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Abstract 

Two-way chaining is a novel hashing scheme that uses two independent truly uniform 

hash functions f and g to insert m keys into a hash table with n chains, where each 

key x is inserted into the short est chain among the chains f(x) and g(x), breaking ties 

randomly. It is known [13, 18] that the worst-case search time of two-way chaining 

is log210g n + m/n + 0(1), asymptotically almost surely. In this thesis, we study the 

two-way chaining paradigm under different assumptions. 

First, we generalize the result to nonuniform hash functions. We analyze two-way 

chaining in the fixed density model where the two independent hash functions behave 

according to two densities defined on the unit interval. When m = O(n), we prove 

that asymptotically almost surely, the worst-case search time is at least log210g n -

0(1). If, in addition, the densities are bounded, then it is at most log210gn+0(m/n). 

Secondly, we consider the off-li ne version of two-way chaining where all the hashing 

values available for the m keys are known in advance. For constant kEN, we show 

that there is a threshold Ck such that if m :::; Ckn, then one can assign the keys to the 

chains so that the maximum se arch time is at most 2k, asymptotically almost surely. 

We tightly estimate Ck, and prove that it is, in fact, asymptotic to k. Algorithms for 

finding such assignments are also given. 

Thirdly, we utilize the two-way chaining paradigm to design efficient open ad­

dressing hashing schemes. We study two-way linear probing algorithms. These are 
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algorithms that employ two independent linear probe sequences to hash the keys. 

We prove an O(loglogn) universallower bound on the worst-case search time of any 

two-way linear probing algorithm, where n is the hash table size. We show, however, 

that sorne simple two-way linear probing algorithms, unexpectedly, have implausible 

worst-case performances. Subsequently, we present several efficient two-way linear 

probing algorithms whose performance matches the lower bound. Simulations back 

up the theoretical results. 
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Résumé 

L'enchaînement à deux choix est une méthode de hachage qui emploie deux fonctions 

uniformes indépendantes f et 9 pour insérer m clefs dans une table avec n chaînes, 

où chaque clef x est insérée dans la chaîne la pl us courte parmi les chaînes f (x) et 

g(x). On sait que le maximum des temps de recherche est log21ogn + m/n + 0(1), 

asymptotiquement presque sûrement. Dans cette thèse, nous étudions le paradigme 

d'enchaînement à deux choix dans différents contextes. 

D'abord, nous généralisons le résultat aux fonctions de hachage non-uniformes. 

Nous analysons l'enchaînement à deux choix dans le modèle de densité où les deux 

fonctions de hachage se comportent selon deux densités définies sur l'intervalle d'unité. 

Quand m = O(n), nous prouvent cela asymptotiquement presque sûrement, le temps 

maximal de recherche est au moins log21ogn - 0(1). Si, en outre, les densités sont 

bornées, alors il est tout au plus log21ogn + O(m/n). 

En second lieu, nous considérons la version off-line où toutes les valeurs de hachage 

pour les m clefs sont connues à l'avance. Pour la constante kEN, nous prouvons 

qu'il y a un seuil Ck tel que si m :::; Ckn, on peut assigner les clefs aux chaînes de sorte 

que le temps maximum de recherche soit tout au plus 2k, asymptotiquement presque 

sûrement. Nous estimons Ck, et montrons qu'il est, en fait, asymptotique à k. Des 

algorithmes efficaces sont donnés. 

Troisièmement, nous utilisons le paradigme d'enchaînement à deux choix pour 
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concevoir des algorithmes de hachage du type "open addressing". Nous proposons 

des algorithmes linéaires à deux choix. Ce sont des algorithmes qui utilisent deux 

recherches linéaires à partir de deux fonctions de hachage indépendantes. Nous prou­

vons une limite inférieure en universelle de D(1og log n) pour le temps maximum de 

recherche de n'importe quel algorithme de hachage linéaire à deux choix, où n est la 

taille de la table. Nous montrons, cependant, que quelques algorithmes de hachage 

linéaires à deux choix simples, inopinément, avons des exécutions des cas les pires 

décevantes. Nous présentons deux algorithmes de hachage linéaires à deux choix effi­

caces dont la performance est optimale en n. Des résultats de simulation confirment 

les propriétés théoriques. 

v 



Acknow ledgements 

And surely your Lord is full of 

bounty for mankind, but most of 

them do not give thanks. And 

verily your Lord knows what their 

hearts hide, and what they reveal. 

THE NOBLE QUR'AN, (27: 73-74) 

Writing this acknowledgement is one of the joyful moments that l have dreamed of, 

countless times, during the last years. The praise is for Allah, the most merciful, 

the most compassionate, for blessing me beyond deserving with the support of many 

people who have had a profound impact on my life. A word of thank you to these 

people is certainly not enough. 

Referring to the humongous difficulty of teaching me, and the heavy responsibility 

ahead of him, my supervisor once said to me: "1 used to have only two daughters, 

and now, l have a new son!" From the time of accepting to be my supervisor to 

this wonderful moment, Luc Devroye has never stopped guiding me in the right 

direction. His continuous and monotonically increasing help goes beyond definition. 

His valuable advice, suggestions, and corrections improved this work dramatically. 

1ndeed, every beautiful ide a in this thesis was originally conceived in his mind. l am 

deeply indebted for his warm kindness, infinite patience, and absolute generosity. It 

is my pleasure to express my sincere gratitude to him. Luc, it is an honor to be your 

student. 

Appreciations must be expressed to the friendly colleagues and professors of the 

School of Computer Science for the warm congenial atmosphere. Particular thanks 

are due to Ketan Dalal for his help in improving the simulation programs. 

l would like also to take this opportunity to declare my indebtedness to the in-

VI 



credible people who played a pivotaI role in my life. l am most indebted to the man 

who showed me the beauty of pure thinking, to my favorite mathematician, Roshdi 

Khalil: you are always an inspiration. To the friends who encouraged and supported 

me when l needed them. Every single member of my family, to whom l dedicate this 

thesis, deserves a thank you for believing in me. My deepest gratitude goes out to 

my dear brother Abu Hussain, and my beloved sister Om Hassan. At the top are my 

mom and dad who always believe that l can ft y! 

Montreal) March 2004 E.M. 

vii 



Contents 

Abstract 

Résumé 

Acknow ledgments 

Introduction 

o Preliminaries 

0.1 

0.2 

0.3 

Basic Notations 

Probabilistic Inequalities 

Allocation Pro cesses .. 

0.3.1 Classical Allocation Processes 

0.3.2 Multiple-choice Allocation Processes 

0.4 Hashing Assumptions ............ . 

1 Hashing with Separate Chaining 

1 U niform Two-way Chaining 

1.1 History and Motivation. 

1.2 Two-way Chaining ... 

Vlll 

ii 

IV 

vi 

1 

Il 

11 

12 

18 

20 

21 

27 

31 

33 

33 

37 



CONTENTS lX 

1.3 The Lower Bound . 42 

1.4 The Upper Bound . 46 

2 Nonuniform Two-way Chaining 55 

2.1 Motivation. . . . . . . . . 55 

2.2 The Fixed Density Model 57 

2.3 Lower Bounds . 61 

2.4 Upper Bounds . 70 

2.4.1 Bounded Densities 70 

2.4.2 Unbounded Densities 81 

3 Orientation and Off-line Two-way Chaining 88 

3.1 Motivation. . 88 

3.2 k-orientability 91 

3.3 Useful Characterization . 96 

3.4 Upper Bounds . 102 

3.5 Lower Bounds . 104 

3.5.1 Tight Asymptotic Estimations . 107 

3.5.2 Further Improvements ..... 119 

4 Speedups and Trade-offs 129 

4.1 Increasing the Choices 131 

4.2 Hashing with Balanced Trees 134 

4.3 Partially Off-line Processes .. 136 

4.4 Pro cesses with Load Thresholds 142 



CONTENTS 

II Hashing with Open Addressing 

5 Two-way Linear Probing: the Naked Idea 

5.1 History and Motivation. 

5.2 Two-way Linear Probing 

5.3 Universal Lower Bound . 

5.4 Life is not Always Good! 

6 New Paradigms for Two-way Linear Probing 

6.1 Two-way Locally-linear Probing 

6.2 Two-way Pre-linear Probing . 

6.3 Two-way Post-linear Probing 

6.4 Other Variants .. 

6.5 Simulation Results 

Conclusion and Future Work 

Appendix: Finishing the Proof of Theorem 3.4 

List of Algorithms 

Index of Notation 

Bibliography 

x 

146 

148 

149 

153 

156 

157 

165 

166 

168 

171 

180 

183 

187 

191 

199 

200 

202 



Introduction 

Since its invention in the middle of the last century, hashing has never been more 

appealing than today. Its presence in many branches of computer science has mo­

tivated many researchers to find new creative ways for improving its performance. 

While the average performance of hashing is clearly a crucial factor in practice, its 

worst-case performance cannot be ignored. The last decade has witnessed the birth 

of new hashing schemes that advance the worst-case performance of hashing to a 

plausible level. This thesis is a humble step on the same road focusing only on the 

worst-case performance of hashing. 

A classical hash table implementation [103, 80, 169] uses one hash function f to 

insert m distinct input keys that come from a finite universe set of keys U into a table 

of size n. The hash table is a one-dimensional array with n ce Us which we denote, 

throughout, by the set T := {O, ... , n - 1}. The ratio Œ := min is caUed the load 

factor of the hash table. In an ideal situation, the hash function f would be perfect, 

that is, an injective function. A key x, then, is hashed to the cell f(x). Throughout, 

we define the insertion and search times to be the number of probes (table accesses) 

needed to insert or locate a key, respectively, plus the time required to compute the 

hashing addresses. For simplicity, we ignore, throughout, the evaluation time of the 

hash functions. 

Many techniques have been developed to derive perfect hash functions. However, 

1 



INTRODUCTION 2 

aIl of them, understandably, are off-line techniques, that is, they require prior knowl­

edge of the input keys. UsuaIly, they work only with static hash tables which means 

that the keys are not aIlowed to be updated. Alternatively, the hash function f can 

be chosen uniformly at random from the set of aIl possible functions that map U into 

T. In this case, we say that the hash function f is truly uniform as its hashing values 

are independent and uniformly distributed over the hash table. The function also is 

independent of the input keys. However, the birthday paradox [66J reveals that when 

m = w(vn), then with high probability (that is, with probability goes to one as n 

goes to in finit y ), there are two keys that will be mapped to the same cell. That is, a 

collision will occur. Several collision resolutions have been devised. Among these are 

separate chaining and open addressing. For a historical background of these methods 

and others see [103, 121J. 

Hashing with Separate Chaining 

Collisions can be resolved by allowing each cell in the hash table to have a separate 

linked list or chain. Keys that hash to a certain cell are inserted into the chain pointed 

to by the cell. 

Classical U niform Chaining 

Classically, a truly-uniform hash function f is used to insert m keys sequentially 

into a table with n chains, where each key x is appended to the chain f(x). The 

insertion time is constant, and the search time of any key x is at most the length of 

the chain f(x), where the length of a chain is defined to be the number of keys the 

chain contains. The average chain length Œ [103, 80, 169J is bounded if Œ can be kept 

bounded. This is not the case with the maximum search time which is proportional 

to the longest chain length. Gonnet [79J showed that for constant load factor, the 



INTRODUCTION 3 

maximum chain length is asymptotic to log ni log log n, in probability. This fact has 

been proved earlier in terms of balls and bins, see [99, 105]. Other proofs appeared 

more recently in [130, 153]. 

Two-way U niform Chaining 

Azar, Broder, Karlin and Upfal [13] suggested a new hashing scheme called two-way 

chaining. Two independent and truly-uniform hash functions f and gare used to 

hash the keys sequentially. Each key x is inserted into the shortest chain among 

the chains f (x) and 9 (x), breaking ties randomly. Assuming that we save wi th each 

chain its length, the insertion time is still constant. To search for any key x, we check 

both chains f(x) and g(x). Thus, the average search time is not more than twice the 

average search time of classical uniform hashing with chaining explained above. The 

maximum se arch time is at most twice the length of the longest chain. However, Azar 

et al. [13] proved that when the load factor Œ is constant, the longest chain length 

decreases dramatically to log2logn ± 8(1), with high probability. 

The two-way chaining paradigm has provoked an avalanche of research [18, 24, 39, 

114, 134, 170, 177]. The hashing scheme has several advantages over other proposed 

methods that lead to plausible worst-case performance like the ones in [74, 23, 50]. 

It uses only two hash functions, it is easy to parallelize, it does not involve rehashing 

of data, and it is on-line and suit able for dynamic hashing. 

N onuniform Chaining 

Truly uniform hash functions tend to distribute the keys evenly over the hash table; 

and hence, if U is an ordered set, these functions are, most likely, not order-preserving. 

Uniform order-preserving hash functions can be designed if the key statistics are 

known priori [155, 76]. If the order-preserving hash function is independent of the 
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key distribution, the hashed values are typically nonuniformly distributed over the 

hash table, see, e.g., [82J and [41, p. 2J. Order-preserving functions are helpful for 

operations that require sorted or nearly sorted keys like range search and finding the 

k-nearest neighbors; see [42J for such applications. Lately, there has been growing 

interest in locally-sensitive hash functions [112, 91, 77, 25, 160J. These functions are 

sensitive to the similarity of the keys: they map keys that are similar to close chains. 

Evidently, the image of a locally-sensitive function also has a possibly nonuniform 

distribution. All of this underlines the importance of studying the performance of 

hashing schemes with nonuniform hash functions. 

The worst case performance of classical chaining with nonuniform distributions 

was studied by Devroye [41J. He represented the hash table by the unit interval 

[0,1 J partitioned into n equal-sized subintervals. The hashing locations of the keys, 

say YI, ... , Ym , are assumed to be independent and have a common density function 

h over [O,IJ. The t-th key is hashed to the i-th chain, if yt belongs to the i-th 

subinterval. For constant load factor and bounded density h, he showed that the 

expected maximum chain length is still asymptotic to log ni log log n. A tight upper 

bound is also given for unbounded densities. This leads us to study under which 

circumstances the bounds proved for two-way uniform chaining remain valid with 

nonuniform hash functions. 

Off-Hne and Static Uniform Chaining 

In the off-line version of two-way uniform chaining, the choices of hashing addresses 

available for all keys, where each key has two choices, are known in advance, before 

the insertion pro cess starts. One can ask, then, if it is possible to assign each key to 

one of its two hashing addresses in a way that minimizes the length of the longest 

chain. Notice that the hashing choices are still independent and uniformly distributed 
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as they are the images of truly uniform hash functions. The problem is useful for 

constructing efficient static hashing schemes, and giving insight into the competitive 

analysis of two-way chaining where the performance of the on-hne version is compared 

to its off-hne correspondent. Czumaj and Stemann [39] studied the problem, and 

proved that if m ~ 1.67545943 ... x n, then with high probabihty there exists an 

assignment for the keys such that the maximum chain length is at most two. But can 

we improve the bound on m? What about higher maximum chain lengths? Let mk, 

for k ~ 2, be the maximum m such that there is an assignment where the maximum 

chain length is at most k, with high probability? Czumaj and Stemann's analysis 

implies that 2mk ~ k + Jk log k + D(log k), for k large enough. But can we do better? 

It is a question we shaH address. 

Thesis Contributions: Part 1 

The thesis is divided into two parts. The unifying theme of the thesis is the worst­

case performance of two-way hashing methods using chaining and open addressing. 

The first part of the thesis is devoted to our contributions in two-way chaining. 

Chapter 1: We give a new proof of the lower bound on the length of the longest 

chain produced by the on-line two-way uniform chaining algorithm, and we simplify 

the so called witness tree method (used in [170]) to prove the upper bound. 

Chapter 2: We analyze the worst-case performance of on-line two-way chaining 

with independent nonuniform hash functions, f and g. Our analysis is based on the 

following fixed density model. We assume that the hash functions f and 9 map U 

to the unit interval [0, 1] which is partitioned into n equal-sized subintervals where 

each subinterval represent a chain. AU hashing locations are independent, and for 

each key x, the values f(x) and g(x) behave according to independent fixed densities 
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hf and hg, respectively, over [0,1]. We prove that when m keys are inserted into 

n chains using this model, where m/n is constant, the maximum chain length is at 

least log2logn - 8(1), with high probability; and if the densities are bounded by 

sorne constants, then it is at most log2logn + 8(1), with high probability. Upper 

bounds for unbounded densities with sorne conditions are also studied. Bounds for 

other cases such as the heavily- and lightly-loaded cases, or the dynamic case are also 

glven. 

Chapter 3: We extend the results in the literature for off-line two-way uniform 

chaining. We reduce the assignment problem to an orientation problem in a ran­

dom graph with n vertices (chains) and m edges (keys). We show that there is an 

assignment for the keys where the maximum chain length is at most k, for k ~ 2, 

if and only if the random graph is k-orientable, that is, if there exists an orienta­

tion of the edges such that the maximum out-degree is at most k. The problem 

now is to estimate the maximum number of edges (keys) mk such that the random 

graph is k-orientable, with high probability. We give another proof for a character­

ization by Frank and Gyarfas [73] that any graph is k-orientable if and only if the 

number of edges of any subgraph is at most k times the number of its vertices. We 

use this fact to approximate mk for small k, and we show that for k large enough, 

1 - 2k exp( -k + 1 + e-k/4) < mk/(kn) < 1 - exp (-2k (1 - e-2k )). Algorithms for 

finding a k-orientation are also presented. 

Chapter 4: Finally, we discuss sorne of the speedups of two-way chaining, and 

the trade-offs between the number of hashing choices for each key, the search and 

insertion times, and the memory size. 
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Hashing with Open Addressing 

Another method for resolving collisions is open addressing. The hash table does not 

have chains, and each cell can harbor at most one key. However, each key x has an 

infinite probe sequence fi(X) E T, for i E N which it follows sequentially until an 

empty cell is found where a key is inserted. The probe sequence is combined with a 

replacement strategy. During the insertion process, if a key x initiates the i-th probe 

and arrives at the cell fi(X) that is already occupied by another previously inserted 

key y, i.e., fi (x) = fj (y), for sorne j E N, then a replacement strategy is used to 

resolve the collision. The strategy could be one of the fo11owing: 

1. FIRST COME FIRST SERVED (FCFS) [147]: The key y is kept in its ce 11 , and 

the key x is referred to the next cell fi+l (x). 

2. LAST COME FIRST SERVED (LCFS) [151]: The key x is inserted into the ce11 

fi(X), and the key y is pushed along to the next cell in its probe sequence, 

fj+l(Y)· 

3. ROBIN HOOD [29, 28]: The key which trave11ed the furthest is inserted into 

the cell. That is, if i > j, then the key x is inserted into the cell fi (x), and the 

key y is pushed along to the next ce11 fj+l (y); otherwise, y is kept in its ce11, 

and the key x tries its next ce11 fi+l (x). 

There are many types of probe sequences, but the commonly used on es are: 

1. RANDOM PROBING [136]: For every key x, the infinite sequence fi(X) is as­

sumed to be independent and uniformly distributed over T. That is, we require 

to have an infinite sequence fi of truly uniform and independent hash functions. 

If for each key x, the first n probes of the sequence fi(x) are distinct, i.e., it is 

a random permutation, then it is ca11ed uniform probing [147]. 
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2. LINEAR PROBING [147J: For every key x, the first probe fI (x) is assumed to be 

uniform on T, and the next probes are defined by fi+l(X) = fi(X) + 1 mod n, 

for i = 1, ... ,n. 80 we only require fI to be a truly uniform hash function. 

Random and uniform probings are, in sorne sense, the idealized models [164, 178], 

and their plausible performances are among the easiest to analyze; but obviously they 

are unrealistic. Linear probing is perhaps the simplest to implement, but it behaves 

poorly when the table is almost full. 

Classical Open Addressing 

In classical open addressing hashing, m keys are inserted, on-line and sequentiaIly, 

into a table of size n by using only one probe sequence with a common replacement 

strategy. When we search for a key x, we have to follow the probe sequence fi(X) 

sequentially until the key is found or an empty cell in the case of unsuccessful search. 

The load factor 0: E (0, 1) is assumed to be a constant. The asym ptotic average-case 

performance has been extensively analyzed for different types of probe sequences 

[103, 80, 169J. The expected search times were proven to be constants, more or 

less, depending on 0: only. We focus, however, on the worst-case search time which 

is proportional to the length of the longest probe sequence over aIl keys (LLPS, for 

short). 

Pittel [149J proved that in linear probing with FCFS policy, the LLPS needed to 

insert (or se arch for) any key is asymptotic to (0: - 1 -logo:)-llogn, in probability. 

Gonnet [79J proved that with uniform probing and FCFS replacement strategy, the 

expected LLPS is asymptotic to 10gl/a n - logl/a IOgl/o: n + 0(1). However, Poblete 

and Munro [151, 152J showed that if random probing is combined with LCFS policy, 

then the expected LLPS is at most (1 + o(1))r- 1(o:n) = O(logn/ loglogn), where r 

is the gamma function. 
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On the other hand, the ROBIN ROOD strategy with random probing leads to a 

more striking performance. Celis [28] first proved that the expected LLPS is 0 (log n). 

However, Devroye, Morin and Viola [45] tightened the bounds and revealed that the 

LLPS is indeed log2log n ± 8(1), w.h.p., thus achieving double logarithmic worst-case 

insertion and search times for the first time in classical open addressing hashing. U n­

fortunately, one cannot ignore the unrealistic assumption in random probing about 

the availability of an infinite collection of independent and truly uniform hash func­

tions. On the other side of the spectrum, it is known [147, 103] that the LLPS in linear 

probing, which is more realistic, is independent of the replacement strategy, because 

the insertion of any order of the keys results in the same set of occupied cells. This 

emphasizes the need for inventing nonclassicallinear probing schemes. 

Thesis Contributions: Part II 

Our chief objective in the second part of this thesis is to design on-line linear probing 

schemes that achieve double logarithmic worst-case performance. This is do ne by 

exploiting the idea behind the two-way chaining paradigm. We promote the concept 

of two-way linear probing. These are hashing algorithms that initiate for each key two 

independent linear probe sequences with FCFS policy to find two empty cells where 

the key is inserted into one of them according to sorne strategy. For example, one of 

the trivial strategies inserts each key into the empty cell found by the shortest probe 

sequence. Another simple strategy inserts each key into the empty cell adjacent to 

the smallest cluster, where a cluster is an isolated set of consecutively occupied cells. 

Chapter 5: We prove an O(log log n) universallower bound on the performance of 

any strategy that uses two linear probe sequences, even if the starting points of these 

sequences are chosen according to arbitrary probability distributions. Furthermore, 
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we demonstrate that not every two-way linear probing algorithm behaves nicely. We 

show, for instance, that wh en any of the above two strategies is used to construct 

a hash table with constant load factor, the maximum unsuccessful se arch time is 

O(logn/loglogn), with high probability. 

Chapter 6: We introduce, subsequently, two on-line two-way linear probing algo­

rithms that accomplish 8(log log n) worst-case unsuccessful search time, with high 

probability. Simulation results that support the analysis of these algorithms are also 

presented. We study the performance of off-line two-way open addressing. 

Say: bring your praof, if you are truthful. 

THE NOBLE QUR'AN, (2: 111), (27: 64) 



Chapter 0 

Preliminaries 

In this chapter we define sorne of the notations and recaU sorne useful results from 

probability theory and analysis of algorithms. 

0.1 Basic Notations 

Throughout, we use IR and N to denote the conventional sets of real numbers, and 

positive integers, respectively. For n E N, we write [n] to denote the set {l, ... ,n}. 

We use log for the natural logarithm. 

Asymptotics 

We will often use the foUowing standard asymptotic notations to describe the relative 

order of magnitude between two sequences X n and Yn defined on N. For simplicity, 

we assume that X n and Yn are nonnegative for aIl sufficiently large n. We write 

X n = O(Yn), or equivalently, Yn = n(xn) to mean that there is a constant C > 0 

such that X n :::; CYn, for aU n large enough. If X n = O(Yn) and Xn = n(Yn), we 

write X n = 8(Yn). We write X n ~ x to mean that X n converges to x, as n goes to 

infinity. The statement "xn/ Yn ~ 0" can be rewritten alternatively as X n = o(Yn), 

11 
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Yn = w(xn), Xn « Yn, or Yn »xn· We also write X n rv Yn to rnean that X n IS 

asyrnptotic to Yn, that is, xn/Yn ~ 1. 

Probability 

We write lP {A} for the probability rneasure of an event A, and lP {AIB} for the 

conditional probability of event A given that event B is true. AlI the randorn variables 

we deal with in this thesis are real-valued rneasurable functions defined on sorne 

probability space. The expected value and the variance of a randorn variable X are 

denoted by E [X J and Var [X], respectively. The covariance of two randorn variables 

X and Y is denoted by COy [X, Y J. We denote by TI[A] the indicator function of 

the event A which is 1 if A occurs, and ° otherwise. For any randorn variables X and 

Y, we write X f=. Y to mean that X is distributed as Y, that is, X is equal to Y in 

law, or lP{X ;:::: t} = lP{Y;:::: t}, for any t E IR. 

We say that a sequence of events An occurs with high probability (abbreviated 

w.h.p.), or equivalently, it is true asymptoticaIly almost surely (abbreviated a.a.s.) if 

and only if lP{An} ~ 1. Let X 1,X2 , ... , and X be any random variables. We say 

that X n converges in probability to X, as n goes to infinity, if and only if for any 

constant E > 0, we have 

lim lP{IXn - XI> E} = O. 
n-too 

We say that X n is asymptotic to an in probability, where an is a real-valued sequence, 

if Xn/ an converges to 1 in probability. 

0.2 Probabilistic Inequalities 

Probabilistic analysis of algorithms is largely about bounding probabilities, especially 

those of large deviations. Most of the following probabilistic inequalities can be found 
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in any classical probability-oriented textbook, e.g., [7, 97, 137]. See also [100, 116, 

123]. 

Perhaps the simplest probability tail inequality is the one implied by the definition 

of expectation of any nonnegative random variable X which is 

E [X] = 100 

lP {X ~ x} dx ~ lP {X ~ 1} . 

This leads to Markov's inequality: for any random variable X, and t > 0, we have 

Thus, if j is a nonnegative nondecreasing function defined on IR, then for any random 

variable X, and t E IR, 

Ifwe choose j(x) = x2
, we obtain Chebyshev's inequality: for any random variable 

X with bounded mean, and t > 0, 

These bounds are in many cases insufficient. Sharp concentration inequalities can 

be obtained for random variables that can expressed as functions of independent or 

almost independent random variables (see below). 

Binomial Inequalities 

The binomial random variable Bin(n,p), where nE M, and p E [0,1], has the following 

distribution: 

lP{Bin(n,p) = k} = (Z)pk(l- pt-k, for k E {O, ... ,n} . 
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Such a random variable can be represented as a sum of n independent binary random 

variables (or coin fEps) where the probability of having 1 is p. The binomial distri­

bution is concentrated around its mean np, i.e., the probability that it deviates from 

its mean is very small. The foHowing lemma bounds the upper tail probabilities. 

Lemma 0.1 (Okamoto [139]). For p E (0,1), and n, t E N, let j3 := tin, and 

suppose that n > t > np > O. Then 

lP'{Bin(n,p) 2 t} < Y(j3,pt def 

< (e~nr e-pn 

< (e~nr 

( ( I
l _- ~) 1-{3 (E) (3) n (1) 

(2) 

(3) 

Observe that if t Enp, for sorne constant E > 1, then inequality (2) can be 

written as 

lP'{Bin(n,p) 2 mp} :S exp (-(dogE - E + l)np) , (4) 

which is known as Angluin- Valiant's inequality [11]. AH of the above bounds 

are tight up to a factor of e(1/vIn), that is, lP'{Bin(n,p) 2 t} = anY(j3,p)n, where 

an = 8(1/ vin). Analogous inequalities hold also for the lower binomial tails, but 

we shaH not need them here. The binomial bounds have been implicitly established 

earlier by Chernoff [31], and were later extended to sums of bounded random variables 

[16, 11, 88, 93]. 

The foHowing lemma establishes lower bounds on the upper tail probabilities. 

Lemma 0.2. Let n, mEN such that min ~ 0:, for sorne constant 0: E (0,1). Let 

p = c/n, for sorne constant c > O. Then for tE [m -1], and n large enough, we have 

(
co:)t e-CQ 

lP' {Bin(m,p) 2 t} 2 2t -2-' 
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Proof. Since (1 - l/n)t ~ 1 - tin, then for n large enough, we have 

(
n) 1 n (n - 1) (1 - 1/ n ) t (n - 1) 1 
t nt ~ n - t t (n - l)t ~ t (n - l)t . 

By repeating this step, we get (~)n-t ~ G)C t = ct. Observe that (1- c/n)n ~ e-c . 

Therefore, for n large enough, 

JP> {Bin(n,p) ~ t} > JP> {Bin(n, c/n) ~ t} 

> (~) G~r (1- ~)n ~ e;c (~r 
Since min ~ a, then for n large enough, p ~ ca/(2m). Hence, applying the above 

inequality, we get 

e-
CŒ 

(ca)t 
JP> {Bin(m,p) ~ t} ~ -2- Tt: 

o 

Functions with Bounded Differences 

The following lemma is useful for bounding complicated random variables that can 

be written as "ni ce" functions of independent random variables. 

Lemma 0.3 (McDiarmid [122]). Let Xl,"" X n be independent random variables 

taking values in a set A, and let f be any real-valued measurable function defined on 

the set An. Suppose that for each i E [n], there exists Ci > 0 such that 

sup If(XI,.'" x n) - f(XI, ... , Xi-l, Xi, Xi+l,"" xn)1 :::; Ci, 
Xl, ... ,Xn ,XiEA 

i. e., the function f has bounded differences. Then for any t ~ 0) we have 

and similarly, 



CHAPTER O. PRELIMINARIES 16 

Notice that the lemma does not require identical distributions for the X/s. Weaker 

versions of the lemma for not-totally independent random variables have been also 

established, see e.g., [122, 123, 116]. 

Negative Association 

The definition ofconditional probability says that lP'{AnB} = lP'{AIB}lP'{B}, for 

any event A and B. Thus, by induction, we see that for any events Al,' .. ,An, 

This inequality is useful for studying the maximum value over a set of random values. 

Plainly, if Xl, ... , X n are random variables, then 

lP'{Xl :S t, ... ,Xn :S t} 

lP'{Xl :S t 1 X 2 :S t,,,. ,Xn:S t}" ·lP'{Xn :S t} . 

Computing the exact probabilities lP' {Xi :S t 1 Xi+l :S t, ... ,Xn :S t} is usually hard. 

However, the probabilities can be bounded from above by lP' {Xi :S t}, if the random 

variables are negatively associated, which means that when sorne of these variables 

are known to be small, the others are highly unlikely to be small too. The negative 

association, which is sometimes called negative dependence or correlation, is studied 

by many researchers, e.g., [56, 57, 63, 68, 98, 111]: 

Definition 0.1. Any nonnegative random variables Xl, ... ,Xn are said to be nega­

tively associated, if for every disjoint index subsets I, J ç ln], and for any functions 

f : lRl Il ---t lR, and 9 : lRlJl ---t lR that are both non-decreasing or both non-increasing 

(componentwise), we have Cov[f(Xi,i E I), g(Xj,j E J)]:S 0, that is, 
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Once we establish that Xl, ... ,Xn are negatively associated, it follows, by consid-

ering inductively the indicator functions, that for any nonnegative nurnbers il, ... , in, 

n 

< II IP' {Xi:::; ii} , 
i=l 

and sirnilarly, 
n 

IP'{XI ~ il,'" ,Xn ~ in} :::; IIIP'{Xi ~ ii} , 
i=l 

The next lernrnas provide sorne tools for proving the negative association. For proofs 

see [63, 98, 57]. 

Lemma 0.4 (Zero-One Lemma). Any binary random variables Xl,"" X n whose 

sum is one are negatively associated. 

Lemma 0.5. If {Xl"'" Xn} and {YI," ., Ym} are independent sets of negatively 

associated random variables, then the union {Xl"'" X n, YI,.'" Ym} is a set of neg-

atively associated random variables. 

Lemma 0.6. Suppose that Xl, ... ,Xn are negatively associated. Let Il, ... ,h ç [n] 

be disjoint index subsets, for some positive integer k. For j E [k L let hj : ]RI Ij 1 ---t ]R be 

non-decreasing functions, and define Zj = hj(Xi , i E Ij). Then the random variables 

Zl, ... ,Zk are negatively associated. In other words, non-decreasing functions of dis-

joint subsets of negatively associated random variables are also negatively associated. 

The same holds if hj are non-increasing functions. 

As an example of negative association we consider the multinornial distribution. 

Let Xl,"" X m be independent randorn nurnbers chosen from [n] with a cornmon 

probability distribution, that is, lP' {Xj = i} = Pi, for aIl j E lm], and i E ln], where 

Pl + ... + Pn = 1. For i E ln], let Ni be the nurnber of times the nurnber i is chosen, 
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i.e., Ni = L:..7=1 TI[Xj=i]. The vector N = (NI, ... , Nn ) is said to have the multinomial 

distribution with parameters m and (Pl,'" ,Pn): for kl , ... , kn E lm], 

{ ( )} 
m! kl k n lP N = k l , ... , kn = k

l
! ... k

n
! Pl ... Pn , 

if kl + ... + kn = m, and it is zero, otherwise. The random variables NI, ... ,Nn are 

binomiaIly distributed (Ni C Bin(m,pi), for aIl i E ln]), but they are not independent. 

They are, however, negatively associated. This can be seen by applying Lemma 0.4 

to each set of the random variables {TI[Xl=i]"'" TI[Xm=i] }, for aIl i E ln], and then 

using Lemmas 0.5 and 0.6. This leads to Mallows' inequalities [120]: 
n 

lP{NI ~ tl, ... ,Nn ~ tn} < ITlP{Ni ~ tn}, and 
i=l 

n 

lP{NI ~ tl, ... ,Nn ~ tn} ~ ITlP{Ni ~ tn}. 
i=l 

Remark 0.1. Sometimes the negative association of random variables can only be 

proven if a certain event A is true. Generally, we say that the non-negative random 

variables Xl, ... ,Xn are negatively associated when conditioned on an event A, if 

E[f(Xi,i E I)g(Xj,j E J) lA] ~ E[f(Xi,i E I) lA] E[g(Xj,j E J) lA]. 

for every disjoint index subsets I, J ç ln], and for any functions f : ffi.l II -+ IR, and 

9 : IRIJI -+ IR that are both non-decreasing or both non-increasing (componentwise). 

One can easily verify that the proofs of Lemmas 0.4, 0.5, and 0.6 are still true when 

considered with conditioning on some event A. For example, if whenever an event A 

is true, Xl,"" X n are binary random variables whose sum is one, then the binary 

random variables are negatively associated when conditioned on A. 

0.3 Allocation Processes 

Allocating balls into bins is one of the historical assignment problems [99, 105]. For­

mally the problem is defined as follows. We are given m balls that have to be placed 
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sequentially into n distinct bins, where each bin can hold an unlimited number of 

balls. The load of a bin is defined to be the number of balls it contains. The aim 

is to design an efficient allocation pro cess that achieves a load distribution on the 

bins as uniformly as possible. Throughout, we say that an allocation pro cess is on­

line, if each baIl is assigned upon arrivaI without knowing anything about the future 

balls. If the pro cess waits until aIl the m balls arrive, and considers aIl the available 

information about the balls before it places them, then we say that the allocation is 

otf-line. 

Remark 0.2. Throughout the thesis, any allocation pro cess is considered to be off­

line if and only if we mention that explicitly, otherwise it is assumed to be on-line. 

The balls-and-bins problem is very useful for modelling many applications in 

computer science such as load balancing, dynamic resource allocation, circuit routing, 

IP address lookups, and of course hashing. The balls may represent keys, tasks, 

jobs, users or processes, while the bins may be chains, servers, printers, machines, or 

processors. For example, in the context of PRAM simulation on distributed memory 

machines (DMM), we have m processors sharing a memory of PRAM machine that 

we want to simulate on a DMM machine with n processors and a memory partitioned 

into n modules, one module per processor. Distributing m balls into n bins means 

mapping m cells of the shared memory of the PRAM to the n memory modules of 

the DMM. We shall also explain, in Section 0.4, how the balls and bins can be used 

to model hashing. For an in-depth view of other applications see [13, 24, 39, 130, 134]. 

For the remainder of this chapter, we will concentrate on allocation pro cesses that 

minimize the maximum bin load among all the bins upon their termination. 
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0.3.1 Classical Allocation Pro cesses 

Randomization has been shown to be very effective in minimizing the maximum bin 

load. For instance, the classical allocation process places each ball on-line into a bin 

chosen independently and uniformly at random, with replacement. Throughout, we 

shall refer to this pro cess by CLASslcAL(n, m), for inserting m balls into n bins . . , 
" " , , , 

Figure 1: An illustration of CLASslcAL(n, m). Each ball is placed in a bin chosen 

independently and uniformly at random. 

The properties of the classical balls-and-bins model (or sometimes called the classi­

cal occupancy model) have been extensively analyzed in the probability and statistics 

literature [99, 105, 100, 107, 20, 75]. Clearly, the load of any bin has the binomial 

distribution Bin(m, l/n), and hence, its expected value is m/n. The bin load vector 

is multinomial, and by Mallows' inequality, the bin loads are negatively associated. 

However, it is not difficult to show that each bin load behaves asymptotically as an 

independent Poisson random variable with parameter m/n. 

Theorem 0.1. Upon termination of CLASslcAL(n, m), where m = 8(n), the maxi­

mum bin load among all bins is asymptotic to log n/ log log n, in probability. 

Proofs of the theorem can be found in [99, 105]. In the context ofuniform hashing, 

Gonnet [79] gave another proof based on Poisson approximation which has been 

simplified by Mitzenmacher [130]. Recently, Raab and Steger [153] presented a new 
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proof using the second moment method, and analyzed the heavily loaded case when 

m » n. The pro cess has been also analyzed un der assumptions of limited randomness 

[6, 52, 48, 50, 124], and for nonuniform distributions [41]. Another variation of the 

classical model has been studied in [55]. 

0.3.2 Multiple-choice Allocation Processes 

The ide a of using multiple choices for each ball appears to have been conceived in 

1986 in the work of Eager et al. [59]. The power of the idea became more evident 

in the work of Karp, Luby and Meyer auf der Heide [101]. The authors studied the 

balls-and-bins problem in the context of PRAM simulation on a distributed memory 

machine. They allowed each baIl to choose two bins independently and uniformly at 

random, while a simple parallel algorithm decides in which of the two possible bins 

the baIl has to be placed. They proved that if m = n, then the allocation process 

terminates with D(1og log n log* n) maximum bin load, w.h.p. 

The Greedy Strategy 

In 1994, Azar, Broder, Karlin and Upfal [13] proposed the following novel allocation 

process. For each baIl, we choose d 2: 2 bins independently and uniformly at random, 

with replacement. Then we insert the baIl into the least full bin among the d bins, 

breaking ties randomly. Throughout, we will write UNIFoRM-GREEDyMC(n, m, d) 

to denote this greedy multiple-choice allocation process for inserting m balls into n 

bins. In the case d = 2, we may sometimes, for simplicity, omit the third parameter, 

and just write UNIFoRM-GREEDyMC(n, m). The balls are assumed to be inserted 

on-line and sequentially, unless otherwise explicitly specified. 

Notice that the allocation (insertion) time for any baIl, (that is, the number of bin 

accesses) is always d. The maximum bin load of UNIFoRM-GREEDyMC(n, m, d), 
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Figure 2: An illustration of UNIFoRM-GREEDyMC(n, m, 4). Each ball is inserted 

into the least loaded bin among 4 bins chosen independently and uniformly at random, 

with replacement, breaking ties arbitrarily. 

surprisingly, decreases significantly , even for d = 2. Azar et al. [13] proved that 

the maximum bin load Ln upon termination of UNIFoRM-GREEDyMC(n, n, d) is 

logd log n ± 8(1), w.h.p., that is, ILn - logd log ni :s; c, w.h.p., for sorne constant 

c> o. One can easily generalize these bounds to the case m = 8(n). It is also known 

that the greedy strategy is stochastically optimal in the following sense. 

