TWO-WAY HASHING WITH

SEPARATE CHAINING AND LINEAR PROBING

EBRAHIM MALALLA

SCHOOL OF COMPUTER SCIENCE
McGILL UNIVERSITY, MONTREAL
MARcH 2004

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfilment of the requirements of the degree of Doctor of Philosophy
© Ebrahim Malalla, 2004.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-06322-X
Our file Notre référence
ISBN: 0-494-06322-X
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

To my heros

Abstract

Two-way chaining is a novel hashing scheme that uses two independent truly uniform
hash functions f and ¢ to insert m keys into a hash table with n chains, where each
key z is inserted into the shortest chain among the chains f(z) and g(z), breaking ties
randomly. It is known [13, 18] that the worst-case search time of two-way chaining
is log, log n +m/n + O(1), asymptotically almost surely. In this thesis, we study the
two-way chaining paradigm under different assumptions.

First, we generalize the result to nonuniform hash functions. We analyze two-way
chaining in the fixed density model where the two independent hash functions behave
according to two densities defined on the unit interval. When m = Q(n), we prove
that asymptotically almost surely, the worst-case search time is at least log, logn —
O(1). If, in addition, the densities are bounded, then it is at most log, log n+O(m/n).

Secondly, we consider the off-line version of two-way chaining where all the hashing
values available for the m keys are known in advance. For constant k € N, we show
that there is a threshold ¢, such that if m < ¢xn, then one can assign the keys to the
chains so that the maximum search time is at most 2k, asymptotically almost surely.
We tightly estimate ¢k, and prove that it is, in fact, asymptotic to k. Algorithms for
finding such assignments are also given.

Thirdly, we utilize the two-way chaining paradigm to design efficient open ad-

dressing hashing schemes. We study two-way linear probing algorithms. These are

1

algorithms that employ two independent linear probe sequences to hash the keys.
We prove an Q(loglogn) universal lower bound on the worst-case search time of any
two-way linear probing algorithm, where n is the hash table size. We show, however,
that some simple two-way linear probing algorithms, unexpectedly, have implausible
worst-case performances. Subsequently, we present several efficient two-way linear
probing algorithms whose performance matches the lower bound. Simulations back

up the theoretical results.

il

Résumé

L’enchainement & deux choix est une méthode de hachage qui emploie deux fonctions
uniformes indépendantes f et g pour insérer m clefs dans une table avec n chaines,
ou chaque clef z est insérée dans la chaine la plus courte parmi les chaines f(z) et
g(z). On sait que le maximum des temps de recherche est log, logn + m/n + O(1),
asymptotiquement presque sirement. Dans cette theése, nous étudions le paradigme
d’enchalnement & deux choix dans différents contextes.

D’abord, nous généralisons le résultat aux fonctions de hachage non-uniformes.
Nous analysons I’enchainement a deux choix dans le modele de densité ou les deux
fonctions de hachage se comportent selon deux densités définies sur 'intervalle d’unité.
Quand m = (n), nous prouvent cela asymptotiquement presque siirement, le temps
maximal de recherche est au moins log, logn — O(1). Si, en outre, les densités sont
bornées, alors il est tout au plus log, logn + O(m/n).

En second lieu, nous considérons la version off-line ol toutes les valeurs de hachage
pour les m clefs sont connues & 'avance. Pour la constante k¥ € N, nous prouvons
qu’il y a un seuil ¢, tel que si m < cxn, on peut assigner les clefs aux chaines de sorte
que le temps maximum de recherche soit tout au plus 2k, asymptotiquement presque
sirement. Nous estimons c¢g, et montrons qu’il est, en fait, asymptotique & k. Des
algorithmes efficaces sont donnés.

Troisiemement, nous utilisons le paradigme d’enchainement & deux choix pour

v

concevoir des algorithmes de hachage du type “open addressing”. Nous proposons
des algorithmes linéaires a deux choix. Ce sont des algorithmes qui utilisent deux
recherches linéaires a partir de deux fonctions de hachage indépendantes. Nous prou-
vons une limite inférieure en universelle de (loglogn) pour le temps maximum de
recherche de n’importe quel algorithme de hachage linéaire & deux choix, ou n est la
taille de la table. Nous montrons, cependant, que quelques algorithmes de hachage
linéaires a deux choix simples, inopinément, avons des exécutions des cas les pires
décevantes. Nous présentons deux algorithmes de hachage linéaires a deux choix effi-
caces dont la performance est optimale en n. Des résultats de simulation confirment

les propriétés théoriques.

And surely your Lord is full of
bounty for mankind, but most of
them do not give thanks. And

verily your Lord knows what their

ACknOWledgemthS hearts hide, and what they reveal.

THE NOBLE QUR’AN, (27: 73-74)

Writing this acknowledgement is one of the joyful moments that I have dreamed of,
countless times, during the last years. The praise is for Allah, the most merciful,
the most compassionate, for blessing me beyond deserving with the support of many
people who have had a profound impact on my life. A word of thank you to these
people is certainly not enough.

Referring to the humongous difficulty of teaching me, and the heavy responsibility
ahead of him, my supervisor once said to me: “I used to have only two daughters,
and now, [have a new son!” From the time of accepting to be my supervisor to
this wonderful moment, Luc Devroye has never stopped guiding me in the right
direction. His continuous and monotonically increasing help goes beyond definition.
His valuable advice, suggestions, and corrections improved this work dramatically.
Indeed, every beautiful idea in this thesis was originally conceived in his mind. I am
deeply indebted for his warm kindness, infinite patience, and absolute generosity. It
is my pleasure to express my sincere gratitude to him. Luc, it is an honor to be your
student.

Appreciations must be expressed to the friendly colleagues and professors of the
School of Computer Science for the warm congenial atmosphere. Particular thanks
are due to Ketan Dalal for his help in improving the simulation programs.

I would like also to take this opportunity to declare my indebtedness to the in-

vi

credible people who played a pivotal role in my life. I am most indebted to the man
who showed me the beauty of pure thinking, to my favorite mathematician, Roshdi
Khalil: you are always an inspiration. To the friends who encouraged and supported
me when I needed them. Every single member of my family, to whom I dedicate this
thesis, deserves a thank you for believing in me. My deepest gratitude goes out to
my dear brother Abu Hussain, and my beloved sister Om Hassan. At the top are my

mom and dad who always believe that I can fly!

Montreal, March 2004 E. M.

vil

Contents

Abstract

Résumé
Acknowledgments
Introduction

0 Preliminaries
0.1 Basic Notations
0.2 Probabilistic Inequalities0 oL
0.3 Allocation Processes
0.3.1 Classical Allocation Processes
0.3.2 Multiple-choice Allocation Processes

0.4 Hashing Assumptions

I Hashing with Separate Chaining

1 Uniform Two-way Chaining
1.1 History and Motivation o0

1.2 Two-way Chaining

viii

ii

iv

vi

11
11
12
18
20
21
27

31

CONTENTS

2

1.3 The Lower Bound
1.4 The Upper Bound

Nonuniform Two-way Chaining

2.1 Motivation oL
2.2 The Fixed Density Model
23 Lower Bounds
24 Upper Bounds
2.4.1 Bounded Densities
2.4.2 Unbounded Densities

Orientation and Off-line Two-way Chaining

3.1 Motivation oL
3.2 k-orientability oL
3.3 Useful Characterization
34 UpperBounds
3.5 LowerBounds

3.5.1 Tight Asymptotic Estimations

3.5.2 Further Improvements

Speedups and Trade-offs

4.1 Increasing the Choices
4.2 Hashing with Balanced Trees
4.3 Partially Off-line Processes
4.4 Processes with Load Thresholds

ix

42
46

55
59
57
61
70
70
81

88
88
91
96
102
104
107
119

CONTENTS X

II Hashing with Open Addressing 146
5 Two-way Linear Probing: the Naked Idea 148
5.1 History and Motivation 149
5.2 Two-way Linear Probing 153
5.3 Universal Lower Bound, 156
5.4 Lifeis not Always Good! L. 157
6 New Paradigms for Two-way Linear Probing 165
6.1 Two-way Locally-linear Probing 166
6.2 Two-way Pre-linear Probing 168
6.3 Two-way Post-linear Probing 171
6.4 Other Variants 180
6.5 Simulation Results 183
Conclusion and Future Work 187
Appendix: Finishing the Proof of Theorem 3.4 191
List of Algorithms 199
Index of Notation 200

Bibliography 202

Introduction

Since its invention in the middle of the last century, hashing has never been more
appealing than today. Its presence in many branches of computer science has mo-
tivated many researchers to find new creative ways for improving its performance.
While the average performance of hashing is clearly a crucial factor in practice, its
worst-case performance cannot be ignored. The last decade has witnessed the birth
of new hashing schemes that advance the worst-case performance of hashing to a
plausible level. This thesis is a humble step on the same road focusing only on the
worst-case performance of hashing.

A classical hash table implementation [103, 80, 169] uses one hash function f to
insert m distinct input keys that come from a finite universe set of keys U/ into a table
of size n. The hash table is a one-dimensional array with n cells which we denote,
throughout, by the set 7 := {0,...,n — 1}. The ratio & := m/n is called the load
factor of the hash table. In an ideal situation, the hash function f would be perfect,
that is, an injective function. A key z, then, is hashed to the cell f(z). Throughout,
we define the insertion and search times to be the number of probes (table accesses)
needed to insert or locate a key, respectively, plus the time required to compute the
hashing addresses. For simplicity, we ignore, throughout, the evaluation time of the
hash functions.

Many techniques have been developed to derive perfect hash functions. However,

INTRODUCTION 2

all of them, understandably, are off-line techniques, that is, they require prior knowl-
edge of the input keys. Usually, they work only with static hash tables which means
that the keys are not allowed to be updated. Alternatively, the hash function f can
be chosen uniformly at random from the set of all possible functions that map ¢ into
7. In this case, we say that the hash function f is truly uniform as its hashing values
are independent and uniformly distributed over the hash table. The function also is
independent of the input keys. However, the birthday paradox [66] reveals that when
m = w(y/n), then with high probability (that is, with probability goes to one as n
goes to infinity), there are two keys that will be mapped to the same cell. That is, a
collision will occur. Several collision resolutions have been devised. Among these are
separate chaining and open addressing. For a historical background of these methods

and others see [103, 121].

Hashing with Separate Chaining

Collisions can be resolved by allowing each cell in the hash table to have a separate
linked list or chain. Keys that hash to a certain cell are inserted into the chain pointed

to by the cell.

Classical Uniform Chaining

Classically, a truly-uniform hash function f is used to insert m keys sequentially
into a table with n chains, where each key z is appended to the chain f(x). The
insertion time is constant, and the search time of any key x is at most the length of
the chain f(z), where the length of a chain is defined to be the number of keys the
chain contains. The average chain length « [103, 80, 169] is bounded if & can be kept
bounded. This is not the case with the maximum search time which is proportional

to the longest chain length. Gonnet [79] showed that for constant load factor, the

INTRODUCTION 3

maximum chain length is asymptotic to logn/loglogn, in probability. This fact has
been proved earlier in terms of balls and bins, see [99, 105]. Other proofs appeared

more recently in [130, 153].

Two-way Uniform Chaining

Azar, Broder, Karlin and Upfal [13] suggested a new hashing scheme called two-way
chaining. Two independent and truly-uniform hash functions f and ¢ are used to
hash the keys sequentially. Each key z is inserted into the shortest chain among
the chains f(z) and g(z), breaking ties randomly. Assuming that we save with each
chain its length, the insertion time is still constant. To search for any key x, we check
both chains f(z) and g(x). Thus, the average search time is not more than twice the
average search time of classical uniform hashing with chaining explained above. The
maximum search time is at most twice the length of the longest chain. However, Azar
et al. [13] proved that when the load factor « is constant, the longest chain length
decreases dramatically to log, logn £ ©(1), with high probability.

The two-way chaining paradigm has provoked an avalanche of research [18, 24, 39,
114, 134, 170, 177]. The hashing scheme has several advantages over other proposed
methods that lead to plausible worst-case performance like the ones in [74, 23, 50].
It uses only two hash functions, it is easy to parallelize, it does not involve rehashing

of data, and it is on-line and suitable for dynamic hashing.

Nonuniform Chaining

Truly uniform hash functions tend to distribute the keys evenly over the hash table;
and hence, if I/ is an ordered set, these functions are, most likely, not order-preserving.
Uniform order-preserving hash functions can be designed if the key statistics are

known priori [155, 76]. If the order-preserving hash function is independent of the

INTRODUCTION 4

key distribution, the hashed values are typically nonuniformly distributed over the
hash table, see, e.g., [82] and [41, p. 2]. Order-preserving functions are helpful for
operations that require sorted or nearly sorted keys like range search and finding the
k-nearest neighbors; see [42] for such applications. Lately, there has been growing
interest in locally-sensitive hash functions [112, 91, 77, 25, 160]. These functions are
sensitive to the similarity of the keys: they map keys that are similar to close chains.
Evidently, the image of a locally-sensitive function also has a possibly nonuniform
distribution. All of this underlines the importance of studying the performance of
hashing schemes with nonuniform hash functions.

The worst case performance of classical chaining with nonuniform distributions
was studied by Devroye [41]. He represented the hash table by the unit interval
[0, 1] partitioned into n equal-sized subintervals. The hashing locations of the keys,
say Y1,..., Y, are assumed to be independent and have a common density function
h over [0,1]. The ¢-th key is hashed to the i-th chain, if Y; belongs to the i-th
subinterval. For constant load factor and bounded density A, he showed that the
expected maximum chain length is still asymptotic to logn/loglogn. A tight upper
bound is also given for unbounded densities. This leads us to study under which
circumstances the bounds proved for two-way uniform chaining remain valid with

nonuniform hash functions.

