacterium tuberculosis and M. Africanum in sputum 

samples using shotgun metagenomics on a benchtop sequencer. Peer J 2(3): e585, DOI: 

10.7717/peerj.585/supp-3.  

 

Drobniewski, F., Nikolayevskyy, V., Maxeiner, H., Balabanova, Y., Casali, N., Kontsevaya, I. et 

al. (2013) Rapid diagnostics of tuberculosis and drug resistance in the industrialized world: 

clinical and public health benefits and barriers to implementation. BMC Med 11: 190.  

 

Fadzilah, M., Peng Ng, K. and Fong Ngeow, Y. (2009) The manual MGIT system for the 

detection of M. tuberculosis in respiratory specimens: an experience in the University Malaya 

Medical Centre. Malay J Pathol 31: 93-97.  

 

Farhat, M., Shapiro, B., Kieser, K., Sultana, R., Jacobson, K., Victor, T. et al. (2013) Genomic 

analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium 

tuberculosis. Nat Genet 45: 1183-1189.  

 

Feuerriegel, S., Schleusener, V., Beckert, P., Kohl, T., Miotto, P., Cirillo, D. et al. (2015) 

PhyResSE: a web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage 

from whole-genome sequencing data. J Clin Microbiol 53: 1908-1914.  

 

Flandrois, J., Lina, G. and Dumitrescu, O. (2014) MUBII-TB-DB: a database of mutations 

associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinform 15: 107.  

 

Gardy, J., Johnston, J., Ho Sui, S., Cook, V., Shah, L., Brodkin, E. et al. (2011) Whole-genome 

sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364: 730-739.  

 



	  

	   179	  

Guerra-Assuncao, J., Crampin, A. and Houben, R. (2015) Large-scale whole genome sequencing 

of M. tuberculosis provides insights into transmission in a high prevalence area. Elife 4: e05166.  

 

Harris, S., Torok, M., Cartwright, E., Quail, M., Peacock, S. and Parkhill, J. (2013) Read and 

assembly metrics inconsequential for clinical utility of whole-genome sequencing in mapping 

outbreaks. Nat Biotechnol 31: 592-594.  

 

Heather, J. and Chan, B. (2015) The sequence of sequencers: The history of sequencing DNA. 

Genomics DOI: 10.1016/j.ygeno.2015.11.003.  

 

Hewlett, D., Horn, D. and Alfalla, C. (1995) Drug- resistant tuberculosis: Inconsistent results of 

pyrazinamide susceptibility testing. JAMA 273: 916-917.  

 

Horne, D., Pinto, L., Arentz, M., Lin, S., Desmond, E., Flores, L. et al. (2013) Diagnostic 

accuracy and reproducibility of WHO-endorsed phenotypic drug susceptibility testing methods 

for first-line and second-line antituberculosis drugs. J Clin Microbiol 51: 393-401.  

 

Ichiyama, S., Iinuma, Y., Yamori, S., Hasegawa, Y., Simokata, K. and Nakashima, N. (1997) 

Mycobacterium growth indicator tube testing in conjunction with the AccuProbe or the 

AMPLICOR-PCR assay for detecting and identifying mycobacteria from sputum samples. J Clin 

Microbiol 35: 2022-2025.  

 

Jain, M., Fiddes, I., Miga, K., Olsen, H., Paten, B. and Akeson, M. (2015) Improved data 

analysis for the MinION Nanopore sequencer. Nat Meth 12: 351-356.  

 

Jamieson, F., Guthrie, J., Neemuchwala, A., Lastovetska, O., Melano, R. and Mehaffy, C. 

(2014a) Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium 

tuberculosis. J Clin Microbiol 52: 2157-2162.  

 

Jamieson, F., Teatero, S., Guthrie, J.L., Neemuchwala, A., Fittipaldi, N. and Mehaffy, C. (2014b) 

Whole- genome sequencing of the Mycobacterium tuberculosis Manila sublineage results in less 



	  

	   180	  

clustering and better resolution than Mycobacterial Interspersed Repetitive Unit Variable 

Number Tandem Repeat (MIRU-VNTR) typing and spoligotyping. J Clin Microbiol 52: 3795-

3798.  

 

Kato-Maeda, M., Ho, C., Passarelli, B., Banaei, N., Grinsdale, J., Flores, L. et al. (2013) Use of 

whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis 

during an outbreak. PLoS One 8(3): e58235.  

 

Köser CU, Bryant JM, Becq, J, Torok, ME, Ellington, MJ et al. (2013) Whole-genome 

sequencing for rapid susceptibility testing of M. tuberculosis. New Engl J Med 369(3):290–292.  

 

Kwong, J., McCallum, N., Sintchenko, V. and Howden, B. (2015) Whole genome sequencing in 

clinical and public health microbiology. Pathology 47: 199-210.  

 

Lander, E. and Waterman, M. (1988) Genomic mapping by fingerprinting random clones: a 

mathematical analysis. Genomics 2: 231-239.  

 

Laver, T., Harrison, J., O’Neill, P., Moore, K., Farbos, A., Paszkiewicz, K. et al. (2015) 

Assessing the performance of the Oxford Nanopore technologies MinIon. Biomol Detect Quantif 

3: 1-8.  

 

Lee, R., Radomski, N., Proulx, J., Manry, J., McIntosh, F., Desjardins, F. et al. (2015) 

Reemergence and amplification of tuberculosis in the Canadian arctic. J Infect Dis 211: 1905-

1914.  

 

Ling, D., Zwerling, A. and Pai, M. (2008) GenoType MTBDR assays for the diagnosis of 

multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J 32: 1165-1174.  

 

Loman, N., Constantinidou, C., Chan, J., Halachev, M., Sergeant, M., Penn, C. et al. (2012a) 

High- throughput bacterial genome sequencing: an embarrassment of choice, a world of 

opportunity. Nat Rev Microbiol 10: 599-606.  



	  

	   181	  

 

Loman, N., Misra, R., Dallman, T., Constantinidou, C., Gharbia, S., Wain, J. et al. (2012b) 

Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30: 

434-439.  

 

Long, S., Beres, S., Olsen, R. and Musser, J. (2014) Absence of patient-to-patient intrahospital 

transmission of Staphylococcus aureus as determined by whole-genome sequencing. mBio 5(5): 

e01692-e1714.  

 

Maynard-Smith, L., Larke, N., Peters, J. and Lawn, S. (2014) Diagnostic accuracy of the Xpert 

MTB/RIF assay for extrapulmonary and pulmonary tuberculosis when testing non-respiratory 

samples: a systematic review. BMC Infect Dis 14: 709.  

 

Migliori, G., Matteelli, A., Cirillo, D. and Pai, M. (2008) Diagnosis of multidrug-resistant 

tuberculosis and extensively drug-resistant tuberculosis: current standards and challenges. Can J 

Infect Dis Med Microbiol 19: 169-172.  

 

Mikheyev, A. and Tin, M. (2014) A first look at the Oxford Nanopore MinION Sequencer. Mol 

Ecol Resour 14: 1097-1102.  

 

Molina-Moya, B., Lacoma, A., Prat, C., Diaz, J., Dudnyk, A., Haba, L. et al. (2015) AID TB 

Resistance line probe assay for rapid detection of resistant Mycobacterium tuberculosis in 

clinical samples. J Infect 70: 400-408.  

 

Morgan, M., Kalantri, S., Flores, L. and Pai, M. (2005) A commercial line probe assay for the 

rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and 

meta-analysis. BMC Infect Dis 5(1): 62.  

 

Nebenzahl-Guimaraes, H., Jacobson, K., Farhat, M. and Murray, M. (2014) Systematic review of 

allelic exchange experiments aimed at identifying mutations that confer drug resistance in 

Mycobacterium tuberculosis. J Antimicrobial Chemother 69: 331-342.  



	  

	   182	  

 

Noor, K., Shephard, L. and Bastian, I. (2015) Molecular diagnostics for tuberculosis. Pathology 

47: 250-256.  

 

Ocheretina, O., Shen, L., Escuyer, V., Mabou, M., Royal-Mardi, G., Collins, S. et al. (2015) 

Whole genome sequencing investigation of a tuberculosis outbreak in Port-Au-Prince, Haiti 

caused by a strain with a ‘Low-Level’ rpoB mutation L511P - insights into a mechanism of 

resistance escalation. PLoS One 10(6): e0129207.  

 

Olson, N., Lund, S., Colman, R., Foster, J., Sahl, J., Schupp, J. et al. (2015) Best practices for 

evaluating single nucleotide variant calling methods for microbial genomics. Front Genet 6: 235.  

 

Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M. et al. (2014) A 

survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform 

15: 256-278.  

 

Park, M., Davis, A., Schluger, N., Cohen, H. and Rom, W. (1996) Outcome of MDR-TB 

patients, 1983-1993 - prolonged survival with appropriate therapy. Am J Respir Crit Care Med 

153: 317-324.  

 

Parrish, N. and Carroll, K. (2008) Importance of improved TB diagnostics in addressing the 

extensively drug-resistant TB crisis. Future Microbiol 3: 405-413.  

 

Parrish, N. and Carroll, K. (2011) Role of the clinical mycobacteriology laboratory in diagnosis 

and management of tuberculosis in low-prevalence settings. J Clin Microbiol 49: 772-776.  

 

Perkins, M. and Cunningham, J. (2007) Facing the crisis: improving the diagnosis of tuberculosis 

in the HIV era. J Infect Dis 196(Suppl. 1): S15-S27.  

 

Price, J., Golubchik, T., Cole, K., Wilson, D., Crook, D., Thwaites, G. et al. (2014) Whole-

genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of 



	  

	   183	  

Staphylococcus aureus in an intensive care unit. Clin Infect Dis 58: 609-618.  

 

Public Health Agency of Canada. (2015) Tuberculosis: Drug resistance in Canada. 2013, 

Minister of Public Works and Government Services Canada: Ottawa (Canada).  

 

Quick, J., Cumley, N., Wearn, C., Niebel, M., Constantinidou, C., Thomas, C. et al. (2014) 

Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an 

observational study using whole-genome sequencing. BMJ Open 4: e006278.  

 

Quick, J., Ashton, P., Calus, S., Chatt, C., Gossain, S., Hawker, J. et al. (2015) Rapid draft 

sequencing and real-time Nanopore sequencing in a hospital outbreak of Salmonella. Genome 

Biol 16: 114.  

 

Ritter, C., Lucke, K., Sirgel, F., Warren, R., van Helden, P., Bottger, E. et al. (2014) Evaluation 

of the AID TB Resistance line probe assay for rapid detection of genetic alterations associated 

with drug resistance in Mycobacterium tuberculosis strains. J Clin Microbiol  52: 940-946.  

 

Roetzer, A., Diel, R., Kohl, T., Ruckert, C., Nubel, U., Blom, J. et al. (2013) Whole genome 

sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis 

outbreak: a longitudinal molecular epidemiological study. PLoS Med 10(2): e1001387.  

 

Sanchez-Padilla, E., Merker, M., Beckert, P., Jochims, F., Diamini, T., Kahn, P. et al. (2015) 

Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med 372: 

1181-1182.  

 

Sandgren, A., Strong, M., Muthukrishnan, P., Weiner, B., Church, G. and Murray, M. (2009) 

Tuberculosis drug resistance mutation database. PLoS Med 6(2): e1000002.  

 

Schurch, A., Kremer, K., Daviena, O., Kiers, A., Boeree, M., Siezen, R. et al. (2010) High-

resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J Clin 

Microbiol 48: 3403-3406.  



	  

	   184	  

 

Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O. and Huttenhower, C. (2012) 

Metagenomic microbial community profiling using unique clade-specific marker genes. Nat 

Meth 9: 811-814.  

 

SenGupta, D., Cummings, L., Hoogestraat, D., Butler-Wu, S., Shendure, J., Cookson, B. et al. 

(2014) Whole-genome sequencing for high-resolution investigation of methicillin-resistant 

Staphylococcus aureus epidemiology and genome plasticity. J Clin Microbiol 52: 2787-2796.  

 

Snitkin, E., Zelazny, A., Thomas, P., Stock, F., NISC Comparative Sequencing Program Group, 

Henderson, D. et al. (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella 

pneumoniae with whole-genome sequencing. Sci Transl Med 4(148): 148ra116.  

 

Sohn, H., Aero, A., Menzies, D., Behr, M., Schwartzman, K., Alvarez, G. et al. (2014) Xpert 

MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy 

and clinical impact. Clin Infect Dis 58: 970-976.  

 

Steiner, A., Stucki, D., Coscolla, M., Borell, S. and Gagneux, S. (2014) KvarQ: targeted and 

direct variant calling from fastq reads of bacterial genomes. BMC Genom 15: 881.  

 

Steingart, K., Schiller, I., Horne, D., Pai, M., Boehme, C. and Dendukuri, N. (2014) Xpert 

MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults (review). 

Cochrane Libr 1: 1-168.  

 

Steingart, K., Henry, M., Ng, V., Hopewell, P., Ramsay, A., Cunningham, J., Urbanczik, R. et al. 

(2006a) Fluorescence versus conventional sputum smear microscopy for tuberculosis: a 

systematic review. Lancet Infect Dis 6: 570-581.  

 

Steingart, K., Ng, V., Henry, M., Hopewell, P., Ramsay, A., Cunningham, J., Urbanczik, R. et al. 

(2006b) Sputum processing methods to improve the sensitivity of smear microscopy for 

tuberculosis: a systematic review. Lancet Infect Dis 6: 664-674.  



	  

	   185	  

 

Stucki, D., Ballif, M., Bodmer, T., Coscolla, M., Maurer, A., Droz, S. et al. (2015) Tracking a 

tuberculosis outbreak over 21 years: strain-specific single- nucleotide polymorphism typing 

combined with targeted whole-genome sequencing. J Infect Dis 211: 1306-1316.  

 

Theron, G., Peter, J., Richardson, M., Barnard, M., Donegan, S., Warren, R. et al. (2014a) The 

diagnostic accuracy of the GenoType MTBDRsl assay for the detection of resistance to second-

line anti-tuberculosis drugs (review). Cochrane Libr 10: 1-123.  

 

Theron, G., Zijenah, L., Chanda, D., Clowes, P., Rachow, A., Lesosky, M. et al. (2014b) 

Feasibility, accuracy, and clinical effect of point-of-care XpertMTB/RIF testing for tuberculosis 

in primary care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383: 424-

435.  

 

Thorvaldsdottir, H., Robinson, J. and Mesirov, J. (2013) Integrative Genomics Viewer (IGV): 

high-performance genomics data visualization and exploration. Brief Bioinform 14: 178-192.  

 

Torok, M., Reuter, S., Bryant, J., Koser, C., Stinchcombe, S., Nazareth, B. et al. (2013) Rapid 

whole-genome sequencing for investigation of a suspected tuberculosis outbreak. J Clin 

Microbiol 51: 611-614.  

 

Trauner, A., Borrell, S., Reither, K. and Gagneux, S. (2014) Evolution of drug resistance in 

tuberculosis: recent progress and implications for diagnosis and therapy. Drugs 74: 1063-1072. 

  

Vuorinen, P., Miettinen, A., Vuento, R. and Hallstrom, O. (1995) Direct detection of 

Mycobacterium tuberculosis complex in respiratory specimens by Gen-Probe Amplified 

Mycobacterium tuberculosis Direct Test and Roche Amplicor Mycobacterium Tuberculosis Test. 

J Clin Microbiol 33: 1856-1859.  

 

Walker, T., Ip, C., Harrell, R., Evans, J., Kapatai, G., Dedicoat, M. et al. (2013) Whole-genome 

sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational 



	  

	   186	  

study. Lancet Infect Dis 13: 137-146.  

 

Walker, T., Kohl, T., Omar, S., Hedge, J., Del Ojo Elias, C., Bradley, P. et al. (2015) Whole-

genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and 

resistance: a retrospective cohort study. Lancet Infect Dis 15: 1193-1202.  

 

Witney, A., Gould, K., Arnold, A., Coleman, D., Delgado, R., Dhillon, J. et al. (2015) Clinical 

application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis 

cases. J Clin Microbiol 53: 1473-1483.  

 

Wood, D. and Salzberg, S. (2014) Kraken: ultrafast metagenomic sequence classification using 

exact alignments. Genome Biol 15(3): R46.  

 

World Health Organization. (2015) Global Tuberculosis Report 2014, World Health 

Organization: Geneva.  

 

Zetola, N., Shin, S., Tumedi, K., Moeti, K., Ncube, R., Nicol, M. et al. (2014) Mixed 

Mycobacterium tuberculosis complex infections and false-negative results for rifampin 

resistance by GeneXpert MTB/ RIF are associated with poor clinical outcomes. J Clin Microbiol 

52: 2422-2429.  

  



	  

	   187	  

9.3 Additional unpublished analyses 

Following this review, it is worth noting that a pilot study was published testing the use of WGS 

for clinical diagnostics (12). In this study, conducted at 8 different sites in the UK, Canada, 

Germany, Ireland and France, all newly positive MGIT samples were subjected to WGS using 

Illumina MiSeq. While sequencing was done on-site at these locations, resultant sequence data 

were uploaded to a server, with all bioinformatics done at a centralized location in the UK. WGS 

was used for speciation, detection of drug resistance and transmission. This approach was 

compared to conventional methods, which included smear (with or without GeneXpert), positive 

MGIT and then culture for diagnosis of M. tuberculosis complex (MTBC), followed by 

phenotypic drug susceptibility testing (DST), and then MIRU for epidemiologic analysis. For the 

purposes of this discussion (as in the manuscript), only diagnosis and prediction of drug 

resistance are considered, as these are required imminently by the treating physician. 

 

Compared to conventional diagnostic methods (Hain Genotype MTBC/CM/AS), WGS had 

sensitivity of 95% (95% CI 91-98) and specificity of 98% (95% CI 95-100) for MTBC, including 

duplicate specimens. For resistance prediction, a list of resistance-connoting mutations was 

produced from Hain line probe assays and a review of the literature. Based on the presence or 

absence of these mutations in the genomes under investigation, 93% of genotypic results for 

first-line drugs agreed with phenotypic DST. However, WGS was unable to predict either 

resistance or sensitivity across 63 times across 15 samples due to insufficient depth of coverage. 

WGS also did not identify resistance-conferring mutations in 7 phenotypically resistant samples, 

6 of which had ‘unclassified’ variants in the same genes as the a priori resistance-connoting 

mutations. 

 

In this study, authors claimed a reduction in time to reporting of resistance results with WGS, 

compared to conventional DST. However, it was noted that this was a ‘best-case scenario’, 

wherein authors excluded the real delays they experienced due to batching of isolates for 

sequencing and the subsequent delays they experienced in uploading of these sequences to the 

server for centralized bioinformatics analysis. Without such adjustment, the median time from 

positive MGIT to DST report was 25 days for conventional DST (inter-quartile range, IQR 14-

32) and 31 days from positive MGIT to MIRU report (IQR 21-44), compared to 31 days (IQR 
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21-60) for WGS with resistance and epidemiologic reporting. These results indicated that there 

was no observed reduction in time; rather there is a theoretical opportunity to achieve WGS-

based predictions sooner than conventional DST. This suggests that until such time as specimens 

can be processed individually (such as using the Oxford Nanopore MinIon) and bioinformatics 

can be performed locally, conventional diagnostic approaches will continue to be faster.  
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CHAPTER 10. DISCUSSION AND CONCLUSIONS 

 

The following chapter summarizes key findings from each Objective and discusses the public 

health implications of this work. I have also addressed the potential methodological 

considerations, and proposed directions for future research.  

 

10.1 Discussion 

The WHO has named Canada as a prime site for TB elimination based on its low overall 

incidence of this disease (63). However, Aboriginal-Canadians continue to experience rates of 

TB similar to those in developing nations, with the majority of cases thought to be due to 

ongoing transmission. This study was initiated in response to a major ‘outbreak’ in one such 

Aboriginal population, namely, the Inuit. As a previous molecular epidemiologic study in the 

Arctic had illustrated low strain diversity (2), and all isolates had the same DNA fingerprint 

based on classical typing methods, we employed a new technique, whole genome sequencing to 

increase resolution of this event. In conducting this study, key methodological issues were 

identified and explored, providing valuable insight into the application of this approach for 

epidemiology of TB, as well as other infectious diseases. 

 

10.1.1 Summary of manuscripts and implications for public health 

Manuscript I 

The aim of this manuscript was to resolve transmission during the ‘outbreak’. In contrast to the 

single group of transmission suggested by classical typing methods (MIRU and RFLP), WGS 

revealed three distinct clusters. Combining WGS with epidemiologic data then revealed at least 6 

different subgroups ranging from a single instance of reactivation – inadvertently classified as 

part of the outbreak - to a point-source outbreak of 20. Small sample sizes within the subgroups 

precluded robust statistical analyses, however, by examining at this level, precise transmission 

events could be discerned. While one subgroup consisted of 5 teenagers who had socialized at 

local ‘gathering houses’, most subgroups were comprised of a mixture of household and social 

contacts. While some cases among the latter resided in such gathering houses, others did not, 

suggesting these houses were not the only sites of transmission as initially hypothesized by 

public health. By examining the contact investigation data in light of WGS, it was found that 
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once investigation moved beyond the household, the probability of detecting transmission was 

no better than chance. Finally, by comparing ‘outbreak’ isolates with historical isolates from this 

community, WGS was able to identify a case of recurrent TB due to reinfection that would 

otherwise have been classified as relapse.  

 

Manuscript II 

During the ‘outbreak’, there was substantial concern about whether transmission was occurring 

between villages – which would warrant rescheduling or cancelling of cross-community cultural 

events – and whether a new, hyper-virulent strain was responsible for the sudden increase of TB 

in this region. To address these concerns, this manuscript extends the previous investigation to 

other villages of Nunavik, applying WGS to cases diagnosed between 1990-2013. Examining 

pairwise SNP distributions within and between villages suggested transmission was mainly 

within villages, while evolutionary studies revealed the predominant strain (affecting 153/163 

cases with WGS) has been circulating in Nunavik since the early 20th century. Surprisingly, this 

strain has thrived in Nunavik despite the accumulation of potentially deleterious nonsynonymous 

SNPs and deletions, a finding in direct contrast to other studies, which have suggested that 

epidemiologic success is a consequence of strain characteristics (e.g., (182)).   

 

Manuscript III 

During the analysis of the ‘outbreak’, it was observed that numerous cases had multiple contacts 

with different genotypes (as identified by the subgroups described in Manuscript I) as well as 

different potential sources. As two case-control studies (10, 11) were not able to sufficiently 

explain the high attack rate in this community, it was hypothesized that multiple exposures may 

have influenced progression. Adjusting for housing occupancy, increased total exposures (i.e., 

exposures to any confirmed case) were associated with progression to disease among those with 

recent infection. This suggests that the degree to which one is exposed is not only associated 

with the risk of initial infection with TB, but also the risk of progression from that infection to 

disease.  
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Manuscript IV 

Given the increasing use of WGS in epidemiologic studies of TB, as well as other pathogens, this 

manuscript aimed to explore the potential influence of different reference genomes on 

phylogenetic trees and subsequent epidemiologic inferences. Using 7 different reference 

genomes of increasing divergence from the Inuit isolates (Manuscripts I-III), it was shown that 

clusters could still be resolved even using Mycobacterium bovis as a reference, with a single 

isolate changing clusters when using the even more distantly-related M. canettii (with 96% 

average nucleotide identity versus a M. tuberculosis lineage 4 reference) as a reference. 

Capitalizing on this unique low-diversity dataset, such results can easily be extrapolated to other 

settings, where M. tuberculosis strain diversity is typically much higher.  

 

Manuscript V 

As the role of WGS in tuberculosis epidemiology (as well as other infectious diseases) has 

become solidified, its use as a diagnostic tool has recently been proposed. In response to this, we 

were requested to write a narrative review on this subject. While 2 studies demonstrated it is 

possible to obtain and sequence M. tuberculosis from raw clinical specimens, one was not able to 

obtain sufficient depth of coverage for other analyses, while the other relied on a costly and 

labour-intensive protocol for DNA enrichment. Therefore, at present, WGS is performed using 

DNA extracted from culture. This precludes its utility in clinical diagnosis in high-resource 

settings, wherein smear microscopy, a DNA amplification test and DNA probe would have 

already provided a diagnosis and the patient has typically already started treatment. Several 

studies have examined WGS for prediction of drug resistance; however, accuracy is limited by 

current knowledge of drug-resistance mutations and would result in substantial false positive 

results in settings such as Canada with low levels of drug resistance. Unfortunately, these are the 

contexts wherein WGS is presently most feasible. We concluded that at a minimum, WGS 

should be utilized as an adjunct to phenotypic drug susceptibility testing and not as a 

replacement test – a view supported by a TBNET/RESIST-TB consensus statement released in 

January 2016 (183). 

 

10.1.2 Implications for TB control in Nunavik 

Based on the findings of Manuscript I, several changes have been made in the public health 
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management of TB in Nunavik. Firstly, the low positive predictive value of contact investigation 

beyond the household and high staffing demands such investigation requires has prompted the 

NRBHSS to instead perform community-wide chest x-ray screening during outbreaks to detect 

prevalent cases. Such a screening was conducted in another Arctic community earlier this year. 

Secondly, given the demonstrated utility of WGS in differentiating closely-related strains of TB, 

and discriminating reactivation from reinfection, the NRBHSS has asked that we performed 

prospective WGS of TB cases from this community. During this follow-up, we have identified 

other cases of reinfection and an instance of reactivation of a strain not seen in the community 

since 2004, with the latter reinforcing the importance of early and complete LTBI prophylaxis in 

this context. 

 

By revealing TB transmission is predominantly within villages in Nunavik (Manuscript II), our 

work suggests that even when during a TB epidemic, community quarantine is not required, nor 

is cancellation of cross-community events. As some villages have had no cases of TB in over 23 

years, this also suggests that interventions can be village-specific, rather than applying the same 

TB control measures to all communities. For example, BCG vaccination was reinstituted in the 

‘outbreak’ village as well as another community with elevated rates of TB. Furthermore, our 

work provides evidence against the introduction of a new, hyper-virulent strain in this region, 

suggesting clinical TB care in Nunavik can continue as previous with emphasis, as always, on 

adherence to both active TB treatment and LTBI prophylaxis. 

 

The finding that increased exposure is not only associated with infection, but progression from 

such infection to disease (Manuscript III) reinforces the importance of LTBI prophylaxis in this 

context. While adherence based on monthly pill counts is high (generally >80%), options such as 

direct-observed therapy were made available to patients during the ‘outbreak’ and may continue 

to be useful in helping assure high adherence. Among those who decline LTBI prophylaxis, this 

finding suggests a need for increased clinical monitoring during the years immediately following 

infection, to ensure incident cases are detected early and secondary transmission is reduced.  

 

10.1.3 Implications for WGS-based studies of TB and other infectious diseases  

During the years over which this thesis work was conducted, a number of studies have examined 
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WGS for resolving TB transmission (e.g., (101, 104, 105, 107, 108, 184, 185)). Many have relied 

on a threshold approach, with a precise number of SNPs considered to support or refute 

transmission (101, 105, 109, 115, 184)To our knowledge, our study is the first to illustrate the 

importance of local strain diversity in the application and interpretation of such SNP thresholds. 

Furthermore, our study has highlighted the continued importance of epidemiologic data in 

addition to WGS data for resolving transmission. While WGS may be sufficient to rule out 

transmission – given sufficient genetic difference between pairs of isolates, and with 

consideration of local strain diversity – absent epidemiologic data, it cannot rule it in. In the 

Northern ‘outbreak’, which occurred over the course of a single year, many isolates had very few 

SNPs between them. WGS alone identified three clusters of transmission, confirming the 

findings of (3, 103, 104) that it provides greater resolution of transmission compared to classical 

genotyping methods. However, to delineate transmission networks further within these clusters 

and discriminate subgroups, epidemiologic data was essential.  

