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ABSTRACT J )

PR

A gystematic procedure for statistically analysing deterministic
multipath models is presented that can be used to estimate the probable
behavior of a secondary neuron in a typical sensory system. A statistical
approach is taken since deterministic analysis is physiologically w‘racticd.
A class of multipath models is proposed in which each path is viewed n: a
realization of a random parameter model which is a cascade of random linear

and random nonlinear blocks. In the multipath system, waveform variation

due to different realizations of this system is approximated. The approach
‘ is especially convenient for multipath systems having an infinite number
‘ of paths. When rfinite path systems are considered, numerical methods
are required except for simple ;y.tm. The approach shows that many
multipath models, having Mlineatities in ;ach path,have an expected out-
put that is linearly related to the input under certain lcouditiona. An

LR

) applié‘a:j_.on to the vestibular ay-ti- is discussed.
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-
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RESUME

m&n«: une méthode d'analyse statistique de mod2les

'déteminis\t\quea a2 branches multiples applicable 3 1'é&tude du comporte-
ment d'un ne;xron secondaire dans un systéime gensoriel typique. Cette
méthode statistique s'impose vu l'irréalisme de 1l'analyse déterministique
en physiologie du systdme nerveux, On propose une classe de modiles
dans lesquels chacune des branches origine d'un moddle i paramdtre
aléatoire composé d'une suite de blocs /linénm et de blocs 3 non-
linéarité de type statique. On obtient une approximation de la varia-
bilité des signaux chez différentes réalisations du systime. La
wméthode est particuliérement utile pour des systimes & branches multiples
en nombre infini. Pour des systimes plus limités, des méthodes
nusériques sont nécessaires sauf pour des cas tris simples. 11 est
démontré que,chez plusieurs moddles 3 braanches multiples poufdant une
honlinéarité dans chaque branche, la valeur probable du signal de sortie
est,sous certaines conditions, en rapport lin&aire avec l'entrée.

L'application au systime vestibulaire est discuté.
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PREFACE

It is hoped that thi; thesis will interest an sudience of
mathematicians, engineers and physiologists who are concerned wi:h
modelling the nervous system, Due to the wide range of backgrounds
of members of this group,’it is difficult to adopt a style which is
suitable for all readers. As a result, while some sections may be
difficult to read for some, others may find it elementary. For example,
in Chapter 2, a veiy Sauic discussion of part of the vestibular system
attempts to provide a minimum background for those unfamiliar with sensory
systems, Also, it is hoped that the rather tutorial style of part of
Chapter 3 will enable those having only a basic statistics background t;
follow the essential ideas of the thesis. In order that as large an
audience as possible be able to follow the mathematical discussion,
mathematical rigor has, for the most part, been dropped. In spite of
this, it is hoped that mathematicians will be interested in this appli-
cation of random processes aﬁd in the many mathematical problems that

-

arise. '
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CHAPTER 1

INTRODUCTION '

T

1.0 THE THESIS IN PERSPECTIVE

In the nervous systea, it is not uncommon to find that information
is transferred betw&en. two points along l:_:ndreda of nonlinear, parallel
paths, each having different characteristics. One way to model this
situation is to identify each path and then to simulate all paths acting
together. This not only poses many physiological and uthmtica’
problems, but is tedious and without direction. Although other o.oud-
vhat more efficient appr?chu are available, they require‘ more effort as
the number of parallel paths fncrease. In addition, the modeller has
no vay of predicting or analysing results, except empirically, by
computer simulation. . |

-

This tﬁgcia presents a systematic method of approaching this
type ofoproblen. Provided that the -nlt,ipatl’: neural uyl;u satisfies
some quite general assumptions (Table 2-1), one can, using a .tat}ntiq;l .
approach, analytically predict with relative ease the response of a
system having an mfiuigo number of parallel paths. In these cases,
two ;tfiking results emerge. First, there is a large class of mltipath
systems that haye,undet‘ certain conditions, a responss \&uchu linearly
related to the input despite the presence of nonlinsarities in o%:h pa’t.h. - o
This linear relationship can be markedly duf"tm; from the tnpnt/onjput . er

relationship of any single path since the system output depends on all the

1 . s
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individual input/outpqt relationships acting together. Second,- many
different multipath sylté;a can have the same input/output telati;ship.
This result implies that it may not be necessary to model each path:
exactly. Thus, the approach seems to head i a wore sensible direction
than the alternative method in which each path is modelled more and more
exactly with the consequence that multipath simulation may be too complex

[y

to consider.
The method pr’e?enged in this thesis cax; also be used to
systematically analyse nodelr (from i:he class of Table 2-1) that have a
finite number of paths. For any randomly selected system, one can ~
estimate the probable range within which any g:l\-ven"systu variable will
lie. In practice, a numerical solution is often necessary to do this
in more complex systems. In addition, the difference between the output
of the finite path system and the infinite path ond can be estimated.
The method provides a powerful and useful modelling technique
for a class of neural systems having a large nulbe'r of convergent parallel
pathvays. For these linteu, the auu.ptiogo und"to make the response
of the infinite path model approximate the neural system's response often
suggest physiological lrelationo to be verified. . Also, even when the
method is applied to a finite path system for which numerical cA\]:cuhtionc
are required, it is still a more efficient way to approximately ‘deccribc

multipath systems than other approaches available.
b

i
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1.1 THESIS QUTLINE

To give an example of a multipath neural system, the first
part of Chapter 2 will discuss the rotation sensing system of the
vestibular organ of man and other vertebrates. A class of ‘multipath
models will be proposed in Section 2.3 that, it is felt, can approximate
many sensory systens. It will be shown that uhigexit‘gsﬁLrobably
physiologically impossible to use these models deterministically, using
them statistically seems feasible,

Ci’mpter 3 will jintroduce random parameter nodel,l and then will
show how they can be used to analyse multipath models stn;istically. In
Section 3.3, it will be demonstrated that any multipath model satisfying
Table 2-1 can, in principle, be analysed using a systematic procedure .
which will be presented in Section 3.4.

The }1tlt part of Chapter 4 derives the moment ;elationshipd'!zr
several random parameter models. In the second part, the aspects that

itroduce difficulties in this systematic procedure will be compared-to

,those in other approaches. Then,‘ the procedure, vhich employs some of

¢he derived -ankgf relat%pnlhipc, will'be used to illustrate the analysis
of two multipath wodels shown in Figures 4-8 and 4-10. !
Chapter 5 will discuss the application of the multipath models
to the rotation se;uing system. In Section”5.2, it will be shéwn that
the approach ecan be used in systems that have paths with different or

randd-'a‘trp'xcture. " " Finally, Section 5.3 vi.,llk summarize the thesis.
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CHAPTER ‘2

ROTATION SENSING: AN EXAMPLE OF A MULTIPATH NEURAL SYSTEM

&

2.0 INTRODUCTION

Communication in a typic,‘nl neural system in vertebrates has
evolved in a significantly different direction from that of most modern

communicatiol technology. Instead of wsing one path having a very

-precise transmission characteristic, a neural system may have possibly

hundreds of parallel paths each with different charsacteristics. This
usually results in a communication system which is more Feliable since
redundancy has minimized the importance of a single p.thc; which has an
butput with a better signal to distortion ratio than any of its paths
due to an inctcued‘ transmission range and linearization, vhichhhas a
filtering characteristic, and which minimizes the e’ffect of internal
noise sources (Bayly, 1968; Diday, 1971;)1.3::10, 1968; Lee, 1969;
Maffei, 1968; Willisms, 1972).

4

As an c'que of a multipath. neural system, the part of the

vestibuhr/}yotu concernsd with rotation sensing is described in

Sections 2.1 and 2.2. In Section 2.3, a class of multipath models that

may be useful to describe many sensory systems is introduced. Finally, |
K ¢ ~i )
the problem of applying thesa models in a physiological system is discussed.



2.1 A DESCRIP??ON OF ROTATION SENSING IN THE VESTIBULAR SYSTEM

All vertebrate animals from the most primitive to man have a
remarkably similar motion sensing apparatus, located‘in the inner ear,
which noniéoru linear and angular movements of the head (Outerbridge, 1969).
Information from these sensors is used to stabilize the head, to reduce
"visual slip" of images on the retina, as well as for postural control
(Clark, 1970; Bender, 1964; J;;ea & Milsum 1965;Kearney, 1971; Outerbridge,
1969; Roberts, 1967; Young, 1968).

One angular sensor, called s semicircular canal, is shown in
idealized form in Figure 2-1. It can be described as a toroid filled
with a viscous fluid that deflects a flap or cupula when the head turms.
Since the cupula is elastic, it tends to return to its equilibrium positiom
after deflection (Maynme, 1950; Steer, 1968). The motion of the cupula
is sensed by hundreds of tiny haircells of two principle forms (Piguré 2-2)
that change the firing rate or action potential frequencf of primary
neurons that synapse with the haircells (Ballentyne & Engstrom, 1968;
Engstrom, 1968; Harada, 1972).

Several hundred primary neurons, each receiving inputs from a
mall but variable number of haircells of both types, carry information
to a group of cells, called secondary neurons, located in the brain
(Figure 2-3) (Gacek, 1969). In addition, there are a small number c;f

efferent fibers that feed back information from the brain to the haircell

region (Cacek, 1967; Smith & Rassmussen, 1967).

,
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FIGURE 2-1 DIAGRAMATIC REPRESENTATION OF AN 1DEALIZED SEMICIRCULAR CANAL
(modified from Jones & Milsum, 1969).
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2.2 THE RELATIONSHIP BETWEEN THE FIRING FREQUENCY OF PRIMARY NEURONS

AND ANGULAR ACCELERATION

A number of models have been developed to descr1b§ the relation-
ship between input angular acceleration and the instantanecus firing
ftéquency of the primary neuron (Correia & Landolt, 1973; Goldberg &
Fernandez, 1972 a, b; Fernandez & Goldberg, 1972; Lowenstein & Sand, 1940;
Precht et al., 1971; Ross, 1936). In most cases, it is found that para-
meters in these models appear to have different values in different paths.
This could be due to several factors such as experimental errors, an
inadequate model (Precht et al., 1971) or an actual difference in the
parameters 19 different paths, It is felt that the last two points are
the most prob;ble causes of this parameter spread.

The low frequency or static relationship between angular
acceleration and frequency for several hypothetical paths is showm in
Figure 2-4. Each unit has 2 threshold and saturates with a sufficiently
large input. Units that have a "spontaneous" or resting frequency with
no input applied have a negative threshold, while those with positive
thresholds are called '"silent units". Note the different resting
frequencies, thresholds, saturation frequencies, sensitivities and ranges
in Fignreﬁz-lo. As an actual example of this parameter spread, Figure 2-5
shows thé‘ relstive number of units in the monkey with specific values of
resting ftequcncy;‘;uinl and thresholds. No detailed data is available
about different values for ranges, saturation frequencies or the shape of
the static relationships between threshold and saturatioan. Since this

relationship is not always lineay as shown, nonlinear responses are cosmon.
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FIGURE 2-4 SOME HYPOTHETICAL STATIC RELATIONSHIPS BETWEEN ANGULAR
ACCELERATION AND PRIMARY NEURON FREQUENCY

Units A to D have resting frequencies of fA’ fl’ fc and fD' UnisE and F
are "silent" units with positive thresholds 'rz. 'rr. All units saturate.
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When modelling the dynamic relatiomship between angular
acceleration and the frequency of the primary neuron, models ranging from
transfer functions with one or two poles up to transfer functions with
three zeros and four poles have been proposed (Correia & Landolt, 1973;
Goldberg & Fernandez, 1972; Fernu:de: & Goldberg, 1972; Lowenstein & Sand,
1940; Precht et al., 1971; Ross, 1936). In all cases wheare many careful
estimates of these poles or zeros have been made, parameters spread has
been found. An example (Fernandez & Goldberg, 1972) of a transfer

function obtained is

9 - At ‘:L')
5(.) Q-+ rA-) -+ 'rl-) (1r-+ Tzc)

[

vhere £f(s) and 5(;) are the Laplace transforms of firing frequency and

angular acceleration respectively, s is the Laplace variable and Tl’ '1‘2,
T,» ‘I'L are fixed constants in each path. Estimates of Tl’ TA' and 'rL

have been made that lie between 2 - 7 seconds, 30 to an infinite number of
seconds and 0.013 - 0.091 seconds respectively. It is felt that an actual
difference of these paramaters between paths contributes significantly to

these parameter spreads. Paramsters such as these will be called

£l

"path nving parameters”.