Off-line and Static Uniform Chaining

In the off-line version of two-way uniform chaining, the choices of hashing addresses
available for all keys, where each key has two choices, are known in advance, before
the insertion process starts. One can ask, then, if it is possible to assign each key to
one of its two hashing addresses in a way that minimizes the length of the longest

chain. Notice that the hashing choices are still independent and uniformly distributed

INTRODUCTION 5

as they are the images of truly uniform hash functions. The problem is useful for
constructing efficient static hashing schemes, and giving insight into the competitive
analysis of two-way chaining where the performance of the on-line version is compared
to its off-line correspondent. Czumaj and Stemann [39] studied the problem, and
proved that if m < 1.67545943... X n, then with high probability there exists an
assignment for the keys such that the maximum chain length is at most two. But can
we improve the bound on m? What about higher maximum chain lengths? Let my,
for k > 2, be the maximum m such that there is an assignment where the maximum
chain length is at most k, with high probability? Czumaj and Stemann’s analysis
implies that 2my, > k++/kTogk+(logk), for k large enough. But can we do better?

It is a question we shall address.

Thesis Contributions: Part I

The thesis is divided into two parts. The unifying theme of the thesis is the worst-
case performance of two-way hashing methods using chaining and open addressing.

The first part of the thesis is devoted to our contributions in two-way chaining.

Chapter 1: We give a new proof of the lower bound on the length of the longest
chain produced by the on-line two-way uniform chaining algorithm, and we simplify

the so called witness tree method (used in [170]) to prove the upper bound.

Chapter 2: We analyze the worst-case performance of on-line two-way chaining
with independent nonuniform hash functions, f and ¢g. Our analysis is based on the
following fized density model. We assume that the hash functions f and g map U
to the unit interval [0, 1] which is partitioned into n equal-sized subintervals where
each subinterval represent a chain. All hashing locations are independent, and for

each key z, the values f(z) and g(z) behave according to independent fixed densities

INTRODUCTION 6

h¢ and h,, respectively, over [0,1]. We prove that when m keys are inserted into
n chains using this model, where m/n is constant, the maximum chain length is at
least log, logn — ©(1), with high probability; and if the densities are bounded by
some constants, then it is at most log, logn + ©(1), with high probability. Upper
bounds for unbounded densities with some conditions are also studied. Bounds for
other cases such as the heavily- and lightly-loaded cases, or the dynamic case are also

given.

Chapter 3: We extend the results in the literature for off-line two-way uniform
chaining. We reduce the assignment problem to an orientation problem in a ran-
dom graph with n vertices (chains) and m edges (keys). We show that there is an
assignment for the keys where the maximum chain length is at most k, for k£ > 2,
if and only if the random graph is k-orientable, that is, if there exists an orienta-
tion of the edges such that the maximum out-degree is at most k. The problem
now is to estimate the maximum number of edges (keys) my such that the random
graph is k-orientable, with high probability. We give another proof for a character-
ization by Frank and Gyérfds [73] that any graph is k-orientable if and only if the
number of edges of any subgraph is at most k times the number of its vertices. We
use this fact to approximate my for small k£, and we show that for k£ large enough,
1 —2%exp(—k + 1+ e **) < my/(kn) < 1 —exp (=2k (1 — e"%)). Algorithms for

finding a k-orientation are also presented.

Chapter 4: Finally, we discuss some of the speedups of two-way chaining, and
the trade-offs between the number of hashing choices for each key, the search and

insertion times, and the memory size.

INTRODUCTION 7

Hashing with Open Addressing

Another method for resolving collisions is open addressing. The hash table does not
have chains, and each cell can harbor at most one key. However, each key z has an
infinite probe sequence f;(z) € T, for i« € N which it follows sequentially until an
empty cell is found where a key is inserted. The probe sequence is combined with a
replacement strategy. During the insertion process, if a key x initiates the i-th probe
and arrives at the cell f;(z) that is already occupied by another previously inserted
key y, ie., fi(z) = f;(y), for some j € N, then a replacement strategy is used to

resolve the collision. The strategy could be one of the following:

1. FIRST COME FIRST SERVED (FCFS) [147]: The key y is kept in its cell, and

the key z is referred to the next cell fi,i(z).

2. LAST COME FIRST SERVED (LCFs) [151]: The key z is inserted into the cell

fi(z), and the key y is pushed along to the next cell in its probe sequence,
Fi1(y).

3. ROBIN HOOD [29, 28]: The key which travelled the furthest is inserted into
the cell. That is, if ¢ > 7, then the key x is inserted into the cell f;(z), and the
key y is pushed along to the next cell f;;1(y); otherwise, y is kept in its cell,

and the key z tries its next cell f;i1(x).
There are many types of probe sequences, but the commonly used ones are:

1. RaANDOM PROBING [136]: For every key z, the infinite sequence f;(z) is as-
sumed to be independent and uniformly distributed over 7. That is, we require
to have an infinite sequence f; of truly uniform and independent hash functions.
If for each key z, the first n probes of the sequence f;(z) are distinct, i.e., it is

a random permutation, then it is called uniform probing [147].

INTRODUCTION 8

2. LINEAR PROBING [147]: For every key z, the first probe f;(z) is assumed to be
uniform on 7, and the next probes are defined by f;11(z) = fi(z) +1 mod n,

for i =1,...,n. So we only require f; to be a truly uniform hash function.

Random and uniform probings are, in some sense, the idealized models [164, 178],
and their plausible performances are among the easiest to analyze; but obviously they
are unrealistic. Linear probing is perhaps the simplest to implement, but it behaves

poorly when the table is almost full.

Classical Open Addressing

In classical open addressing hashing, m keys are inserted, on-line and sequentially,
into a table of size n by using only one probe sequence with a common replacement
strategy. When we search for a key z, we have to follow the probe sequence f;(z)
sequentially until the key is found or an empty cell in the case of unsuccessful search.
The load factor « € (0, 1) is assumed to be a constant. The asymptotic average-case
performance has been extensively analyzed for different types of probe sequences
[103, 80, 169]. The expected search times were proven to be constants, more or
less, depending on « only. We focus, however, on the worst-case search time which
is proportional to the length of the longest probe sequence over all keys (LLPS, for
short).

Pittel [149] proved that in linear probing with FCFS policy, the LLPS needed to
insert (or search for) any key is asymptotic to (o« — 1 — loga)~!logn, in probability.
Gonnet [79] proved that with uniform probing and FCFS replacement strategy, the
expected LLPS is asymptotic to log;,, n — log; , log, /o n + O(1). However, Poblete
and Munro [151, 152] showed that if random probing is combined with LCFs policy,
then the expected LLPS is at most (1 + o(1))I""!(an) = O(logn/loglogn), where I

is the gamma function.

INTRODUCTION 9

On the other hand, the ROBIN HOOD strategy with random probing leads to a
more striking performance. Celis [28] first proved that the expected LLPS is O(logn).
However, Devroye, Morin and Viola [45] tightened the bounds and revealed that the
LLPS is indeed log, logn £ O(1), w.h.p., thus achieving double logarithmic worst-case
insertion and search times for the first time in classical open addressing hashing. Un-
fortunately, one cannot ignore the unrealistic assumption in random probing about
the availability of an infinite collection of independent and truly uniform hash func-
tions. On the other side of the spectrum, it is known [147, 103] that the LLPS in linear
probing, which is more realistic, is independent of the replacement strategy, because
the insertion of any order of the keys results in the same set of occupied cells. This

emphasizes the need for inventing nonclassical linear probing schemes.

Thesis Contributions: Part I1

Our chief objective in the second part of this thesis is to design on-line linear probing
schemes that achieve double logarithmic worst-case performance. This is done by
exploiting the idea behind the two-way chaining paradigm. We promote the concept
of two-way linear probing. These are hashing algorithms that initiate for each key two
independent linear probe sequences with FCFS policy to find two empty cells where
the key is inserted into one of them according to some strategy. For example, one of
the trivial strategies inserts each key into the empty cell found by the shortest probe
sequence. Another simple strategy inserts each key into the empty cell adjacent to

the smallest cluster, where a cluster is an isolated set of consecutively occupied cells.

Chapter 5: We prove an (loglogn) universal lower bound on the performance of
any strategy that uses two linear probe sequences, even if the starting points of these

sequences are chosen according to arbitrary probability distributions. Furthermore,

INTRODUCTION 10

we demonstrate that not every two-way linear probing algorithm behaves nicely. We
show, for instance, that when any of the above two strategies is used to construct
a hash table with constant load factor, the maximum unsuccessful search time is

Q(logn/ loglogn), with high probability.

Chapter 6: We introduce, subsequently, two on-line two-way linear probing algo-
rithms that accomplish ©(loglogn) worst-case unsuccessful search time, with high
probability. Simulation results that support the analysis of these algorithms are also

presented. We study the performance of off-line two-way open addressing.

Say: bring your proof, if you are truthful.

THE NOBLE QUR’AN, (2: 111), (27: 64)

Chapter 0O

Preliminaries

In this chapter we define some of the notations and recall some useful results from

probability theory and analysis of algorithms.

0.1 Basic Notations

Throughout, we use R and N to denote the conventional sets of real numbers, and
positive integers, respectively. For n € N, we write [n] to denote the set {I1,...,n}.

We use log for the natural logarithm.

Asymptotics

We will often use the following standard asymptotic notations to describe the relative
order of magnitude between two sequences z, and y, defined on N. For simplicity,
we assume that z, and y, are nonnegative for all sufficiently large n. We write
zn = O(yn), or equivalently, y, = Q(z,) to mean that there is a constant ¢ > 0
such that z, < cy,, for all n large enough. If z, = O(y,) and z, = Q(y,), we
write 7, = O(y,). We write z, — = to mean that x, converges to , as n goes to

infinity. The statement “z,/y, — 07 can be rewritten alternatively as z, = o(yn),

11

CHAPTER 0. PRELIMINARIES 12

Un = W(Tp), Tp < Yn, OF Yo > x,. We also write z, ~ y, to mean that z, is

asymptotic to yy, that is, T, /y, — 1.

Probability

We write P{A} for the probability measure of an event A, and P{A|B} for the
conditional probability of event A given that event B is true. All the random variables
we deal with in this thesis are real-valued measurable functions defined on some
probability space. The expected value and the variance of a random variable X are
denoted by E [X | and Var [X |, respectively. The covariance of two random variables
X and Y is denoted by Cov[X,Y]. We denote by Ij4; the indicator function of
the event A which is 1 if A occurs, and 0 otherwise. For any random variables X and
Y, we write X £V to mean that X is distributed as Y, that is, X is equal to Y in
law, or P{X >t} =P{Y > t}, for any t € R.

We say that a sequence of events A,, occurs with high probability (abbreviated
w.h.p.), or equivalently, it is true asymptotically almost surely (abbreviated a.a.s.) if
and only if P{A,} —>1. Let X;,X5,..., and X be any random variables. We say
that X, converges in probability to X, as n goes to infinity, if and only if for any
constant € > 0, we have

lim P{|X, - X| > e} =0.

We say that X, is asymptotic to a, in probability, where a, is a real-valued sequence,

if X,/a, converges to 1 in probability.

0.2 Probabilistic Inequalities

Probabilistic analysis of algorithms is largely about bounding probabilities, especially

those of large deviations. Most of the following probabilistic inequalities can be found

CHAPTER 0. PRELIMINARIES 13

in any classical probability-oriented textbook, e.g., [7, 97, 137]. See also [100, 116,
123].
Perhaps the simplest probability tail inequality is the one implied by the definition

of expectation of any nonnegative random variable X which is
o0
E[X]:/ P{X >} dz>P{X>1}.
0
This leads to Markov’s inequality: for any random variable X, and ¢ > 0, we have

p{x|> 1 < 2

Thus, if f is a nonnegative nondecreasing function defined on R, then for any random

variable X, and t € R,
P{X 21} =P{f(X) = f(t)} <

If we choose f(x) = z?, we obtain Chebyshev’s inequality: for any random variable

X with bounded mean, and ¢ > 0,

Var [X]

P{IX-E[X]| >} < —

These bounds are in many cases insufficient. Sharp concentration inequalities can
be obtained for random variables that can expressed as functions of independent or

almost independent random variables (see below).

Binomial Inequalities

The binomial random variable Bin(n, p), where n € N, and p € [0, 1], has the following

distribution:

P{Bin(n,p) = k} = (Z)pk(l —p)"F, forke{0,...,n}.

CHAPTER 0. PRELIMINARIES 14

Such a random variable can be represented as a sum of n independent binary random
variables (or coin flips) where the probability of having 1 is p. The binomial distri-
bution is concentrated around its mean np, i.e., the probability that it deviates from

its mean is very small. The following lemma bounds the upper tail probabilities.

Lemma 0.1 (Okamoto [139]). For p € (0,1), and n,t € N, let § = t/n, and

suppose that n >t > np > 0. Then

P{Bin(n,p) > 1} < T(6,p)" < ((ﬂ)ﬁ (3)ﬂ>n 1)

IA
N
)
i~
=
S’
-~
m|
=3
3
—~
[\]
~—

< (=) >

Observe that if ¢ = enp, for some constant ¢ > 1, then inequality (2) can be

written as

P {Bin(n,p) > enp} < exp (—(eloge — € + 1)np) , (4)

which is known as Angluin- Valiant’s inequality [11]. All of the above bounds
are tight up to a factor of ©(1/4/n), that is, P{Bin(n,p) > ¢t} = a,Y (8, p)", where
an, = O(1//n). Analogous inequalities hold also for the lower binomial tails, but
we shall not need them here. The binomial bounds have been implicitly established
earlier by Chernoff [31}, and were later extended to sums of bounded random variables
[16, 11, 88, 93].

The following lemma establishes lower bounds on the upper tail probabilities.

Lemma 0.2. Let n,m € N such that m/n ~=» «, for some constant a € (0,1). Let
p = c¢/n, for some constant ¢ > 0. Then for t € [m —1], and n large enough, we have

t g—co

2

P{Bin(m,p) > t} > (5;)

CHAPTER 0. PRELIMINARIES 15

Proof. Since (1 —1/n)* > 1 —t/n, then for n large enough, we have

L e e

By repeating this step, we get (})n~* > (})t=* = ¢t~*. Observe that (1—c/n)" e

Therefore, for n large enough,

P {Bin(n,p) > t}

v

P{Bin(n,c/n) > t}
BIGNEHEENOR

Since m/n -+ a, then for n large enough, p > ca/(2m). Hence, applying the above

vV

inequality, we get

e reaNt
P {Bin(m,p) > t} > (-) .
{Bin(m,p) > t} > 55

Functions with Bounded Differences

The following lemma is useful for bounding complicated random variables that can

be written as “nice” functions of independent random variables.

