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ABSTRACT 

 

Over the past decade, tremendous attention has been dedicated to the issue of sustainability and 

serviceability of the infrastructure in the context of climate change. A large proportion of the 

existing infrastructure is already in an advanced state of deterioration, which is expected to 

increase at a higher rate with climate change. This fact highlights the need for better planning and 

decision analysis tools for managing maintenance, repair and replacement activities in both space 

and time. An important component for improving decision-making (DM) is improved models for 

predicting the residual life of structures while also accounting for both physical and financial 

uncertainties. 

The uncertainties associated with climate change and material properties can be particularly large 

and affect the accuracy of predictions, which have an impact on the optimal timing and type of 

intervention. Option theory is well-suited for analyzing financial decisions in the context of 

uncertainty, especially in the context of climate change. The value of an option measures the value 

of delaying decisions to a specific time in the future. For example, given the uncertainty on climate 

change scenarios, it may be optimal in some instances to delay important investments in 

infrastructure at a point in time when the uncertainty on the proper climate change scenario has 

decreased significantly. 

The primary process of deterioration of concrete structures in Canada is corrosion of the 

reinforcing steel due to the usage of de-icing salts. Numerical models of the diffusion process and 

chemical reactions of chloride ions in concrete are used to evaluate the time to the initiation of 

corrosion followed by models for the progression of corrosion and damage to the concrete cover.  
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The main input parameters for these models are the diffusion properties of the concrete and a time 

history of the meteorology at the site. The material properties can be obtained from samples or 

non-destructive tests performed on structures but more typically through compiled data bases of 

concrete properties. Meteorological data is obtained from historical databases to evaluate the 

condition of existing structures and from climate scenario simulations for predicting their residual 

life. Given the large uncertainties involved, the analyses are better performed probabilistically.  

DM for managing maintenance/repair/replacement tasks is challenging given the large number of 

structures, the limits on physical and financial resources, contradictory management objectives, 

and uncertainties. Optimization methods are frequently used to assist managers in selecting 

maintenance and replacement strategies. Two examples are presented for typical bridges in 

Montreal by using single-objective optimization (SOO) and multi-objective optimization (MOO). 

The application of SOO in this work is to find the optimal time for the first major replacement of 

a concrete deck by maximizing the Net Present Value (NPV) of bridge benefits and costs. 

Conversely, MOO is used when considering two or more objectives, in this instance, the Net 

Present Value (NPV) of bridge benefits and costs and the infrastructure performance. Depending 

on the Pareto optimal solutions obtained from the two efficient Meta heuristic algorithms, a 

decision-maker can simply acquire the information of the maintenances and rehabilitations (M&R) 

strategies and thereby better understand their relationships and final trade-offs. 
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RÉSUMÉ 

 

Au cours de la dernière décennie, une attention considérable a été accordée à la question de la 

durabilité et de la viabilité de l'infrastructure dans le contexte des changements climatiques. 

Beaucoup des infrastructures existantes sont déjà dans un état de détérioration avancé. Les 

changements climatiques ne feront qu’accentuer la tendance. Ainsi, il est primordial de développer 

de meilleurs outils de planification et d'analyse des décisions pour gérer les activités d’entretien, 

de réparation et de remplacement dans l'espace et dans le temps. Un élément important pour 

améliorer la prise de décision (DM) est le perfectionnement des modèles de prévision de la durée 

de vie résiduelle des structures tout en tenant compte des incertitudes physiques et financières. 

Les incertitudes associées aux changements climatiques et aux propriétés des matériaux peuvent 

être particulièrement importantes et affecter la précision des prévisions, ce qui a un impact sur le 

choix du type d’intervention et le moment optimal pour intervenir. La théorie des options est bien 

adaptée pour analyser les décisions financières dans le contexte d'incertitude, en particulier dans 

le contexte des changements climatiques. La valeur d'une option mesure la valeur du report des 

décisions à un moment précis dans le futur. Par exemple, étant donné l'incertitude sur les scénarios 

de changements climatiques, il peut être optimal, dans certains cas, de retarder d'importants 

investissements dans les infrastructures à un moment où l'incertitude sur le bon scénario a 

considérablement diminué. 