Theorem 0.2 (Azar et al. [13]). Let n, m, dEN, where d ~ 2, and m = 

8(n). Upon termination of UNIFoRM-GREEDyMC(n, m, d), the maximum bin load 

is logd log n ± 8(1), w.h.p. Furthermore, the maximum bin load of any on-line allo­

cation process that inserts m balls sequentially into n bins where each ball is inserted 

into a bin among d bins chosen independently and uniformly at mndom, with replace-

ment, is at least logdlogn - 8(1), w.h.p. 

The proof of the above bounds given by Azar et al. [13] uses the layer induction 

method. Mitzenmacher [130, 132] gave another pro of based on a system of differential 

equations called the fiuid limit model. The upper bound is proved via the witness tree 

method by V6cking [170]. In Chapter 1, we shall simplify the witness tree argument, 

and present a new proof for the lower bound. A survey of pro of techniques can be 
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found in [134]. 

The heavily loaded case-when m = w(n)-of the greedy allocation process has 

been analyzed by Berenbrink et al. [18]. Using Markov chains, the authors studied 

the stationary state of the allocation process, and proved the following result. 

Theorem 0.3 (Berenbrink et al. [18]). There is a constant C > 0 such that for 

any integers m ~ n > 0, and d ~ 2, the maximum bin load upon termination of 

UNIFoRM-GREEDyMC(n, m, d) is logd logn + m/n ± C, w.h.p. 

Azar et al. [13] also studied an infinite dynamic version of the greedy allocation 

pro cess UNIFORM-GREEDyMC(n, n, d). Initially, suppose that n balls are inserted 

by UNIFORM-GREEDyMC, and then at each step a previously inserted ball is selected 

independently and uniformly at random and removed from the system; and a new 

ball is inserted into the least bin among d bins chosen independently and uniformly at 

random, breaking ties randomly. After O(n2 1og1ogn) steps, the maximum bin load 

still is logd1ogn+O(1), w.h.p. Vocking [170] extended the result to any sequence of 

deletions and insertions that is specified before the algorithm starts. Other infinite 

dynamic variants of the greedy multiple-choice allocation process are considered in 

[33,34]. 

Theorem 0.4 (Vocking [170]). Suppose that a possibly infinite sequence of dele­

tions and insertions of balls, that is defined in advance, is performed on-line by al­

gorithm UNIFORM-GREEDyMC where each ball is inserted into the least loaded bin 

among d ~ 2 bins chosen independently and uniformly at random f'rOm a set of n E N 

bins. Suppose also that at any point of time, there are at most m = O(n) balls in the 

bins. Then the maximum bin load at any fixed time is logd1ogn + O(m/n), w.h.p. 

The off-line version of UNIFoRM-GREEDyMC(n, m, 2) where the choices available 

for all balls are known in advance before we insert any ball is studied in [13]. The 
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analysis was further improved by Czumaj and Stemann [39]. A more detailed history 

of the off-hne pro cess is given in Chapter 3. 

Asymmetric Variant 

Theorem 0.2 asserts that the greedy multiple-choice process is stochastically optimal 

as long as each baIl is inserted on-hne into a bin among d bins chosen indepen­

dently and uniformly at random, with replacement. However, V6cking [170, 171] 

demonstrated that it is possible to improve the performance of the greedy process, 

if nonuniform distributions on the bins and a tie-breaking rule are carefully chosen. 

He suggested the following variant. First, assume the bins are numbered from 1 to 

n. Partition the n bins into d groups of almost equal size, that is, each group has 

size 8(n/d). Allow each baIl to select upon arrivaI d bins. AlI the bins are chosen 

independently at random where the i-th bin must be chosen uniformly from the i-th 

group. Each baIl is placed on-hne, as before, in the least full bin among the d bins. Up 

to this point, with just these modifications (i.e., the ties are still broken randomly), 

the maximum bin load, upon termination, is stilllogd log n ± 8(1), w.h.p. 

2 3 4 5 6 7 8 9 10 11 12 

Figure 3: An illustration of LEFTMC(n, m, 4). Each baIl is placed in the least full 

bin among 4 independent bins where the i-th bin is chosen uniformly from the i-th 

group. Upon a tie, the baIl is placed in the leftmost bin. 
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Vocking introduced one more crucial change: an asymmetric tie-breaking rule 

called Always-Go-Left. It states that upon a tie, the baIl is always placed in the 

leftmost bin among the d bins. We shall write LEFTMC(n, m, d) to refer, throughout, 

to this variant of the greedy multiple-choice process for inserting m balls into n bins. 

Vocking [170] showed that upon termination of LEFTMC(n, n, d), the maximum 

bin load is loglogn/(dlog<Pd) + 0(1), w.h.p., where <Pd is a constant related to a 

generalized Fibonacci sequence. For example, the constant <P2 = 1.61... corresponds to 

the well-known golden ratio, <P3 = 1.83 ... , and <P4 = 1.92 .... In general, limd-too <Pd = 2, 

and <P2 < <P3 < <P4 < ... < 2. Notice that this is an improvement on the performance 

of GREEDyMc(n, n, d), as d log <Pd > (d - 1) log 2 > log d. For example, wh en d = 2, 

the maximum bin load of LEFTMC(n, n) is 0.72 ... x log2log n + 0(1), whereas in 

UNIFoRM-GREEDyMC(n, n), it is log2logn + 0(1). The process LEFTMC(n, m, d) 

is also optimal in the following sense. 

Theorem 0.5 (Vocking [170]). Let n, m, dEN, where d ~ 2, and m = 8(n). The 

maximum bin load of LEFTMC(n,m,d) upon termination is loglogn/(dlog<Pd) ± 

8(1), w.h.p. Moreover, the maximum bin load of any on-line allocation process that 

inserts m balls sequentially into n bins where each ball is placed into a bin among d 

bins chosen according to arbitrary, not necessarily independent, probability distribu­

tions defined on the bins is at least log log n/(dlog <Pd) - 8(1), w.h.p. 

Notice that the lower bound on the maximum bin load of LEFTMC(n, m, d) 

ho Ids with any probability distributions defined on the bins, and any tie-breaking 

rule. This is an important result that we shaH need in Chapter 2 when we investigate 

the performance of UNIFoRM-GREEDyMC(n, m) with nonuniform distributions. An 

analogous version of Theorem 0.4 is also proved in [170] confirming that in the dy­

namic situation, the maximum bin load of LEFTMC(n, m, d) does not increase. 

The plausible improvement that LEFTMC(n, m, d) achieves has been reaffirmed 
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by Mitzenmacher and Vocking [135, 134] where the pro cess is analyzed in the context 

of the fluid limit model. Berenbrink et al. [18] studied the heavily loaded case and 

recorded the following theorem. 

Theorem 0.6 (Berenbrink et al. [18]). There is a constant Cf > ° such that for 

any integers m 2: n > 0, and d 2: 2, the maximum bin load upon termination of 

LEFTMC(n, m, d) is log log nj(dlog <Pd) + mjn ± Cf, w.h.p. 

Applications and Extensions 

A great deal of research has been focused during the last years on analyzing, improv­

ing, and generalizing the greedy multiple-choice paradigm. The versatile paradigm 

has been used to derive efficient algorithms for many applications in computer science. 

Broder and Mitzenmacher [24] applied the two-way chaining scheme, i.e., algorithm 

UNIFoRM-GREEDyMC(n, m), to improve IP address lookups in internet routers. By­

ers et al. [26] used the multiple-choice technique to implement distributed hash tables 

efficiently. The technique has also been utilized in computer graphies [177], routing 

and interconnection networks [34, 114, 128, 8], queueing systems [130, 131, 135, 172], 

and shared memory simulations [37, 127]. 

Many variants and extensions of the greedy multiple-choice pro cess have been 

introduced and studied in various settings. Mitzenmacher et al. [133] and Shah et 

al. [159] studied a variant of the greedy multiple-choice pro cess with memory where 

each time a baIl is placed, the least loaded bin of that ball's choices after placement is 

remembered and used as one of the possible choices for the next baIl. The performance 

of this pro cess is proved to be asymptotically equivalent to LEFTMC(n, m, d). 

Czumaj and Stemann [39] suggested adaptive multiple-choice allocation processes 

that achieve optimal trade-offs between the maximum bin load, the maximum alloca­

tion time and the average allocation time. For instance, one of the adaptive processes 
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they proposed allows each baIl to choose one bin, and inserts the baIl into it if its 

load is at most logd log n + 0(1). Otherwise, it chooses d - 1 more bins and inserts 

the baIl into the least full one. The bins are chosen independently and uniformly at 

random, with replacement. The authors showed that the maximum bin load upon 

termination is at most logd logn + 0(1), w.h.p., while the maximum allocation time 

is at most d, and the average allocation time is 1.146194 + 0(1), w.h.p. 

Other studies considered parallel and distributed processes [2, 1, 17, 163], in­

finite (dynamic) pro cesses with deI et ion [13, 17, 33, 39, 170], pro cesses that allow 

re-allocations of the balls [39], and pro cesses with balls of different weights [19]. 

0.4 Hashing Assumptions 

In any hashing scheme (with separate chaining or open addressing) mentioned in 

the thesis, we insert a set K of mEN distinct input keys, that cornes from a finite 

universe set of keys U, into a table of size n E N. The keys corresponds to records 

or data. The hash table is a one-dimensional array with n cells or locations denoted 

by the set T:= {O, ... , n - 1}. In hashing with chaining, each cell in the hash table 

contains a pointer to a separate chain or linked list. The length of a chain is 

defined to the number of keys it contains. The symbol Ct is reserved, throughout, 

to denote the load factor of the hash table m/n. The hashing pro cess uses hash 

functions that map U into T. Let lF(U, T) denote the set of aIl possible hash functions 

mapping U to T. Let u := lUI, and notice that IlF(U, T)I = nU. We say that a hash 

function f : U --+ T is truly uniform to mean that it is chosen uniformly at random 

from the set lF(U, T). Observe that any truly uniform hash function f satisfies the 

following properties: 

1. For any x EU, the random hashing value f(x) is uniformly distributed over T, 
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because for any i E T, we have 

u-l 1 
P{f(x) =i} = ~ =-. 

nU n 

2. The hashing values produced by f are mutually independent (or u-wise inde-

pendent), because for any distinct Xl, ... , Xk EU, and any il,"" ik E T, where 

k E lu]' we have 

One can see now that the classical uniform hashing with chaining where m keys are 

hashed into n separate chains via only one truly uniform hash function, and which 

we den ote throughout by CLASSICCHAIN(n, m), is stochastically equivalent to the 

classical allocation pro cess CLASslcAL(n, m) described above. Similarly, the greedy 

multiple-choice pro cess UNIFoRM-GREEDYMC(n, m) is stochastically equivalent to 

the uniform two-way chaining scheme, see Chapter 1. 

'T 

u 
f(x) 

IKI=m ITI =n 

Figure 4: Algorithm CLASSICCHAIN(n, m) where keys are hashed by a single truly 

uniform hash function. 

The performance of any hashing algorithm is obviously affected by the complexity 

of the hash functions it uses. A good hash function is one that can be generated, 
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evaluated, and stored in efficient time and space. The time and space needed to 

generate a hash function should be at least linear in the hash table size, and the 

evaluation time should be constant. However, the key probabilistic assumption upon 

which the mathematical analysis of uniform hashing schemes is built is that the 

random hash functions used by these schemes are truly uniform. To implement 

this assumption, we face two practical problems. First, the ability to draw a hash 

function uniformly at random from the set lF(U, T) depends heavily on the existence 

of a pure and true random bit generator, which has not been realized to date. Second, 

even if we assume the availability of a true source of randomness, the complexity of 

generating a truly uniform hash function is untractable. Assuming that any key in 

U can be represented by one word in lu]' i.e., by l1og2 u l bits, we need 8(u logn) 

time and space (or number of random bits) to generate and store one truly uniform 

hash function. That is, the size of the hash function is larger than the size of the 

table it intends to serve. Notice that the a hash table with 8(n) keys consumes only 

8(nlogu) bits. 

Thus, naturally, one wonders if a certain hashing scheme that uses truly uniform 

hash functions is efficiently realizable and computable in real life in a way that is 

provable to yield almost the same theoretical performance. The concept of universal 

hashing, introduced by Carter and Wegman [27, 173], has been proved to be very 

fruitful in analyzing many hashing schemes under assumptions of limited randomness. 

The hash functions, there, are drawn uniformly from a smaller family of functions 

mapping U to T, instead of the set lF(U, T). Although, the hashing values of such 

functions are almost uniform and almost k-wise independent, for sorne k « n, they 

are sufficient enough to give almost the same performance of truly uniform hash 

functions [52, 48, 50, 161]. 
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In this thesis, however, and for simplÎcity, aIl the hashing schemes are studied 

with truly uniform hash functions, except in Chapter 2 where we analyzed two-way 

chaining with nonuniform hash functions that satisfy only Property 2. We also assume 

that the hashing schemes are implemented on a RAM model of computation where 

memory access and the standard arithmetic and logic operations can be executed in 

one unit time; in particular, probing or accessing a hash table ceIl can be done in one 

unit time. Furthermore, we assume that a pure random source is available, that is, 

it is feasible to choose objects uniformly at random. This assumption, in particular, 

is reasonable, as high quality pseudo-random bit generators are readily available. 

We define the search time of any hashing algorithm as the number of probes 

or table accesses the algorithm performs to find a key. Observe that we ignore the 

time required to evaluate the hash functions. In particular, we define the search 

time in algorithm CLASSICCHAIN(n, m) to be one (for accessing the pointer to the 

chain) plus the number of keys the algorithm examines. For example, in Figure 4, 

the time needed to search for the key x according to our definition is 5. Similarly, the 

insertion or deletion time is defined to be the number of probes the algorithm 

performs to insert or delete a key, respectively. 

Finally, notice that any hashing scheme can be classified as on-line or off-lÎne 

just as we classify any allocation process. That is, a hashing scheme is said to be 

on-line, if each key is hashed upon arrivaI without knowing any information about 

the future keys. It is said to be off-lÎne if the hashing values available for aIl keys are 

known in advance before any insertion. Throughout the thesis, aIl hashing schemes 

are assumed to be on-line, unless we explicitly mention otherwise. Moreover, hashing 

schemes can be also described as static when the hashing data are not aIlowed to be 

updated or deleted. Otherwise, the hashing scheme is said to be dynamic. 
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Hashing with Separate Chaining 
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Hashing emerges as a heuristic technique for supporting dictionary operations to 

store and retrieve information in constant expected time. In hashing with separate 

chaining, keys that collide in the same cell are inserted into a separate chain (or linked 

list) pointed to by the cell. According to Knuth [103], hashing with chaining seems 

to have been originated by H. P. Luhn in an internaI IBM memorandum in 1953. 

However, Dumey [58], in 1956, was the first to describe the technique in the open 

literature. Since then, various hashing schemes with different collision resolutions 

have been invented and analyzed. Most notably are open addressing schemes [147], 

coalesced hashing [167, 168], extendible hashing [65], linear and dynamic hashing [108, 

113, 110], perfect hashing [74, 50, 144], universal hashing [27, 173], cuckoo hashing 

[146, 69], and, of course, two-way chaining [13, 170]. Comparison-based or tree­

oriented data structures are also suggested for implementing dictionaries. However, 

their expected performance is slow, especially, when the data structure is updated. 

A wealth of information about these methods and others can be found in [103, 121, 

80, 169, 145]. 

This part of the thesis is devoted only to the two-way chaining paradigm. We 

study the on-line uniform version in Chapter 1, and the on-line nonuniform case in 

Chapter 2. We analyze the off-line uniform version in Chapter 3. Chapter 4 contains 

a discussion on sorne trade-offs and speedups of this hashing paradigm. 



Chapter 1 

Uniform Two-way Chaining 

We begin our study by presenting another pro of of the first part of Theorem 0.2 con­

cerning the worst-case performance of the greedy multiple-choice allocation pro cess 

UNIFoRM-GREEDyMC(n, m, d). We only consider the case d = 2. We shaH see in 

Chapter 4 that the best worst-case performance, however, is achieved when d = 3. 

We choose the case d = 2 for the sake of simplicity, and because its average-case 

performance is better than the case d = 3. 

1.1 History and Motivation 

Dictionaries are fundamental data structures designed specially for storing data and 

supporting basic operations like insert, delete and search. Dictionaries can be static 

or dynamic. In static dictionaries, the data structures are not allowed to be updated. 

Hashing emerges as a very efficient technique for implementing dictionaries. For ex­

ample, algorithm CLASSICCHAIN(n, m), the classical uniform hashing with separate 

chaining, is widely known for its simplicity and its plausible average performance. 

lndeed, the expected average successful search time is 1 + a/2, and the expected 

unsuccessful se arch time is 1 + a, where a := min, see [80, 35, 169]. Unfortunately, 

33 
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the worst-case unsuccessful search time which is proportional to the length of the 

longest chain is proved in [79] to be asymptotic to log ni log log n, in probability, 

when m = 8(n). This is also a direct application of Theorem 0.1, as the classi­

cal allocation pro cess CLASslcAL(n, m) is stochastically equivalent to this hashing 

scheme. 

Carter and Wegman [27,173] suggested the concept of universal hashing as a theo­

retical framework for analyzing classical chaining with more practical hash functions. 

They showed that the asymptotic average performance of CLASSICCHAIN(n, m) can 

be almost preserved (up to a constant factor), if we choose the hash function uni­

formly at random from a smaller class of functions mapping the universe set of keys 

U to the hash table T. The class of functions can be designed to be small and con­

tains only efficient hash functions that can be generated in linear time and space, 

and evaluated in constant time. Many such classes have been designed, see e.g., 

[6,48,52,53, 141, 161]. Nonetheless, none of these classes lead to a better worst-case 

performance (when used in classical hashing with separate chaining) than the one 

achieved by a truly uniform hush function. 

During the last two decades, an intensive research has been concentrated on im­

proving the worst-case search time, and consequently, many randomized hashing 

schemes (with or without chaining) have been introduced. We survey the most pro mi­

nent ones. 

Randomized Perfect Hashing 

A perfect hash function on a subset of keys K ç U is a 1-1 function that maps K 

to the hash table T. A perfect hashing algorithm is an algorithm that inserts the 

keys without any collisions. Thus, the worst-case search time can be dramatically 

decreased, if the perfect hash functions used by the algorithm are constructed in an 
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efficient way. Notice that by the birthday paradox, any randomly chosen hash func­

tion is perfect only on sorne subsets of keys, but not on every subset, unless the size 

of 7 is very large. Thus, the challenge is to design efficient perfect hashing schemes 

for hash tables of linear size, i.e., 171 = O(IJCI). Many such schemes have been intro­

duced [74, 36, 50,142,144] with efficient perfect hash functions that can be evaluated 

in constant time and constructed in expected linear time and space. For example, 

Fredman et al. [74] presented a randomized perfect hashing algorithm that inserts n 

keys into a hash table of size n + o( n), and achieves constant maximum search time, 

and constant expected amortized insertion time. The hashing algorithm, however, is 

off-line and static. The algorithm first uses a hash function chosen randomly from a 

small class of functions to partition the set of input keys into 8(n) disjoint groups. 

Each group, then, is hashed to a separate sub-table by a perfect hash function chosen 

randomly from a set of functions designed specifically for that group. 

The static hashing algorithm has been generalized by Dietzfelbinger et al. [50] 

to the dynamic situation where updates and deletions are allowed, while preserving 

almost the same performance. Similarly, they used a random hash function to parti­

tion the keys into 8(n) disjoint groups, and a different perfect hash function to hash 

each group. However, to cope with the dynamic data, they used a rehashing tech­

nique where the who le hash table is reconstructed from the beginning by using new 

random hash functions whenever the number of updates exceeds certain limit. The 

worst-case search time, and the expected amortized insertion and deI et ion times are 

still constants, but the st orage space consumed by the hash table is 35(1 + c)n, where 

c > 0 is a constant. The update performance of this scheme was further improved 

in Dietzfelbinger and Meyer auf der Heide [51, 52], where a new efficient universal 

class is used to achieve constant worst-case time for any dictionary operation, with 

high probability. Notice that aIl of these schemes employ 8(n) random hash func-
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tions that require a large number of random bits. Dietzfelbinger et al. [48] described 

how one can reduce the number of random bits consumed by these schemes by using 

polynomial hash functions. For a more detailed study of perfect hashing, see [36, 145]. 

Open Addressing Schemes 

Many open addressing schemes with improved worst-case performance are based, 

more or less, on multilevel hashing where the hash table is partitioned into multiple 

sub-tables, and different hash functions are used for each sub-table. For instance, 

Broder and Karlin [23] divide the hash table into 8(log log n) blocks, and with each 

block, they use a different hash function chosen randomly form a universal class of 

functions. The first hash function is used to insert each key into the first block. If a 

collision happens, then the key is hashed by the second hash function into the second 

block. If a collision occurs again, then the third block is checked by the third hash 

function, and so on. If a collision occurs in the last block, then a rehashing technique 

is used. The expected amortized time for insertion, deletion or search is constant, 

but the worst-case search time is 8 (log log n), deterministically. Of course, if parallel 

computations including memory accesses and hash function evaluations are allowed, 

then any instruction can be executed in constant time. 

Most recently, Pagh and Rodler [146] introduced cuckoo hashing. They insert n 

keys into a hash table that is partitioned into two parts, each of size r (1 + é)n l, 
for some constant é > O. It uses two independent hash functions chosen from an 

O(log n)-universal class~one function only for each sub-table. Each key is hashed 

initially by the first function to a cell in the first sub-table. If the cell is full, then 

the new key is inserted there anyway, and the old key is kicked out to the second 

sub-table to be hashed by the second function. The same rule is applied in the second 

sub-table. Keys are moved back and forth until a key moves to an empty location or a 
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limit of O(logn) moves is reached. Wh en the limit is reached, new independent hash 

functions are chosen, and the whole table is rehashed. The worst-case search time is 

at most two, and the amortized expected insertion time, nonetheless, is constant. An 

off-line and static version of this algorithm had previously appeared in [144]. Other 

analyses and extensions of this scheme can be found in [44, 69, 53, 141]. 

Deterministic Dictionaries 

Deterministic methods for implementing dictionaries that do not use random bits in­

clude perfect hashing, and comparison-based or tree-oriented data structures (see e.g., 

[10, 129, 86, 143, 145] and the references cited there). All of these techniques, how­

ever, require w(loglogn) time either for searching, or for updating and maintaining 

the data structure. For example, Andersson [10] designed a deterministic dictionary 

that can be constructed in linear time and space, but the worst-case search time is 

O(logn). On the other hand, Hagerup et al. [86] presented a deterministic dictionary 

that has constant worst-case search time, but the insertion time is o (log n). Pagh 

[143] considered a compromised deterministic dictionary where the search time is 

(loglogn)O(l), and the update time is (logn)o(1). Needless to say that in some of the 

comparison-based data structures such as balanced trees, the worst-case cost for any 

operation is 0 (log n). 

1.2 Two-way Chaining 

The two-way chaining paradigm suggested by Azar et al. [13] is a simple approach for 

dramatically improving the worst-case search time of hashing with chaining. To avoid 

any ambiguity, we define it formally as follows. Recall that we denote the universe 

set of keys by U, and the hash table by T. The cells of the hash table are numbered, 

and each cell points to a separate chain or linked list. For simplicity, we will say "the 
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chain i" to mean the chain that is pointed to by the cell i. The length of a chain is 

defined to be the number of keys it contains. We assume, throughout, that we save 

with each cell in the hash table the length of the chain that the cell points t~, and 

we keep it updated. 

Definition 1.1. An on-line two-way chaining algorithm is an algorithm that satisfies 

the following: 

1. It inserts a set of keys J( ç U sequentially (one after another) into a hash table 

T where collisions are resolved by separate chaining. 

2. It uses two hash functions j, 9 : U --+ T. 

3. Each key x E J( is inserted into the short est chain (i.e., with the least number 

of keys) among the two chains j(x) and g(x), where ties are broken according 

to sorne fixed strategy. 

Clearly, the insertion time of any two-way chaining algorithm is constant. To 

search for any key x, we examine the two chains j(x) and g(x), sequentially and 

alternatingly. Thus, the maximum unsuccessful search time is proportional to twice 

the length of the longest chain. Trivially, the performance of any two-way chaining 

algorithm depends on the type of the hash functions and the tie-breaking rule it uses. 

Throughout the thesis, we write N ONUNIFORM-SHORTCHAIN to den ote the on­

line two-way chaining algorithm that satisfies the following: 

A. It uses two independent random hash functions j and g, i.e., j(x) and g(x) are 

random variables with two independent probability distributions defined on T. 

B. If for sorne key x, both chains j(x) and g(x) have the same length, then the 

algorithm breaks the tie randomly. 
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g(x) 

IKI=m ITI=n 

Figure 1.1: Algorithm UNIFORM-SHORTCHAIN(n, m) where f and gare independent 

and truly uniform hash functions. 

If, moreover, the hash functions f and gare independent and truly uniform, then we 

write UNIFORM-SHORTCHAIN. This means that f and gare chosen independently 

and uniformly at random from the set of all possible hash functions lF(U, T). We 

often write NONUNIFORM-SHORTCHAIN(n, m) or UNIFORM-SHORTCHAIN(n, m), for 

n, mEN, to mean that the algorithms insert a set of keys /C into the hash table T, 

where [/C[ = m, and [T[ = n. 

Observe that algorithm UNIFORM-SHORTCHAIN(n, m) is stochastically equivalent 

to the greedy multiple choice allocation pro cess UNIFoRM-GREEDyMC(n, m). Thus, 

by Theorems 0.2 and 0.3, the maximum chain length is log2logn+m/n±8(1), w.h.p., 

for m = D(n). On the other hand, the following theorem states that the average 

search time of algorithm UNIFORM-SHORTCHAIN(n, m) is not more than twice the 

average search time ofthe classical uniform chaining algorithm CLASSICCHAIN(n, m). 

Theorem 1.1 (Azar et al. [13]). Let n, mEN. The average expected successful 

search time of algorithm UNIFORM-SHORTCHAIN(n, m) is at most 2 + m/n, and the 

average unsuccessful search time is at most 2 + 2m/n. 

One can also mimic the multiple choice allocation pro cess LEFTMC(n, m) de­

signed by Vocking [170, 171] to derive a two-way chaining algorithm. lndeed, we 
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shall write LEFT-SHORTCHAIN to den ote the on-line two-way chaining algorithm 

that satisfies the following: 

A. The hash functions f and gare chosen independently and uniformly at random 

from the sets lF(U, Ti), and lF(U, 12), respectively, where Ti := {O, ... , l n/2 J}, 

and 12 := {r n/21 , ... ,n - 1} constitute a partition of the hash table. 

B. If for sorne key x, the chains f(x) and g(x) have the same length, the key is 

inserted into the chain f (x). 

The notation LEFT-SHORTCHAIN(n, m) has the same meaning as we explain above 

for other algorithms. Similarly, algorithm LEFT-SHORTCHAIN(n, m) is stochastically 

equivalent to LEFTMC(n, m), and by Theorems 0.5 and 0.6, the maximum chain 

length is 0.72 ... x log2logn + min ± 8(1), w.h.p., wh en m = D(n). The average 

search time is at worst twice the average search time of CLASSICCHAIN(n, m). 

It is evident that these two-way chaining algorithms reduce, stochastically and 

asymptotically, the worst-case performance exponentially-comparing to classical 

chaining method-at the expense of doubling the average case performance. Two-way 

chaining also has several advantages over the other hashing methods we mentioned 

above for improving the worst-case behavior of hashing. Clearly, it is on-line and 

dynamic, it employs only two hash functions, it is easy to parallelize, and it does 

not use any rehashing technique. Unlike most of the above schemes, its worst-case 

insertion time is still constant. It consumes almost the same storage space as classical 

chaining. Note that the addition al memory space is needed only to store at worst 

n integers which corresponds to the chain lengths where each one consumes at most 

O(logloglogn) bits, w.h.p. Furthermore, the same hashing performance is provably 

achievable even if the hash functions are chosen from a smaller class of hash functions, 

e.g., an O(logn)-universal class, like the ones in [48, 101]. 
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The two-way chaining paradigm has been effectively used to derive many efficient 

algorithms for various applications [24, 26, 114, 37, 177J. As we mentioned earlier, 

the use of two hash functions appeared previously in [59, 101], and later in [146J. For 

more related history and other applications see Section 0.3.2. 

In Chapter 2, we present a stochastic analysis of the worst-case performance of 

algorithm NONUNIFORM-SHORTCHAIN(n, m), where n, mEN and the two used hash 

functions are possibly nonuniform. Observe that the hash functions used in LEFT­

SHORTCHAIN are also nonuniform. For the remainder of this chapter, however, we 

will concentrate on the worst-case performance of the uniform two-way chaining wh en 

the load factor is 1, that is, algorithm UNIFORM-SHORTCHAIN(n, n). 

Theorem 1.2. Upon termination of algorithm UNIFORM-SHORTCHAIN(n, n), where 

n E N, the maximum (unsuccessful or successful) search time is 21og2 log n ± 8(1), 

w.h.p. 

It is worth noting that many techniques are used to analyze the worst-case per­

formance of two-way chaining algorithms. Azar et al. [13J used the layer induc­

tion method to bound the maximum chain length of UNIFORM-SHORTCHAIN(n, m). 

Mitzenmacher [130, 132J used a system of differential equations in his fluid limit model. 

Using a method called witness trees, Vocking [170, 171J studied the worst-case perfor­

mance of algorithms UNIFORM-SHORTCHAIN(n, m) and LEFT-SHORTCHAIN(n, m). 

Berenbrink et al. [18J utilized coupling methods of Markov chains to investigate the 

heavily loaded case (where m» n) of both of these algorithms. See also [134J for a 

brief explanation of these techniques. 

We prove, in the next section, the lower bound stated in Theorem 1.2 by using a 

waiting time argument. In Section 1.4, we use a simpler version of the witness tree 

method to prove the matching upper bound. 
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1.3 The Lower Bound 
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Recall that the time needed to search for any key x by the hashing algorithm 

UNIFORM-SHORTCHAIN is defined to be the number of keys visited during the search 

operation plus two for reading the two head-pointers to the two chains f(x) and g(x), 

where f and g are the hash functions used by the algorithm. Notice that if y is the 

last key inserted into a chain of maximum length, then the difference between the 

lengths of the chains f(y) and g(y) is at most one. Thus, the worst-case (unsuccessful 

or successful) search time is equal to twice the maximum chain length plus constant. 

Since the maximum chain length in algorithm UNIFORM-SHORTCHAIN(n, n) is dis­

tributed as the maximum bin load in the greedy multiple-choice allocation process 

UNIFoRM-GREEDyMC(n, n), it suffices to prove the following theorem. 

Theorem 1.3. For n E N, let Ln be the maximum bin load upon termination of 

algorithm UNIFoRM-GREEDyMC(n, n). Then Ln 2': log2log2 n - 8(1), w.h.p. 

Proof. Recall that the allocation pro cess UNIFoRM-GREEDyMC(n, n) inserts n balls 

sequentially into n bins, where each baIl is inserted into the least full bin among two 

bins chosen independently and uniformly at random, breaking ties randomly. The 

foUowing pro of uses a waiting time argument that divides the allocation pro cess into 

multiple stages. Initially, suppose we have a set of no > 0 bins that we caU the set of 

the initial survival bins. At each stage we refine these survival bins by selecting sorne 

of them, until we reach the stage where we have only one survival bin at which we 

stop. An initial survival bin survives the first stage if and only if a baIl is inserted 

into it during the first stage; and for aIl k 2': 2, a survival bin of the (k - l)-th stage 

survives the k-th stage if it satisfies one of the following conditions: 

1. The bin contains at least k balls before it is chosen by a baIl (as one of its two 

choices) during the k-th stage. 
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2. The bin contains k - 1 balls before it is chosen by a ball which is inserted into 

it during the k-th stage. 

Observe that for all k ~ 1, any bin that survives the k-th stage has at least k balls 

in it. In the two conditions above, we say that the ball helps the bin to survive. We 

say that the survival time of a survival bin of the k-th stage is t, if the ball that helps 

it to survive the k-th stage is the t-th ball inserted during the k-th stage. The first 

stage st arts with the first ball we insert. Then we keep inserting balls sequentially, 

and wait until nI < no/2 bins from the initial survival bins survive the first stage, at 

which it finishes. Then the second stage starts by inserting more balls sequentially, 

and it finishes once n2 < nI/2 bins survive, and so on. In the k-th stage, we wait 

until nk < nk_I/2 bins survive. The sequence nk will be picked later on. Let Tk be 

the number of balls inserted during the k-th stage. That is, Tk is the survival time 

of the last survival bin of the k-th stage. Now if r is our lower bound and assuming 

nr ~ 1, we only need to show that L~=1 Tk :::; n, w.h.p. In other words, the number 

of balls that we should insert to reach the r-th level is, asymptotically almost surely, 

not more than n. 

Consider only the k-th stage. Let At be the event that the t-th ball inserted 

during the k-th stage helps a bin to survive. Let 1it be the history up to time t. 

Recall that the load of any survival bin of the (k -l)-th stage is at least k -1. So, if 

the t-th ball chooses two survival bins of the (k - l)-th stage that have not survived 

the k-th stage yet (and there are at least nk-l - nk such bins), then the t-th ball helps 

at least one bin to survive the k-th stage. Since the bins are chosen independently 

and uniformly at random, and nk < nk_I/2, then we have 

lP' {At l1it-r} ~ (nk- l
n
- nk ) 2 > (n;~1 r ~f Pk. 

Let 5j be the survival time of the j-th survival bin of the k-th stage. Clearly, 51 > t 

if and only if the first t balls inserted during the k-th stage did not help any bin to 
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survive. By using condition al probabilities, we see that 

lP'{Sl>t} 

where E is an exponential random variable with density h(x) = e- X on [0,00). Note 

that E [E] = Var [E] = 1, see e.g., [83]. Since the above chain of inequalities 

is valid for aIl t, we say that SI -< E / Pk: SI is stochastically smaller than E / Pk. 

Switching to exponential random variables helps us to bound the variable Tk . Recall 

that Tk is the survival time of the last survival bin of the k-th stage, i.e., Tk = Snk' 

However, Snk = SI + (S2 - SI) + ... + (Snk - Snk- 1), and each difference Sj - Sj-1 

is stochastically sm aller than E / Pk. Thus, if Gnk : = L.;~1 Ej, where El, ... ,Enk are 

independent exponential random variables, then Tk = Snk -< Gnk / Pk. Observe that 

E [Gn) Pk] = nk/ Pk, and Var [Gn) Pk] = nk/ Pk, because the Ej are independent. 

Therefore, we have the following probabilistic duality 

r 

For simplicity, let Zr = L. Gnk / Pk, and notice that 
k=l 

E[Z]- ~nk _ ~4nkn2 
r -L..J -L..J 2 ' 

k=l Pk k=l nk- 1 

and 

~ nk 1 ~ nk 4n2 
Var [Zr] = L..J 2" :S - L..J - = -2-E [Zr] . 

k=l Pk Pr k=l Pk nr- 1 

Now for n large enough, we define no := n, and for k 2 1, 

where /1, > 1 is an integer to be chosen later. There are two reasons for using /1,: one 

of them is to make sure that nk < nk_I/2, for aIl k 2 1, and hence /1, must be at least 
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2. The other reason will be clarified soon. Notice that for all k > 0, we have 

Also, if we put r := r log2log2 n - K, - Il, we see that n r ~ 1, for n large enough, 

and n;_l ~ 2-8 n(1og2 n)2. Thence, 

which is true if we set K, := 8. Hence, we get Var [Zr 1 :::; 29n2(1og2 n)-2 = 0(n2). 

Using Chebyshev's inequality, we conclude that 

lP{Ln < r}:::; lP{Zr > n}:::; lP{Zr - E[Zrl > n/2}:::; 4Var[Zrl/n2 = 0(1). 

o 

Remark 1.1. In dynamic hashing, keys (or balls) are allowed to be deleted or up­

dated. Clearly, the above proof is not valid if we consider any arbitrary sequence 

of insertions and deletions of balls Wl, W2, W3, ... , where Wt is the t-th request to be 

performed by algorithm UNIFORM-GREEDyMC which inserts each ball into the least 

loaded bin among two bins chosen independently and uniformly at random from a set 

of n E N bins. This is mainly because the number of balls at any level may decrease 

or increase with time, and the insertion of the future coming balls, obviously, depends 

on the distribution of the balls that still reside in the bins. However, assuming that 

the sequence of requests is specified in advance, that is, independently of the decisions 

made by the algorithm, one can show that the maximum bin load at a fixed time t is 

still at least log21ogn - 8(1), w.h.p., provided that there exist at least D(n) balls in 

the bins at that time. For example, suppose that Wl, ... ,Wn are requests for insertion 

of balls, and Wt, for t > n is an insertion or a deletion request such that at any time t 

there are at least D( n) balls that reside in the bins. Then considering only the balls 
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that still exist in the bins, one can see that each one of these balls has been inserted 

on-line (without using any information about the balls that are inserted after it) into 

a bin among two bins chosen independently and uniformly at random. Therefore, by 

the second part of Theorem 0.2, the maximum bin load is at least log2logn - 8(1), 

w.h.p. 

1.4 The Upper Bound 

Theorem 1.4. For n E N, let Ln be the maximum bin load upon termination of 

algorithm UNIFoRM-GREEDyMC(n, n). Then Ln :S log2log2 n + 8(1), w.h.p. 

We prove this theorem by using the witness tree method which has appeared in 

many studies, see e.g., [33, 34, 127, 134, 157, 170]. The proof we provide here is 

similar to the one used in [157, 170], but it is simpler, shorter, and clearer. We show 

that if there exists a bin with at least h balls, then there is a witness tree of height 

h that describes the history of that bin, and the probability that such tree occurs 

tends to zero, as n go es to in finit y, wh en h is sufficiently large. The formaI definition 

of a witness tree is given below. Recall that the balls are inserted sequentially into 

the bins where each baIl is placed into the least loaded bin among two bins chosen 

independently and uniformly at random, breaking ties randomly. Throughout, we 

assume the balls are numbered 1, ... ,n according to their insertion time. For each 

t E ln], we write X t and yt to denote the first and the second choices of bins available 

for baIl i, i.e., the i-th inserted baIl. We shall first define the history tree of a ball 

which could be full or truncated. A witness tree is a special truncated history tree. 
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The History Tree 

We define for each ball t a full history tree Tt, which is a deterministic colored binary 

tree that is labelled by ball numbers except possibly the leaves. Each ball is identified 

with the bin that contains it. So the full history tree Tt, indeed, describes the history 

of the bin that contains the t-th ball up to its insertion time. It is a binary tree 

that represents all the pairs of bins available for all other balls upon which the final 

position of the ball t relies. Formally, we define it as follows. The root of Tt is labelled 

t, and is colored white. The root has two children, a left child corresponding to the 

bin X t , and a right child corresponding to the bin yt. The left child is labelled and 

colored according to the following rules: 

(a) If the bin X t contains some balls at the time of insertion of ball t, and the 

last baIl inserted in that bin, say T, has not been encountered thus far in the 

Breadth-First-Search (BFS) order of the binary tree Tt, then the node is labelled 

T and colored white. 

(b) As in case (a), except that T has already been encountered in the BFS order. We 

distinguish such nodes by coloring them black, but they get the same label T. 

(c) If the bin X t is empty at the time of insertion of baIl t, then it is a "de ad end" 

node without any label and it is colored gray. 

Similarly, the right child of t is labelled and colored by following the same rules but 

with the bin yt. We continue processing nodes in BFS fashion. A black or gray node 

in the tree is a leaf and is not processed any further. A white no de with label T is 

processed in the same way we processed the baIl t, but with its two bins X r and Yr . 

We continue recursively constructing the tree until aIl the leaves are black or gray. 

See Figure 1.2 for an example of a full history tree. 
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Figure 1.2: The full history tree of ball 47. White nodes represent type (a) nodes. 