 

As mentioned, a key issue with WGS that bioinformatics pipelines are not currently 

standardized, with many of the analytic choices lacking formal validation. Numerous WGS 

studies, using isolates of various lineages of M. tuberculosis, have all aligned reads to the 

genome of the H37Rv strain, which belongs to lineage 4. Our study has validated this decision. 

In addition, as all clustering was lost with M. kansasii, which still offered genomic coverage of 

35%, this suggests restricting analyses to a small fraction of a genome can lead to substantial 

bias in epidemiologic inferences of transmission. This has significance for other pathogens as 

well as M. tuberculosis, as approaches such as MLST - which rely on only a small subset of 

SNPs - are used extensively for surveillance. 

 

10.1.4 Methodological considerations 

A key limitation in all current WGS studies of tuberculosis is the detection of within-host strain 

diversity, either as a result of micro-evolution or mixed infection. As WGS was conducted using 

bacterial isolates obtained from cases at diagnosis, it is possible that within-host mutation could 

have occurred prior to diagnosis. Thus, a case might have initially transmitted an ‘older’ variant 

of the bacteria to some secondary cases, and over time, developed a mutation and transmitted 

this ‘new’ mutated bacteria to others. A case might also have been infected by >1 source, 
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resulting in two populations of bacteria within the lung.  

 

Detection of such diversity may also be influenced by culture. All WGS was performed on DNA 

extracted from cultured M. tuberculosis. Martin et al. (186) experimentally combined 7 pairs of 

M. tuberculosis strains at different concentrations (90/10; 10/90; 95/5; 5/95 and 50/50) and 

subjected to these mixtures to MIRU both before and after 2-3 weeks of culture. In 4/7 pairs, 

culture resulted in significant changes in strain diversity, with mixed infection no longer 

detectable in 1 to all 5 of the mixtures. Given that WGS offers higher discrimination than MIRU, 

it seems plausible that mixed infections would be detectable at much lower thresholds. However, 

while a protocol for sequencing M. tuberculosis directly from the clinical sample has only 

recently been developed (187), no studies as yet have evaluated this. Furthermore, in our study, 

all colonies of M. tuberculosis visible on the plate were sequenced for each patient (i.e., a clean 

sweep was performed). This approach may result in differences in strain detection compared to 

sequencing individual colonies (152, 188).  Additionally, as only one culture was available per 

patient, this may not fully reflect the diversity present in the native lung (189, 190) or that which 

was transmitted forward. 

 

As precise transmission networks were investigated in the ‘outbreak’ village, minimizing the risk 

of missing such within-host heterogeneity was essential. To investigate this, we utilized a multi-

faceted approach in agreement with recent recommendations (191), including manually 

inspecting the loci of cluster-defining SNPs for all isolates from this village. The maximum 

variation seen in any of our ‘outbreak’ isolates was 9% of reads containing a minority allele at a 

cluster-defining SNP. Deep sequencing of this isolate, as well as others selected based on 

detection of low-frequency variants and epidemiologic significance, revealed even lower 

proportions of minority variants. The percentage of alternative reads required to classify a locus 

as ‘mixed’ varies widely by study. Black et al. suggested that at least 30% of reads should have 

an alternative allele to be called mixed infection (or within-host evolution), yielding a true 

positive rate of 79.5% and false positive rate of 14.3% (188). While Guerra-Assuncao et al. used 

the same (123), others have used lower thresholds of 5 (117) or 10% (184). Therefore, while 

results suggest that mixed infection with strains from different clusters/subgroups or micro-

evolution with strains representing >1 subgroup was highly unlikely, as the threshold for 
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identifying this remains unclear, this remains a possibility. Finally, because of the extremely low 

diversity within each subgroup (often 0 SNPs between some isolates), we were unable to assess 

for mixed infection from >1 source within these groups. 

 

As WGS – by definition – requires a positive culture, another potential limitation is the requisite 

exclusion of clinical cases. Clinical cases are those diagnosed on the basis of chest radiograph 

and symptoms. During the ‘outbreak’, there were 19 clinical cases, with 42% under the age of 5 

and 53% under the age of 10. While some of these may be misdiagnosed, others – particularly 

the pediatric patients – may be unable to produce sputum or have paucibacillary disease (6). 

These cases are generally not contagious and thus more likely to represent secondary cases than 

sources of transmission. However, as the source of transmission for pediatric cases is thought to 

be a close family contact (6), in most instances, probable source cases were still identified by 

public health. These clinical cases were not included in our analyses in Objective 3 because a) 

we aimed to evaluate genotypic exposures between all cases and contacts, b) some of these are 

unlikely to represent ‘true’ cases and c) the remainder likely represent a subpopulation with very 

different risk factors for progression compared to the study sample.  

 

Another potential issue relates to sample size. Given that studies investigated transmission in a 

specific geographical area, we were limited by the absolute number of cases. However, in 

molecular/genomic epidemiology, the sampling fraction is more critical than absolute numbers to 

evaluate transmission. Time of sampling is also important, as too short a sampling period means 

source or secondary cases outside the sampling frame may be missed. As we were able to 

sequence 95% of all isolates from cases over 22 years in the ‘outbreak’ village, and over 90% of 

isolates across Nunavik from 2001-2013, with an additional sample of 26 isolates from 1990-

2000, we expect sampling bias to be negligible.  

 

All clinical and epidemiologic data used in this work were collected as part of a public health 

response, rather than for research purposes. As such, information regarding several 

epidemiologic risk factors was not collected consistently, limiting the variables that could be 

evaluated as potential risk factors for progression to TB disease in Objective 3. However, as 

there is little in- or out-migration from these communities, with life-long medical records 
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available, comprehensive demographic information and medical history were available and used 

to support the molecular epidemiologic analyses.  

 

Measurement error in terms of the total (and consequently, genotypic) exposures used in 

Objective 3 is also possible. All individuals with active TB provided a list of their contacts at 

time of diagnosis. However, the precise details of this exposure were obtained from the 

interviews, wherein many of the contacts could not recall when they last had seen the recently-

diagnosed case for whom they were being investigated. Additionally, the precise frequency or 

duration of this contact was not always available. However, as interviews with these contacts 

were generally conducted prior to their own diagnosis with either infection or active TB, 

knowledge of their own disease status should not have influenced reporting. Therefore, such 

error is likely to be non-differential between cases and controls.  Additionally, as of May 2012, 

public health suspected transmission was occurring in local ‘gathering houses’ and 

announcements were made to this effect to the community. It is therefore possible that reporting 

attendance at such venues was subsequently influenced by social desirability bias. Time-

stratified analyses, however, did not identify substantial differences in reported exposures. 

 

10.1.5 Future directions 

Since these studies, TB rates have continued to be elevated in Nunavik. While GeneXpert has 

been implemented in the two Northern hospitals to reduce diagnostic delay, monitoring for 

transmission outside of declared outbreaks continues to be passive.  Given that one patient was 

symptomatic for 4 months prior to presenting to clinic, transmitting to at least 15 others in the 

‘outbreak’ village (Manuscript I), this suggests patient delay (as opposed to provider or 

laboratory delay) may be a more important contributor to ongoing transmission. As such, active 

case finding in high-incidence villages such as that implemented in Alaska in the 1970s (68) may 

be warranted to halt transmission in this context. In addition, mixed methods studies examining 

patient delay and factors contributing to this may provide useful insights into the TB dilemma 

confronting the North. Given limited in- and out-migration in villages of Nunavik, complete case 

ascertainment and follow-up is possible. This presents a unique opportunity to monitor the 

success of public health interventions, using WGS to delineate recent transmission from 

reactivation. Ultimately, interventions in Nunavik may guide efforts to eliminate TB in other 
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low-incidence countries. 

 

As WGS has become the gold standard for tracking infectious disease transmission, validation of 

bioinformatics pipelines used is essential. While one step has been addressed in this manuscript, 

there are many additional opportunities for investigation. For example, to date, no studies have 

examined the test parameters of various SNP calling algorithms using bacterial genomes. While 

previous studies have done so with human genetic data, there are substantial differences in depth 

of coverage, targets of sequencing (WGS versus whole exome sequencing) and even the goals of 

sequencing – all of which may influence how well these algorithms perform. Further study is 

also warranted into accurate detection of within-host heterogeneity, as this can not only impact 

estimates of transmission, but potentially individual patient outcomes as well (192). By 

experimentally mixing strains, as has been done in (186), the minimum depth of coverage needed 

to detect varying degrees of heterogeneity could be evaluated. Differences between transmitted 

strains and culture could also be assessed, as methods improve for sequencing M. tuberculosis 

DNA from raw clinical samples (e.g., directly from sputum).  

 

Validation and standardization of such pipelines is also critical as public health agencies begin to 

implement WGS for routine surveillance. As these methods continue to require implementation 

via command line, specialized technical expertise is needed, with the demand vastly exceeding 

the trained personnel. Tools must be developed to simplify data analysis if WGS is to be 

conducted at local, rather than regional facilities. Furthermore, interpretation of WGS data 

currently requires an understanding of genomics, which are unfamiliar to most public health staff 

and clinicians. Therefore, approaches for communicating relevant results in an uncomplicated 

manner are also needed. 

   

10.2 Overall conclusions 
 
This project aimed to apply a newer method, WGS, to understanding TB transmission among the 

Inuit population of Nunavik. Where classical studies revealed limited strain diversity and could 

not accurately differentiate reactivation from recent transmission, WGS provided in-depth 

resolution of these events. This has increased our understanding of TB transmission in the North 

and informed public health interventions in this region. By examining methodological 
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considerations in the application of WGS, with implications not only for TB but other infectious 

diseases as well. 

 

The high analytic power of WGS and declining cost suggest that this is the future of molecular 

epidemiology. Consequently, WGS is quickly moving from a research method to a tool for 

public health surveillance. However, this approach is currently limited to high-resource, low-

incidence settings, where the majority of TB is thought to be due to reactivation rather than 

recent transmission. It is clear that, for resolving transmission, WGS would provide the greatest 

benefit in low-resource, high-incidence settings. Unfortunately, the current cost, resources and 

requisite technical and substantive expertise needed to perform WGS suggest that routine use of 

this method in such settings will not occur anytime in the near future. However, the targeted use 

of WGS in representative settings may be particularly valuable in understanding the drivers of 

TB transmission, and more importantly, transmission of drug-resistant TB, in low-resource, 

high-incidence countries.   
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A1. Acronyms and glossary of terms 

bp Base-pairs (nucleotides) 
BAM file Binary Alignment Map file – this is a binary version of a 

Sequence Alignment Map (SAM) file, which stores alignments of 
nucleotide sequences in tab-delimited format (1).  

Bioinformatics 
pipeline 

Referring to the data analysis steps for WGS; specifically, the 
steps to convert raw sequence reads to a dataset of single 
nucleotide polymorphisms. The precise steps and software used 
for each vary between WGS studies. Each unique combination of 
steps and software represents a unique pipeline. 

CLSC Centre Locale de Services Communautaires – Provides outpatient 
and emergency clinical services (in Nunavik, these are also called 
‘nursing stations’). 

Depth of coverage Refers to the number of times a particular locus in the genome has 
been sequenced. 

dN/dS The ratio of nonsynonymous to synonymous single nucleotide 
polymorphisms, used to evaluate evolutionary pressure and 
selection on proteins across a population (2). 

DST Drug susceptibility testing. 
ESS Effective sampling size – Represents the number of independent 

samples that can be drawn from the posterior distribution. This is 
less than the total number of samples drawn, as adjacent samples 
are highly correlated.  

Genome coverage The percentage of the reference with at least X reads aligned to it 
(most studies report this with X=1). 

HPD interval Highest posterior density interval – represents the narrowest 
credible interval containing X% of the posterior probability (3) 

Indels Insertions and deletions. 
Isolates The bacteria obtained from individuals with micro-biologically 

confirmed active tuberculosis.  
LTBI  Latent tuberculosis infection - When exposed to an active TB 

case, some individuals become infected. Individuals who do not 
progress to active TB within the first 2 years are considered to 
have LTBI.  

MCMC Markov chain Monte Carlo method.  
MDR-TB  Multi-drug resistant TB - Resistance to at least isoniazid and 

rifampin, two of the front-line anti-tuberculosis drugs. 
Micro-evolution As M. tuberculosis replicates within the host, some bacteria 

acquire mutations. This can lead to a diversity of strains within the 
same patient, some, which have a mutation in a particular locus, 
and others without, all arising from the same initial strain. 

MRCA  Most recent common ancestor – this represents an inferred 
ancestor of 2 isolates. The sequence of this ancestor can be 
reconstructed. ‘tMRCA’ represents the time at which the isolates 
diverged from this ancestor. 
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MIRU  Mycobacterial interspersed repetitive units - Evaluates the number 
of repetitive units of a particular locus in the MTB genome. 
Current recommendation is 24 loci, with a minimum of 15.  

MUHC McGill University Health Centre. 
New positive TST When an individual has a positive tuberculin skin test, with no 

previous test documented. Therefore, infection could have 
occurred at any time in the individual’s life thus far. 

NGS Next-generation sequencing – High-throughput DNA sequencing, 
where thousands of sequences are produced simultaneously. 

Non-synonymous 
SNP 

This is a change in a single base that results in a change at the 
amino acid, and consequently, protein level. These are often 
deleterious. 

NRBHSS Nunavik Regional Board of Health and Social Services. 
PCR Polymerase chain reaction. 
PE_PGRS and PPE 
genes 

Proline-glutamate and proline-proline-glutamate gene families – 
these represent 10% of the coding genes in M. tuberculosis (4) 
and are highly repetitive, therefore the current recommendation is 
to exclude SNPs in these regions from analysis when short-read 
data is used (5, 6), due to probable mapping errors. 

Phred score -10*logPerror ; reflects the probability of error in a given base call, 
or when applied to mapping, the error in alignment. 

PPV Positive predictive value – P(D+|T+). 
Reads These are the sequences of each DNA fragment, and are used to 

re-construct the genome of the isolate under investigation.  
Reference-based 
assembly 

Alignment (‘mapping’) of reads to the correct locus according to a 
reference genome. 

RFLP Restriction fragment length polymorphism - Examines the 
location of certain insertion sequences in the MTB genome. 

Sanger Sequencing This method was invented in 1977 (7) and was previously the 
gold standard for DNA sequencing. DNA polymerase is used to 
copy denatured DNA by incorporating nucleotides from 5’ to 3’. 
Specifically, the single-stranded DNA is mixed with a radioactive 
primer, each nucleotide (A, T, C, G), and a small percentage of a 
DNA analogue of one of these nucleotides. Whenever this 
analogue (which lacks a 3’ hydroxyl group) is incorporated 
instead of the corresponding nucleotide, sequencing of that 
particular strand of DNA stops. Once the reaction is complete, all 
DNA sequences are separated by size using gel electrophoresis 
and the position of the analogue can be inferred. This is repeated 
using an analogue of each nucleotide, to identify the overall 
sequence.  

Sequencing by 
synthesis 

In brief, DNA polymerase is used to add synthesize DNA, 
copying the complementary strand by adding nucleotides from 5’ 
to 3’. Unlike Sanger sequencing, as nucleotides are identified as 
they are incorporated, i.e. synthesis of the DNA and sequence 
identification are performed simultaneously. 

 
215



Short-reads Reads of up to 300 base-pairs in length (by Illumina MiSeq). 
Optimal for reference-based assembly, i.e. alignment using a 
reference genome. 

Smear-positive Smear positive for acid-fast bacilli on microscopy. Grades are 
assigned based on the concentration of such bacilli per unit area 
(1+, 2+, 3+, 4+), with higher numbers reflecting higher bacterial 
load. (8) 

SNP  Single nucleotide polymorphism - Change in a single base of the 
genome, compared to a reference 

SNP calling The process of detecting whether or not each base in the genome 
is a single nucleotide polymorphism (SNP), i.e. whether the base 
is different from that found at the same position in the reference 
genome. Different algorithms can be used to identify (‘call’) 
SNPs. 

Synonymous SNP A change in a single base that does not result in a change in the 
amino acid. Through regulatory effects, however, these may 
influence expression of protein levels. 

TST  Tuberculin skin test. 
TST conversion When an individual has a positive tuberculin skin test, following a 

documented negative test. This suggests infection occurred at 
some point in time between the two tests. 

WGS  Whole genome sequencing - Sequencing the entire genome of an 
organism.  

XDR-TB Extremely drug resistant tuberculosis - Resistance to at least 
isoniazid and rifampin, two of the front-line anti-tuberculosis 
drugs, fluoroquinolones and at least one an injectable. 
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Reemergence and Amplification of Tuberculosis
in the Canadian Arctic
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Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Centre, 8Nunavik Regional Board of Health and Social
Services, Kuujjuaq, and 9Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada

Background. Between November 2011 and November 2012, a Canadian village of 933 persons had 50 culture-
positive cases of tuberculosis, with 49 sharing the same genotype.

Methods. We performed Illumina-based whole-genome sequencing on Mycobacterium tuberculosis isolates from
this village, during and before the outbreak. Phylogenetic trees were generated using the maximum likelihood method.

Results. Three distinct genotypes were identified. Strain I (n = 7) was isolated in 1991–1996. Strain II (n = 8) was
isolated in 1996–2004. Strain III (n = 62) first appeared in 2007 and did not arise from strain I or II. Within strain III,
there were 3 related but distinct clusters: IIIA, IIIB, and IIIC. Between 2007 and 2010, cluster IIIA predominated (11 of
22 vs 2 of 40; P < .001), whereas in 2011–2012 clusters IIIB (n = 18) and IIIC (n = 20) predominated over cluster IIIA
(n = 11). Combined evolutionary and epidemiologic analysis of strain III cases revealed that the outbreak in 2011–2012
was the result of ≥6 temporally staggered events, spanning from 1 reactivation case to a point-source outbreak of 20 cases.

Conclusions. After the disappearance of 2 strains of M. tuberculosis in this village, its reemergence in 2007 was fol-
lowed by an epidemiologic amplification, affecting >5% of the population.

Keywords. infectious disease outbreaks; Mycobacterium tuberculosis; molecular epidemiology; whole genome
sequencing; transmission.

Between November 2011 and November 2012, there
were 50 cases of microbiologically proven active tuber-
culosis in an Arctic village in Nunavik, Québec. With a
population of only 933, the incidence of culture-
confirmed tuberculosis was >5% of the community for
that year—1000 times the overall Canadian incidence.
This outbreak occurred in a setting with a very low
prevalence of human immunodeficiency virus infection
and no previous resistance to antituberculosis drugs,
leading to concern in the populace of a newly emerged
hypervirulent strain of Mycobacterium tuberculosis.

As part of the response to the outbreak, the Nunavik
Regional Board of Health and Social Services (NRBHSS)
conducted extensive contact investigations of all newly
diagnosed active tuberculosis cases, including household
and social contacts. During this response, it was observed
that many persons had contacts with multiple tuberculo-
sis cases, indicating that it would be extremely difficult to
identify transmission links using standard epidemiologic
methods. An alternative approach would involve molec-
ular typing of patient isolates.

In work published elsewhere, a combination of clas-
sic molecular epidemiology tools (restriction fragment
length polymorphism [RFLP] and mycobacterial
interspersed repetitive units [MIRUs]) revealed ex-
tremely limited bacterial diversity in this region, both
within and across villages [1]. One potential interpreta-
tion of these findings is that this represents ongoing
transmission. However, an alternative hypothesis is
that patients share similar bacterial genotypes due to
ancestry. With the advent of whole-genome sequencing
(WGS), a higher-resolution molecular epidemiologic
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tool [2–6], it is now possible to test whether bacteria that are
otherwise indistinguishable indicate recent transmission of M.
tuberculosis. Furthermore, because WGS provides information
on lineage-specific polymorphisms, this genotyping method
can also determine whether a new, potentially more virulent
M. tuberculosis strain had been introduced into this community.

To address these 2 questions, we conductedWGS onM. tuber-
culosis isolates from this village. To validate WGS data in this
setting, we tested epidemiologically unrelated isolates from
other villages of the same region, over 6 years. Then, to situate
WGS data from 2011 to 2012 in the context of a village with
high rates of tuberculosis over many years, we extended our
analysis to the 2 decades before the outbreak. In this setting
with limited variability by conventional genotyping modalities,
WGS provided improved analytic resolution, revealing the dis-
appearance, reemergence, and amplification of M. tuberculosis
over time.

METHODS

Study Population
Nunavik, the arctic region of Québec, spans 443 685 km2 and
comprises 14 Inuit communities. The outbreak village, hence-
forth denoted village K, is >150 km from the nearest village,
with no road connecting the communities.

Bacteria
Specimens from tuberculosis suspects in Nunavik are processed
at the mycobacteriology laboratory of the McGill University
Health Centre (MUHC). Culture-positive isolates are forwarded
to the reference laboratory, Laboratoire de Santé Publique du
Québec, for drug susceptibility testing. These laboratories pro-
vided isolates for the years 1991–2012.

Genomics
DNA extraction [7] and WGS have been described elsewhere
[8], with details in the Supplementary Data. In brief, M. tuber-
culosis isolates were sequenced using the MiSeq 250 System (Il-
lumina). Readings with a minimum length of 50 base pairs (bp)
were retained and deposited in the National Center for Bio-
technology Information’s Sequence Archive (accession No.
SRP039605, i.e. BioProject PRJNA240330). After alignment to
the H36Rv reference genome (accession No. NC_000962.3),
single-nucleotide polymorphisms (SNPs) were identified
using a Bayesian likelihood model (Unified Genotyper; Genome
Analysis Toolkit, version 2.7.4); SNPs with a minimum Phred
score >50 were retained (where Phred is −10 · log10Perror).
Phylogenetic analysis was done using Molecular Evolutionary
Genetics Analysis (MEGA, version 5, [9]), with the number of
differences method used to compute evolutionary distance [10].
Maximum likelihood trees were generated using the model
of nucleotide substitution that yielded the lowest Bayesian

information criterion (Tamura 3-parameter model, [11]). As a
sensitivity analysis, we also generated maximum likelihood trees
using the Jukes–Cantor model [12].

Validation of SNP Threshold for Recent Transmission
Given the limited genetic diversity in Nunavik [1], we evaluated
the lowest SNP threshold that could occur in the absence
of transmission. To do so, we sequencedM. tuberculosis isolates
from cases residing in other villages of Nunavik (2006–2012).
Contact investigation data were obtained from the NRBHSS.
Case pairs without epidemiologic links who resided in different
villages were designated as improbable transmission, and the
SNPs between these case pairs were compared.

Application of WGS to Village K
The SNPs between village K isolates were identified, including
those from cases diagnosed during the 20 years before the out-
break. Phylogenetic trees were generated while blinded to epide-
miologic data.

Clinical Epidemiologic Analysis Combined With WGS
For the outbreak, clinical epidemiologic data were collected by
clinical staff in village K. Links between cases were identified
using a database of all household and named contacts. Using
date of diagnosis/treatment initiation, symptoms, sputum
smear status, and cavity on chest radiograph as indicators of
contagion [13], we looked for potential index cases in each
cluster. For the years preceding the outbreak, epidemiologic
data for cases from 2007 to 2010 were provided by the NRBHSS.
Smear microscopic results were obtained from the MUHC
laboratory.

Statistical Analysis
A 2-sample z test and the exact binomial test were used to com-
pare proportions. The F* test for samples with unequal variance
was used to compare the number of pairwise SNPs within clus-
ters. Analyses were conducted using Stata software (version 11,
StataCorp 2009).

Ethical Approval
Ethical approval was obtained from the McGill University Fac-
ulty of Medicine’s institutional review board and the NRBHSS.
Individual patient consent was not required, but the study was
done in collaboration with the village K council.

RESULTS

The Outbreak
Between November 2011 and November 2012, there were 50
microbiologically confirmed cases of tuberculosis in village
K. There were no cases between January and October of 2011.
All cases were pulmonary, with no instances of tuberculosis
meningitis or disseminated disease. Seven of the 50 cases were
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diagnosed based on symptoms. Of the remaining 43 cases, 40
were found to have active disease during contact investigation,
and 3 developed tuberculosis after a documented positive tuber-
culin skin test conversion; 1 had refused isoniazid and the other
2 demonstrated low adherence. The epidemiologic links be-
tween cases were highly complex (Figure 1). All cases except
one shared the same MIRU pattern; RFLP provided similar res-
olution (Supplementary Figure 1).

Tuberculosis in Village K Over 22 Years
Between 1991 and 2012 (ie, including the outbreak year), 82
cases of culture-positive tuberculosis were diagnosed in village
K (Figure 2), yielding an average annual incidence of >450 per

100 000 (population denominators from Statistics Canada).
The majority of cases were male (47 of 82), with a median
age of 22 years (interquartile range, 16–35 years), consistent
with the age distribution of this population [14].

Of the 82 confirmed cases in village K, 80 (97.6%) had
isolates available for genotyping, 78 of which provided high-
quality WGS data: 49 of 50 outbreak isolates, 14 of 15 isolates
from 2007 to 2010, and all 15 isolates from 1991 to 2004 (there
were no cases in 2005–2006). Average genome coverage among
the 78 isolates was 99.7% (standard deviation [SD], 0.11%), with
an average depth of coverage of 42× (SD, 13). The majority of
Phred scores were between 500 and 1000 for SNPs, indicating
minimal ascertainment bias, and there was no evidence

Figure 1. Epidemiologic links between outbreak cases. Links between household/named contacts, as well as shared attendance (or residence) of com-
munity “gathering houses” identified by contact investigation are indicated. Orange circles represent sputum smear-positive cavitary cases; navy circles,
sputum smear-positive noncavitary cases; pink circles, sputum smear-negative cavitary cases; gray circles, sputum smear-negative noncavitary cases.
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supporting infection with multiple M. tuberculosis strains
(Supplementary Figure 2). A review of isolates without SNPs be-
tween them revealed that the specimens were processed in sepa-
rate batches, arguing against laboratory cross-contamination.

Validation of SNP Threshold for Recent Transmission
WGS was successful for 42 of 45 cases in other villages of
Nunavik (2006–2012). Consistent with our observation of lim-
ited genetic diversity in this region, the 631 “improbable trans-
mission” case pairs from other villages of Nunavik were
separated by as few as 2 SNPs, but none were separated by 0
or 1 SNP (Supplementary Figure 3). From this finding, support-
ed by studies published elsewhere, we defined a new cluster
when a group of isolates shared ≥2 of the same SNPs compared
with the reference group.

Application of WGS to Village K
The SNPs from all isolates of village K were used to infer max-
imum likelihood trees, with the bootstrap consensus tree from
1000 replicates shown in Figure 3 [11,15].Results were robust to
use of an alternate model of nucleotide substitution (unpub-
lished data). All isolates were lineage 4 (Euro-American, with
the reported 7-bp deletion in the pks15/1 gene) [16], and 3 dis-
tinct strains were evident, designated strains I, II, and III (Fig-
ure 3). Neither strain I nor strain II gave rise to strain III; strain I
has 16 unique SNPs not seen in strain III, whereas strain II has
18 unique SNPs plus a 1102-bp deletion (2 963 340–2 964 352)
that is intact in strain III isolates.

Strain I predominated for 6 years (n = 7; 1991–1996), then
disappeared. Strain II predominated for 9 years (n = 8; 1996–

2004), then disappeared (Figure 2). Strains I and II were unique
to village K. Strain III was first detected in village K in 2007,
though it was subsequently found in 2 cases diagnosed in
other villages. One of these cases was a child adopted from vil-
lage K to another community, and the other was an adult who
had been a close family contact of a smear-positive case in
village K before developing active tuberculosis the following
year.

Within strain III, 3 clusters were observed, designated IIIA,
IIIB, and IIIC (Figure 4). Cluster IIIA isolates (n = 22) had
the reference alleles for the genes carB, Rv3263, Rv0828c, and
Rv1835c. Cluster IIIB isolates (n = 20) had cluster-defining
SNPs in carB and Rv3263 but were wild type for Rv0828c and
Rv1835c; cluster IIIC isolates (n = 20) had cluster-defining SNPs
in Rv0828c and Rv1835c but were wild-type for carB and
Rv3263. Of the 3 clusters, IIIC had the least bacterial diversity
(mean pairwise SNP difference between isolates, 1.7 [95% con-
fidence interval, 1.5–1.8] within IIIA, 1.6 (1.4–1.8) within IIIB,
and 0.4 (0.3–0.5) within IIIC; P < .001).