Le principal processus de détérioration des structures en béton au Canada est la corrosion de l'acier 

d'armature en raison de l'utilisation de sels de déglaçage. Des modèles numériques du processus 

de diffusion et des réactions chimiques des ions chlorures dans le béton sont utilisés pour évaluer 
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le temps de déclenchement de la corrosion, suivis de modèles de progression de la corrosion et des 

dommages à la couverture de béton. 

Les principaux paramètres d'entrée de ces modèles sont les propriétés de diffusion du béton et un 

historique temporel de la météorologie sur le site. Les propriétés des matériaux peuvent être 

obtenues à partir d'échantillons ou d'essais non destructifs effectués sur des structures, mais aussi 

à l’aide de bases de données compilant les propriétés du béton. Les données météorologiques sont 

obtenues à partir de bases de données historiques pour évaluer l'état des structures existantes et à 

partir de simulations de scénarios climatiques pour prédire leur durée de vie résiduelle. Compte 

tenu des grandes incertitudes, il est préférable d’effectuer les analyses de façon probabiliste. 

Le DM pour la gestion des tâches d’entretien / réparation / remplacement est difficile étant donné 

le grand nombre de structures, les limites des ressources physiques et financières, les objectifs de 

gestion contradictoires et les incertitudes. Les méthodes d'optimisation sont fréquemment utilisées 

pour aider les gestionnaires à sélectionner les stratégies d’entretien et de remplacement. Deux 

exemples sont présentés pour les ponts typiques de Montréal en utilisant l'optimisation à objectif 

unique (SOO) et l'optimisation à objectifs multiples (MOO). L'application de SOO dans ce travail 

est de déterminer le moment optimal pour le premier remplacement majeur d'un tablier en béton 

en maximisant la valeur actuelle nette (VAN) des avantages et des coûts du pont. Inversement, 

MOO est utilisé lorsque l'on considère deux objectifs ou plus, dans ce cas, la valeur actuelle nette 

(VAN) des avantages et des coûts du pont ainsi que les performances de l'infrastructure. En 

fonction des solutions optimales de Pareto obtenues à partir des deux algorithmes méta 

heuristiques efficaces, un décideur peut acquérir les informations des stratégies d’entretien et de 

réhabilitation (M&R) et ainsi mieux comprendre leurs relations et les compromis des options qui 

s’offrent à lui.  
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 Introduction 

 

1.1 Introduction 

Over the last decade, there has been a significant interest in ensuring the sustainability and 

serviceability of infrastructure systems in the context of climate change. Indeed, a large proportion 

of existing structures in North America already are in an advanced state of deterioration, thus 

affecting the sustainability and usefulness of these structures, and highlighting the need for better 

predicting and decision analysis tools. The management of ageing infrastructures presents many 

challenges to their owners and operators. Large investments are required to maintain existing 

infrastructures, to rectify deficiencies, and to eventually replace or upgrade them (Herrmann 2013; 

OECD 2013; Ottesen 2011).  

Among these, reinforced concrete (RC) structures represent a significant part of the built 

environment, which are the focus of the present research. The durability of RC bridge decks is 

influenced both by environmental and operational conditions. Among these, exposition to chloride 

ions is one of most important factors that contributes to the premature deterioration of these 

structures (Bastidas-Arteaga et al. 2011; Breysse et al. 2014; Saetta et al. 1993). Once a RC 

structure has been exposed to chloride ions, the sequence of events is: 1) initiation of corrosion, 2) 

expansion of steel due to corrosion products, 3) cracking of the concrete cover and 4) spalling of 

the concrete cover.  