2.3 MODELLING THE RELATIONSHIP BEIWEEN THE FIRING FREQUENCY OF

SECONDARY NEURONS AND ANGULAR ACCELERATION

Although there are several empirical models that have been used
to describe the relationship between the firing frequency of the secondary
neuron and angular acceleration (Cramptomn, 1965; Jones & Milsum, 1970;
Milsum & Jones, 1969), there exist no realistic models. This is because
the exact structure of the system converging onto a secondary neuron is
unknown.

Table 2-1 describes a class of models that, in this author's
opinion, should be tested experimentally to see if they can represent this
relationship to a first approximation. * An example of a multipath model
from this class is shown in Figure 2-6, In this figure, hl(t, :1)
and hz(t, 21) are the impulse responses of the first and second linear
systems, vhere :1 and :1 each denotesa set of fixed parameters,

(‘11’ Bigs oee ) and (cil’ o0 «se), contained in each impulse response.

Thus, for example one can write

z,(t) = j; yz(t - t;) hy(¢,, 32) de, .

Each 81( ) represents a static nonlinear relationship between xi(t) and

Ay
yi(t) which can be expressed in several ways. For example, gz( ) can be

vritten as:

!

(1) a power ’

K
7,(t) = jso sz xi (t)

vhere the sz u{-o parameters of a Kt order polynomial,




1.

The multipath model has the same known input applied to a parallel

ccnbimtioyb\f\‘u}path- and an output that is the average of the

outputs of all ol the paths.

Each path is a cascade of dynamic linear and static nounlinear blocks
such that corresponding blocks in different paths have the same

mathematical form but may contain different parameters.

The relative number of paths having a particular value for a given
paranmeter is known, so that one can estimate the probability of

obtaining this value in a randomly chosen path.

A particular N-path multipath model can be regarded as having paths
that have been randomly selected from an infinite population of

paths described by (2) and (3).

Parameters in different blocks of one path are independent.

TABLE 2-1 A PROPOSED CLASS OF MODELS FOR REPRESENTING SENSORY SYSTEMS

ff'a N




Yt

ya(t) zo(t) _
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FIGURE 2-6 AN EXAMPLE OF A MULTIPATH MODEL, FROM TABLE 2-1, THAT MAY RELATE
ANGULAR ACCELERATION TO THE FREQUENCY OF A SECONDARY NEURON .
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(2) a functional relationship such as

~b,, x,(t)
1_e212 R xz(t)?.b
22
yZ (t) =
0, elgevhere
where b b are constants, or as

21* "22

(3) a graphical or tabular relationship.

Since each path can have different parameters in it, corresponding linear
(or static nonlinear) blocks in each path can have a differeant impulse

response (or shape).

re art a number of reasous for the proposal of Table 2-1:
(1) The static nonlinearity is a simple type of nonlinearity, and 1t is
felt that many nonlinear systems that do not generate significant sub-
hatnt;nics can be represented to a first approximation by models consisting

of several linear and static nonlinear systems.

(2) A cascade of a linesr system, a static nonlinearity and a second
linear ‘cy-te- has been successfully used in the visual system (Spekreijse,
1969; Spekreijse, 1970; Spekreijse & Van der Tweel, 1972). [PFurther,
existing vestibular data relating primary neuron frequemcy to angular
acceleration (Section 2.2) can be adequately approximated by a linear
system followed by a static monlinearity.

(3) Equating the frequency of the sscoudary neuron to the average of tha
path's outputs is equivalent to equating this frequency to a weighted sum
of the path's outputs. This is assumed duwe to its simplicity.




. % (4) A recent identification procedure is available (Koremberg, 1973 a;

Korenberg, 1973 b) for identifying any cascade of alternating linear and

b

~e

* static nonlinear blocks.

(5) Finally, while the relative number of some parameter values in a
multipgth model would have to be assumed, otheks (e.g. Figure 2-5) are
readily available.
The question of how to analyse these models naturally arises.

Clearly, deterministic modelling would,be tedious even if all parsmeters
m'au paths were known. In flcé@dfphyaiblogic;ny impractical,

if not impossible, to obtain all of these parameters gsince each of the

possibly hundreds of paths that converge onto a particular secondary

neuron would have to be identified. However, many primary neurons,
. particularly "silent" ones, would be destroyed during the proc;eu of .
searching for thea. Also, the state of the animal would probably change

during the time necessary to accumulate enough data-to identify all of

Fopm ot
—— T

the paths. Thus, it appears difficult to model thqlfrequency of the
secondary neuron deterministically.

An alternate approach, taken in this thesis, is to ask vhat is
the probable firing frequency of any secoudary neuron, or equivalently to
ask vhat is the probable output of the multipath model when s known input
is applied. This approach is feasible since one can estimate the
chnra;:teruticn of the entire population of primary paths by ;mlin; them
randomly.  If it is experimentally verified that each path s of the same
mathematical form but contains different parameters, then the proportion ’ ‘

of paths that have a particular value of a pathi varying paraseter can bde " 5
. found. - . - | N

Chapter 3 will describe hov this“isformation can be used to Loy

uulyu «unuucu mltipath mm muuum




CHAPTER 3

A STATISTICAL APPROACH TO THE ANALYSIS OF
DETERMINISTIC MULTIPATH SYSTEMS

ap

3.0 INTRODUCTION

Chapter 2 has described a typical multipath neural system and
then proposed a general class of models that could represent many neural
systems. In Section 2.3, it was shown that while it 1is physiologically
1ngpssib1e to use these models deterministically, using them statistically
is feasible, Chapter 3 presents this statistical approach.

In Section 3.1, random parameter models are introduced. It
is then shown that when these random parameter models are applied to the
proposed class of multipath models, there sxists a mean and autocorrelation
correaponding to each point in the multipath model. Section 3.2 shows
how these statistical quantities can be used to approximaye the behavior
of the corresponding points in the multipath sodel. Section 3.3

dempnstrates that for any model from the proposed class the mean and auto-

o correlation corresponding to any point can always be found. A systematic

method of\fnnlysing this class)of models is given in Section 3.4.

™~

’

3.1 RANDG’ PARAMETER mfm: THEIR APPLICATION TO MULTIPATH SYSTEMS

e

1f a random process is the input to a deterministic system, the

statistical qgfntitia- of the input process cen .onltl‘ns be used to

+ ‘ "17“ \ - ~
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determine a statistical description of the output process (Barret, 1964;
Daveriport & BRoot, 1958; Stratonovitch, 1963). The mean and auto-
correlation of the output can easily be found if the system is linear
(Papoulis, 1965) and can often be found if the system is nonlinear but
static (Harmon, 1963; Thompson, 1955).

Sometimes the system itself varies as, for example, in an
electronic circuit that contains a component with a value that changes
randonly., Here the system can be represented by a random parameter
model described by an equation containing parameters that are random
processes (Adomian, 1964; Bharucha-Reid, 1964, 1970; Fuller, 1970;

Kozin, 1969). Usually the variation of the system parameter is independent
of the input process. In this case, a statistical description of the out-
put process can be obtained in a manner completely analogous to the deter-
ministic system case, except that the output expectations are taken over
the additional random process of the system. This procedure will be
illustrated in a slightly different physical application that follows but
is similar mathematically. The difference arises since the random para-
meter models to be used in this application have parameters that are random
variables instead of random processes. ' ¢

.Jinstead of having one system with a paraseter that varies randomly
vith time, consider an infinite ensemble of systems, of the same mathematical
form, each with a fixed but possibly diffctcnt paramster. Let a known
randém process be applied to all systems and assume that the relative
number of -y:tm‘ luvving a particular value of a "system varying psrameter"
is known. Suppo;e an experiment is repeatedly performed in which differemt

[‘
4
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‘ outputs are randomly selected and observed. Two questions can be asked
about this randomly selected output:
(1) What is its expected value? and
(2) What is the expected broduct of its values at two fixed instants

of time?

These questions can be answered bf défining a random parameter
model that contains a random variable with a probability demsity consistent
with the relative distribution of values of that parameter in the ensemble
of systems. Then one can consider each system to be a realization of
the random parameter model, and each randomly selected output to be a
realization of the output random process of the random parameter model
when the known input is applied. By using the definitions of the mean and
autocorrelation, the two questions are answered by evaluating these respec-

tive statistical quantities of the output process.

A fundamental characteristic of the random process just considered
is seen 1if one considers what happens if a lim\md"fdal input is applied to an
ensemble of linear systems. _ Since each system output will also be sinusoidsl,

r each realization of the process at the output of the random parameter model
Just defined will be completely deterministic. While for the random
processes normally considered, past vaiuu of a realization cannot be used
to predict future values of this realization; however, for the process
cousidered sbove, only three past values of any rcg}iution ars required to
predict all of its future values. snu;o most of the processes considered
in this thesis will have deterministic realiszations, many simplifications

. will result.
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As a first example, consider an infinite ensemble of first
order low pass filters each of which may have a different angular break

e"bzt

9 eeo 'Y

frequency b;, b, ... 1n their impulse response e D1t
and let a known, real, random proceu* » X (t), be applied to all

systems. In order to describe a randomly selected output, a random para-
weter model is defined that has a random impulse response, e -, where

the angular break frequency, b, has a probability density, £(b), consistent

with the relative distribution of these break frequencies in the ensemble of

filters. The output of the random parameter model is

1 (® =/ ey (t-v)dv.
o

The expected output of the random parameter model is

<y (t)> =<f -“"'v_X_(t-v)dv>
[+]

vhere < > denotes expectation, Since the input and system processes are

independent, the output can be written as

®©  -bv
<y (t)> -/<e ><x(t-v)> dv .
[+ ]

* The convention used in this thesis is that an underlined letter cionotu
a random variable (or random process). When the letter is not underlined,
this denotes a realization of that random variable (or process). Iun additiom,

all processes (except Fourier transforms) are assumed to be real.

Sl

syad
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Thus the expected value of a randomly selected output equals the expected
input convoluted with the expected Mul{;fapome of the ensemble of
filterg. Note that, in general, the shape of the expected impulse
response is different from each impulse in the ensemble. ‘

The autocorrelation of the output of the random parameter wodel

is

© -b(v1+v
(t),, t)) = /f > <x(t;-v,) x(t,-v,)>dv, dv,

Rh (tli tz) ® & Rx (tl’ tz)

where » # denotes a double convolution, R‘ (tl, tz) denotes the auto-
correlation of the input process and, analogously, Rh (tl, tz) denotes the
autocorrelation of the random impulse response.

Completely analogous results are obtained if each impulse response
from the ensemble contains many parameters that are different in each system.
If the ith impulse response contains K parameters, then it can be

written as h(t, 'I:i) wvhere b, 1s a K-dimensioual vector.’containing the

i
values of these parameters for that path. The random impulse response of
the random parameter model can be written as h('ﬁ;.’_tl) and the joiné
probability density of the K random variables in fcu\ be denoted as £ (g).
As a second example, suppose one is interested in the randomly
selected output of a new ensemble of static nonlinearities, each of the
same mathematical form but with different fixed parameters in each system.