Clinical Epidemiologic Analysis Combined With WGS
Whereas WGS alone revealed 3 different clusters (IIIA, B, C),
further analysis in conjunction with epidemiologic data identi-
fied more complex transmission networks over time, with ≥6
distinct subgroups from 2011 to 2012 (Figure 5, across the bot-
tom). Cluster IIIA was first seen in 2007–2008 and was initially
divided into 2 groups—those with the C allele in mce1B (n = 4)
and those with an alternative T allele in this gene (n = 18).

Between 2011 and 2012, there were 11 cluster IIIA isolates.
One had the C allele in mce1B and was from a familial contact
of previous cases whose isolates had the same genotype in 2008,
suggestive of an isolated reactivation event. The 10 remaining
isolates had the T allele in mce1B. Two of these isolates also
had an alternative C allele in Rv0331. In this latter subgroup,
1 case was diagnosed in November 2011 and had smear-positive
(3+) cavitary disease (MT-5531), while the other was a house-
hold contact. The remaining 8 IIIA isolates were first observed
in May 2012. Within this subgroup, there were 3 smear-positive
cases (4+ for MT-3074, 3+ for MT-3341, and 2+ for MT-3673)
diagnosed in June 2012 plus 5 more cases diagnosed at about
the same time or soon afterward. Nearly all secondary cases
were friends or family, with no obvious trend in locations of
contact. Thus, the 11 cluster IIIA isolates from 2011 to 2012
are unlikely to represent a single transmission event, because
≥2 discrete transmission chains plus 1 isolated reactivation
event are better supported by the combined genetic and epide-
miologic data.

Cluster IIIB was first seen in 2009 and had the reference
mce1B C allele, plus cluster-defining SNPs in carB and Rv3263.
In 2011–2012, there were 18 cluster IIIB isolates. Five of these
had an alternative C allele in fadE4, and the other 13 had the
reference A allele at this position. The former subgroup was

Figure 2. Microbiologically confirmed tuberculosis in village K (1990–
2012). The numbers of confirmed tuberculosis cases reported in village
K from 1990 to 2012 are shown by year of diagnosis. Strains of isolates
are indicated, as identified by whole-genome sequencing (WGS): diagonal
stripes indicate strain I; solid white, strain II; horizontal stripes, strain III;
and vertical stripes, not clustered; solid black represent isolates for which
WGS was not available.
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first seen in December 2011, when a single case was diagnosed
with smear-positive (4+) cavitary disease (MT-504). The re-
maining 4 cases with this genotype were teenagers with shared
attendance at the same “gathering house,” a venue of socializa-
tion identified by public health during the outbreak. The latter
subgroup (with the reference A allele in fadE4) was first detect-
ed 3 months later, in March 2012. Although it is possible that
MT-504 had a mixed infection and contributed to both sub-
groups, we also note that cases with the alternative C allele were
diagnosed months before those with the reference A allele.
Moreover, the group of 13 cases with the reference A allele

included a patient with smear-positive (3+) cavitary disease di-
agnosed in May 2012 (MT-2474) who had definitive epidemio-
logic links to 4 of the remaining 12 cases. The combination of
WGS and epidemiology together suggest that the 18 cluster IIIB
isolates from 2011 to 2012 represent ≥2 transmission chains.

Cluster IIIC was not seen in the community before 2012. The
first case was diagnosed in January 2012 with sputum smear–
positive (3+) cavitary disease (MT-0080). Fifteen of the remaining
19 cases were epidemiologically linked to this case (4 household
contacts, 3 friends, and 8 contacts at gathering houses). This pu-
tative source reported symptoms for 4 months before diagnosis,

Figure 3. Bootstrap consensus tree of Mycobacterium tuberculosis isolates from village K. The evolutionary history was inferred by using the maximum
likelihood method based on the Tamura 3-parameter model [11] and a bootstrap consensus tree was generated with 1000 replicates [15]. The percentage of
trees in which the associated genome clustered together is shown next to the branches. Branches reproduced in <80% of bootstrap replicates are collapsed.
Initial trees for the heuristic search were obtained by applying the neighbor-joining method to a matrix of pairwise distances estimated using the maximum
composite likelihood approach. The analysis involved 78 genomes compared with the H37Rv reference genome. Light blue triangles represent strain I isolates;
dark blue circles, strain II; pink diamonds, strain III, cluster A; orange circles, strain III, cluster B; green triangles, strain III, cluster C; black circle, not clustered.
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Figure 4. Strain and cluster-defining single-nucleotide polymorphisms (SNPs) for strains I, II, and III. Strain and cluster-defining SNPs shown. Reference
and alternative alleles are highlighted in white and gray, respectively. From a progenitor strain, strains I and II have evolved distinctly from strain III, itself
further subdivided into clusters IIIA, IIIB, and IIIC. Alleles in the genes Rv0828c, carB, Rv1835c, and Rv3263 (H37Rv loci 1 558 108, 3 644 579, 921 390 and
2 082 436, respectively) were confirmed by Sanger sequencing for 6 isolates from each of clusters IIIA, IIIB, and IIIC.
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possibly explaining the large number of IIIC cases observed
early in 2012 (8 additional cases in January–February 2012
and 3 in March–April). Of these cases, 2 were smear positive
(2+ for MT-1838 and 2+ for MT-2151). Hence, some of the re-
maining cases with diagnoses between May and November 2012
may have been infected by these secondary cases. These data
suggest that cluster IIIC represents, at a minimum, 1 discrete
transmission chain.

The epidemiologic curve of the outbreak shows, at the village
level, a bimodal distribution of cases diagnosed over time
(Figure 6A). When outbreak cases were stratified by the afore-
mentioned subgroups, the bimodal distribution was largely at-
tributable to differences in the temporal presentation of the
different clusters and their subgroups (Figure 6B). When exam-
ining the contact data on the most transmissible cases in each of
the subgroups, we can tabulate the number of household and non-
household contacts who developed active tuberculosis with the

same genotype. As seen in Table 1, of named household con-
tacts who developed tuberculosis, 56% shared the same geno-
type as the epidemiologically identified source. In contrast,
among nonhousehold contacts who developed tuberculosis,
only 19% shared the same genotype as their putative source,
which was no better than chance alone (exact binomial for com-
parison to 1/6, given 6 subgroups; P = .32).

DISCUSSION

Using WGS, we have been able to reveal the complexity of tu-
berculosis control in a unique environment, where there is vir-
tually no loss to follow-up and little to no in- or out-migration.
On the scale of decades, 2 dominant strains have disappeared,
not to be seen again after 1996 and 2004. Unfortunately, the re-
emergence of tuberculosis in or around 2007 was followed by
a series of secondary and tertiary cases, culminating in an

Figure 5. The microevolution of strain III in village K over time, involving a total of 7 single-nucleotide polymorphisms (SNPs). Numbers in circles indicate
numbers of cases at each stage of evolution. The years of all isolates in each group are indicated below the circles, with time scaled from the top (2007) to
the bottom (2012). Arrows indicate bacterial microevolution, and SNPs are identified by the gene name and the corresponding allele; to highlight certain
lineages with the reference allele, the gene name and allele are in parentheses. Starting with the ancestral genome (top), cluster IIIA had 2 initial sub-
groups, one with the reference allele C at mce1B (4 cases; middle panel, left) and the other with alternative allele T at mce1B (18 cases; middle panel, right).
Within the latter 18 cases, there were 2 subgroups: 3 with an additional variant at Rv0331 and 15 that retained the reference allele, A. Cluster IIIB (bottom
left) was derived from strain IIIA with the mce1B C reference allele, with 2 additional mutations (in Rv3263, carB). A subgroup of 5 had an additional variant
in fadE4. Cluster IIIC (bottom right) was derived from cluster IIIA, with the alternative T allele at mce1B and 2 additional mutations (in Rv1835c, Rv0828c). At
the bottom, the concatenated genotype for the 7 SNPs is presented for each of the 6 subgroups identified during the outbreak year.
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explosion of tuberculosis cases in 2011–2012. Whereas WGS
alone revealed 3 clusters in the 2011–2012 outbreak, the com-
bination of WGS with epidemiologic data allowed us to resolve
this into a minimum of 6 events—5 transmission chains and 1
isolated case of reactivation. Together, these findings suggest
that (1) even a single reactivation event can lead to numerous
cases in this community and (2) the outbreak of 2011–2012
was not a single, rare occurrence but rather multiple smaller
concurrent events. This suggests that this community is highly
vulnerable to tuberculosis outbreaks, such that ongoing surveil-
lance and vigilance against tuberculosis are warranted.

Our analysis of the outbreak leads us to several important
conclusions. First, the outbreak was not due to the introduction
of a new M. tuberculosis lineage. The isolates circulating in
2011–2012 differed by a maximum of 8 SNPs from those al-
ready present in 2007, and both IIIA and IIIB cases were doc-
umented in the years before the outbreak. Although we cannot

exclude the possibility that the 2 nonsynonymous SNPs in
strain IIIC affect bacterial fitness or virulence, this strain was re-
sponsible for less than half of the outbreak cases. It is therefore
unlikely that these few mutations, on their own, accounted for
the dramatic case rate of 2012. Rather, our findings suggest that
the 2011–2012 outbreak involved the expansion of extant
bacteria, consistent with a historical study of tuberculosis in
Western Canada [17].

Second, both the WGS data and the clinical/epidemiologic
data point to multiple transmission events, rather than a single
outbreak. Although it remains possible that a single patient har-
bored a diversity of strains [18] and was therefore the sole
source, such an explanation is neither likely nor necessary to
explain the outbreak. Within a few years of the introduction
of strain III, there were highly contagious carriers of each of
IIIA, IIIB, and IIIC, each with epidemiologic links to multiple con-
tacts sharing the same genotype. The knowledge that there are 3

Figure 6. Epidemiologic curves of the outbreak. A, Overall. The numbers of cases during the outbreak are shown by date of diagnosis (year-month-date).
Blue represents isolates for which whole-genome sequencing (WGS) was successful; black, isolates without WGS. There were no cases before November
in 2011. B, Epidemiologic curve of the outbreak, stratified by WGS/epidemiologic subgroup. The numbers of cases during the outbreak are shown by date of
diagnosis (year-month-date), in biweekly intervals. Cases are stratified by subgroup genotype, as indicated.
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clusters (IIIA, IIIB, and IIIC) in combination with epidemiologic
data has also helped identify a case of exogenous reinfection that
would otherwise have been overlooked given the absence ofMIRU
variability. In addition, the cluster-defining SNPs of IIIA/B/C are
now being used to investigate the sources of 2013–2014 cases and
to distinguish relapse from reinfection in recurrent cases.

Finally, whereas MIRU and RFLP of this community would
suggest that there is, and has been, ongoing transmission in
this village for decades [1], WGS data challenge this interpreta-
tion. Strains I and II disappeared in 1996 and 2004, respectively,
before the introduction of strain III. Given that strain III was first
seen in village K and differs from strains I and II by approximate-
ly 40 SNPs, the most plausible explanation is a single reactivation
case due to an organism acquired in the same village, decades be-
fore the period sampled. The majority of adults in the village have
positive tuberculin skin test results, and many have chronic
pulmonary diseases, so it is possible that one such individual
developed transmissible disease without medical suspicion of
tuberculosis, leading to the introduction of strain IIIA in 2007.

It remains unclear why this population was at such a high
risk after the reappearance of tuberculosis in 2007. Given that
one of the potential source cases in the outbreak presented to the
clinic 4 months after symptom onset, patient delay may be a
considerable factor in this population. Furthermore, although
the majority of household contacts with tuberculosis shared
the same genotype as the most transmissible cases within each
subgroup, 44% of these household contacts did not, supporting
the findings of Verver et al [19] that in an environment with
high tuberculosis transmission, the traditional stone-in-pond

principle may not suffice for identifying and interrupting trans-
mission. As implemented in 1954 in Alaska [20], community-
wide interventions, such as chest radiographic screening, may
be needed to halt tuberculosis transmission in this setting.
BCG vaccination was already reinstituted in the village in re-
sponse to this outbreak after its cessation in 2005.

The primary limitation of this study is the relatively small sam-
ple size of the subgroups revealed by WGS. Despite the extraor-
dinary incidence of disease, there was insufficient power to
conduct a rigorous statistical comparison between cases in the dif-
ferent transmission chains. Another potential limitation is that we
were unable to sequence 4 of 82 isolates. However, because we
successfully sequenced 95% of all isolates from village K between
1991 and 2012, there is minimal risk of sampling bias. Finally,
from a public health perspective, we were unable to identify a sin-
gle, unifying cause of the 2011–2012 outbreak; this is not surpris-
ing, however, given that in-depth analysis revealed the outbreak
was in fact due to ≥6 epidemiologically distinct events.

There are a number of important strengths of this study. The
unique environment, with nearly all isolates sharing the same
MIRU pattern, provided the opportunity to examine how lim-
ited classic genotyping methods can actually be. We have dem-
onstrated that although isolates in a transmission chain share
the same MIRU, the converse does not necessarily hold true—
a fact that may have important implications for public health
investigation of MIRU-defined clusters. The analysis by WGS
of a single geographically isolated village provided an unexpect-
ed opportunity to witness both the disappearance and reemer-
gence of tuberculosis over time. Isolates sequenced had a

Table 1. Household and Social Contacts With Active Tuberculosis of the Same Genotype for Each Smear-Positive Case by WGS
Epidemiologic Subgroupa

Subgroup by WGS
and Epidemiology

Date of Diagnosis

Smear Grade

Contacts With Same Genotype/Total
Contacts, No. (%)b

1st Case Smear-Positive Cases Household Contacts Social Contacts

IIIA (n = 1) May 2012 . . . . . . 0/0 0/18 (0)

IIIA (n = 2) November 2011 November 2011 3+ 1/4 (25) 0/30 (0)
IIIA (n = 8) May 2012 June 2012 4+ 0/0 3/10 (30)

June 2012 3+ 1/1 (100) 4/9 (44)

June 2012 2+ 1/1 (100) 1/3 (33)
IIIB (n = 5) December 2011 December 2011 4+ 0/0 4/32 (13)

October 2012 3+ 0/3 (0) 2/22 (9)

IIIB (n = 13) March 2012 May 2012 2+ 2/2 (100) 3/21 (14)
IIIC (n = 20) January 2012 January 2012 3+ 3/3 (100) 12/31 (39)

April 2012 2+ 1/3 (33) 5/20 (25)

May 2012 2+ 1/1 (100) 8/23 (35)
Total . . . . . . . . . 10/18 (56) 42/219 (19)c

Abbreviation: WGS, whole-genome sequencing.
a Smear positive was defined as 1+ or higher, except the first subgroup comprised only 1 person, who had smear-negative disease.
b Because different sources named the same contacts, the denominators of contacts who developed active tuberculosis exceed the number of unique cases in the year.
c A 2-sample z test was used to assess difference in proportions (P < .001).
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minimum coverage of 21×, and 97% of the SNPs identified had
a Phred score of >100, equivalent to a 1 in 1010 chance of error.
The results for the outbreak obtained using the maximum like-
lihood method were concordant with both the previously estab-
lished rate of mutation of M. tuberculosis [3, 5, 21, 22] and
independent results from Nunavik outside village K (Supple-
mentary Figure 3). Our phylogeny also proved robust to use
of an alternate model of nucleotide substitution. We obtained
independent confirmation of the 4 cluster-defining SNPs for
clusters IIIA, IIIB, and IIIC using Sanger sequencing, and a pre-
vious study by Domenech et al [8] also showed very low false-
positive rates using the same WGS pipeline. Finally, detailed
clinical epidemiologic data were available for all cases, facilitat-
ing the verification of transmission identified by WGS.

In summary, the use of WGS permitted a fine-level analysis
of an ongoing tuberculosis epidemic in this vulnerable popula-
tion. The reappearance of M. tuberculosis was followed several
years later by an epidemiologic amplification, leading to a mul-
tipronged outbreak affecting >5% of the population. Further
consideration of the potential mechanisms of tuberculosis
spread in this village, and other communities in Nunavik, is
warranted to derive strategies to help these and other vulnerable
communities control and ultimately eliminate tuberculosis.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases
online (http://jid.oxfordjournals.org). Supplementary materials consist of
data provided by the author that are published to benefit the reader. The
posted materials are not copyedited. The contents of all supplementary
data are the sole responsibility of the authors. Questions or messages regard-
ing errors should be addressed to the author.
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Detailed Methods  

Genomics. MTB isolates were cultured once on Middlebrook 7H10 agar and then genomic DNA 

(gDNA) extractions were performed as per van Soolingen et al (1).  

gDNA fragments were multiplexed by 24 for Paired-end 250 bp sequencing using the MiSeq 250 

System (Illumina). Reads were then trimmed using Trimmomatic (v.0.25, (2)) to retain base-

pairs (bp) with a Phred33 score ≥30 (corresponding to 99.9% accuracy, where Phred is -

10*log10Perror) and a minimum read-length of 50 bp. Reads were deposited in the National Center 

for Biotechnology Information’s Sequence Read Archive, under Accession number SRP039605. 

Reads were aligned to the H37Rv reference genome (NCBI Accession number NC_000962.3) 

using the Burrows-Wheeler Aligner (v.0.6.2 and v.7.1.0, (3)). Variants were called using a 

Bayesian genotype likelihood model (Unified Genotyper, Genome Analysis Toolkit, Broad 

Institute, v.2.7.4) and only SNPs with a Phred score >50 were retained for analysis. SNPs were 

annotated with the uid57775 database for the H37Rv reference genome using SnpEff (v.3.3h, 

(4)) and confirmed using Artemis (v.15.0.0, Sanger Institute).  

Assessing for contamination: 

Pairs of MTB isolates that had 0 SNPs difference were investigated for potential cross-

contamination by determining whether they were processed in the same batch of samples.  

Ascertainment bias: 

Ascertainment bias was assessed in two manners: 1) by comparing Phred scores of SNPs across 

genomes to verify that Phred scores were consistently high, regardless of depth of coverage, and 

2) by confirming cluster-defining SNPs (in genes Rv0828c, carB, Rv1835c, and Rv3263) with 

Sanger sequencing for isolates (6 isolates for each cluster IIIA, IIIB and IIIC) presenting the 

lowest values of coverage.  
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Mixed infection: We assessed for mixed infection by verifying that the frequency of 

heterogeneous alleles was constant across each genome and examining the corresponding Phred 

scores of these alleles. 

Mycobacterial interspersed repetitive units (MIRU) and IS6110 restriction fragment length 

polymorphism (RFLP): MIRU data for the outbreak year were provided by the Laboratoire de 

Santé Publique du Québec. IS6110 RFLP for the outbreak isolates were conducted by Southern 

blotting (5), with analysis as described in (6). 
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Figure Legends 

 

Supplementary Figure 1. Classical Molecular Typing of Village K isolates.  

Legend. 1A. Mycobacterial Interspersed Repetitive Units (MIRU). 24 loci MIRU shown for 

all 50 cases in the 2011-2012 outbreak. Pink – 47/50 isolates had identical MIRU patterns. 

Purple – These 2 cases had epidemiologic links with isolates with MIRU 

224325143324234534423463. One MIRU locus missing, identical to main cluster at 23/24 sites. 

Blue – This isolate is 1 locus different from main cluster. WGS was unsuccessful for this isolate. 

1B. IS6110 Restriction Fragment Length Polymorphism (RFLP).  – RFLP shown for 

representative isolates from all 3 clusters of strain III (A/B/C), 2011-2012; all shared an identical 

pattern. Two isolates from each of strains I and II shown for comparison. 

 

Supplementary Figure 2. Distribution of Single Nucleotide Polymorphisms (SNPs) and 

Heterogeneous Alleles per MTB Genome according to Phred Score Ranges 

Legend.  On the left: The distribution of SNPs for each genome. On the right: the number of 

heterogeneous alleles for each genome is indicated. The Phred score ranges of these SNPs are 

indicated at the top. Genomes are sorted from lowest highest depth of coverage (X in brackets). 

The number of SNPs per genome was constant at 1,063 (SD ± 32) with Phred score >50 and the 

Phred scores of the majority of SNPs were high (between 500 to 5000) for genomes with low or 

high depth of coverage, indicating the majority of SNPs are correctly called. The number of 

heterogeneous alleles per genome was constant at 324 (SD ± 82) with Phred scores >50, 

indicating that no multiple strain infections were present. The Phred scores of the majority of the 

heterogeneous alleles are low (between 50 to 500). 
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Supplementary Figure 3. Single Nucleotide Polymorphisms (SNPs) Associated with 

‘Improbable’ Transmission Events in Other Villages of Nunavik 

Legend. Contact investigation data were obtained for all microbiologically confirmed TB cases 

diagnosed in the other villages of Nunavik (excluding village K), years 2006-2012. 

Epidemiologic connections between cases were classified by a single clinician. Case pairs were 

designated as ‘Improbable transmission’ when cases with no known epi links resided in different 

villages. WGS was conducted on 42 isolates from other villages for which these epidemiologic 

data were available and a pairwise SNP matrix was generated. Pairwise comparisons between 

‘Improbable’ transmission’ pairs were included in the final analysis, yielding a total of 631 

pairwise comparisons. The median pairwise SNP distance was 53 (IQR 13-56) between 

‘Improbable transmission’ pairs. No two cases designated ‘Improbable transmission’ were within 

0-1 SNPs of one another. 34 pairwise comparisons associated with one isolate were excluded 

from the above figure, as this isolate was >770 SNPs from all others. 
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Nunavik, Québec suffers from epidemic tuberculosis (TB), with an in-
cidence 50-fold higher than the Canadian average. Molecular studies
in this region have documented limited bacterial genetic diversity
among Mycobacterium tuberculosis isolates, consistent with a foun-
der strain and/or ongoing spread. We have used whole-genome se-
quencing on 163 M. tuberculosis isolates from 11 geographically
isolated villages to provide a high-resolution portrait of bacterial ge-
netic diversity in this setting. All isolates were lineage 4 (Euro-Amer-
ican), with two sublineages present (major, n = 153; minor, n = 10).
Among major sublineage isolates, there was a median of 46 pairwise
single-nucleotide polymorphisms (SNPs), and the most recent com-
mon ancestor (MRCA) was in the early 20th century. Pairs of isolates
within a village had significantly fewer SNPs than pairs from different
villages (median: 6 vs. 47, P < 0.00005), indicating that most trans-
mission occurs within villages. There was an excess of nonsynony-
mous SNPs after the diversification ofM. tuberculosiswithin Nunavik:
The ratio of nonsynonymous to synonymous substitution rates (dN/dS)
was 0.534 before the MRCA but 0.777 subsequently (P = 0.010).
Nonsynonymous SNPs were detected across all gene categories, ar-
guing against positive selection and toward genetic drift with relax-
ation of purifying selection. Supporting the latter possibility, 28 genes
were partially or completely deleted since the MRCA, including genes
previously reported to be essential for M. tuberculosis growth. Our
findings indicate that the epidemiologic success of M. tuberculosis in
this region is more likely due to an environment conducive to TB
transmission than a particularly well-adapted strain.

Mycobacterium tuberculosis | evolution | whole-genome sequencing

The tubercule bacillus, Mycobacterium tuberculosis, is a highly
successful, medically important human-adapted pathogen.

Studies of diverse strain collections reveal a geographic aggregation
of the principal M. tuberculosis lineages (1) consistent with a dis-
semination of this organism around the world with the paleo
migration (2). Ancient DNA studies also support the notion that
M. tuberculosis has caused disease in humans for thousands of
years. Thus, it can be inferred that M. tuberculosis has evolved in
step with its human host, successfully responding to changes in
the host and its environment that could affect the capacity to
cause transmissible disease.
In contrast to the global diversity of M. tuberculosis strains (1–3),

we have previously observed limited genetic diversity in the Nunavik
region of Québec (4). One possible explanation is a founder strain,
wherein genetic similarity is due to a single recent introduction of a
bacterium andmay not necessarily represent ongoing spread between
communities. In this scenario, isolates might have indistinguishable
genotypes by conventional genotyping modalities (restriction
fragment length polymorphism, mycobacterial interspersed re-
petitive units, spoligotyping) but distinct genotypes when assessed
using a higher-resolution method, namely whole-genome se-
quencing (WGS) (5). An additional explanation is that a single clone
of M. tuberculosis is currently spreading both within and between
villages; however, the great distances between these communities that

are not linked by roads make intervillage spread less likely. These
possible explanations need not be mutually exclusive.
To evaluate these possibilities, we conducted WGS on M. tuber-

culosis isolates from Nunavik isolated over 23 y. Estimation of the
divergence date of the most recent common ancestor (MRCA)
provided evidence that tuberculosis (TB) was introduced into this
region in the early 20th century, following which time there has
been substantial ongoing transmission, predominantly within vil-
lages. This setting provides a unique opportunity to study the ge-
nomic characteristics of an epidemiologically successful strain of
M. tuberculosis over time.

Results
Whole-Genome Sequencing and Lineage Identification. There were
149 microbiologically confirmed TB cases diagnosed in Nunavik
between 2001 and 2013; we obtained high-quality WGS data for
137/149 (92%). An additional 26 genomes were successfully se-
quenced from strains previously sampled between 1990 and 2000
(4). In total, WGS was conducted on 163 M. tuberculosis isolates.
The average depth of coverage was 44.6× across 99.6% of the
H37Rv reference genome.
All 163 genomes from the Nunavik region presented the 7-bp

deletion in polyketide synthase (pks) 15/1 that characterizes lineage
4 of M. tuberculosis (the Euro-American lineage) (6). By comparing

Significance

Through an in-depth analysis of whole-genome sequencing data
from Nunavik, Québec, we inferred the evolution of a single
dominant strain of Mycobacterium tuberculosis. Our analyses
suggest thatM. tuberculosiswas first introduced into this region in
the early 20th century. Since this time, M. tuberculosis has spread
extensively, predominantly within but also between villages. De-
spite a genomic profile that lacks features of a hypervirulent strain,
this strain has thrived in this region and continues to cause out-
breaks. This suggests that successful clones ofM. tuberculosis need
not be inherently exceptional; host or social factors conducive to
transmission may contribute to the ongoing tuberculosis epidemic
in this and other high-incidence settings.
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the Nunavik isolates with three genomes from each of the
M. tuberculosis lineages (1–7), we observed that the 163 genomes
were tightly clustered in two distinct sublineages: one consisting
of 153 isolates (major; Mj) and the other consisting of 10 isolates
(minor; Mn) (Fig. 1). Phylogenetic analyses based on single-
nucleotide polymorphisms (SNPs) (Figs. 1 and 2) were sup-
ported by deletions confirmed by PCR (Fig. S1 and Dataset S1).
Excluding SNPs in PE/PGRS and PPE genes, as well as mobile

elements, as these may be at higher risk of false positives (5, 7),
1,288 single-nucleotide polymorphic loci were included comparing
all genomes together against H37Rv (Dataset S2). The 153 isolates
of the Mj sublineage had an average of 674 SNPs compared with
H37Rv; the 10 isolates of the Mn sublineage had an average of 451
SNPs. There were 442 SNP loci shared across all Mj isolates,
unique to this sublineage, and 214 SNP loci shared by all 10 Mn
isolates that were not present in the Mj sublineage. According to
the barcode proposed by Coll et al. (8) and the PhyTb tool of the
PhyloTrack library (pathogenseq.lshtm.ac.uk/phytblive/index.php),
the Mj and Mn sublineages can be classified asM. tuberculosis 4.1.2
and 4.8, respectively.
Phylogenetic analysis and the geographic distribution of isolates

further distinguished the Mj and Mn sublineages (Fig. 2). To
quantify diversity, we determined the number of pairwise SNPs
within each sublineage. Among isolates of the Mj sublineage, the
median number of pairwise SNPs was 46 [interquartile range
(IQR) 13–49], with a maximum of 72. For isolates of the Mn
sublineage, the median number of pairwise SNPs was 1 (IQR 0–2),
with a maximum of 22. Nine of the 10 isolates from this sublineage
were from the same village.