Climate change and extreme weather events threaten existing infrastructure across the country, 

impacting its effectiveness, lifespan, cost, maintenance, rehabilitation and renewal. It can also 
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adversely affect the durability of structures by increasing the number of freeze-thaw cycles, the 

level of relative humidity, average temperatures, and frequency of winter precipitation (NACE 

2012). Talukdar et al. (2012) estimate that climate change has increased carbonation depth by 45% 

for concrete structures in Vancouver and Toronto over the past century. Similarly, De Larrard et 

al. (2014) estimate that climate change has significantly increased the risk of corrosion initiation 

resulting from carbonation in several French cities. Bastidas-Arteaga and Stewart (2013) propose 

a probabilistic cost-benefit procedure to analyse two climate change adaptation strategies for 

new RC structures exposed to chloride ions. The results indicate that the cost-effectiveness 

of specific adaptation strategies is dependent on the climate change scenario, exposure 

conditions and type of structural system. 

Several models have been developed over the last decades to address several of the issues 

associated with deterioration of concrete structures. Physical models were developed that describe 

the progress of chloride ions in concrete which can be used to predict the time of initiation for 

corrosion. A variety of these models have been proposed that include to various degrees of detail 

exposure to climatic conditions and chemical reactions (Conciatori et al. 2010; Conciatori et al. 

2009b; Zhang, Chouinard, and Conciatori 2018).  

The gradual deterioration of the transportation infrastructure can result in unsafe conditions for the 

public, more frequent maintenance interventions traffic disruptions and higher user costs. Without 

effective planning, monitoring and evaluation, it would be difficult to estimate if maintenance 

implementation is moving in the right direction (Menon et al. 2009). Consequently, prospective 

maintenance scheduling and budgeting will be affected as well, influencing the public and the 

economy for relatively long period of time, longer than the lifecycle of an individual infrastructure 

component. Therefore, an optimized infrastructure management strategy is crucial for decision-
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makers, with the required methodologies, for an efficient sustainable management of structures 

(Marlow et al. 2010; Santos et al. 2017). 

In parallel, numerous decision analysis tools have been developed to assist managers that rely on 

models to estimate the residual life of existing structures and determine the optimal timing of 

repairs in the lifecycle of a structure. Moreover, financial considerations such as cost functions are 

important factors affecting decisions. Both physical and financial processes have uncertainties that 

must be properly integrated in the decision analysis to yield accurate results (Power et al. 2015).  

This problem is generally formulated as an optimization problem with constraints to assist the 

infrastructure manager in the decision-making process. Sarma and Adeli (1998) reviewed cost 

optimization of concrete structures and pointed out that life-cycle cost optimization should replace 

the initial cost optimization. Zhang and Wang (2017) developed a decision model for determining 

a prioritized maintenance schedule for a deteriorated bridge network. Maintenance actions must 

be effectively planned throughout the life cycle of infrastructures to optimize budget allocation 

under the constraints of service life (Frangopol and Soliman 2016). A maintenance action can 

reduce the degree of damage and provide the required level of service of a deteriorating structure. 

 

1.2 Research Objectives 

Improving the serviceability and sustainability of infrastructures in the most economical way are 

among the important objectives for decision-makers given the current state of uncertainty with 

climate change and the general state of the infrastructure. Various approaches to these issues have 

been presented, yet a comprehensive framework is lacking. This research work aims to develop a 

novel updatable framework that models the physical deterioration process through a probabilistic 
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approach, and that incorporates uncertainties in both physical and financial processes to benefit 

investors as well as engineers and decision-makers. The specific objectives of the proposed 

research can be summarized as follow: 

Objective 1: Develop deterioration and time-variant reliability models for bridge components for 

specified performance functions (e.g. initiation of corrosion, degree of corrosion, cracking of 

concrete, spalling of concrete).  