Lemma 0.3 (McDiarmid [122]). Let X3,..., X, be independent random variables
taking values in a set A, and let [be any real-valued measurable function defined on

the set A™. Suppose that for each i € [n], there exists ¢; > 0 such that

sup |f(.’171, v 7:1771) - f(zla e ami—laiiami—#la B 3:1;11)1 S Ci,
L1y sTn,bi€A

i.e., the function f has bounded differences. Then for any t > 0, we have

P{f(X1,..., Xn) —E[f(X1,..., Xn)] >t} <exp (%) :

and similarly,

P{f(Xl;---,Xn) "E[f(Xlw-"Xn)] S _t} SeXp <2§2t2c?> :

CHAPTER 0. PRELIMINARIES 16

Notice that the lemma does not require identical distributions for the X;’s. Weaker

versions of the lemma for not-totally independent random variables have been also

established, see e.g., [122, 123, 116].

Negative Association

The definition of conditional probability says that P{AN B} = P{A|B}P{B}, for

any event A and B. Thus, by induction, we see that for any events Ay, ..., A,,

P{ﬂAi} =P{A;|Ag ..., A P{As| As, ..., A} P{An_1 | A} P{4,} .
i=1

This inequality is useful for studying the maximum value over a set of random values.

Plainly, if Xy,..., X, are random variables, then

P{maxXi gt} = P{X1<t... X<t}

= P{X;<t|Xy,<t,.. X<t} P{X,<t}.

Computing the exact probabilities P{X; < t|X;41 <t,..., X, <t} is usually hard.
However, the probabilities can be bounded from above by P {X; < ¢}, if the random
variables are negatively associated, which means that when some of these variables
are known to be small, the others are highly unlikely to be small too. The negative
association, which is sometimes called negative dependence or correlation, is studied

by many researchers, e.g., [566, 57, 63, 68, 98, 111]:

Definition 0.1. Any nonnegative random variables X1, ..., X, are said to be nega-
tively associated, if for every disjoint index subsets I, J C [n], and for any functions
f:RI 5 R and g : RVl — R that are both non-decreasing or both non-increasing

(componentwise), we have Cov [f(X;,1 € I), g(X,,j € J)] <0, that is,

E{f(Xyiel)g(X;,je€)]<E[f(X,icI)]E[g(X;,jeJ)].

CHAPTER 0. PRELIMINARIES 17

Once we establish that X, ..., X,, are negatively associated, it follows, by consid-

ering inductively the indicator functions, that for any nonnegative numbers ¢, ..., ,,

P{X; <ty,...,Xn <tn}

IN

P{X: <t} P{X, <t5,..., X, <t}

[[p{xi<t},
i=1

IN

and similarly,

P{X; >t1,..., Xn > ta} < [[P{X: > t:},
=1

The next lemmas provide some tools for proving the negative association. For proofs

see [63, 98, 57].

Lemma 0.4 (Zero-One Lemma). Any binary random variables X, ..., X, whose

sum 18 one are negatively associated.

Lemma 0.5. If {X1,...,X,} and {Y1,..., Y.} are independent sets of negatively
assoctated random variables, then the union {X1,..., X, Y1,..., Y} is a set of neg-

atively associated random variables.

Lemma 0.6. Suppose that Xi,...,X, are negatively associated. Let I,..., Iy C [n]
be disjoint index subsets, for some positive integer k. For j € [k], let h; : R — R be
non-decreasing functions, and define Z; = hj(X;,1 € I;). Then the random variables
Zy, ..., 2y are negatiwvely associated. In other words, non-decreasing functions of dis-
joint subsets of negatively associated random variables are also negatively associated.

The same holds if h; are non-increasing functions.

As an example of negative association we consider the multinomial distribution.
Let Xi,..., X, be independent random numbers chosen from [n] with a common
probability distribution, that is, P{X; =i} = p;, for all j € [m], and ¢ € [n], where

p1+ -+ p, = 1. Fori € [n], let N; be the number of times the number i is chosen,

CHAPTER 0. PRELIMINARIES 18

ie., N, = Z x;=i)- The vector N = (Ny,..., N,) is said to have the multinomial
distribution with parameters m and (pi,...,p,): for ky,..., k, € [m],
m!
P{N = (ky,...,k)}——,c py e
if ki +---+k, = m, and it is zero, otherwise. The random variables Ny,..., N, are

binomially distributed (N; £ Bin(m, p;), for all ¢ € [n]), but they are not independent.
They are, however, negatively associated. This can be seen by applying Lemma 0.4
to each set of the random variables {H[Xlzi] vy U Xm=i] }, for all ¢ € [n], and then

using Lemmas 0.5 and 0.6. This leads to Mallows’ inequalities [120]:

P{Ny <ti,...,Na <t} < [[P{Ni<ta}, and

P{N >t1,...,Na >t} < [[P{N: > ta} .

Remark 0.1. Sometimes the negative association of random variables can only be
proven if a certain event A is true. Generally, we say that the non-negative random

variables X, ..., X, are negatively associated when conditioned on an event A, if
E[f(Xi1el)g(X;,j e YA <E[f(Xi,i e)|[A] E[g(X;,5 € J)|A].

for every disjoint index subsets I,J C [n], and for any functions f : R/l - R, and
g : Rl — R that are both non-decreasing or both non-increasing (componentwise).
One can easily verify that the proofs of Lemmas 0.4, 0.5, and 0.6 are still true when
considered with conditioning on some event A. For example, if whenever an event A
is true, Xi,..., X, are binary random variables whose sum is one, then the binary

random variables are negatively associated when conditioned on A.

0.3 Allocation Processes

Allocating balls into bins is one of the historical assignment problems [99, 105]. For-

mally the problem is defined as follows. We are given m balls that have to be placed

CHAPTER 0. PRELIMINARIES 19

sequentially into n distinct bins, where each bin can hold an unlimited number of
balls. The load of a bin is defined to be the number of balls it contains. The aim
is to design an efficient allocation process that achieves a load distribution on the
bins as uniformly as possible. Throughout, we say that an allocation process is on-
line, if each ball is assigned upon arrival without knowing anything about the future
balls. If the process waits until all the m balls arrive, and considers all the available
information about the balls before it places them, then we say that the allocation is

off-line.

Remark 0.2. Throughout the thesis, any allocation process is considered to be off-

line if and only if we mention that ezplicitly, otherwise it is assumed to be on-line.

The balls-and-bins problem is very useful for modelling many applications in
computer science such as load balancing, dynamic resource allocation, circuit routing,
IP address lookups, and of course hashing. The balls may represent keys, tasks,
jobs, users or processes, while the bins may be chains, servers, printers, machines, or
processors. For example, in the context of PR AM simulation on distributed memory
machines (DMM), we have m processors sharing a memory of PRAM machine that
we want to simulate on a DMM machine with n processors and a memory partitioned
into n modules, one module per processor. Distributing m balls into n bins means
mapping m cells of the shared memory of the PRAM to the n memory modules of
the DMM. We shall also explain, in Section 0.4, how the balls and bins can be used
to model hashing. For an in-depth view of other applications see [13, 24, 39, 130, 134].

For the remainder of this chapter, we will concentrate on allocation processes that

minimize the maximum bin load among all the bins upon their termination.

CHAPTER 0. PRELIMINARIES 20

0.3.1 Classical Allocation Processes

Randomization has been shown to be very effective in minimizing the maximum bin
load. For instance, the classical allocation process places each ball on-line into a bin
chosen independently and uniformly at random, with replacement. Throughout, we

shall refer to this process by CLASSICAL(n, m), for inserting m balls into n bins.

Figure 1: An illustration of CLASSICAL(n,m). Each ball is placed in a bin chosen

independently and uniformly at random.

The properties of the classical balls-and-bins model (or sometimes called the classi-
cal occupancy model) have been extensively analyzed in the probability and statistics
literature [99, 105, 100, 107, 20, 75]. Clearly, the load of any bin has the binomial
distribution Bin(m, 1/n), and hence, its expected value is m/n. The bin load vector
is multinomial, and by Mallows’ inequality, the bin loads are negatively associated.
However, it is not difficult to show that each bin load behaves asymptotically as an

independent Poisson random variable with parameter m/n.

Theorem 0.1. Upon termination of CLASSICAL(n,m), where m = ©(n), the mawi-

mum bin load among all bins is asymptotic to logn/loglogn, in probability.

Proofs of the theorem can be found in [99, 105]. In the context of uniform hashing,
Gonnet [79] gave another proof based on Poisson approximation which has been

simplified by Mitzenmacher [130]. Recently, Raab and Steger [153] presented a new

CHAPTER 0. PRELIMINARIES 21

proof using the second moment method, and analyzed the heavily loaded case when
m > n. The process has been also analyzed under assumptions of limited randomness
[6, 52, 48, 50, 124], and for nonuniform distributions [41]. Another variation of the

classical model has been studied in [55].

0.3.2 Multiple-choice Allocation Processes

The idea of using multiple choices for each ball appears to have been conceived in
1986 in the work of Eager et al. [59]. The power of the idea became more evident
in the work of Karp, Luby and Meyer auf der Heide {101]. The authors studied the
balls-and-bins problem in the context of PRAM simulation on a distributed memory
machine. They allowed each ball to choose two bins independently and uniformly at
random, while a simple parallel algorithm decides in which of the two possible bins
the ball has to be placed. They proved that if m = n, then the allocation process

terminates with O(loglogn log® n) maximum bin load, w.h.p.

The Greedy Strategy

In 1994, Azar, Broder, Karlin and Upfal [13] proposed the following novel allocation
process. For each ball, we choose d > 2 bins independently and uniformly at random,
with replacement. Then we insert the ball into the least full bin among the d bins,
breaking ties randomly. Throughout, we will write UNIFORM-GREEDYMC(n, m, d)
to denote this greedy multiple-choice allocation process for inserting m balls into n
bins. In the case d = 2, we may sometimes, for simplicity, omit the third parameter,
and just write UNIFORM-GREEDYMOC(n, m). The balls are assumed to be inserted
on-line and sequentially, unless otherwise explicitly specified.

Notice that the allocation (insertion) time for any ball, (that is, the number of bin

accesses) is always d. The maximum bin load of UNIFORM-GREEDYMC(n, m, d),

CHAPTER 0. PRELIMINARIES 22

Figure 2: An illustration of UNIFORM-GREEDYMC(n,m,4). Each ball is inserted
into the least loaded bin among 4 bins chosen independently and uniformly at random,

with replacement, breaking ties arbitrarily.

surprisingly, decreases significantly , even for d = 2. Azar et al. [13] proved that
the maximum bin load L, upon termination of UNIFORM-GREEDYMC(n,n,d) is
log,logn + ©(1), w.h.p., that is, |L, — log;logn| < ¢, w.h.p., for some constant
¢ > 0. One can easily generalize these bounds to the case m = O(n). It is also known

that the greedy strategy is stochastically optimal in the following sense.

Theorem 0.2 (Azar et al. [13]). Let n,m,d € N, where d > 2, and m =
©(n). Upon termination of UNIFORM-GREEDYMC(n, m,d), the mazimum bin load
is log,logn + (1), w.h.p. Furthermore, the mazimum bin load of any on-line allo-
cation process that inserts m balls sequentially into n bins where each ball is inserted
into a bin among d bins chosen independently and uniformly at random, with replace-

ment, is at least log,logn — ©(1), w.h.p.

The proof of the above bounds given by Azar et al. [13] uses the layer induction
method. Mitzenmacher [130, 132] gave another proof based on a system of differential
equations called the fluid limit model. The upper bound is proved via the witness tree
method by Vocking [170]. In Chapter 1, we shall simplify the witness tree argument,

and present a new proof for the lower bound. A survey of proof techniques can be

CHAPTER 0. PRELIMINARIES 23

found in [134].
The heavily loaded case—when m = w(n)—of the greedy allocation process has
been analyzed by Berenbrink et al. [18]. Using Markov chains, the authors studied

the stationary state of the allocation process, and proved the following result.

Theorem 0.3 (Berenbrink et al. [18]). There is a constant C > 0 such that for
any integers m > n > 0, and d > 2, the mazimum bin load upon termination of

UNIFORM-GREEDYMC(n, m, d) is log,;logn + m/n = C, w.h.p.

Azar et al. [13] also studied an infinite dynamic version of the greedy allocation
process UNIFORM-GREEDYMC(n, n,d). Initially, suppose that n balls are inserted
by UNIFORM-GREEDYMC, and then at each step a previously inserted ball is selected
independently and uniformly at random and removed from the system; and a new
ball is inserted into the least bin among d bins chosen independently and uniformly at
random, breaking ties randomly. After Q(n?loglogn) steps, the maximum bin load
still is log,logn + O(1), w.h.p. Vicking [170] extended the result to any sequence of
deletions and insertions that is specified before the algorithm starts. Other infinite

dynamic variants of the greedy multiple-choice allocation process are considered in

(33, 34].

Theorem 0.4 (Vicking [170]). Suppose that a possibly infinite sequence of dele-
tions and insertions of balls, that is defined in advance, is performed on-line by al-
gorithm UNIFORM-GREEDYMOC where each ball is inserted into the least loaded bin
among d > 2 bins chosen independently and uniformly at random from a set of n € N
bins. Suppose also that at any point of time, there are at most m = §2(n) balls in the

bins. Then the mazimum bin load at any fized time is log,logn + O(m/n), w.h.p.

The off-line version of UNIFORM-GREEDYMC(n, m, 2) where the choices available

for all balls are known in advance before we insert any ball is studied in [13]. The

CHAPTER 0. PRELIMINARIES 24

analysis was further improved by Czumaj and Stemann [39]. A more detailed history

of the off-line process is given in Chapter 3.