Transmission Occurs Mostly Within Villages. To evaluate where most
ongoing transmission occurs, we examined pairwise SNPs between
isolates of the Mj sublineage, within and between villages, as these
comprised over 90% of the cases in this region. The median
number of pairwise SNPs was significantly lower for intravillage
pairs (6, IQR 3–46) than for intervillage pairs (47, IQR 44–50,

Wilcoxon–Mann–Whitney, P < 0.00005). For both intra- and in-
tervillage comparisons, a bimodal distribution was evident (Fig. 3).
For the intravillage pairs (n = 3,689), the first mode comprised
61% of all pairwise comparisons and had a median of 3 SNPs
(IQR 2–5). For the intervillage pairs (n = 7,939), the first mode
comprised only 12% of all pairwise comparisons, and had a me-
dian of 9 SNPs (IQR 6–13). For both intra- and intervillage pairs,
the second mode had similar distributions (median 47, IQR 45–49
and median 48, IQR 45–50, respectively), consistent with the star-
like pattern shown in Figs. 1 and 2.
We also considered thresholds for transmission based on pub-

lishedM. tuberculosis substitution rates (0.5 SNPs per genome per y,
95% confidence interval 0.3–0.7) (5, 9). For a study spanning 23 y
(1991–2013 inclusive), we expected that epidemiologically linked
cases would be separated by no more than 12 SNPs. Applying this
threshold, 2,208 of 3,689 (60%) intravillage pairs were separated
by 12 or fewer SNPs, compared with 683 of 7,939 (9%) intervillage
pairs (two-sample z test for difference in proportions, P < 0.00005).
Sensitivity analyses applying substitution rates of 0.3 and 0.7 SNPs
per genome per y yielded similar results.

M. tuberculosis Diversified in Nunavik During the 20th Century.
Relative to the global genetic diversity of M. tuberculosis, the to-
tal diversity of strains in Nunavik was low, consistent with a recent
introduction of TB into this region. To evaluate this hypothesis,
we estimated the MRCAs for each sublineage using Bayesian
molecular dating (10, 11). Constraining the substitution rate of
M. tuberculosis based on previous estimates (5, 9) we inferred the
MRCA of the Mj sublineage to be 1919 [95% highest posterior
density interval (HPD) 1892–1946], with other divergence dates
within the Mj sublineage scattered over the 20th century (Table 1,
analysis 1). The Mn sublineage was found to have an MRCA of
1976 (95% HPD 1951–1994). Repeating these analyses without
constraining the substitution rate yielded similar results (Table 1,
analyses 2 and 3).

Natural Selection of M. tuberculosis in a New Environment. The
M. tuberculosis population may have experienced a new regime of
natural selection upon its introduction into Nunavik. First, M. tu-
berculosis could have experienced a population bottleneck upon
introduction, reducing the efficacy of natural selection and allowing
the fixation of deleterious mutations. Second, upon entry into a new
environment, M. tuberculosis could have experienced positive se-
lection, retaining fitter variants over time. Third, if the environment
was conducive to transmission of M. tuberculosis, there may have
been a relaxation of purifying selection across the entire genome.
These scenarios are not mutually exclusive, and other scenarios are
possible as well.
To measure natural selection at the protein level, we used the

ratio of nonsynonymous to synonymous substitution rates (dN/dS),
reasoning that this should remain stable over time in the absence of
changing regimes of natural selection (12). Specifically, we tested
the null hypothesis that dN/dS remained the same pre- and post-
diversification of each M. tuberculosis sublineage. We first recon-
structed the ancestral sequences of the MRCA for each sublineage,
along with that of the common ancestor for these two sublineages
(denoted “Mj–Mn”). We then compared the nonsynonymous and
synonymous SNPs (nsSNPs and sSNPs, respectively) between these
reconstructed ancestors (Mj–Mn versus Mj, Mj–Mn versus Mn) to
obtain the dN/dS for each sublineage prediversification. To calcu-
late the dN/dS postdiversification (i.e., subsequent to the MRCAs
for each sublineage), we generated a concatenated sequence of
codons for both the Mj and Mn sublineages that included all SNP
loci and compared each sequence with that of its respective an-
cestor. In this phylogenetic approach, each independent SNP was
counted exactly once (i.e., SNPs present in multiple isolates were
not recounted). In total, for the Mj sublineage, we identified 229
nsSNPs and 154 sSNPs before its introduction into Nunavik,
compared with 238 nsSNPs and 107 sSNPs that occurred sub-
sequently (Dataset S2). The dN/dS ratio for SNPs prediversification
was 0.534, consistent with published estimates for M. tuberculosis
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Fig. 1. Maximum likelihood tree of 163 M. tuberculosis isolates from
Nunavik and 21 representative genomes of lineages 1–7. Phylogenetic
clusters based on 9,016 single-nucleotide polymorphic loci identified across
184 genomes compared with H37Rv (solid black circle). The scale bars
represent the number of substitutions per site. Bootstrap values from
1,000 replicates are shown for branches within the Mj and Mn sublineages.
For clarity, only values ≥98 are shown.
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(13), whereas the dN/dS postdiversification was 0.777 (Table 2,
analysis 1a;G test based on numbers of nsSNPs and sSNPs pre- and
postdiversification, P = 0.010). Singleton SNPs, present in only one
isolate, are expected to be enriched in nonsynonymous mutations
destined to be purged by purifying selection. To evaluate whether
the increased dN/dS was attributable to these transient mutations,
we restricted our analysis to SNPs present in ≥2 isolates. We still
observed a significant increase in the dN/dS, going from 0.534
prediversification to 0.928 postdiversification (Table 2, analysis
1b). There was no significant difference in postdiversification
nsSNPs and sSNPs comparing analyses with and without singletons
(Fisher’s exact test, P = 0.472). As an alternative method of cal-
culating the dN/dS postdiversification, we conducted a pairwise
analysis wherein the median dN/dS was obtained by comparing
each of the 153 Mj isolates with its respective ancestral sequence.
This yielded similar results, whether singletons were included or

excluded (Table 2, analysis 2). Compared with the Mj sublineage,
the dN/dS ratios for the Mn sublineage were more stable over
time (Table 2).
The efficiency of purifying selection to remove deleterious non-

synonymous mutations is reduced when populations undergo dra-
matic size fluctuations due, for example, to bottlenecks or exponential
growth. To investigate whether the increased dN/dS ratio in the Mj
sublineage was due to an expanding bacterial population size over
time, we constructed Bayesian skyline plots (Fig. S2). Model
comparison using Akaike’s information criterion for Markov chain
Monte Carlo samples [AICM (14)] rejected an exponential pop-
ulation growth in favor of a constant population size or Bayesian
skyline model (Table S1). Together, these results suggest that the
genome-wide increase in dN/dS was not due to a population bottle-
neck followed by exponential growth, nor to a lack of time for pu-
rifying selection to purge deleterious nsSNPs.

Fig. 2. Maximum likelihood tree of 163 M. tuberculosis isolates from Nunavik. Phylogenetic clusters were identified based on 1,288 single-nucleotide
polymorphic loci compared with H37Rv. Solid and dashed lines indicate isolates of the Mj and Mn sublineages, respectively. Colored shapes represent the
reference genome (bordered black square) and the villages of Nunavik: A (bordered blue triangle), B (full orange square), C (bordered purple circle), D (full
green diamond), E (bordered purple diamond), K (full pink triangle), and other (full green circle). *Genome with a unique single-nucleotide polymorphism
profile. #Phylogenetic clusters defined previously in ref. 32. Years of diagnosis are indicated. Bootstrap support from 1,000 replicates is shown. Branches
supported by less than 80% of bootstrap replicates are collapsed.
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Genes Affected by SNPs and/or Deletions. Unlike genome-wide re-
laxation, wherein the whole genome is affected, positive selection is
thought to target specific genes (15, 16). Across the 153 genomes of
the Mj sublineage, we identified 218 and 227 genes with nsSNPs
pre- and postdiversification, respectively (Dataset S2). To evaluate
whether any particular categories of M. tuberculosis genes were
unusually variable postdiversification, we tabulated these SNPs
according to gene categories described in the literature (Fig. 4 and
Datasets S3 and S4). There was no statistically significant dif-
ference between the proportion of genes with nsSNPs in any
categories pre- versus postdiversification (two-sample z test for
difference in proportions, P > 0.05). However, genes predicted to
be conditionally essential for M. tuberculosis survival in vitro, in
macrophages, or in vivo were not spared nsSNPs (Dataset S5).
Mutations in essential genes often affected a residue that is
conserved in the closely related mycobacterial species Myco-
bacterium canettii (17) and Mycobacterium kansasii (18), with
three genes (Rv0338c, echA5, and murC) incurring distinct
nsSNPs in different strains (Dataset S5).
In addition to these potentially deleterious SNPs, all Mj isolates

lacked eight regions, resulting in 13 deleted genes. Certain strains
also suffered a further seven deletions, disrupting 28 genes (Dataset
S1). Certain gene categories appeared overrepresented in post-
diversification deletions (e.g., genes acquired through lateral gene
transfer, mobile elements), but the low number of deleted genes
precluded robust statistical analysis (Fig. 4 and Dataset S1). Four
genes predicted to be essential in genomic screens were completely
(Rv2335) or partially (Rv1939, Rv2885c, and Rv3135) deleted in some
isolates of the Mj sublineage (Dataset S3). Rv2335 (i.e., cysE) codes
for a serine acetyltransferase, predicted to be essential for survival

in vivo (19), that was absent in eight isolates. Rv2885c codes for a
transposase in the IS1539 insertion sequence that is predicted to be
essential for survival in vivo (19), whereas Rv3135 codes for PPE50
and is predicted to be essential for survival in vitro (20). Rv1939
codes for an oxydoreductase predicted to be essential for survival
in vivo (19) that was deleted in one isolate (18421) (Dataset S1).

Discussion
The Inuit originally came from eastern Siberia, via the Bering
Strait, in two waves over several thousands of years (21). Given
the recognized close association between M. tuberculosis and
human populations, it is theoretically possible that they brought
an East Asian lineage of M. tuberculosis with them to the
Canadian Arctic. Our data refute this scenario by revealing only
lineage 4 (Euro-American) isolates. The low amount of genetic
diversity among isolates from different villages indicates that the
vast majority of TB cases in this region are the consequence of a
single introduction ofM. tuberculosis, perhaps from Europe, around
the early 20th century. The introduction and diversification of a
single dominant clone in Nunavik provide an unobstructed view of
M. tuberculosis over time, enabling us to draw certain inferences
about the epidemiology and evolution of this highly successful
human-adapted pathogen.
The Inuit have had casual interactions with Europeans since the

17th century, most notably with whalers and explorers who sailed
along the coasts of Hudson’s Bay and Labrador (22). However,
the first permanent settlements of the Hudson’s Bay Company in
the region now known as Nunavik date to the late 19th and early
20th centuries, following which there were more sustained in-
teractions between the Inuit and traders (23). Our MRCA esti-
mates support an introduction of TB into this region during this
period, which is consistent with some, but not all, historical ac-
counts of when TB was first observed (24). The apparent lack of TB
before the early 20th century, despite several centuries of Inuit–
European interactions, supports that TB is generally not spread
through casual contact, as is the case for measles or chickenpox.
This is also consistent with our analysis of the pairwise SNPs be-
tween isolates across villages; only a small proportion of intervillage
case pairs had low SNP differences, arguing against transmission
during casual contact, as can occur at cultural gatherings that bring
together members of different villages. Supporting this, villages
often had one predominant strain, and individual strains were
mostly confined to one village (Fig. 2). This observation presents
both an opportunity and a challenge for public health; whereas TB
should in theory be amenable to control through scaled-up efforts, it
may be that village-by-village, rather than regional, interventions
will be needed to interrupt transmission in this setting.
In a number of high-incidence countries, the emergence of an

epidemiologically successful strain has been attributed to virulence
features encoded in the bacterial genome (25). For instance, the
polyketide synthase-derived phenolic glycolipid (PGL) coded by the
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Fig. 3. Pairwise SNPs between isolates of the major sublineage of Nunavik.
There were a total of 11,628 pairwise comparisons: 3,689 intravillage case
pairs and 7,939 intervillage case pairs.

Table 1. Estimated year of divergence of M. tuberculosis sublineages and clusters of Nunavik

Phylogenetic sublineages and clusters Analysis 1* Analysis 2 Analysis 3

Mj–Mn 1053 (602–1450) 1243 (836–1575) 744 (230–1216)
Mj 1919 (1892–1946) 1922 (1890–1950) 1904 (1873–1930)
Mj-I-II† 1942 (1919–1964) 1947 (1921–1967) 1925 (1898–1948)
Mj-V 1952 (1929–1973) 1956 (1932–1978) 1935 (1909–1958)
Mj-IV 1965 (1949–1978) 1966 (1951–1980) 1958 (1941–1973)
Mj-III.a.b.c† 1999 (1993–2004) 1999 (1993–2004) 2000 (1993–2004)
Mj-VI 1999 (1995–2000) 1999 (1995–2000) 1999 (1995–2000)
Mn 1976 (1951–1994) 1979 (1953–1997) 1969 (1943–1987)

All numbers are expressed in calendar years, rounded to the nearest whole number. Analysis 1: calibration
point, concatenated alleles. Analysis 2: no calibration point, concatenated alleles. Analysis 3: no calibration point,
weighting for constant sites. The median date of divergence is shown in years, with corresponding 95% highest
posterior density intervals.
*Results of this analysis are reported in the text.
†Strain code per Lee et al. (32).
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intact pks15/1 locus of strain HN878 (Beijing genotype) induces
hyperlethality in murine disease models (26), potentially explaining
the emergence of the Beijing strain in a number of settings world-
wide (27). Furthermore, compared with other clinical strains, strains
1471 and HN878 (Beijing genotypes) result in increased macro-
phage necrosis (28) and more progressive pathology in experimental
infections (29). However, although certain strains have a propensity
to cause accelerated life-threatening pathology in experimental
models, it is not yet clear whether this property predicts epidemi-
ologic success, as a strain that causes chronic, nonprogressive pa-
thology may be the most likely to transmit.
In Nunavik, we observed a set of related strains that meet the

epidemiologic criterion of success, without any clear genomic in-
dicators of increased bacterial virulence. Instead, for the Mj sub-
lineage, we observe an enrichment of nsSNPs since its introduction
into this region, some of which are expected to affect the function of
proteins that contribute to the survival of M. tuberculosis during
infection. There are a number of potential causes of an increased

dN/dS, including insufficient time for purifying selection to act,
positive selection, relaxed purifying selection, and genetic drift.
Whereas an increased dN/dS at the tips of a phylogenetic tree may
indicate insufficient time for purifying selection (13), the post-
diversification inflation of dN/dS holds even with the exclusion of
evolutionarily recent singleton SNPs. Therefore, a simple time de-
pendence is unlikely to be the only explanation. Positive selection is
unlikely to inflate the dN/dS across the entire genome but rather
should target genes with specific functions (15, 16). Although we did
not identify any particular functional category of genes enriched in
nsSNPs, this does not exclude positive selection on a small number of
genes. However, it suggests that positive selection was not the per-
vasive force leading to a high dN/dS genome-wide. The remaining
potential explanations for the dN/dS elevation are a genome-wide
relaxation of purifying selection and genetic drift. The nsSNPs and
deletions in putatively essential genes provide further support for
these two interpretations.
The global M. tuberculosis population has been previously shown

to evolve throughmostly weak selection and strong drift (30); here we
show that the same is true on a local level, to an even greater extent.
Given that drift will have stronger effects when effective populations
are reduced (31) and that our data suggest that population size
remained more or less constant, we hypothesize that relaxation of
purifying selection has contributed significantly to the evolution of
the Nunavik strain of M. tuberculosis. Further investigation in this
and other similar populations is needed. Regardless of the forces
that have driven the elevated dN/dS, our findings suggest
that M. tuberculosis has not thrived in Nunavik due to a unique
virulence profile of the bacteria. It follows thatM. tuberculosis control
in this region, and in similar settings, will require looking beyond the
bacterial culprit to the social conditions that foster TB.

Materials and Methods
Detailed methods can be found in SI Materials and Methods. In brief, the
Nunavik region is composed of 14 Inuit communities, with a total population
of 12,090 (in 2011). Between 1990 and 2013, there were 200 cases of TB in
Nunavik, of which 163 were available for whole-genome sequencing using the
MiSeq 250 System (Illumina). Reads were assembled and compared as pre-
viously described (32). The final dataset of SNPs excluded those in PE/PGRS and
PPE genes, as well as mobile elements, as these may be prone to false positives
(5, 7). Deletion events were identified with the Integrative Genomics Viewer
(33) and confirmed by PCR and Sanger sequencing. Concatenated sequences of
the SNPs were used to generate phylogenetic trees via the maximum likeli-
hood method in Molecular Evolutionary Genetics Analysis [MEGA (34)]. Di-
vergence times for the 163 Nunavik isolates were estimated using Bayesian
Markov chain Monte Carlo methods [Bayesian Evolutionary Analysis by Sam-
pling Trees (10, 11)], with H37Rv used as an outgroup.

Fig. 4. Proportion of genes with nonsynonymous single-nucleotide poly-
morphisms (Top) and the number of deleted genes (Bottom) for the major
sublineage, pre- and postdiversification. Gene categories are as defined in the
publications:M. tuberculosis (MTB) deletions (36), bacillus Calmette–Guérin (BCG)
deletions (37), essential genes in vitro (20), in macrophages (38), or in vivo (19),
M. tuberculosis-specific genes (39), lateral gene transfer or duplication acquisi-
tion (39), human T-cell epitopes (7), genes coding membrane proteins (40),
mobile elements (7), and genes coding PPE family proteins (7). Genes designated
as PE/PGRS, PPE, or mobile elements were excluded from the SNP analysis (7).

Table 2. dN/dS of M. tuberculosis sublineages pre- and postdiversification in Nunavik

Mj sublineage Mn sublineage

Analysis Prediversification Postdiversification P value Prediversification Postdiversification P value

1a: all SNPs 0.534 0.777 0.010 0.547 0.615 0.873
1b: excluding singletons 0.534 0.928 0.005 0.547 0.759 0.767*
2a: all SNPs 0.534 0.947 <0.00005 0.547 0.759 0.006
2b: excluding singletons 0.534 0.953 <0.00005 0.547 0.759 0.006

Ancestral sequences were reconstructed for the MRCA of the Mj–Mn sublineages, as well as the Mj sublineage and the Mn
sublineage. Prediversification: 229 nonsynonymous SNPs and 154 synonymous SNPs identified in the Mj sublineage, and 113 nsSNPs
and 75 sSNPs in the Mn sublineage. Analysis 1a: dN/dS prediversification was calculated by comparing ancestral sequences. For post-
diversification, concatenated sequences of codons for each sublineage were generated based on all SNP loci identified, with SNPs in
more than one isolate only contributing once. Overall, there were 238 nsSNPS and 107 sSNPs in the Mj sublineage, and 13 nsSNPs and 8
sSNPs in the Mn. These concatenated sequences were then compared with their respective ancestral sequences to obtain dN/dS. The
raw counts of nonredundant nsSNPs and sSNPs pre- and postdiversification were compared for each sublineage using the G test, with P
values shown. Analysis 1b: excluding singleton SNPs. The G test was based on 120 nsSNPs and 46 sSNPs for Mj and 8 nsSNPs and 4 sSNPs
for Mn postdiversification. Analysis 2a: dN/dS was calculated for each isolate compared with its respective ancestral sequence (i.e., 153
Mj isolates were compared with the imputed ancestral sequence for Mj). Within each sublineage, the median dN/dS was calculated and
is shown above. Analysis 2b: excluding singleton SNPs. The Wilcoxon signed-rank test was used to compare the median dN/dS post-
diversification for each sublineage with its respective prediversification estimate.
*Fisher’s exact test due to cell counts <5.
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We used three approaches to derive MRCAs. Using the concatenated se-
quences of SNPs across the 163 genomes, we first conducted an analysis that
incorporated prior knowledge of the substitution rate ofM. tuberculosis in the
form of a calibration node for the Mj sublineage (analysis 1). We then per-
formed an analysis agnostic to the reported substitution rate (i.e., without
calibration), also using concatenated sequences (analysis 2). We then repeated
this second analysis but applied a correction for the constant sites across the
genomes (analysis 3).

Different coalescent models were tested to explore changes in effective
population size over time (35). The AICM (14) was used to select the model
providing the best fit. Bayesian skyline plots were generated (Fig. S2).

To calculate the dN/dS ratios, the ancestral sequences for each MRCA
(Mj–Mn, Mj, and Mn) were reconstructed manually (Dataset S2). We then
calculated the dN/dS pre- and postdiversification for the Mj and Mn

sublineages, using both a phylogenetics-based approach (analysis 1) and a
pairwise dN/dS analysis (analysis 2) (7). For both analyses, we repeated the
dN/dS calculations after excluding SNPs that were present only once across
all 163 genomes (singletons).

Ethical approval for this work was obtained from the McGill University
Faculty of Medicine Institutional Review Board.

ACKNOWLEDGMENTS. The authors thank the Nunavik Regional Board of
Health and Social Services for their collaboration on this study and Drs. Erwin
Schurr, PhD and Michael Reed, PhD of the Research Institute of McGill University
Health Centre for their input into the genetic analysis. This work was supported
by the Canadian Institutes of Health Research (MOP 125858 to M.A.B. and D.M.)
and Fonds de Recherche Santé Québec (29836 and 26274 to N.R.). B.J.S. was
supported by the Canada Research Chairs Program (CRC 2289986).

1. Gagneux S, Small PM (2007) Global phylogeography ofMycobacterium tuberculosis and
implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337.

2. Wirth T, et al. (2008) Origin, spread and demography of the Mycobacterium tuber-
culosis complex. PLoS Pathog 4(9):e1000160.

3. Gagneux S, et al. (2006) Variable host-pathogen compatibility in Mycobacterium tu-
berculosis. Proc Natl Acad Sci USA 103(8):2869–2873.

4. Nguyen D, et al. (2003) Tuberculosis in the Inuit community of Quebec, Canada. Am J
Respir Crit Care Med 168(11):1353–1357.

5. Roetzer A, et al. (2013) Whole genome sequencing versus traditional genotyping for
investigation of a Mycobacterium tuberculosis outbreak: A longitudinal molecular
epidemiological study. PLoS Med 10(2):e1001387.

6. Marmiesse M, et al. (2004) Macro-array and bioinformatic analyses reveal mycobac-
terial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers
for the Mycobacterium tuberculosis complex. Microbiology 150(Pt 2):483–496.

7. Comas I, et al. (2010) Human T cell epitopes of Mycobacterium tuberculosis are
evolutionarily hyperconserved. Nat Genet 42(6):498–503.

8. Coll F, et al. (2014) A robust SNP barcode for typing Mycobacterium tuberculosis
complex strains. Nat Commun 5:4812.

9. Walker TM, et al. (2013) Whole-genome sequencing to delineate Mycobacterium tuber-
culosis outbreaks: A retrospective observational study. Lancet Infect Dis 13(2):137–146.

10. Bouckaert R, et al. (2014) BEAST 2: A software platform for Bayesian evolutionary
analysis. PLOS Comput Biol 10(4):e1003537.

11. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with
BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973.

12. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in
Drosophila. Nature 351(6328):652–654.

13. Rocha EPC, et al. (2006) Comparisons of dN/dS are time dependent for closely related
bacterial genomes. J Theor Biol 239(2):226–235.

14. Baele G, et al. (2012) Improving the accuracy of demographic and molecular clock model
comparisonwhile accommodating phylogenetic uncertainty.Mol Biol Evol 29(9):2157–2167.

15. Novichkov PS, Wolf YI, Dubchak I, Koonin EV (2009) Trends in prokaryotic evolution revealed
by comparison of closely related bacterial and archaeal genomes. J Bacteriol 191(1):65–73.

16. Shapiro BJ, Alm EJ (2008) Comparing patterns of natural selection across species using
selective signatures. PLoS Genet 4(2):e23.

17. Supply P, et al. (2013) Genomic analysis of smooth tubercle bacilli provides insights into
ancestry and pathoadaptation ofMycobacterium tuberculosis. Nat Genet 45(2):172–179.

18. Wang J, et al. (2015) Insights on the emergence of Mycobacterium tuberculosis from
the analysis of Mycobacterium kansasii. Genome Biol Evol 7(3):856–870.

19. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during
infection. Proc Natl Acad Sci USA 100(22):12989–12994.

20. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth de-
fined by high density mutagenesis. Mol Microbiol 48(1):77–84.

21. Raghavan M, et al. (2014) The genetic prehistory of the New World Arctic. Science
345(6200):1255832.

22. Higdon J (2010) Commercial and subsistence harvests of bowhead whales (Balaena
mysticetus) in eastern Canada and west Greenland. J Cetacean Res Manag 11:185.

23. Bonesteel S (2006) Canada’s Relationship with the Inuit, ed Anderson E (published
under the authority of the Minister of Indian Affairs and Northern Development and
Federal Interlocutor for Métis and Non-Status Indians, Ottawa, Canada).

24. Grygier PS (1994) A Long Way from Home: The Tuberculosis Epidemic Among the
Inuit (McGill-Queen’s Univ Press, Montreal).

25. Alonso H, et al. (2011) Deciphering the role of IS6110 in a highly transmissible My-
cobacterium tuberculosis Beijing strain, GC1237. Tuberculosis (Edinb) 91(2):117–126.

26. Reed MB, et al. (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits
the innate immune response. Nature 431(7004):84–87.

27. Parwati I, van Crevel R, van Soolingen D (2010) Possible underlying mechanisms for
successful emergence of the Mycobacterium tuberculosis Beijing genotype strains.
Lancet Infect Dis 10(2):103–111.

28. Amaral EP, et al. (2014) Pulmonary infection with hypervirulent Mycobacteria reveals
a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog
10(7):e1004188.

29. Ordway D, et al. (2007) The hypervirulentMycobacterium tuberculosis strain HN878 induces
a potent TH1 response followed by rapid down-regulation. J Immunol 179(1):522–531.

30. Hershberg R, et al. (2008) High functional diversity in Mycobacterium tuberculosis
driven by genetic drift and human demography. PLoS Biol 6(12):e311.

31. Kuo CH, Moran NA, Ochman H (2009) The consequences of genetic drift for bacterial
genome complexity. Genome Res 19(8):1450–1454.

32. Lee RS, et al. (2015) Reemergence and amplification of tuberculosis in the Canadian
Arctic. J Infect Dis 211(12):1905–1914.

33. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): High-
performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192.

34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evo-
lutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729.

35. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and
dating with confidence. PLoS Biol 4(5):e88.

36. Tsolaki AG, et al. (2004) Functional and evolutionary genomics of Mycobacterium
tuberculosis: Insights from genomic deletions in 100 strains. Proc Natl Acad Sci USA
101(14):4865–4870.

37. Mostowy S, Tsolaki AG, Small PM, Behr MA (2003) The in vitro evolution of BCG
vaccines. Vaccine 21(27–30):4270–4274.

38. Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobac-
terium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA
102(23):8327–8332.

39. Stinear TP, et al. (2008) Insights from the complete genome sequence ofMycobacterium
marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18(5):729–741.

40. Osório NS, et al. (2013) Evidence for diversifying selection in a set of Mycobacterium
tuberculosis genes in response to antibiotic- and nonantibiotic-related pressure. Mol
Biol Evol 30(6):1326–1336.

41. Cingolani P, et al. (2012) A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila mela-
nogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92.

42. Rutherford K, et al. (2000) Artemis: Sequence visualization and annotation.
Bioinformatics 16(10):944–945.

43. Waddell PJ, Steel MA (1997) General time-reversible distances with unequal rates
across sites: Mixing gamma and inverse Gaussian distributions with invariant sites.
Mol Phylogenet Evol 8(3):398–414.

44. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are
strong transition-transversion and G+C-content biases. Mol Biol Evol 9(4):678–687.