Figure 3-1 shows examples of possible relationships bétween the input,
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FICURE 3-1 EXAMPLES OF SOME STATIC NONLIMEAR INPUT/OUTPUT RELATIONSHIPS
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xk(t) and the output, yk(t). Depending on which method (from Section 2.3)
is used to represent the static nonlinearity, a different type of random
/ parameter model describes a randomly selected output:
(1) When the power series method is used, the output of each static non-
linearity is represented by a "best fit" Kth order polynomisl in the
input variable. For example, in the kth -path
X 3
yk(t) = z ij ‘k (t)

3=0

where ¢ are constants. The relative number of systems

ko’ Sk1® °*° * Sk
with particular values of coefficients (this is assumed to be known) can be
used to define a2 set of random variables Eor 1 v & and a joint
probability density, f(co. Cps wees cx), consistent with the relative
distributions of these coefficients in the ensemble of nonlinear systems.
Note that any order moment of these coefficients can be found. The
resulting random parameter model relates the output to the imput with a Kth

order polynomial that has random variables as coefficients.

(2) When the functional relgtionship wmethod is used, a random parameter
model that is a random nonlinesar function results. This is handled in

the same way as the random linear systeam already discussed.

(3) When the graphical relationship method is used a “random graphical
relationship” random paramster model results which requires all joiat

probability densities of all adjacent values for a complete statistical
ductiption.‘ Denote the value of the graphical relationship at the input
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argument, x(t), as g(x(t)). The first order probability demsity,
f(g(x(t))), can be estimated, for each x(t), by finding the relative
number of systems that have an output between g(x(t)) and g(x(t)) + dg

(where dg is a small increment about g(x(t)) so that*

f(g(x(t))) ™ Pr {g(x(t)) < g(x(t)) < g(x(tr)) + dg}.

Similarly, the second order density of adjacent values can be defined as,

g(x(t))) < g(x(t})) < glx(t,)) * dg,
f(g(l(tl)). g(x(tz))) = Pr and

g(x(tz)) < 3(x(t2)) < g(x(tz)) + dg,

where dgl and dgz are small increments about g(x(tl)) and g(x(tz))
respectively. Note that these densities are indcpondent of time. This
procedure would have to be continued until the resolution of the input
variable is reached. It is not known which representation will be more
useful experimentally. Regardless of which method is actually used, a
static nonlinearity ‘vill be denoted as g( ) with a probability density
of £(g()).

The previous examples have shown that the output of a undo-)ly‘
selected system chosen from an infinite ensemble of systems with ths "n-

input and having the same mathematical form but comtaining different

*
Pr{A} denotes "the probability of A"
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parameters in each system can be described by the output of a random
parameter model. This wodel vill be of the same mathematical form as
each system but will contain random variables for its parameters.

Revieving the description of the class of multipath models in
Table 2-1, it is clear that the output of a randomly selected path can
be described using random parameter models. Since the mathematical form
and thus the block diagram of each path and the random pardmeter model
are the same, each block output in any path corresponds to an output random 3
process in the random parameter wodel, (See Figure 3-2). Thus, corres-
ponding to each block output of the multipath system, there exists a mean
and autocorrelation which is the same as that of the corresponding output
in the random parameter model that describes all possible outputs at this
point in the multipath system.

The next section will show how the mean and sutocorrelation can
be used to approximately describe the variation, due to different possible

N

parameters in each path, of any waveform in a multipath system. )

3.2 THE USE OF THE MRAN AND AUTOCORRELATION OF A SET OF WAVEFORMS

Once“one has found the mean and sutocorrelation corresponding tg@
a variable in s multipath system, several properties of any realization
of this varisble can be found. Mamely, for any vaveform (or realization)
. N )

of this variable ou‘un estimate confidence intervals for:
(1) 1ts actual value at a particular time,

(2) its Pourier transform (Papoulis, 1962) over an imterval of time, and
L) .




FIGURE 3-2 A MULTIPATH SYSTEM AND THE RANDOM PARAMETER MODEL FOR EACH PATH

Kach path of A (Figure 2-6 reproduced) is a realization of the random parameter model in B
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{3) its power spectrum (Jenkins & Watts, 1969) over an interval

of time.

h ]

The derivation of each confidence interval will be discussed.

(1) The Confidence Interval for the Value of a Process Reglization
at any time.

For any real, random process, x(t), having a mean, <x(t)>, and

autocorrelation, Rx (t ), Chebyshev's Inequality (Freund, 1962);

17552
Papoulis, 1965) can be used to estimate the probability that the random
process will lie within a specified interval sbout the mean value of the
proceuk (1i.e. to establish confidence intervals for the process). The
variance of the process, Var (x(t)), which can be denoted as, oz .
can be written as

2

0, = R, (t,t) - <x (t)>2 .

Chebyshev's Inequality can be used to show that

Pr { <x(t)> -k 8, < x(t) < <x(t)> + ko, } 21+ %-,

where k 1is a positive coastaat. If x(t) 1is known to hgve a GCsussian
probability, at any time, a ﬁnlhr confidence imterval than the one givem
by Chebyshev's Inequality can be found. Yor exampls,

Pr { <x(t)> - k o < x(¢t) < <x(t)> + ko, } = 0.68.
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)

Table 3-1 tabulates the size of an interval about the mean,
for 68, 90 and 99X confidence levels, within which an arbitrary or a

Gaussian process would lie.

Distribution ’
type Confidence %1!1 |
682 902 992
Any + 1.8 o, * 3.2 o, t 10 o,
Gaussian t ot 1.7 0t t 2.5 ot

TABLE 3-1 REQUIRED INTERVAL SIZE ABOUT MEAN TO INCLUDE,
AT VARIOUS CONFIDENCE LEVELS, ALL RANDOM PROCESSES

Thus, if the random process, x(t), correspomds to a waveform,

th

xi(t), in the 1™ path of a multipath system and if <x(t)> and lx(tl' t

2)
are known, then one can say that about 90X of all possible systems will

have a value, at time t, at this point that lies within
2,1
<x(t)> t 3.2 [R (¢, t) - <x(t)>* ]%,

Alternately, 1if ome looks at the values of correspounding points in all paths
of a multipath system, then about 90X of all of the system's paths will have

]

a value st this point within this range.




- 29 -

(2) Confidence Intexrval for the Fourjer Trapsform of a Process
Realization over an Interval of Time.

Any waveform, x(t), which can be considered a realization of
the random process, x(t), has a Fourier transfor-*, X(w), which is a
realization of a random variable, X(w), where w is angular frequency.
It is assumed that <x(t)> and ) Rx(tl, tz) are known. The mean,
{X(w)), and variance, Var(X(w)), of this random variable will be found
in order to approximate X(w). Let X(w) = A(w) + 3 !(w) where -
A(w) an;l B(w) are the real and imaginary parts of the complex proceu),

X(w), and J = (-l)i. Taking expectations of the definition of the

Fourier transform gives

=

CXW)) = / < x(t) > e Y g

S AW + 1B .
Thus <{X(w)> can be found from <x(t)> , which is known. Also,
* °re =3 (wyt)-uyty)
(X)) X (w,))> S-L‘[ R (¢, t))e de,de, 1
-0
= T (w, o)

where T (ml, »2) is the two dimensiomal Yourier transform of ‘x(tl’ tz)
(Papoulis, 1965). Finally, using the definitiom (Papoulis, 1965) of the

R
* It is assumed that the Fourier transfora exigts, B ; A

- L
o P
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variance of a complex random variable gives
VarX(w) = <| X - <x@d |2
= (X@EW) - CX@ D <Xw>

which can be evaluated using I (w,w), ¢ X{(w))> and (XM w) .
Thus, 902 of all Fourier transforms of any possible waveform in a path

that has a corresponding random process, x(t), will have a magnitude within

| X(w) | % 3.2 (Var(s(w)))i

= (<{Aw)) 2, {(B(w)) 2)3 t 3.2 (Var (3_(«»)))5.

and a phase within

Aw) (A 2+ (B> D

-

tan~! [ B(w) ] ttan~) [_3_._; (Vl_a_g_gl(m)))i - ] .

This confidence interval is lbc;wn in rigure 3-3.

(3) Cont
'y nte T
Consider again a waveform, x(t), vhich can be considered a

realization of the random process, x(t). This wavefors has a power |
-p.cttu-‘, S(w), wvhich cen be considered a realization of the process, $(w).

L)
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Assume that tlie wvaveform is zero for t<o and ¢©>T, It can be. shown

(Koles, 1970) that the power spectrum equals

X(w) X*(w) "

S5 = — . . \

It vill be shown that a confidence interval for this process can be found.

' process is ‘)known and the fourth moment of the input can be calculated for

A

Taking expectations gives

|

-

<§(w')> = I_.(.“_’a‘_")..

T
g . 2 )
Also, Var(S(w)) = {STw)> - (gwd °.
Now
2 L2
< .3_2(“’)> = X wT W
) T T T _T J SJuCt sttt
"2 / / f f Cx(t))x(t,)x(t)x(t,)) e dt,dt de dt,
[+ o (o] (¢]
nd ' s
: ¢

-

Y ‘ =Jule)-tyetyet,)
{S(w)) --;-2-.[.[[[(_x_(tﬂ_x_(t?)(_g(ta)_x_(t‘);\e dtldtzdt3dg,..

1

»

Thus the variasnce can be evaluated since the autocorrelation of the inmput

the processes considered. Confidence intervals can ba found as before.




3.3 OBTAINING THE MEANS AND AUTOCORRELATIONS OF VARIABLES IN

A MULTIPATH MODEL

f

This section will demonstrate that for any multipath model from
Table 2-1, the mean and autocorrelation of the process associsted with
any block output or the model outp;t can theoretically be found. In |
Section 3.4, a systematic method of approximately analysing multipath
models is listed. It should be pointed out that for more complex
_ systems, the systematic method requires numerical solutions.

Since each path of a multipath model is considered to be a
realization of a knowrd random parameter model, any path in the multipath
wmodel can be described once the moments of each variable in the random
parameter cascade are found. This is always possible since it will

be shown that the input/output moment relationship can theoretically be

obtained for any random linear block or any static nonlinear block.

3.3.1 Moment Relstionships for a Random Linear Big_c_k

Consider the random parsmeter model of Figure 3-4.  x(t;a) 1s
the input random process and h‘(t,b) is the random impulse response of
the -odel, vhere a and b are random variables associated with each process.
For convenience it is assumed that both x(t,s3) and h(t,b) each contain
only one random variable. If each contains several random variables, - i
the discussion still applies, but a and b should be replaced by the
vectors _.': md §_ respectively. In addition, x(t,s) and h(t,b)

vill be used interchangesbly with x(t) and h(c). g
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[

It is assumed that all nth order moments of the input,
<_:_t_(t1) '5(1:2)... g(tn) >, and of the random impulse Tesponse,
< g(tl)l_\_(tz)...g_(tn) >, (vhere n is sn integer) are known. Since the
nth order moments contain only one random variable, only the first order -

‘density of this random variable is necessary to evaluate the nth order

moment. For example,

) <_x_(t1) l(tn) > = f x(tl,a) cee x(tn,a)\ f(a)da
all a

vhere f(a) 1is the first order probability density of a vhich is assumed
‘to be knownm. It 1is also assumed that the random variables of the input
and the model are independent and that x(t) and h(t) are real.