Objective 2: Derive surrogate Markov Chain models for transition states of bridge systems for 

homogenous regions and types of bridges, which utilize historical and future climate data.  

Objective 3: Derive procedures for updating physical and surrogate models based respectively on 

core sample data and inspection data to improve the prediction of future condition states. 

Objective 4: Develop a multi-disciplinary decision analysis procedure that accounts for physical 

and financial uncertainties to optimize for sustainability of bridge components as a function of 

maintenance, sequence of minor and major repairs as well as replacement strategies for different 

climate change scenarios. 

Overall Objective: To develop a novel updatable model (computer-aided program) integrating 

the physical deterioration process and decision-making strategy through a probabilistic approach 

to optimize the sustainability of infrastructures and to account for changes in the level of 

uncertainty on deterioration and financial variables as a function of time. 
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1.3 Thesis Structure 

This thesis follows a manuscript-based structure. Each of the main chapters consists of an article 

published or submitted in a peer-reviewed journal. Therefore, repetitions could not completely be 

avoided, especially in the introduction sections. All papers are the candidate’s original work 

including the development of software to perform the analyses.  

Chapter 1 provides the background on the issues that are being addressed, the motivation for the 

research, the research objectives, the main lines of the proposed methodology and the structure of 

the thesis. 

Chapter 2 presents a detailed literature review on past studies related to the deterioration of 

reinforced concrete structures, the prediction of residual life in the context of climate change, 

maintenance and repair of infrastructure and optimisation procedures for planning these activities.  

Chapter 3 (Article No. 1) describes numerical models of the diffusion process and chemical 

reactions of chloride ions in concrete to estimate the time to initiation of corrosion and for the 

progression of corrosion. Markov Chain-based stochastic models are used to develop surrogate 

models for the imitation and the propagation of corrosion for reinforcing steel at different depths 

and for existing structures. The analyses are performed for a range of typical concrete properties, 

exposure and climatic conditions. The procedure provides an alternative to Markov models derived 

from condition ratings when historical inspection data is limited. 

Chapter 4 (Article No. 2) presents a framework that incorporates risks in economic benefits and 

costs by modelling the interactions and uncertainties associated with physical and financial 

variables in the context of infrastructure management. A probabilistic deterioration model is used 
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to predict the residual life of concrete decks as a function of exposure to de-icing salts using 

historical data and predictions from climate change scenarios. Historical data is used to validate 

model assumptions by comparing predicted condition states to observations from periodic 

inspections, while the climate scenarios are used to evaluate the impact of climate change on 

deterioration rates assuming that current deck design and de-icing salt management strategies are 

not modified. 

Chapter 5 (Article No. 3) focuses on the novel optimization procedures for multiple preventive 

maintenances and major repairs during the lifetime of the bridge. A risk-informed decision-making 

process is proposed to identify the most effective strategies to satisfy performance requirements at 

minimal cost. Two Meta-heuristic algorithms in conjunction with the deterioration model are 

applied to optimize the decision-making strategies for reinforced concrete bridge decks in 

Montreal. Solutions are presented in the form of a Pareto front, which corresponds to a set of 

optimal solutions satisfying both objectives at varying degrees. The presentation of optimal 

solutions as a Pareto Front defines a spectrum of solutions that provides flexibility as a function 

of the priorities of the decision-maker. 

Chapter 6 (Article No. 4) investigates an efficient and novel system identification procedure based 

on a conditional surrogate model and a Bayesian updating procedure for the diffusion parameters 

in concrete when data on chloride content is available from core samples. The conditional 

surrogate model provides a novel and very efficient procedure for modelling uncertainty in 

complex and computing intensive numerical models. The proposed procedure can be applied for 

any number of core samples sampled at different times and accounts for correlations between 

chloride content predictions at different times and depths. 
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Chapter 7 summarizes the main conclusions in this thesis, the original contributions of the 

research, and recommendations for future research. 
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 Literature review 

2.1 Climate change effects and uncertainty 

When acknowledging the increasing length of infrastructure asset life and the importance of 

services and expenses needed to upgrade and maintain these facilities, it is essential to characterize 

the vulnerability of the infrastructure and the changing climate (Chester et al. 2020). 