45. Saitou N, Nei M (1987) The Neighbor-joining method: A new method for recon-
structing phylogenetic trees. Mol Biol Evol 4(4):406–425.

46. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the boot-
strap. Evolution 39(4):783–791.

47. Comas I, et al. (2013) Out-of-Africa migration and Neolithic coexpansion of Myco-
bacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182.

48. Steenken W, Oatway WH, Petroff SA (1934) Biological studies of the tubercle bacillus:
III. Dissociation and pathogenicity of the R and S variants of the human tubercle
bacillus (H(37)). J Exp Med 60(4):515–540.

49. Rambaut A, Suchard M, Xie D, Drummond AJ (2014) Tracer v1.6. Available at beast.
bio.ed.ac.uk/Tracer.

50. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous
and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418–426.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1507071112 Lee et al. 
245

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507071112/-/DCSupplemental/pnas.201507071SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507071112/-/DCSupplemental/pnas.1507071112.sd02.xlsx
http://beast.bio.ed.ac.uk/Tracer
http://beast.bio.ed.ac.uk/Tracer
www.pnas.org/cgi/doi/10.1073/pnas.1507071112


 
 
 

 
 
 
 
 
 
 
 
 
 

APPENDIX 3-2 
 

Supplementary Data: 
 

 
 

Lee RS, Radomski N, Proulx J-F, Levade I, Shapiro BJ, McIntosh F, Soualhine H, 
Menzies D, Behr MA. Population genomics of Mycobacterium tuberculosis in the Inuit. 

Proc Natl Acad Sci USA 2015;112(44):13609-13614 
 
 
 

 
246



Lee et al. Population genomics of M. tuberculosis  
 

 

Population genomics of Mycobacterium tuberculosis in the Inuit 

 

 

Robyn S. Lee a,b,c,1, Nicolas Radomski b,c,1, Jean-Francois Proulx d, Ines Levade e, B. Jesse 

Shapiro e, Fiona McIntosh b,c, Hafid Soualhine f, Dick Menzies b,c,g, Marcel A. Behr b,c,2 

 

 

 

 

Supporting Information  

  

 
247



Lee et al. Population genomics of M. tuberculosis  
 

MATERIALS AND METHODS 

 

Study population 

The Nunavik region is 443,685 km2 in size and is comprised of 14 Inuit communities, with a total 

population of 12,090 (Statistics Canada, 2011). Each of these communities is separated from the 

nearest village by a median distance of 137 km (IQR 110-178), without adjoining roads.  

 

Bacteria 

All specimens from TB suspects in Nunavik are sent to the mycobacteriology laboratory of the 

McGill University Health Centre (MUHC) for processing. Culture-positive specimens are then 

forwarded to the Laboratoire de Santé Publique du Québec for drug susceptibility testing. 

Between 2001 and 2013, there were 149 cases of microbiologically confirmed TB in Nunavik. 

All available isolates were included in this study and were provided by these two laboratories. 

Between 1990 and 2000, there were 51 cases of TB in Nunavik. 26 isolates were available from a 

previous study for these years (4). 

 

DNA extraction 

M. tuberculosis DNA was isolated as previously described in Lee et al. 2015 (32). 

 

Whole Genome Sequencing 

High throughput sequencing of extracted DNA was performed by the McGill University and 

Génome Québec Innovation Centre. The amount of gDNA was checked by Quant-iT™ 

PicoGreen® dsDNA Assay Kit (Life Technologies). gDNA was then fragmented by sonication 

using a TruSeq gDNA Library automate (Illumina). gDNA quality was estimated by High 

Throughput Quality Check for Massively Parallel Sequencing Library and fragments were 

multiplexed by 24 for paired-ends 250 base pair (bp) sequencing using MiSeq 250 System 

(Illumina).  

 

Identification, annotation and confirmation of SNPs and deletions 

Reads were aligned to H37Rv (NCBI Accession number NC_000962.3) and compared as 

previously described (32). Aligned reads were deposited in the National Center for 
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Biotechnology Information’s Sequence Read Archive, under Accession number SRP039605 

(BioProject PRJNA240330). Due to their repetitive nature, it is more difficult to accurately map 

reads to the PE/PGRS and PPE genes, as well as mobile elements, therefore these regions may be 

at higher risk of false positives (5, 7). Consequently, SNPs in these regions were excluded from 

the analyses presented in this manuscript. For a list of non-synonymous SNPs that were excluded, 

see Dataset S3. Additional analyses including SNPs in these regions did not alter our key 

findings.  

 

Deletion events were identified against the H37Rv and CDC1551 reference genomes with 

Integrative Genomics Viewer (version 2.3.34) (33) and confirmed by PCR and Sanger 

sequencing. The SNPs and deletions were annotated against two reference genomes (uid57777 

and uid57775 databases for H37Rv and CDC1551, respectively) using snpEff (version 3.3h) (41) 

and Artemis (version 15.0.0) (42), respectively.   

 

Phylogenetic analysis 

Concatenated sequences of the SNPs were used to generate phylogenetic trees via the Maximum 

Likelihood method in Molecular Evolutionary Genomics Analysis (MEGA, version 6) (34). 

Based on the lowest Bayesian Information Criterion (BIC), the General Time Reversible model 

(43) with uniform site-specific rate variation  and Tamura 3-parameter (44) model were used to 

construct phylogenetic trees of genomes from Nuvavik and isolates from lineages 1, 2, 3, 4, 5, 6 

and 7. The initial trees for the heuristic search were performed by the Neighbor-Joining method 

and Maximum Composite Likelihood approach. The branches of the trees presenting the highest 

log likelihood were condensed at the 80% bootstrap value (45). The M. tuberculosis genomes of 

lineages 1 (SAMEA1877171, SAMEA1877209, SAMEA1877280), 2 (SAMEA1877068, 

SAMEA1877086, SAMEA1877286), 3 (SAMEA1877096, SAMEA1877124, SAMEA1877277), 

4 (SAMEA1877192, SAMEA1877238, SAMEA1877276), 5 (SAMEA1877073, 

SAMEA1877165, SAMEA1877206), 6 (SAMEA1877101, SAMEA1877190, SAMEA1877233) 

and 7 (SAMEA1877077, SAMEA1877197, SAMEA1877216) were obtained from the European 

Nucleotide Archive ERP001731 (46). 

 

Molecular dating 
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Divergence times for the 163 Nunavik isolates were estimated using Bayesian Markov Chain 

Monte Carlo methods (Bayesian Evolutionary Analysis Sampling Trees (BEAST), versions 1.8 

and 2.1.3) (10, 11). As the Tamura 3-parameter model of nucleotide substitution was not 

available in BEAST, we utilized the General Time Reversible (GTR) model (43) which had the 

next lowest BIC (Δ = 9.03).  

 

Divergence dates were estimated using all 163 genomes dated with the year of isolation. H37Rv 

was used as an out-group (with a date of isolation of 1905) (47).  To assess the robustness of our 

findings, we compared three different approaches to deriving the MRCAs. Using the 

concatenated sequences of SNPs across the 163 genomes, we first conducted an analysis that 

incorporated prior knowledge of the substitution rate of M. tuberculosis in the form of a 

calibration node for the Mj sub-lineage (analysis 1). We identified the SNP difference between 

the two most divergent isolates from the Mj sub-lineage as 72 SNPs. Assuming equal divergence, 

we then applied the previously reported substitution rate of 0.5 SNPs/genome/year to obtain a 

mean node age, while the standard deviation was calculated using the extremes of frequently 

reported confidence intervals (0.3 SNPs/genome/year and 0.7 SNPs/genome/year, respectively (5, 

9). The resultant mean node age and its standard deviation were then used as a prior for the 

MRCA of the Mj sub-lineage. We then compared these results to an analysis agnostic to the 

reported substitution rate (i.e. without calibration), also using concatenated sequences (analysis 

2). We then repeated this second analysis but applied a correction for the constant sites across the 

genomes (analysis 3). 

 

The null hypothesis of one molecular clock across all branches was tested prior to analysis using 

the likelihood ratio test in MEGA and was rejected with p < 0.05. Therefore, all models used an 

uncorrelated relaxed lognormal clock set at 1.3 × 10−7 substitutions per site in the genome per 

year. For analyses 1 and 2, a coalescent constant population tree prior was used. Analysis 3 

utilized a coalescent Bayesian skyline tree prior, as described below. All models were run using a 

Markov Chain Monte Carlo (MCMC) chain length of 200,000,000, with 10% burn in and 

sampling every 10,000 generations. Convergence was assessed in Tracer (version 1.6) (48) with 

evidence of adequate mixing and all parameters had an effective sample size > 190. Maximum 

clade credibility trees were generated using TreeAnnotator, with 10% burn in. Summaries of the 
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posterior densities were generated for nodes with a probability of at least 0.8. The 95% highest 

posterior densities were used to reflect uncertainty in our estimates. 

 

Coalescent-based analyses 

Different coalescent models were tested, including the constant population size, exponential 

growth (assuming a constant growth rate through time) and the Bayesian skyline plot 

demographic model (a general, nonparametric prior that enforces no particular demographic 

history (35)). The posterior simulation-based analogue of Akaike's information criterion (AICM) 

(13) implemented in Tracer 1.6 has been used to select the model providing the best fit to our 

data. The estimations of the AICM from 1,000 bootstrap replicates support that, among the 

different models, the Bayesian skyline model provides the better fit overall (marginally lower 

value of AIC), followed by the constant population size model (Table S2). Substitution rates were 

estimated for each sub-lineage in BEAST using a GTR model of nucleotide substitution and a 

coalescent Bayesian Skyline tree prior. To formally assess changes in population demographics 

over time, Bayesian skyline plots were generated in Tracer for the 163 genomes overall, as well 

as the Mj and Mn sub-lineages individually (Fig. S2).  

 

Calculation of dN/dS ratios 

The ancestral sequences for each MRCA (Mj-Mn; Mj; and Mn) were reconstructed manually 

(Dataset S2). We calculated the dN/dS between Mj-Mn and Mj by comparing these reconstructed 

codon sequences using the Nei-Gojobori (Jukes-Cantor) method (49) in MEGA (version 6), as 

has been previously done for M. tuberculosis (7, 29, 31). Similarly, to obtain a dN/dS for Mj-Mn 

versus Mn, we compared these two reconstructed sequences. 

 

For dN/dS calculations post-diversification, two methods were applied. First, we calculated the 

dN/dS for each sub-lineage compared to its ancestral sequence using a phylogenetic-based 

approach (analysis 1). In this method, we generated a concatenated sequence of codons for each 

sub-lineage based on all SNP loci. SNPs that were occurred in more than 1 isolate only 

contributed once to this sequence; no SNPs were double-counted. These concatenated sequences 

(one for each of the Mj and Mn sub-lineages) were then compared to their respective imputed 

ancestral sequences to obtain the dN/dS post-diversification. Second, we conducted a pairwise 
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dN/dS analysis (analysis 2) (7). In this analysis, we calculated dN/dS for each isolate of the Mj 

sub-lineage compared to the reconstructed ancestral sequence of Mj. We then determined the 

median dN/dS across the 153 pairwise comparisons. For both analyses 1 and 2, we repeated the 

dN/dS calculations after excluding SNPs that were present only once across all 163 genomes 

(singletons). 

 

Comparisons to gene categories from the literature 

nsSNPs were mapped to gene categories described in the literature: M. tuberculosis-specific 

genes (39), in vitro (19) or in vivo (18) essential genes, genes coding membrane proteins (40), 

lateral gene transfer or duplication acquisition (39), regions of differentiation (36), macrophage 

survival (38), human T cell epitopes (7) and deleted genes in BCG (37). In addition to these gene 

categories, deletions were also mapped to genes coding PE/PPE family proteins (7) and mobile 

elements (7). These comparisons were performed using the most recent version of the H37Rv 

reference genome (NCBI Accession number NC_000962.3) including gene nomenclatures of 

older versions of H37Rv used by these authors at the time of their studies. 

 

Statistical analyses.  

The distributions of pairwise SNPs within and between villages were compared using the 

Wilcoxon-Mann-Whitney test. The two-sample z test for difference in proportions was used to 

compare proportions of pairwise comparisons less than the pre-specified threshold, as a proxy of 

transmission during the study period. This test was also used to compare the proportions of genes 

with nsSNPs in each gene category pre- and post-diversification. For the dN/dS analyses, the raw 

numbers of nsSNPs and sSNPs pre and post-diversification were compared using the G-test (12) 

while the median pairwise dN/dS values post-diversification for each sub-lineage were compared 

to their respective pre-diversification value using the Wilcoxon signed rank test. All tests were 

two-tailed, with a p value of < 0.05 considered statistically significant. Analyses were conducted 

in Stata (v.13, StataCorp 2013) and R (v.3.1.2, available at https://cran.r-project.org/). 

 

Ethics 

Ethical approval for this work was obtained from the McGill University Faculty of Medicine 

Institutional Review Board. Individual patient consent was not required. 
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LEGENDS 

Dataset S1: Identification by whole genome sequencing (on the left) and confirmation by PCR 

and Sanger sequencing (on the right) of deletions identified across 163 genomes from Nunavik, 

according to H37Rv (NCBI Reference Sequence: gi|448814763|ref|NC_000962\.3) and 

CDC1551 (NCBI Reference Sequence: gi|50953765|ref|NC_002755\.2) reference genomes. 

 

Dataset S2: Phylogenetic clusters defined by patterns of single nucleotide polymorphisms (SNPs) 

identified in 163 genomes of M. tuberculosis from Nunavik. 

 

Dataset S3: Comparison between mutations (single nucleotide polymorphisms and deletions) 

detected in Major (Mj) pre- and post-introduction diversification in Nunavik, according to gene 

categories: M. tuberculosis deletions (36), BCG deletions (37), essential genes in vitro (19), in 

macrophages (38) or in vivo (18). M. tuberculosis-specific genes (39), lateral gene transfer or 

duplication acquisition (39), human T cell epitopes (7), genes coding membrane proteins (40), 

mobile elements (7) and genes coding PPE family proteins (7). SNPs in mobile elements and 

genes encoding PE and PPE proteins were excluded from analyses (7). 

 

Dataset S4: Non-synonymous single nucleotide polymorphisms (nsSNPs) of the major (Mj) sub-

lineage pre- and post-diversification identified in 153 genomes of M. tuberculosis from Nunavik. 

 

Dataset S5: Non-synonymous single nucleotide polymorphisms (nsSNPs) identified in essential 

genes of the major (Mj) sub-lineage post-diversification identified in 153 genomes of 

M. tuberculosis. 
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Figure S1: Most recent common ancestors (MRCAs) and deletion events during the evolution of 

major (Mj) sub-lineage of Nunavik. As similar estimates with overlapping 95% highest posterior 

density intervals were obtained in all 3 MRCA analysis, MRCA dates obtained via analysis 1 are 

presented for simplicity. Arrows indicate the positions and annotations of the H37Rv reference 

genome. A phylogenetic cluster was defined as at least 2 genomes sharing a minimum of two 

single nucleotide polymorphic loci. Grey and colored circles represent the common ancestors and 

phylogenetic clusters based on identified SNPs, respectively. Isolate (58385) had a unique single 

nucleotide polymorphism profile (i.e. was not clustered) and, as the posterior density for the 

divergence date of this isolate was <0.8, has not been shown.  

 

Figure S2: Bayesian Skyline plots of M. tuberculosis in Nunavik. (A) All sub-lineages together; 

(B) The Major sub-lineage; (C) the Minor sub-lineage. The estimated effective population sizes 

through time are shown (black line). The shaded area represents the 95% credibility intervals. 

 

Table S1: Model comparison by posterior simulation-based analogue of Akaike's information 

criterion (AICM, (13)). Lower AICM values indicate better model fit. The differences between 

AICM are reported. Positive values indicate better relative model fit of the row’s model 

compared to the column’s model. 
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Table S1: Model comparison by posterior simulation-based analogue of Akaike's 

information criterion (AICM) (13). 

 
Clock 
model 

Coalescent 
prior 

AICM SE Exponential 
growth 

Constant 
population 
size 

Bayesian 
skyline 

Relaxed Exponential 
growth 

11830577.14 +/- 0.099 - -10.577 
 

-19.503 
 

Relaxed Constant 
population 
size 

11830566.57 
 

+/- 0.121 
 

10.577 
 

- -8.926 
 

Relaxed Bayesian 
skyline 

11830557.64 
 

+/- 0.12 
 

19.503 
 

8.926 
 

- 

 
Lower AICM values indicate better model fit. The differences between AICM are 

reported. Positive values indicate better relative model fit of the row’s model compared to 

the column’s model. 
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Lee RS, Proulx J-F, Menzies D, Behr MA. Progression to tuberculosis disease increases 
with multiple exposures. Under review at Eur Respir J. 
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Detailed Methods 
 

Clinical assessment and management of contacts  

As part of contact investigation, contacts were identified and evaluated for latent TB 

infection / active TB disease. Standardized data collection tools were used. Medical 

history was obtained by chart abstraction, supplemented by patient interview, and 

contacts were asked about TB symptoms. All contacts underwent a medical examination, 

a tuberculin skin test (TST) for those without prior TB infection and chest radiography if 

TST positive. Individuals with clinical suspicion of TB disease provided three 

spontaneous or induced sputum samples, which were sent for microscopy and 

mycobacterial culture. Individuals were diagnosed with active TB on the basis of growth 

of probe-confirmed M. tuberculosis (‘confirmed TB’). Persons with clinical and 

radiographic findings consistent with TB, but absent culture confirmation, were classified 

as ‘probable’ TB. 

 

Contacts identified with prevalent TB disease were treated accordingly, while those 

infected without disease were offered nine months isoniazid (INH) prophylaxis [1].  

 

Newly-diagnosed (‘new’) TB infection  

Individuals without a previous positive TST were tested as per the Canadian TB 

standards [1]. 5 units of purified protein derivative were injected intra-dermally, with 

induration measured 48-72 hours after injection using the ballpoint pen technique. If the 

initial TST was negative, the test was repeated at 8 weeks post-contact. In accordance 
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with contact investigation guidelines, a TST was considered positive if induration 

exceeded 5 mm [1].  

 

A person was considered to have ‘new’ TB infection if he/she had a positive TST, either 

with no previous TST (‘new positive’ TST) or with a previously negative TST (‘TST 

conversion’).  

 

As it is possible that an individual with a new positive TST was infected years in the past, 

we performed sensitivity analyses restricted to documented TST converters. To address 

the timing of those with a documented TST conversion, we examined the time of last 

negative test. Five of 29 (17%) cases had a previously negative test conducted within the 

year preceding the outbreak compared to 35 of 94 (37%) controls, arguing against the 

possibility that cases were more recently infected compared to controls. 

 

Exposure ascertainment  

Total exposures  

We were able to tabulate total exposures by examining the contact lists provided by the 

50 individuals with microbiologically-confirmed TB, including residence or shared 

attendance at community gathering houses. Each time a person was listed as a contact, 

this was counted as an exposure. These lists were obtained as part of the public health 

response, and were therefore only provided by those with active TB. 
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The precise intensity of contact (i.e., duration and frequency) was not included in 

modeling of exposure, as these data were not obtained in a consistent manner throughout 

the ‘outbreak’. There were two main reasons for discrepancies in measurement of these 

variables. Firstly, given the high exposure intensity and short duration of this crisis, 

numerous individuals were repeatedly listed as contacts of persons with active TB. To 

avoid unnecessary burden on these individuals and the repetition of tuberculin skin tests / 

chest x-rays within a short period of time, they were not always re-assessed with each 

new contact. The decision to re-investigate with each new contact was made on a case-

by-case basis by local health care providers. Secondly, a large number of contacts 

occurred at gathering houses. As these were identified by public health as potential sites 

of transmission, we have included contact at these houses between attendees as well as 

residents in our analyses, but the precise duration of exposure between individuals at such 

venues was not available.   

 

Genotypic exposures  

Genotypes were assigned to each of these individuals based on a previous molecular 

epidemiologic analysis of this crisis [2]. In brief, 49/50 of those with confirmed disease 

shared the same pattern on mycobacterial interspersed repetitive units (MIRU). Using 

whole genome sequencing and epidemiologic data, it was revealed that these were 

comprised of at least 6 different subgroups of transmission, with genotypes diverging 

from one another as early as 2007 (Figure 5 in [2]). These subgroups were closely-related 

with 6 cluster-defining single nucleotide polymorphisms separating the most genetically-

divergent groups. These SNPs were bi-directional, with 3 in one subgroup and 3 in the 
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other, thus precluding transmission between these cases; SNPs do not revert to wild-type 

in M. tuberculosis [3]. 

 

One isolate was unavailable for sequencing. As this isolate had a non-identical MIRU 

pattern compared to the other 49 from 2011-2012, it was therefore was considered a 

unique genotype for this analysis – yielding a potential maximum of seven different 

genotypic exposures.  

 

We assigned links based on epidemiologic data (i.e., identified during interviews). Links 

were not assigned between patients based on genotypic data alone, as suggested by 

previous studies (e.g., [4, 5]). Furthermore, such assignment would likely have 

introduced bias in favour of increased exposures for the cases, as genotypic data was not 

available for controls. As the molecular analysis was conducted retrospectively, it was 

also not feasible to re-interview individuals to assess for potentially missed contact based 

on genotyping results. Similarly, this would have been expected to a differential bias in 

favour of the cases.  

 

Covariates  

Covariate data was collected as part of routine contact investigation. These included 

address of residence, age at infection (based on first documented positive TST), sex, 

cigarette smoking, Bacillus Calmette-Guerin (BCG) vaccination and previous medical 

history including HIV and relevant comorbidities. The number of persons per room and 
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residing with a person with smear positive disease were determined retrospectively, with 

details below.  

 

Current cigarette smoking  

This was assessed at the time of contact investigation and was included as a binary 

variable. Data on intensity (e.g., number of cigarettes smoked per day) were missing for 

41% of those investigated, exceeding that which can be meaningfully imputed. 

 

HIV and other comorbidities  

HIV testing was performed for all individuals with diagnosis of active TB. Among those 

with recent infection, one person diagnosed with active TB was previously known to be 

HIV positive. As no other relevant comorbidities (e.g., diabetes, renal dysfunction, cancer 

or other immunosuppressive disorders) were found among those with recent infection, 

these variables were not included in regression models. 

 

The number of persons per room  

This variable was used as a measure of occupancy and was calculated for each dwelling 

as the number of persons residing in a house divided by the number of rooms. These data 

were obtained/calculated as follows: 

 

The number of persons residing at each residence, regardless of infection/disease status, 

was tabulated using a population-level database provided by public health. During the 

‘outbreak’, clinical files from the village nursing station were used to obtain a complete 
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listing of current residents in the community. Addresses of residence were obtained by 

cross-referencing with a community-wide census provided by the village council for this 

purpose. If discrepancies were noted between these addresses and contact investigation 

data, addresses were updated using the latter. If an individual’s address was missing from 

contact investigation data or the village census, efforts were made to obtain these data via 

consultation with patients directly if possible or alternatively, with local clinic support 

staff.  

 

The number of bedrooms per dwelling were provided by the Katavik Municipal Housing 

Bureau for houses built up before 2012, and supplemented with housing assessment data 

from [6]. The number of rooms per dwelling were therefore calculated as the number of 

bedrooms plus one room. This additional room is the equivalent of the kitchen/dining 

room and living area, as these are open-concept in all dwellings in this community. In 

accordance with Statistics Canada, storage rooms, vestibules, bathrooms and hallways 

were not counted as additional rooms [7]. 

 

Residing with a person with smear positive disease  

This was determined on a per subject basis, to assess the potential impact of household 

contact with highly contagious smear positive individuals. If an individual had smear 

positive disease, but did not reside with another person with smear positive disease, (s)he 

was assigned a value of 0 for this covariate, as one could not auto-contribute to risk of 

disease.  
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Additional potential TB determinants  

Alcohol consumption (yes/no) was missing for 85/149 (57%) of those with recent 

infection and was therefore not included in our analyses. Data on nutritional status (e.g., 

body mass index or dietary habits) were not collected as part of routine contact 

investigation and were therefore not available for inclusion. However, a recruitment-

based case-control study in this same community in 2013 found no association between 

these factors (such as measured serum micronutrient levels, reported nutritional intake, 

body mass index, and alcohol consumption) and progression from those with recent 

infection to disease [8]. 

 

Missing data  

Three controls had missing addresses and were therefore excluded from analyses. 

Percentages of missing data for covariates were low (Table S2).  

 

Missing data were estimated using multiple imputation with chained equations (m=500), 

under a Missing At Random assumption. Separate imputation datasets were generated for 

analysis 1 (contact with any potential source, new infection) and analysis 2 (contact with 

persons with smear positive disease only, new infection). Analyses 1b and 2b were 

conducted using subsets of these. 

 

As the principles guiding development of imputation models and diagnostics are the same 

throughout, these have been described only for analysis 1a. At a minimum, imputation 

models for each variable included all covariates to be considered in the analysis model 
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(age at infection, sex, persons per room, current smoking, residing with a person with 

smear positive disease). An interaction term was considered in the analysis for persons 

per room and residing with a person with smear positive disease, but did not require 

imputation as both of the subjects with missing data on persons per room were known not 

to reside with a person with smear positive disease, making this variable equal to 0. 

Finally, the outcome variable was included in all imputation models. 

 

The inclusion of auxiliary variables in addition to the above was based on whether these 

predicted the imputation variable and/or its missingness, as assessed using linear or 

logistic regression on the complete data and whether inclusion of this auxiliary variable 

improved model fit.  For smoking, such auxiliary variables included BCG vaccination 

status and presence of cough at time of contact investigation. BCG data was missing on 

three individuals; one was born after vaccination was discontinued in Nunavik, and was 

therefore coded as 0. The remaining 2 were imputed, as described, with smoking included 

as an auxiliary variable. Cough was missing for 19 individuals and was imputed. Only 5 

of those with missing cough were also missing data on smoking, and missingness was not 

associated with being diagnosed with active TB.  

 

For persons per room, the total number of people residing in the house and number of 

rooms were assessed as auxiliary variables; total residing in the house was a strong 

predictor and was subsequently included in the imputation model. To avoid implausible 

values, a truncated regression was used, with imputed values restricted to the range of the 

observed data.  
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Final imputation diagnostics included assessment of convergence for all parameters 

(iterations increased accordingly) and comparison of the observed versus imputed data. 

Imputed values were also assessed for plausibility. The full analysis model was used to 

evaluate Monte Carlo error, with repeatability considered acceptable as per the 

recommendations of [9]. 

 

Assessing linearity of all continuous variables  

A visual inspection was first conducted using lowess regression to assess possible 

deviations from linearity. Fractional polynomials (FP) were fit for each continuous 

variable, with sequential selection. This included a log-transformation of these variables. 

With the exception of genotypic exposures for analysis 1a which was best modeled with a 

cubic function, analyses failed to reject the FP m=1 p=1 model. Therefore, all other 

continuous variables employed a linear functional form.  

 

Regression analyses  

To account for clustering by household, we used generalized estimating equations with a 

logit link and robust standard errors. Univariate analyses were conducted to examine the 

association between potential risk factors and progression to disease. Based on previously 

reported results [6], we evaluated for an interaction between residing with a person with 

smear positive disease and the number of persons per room; in order to maintain 

hierarchy, both of these variables were included in preliminary multivariate models 

regardless of significance on univariate analysis. An interaction term was considered 
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significant if p<0.1. Other covariates were assessed in preliminary multivariate analyses 

if p was <0.2 on univariate analysis. Final multivariate models were selected using the 

Quasi-Information Criterion (QICu) [10]. The QIC takes into consideration both sample 

size and the number of parameters therein, to avoid over-parameterizing the models. This 

is of particular importance given the small sample size, as inclusion of unnecessary or 

extraneous variables would result in over-fitting and reduce precision of all effect 

estimates.  
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Tables 
 
TABLE S1  
Summary characteristics of the 50 persons with microbiologically confirmed active TB, 
34 of which had recent infection 
 
Characteristic No. (%) 
Age, in years *  
  0-4.9  4 (8) 
  5-9.9  1 (2) 
  10-14.9  2 (4) 
  15-24.9  23 (46) 
  25-34.9  10 (20) 
  35-44.9 4 (8) 
  45+ 6 (12) 
Male sex 28 (56) 
Cavity on chest x-ray 11 (22) 
Sputum smear positive 11 (22) 
* Age at treatment initiation.  
 