The nth order moment of the output, < 1(!:1) ’_(tz) ces 1(r.n) >,

is o« Q?
< ./; _l_x_(vl)_x_(tl-vl)dvl voo .l: g(vn)_;_(tn—vn)dvn)

X eoeo L) < -"(tl-vl) oes _X_(tn-vn) > < !(Vl) L _l_‘_('n) > oo d'i eee o
n times n times

l

This will be denoted as

<x(t)) ... y(t) > = < x(e)) ox(t)) >aeeea < h(r)) ... h(E) > (3-3-1)

n times
. vhere & desnotes couvolutiom.
In particular, the msan output 1is
<x(t)) > = < x(t)) > » < h(x,)) > (3-3-2)
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and the autocorrelation of the output is
< l(tl)l(tz) >m < 5(:1)_‘_(t2) > x & < h(tl)h(tz) >

« R (tl, tz) * % ah(tl, tz) (3-3-3)

where Rx(tl,tz) and Rh(tl,tz) are the input and system autocorrelations

respectively. Finally, the joint moment of order r+s 1is

<y Tt )1 (tz) >z <x (cl)x (t,) > » ;ii ® < h (tl)h (tz) >.
times

. Note that the mean and autocorrelation of the oupput of this random linear
system require only the first and second moments of the inmput. When the

input is deterministic, these relationships simplify to

< y_(tl) >z x(tl) ® < _ll(tl) >

and

< ;_(tl)g_(tz) > = x(t.l) * x(:z) 'y Ih(tl.cz) .

Since h(t,a) 1is generally a nonstationary process, y(t) is slso nom-
stationary.




FIGURE 3-4 LINEAR RANDOM PARAMETER MODEL

x(ta) Y(t)

FIGURE 3~5 RANDOM STATIC NOWLIMEAR MODEL
1
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Consider the random static nonlinear model in Figure 3-5.

x(t) is the input process with known nth order moments, < 5(&1) ces 5(tn) >,
and the random static nonlinearity, g( ), is represented by the power
series,

&)= & on 2.

1.0 *

The coefficients, _lgo, -l-’-l' .+ are random variables and all of the moments,

PO P1 PK
<_l_;_° 31'"-'-’1 > , are known, vhere PO.P]_*...‘P‘-n and
'y
PO’ Pl’ sy N and K are all integers. The nth order moment of the
output is - “
K X
<x(t) e x(E) >m < (I by ) ook (Db He)) >
i=0 j.O
) 4 P
= x(b "'b )(5 (t).co-‘_ (t))
all -0 X 1 n
products

vhere PQ,---‘r!: n, aad q = 0, 1, «+«, K,

In particular, the mean ocutput is
;

K )
<y(t) >3 L <b, > <,§1(t) > ' :;
1=0 ' . ! I«




and the autocorrelation of the output is

1

Po P, 81 8
< x(t)y(t,) > = .§1<.§0'"b{ > <x (t)x (t)) >
products
IZ( 0, 1
vhere P, =2 and g,, 8,20, 1, *+<«, K, °
120 i 1° 22

Note that the nth order moment of the output of this Kth order random
polynomial requires the (nK) th order moment of the imput. Finally, the

output moment of order r + s 1is

P Py g1 88>
< 1r(t1)1.(t2) > = ,il(-!-"oo cee _\1‘ ><x (tl)! (tz) >
a
. products

vhere p,+ --c + P r+s and 8y» 32.-_-0, l, -+, K.

K=
When the input is deterministic, the expectation over tin input can be
dropped.

It has been shown that for any random linear or static nonlihear
system, the moments of the output can be related to the moments of the imput.
Thus, the mean and autocorrelation of any variable in any cascade of‘ these
random models can theoretically be obtained. In particular, the mean and
autocorrelation of the process which is ths output of the random cascade
cm be found. It will now be shown that the mean and autocorrelation of
this random process(which corresponds to the output of amy psth of a multi-
path model) can be related to the mean and gutocorrelation of the random
process corresponding to the output of the multipsth model.




-39 -

»

For the class of multipath systems considered, all N paths are

chosen independently. Let the ocutput of the ith path correspond to a
process, x(t, a,). Since the paths are chosen independently, a set of

N independent processes result that have the same mean and asutocorrelation:

< x(t,_!i) > = < x(t,a) > (3-3-4)

< x(tl._n1)x(tz._l_l) >m lx(tl.tz). g (3-3-5)

Since all of these processes are independent, then

< "(‘1'-‘-1)"“2'-'!-_1) > = < x(t;,8,) > < x(tz._a_’) > (3-3-6)

The process, y(t), corresponding to the multipath system's output, is the
¢ average of all of the independent processes.  That is,

() = X T xc.a) .
LY 8y /»
) 1 ,
The mean and sutocorrelatiom of y(t) will be found. The development is

analogous to Theorem 3.2 iam Frewemd, 1962. MHgure 3-6 representy’ the
_problem schematically.

d
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The mean of the process corresponding to the output of the

sultipath system can be written as

N
cpr)>a <3 It >

Using (3-3-4) gives

<y(t) > = < x(t,a) >. (3-3-7)

The autocorrelation of the process corresponding to the multipath

system's output is

1 P
. -5 '< !(tl)l(tz) > = ( N ifl ‘(tl"!l) ] 51 x(tZ'!j) >

3

N I |
1

= { I x(t,a,)x(t.,a,)+ [ I x(t,,a,)x(t.a)D,
P A R x(622))

. ‘-*j

However, by (3-3-5) and (3-3-6)

N |

3

s=> | NR (¢,,t,)) +2 I <x(t,,a,) > <x(t )>],

z[ i AN (¢y08, 2°4 |
ip3 :

vhich by (3-3-4)

# = i‘i [. l:'tl'tz) + '(.‘1) < ‘(tl’y > < “‘20 :] -
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Therefore,

' (t ’ ) L
< y(tdy(t,) > = :x_%_i_ + -G-;A)- < x(ty,8) > < x(t\)"._g) >. (3-3-8)

Thus, the mesan and autocorrelation corresponding to the multi-
path systea's ;otput can be related to those of the path's outputs.
- Therefore, it has been demonstrated that a mean and sutocorrelation can
be found for all points in any multipath system from the class of Table 2-1.
It is interesting to note éhat vhen a sampling viewpoint of this
situation is taken, a result consistent with the Central Limit Theorea®
(Papoulis, 1965) 1is obtained. To see this, note that the variance

. corresponding to the outputs of the paths, at any time t, is

Var (z(t)) = R_(t, €) - < x(t) >

$
and that the variance corresponding to the cutput of the mltipntilz system,

at time t, 1is,

. Var (z(t)) = R (£,8) - < 3(t) »2
7 - , z - -
R_(t,t 1) < x(t) > g
,_ic.),:n-) > o |

}
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Therefore,
Var (y(t)) = JREX(®) | (3-3-9)
N
Thus, at any time t, all the outputs of the psths form a set of N random
variables that are considered to have been randomly selected from an
infinite population of outputs that has a mean, < x(t) >, and variance,
Var (x(t)). Hovever, the systea output is the average of these N inde-

pendent samples and has a2 mean vulﬁe,
<y(t) >= < x(t) >

and a variance,

Var(y(t))= YA &Z(E))
N

which 1is what would be predicted by the Central Limit Theoream. In

addition, this theorem says that the probability demsity of &£ll possible

sultipath system outputs, at time t, is approxiutol} Csussisnly distributed.

The error in this approximation can be found (Papoulis, 1963).
It will be shown in Chapter & that under certain conditioms
< z(t) > is linsarly related to the system input in many sultipath systems.

For these cases, any difference between the actual system output and tﬁn
expected system output can be considered a distorticm, Am
output signal-to-distortion ratio® is !ond by dividing an u:m mags

‘1 ot
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by the output standard deviation. The signal-to-distortion ratio of
the output is

<;&)> . /R < x(¢) >
[var(x(e)]?  [varx(e))]}

As N increases, the output signal to distortion ratio incresses as AR
This is also the improvement of this ratio at the multipath system output
over the value of this ratio at the output of a single path.

Equation (3-3-9) shows that as N incresses, the output of the
sultipath system becomes more nearly deterministic or more certain t;gard-
less of which paths have been selected. For an infinite path system the
output equals the expected output, In this case, the system output, its

. Fourier transform and its power spectrum are all deterministic and are

known exactly. g

3.4 THE SYSTEMATIC METHOD OF AMNALYSING MULTIPATH SYSTEMS

s ‘The previous sectious have showvn that different realizations
of a multipath model, of Table 2-1, will bhave different vaveforms in it with
the same input applied. It was shown that the mean snd autocorrelation
corresponding to this waveform variation can always be found. Section 3.2
showed that thess quantities can bc—uud to determing confidence iantarvals

for the possible range of values for any vavefors, its toutm\tnq:ﬁm

o or its powst spectrum. . ;
| “ ‘ This suggests a systematic mathod of asslysing multipath sodels:
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(1) Set /jup the random parameter nbdel corre-pon&ﬁg to a randomly

selected path. ‘ . ] °

Y

(2) Find the ﬁhtimhip between the input and output moments for
each biocli separately in the xandom parameter model. This
is always possible since all blocks are either linear or static

nonlinear systems.

(3) Using thé relationships in (2) and the known system input,

determine the mean and autocorrelation at each point along the

it

Q -
cascade in the random parameter model. Note that to find the

P
) {
wean and autocorrelation of the output of the last static non-

iinearity in the cascadeé, in general, all the moments of the

output of each preceeding block must be found.

' (4) Find the mean and autocorrelation cortuponding to the multipath

-system output ffom the mean and autocorrelation found i{n (3).

(5) For any point if/the multipath system, use the results of
Section 3.2 .to*approximate its value, at any time, and to approxi-
mate its Fourier transform or power spectrum over an interval of .

time.

When property (5) of Table 2-1 cannot be assumed, the system can

still be analysed but means and sutocorrelatious must be found Without

4

breaking up the random parameter model. This 1is gan;x:.ny such more

difficult to dos




® ’ "

\ .
~ It should be pointed out that the multipsth systes can have

more than one input. In particular, independent noise sources can
often be added in each path without changing the approach. This will

. be 1illustrated in Chapter 4. In addition, Chapter & will find several
input/output moment relationships for some random parameter models and will
discuss the problems involved in applying the systematic method to multi-

path systems,




CHAPTER 4

) THE ANALYSIS OF MULTIPATH MODELS

4.0 INTRODUCTION

The purpose of this chiptet is to show how the systematic
method described in Section 3.4 is used to analyse multipath systems.
To this end, the chapter is divided :l.nt; tvo parts. The first part,
(Section 4.1) determines some of the moment relatioanships required in
the second stage of the systematic method. This is done for a random
low pass filter and for several static nonlinearities. Yor all random
static nonlinear systems considered, outputs are linearly® related to
the inputs under certain conditions. Thus, any sultipath system
employing realizations of these random systems in each path will have,
under certain conditions, an expected output that is linearly related to
t'hc expected input. Also, if this multipath system has an infinite
number of paths, and if the input is deterministic, then the sctual output

of this system u’”‘, under thé previous coaditions, Q.limr].y related to the

input. . : -

* Although the relaticnships that will be obtained will be linear, the
equivalent systems are not. The relation, y « mx + b, is an example
of a linear function that represents s nonlinear system since the systes
does not satisfy the Superposition Principle due to the comstant, b.
(Dorf, 1967). ’
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The second part (Sectiom 4.2) of this chapter illustrates the
systematic method, using some of the moment relationships found in the
first part, and indicates how the anslysis of the two multipath models
in Figures 4-8 and 4-10 would proceed. Independent noise sources have
been added in Figure 4-8 to show how noise can be handled with this

approach.