A climate model is comprised of numerous interconnected equations that possess multiple 

processes, inside the climate system. These types of equation rely on the physical law from the 

fluid mechanics, containing momentum equations, energy conservation, and mass conservation, 

etc. A climate model describes the interactions between the biosphere, cryosphere, hydrosphere, 

and atmosphere deal with the natural earth environment. Figure 2-1 presents the explanation of a 

climate model (Charron 2016). 

Figure 2-1 (a) Interactions in climate models and (b) discrete grids to compartmentalize the climate 

system (Charron, 2016). 



11 

  

 

The climate change models can be categorized as a function of the spatial resolution of the 

prediction domain. Global Climate Models (GCM) has ability to cover the whole planet and can 

give grid resolution of approximately 200 km, on the other hand, Regional Climate Models 

(RCMs) contain spatial resolution that is below 45 km. The results for specific location need the 

use of statistically downscaled data and higher resolution models. 

Greenhouse gases (GHGs) mainly influence the climate changes. Emission scenarios explains the 

plausible expected release of greenhouse gases, aerosols, and other anthropogenic gases into 

environment, based on clear and comprehensible internal assumptions regarding the socio-

economic and demographic development and technological change and their connections (IPCC 

2007). By using the Representative Concentration Pathways (RCPs), the concentrations of 

greenhouse gases are explained. RCPs are the greenhouse gas concentration trajectories, that are 

adopted by the IPCC in 2014 for its fifth Assessment Report (AR-5) that changed the Special 

Report on Emissions Scenarios (SRES) projections, that was published in 2000 (Table 2-1). The 

four scenarios, which are normally considered have the designations RCP 8.5, RCP 6, RCP 4.5, 

and RCP 2.6, where the numerical values relate to radiative forcing values (+8.5, + 6.0, + 4.5, and 

+ 2.6 W/m2) in 2010 (can refer to Table 2-1). For instance, RCP 2.6 responds to the scenario with 

the minimum temperature change globally and suppose that the greenhouse gases will reach to 

highest point in between 2010 and 2020, and the emission of GHGs will reduce significantly. On 

the other hand, RCP 8.5 estimates a quick increase in carbon dioxide emissions and responds to 

the scenario with the highest projected changes in global temperatures by the end of this century. 
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Table 2-1: Key characteristics of RCPs and SRES scenarios (Source: Charron (2016)). 

Scenario Radioactive forcing 

CO2 equivalent 

(ppm) 

Temp. 

anomaly (°C) 

Pathway 

SRES temp anomaly 

equivalent 

RCP8.5 8.5W/m2 in 2100 >1370 4.9 Rising SRES A1FI* 

RCP6.0 6 W/m2 post 2100 ~850 3.0 

Stabilizing 

without overshoot 

SRES B2 

RCP4.5 4.5W/m2 post 2100 ~650 2.4 

Stabilizing 

without overshoot 

SRES B1 

RCP2.6 

(RCP3PD) 

3W/m2 mid-century, 

decline to 2.6W/m2 

by 2100 

~490 1.5 Peak and decline None 

 

On the basis of research, it has been expected that climate change will create huge effects on the 

environment. Chemical and physical deterioration will be mainly effected by the climate 

conditions, like humidity and temperature (Neville 2008). With the increase concentration of 

carbon dioxide, precipitation, and global temperatures, the structures are now more vulnerable to 

harsh environment, and thus their deterioration is increased to some level. Other than that, the 

expected increase in the severity and incidence of harsh weather may have significant effect on the 

loading actions, which should be considered in the structural design criteria (Wang and Wang 

2009). 