Black nodes are type (b) nodes-they refer to balls already encountered in BFS order. 

Gray nodes are type (c) nodes-they occur when a ball selects an empty bin. 

Note that every internaI (white) node of the full history tree has two children. 

Furthermore, there is at least one gray leaf. AIso, since the insertion process is 

sequential, node values (ball numbers) along any path down from the root must be 

decreasing (so the binary tree has the heap property) , because any non-gray child 

of any node represents the last ball inserted in the bin containing it at the insertion 

time of the parent. We will not use the heap pro pert y however. 

It is c1ear that the full history tree permits one to deduce the load of the bin that 

contains the root ball at the time of its insertion: it is the length of the short est 

path from the root to any gray node, where the length of a path is defined to be the 

number of edges in it. Thus, if the bin's load is more than h, then all gray nodes 

must be at distance more than h from the root, that is, all the first h + 1 levels do 

not contain any gray node. This leads to the notion of a truncated history tree 

of height h, that is, with h + 1 levels of nodes. The top part of the full history tree 

Tt that includes all nodes at the first h + 1 levels is saved, and the remainder is 

truncated, see Figure 1.3. 
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level 0 

level h 

Figure 1.3: A truncated history tree of height h for ball 72. 

We are in particular interested in truncated history trees of height h that do not 

contain any gray nodes. Thus, by the property mentioned above, the length of the 

short est path from the root to any gray no de in the full history tree (and as noted 

above, there is at least one such node) would have to be at least h + 1. Therefore, 

the load of the bin harboring the root's ball would have to be at least h + 1. More 

generally, if the load is at least h + ç for a positive integer ç, then all nodes at the 

bottom level of the truncated history tree of height h that are not black nodes (and 

there is at least one such node) must be white nodes representing balls that belong 

to bins with load of at least ç at their insertion time. We redraw these node as boxes 

to denote the fact that they represent bins of load at least ç, and we call them "bin 

nodes" . 

The Witness Tree 

Let ç E N be a fixed integer to be picked later. For h, kEN, where h + ç ::; k, 

a witness tree Wk (h) is a truncated history tree of height h of a ball in the set [k], 

and with two types of leaf nodes, black nodes and "bin" nodes. This means that 

each internaI node has two children, and the node labels belong to the set [k]. Each 

black leaf has a label of an internaI no de that precedes it in BFS order. Bin nodes 
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are unlabelled nodes that represent bins with load of at least ç. Bin nodes must aIl 

be at the furthest level from the root, i.e., at level h, and there is at least one such 

node in a witness tree. Notice that every witness tree, by definition, is deterministic, 

and independent of the total number of bins. An example of a witness tree is shown 

in Figure 1.4. 

level 0 

level h 

Figure 1.4: A witness tree of height h. The boxes at the lowest level are bin nodes. 

They represent selected bins with load of at least ç. The load of the bin that contains 

baIl 84 is at least h + ç. 

For any k, h, dE M, and nonnegative integer z, let Wk(h, d, z) den ote the class of 

aIl witness trees Wk(h) that have d internaI (white) nodes, and z black nodes (and 

thus d - z + 1 bin nodes). Notice that, by definition, the class Wk(h, d, z) could be 

empty, e.g., if dt/:. [h, 2h
), z > d, or h > k. Before we start the pro of of Theorem 1.4, 

we need to establish sorne facts. First, the number of witness trees in Wk(h, d, z) can 

be bound easily. 

Lemma 1.1. For any k, h, dE M, and integer z ~ 0, we have 
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Proof. Without the labelling, there are at most 4d different shape binary trees, be­

cause the shape is determined by the d internaI nodes, and hence, the number of trees 

is the Catalan number (2;)j(d + 1) ~ 4d . Having fixed the shape, each of the leaves 

is of one of two types. Each black leaf can receive one of the d white no de labels. 

Each of the white nodes gets one of k possible labels. 0 

The next lemma is a simple but crucial facto We know that in any witness tree 

Wk(h) E Wk(h, d, z), the number of white nodes dE [h,2h) and the number of black 

nodes z E [0, dl. But can we say more? 

Lemma 1.2. In any witness tree Wk(h) E Wk(h, d, z), where k, h 2: 2, if the number 

of white nodes d ~ 2h- TJ , where 'fl 2: 1) then the number of black nodes z 2: 'fl, z. e., 

li [[z~TJlU[d>2h-~J] = 1. 

Proof. Recall that any leaf no de is either black or a bin node, eyery bin node is at 

distance h from the root, and any witness tree has at least one bin node. Thus, one 

can see that if we have z black nodes, the number of bin nodes is at least 2h - z . Since 

d ~ 2h- TJ , then 2h- TJ - z + 1 2: d - z + 1 2: 2h- z. If z = 0, then we have a contradiction, 

because h > 1. So, assume z 2: 1. But then 2h-ry 2: 2h-z, that is, z 2: 'fl. o 

Note that, unlike for full or truncated history trees, it is not possible to construct 

a witness tree Wk(h) for every baIl, unless the baIl is placed into a bin whose load, 

just before the insertion, is at least h + ç - 1. Considering algorithm UNIFORM­

GREEDyMC(n, k), we say that a witness tree Wk(h) occurs, if the random choices 

of the balls represented by the nodes of the witness tree are exactly as indicated 

in the witness tree. That is, if we use the information of algorithm UNIFORM­

G REEDyM C (n, k), after its termination, to construct a truncated history tree (of 

height h) for the baIl represented by the root of the witness tree, then the history 

tree must match the witness tree at every level (node for node, color for color, and la-
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bel for label), except the lowest level where every white node of the truncated history 

tree must correspond to a bin node in the witness tree and must represent a baIl at 

the top of a bin with at least ç balls. The bottom line is that a witness tree of height 

h occurs if and only if a baIl is inserted into a bin of load of at least h + ç - 1 before 

its insertion, i.e., the maximum bin load is at least h+ç. We would like to bound the 

probability that a valid witness tree Wn(h) occurs. Notice that in our case, k = n as 

the algorithm inserts n balls. 

Lemma 1.3. Considering algorithm UNIFORM-GREEDyMC(n, n), we have for any 

integers n, h, dEN, and integer z E [0, dl, 

1 
sup lP{Wn(h) occurs} :::; çd-z+l d+z-l' 

Wn(h)EWn(h,d,z) n 

Proof. Let Wn(h) E Wn(h, d, z) be a fixed witness tree. We use the conditional 

method to compute the probability that Wn(h) occurs, by looking at each node in 

BFS order. Suppose that we are at an internaI node, say u, in Wn(h). We would 

like to find the conditional probability that a certain child of node u is exactly as 

indicated in the witness tree, given that everything is revealed except those nodes 

that precede u in the BFS or der . This depends on the type of the child. If the child is 

white or black, then the conditional probability is lin, as each baIl can be on top of 

at most one of the n bins which are picked independently and uniformly at random. 

Multiplying just these probabilities yields l/nd+z-l, as there are d + z - 1 edges in 

the witness tree that have a white or black nodes as their lower endpoint. If the child 

is a bin node, however, then the conditional probability is at most l/f" because there 

are at most l n/ç J bins with at least ç balls each is chosen with probability of lin. 

Since there are d - z + 1 bin nodes, and the choices are independent, the result follows 

plainly, by multiplying all the conditional probabilities. o 

After these preliminaries, we can now prove the upper bound. 
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Proof of Theorem 1.4. 

Let Ln be the maximum bin load of algorithm UNIFoRM-GREEDyMC(n, n). Let 

h, t;" Tl E [2, 00) be integers to be picked later. By the union bound, we have 

p ~f IP' {Ln ~ h + Ç} :S lP' { U [Wn(h) occurS]} :S L IP' {Wn(h) occurs} . 
VVn(h) VVn(h) 

Notice that since h ~ 2, the number of white (internaI) nodes d in any witness tree 

Wn(h) is at least two, namely, the root and its left child. Using Lemmas 1.1, 1.2 and 

1.3, we see that 

lP' {Wn(h) occurs} 
d=2 z=O VVn(h)EWn(h,d,z) 

2h -l d 

< LLIWn(h,d,z)1 sup lP'{Wn(h)occurs} 
d=2 z=O VVn(h)EWn(h,d,z) 

2h d 2d+14ddznd 
< L L t;,d-z+l nd+z-l IT[[Z2':1J]U[d>2h-'7]] 

d=2 z=O 

2n 2
h (8) d d (dt;,) z T ~ ~ ~ -; IT[[Z2':1J]U[d>2h-'7]]' 

Note that we disallow z = d + 1, because any witness tree has at least one bin node. 

We split the sum over d :S 2h- 1J , and d > 2h- 1J . For d :S 2h- 1J , we have z ~ Tl, and 

thus 

d (dt;,) z d (dt;,) z (dt;,) 1J 00 (dt;,) z (dt;,) 1J ~ -; IT[[Z2':1J]U[d>2h-'7J] = ~ -; :S -; ~ -; < 2 -; , 

provided that n is so large that 2h+lt;, :S n, (this insures that dt;,/n < 1/2). For 

d E (2 h- 1J , 2h], we bound trivially, assuming the same large n condition: 

In summary, we see that 

d (dt;,) Z L - <2. 
n z=o 

4 (8)d (t;,)1J-
1 

2

h

-'7 (8)d p:S ~ L - +4 -; L - d1J . 
t;, d>2h-T) t;, d=2 t;, 
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By setting f, := 16, we get 

where C = L:d2:2 dTl /2d. Clearly, the probability p tends to zero, if we put Tl := 2, and 

h := Tl+ ilog2log2 nTl 1. Notice that f, and h satisfy the technical condition f,2h+l ::; n, 

asym ptotically. o 

Remark 1.2. The probability p can be made arbitrary small (p = O(1/nO)), for 

any constant cS > 0, by just setting the constant Tl := cS + 1. We have proved that 

the maximum bin load is at most log2log2 n + 20, w.h.p. However, by adjusting the 

constants f, and Tl, one can show that the additive constant in the upper bound can be 

decreased to 12 + E, for an arbitrary constant E > O. Simulation results of algorithm 

UNIFORM-GREEDyMC(n, n) (see e.g., [13, 170]) show that the additive constant is 

indeed very small « 2). 



Chapter 2 

Nonuniform Two-way Chaining 

In this chapter, we analyze the asymptotic worst-case performance of the two-way 

chaining algorithm NONUNIFORM-SHORTCHAIN(n, m) with two possibly nonuniform 

hash functions. Roughly speaking, we show that whenever the hashing values be­

have according to fixed bounded independent probability distributions, the maximum 

search time is 2log2 log n ± 8(1), w.h.p., for m = 8(n). 

2.1 Motivation 

Truly uniform hash functions tend to distribute the keys as evenly as possible over the 

hash table. This property is also true for conventional (or universal) hash functions 

which are "almost uniform" as they are chosen randomly from a small set of functions 

such as the ones in [48, 161, 53]. This means that if the universe set of keys U 

is an ordered set, any sueh hash function is, most likely, not monotonie or order­

preserving function. Uniform order-preserving hash functions can be designed, if the 

key statistics are known priori [155, 76]. If the order-preserving hash function is 

independent of the key distribution, then the hashed values must be nonuniformly 

distributed over the hash table, see, e.g., [82] and [41, p. 2]. Order-preserving hash 

55 
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functions are helpful for operations that require sorted or nearly sorted keys like range 

search and finding the k-nearest neighbors, see [42] for a wide variety of applications. 

Lately, there has been growing interest in hashing-based algorithms for solving the 

(approximate) k-nearest neighbors problem in high-dimensional spaces, see, e.g., [112, 

91, 77]. This is due to the efficiency of hashing as a data structure for implementing 

similarity search in a wide range of database applications [25, 54, 87, 92, 117, 160]. 

In these applications, a finite number of objects (e.g., images, documents, DNA 

sequences) is represented by points in a high-dimensional vector space, (e.g., the d­

dimension al cube [0, l]d), such that objects that have similar features are mapped 

to points that are close to each other. The finite universe set of keys U is defined 

to be these points. Searching for a key (or object) in the hash table means finding 

or approximating the k-nearest neighbors (or similar objects). The heart of this 

novel approach is a class of hash functions called locally-sensitive hash functions. A 

function f : U ç [0, l]d --t T is a locally-sensitive hash function if and only if for all 

x, yEU, we have If(x) - f(y)1 :S IUlllx - yll, where 11·11 is sorne given norm defined 

on [O,l]d, for example, Euclidean or el norm. Sometimes these functions are called 

neighborhood-preserving functions [54], or non-expansive functions [112]. In short, 

such hash functions are sensitive to the similarity of the keys: they map keys that 

are close to each other, in sorne sense, to close chains. So, evidently, locally-sensitive 

hashing is good for fast retrieval, and for minimizing the number of pages consumed 

by the hash tables. The hashing values of such functions, however, for the same 

reason explained above, have nonuniform distributions over the hash table. 

It is thus important to analyze the performance of hashing schemes with nonuni­

form hash functions. The worst case performance of classical hashing with chaining 

where a set of keys K ç U are hashed via a single hash function f was studied 

by Devroye [41] for nonuniform distributions. He represented the hash table by the 
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unit interval [0,1] partitioned into n equal-sized disjoint subintervals. Thus, the hash 

function f is assumed to map the universe set of keys U to the unit interval [0,1]. 

Each key x is hashed to the i-th chain, if f(x) belongs to the i-th subinterval. The 

random hashing locations f(x), for all x E U, are assumed to be independent and 

have a corn mon density function h defined over [0,1]. Devroye [41] proved that the 

expected maximum chain length is still asymptotic to log n/ log log n, provided that 

the load factor of the hash table is constant, and the density h is bounded. A tight 

upper bound is also given for unbounded densities. 

This motivates us to study the worst-case performance of the two-way chaining 

paradigm with nonuniform hash functions. Recall that Vûcking's algorithm LEFT­

SHORTCHAIN(n, m) is an example of nonuniform two-way chaining where two special 

independent nonuniform hash functions are used, combined with the tie-breaking 

ru le Always-Go-Left. The length of the longest chain produced by the algorithm is 

0.72 ... x log2logn + m/n ± 8(1), w.h.p. (Theorems 0.5 and 0.6). The purpose of 

this chapter is to analyze the worst-case performance of algorithm N ONUNIFORM­

SHORTCHAIN(n, m) by using the fixed density model which we define in the next 

section. Recall that this algorithm uses two independent hash functions f and g 

which could have any probability distributions over the hash table. Each key x 

is inserted into the short est chain among the chains f (x) and g (x), breaking ties 

randomly. Before we state the main results, let us first define the stochastic model 

upon which we build our analysis. 

2.2 The Fixed Density Model 

Throughout, we assume that algorithm NONUNIFORM-SHORTCHAIN(n, m), which 

inserts a set of keys JC ç U of size mEN into n E N separate chains, is implemented 

in the following way. The hash table is associated with the unit interval [0, 1] which 
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is partitioned into n disjoint equal-sized subintervals denoted by In,!, ... ,In,n where 

the subinterval In,i corresponds to the i-th chain of the hash table. More precisely, 

In,! = [0, l/n], and In,i = ((i - l)/n, i/n], for i = 2, ... , n. The hash functions f 

and 9 map the universe set of keys U to the unit interval [0, 1], and their hashing 

values behave according to fixed (possibly different) probability density functions hf 

and hg, respectively, defined over [0,1]. Thus, for aIl x EU, and i E ln], 

IP'{f(x)Eln,i}= lnihf(u) du, and IP'{g(x) Eln,i} = lnihg(u) du. 

Figure 2.1: Illustration of NONUNIFORM-SHORTCHAIN in the fixed density model. 

The hash functions f and 9 map the keys to the unit interval. Key x has two hashing 

values f(x) E In,i and g(x) E In,j. The key is inserted into the shortest chain. 

Notice that the hash functions and their corresponding densities are fixed for an 

n E N. AlI hashing values f(x) and g(x), for an keys x E /C, are assumed to be 

mutually independent, i.e., each key has two independent hashing values which are 

also independent from the other keys' hashing values. The keys are inserted on-line 

and sequentially as follows. For each x E /C, if f(x) E In,i, and g(x) E In,j, for sorne 
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i, j E ln], the algorithm inserts the key x into the short est chain among the i-th and 

the j-th chains of the hash table, breaking ties randomly. See Figure 2.l. 

The main result of this chapter is the foHowing theorem. 

Theorem 2.1. Suppose that algorithm NONUNIFORM-SHORTCHAIN(n, m), where 

n, mEN, is applied in the fixed density model where the hash functions f and 9 

map the keys according to fixed densities h f and hg over [0,1], respectively. Let Tn,m 

be the maximum (successful or unsuccessful) search time. If a := min = D(l), 

then Tn,m ;::: 2max(a, lOg2logn - c), w.h.p., for some positive constant c; and if 

l/logn« a« 1, then w.h.p., Tn,m;::: (2-o(1))log2logn. Ifboth densities are 

bounded by some constant, then Tn,m ::; 2log2log n + O( a), w.h.p. Moreover, if there 

is a sequence Àn = 0 ( yflog log n) such that 

J hf(u) du + J hg(u) du = o(1/m) , 

hf>Àn hg>Àn 

then Tn,m = O((a + 1) loglogn), w.h.p. 

Other bounds are also presented, including ones on the worst-case search time 

of the dynamic version of the algorithm. We prove the lower bounds in Section 2.3 

by extending the waiting time argument used in the uniform case. In Section 2.4, 

we apply the witness tree method to prove the upper bound for the case of bounded 

densities. The case of unbounded densities is treated by using the rejection method. 

AH proofs are presented in the context of the balls-and-bins model, for the sake 

of simplicity. Formally, we write NONUNIFoRM-GREEDyMC(n, m) to denote the 

greedy multiple-choice allocation pro cess that inserts m balls into n bins where each 

baIl is inserted into the least full bin among two bins chosen according to probability 

distributions defined on the bins. The allocation process can be implemented in the 

fixed density model as foHows. First of aH, we assume that the balls are numbered 

1, ... ,m according to their insertion time. Each baIl t E lm], has two independent 
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hashing values X t and Yt drawn randomly from the unit interval [0, 1] according to 

the densities hf and hg, respectively. Thus, for i E ln], and t E lm], we have 

IP{XtEln,i}= lnihf(u) du, and IP{Yt Eln,i} = lnihg(u) du. 

OL--+--~~--+-~--~l--

In,! In,i In,n 
o 

In,! In,j In,n 
1 

Figure 2.2: Each baIl t E [ml has two hashing values X t and Yt drawn from the unit 

interval according to the densities hf and hg, respectively. 

The hashing pairs (Xt , Yt), for aIl t E lm], are assumed to be independent. The balls 

are inserted on-line and sequentially. For each t E lm], if X t E In,i, and Yt E In,j, the 

t-th ball is placed into the least full bin among the i-th and the j-th bin, breaking ties 

randomly. The maximum bin load of this allocation pro cess is stochastically equiva­

lent to the maximum chain length of algorithm NONUNIFORM-SHORTCHAIN(n, m), 

when both are implemented in the fixed density model. Hence, we only need to 

bound the maximum bin load upon termination of the allocation process. Recall 

that 0: = min. 
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2.3 Lower Bounds 

Notice that in the optimal allocation pro cess , each bin receives at least l DO J and at 

most r DO l balls, and the maximum bin load is equal to r DO l, deterministically. Thus, 

to prove the first lower bound stated in Theorem 2.1, we only need to show that the 

maximum bin load is at least log2logn - 8(1), w.h.p., for all m = Sl(n). 

It is worth mentioning that Vocking [170], while analyzing the worst-case perfor­

mance of algorithm LEFT-SHORTCHAIN(n, m), proved that if the bins in algorithm 

NONUNIFoRM-GREEDyMC(n, m), where m = Sl(n), are chosen according to any ar­

bitrary (possibly dependent) probability distributions, then the maximum bin load­

as it is revealed in Theorem 0.5-is at least 0.72 ... x lOg2logn - 8(1), w.h.p. Of 

course, our lower bound is proved only for the fixed density model, but it is obviously 

better than Vocking's lower bound by a constant factor. 

We begin by proving the following intermediate result for nonuniform distributions 

that are "sufficiently bounded" in a slightly different model than the fixed density 

model. Suppose that for each n E N, we have two sequences of probabilities Pn,i 

and qn,i, where i E ln], according to which the first and the second choices of bins, 

respectively, are chosen independently. That is, if (Xt , Yi) E [0,1 F is the hashing pair 

available for the t-th ball, and In,i is the subinterval that represents the i-th bin, then 

for all t E lm], and i E ln], we have 

Of course, LiPn,i = Li qn,i = 1, for all n E N. This model is more general than the 

fixed density model, because the probabilities Pn,i and qn,i could be written as 

Pn,i = ln,i h1,n (u) du, and qn,i = ln,i h2,n (u) du, 

where h1,n and h2,n are densities over [0,1] which could be different for each n; while 

in the fixed density model h1,n = hJ, and h2,n = hg, for all n E N. Nonetheless, the 
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next theorem is true even if the probabilities are obtained from different densities on 

[0,1 J for each n. 

Theorem 2.2. Suppose that algorithm NONUNIFoRM-GREEDyMC(n, m) is imple-

mented in the model defined above with two sequences of probabilities Pn,i and qn,i, 

where n, mEN. Let 0: := min, and Ln,m be the maximum bin load upon termination. 

If there are some constants>. 2: 1, and 6 > 0 such that, for all n large enough, 

L Pn,i 2: 6 , and 
Pn.i~>"ln 

L qn,i 2: 6, 
qn.i~>"ln 

then Ln,m 2: log2log2 n - max (0 , fI3 - log2(co:) 1) - 3, w.h.p., where c = 63 /(2). - 6). 

Proof. Clearly, we can assume that 0: > 216
/ (c log2 n), because otherwise, the lower 

bound is meaningless as it is non-positive. The following proof is a generalization 

of the waiting time argument of Theorem 1.3. We use the same notation. First, 

we divide the allocation pro cess into multiple stages. At each stage we refine these 

survival bins by selecting sorne of them until we reach the stage where we have only 

one survival bin at which we stop. The set of the initial survival bins, which is 

denoted here by In' has no > 0 bins. During any stage in the process, we insert 

balls sequentially and wait until there are enough survival bins. In the k-th stage, 

for example, we wait until nk < nk-1/2 bins survive. We shall define the sequence nk 

later on. An initial survival bin survives the first stage if and only if a ball is inserted 

into it during the first stage; and for all k 2: 2, a survival bin of the (k - 1 )-th stage 

survives the k-th stage if it satisfies one of the following conditions: 

1. The bin contains at least k balls before it is chosen by a ball (as one of its two 

choices) during the k-th stage. 

2. The bin contains k - 1 balls before it is chosen by a ball which is inserted into 

it during the k-th stage. 



CHAPTER 2. NONUNIFORM TWO-WAY CHAINING 63 

A survival bin of the k-th stage has at least k balls in it. In the two conditions above, 

we say that the ball helps the bin to survive. We say that the survival time of a 

survival bin of the k-th stage is t, if the baIl that helps it to survive is the t-th baIl 

inserted during the k-th stage. We denote by Tk the number of balls inserted during 

the k-th stage. This means that Tk is the survival time of the last survival bin of the 

k-th stage. Our job, then, is to show that one can reach the r-th level, where r is 

the lower bound we want to prove, by inserting at most m balls, or more formally, 

2:~=1 Tk :::; m, w.h.p., and n r ~ 1. Following the same mathematics, we write 1-lt to 

den ote the history up to time t, and At to denote the event that the t-th baIl inserted 

during the k-th stage helps a bin to survive. We let 5 j be the survival time of the j-th 

survival bin of the k-th stage. We have seen by using conditional probabilities that if 

there is a number Pk E (0,1) such that lP {At l1-l t - l } > Pk, for aIl t, then 51 -< E / Pk: 

51 is stochastically smaller than E / Pk, where E is an exponential random variable 

with density e-x on [0,(0). This means that lP {51> t} :::; lP {E / Pk > t}, for aIl t. 

Thence, we have 

where El,"" Enk are independent exponential random variables. We also have 

E [Gn ) Pk J = nk/ Pk, and Var [Gnk / Pk J = nk/ p~. Consequently, we see that 

(2.1) 

where Zr := 2:~=l Gn) Pk· Thus far, we have followed the same footsteps as the ones 

in the proof of Theorem 1.3. To complete this proof, we need to define the set of the 

initial survival bins In' and the sequences Pk and nk which are the main differences 

between the two proofs. Observe that we have not used any thing yet about the 

probabilities according to which the bins are selected. 



CHAPTER 2. NONUNIFORM TWO- WAY CHAINING 64 

Define the following sets: Dn := {i : npn,i :S À}, An .- {i: 5/2 :S npn,i :S À} 

and Bn := {i : 5/2 :S nqn,i :S À}. Clearly, for aIl i E An, the probability that a baIl 

chooses the i-th bin as its first choice is at least 5/(2n) and at most À/n. Similarly, 

Bn represents the set of aIl bins that can be chosen by balls as their second choices 

with probability of at least 5/(2n) and at most À/n. Notice that by the assumption, 

we have LiE'D
n 

Pn,i 2: 5. This yields that 

and hence, IAnl > an, where a ~ 5/(2À - 5) E (0,1). Similarly, IBnl > an. There are 

two cases. 

The First Case: IAn n Bn 1 2: an/2 

In this case, we define In' the set of the initial survival bins, to be the first l an/2 J 

bins in An n Bn. Recall that the load of any survival bin of the (k - l)-th stage is 

at least k - 1. Therefore, if the t-th baIl chooses two survival bins of the (k - l)-th 

stage that have not survived the k-th stage yet (and there are at least nk-l - nk such 

bins), then the t-th baIl helps at least one bin to survive the k-th stage. Clearly, if 

the i-th bin is a survival bin of the (k - l)-th stage, th en it must be also an initial 

survival bin, i.e., i E In. Hence, the probability that it is chosen by a baIl as its first 

choice (or alternatively, as its second choice) is at least 5/ (2n). Since the bins are 

drawn independently, and nk < nk_t/2, then we have 

lP {At IHt-d 2: (5(nk-~n- nk)) 2 > (5:~-1) 2 > 2-9 ( 5n~_1 ) 2 ~ Pk. 

Now assume n is sufficiently large, and define the integer sequence 

if k = 0; 
(2.2) 

for k 2: 1, 
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where "" > 1 is an integer to be picked later. Notice that no is the number of 

the initial survival bins, and if we define the lower bound we want to prove to be 

r := r log2 10g2 n - "" - 1 l, we see that nr 2: 1, for n large enough. The integer "" 

helps us to satisfy the condition nk < nk-d2, for aU k 2: 1, (and so it must be at 

least 2), and to bound E [Zr], where Zr = 2::~=1 Gn) Pk. Since for aU k > 0, 

we have 

E[Zrl 

which is true if we set,," = 2 + max (0, f13 -log2(atFO:')l). Notice that 

otherwise. 

FinaUy, by returning back to (2.1), and using Chebyshev's inequality, we get 

Var [Zr 1 218 

lP{Ln,m < r}:S; lP{Zr - E[Zrl > m/2}:S; (m/2)2 :s; 0:'(a510g
2

n)2 = 0(1), 

which is true because 0:' = Sl(1/10gn). This conclu des the first case. 

The Second Case: IAn n Bn 1 < an/2 

Since IAnl > an, then we have IAn - Bnl = IAnl - IAn n Bnl > an/2, and similarly, 

IBn - Ani> an/2. Let In,1 be the set of the first II an/2 J /2 J bins in An - Bn, and 

In,2 be the set of the first r l an/2 J /21 bins in Bn - An. Define In, the set of the 
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initial survival bins, to be the union of the two disjoint sets In,! and I n,2. Evidently, 

lIn 1 = l an/2 J. For simplicity, let us color the bins in In,!, and In,2 with white and 

red, respectively. Observe that if the i-th bin is white, the probability that the first 

choice of a ball is the i-th bin is at least 0/ (2n); and analogously, if the i-th bin is 

red, the probability that the second choice of a ball is the i-th bin is also at least 

0/ (2n). Since at each stage we have two disjoint sets of survival bins, we require at 

the k-th stage that exactly l nk/2 J white bins, and r nk/21 red bins survive the k-th 

stage. The total number of survival bins of the k-th stage is still nk. The load of any 

survival bin (white or red) of the (k - l)-th stage is still at least k - 1. Let Sk,lnk/2 J 

be the survival time of the last survival white bin of the k-th stage. Similarly, let 

Sk,i n k/2 1 be the survival time of the last survival red bin of the k-th stage. Thus, by 

definition, Tk , which is the survival time of the last survival bin of the k-th stage, can 

be written as 

Let At be the event that the t-th ball helps a white bin to survive the k-th stage; 

and similarly, let A; be the event that the t-th ball helps a red bin to survive the 

k-th stage. Obviously, if the first choice of the t-th ball is a white bin, the second 

choice is a red bin, and both choices are survival bins of the (k - l)-th stage that 

have not survived the k-th stage yet, then the ball helps at least one bin to survive. 

In fact, if one of the bins contains at least k balls, then the ball helps both bins to 

survive the k-th stage. The worst-case is when both of the chosen bins have load 

k - 1; in this case, the white bin, for example, survives with probability 1/2, because 

ties are broken randomly. Notice that the number of survival bins of the (k - l)-th 

stage that have not survived the k-th stage yet is at least l nk-d2 J - l nk/2 J white 

bins plus r nk-d21 - r nk/21 red bins. Since nk < nk-d2, and the bins are ch os en 
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independently, thence 

lP'{AtIHt-d > ~ (6(lnk - d 2 J -lnk /2 J)) (6(fnk - d21- fnk/
2 1)) 

2 2n 2n 

> ~ (6(nk- 1 - nk))2 > ~ (6nk_l)2 = 2-9 (6nk_l)2 = Pk. 
2 Sn 2 16n n 

Similarly, lP' {At IHt-d > Pk. Therefore, following the same preliminary argument 

we started with, we get that both Sk,lnk/2J and SZ,rnk/21 are stochastically smaUer 

than Glnk/2J/Pk, and Gr nk/21/Pk, respectively, and hence Tk -< Gnk/Pk. Thus, the 

probabilistic duality (2.1) still holds. Since the sequence Pk is equal to the one in the 

first case, and the number of the initial survival bins no is also the same, we can use 

the same definition of the sequence nk as in (2.2). The proof now continues exactly 

as in the previous case to obtain the same lower bound r with the same /<C. 0 

We are almost ready to prove the lower bound for the fixed density model. We 

now show that the condition of Theorem 2.2 is satisfied in the fixed density model. 

We write L1([0, 1]) to denote the set of aU integrable functions on [0,1]. We say that 

a sequences hn converges to h in L 1([0, 1]), where hn, hE L 1([0, 1]), to mean that for 

any Borel set A ç [0,1], we have 

lim r 1 hn (x) - h (x) 1 dx = a . 
n-too } A 

We say that a sequence hn converges to h for almost all x E [0, 1] (or almost every­

where on [0,1]) to mean that Ihn(x) - h(x)1 ~O, for all x E [0,1], except possibly 

on a set of Lebesgue measure zero. Now we recall the following theorems. For proofs, 

or more exp os ure on Lebesgue measure theory and real integration, we recommend 

[85, 156, 175] and [43, Ch. 2]. 

Theorem 2.3 (Lebesgue Density Theorem). Let h be a density on [0,1]. Then 

for almost all x E [0,1], 

. 1 J hm-
r-tOr 

Ih(y)-h(x)1 dy=O, 

B(x,r) 
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where B(x, r) is a ball centered at x of Lebesgue measure r. 

Theorem 2.4 (Scheffé). If hn is a sequence of densities on [0,1] that converges 

almost everywhere to a density h on [0, 1], then hn converges to h in LI ([0, 1]). 

The general lower bounds stated in Theorem 2.1 follow easily: 

Corollary 2.1. Suppose that algorithm NONUNIFORM-GREEDyMC(n, m), where 

n, mEN, is applied in the fixed density model where the hash functions f and g 

behave according to fixed densities h f and hg over [0,1], respectively. Let Ln,m be the 

maximum bin load upon termination. There exists a constant c > ° such that w.h.p., 

Ln,m ~ log2log2 n - max (0, r 13 - log2(CO:) 1) - 3. 

Proof. Choose constants 5 E (0,1), and À ~ 1 such that 

Notice that these constants depend solely on h f and hg, as 

lim r hf(x) dx = lim r hg(x) dx = 1. 
>.--+00 J h <>. >.--+00 J h <>. f_ 9-

Recall that the balls select the i-th bin, where i E ln], according to the probabilities: 

Pn,i:= r hf(x) dx, 
JIn,i 

and qn,i:= r hg(x) dx. 
JIn,i 

To apply Theorem 2.2, we need to show that there is a constant 5' > ° such that for 

n large enough, 

L Pn,i ~ 5' , and 
Pn,i'S.>'!n 

L qn,i ~ 5'. 
qn,i'S.>'!n 

Define the two sets of bins Pn = {i : Pn,i ::; À/n}, and Qn = {i : qn,i ::; À/n}. Let 

hf,n and hg,n be the histograms of h f and hg, respectively, that is, the following 

sequences of densities on [0,1]: 

n n 

hf,n(x) = LnPn,i IT[XEIn,;] , and hg,n(x) = Lnqn,i IT[XEIn,;]· 
i=l i=1 
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o I n ,1 

Figure 2.3: The histograrns of hf and hg. The figures also show the bins (or the 

subintervals) that are chosen with probabilities of at rnost À/n. 

The Lebesgue density theorern states that the sequences hf,n and hg,n converge 

alrnost everywhere to hf and hg, respectively, on [0,1]. This is because every subin­

terval In,i is a Borel set whose size is l/n, and if x E [0,1], then x E In,j, for sorne 

j E ln]. Hence for alrnost an x E [0, 1], we have 

Ihf,n(x) - hf(x)1 = n ln,j hf(y) dy - n ln,j hf(x) dy 

< n ln,j Ihf(y) - hf(x)1 dy ~ o. 

Subsequently, Scheffé's theorern irnplies that hf,n and hg,n converge to hf and hg, 

respectively, in LI ([0, 1]), which rneans that 

J hf,n(x) dx 
n J hf(x) dx, and J hg,n(x) dx 

n J hg(x) dx. --+ --+ 
hf,n"5:.À hf9 hg,n"5:.À hg "5:. À 

Let 

I Pn := U In,i, and I Qn := U In,i. 
iEPn iEQn 
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and similarly, 

qn ~ L qn,i = f hg,n(x) dx ~ f hg(x) dx ;::: 6. 
iEQn IQn hg-:;À 

Thence, there exists iL E N such that, for aU n > iL, both Pn and qn are at least 6/2. 

Therefore, by Theorem 2.2, the result foUows with the constant c = 63 / (16'\ - 46). 0 

2.4 Upper Bounds 

In this section, we focus on the second part of Theorem 2.1 about the upper bounds 

for the worst-case search time of algorithm NONUNIFORM-SHORTCHAIN(n, m). We 

will bound the maximum bin load of algorithm NONUNIFoRM-GREEDyMC(n, m) in 

the fixed density model. We first deal with bounded densities. 

2.4.1 Bounded Densities 

A density h over [0,1] is said to be bounded by a constant ,\ if and only if h(x) :::; '\, 

for almost aU x E [0,1]. Notice that ,\ ;::: 1 because h is a probability density function. 

We shaU establish the foUowing theorem. 

Theorem 2.5. Suppose that algorithm NONUNIFORM-GREEDyMC(n, m), where 

n, mEN, is applied in the fixed density model where the hash functions f and 9 

behave according to fixed densities h f and hg over [0, 1], respectively. Let Ln,m be 

the maximum bin load upon termination. Let 0; := min. Suppose that both h f and 

hg are bounded by some constant'\. Then Ln,m :::; log2log2 n + 16,\20; + 4, w.h.p. 
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M oreover, for any constant E > 1, there is a constant c( E) such that if Cl:' 2: clog n, 

then Ln,m < 2EÀCl:', w.h.p. 

In light of Theorem 2.2, it is clear that Theorem 2.5 has the best asymptotic first 

term when 1/ log n « Cl:' « log log n, and it is optimal modulo a multiplicative factor 

for Cl:' = O(1oglogn). Recall that Theorem 0.3 reveals that in the case of uniform 

densities, the maximum bin load is indeed log2logn + Cl:' ± 8(1), w.h.p. 

We praye Theorem 2.5 by using the method of witness tree we explained in Section 

1.4. The proof, more or less, is the same as the uniform case, except in computing the 

probability of a witness tree. Recall that we write Wk (h), where h, kEN, to denote a 

witness tree of height h whose root node represents a baIl in the set [k J. The internaI 

nodes of any witness tree are white labelled nodes, and the leaves are either black 

nodes or bin (unlabelled) nodes that represent bins with load of at least é" where 

é, E N is a fixed integer to be picked later on. Clearly, h + ç ::; k. Every white no de 

is labelled with a number of a baIl that belongs to the set [kJ. Each black leaf has a 

label of an internaI node that precedes it in BFS order. Nodes represent balls which 

are identified with the bins that harbor them. For any k, h, dEN, and nonnegative 

integer z, we denote by Wk(h, d, z) the class of aIl witness trees vVk(h) that have 

d white nodes, and z black nodes, (and hence, d - z + 1 bin nodes). Since we are 

dealing with algorithm NONUNIFoRM-GREEDyMC(n, m), the existence of a witness 

tree Wm(h) implies the existence of a bin ofload at least h+ç, upon termination. The 

main argument, then, is to show that a witness tree Wm(h) occurs asymptotically 

almost surely. 

Obviously, Lemmas 1.1 and 1.2 can be applied here as they have nothing to do 

with probabilities. Thus, we only need to bound the probability that a witness occurs. 

Notice that since both of the densities are bounded by À 2: 1, then for aIl i E ln], and 
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t E lm], we have 

where (Xt , yt) is the hashing pair available for the t-th ball, and In,i is the subinterval 

that represents the i-th bin. We have the following lemma. 

Lemma 2.1. Let n, m E M. Let A be the event that upon termination of algorithm 

NONUNIFoRM-GREEDYMC(n, m), there are at most l n/é, J bins with at least é, balls. 

Then for any integers n, h, d E M, and integer z E [0, dl, we have 

Proof. Let Wm(h) E Wm(h, d, z) be a fixed witness tree. To compute the probability 

that W m (h) occurs, we follow the same technique we used to prove Lemma 1.3 for 

the uniform case. Using the conditional method, we look at each node in BFS order. 

Recall that the bins are drawn independently. Suppose that we are at an internaI 

node, say u, in Wm(h). Then, conditioning on A and on everything revealed except 

those nodes that precede u in the BFS order, the probability that one given child of 

no de u is exactly as indicated in the witness tree depends on the type of the child. 

If the child is white or black, then the conditional probability is not more than À/n. 

Since there are d + z - 1 edges in the witness tree that have a white or black no de as 

their lower endpoint, then by multiplyingjust these probabilities, we have (À/n)d+Z-l. 

If the child is a bin node, however, then the conditional probability is at most À/é" 

because there are at most l n/é, J bins with at least é, balls (given A is true). Since 

there are d - z + 1 bin nodes, this yields (À/ é,)d-z+l. The result follows by multiplying 

the conditional probabilities. o 

The next lemma shows that event A in Lemma 2.1 is most likely to be true, for 

sufficiently large é,. 
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Lemma 2.2. Let n, mEN. For.e E ln], let Ng be the number of bins of load at least 

.e, upon termination of algorithm NONUNIFoRM-GREEDvMC(n, m). If 0: = o(n1/ 3 ), 

and 6Ào::S.e = 0(0:), then Ng:S ln/.eJ, w.h.p. 