4.1 MOMENT RELATIONSHIPS OF SOME RANDOM PARAMETER MODELS

4.1.1  Moment Relationships of s Random, First Order Low Pass Filter

Consider the system in Figure 4-1 (a) that has a random impulse

response, e —t, vhere the angular break frequency, b, is a random variable

with a probability density given by

TS<bsgT+ S

£(b) = (4-1-1)

o e
-

R elsevhere .

The expected impulse response of this system is

T+8
CeRt> . f et £b) @ .

Using (4-1-1) gives ‘ 1

i (4-1-2)

L

[ 24

, A
.
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(b) shows relationship between input and output mesns of random
parametar model in (a).
e 7 M“%":“’ s I 1%
“H - « " \" ""4 Yy
wth L b 2 LS " R, ﬁ&ﬁ’iﬁk‘fé{g



- 50 -

Note that the expected impulse response has a different shape than any

realization of c.b-t. The autocorrelation of this system is

T+S
{ebt1 ght2) f e-b(tl*tz) £(b) db.
T

Using (4-1-1) gives

-b(t,+t,) ~T(ty4t,) ~(T+S)(t,+¢,)
<e 12> = € 12-! 1‘2, (‘-1-3)

ts /

Esploying (3-3-2), the expected output (see Figure 4-1(b)) is

e—r: _ o (T+S)t
~—$- s < x(t) > (4-1-4)

<y(t) > = .
t

and using (3-3-3), the output autocorrelation is

-T(ty+t,) -(T+S) (t,+t,)
R’(tl,tz) = (o 17727 _ e 172 ’ e lx(tl,tz).

Similarly, employing (3-3-1)
<x(ty) -.. y(c )

can be found.



4.1.2 T & St El w a Uniforml

Distribu reshold

Figure 4-2 (a) shows a random static nonlinearity that is a
step function with a uniformly distributed threshold. The output,

* y(t,a,b), wvhich is abbreviated as, y(t), is written as

o, x(t,a) < b
l(t) =
M, x(t,a) 2 b

vhere x(t,s) is the input process containing, for convenience, a single
random vgriable, a, with a known probability density, f(a); M is a
constant and the threshold, b, is a random variable having the uniform

probability density of (4-1-1). The expected output is

<y(t)>= 0-Pr { x(t,8) <b } + M-Pr{x(t,2) 2 b}

=M-Pr{b<x(t,0) )} .

When x(t,a) <T, then Pr { b < x(t,8) } = O,
so that
< y(t) >= 0, when x(t,a) < T.

When T < x(t,a) ST+ 8,

x(t,a)
Rr (b < x(t,e) )= ’[ f—;-dbf(a)da
alla T

-<!(t.g>-1 “
S
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Thus,
<3(0) >z §(<x(t,0) >-1), TSx(t,a)sT S,

Finally, vhen x(t,8) 2T + S, them Pr { b < x(t,a) } =1,

so that
< y(t) > = x(t,a) >T + 8 .

-

Combining these results, the expected output is

o, x(t,8) < T
q(t)> = B(<x(c,>-D, Tsx(t,)sT+s

M, x(t,8) >T + 8

Thus when x(t._;_) is restricted to the range of thresholds, the expected
output is linearly related to the expected input despite the fagct that
the random parameter wodel is nonlinear, If the input is not restricted
to this range the expected output requires a numerical solution unless the
probability density of . x(t,a) is knowm, If the input is deterministic,
the relationship showm in Figure 4-2(b) results.

The autocorrelation of the output will now be found assuming

that the input is restricted to the range of thresholds. It can be

written as

< yit)) g(e) > = 0 MPr { x(t;,0) 2b and x(t,,) 2b).

R L " a +
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Since b must be less than or equal to the lesser of x(tl.!) and x(tz,g,

define

q = Mo (x(t,,8), x(t,,a))
and I}t £(q) be the probability demsity of_ g :
Then

‘ 2
R (t),t) =M -Pr { g2 }

.n’ff-;- db £(q) dq

allq T

vhere the integration is over the set of g and b in the preceeding

probability and (4-1-1) has been used. Thus
Ry (tlptz) = -g- ( <q > -7 ) . ("1‘5)

Section 4.2.1 will discuss the problems involved in finding this asuto-
correlation. Note that when x(t,s) is a monotonically increasing

function, the autocorrelation can be written as

l’ (tl,tz) = ‘H§2‘ (< x(tz.g) >-T)

/
Similarly, it can be shown that

<1(t1) o.ol(tu)>' ‘%‘;(<% >‘—T)

\

vhere % = Min (x (tl.!). coes x(t‘,,g))\nq T 55(6 £T+ 8.

Thus, all output moments can th.out}ully be related to the input momants.
. i
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Static Nonlinesrity which has g Threshold gnd Satyrates

Cousider the random parameter model shewn in Figure 4-3 (a).

The input is a random ﬁ‘tbccu having (for convenience) a single random

variable, a, which has a probability density, f(a). The output 1s

o, x (t,8) <D
y(t) = ( g(x (t,0)-b), b <x (t,a) <b+R (4-1-6)
M, x (t,a) >b +R

vhere the saturation value, M, and range, R, are constants such that

R < S, the threshold, b, is a random variable having the uniform probability
density of (4-1-1) and g ( ) is a random static nonlinearity whose
probability density is denoted as f£(g ( )) or f£(g). All random variables
are assumad to be independent.

If it is assumed that the input is limited to (see Figure 4-3(b))

T+RSx(t,8) ST+ 8, (4-1-7)

then the expected output is

]

x
<y(t) >0 + f j f g(x-b)£(g)dg £(b)dd f(a)da
allsa x-R ssll g

=R
s [uf 1o o 2w
alla . T
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x(t,a) ...j y(t)
.,‘..‘
3 bR
| & b
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FICURE 4-3 RANDOM STATIC NOMLINEARITY WITH IMPUT LINEAR
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(2) shovs a random static aonua-u-uy with uniformly distributed

threshold and saturatioun.
vm:h-um:mw#mm

[

. T
x A/x*j

4

\
o™

(23

Tkt et "“2 ra‘;“k%

RO e‘

~>$Ak

{b) compares cu, mu dutrthution



/

where x(t,s) has besn abbreviated as x and the three terms correspond
to x(t) <b, bsx(t) <b+R and x(t) >b + R respectively.
Define the random variable v(t) = x(t)-b. Using (4-1-1) and denoting

v(t) as v gives ., ‘

<y(e) >x 3 f f g(v)dv £(a)da + f ¥ x(0)-@1) f(a)da,
all a © all a

where g(v) = /g(v)f(g)dg )
all g -

denotes the average input/output relationship for the static nonlinearity.

Note that since
® I
A glv)dv

is independent of a, the first term for < y(t) > is constent, so that* .

<y(t) >= A<x(t)> +B

vidre A= '%, and

B . —;-Z i - 2 @

* .
The author ériginally derived this result using a Yourier series
expansion for the static noanlinearity. The derivatiom above, by

M.J. Korenberg, is much simpler &d is presentsd here for this ressoun. T

-
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provided the inmput is bounded by (4~1-7).  Once again the expected
output is linearly related to the expected input despite the fact that
each realization of the random parameter model has a different threshold,
saturates, and can have a different cohapc between thtubo'ld and saturation.

If the input range is not lhitﬁ by (4-1-7), the relationship
between means is complex and requires a mﬂnntical solution. 1f thc ’

input to the static nonlinearity is deterministic,.the relationship shown

in Figure 4-4 (a) results. , In order to indicate how this relationship -

arises, assume for the moment that the shape of the random parameter model,

g( )‘, is deterministic. The expected output 1is

<y(t) >= fg(x(t)-b) £(b)db + fo(b)db

3
-

vhere the end points of each integral depends on the ipput. Suppose the

input range is divided into five regions, 1 to 5, as shown in Figure 4-3 (b).

1f the above integrals are denoted as — e

¢

Ia f g (x(t)-%) £ (b)db
I « f M€ (b)db

then Pigure 4-4(b) can be used to evaluate the end points of I and II.
when the input is in esch of the five regiomns. Thus, the expected

"

output can be written as ¥

~
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x(t)

A

5
T+S+R1

4
T+S

3

i)/

1 — r— = b
T T+R T+S T+S+R —\
REGION | LIMITS OF b INI | LIMITS OF b I(E

1 — -—

2 T x -

3 x-R, x T x-R
4 x-R,T+s T, x-R
5 T T+S

ytth= /g(x b)db + M[db I+I

FIGURE &4-4 (b) END POINTS TO EVALUATE EXPECTED OUTPUT

o .
o BY
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{ 0 x(t) < T
x'(t) ,
%f g(x-b)db , T < x(t) < T+R
T
R
<1(t)>=§ g' (x(t)~(R+T)) + '::fs(v)dv ’ T+R g x(t) < T+S
p ~
T+S x(t)~R -
: -;'- g(x(t)-b)db +-ls! f db , T+S < x(t) S T+S+R
x(t)-R T
\H, x(t) > T+S+R

o~

If the shape of the static nonlinearity had contained random variables, a
' & similar result would be obtained except that g( ) would appear instead

. of g( ). )

Note that it is possible for two different random parameter

models, ;ach with realizations of different shapes, to have the same
expected shape. These models would have the same relationship between
B input and output means.
One method of obtaining the output autocorrelation employs the
Lebesgue Integral (Doodb, 1965; Papoulis, 1965). The input process is
divided into three regious (as shown in Figure 4-5) which defines three
sets of values of a and )I_g: Sl, $2 and 83. For convenience, denote

x(tl,g and x(tz.g l’ty;l and x, and define

/ Q = Max (x;, x,)

q = Min (;1. 52)
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x(ty,a)
|
2 3
b+R
1 2 ¢
b
v I X(t,,a)
b b+R V=

FIGURE 4-5 DIVISION OF INPUT PROCESS IN THREE REGIONS

For any threshold value b, 1,2, and 3 denote the only three regions that
contribute to the ocutput autocorrelatiom. Each region defines a set of

values of 2 and b as follows:

sl-{a,b:b<x(t1.l)<b+l and b<x(t2,a)<b+l}

S, = {ab:bc< Min(x(t,,a), x(t,,8)) < b+R < lhx(x(tl,ia). x(t,,a)) }

-

w{ab:b+rc< x(t;,8) and b + R < x(t,,s) }

85

I
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By integrating in the Lebesgue sense over the sets sl, S2 and 83, the

output autocorrelation can be written as

< y(ep(t,) > - / /  (R-0)8(xy-b)g x5 B2 4yabaa
al

all a Q-R

q
. _/ f f u_l(q-b-x)ug(q-b)-f-(%ﬁ!)- dgdbda (4-1-9)

alla gq-R allg

q-

ff -‘!s-f(.) dbda

all a T

vhere the above three terms correspond to points in Sl. Sz and 83

respectively, the threshold density of (4-1-1) has been used and 5

1, x20
{1“)'

o, x< 0,
Although the analytical solution can be continued somewvhat, this will
not be done since a numerical solution is eventually required. This
will be discussed in Section 4.2.1. It should be pointed out that
vhen each realization of the input process to the random model is a
monotonically increasing functiom and limited by (4—1-?) then the output

autocorrelation can be written as



b S

1 :
< l(tl)l(tz) >z f . 4 o x/; u_l(R°! f’l)'(’l'b)s(’z“b)&gm dgdbda
2

all a

R
+ 2 f f 8(Wu_ (wex,-x -R)dw £(a) da

alla o
Hz
+%5 (< t e - (R+T))
(4-1-10)
-
where the substitution w = x - b was used in the second term. This
expression can be evaluated analytically,
Note that vhen the input is limited by (4-1-7), thea (4-1-9)
can be used to show that®
<12(:)>=c<_§(t) >+ D
vhere C = —"§2- (4-1-11)
R
. 1 2 N2
and D = r3 g (v) £(g)dgdv - ry (R+T) .
o al

1 /g

In general, M.J. Korenberg has shown that

<yMe) > B <x(e) >+ 7

vhere E and F are constants.
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A convenient, Mtz\indcpmdont, upper bound for the output variance can
be found as follows:
. Since <y(t) > A<x(t) >+ B

and < 12(‘” = C<x(t) >+D

‘&hen
Var(y(t)) = U + V < x(t) > + W < x(¢) >~
where U =D - 32
V =C - 2AB
and W = -Az .