Asymmetric Variant

Theorem 0.2 asserts that the greedy multiple-choice process is stochastically optimal
as long as each ball is inserted on-line into a bin among d bins chosen indepen-
dently and uniformly at random, with replacement. However, Vécking [170, 171]
demonstrated that it is possible to improve the performance of the greedy process,
if nonuniform distributions on the bins and a tie-breaking rule are carefully chosen.
He suggested the following variant. First, assume the bins are numbered from 1 to
n. Partition the n bins into d groups of almost equal size, that is, each group has
size ©(n/d). Allow each ball to select upon arrival d bins. All the bins are chosen
independently at random where the i-th bin must be chosen uniformly from the ¢-th
group. Each ball is placed on-line, as before, in the least full bin among the d bins. Up
to this point, with just these modifications (i.e., the ties are still broken randomly),

the maximum bin load, upon termination, is still log,logn + ©(1), w.h.p.

~
N
olloNe
f..
OHORS
8 9

6 7

Figure 3: An illustration of LEFTMC(n,m,4). Each ball is placed in the least full
bin among 4 independent bins where the ¢-th bin is chosen uniformly from the i-th

group. Upon a tie, the ball is placed in the leftmost bin.

CHAPTER 0. PRELIMINARIES 25

Vécking introduced one more crucial change: an asymmetric tie-breaking rule
called Always-Go-Left. 1t states that upon a tie, the ball is always placed in the
leftmost bin among the d bins. We shall write LEFTMC(n, m, d) to refer, throughout,
to this variant of the greedy multiple-choice process for inserting m balls into n bins.
Vocking [170] showed that upon termination of LEFTMC(n,n,d), the maximum
bin load is loglogn/(dlog ¢4) + O(1), w.h.p., where ¢y is a constant related to a
generalized Fibonacci sequence. For example, the constant ¢, = 1.61... corresponds to
the well-known golden ratio, ¢3 = 1.83..., and ¢4 = 1.92.... In general, limy_,o, ¢g = 2,
and ¢g < @3 < ¢4 < --- < 2. Notice that this is an improvement on the performance
of GREEDYMCcC(n, n,d), as dlog ¢, > (d— 1) log2 > logd. For example, when d = 2,
the maximum bin load of LEFTMC(n,n) is 0.72... X log, logn + O(1), whereas in
UNIFORM-GREEDYMC(n,n), it is log, logn + O(1). The process LEFTMC(n, m, d)

is also optimal in the following sense.

Theorem 0.5 (Vocking [170]). Let n,m,d € N, where d > 2, and m = O(n). The
mazimum bin load of LEFTMC(n, m,d) upon termination is loglogn/(dlog¢q) £
©(1), w.h.p. Moreover, the mazimum bin load of any on-line allocation process that
inserts m balls sequentially into n bins where each ball is placed into a bin among d
bins chosen according to arbitrary, not necessarily independent, probability distribu-

tions defined on the bins is at least loglogn/(dlog ¢q) — ©(1), w.h.p.

Notice that the lower bound on the maximum bin load of LEFTMC(n,m,d)
holds with any probability distributions defined on the bins, and any tie-breaking
rule. This is an important result that we shall need in Chapter 2 when we investigate
the performance of UNIFORM-GREEDYMC (n, m) with nonuniform distributions. An
analogous version of Theorem 0.4 is also proved in [170] confirming that in the dy-
namic situation, the maximum bin load of LEFTMC(n, m,d) does not increase.

The plausible improvement that LEFTMC(n, m, d) achieves has been reaffirmed

CHAPTER 0. PRELIMINARIES 26

by Mitzenmacher and Vécking [135, 134] where the process is analyzed in the context
of the fluid limit model. Berenbrink et al. [18] studied the heavily loaded case and

recorded the following theorem.

Theorem 0.6 (Berenbrink et al. [18]). There is a constant C' > 0 such that for
any integers m > n > 0, and d > 2, the mazimum bin load upon termination of

LErTMC(n,m, d) is loglogn/(dlog¢s) + m/n+ C', w.h.p.

Applications and Extensions

A great deal of research has been focused during the last years on analyzing, improv-
ing, and generalizing the greedy multiple-choice paradigm. The versatile paradigm
has been used to derive efficient algorithms for many applications in computer science.
Broder and Mitzenmacher [24] applied the two-way chaining scheme, i.e., algorithm
UNIFORM-GREEDYMC(n, m), to improve IP address lookups in internet routers. By-
ers et al. [26] used the multiple-choice technique to implement distributed hash tables
efficiently. The technique has also been utilized in computer graphics {177], routing
and interconnection networks [34, 114, 128, 8|, queueing systems [130, 131, 135, 172],
and shared memory simulations {37, 127].

Many variants and extensions of the greedy multiple-choice process have been
introduced and studied in various settings. Mitzenmacher et al. [133] and Shah et
al. [159] studied a variant of the greedy multiple-choice process with memory where
each time a ball is placed, the least loaded bin of that ball’s choices after placement is
remembered and used as one of the possible choices for the next ball. The performance
of this process is proved to be asymptotically equivalent to LEFTMC(n,m, d).

Czumaj and Stemann [39] suggested adaptive multiple-choice allocation processes
that achieve optimal trade-offs between the maximum bin load, the maximum alloca-

tion time and the average allocation time. For instance, one of the adaptive processes

CHAPTER 0. PRELIMINARIES 27

they proposed allows each ball to choose one bin, and inserts the ball into it if its
load is at most log,logn + O(1). Otherwise, it chooses d — 1 more bins and inserts
the ball into the least full one. The bins are chosen independently and uniformly at
random, with replacement. The authors showed that the maximum bin load upon
termination is at most log, logn + O(1), w.h.p., while the maximum allocation time
is at most d, and the average allocation time is 1.146194 + o(1), w.h.p.

Other studies considered parallel and distributed processes {2, 1, 17, 163], in-
finite (dynamic) processes with deletion [13, 17, 33, 39, 170], processes that allow

re-allocations of the balls [39], and processes with balls of different weights [19].

0.4 Hashing Assumptions

In any hashing scheme (with separate chaining or open addressing) mentioned in
the thesis, we insert a set K of m € N distinct input keys, that comes from a finite
universe set of keys U, into a table of size n € N. The keys corresponds to records
or data. The hash table is a one-dimensional array with n cells or locations denoted
by the set 7 := {0,...,n — 1}. In hashing with chaining, each cell in the hash table
contains a pointer to a separate chain or linked list. The length of a chain is
defined to the number of keys it contains. The symbol « is reserved, throughout,
to denote the load factor of the hash table m/n. The hashing process uses hash
functions that map U into 7. Let F(U, T) denote the set of all possible hash functions
mapping U to T. Let u := |U|, and notice that |F(U, T)| = n*. We say that a hash
function f : U — T is truly uniform to mean that it is chosen uniformly at random
from the set F(U, 7). Observe that any truly uniform hash function f satisfies the

following properties:

1. For any = € U, the random hashing value f(z) is uniformly distributed over T,

CHAPTER 0. PRELIMINARIES 28

because for any i € T, we have

P{flz) =i} =" =_.

2. The hashing values produced by f are mutually independent (or u-wise inde-
pendent), because for any distinct z,...,2x € U, and any 41,...,% € T, where

k € [u], we have

P{f(z1) =i1,...,f(zx) =ix} = - L

U nk:

= P{f(z1) =ir}---P{f(zx) =%} -

One can see now that the classical uniform hashing with chaining where m keys are
hashed into n separate chains via only one truly uniform hash function, and which
we denote throughout by CLASSICCHAIN(n,m), is stochastically equivalent to the
classical allocation process CLASSICAL(n,m) described above. Similarly, the greedy
multiple-choice process UNIFORM-GREEDYMC(n, m) is stochastically equivalent to

the uniform two-way chaining scheme, see Chapter 1.

T
u Bl
f(=) S NE:
@ > pELETS]
paHENE
L]
K| =m IT|=n

Figure 4: Algorithm CLAssICCHAIN(n, m) where keys are hashed by a single truly

uniform hash function.

The performance of any hashing algorithm is obviously affected by the complexity

of the hash functions it uses. A good hash function is one that can be generated,

CHAPTER 0. PRELIMINARIES 29

evaluated, and stored in efficient time and space. The time and space needed to
generate a hash function should be at least linear in the hash table size, and the
evaluation time should be constant. However, the key probabilistic assumption upon
which the mathematical analysis of uniform hashing schemes is built is that the
random hash functions used by these schemes are truly uniform. To implement
this assumption, we face two practical problems. First, the ability to draw a hash
function uniformly at random from the set F({/, 7) depends heavily on the existence
of a pure and true random bit generator, which has not been realized to date. Second,
even if we assume the availability of a true source of randomness, the complexity of
generating a truly uniform hash function is untractable. Assuming that any key in
U can be represented by one word in [u], i.e., by [log,u] bits, we need ©(ulogn)
time and space (or number of random bits) to generate and store one truly uniform
hash function. That is, the size of the hash function is larger than the size of the
table it intends to serve. Notice that the a hash table with ©(n) keys consumes only
©(nlogu) bits.

Thus, naturally, one wonders if a certain hashing scheme that uses truly uniform
hash functions is efficiently realizable and computable in real life in a way that is
provable to yield almost the same theoretical performance. The concept of universal
hashing, introduced by Carter and Wegman [27, 173], has been proved to be very
fruitful in analyzing many hashing schemes under assumptions of limited randomness.
The hash functions, there, are drawn uniformly from a smaller family of functions
mapping U to T, instead of the set F(U, T). Although, the hashing values of such
functions are almost uniform and almost k-wise independent, for some k& < n, they
are sufficient enough to give almost the same performance of truly uniform hash

functions [52, 48, 50, 161].

CHAPTER 0. PRELIMINARIES 30

In this thesis, however, and for simplicity, all the hashing schemes are studied
with truly uniform hash functions, except in Chapter 2 where we analyzed two-way
chaining with nonuniform hash functions that satisfy only Property 2. We also assume
that the hashing schemes are implemented on a RAM model of computation where
memory access and the standard arithmetic and logic operations can be executed in
one unit time; in particular, probing or accessing a hash table cell can be done in one
unit time. Furthermore, we assume that a pure random source is available, that is,
it is feasible to choose objects uniformly at random. This assumption, in particular,
is reasonable, as high quality pseudo-random bit generators are readily available.

We define the search time of any hashing algorithm as the number of probes
or table accesses the algorithm performs to find a key. Observe that we ignore the
time required to evaluate the hash functions. In particular, we define the search
time in algorithm CLASSICCHAIN(n,m) to be one (for accessing the pointer to the
chain) plus the number of keys the algorithm examines. For example, in Figure 4,
the time needed to search for the key z according to our definition is 5. Similarly, the
insertion or deletion time is defined to be the number of probes the algorithm
performs to insert or delete a key, respectively.

Finally, notice that any hashing scheme can be classified as on-line or off-line
just as we classify any allocation process. That is, a hashing scheme is said to be
on-line, if each key is hashed upon arrival without knowing any information about
the future keys. It is said to be off-line if the hashing values available for all keys are
known in advance before any insertion. Throughout the thesis, all hashing schemes
are assumed to be on-line, unless we explicitly mention otherwise. Moreover, hashing
schemes can be also described as static when the hashing data are not allowed to be

updated or deleted. Otherwise, the hashing scheme is said to be dynamic.

Part 1

Hashing with Separate Chaining

31

32

Hashing emerges as a heuristic technique for supporting dictionary operations to
store and retrieve information in constant expected time. In hashing with separate
chaining, keys that collide in the same cell are inserted into a separate chain (or linked
list) pointed to by the cell. According to Knuth [103], hashing with chaining seems
to have been originated by H. P. Luhn in an internal IBM memorandum in 1953.
However, Dumey [58], in 1956, was the first to describe the technique in the open
literature. Since then, various hashing schemes with different collision resolutions
have been invented and analyzed. Most notably are open addressing schemes [147],
coalesced hashing [167, 168], extendible hashing [65], linear and dynamic hashing [108,
113, 110], perfect hashing [74, 50, 144], universal hashing [27, 173], cuckoo hashing
[146, 69], and, of course, two-way chaining [13, 170]. Comparison-based or tree-
oriented data structures are also suggested for implementing dictionaries. However,
their expected performance is slow, especially, when the data structure is updated.
A wealth of information about these methods and others can be found in [103, 121,
80, 169, 145].

This part of the thesis is devoted only to the two-way chaining paradigm. We
study the on-line uniform version in Chapter 1, and the on-line nonuniform case in
Chapter 2. We analyze the off-line uniform version in Chapter 3. Chapter 4 contains

a discussion on some trade-offs and speedups of this hashing paradigm.

Chapter 1

Uniform Two-way Chaining

We begin our study by presenting another proof of the first part of Theorem 0.2 con-
cerning the worst-case performance of the greedy multiple-choice allocation process
UNIFORM-GREEDYMC(n, m,d). We only consider the case d = 2. We shall see in
Chapter 4 that the best worst-case performance, however, is achieved when d = 3.
We choose the case d = 2 for the sake of simplicity, and because its average-case

performance is better than the case d = 3.

1.1 History and Motivation

Dictionaries are fundamental data structures designed specially for storing data and
supporting basic operations like insert, delete and search. Dictionaries can be static
or dynamic. In static dictionaries, the data structures are not allowed to be updated.
Hashing emerges as a very efficient technique for implementing dictionaries. For ex-
ample, algorithm CLASSICCHAIN(n, m), the classical uniform hashing with separate
chaining, is widely known for its simplicity and its plausible average performance.
Indeed, the expected average successful search time is 1 + «/2, and the expected

unsuccessful search time is 1 + «, where a := m/n, see [80, 35, 169]. Unfortunately,

33

CHAPTER 1. UNIFORM TWO-WAY CHAINING 34

the worst-case unsuccessful search time which is proportional to the length of the
longest chain is proved in [79] to be asymptotic to logn/loglogn, in probability,
when m = ©(n). This is also a direct application of Theorem 0.1, as the classi-
cal allocation process CLASSICAL(n,m) is stochastically equivalent to this hashing
scheme.