Proof. Fix f! ~ 6Ào:. For i E [n], let Li be the load of the i-th bin after the insertion 

of m balls. Clearly, Li = I:,T=l Uji, where Uji is the indicator that ball j is inserted 

into bin i. The variables Uji are not independent. However, Uji :S V}i, where V}i is 

the indicator that at least one of the choices available for ball j is bin i. Evidently, 

the variables V}i are independent, and lP' {Vji = 1} :S 2À/n, for all j E [ml. Thus, Li 

is stochastically smaller than Bin(m, 2À/n), for any i E ln]. Therefore, Chebyshev's 

inequality yields that 

~ . 2Ào:n 3n 
E[Ne] = t-tlP'{Li ~ f!}:S nlP'{Bm(m,2À/n) ~ f!}:S f!2(1- 2Ào:/f!)2 :S 4f!' 

because € ~ 6Ào:. Observe that Ng can be expressed as a function of 2m independent 

hashing values, and if one of these values is changed, then Ng may decrease or increase 

by at most one. Thus, by McDiarmid's inequality (Lemma 0.3), we obtain 

lP'{Ng~n/f!}:SlP'{Ng-E[Ng]~ ~} :sexP(1;0:~2) = 0(1), 

if f! = 0(0:), and 0: = o(n1
/

3
). 

Proof of Theorem 2.5. 

D 

First of all, the second part of the theorem can be easily seen, if we imagine that the 

greedy allocation process is modified as follows. Instead of inserting each ball into the 

least full bin among its two choices, we place it into the first bin and we insert another 

auxiliary ball into the second one. Then the maximum bin load in this allocation 

process is greater then Ln,m' The modified process is equivalent to the nonuniform 

classical allocation process with 2m balls and n bins where the odd-numbered, and the 
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even-numbered balls are inserted into bins chosen independently at random according 

to the densities hf , and hg, respectively. Sinee the densities are bounded by À, then 

any bin is chosen-by odd- or even-numbered balls-with probability of at most 

À/n. Thus, the load of any bin in this modified proeess is stochastically smaller 

than Bin(2m, À/n). By Angluin-Valiant's binomial tail inequality, we see that for 

any constant E > 1, 

IP{Ln,m ~ 2EÀCl:} < nIP{Bin(2m,À/n) > 2EÀCl:} 

< nexp(-2(dogE-E+1)ÀCl:) = 0(1), 

if Cl: ~ clogn, for sorne constant c > (2(dogE - E + 1)À)-1. Alternatively, one can 

prove this also by using the fact that each bin load in the greedy allocation pro cess 

is stochastically smaller than Bin(m, 2À/n), as we have shown in the proof of Lemma 

2.2. 

Regarding the first upper bound of the theorem, we can assume, subsequently, 

and without lose of generality, that 1 ~ Cl: = O(logn). Let h, ç, T] E [2,00) be integers 

to be defined later. Let A be the event that upon termination of N ONUNIFORM­

GREEDyMC(n, m), there are at most l n/ç J bins that harbor at least ç balls. Clearly, 

IP{Ln,m ~ h+Ç} < IP{Ln,m ~ h+çIA}+IP{AC
} 

def p+IP{AC
}. 

We bound the probability p by using the witness tree method. Recall that in any 

witness tree Wm(h) E Wm(h, d, z), the number of white nodes d E [2,2 h ), and the 
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number of black nodes z E [0, dl. Therefore, using Lemmas 1.1, 1.2, and 2.1, we get 

p < lP{UWm(h) [Wm(h) occurs] lA} 

< L lP{Wm(h) occurs 1 A} 
Wm(h) 

lP {Wm(h) occurs 1 A} 
d=2 z=O Wm(h)EWm(h,d,z) 

2h -l d 

< L L IWm(h, d, z)1 sup lP {Wm(h) occurs 1 A} 
d=2 z=O Wm(h)EWm(h,d,z) 

2
h 

d 2d+14ddzm d)..2d 

< L L çd-z+l nd+z-1 ll[[z:2:1J)U[d>2 h -ryJ] 
d=2 z=O 

2n 2

h 

(800)..2) d d (dç) z T ~ -ç- ~ -; ll[[z21J]U[d>2h -ry]]. 

The following computations are similar to the pro of of Theorem 1.4. We proceed by 

splitting the last sum over d :::; 2h-1J, and d > 2h-1J. Clearly, wh en d :::; 2h- 1J , we have 

z 2: 7], and thus 

provided that n is so large that 2h+lç :::; n, (this insures that dç/n < 1/2). For 

d E (2 h-1J, 2h], we bound trivially, assuming the same large n condition: 

d (dç) z L -; < 2. 
z=o 

Substituting back, we get 

(2.3) 

We choose ç = i16OOÀ2l, so that 8oo)..2/ç :::; 1/2. With this choice, we have 

< -- 4C -4n (ç)1J-1 

p - ç22h -ry + n ' 
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where C = 'Ld>2 dl) /2d. Clearly, sin ce Œ is in the range assumed ab ove , the probabil­

ity p tends to zero, if we put h = 'Tl + r log2log2 nI) l, and 'Tl = 2. Notice that ç and h 

satisfy the technical condition ç2h+l ::::; n, asymptotically. Moreover, since ç satisfies 

the condition of Lemma 2.2, lP{AC} = 0(1). o 

Remark 2.1. It is not difficult to see from the last computations that indeed for any 

constant E E (0,1), 

w.h.p. Also, for Œ = 8(1), and any constant 'Tl 2: 2, we have 

The Lightly Loaded Case 

In the following theorem, we improve the upper bound for the lightly loaded case, 

that is, when Œ = 0(1). 

Theorem 2.6. If, in addition to the assumptions of Theorem 2.5, Œ ::::; 1/(16À2 ), 

then Ln,m ::::; log2log2 n - lOg2log2(8ŒÀ2)-1 + 4 = log2log(1/a) n + 8(1), w.h.p. 

Proof. We adjust the last part of the proof of Theorem 2.5, by noting that setting 

ç = 1 suffices for our choice of Œ. Thus, from (2.3) we obtain 

if we let 'Tl = 2, and 
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Notice that for this analysis to be true, the number of balls m has to be at least h+ç, 

as it is clear from the definition of the witness tree. Finally, if m < h + ç, then the 

result is trivially true. o 

Theorem 2.6 reveals that if the number of balls m = l nl-l/2r J, where 

th en Ln,m :::; r + 8(1), w.h.p. This implies that the maximum bin load is constant 

merely by insuring that the load factor is polynomially smaller than one. Secondly, 

the greedy multiple-choice allocation pro cess exponentially decreases the maximum 

bin load aIl the time. Compare this with the classical allocation process, where each 

baIl is inserted into a bin chosen independently at random, the maximum bin load is 

at most 2r
, w.h.p., [99, 105]. The third implication of Theorem 2.6 is that increasing 

the number of bins to n1+o(l) guarantees a plausible decrease in the maximum bin 

load. Indeed, inserting n balls into l n1+1/2r J bins, where r is as defined above, yields 

that the maximum bin load is at most r + 8(1), w.h.p. For example, we can decrease 

the maximum bin load to the levellogloglogn, ifwe increase the bins to n1+1/1og1ogn. 

Of course, aIl the results presented in this section (i,e., for bounded densities) are 

also true for the uniform allocation process. 

The Dynamic Case 

In the dynamic case, we are given a sequence of requests Wl, W2, W3, ... , in advance, 

to be performed by algorithm NONUNIFORM-GREEDyMC in the fixcd density model 

with n E N bins, where the j-th request Wj is either an insertion or a deletion request 

of a baIl. A deletion request asks the algorithm to remove one of the inserted balls 

from its bin. The baIl itself is specified in the request. An insertion request asks 

the algorithm to insert a new baIl. Although the sequence is given in advance, the 
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insertion operations are still performed on-iine, without any information about the 

future requests. The aigorithm is applied in the fixed density modei: that is, each 

new ball is piaced into the ieast full bin among two bins X and Y chosen (at insertion 

time) independently at random according to fixed densities hf and hg, respectiveiy, 

over [0,1]. Suppose that the densities are bounded (say by constant À), and the 

sequence of requests is designed such that at any certain time j, there are at most 

mEN balls residing in the bins. Then we claim that the upper bounds of Theorems 

2.5 and 2.6 are still true. In particuiar, the maximum bin ioad at any time is at most 

log2iogn + 0(0:), w.h.p., where 0: = min. 

The proofs of the above theorems can be adjusted by adjusting the definition of 

the witness tree. First of all, consider a snapshot of the allocation pro cess at an 

arbitrary fixed time j, i.e., exactly after the aigorithm performs the j-th request. By 

assumption, there are at most m balls in the bins. For simpiicity, assume there are 

exactiy m balls, numbered 1, ... ,m according to their insertion times. Let (Xt, yt) 

be the hashing pair availabie for ball t E [ml. We identify each ball with the bin that 

harbors it. The full history tree Tt of a ball t E [ml (at time j) describes the history 

of the bin that contains the ball t up to time j; however, we siightiy modify its formai 

definition as follows. The root of Tt is iabelled t, and is coiored white. The root has 

two chiidren, a ieft chiid corresponding to bin Xt, and a right child corresponding to 

bin yt. The ieft chiid is iabelled and coiored according to the following ruies: 

(a) If the bin X t contains sorne balls whose numbers are iess than t (i.e., balls that 

are inserted before ball t), and the ball with the iargest number iess than t in 

that bin, say T, has not been encountered thus far in the BFS order of the tree 

Tt, then the ieft chiid of t is iabelled T and coiored white. Notice that ball T 

may not be actuallY the iast ball inserted in bin X t before insertion time of ball 

t, but it has existed at that time and still exists in the bin at time j, and no 
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other ball with larger number has this property. 

(b) As in case (a), except that T has already been encountered in the BFS order. We 

color the node black, and label it T. 

( c) If the bin X t does not contain any ball wi th number less than t, then the left 

child is unlabelled gray node. 

Similarly, the right child of t is labelled and colored by following the same rules but 

with bin yt. We continue processing nodes in BFS fashion. A black or gray node 

in the tree is a leaf and is not processed any further. A white node with label T is 

processed in the same way we processed the ball t, but with its two bins X T and YT • 

We continue recursively constructing the tree until all the leaves are black or gray. 

Obviously, the full history tree has at least one gray node. Notice that the tree is 

constructed from the snapshot we made at time j, that is, the above rules are applied 

according to the status of the bins at time j. 

The difference between this new definition of the full history tree and the old one 

is that in the old one, usually the children of any parent node represent the topmost 

balls in the bins chosen by the parent at insertion time; whereas in the new definition, 

these topmost balls may not exist at time j, so we have to settle with the balls that 

have existed at that time and still exist at time j. In the old full history tree, the 

load of the bin containing the root's ball is equal ta the length of the shortest path 

from the root to any gray node. This is not true any more in the new history tree. 

The load of the bin containing the root's ball at time j is nat less than the length of 

the short est path from the root to any gray node, and this is what we want. 

Consequently, based on this new definition of the full history tree, we define the 

truncated history tree and the witness tree, in the same way as we did before. The 

truncated history tree of height h of ball t (at time j) is only the top part of the 
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new full history tree Tt which includes all nodes at the first h + 1 levels, and the 

remainder is truncated. A witness tree, which we denote by Wm(h), is a special 

truncated history tree of height h (at time j) of a ball in the set lm], and with two 

types of leaf nodes: black nodes and bin nodes which represent bins with load of 

at least ç, where ç is an integer we choose it later on. Bin nodes are at the lowest 

level. For any m, h, dEN, and integer z 2: 0, we write Wm(h, d, z) to denote the 

class of all witness trees Wm(h) that have d white nodes, and z black nodes. Observe 

that a wi tness tree W m (h) exists if and only if the maximum bin load, exactly after 

algorithm NONUNIFORM-GREEDyMC performs the j-th request, is at least h + ç. 

Equivalent versions of Lemmas l.1, l.2, 2.1, and 2.2 can be obtained by following 

the same proofs, because the structure ofthe new witness tree W m (h) is exactly as the 

old one, there are m balls residing in the bins, and the bins are chosen independently 

with probability of at most À/n. Subsequently, the upper bounds stated in Theorems 

2.5 and 2.6 can be proved also for the dynamic case. Thus, we get the following 

theorem. Notice that in the case of uniform densities, the theorem can be combined 

with remark l.l. 

Theorem 2.7. Let Wl, W2, W3, ... be a sequence of insertion and deletion requests to 

be performed by algorithm N ONUNIFORM-SHORTCHAIN in a hash table of size n in 

the fixed density model where the hash functions behave according to fixed bounded 

densities over [0,1]. Suppose that the sequence is specified before the algorithm starts, 

and it is designed such that at any certain time there are at most mEN keys in the 

table. Let Tn,m be the absolute maximum search time. Then Tn,m :'S 2log2 log n + 
O(m/n), w.h.p. Moreover, there is a constant c > 1 such that if cr < l/c, then 

Tn,m ::; 2log2 log(1/a) n + 8(1), w.h.p. 
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2.4.2 Unbounded Densities 

Suppose that we have r E N balls numbered 1, ... ,r. Let 1{ := { (L\\, Yt) 1 t E [r]} 

be a set of hashing pairs available for the r balls to be inserted by an algorithm, 

which we name A, into n E N bins by using the greedy multiple-choice paradigm. 

That is, the balls are inserted sequentially where baIl t E [r] (i.e., the t-th inserted 

- -
baIl) is placed into the least loaded bin among the bins Xt and yt, where ties are 

broken randomly. Let J be a proper nonempty subset of [r] of size m < r. Let 

:F := { (Xt , Yt) E 1{ 1 t E J} be a set of hashing pairs available for m balls to be 

inserted by an algorithm, which we name B, into another set of n bins by following the 

greedy multiple-choice paradigm. Aigorithm B inserts the balls in the same order 

as in algorithm A, that is, if JI, J2 E J, and JI < J2, then the bail JI is inserted 

before baIl J2. Furthermore, assume that for each t E [r], we have a uniform [0, 1] 

random variable Rt that is used by both algorithms to break ties: whenever the bins 
- - -
X t and li have the same number of balls, the algorithm inserts baIl t into bin Xl, 

if Rt < 1/2, otherwise the baIl is inserted into bin li. The bins in both algorithms 

have the same numbers, and to distinguish between the two sets, let us color the bins 

used by algorithm A white, and the bins used by algorithm B blue. 

Lemma 2.3. Suppose that algorithms A and B are applied, as described above, for 

some n, m, r E N, where m < r. Then the maximum bin load of algorithm B is not 

more than the maximum bin load of algorithm A. 

Proof. Let JI < ... < Jm be the elements of J. For i E ln], and t E lm], let LA(i, t) 

be the load of the i-th white bin exactly after the insertion of baIl jt by algorithm 

A. Similarly, let LB(i, t) be the load of the i-th blue bin immediately after the 

insertion of baIl Jt by algorithm B. Let LA(i, 0) and LB(i, 0) be the load of the i-th 

white and blue bins, respectively, just before the insertion of baIl JI' It is more than 

enough to prove that LB(i, t) :::; LA(i, t), for aIl i E ln], and t E {O, ... , m}. We 
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use induction on t. Clearly, when t = 0, we have LB(i,O) = 0 ~ LA(i,O), for aIl 

i E ln]. Assume that LB(i, t) ~ LA(i, t) is true, for aIl t < T, and i E ln]. We 

need to show that LB(i, T) ~ LA(i, T), for aIl i E ln]. Without loss of generality, 

assume that algorithm B inserts baIl jT into the blue bin X T . This means that either 

LB(XT , T - 1) < LBCYT , T - 1), or LB(XT , T - 1) = LB(YT , T - 1) and RjT < 1/2. 

Since only the load of bin XT is increased, that is, LB(XT , T) = LB(XT , T - 1) + 1, 

thence, for aIl i =f. X T , we have 

So we only need to show that LB(XT , T) ~ LA(XT , T). If algorithm A inserts baIl 

Jr into the white bin X T , then 

~ ~ - -
LB(XT , T) = LB(XT , T - 1) + 1 ~ LA(XT , T - 1) + 1 = LA(XT , T). 

If algorithm A inserts baIl jT into the white bin YT , then there are two cases: either 

LA(XT , T - 1) > LA(YT , T - 1), or we have LA(XT , T - 1) = LA(YT , T - 1), and 

Rh ~ 1/2. In the first case, we get 

LB(XT , T - 1) + 1 ~ LB(YT , T - 1) + 1 

< LA(YT , T - 1) + 1 ~ LA(XT , T - 1) 

LA(XT , T). 

- -
If the second case is true, then LB(XT , T - 1) < LB(YT , T - 1), otherwise there is a 

contradiction with RjT < 1/2. This yields that 

LB(XT , T - 1) + 1 ~ LB(YT , T - 1) 

< LA(YT , T - 1) = LA(XT , T - 1) 

LA(XT , T). 

o 
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Next, we need to recall sorne properties of the rejection method (see, e.g., [42, Sec. 

11.3]). It will en able us to make a transition from nonuniform to uniform distributions. 

For t E [m], let (Xt , yt) E [0, 1]2 be the hashing pair available for the t-th baIl, 

where X t and yt are drawn independently from the densities hf and hg, respectively. 

Assume, temporarily, that both hf and hg are bounded by sorne constant À. Let 

r E N. Suppose that we have a uniform sample of points (.X\, UI ), ... , (XT) Ur) and 

CYl, VI),"" CYr, Vr), where aIl the random variables Xt, Yt, Ut and vt are independent 

and uniformly distributed over [0,1]. Let F be the set of aIl points (Xt , Yt), where 

t E [r], such that UtÀ ::; hf(Xt), and vtÀ ::; hg(Yt). Notice that for any t E [r], the 

random point (Xt, UtÀ) belongs to the rectangular region [0,1] x [0, À]. This means 

that by definition, 

where Reg(h f ) is the region under the curve hf in the unit square [0,1]2. 

A ---- -------------------- -

1 x 

Figure 2.4: The point (Xl, UIÀ) E Reg(hf ). The area under the curve is equal to 

one, because h f is a denisty. 

The following lemma highlights sorne of the probabilistic properties of the set F. 

Lemma 2.4. The following are true: 
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2. Ifr = 2)..2m , then IP'{IFI2: m} ~O. 

Proof. Clearly, 

Let A ç [0,1] be any Borel set. Since Xt, yt, and Ut are independent and uniform 

over [0,1], then we have 

lP' { Xt E A 1 Ut).. ~ f(Xt ) } 

lP' {[ Xt E A ] n [ Ut ~ f(Xt )/).. ]} 

lP' { Ut).. ~ f(Xt ) } 

fA hf(x)/).. dx { } 
1/)" = lP' Xl E A . 

Similarly, Yt~YI' It is also evident that IFI~Bin(r,1/)..2), because 

Therefore, if r = 2)..2m , then by Chebyshev's inequality, we get 

o 

We are now ready to prove the last upper bound in Theorem 2.1. Clearly, if 

Cl: = 0(1), the upper bound is tight up to a multiplicative constant. 

Theorem 2.8. Suppose that algorithm NONUNIFORM-GREEDyMC(n, m), where 

n, mEN, is applied in the fixed density model where the hash functions f and 9 

behave according to fixed densities h f and hg over [0,1], respectively. Let Ln,m be the 
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maximum bin load upon termination. Ifthere is a sequence Àn = O(Vloglogn) such 

that 

J hf(x) dx + J hg(x) dx = o(l/m) , (2.4) 

hf>Àn hg>Àn 

then Ln,m = 0((00 + 1) loglogn), w.h.p. 

Proof. Define the sets Sn = {x 1 hf(x) :::; Àn}, and Tn = {x 1 hg(x) :::; Àn}. Let n 

be large enough such that ISn hf(x) dx > 1/2, and ITn hg(x) dx > 1/2, which is 

obviously possible because of the condition (2.4). Recall that each ball t E [ml has 

o 

Il 

Il 
Il x 

1 

1 1 
1 1 x 

o 1 

Figure 2.5: The total area of the shaded regions under the curves hf and hg should 

be o(l/m). 

a pair of hashing values (Xt , yt) E [0,1]2, where X t and yt are drawn independently 

from the densities h f and hg, respectively. Let D be the event that all the hashing 

pairs available for the m balls belong to the set Sn X Tn, that is, 
m 

D = n [Xt E Sn, yt E Tn ] . 
t=1 

Notice that 

lP{DC
} < mlP{X l E S~} + mlP{Yl E T~} 

m ( J f(x) dx + J g(x) dX) = 0(1). 
f>À n g>Àn 
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Now we apply the rejeetion method. Let r > m be an integer to be picked later. Con­

si der the following uniform sample: (X\, Ul ), ... , (Xn Ur) and (171, VI), ... , (11;." v;.), 

where all the variables Xt , Yt, Ut, Vi E [0, 1] are ehosen independently and uniformly at 

random. Let 1{ := {(Xl, Yd, ... , (Xn 11;.)} represent a set of uniform hashing pairs 

available for r balls. We refine the set 1{ by aecepting only those points that have 

the same distribution as the original hashing pairs (Xt , lt). We do that as follows. 

Let F be the set of all points (Xt , Yt) E 1{ sueh that 

diffieult to see, from a generalization of Lemma 2.4, that if the event D is true and 

- - - - c . 
(Xt, lt) E F, then (Xt , lt) =(Xl , Yd on Sn X Tn· Smee ISn hf(x) dx > 1/2, and the 

variables Xt , Yt, Ut and Vi are independent and uniformly distributed over [0,1], then 

and similarly, 

This means that lP { (Xt , Yt) E F} > 1/(4À~). Renee, IFI is stoehastieally greater 

than Bin(r, 1/(4À~)). By putting r := r8À~m l, one ean see-by using Chebyshev's 

inequalityas in Lemma 2.4-that lP{IFI < m} = 0(1). Let E:= [IFI ~ ml. Now 

suppose that we have an algorithm A that inserts r balls into n bins by using the 

greedy multiple-ehoice paradigm where the elements of 1{ are used as hashing pairs 

for the r balls. That is, each ball t E [rl is inserted into the least full bin among 
- -

the two bins X t and lt, breaking ties randomly. Let MA be the maximum bin load 

upon termination of algorithm A. Similarly, assuming that E is true, let M B be the 

maximum bin load of an al go rit hm B that inserts m balls into another set of n bins 

by using the greedy multiple-ehoice paradigm where the first m elements of Fare 
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used as the hashing pairs of the m balls. Furthermore, assume that for each t E [r], 

we have a uniform [0, 1] random variable Rt that is used by both algorithms to break 
~ ~ 

ties: whenever the bins X t and yt have the same load, the algorithm inserts ball t 

into bin Xt, if Rt < 1/2, otherwise the ball is inserted into bin Yi. Observe that 

given E is true, Lemma 2.3 asserts that M B ::; MA. Since the hashing values of 1-l 

are drawn independently from a uniform density over [0, 1], and the number of balls 

r = r 8À;m l, then by Theorem 2.5, we have MA ::; (n ~ log21og2 n + 128À; Œ + 4, 
~ ~ ~ ~ L 

w.h.p. Recall that if the event D is true, and (Xt , yt) E F, then (Xt , yt) =(Xt , yt). 

This means that while D and E are true, Ln,m ~ M B. Therefore, we conel ude that 

for n large enough, 

P{[Ln,m > (n]nEnD}+P{[Ln,m > (n]n(EnD)C} 

P {[ MB > (n] nE n D} + P {[ Ln,m > (n] n (E n D)C} 

< P{[MA > (n]nEnD}+p{ECUDC} 

< P{[MA > (n]} + P{EC} + P{DC} = 0(1). 

o 



Chapter 3 

Orientation and Off-line Two-way 

Chaining 

In this chapter, we consider the off-line version of UNIFORM-SHORTCHAIN(n, m). 

We address the foUowing question. For fixed kEN, what is the largest mEN 

such that whenever aU hashing pairs (f(x), g(x)), for x E /C, are known in advance, 

then asymptoticaUy almost surely, each key x E /C can be assigned to one of the 

chains f(x) or g(x) where the maximum chain length is at most k? We model this 

assignment problem by an orientation of a uniform random graph with n vertices and 

m edges. We also present sorne efficient heuristics that find such assignment. 

3.1 Motivation 

The off-line two-way chaining problem, evidently, provides a useful means for de­

signing efficient static schemes that achieve constant worst-case search time. Such 

schemes have been widely studied in the literature. Perfect or almost-perfect hashing 

schemes can be designed in linear time and space, but with hidden large constant 

factor, not to mention the need for a large number of "good" hash functions. How-

88 
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ever, by studying off-line two-way chaining, a static hashing scheme whose worst-case 

search time is at most 2k plus 2 (for reading 2 pointers) can easily be designed, once 

we have an efficient algorithm for finding an assignment for the keys with maximum 

chain length of at most k. By using techniques like rehashing, such schemes can be 

modified to support also dynamic data. The off-line analysis of two-way chaining 

can be also used to measure how good the on-line algorithm is. This is known as 

competitive analysis, which has deep roots in load balancing [14, 12, 13, 39]-another 

important application of the greedy multiple-choice allocation process. 

Pagh [144, 145] studied the off-line version of the cuckoo hashing algorithm which 

lS also the off-line version of the nonuniform two-way chaining algorithm LEFT­

SHORTCHAIN. The hash table is partitioned into two disjoint sub-tables Tt and 

T2 of size l n/2 J and r n/2l· The hash functions f and gare chosen independently 

and uniformly at random from the sets lF(U, Tt), and lF(U, T2), respectively. Pagh 

showed that w.h.p., there is an assignment of the keys, where each key x is inserted 

into one of the chains f (x) or 9 (x), such that maximum chain length is at most 1, 

(i.e., without any collision), provided that the hash values (j(x), g(x)), for all x E K, 

are known in advance, and the number of input keys m = IKI ::; (1/2 - E)n, for sorne 

arbitrary constant E > O. This is also true if the hash functions are chosen from a 

smaller class offunctions with O(1ogn) universality, like the ones in [48]. The result is 

proved by applying the Këmig-Hall theorem [46, Theorem 2.1.2] on a bipartite graph 

that models the two sub-tables. The assignment of the keys itself can be found by 

solving a 2-SAT problem that has the following clauses for each pair of distinct keys 

x,y E K: 

• if f(x) = f(y), we create the clause (X(x) V X(y)); 

• if g(x) = g(y), we create the clause (X(x) V X(y)). 

where X (x) is a binary variable which is 1 if x should be inserted into f (x), and 0 if it 
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should be inserted into g(x). Since the hash functions are truly uniform, the number 

of collisions (and hence, the number of clauses) is O(n) in expectation. A linear time 

algorithm like the one in [64] can be used to find a solution for this instance of the 

2-SAT problem. Notice that no polynomial time algorithm is known for solving the 

general k-SAT problem, for k 2: 3. 

This chapter, however, is devoted to the off-line version of algorithm UNIFORM­

SHORTCHAIN(n, m). To be precise, the word "uniform" should have been added to 

the title ofthis chapter. Azar et al. [13] proved that in UNIFORM-SHORTCHAIN(n, n), 

the input keys can be assigned off-line such that the maximum chain length is at most 

10, w.h.p. Their proof is based on modelling the hashing process by an n by n random 

bipartite graph where the set of left vertices is the set of input keys K, and the set of 

right vertices is the set of chains T. For each left vertex x E K, we make two edges 

(x, f(x)) and (x, g(x)). The authors showed that there exists an assignment (i.e., a 

mapping from K to T) such that the degree of each vertex in T is at most 10, w.h.p. 

Indeed, by breaking the set J( into 10 pieces, each of size at most n/10, the Konig-Hall 

theorem can be used to show that each piece has a perfect matching, w.h.p. Czumaj 

and Stemann [38] tightened this result and proved that there is an assignment such 

that the maximum chain length is at most 2, w.h.p. In [39] (the final version of 

[38]), the authors extended the result for any m :::; en, where e < 1.67545943 ... is 

any positive constant. The off-line hashing process is viewed, in the proof of Czumaj 

and Stemann, as a random graph with n vertices and m multiedges. The assignment 

problem, then, is transformed into an orientation problem. The goal is to find an 

orientation such the maximum out-degree is as small as possible. This idea is the core 

of our study. In the next section, we define this random graph model, we explain in 

more detail the result of Czumaj and Stemann, and we state our main contributions. 
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3.2 k-orientability 

Recall that algorithm UNIFORM-SHORTCHAIN(n, m) inserts a set of keys !C of size m 

into a hash table T := {O, ... , n - 1} consisting of n separate chains, where each key 

x E !C, has two hashing values f(x) and g(x) which are independently and uniformly 

distributed over T. Our study is based on the following model. 

The U niform Vertex Model 

We represent the off-line process of UNIFORM-SHORTCHAIN(n, m), where n, mEN, 

by an undirected random graph denoted by G( n, m). It has n vertices representing 

the chains in T, and m multiedges (that may include loops) corresponding to the keys 

of!C. Each edge connects two vertices chosen-one after another-independently and 

uniformly at random, with replacement, from the set of all n vertices. Finding an 

assignment of the keys is equivalent to finding an orientation of the graph. Inserting 

the key x into the chain f(x) means orienting the edge (J(x), g(x)) towards the 

vertex 9 (x). In the final oriented graph, the out-degree of a vertex is defined to 

be the number of incident edges that are oriented outward. Notice that the out­

degree of a vertex u represents the length of chain u. The maximum out-degree of 

the random graph G( n, m) is the maximum chain length of the hash table T. For 

example, if the m edges are realized sequentially, one after another, and each edge 

(u, v) is oriented, upon realization, toward the second vertex v, which means that 

the key is always inserted into the first chosen chain u, then the orientation process 

is equivalent to the on-line algorithm CLASSICCHAIN(n, m), and by Theorem 0.1, 

the maximum out-degree is asymptotic to log ni log log n, in probability, whenever 

m = 8(n). Similarly, if each edge is oriented, upon realization, towards the vertex of 

minimum out-degree, then Theorems 0.2 and 0.3 say that the maximum out-degree 

is log21ogn + min ± 8(1), w.h.p., for m = O(n), because this orientation method is 
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equivalent to the on-line algorithm UNIFORM-SHORTCHAIN(n, m). 

Definition 3.1. An orientation of any graph is called a k-orientation, where k E M, 

if and only if the maximum out-degree of the graph is at most k. If a k-orientation 

exists, we say that the graph is k-orientable. 

The k-orientability can be used for other applications such as graph storing and 

edge membership queries (see [3] for more details). Observe that k-orientability is a 

decreasing property which means that if G(n, m) is k-orientable, w.h.p., then sub­

graphs are also k-orientable w.h.p. For given n, m E M, we would like to find the small­

est integer k such that the random graph G(n, m) is k-orientable, w.h.p., or equiva­

lently, find the maximum integer m ~ kn, for any fixed k E M, such that G( n, m) is 

k-orientable, w.h.p. Throughout, let Ck = sup {c: G(n, cn) is k-orientable w.h.p.}, 

where k E M. Our aim is to estimate Ck, the threshold of k-orientability. Obviously, 

Ck ~ k, because G(n, kn + 1) is not k-orientable, as each vertex can orient outward 

at most k edges. 

Known Results 

It is known that for any constant cE (0,1/2], the uniform random graph G(n, cn) of 

Erdos and Rényi [61], which has no loops or multiedges, consists ofunicyclic connected 

components, and isolated trees, and when c E (1/2,1], there is also a unique giant 

connected component of size 8(n) that has more than one cycle. This classical result 

is also true for our random graph G(n, m), see, e.g., [96]. Clearly, any tree or unicyclic 

component can be oriented easily such that the maximum out-degree is at most one, 

see Figure 3.1. A component that has more than one cycle is not l-orientable. This 

means that Cl = 1/2. 

Czumaj and Stemann [38] proved that w.h.p., the random graph G(n, n) is 2-

orientable, by showing that the giant component can be oriented such that the maxi-
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Figure 3.1: Orienting the edges in tree and unicycle components such that the max­

imum out-degree is at most one. In a tree, a root is fixed first and then aIl the edges 

are oriented (in a BFS order) towards the root. In a unicycle, the edges of the cycle 

are oriented in any direction, and aIl other edges are oriented towards the cycle. 

mum out-degree is at most 2. In [39], Czumaj and Stemann showed that the random 

graph G(n, en) is 2-orientable, w.h.p., for any positive constant e < 1.67545943 .... 

The pro of uses the threshold for the existence of the 3-core in random graphs [150], 

where the k-core is the unique maximal subgraph with minimum degree at least k. 

The result in its general form says that any undirected graph that does not contain 

a (k + 1)-core is k-orientable. The idea foIlows from an algorithm that finds the 

(k + 1 )-core. The algorithm can be modified to find a k-orientation as foIlows. The 

degree of a vertex is defined, here, to be the number of unoriented incident edges. 

GREEDy-ORIENT(Graph: C, integer: k) 

enqueue aIl vertices of degree at most k in a queue Q 

while Q =1= 0 do 

dequeue a vertex from Q and orient aU its edges outward 

scan the vertices and enqueue any vertex of degree at most k to the queue Q 

end while 
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So if the graph does not contain a (k + 1 )-core, all the vertices will be enqueued to 

the queue and hence all the edges will be oriented. Otherwise, the remaining vertices 

that cannot be enqueued to the queue have degrees of at least k + 1, and hence they 

constitute the (k + 1)-core. The natural question now is: what is the time of the 

emergence of the (k + 1)-core? For k 2: 3, Pittel, Spencer, and Wormald [150] proved 

that the random birth time of the k-core in the uniform random graph G(n, m) of 

Erdos and Rényi is sharply concentrated around m ~ akn/2, where 

. À 
ak = mm (\) , 

À>O 7rk-I /\ 

00 -ÀÀ i 

and 7rk(À) = lP' {Poisson(À) 2: k} = L _e -.,- . 
~. 

i=k 

lndeed, they showed that for any <5 E (0,1/2), if m :::; akn/2 - n I- O, then a.a.s., 

G(n, m) does not contain any k-core; and if m 2: akn/2 + n I - O, then a.a.s., there 

is a k-core that is connected and of size Pkn + o(n), where Pk = 7rk(Àk), and Àk is 

the point at which the function À/7rk-I (À) attains its minimum value. For large k, 

it is known that ak = k + ylklogk + O(logk). This result can be also extended 

to our model of random graph G(n, m), where loops and multiedges are allowed. 

All this shows that G(n, m) is k-orientable if it does not contain the (k + 1)-core. 

However, the converse is not true, i.e., there are graphs that contains the (k + 1 )-core, 

yet they are still k-orientable, see Figure 3.2. The above analysis only implies the 

inequality Ck 2: ak+1/2, for k 2: 2. This means, for instance, that , C2 2: 1.67545943 ... , 

C3 2: 2.57470137 ... , and so on, see Table 3.1. 

New Results 

In Section 3.3, we reprove a result of Frank and Gyarfas [73] that any graph is k­

orientable if and only if the number of edges of any subgraph is at most k times 

the number of its vertices. We use this characterization (in Sections 3.4 and 3.5) 

to prove that for k sufficiently large, Pk < Ck/ k < 1 - exp (-2k (1 - e-2k )), where 
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(a) (b) (c) 

Figure 3.2: The graphs in (a) and (b) are 5-cores, but, clearly, they are 4-orientable. 

The graph in (c) contains a 3-core, but it is still 2-orientable. 

k+1 ak+1 ak+d2 Pk+I 

3 3.35091887 ... 1.67545943 ... 0.267580655 ... 

4 5.14940274 ... 2.57470137 ... 0.438061712 ... 

5 6.79927548 ... 3.39963774 ... 0.538433561... 

6 8.36534077 ... 4.18267038 ... 0.604638183 ... 

7 9.87529072 ... 4.93764536 ... 0.651844404 ... 

8 11.3441289 ... 5.67206445 ... 0.687379687 ... 

9 12.7810996 ... 6.39054984 ... 0.715208554 ... 

10 14.1923894 ... 7.09619474 ... 0.737666503 ... 

Table 3.1: Numerical computations showing the thresholds of the newborn (k + 1)­

core and the ratio of its (giant) size. The threshold Ck ~ ak+d2. 
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Pk = 1 - 2k exp ( - k + 1 + e-k / 4). We also show that for small k, the lower bound on Ck 

can be computed by solving simultaneously two equations related to the estimation of 

the upper tail of the binomial distribution. See Tables 3.3 and 3.5 for these computed 

bounds, for k E [2,55], which beat the (k + 1 )-core thresholds except for k = 1,2. 

Furthermore, we show that w.h.p., a newborn giant subgraph of size at least Pkn, 

whose edges are more than k times its vertices, emerges around the time Ckn. In 

other words, we prove the following theorem. 

Theorem 3.1. Let U be a universe set of keys, and T be a hash table with n E N 

separate chains. Let J, 9 : U -+ T be independent and truly uniJorm hash functions. 

For constant kEN, let mk be the largest integer such that w.h.p., whenever IC ç U is 

a set of keys of size mk, and the hashing values f(x) and g(x), for x E IC, are known 

in advance, then each key x E IC can be assigned to one of the chains f(x) or g(x) sa 

that the maximum chain length is at most k. Then, for k large enough, we have 

1 - 2k exp (-k + 1 + e-k/ 4) < mk < 1 - exp (-2k (1 _ e-2k )) . 
kn 

3.3 U seful Characterization 

Throughout this chapter, we use the foUowing notations and definitions. For any 

graph G, we write V( G) to denote the set of its vertices. For any set of vertices 

5 ç V(G), we write &(5) to denote the multiset of aU edges whose endpoints belong 

to S. The density of any set of vertices S is the ratio 1&(5)1/151. If the density 

of a set S is strictly greater th an k, for a positive integer k, we say that S is a 

k-overloaded set. The maximum density \IJ(G) of any graph G is defined by 

\IJ(G) = max r 1&(5)1 /1511 . 
SÇV(G) 
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That is, 'li(G) is the smallest integer such that 1&(8)1 ~ 'li(G) 181, for aIl 8 ç V(G). 

We begin by restating the k-orientability property in terms of the edge distribution 

in the graph. Obviously, if a vertex has more than k Ioops, or if 1& (G) 1 > k IV( G) l, 
then the graph G is not k-orientable, as each vertex can orient outward at most k 

edges. The following Iemma generalizes this idea. 

G 

H 

Figure 3.3: The graph G is not 2-orientabIe, because H is a 2-overloaded set 

Lemma 3.1 (Frank and Gyarfas [73]). Any graph G, possibly containing loops 

and multiedges, is k-orientable, where kEN, if and only if its maximum density 

'li(G) ~ k, that is, 1&(8)1 ~ k 181, for all 8 ç V(G). 

This means that finding the maximum density of any graph is equivaient to finding 

the smallest integer k such that the graph is k-orientabie. The Iemma was originally 

proved in a more generai form by Frank and Gyarfas [73], see aiso [71, 72]. We have 

aiso Iearned that around the same time D. Avis and B. Reed independently proved 

the same resuit in unpublished work. Another proofthat uses the Konig-Hall theorem 

[46, Theorem 2.1.2] appeared in [3]. However, we give here a new constructive proof 

based on the following aigorithm which for any given graph G, and kEN, finds either 

a k-orientation, or a k-overloaded set. Recall that the out-degree of any vertex is the 

number of incident edges directed outward where a directed Ioop is counted as one 

out-directed edge. 
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ORIENT(graph: G, integer: k) 

color aIl vertices white 

for each vertex u E V( G) do 

if u has more than k loops, then output {u} "is a k-overloaded set" and stop 

orient outward up to k edges (if possible) incident to u, giving priority to loops 

if out-degree(u) < k, then color it black 

end for 

let L be the list of aIl unoriented edges in G 

while L -# 0 do 

remove an edge (u, v) from the list L, and let S +- 0 

using BFS, find an outward directed path from u (or, if not, then from v) to 

one of the closest black vertices, and while doing so let S be the set of aIl 

vertices visited by the two trips of the BFS started from u and v 

if such path does not exist, then output S "is a k-overloaded set" and stop 

if the out-degree of the black vertex the BFS found is k - 1, then color it white 

reorient the path backward toward u (or, respectively, v), and orient the edge 

(u, v) toward v (or, respectively, u) 

end while 

Algorithm ORIENT is divided into two phases. The objective of phase 1 (the for 

loop) is to orient as many edges as possible while keeping the maximum out-degree 

at most k. This is done by aIlowing each vertex to choose up to k unoriented edges 

incident to it and orient them outward, where, of course, the loops have to be oriented 

first. If there is a vertex with more than k loops, then obviously it is a k-overloaded 

set, and hence the graph is not k-orientable. The algorithm also keeps track of aIl 

vertices whose out-degrees are strictly less than k by coloring them black. Unlike the 

white vertices whose out-degrees are exactly k, these black vertices have the potential 
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+ 

(a) (b) (c) 

Figure 3.4: (a) The algorithm finds a directed path from u to a black vertex. (b) The 

algorithm reverses the direction of the path and orients the edge (u, v) toward v. (c) 

The algorithm cannot find a directed path from x or y to any black vertex, and so it 

sets S, the k-overloaded set, to be the set of all vertices visited by the last two BFS. 

to orient outward more edges than they already have. 