Maximizing Var(y(t)) wich respect to < x(t) > gives a maximum at

so that the variance is

2
Var(y(t)) s < +p -2, (4-1-12)
4A2 A

To illustrate the use of these equations consider the random

parameter model in Figure 4~6(a). The system output is defined as

v 4

o, x(t,8) <b "

y(t) = % (x(t,8)-b), b<x(t,a) <b+R .
‘ ) d
M, x(t,8) >b + R



-x(t, a) y(t) .
_+ e

x(t) Cylt)>
SRR - : | .

T T+R T+S T+S+R

o -

PIGURE 4-6 RANDOM STATIC MONLINEARITY AND RELATION BETWERN
DETERMINISTIC INPUT AND EXPECTED OUTPYT

(b) shows the static relationship between a deterministic input
and the expocteld output of the random parameter model in (a) .
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where all variables are defined as before. Applying (4-1-8),

/
(4-1-9) and (4-1-12) give an output mean, autocorrelation and maximum
variance of:

cx® > =3cxe>- B2 (4-1-13)

X 2
Ry(tl’tz) - SaZ f f(' -ﬁ')d,' “_I(R-A) f(a)da

alla A
;
. .1[ f w u_ (w+A-R)dv £(a)da (4-1-14)
la o

. -"sz[ J 4 t@aa- (mr)]

all a
and Var(y(t)) < [-:— - 3'-‘3—] (4-1-15)
provided t‘he input is limited by (4-1-7).

'4,1.4 The Existence of a Class of Nonlinear Systems with Memory
that have Lihearly Related Means

The previous sections have shown that random linear and rasdom
static nonlinear systems can have their ocutput mean linearly related to
the input mean provided the imput is suitably limited. This section
will dllustrate that, under certain ccu‘utinm. many nonlinear random
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parsmeter models with memory will have their expected output linearly
related to the expected input.
One class of these models can be shown to exist by considering

a random static nonlinearity such that

<1(t)‘> = A < x(t) >.
(Put B = 0 in (4-1-8)). Then any linear combination of- any other linear
system will produce a nonlinear system with memory that has its iaput and
c;u"t’)put means linearly related.
Figure 4-7 shows ome example® of such a nonlinear random para-

meter model. It can be shown that N

<y(t) >= l-AAK < x(t) >

provided that R = - ‘I‘_/2 and the input to the static nonlinearity, e(t),
is bounded by T +R <e(t) <T +S. Higher moments will not be
considered.

Another class of random parameter models having linearly related
means are those coqn;ud of .either parallel combinations or cascades of
blocks vhich are either deterministic and linear or are random with l’tnurly
related means, This thesis is mainly concerned with the cascade case.

Some of the interesting mathematical problems that are suggested

are:

" % Compare with Paynter, 1966.
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(1) What is the most general nonlinear random parameter model

with memory that has linearly related means?

(2) Given a specific mathemstical form containing random parameters,
how can these parameters be selected so that the resulting

random parameter model has linearly related means?

4.2 A DEMONSTRATION OF THE ANALYSIS OF TWO MULTIPATH SYSTEMS

4.2.0 Introduction /

’
/

Section 3.2 has described a method of finding a confidence }u/tetval
tc; estimate the possible waveform variation due to different realizatioms
of a multipath syite- by using the mean and autocorrelation of the/ process
corregsponding to this waveform. However, 1f the probability ,density of
this process is known, one can specify a confidence interval \jﬁich is sig-
nificantly smaller than the larger one which 1is used for amn fébittary
probability density. Section 4.2.1 generally mdiates/‘ov much effort
is required to obtain either the larger confidence interval (for an
approximate description of this variation) or the sullér one (for its
exact description) which is theoretically available. E Sections 4.2.2
and 4.2.3 describe how the models in Figures 4-8 and 4-10 can be approxi-

mately described.
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4.2.1 An Indication the Effort Required Either an
Approximate or an Exact Description of Multipath Systems

As discussed at the end .of Chapter 3, only first moment
relationships are necessary to describe the output of a multipath systenm
with an infinite number of paths exactly since choosing different paths
for the system will not change its output. For example, cousider an’
infinite path model from Table 2-1 such that each path is a realization
of the random model of Figure 4-1 (a) (or one of Figures 4-2(a), 4-3(a)
or 4-6(a)). Thus if the input is deterministic, the relation between
the input and output is given by the relationship shown in Figure 4-1(b)
(or Pigures 4-2(b), 4~4(a) or 4-6(b) respectively). Clearly, analogous
results can be found if each path is a cascade of realizations of the
previous random parameter models and the input to each static nonli'negrity
is suitably l%nited. o

In order to approximately describe either waveforms inside an
infinite multipath system, or at the output of a finite paih system,
autocorrelations must be found. In general, finding these autocorrelations
analytically is pouﬂ»h only in such simple systems as those with different
paths consisting of (1) a linear system, (2) a static nonlinearity, or
(3) a static nonlinearity followed by a linear system. For more compli-~
cated systems having an arbitrary input, the sutocorrelation at the ou'tput /
of each static nonlinearity (e.g. (4-1-5) or (4-1-9)) must be found BN
numerically. However, if the system input is chosem so that the input
to d{l::utic noulinearity is changing monotonically, then an analytical

expression for the autocorralation may be written (e.g. (4-1-10))..
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Although numerical calculation of autocorteiations is tedious,
several facts should be pointed out. First, this calculation is not
started until first moment relationships have indicated that the model
under consideration is useful,. fhus. unnecessary computation 1is
avoided. Second, once all autocorrelations are known, one can immediately

approximate confidence limits (using Chebyshev's Inequality) for waveform

<variation in each path and at the system output as well as for all possible

Fourier transforms and power spectra. This should be compared to the

‘-

alternative of simulating every possible realization of this system,
calculating all Fourier t;annforms and power spectra for each possible
wvaveform and then establishing error bounds for the three sets of waveforms.
. It should be‘pointed out that it is theoretically possible to
obtﬁfﬁ the probability density of the processes that are used in this

thesis so that an exact description of the variation of waveforms in
multipath systems is available. ‘ This 1a‘possib1e since each realization
of the processes considered 1is deterministic. The next paragraph will
shov how this can be done despite the presence of linear‘dynanic systems
which normally (Davenport & Root, 1962) make this difficult.

It is well known that the probability denoity at the output of a
static nonlinearity can be related to the input probability denmsity
(Papoulis, 1965). This resuylt can be extended .to the case of a2 random
static nonlinearity. Further, the probability density of the output of
a random linear system can be handled with the same methods since the

convolution integral for the output at any particular time is a static

function of the random parameters of the input process. Unfortunately,

-



The "special" input is one that produces a monotonically changing input to each static nonlinearity.

MULTIPATH SYSTEMS

~ - Q- ’
¥ - ’
. [ .
*«’ . . ® >
. o Fourier Transform | Power Spectrum
‘Smber of ) { Value Bst:!.nte Estimate . Estimate
Paths Input Computation Approx.| Exact Approx. Exact Approx. | Exact
infintte arbitrary - x T x x
finite special - X 3 x
'} £inite arbitrary 1 x x x’
finite arbitrary 1,2 x x T——
4 m:- arbitrary 1,2,3 x x x
TABLE 4-1 SUMMARY OF METHODS TO O

‘TAIN APPROXIMATE AND EXACT DESCRIPTION OF

Computation (1) calculates autocorrelations; (2) calculates the first order probability densities;
(3) calculates the probsbility densities of the Fourier transform and the power spectrum.

-

-st-



finding the output probability density usually requires a numerical
solution, Nevertheless, all first order densities are available in
principle. In addition, all higher order probability densities can be
expressed in terms of the first order density although this again requires
a numerical solution. Thus one can exactly describe the variation of
waveforms in multipath systems due to different system realizations.
Finally, since the Fourier transform and power spectrum functions are
again static transformations of the random variablés in the random processes,
exact descriptions of these processes can be found. Again, determining
these last probability densities requires numerical solutionms. This
discussion is summarized in Table 4-1,

In view of the additional computational requirements for an
exact description, it is felt that the approximate methods are more useful.

The next two sections will illustrate the approximate analysis.

4.2.2 Multipath System with Paths having a Cascade of a Linear
System, a Static Nonlinearity and a Pure Gain Block

This section will illustrate the use of the systematic method by
1nd;cating how the multipath model in Figure 4:8 can be analysed. This model
is assumed to satisfy all the requirements of TnblqﬂZ-l and, in additiom, “
has a noise source in each path which 1is 1nd¢p;nd¢nt of all other noise
sources, the input and all system paramsters. It should be noted that
noise at this point can correspond to transducer-encoder noise in a

’

physiological system. .
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The 1th path of the model in Figure 4-8 can be described by
x, (t) = w(t) » h(r,a,)
s, (t) = x,(c) + n, (t)
0, '1(':) < b:l
y (©) = { 3 (s,(0)-b)), b, S 8,(t)sb +R
M, si(t) > b1 + R
and zi(t) - ciyi(t) =4

vhere w(t) is the deterministic input,

h(t,ai) is the real impulse response of the first linear system

which contains, for convenience, the single parameter, a,,

xi(t) is the output of the first linear system,

ni(t) is a noise source with a zero mesn, a variance, 02

s and an autocorrelation Rn(tz-tl),

si(t) 4s the input to the static nonlinearity,

"the saturation value, M, and range, R, are constants,

b, 1is the threshold

is the ga}n of the last block.
The system output, z(t), is

’, )
¥

9]

- 1 N
2(t) = ijfl '1“)

where N is the mumber of paths.

-

N

A
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Agssume that the path varying parameters a b " and c y are realizations

of the independent random variables a, b, and ¢ which have probability

densities £f(a), f(b) given by (4-1-1) with S > R, and f(c) respectively.

TTus, the multipath model satisfies tf\e requirements of Table 2-1.
Following the procedure of Section 3.4, each path is considered

a realization of the random parameter model in Figure 4-9. The expected )

value of the process corresponding to the multipath system output is related

to the output process of the random parameter model by using (3-3-7) to give

“

<z(t) > = < z(t) >

Since ¢ is independent of all other random variables,
‘—‘»

£
<z(t) %a < ><y(t) >
It will be assumed that

T+R<8(t) ST+S (4-2-1)

which, in principle, can be related to conditions on w(t), h(t,a)

and n(t). Using (b-l-ﬁ) gives

<y(t) = A <g(t) >+B

vhere A = % (4-2-2)

- M(» * 2%) |
and B = 28

Since - < n(t) > = 0, then

’ < g(t) > = < x(t) >, _ ' ~
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Using (3-3-%)
< x(t) > = w(t) & < hit,a) >.

Therefore, the expected output is

C
_i..s'?)_!<h(t,_a_)>*w(t) -<">H2(§+E‘

t

Thus, if the input and noise are such that (4-2-1) is satisfied, the
expected output is linearly related to the input, despite the presm\/]

of nonlinearities in each path.