Carter and Wegman [27, 173] suggested the concept of universal hashing as a theo-
retical framework for analyzing classical chaining with more practical hash functions.
They showed that the asymptotic average performance of CLASSICCHAIN(n, m) can
be almost preserved (up to a constant factor), if we choose the hash function uni-
formly at random from a smaller class of functions mapping the universe set of keys
U to the hash table 7. The class of functions can be designed to be small and con-
tains only efficient hash functions that can be generated in linear time and space,
and evaluated in constant time. Many such classes have been designed, see e.g.,
6, 48, 52, 53, 141, 161]. Nonetheless, none of these classes lead to a better worst-case
performance (when used in classical hashing with separate chaining) than the one
achieved by a truly uniform hush function.

During the last two decades, an intensive research has been concentrated on im-
proving the worst-case search time, and consequently, many randomized hashing
schemes (with or without chaining) have been introduced. We survey the most promi-

nent ones.

Randomized Perfect Hashing

A perfect hash function on a subset of keys K C U is a 1-1 function that maps K
to the hash table 7. A perfect hashing algorithm is an algorithm that inserts the
keys without any collisions. Thus, the worst-case search time can be dramatically

decreased, if the perfect hash functions used by the algorithm are constructed in an

CHAPTER 1. UNIFORM TWO-WAY CHAINING 35

efficient way. Notice that by the birthday paradox, any randomly chosen hash func-
tion is perfect only on some subsets of keys, but not on every subset, unless the size
of T is very large. Thus, the challenge is to design efficient perfect hashing schemes
for hash tables of linear size, i.e., |[T| = O(|K|). Many such schemes have been intro-
duced [74, 36, 50, 142, 144] with efficient perfect hash functions that can be evaluated
in constant time and constructed in expected linear time and space. For example,
Fredman et al. [74] presented a randomized perfect hashing algorithm that inserts n
keys into a hash table of size n + o(n), and achieves constant maximum search time,
and constant expected amortized insertion time. The hashing algorithm, however, is
off-line and static. The algorithm first uses a hash function chosen randomly from a
small class of functions to partition the set of input keys into ©(n) disjoint groups.
Each group, then, is hashed to a separate sub-table by a perfect hash function chosen
randomly from a set of functions designed specifically for that group.

The static hashing algorithm has been generalized by Dietzfelbinger et al. [50]
to the dynamic situation where updates and deletions are allowed, while preserving
almost the same performance. Similarly, they used a random hash function to parti-
tion the keys into ©(n) disjoint groups, and a different perfect hash function to hash
each group. However, to cope with the dynamic data, they used a rehashing tech-
nique where the whole hash table is reconstructed from the beginning by using new
random hash functions whenever the number of updates exceeds certain limit. The
worst-case search time, and the expected amortized insertion and deletion times are
still constants, but the storage space consumed by the hash table is 35(1 4 ¢)n, where
¢ > 0 is a constant. The update performance of this scheme was further improved
in Dietzfelbinger and Meyer auf der Heide [51, 52], where a new efficient universal
class is used to achieve constant worst-case time for any dictionary operation, with

high probability. Notice that all of these schemes employ ©(n) random hash func-

CHAPTER 1. UNIFORM TWO-WAY CHAINING 36

tions that require a large number of random bits. Dietzfelbinger et al. [48] described
how one can reduce the number of random bits consumed by these schemes by using

polynomial hash functions. For a more detailed study of perfect hashing, see [36, 145].

Open Addressing Schemes

Many open addressing schemes with improved worst-case performance are based,
more or less, on multilevel hashing where the hash table is partitioned into multiple
sub-tables, and different hash functions are used for each sub-table. For instance,
Broder and Karlin [23] divide the hash table into ©(loglogn) blocks, and with each
block, they use a different hash function chosen randomly form a universal class of
functions. The first hash function is used to insert each key into the first block. If a
collision happens, then the key is hashed by the second hash function into the second
block. If a collision occurs again, then the third block is checked by the third hash
function, and so on. If a collision occurs in the last block, then a rehashing technique
is used. The expected amortized time for insertion, deletion or search is constant,
but the worst-case search time is ©(loglogn), deterministically. Of course, if parallel
computations including memory accesses and hash function evaluations are allowed,
then any instruction can be executed in constant time.

Most recently, Pagh and Rodler [146] introduced cuckoo hashing. They insert n
keys into a hash table that is partitioned into two parts, each of size [(1 +¢€)n],
for some constant € > 0. It uses two independent hash functions chosen from an
O(log n)-universal class—one function only for each sub-table. Each key is hashed
initially by the first function to a cell in the first sub-table. If the cell is full, then
the new key is inserted there anyway, and the old key is kicked out to the second
sub-table to be hashed by the second function. The same rule is applied in the second

sub-table. Keys are moved back and forth until a key moves to an empty location or a

CHAPTER 1. UNIFORM TWO-WAY CHAINING 37

limit of O(log n) moves is reached. When the limit is reached, new independent hash
functions are chosen, and the whole table is rehashed. The worst-case search time is
at most two, and the amortized expected insertion time, nonetheless, is constant. An
off-line and static version of this algorithm had previously appeared in [144]. Other

analyses and extensions of this scheme can be found in [44, 69, 53, 141].

Deterministic Dictionaries

Deterministic methods for implementing dictionaries that do not use random bits in-
clude perfect hashing, and comparison-based or tree-oriented data structures (see e.g.,
[10, 129, 86, 143, 145] and the references cited there). All of these techniques, how-
ever, require w(loglogn) time either for searching, or for updating and maintaining
the data structure. For example, Andersson [10] designed a deterministic dictionary
that can be constructed in linear time and space, but the worst-case search time is
Q(logn). On the other hand, Hagerup et al. [86] presented a deterministic dictionary
that has constant worst-case search time, but the insertion time is Q(logn). Pagh
[143] considered a compromised deterministic dictionary where the search time is

loglogn)®W, and the update time is (logn)°®
glog

. Needless to say that in some of the
comparison-based data structures such as balanced trees, the worst-case cost for any

operation is 2(logn).

1.2 Two-way Chaining

The two-way chaining paradigm suggested by Azar et al. [13] is a simple approach for
dramatically improving the worst-case search time of hashing with chaining. To avoid
any ambiguity, we define it formally as follows. Recall that we denote the universe
set of keys by U, and the hash table by 7. The cells of the hash table are numbered,

and each cell points to a separate chain or linked list. For simplicity, we will say “the

CHAPTER 1. UNIFORM TWO-WAY CHAINING 38

chain ¢” to mean the chain that is pointed to by the cell i. The length of a chain is
defined to be the number of keys it contains. We assume, throughout, that we save
with each cell in the hash table the length of the chain that the cell points to, and

we keep it updated.

Definition 1.1. An on-line two-way chaining algorithm is an algorithm that satisfies

the following:

1. It inserts a set of keys K C U sequentially (one after another) into a hash table

T where collisions are resolved by separate chaining.
2. It uses two hash functions f,g : U — T.

3. Each key x € K is inserted into the shortest chain (i.e., with the least number
of keys) among the two chains f(z) and g(z), where ties are broken according

to some fixed strategy.

Clearly, the insertion time of any two-way chaining algorithm is constant. To
search for any key x, we examine the two chains f(z) and g(z), sequentially and
alternatingly. Thus, the maximum unsuccessful search time is proportional to twice
the length of the longest chain. Trivially, the performance of any two-way chaining
algorithm depends on the type of the hash functions and the tie-breaking rule it uses.

Throughout the thesis, we write NONUNIFORM-SHORTCHAIN to denote the on-

line two-way chaining algorithm that satisfies the following:

A. Tt uses two independent random hash functions f and g, i.e., f(z) and g(z) are

random variables with two independent probability distributions defined on 7.

B. If for some key z, both chains f(z) and g(x) have the same length, then the

algorithm breaks the tie randomly.

CHAPTER 1. UNIFORM TWO-WAY CHAINING 39

T

|K| =m [Tl=mn

Figure 1.1: Algorithm UNIFORM-SHORTCHAIN(n, m) where f and g are independent

and truly uniform hash functions.

If, moreover, the hash functions f and g are independent and truly uniform, then we
write UNIFORM-SHORTCHAIN. This means that f and g are chosen independently
and uniformly at random from the set of all possible hash functions F(U/, 7). We
often write NONUNIFORM-SHORTCHAIN(n, m) or UNIFORM-SHORTCHAIN(n, m), for
n,m € N, to mean that the algorithms insert a set of keys X into the hash table T,
where || =m, and |T| = n.

Observe that algorithm UNIFORM-SHORTCHAIN(n, m) is stochastically equivalent
to the greedy multiple choice allocation process UNIFORM-GREEDYMC(n, m). Thus,
by Theorems 0.2 and 0.3, the maximum chain length is log, log n+m/n+0(1), w.h.p.,
for m = Q(n). On the other hand, the following theorem states that the average
search time of algorithm UNIFORM-SHORTCHAIN(n,m) is not more than twice the

average search time of the classical uniform chaining algorithm CLASSICCHAIN(n,m).

Theorem 1.1 (Azar et al. [13]). Let n,m € N. The average expected successful
search time of algorithm UNIFORM-SHORTCHAIN(n,m) is at most 2+ m/n, and the

average unsuccessful search time is at most 2 + 2m/n.

One can also mimic the multiple choice allocation process LEFTMC(n, m) de-

signed by Vocking [170, 171] to derive a two-way chaining algorithm. Indeed, we

CHAPTER 1. UNIFORM TWO-WAY CHAINING 40

shall write LEFT-SHORTCHAIN to denote the on-line two-way chaining algorithm

that satisfies the following:

A. The hash functions f and g are chosen independently and uniformly at random
from the sets F(U, T1), and F(U, T3), respectively, where T; := {0,...,|{n/2]},
and 73 := {[n/2],...,n — 1} constitute a partition of the hash table.

B. If for some key z, the chains f(z) and g(z) have the same length, the key is

inserted into the chain f(x).

The notation LEFT-SHORTCHAIN(n, m) has the same meaning as we explain above
for other algorithms. Similarly, algorithm LEFT-SHORTCHAIN(n,m) is stochastically
equivalent to LEFTMC(n,m), and by Theorems 0.5 and 0.6, the maximum chain
length is 0.72... x log,logn + m/n + ©(1), w.h.p., when m = Q(n). The average
search time is at worst twice the average search time of CLASSICCHAIN(n, m).

It is evident that these two-way chaining algorithms reduce, stochastically and
asymptotically, the worst-case performance exponentially—comparing to classical
chaining method—at the expense of doubling the average case performance. Two-way
chaining also has several advantages over the other hashing methods we mentioned
above for improving the worst-case behavior of hashing. Clearly, it is on-line and
dynamic, it employs only two hash functions, it is easy to parallelize, and it does
not use any rehashing technique. Unlike most of the above schemes, its worst-case
insertion time is still constant. It consumes almost the same storage space as classical
chaining. Note that the additional memory space is needed only to store at worst
n integers which corresponds to the chain lengths where each one consumes at most
O(logloglogn) bits, w.h.p. Furthermore, the same hashing performance is provably
achievable even if the hash functions are chosen from a smaller class of hash functions,

e.g., an O(logn)-universal class, like the ones in [48, 101].

CHAPTER 1. UNIFORM TWO-WAY CHAINING 41

The two-way chaining paradigm has been effectively used to derive many efficient
algorithms for various applications [24, 26, 114, 37, 177]. As we mentioned earlier,
the use of two hash functions appeared previously in [59, 101}, and later in [146]. For
more related history and other applications see Section 0.3.2.

In Chapter 2, we present a stochastic analysis of the worst-case performance of
algorithm NONUNIFORM-SHORTCHAIN(n, m), where n, m € N and the two used hash
functions are possibly nonuniform. Observe that the hash functions used in LEFT-
SHORTCHAIN are also nonuniform. For the remainder of this chapter, however, we
will concentrate on the worst-case performance of the uniform two-way chaining when

the load factor is 1, that is, algorithm UNIFORM-SHORTCHAIN(n, n).

Theorem 1.2. Upon termination of algorithm UNIFORM-SHORTCHAIN(n, n), where
n € N, the mazimum (unsuccessful or successful) search time is 2log,logn + (1),

w.h.p.

It is worth noting that many techniques are used to analyze the worst-case per-
formance of two-way chaining algorithms. Azar et al. [13] used the layer induc-
tion method to bound the maximum chain length of UNIFORM-SHORTCHAIN(n, m).
Mitzenmacher [130, 132] used a system of differential equations in his fluid limit model.
Using a method called witness trees, Vocking [170, 171] studied the worst-case perfor-
mance of algorithms UNIFORM-SHORTCHAIN(n, m) and LEFT-SHORTCHAIN(n, m).
Berenbrink et al. [18] utilized coupling methods of Markov chains to investigate the
heavily loaded case (where m > n) of both of these algorithms. See also [134] for a
brief explanation of these techniques.

We prove, in the next section, the lower bound stated in Theorem 1.2 by using a
waiting time arqument. In Section 1.4, we use a simpler version of the witness tree

method to prove the matching upper bound.

CHAPTER 1. UNIFORM TWO-WAY CHAINING 42

1.3 The Lower Bound

Recall that the time needed to search for any key z by the hashing algorithm
UNIFORM-SHORTCHAIN is defined to be the number of keys visited during the search
operation plus two for reading the two head-pointers to the two chains f(z) and g(z),
where f and g are the hash functions used by the algorithm. Notice that if y is the
last key inserted into a chain of maximum length, then the difference between the
lengths of the chains f(y) and g(y) is at most one. Thus, the worst-case (unsuccessful
or successful) search time is equal to twice the maximum chain length plus constant.
Since the maximum chain length in algorithm UNIFORM-SHORTCHAIN(n,n) is dis-
tributed as the maximum bin load in the greedy multiple-choice allocation process

UNIFORM-GREEDYMC(n, n), it suffices to prove the following theorem.