If, by the end of phase 1, there are unoriented edges, the algorithm tries in phase 

2 (the while loop) to orient them, if possible, while preserving a proper k-orientation. 

Here the black vertices are utilized. Notice that a black vertex exists if and only if 

the number of oriented edges is strictly less than kn. However, assuming we have a 

k-orientable graph, we know that the number of edges in the graph is at most kn. 

Therefore, if there is an unoriented edge, say (u, v), then the number of oriented 

edges is strictly less than kn, and hence there must be a black vertex. Notice that 

( u, v) cannot be oriented in any direction, because both of the vertices u and v are 

white, thus far! The black vertex can be used to reorient sorne of the edges while 

preserving a proper k-orientation, and eventually decrease the out-degree of one the 

vertices u or v. The algorithm does that by using a breadth-first search to find a 

directed path from either u or v to one of the closest black vertices. Then it reverses 

the direction of the path. By doing so, the out-degree of the black vertex is increased 

by one, the out-degree of u (or v) is decreased by one, while the out-degrees of all 
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other white vertices along the path stay unchanged. This aUows us to orient the edge 

(u, v) toward v, if the path ends up in u, or toward u, if the path ends up in v. So 

after each reorientation of these paths, we decrease the number of unoriented edges 

by one, while keeping the maximum out-degree at most k. However, a directed path 

from either u or v to any of the black vertices may not exist. In this case the graph 

is not k-orientable as we now show. 

Proof of Lemma 3.1 

Suppose that G is not k-orientable. We shaU prove that the algorithm finds a k­

overloaded set. Clearly, if the algorithm do es not find a k-overloaded set, then the 

graph is k-orientable, because the maximum out-degree is at most k after each step 

in both phases of the algorithm. So assume the algorithm outputs a set S that it 

claims to be a k-overloaded set. Obviously, a vertex with more than k loops is a 

k-overloaded set. So, without loss of generality, assume that the algorithm ends up 

with unoriented edge, say (u, v), and that the breadth-first search was not able to 

find a directed path from neither u nor v to any black vertex. Thus, S is the set of 

aU vertices visited by the last two unsuccessful breadth-first searches (which started 

from u and v) before the algorithm halted. In other words, S is just the set of 

aU vertices that can be reached via directed path from u or v, i.e., u, v E S, and 

if x E S, and (x, y) is an edge oriented toward y, then y E S. Notice that every 

vertex in S is a white vertex whose out-degree is k, and aU its k out-directed incident 

edges are oriented toward vertices inside S. Hence, the total number of oriented 

edges that belong to E(S) is k ISI. But, the unoriented edge (u, v) E E(S). Thus, 

IE(S)I 2:: k ISI + 1, i.e., Sis a k-overloaded set. The other direction of the lemma is 

trivial, because in a k-orientation, each vertex can orient outward at most k edges, 

and hence, lE (S) 1 ::; k ISI, for aIl S ç V( G). o 
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Notice that the worst-case running time of the algorithm ORIENT is O(n2 ), if 

n = V(G) and the density of G is constant. It is worth mentioning, however, that 

Aichholzer, Aurenhammer, and Rote [3J gave an O(n3
/

2
) worst-case running time 

algorithm that is based on Hopcroft and Karp's algorithm [89J for computing a maxi­

mum matching in a bipartite graph. The authors also presented a linear time heuristic 

for finding a 2k-orientation which we calI AAR-HEURISTIC. 

AAR-HEURISTIc(graph: C, integer: k) 

Let S +-- V( C) 

while S i= 0 do 

let u be the vertex with the least degree in S 

if degree(u) > 2k, then output S "is a 2k-overloaded set" and stop 

orient outward aIl edges incident to u, and remove it from S 

end while 

It is not difficult to see that if graph G is k-orientable, then any subgraph of Chas 

at least one vertex of degree (i.e., the number of its unoriented incident edges) at 

most 2k. Thus, algorithm AAR-HEURISTIC finds a 2k-orientation if the graph is k­

orientable. Of course, to determine the optimal k, one can do an exponential se arch 

in 0 (log k) steps. 

We use Lemma 3.1 to prove the upper and lower bounds on the threshold Ck, in 

the next sections. Recall that Ck = sup{c: G(n,cn) is k-orientable w.h.p.}. Notice 

that the existence of a k-overloaded set is an increasing property, i.e., if G( n, m) 

contains a k-overloaded set, w.h.p., then for aIl m' > m, the random graph G(n, m') 

also contains a k-overloaded set, w.h.p. 
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3.4 Upper Bounds 

Notice that the random graph G( n, m) is constructed by choosing 2m vertices inde-

pendently and uniformly at random, with replacement, where each two consecutive 

vertices represent an undirected edge. This means that each loop is chosen with 

probability 1/n2, and each undirected non-Ioop edge is chosen with probability 2/n2. 

For the remainder of this chapter, we define the degree of a vertex in the random 

graph G(n, m) to be the number of its non-Ioop incident edges plus twice the number 

of its loops, i.e., it is the number of times the vertex is chosen during the 2m trials of 

drawing the vertices. Clearly, the degree of any vertex is distributed as Bin(2m, l/n). 

The next theorem bounds Ck from above. 

Theorem 3.2. For any constant integer k 2: 2, let ,k be the unique positive solution 

of 1 - , - e-2"(k = 0 on (0,1). Then the threshold Ck ::; 'kk < (1 - e-2k(1-e-
2k

)) k. 

Praof. Suppose that m = ,kn, for sorne constant, E (0,1). To prove that Ck < ,k, 

it suffices to show that the random graph G(n, m) contains a k-overloaded set, w.h.p. 

Let 5 be the set of aH non-isolated vertices, i.e., with degree of at least one, in the 

random graph G( n, m). Let X be the number of isolated vertices in the random 

graph G( n, m), and observe that 

( 
1)2m 

E[X] = nlP{Bin(2m,1/n)=0}=n 1-; 

( 1) 2"(k > ne-2"(k 1 - ; 2: ne-2"(k - 2k , 

where we have used the inequalities 

log(l - x) 2: -x/(l - x) , and (1- X)2k 2: 1 - 2xk, valid for x > O. 

Notice that IE(5)1 = m, and 151 = n - X. Moreover, X can be expressed as a 

function of the 2m chosen vertices which are independent, and if one of the vertices 
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is changed, X may increase or decrease by at most one. Therefore, by McDiarmid's 

inequality (Lemma 0.3), we see that S is a k-overloaded set when , is large enough. 

lndeed, for sufficiently large n, we have 

r{IS(S)1 s k ISI} r{x S (1- ')')n} 

< r{X-E[X] S (1-')'-e-2'Yk)n+2k} 

< exp ( - (1 -, - e-2'Yk)
2 
n/bk) + 1) = 0(1) , 

which is true whenever fkb) ~f 1_')'_e-2'Yk < O. In particular, if, = 1_e-2k(l-e-
2k

), 

then 

This implies that Ck S inf {, E (0,1) : fk(,) < O}. However, fk(O) = 0, fk(1/2) > 0, 

fk(l) < 0, and since f~b) = _4,2e-2'Yk < 0, then f is concave on [0,1]. This means 

that in fact ')'k = inf {')' E (0,1) : fkb) < O}. o 

Remark 3.1. Notice that the upper bound on Ck is obtained by estimating the 

random time at which the 1-core becomes a k-overloaded subgraph, that is, when the 

density of the 1-core exceeds k. One can improve this bound by considering instead 

the density of the (k + l)-core. That is, if Ck is the smallest constant e such that, 

w.h.p., the density of the (k + l)-core of the random graph G(n, en) is more than k, 

then Ck S Ck. We know from the work of Pittel, Spencer, and Wormald [150] that 

for k ~ 2, the (k + l)-core of the uniform random graph G(n, m), where no loops or 

multiedges are allowed, emerges around the time m ~ ak+In/2, where 

. À 
ak+1 = mIn -( ')' and nk(À) = r {Poisson(À) 2: k} . 

. bO nk /\ 

Moreover, for any given constant e > ak+d2, the number of vertices in the (k + 1)­

core of the random graph G(n, en) is nk+1 (Àk(c))n + o(n), w.h.p., where Àk(C) is the 
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largest root of the equation 2c = )../7fk(>\). On the other hand, Fountoulakis [70] 

proved that the number of edges in the (k + l)-core of the random graph G(n, cn) is 

)..k(c)n/(4c) + o(n), w.h.p. These results are also expected to be true in the model 

G( n, m) which is highly unlikely to have more than a constant number of loops or 

multiedges. Thus, 

. { ak+l 1 )..~(c) } 
Ck = mf c> - ().. ( )) > k , 2 4C7fk+l k C 

The following table shows sorne of the computed values of Ck compared to the upper 

bound of Theorem 3.2. 

k Ck rk k 

2 1.79402374 ... 1.960345197 ... 

3 2.87746281... 2.992450613 ... 

4 3.92147910 ... 3.998654534 ... 

5 4.94775681... 4.999772897 ... 

6 5.96443625 ... 5.999963132 ... 

7 6.97541865 ... 6.999994180 ... 

8 7.98282627 ... 7.999999100 ... 

9 8.98790713 ... 8.999999863 ... 

10 9.99143452 ... 9.999999979 ... 

Table 3.2: The threshold Ck ::; Ck ::; rkk. 

3.5 Lower Bounds 

We already know that Ck is at least the threshold of the (k + 1 )-core, which is asymp­

totic to k/2 [150]. In this section, we improve this lower bound, and show that 
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indeed Ck cv k, as k -t 00. Observe that that for any set of vertices 3 ç V(G(n, m)) 

of size i E M, the probability that we choose an edge whose both endpoints belong 

to 3 is i 2 / n2 , because each vertex is drawn independently and uniformly at random, 

with replacement. Therefore, IE(3) If. Bin(m, i2/n2 ). Thence, by Lemma 3.1, the 

probability that the random graph G(n, m) is not k-orientable is no more than 

lm/kJ lm/kJ 

L L 1P'{IE(3)1 > ki} S; L (~)IP'{Bin(m,i2/n2) > ki} . 
i=l S:ISI=i i=l 

We would like to find the maximum m such that the above probability tends to 

zero as n approaches infinity. The following lemma shows that Ck is at least k / Je, 
asymptotically. However, the approximations used in the proof are not tight enough. 

Nonetheless, the lemma is an important step towards the main result. Notice that 

for i = 0, ... ,n, we have 

ni (en) i <-< -- ., - . z. z 
(3.1) 

Lemma 3.2. Let k ~ 2 be any constant integer. The random graph G(n, kn) do es 

not contain any k-overloaded set of size less than or equal ta ne-(k+l)/(k-l), w.h.p. 

Furthermore, the threshald Ck is at least ke-(k+l)/(2k-l). 

Praaf. Let j = l ne-(k+l)/(k-l) J. Using (3.1), and inequality (2) in Lemma 0.1, we 

see that for n large enough, the probability of existence of a k-overloaded set of size 
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of at most j in the random graph G( n, kn) is not more than 

j 

L L lP{IE(S)1 > ki} < 
i=l ISI=i 

t (;}l' {Bin(kn, i' ln') > kil 

< t (e;r (:f e-"'In 
j 

< L (ek+1(i/n)k-lf e-ki2 /n 

i=l 

< 0(1) + 8(1/n) + 0(1) = 0(1) . 

Now if m = l akkn J, where ak = e-(k+1)/(2k-l) , then w.h.p., the random graph 

G(n, m) is k-orientable, because the probability that there is a k-overloaded set of 

size greater than j is less th an 

L ak n J L (ek+l(i/n)k-la~f e-mi2/n2 
i=j 

L ak n J 
< L (ek+1a%k-l)i e-mi2/n2 

i=j 

i=j 

o 

Lemma 3.2, c1early, improves the lower bound on Ck, for k large enough, but it also 

says that the size ratio of the smallest k-overloaded set in G(n, m), where m ::::; kn, is 

at least e-(k+l)/(k-l) ~ e-3 , w.h.p. However, we shaH further improve the lower bound 
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on Ck, and see that the size ratio of the newborn k-overloaded set grows exponentially 

to 1, as k -+ 00. We do that by tightening the estimation of the upper tail of the 

binomial distribution: we shall use inequality (1). For that, we need to define the 

following positive functions. Fix an integer k 2: 2. Suppose that m = l an J, for sorne 

a E (0, k]. For p E (0, a/k), let 

(3.2) 

and define 

1, if p = 0; 

h(k,a,p)= p-P(1-p)P- 1 f(k,a,p), forpE(O,a/k); (3.3) 

(a/k)2a, if p = a/k. 

The functions f and h, as we are going to see further on, are strongly related to 

the function Y defined in Lemma 0.1. Notice that h is continuous on [0, a/k], and 

smooth on (0, a/k). 

3.5.1 Tight Asymptotic Estimations 

Our main asymptotic lower bounds are stated in the following theorem. We use the 

notation hp(k, a, q) to denote the partial derivative of h with respect to p evaluated 

at the point (k,a,q). 

Theorem 3.3. For any fixed integer k 2: 2, define 

ak := sup {a> ° : :3 6 E (0,1) such that h(k, a,p) :::; 6, V P E (e- 3
, a/k)} , 

and let Pk := 1 - (2/e)kel+e-
k

/
4

• Then the following are true: 

1. The threshold Ck 2: ak; and for k large enough, ak > kpk. 
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2. If Sk is a point at which the function h(k, ak,p) attains its maximum on the 

interval [e-3
, ak/k], then h(k, ak, Sk) = 1, and hp(k, ak, Sk) = o. 

3. For fixed k 2:: 2, and a E (ak,k], the equation h(k,a,p) = 1 has two positive 

solutions. Let ql(k, a) and q2(k, a) be the smallest and the largest of these 

solutions. The size ratio of the newborn k-overloaded set is between ql (k, Ck) 

and q2(k, Ck), w.h.p. Moreover, Ql(k, Ck) > rk ~ Ql(k, k) 2:: Pk, for large k. 

Theorem 3.3 also provides a heuristic for computing the exact value of ak. Solving 

the two equations h(k, a, p) = 1, and hp(k, a, p) = 0, simultaneously, for any given 

k 2:: 2, one can obtain the lower bound ak. Unfortunately, solving these two equations 

explicitly is somehow impossible. So we used the mathematical software Maple to 

solve them numericaIly. The numerical computations of ak (see Table 3.3) suggest, 

indeed, a more tight lower bound on ak than the one mentioned in the theorem. We 

conjecture that for aIl k 2:: 2, 

ak (2)k+v'k - > 1- -
k - e 

Note that this lower bound holds for each computed ak in Table 3.3. The reader is 

invited to verify that. 

Recall that the k-overloaded set emerges around time m = Ckn. Theorem 3.3 

reveals that one can lower-bound the size ratio of the newborn k-overloaded set by 

computing the smallest positive root of h(k, k,p) = 1, which we calI rk = Ql(k, k). 

Obviously, it converges monotonically to one, as k goes to infinity. This is illustrated 

in Table 3.4, and Figure 3.5. Notice that the newborn k-overloaded set is giant (i.e., 

of size 8 (n)). This is expected, because it is unlikely that at the beginning of the 

evolution, a large number of edges land on a very small set. However, while keeping 

the number of vertices fixed, and as the number of edges m increases away from Ckn, 

the size of the k-overloaded set starts to decrease to one. 
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k O'.k Sk k O'.k Sk 

2 1.30343190 ... 0.323260552 ... 29 28.9998095 ... 0.999858942 ... 

3 2.48312473 ... 0.533227221.. . 30 29.9998597 ... 0.999896314 ... 

4 3.61901095 ... 0.668655045 ... 31 30.9998967 ... 0.999923787 ... 

5 4.71902985 ... 0.761197567 ... 32 31.9999239 ... 0.999943972 ... 

6 5.79256286 ... 0.826480988 ... 33 32.9999439 ... 0.999958807 ... 

7 6.84673418 ... 0.873351248 ... 34 33.9999587 ... 0.999969722 ... 

8 7.88671563 ... 0.907333583 ... 35 34.9999696 ... 0.999977734 ... 

9 8.91625922 ... 0.932106804 ... 36 35.9999776 ... 0.999983633 ... 

10 9.93810345 ... 0.950220868 ... 37 36.9999835 ... 0.999987967 ... 

11 10.9542584 ... 0.963487239 ... 38 37.9999878 ... 0.999991145 ... 

12 11.9662054 ... 0.973211591... 39 38.9999910 ... 0.999993491... 

13 12.9750390 ... 0.980342855 ... 40 39.9999934 ... 0.999995214 ... 

14 13.9815687 ... 0.985573824 ... 41 40.9999951... 0.999996477 ... 

15 14.9863940 ... 0.989411495 ... 42 41.9999964 ... 0.999997413 ... 

16 15.9899586 ... 0.992227335 ... 43 42.9999973 ... 0.999998091.. . 

17 16.9925912 ... 0.994293662 ... 44 43.9999980 ... 0.999998605 ... 

18 17.9945347 ... 0.995810163 ... 45 44.9999985 ... 0.999998966 ... 

19 18.9959692 ... 0.996923274 ... 46 45.9999989 ... 0.999999233 ... 

20 19.9970278 ... 0.997740402 ... 47 46.9999992 ... 0.999999433 ... 

21 20.9978087 ... 0.998340329 ... 48 47.9999994 ... 0.999999583 ... 

22 21. 9983847 ... 0.998780842 ... 49 48.9999995 ... 0.999999709 ... 

23 22.9988094 ... 0.999104346 ... 50 49.9999996 ... 0.999999778 ... 

24 23.9991226 ... 0.999341946 ... 51 50.9999997 ... 0.999999844 ... 

25 24.9993535 ... 0.999516470 ... 52 51.9999998 ... 0.999999878 ... 

26 25.9995236 ... 0.999644679 ... 53 52.9999998 ... 0.999999916 ... 

27 26.9996490 ... 0.999738877 ... 54 53.9999999 ... 0.999999939 ... 

28 27.9997414 ... 0.999808082 ... 55 54.9999999 ... 0.999999947 ... 

Table 3.3: The numerical solutions O'.k and Sk of the equations h(k,O'.,p) = 1 and 

hp(k, O'.,p) = 1. The threshold Ck 2: O'.k which is strictly greater than the threshold of 

the (k + l)-core (in Table 3.1), except for 0'.2 and 0'.3' 
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h(k, k, p) 
o 0 

00000000000 1.4 

1.2 

0.8 1 
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5 10 15 20 25 

k 

Figure 3.5: The lower bound rk on the size ratio of the newborn k-overloaded set 

converges exponentially to one. It is where the curve of h( k, k, p) intersects 1. 

k rk k rk k rk 

2 0.061389845 ... 11 0.910842703 ... 20 0.994142089 ... 

3 0.226773619 ... 12 0.933714444 ... 21 0.995686702 ... 

4 0.387019206 ... 13 0.950841371 ... 22 0.996824664 ... 

5 0.522609724 ... 14 0.963613455 ... 23 0.997662747 ... 

6 0.632575890 ... 15 0.973107193 ... 24 0.998279818 ... 

7 0.719774099 ... 16 0.980146405 ... 25 0.998734074 ... 

8 0.787849394 ... 17 0.985355668 ... 26 0.999068429 ... 

9 0.840355794 ... 18 0.989205077 ... 27 0.999314504 ... 

10 0.880458374 ... 19 0.992046478 ... 28 0.999495594 ... 

Table 3.4: The size ratio of the newborn k-overloaded set is at least rk, the solution 

of the equation h(k, k,p) = 1. 
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h(k, k, p) h(4, a,p) 

k=2 1.2 a=4 

1.4-
k=3 

a=3.8 
0.8 

1.2 k=4 a = 3.62 
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P P 
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(a) (b) 

h(2, 1, p) 

0.93 

0.8 

0.7 

0.6 

0.5l----4-.-~~~~~~~~~~ P 
o e-3 0.1 0.2 0.3 0.4 0.5 

(c) (ct) 

Figure 3.6: Figure (a) shows the functions h(2, 2,p), h1 (3, 3,p), and h(4, 4,p). Figure 

(b) shows the functions h(4,4,p), h(4,3.8,p), and h(4,3.62,p). Figure (c) shows the 

functions h(4, a4,p), h(5, a5,p), and h(6, a6,p). Figure (d) shows that the function 

h(2,I,p) < 0.93 on [e- 3 ,1/2). The figures illustrate that the function h is strictly 

decreasing on k, and strictly increasing on a. The function h(k, ak, p) S 1, on 

(0, ak/k) where the equality holds only at one point. For a E (ak, k], the functions 

h( k, a, p) intersects the line y = 1 at two positive points. 
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Comparing the bounds of Table 3.3 with the ones obtained from the (k + 1)-core 

analysis in Table 3.1, we see that Theorem 3.3 is a clear improvement, except for 

k = 2,3, where C2 2: 1.67545943 ... > a2 and C3 2: 2.57470137 ... > a3. We deal 

with this problem in Section 3.5.2 where we improve the bounds for k = 3,4,5, but 

unfortunately not for k = 2. Thus, C2 2: 1.67545943 ... seems to be the best bound so 

far. 

Four Technical Lemmas 

Before we start the proof of Theorem 3.3, we need to establish sorne lemmas. Recall 

that for x E (0,1), we have the following known inequalities: 

log(l+x) <x, or log(x)<x-l, (3.4) 

and, 

(l-x)log(l- x) > -x, or (1- X)l-x > e-x . (3.5) 

The following lemma highlights sorne of the analytical properties of the function h. 

Figure 3.6 illustrates sorne of these properties. 

Lemma 3.3. Let k > k 2: 2 be integers, and a, à E (0, k] be such that a < à. The 

following are true: 

1. For all p E (0, a/k), we have h(k, a,p) < h(k, à, p); and if bath a, à > k/e, 

then h(k, a, a/k) < h(k, à, à/k). 

2. For any constant a E (0,1], we have h(k, ak,p) > h(k, ak,p), for all p E (0, a). 

3. h(k, a,p) < 1, where ° < p S min(e-3
, a/k). 

4. There is an E E (0,1), such that h(k, k,p) > 1, for all p E (1 - E, 1). 
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Proof. First, by definition of f(k, a,p), we see that for fixed p E (0, a/k), 

3 
3a (log 1) 

3 
3a ((a - kp) log(a - ap2) - (a - kp) log(a - kp) + kplog(ap/k)) 

log(a - ap2) + 1 - kp/a -log(a - kp) - 1 + kp/a 

( 
1 p2) 

- log 1 _ kp / a > ° , 
which is true because 1 - p2 > 1 - kp/ a. Since f is strictly positive, then 

3 3 
3af(k, a,p) = f(k, a,p) 3a log f(k, a,p) > o. 

This rneans that f(k, a, p), and hence h(k, a, p), is a strictly increasing function of a, 

where p E (0, a/k). If p = a/k, then 

h(k,a,a/k) = Gt < (~)''' = h(k,ii,ii/k), 

which is true because if t(x) = 2x log(x/k), where x E (k/e, k], then the derivative 

t'(x) = 2log(x/k) + 2 > 0, i.e., t(x) is a strictly increasing function. Secondly, if 

a = ak, for sorne constant a E (0,1], and p E (0, a), we have 

f(k, ak,p) = a - P (ap)kP . ( 
(1 2)) k(a-p) 

a-p 

Let g(a,p) = (a - p) log(1 - p2) - (a - p) log(1 - pla), and notice that 

3g 
3a = log(1 - p2) -log(1 - pla) + 1 > 0, 

because 1 - p2 > 1 - pla. This rneans that for fixed p E (0, a), the function g(a,p) 

strictly increases as a function of a. Thus, using the inequalities in (3.4), we see that 

3 
3k (log f(k, ak,p)) 

1 _ p2 
(a - p) log 1 / + plog(ap) 

- p a 
1 _ p2 

< (1 - p) log + plogp 
1-p 

< p(1 - p) + p(p - 1) ::; O. 
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Therefore, the function f(k, ak,p), and hence h(k, ak,p), strictly decreases on k. 

Thirdly, we know thus far that for any integer k ~ 2, a E (0, k], and p E (0, a/k), 

we have h(k,a,p) ::; h(k,k,p) ::; h(,2,2,p). However, using (3.5), we see that for 

p E (0, e-3], 

h(2,2,p) (1 - p)-(l-p )(1 + p)2(1-P)pp 

< exp(p + 2p(1 - p) + ploge-3
) 

exp( _2p2) ::; 1. 

Fourthly, wh en a = k, 
(1 + p)k(l-p)pkp 

h(k,k,p) = ( )1 , pP 1 - p -P 

and hence, 

o 
op (log h) 

o 
op (k(1 - p) log(1 + p) + kplogp - plogp - (1 - p) log(1 - p)) 

-k log(1 + p) + k/l - ~) + (k - 1) logp + k - 1 + log(1 - p) + 1 , 
l+p 

which converges to -CXJ as p goes to 1. Sinee the derivatives of h and log h have 

the sarne sign, this rneans that h(k, k,p) is strictly decreasing on (1 - E, 1) for sorne 

positive E, i.e., h(k, k, p) > 1, for aIl p E (1 - E, 1). o 

Since h is continuous on its dornain, h(k, k, e-3 ) < 1 (Lernrna 3.3), and h(k, k, q) > 

1 for sorne q E (e- 3 , 1), the equation h(k, k,p) = 1 must have a solution in (e- 3 , q). 

The following lernrna bounds the srnallest such solution frorn below. The lernrna 

helps us later on to establish the lower bound on ak, and to prove that the srnaIl­

est k-overloaded set in the randorn graph G( n, kn) has size ratio of at least 1 -

2k exp (-k + 1 + e- k
/

4
). 

Lemma 3.4. For an integer k ~ 2, let rk be the smallest positive TOot of the equation 

h(k, k, rk) = 1. Then for k large enough, 

(
2)k 1+e-k/4 rk > 1 - - e . 
e 
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Proof. Let Pk = exp((log2 - l)k + 1 + e-k/4). Since h is continuous, and by Lemma 

3.3, we have h(k, k,p) < 1, for aH p E (0, e-3J, then 

rk > 1 - Pk <===?- h(k, k,p) < 1, for aU p E (e- 3
, 1 - Pk]' 

We shaH show that for k large enough, the function g(p):= logh(k,k,p) < 0, for all 

p E (e- 3
) 1 - Pk]' First notice that 

Thus, 

g(p) 

g'(p) 

k(l - p) log(l + p) + (k - l)p logp - (1 - p) log(l - p) , 

- -k log(l + p) + kil - p) + (k - 1) logp + log(l - p) + k. 
+p 

-"--k 2k k - 1 1 
g"(p) = 1 + p - (1 + p)2 + -p- - 1 _ P = ° 
-kp(l - p2) - 2kp(1 - p) + (k - 1)(1 + p?(1- p) - p(l + p)2 = ° 
(k - 1) p2 - 2 (k + 1) P + k - 1 = ° 

k + 1 - 2Vk def 
p = k - 1 = qk· 

Evidently, g"(p) is strictly positive on (0, qk), and negative on (qk, 1). This yields that 

g(p) is strictly convex on (0, qk), and g'(p) is decreasing on [qk, 1). Moreover, using 

(3.5), we see that for p E [qk, 1 - Pk], 

g'(p) > g'(l - Pk) 

> k - k log(2 - Pk) + (k - 1) log(l - Pk) + log Pk 

> (1 -log2)k - (k - l)Pk + (log 2 - l)k + 1 
1 - Pk 

k2k - 2k 
1 - ek-2 _ 2k > 0, 

wh en k 2:: 16. This means that g(p) is strictly increasing on [qk, 1- Pk]' Consequently, 

g(p) :::; max(g(e-3
), g(l - Pk)), for all p E [e-3 ,1 - Pk]' However, we know that 
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g(e-3 ) < 0, and for k large enough, (k ~ 100), we have 

kPk 10g(2 - Pk) + (k - 1)(1 - Pk) 10g(1 - Pk) - Pk log Pk 

< kPk log 2 - (k - l)Pk(l - Pk) - (log 2 - l)kpk - Pk(l + e-k/4
) 

Pk ((k -l)Pk - e-k/4
) < 0, 

which completes the proof. 

Next, we turn our attention to the definition of ak. Let 

A:= {a> 0 : :J 6 E (0,1) such that h(k,a,p) ~ 6, V P E (e- 3 ,a/k)} , 

o 

and recall that ak = sup A. Clearly, if f3 E A, then (0, f3) ç A, because h is an 

increasing function of a. Also, if 1 ~ A, then ak ~ f. This leads to ak ~ k, because 

h(k, k, 1) = 1. The following lemma follows easily. 

Lemma 3.5. For any fixed integer k ~ 2, ak is well-defined and ak E (k/2, k). 

Moreover, h(k, ak,p) ~ 1, for all p E [0, ak/k]. 

Pro of. First, ak is well-defined because A =1- 0. For instance, by Lemma 3.3, we 

have h(k, k/2,p) < h(2,1,p) < 0.93, for p E (e- 3 ,1/2) (see Figure 3.6-(d)), and 

hence k/2 E A. Thus, trivially, ak ~ k/2. Now notice that h(k, ak, 0) = 1, and 

h(k, ak, ak/k) ~ 1. 80 if possible, assume that there is a point q E (0, ak/k) such 

that h(k, ak, q) > 1. By the definition of h, we have h(k, qk, q) = q2qk < 1. Therefore, 

since h is a continuo us increasing function of a, then there is a E (qk, ak) such 

that h(k, a, q) = 1. That is, a ~ A, and hence ak ~ a which is a contradiction. 

Thus, h(k, ak,p) ~ 1, for aIl p E (0, ak/k). Consequently, Lemma 3.3-(4) leads to 

ak < k. 0 

Finally, we have the following lemma. 

Lemma 3.6. Let k ~ 2 be any fixed integer. The following are true: 
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1. For a E (ak,k], the equation h(k,a,p) = 1 has at least two positive solutions, 

and there exists a point s(k, a) E (e- 3
, a/k) such that 

max h(k, a,p) = h(k, a, s) > 1. 
O~p~alk 

2. The equation h(k,ak,p) = 1 has at least one positive solution. 

3. For a, a E [ak, k], if r(k, a) is the smallest positive solution of h(k, a, p) = 1, 

then r(k, a) > r(k, a), whenever a > a. 

Proof. First, for a E (ak,k], let s(k,a) be any point at which h(k,a,p) attains its 

maximum on [e- 3
, a/k], and let À = h(k,a,s), which is positive. If possible, assume 

that À :S 1. Let /3 = (a + ak)/2. Notice that k/2 :S ak < /3 < a. Let q be any point 

at which h(k, /3, p) attains its maximum on [e- 3
, /3 /k]. Then by Lemma 3.3, we see 

that for aH p E [e-3 ,/3/k], 

h(k, /3,p) :S 6 ~ h(k, /3, q) < h(k, a, q) :S À :S 1. 

Thus, the definition of ak yields that /3 :S ak which is a contradiction. Consequently, 

À> 1. Since h(k,a,a/k) :S 1, and by lemma 3.3, h(k,a,p):S 1, for aH p E [O,e- 3 ], 

then s E (e- 3 , a/k), and 

max h(k, a,p) = h(k, a, s) > 1. 
O~p~alk 

Since h(k, a, s) > 1, and h(k, a, e-3
) < 1, then there is a point ql(k, a) E (e- 3 , s) such 

that h(k, a, qd = 1, because h is continuous. If a = k, we know that h(k, a, a/k) = 1; 

and if a < k, we have h(k, a, a/k) < 1, and hence-for the same reason again-there 

is a point q2(k, a) E (s, a/k) such that h(k, a, q2) = 1. That is, h(k, a,p) = 1 has at 

least two positive solutions. Next, let 

lJk:= lim s(k, a) . 
a\.ak 
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and notice that 

because h is continuous on each of its arguments. However, by Lemma 3.5, we have 

h(k,ak,p) ::::; 1, for aIl p E [O,ak/kJ. Thus, h(k,ak,O"k) = 1. FinaIly, Lemma 3.3-(3) 

yields that h(k,a,p) < h(k,a,r(k,a)) = 1, for p E (O,r(k,a)). Since h(k,a,p) is an 

increasing function of a, then for any 0: E [ak, a), we have h(k, O:,p) < h(k, a,p) ::::; 1, 

for an p E (0, r(k, a)]. This means that r(k, 0:) > r(k, a). o 

Proof of Theorem 3.3. 

First, we prove that Ck ~ ak. Let E E (0,1) be any small arbitrary constant. Let 

j3 = ak - E. By Lemma 3.2 and since E is arbitrary, it suffices to show that the 

random graph G(n, l j3n J) does not contain any k-overloaded set of size ~ e-3n. 

For le-3nJ ::::; i ::::; l(j3n-1)/kJ, let Pi := i/n, and notice that Pi E (e- 3 ,j3/k). 

By the definition of ak, there exists a > j3, and a constant 6 E (0,1) such that 

h(k, a,p) ::::; 6, for aIl p E (e- 3 , a/k). Since h is an increasing function of a, then 

h(k,j3,p) ::::; h(k,a,p) ::::; 6, for aIl p E (e- 3 ,j3/k). Thus, using inequality (1) of 

Lemma 0.1, we see that the probability that G(n, l j3n J) contains a k-overloaded set 

of size at least e-3n is not more than 

l (f3n-l)/k J 

L (~}p{Bin(lj3nJ ,i2/n2) > ki} < 
i=le- 3 nJ 

l (f3n-l)/k J n 
~ n Y(k ./j3 2)f3n 
~ ii(n _ i)(n-i) Pz ,Pz 

i=le- 3nJ 

l (f3n-l)/k J 

L h(k, j3,Pit 
i=L e- 3 n J 

< n 6n = 0 (1) . 

Secondly, by Lemma 3.5, h(k, ak,p) ::::; 1, for aIl p E [0, ak/kJ. Recall that Sk 

is a point at which h(k,ak,p) attains its maximum on [e- 3 ,ak/kJ. From Lemma 
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3.6 we know that h(k, Œk,P) = 1 has a solution, and thus, h(k, Œk, Sk) = l. Since 

Œk < k, then by definition, h(k, Œk, Œk/k) < l. That is, Sk E (0, Œk/k) which leads to 

hp(k, Œk, Sk) = 0, because h is smooth on the open interval. 

Thirdly, we know, by Lemma 3.6, that for Œ E (Œk, k], the equation h(k, Œ,p) = 1 

has at least two positive solutions. Notice that if Ck = Œk, there is at least one 

solution for h(k, Ck,p) = 1, namely Sk, and we may have ql(k, Ck) = Sk = q2(k, Ck). 

Nevertheless, the following is still true. Since h(k, Ck, e-3
) < 1, and h(k, Ck, ck/k) < 1, 

then the definition of the two points ql(k, Ck) and q2(k, Ck) implies that h(k, Ck,p) < 1, 

for aIl p E (0, qd U (q2, ck/k). This means that for any arbitrary constant E E (0,1) 

sufficiently smaIl, there exists a constant b E (0,1) such that h(k, Ck,p) < b for aIl 

p E (e- 3
, ql - El U [q2 + E, Œ/k). Therefore, using similar argument as above, we 

conel ude that the random graph G( n, r Ck n 1) do es not contain any k-overloaded set 

of size less than ql(k, Ck) nor greater than q2(k, Ck), w.h.p. FinaIly, Lemmas 3.6-(3) 

and 3.4 lead to 

for k large enough. o 

3.5.2 Further Improvements 

The lower bounds Œk, for k = 2,3, are smaller than the corresponding ones of the 

(k + l)-core thresholds. In the following, we improve the lower bounds on Ck, for 

k = 3,4,5. However, the technique we use here is not helpful enough to beat the 

l.67545943 ... threshold of the 3-core which stays the best lower bound, thus far, on 

C2. We utilize the following lemma to tighten the analysis. Recall that the degree 

of any vertex is defined to be the number of its non-Ioop incident edges plus twice 

the number of its loops. For a set of vertices S we write, throughout, min deg(S) to 
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denote the minimum degree-restricted to the subgraph (5, E(5))-of any vertex in 

S. 

Lemma 3.7. Let kEN. In any graph G, if S ç V(G) is a k-overloaded set su ch 

that IE(A)I ::; k lAI, for any proper subset Ac 5, then mindeg(5) 2: k + 1. 

Praof. Let v be any vertex in 5, and define A = S - {v}. Since IE(A) 1 ::; k lAI, and 

IE(5) 1 2: k ISI + 1, then 

deg(v) 2: IE(5)1-IE(A)1 2: k(IAI + 1) + 1 - k lAI = k + 1. 

D 

The lemma says that the minimum degree of the smallest k-overloaded set is at 

least k + 1, because it does not contain any k-overloaded proper subset. That is, the 

smallest k-overloaded set is a connected subgraph where every vertex has degree of at 

least k + 1. Otherwise, it consists of two disjoint sets that are not k-overloaded, and 

hence their union is also not a k-overloaded set. Thus, if the graph has a k-overloaded 

set then it has a (k+l)-core, and its size is at least the size of the smallest k-overloaded 

set in the graph. Now we are ready to prove the following improved lower bounds on 

Ck· 

k f3k O!k 

3 2.61845509 ... 2.48312473 ... 

4 3.65354252 ... 3.61901095 ... 

5 4.71959504 ... 4.71902985 ... 

Table 3.5: The threshold Ck 2: f3k > O!k· 

Theorem 3.4. For k = 3,4,5, let f3k be as specified in Table 3.5. Then the threshald 

Ck 2: f3k. 
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Proof. First, we show how Lemma 3.7 can be used to tighten the analysis. Suppose 

we want to prove that the random graph G(n, m) is k-orientable, for given m < kn. 