< z(t) > = (4-2-3)

The sequence of operations required to find the correlation
corresponding to the outﬂgput of the multipath system will now be indicated.
Equation (3-3-8) gives

Rz(tl,tz) N-1

R- (tl,tz) =gt g < _z_(tl) > < _z_(tz) >

Since ¢ is an independent parameter,

2 ,
Rp(E1otg) = <2 > Ry(t,8)) - . (2=

Note that thc'indcpendant noise source hu made it impossible to prédicnt
future values of a realization of s(t) from ita.past values. Thus to
evaluate ly(tl,tz) an equt!.oﬁ analogous to (4-1-14) could be used but
1ts, solution would involve simhtm‘ all possible noiss realizations.
Alternitely the sutocorrelation ;ould be found by ftndi;; the second order

probability demsity of y(t) which is also lemgthy.

o
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‘ An estimate of waveform variance (due to different system ‘
realizations) of y(t), z(t) and z(t) 1is easier since A = 0 (in equation

(4-1-14)) in this case. This will be illustrated, assuming (4-2-1), by

calculating the sydtem output wvariance, Using (3-3-9)

var (E(v)) = VAR () .

— o -
The variance of the output of a path is

Var,(z(t)) = R, (t,t) - < z(t) >? .

. - Using (4-1-14), with A =« 0 and taking expectations with respect to

all random variables in g(t) gives

2
u2g
R (t,£) = T3¢ +§ (<8(t) >~ R+ D) .
Since . < an(t) > =.0, then

<8(t) >= <x(t) >

and < x(t) > = w(t) & < h(t,a) >.

Thus

. ’ Kz s S /
Var(E(t)) = %{v(t)a<h(t,_a_)>[—s—-<g_2>¢ i R+§r <e ;ﬁf .

s - M )
2 2 .
- [wtore <nee,o >f g 2 ] ,
. g? |
,, -3"3[(2 +1) < ? ,+L_Z!lz_sj__]}“, (4-2-5)

L3 e '




Note that since both the mean and variance of the system output contain

no noise terms, the noise does not affect these aspects of the system

response, Physically, this occurs since the noise in each path can be

referred to a change in the input for that path, which can either increase
p

or decrease the path output variance (due to different realizations of

that path) since (4-2-5) is a quadratic equation in <w(t)>. For zero mean

noise, neither the output mean nor variance is affected by the noise.

A convenient, input independent, upper bound for the variance

can be shown to be

2 _ .2 2
_ M° <cé > <& > R
Va'r (!(t)) s N [4<£ >2. 6S *
. n <

4.2.3 Multipath System with Pathg Contalning a Cascade of a
Linear System, a Random Static Nonlinearity, and a Second

Linear System

As a second illustration of the systematic method, the model in ///
Figure 4-10 will be considered. This model is similar to the preyious >

one except that in the ith path

A

2,(t) = y (t) & hy(t,c,)

..,/<4 l—/‘/ ‘
r ! Ty . o’ xi(t) < bi
Ve ! ‘
. f ) ) }
\ - j Yy (t) = fg (x,(e)-b), b <x(t) b +R
\l ] -~ e - . N
' "». - ;
x: I‘." up ‘1(t) > bi + R ‘
. Coe x,(t) = w(t) » h(t,a,) . )
. 1 1 .
' - . , v
! A
3
e * “ ’-H .




FIGURE 4-10 .ilULTIPA'I'H SYSTEM WITH CASCADE OF TWO LINEAR SYSTEMS AND
; A RANDOM STATIC NONLINEARITY IN EACH PATH

FIGURE 4-11 RANDOM PARAMETER MODEL FOR EACH PATH OF ABOVE FIGURE
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and the noise st‘m‘rce‘s in each pa,th have been omitted. All other
parameters are defined in the previous section. Here, gi( ), denotes
the static nonlinearity in the ith path vhich may be different from those
in other paths. hl(t,ai) and hz(t,ci) are the impulse responses of

tvo different linear systems each containing, for convenience, a single,

> )
-

path-varying parameter. '

fel

Following the sequence in Section 3.4, the random parameter model
for each path, shown in Figure 4~11, is analysed. Using (3-3-7), the

mean of the process corresponding to the multipath system oytput is
. <zZ(t) >= < z(t) >.

Using (3-3-2)

<z(t) >= < y(t) > a <h,(t,e) >.

From (4-1-8)
<y(t) >= A < x(t) >+B
where A -!s‘-
R 1
B -3 I BWav - T @+ )
A ,

.

aof  Fw) = f g8(v) £(g)dg
all g

provided that x(t) is bounded by -

'r*xs_;(:)‘sr*s

’ .
»

which, in principle, can be rslated to restrictions on w(t) and hl(t,g.

>

v




Since (3-3-2) gives

9]
o i

< x(t) > = w(t) » <h, (c,2) > o

then all the previous equations can be combined to give
J 4

»

<z(t) >z A< bl(t,_g_j > % < hz(t,_g) > & w(t)

Q\
a0
-+ Bf(hz(t,_c_) > dt
o
where A and B a? defined as before. Thus the expected‘synte- output

is again linearly related to the input despite the presence of nonlinearities

. in each plth .

- Finding autocorrelations and variances requires a numerical X‘

solution as discussed in Sectiom 4.2.1.

¥ . Approximate confidence intervals for waveform variatiom due to

different system realizations can then be found as indicated in Sectiom 3.2.
‘ ' . -




CHAPTER 5

DISCUSSION AND SUMMARY ’

5.0 INTRODUCTION , >

In the first part of this ’chaptct, Section 5.1 briefly discusses
the application of the preceeding mltipath models to any aensory systenm.
Then it thicaten that most data from the rotation sensing system is not
inc tent with these models. Section 5.2 illustrates that multipath
systems having paths with different structures in some of them can be
handled by the random parameter model approach. In the last part\og

this chapter, Section 5.3 summarizes the thesis. \\

« N
3
¢ 1 .

v: \ \
5.1 THE APPLICATION OF MULTIPATH MODELS AND 11718 PLAUSIBILITY {

IN THE VESTIBULAR SYSTEM Tnzeey

In order to establish whether multipath models from the previous
chapters can explain the behavior of a secondary neuron in a sensory systea,

8 lengthy series of physiological experiments must be performed. A

" detailed discussion of these experiments is outside the scope of this thesis,

7/ ¢
but a brief idea of these experiments will be given. First, a large
oumber of primary paths would have to be identified. Next, the respomse

of a large number of secondary neurons would have to beé cousidered. Thenm,
all the Qunmtim of Table 2-1 would have to be checksd and the threshold

1 !
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density for each static nonlinearity would have to be estimated.
Since most sensory systems have a significant number of efferent or
feedback pathways, th; model of each path might represent an open loop
or a closed loop system. Thus, it would be necessary to eliminate, or
correct for, the effect of efferents before the model for each path could
be used to make anatomical correlations.

Before starting such a lengthy set of experiments, it w?uld be
natural to ask whether thé presently available data is consistent ;1th
the proposed multipath models. The following paragraphs will indicate
that this seems true for thef¥q%€cion sensing system of some animals.

The data describing th;%rotation sensing system of the frog
(Precht et al., 1971) and the pigeon (Correia & Landolt, 1973) seems to
be consistent with all of the assumptions in Table 2-1.  However, in the
monkey some paths may contain dependent parameters (Goldberé & Fernandez,
1971(b)) and others may not all be of the same mathematical form (Fernandez
& Goldberg, 1971).

Perhaps surprisingly, there does not seem to be any definite
evidence that some of the observed linear behavior of secondary neurons

in the rotation sensing system cannot be explained by these models.

Some of the reasons for this conclusion will be dilcusoedi\

(1) A multipath system with a static nonlinearity in each #‘th can have
a linear ocutput range even if the probability density of its thresholds
is nonuniform. All that is required for the multipath model to have a
linear range 1is th:; the threshold density not change significantly over

8 large enough range of values.
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[_.”__...\I, b3
.

(2) The c' mon observation that estimates of the "pa‘th threshold"

density ate"\nonunifom (Precht et al., 197]1; Figure 2-5(c)) 1is not in-
consistent with a hypothesis that the "static nonlinearity threshold"
density is uniform. This could happen if a uniform ''static nonlinearity
threshold" density were preceeded by elements whose DC gain also had a
probability density. In this case, each "path threshold" would depend
on both the DC gai;; preceeding the static nonlinearity and the threshold

of this static nonlinearity. The resulting "path threshold' density

would probably be nonuniforn. .

(3) One may object t;hat these models require that a significant proportion
of primary paths be saturated when there 1s no input and that this has not
been observed. It should be realized that if these units were observed,
they- would probably be rejected from most studies on the basis that they

'were not responding to the rotational stimulys".

)

5.2 MULTIPATH SYSTEMS WITH PATHS OF DIFFERENT STRUCTURE

N

In many multipath sensory syg‘tw, it is not unusual for some
paths to have a different structure ,thnn'o;p:rn. For example, in the
rotation sensing system, each primary meuron can have from one to ten
(Engstrom, 1968) input haircells of two principle forms. In additiom,
some paths are affnct-d‘by efferent fesdback pathways while others.are not..
Thus, one can‘of_t.‘.n consider a randomly selectad path from a wltipnth.

system {0 have a w. In order for the random paramster
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model approach to be a meaningful tool for*modelling sensory systems

they must be able to handle those paths which contain path-varying

parameters as well as ;hoae having a random structure. The next

paragraph will illustrate that rahdom parameter podels are naturally
- suited to do this.

Suppose that the rotation sensing systenm can be represented by
the multipath system shown in Figure 5-1(a), where it is assumed that there
is ouly one type of haircells, labelled H. The random parameter wmodel
for each path 18 shown in Figure 5-1(b) where a random variable, a, has
been defined with a probability density that gives th: ptobabil}ty of having
a’given number of haircells in a randomly chosen patfl. The random para-

meter model can then be analysed in the usual manner. A procedure similar

. ) to this can be used to handle any random structure.

5.3 SUMMARY

Since it is physiologically impossible to observe each part of a
large multipath neural .y;te-‘ without destroying part of it, a deterministic
analysis of. these systems is unsuitable. An sltervate approach taken in
this thesis, is to use random parameter models to describe deterministic
systems statistically.

It 1s proposed that many sensory systems can be represented by
the class of models listed in Table 2-1. These models contain a cascade

of several linesar and static nonlinear systems having the same mathematical ;o

. ) 4 form in each path. However, corresponding parsmeters of the linear ™

I'4

o
7 ,’- .
e

.
' -
v ~ . y
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< FICURE $-1 MULTIPATH MODEL HAVING PATHS OF nxrninrr\-rwcmx

‘ = Each path of (a) is a realization of the random paramster wmodel in (b). ’
A.‘ H and P, denote the squatioms of the baircell and the remaiaing part of

the ,ith path. P denotes the random nquauon correspounding to Pi' .
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systems and the shapes of the static nonlinearities can be different in

each path, The model output can be viewed as a weighted sum of the
14 .

outputs of each path. Any model from this class can be analysed

statistically.

The statistical approach is based on the analysis of a random
parameter model which 1is defined such that 'each path of the multipath
system can be considered a tqal:lzat:lon of this model. Regardless of
the complexity of a model chosen from the class of Table 2-1, it is demon-
strated that a mean and autocc;rrelation of any variable in the corresponding
random parameter model can theoretically be fou’nd. These statistical
quantities can then be used to approximate (Section 3.25 the value of each
waveform of the multipath system at any time, as w;ll as to approximate
its Fourier transform and power spectrum during any time interval. In
Sectiofi 3.4, a systematic method is listed so that any multipath model
from Table 2-1 can be approximately described.