Carlos Lam et al. (2020) explored extreme hydrometeorological hazard events and presented a 

simulation reduction technique in order to calculate the risk for transportation networks. This was 

calculated by conducting statistical analysis on the predicted risks when simulating the impact of 

non-extreme events. Network managers may be interested in this type of research when they need 

to make decisions with consideration to possible future climate scenarios. 
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2.2 Chloride-induced deterioration modeling of concrete structures 

Despite the implementation of suggested approaches to show the corrosion of infrastructure and 

evaluate any potential dangers, to accurately calculate the longevity of a structure is near 

impossible. Various uncertainties can affect the lifespan, notwithstanding the state it was originally 

in, but the duration of the process of corrosion and the subsequent spread of deterioration are also 

major factors. (Frangopol 2011). 

For reinforced concrete (RC) infrastructure situated in the Northern area, corrosion plays a key 

part in the degradation of a structure. This is due to the susceptibility of chloride ions and the speed 

of the deterioration itself depends on the structure, such as materials characteristic (diffusion 

coefficient), geometrical properties (depth of concrete cover, cross-sectional dimensions), climate 

conditions (humidity, temperature, and winter precipitation) as well as exposure conditions (splash, 

mist or direct) (Angst 2018; Cao et al. 2019; Zhang, Chouinard, Power, Tandja M, et al. 2018). 

Fick’s second law of diffusion allows the profiling of chloride to be formulated at a suitable 

estimation in many cases. This takes into account that the process of diffusion is non-stationary 

(Nilsson et al. 1996) and that the transition of chloride into concrete is for the most part dictated 

by diffusion (Hunkeler 2005). 

Chloride-induced corrosion and concrete cracking can negatively impact the safety and servicing 

of RC structures. The lifespan of RC structures becomes difficult to predict once both of these 

phenomena occur in the same instance (Imounga et al. 2020). 

Steel reinforcing bars are typically passive or non-corroding, due to the concrete pore solution that 

has high levels of alkalinity. The passivity of this substance may change for two different reasons. 

(1) carbonation of the cover concrete which would in turn lose the alkalinity; (2) chloride ions 
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being highly present on the surface of the steel. The former causes the instability of the passive 

film on the uncovered reinforcing bars and results the corrosion on the surface of steel; while the 

latter causes in the onset of localized corrosion , also known as pitting corrosion (Jamali et al. 

2013). 

The time it takes for chloride ion content (e.g. % of Cl- per weight of cement) to come to a critical 

level (Ccrit) is when corrosion will begin. In concrete, the Ccrit is vital for the evaluation of the 

condition of any current infrastructure as well as for when the lifespan of a facility in a new 

structure that will be exposed to chloride is being determined. It’s become clear that Ccrit 

disseminates and therefore it is difficult to evaluate it through such aspects as the condition of the 

outward steel, the w/b ratio or the type of binder used (Angst 2011).  

The rate of corrosion is near impossible to approximate as it depends almost entirely on oxygen 

and moisture levels. Molecular equations are utilised by various prediction models to estimate the 

rate of oxygen diffusion against the corrosion of steel (Vu and Stewart 2000). Nonetheless, nothing 

can be more accurate than field measurements and tests themselves (Stewart and Rosowsky 1998).  

Bazant (1979) and Lounis and Daigle (2008) put forward various streamlined methods to evaluate 

the effects of corrosion and the compromising of the reinforced concrete. Once a crack appears, 

any resulting pressure from rust is assumed to remain constant until the cover itself breaks off. The 

following equation was suggested by Lounis and Daigle (2008) to evaluate time between the 

commencement of the corrosion and the commencement of the spalling (i.e. the propagation time). 
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where S = rebar spacing; ρr = density of corrosion products (assumed at 3,600 kg/m3 for Fe(OH))3; 

ρs = density of steel (7,860 kg/m3); α = molecular weight ratio of metal iron to the corrosion product 

(assumed at 0.52); and jr = corrosion production rate per unit area (µA/𝑐𝑚2) (Bazant 1979). This 

model is used to relate changes in the diameter of steel rebars to corrosion-induced damage limit 

states (Lounis and McAllister 2016). 