By Lemma 3.2, it suffices to show that G(n, m) do es not contain any k-overloaded 

set of size greater than io := r ne-3 1. Let A be the event that the random graph 

<G( n, m) is not k-orientable. For i = 1, ... ,n, let Ci be the event that <G( n, m) does 

not contain any k-overloaded set of size ~ i, and Bi be the event that it contains a 

k-overloaded set of size i. Notice that lP {Cio-d = 0(1) (Lemma 3.2), and that 

Suppose that the vertices in <G(n, m) are numbered 1, ... , n. For 1 ~ j ~ i ~ n, 

let Si := {1, ... , i}, and let Di(j) = [di(j) > k], where di(j) is the degree of the 

j-th vertex restricted to the subgraph (Si,E(Si)). Suppose that m = l,BnJ, where 

,B E (Cl'k, k) is a constant to be chosen later on to be as large as possible. Let 

i* = l,Bn/kJ. Using Lemmas 3.1 and 3.7, we see that for n large enough, 

l' {A n Cio-Il = l' { (Q, Bi) n Ci,-l } 

i* 

lP{Bio n Cio - 1 } + L lP {Bi n BLI n ... n Bfo n Cio-d 
i=io+l 

t l' {Bi n CH} ~ t (7)1' {[ 1&(SiJI > ki] n C,-d 
t=to t=to 

< ~ (7)1'{ II&(S,JI > kil n Imindeg(S,J > k]) 

L bn J i* 

< 2:= (~) (Xi + Yi) + . L (~)lP{IE(Si)1 > ki} , 
t=to t= r bn l 

where b E (e- 3 ,,B / k) is a constant to be picked later, and Xi and Yi are the following 

probabilities: 

Xi lP {[ min deg(Si) > k]} n [ki < IE(Si) \ ~ (bn + i)k/2] 

Yi lP{IE(Si)\ > (bn+i)k/2}. 
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We estimate the probability Xi as follows. Recall that di(j), the degree of the j-th 

vertex in the subgraph (Si, E(Si)), is a binomial random variable with parameters 

21E (Si) 1 and lin. Using a condition al probability argument, we see that 

Ir{n;=lDi(j)!IE(Si)l=r} = Ir{Di(l) 1 IE(Si)l=r} x 

Ir{Di(2) 1 [IE(Si)1 = rl nDi(l)} x .. · x 

Ir{Di(i) 1 [IE(Si)1 = r ln Di(l) n ... n Di(i - l)} 
i-l 

- II Ir {Bin(2r - j(k + 1), lin) > k} . 
j=O 

l (bn+i)k /2 J 

Xi = L Ir{IE(Si)l=r}Ir{n;=lDi(j)!IE(Si)l=r} 
r=ki+l 

l (bn+i)k/2J i-l 
< L Ir {Bin(m, i2/n2) = r} II Ir {Bin(2r - j(k + 1), lin) > k} 

r=ki+l j=O 

l(bn+i)k/2J i-l 
< L Ir {Bin(m, i2/n2) = r} II Ir {Bin(2r - j(k + 1), lin) > k} , 

r=ki+l j=jo 

where jo = max (f (2r - bnk)/(k + 1) - "In l ,0), and "In = o(n) ~ 00. Notice that 

o < J'o < k (i + bn) _ bnk _ 'Y + 1 < ~ 
- - k+l k+l m -k+1' 

and for all j ;::: Jo, we have (2r - j(k + l))/n < bk < k. Now if i E rio, bn/2], and 

r E (ki, bnk/2], we have jo = 0; and thence, Angluin-Valiant's inequality implies 

i-l 
II Ir {Bin(2r - j(k + 1), lin) > k} < Ir {Bin (l bnk J ,lin) > k}i-l 
j=jo 

< exp (-bk(i -1) (1- t + tlogt)) 

< exp (-k(i - l)(b -log b - 1)) 

< (ki(b -10gb - 1)) 
exp - k + 1 ' 
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because the constant b - 10gb - 1 is a1ways positive, by inequa1ity (3.4). On the 

other hand, if i E rio, bn/2J, and r E (bnk/2, (bn + i)k/2], or i E (bn/2, bn), we have 

jo = r (2r - bnk)/(k + 1) -,n l. Using the Ang1uin-Va1iant inequality again, we see 

that 
i-l 

rI IP' {Bin(2r - j(k + 1), l/n) > k} < IP' {Bin (l bnk + (k + 1hn J , l/n) > k }i-jo 

j=jo 

< exp (-k(i - jo)(b - 10gb - 1 + 0(1))) 

< (ki(b -10gb - 1)) 
exp - k . 

+1 

Now set Pi = i/n, and observe that by inequality (1) of Lemma 0.1, we see that for 

aU r E (ki, (bn + i)k/2], 

IP'{Bin(m,i2/n2) = r} < IP'{Bin(m,i2/n2) 2: r} 

< IP' {Bin(m, i2 /n2
) 2: ki} 

< Y(kpdj3, p;)f3n = f(k,j3,pi)n, 

where the function f is as defined in (3.2). For convenience, let 

( 
- kp( b - log b - 1)) 

9 ( k, 13 , p) : = f (k, 13 , p) exp k + 1 ' 

and notice that 9 strict1y increases as 13 does, because f does. Thus far, we have 

lbnJ (n) L . Xi < 
.. '/, 
z=zo 

< m2bn/2 max g(k,j3,pt+m2bn max g(k,j3,pt. (3.6) 
e-3~p~b/2 b/2~p~b 

Next, we use inequality (1) to bound the probability Yi, so that 

l bn J (n) _ L bn J ( ) 
~ i Yi - ~ ~ IP' {Bin(m, i

2
/n

2
) > (bn + i)k/2} 

l bn J 

< ~ G) t(k,{3,pi)n 

< 2bn max t(k, 13, pt, 
e-3~ p ~b 

(3.7) 
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where 

._ 'Y'((b+P)k 2){3 
t(k, (3,p) J. 2(3' P 

( 
2(3(1 - p2) ) {3-(b+p)k/2 ( 2(3p2 ) (b+p)k/2 

2(3 - (b + p)k (b + p)k 

and p E [e- 3 , b]. Notice that t( k, (3, p) is a strictly increasing function of (3 for the 

similar reason mentioned in the pro of of the first part of Lemma 3.3. Finally, we use 

the function h defined in (3.3), to bound the last part just like before, 

Now to make the inequalities (3.6), (3.7) and (3.8) converge to zero, we choose the 

constant b such that the following conditions are satisfied with the largest possible 

max g(k,(3,p) < 2-b/2 , max g(k,(3,p) < 2-b, 
e- 3 -:;'p-:;'b/2 b/2-:;'p-:;'b 

max t(k,(3,p) < 2-b, and max h(k,(3,p) < 1. (3.9) 
e- 3 -:;'p-:;'b b-:;'p-:;'{3/k 

Since for any (3 < k, we have h (k, (3, (3/ k) < 1, then clearly, in order to satisfy the 

fourth condition, b must be greater than the largest zero of h(k,(3,p) = 1. Anal­

ogously, since t is continuous on its domain, the third condition is satisfied only if 

bis chosen such that it is strictly less than the smallest zero of t(k,(3,p) = 2-b on 

(e- 3 ,(3/k), and t(k,(3,e-3) < 2-b. Thus, we do the following for an k = 3,4,5. 

First, we solve (numerically) the two equations h(k, (3, b) = 1, and t(k, (3, b) = 2-b, 

simultaneously, where we obtain (3k-as specified in Table 3.5-and b. Notice that 

t(k,(3,b) = f(k,(3,b), and 

( ) 
f(k, (3, b) 

h k, (3, b = bb(l _ b)1-b ; 

and therefore, bb(l- b)l-b = 2-b, which means that b = 0.772907804 .... Observe that 

b E (e- 3 ,(3k/k). Next, we need to prove that (3k and b satisfy the first two conditions, 
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and for any arbitrary E E (0,1), f3k - E and b satisfy the last two conditions. This will 

imply that the random graph G( n, l (f3k - E)n J) is k-orientable, for any arbitrary 

E E (0,1), and hence, Ck 2 f3k. The first two conditions can be verified by using 

the classical calculus tools like the derivative tests and the Taylor series expansions. 

However, instead of burdening the reader with tedious computations, we refer him to 

Figures 3.7,3.8 and 3.9 where these functions are drawn. For those who do not mind 

reading such technical details, they may see the appendix at the end of the thesis. It 

is not difficult also to prove that t(k, f3k,p) is an increasing function in p on [e- 3 , b], 

and h(k,f3k,p) is a decreasing function in p on [b,f3k/k]. This implies h(k,f3k,P) ~ 1 

on [b,f3k/k], and t(k,f3k,p) ~ 2-b on [e- 3 ,b]. If q is a point at which t(k,f3k - E,p) 

attains its maximum on [e-3, b], then 

Similarly, 

max h(k, f3k - E,p) < 1. 
b-:;'p-:;.f3/k 

o 
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2- bl2 2- b 

0.75 0.58 

0.7 0.57 
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0.6 0.54 

0.55 0.53-

P 0.52 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

P 
0.75 

(a) (b) 

2- b 

1-

0.5 0.95 

0.4 0.9 

0.3 0.85 

0.2-
0.8 

0.1-
0.75 

P 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 P 0.78 0.8 0.82 0.84 0.86 

(c) (ct) 

Figure 3.7: Figure (a) shows g(3,/33'P) < 2-b/ 2 on [e-3,b/2]. Figure (b) shows 

g(3,/33,P) < 2-b on [b/2,b]. Figure (c) shows t(3,/33,P):::; 2-b on [e-3,b]. Figure (cl) 

shows h(3,/33,P) :::; 1 on [b,/33/3]. 
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0.75 -

0.7 0.56 

0.65 0.54 

0.6 0.52 

0.55 
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0.48 
0.5 

0.46 
0.45 f-.--.-~~~~~-.--::::;:::;:::=;:::;:::;:::;::::;:::;:::::::::: p 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 P 

(a) (b) 
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0.4 0.9 

0.3- 0.85 
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0.1 0.75 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
p 0.7-1...-,~~~~~~~~~~~ P 

0.78 0.8 0.82 0.84 0.86 0.88 0.9 

(c) (d) 

Figure 3.8: Figure (a) shows g(4,/34,P) < 2-b
/

2 on [e- 3 ,b/2]. Figure (b) shows 

g(4, /34,P) < 2-b on [b/2, b]. Figure (c) shows t(4, /34,P) ::; 2-b on [e- 3
, b]. Figure (d) 

shows h(4, /34,P) ::; 1 on lb, /34/4]. 
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2- b12 2- b 
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0.6 0.5 
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 
P '-r-~~~~~~~~~~,-.--.-p 
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0.4 0.9 
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0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 

(c) (d) 

Figure 3.9: Figure (a) shows g(5,/35,P) < 2-b
/

2 on [e- 3 ,b/2]. Figure (b) shows 

g(5, /35,P) < 2-b on [b/2, b]. Figure (c) shows t(5, /35,P) ~ 2-b on [e- 3
, b]. Figure (d) 

shows h(5, /35, p) ~ 1 on lb, /35/5]. 



Chapter 4 

Speedups and Trade-offs 

The performance of the multiple-choice allocation pro cess can be tuned up in many 

different ways. In this chapter, we suggest sorne speedups of algorithm UNIFORM­

GREEDyMC, and we study the trade-offs in terms of maximum bin load, insertion 

(allocation) time, and memory size. For convenience, we present sorne of our results 

in terms of balls and bins. Obviously, all of the results, which are summarized in 

Table 4.1, can be viewed in the context of hashing with chaining in general, and can 

be applied to algorithm UNIFORM-SHORTCHAIN in particular. 

One of the main factors that affects the performance of sorne of the heuristics 

we study in this chapter is the number of balls above a certain level, where we say 

that a ball is at level i if it is inserted into a bin that contains exactly i - 1 balls just 

before insertion. Obviously, if m = n, then upon termination of algorithm UNIFORM­

GREEDyMC(n, m), the number of bins of load at least Ln = o(loglogn) is at most 

n/ Ln. Thus, the probability that any baIl chooses two bins whose loads are at least 

Ln is at most 1/ L;. Using a binomial tail inequality, we see that the number of balls 

above the level Ln is O(n/ L;), w.h.p. However, we can do better. Recalling the 

waiting time argument (Theorems 1.3 and 2.2), we notice that at the k-th stage we 

129 
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wait until there are at least nk bins of load at least k, where 

if k = 0; 

for k ~ 1, 

for sorne constant a E (0,1), and an integer K, > 1 which is a function of ex .­

min. This me ans that upon termination of algorithm UNIFoRM-GREEDyMC(n, m), 

and for k large enough, there are more than n· 2-2k +I< = nexp( _2k+lI:+log2 1og 2 ) bins 

of load at least k, w.h.p. Along the same line, Berenbrink et al. [18] showed this 

st ronger result which, indeed, implies Theorem 0.3. Recall that we write UNIFORM­

GREEDyMC(n, m, d), where d ~ 2 is an integer, which could be a function of n, 

to denote the algorithm that inserts m balls into n bins where each ball is placed 

into the least full bin among d bins chosen independently and uniformly at random, 

with replacement, breaking ties randomly. If d = 2, we often just write UNIFORM-

GREEDyMC(n, m). 

Theorem 4.1 (Berenbrink et al. [18]). Let n, m, k, dEN su ch that m ~ n, and 

d ~ 2. Let X k denote the number of bins of load at least l k + min Jupon termi­

nation of algorithm UNIFoRM-GREEDyMC(n, m, d). Then there are some positive 

constants band c such that exp( _dk+b) :S Xk/n :S exp( _dk- c), w.h.p., for aU k > c. 

Furthermore, 

N ow we have the following corollary. 

Corollary 4.1. For n, m, k, dEN, where m ~ n and d ~ 2, let Yk be the num­

ber of balls above the level l k + min Jupon termination of algorithm UNIFORM­

GREEDyMC(n, m, d). Then exp( _dk+b+l) :S Yk/n :S exp(-dk- c), w.h.p., for aU 

k > c, where band c are the same constants in Theorem 4.1. Moreover, 

lP' {Yk > n exp( _dk
-

c
)} = o(l/n) . 



CHAPTER 4. SPEEDUPS AND TRADE-OFFS 131 

Proof. For i E lm], let Xi be the number of bins of load at least li + min J. First, 

Theorem 4.1 implies that Yk 2: Xk+l 2: nexp( _dk +b+1) , w.h.p. Now for the upper 

bound, let Ai = [Xi::; n exp( _di
- c ) J. Let K = flogd log n + c + Il Notice that if 

A K is true, then for aIl i 2: K, the event A is also true. Let k := exp(dk - c ), and 

observe that k 2: 2, because k > c. Thus, if aIl the events Ai, for i = k + 1, ... , K, 

are true, we see that 

This means that 

because, by Theorem 4.1, P{Ai} = O(l/n2
). D 

Throughout this thesis, we have ignored the time needed to compute the hashing 

values which is basically because we often de al with only two hash functions. However, 

since in this chapter we are going to consider the case of increasing the choices for 

any d 2: 2, we change our assumption temporarily. Throughout this chapter only, we 

assume that any hashing value can be computed in one unit of time; and any baIl can 

be accessed and examined in one time unit. Furthermore, we assume that Œ := min 

is constant, and d = o(log n). 

4.1 Increasing the Choices 

We have seen in the aftermath of Theorem 2.6 that one can dramatically decrease 

the maximum bin load by slightly increasing the number of bins. More precisely, 

Theorem 2.6 states that for any integer r E [2, log2 ni 4], the maximum bin load of 

UNIFoRM-GREEDYMC(ln1+1/ r J ,n), which inserts n balls into ln1+1/ r J bins, is at 
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most log2r + 8(1), w.h.p. Therefore, if we take r = log log n, the maximum search 

time of UNIFORM-SHORTCHAINn n1+1/r J ,n) is at most 2Iog2 Ioglogn+8(1), w.h.p. 

On the other hand, one might also think about increasing the number' of choices 

available for each baIl or key. Recall that upon termination of algorithm UNIFORM­

GREEDyMC(n, m, d), Theorem 0.2 asserts that the maximum bin load is logd logn± 

8(1), asymptotically almost surely. These bounds are true for any integer d ~ 2, 

even if i t is a function on n. In particular, if we choose d = 8 (log log ni log log log n), 

then the maximum bin load is 8(log log ni log log log n), w.h.p. This is a useful im­

provement for many applications such as on-line load balancing and dynamic resource 

allocation. The trade-off, however, is that the total allocation (insertion) time per 

baIl increases to 8(loglogn/logloglogn) as opposed to 8(1) when d is a constant. 

On the other hand, increasing the number of choices does not provide a big help for 

applications like hashing. 

Three-way Chaining 

In hashing with chaining, the emphasis is on the average and the worst-case search 

times. The worst-case search time is related to the time needed to search the d longest 

chains in the hash table, (plus d, for computing the d hash functions). The next 

theorem shows that the worst-case search time of UNIFORM-SHORTCHAIN(n, m, d) 

is dlogdlogn ± 8(d), w.h.p. Therefore, allowing three choices for each element­

because the minimum of dl log d occurs when d = 3-suffices to obtain the optimal 

worst-case search time of UNIFORM-SHORTCHAIN(n, m, d). 

Theorem 4.2. Let n, m, dEN such that 2 :::; d = o(logn) and m = 8(n). Upon ter­

mination of algorithm UNIFORM-SHORTCHAIN(n, m, d)J the worst-case search time 

is dlogd1ogn± 8(d), w.h.p. 

Proof. It is easy to see that the maximum search time is d logd log n + 0 (d), because 
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the longest linked list in the hash table is at most logdlogn + 0(1), w.h.p., and in 

the worst-case we have to search d distinct lists. For the lower bound, we know that 

w.h.p., the longest linked list is at least (n := lOgdlogn-c, for some positive constant 

c. This means that w.h.p., there is a key b at level (n; that is, the d choices of b are 

chains of length at least (n - 1. However, since d = o(logn), then by the birthday 

paradox, the d choices of b are distinct, w.h.p. Thence, the maximum search time is 

at least d + d((n - 1) = d(n, w.h.p. o 

This means that w.h.p., the maximum search time is 2.885390 ... x loglogn±8(1), 

when d = 2, and it is 2.730717 ... x log log n ± 8(1), when d = 3. However, we know 

that by Theorem 1.1, the average search time of UNIFORM-SHORTCHAIN, when 

d = 2, is at most twice the average search time of the uniform classical algorithm 

CLASSICCHAIN. Using three hash functions, however, increases the average search 

time to three times of the classical one. This is because we have to search three 

chains, and we know that the expected chain length cannot be less than the load 

factor Q. Therefore, one has to compromise between decreasing the maximum search 

time by a small constant factor versus tripling the average search time. This is the 

main reason why we opted to li mit our study to two-way chaining. 

Analogously, the same speedups and trade-offs can be applied for Vocking's algo­

rithm LEFTMC(n, m, d). Theorem 0.5 states that the maximum bin load upon ter­

mination of LEFTMC(n, m, d) is log logn/(d log c,Dd) + 8(1), w.h.p. That is, if we use 

d = 8(Jloglogn) hash functions, the maximum bin load reduces to 8(Jloglogn), 

because d log c,Dd > (d - 1) log 2. The benefits of this reduction can be seen in load 

balancing, resource allocation problems and even in hashing. However, the insertion 

time increases to O(d). The following theorem follows trivially. 

Theorem 4.3. Let n, m, dEN such that 2 ::; d = o(1og n) and m = 8(n). Upon 

termination of algorithm LEFT-SHORTCHAIN(n, m, d), the worst-case search time is 
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loglogn/logcPd±8(d), w.h.p. Sa ifd = o(loglogn), then the worst-case search time 

is asymptotic ta log log ni log cPd, in probability. 

Notice that this is an improvement on the wosrt-case performance of UNIFORM-

SHORTCHAIN, because for any d ~ 2, 

3 1 1 1 
-1 - = 2.730717 ... > 2.0998 ... = 1 > -1 A.. > -1 2 = 1.44269 ... , 
og 3 og 1.61 og 'f/d og 

because 1.61... = cP2 < cP3 < cP4 < ... < 2, and limd--+oo cPd = 2. 

4.2 Hashing with Balanced Trees 

One can speedup two-way chaining algorithm by inserting the data within each cell in 

a balanced binary se arch tree such as AVL tree, a red-black tree, or a B-tree. Instead 

of a linked list, suppose, for instance, that each cell in the hash table points to a 

separate AVL tree, and with each cell, we save the size of the tree it points to. As 

usual, two independent truly uniform hash functions are used, then, to choose two 

AVL trees for each element, and we insert the element into the smallest one, breaking 

ties arbitrarily. As a shortcut, we write AVL-HAsH(n, m) to refer to this method of 

hashing. 

Figure 4.1: Hashing with AVL binary search trees 

It is known [103, §6.2.3] that the height of an AVL binary se arch tree of size n is 

at most loge/> n+ 8(1), where cP is the golden ratio (1 + -/5) 12 = 1.61803398 ... , and the 
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insertion and deletion time is 0 (log n). This im plies that the maximum search time 

in AVL-HAsH(n, m) is 2log<f; log log n + 8(1), w.h.p.; and the worst-case insertion 

time is O(logloglogn), w.h.p. Nonetheless, the following theorem asserts that the 

average expected insertion time in AVL-HAsH(n, m) is constant. 

Theorem 4.4. Let m, n E N such that min ~ 1 is constant. The average inser­

tion time in AVL-HASH(n, m) is constant, w.h.p., and hence, the average expected 

insertion time is constant. 

Proof. Let T be the total insertion time in A VL- HASH (n, m). It is obvious that 

mS; T < m2 • For k E lm], let N k be the number of AVL trees in AVL-HAsH(n, m) 

of size exactly l k + min J, which is less than the number of bins in UNIFORM­

GREEDYMC(n,m) ofload at least lk+mlnJ. Let A denote the event that N k S; 

nexp( _2k - c ), for all k E (c, m], where c is the same constant in Theorem 4.1. Let 

No be the number of AVL trees of size at most min + c. For any AVL tree of size k, 

we bound the total insertion time of its elements by k2
. N ow notice that if A is true, 

then 

m 

T < (min + c)2No + L (min + k)2Nk 
k=i cl 
m 

< (mln+c)2n+ L (mln+k)2nexp(-2k-C) S; ,n, 
k=i c l 

for sorne constant ,. In other words, the event [T > ,n 1 implies AC. Theorem 4.1 

says that 1P{Nk > nexp(-2k - c)} = O(1/n2), for all k E (c,m], and thus, the union 

bound leads to 1P{T > in} S; 1P{AC} = O(l/n). Hence, 

n 2 

E [Tl = L1P{T ~ i} S; in + n21P{T > ,n} = O(n). 
i=l 

Thus, E [Tl lm is constant, and Tlm is constant, w.h.p. o 
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4.3 Partially Off-Hne Processes 
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The memory algorithm UNIFoRM-GREEDyMC(n, n) uses during the insertion of any 

ball is 0(1), as upon the arrivaI of each ball it only needs to choose two bins, compare 

their loads, and then insert the ball into the least loaded bin. On the other hand, the 

off-line version of UNIFoRM-GREEDyMC(n, n) uses 8(n) memory, because it waits 

for the n balls to arrive, and finds an assignment after knowing all the 2n choices 

of the balls. The off-line pro cess has more knowledge, and hence more freedom and 

power, because it is not obliged to follow the greedy paradigm of inserting each baIl 

into the least full bin. The on-line pro cess achieves log210gn + 8(1) maximum bin 

load, w.h.p.; while in the off-line version, one can find an assignment that decreases 

the maximum bin load to two, w.h.p. So at the cost of larger memory and longer 

waiting time, one can decrease the maximum bin load. 

This promotes the idea of partially off-line UNIFORM-GREEDyMC with memory 

of size k = o( n). Keeping in mind that each ball chooses two bins independently and 

uniformly at random, with replacement, suppose we divide the allocation pro cess 

into stages. At each stage we wait for k = o(n) balls to arrive-except possibly 

the last stage-and then we assign them off-line to the bins (via algorithm ASSIGN, 

described below) such that w.h.p., each k balls are inserted into k distinct bins. We 

write STAGESMC(n, n, k) to refer to this partially off-line multiple -choice allocation 

process with memory of size k. We would like to study the maximum bin load of 

STAGESMC(n, n, k) for different ranges of k. 

The off-line algorithm ASSIGN inserts each group of k balls into the bins so that 

w.h.p., each ball ends up in a distinct bin. The input of the algorithm is the k balls 

and their choices of bins, where each ball has two bins. For each bin u, let 'ljJ(u) be 

the number of times the bin is chosen, and suppose that 'ljJ(u) is saved with each bin 

and is kept updated, and that 'ljJ(u) can be accessed in one time unit. We also assume 
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that there are two-way links between each ball and its two chosen bins. 

ASSIGN: 

Let L be the list of all bins u such that 'ljJ ( u) = 1. 

for each bin u E L do 
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Let b be the ball that has chosen u, and let v be the second bin chosen by b. 

Insert b into u, remove it from L, and let 'ljJ(v) f- 'ljJ(v) - l. 

If 'ljJ(v) = 1, then add v to the list L. 

If 'ljJ( v) = 0, then remove v from the list L. 

end for 

Insert all balls that are not inserted yet into their first-choice bins. 

Figure 4.2: An illustration of the algorithm ASSIGN. 

To understand the algorithm, recall the random graph G( n, k) which is based on 

the off-line version of UNIFoRM-GREEDvMC(n, k). The k edges in G(n, k), which 

may contain loops and multiedges, are constructed from the 2k random choices of the 

k balls. Notice that for any k = o(n), the random graph G(n, k) is asymptotically 

equivalent to the classical Erdos and Rényi's random graph G(n, k) which is known 

to be a forest, w.h.p.; indeed, the probability that the random graph G(n, k) contains 

a cycle is not more than 

t (~)H' {l3in(k, i2 ln') <: i} :ô t c; r (~i)' :ô t (e:k)' :ô 2:k = 0(1), 
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for n large enough, where we have used the binomial inequality (3) of Lemma O.l. 

This means that the G(n, k) can be oriented such that the maximum out-degree is 

one, i.e., al-orientation can be found. In fact, al-orientation can be achieved even 

if each tree has at most one loop. This can be done as follows. For each vertex 

of degree one (a leaf) in any tree, orient its incident edge outward, i.e., toward the 

parent. Now ignore the oriented edges and repeat the same step for the remaining 

undirected trees. The last edge to be oriented in any tree is the loop, if the tree 

has one. This is what the algorithm ASSIGN is in essence doing, equivalently. The 

running time of the algorithm is O(k). 

Now let us see how the maximum bin load changes with k. First of all, by the 

birthday paradox, we know that if k = o(vn) , then w.h.p., the 2k choices of the 

balls do not overlap, and hence each ball ends up in a distinct bin [105]. That is, 

stochastically, there is no difference between the off-line and on-line insertion of the 

k balls. Thus, in this case, STAGESMC(n, n, k) is not better than the on-line version, 

as it is confirmed by the second part of Theorem 0.2. 

To study the maximum bin load for general k, we need to consider the analo­

gous problem in the c1assical allocation process CLASsIcAL(n, n). Recall that the 

maximum bin load of CLASslcAL(n, n), where each baIl is inserted into a bin cho­

sen independently and uniformly at random with replacement, is asymptotic to 

Çn := log n/ log log n, in probability. For simplicity, assume that n = kr, for sorne 

positive integers k = o(n) and r. Now consider the following adaptive pro cess which 

is divided into r stages. At each stage we wait for k balls to arrive, and then we as­

sign them to k distinct bins chosen at random, where any k distinct bins are equally 

likely to be chosen, i.e., the probability that we choose any k distinct bins is 1/ G). 

Let us refer to this process by CLASSICSTAGES( n, n, k). The question now is: does 

this yield a better maximum bin load than çn? Evidently, the answer depends on k. 
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Again, if k = o( vn), then by the birthday paradox, the modified process is equivalent 

to the classical allocation process, and so the maximum bin load does not improve. 

Indeed, the following theorem asserts that if k 2: cn/çn, for some constant c> 1, the 

maximum bin load w.h.p., decreases to n/k which is strictly less than Çn; otherwise, 

the maximum bin load does not change, i.e., it is asymptotic to Çn, in probability. 

Before we prove this result we need a brief introduction to it. 

Recall that in the classical allocation pro cess CLASslcAL(n, n), the distribution 

of the bin loads (Xl' ... ,Xn ) is a multinomial with parameters n and (l/n, ... , lin), 

where the random variable Xi ~ Bin(n, lin) is the load of the i-th bin. Notice that 

the Xi are dependent, because the 'L~=I Xi = n; but more importantly, they are 

negatively associated (or negatively correlated). This, plainly, means that 

because if the number of balls decreases in one bin, it is more likely to increase in 

the other. Therefore, Mallows' inequality, which is a useful tool for proving the lower 

bound on the maximum bin load, holds here. 

Returning back to CLASSICSTAGEs(n, n = kr, k), let Ni, for i E ln], denote the 

load of the i-th bin. Notice that during any stage, the probability that a ball falls 

into a certain bin is kG::::~)/(~) = k/n = l/r. Hence, the load of the i-th bin 

Ni ~ Bin(r, l/r). It is evident, however, that the bin load vector (NI, ... , N n ) is not 

multinomial. So, we cannot conclude directly that the Ni are negatively associated, 

and use the Mallows inequality. Nonetheless, the inequality 

still holds for the same reason mentioned above, roughly speaking. In fact, Dubhashi 

et al. [56, Sec. 5.2J and [57], in the context of the Fermi-Dirac model, proved that 

the Ni are negatively associated. Hence, we can still use Mallow's inequality. 
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Theorem 4.5. Assume that n = rk, for some positive integers rand k. Suppose we 

insert n balls into n bins via CLASSICSTAGES( n, n, k). Let Y be the maximum bin 

load upon termination. If r ~ (1 - é) logn/loglogn, for some constant é E (0,1), 

then Y = r, w.h.p.; otherwise, Y rv logn/loglogn, in probability. 

Proof. Recall that Ni f=. Bin(r, l/r), for i E ln]. Let À E [0, r) be any integer. Observe 

that (1 - l/r»' ~ 1 - À/r. Thus, 

(~) r1À 
= ~;r_-À~~: (r ~ 1) (r ~ 1y ~ (r ~ 1) (r ~ 1y . 

Thence, ifr ~ t:= l(l-o(l))logn/loglognJ, we have (~)/rÀ ~ (1)/tÀ. Notice 

that the sequence (l-l/rY increases to l/e, rnonotonically. Thus, for all i E ln], we 

have 

lP{N = À} > (r) ~ (1- l/r)r > (t) ~~ > _1 
l - À rÀ - À tÀ 3 - 3tÀ ' 

for n large enough. Since the Ni are negatively associated, we have 
n 

lP{Y < À} = lP{N1 < À, ... ,Nn < À} ~ I1lP{Ni < À} 
i=l 

n n 

I1(1-lP{Ni ~ À}) ~ I1(1-lP{Ni = À}) 
i=l i=l 

exp (-n/(3tÀ
)) = exp (-n€) = 0(1), 

if À = (1 - é) log n/ log log n, for any constant é E (0, 1). For the upper bound, the 

union bound and inequality (3) of Lernrna 0.1 yield that 

n À 

lP{Y> À} ~ LlP{Ni > À} ~ n (~) = n-€+o(l) = 0(1), 
i=l 

if À = (1 + é) logn/loglogn, for any constant é E (0,1). On the other hand, if 

r ~ (l-E) log n/ log log n, for sorne constant é E (0,1), then lP {Ni = r} = r-r ~ n1-€; 

and so again 
n 

lP {Y < r} ~ I1 (1 - lP {Ni = r }) = exp ( - n €) = 0 (1) . 
i=l 

Therefore, Y = r, w.h.p. o 
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Now recall that at each stage of STAGESMC(n, n, k), where k = o(n), the balls 

are inserted into k distinct bins, w.h.p. The maximum bin load is at most 1 ni k l, 
deterministically. However, the important point here is that the k distinct bins 

may not be uniformly distributed as in CLASSICSTAGES( n, n, k). Intuitively, this 

means that STAGESMC(n, n, k) is at most as good as CLASSICSTAGEs(n, n, k). That 

is, the maximum bin load of STAGESMC(n, n, k) is not better than the maximum 

bin load of CLASSICSTAGEs(n, n, k). Thus, if we want the maximum bin load of 

STAGESMC(n,n,k) to be less than log2logn, then, by Theorem 4.5, k must be at 

least ni log2 log n. Thus, if we take k = l ni log log log n J, then the worst-case search 

time of STAGESMC(n, n, k) is 2Iogloglogn+2, w.h.p., and the amortized allocation 

time is 0(1). However, the trade-off is that the allocation time per baIl is O(k) which 

might be an expensive cost. 

Corollary 4.2. Let n, kEN. If ni log2log n ::::: k « n, then the maximum bin load 

of STAGESMC(n, n, k) is 1 nlk l, w.h.p. 

Clearly, this is an improvement for hashing, if the concentration is on the worst­

case search time and not the worst-case insertion time. However, this is certainly 

not helpful for an application where the maximum search time is not an important 

measure such as on-line load balancing and dynamic resource allocations. Remember 

that for such applications, we can decrease the maximum bin load of UNIFORM­

G REEDyM C (n, n) by using d = o(log log n) hash functions instead of only two, where 

the allocation time for each ball (and the amortized allocation time) is 0 (d). The 

worst-case search time resulting from this speedup, however, is not plausible. 
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4.4 Processes with Load Thresholds 

One can improve the maximum bin load of UNIFoRM-GREEDvMC(n, m) by reas­

signing the balls that are above certain level, say l Ln + min J, assuming that the 

reassignment can be do ne efficiently in some sense. This depends, trivially, on the 

number of balls we have to reassign. Given that Ln = o(1og log n), and Ln ~ 00, 

Corollary 4.1 says that w.h.p., the number of "bad balls" that exceed the l Ln + min J 

load threshold in UNIFoRM-GREEDvMC(n, m) is at most n exp( _2L
n-

C
) = o(n). For 

instance, if Ln = 10g210g log n + c, the number of balls ab ove the level l Ln + min J 

is at most ni Iogn = o(n). Now sin ce the number of bad balls is "small", one can 

rearrange these balls off-line in a special way so that each ball ends up in a distinct 

bin. This has been demonstrated above by the off-line algorithm ASSIGN, which is 

based on the fact that the random graph generated from the ball choices is a forest, 

w.h.p. 

This leads to the following partially off-line UNIFORM-GREEDVMC. First we 

choose our load threshold Ln so that Ln = o(log log n), and Ln ~ 00. We div ide 

the allocation pro cess into two mini-processes. The first one follows the same greedy 

strategy of the on-line algorithm UNIFORM-GREEDVMC (assigning the balls upon 

arrivaI to the Ieast full bin among two bins chosen independently and uniformly at 

random, breaking ties at random), but with only one exception. Any ball that chooses 

two bins with loads more than l Ln + min J is not inserted, and put aside for the 

second mini-process to deal with. Notice that the number of balls that are put aside 

is at most o(n), w.h.p. Hence, once all the m balls arrive, the second mini-pro cess 

uses the off-line algorithm ASSIGN to insert the remaining balls. Let us refer to this 

partially off-line process by PO-THREsHoLD(n, m, Ln). 

The maximum bin Ioad of PO-THREsHoLD(n, m, Ln) is l Ln + min J + 1, w.h.p., 

and hence the worst-case search time is 2l Ln + min J + 4, w.h.p. The allocation 
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Figure 4.3: An illustration of the pro cess PO-THREsHoLD(n, m, Ln). 

time is deterministically constant for each ball inserted during the first phase, and 

it is tn := 8(nexp(-2Ln ±6(1))), w.h.p., for all the balls inserted during the second 

phase. Thus, the amortized allocation time is still 0(1); and, obviously, the worst­

case allocation time is tn, w.h.p. But what about the expected allocation time? 

Unfortunately, even the expected allocation time is at least tn, as it shown in this 

lemma. 

Lemma 4.1. Let n, m, Ln E fil such that min 2 1 is constant, and 1 « Ln « 
log logn. In algorithm PO-THREsHoLD(n, m, Ln), the expected allocation time of a 

certain ball picked uniformly at random is tn. 

Proof. Let T be the allocation time of a certain ball picked uniformly at random. 

Let A be the event that the number of balls inserted during the second phase is at 

least (n := n exp( _2Ln+b+l), where bis the same constant in Theorem 4.1. We know 

that A occurs w.h.p. Let B be the event of being inserted during the second phase. 

Recall that the running time of the algorithm ASSIGN is O(k) for assigning k balls. 

By Markov's inequality, and for n large enough, we have 

E [T 1 > (n lP {T 2 (n} 2 (n lP {A n B} 2 (n lP { A } lP {B 1 A} 

> ~: exp (_2Ln+b+l) = n (n exp (_2Ln+b+2)) . 

Next, let C be the event that the number of balls inserted during the second phase 

is at most Ç,n := n exp( _2L
n-

C
), where c is the same constant in Theorem 4.1. Notice 
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that 

T < Tll[BnC] +Tll[BC] + Tll[cc] 

< O(çn) + 0(1) + m ll[cc] , 
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However, Corollary 4.1 says that lP{CC} = o(l/n), and so E[T] = O(çn) +0(1). 0 

Once again, because of the high cost of the allocation time during the second 

off-line mini-process, the pro cess PO-THRESHOLD may not be the best choice for 

on-line load balancing and dynamic resource allocation. 
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UNIFORM-GREEDyMC(n, m, d) where d ~ 2 

maximum bin load - logd logn + 0(1), w.h.p. -

maximum search time - d logd log n + O(d), w.h.p. -

maximum allocation time - 8(d) -

amortized allocation time - 8(d) -

avg. exp. allocation time - 8(d) -

UNIFORM-GREEDyMC( l n1+1/r J ,m), where 2:::; r:::; log2n/4 

maximum bin load < log2 r + 8(1), w.h.p. -

maximum se arch time < 2log2 r + 8(1), w.h.p. -
maximum allocation time - 8(1) -

amortized allocation time - 8(1) -

avg. exp. allocation time - 8(1) -

AVL-HASH(n, m), where cp is the golden ratio. 

maximum bin load - log<t>loglogn + 8(1), w.h.p. -

maximum search time - 2logrp log log n + 8(1), w.h.p. -

maximum allocation time - 8(log log log n), w.h.p. -

amortized allocation time - o (log log log n) (worst-case) -

avg. exp. allocation time - 8(1) -

STAGESMC(n, m, kn), where n/ lOg2logn :::; kn ~ n 

maximum bin load (=) r m/kn l, w.h.p. 

maximum search time (=) 2 r m/kn l + 2, w.h.p. 

maximum allocation time - 8(kn) -

amortized allocation time - 8(1) -

avg. exp. allocation time - 8(kn) -

PO-THRESHoLD(n, m, Ln), where 1 ~ Ln ~ loglogn 

maximum bin load - l Ln + min J + 1, w.h.p. -

maximum search time - 2lLn + m/nJ + 4, w.h.p. -

maximum allocation time - 8 (nexp (_2 Ln±8(1))), w.h.p. -

amortized allocation time - 8(1) -

avg. exp. allocation time - 8 (nexp (_2 Ln±8(1))) -

Table 4.1: The performances of the above processes, where min is constant. 
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Hashing with Open Addressing 
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Open addressing is a collision resolution method that does not use chains or 

pointers. The idea of hashing with open addressing appears to have been suggested, 

first, around 1953 by G. M. Amdahl, E. M. Boehme, N. Rochester, and A. L. 'Samuel 

who also used, for the first time, linear probing [103, p. 547]. The first published 

article about open addressing with linear probing is the Russian monograph written 

by Ershov [62]. About the same time, Peterson [147] wrote the first major paper 

that analyzes the average performance of uniform probing. Statistical data about the 

behavior oflinear probing were also given. Knuth [102, 103] reported that he analyzed 

the average performance of linear probing in unpublished notes in 1963. The first 

published analysis is done by Konheim and Weiss [106]. Morris [136] introduced 

random probing. 

In this part of the thesis, we focus on sorne open addressing ideas inspired by the 

two-way chaining paradigm. In particular, we study the concept of two-way linear 

probing. In Chapter 5, we recall sorne of the related history, and we analyze the 

basic ide a of two-way linear probing demonstrating that it is not always fruitful. 

Subsequently, we introduce, in Chapter 6, sorne successful two-way linear probing 

algorithms that improve the performance. 



Chapter 5 

Two-way Linear Probing: the 

Naked Idea 

We study on-line open addressing schemes that use two linear probe sequences to find 

possible hashing cells for the keys as follows. Each key chooses two initial cells (from 

a hash table with n cells) independently and uniformly ar random, with replacement. 

From each initial cell, we probe linearly, and cyclically whenever the last cell in the 

table is reached, to find two empty cells which we call terminal cells. The key then 

is inserted into one of these terminal cells according to a fixed strategy. We consider 

strategies that utilize the greedy multiple-choice paradigm. For example, one of the 

trivial strategies inserts each key into the terminal cell found by the short est probe 

sequence. Another simple strategy inserts each key into the terminal cell that is 

adjacent to the smallest cluster, where a cluster is an isolated set of consecutively 

occupied cells. Unfortunately, the performances of these two strategies are not as 

good as we might expect. We praye that the maximum unsuccessful search time is 

O(1ognjloglogn), w.h.p., when any of these two strategies is used to construct a 

hash table with constant load factor. We also show that an O(1og log n) universal 
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lower bound holds for any strategy that uses two linear probe sequences, even if the 

initial cells are chosen according to arbitrary probability distributions. 

5.1 History and Motivation 

In classical open addressing hashing [147], m keys are hashed sequentially and on­

line into a table of size n > m, (that is, a one-dimensional array with n cells which 

we denote by the set T = {a, ... , n - 1}), where each cell can harbor at most one 

key. Each key x has only one infinite probe sequence fi(x) E T, for i E N, where 

fi(X) is the i-th probe available for the key x. During the insertion process, if a 

key is mapped to a cell that is already occupied by another key, a collision occurs, 

and another probe is required. The probing continues until an empty cell is reached 

where a key is placed. For further details see [103, 80, 169]. This method of hashing 

is pointer-free, unlike hashing with separate chaining which we studied in the first 

part of the thesis. 