This systematic method is especially convenient vhen infinite
path systems are considered, since the system output can then be described
entirely by first moment relations hat are easily determined. The
approach shows that many infinite path yote;s can act limrly despite
nonlinearities in each path, As well, since it shows that many different
multipath models can behave in the same way, this implies that it may not
be necessary to identify each path exactly. Thus, it appears that this
approach represents a powerful tool for analysing neural systems having a

large number of convergent parallel pathways. o
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When the number of paths isg finite, this method can also be used,
but numerical techniques are necessary to evaluate the autocorrelations in
more complex systems. In some cases, when special inputs are used, it
may be possible to evaluate these autocorrelations analytically. Even
when arbitrary inputs are used, one can approximate all possible waveforms
in the system, their Fourier transforms and their power spectra with much
less effort and computation than would be possible in a straightforward
computer simulation of the system.

li

4 The systematic method proposed to obtain approximate confidence
limits (using Chebyshev's Inequality) on variables in multipath models
requires much les(s effort than the exact description which is theoretically
available. The approximate procedure is illustrated by iulysing tvo
multipath models which could r!b(es'ent a sensory system.

The application of these models to sensory systems is briefly
discussed and it is shown that these models may be useful in the rotation
sensing system, since the assumptions made are not 1n§:on.utgnt with some
available data. Finally, it 1s illustrated that rindo- parameter, models
can be .used in systems with paths that have a varying structure.. 4

In view of what has been presented in this thesis, pattictﬂa:'ly
since the method simplifies as the number of paths increases, it is felt ‘ \/
that this approach will prove useful in -odn'u\lng activity at higher hnll
in the brain. ‘ Clearly, many new problems are introduced at these lmli; '

but it is felt that the fields of statistics and random nt?-uul functions

$

;ay provide the techniques for solving these problems once they are
mathematically formulated.




DR
t"«

Y

-9 -

BIBLIOGRAPHY

Adomian, G. (1964)
Stochastic Green's functions. .

in Proc. Symp. Applied Math 16:1-39.
American Math. Soc.

Ballantyne, J., H. Engatran (1968) ‘
Morphology of the vestibular ganglion cells. ’
J. Laryng. Oto. 83:19-43, e

kd

Barvett, J.F. (1964)

Hermite functional expansiono and the calculation of output autocorrehtions
and spectrum for any time-invariant non-linear system with noise input.

J. Elect. and Control 16:107-113, .

Bayly, E.J. (1968)
Spectral Analysis of Pulse Frequency Hoduhtionrin the Nervous System.
“1EEE Trans. Bio. Eng., BME-15:257-65.

mr’ H.B. (‘d.) (1966) 2 .
The Oculomotor System. >
New York: Harper & Row.

Bharucha-Reid, T.A. (1964)
On the theory of random equations. K

Proc. Symp. Applied Math. 16: 40-69.
American Math. Soc.

Probabilistic Methods in Applied Mathematics. Vol. 2.
New York: Academic Press. -

Clarxk, B.. (1970)
The vestibular system. .
m- l.'. P"chl; 21: 273"3“0 ’ ~. '




¥

Correia, M.J., J.P. Landolt (1973)

Spontaneous and’ driven responses from primary neurons of the
anterior semicircular canal of the pigeon.

Adv»./‘,Oto-Rhino—Laryﬁg. 19: 134-148 (Karger, Basel).

Crampton, G.H. (1965)

Response of single cells in the cat brain stem to-angular acceleration
in the horizontal plane. .

2nd Symp. on tlie Role of the Vestibular Organs in Space Exploration.
NASA SP-77: 85-96. “ ,
. “ Ve -
Davenport, W.B., W.L. Root (1958) -

Ah Introduction to the Theory of Random Signals and Noise.

-4 New York: Mc Graw-H1ill.

Didday, R.L. (1971)
Simulating distributed computation in the ncrvous.iysten.
Int. J. Man-Machine Studies 3: 99-126.

Doob, J.L. (1965) _J/
,Stoch:&.t:lc Processes.
New York: Wiley.

N ) ‘a - _ -~ *
Dorf, R.C. (1967) ) '
Modern Countrol Systems 2
Don Mills, (Ont.): Addison-Wesley.

, i .
Engstrom, H. (1968) B

The fitst order vestibular neurom. . : .
bth Syq) -on the Role’ of tye Vestibular Ox‘m in Spacc Exploration. '
HASA SP-187: 123—135.

PC!'IIMQ‘ C.p, J.M. Goldborg (1971) ) -

Phyuioloxy of peripheral uu‘ou hmcmtm semicircular canals of :ho IR

"squirtel mounkey. & ’

I1. Response to sinusoidal -timhtton .nd dynamics of the p.rtah-ral .t «.
+ ‘vestibular system. ' '

Jo Phyf{.ol. 34: 661-675.




/
Freund, J.E. ' (1962) ‘ .
Mathematical Statistics.
Englewood Cliffs,(N.J.): Prentice-Hall.

Fuller, A.T. (ed.) (1970)
Nonlinear Stochastic Control Systems.
New York: Barnes & Noble.

Gacek, R.R. (1967)

Anatomical evidence for an efferent vestibular pathway.

3rd Symp. on the Role of the Vestibular Orgah in Space Exploratiom.
NASA SP-152: 203-212. ' )

i

Gacek, R,R. (1969) .

The course and central termination of first order neurons, supplying
vestibular éndorgans in the cat.

Acta Otolaryng. Suppl. 254.

Goldberg, J.M., C. Fernandez (1971 a)

Physiology of peripheral neurons innervating u;nicircuht canals of
the squirrel monkey. i ~
I. Resting discharge and response to constant angular acceleration.

J. Physiol. 34: 635-660.

Goldberg, J.M., C. Fernandex (1971 b)

Physiology of petipheral neurons innervating semicircular canals of
the esquirrel mo -
III. Variations units in their discharge properties.

¢
N\

Harada, Y. (1972)

‘ Surface viev of the frog tibular organ with/the .cgi.ep electron
A

microscope.
A?ta Otolaryng. 73: 316-322.

Harmga, W.H. (1963)
Prtnci.ghs of the Statistical ry of Communication.
New York: Mc Graw-Hill.

\ s

-

-

. , v
LT 1y ey w1y B 3 y s
ARG AT " R SO S 0 A S S S A



. —9“-
S~ 4

Jenkins, G.M., D.G. Watts (1969)
Spectral Analysis and its Applications. ’ ©

San Francisco: Holden-Day. °

AN
Jones, G.M., J.H. Milsum (1965)

Spacial and dynamic aspects of visual fixation.
IEEE Trans. on Bio. Eng., BME - 12: 54-62.

Jones, G.M., J.H. Milsum (1970)

Characteristics of neural transmission from tbe u-icirt/uhr canal
to the vestibular nuclei of the cat.

J. Physiol. 209: 295-316.

Kearney, R.E. (197))

Modeling the postural coantrol, system of the exoskeletally restrained
human.

Masters Thesis. McGill University. ’ C

Koles, Z.J. (1970)
A study of sensory dynamics 6f a muscle spindle.
PhD Thesis. Univ. of Albert4.

~

Korenberg, M. (1973 a)
'8

Identification of biological cascades of linear and static nonlinear
systems. = /7
Proc. 16th Midwest Symp. Circuit Theory 2. '

—-—

Koremberg, M. (1973 b)
Crosscorrelation analysis of seural cascades.
10th Ann. Rocky Mountain Bioéeng. Symp.: 47-52.

\
Kozin, F. (1969)

A survey of stability of, stochastic systems.
Automatica 5: 95-112. ’




- 95 - N

Laszlo, C.A. (1968) - \
Measurement, modelling and simulation of the cochlear potentials.
PhD Thesis, McGi{ll Unlversity.

Lee, H.C. (1969)

Integral pulse frequency modulation with technological and biological

applications.
pplica (‘,4»

PhD Thesis. McGill University. \

Lovenstein, O., A. Sand (1940)

The mechanism of thé semicigcular canal. A study of the reaponsfa of
single-fiber preparations to angular accelerations and to rotations at
constant speed. 3 :

Proc. Roy. Soc. B 129: 256-275.

Maffei, L. (1968) . ' -
Spacial and temporal averages in retinal channels, -
J. Neurophysiol., 31: 283-287,

Mayne, R. (1950)
The dynamic characteristics of the semicircular canals.
J. Comp. Physiol. Psychol. 43: 309-319. ;

4

Mileum, J.H., G.M. Jones (1969) )
Dynamic assymmetry in'’neural components in the vestibular system.
Ann. N.Y. Acad. Science 156: 851-871.

-

Outerbridge, J.S. (1969)

Experimental and theoretical investigation of vestibularly driven head
and eye movement. )

PhD Thesis. McGill University.

Papoulis, A. (1962) " AW
The Fourier Transform and its Appli‘baum J (8
New Ydrk: Mc Graw-Hill.”

A w

Papoulis, A. (1965) , ' : .
Probability, Random VItS:bl‘l and Stochastic Processes.

New York: Mc Graw-Hill. 2

Paynter, H.M. (1966) -
rolitiwluntin fesdback in ssplification and coutrol. ( o
The Lightaing Empiricist 14 1-6. W

> v X3 P
had a [ ) N f§ :g
» ¥ ]
L .fi'v ," Oy . - N I ..I L T ’i «7%@&%

>



NASA SP-152: 183-202,

- 96-

~

.

Precht, W., R. Llinas, M. Clarke (1971)
Physiological responses of frog vestibular fibers to horizomtal rotation.
Exp. Brain Res. 13: 378-407. '

Roberts, T.D.M. (1967) )
rinthe control\\of posture muscles.

:‘ySy-p. on the Role of the Vestibular Organ in Space Exploration.

NASA .SP-152: 149-168. )

\
\

A\
\

Ross, D.A. (1936)
Electrical studies on th& frog's labyrinthe.
J. Physiol. 86: 117-146. \\ i

Smith, C.A., G.L.fﬂu-uun\\ (1967)

Nerve endings in the macula and crista of the chinchilla vestibule,
with a special reference to the efferents.

3rd Symp. on the Role of the Ve

tibular Oréau in Space Exploration.

Sgekre:lj se, H. (1969)

Rectification in the goldfish ret
auxilary Jathuhttop.

Vision Res. 9: 1461-1472,

: Analysis by sinusoidal and

Spekreijse, H. (1970)
Linearizing: A method for analysing synthesizing nonlinear systems.
Kybernetik 7: 23.

Spekreijse, H., L.H. van der Tweel (1972) '

System analysis of linur and noélfnur p
of the visual system.

Koninkl., Mederl. Aksdemis van Wet ~ Assterdam.
Proc., Series C 75: 78~-103, . ‘

1n electrophybiology

Steer, R.W. (1968)

Response of semicircular cann]* to cc!nult
seceleration fisld, &

N
¢

. 4 o A " s fz ""» ‘v,
A £y x,-
X i
; g@; g I

i

+
a
< My




~ . )
- 97 -
- &
’ - {
Qo : s’
Stratonovitch, R.L. (1963) '
Topics in the Theory of Random Noise. Vol. 1. ) '
New York: Gordon & Breach.
‘ Thdason, W.E. (1955) .
\ The response of a nonlinear system to random noise. .
Inst. of Elect. Eng. (proc.) C: 46, ' AN
/ .

hl

Williams, W.J. (1972)
Transfer characteristics of dispersive nerve bundles.
IEEE Trans. Systems, Man & Cybernatics, SMC-2: 72,

* '\’\/ .
/)
Young, L.R.C. (1968) (\} by

A control model of the vestibular system.
Symp. on Technical and Biological Problems in.Cybernetics.
Verevan, Armenia, U.5.S.R. «

- ’!
» * “a

LY A A m’&m &m?@@:

s I ’ T e ‘i!w\ ;LL