 
TABLE S2 
Missing data imputed, confirmed cases only  
 
Variable Analysis 1a (n=149)* Analysis 2a (n=99) 
No. (%) missing current 
smoking 

21 (14) 14 (14) 

No. (%) missing persons 
per room 

2 (1) 0 (0) 

No. (%) missing BCG 2 (1) 2 (2) 
*23 children under the age of 10 were not asked by health care providers about cigarette smoking status 
and are considered non-smokers. 
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TABLE S3 
Comparison of villagers with new infection and confirmed versus probable TB disease  
 
Variables of interest Confirmed TB 

disease 
(n=34) 

Probable TB disease 
(n=17) 

p value  

Age at infection, median 
(interquartile range, IQR), y 

19.5 (15.3-28.1) 5.6 (2.9-16.4) 0.002† 

  No. (%) under 5 y age 4 (12) 8 (47) 0.012# 
No. (%) male sex  18 (53) 6 (35) 0.234‡ 
No. (%) current smoking 23 (77) 4 (25) 0.001‡ 
No. (%) vaccinated with Bacillus 
Calmette-Guerin (BCG) 

25 (76) 7 (41) 0.016‡ 

No. (%) residing with a person 
with smear positive disease 

7 (21) 6 (35) 0.256‡ 

No. (%) comorbidities (HIV, 
diabetes, renal dysfunction, other 
immunosuppressive disorders) 

1 (3) 0 (0) 0.667# 

Total exposures, median (IQR) 15 (3-23) 3 (1-4) 0.006† 
Genotypic exposures, median 
(IQR) 

5 (2-6) 2 (1-3) 0.007† 

Persons per room, median (IQR)  1·8 (1·3-2·7) 2 (1.8-3) 0.236† 
† Mann-Whitney ranksum test. ‡ Chi-square test with 2 degrees of freedom. # Fisher’s Exact test. Non-
missing data are used for the denominator of proportions. A two-sided p value of <0.05 is considered 
statistically significant. 
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TABLE S4  
Genotypic exposures to any potential source and progression to active TB 
 
  Univariate  Multivariate 
 Odds 

ratio 
95% CI p value Odds ratio 95% CI 

Analysis 1a – Contact with any potential source, newly diagnosed infection  
Age at infection 1.00 0.97-1.03 0.806 Not in final 

model 
 

Male sex  0.93 0.44-1.94 0.844 
 

Not in final 
model 

 

Current smoking 1.61 
 
 

0.58-4.51 0.360 
 

Not in final 
model 

 

BCG 0.64 0.24-1.74 0.386 
 

Not in final 
model 

 

Residing with a 
person with smear 
positive disease 

2.03 0.67-6.14 0.208 Not in final 
model 

 

Genotypic 
exposures, cubic 

1.01 1.00-1.01 <0.0005 1.01 1.00-1.01 

Persons per room* 1.12 0.98-1.28 0.086 
 

1.16 1.01-1.34 

 
Analysis 1b - Contact with any potential source, tuberculin skin test conversion only 
Age at infection 1.01 0.98-1.04 0.593 Not in final 

model 
 

Male sex  0.72 0.31-1.67 0.442 Not in final 
model 

 

Current smoking 2.19 0.61-7.90 0.231 Not in final 
model 

 

BCG 1.30 0.33-5.21 0.707 Not in final 
model 

 

Residing with a 
person with smear 
positive disease  

3.17 0.85-11.79 0.085 0.18 0.01-3.50 

Genotypic 
exposures, linear 

1.12 1.06-1.18 <0.0005 1.79  1.35-2.37 

Persons per room*  1.13 1.00-1.28 0.056   

Persons per room* 
when not residing 
with a person with 
smear positive 
disease 

   1.12 1.00-1.27 

Persons per room* 
when residing with 
an person with 
smear positive 
disease 

   1.54† 1.10-2.16 
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*For comparability to [6]. Persons per room scaled such that odds ratio corresponds to a 1 person increase 
in a 5-person house. †p=0.018 for interaction between persons per room and residing with a person with 
smear positive disease; this OR represents the joint effect of adding 1 person to a 5-person house when 
residing with an individual with smear positive disease. Age at infection and persons per room are centered 
at the overall mean for analysis 1a, at 20.8 years and 1.7 persons per room, respectively. 
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TABLE S5 
Exposure to potential sources with smear positive disease only and progression to active 
TB 
 
  Univariate  Multivariate  
 Odds ratio 95% CI p value Odds ratio 95% CI 
Analysis 2a – Potential sources with smear positive disease only, newly diagnosed infection 
Age at 
infection 

1.01 0.97-1.05 0.603 Not in final model  

Male sex 1.23 0.54-2.81 0.623 Not in final model  
Current 
smoking 

1.26 0.36-4.38 0.719 Not in final model  

BCG 0.93 0.23-3.71 0.922 Not in final model  
Residing with a 
person with 
smear positive 
disease 

1.40 0.44-4.43 0.572 Not in final model  

Genotypic 
exposures, 
linear 

1.52 1.16-2.01 0.003 1.69 1.27-2.26 

Persons per 
room* 

1.24 1.09-1.41 0.001 1.31 1.13-1.51 

 
Analysis 2b – Potential sources with smear positive disease only, tuberculin skin test conversion only 
Age at 
infection 

1.01 0.97-1.06 0.574 Not in final model  

Male sex  1.00 0.40-2.52 1.000 Not in final model  
Current 
smoking 

1.42 0.36-5.64 0.621 Not in final model  

BCG 1.28 0.23-6.95 0.778 Not in final model  
Residing with a 
person with 
smear positive 
disease 

2.10 0.54-8.15 0.284 Not in final model  

Genotypic 
exposures, 
linear 

1.60 1.20-2.14 0.001 1.80 1.35-2.40 

Persons per 
room* 

1.29 1.12-1.48 0.001 1.36 1.16-1.60 

For comparability to  [6]. *Persons per room scaled such that odds ratio corresponds to a 1 person increase 
in a 5 person house. Age and persons per room are centered at the overall mean for analysis 1a, at 20.8 
years and 1.7 persons per room, respectively. Genotypic exposures centered at 1, as all individuals had at 
least 1 contact. 
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APPENDIX 5 
 

Supplementary data: 
 

 
 

Lee RS and Behr MA. Does choice matter? Reference-based alignment for molecular 
epidemiology of tuberculosis. Accepted at J Clin Micro on April 5, 2016. 
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Legend. Maximum likelihood trees with 1000 bootstrap replicates, with branches below an 80% bootstrap threshold collapsed (branch lengths 
are therefore not to scale). For clarity, bootstrap p values are indicated only for the most proximal node defining each cluster. Each tree was 
rooted on its respective reference. Isolates were coloured for their respective clusters identified according to CDC1551 (and H37Rv (1)). Isolates 
were then kept the same colour across all panels, to facilitate quick comparison between the new reference analysis and CDC1551. See Table S4 
for cluster names. A – Reference M. tuberculosis Lineage 4 H37Rv, using the Tamura 3-parameter model (2) of nucleotide substitution with 
1,405 SNP loci. B – Reference M. tuberculosis Lineage 2 CCDC5079, using the General Time Reversible (3) model of nucleotide substitution 
with 2,048 SNP loci. C – Reference M. africanum (Lineage 1), using the Tamura 3-parameter model of nucleotide substitution with 2,721 SNP 
loci. D – Reference M. bovis, using the GTR model of nucleotide substitution with 2,803 SNP loci. 
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TABLE S1 Average nucleotide identity (ANI) divergence between reference genomes a  
	  
  Reference genomes 

  Mycobacterium 
tuberculosis, 
lineage 4 

Mycobacterium 
tuberculosis, 
lineage 4 

Mycobacterium 
tuberculosis, 
lineage 2 

Mycobacterium 
africanum 

Mycobacterium 
bovis 

Mycobacterium 
canettii 

Mycobacterium 
kansasii b 

  H37Rv CDC1551 CCDC5079 GN041182 AF2122/97 CIPT 
140010059 

ATCC 12478 

Mycobacterium 
tuberculosis, 
lineage 4  

H37Rv - 0.10 (99.37) 0.12 (99.17) 0.18 (98.82) 0.19 (98.71) 0.85 (95.95) 19.01 (54.40) 

Mycobacterium 
tuberculosis, 
lineage 4 

CDC1551 0.11 (99.94) - 0.16 (99.04) 0.18 (98.91) 0.21 (98.93) 0.85 (96.06) 19.02 (54.36) 

Mycobacterium 
tuberculosis, 
lineage 2 

CCDC5079 0.12 (99.68) 0.15 (99.83) - 0.22 (98.71) 0.23 (98.35) 0.88 (96.06) 19.13 (54.36) 

Mycobacterium 
africanum 

GN041182 0.14 (99.27) 0.16 (99.62) 0.18 (99.34) - 0.15 (99.02) 0.85 (95.98) 19.02 (54.39) 

Mycobacterium 
bovis 

AF2122/97 0.16 (99.18) 0.18 (99.44) 0.20 (99.00) 0.14 (99.61) - 0.86 (95.69) 19.00 (54.36) 

Mycobacterium 
canettii 

CIPT 
140010059 

0.75 (96.94) 0.75 (97.07) 0.77 (96.95) 0.75 (97.09) 0.76 (96.67) - 19.02 (54.39) 

Mycobacterium 
kansasii  

ATCC 
12478 

13.69 (16.25) 13.67 (16.10) 13.69 (16.09) 13.66 (16.13) 13.66 (16.19) 13.66 (16.26) - 

a Percent divergence is indicated, with the average percentage of nucleotides used in each analysis in brackets. Each genome was, in turn, fragmented into 
consecutive 500 base-pair segments and queried against all other complete reference genomes using jSpecies (v.1.2.1, (4)). Both BLASTn (5) and MUMmer (6) 
algorithms were applied. BLASTn settings were as in (7), requiring ≥70% identity over ≥70% of the alignment. Default settings were used for MUMmer. For 
each algorithm, the mean ANI was calculated (e.g., the mean of the pair A500 vs BCOMPLETE and B500 vs ACOMPLETE  (8)). This was then used to tabulate ANI 
divergence (100% - the mean of pairwise ANI, (7)). ANI divergences calculated using BLASTn are indicated in red, while those using MUMmer are indicated in 
blue. In brackets, the average percent of total nucleotides in the query genome that were used in the calculation has been indicated for each comparison. 
 b pMK plasmid sequence not used for alignment. 
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TABLE S2 Genome coverage for each isolate 
 

Genome coverage (%) at 1x depth by reference genome 
 M. 

tuberculosis, 
lineage 4 

M. 
tuberculosis, 

lineage 4 

M. 
tuberculosis, 

lineage 2 

M. 
africanum 

M. bovis M. canettii M. kansasii 

Isolate  H37Rv CDC1551 CCDC5079 GN041182 AF2122/97 CIPT 
140010059 

ATCC 
12478 

9965 98.86 99.25 98.75 98.88 99.27 95.04 34.63 
10155 98.90 99.34 98.78 98.92 99.32 95.04 34.20 
10223 98.70 99.13 98.80 98.94 99.19 95.12 34.90 
11011 98.92 99.35 98.80 98.94 99.34 95.06 34.35 
11234 98.83 99.25 98.71 98.84 99.26 94.99 33.66 
14069 98.91 99.34 98.79 98.92 99.33 95.07 34.35 
14508 98.71 99.12 98.79 98.92 99.19 95.11 34.84 
15613 98.90 99.30 98.80 98.91 99.29 95.07 34.70 
16490 98.82 99.25 98.70 98.84 99.25 95.01 34.07 
16493 98.88 99.32 98.78 98.88 99.30 95.06 34.36 
18421 98.84 99.26 98.73 98.86 99.28 95.03 33.83 
18422 98.91 99.34 98.80 98.94 99.32 95.10 34.60 
18747 98.86 99.28 98.77 98.90 99.29 95.03 34.21 
18988 98.82 99.25 98.75 98.85 99.26 95.03 34.13 
19057 98.90 99.31 98.80 98.92 99.31 95.06 34.18 
19276 98.86 99.28 98.75 98.87 99.29 95.03 33.85 
50045 98.95 99.33 98.79 98.95 99.35 95.06 34.55 
50179 98.88 99.28 98.77 98.90 99.30 95.05 34.27 
50248 98.95 99.39 98.82 98.97 99.36 95.13 35.09 
53221 99.01 99.43 98.87 99.03 99.41 95.16 35.10 
54902 98.97 99.38 98.84 99.00 99.37 95.13 34.83 
55546 98.72 99.13 98.78 98.93 99.19 95.10 34.88 
55753 98.94 99.35 98.83 98.96 99.34 95.08 34.47 
55988 98.98 99.40 98.85 99.00 99.38 95.14 35.22 
55989 98.80 99.22 98.87 99.01 99.28 95.15 35.14 
56828 99.08 99.35 98.69 98.85 99.21 95.21 35.48 
57052 98.86 99.28 98.72 98.86 99.29 95.01 33.95 
58385 98.83 99.27 98.73 98.86 99.27 95.05 34.57 
60053 98.77 99.19 98.85 98.98 99.22 95.13 35.25 
62796 98.92 99.32 98.80 98.92 99.33 95.07 35.01 
62806 98.90 99.31 98.78 98.89 99.31 95.06 35.08 
62957 98.93 99.34 98.78 98.94 99.33 95.10 35.07 
63113 98.97 99.39 98.84 98.98 99.38 95.12 35.13 
63670 98.89 99.32 98.79 98.91 99.30 95.03 34.79 
63878 98.93 99.34 98.81 98.92 99.34 95.06 34.87 
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64165 98.90 99.32 98.78 98.91 99.30 95.08 34.78 
64334 98.73 99.14 98.78 98.93 99.18 95.08 35.15 
64712 98.90 99.32 98.77 98.91 99.31 95.07 34.80 
65165 98.69 99.09 98.77 98.91 99.16 95.06 34.92 
66591 98.50 98.89 98.57 98.70 98.95 94.89 34.50 
68995 98.79 99.19 98.85 99.01 99.21 95.14 34.54 
69094 99.06 99.50 98.93 99.09 99.45 95.23 35.38 
73787 99.08 99.52 98.93 99.09 99.48 95.19 35.28 
74856 99.00 99.44 98.87 99.03 99.42 95.17 34.92 
78501 99.00 99.43 98.86 98.99 99.39 95.16 34.83 
78932 98.98 99.42 98.84 99.04 99.40 95.18 34.93 
79031 98.84 99.28 98.91 99.08 99.28 95.21 34.83 
MT-0080 98.77 99.23 98.69 98.81 99.23 95.02 34.00 
MT-0712 98.90 99.32 98.78 98.92 99.31 95.09 34.28 
MT-0718 98.85 99.31 98.76 98.89 99.28 95.07 34.30 
MT-0721 98.86 99.28 98.75 98.86 99.28 95.03 34.09 
MT-0751 98.66 99.09 98.79 98.88 99.13 95.09 34.95 
MT-0972 98.90 99.33 98.81 98.95 99.34 95.13 35.16 
MT-1103 98.89 99.31 98.80 98.90 99.31 95.10 34.67 
MT-1128 98.89 99.31 98.79 98.93 99.32 95.09 34.30 
MT-1167 98.53 98.95 98.65 98.76 99.02 94.97 33.34 
MT-1206 98.87 99.31 98.74 98.90 99.29 95.05 34.15 
MT-1212 98.94 99.37 98.82 98.97 99.36 95.15 34.81 
MT-1247 98.90 99.18 98.50 98.64 99.05 95.06 34.18 
MT-13-1408 99.03 99.31 98.68 98.81 99.16 95.19 34.80 
MT-13-1711 99.06 99.32 98.66 98.80 99.19 95.17 34.71 
MT-13-1712 98.97 99.21 98.61 98.71 99.10 95.11 34.37 
MT-13-1753 98.73 99.17 98.82 98.98 99.21 95.12 34.80 
MT-13-1828 99.07 99.33 98.67 98.80 99.19 95.17 34.81 
MT-13-1835 99.03 99.29 98.65 98.78 99.15 95.15 34.35 
MT-13-1892 98.99 99.26 98.59 98.74 99.13 95.11 34.62 
MT-13-2012 98.98 99.20 98.59 98.73 99.09 95.12 35.06 
MT-13-2334 98.94 99.38 98.81 98.98 99.35 95.10 34.45 
MT-13-2384 98.72 99.15 98.80 98.94 99.19 95.09 34.63 
MT-13-2690 99.01 99.44 98.88 99.03 99.41 95.15 34.76 
MT-13-2761 98.93 99.38 98.80 98.95 99.35 95.07 34.13 
MT-13-3209 98.74 99.17 98.84 98.98 99.21 95.12 34.68 
MT-13-848 98.96 99.24 98.61 98.71 99.11 95.16 34.86 
MT-131 98.56 98.96 98.66 98.78 99.04 94.96 33.19 
MT-1336 98.81 99.24 98.72 98.83 99.26 95.03 33.84 
MT-1345 98.67 99.12 98.75 98.88 99.17 95.03 34.17 
MT-1393 98.87 99.30 98.78 98.88 99.29 95.05 34.25 
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MT-140 98.86 99.28 98.73 98.87 99.28 95.05 33.98 
MT-1403 98.80 99.23 98.69 98.82 99.24 95.02 34.30 
MT-1466 98.88 99.34 98.77 98.94 99.32 95.09 34.47 
MT-1499 98.80 99.23 98.68 98.83 99.23 95.04 34.43 
MT-1549 98.89 99.32 98.77 98.90 99.32 95.10 34.36 
MT-1605 98.84 99.29 98.75 98.90 99.31 95.08 34.38 
MT-1684 98.88 99.30 98.77 98.90 99.31 95.12 35.29 
MT-1799 98.87 99.29 98.75 98.88 99.28 95.08 34.71 
MT-1838 98.89 99.31 98.78 98.92 99.31 95.11 34.87 
MT-1971 98.89 99.32 98.76 98.91 99.32 95.05 34.36 
MT-2151 98.86 99.28 98.76 98.88 99.29 95.07 34.42 
MT-2174 98.83 99.25 98.73 98.87 99.27 95.02 33.81 
MT-2175 98.80 99.20 98.70 98.83 99.24 95.03 33.89 
MT-2178 98.67 99.08 98.75 98.86 99.12 95.05 34.27 
MT-2184 98.86 99.29 98.77 98.89 99.30 95.08 34.41 
MT-2224 98.79 99.23 98.68 98.80 99.24 95.00 34.03 
MT-2356 98.91 99.32 98.80 98.90 99.32 95.10 34.67 
MT-2465 98.90 99.33 98.81 98.93 99.33 95.11 34.64 
MT-2473 98.82 99.26 98.76 98.87 99.26 95.09 34.67 
MT-2474 98.76 99.19 98.69 98.79 99.22 94.98 33.57 
MT-2538 98.89 99.30 98.77 98.89 99.30 95.08 34.64 
MT-2665 98.82 99.21 98.71 98.83 99.23 95.02 33.78 
MT-2667 98.84 99.27 98.73 98.85 99.28 95.08 34.42 
MT-2706 98.85 99.28 98.74 98.87 99.28 95.03 34.00 
MT-2720 98.85 99.31 98.77 98.90 99.30 95.10 34.70 
MT-2762 98.83 99.26 98.74 98.85 99.26 95.04 34.40 
MT-2768 98.91 99.32 98.77 98.92 99.32 95.09 34.21 
MT-2769 98.86 99.28 98.77 98.87 99.28 95.07 34.54 
MT-2771 98.82 99.24 98.73 98.85 99.28 95.08 34.61 
MT-2792 98.57 98.96 98.64 98.76 99.02 94.94 34.33 
MT-2800 98.90 99.33 98.81 98.94 99.32 95.12 34.64 
MT-289 98.93 99.38 98.83 98.97 99.38 95.13 34.69 
MT-2905 98.48 98.89 98.59 98.69 98.96 94.87 34.02 
MT-2910 98.55 98.96 98.64 98.77 99.01 94.93 34.53 
MT-2931 98.61 99.04 98.67 98.81 99.08 95.00 35.18 
MT-3000 98.64 99.04 98.65 98.80 99.09 94.94 34.28 
MT-3004 98.53 98.94 98.62 98.75 98.99 94.96 34.72 
MT-3074 98.79 99.22 98.70 98.80 99.22 95.01 33.66 
MT-3173 98.66 99.08 98.56 98.65 99.08 94.90 33.11 
MT-3194 98.84 99.27 98.74 98.88 99.26 95.11 34.61 
MT-3239 98.61 99.02 98.67 98.80 99.10 95.02 34.17 
MT-3255 98.71 99.13 98.62 98.73 99.15 94.95 33.11 
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MT-3271 98.79 99.22 98.72 98.80 99.22 94.97 33.48 
MT-3281 98.62 99.04 98.72 98.85 99.11 95.05 34.42 
MT-3296 98.77 99.17 98.82 98.97 99.21 95.10 34.71 
MT-3341 98.76 99.22 98.67 98.79 99.21 95.00 33.72 
MT-3673 98.89 99.30 98.76 98.90 99.31 95.07 34.12 
MT-3683 98.81 99.25 98.72 98.85 99.24 95.06 34.34 
MT-3787 98.82 99.25 98.72 98.84 99.25 95.04 33.92 
MT-389 98.82 99.26 98.72 98.87 99.26 95.06 34.04 
MT-393 98.68 99.09 98.75 98.87 99.15 95.07 34.66 
MT-398 98.78 99.18 98.64 98.75 99.20 94.97 33.36 
MT-405 98.84 99.27 98.75 98.86 99.27 95.07 34.22 
MT-4067 98.81 99.24 98.72 98.84 99.26 95.03 34.12 
MT-4137 98.68 99.11 98.77 98.91 99.16 95.07 34.44 
MT-4166 98.99 99.41 98.87 99.00 99.41 95.16 35.33 
MT-4230 98.79 99.20 98.85 99.00 99.24 95.14 35.10 
MT-441 98.95 99.36 98.80 98.95 99.37 95.09 34.49 
MT-452 98.94 99.40 98.84 98.98 99.39 95.14 34.63 
MT-467 98.80 99.21 98.69 98.83 99.23 94.99 33.61 
MT-4683 98.88 99.30 98.75 98.89 99.29 95.07 34.42 
MT-4846 98.47 98.88 98.58 98.67 98.97 94.93 32.92 
MT-4854 98.82 99.25 98.72 98.86 99.25 95.06 33.95 
MT-4884 98.63 99.07 98.72 98.85 99.12 95.05 34.33 
MT-4942 98.77 99.20 98.68 98.79 99.22 95.00 33.83 
MT-504 98.98 99.44 98.87 99.00 99.41 95.15 34.94 
MT-5195 98.95 99.38 98.83 98.98 99.38 95.12 34.82 
MT-5337 98.71 99.14 98.64 98.73 99.15 94.97 33.36 
MT-5373 98.93 99.34 98.80 98.92 99.33 95.13 35.07 
MT-5383 98.85 99.28 98.76 98.88 99.28 95.05 34.52 
MT-5447 98.71 99.09 98.77 98.93 99.16 95.09 34.95 
MT-5531 98.70 99.13 98.64 98.73 99.17 94.95 33.32 
MT-5543 98.65 99.08 98.74 98.87 99.15 95.05 34.39 
MT-567 98.82 99.23 98.73 98.84 99.25 95.06 34.39 
MT-5870 98.85 99.27 98.72 98.85 99.27 95.05 34.16 
MT-5983 98.84 99.26 98.77 98.84 99.26 95.11 34.65 
MT-6084 98.82 99.25 98.73 98.84 99.24 95.07 34.25 
MT-6205 98.62 99.06 98.72 98.86 99.12 95.05 34.61 
MT-6218 98.90 99.34 98.81 98.93 99.35 95.11 34.91 
MT-6226 98.73 99.17 98.65 98.73 99.18 94.96 33.35 
MT-6429 98.90 99.33 98.80 98.94 99.35 95.13 35.16 
MT-661 98.90 99.33 98.78 98.90 99.31 95.07 34.33 
MT-692 98.92 99.34 98.90 98.97 99.36 95.16 38.20 
MT-853 98.83 99.24 98.71 98.83 99.24 95.01 34.34 
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MT-877 98.92 99.36 98.78 98.92 99.34 95.08 34.43 
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TABLE S3 Depth of coverage for each isolate 
 