Probing and Replacement 

Open addressing schemes are determined by the type of probe sequence, and the 

replacement strategy for resolving collisions. Sorne of the commonly used probe 

sequences are: 

1. Random Probing [136]: For every key x, the infinite sequence fi(X) is as­

sumed to be independent and uniformly distributed over T. That is, we require 

to have an infinite sequence fi of truly uniform and independent hash functions. 

If for each key x, the first n probes of the sequence fi(X) are distinct, i.e., it is 

a random permutation, then it is called uniform probing [147J. 

2. Linear Probing [147]: For every key x, the first probe fI(x) is assumed to be 
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uniform on T, and the next probes are defined by fi+l(X) = fi(X) + 1 mod n, 

for i E ln]. 80 we only require fI to be a truly uniform hash function. 

3. Double Probing [15]: For every key x, the first probe is fI(x), and the next 

probes are defined by fi+l(X) = fi(X) + g(x) mod n, for i E N, where fI and 9 

are truly uniform and independent hash functions. 

Random and uniform probings are, in sorne sense, the idealized models [164, 178], 

and their plausible performances are among the easiest to analyze; but obviously they 

are unrealistic. Linear probing is perhaps the simplest to implement, but it behaves 

badly when the table is almost full. Double probing can be seen as a compromise. 

During the insertion pro cess of a key x, suppose that we arrive at the cell fi(X) 

which is already occupied by another previously inserted key y, that is, fi (x) = iJ (y), 

for sorne j E N. Then a replacement strategy for resolving the collision is needed. 

Three strategies have been suggested in the literature (see [138] for other methods): 

1. FIRST COME FIRST SERVED (FCFS) [147]: The key y is kept in its cell, and 

the key x is referred to the next cell fi+1 (x) . 

2. LAST COME FIRST SERVED (LCFS) [151]: The key x is inserted into the cell 

fi(X), and the key y is pushed along to the next cell in its probe sequence, 

iJ+l(Y)' 

3. ROBIN ROOD [29, 28]: The key which travelled the furthest is inserted into 

the cell. That is, if i > j, then the key x is inserted into the cell li (x), and the 

key y is pushed along to the next ceIl iJ+l (y); otherwise, y is kept in its ce Il , 

and the key x tries its next ceIl fi+l(X). 
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A ver age Performance 

Evidently, the performance of any open addressing scheme deteriorates when the load 

factor Œ := min of the hash table approaches 1, as the cluster sizes increase, where 

a cluster is an isolated set of consecutively occupied cells (cyclically defined) that 

are bounded by empty cells. Therefore, we shall assume, throughout this chapter, 

that Œ E (0,1) is a constant. The asymptotic average-case performance has been 

extensively analyzed for random and uniform probing [147, 136, 164, 109, 178,21], 

linear probing [102, 103, 106, 125], and double probing [15, 84, 115, 162, 158]. The 

expected se arch times were proven to be constants, more or less, depending on Œ only. 

Recent results about the average-case performance of linear probing, and the limit 

distribution of the construction time have appeared in [166, 67, 104]. See also [78, 

148, 4] for the average-case analysis of linear probing for nonuniform hash functions. 

It is worth noting that the average search time of linear probing is independent of 

the replacement strategy; see [147, 103]. This is because the insertion of any order of 

the keys results in the same set of occupied cells, i.e., the cluster sizes are the same; 

and hence, the total displacement of the keys-from their initial hashing locations­

remains unchanged. It is not difficult to see that this independence is also true for 

random and double probings. That is, the replacement strategy do es not have any 

effect on the average successful search time in any of the above probings. In addition, 

since in linear probing the maximal unsuccessful search time is related to the cluster 

sizes (unlike random and double probings), the maximum unsuccessful search times 

in linear probing is invariant to the replacement strategy. 

It is known that LCFS [151, 152] and ROBIN ROOD [29, 28, 138, 166] strategies 

minimize the variance of displacement. Recently, Janson [95] and Viola [165] studied 

the effect of these replacement strategies on the individual search times in linear 

probing hashing. 
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Worst-case Performance 

The focal point of this chapter is the worst-case search time which is proportional to 

the length of the longest probe sequence over aU keys (LLPS, for short). 

The worst-case performance of linear probing with FCFS policy was analyzed by 

Pittel [149]. He showed that the maximum cluster size, and hence the LLPS needed 

to insert (or search for) a key, is asymptotic to (a -1-loga)-llogn, in probability. 

This bound holds for linear probing with any replacement strategy. Chassaing and 

Louchard [30] studied the threshold of emergence of a giant cluster in linear probing. 

They showed that when the number of keys m = n - w( yn), the size of the largest 

cluster is o(n), w.h.p.; however, when m = n - o( yn), a giant cluster of size 8(n) 

emerges, w.h.p. 

Gonnet [79] proved that with uniform probing and FCFS replacement strategy, the 

expected LLPS is asymptotic to logl/a n-Iog1/ a logl/a n+O(I): However, Poblete and 

Munro [151, 152] showed that if random probing is combined with the LCFS policy, 

then the expected LLPS is at most (1 + o(I))r-1(an) = O(logn/loglogn), where r 

is the gamma function. 

On the other hand, the ROBIN HOOD strategy with random probing leads to a 

more striking performance. Celis [28] first proved that the expected LLPS is O(logn). 

However, Devroye, Morin and Viola [45] tightened the bounds and revealed that the 

LLPS is indeed log2logn ± 8(1), w.h.p., thus achieving a double logarithmic worst­

case insertion and search times for the first time in open addressing without using 

rehashing techniques. Unfortunately, one cannot ignore the unrealistic assumption 

in random probing about the availability of an infinite collection of independent and 

truly uniform hash functions. On the other side of the coin, we already know that 

ROBIN HOOD policy does not affect the maximum unsuccessful search time in linear 

probing. However, ROBIN HOOD may be promising with other probing methods. 
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Other Initiatives 

Open addressing methods that rely on rearrangements of keys have been studied 

in [22, 119, 154, 81, 118, 138]. Most importantly is cuckoo hashing, introduced by 

Pagh and Rodler [146]. The scheme exploits the LCFS replacement policy in a hash 

table partitioned into two parts. The worst-case search time is at most two, and the 

amortized expected insertion time is constant. However, the pitfall of this scheme 

is that it depends on a rehashing pro cess which uses a wealthy source of provably 

good independent hash functions. See also [44, 69, 53, 141]. Broder and Karlin 

[23] suggested a multilevel hashing scheme with O(log log n) worst-case search time, 

but it uses O(1oglogn) hash functions and a rehashing technique. Many real-time 

static and dynamic perfect hashing schemes achieving constant worst-case search 

time, and linear (in the table size) construction time and space were designed in 

[74, 23, 48, 52, 51, 50, 142, 144]. Usually such schemes employ more than a constant 

number of perfect hash functions chosen from an efficient universal class. Some of 

them even use O(n) functions. For a more detailed account on these schemes see 

Section 1.1. 

5.2 Two-way Linear Probing 

Inspired by the two-way chaining paradigm and its powerful performance, we promote 

the concept of open addressing hashing with two-way linear probing. The essence 

of the proposed concept is based on the idea of allowing each key to generate two 

independent linear probe sequences and making the algorithm decide, according to 

some strategy, at the end of which sequence the key should be inserted. Formally, 

each input key x chooses two cells independently and uniformly at random, with 

replacement. We call these cells the initial hashing cells available for x. From each 
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initial hashing ce 11 , we start a linear probe sequence (with FCFS policy) to find an 

empty ce11 where we stop. Thus, we end up with two unoccupied ce11s. We ca11 these 

cells the terminal hashing cells. 

Definition 5.1. An on-line two-way linear probing algorithm is an open addressing 

hashing algorithm that inserts keys sequentially into cells using a certain strategy 

and does the following upon the arrivaI of each key: 

1. It chooses two initial hashing cells independently and uniformly at random, 

with replacement. 

2. Two terminal (empty) cells are then found by linear probe sequences starting 

from the initial cells. 

3. The key is inserted into one of these terminal cells. 

The question now is: into which terminal cell should we insert the key x? A two­

way linear probing algorithm could follow one of the strategies we mentioned earlier: 

it may insert the key at the end of the shortest probe sequence, or into the terminal 

cell that is adjacent to the smallest cluster. Others may make a decision even before 

linear probing starts. In any of these algorithms, the searching pro cess for any key 

is basically the same: just start probing in both sequences alternately, until the key 

is found, or the two empty cells at the end of the sequences are reached in the case 

of an unsuccessful search. Thus, the maximum unsuccessful search time is at most 

twice the size of the largest cluster plus two. 

In the next section, we prove that the maximum unsuccessful search time of any 

two-way linear probing algorithm, that satisfies the above definition, is n(1og log n). 

Unfortunately, not every two-way linear probing algorithm has a matching upper 

bound on its worst-case performance. In Section 5.4, we prove that there are classes 

of two-way linear probing algorithms that behave poorly; in particular, we analyze 
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the two algorithms, described above, and show that the hash table, asymptotically 

and almost surely, contains a cluster of size O(1og ni log log n). However, we present, 

in Chapter 6, two-way linear probing algorithms that achieve 8(1oglogn) worst-case 

search time. 

Two-way linear probing hashing-if used successfully as we are going to see in 

the next chapter-has several advantages over other proposed hashing methods: it 

reduces the worst-case behavior of hashing, it requires only two hash functions, it is 

easy to parallelize, it is pointer-free and easy to implement, and it does not require 

any rearrangement of keys or rehashing. Its average-case performance can be at most 

twice the classicallinear probing, and its maximum cluster size is O(1oglogn), unlike 

aIl other methods. Furthermore, it is not necessary to employ perfectly random hash 

functions. We believe that hash functions with smaller degree of universality, (e.g., 

O(1ogn)-universal), such as the on es in [48, 101, 162, 161, 158, 146] will be sufficient. 

Before we embark on the analysis, we should remind the reader that the hashing 

assumptions stated in Section 0.4 are also applied in this part of the thesis. In 

particular, we assume the following. We have a set of input keys J( ç U of size m to 

be hashed into a hash table T = {O, ... ,n - 1} such that each cell contains at most 

one key. The pro cess of hashing is sequential and on-line, unless otherwise stated. 

Furthermore, we assume that the linear probe sequences always move cyclicaIly from 

left to right of the hash table. The replacement strategy of aIl of the introduced 

algorithms is FCFS. The insertion time is defined to be the number of probes the 

algorithm performs to insert a key. Similarly, the search time is defined to be the 

number of probes needed to find a key, or two empty cells in the case of unsuccessful 

search. Observe that unlike classical linear probing, the insertion time of two-way 

linear probing is not equal to the successful search time. 
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5.3 Universal Lower Bound 

The following lower bound holds for any two-way linear probing hashing scheme, in 

particular, the ones that are presented here and in the next chapter. 

Theorem 5.1. Let n, mEN, and assume that a := min E (0,1) is a constant. Let 

A be any on-line two-way linear probing algorithm that inserts m keys into a hash 

table of size n. Then upon termination of A, w.h.p., the table contains a cluster of 

size at least log2 log n - e (1) . 

Proof. Imagine that we have a bin associated with each cell in the hash table. Recall 

that for each key x, algorithm A chooses two initial hashing cells, and hence two 

bins, independently and uniformly at random, with replacement. Algorithm A, then, 

probes linearly to find two (possibly identical) terminal cells, and inserts the key x 

into one of them. Suppose that after the insertion of each key x, we also insert a baIl 

into the bin associated with the initial cell from which the algorithm started probing 

to reach the terminal cell into which the key x was placed. If both of the initial ce Ils 

lead to the same terminal ce Il , then we break the tie randomly. Clearly, if there is 

a bin with k balls, then there is a cluster of size of at least k, because the k balls 

represent k distinct keys that belong to the same cluster. This means that we have 

an algorithm that inserts m balls into n bins where each baIl is placed into a bin 

among two bins chosen independently and uniformly at random, with replacement. 

Thus, by the second part of Theorem 0.2, the maximum bin load upon termination 

of algorithm A is at least log2log n - 8(1), w.h.p. 0 

The above lower bound is valid for aIl algorithms that satisfy Definition 5.1. A 

more general lower bound can be established on aIl open addressing schemes that 

use two linear probe sequences where the initial hashing cells are chosen according 

to sorne (not necessarily uniform or independent) probability distributions defined 
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on the cells. We still assume that the probe sequences are used to find two (empty) 

terminal hashing cells, and the key is inserted into one of them according to sorne 

strategy. We caU such schemes nonuniform two-way linear probing. The proof of 

the following theorem is similar to Theorem 5.1, but uses Vocking's lower bound 

(Theorem 0.5). 

Theorem 5.2. Let n, mEN, and assume that ct := min E (0,1) is a constant. Let A 

be any nonuniform two-way linear probing algorithm that inserts m keys into a hash 

table of size n where the initial hashing cells are chosen according to some probability 

distributions. Then the maximum cluster size produced by A, upon termination, is 

at least 0.72 ... x log2logn - 8(1), w.h.p. 

5.4 Life is not Always Good! 

The idea of two-way linear probing alone is not always sufficient to pull off a plausi­

ble hashing performance. Indeed, a large group of two-way linear probing algorithms 

have an n(log ni log log n) lower bound on their worst-case se arch time. In this sec­

tion, we characterize sorne of the two-way linear probing algorithms that behave 

disappointingly. 

Ignorant Algorithms 

A two-way linear pro bing algori thm is not expected to have 0 (log log n) worst-case 

se arch time, if its decisions of where to place the keys are made solely from the 

information obtained by only one linear probing sequence. For instance, consider the 

following strategy: each key is inserted into the first terminal ce Il , if it is reached 

by not more than k probes; otherwise, the key is placed into the second terminal 

cell. Information about the second terminal cell is basically ignored. Indeed, we may 
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as well postpone selecting the second initial hashing ce II , if needed, until after the 

algorithm makes its decision. We prove next that such algorithms are doomed to have 

poor performance. Notice that we still use both probe sequences to se arch for any 

key by probing linearly and alternatingly, until the key is found, or two empty ce Ils 

are reached in the case of an unsuccessful search. Thus, the maximum unsuccessful 

search time is at most twice the size of the largest duster plus two. 

Theorem 5.3. Let n, mEN such that Ct := m/n E (0,1) is a constant. Suppose that 

we have a two-way linear probing algorithm that inserts m keys into n cells such that 

the decision of where to insert any key is made before its second initial hashing cell 

is chosen. In other words, the decisions are made without knowing any information 

about the second choices. Then the hash table must have a giant cluster of size at 

least À(n) := r )(2 - E) log n/ log log n l, w.h.p., for any constant E E (0,1). 

Proof. Fix E E (0,1). Without loss of generality, we assume that during the insertion 

process, the second initial cell for any key is chosen if and only if the algorithm decides 

to insert the key into its second terminal cell. Let S be the set of an keys for which 

second initial hashing cells are chosen. That is, a key belongs to S if and only if it 

is inserted into its second terminal cell. For i E T = {O, ... , n - 1}, let Ci be the 

number of keys that have chosen the cell i as its second initial hashing cell. Notice 

that every key that has chosen the cell i as its second initial cell is inserted into the 

empty cell at the end of the dus ter containing cell i. This means that the size of the 

duster that contains the cell i is at least Ci' Thus, if maxi Ci ~ À, then the maximum 

duster size is at least À. For i E T, let Fi be the set of aU keys that have chosen 

the cell i as its first initial hashing ceIl, and notice that lFil ~ Bin(m, l/n). Define 

the set 1{ : = {i : lFi 1 ~ À}. Let A be the event that there is a cell i E 1{ such that 

every key in Fi is inserted into its first terminal hashing cell. For the same reason 

stated above, if A is true, the maximum duster size is at least À. We will show that 
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where N is defined below. The binomial tail inequality of Lemma 0.2 yields that for 

n large enough, 

Let 

Clearly, 11-l1 can be written as a function of m independent random variables, namely, 

the first initial cells available for the m keys. If one of these initial cells is changed, the 

random variable 11-l1 may decrease or increase by at most one. Thus, by McDiarmid's 

inequality (Lemma 0.3), we see that for n large enough, 

( 2N2) 
lP'{I1-l1 < N} :::; lP'{I1-lI- E [11-l1 J < -N} :::; exp m = 0(1). 

Let n be large enough such that 

and ( l)n 1 
1- - >­

n - 3' 

which can be done because (1 - 1/n)n ~ Ile. Then we have 

for sorne constant c E (0,1). Observe that ISI = :L~~ol Ci, and the second initial cells 

available for aIl keys in Sare independently and uniformly distributed over the hash 

table. Thus, knowing ISI, the vector (Cl," ., Cn ) is a multinomial random variable. 

AIso, if A is not true, then the ISI ~ 11-l1. Consequently, using Mallows' inequality, 
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we obtain 
n-l 

lP' { mfx Ci < À 1 AC n [ IHI ;:-:: N l} < rr lP' {Ci < À 1 AC n [IHI ;:-:: N]} 
i=O 

< (l-lP'{Bin(N, lin) ;:-:: À}t 

< exp ( - ;~:À) = 0(1). 

o 

Algorithms that Behave Poorly 

We consider here the two examples of two-way linear probing algorithms we men­

tioned earlier. The first algorithm places each key into the terminal cell discovered 

by the short est probe sequence. More precisely, once the key chooses its initial hash­

ing cells, we st art two linear probe sequences. We proceed, sequentially and alter­

nately, one probe from each sequence until we find an empty (terminal) cell where 

we insert the key. Formally, let f, 9 : U --t {O, ... , n - l} be independent and truly 

uniform hash functions. For x EU, define the linear sequence fI (x) = f (x), and 

fi+l(X) = fi(X) + 1 mod n, for i E ln]; and similarly define the sequence 9i(X). The 

algorithm, then, inserts each key x into the first unoccupied cell in the following probe 

sequence: fI(x), 91(X), f2(X), 92(X), f3(X), g3(X), .... We denote this algorithm that 

hashes m keys into n cells by SHORTSEQ(n, m), for the short est sequence. 

The second algorithm inserts each key into the empty (terminal) cell that is the 

right neighbor of the smallest c1uster among the two clusters containing the initial 

hashing cells, breaking ties randomly. If one of the initial cells is empty, then the key 

is inserted into it, and if both of the initial cells are empty, we break ties evenly. Recall 

that a c1uster is a group of consecutively occupied cells whose left and right neighbors 

are empty cells. This means that one can compute the size of the c1uster that contains 

an initial hashing cell by running two linear probe sequences in opposite directions 
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x 

IdolOI 1 1 Idololololol@ 101 1 1010Idoi 1 1 Idololold 1 

Figure 5.1: An illustration of algorithm SHORTSEQ(n, m) in terms of balls (keys) 

and bins (cells). Each ball is inserted into the empty bin founded by the short est 

sequence. 

starting from the initial cell and going to the empty cells at the boundaries. So 

practically, the algorithm uses four linear probe sequences. We refer to this algorithm 

by SMALLCLusTER(n, m) for inserting m keys into n cells. 

x 

1 10101 10101 101 1010101@ Id lolOloldol 1 1 IdolOlold 1 

Figure 5.2: Aigorithm SMALLCLusTER(n, m) inserts each key into the empty cell 

adjacent to the smallest cluster, breaking ties randomly. The size of the clusters is 

determined by probing linearly in both directions. 

The performances of algorithms SHORTSEQ and SMALLCLUSTER, as we are going 

to see, is unexpectedly disappointing. The main mistake in these two algorithms is 

that the keys are allowed to be inserted into empty cells even if these cells are very 

close to some big clusters. 
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Theorem 5.4. Let f E (0,1) be an arbitrary constant, and n, mEN be such that 

ex := min E (0,1) is a constant. Let A be a two-way linear probing algorithm that 

inserts m keys into n ceUs such that whenever a key chooses an empty and an occupied 

initial ceUs, the algorithm inserts the key into the empty one. Then algorithm A 

produces a cluster of size at least (1 - f) log ni log log n, w.h.p. 

Proof. Set ç(n):= r(l-f)lognlloglognl Let f3 = llognJ, and assume, with-

out loss of generality, that N := ni f3 is an integer. We say "at time t" to mean 

immediately after the insertion of t keys. For t E lm], and i E [N], let Xi(t) be 

the number of consecutively occupied cells at time t that occur between the cell 

number f3i and the first empty cell that cornes after it. More precisely, Xi(t) = j 

if and only if at time t, aU the cells f3i + 1, ... ,f3i + j are occupied, and the cell 

f3i + j + 1 is empty, where we consider the cell numbers in a circular fashion. Let 

Xi(t) := f3i + Xi(t) + 1, and notice that the ceU Xi(t) is always empty, because m < n. 

Clearly, if aU clusters are smaller than ç, then maXi Xi(m) < ç. So we only need to 

show that lP' {maxi Xi(m) < Ç} = 0(1). Setting Xi(O) = 0, we can write 

m 

Xi(m) = L R[Xi(t)=Xi(t-1)+l) . 

t=l 

For i E [N], and t E lm], let Y;;(t) be the indicator that the first initial ceU of the 

t-th key is the empty ceU Xi (t - 1), and the second initial cell is an occupied cell. By 

assumption, if Y;;(t) = 1, then Xi(t) = Xi(t - 1) + 1, because the algorithm inserts 

the t-th key into the cell Xi (t - 1). Therefore, for aU i E [N], we have 

m 

Xi(m) ~ L Y;;(t) ~ Zi . 
t=im/21 

Notice that the random variables Zl, ... ,ZN are negatively associated when condi­

tioned on the event A := [maxi Xi(m) < f3], which can been seen as follows. For 

t E lm], let Yo(t) := 1 - 2::'1 Y;;(t) , and notice that given A, the random variable 
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Yo(t) is binary. Lemma 0.4 says that the binary random variables Yo(t), ... , YN(t) 

are negatively associated wh en conditioned on A. However, since the keys choose 

their initial cells independently, the random variables Yo(t), ... , YN(t) are mutually 

independent from the random variables Yo(t'), ... , YN(t'), for any distinct t, t' E [ml. 

Thus, by Lemma 0.5, the union U~l {Yo(t), . .. , YN(t)} is a set of negatively associ-

ated random variables under the same conditioning. Now the conditional negative 

association of the Zi is assured by Lemma 0.6. Consequently, we have 

1P { [ mfx Xi (m) < f, ] nA} :S 1P { mfx Zi < f, 1 A} 

< IP{Zl<f" ... ,ZN<f,IA} 
N 

< rI (1 - 1P {Zi 2: f, 1 A} ) 
i=l 

which goes to zero if 2:~11P {Zi 2: f, 1 A} ~ 00. Since the keys choose their initial 

cells independently and uniformly at random, we see that for aIl t 2: r m/21, and n 

large enough, 
t-1 a 

IP{Yi(t) = liA} 2: -2 2: -4 . 
n n 

Thus, by the independence of Yi(l), . .. , Yi(m), for each i E [N], and the binomial 

tail inequality of Lemma 0.2, we see that 

N N ( 2)Ç 
~IP{Zi 2: f,IA} 2: ~IP{BinUm/21 ,a/(4n)) 2: Ç} 2: eN l~ç w(l) , 

for sorne constant e > O. o 

Clearly, algorithms SHORTSEQ(n, m) and SMALLCLusTER(n, m) satisfy the con­

dition of Theorem 5.4. So this corollary follows. 

Corollary 5.1. Let n, mEN, and assume that a ;= m/n E (0,1) is a constant. 

The size of the largest cluster generated by algorithm SHORTSEQ(n, m) is at least 
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(1 - é) lognj loglogn, w.h.p., for any constant é E (0,1). The same result holds for 

algorithm SMALLCLusTER(n, m). 

It is worth mentioning that simulation results of algorithms SHORTSEQ and 

SMALLCLUSTER shows that the worst-case performance of SMALLCLUSTER is bet­

ter than SHORTSEQ. This is somehow expected as the algorithm considers more 

information before it makes its decision of where to insert the keys. 



Chapter 6 

New Paradigms for Two-way 

Linear Probing 

We propose new efficient two-way linear probing algorithms with remarkable worst­

case performances. The corn mon idea of these algorithms is the marriage between the 

concept of two-way linear probing and a technique we calI blocking where the hash 

table is partitioned into equal-sized blocks of cells. Whenever a key has two terminal 

cells, the algorithm considers the information provided by the blocks, e.g., the number 

of keys it harbors, to make a decision. Thus, the blocking technique enables the 

algorithm to avoid sorne of the bad decisions the previous algorithms, described in 

the last chapter, make. This leads to a more controlled allocation process, and hence, 

to a more even distribution of the keys. We use the blocking technique to design, in 

Sections 6.2 and 6.3, two two-way linear probing algorithms. In Section 6.1, we give a 

simple algorithm that uses linear probing locally within each block. The algorithms, 

which are implemented with FCFS replacement strategy, are characterized by the way 

the keys pick their blocks to land in. 

The maximum unsuccessful search times of these algorithms are analyzed and 

165 
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proven to be O(loglogn), asymptotically almost surely, which can be viewed in con­

junction with the universallower bound we proved in Section 5.3. Simulation results, 

provided in Section 6.5, supports our theoretical analyses of aIl algorithms discussed 

here, in addition to the ones in Chapter 5. Furthermore, the memory space con­

sumption is stilllinear. Although we assume throughout that these algorithms keep 

a counter with each block, the extra space consumed by these counters is asymptoti­

caIly sub1inear. In fact, we will see that the extra space is O(n/loglogn) in a model 

in which integers take 0(1) space, and at worst 0(nlogloglogn/log1ogn) = o(n), 

w.h.p., in a bit model. 

Since the block size for each of the following algorithms is different, we assume 

throughout and without 10ss of generality, that whenever we use a block of size (3, 

then n/ (3 is an integer. Recall that the hash table T = {a, ... ,n - 1}, and hence, for 

i E [n/ (3], the i-th block consists of the cells (i - 1)(3, ... ,i(3 - 1. In other words, the 

cell k E T belongs to block number .\(k) := lk/(3 J + 1. 

6.1 Two-way Locally-linear Probing 

As a simple example of the blocking technique, we present the following algorithm 

which is a trivial application of the two-way chaining scheme we study in Chapters 

1 and 2. The algorithm does not satisfy the conditions of two-way linear probing as 

explained in Definition 5.1, because the linear probes are performed within each block 

and not along the hash table; so they are locally linear within the blocks. That is, 

whenever the 1inear probe sequence reaches the right boundary of a block, it continues 

probing starting from the left boundary of the same block. 

The algorithm is described as follows. We partition the hash table into disjoint 

blocks each of size (31 (n), where (31 (n) is an integer to be defined later. The load of a 

black is defined to be the number of keys residing in its cells. We save with each block 



NEW PARADIGMS 167 

its load, and keep it updated whenever a key is inserted in the block. For each key we 

choose two initial hashing cells, and hence two blocks, independently and uniformly 

at random, with replacement. From the initial cell that belongs to the least loaded 

block, breaking ties randomly, we probe linearly and cyclically within the block until 

we find an empty cell where we insert the key. If the load of the block is {JI, i.e., it is 

full, then we check its right neighbor block and so on, until we find a block that is not 

completely full. We insert the key into the first empty cell there. Notice that only 

one probe sequence is used to insert any key. The search operation, however, uses two 

probe sequences as follows. First, we compute the two initial hashing cells. We start 

probing linearly, cyc1ically and alternately within the two (possibly identical) blocks 

that contain these initial cells. If both probe sequences reach empty cells, or if one of 

them reaches an empty cell and the other one finishes the block without finding the 

key, we dec1are that it is unsuccessful search. If both blocks are full and the probe 

sequences completely search them without finding the key, then the right neighbors 

of these blocks (cyc1ically speaking) are searched sequentially, and so on, until the 

key is found or two empty cells in the case of unsuccessful search. We will refer to 

this algorithm as LOCALLyLINEAR(n, m), where there are m keys and n cells. We 

show next that (JI can be defined such that none of the blocks are completely full, 

w.h.p. This means that whenever we search for any key, most of the time, we only 

need to search linearly and cyc1ically the two blocks the key chooses initially. 

Theorem 6.1. Let n, mEN, where ct = min E (0,1) is a constant. Let C be the 

constant defined in Theorem 0.3, and define 

(JI(n):= llog2
10

g
n +c +lJ 

1-ct 

Then, w.h.p., the maximum unsuccessful search time of LOCALLyLINEAR(n, m) with 

blocks of size {JI is at most 2{Jl, and the maximum insertion time is at most {JI - 1. 

The bounds are tight up to additive constants. 
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Proof. Notice the equivalence between algorithm LOCALLyLINEAR(n, m) and the 

allocation process UNIFoRM-GREEDyMC (nl/31 ' m) where m balls (keys) are inserted 

into ni /31 bins (blocks) by placing each ball into the least loaded bin among two bins 

chosen independently and uniformly at random, with replacement, where ties are 

broken randomly. It suffices, therefore, to study the maximum bin load of UNIFORM­

GREEDyMC(nl/31' m) which we denote by Ln. However, Theorem 0.3 says that 

w.h.p., 

and similarly, 

log210gn + C 
Ln ~ log2 log n + a/31 - C > 1 - 2C ~ /31 - 2C - 1 . 

-a 

o 

6.2 Two-way Pre-linear Probing 

In the two-way linear probing algorithms of Chapter 5, each input key initiates two 

linear probe sequences that reach two terminal cells, and then the algorithms decide 

in which terminal cell the key should be inserted. The following algorithm, however, 

allows each key to choose two initial hashing cells, and then decides, according to some 

strategy, which initial cell should st art a linear probe sequence to find a terminal cell 

to harbor the key. 80, technically, the insertion pro cess of any key uses only one 

linear probe sequence, but we still use two sequences for any search. The following 

algorithm is similar to algorithm LOCALLYLINEAR. 

Let a E (0, 1) be the load factor. Partition the hash table into blocks of size /32 (n ), 

where /32 (n) is an integer to be defined later. Each key x still chooses, independently 

and uniformly at random, two initial hashing cells, say Ix and lx, and hence, two 

blocks which we den ote by À(Ix) and À(lx)' For convenience, we say that the key 
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x has landed in block i, if the linear probe sequence used to insert the key x has 

started (from the initial hashing cell available for x) in block i. Define the weight of 

a black to be the number of keys that have landed in it. We save with each block its 

weight, and keep it updated whenever a key lands in it. Now, upon the arrivaI of key 

x, the algorithm allows x to land into the block, among À(Ix) and À(Jx), of smallest 

weight, breaking ties randomly. Whence, it st arts probing linearly from the initial 

cell contained in the block until it finds a terminal cell into which the key x is placed. 

If, for example, both Ix and lx belong to the same block, then x lands in À(Ix), and 

the linear sequence st arts from an arbitrarily chosen cell among Ix and lx. We will 

write DECIDEFIRsT(n, m) to refer to this algorithm for inserting m keys into n cells. 

x 

101 oobl 101 Idol 1 10101 blcblOI 10Idoi 1 101 
4 3 2 2 6 3 1 

Figure 6.1: An illustration of algorithm DECIDEFIRST(n, m). The hash table is 

divided into blocks of size (32. The number under each block is its weight. Each key 

decides first to land into the block of smallest weight, breaking ties randomly, then 

probes linearly to find its terminal cell. 

In short, the strategy of DECIDEFIRST(n, m) is: land in the block of smallest 

weight, walk linearly, and insert into the first empty cell reached. The size of the 

largest cluster produced by the algorithm is 8(loglogn). The performance of this 

hashing technique is described in the following theorem. 

Theorem 6.2. Let Cl: = min E (0,1) be constant, where n, mEN. There is a 
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constant TJ > 0 such that if 

then, w.h.p., the maximum unsuccessful search time of algorithm DECIDEFIRsT(n, m) 

with blacks of size (32 is at most Çn := 12(1 - a)-2(log2logn + TJ), and the maximum 

insertion time is at most çn/2. 

Proof. Assume first that DECIDEFIRsT(n, m) is applied to a hash table with blocks 

of size (3 = r b(10g2 log n + TJ)l, and that ni (3 is an integer, where b = (1 + E) 1 (1 - a), 

for sorne arbitrary constant E > o. Consider the resulting hash table after termination 

of the algorithm. Let M 2 0 be the maximum number of consecutive blocks that are 

fully occupied. Without loss of generality, suppose that these blocks start at block 

i + 1, and let S = {i, . .. ,i + M} represent these full blocks in addition to the left 

adjacent block that is not fully occupied (Figure 6.2). 

s 

,.1 1(~~,,,,lts:s:,;~~,Ii# .. l •• I~,,,I~I~ I.~ ... [fIJ J!.:.;.,~,.:e.~., , .... ,! ... ,.,'},.,'~ ---'--_....-l.....;,..;. ~, .-----.:::.:..:.l,. >'1'. ~ ~ 
i+l i+M 

Figure 6.2: A portion of the hash table showing the largest cluster, and the set S 

which consists of the full consecutive blocks and their left neighbor. 

Notice that each key chooses two cells (and hence, two possibly identical blocks) 

independently and uniformly at random. Also, any key always lands in the block of 

smallest weight. Since there are ni (3 blocks, and m = an keys, then by Theorem 

0.3, there is a constant C > 0 such that the maximum block weight is not more 

than Àn := (ab + 1) 10g2logn + abTJ + a + C, w.h.p. Let An denote the event that 

the maximum block weight is at most Àn- Let W be the number of keys that have 

landed in S, i.e., the total weight of blocks contained in S. Plainly, since block i is 
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not full, then all the keys that belong to the M full blocks have landed in S. Thus, 

W ~ Mb(log2log n + 'r/), deterministically. If we choose 'r/ = C + a, then the event 

An implies that (M + l)(ab + 1) ~ Mb, because otherwise, we have 

( 
ab'r/+a+C) 

W:::;(M+1)(ab+1) log2 log n + ab+1 < Mb(log2 Iog n +'r/) , 

which is a contradiction. Therefore, An yields that 

M ab + 1 1 + fa 
:::; (1 - a)b - 1 :::; f(l - a) . 

Recall that (ab + 1) < b = (1 + f) / (1 - a). Again, since block i is not full, the size of 

the largest cluster is not more than the total weight of the M + 2 blocks that cover 

it. Consequently, the maximum cluster size is, w.h.p., not more than 

where 'ljJ(f) := 3 - a + (2 - a)f + l/f. Since f is arbitrary, we choose it such that 

'ljJ(f) is minimum, i.e., f = 1/V2 - a; in other words, 'ljJ(f) = 3 - a + 2~ < 6. 

Since the maximum unsuccessful search time is at most twice the maximum cluster 

size plus two, the result follows for n large enough. o 

Remark 6.1. We have shown that w.h.p. the maximum cluster size produced by 

DECIDEFIRST(n, m) is in fact not more than 

6.3 Two-way Post-linear Probing 

We introduce yet another hashing algorithm that achieves 8(loglogn) worst-case 

search time, a.a.s. Suppose that the hash table is divided into blocks of size /33 (n), 

where /33 (n) is an integer to be picked later. Recall that the load of a block is the 
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number of keys (or occupied cells) it contains. Suppose that we save with each block 

its load, and keep it updated whenever a key is inserted into one of its cells. Now 

the algorithm works as follows. Each key x gets two initial hashing cells. From these 

initial cells the algorithm probes linearly and cyclically until it finds two empty cells 

Ux and Vx , which we call terminal cells. Let >'(Ux ) and >'(Vx ) be the blocks that 

contain these cells. The algorithm, then, inserts the key x into the terminal cell 

(among Ux and Vx ) that belongs to the least loaded block among >'(Ux ) and >'(Vx ) , 

breaking ties randomly. We refer to this algorithm for inserting m keys into n cells 

as WALKFIRST(n, m). Notice that since the algorithm uses both linear sequences 

to insert any key, the construction time here is, roughly speaking, twice the one in 

DECIDEFIRST(n, m). 

10101 IOIOldOIOI 1 1 IdOIOIOOIOlcxJ 1 1 1 10101001 1 1 ldàlol 101 1 

Figure 6.3: Algorithm WALKFIRST(n, m) inserts each key into the terminal cell the 

belongs to the least crowded block, breaking ties arbitrarily. 

In the remainder of this section, we analyze the worst-case performance of al­

gorithm WALKFIRST(n, m). Recall that the maximum unsuccessful search time is 

bounded from above by twice the maximum cluster size plus two. The following 

theorem asserts that upon termination of the algorithm, it is most likely that every 

block has at least one empty cell. This implies that the length of the largest cluster 

is at most 2/33 - 2. 

Theorem 6.3. Let n, mEN such that Œ min E (0,1/2) zs a constant. Let 
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6 E (2a,1) be an arbitrary constant, and define 

~3(n) := r log2 ~o~~ + 81 
Upon termination of algorithm WALKFIRST( n, m) with blocks of size ~3, the pro babil­

ity that there is a fully loaded block goes to zero as n tends to infinity. That is, w.h.p., 

the maximum unsuccessful search time of WALKFIRsT(n, m) is at most 4~3 - 2, and 

the maximum insertion time is at most 4~3 - 4. 

For k E lm], let us denote by Ak the event that after the insertion of k keys (i.e., 

at time k), none of the blocks is fully loaded. To prove Theorem 6.3, we need to show 

that lP{A~} = 0(1). We do that by using a witness tree argument just like the one 

we used to prove Theorems 1.4 and 2.5. We show that if a fully-Ioaded block exists, 

then there is a witness binary tree of height ~3 that describes the history of that 

block. But first, we explain how to construct a witness tree. Detailed description of 

the witness tree, and illustrated figures can be found in Section 1.4. The witness tree 

has been used also in [170, 134, 33, 34, 127]. 

Recall that we have m keys which are inserted into ni ~3 blocks. The witness tree 

we defined in Section 1.4 is in terms of balls and bins, but one can easily translate 

it to keys and blocks. Observe that the definition, as we are going to see next, 

is independent of the number of bins or blocks. Let us number the keys 1, ... , m 

according to their insertion time. Recall that each key t E [ml has two initial cells 

which lead to two terminal empty cells belonging to two blocks. Let us denote these 

two blocks available for the t-th key by X t and Yt. Notice that aIl the initial ceUs 

are independent and uniformly distributed. However, aU terminal cells-and so their 

blocks-are not. Nonetheless, for each fixed t, the two random values X t and Yt are 

independent. 
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The History Tree 

We define for each key t a full history tree Tt in the same way as we did in the balls­

and-bins model. Each key is identified with the block that contains it, and the full 

history tree Tt describes the history of the block that contains the t-th key up to its 

insertion time. The root of Tt is labelled t, and is colored white. The root has two 

children, a left child corresponding to the block X t , and a right child corresponding 

to the block yt. The left child is labelled and colored according to the following rules: 

(a) If the block X t contains sorne keys at the time of insertion of key t, and the 

last key inserted in that block, say T, has not been encountered thus far in the 

(BFS) order of Tt, then the no de is labelled T and colored white. 

(b) As in case (a), except that T has already been encountered in the BFS order. 

The node is labelled T, but colored black. 

(c) If the block X t is empty at the time of insertion of key t, then the left child is 

unlabelled gray node. 

Similarly, the right child of t is labelled and colored by following the same rules but 

with the block yt. We continue recursively constructing the tree until aIl the leaves 

are black or gray. A black or gray no de in the tree is a leaf and is not processed any 

further. A white node with label T is processed in the same way we processed the 

key t, but with its two blocks X r and Yr . 

Since we are using the same definition of the full history tree, aIl the properties we 

mentioned in Section 1.4 are also valid here. In particular, the tree Tt has at least one 

gray leaf, every internaI (white) node has two children, and the length of the short est 

path from the root t to any gray node is equal to the load of the block that contains 

the key t at the time of its insertion. Thus, if the block's load is more than h, then aIl 

gray nodes must be at distance more than h from the root. Subsequently, we define 



NEW PARADIGMS 175 

the truncated history tree of height h, that is, with h + 1 levels of nodes, to be the top 

part of the full history tree that includes aU nodes at the first h + 1 levels only, and 

the remainder is truncated. Most importantly, we are interested in truncated history 

trees of height h where the nodes at the lowest level are either black nodes, or white 

nodes that represent blocks of loads at least ç > 0, where ç is an integer to be chosen 

later. We call every white node at the lowest level a "block" node. Evidently, these 

special truncated history trees describe blocks of load at least h + ç. 