Imounga et al. (2020) discussed that Bayesian networks that can be used to update the lifetime 

assessment based on experimental information. In addition, uncertainties of the input parameters 

of a chlorination model that includes a chloride diffusion acceleration factor can be characterized.  

Jamali et al. (2013) examined different empirical, analytical, and mathematical models to predict 

the time a reinforced steel would take to crack because of the corrosion in reinforced structures. 

The empirical models are primarily focused on mathematical expressions and are dependent on 

the rate of corrosion, cover thickness and diameter of reinforcing bars. In contrast, the numerical 

and analytical models comprise more refined and mechanistic considerations such as the stiffness 

and strength parameters of the concrete and the specific type of corrosion product. It was found 

that most models could only predict the time-to-cracking for the fitted experiments. 

 

2.3 TransChlor® model 

To simulate the transport phenomena of different materials in concrete, a numerical method named 

TransChlor® is recommended to take the environmental (i.e. climatic and chemical) conditions 

into consideration. The model employs a 1-dimensional linear transport equation of chlorides into 

the concrete, which involves a finite element method to deal with the ion propagation within the 

concrete cover as well as applies a finite difference method to handle the progression as a function 
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of time. On the basis of kinematics equations and Fick’s diffusion law, this model is composed of 

connected nonlinear partial differential equations. Moreover, the proposed model deviates the 

structural modeling through the segmentation of structure into distinctive units regarding corrosion 

vulnerability and functional role (i.e., exposure level to corrosive agents, cover concrete 

permeability, local defects, etc.) (Conciatori et al. 2004). 

The model is originally proposed to tackle the transport of chloride ion and water in concrete. 

More importantly, it differentiates the structural components exposed to water vapour and liquid 

water. According to the data released by the meteorological station, the stimulation experiment 

successfully addresses the influence of microclimatic conditions, comprising weather, exposure to 

de-icing salts, concrete depth, on chloride penetration in concrete. The framework of the 

TranChlor® is shown in Figure 2-2. A more detailed description of the model is presented in 

(Conciatori et al. 2018). 
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In order to examine the uncertainties of material performance, TransChlor® conducts an analysis 

on the specific four parameters of concrete, including the water vapor transport diffusion parameter 

(DHR), the liquid water capillary suction parameter (DCAP), the chloride ion transport diffusion 

parameter (DCL), and the carbonation parameter (DCO2). The four parameters are assumed as 

random variables, which are mutually independent from one another, as their characteristics are 

Figure 2-2 Framework of the TransChlor® software (Conciatori et al. 2018). 
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completely described, by mean and variance. Given this, the two-point Rosenblueth method is 

taken to compute the moments of random variables, propagate uncertainties in the transport model 

and estimate how chloride ion concentrations vary as a function of the time and depth of concrete. 

Though numerical integration methods and Monte-Carlo modeling can be also adopted in place of 

aforementioned method, they remain defective in the transport model because of more intensive 

computation (Conciatori et al. 2014). 

 

2.4 Markov Chain Model and Bayesian approach-based analysis method 

The development of deterioration curves for bridge is most often performed with the application 

of discrete Markov chains. The Markov chain is defined for a sequence of condition states starting 

with a new structure and ending with a failed or obsolete structure. The Markov chain is completely 

characterized by the transition probabilities and the initial probabilities for each state. The 

probability of being a future state in the process is determined by the current state, which means 

that the future condition is only dependent on the present state. This property is represented by a 

parameter stochastic process (𝑋𝑡) and a discrete state space as below (Parzen 1962): 

𝑃(𝑋𝑖+1 = 𝑖𝑖+1|𝑋𝑖 = 𝑖𝑖, 𝑋𝑖−1 = 𝑖𝑖−1,……,𝑋1 = 𝑖1,𝑋0 = 𝑖0) = 𝑃(𝑋𝑖+1 = 𝑖𝑖+1|𝑋𝑖 = 𝑖𝑖)    (2-2) 

where 𝑃 is the transition probabilities and 𝑖 is the step. 