 Average depth of coverage by reference genome 

 M. 
tuberculosis, 

lineage 4 

M. 
tuberculosis, 

lineage 4 

M. 
tuberculosis, 

lineage 2 

M. 
africanum 

M. bovis M. canettii M. kansasii 

Isolate  H37Rv CDC1551 CCDC5079 GN041182 AF2122/97 CIPT 
140010059 

ATCC 
12478 

9965 68.99 69.26 68.98 68.90 69.60 66.41 15.03 
10155 47.63 47.81 47.61 47.55 48.06 45.82 10.91 
10223 79.56 79.88 79.70 79.62 80.27 76.70 17.65 
11011 49.04 49.22 49.03 48.95 49.45 47.18 11.26 
11234 42.84 43.00 42.83 42.76 43.20 41.22 9.63 
14069 51.64 51.82 51.62 51.54 52.08 49.67 11.75 
14508 79.36 79.69 79.53 79.45 80.03 76.58 17.60 
15613 73.42 73.73 73.40 73.34 74.11 70.63 15.77 
16490 57.99 58.23 57.98 57.92 58.48 55.78 12.65 
16493 58.34 58.56 58.33 58.22 58.84 56.15 13.12 
18421 43.40 43.58 43.39 43.34 43.79 41.76 9.84 
18422 65.68 65.92 65.68 65.59 66.27 63.20 14.72 
18747 51.66 51.87 51.65 51.59 52.19 49.70 11.76 
18988 49.43 49.63 49.42 49.35 49.95 47.53 11.18 
19057 49.32 49.50 49.31 49.25 49.81 47.47 11.27 
19276 40.47 40.63 40.45 40.41 40.90 38.92 9.22 
50045 55.85 56.07 55.83 55.79 56.34 53.70 12.16 
50179 53.03 53.24 53.03 52.96 53.56 51.05 12.22 
50248 80.81 81.13 80.80 80.72 81.54 77.75 17.40 
53221 75.43 75.72 75.39 75.35 76.07 72.58 17.16 
54902 59.53 59.77 59.51 59.45 60.06 57.26 13.31 
55546 89.11 89.47 89.25 89.21 89.90 85.92 19.69 
55753 52.70 52.90 52.71 52.64 53.14 50.71 11.77 
55988 98.92 99.31 98.89 98.82 99.75 95.26 22.72 
55989 89.10 89.44 89.21 89.18 89.86 85.93 20.67 
56828 111.65 111.89 111.37 111.23 112.33 107.49 25.85 
57052 40.81 40.98 40.80 40.76 41.21 39.26 9.31 
58385 74.28 74.57 74.25 74.19 74.94 71.46 15.76 
60053 84.05 84.37 84.16 84.14 84.76 81.10 19.00 
62796 77.14 77.43 77.11 77.06 77.79 74.27 17.23 
62806 88.45 88.77 88.39 88.35 89.21 85.14 20.01 
62957 74.01 74.30 73.99 73.97 74.67 71.25 16.20 
63113 79.20 79.51 79.18 79.14 79.92 76.24 17.98 
63670 68.14 68.41 68.12 68.07 68.79 65.62 15.57 
63878 73.12 73.40 73.10 73.05 73.75 70.41 16.69 
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64165 65.98 66.23 65.95 65.92 66.59 63.53 14.78 
64334 83.68 84.01 83.78 83.80 84.41 80.70 18.81 
64712 70.07 70.33 70.04 70.00 70.66 67.48 15.68 
65165 75.17 75.47 75.26 75.27 75.82 72.57 17.04 
66591 58.02 58.25 58.10 58.09 58.51 56.01 13.18 
68995 54.47 54.69 54.56 54.54 54.86 52.49 12.26 
69094 89.53 89.86 89.52 89.42 90.22 86.12 19.87 
73787 71.92 72.18 71.88 71.83 72.48 69.16 16.54 
74856 73.43 73.73 73.42 73.35 74.03 70.61 15.85 
78501 61.82 62.03 61.80 61.75 62.32 59.46 13.70 
78932 68.42 68.68 68.40 68.35 68.97 65.82 15.11 
79031 62.64 62.86 62.70 62.70 63.17 60.40 14.48 
MT-0080 58.44 58.65 58.45 58.36 58.93 56.25 12.85 
MT-0712 53.75 53.95 53.74 53.68 54.21 51.73 11.95 
MT-0718 54.04 54.24 54.04 53.97 54.54 52.03 11.81 
MT-0721 48.33 48.50 48.34 48.26 48.77 46.55 10.53 
MT-0751 48.42 48.59 48.50 48.45 48.84 46.70 10.74 
MT-0972 88.00 88.33 87.98 87.88 88.75 84.72 20.13 
MT-1103 70.91 71.17 70.89 70.79 71.50 68.24 15.79 
MT-1128 48.84 49.01 48.83 48.75 49.27 47.03 11.14 
MT-1167 43.48 43.64 43.55 43.50 43.89 41.85 8.69 
MT-1206 51.48 51.65 51.47 51.40 51.92 49.52 11.14 
MT-1212 73.74 74.01 73.72 73.64 74.38 70.96 16.05 
MT-1247 58.07 58.19 57.94 57.88 58.43 55.93 13.00 
MT-13-1408 78.78 78.94 78.59 78.50 79.25 75.85 17.81 
MT-13-1711 60.34 60.45 60.19 60.10 60.70 58.10 13.73 
MT-13-1712 60.17 60.29 60.06 59.95 60.54 57.93 13.00 
MT-13-1753 70.94 71.21 71.04 70.97 71.51 68.38 15.95 
MT-13-1828 69.56 69.70 69.39 69.30 70.01 66.97 15.58 
MT-13-1835 48.67 48.78 48.56 48.51 48.97 46.89 11.00 
MT-13-1892 61.89 62.01 61.73 61.64 62.25 59.59 13.98 
MT-13-2012 108.73 108.98 108.46 108.33 109.37 104.68 23.30 
MT-13-2334 56.86 57.07 56.85 56.79 57.37 54.71 12.44 
MT-13-2384 63.19 63.42 63.28 63.22 63.72 60.92 14.13 
MT-13-2690 66.11 66.35 66.10 66.03 66.68 63.62 14.63 
MT-13-2761 49.01 49.19 49.01 48.95 49.45 47.18 10.79 
MT-13-3209 68.42 68.66 68.51 68.44 69.00 65.96 15.26 
MT-13-848 92.69 92.91 92.46 92.38 93.27 89.27 20.29 
MT-131 39.42 39.57 39.48 39.41 39.82 37.97 8.11 
MT-1336 46.87 47.02 46.88 46.76 47.29 45.09 10.23 
MT-1345 48.42 48.58 48.49 48.42 48.84 46.72 11.06 
MT-1393 52.67 52.84 52.65 52.55 53.12 50.69 11.88 
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MT-140 42.75 42.89 42.75 42.66 43.12 41.15 9.77 
MT-1403 74.69 74.97 74.69 74.59 75.32 71.89 16.09 
MT-1466 53.41 53.60 53.41 53.33 53.90 51.41 11.66 
MT-1499 71.15 71.41 71.17 71.04 71.75 68.48 15.53 
MT-1549 53.16 53.35 53.17 53.06 53.62 51.13 11.95 
MT-1605 55.26 55.47 55.24 55.18 55.75 53.17 12.48 
MT-1684 123.56 123.99 123.54 123.34 124.59 118.86 27.31 
MT-1799 80.97 81.26 80.95 80.86 81.66 77.94 18.15 
MT-1838 81.86 82.16 81.87 81.72 82.56 78.82 18.60 
MT-1971 49.45 49.60 49.45 49.33 49.86 47.59 11.30 
MT-2151 62.35 62.59 62.36 62.28 62.91 60.03 14.07 
MT-2174 38.15 38.27 38.14 38.06 38.47 36.69 8.26 
MT-2175 43.85 43.98 43.84 43.75 44.22 42.16 9.63 
MT-2178 50.66 50.81 50.74 50.65 51.12 48.83 11.32 
MT-2184 56.40 56.58 56.39 56.25 56.88 54.26 12.58 
MT-2224 51.33 51.49 51.32 51.20 51.79 49.36 10.92 
MT-2356 62.91 63.10 62.91 62.78 63.46 60.54 14.20 
MT-2465 62.19 62.41 62.18 62.06 62.73 59.84 14.19 
MT-2473 80.14 80.43 80.13 80.03 80.84 77.13 17.72 
MT-2474 49.12 49.30 49.11 49.04 49.59 47.27 10.27 
MT-2538 60.33 60.52 60.32 60.19 60.87 58.04 13.60 
MT-2665 47.72 47.89 47.71 47.64 48.13 45.92 10.54 
MT-2667 61.75 61.98 61.76 61.68 62.33 59.48 13.64 
MT-2706 42.99 43.13 43.00 42.90 43.36 41.35 9.53 
MT-2720 67.83 68.05 67.81 67.69 68.40 65.29 15.47 
MT-2762 56.61 56.81 56.61 56.51 57.10 54.52 12.81 
MT-2768 46.93 47.08 46.92 46.84 47.35 45.19 10.51 
MT-2769 63.40 63.60 63.40 63.28 63.95 61.05 14.32 
MT-2771 80.10 80.38 80.10 79.98 80.80 77.08 17.65 
MT-2792 60.65 60.86 60.75 60.65 61.17 58.52 13.46 
MT-2800 64.85 65.08 64.85 64.74 65.37 62.44 14.83 
MT-289 68.07 68.34 68.07 67.98 68.64 65.52 15.43 
MT-2905 56.03 56.25 56.12 56.08 56.49 54.05 12.51 
MT-2910 69.75 70.00 69.87 69.81 70.38 67.36 15.90 
MT-2931 104.96 105.40 105.16 105.09 105.93 101.32 23.75 
MT-3000 53.55 53.73 53.64 53.56 54.01 51.64 11.88 
MT-3004 75.17 75.41 75.30 75.17 75.78 72.50 16.71 
MT-3074 49.85 50.00 49.85 49.74 50.29 47.97 10.39 
MT-3173 42.06 42.23 42.05 42.04 42.45 40.47 8.63 
MT-3194 72.91 73.18 72.92 72.82 73.55 70.16 15.96 
MT-3239 71.75 72.00 71.87 71.78 72.36 69.21 15.68 
MT-3255 44.38 44.54 44.38 44.31 44.76 42.71 9.55 
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MT-3271 47.46 47.63 47.47 47.39 47.86 45.61 10.20 
MT-3281 80.10 80.38 80.24 80.12 80.78 77.25 17.26 
MT-3296 61.10 61.29 61.19 61.09 61.64 58.91 13.89 
MT-3341 46.84 47.01 46.84 46.75 47.26 45.07 10.18 
MT-3673 48.90 49.05 48.89 48.80 49.33 47.03 10.74 
MT-3683 70.56 70.82 70.56 70.45 71.17 67.93 15.47 
MT-3787 45.52 45.68 45.51 45.43 45.92 43.80 10.15 
MT-389 48.13 39.43 48.13 48.02 48.53 46.30 10.67 
MT-393 67.52 67.74 67.62 67.54 68.10 65.15 15.46 
MT-398 39.29 39.43 39.28 39.23 39.62 37.83 8.67 
MT-405 53.99 54.17 53.99 53.87 54.46 51.95 11.96 
MT-4067 59.17 59.37 59.16 59.07 59.65 56.93 13.02 
MT-4137 53.08 53.24 53.17 53.09 53.55 51.20 11.95 
MT-4166 96.86 97.22 96.82 96.73 97.70 93.22 21.74 
MT-4230 91.26 91.62 91.40 91.35 92.04 88.05 20.36 
MT-441 54.34 54.51 54.33 54.21 54.80 52.31 12.39 
MT-452 55.69 55.89 55.70 55.59 56.21 53.61 12.36 
MT-467 47.90 48.10 47.93 47.87 48.35 46.11 10.31 
MT-4683 67.69 67.91 67.69 67.58 68.28 65.13 14.95 
MT-4846 53.03 53.26 53.13 53.10 53.61 51.08 10.29 
MT-4854 53.10 53.28 53.10 53.00 53.54 51.09 11.75 
MT-4884 65.72 65.95 65.80 65.75 66.25 63.37 14.69 
MT-4942 60.97 61.19 60.98 60.87 61.50 58.68 13.13 
MT-504 67.54 67.77 67.53 67.42 68.10 64.99 15.88 
MT-5195 76.29 76.57 76.29 76.17 76.94 73.44 17.60 
MT-5337 50.84 51.03 50.85 50.77 51.32 48.94 10.64 
MT-5373 96.44 96.80 96.42 96.29 97.25 92.83 21.46 
MT-5383 61.66 61.90 61.67 61.61 62.23 59.31 12.84 
MT-5447 55.46 55.69 55.56 55.52 56.05 53.44 11.78 
MT-5531 56.13 56.39 56.15 56.10 56.73 54.00 11.29 
MT-5543 58.77 58.96 58.86 58.78 59.28 56.70 12.82 
MT-567 77.89 78.17 77.89 77.76 78.54 74.96 16.78 
MT-5870 50.87 51.04 50.86 50.77 51.31 48.96 11.11 
MT-5983 76.06 76.39 76.07 76.00 76.91 73.13 15.39 
MT-6084 69.98 70.23 69.98 69.86 70.58 67.36 15.11 
MT-6205 73.78 74.10 73.89 73.87 74.54 71.13 15.46 
MT-6218 74.27 74.56 74.27 74.17 74.91 71.50 17.00 
MT-6226 52.55 52.81 52.57 52.54 53.15 50.52 10.43 
MT-6429 88.53 88.87 88.52 88.39 89.33 85.24 20.10 
MT-661 49.89 50.05 49.88 49.79 50.32 47.99 11.08 
MT-692 66.84 67.09 66.84 66.74 67.43 64.32 14.61 
MT-853 59.55 59.75 59.56 59.45 60.08 57.31 13.03 
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MT-877 51.41 51.57 51.41 51.31 51.86 49.49 11.43 
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TABLE S4 Clusters and colour scheme used in Figures 
 
   Changes in clustering compared to those identified using CDC1551, by reference genome 

Isolate Cluster 
according to 
M. 
tuberculosis 
lineage 4, 
CDC1551 

Colours 
used in all 
figures 
based on 
the 
CDC1551 
clusters 

M. 
tuberculosis 
H37Rv 

M. 
tuberculosis 
CCDC5079 

M. africanum M. bovis M. canettii M. kansasii 

56828 Mn  No change No change No change No change No change Clustering lost 
MT-1247  Mn  No change No change No change No change No change Clustering lost 
MT-13-1408  Mn  No change No change No change No change No change Clustering lost 
MT-13-1711  Mn  No change No change No change No change No change Clustering lost 
MT-13-1712  Mn  No change No change No change No change No change Clustering lost 
MT-13-1828  Mn  No change No change No change No change No change Clustering lost 
MT-13-1835  Mn  No change No change No change No change No change Clustering lost 
MT-13-1892  Mn  No change No change No change No change No change Clustering lost 
MT-13-2012  Mn  No change No change No change No change No change Clustering lost 
MT-13-848  Mn  No change No change No change No change No change Clustering lost 
55753 Mj-VI  No change No change No change No change No change No change 
55988 Mj-VI  No change No change No change No change No change No change 
10155 Mj-I  No change No change No change No change No change No change 
11011 Mj-I  No change No change No change No change No change No change 
11234 Mj-I  No change No change No change No change No change No change 
14069 Mj-I  No change No change No change No change No change No change 
16493 Mj-I  No change No change No change No change No change No change 
18421 Mj-I  No change No change No change No change No change No change 
18422 Mj-I  No change No change No change No change No change No change 
18747 Mj-II  No change No change No change No change No change Clustering lost 
18988 Mj-II  No change No change No change No change No change Clustering lost 
19057 Mj-II  No change No change No change No change No change Clustering lost 
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19276 Mj-II  No change No change No change No change No change Clustering lost 
50179 Mj-II  No change No change No change No change No change Clustering lost 
57052 Mj-II  No change No change No change No change No change Clustering lost 
63670 Mj-II  No change No change No change No change No change Clustering lost 
64165 Mj-II  No change No change No change No change No change Clustering lost 
54902 Mj-IV.a  No change No change No change No change No change Clustering lost 
9965 Mj-IV.a  No change No change No change No change No change Clustering lost 
16490 Mj-IV.b  No change No change No change No change No change Clustering lost 
50045 Mj-IV.b  No change No change No change No change No change Clustering lost 
50248 Mj-IV.b  No change No change No change No change No change Clustering lost 
53221 Mj-IV.b  No change No change No change No change No change Clustering lost 
62806 Mj-IV.b  No change No change No change No change No change Clustering lost 
62957 Mj-IV.b  No change No change No change No change No change Clustering lost 
63113 Mj-IV.b  No change No change No change No change No change Clustering lost 
64712 Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-13-2334  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-13-2690  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-13-2761  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-1403  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-1799  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-398  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-4067  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-4683  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-5373  Mj-IV.b  No change No change No change No change No change Clustering lost 
MT-5870  Mj-IV.b  No change No change No change No change No change Clustering lost 
62796 Mj-IV.c  No change No change No change No change No change Clustering lost 
63878 Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-140  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-1499  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-1971  Mj-IV.c  No change No change No change No change No change Clustering lost 
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MT-2224  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-2768  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-441  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-452  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-661  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-692  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-853  Mj-IV.c  No change No change No change No change No change Clustering lost 
MT-877  Mj-IV.c  No change No change No change No change No change Clustering lost 
58385 Not clustered  No change No change No change No change No change  No change 
10223 Mj-V.a  No change No change No change No change No change Clustering lost 
55546 Mj-V.a  No change No change No change No change No change Clustering lost 
55989 Mj-V.a  No change No change No change No change No change Clustering lost 
60053 Mj-V.a  No change No change No change No change No change Clustering lost 
64334 Mj-V.a  No change No change No change No change No change Clustering lost 
65165 Mj-V.a  No change No change No change No change No change Clustering lost 
68995 Mj-V.a  No change No change No change No change No change Clustering lost 
MT-1167  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-13-1753  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-1345  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-3296  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-393  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-4137  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-4884  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-5543  Mj-V.a  No change No change No change No change No change Clustering lost 
MT-751  Mj-V.a  No change No change No change No change No change Clustering lost 
14508 Mj-V.a  No change No change No change No change Mj-V.c Clustering lost 
79031 Mj-V.b  No change No change No change No change No change Clustering lost 
MT-13-2384  Mj-V.b  No change No change No change No change No change Clustering lost 
MT-13-3209  Mj-V.b  No change No change No change No change No change Clustering lost 
MT-131  Mj-V.b  No change No change No change No change No change Clustering lost 
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MT-2178  Mj-V.b  No change No change No change No change No change Clustering lost 
MT-3281  Mj-V.b  No change No change No change No change No change Clustering lost 
MT-4230  Mj-V.b  No change No change No change No change No change Clustering lost 
MT-4846  Mj-V.b  No change No change No change No change No change Clustering lost 
MT-5447  Mj-V.b  No change No change No change No change No change Clustering lost 
MT-6205  Mj-V.b  No change No change No change No change No change Clustering lost 
66591 Mj-V.c  No change No change No change No change No change Clustering lost 
MT-2792  Mj-V.c  No change No change No change No change No change Clustering lost 
MT-2905  Mj-V.c  No change No change No change No change No change Clustering lost 
MT-2910  Mj-V.c  No change No change No change No change No change Clustering lost 
MT-2931  Mj-V.c  No change No change No change No change No change Clustering lost 
MT-3000  Mj-V.c  No change No change No change No change No change Clustering lost 
MT-3004  Mj-V.c  No change No change No change No change No change Clustering lost 
MT-3239  Mj-V.c  No change No change No change No change No change Clustering lost 
15613 Mj-V.d  No change No change No change No change No change Clustering lost 
MT-2538  Mj-V.d  No change No change No change No change No change Clustering lost 
74856 Mj-III.a  No change No change No change No change No change Clustering lost 
78932 Mj-III.a  No change No change No change No change No change Clustering lost 
MT-1393  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-1549  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-1605  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-2175  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-2706  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-2720  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-2771  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-2800  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-3074  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-3255  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-3341  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-3673  Mj-III.a  No change No change No change No change No change Clustering lost 
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MT-4166  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-4942  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-5195  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-5337  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-5383  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-5488  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-5531  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-5983  Mj-III.a  No change No change No change No change No change Clustering lost 
MT-721  Mj-III.a  No change No change No change No change No change Clustering lost 
73787 Mj-III.b  No change No change No change No change No change Clustering lost 
MT-1206  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-1212  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-1336  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-1466  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-1684  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-2184  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-2356  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-2465  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-2473  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-2474  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-2762  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-3173  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-3194  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-3271  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-3683  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-4854  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-504  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-6084  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-6429  Mj-III.b  No change No change No change No change No change Clustering lost 
MT-0080  Mj-III.c  No change No change No change No change No change Clustering lost 

 
296



MT-0712  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-0718  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-0972  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-1103  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-1128  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-1838  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-2151  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-2174  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-2665  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-2667  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-2769  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-289  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-3787  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-389  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-405  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-467  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-567  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-578  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-6218  Mj-III.c  No change No change No change No change No change Clustering lost 
MT-6226  Mj-III.c  No change No change No change No change No change Clustering lost 
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The implications of whole-genome sequencing
in the control of tuberculosis

Robyn S. Lee and Marcel A. Behr

Abstract: The availability of whole-genome sequencing (WGS) as a tool for the diagnosis and
clinical management of tuberculosis (TB) offers considerable promise in the fight against this
stubborn epidemic. However, like other new technologies, the best application of WGS remains
to be determined, for both conceptual and technical reasons. In this review, we consider the
potential value of WGS in the clinical laboratory for the detection of Mycobacterium tubercu-
losis and the prediction of antibiotic resistance. We also discuss issues pertaining to data
generation, interpretation and dissemination, given that WGS has to date been generally per-
formed in research labs where results are not necessarily packaged in a clinician-friendly
format. Although WGS is far more accessible now than it was in the past, the transition from a
research tool to study TB into a clinical test to manage this disease may require further fine-
tuning. Improvements will likely come through iterative efforts that involve both the labora-
tories ready to move TB into the genomic era and the front-line clinical/public health staff who
will be interpreting the results to inform management decisions.

Keywords: clinical microbiology, diagnostics, drug resistance, Mycobacterium tuberculosis,
whole-genome sequencing

Introduction
Owing to advances in technology and reductions
in cost, whole-genome sequencing (WGS) has
been transformed from a centralized service
used by a select few to interrogate single gen-
omes into a relatively decentralized lab tech-
nique used by many to detect and track
infectious pathogens [Long et al. 2014; Price
et al. 2014; SenGupta et al. 2014; Snitkin et al.
2012; Quick et al. 2014, 2015]. This transform-
ation has not spared the mycobacterial genus,
with a number of papers presenting its applica-
tion to the characterization of Mycobacterium
tuberculosis cases and outbreaks [Walker et al.
2013; Bryant et al. 2013; Gardy et al. 2011;
Lee et al. 2015; Casali et al. 2014; Jamieson
et al. 2014b; Stucki et al. 2015; Roetzer et al.
2013; Guerra-Assuncao et al. 2015]. In this
review, we will consider the opportunities pre-
sented by WGS for clinical management of
tuberculosis (TB) across two conceptual
spaces: diagnosis (M. tuberculosis detection)
and treatment (prediction of antibiotic resist-
ance). We recognize that the greatest utility for
WGS will likely lie in countries with the highest
TB burdens; however, as WGS requires

substantial financial and technical infrastruc-
ture, we have situated this review in the setting
of a high-resource country where this method
may be more imminently implemented.

A brief description of WGS
WGS begins at the bench, with the extraction and
purification of genomic DNA. In very brief detail,
this DNA is typically fragmented into shorter
pieces, which are then sequenced in ‘reads’ of
100!500 base pairs (bps) for bench-top sequen-
cers. There are a number of different sequencing
platforms available [Loman et al. 2012a; Kwong
et al. 2015; Heather and Chan, 2015]. The choice
of platform depends largely on the question,
which in turn is dictated by clinical needs. If the
aim is to identify unknown organisms or to char-
acterize a novel bacterium, one might prefer a
sequencer that generates longer reads (such as
the PacBio RS by Pacific Biosciences, Menlo
Park, CA, USA), as such reads enable more accur-
ate de novo assembly [Loman et al. 2012a]. If the
goal is to speciate the microorganism, determine
drug resistance or resolve transmission networks,
sequencers producing short reads can be used.
Among the benchtop sequencers generating
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short read data, the most accurate platform cur-
rently available is the Illumina MiSeq (Illumina,
San Diego, CA, USA) [Loman et al. 2012b]
(though whether the difference in accuracy com-
pared with another platform, the Ion Torrent
PGM from ThermoFisher Scientific, Waltham,
MA, USA, ultimately affects clinical inferences
has been questioned [Harris et al. 2013]). In the
analysis of such short read data, a reference-based
approach is preferred [Loman et al. 2012a],
wherein these reads are aligned (‘mapped’) to a
reference genome. This is ideal for analysis of
M. tuberculosis, given the absence of horizontal
gene transfer in this species and the existence of
complete, well-annotated reference genomes.
Such a workflow for M. tuberculosis is illustrated
in Figure 1.

With the Illumina MiSeq platform, short reads of
up to 300 bps in length are produced. To identify
the microorganism in question based on these
reads, a variety of tools can be utilized. The
Basic Local Alignment Search Tool (BLAST
[Altschul et al. 1990]) compares reads with exist-
ing microbial DNA databases and uses an
algorithm to identify the most likely microorgan-
ism. Other methods include classifying the
microorganism based on how well reads align to
conserved coding sequences within phyla or spe-
cies (‘clade-specific marker sequences’ [Segata
et al. 2012]) or k-mer-based approaches [Wood
and Salzberg, 2014]. In the latter, reads are
divided into segments of k bases in length
(called ‘k-mers’) that are compared with a data-
base of known k-mer sequences from selected
microorganisms. The best identification is deter-
mined as the microorganism with the highest
proportion of matching k-mers.

Once reads have been assigned the identity ‘M.
tuberculosis’, they are subsequently mapped to the
corresponding sequence on the reference genome
to identify differences (i.e. variants) in the sample
compared with this reference. There are several
key considerations when performing such refer-
ence-based analyses. First, the choice of an
appropriate reference genome is crucial; if the
reference is too dissimilar from the isolate in
question, large numbers of reads will not be
mapped and these data (and all variation therein)
will be ignored. Second, alignment to GC-rich
repetitive regions can be difficult, as reads may
map to more than one location, thereby produ-
cing inconclusive matches. Such regions include
the PE-PPE family proteins, which comprise

!10% of the coding sequence of M. tuberculosis
[Cole et al. 1998]. To reduce the risk of false-
positive results, the PE-PPE regions and mobile
elements are typically excluded from analyses
[Comas et al. 2010; Roetzer et al. 2013].
Alternatively, one could perform targeted
sequencing using a platform capable of generat-
ing longer reads that span repetitive regions.
However, this would incur additional expense,
as well as technical/bioinformatics requirements,
and may not provide additional information of
use for clinical applications.

Using a reference-based approach, single nucleo-
tide polymorphisms (SNPs; i.e. a difference in a
single base in the genome compared to the refer-
ence) and insertions/deletions (indels) present in
the test isolate can be identified (‘called’) com-
pared with the referent. This process, the quality
control steps therein and the different tools used
for identifying SNPs are reviewed in detail else-
where in [Pabinger et al. 2014; Olson et al. 2015].
For the purposes of this work, we have focused
on the utility of WGS for the clinician and, in
particular, the use of these SNPs to predict
drug resistance. In M. tuberculosis research,
SNPs have also been used to extensively to delin-
eate transmission networks, however, an in-depth
discussion of this utility is beyond the scope of
this review. The interested reader is directed to
the several examples in the literature of its use in
TB outbreak investigations [Gardy et al. 2011;
Stucki et al. 2015; Lee et al. 2015; Torok et al.
2013; Kato-Maeda et al. 2013; Schurch et al.
2010; Ocheretina et al. 2015; Walker et al.
2013; Roetzer et al. 2013]. It is worth noting at
this point that genotyping is occasionally required
for clinical care, for instance, to rule out labora-
tory cross-contamination as a false-positive cause
of a positive culture, or when trying to determine
when a TB recurrence is due to relapse of the
original infection versus exogenous reinfection.
For both of these applications, the lessons of out-
break investigation indicate that WGS has higher
resolution than traditional typing methods, such
as spoligotyping, mycobacterial interspersed
repetitive units (MIRUs), or restriction fragment
length polymorphism (RFLP) [Gardy et al. 2011;
Lee et al. 2015; Walker et al. 2013; Roetzer et al.
2013]. Therefore, it can be inferred that, for both
situations, if the traditional method returns a
result of ‘different strain’, WGS is not necessary
to answer the clinical question. If, however, the
traditional typing method returns a matched
pattern, WGS may be required to confidently
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Genomic
DNA

extraction 

Fragmentation,
blunting of ends and 
ligation of adaptors 

Sequencing (short reads) 

Quality check of reads

Depth of 
coverage 

Genome coverage 

Wet lab 

Dry lab 

Alignment to reference 

SNP (and indel) calling 

Gene annotation 

Filtering to remove low quality variants 

Reference: ACTGACTGGGCATCAReference: ACTGACTGGGCATCA

Reads: ACTGACTGGGCATCA
CTGACTGGGCATCA

ATCTGACTGGGGATCA 

ACTGACCGGGGATCA
    CTGACCGGGGATCA
ATCTGACCGGGGATCA

SNP present

SNP in rpoBWild-type rpoB

No SNP present

Figure 1. WGS workflow for Mycobacterium tuberculosis.
In brief, whole-genome sequencing (WGS) begins in the wet lab (top panel), wherein genomic DNA (gDNA) is
extracted. For a M. tuberculosis culture, this is done in a biosafety level 3 laboratory. After DNA extraction,
library preparation is conducted, wherein genomic DNA is fragmented into pieces. Uneven ends of gDNA are
blunted and adaptor sequences are added. After passing quality control, libraries are advanced to sequencing.
Further analysis occurs in the dry lab (bottom panel). Potential contamination is assessed and the quality of
sequencing is evaluated on a per isolate basis, including the examination of Phred quality scores of the
sequenced bases (where Phred¼!10*logPerror). FastQC, for example, is a software that can be used for
such quality control, and is applied directly on raw sequence data (available from http://www.bioinfor-
matics.bbsrc.ac.uk/projects/fastqc/, shown in the screenshot). Adaptors (and potentially low-quality base
pairs) are trimmed and reads of length under a prespecified limit (e.g. 70 base pairs used by the 1000
Genomes Project) may be excluded (not shown). High-quality reads are aligned to a reference genome (this
can be visualized in Integrative Genomics Viewer, also shown in screenshot [Thorvaldsdottir et al. 2013]), and
metrics such as genome coverage (the percentage of the reference genome that has at least one read mapped
to it) and depth of coverage (the average number of reads mapped to each locus) are evaluated. Isolates are
retained if a priori quality measures are met. Reads are excluded if they map to more than one locus in the
genome, and additional quality measures may be applied such as removing polymerase chain reaction dupli-
cates and local realignment around indels. Once quality control steps are conducted, single-nucleotide poly-
morphisms and indels can then be ‘called’ compared with the reference genome. Low-quality variants are then
removed using various filtering parameters to reduce the number of false positives. Genes are then annotated
and repetitive regions and mobile elements may be filtered out of further analyses.
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distinguish a related strain due to ancestry from
a true match, with the latter being observed
during laboratory cross-contamination or
relapse.