The Witness Tree 

Similarly, we define the witness tree. Let ç E M be a fixed integer to be decided later. 

For h, k E M, where h + ç ~ k ~ m, a witness tree Wk(h) is a truncated history tree 

of a key in the set [k], with h + 1 levels of nodes (thus, of height h) and with two 

types of leaf nodes, black nodes and unlabeUed block nodes which represent blocks 

with load of at least ç. The node labels belong to the set [k]. Each black leaf has 

a label of an internaI (white) node that precedes it in BFS. Block nodes must aU be 

at the furthest level from the root, and there is at least one such node in a witness 

tree. For any k, h, d E M, and nonnegative integer z, we write Wk(h, d, z) to denote 

the class of aU witness trees Wk(h) of height h that have d white nodes, and z black 

nodes (and thus d-z+1 block nodes). Notice that dE [h,2h) and z E [O,d]. We say 

that a witness tree Wk(h) occurs, if upon execution of algorithm WALKFIRST, the 

random choices available for the keys represented by the witness tree are actuaUy as 

indicated in the witness tree itself. Thus, a witness tree of height h exists if and only 

if there is a key that is inserted by algorithm WALKFmsT( n, m) into a block whose 

load is at least h + ç - 1, just before the insertion of the key. 

Thus far, we have only translated the original definition of the witness tree to a 

one that deals with keys and blocks. Therefore, we can safely use here Lemmas 1.1 
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and 1.2. We only need now to bound the probability that a valid witness tree occurs. 

Lemma 6.1. Let D denote the event that the number of blocks in WALKFIRST(n, m) 

with load of at least f" after termination, is at most ni (a(33f,) , for some constant a > O. 

For k E lm], let Ak be the event that after the insertion of k keys, none of the blocks 

is fully loaded. Then for any positive integers h, d and k 2: h + f" and a non-negative 

integer z ::; d, we have 

Proof. Let X t and yt be the blocks available for key t E [k]. Recall that we have 

v := ni /33 blocks. Given that we know the history up to tirne t - 1, and the events 

A k - 1 and D are true, the probability that X t is the i-th block is at rnost 21v, because 

the initial hashing cell (which is chosen independently and uniforrnly at randorn) has 

to be in the (i -l)-th or the i-th blocks; and hence, the probability that X t is a block 

of load at least f, is at rnost 21 (af,) , as there are at rnost vi (af,) such blocks. The 

result now follows by the condition al probability rnethod, just like as we did in the 

proof of Lernma 2.1. o 

The next step is to show that the event D in Lernrna 6.1 is most likely to be 

true, for sufficiently large f, < (33. Define the function <p(x) = x-1e1- 1/X
, for x > 1. 

Notice that <p is decreasing on (1,00), and for any x > 1, we have <p(x) < 1, because 

l/x = (1 - z) < e- Z = e1/x-l, for sorne z E (0,1). Thus, by inequality (2) of Lernrna 

0.1, we see that for p E (0,1), and any positive integers r, and t 2: rtrp, for sorne 

rt > 1, we have 

lP{Bin(r,p) 2: t} ::; (<p (r~)) t ::; (<p(rt))t. (6.1) 

Lemma 6.2. Let Œ, 6, and /33 be as defined in Theorem 6.3. Let N be the number 

of blocks with load of at least f, upon termination of algorithm WALKFIRST( n, m). If 

f, 2: 6(33, then lP{N 2: nl(a(33f,)} = 0(1), for any constant a> O. 
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Proaf. Fix ç ~ 5(33. Let B denote the last block in the hash table, i.e., B consists of 

the cells n - (33, ... ,n - 1. Let L be the load of B after termination. Since the loads 

of the blocks are identically distributed, we have 

E[N] = 2P{L ~ Ç}. 

Let 8 be the set of the consecutively occupied cells, after termination, that occur 

between the first empty cell to the left of the block B and the cell n - (33. 

Figure 6.4: The last part of the hash table showing clusters, the last block B, and 

the set 8. 

We say that a key is barn in a set of cells A if at least one of its two initial hashing 

cells belong to A. For convenient, we write <I>(A) to denote the number of keys that 

are born in A. Obviously, <I>(A) .c Bin(m, 21AI ln). Since the cell adjacent to the left 

boundary of 8 is empty, all the keys that are inserted in 8 are actually born in 8. 

That is, if 181 = i, then <I>(8) ~ i. So, by inequality (6.1), we see that 

P{181 = i} = P{[ <I>(8) ~ i] n [181 = il} :S P{Bin(m, 2i/n) ~ i} :S ci, (6.2) 

where the constant c := <p(I/(2a)) = 2ael -
2a < 1, because a < 1/2. Let 

l-c 
k := loge ~ = O(10g(33)' 

and notice that for n large enough, 

t > 5(3 = 52m(k + (33) > 2m(k + (33) 
<" - 3 (1 + k / (33) 2an - y n ' 

w here y = 1/2 + 5/ ( 4a) > 1, because 5 E (2a, 1). Clearly, by the same property of 

8 stated above, L :S <I>(8 U B); and hence, using inequality (6.1) again, we conclude 
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that for n sufficiently large, 

m 

lP'{L ~ Ç} < lP'{[<p(SUB) ~ ç] n [ISI:S k]} + LlP'{ISI = i} 
i=k 

ck 

< lP' {Bin(m, 2(k + (33)/n) ~ Ç} + 1 _ c 

ç ck 11_2 
< (<p(y)) + 1 - c :S Ç2 + Ç2 - Ç2' 

Thence, E [N] :S 2n/({33ç2) which implies by Markov's inequality that 

lP' N > - < - = 0(1) . { n} 2a 
- a{33ç - ç 

o 

Proof of Theorem 6.3. 

Recall that Ak' for k E lm], is the event that after the insertion of k keys (i.e., at 

time k), none of the blocks is fully loaded. Notice that Am ç Am-l ç ... ç Al, and 

the event At33 - 1 is deterministically true. We shall show that lP' {A~J = 0(1). Let D 

denote the event that the number of blocks with load of at least ç, after termination, 

is at most n/(a{33ç), for some constant a > 1 to be decided later. Observe that 

lP'{A~} < lP'{DC}+lP'{A~ID} 

< lP'{DC} + lP'{A~ 1 Am-l n D} + lP' {A~_ll D} 

m 

< lP'{DC
} + L lP'{A~ 1 Ak - l n D} . 

k=t33 

Lemma 6.2 reveals that lP' {DC} = 0(1), and hence, we only need to demonstrate 

that Pk := lP' {Ak 1 A k - l n D} = 0(1/n), for k = (33,"" m. We do that by using the 

witness tree argument. The proof is basically similar to the one of Theorem 2.5. Let 

h, ç, rJ E [2, (0) be some integers to be picked later such that h + ç :S {33. If after 
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the insertion of k keys, there is a block with load of at least h + f" then a witness 

tree Wk(h) (with block nodes representing blocks with load of at least f,) must have 

occurred. Recall that dE [2,2h) and z E [0, d]. Using Lemmas 1.1, 1.2, and 6.1, we 

see that 

d=2 z=O Wk(h)EWk(h,d,z) 

2h -l d 

< 2: 2: !Wk(h, d, z)! sup lP {Wk(h) occurs ! Ak-l n D} 
d=2 z=O Wk(h)EWdh,d,z) 

2h d 2d+142ddzkd/3d+Z-l 

< ~ ~ (af,)d-z+1 nd~Z-l K[[Z21J]U[d>2 h
- 1J ]] 

2n ~ (320:/33) d ~ (adf,/33) z 
< af,/33 ~ ~ ~ -n- K[[z21J]U[d>2 h

- 1J ]]' 

We split the sum over d ::; 2h-1/, and d > 2h- 1J . For d ::; 2h-1/, we have z 2: Tl, and 

thus 

~ (a~P3r 

< (a~P3 r ~ ( ad!P3 r 
< 2 ( ad~/33 ) 1/ , 

provided that n is so large that a2h+lf,/33 ::; n, (this insures that adf,/33/n < 1/2). For 

d E (2h-1/, 2h], we bound trivially, assuming the same large n condition: 

In summary, we see that 
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We set a = 32, and ç = r 61331, so that 32af33/(aÇ) :S 1/2, because 6 E (2a,1). With 

this choice, we have 

4n (32f3j)1J-
1 

Pk :S 22h -'1 + 4c -:;;- , 

where c = I:d>2 d1J /2d. Clearly, if we put h = 'T] + r log210g2 n1J l, and 'T] = 3, then 

we see that h + ç :S 133, and Pk = o(l/n). Notice that h and ç satisfy the technical 

condition a2h+lçf33 :S n, asymptotically. o 

Remark 6.2. The restriction on a is needed only to prove Lemma 6.2 where the bino­

mial tail inequality is valid only when a < 1/2. Simulation results suggest that Theo­

rem 6.3 is, indeed, true for any a E (0,1) with block size l (1 - a)-1(log210gn + c) J, 
for sorne constant c. 

6.4 Other Variants 

Speedups and Trade-offs 

We have seen that by using two linear probe sequences instead of just one, the maxi­

mum unsuccessful search time decreases exponentially from 0 (log n) to 0 (log log n). 

The average se arch time, however, could at worst double. Most of the results pre­

sented in this chapter or the previous one can be improved by a constant factor by 

increasing the number of hashing choices per key. For example, Theorems 5.1 and 5.2 

can be easily generalized for open addressing hashing schemes that use d ;:::: 2 linear 

probe sequences. Similarly, all the two-way linear probing algorithms we proposed 

here can be generalized to d-way linear probing schemes. The maximum unsuccess-

fuI search time will, then, be at most de logd log n + 0 (d), where C is a constant 

depending on a. This means that the best worst-case performance is wh en d = 3 

where the minimum of d/ log d is attained. The average search time, on the other 

hand, could triple. 
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The performance of these algorithms can be further improved by using V6cking's 

scheme LEFTMC(n, m, d) with d 2: 2 hashing choices. The maximum unsuccessful 

search time, in this case, is at most Cloglogn/log<Pd + O(d), for sorne constant C 

depending on a. This is minimized when d = o(log log n), but we know that it cannot 

get better than C log2 log n + 0 (d), because limd-+OO <Pd = 2. 

Off-Line Open Addressing 

One can also improve the performance by considering off-line two-way open addressing 

schemes. We suggest here an off-li ne scheme for inserting keys into cells by open 

addressing where each key has two initial hashing cells chosen independently and 

uniformly at random, with replacement. We assume that aU the initial hashing ceUs 

available for the keys are known in advance, i.e., before the algorithm starts. The 

algorithm is useful, therefore, for static open addressing hashing. We recall first sorne 

of the results about off-line two-way chaining obtained in Chapter 3, in particular, 

the bounds on the k-orientability threshold Ck, for k 2: 2. We have recorded that 

Ck/ k converges exponentially to 1; indeed, for k large enough, we have 

1- 2k exp (-k + 1 + e-k/4
) < ck/k < 1- exp (-2k (1- e-2k )) 

We also bounded Ck for smaU k, for example, we know that C2 2: 1.67545943 ... , 

C3 2: 2.61845509 ... , and C4 2: 3.65354252 .... See Tables 3.3 and 3.5 for more of these 

bounds. Furthermore, algorithm ORIENT finds a k-orientation in O(n2 ) worst-case 

time, which can be improved to O(n3
/
2

) worst-case running time if we use Hopcroft 

and Karp's algorithm [89] for computing maximum matching in bipartite graphs. A 

2k-orientation can be found in linear time by algorithm AAR-HEURISTIC designed 

by Aichholzer et al. [3]. In the context of two-way chaining where each key chooses 

two chains independently and uniformly at random, with replacement, this means 

that if f1 < CkV, where p, v E N, then one can hash off-line p keys into a table with 
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/J chains by using one of these algorithms such that the longest chain has at most k 

elements, w.h.p. 

Back to two-way open addressing hashing. Suppose that we would like to insert 

mEN keys off-line into a hash table with n E N cells where each key has two 

cells chosen independently and uniformly at random, with replacement. Each cell in 

the hash table can harbor at most one key. Moreover, suppose that the load factor 

Ct = min E (0, ck/k), for sorne fixed constant integer k ~ 2. Then one can assign 

the keys such that the maximum search time is at most 2k, w.h.p. This can be 

done as follows. Divide the hash able into blocks of size k, assuming without loss of 

generality, that /J := n/ k is an integer. So each key will have two blocks, and sin ce 

the cells are chosen independently and uniformly at random, then so are the blocks. 

Since m < ckn/k = Ck/J, we can apply Hopcroft and Karp's algorithm to assign the 

keys to the /J blocks such that no block receives more than k keys, w.h.p. Within 

each block we are free to insert the keys in any fashion we like. Of course, there is 

a small probability that we may have more than k keys in a certain block but when 

this occurs, we try to insert these keys into the neighbor blocks. 

Nonetheless, it is safe to say that w.h.p., the algorithm succeeds to place the keys 

such that the maximum load among aIl blocks is at most k. In other words, w.h.p., 

every key is inserted into a cell that belongs to one of its chosen blocks. Thus, the 

maximum search time is at most 2k as we have to search two blocks for each key. 

That is, if k = 2, for example, and Ct E (0, 0.83772971...), then the maximum search 

time is at most 4, w.h.p. The only drawback is that the amortized insertion time is 

o ( yin). This can be avoided, if we widen the blocks to be of size 2k, and use the linear 

time algorithm AAR-HEURISTIC to find a 2k-assignment, assuming of course that 

Ct E (0, ck/(2k)). With this modification, the amortized insertion time is constant. 

The trade-off, however, is that Ct has to be small enough, and the maximum se arch 
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time increases to 4k. That is, if k = 2, and a E (0, 0.41886485 ... ), then the maximum 

search time is at most 8, w.h.p. Nevertheless, we know that ck/k approaches one as k 

increases, and hence the performance of this scheme is still plausible. Thus, we have 

the following theorem. 

Theorem 6.4. Let k 2': 2 be a constant integer, and a E (0, ck/(2k)). Suppose that 

we have m = an keys to be inserted into a hash table of size n by open addressing, 

where each key has two initial cells chosen independently and uniformly at mndom, 

with replacement. Suppose also that all the initial hashing cells are known in advance. 

Then there is a linear time algorithm for inserting the keys such that maximum search 

time is 4k, w.h.p. 

6.5 Simulation Results 

We simulated the following linear probing algorithms we discussed in this chapter and 

Chapter 5 with the FCFS replacement strategy: the two-way linear probing algorithms 

SHORTSEQ, SMALLCLUSTER, WALKFIRST, and DECIDEFIRST, the locally linear al­

gorithm LOCALLyLINEAR, and CLASSICLINEAR (the classical linear probing al go­

rit hm which uses only one linear probe sequence). For each nE {28 , 212 , 216 , 220, 224 }, 

and constant a E {O.4,O.g}, we ran 100 simulations of each algorithm where we in­

serted l an J keys into a hash table with n cells. We computed the average maximum 

cluster size, i.e., 

1 100 
100 L size of the largest cluster in the i-th trial, 

i=l 

and the average cluster size averaged over the 100 trials, that is, 

1 100 m 

100 L number of clusters in the i-th trial· 
~=1 
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The results are recorded in Tables 6.1 and 6.2 where the best worst-case performances 

are drawn in boldface, and the average cluster sizes are in italic. 

Table 6.1 contains the simulation results of algorithms CLASSICLINEAR, SHORT­

SEQ, and SMALLCLUSTER. It is evident that the average and the worst-case per­

formances of SMALLCLUSTER and SHORTSEQ are better than CLASSICLINEAR. Al­

gorithm SMALLCLUSTER seems to have the best worst-case performance among the 

three algorithms. This is not a total surprise to us, because the algorithm considers 

more information (relative to the other two) before it makes its decision of where to 

insert the keys. It is also clear that there is a nonlinear increase, as a function of 

n, in the difference between the performances of these algorithms. This may suggest 

that the size of the largest cluster produced by algorithms SHORTSEQ and SMALL­

CLUSTER is roughly of the order of log n. 

n 0:' CLASSICLINEAR SHORTSEQ SMALLCLUSTER 

0.4 2.02 8.32 1.76 6.05 1.76 5.90 
28 

0.9 15.10 87.63 12.27 50.19 12.26 43.84 

0.4 2.03 14.95 1.75 9.48 1.75 9.05 
212 

0.9 15.17 337.22 12.35 106.24 12.34 78.75 

0.4 2.02 22.54 1.75 12.76 1.75 12.08 
216 

0.9 15.16 678.12 12.36 155.26 12.36 107.18 

0.4 2.02 29.92 1.75 16.05 1.75 15.22 
220 

0.9 15.17 1091.03 12.35 203.16 12.35 136.19 

0.4 2.02 38.00 1.75 19.54 1.75 18.09 
224 

0.9 15.17 1514.80 12.35 253.93 12.35 164.06 

Table 6.1: The average maximum cluster size and the average cluster size (in italic) 

over 100 simulations of the algorithms. The best performances are drawn in boldface. 

The simulation data of algorithms LOCALLyLINEAR, WALKFIRST, and DECIDE­

FIRST are presented in Table 6.2. These algorithm are simulated with blocks of 
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size l (1- et)-1(10g2logn + c) J for constant c E {-l, 0, 1}. The purpose of this is 

to show that, practically, the additive and the multiplicative constants appearing in 

the definitions of the block sizes stated in Theorems 6.1, 6.2 and 6.3 can be chosen 

to be small. The hash table is partitioned into equal-sized blocks, except possibly 

the last one. The results show that algorithms LOCALLyLINEAR and WALKFIRST 

have their best performances when c = O. This is not really apparent in the perfor­

mance of algorithm DECIDEFIRST, and we are not sure of the actual reason. The 

performance of WALKFIRST appears to be very close to that of LOCALLyLINEAR. 

This supports the conjecture that Theorem 6.3 is, in fact, true for any constant load 

factor et E (0,1), and the maximum unsuccessful search time of WALKFIRST is at 

most 4(1 - et)-11og21ogn + 0(1), w.h.p. The worst-case performance of algorithm 

DECIDEFIRST seems to be close to the other ones when et is small; but it almost 

doubles wh en et is large. This may suggest that the multiplicative constant in the 

maximum unsuccessful search time established in Theorem 6.2 could be improved. 

Comparing the simulation data from both tables, one can see that WALKFIRST 

and LOCALLyLINEAR are superior to the others in worst-case performance. Surpris­

ingly, the worst-case performances of algorithms SMALLCLUSTER and DECIDEFIRST 

are very close, although, it appears that the difference becomes larger, as n increases. 
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LOCALLYLINEAR WALKFIRST DECIDEFIRST 

1.57 1.62 1.61 1.65 1.69 1.60 1.63 1.67 
0.4 4.34 4.43 5.89 4.70 4.86 5.21 4.81 5.02 

28 -
12.18 12.78 11.55 12.54 13.14 12.12 13·48 14·07 

0.9 33.35 40.18 35.90 34.40 41.15 43.06 47.76 63.53 

1.62 1.66 1.62 1.68 1.11 1.61 1.68 1.71 
0.4 

6.06 6.26 7.10 6.32 7.74 7.32 6.82 6.97 

212 -

12·42 13.10 12.05 12.78 13.19 13.01 13·45 13.67 
0.9 

48.76 60.68 53.29 51.80 64.07 75.20 94.98 126.82 

1.62 1.68 1.65 1.68 1.13 1.64 1.68 1.73 
0.4 7.14 8.02 8.21 7.31 8.30 9.05 8.92 8.78 

216 -

12.66 13.13 12.38 12.98 13.38 13.18 13.53 13.79 
0.9 

59.61 73.43 66.20 62.24 76.94 105.61 125.40 156.84 

1.65 1.68 1.65 1.11 1.13 1.64 1.71 1.73 
0.4 

8.25 8.95 9.85 8.50 9.17 11.10 10.76 10.38 
220 i---

12.83 13.26 12.58 13.11 13·45 13.30 13.62 13.83 
0.9 

67.23 83.02 76.82 69.45 85.37 133.37 145.30 157.07 

1.65 1.71 1.68 1.71 1.75 1.68 1.71 1.75 
0.4 

9.05 10.08 9.94 9.08 10.34 12.22 12.05 12.20 

224 r---
12.98 13.35 12.77 13.23 13.54 13·41 13.69 13.89 

0.9 74.02 90.31 85.16 75.59 92.20 159.95 177.52 190.92 

Table 6.2: The average maximum cluster size and the average cluster size (in italic) 

over 100 simulations of the algorithms with blocks of size l (1 - Cl:) -1 (log2 log n + c) J. 
The best performances are drawn in boldface. 



Conclusion and Future Work 

The worst-case performance of two-way hashing schemes with chaining and open ad­

dressing is studied and analyzed under different assumptions. The study, in short, 

demonstrates that two-way hashing is certainly worth considering in implementing 

dictionaries for the amazing worst-case performance it guarantees. One, on the other 

hand, should also consider the trade-offs that we have seen in this thesis, between 

space consum ption (of chaining and open addressing), the expected and worst-case 

times of any operation, the number of hash functions, the randomness assumptions, 

and the simplicity of the algorithms. In the end, it remains in the hands of the prac­

titioners who will judge which hashing scheme is best adapted to their application. 

These schemes, as well as other ones suggested by many researchers we mentioned in 

the thesis, should be put into hard applications. 

On-Hne Two-way Chaining: The waiting time and the witness tree methods are 

used to reprove that worst-case search time of on-line uniform two-way chaining algo­

rithm is log2 log n ± 0 (1), asym ptotically almost surely, for a hash table of constant 

load factor. The bounds are, then, extended to the fixed density model where the 

two independent hash functions behave according to fixed densities defined on the 

unit interval. The lower bound is shown to be true for any arbitrary fixed densities, 

while the matching upper only holds for bounded ones. Bounds for other cases such 

as the heavily- and lightly-loaded cases, or the dynamic case are also given. There 

187 
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are many directions that one can follow to extend this research. Most interestingly, 

are the following questions. 

1. Is it possible to prove the lower bound uniformly over aU densities for every 

n E N, while the two hash functions are still independent? 

2. Can the upper bound for unbounded densities be improved? 

3. In the classical uniform hashing with chaining, the chain length has the binomial 

distribution Bin(m, lin), and when the load factor a = min is constant, its 

limit distribution is Poisson(a). What is the distribution of the chain length of 

on-line uniform two-way chaining, and does it have a li mit distribution? 

4. Theorem 0.2 states that on-line uniform two-way chaining is optimal among aIl 

on-li ne algorithms that use two independent truly uniform hash functions and 

do not reaIlocate the keys. Is it possible to improve the performance of on-line 

two-way chaining by using efficient adaptive reaUocation techniques? 

Off-Hne Two-way Chaining: A relationship between the off-line version of uni­

form two-way chaining and the k-orientability of random graphs is established. The 

k-orientability threshold Ck is tightly estimated and proved to be asymptotic to k. 

Algorithms for finding k-orientations are presented. This area of research can be 

broadened as follows. 

1. Is there an elegant short proof for bounding Ck from below? 

2. The best known lower bound on C2 is 1.67545943 .... Is it tight? 

3. Is there a linear time algorithm for finding a k-orientation for k ::::: 2? 



CONCLUSION AND FUTURE WORK 189 

4. Can one put the threshold bounds into an effective use to design efficient realistic 

hashing schemes with reasonable worst-case insertion time and plausible worst­

case search time7 

5. Is it possible to generalize the k-orientability study for nonuniform random 

graphs where the vertices are chosen according to different probabilities7 This 

is related to off-line nonuniform two-way chaining. 

Two-way Linear Probing: The concept of two-way linear probing is suggested 

as a translation of two-way chaining paradigm to open addressing hashing. An 

O(log log n) univers al lower bound is proved on the worst-case performance of any 

two-way linear probing algorithm. Unfortunately, two simple two-way linear prob­

ing algorithms are proved to yield unsatisfactory performances. Alternatively, two 

other efficient algorithms that have matching upper bounds on their worst-case per­

formances are proposed. Simulation outputs that confirm the theoretical results are 

also provided. Sorne of the possible future works in this area can be summarized as 

follows. 

1. The worst-case performance of algorithm WALKFIRST is proved only for load 

factor Œ < 1/2, although, the simulation results suggest that it may be true for 

any Œ E (0,1). Can the proof of Theorem 6.3 be extended for Œ E (0,1)7 

2. Is it possible to improve the multiplicative constant factors appearing in the 

upper bounds on the performances of algorithms WALKFIRST and DECIDE­

FIRST7 

3. How does (increasing or decreasing) the block size affect the performances of 

the algorithms designed in Chapter 67 
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4. 1s there a two-way linear probing algorithm whose worst-case search time is 

at most c log log n + ç (a), for sorne function ç, and constant c that is not an 

increasing function of a7 

5. What is the upper bound on the worst-case performance of any algorithm that 

satisfies the conditions of Theorem 5.37 The same question can be applied to 

Theorem 5.4. 

6. 1s there an algorithm that satisfies the conditions of Theorem 5.3, and has an 

O(Jlognjloglogn) upper bound on its worst-case performance? 

And do not say of anything: l am doing that 

tomorrow. Unless Allah pleases; and remember 

your Lord when Vou forget, and say: maybe my 

Lord will guide me ta a nearer course of truth 

than this. 

THE NOBLE QUR'AN, (18: 23-24) 



Appendix: Finishing the Proof of 

Theorem 3.4 

Recall that b = 0.772907804 ... , and 

(33 = 2.61845509 ... , (34 = 3.65354252 ... , (35 = 4.71959504 .... 

We need to prove that t(k,(3k,p) is an increasing function in p on [e- 3 ,b], and 

h(k,(3k,P) is a decreasing function in p on [b,(3k/k]. Moreover, we shall prove that 

the following two conditions are satisfied: 

max g(k, (3,p) < 2-b/2 , max g(k, (3,p) < 2-b, (6.3) 
e-3~p~b/2 b/2~p~b 

where 

t(k, (3, p) ( 
2(3(1 - p2) ) fJ-(b+plk/2 ( 2(3p2 ) (b+p)k/2 

2(3-(b+p)k (b+p)k 

g(k, (3,p) f( k (3) (-kP(b -10gb -1)) 
, ,p exp k + 1 

f(k, a, p) (
a(l - p2)) a-kp (ap ) kp , 

a - kp k 

and 

1, if p = 0; 

h(k,a,p)= p-P(1-p)P-1 f(k,a,p), forpE(O,a/k); 

if p = a/k. 

We first prove the monotonicity of the function t. 

191 
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Lemma 6.3. For ail k = 3,4,5, the function t(k, f3k, p) is a strictly increasing func­

tian in p on [e- 3 , bJ. 

Praof. Notice that for p E [e-3 , b], 

We shall praye that the derivative of log t( k, f3k, p) is positive, for all p E [e- 3
, b], 

which will imply that t is an increasing function. So, consider the following: 

_~ log(l _ p2) _ (2f3k - bk)p - kp2 + ~ log (1 _ (b + P)k) 
2 1 - p2 2 2f3k 

k k 2~ ~ 
+k logp - -log(b + p) + -log -k + - + k 

2 2 P 

k l ( (b+P)k) (2f3k- bk)p-kp2 kl bk > - og 1 - - + og P + -
2 2f3k 1 - b2 P 

k f3k 
+2 log bk + k 

def <Pk (p) , 

because p < b < f3k/k. Hence, 

<p~(p ) 
k2 2f3k - bk - 2kp k bk ----:----:- - + - - -

4f3k- 2(b+p)k 1-b2 P p2 
k2 2f3k - bk - 2kp 

< ------
4f3k - 2(b + p)k 1 - b2 

-k2(1 + b2) - 8f3k(f3k - bk) + 6kp(2f3k - bk) - 4k2p2 
< 

(4f3k - 2(b + p)k)(l - b2) 

def Çk(p) 
(4f3k - 2(b + p)k)(l - b2) , 

which is negative if and only if the numerator Çk(P) is. Now if k = 4 or 5, the 

numerator attains its maximum on [0, bJ at b, because 

3 
ç~(p) = 6k(2f3k - bk) - 8k2p = 0 ~ p = 4k (2f3k - bk) > 0.79 > b, 
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and çk(b) = Çk(O) + 2bk(6f3k - 5bk) > Çk(O). However, ç4(b) = -2.0188808 ... , and 

ç5(b) = -2.6967152 .... On the other hand, if k = 3, the numerator 6(p) has a maxima 

at p = (2(33 - 3b)/4 = 0.729546692 ... ; and 6(0) < 6(b) < 6(p) = -1.4945682 .... 

Consequently, 'P~ (p) < 0, for aU k = 3,4,5, and thence, 'Pk (p) is a decreasing function 

on [e-3,bl. Thus, 'Pk(P) > 'Pk(b) > 0, for aU k = 3,4,5, because 'P3(b) = 1.00758127 ... , 

'P4(b) = 1.40196584 ... , and 'P5(b) = 1.65799854 .... This completes the proof. 0 

Next we prove the monotonicity of the function h. 

Lemma 6.4. For all k = 3,4,5, the functian h(k, (3k, p) is a strictly decreasing func­

tian inp on [b,(3k/k]. 

Proaf. For p E lb, f3k/k], let 

'Pk(p) '- log h(k, (3k, p) 

((3k - kp) log(l - p2) - ((3k - kp) log((3k - pk) + (k - l)plogp 

-(1- p) log(l- p) - kplogk + (3k 10g(3k' 

It suffices to prove that 'P~(p) < O. Notice that 

2 2P((3k - kp) 
'P~(p) = -k log(l - p ) - 1 _ p2 + k log((3k - kp) + (k - 1) logp 

+ log(l - p) + 2k - k log k. 

We shaU prove that 'P~(p) is a decreasing function on lb, (3k/k], for aU k = 3,4,5, so 

that 'P~(p) < 'PUb) < 0, because 'P~(b) = -1.32950101..., 'P~(b) = -0.62432743 ... , 

and 'P~(b) = -0.07696858 .... For that we show 'P%(p) < 0, as follows: 

2kp 2(3k - 4kp + 2(3kp2 k2 k - 1 1 ------ - + -- ---
1 - p2 (1 - p2)2 (3k - pk P 1 - P 

Çk(p) 
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where 

~k(P) f3kk - f3k - (2k2 - k + 2f3~ + f3k)P + (6kf3k + k + f3k)p2 

-(2k2 + k + 2f3~ - f3k)p3 + k(f3k - 1)p4. 

So we need to prove that ~k(P) < 0, on [b,f3k/k]. Consider the following: 

194 

~~(p) = -2k2 + k - 2f3~ - f3k + 2(6kf3k + k + f3k)P - 3(2k2 + k + 2f3~ - f3k)p2 

+4k(f3k - 1)p3 ; 

~~(p) = 2(6kf3k + k + f3k) - 6(2k2 + k + 2f3~ - f3k)P + 12k(f3k - 1)p2, 

and hence, 

~~' (p) -6(2k2 + k + 2f3~ - f3k) + 24k(f3k - l)p 

< -12k2 - 6k - 12f3~ + 6f3k + 24f3~ - 24f3k 

-12(k2 - f3~) - 6k - 18f3k < 0, 

for all k = 3,4,5. This means that ~~(p) is a concave function on lb, f3k/ k]. Computing 

the values of ~~ at both of the endpoints of the interval [b,f3k/k], for all k = 3,4,5, 

we get 

~~(b) = 1.66122202 ... , ~~(b) = 2.8140136 ... , ~~(b) = 4.0235492 ... , 

~~(f33/3) = 0.3170448 ... , ~~(f34/4) = 0.3895055 ... , ~~(f35/5) = 0.4653657 .... 

Since they are all positive, then ~~(p) > 0 on [b,f3k/k]. Consequently, ~k(P) is an 

increasing function on the interval [b,f3k/k]. Therefore, ~k(P) :::; ~k(f3k/k) < 0, for 

all k = 3,4,5, because 6(133/3) = -0.44566294 ... , ~4(f34/4) = -0.40138310 ... , and 

6(135/5) = -0.2804545.... 0 

The next lemma proves that first condition in (6.3) is satisfied. 
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Lemma 6.5. For k = 3,4,5, the following condition is satisfied: 

Proof. By inequa1ities (3.4) and (3.5), we have 

log g(k, f3k, p) = (f3k - kp) log(l - p2) - (f3k - kp) log(l - kp/f3k) 

k 1 f3kP kp(b -10gb -1) 
+ p ogT - k + 1 

k 13 2 k 3 k 1 f3kP kp(b-1ogb-l) 
< p - kP + P + P og T - k + 1 

def () = 'Pk P . 

However, 

'P~(p) 2k 213 3k 2 k1 f3kP k(b -10gb -1) . 
- kP + P + og - - -----

k k + 1 ' 

-2f3k + 6kp + k/p. 

One can see that 'P%(p) attains its minimum value on [e- 3 , b/2J at the point p = 

f3k/(6k), that is, 'P%(p) 2: -f3k +6k2/f3k > -k+6k > 0, for aIl k = 3,4,5. This means 

that 'Pk(P) is a convex function on [e-3 ,b/2J. Eva1uating 'Pk(P) at the endpoints 

P = e-3 and P = b/2, for aIl k = 3,4,5, we get 

<P3(e-3) = -0.32629896 ... , 'P4(e-3) = -0.42611632 ... , 'P5(e-3) = -0.52458518 ... , 

'P3(b/2) = -0.32735014 ... , 'P4(b/2) = -0.38811609 ... , 'P5(b/2) = -0.44244344 .... 

Thus, we conclude that 'Pk(P) < -(b/2) log 2 = -0.267869432 ... , for aIl P E [e-3, b/2], 

and k = 3,4,5, which ends the proof. o 

Before we verify the second condition in (6.3) we need to establish two lemmas. 

The following bounds can be proved easily by finding the maximum of the polynomia1s 

using the first derivative test. 

Lemma 6.6. The following bounds hold for all P E [0.38,0.78J: 
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1. 1.674 - 10.66p + 22.093p2 - 15p3 < o. 

2. -9.62 + 47.84p - 77.571p2 + 40.66p3 < o. 

3. 3 - 19.2p + 37.93p2 - 24p3 < o. 

4. -20.77 + 92.92p - 137.53p2 + 67.2p3 < o. 

5. 4.84 - 30.4p + 58.0372p2 - 35p3 < o. 

6. -36.5119 + 153.784p - 215.4634p2 + 100.4p3 < o. 

Lemma 6.7. For k = 3,4,5, and p E [e-3, f3k/k], define the function 

f3k (1 - p2) 
rpk(P) := (f3k - kp) log f3 k . 

k - P 

Then rp%(p) ::; -k - 2, for all p E [0.38,0.78]. 

Proof. Notice that 

1/ -k2 - 2f3~ + 8f3kkp - (4k 2 + 2f3np2 + k2p4 
rpk(P) = (1 - p2)2 (f3k - kp) 

Thus, rp% (p) ::; - k - 2 if and only if 
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o > _k2 - 2f3~ + 8f3kkp - (4k 2 + 2f3np2 + k2p4 + (k + 2)(1 - p2)2 (f3k - kp) 

_k2 - 2f3~ + (k + 2)f3k + k(8f3k - k - 2)p - 2(2k2 + f3~ + (k + 2)f3k)p2 

+2k(k + 2)p3 + (k2 + (k + 2)f3k)p4 - k(k + 2)p5 

def 'lfJk(P). 

We prove that 'lfJk ::; 0, for k = 3,4,5, by bounding 'lfJk from above by a polynomial 

of degree 3 for which we can easily find its maximum values. For k = 3, we get 

'lfJ3(P) < -9.62 + 47.84p - 75.897p2 + 30p3 + 22.093p4 - 15p5 

< -9.62 + 47.84p - 75.897p2 + 30p3 + 10.66p3 - 1.674p2 

-9.62 + 47.84p - 77.571p2 + 40.66p3 < 0, 
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where we have used bounds (1) and (2) of Lemma 6.6. Similarly, for k = 4, we get 

'l/J4(P) < -20.77 + 92.92p - 134.53p2 + 48p3 + 37.93p4 - 24p5 

< -20.77 + 92.92p - 134.53p2 + 48p3 + 19.2p3 - 3p2 

-20.77 + 92.92p - 137.53p2 + 67.2p3 < 0, 

where we have used the bounds (2) and (3) of Lemma 6.6. Finally, for k = 5, and 

using the last two bounds in Lemma 6.6, we obtain 

'l/J5(P) < -36.5119 + 153.784p - 210.6234p2 + 70p3 + 58.0372p4 - 35p5 

< -36.5119 + 153.784p - 210.6234p2 + 70p3 + 30.4p3 - 4.84p2 

< -36.5119 + 153.784p - 215.4634p2 + 100.4p3 < O. 

Now we are ready to verify the second condition in (6.3). 

Lemma 6.8. For k = 3,4,5, the following condition is satisfied: 

Proof. Recall that 

max g(k,f3k,P) <2-b
. 

bl2~p ~b 

1- p2 f3kP kp(b-logb-1) 
log g(k, f3k, p) = (f3k - kp) log 1 _ kp/ f3k + kp log k - k + 1 . 

For convenience, let 
1- p2 

<Pk(P) := (f3k - kp) log 1 - kp/f3k . 

D 

By Taylor's theorem, we know that for p E [b/2, b], there exists a point x E [b/2, bl 

such that 

<P3(P) <P3(0.7) + <p~(0.7)(p - 0.7) + <p~(x)(p - 0.7)2/2 

< 0.491 - 1.26(p - 0.7) - 2.5(p - 0.7)2 < 0.15 + 2.24p - 2.5p2 , 
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where we have used Lemma 6.7. Similarly, we exp and <P4, and <P5 about the point 

p = 0.6 to obtain the following estimations: 

<P4(P) < 0.782 - 0.84(p - 0.6) - 3(p - 0.6)2 < 0.21 + 2.76p - 3p2, 

<P5(P) < 0.97 - (p - 0.6) - 3.5(p - 0.6)2 - 3.5(p - 0.6)2 < 0.31 + 3.2p - 3.5p2 . 

AIso, by Taylor's theorem, there exists a point y E [b/2, bl such that 

logp 
1 1 

log(0.75) + -(p - 0.75) - -2 (p - 0.75)2 
0.75 2y 

< -0.287 + 1.34(p - 0.75) - 0.83(p - 0.75)2 

-1. 758 + 2.585p - 0.83p2 . 

Therefore, putting these bounds together, we see that for p E [b/2, bl, 

logg(3, /33,P) < 0.15 - 3.464p + 5.255p2 - 2.49p3 < -0.536 

log g( 4, /34, p) < 0.21 - 4.658p + 7.34p2 - 3.32p3 < -0.536 

log g(5, /35, p) < 0.31 - 5.903p + 9.425p2 - 4.15p3 < -0.536. 

The last inequalities can be proved by finding the maximum value using the first 

derivative test. Notice that -0.536 < -b log 2 = -0.535738865 ... , and this ends the 

proof. o 
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« 
» 

inverse of small 0, Il 

asymptotic equality, Il 
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same as w, 11 
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convergence as n 

goes to infinity, 11 

PROBABILITY 

lP {-} probability, 12 

lP {'l'} conditional probability, 12 

E[·] expectation, 12 

Var[·] variance, 12 

Cov[" .] covariance, 12 

li [ .] indicator function, 12 

L equality in law, 12 

w.h.p. with high probability, 12 

a.a.s. asymptotically almost 

surely, 12 

Bin(n,p) binomial distribution,12 

HASHING 

u 
J( 

T 

universe set of keys, 27 

input set of keys, 27 

hash table, 27 
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lF(U, T) aH hash functions 

1: U -+ T, 27 

Œ load factor, 27 

1,9 hash functions, 39 

hf density of hash 

function 1, 57 

Reg(h) region under the 

curve of h, 83 

Graphs 

G(n, m) random graph with 

loops and multiedges, 91 
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v ( G) set of vertices in G, 96 

\IJ(G) maximum density of G, 96 
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