Theorem 1.3. For n € N, let L, be the mazimum bin load upon termination of

algorithm UNIFORM-GREEDYMC(n,n). Then L, > log,log,n — ©(1), w.h.p.

Proof. Recall that the allocation process UNIFORM-GREEDYMC(n, n) inserts n balls
sequentially into n bins, where each ball is inserted into the least full bin among two
bins chosen independently and uniformly at random, breaking ties randomly. The
following proof uses a waiting time argument that divides the allocation process into
multiple stages. Initially, suppose we have a set of ng > 0 bins that we call the set of
the initial survival bins. At each stage we refine these survival bins by selecting some
of them, until we reach the stage where we have only one survival bin at which we
stop. An initial survival bin survives the first stage if and only if a ball is inserted
into it during the first stage; and for all k¥ > 2, a survival bin of the (k — 1)-th stage

survives the k-th stage if it satisfies one of the following conditions:

1. The bin contains at least k balls before it is chosen by a ball (as one of its two

choices) during the k-th stage.

CHAPTER 1. UNIFORM TWO-WAY CHAINING 43

2. The bin contains k£ — 1 balls before it is chosen by a ball which is inserted into

it during the k-th stage.

Observe that for all £ > 1, any bin that survives the k-th stage has at least k& balls
in it. In the two conditions above, we say that the ball helps the bin to survive. We
say that the survival time of a survival bin of the k-th stage is ¢, if the ball that helps
it to survive the k-th stage is the ¢-th ball inserted during the k-th stage. The first
stage starts with the first ball we insert. Then we keep inserting balls sequentially,
and wait until n; < ng/2 bins from the initial survival bins survive the first stage, at
which it finishes. Then the second stage starts by inserting more balls sequentially,
and it finishes once ny < ny/2 bins survive, and so on. In the k-th stage, we wait
until ng < ng_1/2 bins survive. The sequence ny will be picked later on. Let Ty be
the number of balls inserted during the k-th stage. That is, Ty is the survival time
of the last survival bin of the k-th stage. Now if r is our lower bound and assuming
ny > 1, we only need to show that Y, _, T < n, w.h.p. In other words, the number
of balls that we should insert to reach the r-th level is, asymptotically almost surely,
not more than n.

Consider only the k-th stage. Let A; be the event that the ¢-th ball inserted
during the k-th stage helps a bin to survive. Let H; be the history up to time ¢.
Recall that the load of any survival bin of the (k — 1)-th stage is at least kK — 1. So, if
the ¢-th ball chooses two survival bins of the (k — 1)-th stage that have not survived
the k-th stage yet (and there are at least n,_; —ng such bins), then the ¢-th ball helps
at least one bin to survive the k-th stage. Since the bins are chosen independently

and uniformly at random, and ny < ng_1/2, then we have

2
M1 — T Mg—1\2 def

> [Dht T Dho1) def

P{A|Ho1} > (. > > (Bt &y,

Let S; be the survival time of the j-th survival bin of the k-th stage. Clearly, S; > ¢

if and only if the first ¢ balls inserted during the k-th stage did not help any bin to

CHAPTER 1. UNIFORM TWO-WAY CHAINING 44

survive. By using conditional probabilities, we see that

P{Si >t} = P{A}P{AS|AS} - P{AZ| N} AS)

< (1—pp)t < e = P{E/px >t}

where E' is an exponential random variable with density h(z) = e~ on [0, c0). Note
that E[EF] = Var[E] = 1, see e.g., [83]. Since the above chain of inequalities
is valid for all ¢, we say that S; < E/pg: Sy is stochastically smaller than E/pg.
Switching to exponential random variables helps us to bound the variable T. Recall
that T} is the survival time of the last survival bin of the k-th stage, i.e., Ty = S, .
However, S,, = S1 + (S2 — S1) + -+ + (Sp, — Sn,—1), and each difference S; — S;_1
is stochastically smaller than E/pg. Thus, if G, = Z;tl E;, where Ey, ..., E,, are
independent exponential random variables, then Ty = S,, < G,,/pk. Observe that
E([Gn,/pe] = nw/pr, and Var[G,,/px] = ng/pi, because the F; are independent.
Therefore, we have the following probabilistic duality

IP’{Ln<r}§IP’{iTk>n} §P{iG"’° >n}.

k=1 k1 Pk

r

For simplicity, let Z, = > G,,/pk, and notice that
k=1

and

r T
ng 1 n 4n?
Var[ZT]:Z—ES—Z—: —E[Z].
k r
Now for n large enough, we define ny := n, and for & > 1,

ng 1= [n2k+"‘_1 /22k+~ J ;

where « > 1 is an integer to be chosen later. There are two reasons for using x: one

of them is to make sure that ny < ng_1/2, for all £ > 1, and hence x must be at least

CHAPTER 1. UNIFORM TWO-WAY CHAINING 45

2. The other reason will be clarified soon. Notice that for all £ > 0, we have

n2k+fc—1 n2 22(k+fc)

g , and ni_l >

— 22’(3-}-& 26 . 22k+n)

Also, if we put 7 := [log,logyn — k — 1], we see that n, > 1, for n large enough,

and n2_, > 278 n(log, n)%. Thence,

ngn? n_n
42 2722“& =5

nkl

which is true if we set x := 8. Hence, we get Var[Z,] < 2°n2(log,n)~2 = o(n?).

Using Chebyshev’s inequality, we conclude that

P{L,<r}<P{Z,>n} <P{Z,-E[Z,]>n/2} <4Var[Z,] /n* =0o(1).

Remark 1.1. In dynamic hashing, keys (or balls) are allowed to be deleted or up-
dated. Clearly, the above proof is not valid if we consider any arbitrary sequence
of insertions and deletions of balls wy, ws,ws, ..., where w; is the t-th request to be
performed by algorithm UNIFORM-GREEDYMC which inserts each ball into the least
loaded bin among two bins chosen independently and uniformly at random from a set
of n € N bins. This is mainly because the number of balls at any level may decrease
or increase with time, and the insertion of the future coming balls, obviously, depends
on the distribution of the balls that still reside in the bins. However, assuming that
the sequence of requests is specified in advance, that is, independently of the decisions
made by the algorithm, one can show that the maximum bin load at a fixed time ¢ is
still at least log, logn — ©(1), w.h.p., provided that there exist at least {2(n) balls in
the bins at that time. For example, suppose that wy,...,w, are requests for insertion
of balls, and wy, for ¢ > n is an insertion or a deletion request such that at any time ¢

there are at least {2(n) balls that reside in the bins. Then considering only the balls

CHAPTER 1. UNIFORM TWO-WAY CHAINING 46

that still exist in the bins, one can see that each one of these balls has been inserted
on-line (without using any information about the balls that are inserted after it) into
a bin among two bins chosen independently and uniformly at random. Therefore, by
the second part of Theorem 0.2, the maximum bin load is at least log, logn — ©(1),

w.h.p.

1.4 The Upper Bound

Theorem 1.4. For n € N, let L, be the mazimum bin load upon termination of

algorithm UNIFORM-GREEDYMOC(n,n). Then L, < log,log,n + ©(1), w.h.p.

We prove this theorem by using the witness tree method which has appeared in
many studies, see e.g., [33, 34, 127, 134, 157, 170]. The proof we provide here is
similar to the one used in [157, 170}, but it is simpler, shorter, and clearer. We show
that if there exists a bin with at least h balls, then there is a witness tree of height
h that describes the history of that bin, and the probability that such tree occurs
tends to zero, as n goes to infinity, when h is sufficiently large. The formal definition
of a witness tree is given below. Recall that the balls are inserted sequentially into
the bins where each ball is placed into the least loaded bin among two bins chosen
independently and uniformly at random, breaking ties randomly. Throughout, we
assume the balls are numbered 1,...,n according to their insertion time. For each
t € [n], we write X, and Y; to denote the first and the second choices of bins available
for ball t, i.e., the t-th inserted ball. We shall first define the history tree of a ball

which could be full or truncated. A witness tree is a special truncated history tree.

CHAPTER 1. UNIFORM TWO-WAY CHAINING 47

The History Tree

We define for each ball ¢ a full history tree T,, which is a deterministic colored binary
tree that is labelled by ball numbers except possibly the leaves. Each ball is identified
with the bin that contains it. So the full history tree T3, indeed, describes the history
of the bin that contains the ¢-th ball up to its insertion time. It is a binary tree
that represents all the pairs of bins available for all other balls upon which the final
position of the ball ¢ relies. Formally, we define it as follows. The root of T; is labelled
t, and is colored white. The root has two children, a left child corresponding to the
bin X;, and a right child corresponding to the bin Y;. The left child is labelled and

colored according to the following rules:

(a) If the bin X; contains some balls at the time of insertion of ball ¢, and the
last ball inserted in that bin, say 7, has not been encountered thus far in the
Breadth-First-Search (BFs) order of the binary tree T;, then the node is labelled

7 and colored white.

(b) As in case (a), except that 7 has already been encountered in the BFS order. We

distinguish such nodes by coloring them black, but they get the same label 7.

(c) If the bin X; is empty at the time of insertion of ball ¢, then it is a “dead end”

node without any label and it is colored gray.

Similarly, the right child of ¢ is labelled and colored by following the same rules but
with the bin Y;. We continue processing nodes in BFs fashion. A black or gray node
in the tree is a leaf and is not processed any further. A white node with label 7 is
processed in the same way we processed the ball ¢, but with its two bins X, and Y.
We continue recursively constructing the tree until all the leaves are black or gray.

See Figure 1.2 for an example of a full history tree.

CHAPTER 1. UNIFORM TWO-WAY CHAINING 48

Figure 1.2: The full history tree of ball 47. White nodes represent type (a) nodes.
Black nodes are type (b) nodes—they refer to balls already encountered in BFS order.

Gray nodes are type (¢) nodes—they occur when a ball selects an empty bin.

Note that every internal (white) node of the full history tree has two children.
Furthermore, there is at least one gray leaf. Also, since the insertion process is
sequential, node values (ball numbers) along any path down from the root must be
decreasing (so the binary tree has the heap property), because any non-gray child
of any node represents the last ball inserted in the bin containing it at the insertion
time of the parent. We will not use the heap property however.

It is clear that the full history tree permits one to deduce the load of the bin that
contains the root ball at the time of its insertion: it is the length of the shortest
path from the root to any gray node, where the length of a path is defined to be the
number of edges in it. Thus, if the bin’s load is more than h, then all gray nodes
must be at distance more than h from the root, that is, all the first A + 1 levels do
not contain any gray node. This leads to the notion of a truncated history tree
of height A, that is, with h + 1 levels of nodes. The top part of the full history tree
T; that includes all nodes at the first A + 1 levels is saved, and the remainder is

truncated, see Figure 1.3.

CHAPTER 1. UNIFORM TWO-WAY CHAINING 49

(72) L level 0
(65) Q)
@ (60) 59
(O@ @) @ (55) D &2 h
(40) O 40 (39) O (48)
3) @) @) @) @) (9
WA OO W 3 O@@O—T level h

Figure 1.3: A truncated history tree of height A for ball 72.

We are in particular interested in truncated history trees of height h that do not
contain any gray nodes. Thus, by the property mentioned above, the length of the
shortest path from the root to any gray node in the full history tree (and as noted
above, there is at least one such node) would have to be at least A + 1. Therefore,
the load of the bin harboring the root’s ball would have to be at least A + 1. More
generally, if the load is at least h + £ for a positive integer £, then all nodes at the
bottom level of the truncated history tree of height A that are not black nodes (and
there is at least one such node) must be white nodes representing balls that belong
to bins with load of at least & at their insertion time. We redraw these node as boxes
to denote the fact that they represent bins of load at least &, and we call them “bin

nodes”.

The Witness Tree

Let £ € N be a fixed integer to be picked later. For h,k € N, where h + ¢ < &,
a witness tree Wi(h) is a truncated history tree of height h of a ball in the set [k],
and with two types of leaf nodes, black nodes and “bin” nodes. This means that
each internal node has two children, and the node labels belong to the set [k]. Each

black leaf has a label of an internal node that precedes it in BFS order. Bin nodes

CHAPTER 1. UNIFORM TWO-WAY CHAINING 50

are unlabelled nodes that represent bins with load of at least £&. Bin nodes must all
be at the furthest level from the root, i.e., at level h, and there is at least one such
node in a witness tree. Notice that every witness tree, by definition, is deterministic,
and independent of the total number of bins. An example of a witness tree is shown

in Figure 1.4.

@ i level 0

@ @)
@ @) @) @g)
62 (55 (a0) 69 @ (37) 42 () h
(30) 4030 2 @@ (29) (33) 26) 29

25 16 @ 2 @ W 6@ A

mml 10 . O™ | L
- - e [nn e e

Figure 1.4: A witness tree of height h. The boxes at the lowest level are bin nodes.
They represent selected bins with load of at least £. The load of the bin that contains
ball 84 is at least h + £.

For any k, h,d € N, and nonnegative integer z, let Wg(h, d, z) denote the class of
all witness trees Wy (h) that have d internal (white) nodes, and z black nodes (and
thus d — z + 1 bin nodes). Notice that, by definition, the class Wi (h, d, z) could be
empty, e.g., if d ¢ [h,2"), z > d, or h > k. Before we start the proof of Theorem 1.4,
we need to establish some facts. First, the number of witness trees in Wg/(h, d, z) can

be bound easily.

Lemma 1.1. For any k, h,d € N, and integer z > 0, we have

Wi (h, d, 2)| < 49241 q7k*

CHAPTER 1. UNIFORM TWO-WAY CHAINING 51

Proof. Without the labelling, there are at most 4¢ different shape binary trees, be-
cause the shape is determined by the d internal nodes, and hence, the number of trees
is the Catalan number (%/)/(d + 1) < 4¢. Having fixed the shape, each of the leaves
is of one of two types. Each black leaf can receive one of the d white node labels.