Regardless of the application, the quality of WGS
data depends on a number of factors, including
the desired length of the sequencing reads and
the cycle time [Quick et al. 2015]. These param-
eters in turn affect the turnaround time for
results. Considering the most frequently used
bench-top sequencers, raw sequencing results
can be available in a clinically attractive span of
just a few hours (for the Ion Torrent PGM) to as
much as 39 hours with MiSeq for paired end
250 bp reads. By adjusting the sequencing proto-
col for MiSeq, it may be feasible to reduce this
time frame without affecting key inferences, such
as species and strain assignments [Quick et al.
2015]. An important consideration when
making such adjustments is the ‘depth of cover-
age’; the more reads that span a position in the
reference genome, the more support there is for
the base identified. The optimal depth of cover-
age to detect clinically relevant variants needs to
be determined.

Another factor influencing the time to obtain
these data is whether samples are batched or
run independently. According to Quick and col-
leagues [Quick et al. 2015], the MiSeq can
sequence up to !100 isolates simultaneously. In
our experience, the MiSeq 250-bp paired-end
sequencing can generate a minimum of 10 mil-
lion reads; if 20# coverage is desired, only !57
isolates of M. tuberculosis can be run simultan-
eously [Lander and Waterman, 1988]. A batched
approach such as this is typical in research labs
and is clearly less expensive on a per-unit basis, as
running a single isolate would cost the same as
the whole collection of samples. Unfortunately,
waiting until a queue of specimens has accumu-
lated is not ideal for clinical labs, which need
to process samples immediately on arrival and
send reports 24 hours a day. A newer method,
the Nanopore MinIon (Oxford Nanopore
Technologies, Oxford, UK), offers much promise
in addressing this problem. The MinIon runs a
single sample at a time and was able to correctly
speciate two Salmonella enterica isolates as well as
place them in epidemiologic context within 2 h
[Quick et al. 2015]. Earlier diagnosis and detec-
tion of SNPs connoting drug resistance could
allow for more rapid initiation of treatment, com-
pared with waiting for results from a batched

analysis. However, the advantage of rapid results
offered by the MinIon is currently offset by high
error rates as reported by [Laver et al. 2015;
Mikheyev and Tin, 2014; Quick et al. 2015].
While sequencing chemistry is improving and
bioinformatics approaches are being developed
to increase accuracy [Jain et al. 2015], further
studies are needed to evaluate this method.
As of yet, the MinIon has not been utilized for
M. tuberculosis. It might be that these different
platforms offer complementary opportunities for
the clinical lab, for instance by using the
Nanopore technology to rapidly speciate patho-
genic organisms and the MiSeq for ongoing epi-
demiologic surveillance.

WGS for detection of M. tuberculosis, including
the prediction of drug resistance
In the clinical mycobacteriology lab, the goal is to
secure a diagnosis of active TB and to provide
clinicians with guidance on which antibiotics
they should or should not prescribe for their
patients. These two goals have classically been
achieved with phenotypic tests, some dating to
the 19th century. This begs the obvious question
of whether WGS can help modernize the TB lab,
with the goal of offering faster and more accurate
results.

The current clinical workflow for detection of
M. tuberculosis in Canada is illustrated in
Figure 2. Variations of this pathway may be
seen in comparable high-resource countries. For
more detailed reviews of M. tuberculosis labora-
tory diagnosis, the reader is referred to the litera-
ture [Parrish and Carroll, 2008, 2011;
Drobniewski et al. 2013; Noor et al. 2015]. In
brief, specimens from TB suspects are sent for
smear microscopy to ascertain the presence of
acid-fast bacilli. This test identifies the most
infectious patients (i.e. with ‘smear-positive’ dis-
ease) [Behr et al. 1999]. Results of smear micros-
copy should be available within 24 h of receipt
[Parrish and Carroll, 2011], however this
method has low sensitivity [Steingart et al.
2006a, 2006b] and cannot distinguish M. tuber-
culosis from non-TB mycobacterium. Regardless
of the results of microscopic examination, the
same specimens are processed for culture, as
detailed by Parrish and Carroll [Parrish and
Carroll, 2011]. The culture is usually done
using both solid and liquid media (typically
mycobacterial growth indicator tubes
[MGITs]), with growth usually observed in 1!3
weeks, depending on the mycobacterial inoculum

Therapeutic Advances in Infectious Disease 0 (0)

4 http://tai.sagepub.com

 by guest on January 21, 2016tai.sagepub.comDownloaded from 

 
303

http://tai.sagepub.com/


in the sample [Chihota et al. 2010; Fadzilah et al.
2009]. Once growth is observed (on solid media)
or flagged by the machine (in the case of
MGITs), a positive culture can be assigned a pre-
sumptive identification as M. tuberculosis complex
using a DNA probe, usually within 24 h
[Ichiyama et al. 1997]. Cultures are then sent to
a reference laboratory for formal species confirm-
ation and for drug susceptibility testing (DST) by
phenotypic (i.e. growth-based) assays.

Superimposed on this classic workflow (smear
microscopy, culture, then DST), laboratories
have overlaid molecular testing over the past
two decades, using a variety of different platforms
and clinical strategies. The first molecular tests
approved were only licensed for the speciation of
smear microscopy-positive samples [Parrish and
Carroll, 2011], so their key role was in assigning a
microbial name to such a sputum sample
[Vuorinen et al. 1995; Carpentier et al. 1995].
Then, with time and experience, it became recog-
nized that nucleic acid amplification testing could
be offered on smear-negative samples where
there was a high clinical suspicion of TB
[Centers for Disease Control and Prevention
(CDC) 2009]. To reduce costs of controls,
these ‘rapid’ first generation tests were generally
batched and as a result, might only have been

done twice or three times per week, depending
on laboratory volume. More recently, the
GeneXpert (Cepheid Inc., Sunnydale, CA,
USA) has offered a random-access real-time
nucleic acid amplification test, which can be
done on a single sample, without having to wait
for samples from other patients. GeneXpert is
conducted directly on the clinical specimen to
detect both the presence of M. tuberculosis DNA
and mutations in the rpoB gene that predict
resistance to the first-line drug, rifampin. In prin-
ciple, results can be available in under 2 h
[Boehme et al. 2010]. In practice, turn-around
time depends on logistics; most testing is done
in laboratories rather than clinics, necessitating
delays due to shipping and handling [Alvarez
et al. 2015]. The specificity of GeneXpert for
M. tuberculosis detection is high, reported at
>98%, but the sensitivity varies by smear status
[Boehme et al. 2010; Steingart et al. 2014; Sohn
et al. 2014], site (e.g. respiratory versus extrapul-
monary) and type of sample (e.g. lymph node
versus pleural [Maynard-Smith et al. 2014;
Denkinger et al. 2014]). While GeneXpert is cur-
rently the fastest and arguably most useful diag-
nostic test in many parts of the world, it may be
that its enduring legacy is catalyzing a paradigm
shift away from phenotypic testing, towards gen-
etic detection of M. tuberculosis as the primary

DNA probe 

Smear 
microscopy

GeneXpert 

1) Clinical specimen

Liquid 

Solid 

3) Antibiogram2) Culture 

Figure 2. Clinical diagnostic workflow for Mycobacterium tuberculosis.
The three main steps in the current diagnostic workflow for M. tuberculosis are shown. As described in the
text, whole-genome sequencing may have a potential role at each of these steps: (1) by being applied directly to
the unprocessed clinical specimen or (2) by being conducted on the positive culture to predict drug resistance.
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goal of the TB lab. If true, then the same pre-
analytic principles (collecting sputum, delivering
to lab, rendering the sample safe, extracting
DNA) can serve as the basis for a more compre-
hensive interrogation of the mycobacterial
genome, going beyond the rpoB gene to charac-
terize the complete genome of the causative
organism.

WGS for diagnosis
Until recently, the utility of WGS for de novo
diagnosis of M. tuberculosis was unclear. WGS
had relied exclusively on enriched DNA obtained
from a pure bacterial culture, at which point the
patient would have already been diagnosed. More
recently, studies have examined the feasibility of
sequencing M. tuberculosis directly from the clin-
ical specimen [Doughty et al. 2014; Brown et al.
2015]. Sequencing eight smear positive samples,
Doughty and colleagues obtained only 0.002# to
0.7# depth of coverage, with 20!99% of reads
sequenced mapping to the human genome rather
than M. tuberculosis [Doughty et al. 2014]. Brown
and colleagues obtained similar results when
sequencing directly from clinical samples, but
when an oligonucleotide enrichment protocol
was applied, they were able to obtain at least
20# depth of coverage on 20/24 smear positive,
culture positive isolates, providing sufficient
sequence depth to confidently speciate the organ-
ism present [Brown et al. 2015].

If WGS is to be applied on the patient sample,
the conceptual advantage is a more rapid result.
However, the vast majority of samples are nega-
tive for M. tuberculosis, even in a high-incidence
setting [Demers et al. 2012], so some form of tri-
age is needed to select the samples most likely to
benefit from direct WGS. Furthermore, sputum
is contaminated with host and other bacterial
DNA, complicating bioinformatic analyses and
reducing the overall depth of coverage obtained
for the M. tuberculosis genome [Doughty et al.
2014]. While low coverage may not preclude
the ability to confidently detect M. tuberculosis,
it could seriously undermine the capacity to
detect mutations associated with drug resistance
(as shown by Doughty and colleagues [Doughty
et al. 2014]), where the greatest clinical value of
WGS may lie. In sum, these studies provide
proof-of-principle that WGS of M. tuberculosis
directly from clinical specimens is feasible, but
the cost of the enrichment protocol (USD$350
per sample), the requirement for technical
expertise and equipment, and the need for

real-time bioinformatics to convert sequence
files into clinically meaningful lab reports all pre-
sent challenges to WGS supplanting smear
microscopy and nucleic acid amplification as
the primary test performed on clinical specimens.

If instead WGS is applied on the positive culture,
then the benefit of rapidity has been lost, as the
patient should already be isolated and started on
treatment, based on either smear microscopy, a
nucleic acid amplification test or the Accuprobe
result on the culture. In this case, WGS may offer
a different opportunity, which is a more rapid
identification of antibiotic resistance.

WGS for resistance
In 2013, 3.5% of incident TB cases worldwide
(95% confidence interval [CI] 2.2!4.7%) were
estimated to have multidrug-resistant (MDR)
TB, with an enrichment to 20.5% in cases with
previous treatment (95% CI 13.6!27.5%)
[World Health Organization, 2015]. As there is
no evidence for ongoing acquisition of foreign
DNA by M. tuberculosis, resistance occurs due
to mutations in the chromosomal DNA, some
of which have been mapped and mechanistically
linked to the resistance phenotype [Nebenzahl-
Guimaraes et al. 2014]. Phenotypic testing of a
positive culture (called indirect DST) is the cur-
rent gold standard for M. tuberculosis. The need
for level 3 containment facilities and the require-
ment to perform an appropriate number of tests
to maintain competence, however, have con-
spired to direct this most clinically meaningful
assay to reference labs, entailing delays due to
transport and handling. Therefore, while it is
stated that first-line susceptibility results can be
obtained in 2-4 weeks [Perkins and Cunningham,
2007; Migliori et al. 2008], such estimates reflect
the time for work to be performed in the refer-
ence lab. When considering the time from sample
acquisition to a final report, others provide longer
timeframes, up to 2 months [Parrish and Carroll,
2008]. Until this information is available, the
clinician faces an immediate dilemma, which is:
‘What do I prescribe now?’. Inappropriate treat-
ment risks generating further drug resistance, but
delaying treatment until a final report is provided
risks deleterious treatment outcomes [Park et al.
1996]. While one option is to attempt phenotypic
testing directly on the patient sample (called
‘direct DST’), there are still delays with the
time to obtaining cultures, and susceptibility test-
ing on the sputum sample brings its own chal-
lenges, since it is difficult to standardize the
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inoculum for such assays. It is at this moment of
indecision that a molecular test could provide the
most immediate clinical guidance, as exemplified
by the GeneXpert test. For examples of molecu-
lar tests, along with sensitivity and specificity for
respective drugs, see Table 1.

As most rifampin-resistant isolates are also iso-
niazid-resistant, the GeneXpert uses rpoB muta-
tions associated with rifampin-resistance as a
proxy for multi-drug resistance. However, not
all rifampin-resistant organisms are isoniazid-
resistant (i.e. there can be rifampin mono-
resistance) and indeed, not all isolates predicted
to be rifampin-resistant are confirmed on pheno-
type-based testing [Steingart et al. 2014]. In add-
ition, not all rifampin-resistant isolates are
detected based on the currently assessed muta-
tions [Sanchez-Padilla et al. 2015; Jamieson et al.
2014a]. Finally, GeneXpert may fail to detect
hetero-resistance, i.e. resistance-connoting muta-
tions present in subpopulations within the patient
[Zetola et al. 2014]. For all of these reasons, a
broader-based assay, such as WGS, could offer
the greatest clinical utility at this point in the
diagnostic process, by looking beyond the targets
of the current molecular assays.

By sequencing the whole genome, in theory all
resistance-connoting mutations that can guide
clinical treatment can be identified by comparing
the genome of the patient isolate with detailed
databases of known resistance markers
[Sandgren et al. 2009; Flandrois et al. 2014]. In
practice, this will work, if (a) these markers
accurately predict in vitro phenotypic resistance,
and (b) these markers predict clinical outcome.
For the latter, we are unaware of studies that have
directly assessed the utility of WGS data for pre-
dicting patient response to treatment. For the
proximal goal of linking WGS to phenotypic
resistance, there are emerging data which present
a mixed message. Using online databases, supple-
mented with an updated search of the literature,
Coll and colleagues [Coll et al. 2015] developed a
mutation library and examined the concordance
between genotypic predictions and phenotypic
data for 788 isolates from diverse geographic set-
tings. Among the drugs with sufficient pheno-
typic data (rifampin (RIF), isoniazid (INH),
ethambutol (EMB), pyrazinamide (PZA) and
streptomycin (STR)) as well as second-line
drugs (amikacin (AMK), capreomycin (CAP),
ethionamide (ETH), kanamycin (KAN), moxi-
floxicin (MOX), ofloxacin (OFX)), the sensitivityT
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of WGS for predicting resistance was highest for
INH and RIF at 92.8% (95% CI 89.9!95.7) and
96.2 (95% CI 93.9!98.5). At the other end of the
spectrum, the sensitivity of WGS for PZA-resis-
tance was only 70.9% (95% CI 62.4!79.4).
Thus, if WGS replaced phenotypic testing, one-
twelfth of INH-resistant and one-third of PZA-
resistant cases would receive these potentially
hepatotoxic drugs, with little or no benefit.
Specificity of WGS was highest for INH and
RIF at 100% (95% CI 100!100%) and 98.1%
(95% CI 96.8!99.4%), respectively, but for other
drugs, specificity was as low as 81.7% (EMB).

In the same manuscript [Coll et al. 2015], Coll
and colleagues also compared the performance of
their database with KvarQ, a software that uses
pre-specified ‘testsuites’ of known resistance-
connoting mutations and other regions of interest
to predict resistance [Steiner et al. 2014]. Using
phenotypic data as the gold standard, sensitivity
was substantially lower for nearly all drugs using
the KvarQ method (though 95% CIs overlapped
for all except EMB and KAN). Among first-line
drugs, only RIF yielded similar point estimates to
those obtained with Coll and colleagues’ muta-
tion library, with sensitivity of 95.8% (95% CI
93.4!98.2%), while sensitivity for INH was
only 86.9% (95% CI 83.1!90.7%). No results
were available for ETH and CAP using the
KvarQ software. Specificity was generally higher
using KvarQ, though this difference was only sig-
nificant for EMB and STR. Specificity for RIF
was similar to that obtained with the mutation
database, at 97.9% (95% CI 96.5!99.3%).

In a similar study [Walker et al. 2015], Walker
and colleagues selected 23 candidate resistance-
associated genes from the literature [Sandgren
et al. 2009] and then used an algorithm to char-
acterize mutations (SNPs and indels) within
these genes and their promoter regions as resis-
tance-connoting or benign. In a training dataset
of 2099 isolates, 120 resistance-connoting muta-
tions were identified, 772 were classified as
benign and 101 could not be classified as either
(called ‘uncharacterized’). The resistance-
connoting and benign mutations identified in
this training dataset were then used in a valid-
ation study on an additional 1552 genomes,
29% of which were resistant to at least one
drug on drug susceptibility testing (DST).
Using these mutations, authors were able to pre-
dict 89.2% of phenotypes as resistant or suscep-
tible. 10.8% of phenotypes could not be

predicted, as these contained mutations that
had not been characterized. Among those where
phenotype could be predicted and considering
predictions for each drug independently, 112 of
6892 with drug-sensitive DST were predicted to
be resistant based on WGS (1.6%), while 94 of
1221 with drug-resistant DST were erroneously
predicted to be drug-sensitive (7.7%). The latter
may be due to mutations with unknown function
outside the 23 candidate genes interrogated. This
is similar to Farhat and colleagues [Farhat et al.
2013]; in this study, authors performed targeted
deep sequencing of known resistance genes to
verify that resistance mutations were absent in
subpopulations within isolates. They found that
13/47 isolates with phenotypic resistance had no
previously known mutations. Unexplained resist-
ance, wherein phenotypic resistance is present
but known resistance-connoting mutations are
absent has been most pronounced for PZA
[Hewlett et al. 1995] and second-line drugs.
For example, Farhat and colleagues [Farhat
et al. 2013] found that, among isolates resistant
to ciprofloxacin, KAN and CAP, 2/3, 6/18 and 1/
6 isolates, respectively, had unexplained resist-
ance. As the reliability of phenotypic testing is
least well established for these drugs [Horne
et al. 2013], this is where there is the greatest
need for WGS, but presently also the greatest
knowledge gap.

In clinical medicine, the physician wants to
know whether the isolate has a resistance-con-
noting mutation or not, so that treatment can be
tailored accordingly. Indeterminate test results
offer little clinical guidance, and often steer clin-
icians to other antibiotics, where feasible. While
it is logical to exclude isolates with uncharacter-
ized mutations from a scientific paper that aims
to understand resistance, in a clinical laboratory,
these have to reported one way or the other.
Analyses that classified such uncharacterized
mutations as predictive of phenotypic suscepti-
bility greatly affected test parameters; the sensi-
tivity of WGS for INH and RIF resistance
dropped from 94.2% (95% CI 91.1!96.5%)
and 96.8% (95% CI 94.1!98.5%) with unchar-
acterized mutations excluded to 85.2% (95% CI
81.1!88.7%) and 91.7% (95% CI 87.9!94.5%)
with uncharacterized mutations included,
respectively. Sensitivity for PZA resistance in
the latter analysis was the lowest overall, at
only 24% (95% CI 17.9!30.9%). Until such
mutations can be confidently assigned to the
appropriate phenotype, it would seem that
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parallel, or at the least, sequential phenotypic
testing should remain part of the diagnostic
pathway.

Furthermore, these publications generally
included biased samples, with relatively high pro-
portions of drug-resistant isolates. As many
clinical labs identify primarily drug-sensitive iso-
lates, the operating parameters of WGS for this
purpose may change when evaluated against
more representative samples. While authors had
generally high specificity for most drugs, the pre-
dictive value depends on the underlying preva-
lence of drug resistance. In a country such as
Canada, which detected RIF resistance among
only 17 of 1380 M. tuberculosis complex isolates
analyzed in 2013 [Public Health Agency of
Canada, 2015], a specificity of 98.1!99.2% and
sensitivity of 91.7!96.2% based on the results of
Coll and colleagues [Coll et al. 2015] and Walker
and coworkers [Walker et al. 2015] would equate
to!18 false positives per year, with a positive pre-
dictive value of only !46%. Without subsequent
phenotypic testing, these cases would be subject
to second-line treatment, with prolonged,
unnecessary hospitalization. Thus, WGS may be
best reserved only for individuals in which there
was a higher pretest probability of resistance
(based on some a priori criteria for the use of
WGS, e.g. previous treatment).

Despite these limitations, it is clear that WGS
offers magnitudes more information than the
molecular methods listed in Table 1, with the
potential of greatly advancing clinical diagnostics
for M. tuberculosis. While the WGS database of
Coll and colleagues [Coll et al. 2015] performed
similarly to GeneXpert for RIF resistance, it also
allowed for determination of INH mutations, and
had an overall accuracy of 95.8%, as compared to
93.1% for MTBDRplus (Hain Lifescience,
Nehren, DE) (p< 0.0004). Accuracy was also
higher for second-line drugs compared with
MTBDRsl (Hain Lifescience, Nehren, DE)
(96.3% versus 93.7%, p< 0.0047). Walker and
colleagues [Walker et al. 2015] showed similar
sensitivity and specificity of their algorithm for
determining the correct phenotype using WGS
as the collective results of MTBDRplus,
MTBDRsl and AID (AID Diagnostika,
Strassberg, DE) line probe assays (LPAs). In add-
ition, while synonymous SNPs can present as false
positives on both LPA or GeneXpert, Walker and
colleagues were able to classify these as benign.

Overall, these data support the great potential of
WGS as a tool to predict resistance. However,
databases of M. tuberculosis genomes, along with
associated phenotypic data, are essential to iden-
tify unrecognized and emerging mutations.
In addition, our ability to accurately predict
phenotypic resistance is limited by our under-
standing of epistasis (the interaction between
mutations, which can influence phenotype
[Trauner et al. 2014]); mutations associated
with resistance have been found in phenotypically
sensitive bacteria [Walker et al. 2015], in some
cases potentially due to interaction with other
mutations in the genome. Until additional data
are gathered, it can be foreseen that WGS may
serve as an added, rather than a replacement test,
on the diagnostic pipeline (Figure 2). This would
incur added costs to the lab, something that is
clearly less attractive than WGS simply replacing
drug susceptibility testing (DST), with all its
labor and reagent costs. One need look no further
than the example of HIV treatment to imagine a
world where genotype-based data are used to pre-
dict drug resistance, and hence treatment deci-
sions. However, for all of the aforementioned
reasons, we submit that reference labs need to
maintain competence in phenotypic DST for
the foreseeable future.

Another issue for clinical application of WGS is
timeliness of reporting. As of yet, two papers
reported on the application of WGS in ‘real-
time’ to clinical cases: a case report of a patient
[Köser et al. 2012] with extremely drug-resistant
(XDR) TB (defined as MDR TB plus resistance
to an injectable second-line drug and a fluoro-
quinolone) and a prospective cohort of patients
in the United Kingdom suspected of having XDR
TB [Witney et al. 2015]. Köser and colleagues
successfully obtained sequence data from a 3-
day-old MGIT culture, identifying two concur-
rent but distinct strains of M. tuberculosis [Köser
et al. 2012]. Predicted resistance and sensitivity
concurred with phenotypic results for all drugs
tested, while WGS predicted resistance to an
additional five drugs. While WGS results had
no impact on treatment, WGS did identify a
mutation in the gene activating PAS in the minor-
ity strain, despite a phenotypic determination of
PAS-S. Unfortunately, the functional impact of
this was unknown. Witney and colleagues
[Witney et al. 2015] selectively applied WGS to
six cases with potential XDR TB, identified over
6 years in London, with multiple isolates
sequenced per patient. Results for five out of six
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cases were available in a clinically actionable time
frame. Genotypic and phenotypic resistance were
100% concordant for INH and RIH, while dis-
crepancies were reported in PZA, EMB, fluoro-
quinolones (OFX and MOX), AMK, KAN,
CAP, PRO and PAS. In terms of clinical utility,
WGS data helped guide treatment decisions by
confirming PZA resistance in one case, and refut-
ing an XDR diagnosis in favor of MDR in
another. For another case, clinicians decided to
continue with treatment with EMB, despite
development of phenotypic resistance, as WGS
failed to identify mutations in embA or embB
that could explain the change in DST.

The Witney and colleagues study also illustrated
that for WGS data to be used clinically, the
results need to be analyzed rapidly and presented
in a clear, easily interpretable manner. Several
groups have produced online tools (e.g.
‘PhyResSE’ [Feuerriegel et al. 2015] and ‘TB
Profiler’ [Coll et al. 2015]) wherein raw sequen-
cing data for an isolate can be uploaded and ana-
lyzed for resistance-connoting mutations. As
mentioned previously, the KvarQ software can
also predict resistance from raw sequencing
data; in contrast to PhyResSE and TB Profiler,
this can be done on a local server [Steiner et al.
2014]. Yet, despite efforts to make these reports
accessible to the wider scientific community, a
knowledge of genomics and/or bioinformatics is
still required to interpret results. As an example,
the quality of SNPs is provided with details such
as depth of coverage, a parameter that most clin-
icians would be uncomfortable judging.
Presently, PhyResSE and TB profiler are expli-
citly for research purposes only, which poses
regulatory hurdles to the delivery of results des-
tined for the clinical chart. Witney and colleagues
[Witney et al. 2015] piloted a WGS report during
the course of their study, but, unfortunately, clin-
ician perception of this report and its interpret-
ability was not assessed. Furthermore, though
‘best practices’ have been proposed for identify-
ing SNPs [Olson et al. 2015], the current bio-
informatics workflows used to analyze WGS
data remain largely unstandardized. For imple-
mentation in the clinical lab, appropriate quality
control measures [Clinical and Laboratory
Standards Institute, 2014] and a standardized
workflow need to be established. The lessons of
the past five decades of emerging antibiotic resist-
ance have demonstrated that even a simple
dichotomous test result, i.e. resistant or suscep-
tible, does not always predict appropriate care.

Therefore, the application of WGS-based results
to clinical care may benefit from evaluations done
by experts in implementation science, rather than
genomics or microbiology.

Conclusion
Offering increased resolution and substantially
more data compared with conventional methods,
WGS has revolutionized the arena of molecular
epidemiology. Now, it seems poised to do the
same for the clinical microbiology laboratory.
The appeal of WGS for M. tuberculosis (and
other pathogens) lies in the quantity of data pro-
vided; with one test, an organism can be speciated,
resistance mutations can be detected and the
strain can be placed in the context of the local
epidemiology. The challenge of WGS also lies in
the quantity of data provided; the same test can
occupy a team of bioinformaticians, yet generate
results that few clinicians can currently interpret.
Furthermore, for WGS data to be clinically useful,
results must be available in sufficient time to guide
patient care. Recent advances such as sequencing
directly from clinical samples and the rapid work-
flow of the Nanopore MinIon may facilitate this.
The decision to whom this ‘test’ will be applied is
also critical. Though no studies to date have
examined cost-effectiveness of implementing
WGS, it can be predicted that application of this
test to all, unselected samples without removing
other steps in laboratory workflow could be pro-
hibitively expensive. Therefore, it can be foreseen
that WGS will be applied selectively, for instance,
on patients with Rifampin resistance mutations
detected by the GeneXpert assay.

The issues raised above are only further amplified
when contemplating the countries of the world
that suffer the greatest burden of TB and have
the highest prevalence of drug-resistant strains.
While it is clearly feasible to ship sequencing
machines around the world, as has already been
done with the GeneXpert platform, it is not as
simple to distribute the technical and bioinfor-
matic expertise required for next-generation
sequencing where it is needed. A potential solu-
tion to the latter is open-source coding and
online data treatment, but this is currently lack-
ing for clinical use, even in settings with expertise
in these methods. Ultimately, what is needed is
an easy-to-use software complete with a graphical
user interface that is capable of converting data-
intense sequence files into a simple, concise clin-
ical message. As done with GeneXpert [Theron
et al. 2014b], these outputs then need to be field-
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tested in settings with a sufficient burden of drug-
resistant TB to enable evaluation of whether test
results altered treatment decisions and clinical
outcomes. The relatively small number of MDR
TB patients in countries such as Canada may
preclude a formal evaluation of patient outcomes,
simply due to sample size considerations. In
order to assess its clinical utility for resource-
rich countries where its use has been pioneered,
we may need to first embed WGS in treatment
studies conducted in the developing world, where
the challenge posed by TB and drug resistance
remains the greatest.
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