Each of the white nodes gets one of k£ possible labels. ad

The next lemma is a simple but crucial fact. We know that in any witness tree
Wi(h) € Wi(h, d, z), the number of white nodes d € [k, 2") and the number of black

nodes z € [0,d]. But can we say more?

Lemma 1.2. In any witness tree Wi(h) € Wy(h, d, z), where k, h > 2, if the number
of white nodes d < 2", where n > 1, then the number of black nodes z > n, i.e.,

I

nuldsan-n] = 1

Proof. Recall that any leaf node is either black or a bin node, every bin node is at
distance h from the root, and any witness tree has at least one bin node. Thus, one
can see that if we have z black nodes, the number of bin nodes is at least 2"~%. Since
d < 2M1 then 27— 241> d—2z+1 > 2" 2 If z = 0, then we have a contradiction,

because h > 1. So, assume z > 1. But then 2"=7 > 2"=% that is, 2 > 7. 0

Note that, unlike for full or truncated history trees, it is not possible to construct
a witness tree Wy(h) for every ball, unless the ball is placed into a bin whose load,
just before the insertion, is at least h + £ — 1. Considering algorithm UNIFORM-
GREEDYMOC(n, k), we say that a witness tree Wy (h) occurs, if the random choices
of the balls represented by the nodes of the witness tree are exactly as indicated
in the witness tree. That is, if we use the information of algorithm UNIFORM-
GREEDYMC(n, k), after its termination, to construct a truncated history tree (of
height h) for the ball represented by the root of the witness tree, then the history

tree must match the witness tree at every level (node for node, color for color, and la-

CHAPTER 1. UNIFORM TWO-WAY CHAINING 52

bel for label), except the lowest level where every white node of the truncated history
tree must correspond to a bin node in the witness tree and must represent a ball at
the top of a bin with at least £ balls. The bottom line is that a witness tree of height
h occurs if and only if a ball is inserted into a bin of load of at least h + & — 1 before
its insertion, i.e., the maximum bin load is at least h+&. We would like to bound the
probability that a valid witness tree W, (h) occurs. Notice that in our case, k = n as

the algorithm inserts n balls.

Lemma 1.3. Considering algorithm UNIFORM-GREEDYMC(n,n), we have for any

integers n, h,d € N, and integer z € [0, d],

1

sup P{W,.(h) occurs} < T

W (R)EWn (h,d,2)
Proof. Let W,(h) € W,(h,d,z) be a fixed witness tree. We use the conditional
method to compute the probability that W, (h) occurs, by looking at each node in
BFS order. Suppose that we are at an internal node, say u, in W,(h). We would
like to find the conditional probability that a certain child of node u is exactly as
indicated in the witness tree, given that everything is revealed except those nodes
that precede u in the BFS order. This depends on the type of the child. If the child is
white or black, then the conditional probability is 1/n, as each ball can be on top of
at most one of the n bins which are picked independently and uniformly at random.
Multiplying just these probabilities yields 1/n"*~1, as there are d + z — 1 edges in
the witness tree that have a white or black nodes as their lower endpoint. If the child
is a bin node, however, then the conditional probability is at most 1/£, because there
are at most | n/€ | bins with at least & balls each is chosen with probability of 1/n.
Since there are d — z+1 bin nodes, and the choices are independent, the result follows

plainly, by multiplying all the conditional probabilities. O

After these preliminaries, we can now prove the upper bound.

CHAPTER 1. UNIFORM TWO-WAY CHAINING 53

Proof of Theorem 1.4.

Let L, be the maximum bin load of algorithm UNIFORM-GREEDYMC(n,n). Let

h,€&,n € [2,00) be integers to be picked later. By the union bound, we have

pEP{L, >h+&<P U [Wy.(h) occurs] p < Z P {W,(h) occurs} .

Wi (h)
Notice that since h > 2, the number of white (internal) nodes d in any witness tree
W, (h) is at least two, namely, the root and its left child. Using Lemmas 1.1, 1.2 and

1.3, we see that

]
P
|

—

p <

Z P {W,(h) occurs}

Wa(h)eWn(h,d,z)

L M i
gM& i L=

(]
>
1

—

(W, (h,d, 2)] sup P{W,(h) occurs}
Wi (h)EWn (h,d,2)

2d+14ddz d
gd—z+1 pdtz—1 [[z2muld>2r-n)]

2 () (> Temua>2r-n)]

=d+1, because any witness tree has at least one bin node.

IN
Q.. o S
= i
[N

=2
h

N

M

n
9
Note that we disallow

N 8

We split the sum over d < 2% and d > 2" . For d < 2"~", we have z > 7, and

(%)
n

provided that n is so large that 2"71¢ < n, (this insures that d¢/n < 1/2). For

thus

5 (%) Homsn =2 (%) = (£)'5 (%)

2=0 z=n z=0

d € (2"77, 2"], we bound trivially, assuming the same large n condition:

d z
d
3 (é) <2.
z=0 n

In summary, we see that

dn 8\ ¢ 5)”‘12 <8)d
an SV 1a(s °Y @
: 5d§,;_n (5) " <n 2 \¢

CHAPTER 1. UNIFORM TWO-WAY CHAINING 54

By setting & := 16, we get

4n e\

where C =3} o, d"/2%. Clearly, the probability p tends to zero, if we put n:= 2, and

h := n+[log,log, n" |. Notice that £ and h satisfy the technical condition £2"! < n,

asymptotically. (]

Remark 1.2. The probability p can be made arbitrary small (p = O(1/n?)), for
any constant § > 0, by just setting the constant n := d + 1. We have proved that
the maximum bin load is at most log, log, n + 20, w.h.p. However, by adjusting the
constants £ and 7, one can show that the additive constant in the upper bound can be
decreased to 12 + ¢, for an arbitrary constant € > 0. Simulation results of algorithm
UNIFORM-GREEDYMC(n, n) (see e.g., [13, 170]) show that the additive constant is

indeed very small (< 2).

Chapter 2

Nonuniform Two-way Chaining

In this chapter, we analyze the asymptotic worst-case performance of the two-way
chaining algorithm NONUNIFORM-SHORTCHAIN(n, m) with two possibly nonuniform
hash functions. Roughly speaking, we show that whenever the hashing values be-
have according to fixed bounded independent probability distributions, the maximum

search time is 2log, logn £ ©(1), w.h.p., for m = O(n).

2.1 Motivation

Truly uniform hash functions tend to distribute the keys as evenly as possible over the
hash table. This property is also true for conventional (or universal) hash functions
which are “almost uniform” as they are chosen randomly from a small set of functions
such as the ones in [48, 161, 53]. This means that if the universe set of keys U
is an ordered set, any such hash function is, most likely, not monotonic or order-
preserving function. Uniform order-preserving hash functions can be designed, if the
key statistics are known priori [155, 76]. If the order-preserving hash function is
independent of the key distribution, then the hashed values must be nonuniformly

distributed over the hash table, see, e.g., [82] and [41, p. 2]. Order-preserving hash

35

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 56

functions are helpful for operations that require sorted or nearly sorted keys like range
search and finding the k-nearest neighbors, see [42] for a wide variety of applications.

Lately, there has been growing interest in hashing-based algorithms for solving the
(approximate) k-nearest neighbors problem in high-dimensional spaces, see, e.g., [112,
91, 77). This is due to the efficiency of hashing as a data structure for implementing
similarity search in a wide range of database applications [25, 54, 87, 92, 117, 160].
In these applications, a finite number of objects (e.g., images, documents, DNA
sequences) is represented by points in a high-dimensional vector space, (e.g., the d-
dimensional cube [0,1]¢), such that objects that have similar features are mapped
to points that are close to each other. The finite universe set of keys U is defined
to be these points. Searching for a key (or object) in the hash table means finding
or approximating the k-nearest neighbors (or similar objects). The heart of this
novel approach is a class of hash functions called locally-sensitive hash functions. A
function f : U C [0,1]¢ — T is a locally-sensitive hash function if and only if for all
z,y € U, we have |f(z) — f(y)| < [U]||z — y||, where ||| is some given norm defined
on [0,1]¢, for example, Euclidean or ¢; norm. Sometimes these functions are called
neighborhood-preserving functions [54], or non-expansive functions [112]. In short,
such hash functions are sensitive to the similarity of the keys: they map keys that
are close to each other, in some sense, to close chains. So, evidently, locally-sensitive
hashing is good for fast retrieval, and for minimizing the number of pages consumed
by the hash tables. The hashing values of such functions, however, for the same
reason explained above, have nonuniform distributions over the hash table.

It is thus important to analyze the performance of hashing schemes with nonuni-
form hash functions. The worst case performance of classical hashing with chaining
where a set of keys K C U are hashed via a single hash function f was studied

by Devroye [41] for nonuniform distributions. He represented the hash table by the

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 57

unit interval [0, 1] partitioned into n equal-sized disjoint subintervals. Thus, the hash
function f is assumed to map the universe set of keys U to the unit interval [0, 1].
Each key z is hashed to the i-th chain, if f(z) belongs to the i-th subinterval. The
random hashing locations f(z), for all z € U, are assumed to be independent and
have a common density function h defined over [0,1]. Devroye [41] proved that the
expected maximum chain length is still asymptotic to logn/loglogn, provided that
the load factor of the hash table is constant, and the density A is bounded. A tight
upper bound is also given for unbounded densities.

This motivates us to study the worst-case performance of the two-way chaining
paradigm with nonuniform hash functions. Recall that Vocking’s algorithm LEFT-
SHORTCHAIN(n, m) is an example of nonuniform two-way chaining where two special
independent nonuniform hash functions are used, combined with the tie-breaking
rule Always-Go-Left. The length of the longest chain produced by the algorithm is
0.72... x log,logn + m/n + ©(1), w.h.p. (Theorems 0.5 and 0.6). The purpose of
this chapter is to analyze the worst-case performance of algorithm NONUNIFORM-
SHORTCHAIN(n,m) by using the fized density model which we define in the next
section. Recall that this algorithm uses two independent hash functions f and g
which could have any probability distributions over the hash table. Each key z
is inserted into the shortest chain among the chains f(z) and g(x), breaking ties
randomly. Before we state the main results, let us first define the stochastic model

upon which we build our analysis.

2.2 The Fixed Density Model

Throughout, we assume that algorithm NONUNIFORM-SHORTCHAIN(n,m), which
inserts a set of keys K C U of size m € N into n € N separate chains, is implemented

in the following way. The hash table is associated with the unit interval [0, 1] which

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 58

is partitioned into n disjoint equal-sized subintervals denoted by I 1, ..., In, Where
the subinterval I,,; corresponds to the ¢-th chain of the hash table. More precisely,
I..=1[0,1/n], and I,,; = ((t — 1)/n, i/n], for i = 2,...,n. The hash functions f
and g map the universe set of keys U to the unit interval [0, 1], and their hashing
values behave according to fixed (possibly different) probability density functions Ay

and h,, respectively, defined over [0, 1]. Thus, for all z € U, and ¢ € [n],

]P’{f(x)eln,i}:/l hyw) du, and]P’{g(x)eln,i}:/I hy(u) du.

Figure 2.1: Illustration of NONUNIFORM-SHORTCHAIN in the fixed density model.
The hash functions f and g map the keys to the unit interval. Key z has two hashing

values f(z) € I,,; and g(z) € I, ;. The key is inserted into the shortest chain.

Notice that the hash functions and their corresponding densities are fixed for all
n € N. All hashing values f(z) and g(z), for all keys z € K, are assumed to be
mutually independent, i.e., each key has two independent hashing values which are
also independent from the other keys’ hashing values. The keys are inserted on-line

and sequentially as follows. For each z € K, if f(x) € I,,;, and g(z) € I, ;, for some

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 59

i,7 € [n], the algorithm inserts the key z into the shortest chain among the i-th and
the j-th chains of the hash table, breaking ties randomly. See Figure 2.1.

The main result of this chapter is the following theorem.

Theorem 2.1. Suppose that algorithm NONUNIFORM-SHORTCHAIN(n,m), where
n,m € N, is applied in the fized density model where the hash functions f and g
map the keys according to fized densities hy and hy over [0, 1], respectively. Let Tp, m
be the mazimum (successful or unsuccessful) search time. If a = m/n = Q(1),
then T, m > 2max(a, log,logn — ¢), w.h.p., for some positive constant c; and if
1/logn € a < 1, then w.h.p., Tnm > (2 —o(1))log,logn. If both densities are
bounded by some constant, then T, ,, < 2log,logn + O(«), w.h.p. Moreover, if there
is a sequence N\, = O(y/loglogn) such that

/ he(u) du + / hy(u) du = o(1/m),

hy>An hg>An

then Ty m = O((a + 1) loglogn), w.h.p.

Other bounds are also presented, including ones on the worst-case search time
of the dynamic version of the algorithm. We prove the lower bounds in Section 2.3
by extending the waiting time argument used in the uniform case. In Section 2.4,
we apply the witness tree method to prove the upper bound for the case of bounded
densities. The case of unbounded densities is treated by using the rejection method.
All proofs are presented in the context of the balls-and-bins model, for the sake
of simplicity. Formally, we write NONUNIFORM-GREEDYMC(n,m) to denote the
greedy multiple-choice allocation process that inserts m balls into n bins where each
ball is inserted into the least full bin among two bins chosen according to probability
distributions defined on the bins. The allocation process can be implemented in the
fixed density model as follows. First of all, we assume that the balls are numbered

1,...,m according to their insertion time. Each ball ¢ € [m], has two independent

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 60

hashing values X; and Y; drawn randomly from the unit interval [0, 1] according to

the densities h; and hy,, respectively. Thus, for ¢ € [n], and ¢t € [m], we have

lP’{XteIn,i}:/ hy(u) du, and IF’{YteIn,i}:/ hy () du
I In

7,4

. I

Figure 2.2: Each ball ¢ € [m] has two hashing values X; and Y; drawn from the unit

interval according to the densities hy and hg, respectively.

The hashing pairs (X, Y;), for all ¢ € [m], are assumed to be independent. The balls
are inserted on-line and sequentially. For each t € [m], if X; € I,,;, and Y; € I, ;, the
t-th ball is placed into the least full bin among the i-th and the j-th bin, breaking ties
randomly. The maximum bin load of this allocation process is stochastically equiva-
lent to the maximum chain length of algorithm NONUNIFORM-SHORTCHAIN(n, m),
when both are implemented in the fixed density model. Hence, we only need to
bound the maximum bin load upon termination of the allocation process. Recall

that & = m/n.

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 61

2.3 Lower Bounds

Notice that in the optimal allocation process, each bin receives at least | o | and at
most [] balls, and the maximum bin load is equal to [@], deterministically. Thus,
to prove the first lower bound stated in Theorem 2.1, we only need to show that the
maximum bin load is at least log, logn — ©(1), w.h.p., for all m = Q(n).

It is worth mentioning that V6cking [170], while analyzing the worst-case perfor-
mance of algorithm LEFT-SHORTCHAIN(n, m), proved that if the bins in algorithm
NONUNIFORM-GREEDYMC(n, m), where m = Q(n), are chosen according to any ar-
bitrary (possibly dependent) probability distributions, then the maximum bin load—
as it is revealed in Theorem 0.5—is at least 0.72... x log,logn — ©(1), w.h.p. Of
course, our lower bound is proved only for the fixed density model, but it is obviously
better than Vocking’s lower bound by a constant factor.

We begin by proving the following intermediate result for nonuniform distributions
that are “sufficiently bounded” in a slightly different model than the fixed density
model. Suppose that for each n € N, we have two sequences of probabilities p, ;
and gy, where ¢ € [n], according to which the first and the second choices of bins,
respectively, are chosen independently. That is, if (X;,Y;) € [0,1]? is the hashing pair
available for the ¢-th ball, and I, ; is the subinterval that represents the i-th bin, then

for all t € [m], and 7 € [n], we have
P{Xt € In,i} = DPni and P{Yz € In,z} =dn,; -

Of course, >, Pni =), qn; = 1, for all n € N. This model is more general than the

fixed density model, because the probabilities F,; and ¢, ; could be written as

Pnji = / hin(u) du, and gn; = / hon(u) du,

Ini In i

where hy , and hy,, are densities over [0, 1] which could be different for each n; while

in the fixed density model hy, = hy, and hy, = hy, for all n € N. Nonetheless, the

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 62

next theorem is true even if the probabilities are obtained from different densities on

[0, 1] for each n.

Theorem 2.2. Suppose that algorithm NONUNIFORM-GREEDYMOC(n,m) is imple-
mented in the model defined above with two sequences of probabilities p,; and gy ;,
where n,m € N. Let a := m/n, and Ly, ,,, be the mazimum bin load upon termination.
If there are some constants A > 1, and & > 0 such that, for all n large enough,
> P20, and > 26,
PniSA/n gn,iSA/n

then Ly, m > log, logy n—max (0, [13 — log,(ca) |) — 3, w.h.p., where ¢ = §3/(2A—4).

Proof. Clearly, we can assume that a > 2'°/(clog, n), because otherwise, the lower
bound is meaningless as it is non-positive. The following proof is a generalization
of the waiting time argument of Theorem 1.3. We use the same notation. First,
we divide the allocation process into multiple stages. At each stage we refine these
survival bins by selecting some of them until we reach the stage where we have only
one survival bin at which we stop. The set of the initial survival bins, which is
~denoted here by T,, has ng > 0 bins. During any stage in the process, we insert
balls sequentially and wait until there are enough survival bins. In the k-th stage,
for example, we wait until ny < nk-;/2 bins survive. We shall define the sequence ny
later on. An initial survival bin survives the first stage if and only if a ball is inserted
into it during the first stage; and for all k > 2, a survival bin of the (k — 1)-th stage

survives the k-th stage if it satisfies one of the following conditions:

1. The bin contains at least k balls before it is chosen by a ball (as one of its two

choices) during the k-th stage.

2. The bin contains k — 1 balls before it is chosen by a ball which is inserted into

it during the k-th stage.

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 63

A survival bin of the k-th stage has at least £ balls in it. In the two conditions above,
we say that the ball helps the bin to survive. We say that the survival time of a
survival bin of the k-th stage is ¢, if the ball that helps it to survive is the ¢-th ball
inserted during the k-th stage. We denote by T the number of balls inserted during
the k-th stage. This means that 7y is the survival time of the last survival bin of the
k-th stage. Our job, then, is to show that one can reach the r-th level, where r is
the lower bound we want to prove, by inserting at most m balls, or more formally,
S i1 Tk < m, wh.p., and n, > 1. Following the same mathematics, we write H; to
denote the history up to time ¢, and A; to denote the event that the ¢-th ball inserted
during the k-th stage helps a bin to survive. We let S; be the survival time of the j-th
survival bin of the k-th stage. We have seen by using conditional probabilities that if
there is a number p; € (0,1) such that P{A;|H;_1} > pk, for all ¢, then S; < F/p;:
S; is stochastically smaller than E/py, where E is an exponential random variable
with density e™® on [0,00). This means that P{S; >t} < P{E/p; > t}, for all t.

Thence, we have

Nk

E; G
Ty = Sp, = S1+(S2=81) + -+ (Sny — Sny1) < =0 el T
j=1 Pk Pk
where FEi,...,E,, are independent exponential random variables. We also have

E[Gn,/px] = ne/px, and Var [G,, /pr] = ni/p;. Consequently, we see that

P{Ln,m<r}§P{iTk>m}SIP{ZT>m}, (2.1)

k=1

where 7, 1= 22:1 G, /pk- Thus far, we have followed the same footsteps as the ones
in the proof of Theorem 1.3. To complete this proof, we need to define the set of the
initial survival bins Z,,, and the sequences p, and ny which are the main differences
between the two proofs. Observe that we have not used any thing yet about the

probabilities according to which the bins are selected.

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 64

Define the following sets: D, := {i : npn; < A}, Ap, = {i:6/2 <np,; < A}
and B, := {i: /2 < ng,; < A}. Clearly, for all i € A,, the probability that a ball
chooses the i-th bin as its first choice is at least §/(2n) and at most A/n. Similarly,
B,, represents the set of all bins that can be chosen by balls as their second choices
with probability of at least §/(2n) and at most A/n. Notice that by the assumption,
we have D ., pn; > 6. This yields that

5 Yt X pai < A A = A0

2 ?
€A 1€Dp—An

and hence, |Ay,| > an, where ot §/(2A —6) € (0,1). Similarly, |B,,| > an. There are

two cases.

The First Case: |4, N B,| > an/2

In this case, we define Z,, the set of the initial survival bins, to be the first | an/2 |
bins in A4, N B,. Recall that the load of any survival bin of the (k — 1)-th stage is
at least & — 1. Therefore, if the ¢-th ball chooses two survival bins of the (k — 1)-th
stage that have not survived the k-th stage yet (and there are at least ng_; — ng such
bins), then the ¢-th ball helps at least one bin to survive the k-th stage. Clearly, if
the i-th bin is a survival bin of the (k — 1)-th stage, then it must be also an initial
survival bin, i.e., 1 € Z,,. Hence, the probability that it is chosen by a ball as its first
choice (or alternatively, as its second choice) is at least §/(2n). Since the bins are

drawn independently, and nj < n,_1/2, then we have

2 2 9
P{A; | Hsr} > <M> > <%) < 99 <5nk—1> défpk‘
2n 4n T

Now assume n is sufficiently large, and define the integer sequence

Lan?’”"‘l /22”" J , fork>1,

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 65

where x > 1 is an integer to be picked later. Notice that ng is the number of
the initial survival bins, and if we define the lower bound we want to prove to be
r := [logylog,n — k — 1], we see that n, > 1, for n large enough. The integer x
helps us to satisfy the condition ny < ng-1/2, for all £ > 1, (and so it must be at

least 2), and to bound E[Z,], where Z, =), _, G, /px. Since for all k > 0,

an2k+s=1) a2n222(k+n)
e S g and m 2 —e—ae
we have
r 14 _T 14
nEn? 2 n 2'n m
E|Z = = — < <
[Z] P lpk 522%) — q2k+r T q§22 T 27

which is true if we set kK = 2 + max (0, [13 — logy(ad?a)]). Notice that
2, if a > 213 /(ad?);
2+ [13 — logy(ad®a)], otherwise.

Since n?_, > 2 8n(alog, n)?, we see that
r—1 &2

r 2 16
" ool n 2¥%nm
= E E Zy| < 7.
Var[Z:] 02 <6n,_1> B[Z] < (ad log, n)?

k:lpk klpk

Finally, by returning back to (2.1), and using Chebyshev’s inequality, we get

Var [Z,] 218 B
m/2E S atastog)~ o

P{L,m <7} <P{Z,-E[Z.] >m/2} <

which is true because a = 2(1/logn). This concludes the first case.

The Second Case: |4, NB,| <an/2

Since |A,| > an, then we have | A, — B,| = |A,| = | A, N B,| > an/2, and similarly,
|B, — Ay| > an/2. Let T, ; be the set of the first [[an/2] /2] bins in A, — B,, and
T2 be the set of the first [| an/2 | /2] bins in B, — A,. Define Z,, the set of the

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 66

initial survival bins, to be the union of the two disjoint sets Z,, ; and Z,, 2. Evidently,
|Z,| = | an/2]. For simplicity, let us color the bins in Z,, 1, and Z,, » with white and
red, respectively. Observe that if the ¢-th bin is white, the probability that the first
choice of a ball is the i-th bin is at least 6/(2n); and analogously, if the i-th bin is
red, the probability that the second choice of a ball is the i-th bin is also at least
§/(2n). Since at each stage we have two disjoint sets of survival bins, we require at
the k-th stage that exactly | ny/2 | white bins, and [nx/2] red bins survive the k-th
stage. The total number of survival bins of the k-th stage is still ny. The load of any
survival bin (white or red) of the (k — 1)-th stage is still at least k — 1. Let Sk n, /2]
be the survival time of the last survival white bin of the k-th stage. Similarly, let
S;,[nk/Z] be the survival time of the last survival red bin of the k-th stage. Thus, by
definition, Ty, which is the survival time of the last survival bin of the k-th stage, can

be written as

Tk = max(sk,Lnk/2J7 S;,fnk/ﬂ) < Sk,[nk/ﬂ + S]:,[nk/z] .

Let A; be the event that the t-th ball helps a white bin to survive the k-th stage;
and similarly, let A} be the event that the ¢-th ball helps a red bin to survive the
k-th stage. Obviously, if the first choice of the ¢-th ball is a white bin, the second
choice is a red bin, and both choices are survival bins of the (k — 1)-th stage that
have not survived the k-th stage yet, then the ball helps at least one bin to survive.
In fact, if one of the bins contains at least k balls, then the ball helps both bins to
survive the k-th stage. The worst-case is when both of the chosen bins have load
k —1; in this case, the white bin, for example, survives with probability 1/2, because
ties are broken randomly. Notice that the number of survival bins of the (k — 1)-th
stage that have not survived the k-th stage yet is at least | ng—1/2 | — | nx/2 | white

bins plus [ng-1/2] — [nk/2] red bins. Since ng < ng_1/2, and the bins are chosen

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 67

independently, thence

P{A|Hi} > %(5“"’“—1/22Jn‘tnk/ﬂ)> (5(("k—1/2;n—(nk/21)>

1 (S(Hk_l - nk) 2 1 (5nk_1 2 -9 6le_1 2
> (2 == = = Pk-
= 2 (8n >3\ Ton 2 n Pr

Similarly, P{A} | H;—1} > px. Therefore, following the same preliminary argument

we started with, we get that both Sy n,/2) and S, o, are stochastically smaller
than G|n./2)/Pk, and Gyn,/21/pk, respectively, and hence T, < Gp,/pe. Thus, the
probabilistic duality (2.1) still holds. Since the sequence py is equal to the one in the
first case, and the number of the initial survival bins ng is also the same, we can use
the same definition of the sequence ny as in (2.2). The proof now continues exactly

as in the previous case to obtain the same lower bound r with the same «. O

We are almost ready to prove the lower bound for the fixed density model. We
now show that the condition of Theorem 2.2 is satisfied in the fixed density model.
We write L;([0,1]) to denote the set of all integrable functions on [0, 1]. We say that
a sequences h, converges to h in L;([0,1]), where hy, h € L1([0, 1]), to mean that for

any Borel set A C [0, 1], we have

lim /A|hn(x) — h(z)| dz=0.

n-—>00

We say that a sequence h, converges to h for almost all z € [0, 1] (or almost every-
where on [0, 1]) to mean that |h,(z) — h(z)| -0, for all z € [0, 1], except possibly
on a set of Lebesgue measure zero. Now we recall the following theorems. For proofs,
or more exposure on Lebesgue measure theory and real integration, we recommend
[85, 156, 175] and [43, Ch. 2].

Theorem 2.3 (Lebesgue Density Theorem). Let h be a density on [0,1]. Then

for almost all z € [0, 1],

r—07r

1
lim © / Ih(y) — h(z)| dy =0,
B(z,r)

CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 68

where B(z,r) is a ball centered at x of Lebesgue measure .

Theorem 2.4 (Scheffé). If h, is a sequence of densities on [0,1] that converges

almost everywhere to a density h on [0,1], then h, converges to h in Ly([0,1]).
The general lower bounds stated in Theorem 2.1 follow easily:

Corollary 2.1. Suppose that algorithm NONUNIFORM-GREEDYMC(n,m), where
n,m € N, is applied in the fized density model where the hash functions f and g
behave according to fized densities hy and hy over [0, 1], respectively. Let Ly, be the

mazimum bin load upon termination. There exists a constant ¢ > 0 such that w.h.p.,
Ly m > logylogy,n — max (0, [13 — logy(car) |) — 3.
Proof. Choose constants § € (0,1), and A > 1 such that

/ hg(z) dr > d, and / hy(z) dz > 6.
hp<\ hg<A
Notice that these constants depend solely on h; and hy, as

lim hi(z) de = lim h,(z) de =1.

A—o00 hy<A f() A—r00 he<A g()
Recall <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>