Given the initial condition probabilities vector 𝑞(0) is identified, which indicates the initial 

probability of each chloride ions content state, the future probability state vector 𝑞(𝑡) at the 

transition periods t can be calculated as the matrix product (Collins 1975): 
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𝑞(𝑡) = 𝑞(0) × 𝑃t (2-3) 

𝑃𝑡 =

[
 
 
 
 
 
𝑝1,1 𝑝1,2 … 𝑝1,𝑛

𝑝2,1 𝑝2,2 … 𝑝2,𝑛

. . . … . .

. . . . … . .

. . . . … . .
𝑝𝑛,1 𝑝𝑛,2 … 𝑝𝑛,𝑛]

 
 
 
 
 

 (2-4) 

𝑄(𝑡) =

[
 
 
 
 
 
𝑞1(0) 𝑞2(0) … 𝑞n(0)
𝑞1(1) 𝑞2(1) … 𝑞n(1)

. . . … . .

. . . . … . .

. . . . … . .
𝑞1(𝑛) 𝑞2(𝑛) … 𝑞n(𝑛)]

 
 
 
 
 

 (2-5) 

Morcous and Akhnoukh (2006) have developed the stationary Markov-chain model as the 

application example to illustrate the stochastic deterioration model based on state utilizing the 

expected-value approach. According to this application, bridge deck data are marked in a 2D 

diagram, with the horizontal and vertical axes representing the age in years and the MCR (i.e. 

material condition rating obtained from the Ministére des Transports du Québec database), 

respectively. Figure 2-3 shows the regression model Y(t) which best matches the data points. 

Figure 2-3 The regression model that best fits bridge deck data (Morcous & Akhnoukh, 2006). 
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Madanat et al. (1995) proposed an estimation of Transition probabilities by minimizing the sum 

of absolute differences between the regression model Y(t) and the expected value E(t) derived from 

Markov-chain model. The constraints and objective functions of this non-linear optimization are 

as below: 
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where Y(t) = average condition rating for facilities in the group at age t predicted by the 

deterioration model; E(t) = theoretical expected value of condition rating at age t as a function of 

the Markov transition probabilities. The first constraint ensures that the probabilities are bounded 

by 0 and 1, and the second constraint ensures that the elements of each row of the transition matrix 

sum to one. By definition, E(t) is given by: 

 𝐸(𝑡) = 𝑞(𝑡) × 𝑅 (2-7) 

where q(t), = a row vector representing the probability mass function of the state of the facility at 

age t given in Eq. 2-5; and R = a column vector of condition states. 

Mizutani et al. (2017) estimated the transition probabilities used in Markov models from 

mechanistic-empirical models. The methodology is adopted when there are minimal time-series 

inspection information available but rather mechanistic-empirical models available. The planned 

methodology uses analytical solutions when it is possible and Bayesian statistics will be used when 

analytical solutions are not suitable. 
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The improvement in the rate of sampling with computers has contributed to the popularity of the 

Bayesian approach-based analysis method (Mishalani and Madanat 2002). Markov Chain Monte 

Carlo (MCMC) simulation is used extensively in the Bayesian framework for computing the 

posterior distribution of parameters in complex statistical models as well in deterioration models 

(Kobayashi et al. 2012; Hong and Prozzi 2006). 

Assuming that Y = (y1, y2, y3, …, yn) refers to a sample of condition ratings on specific bridge 

element from many bridges and   is an unknown parameter vector of the model ( ijp  of the TPM 

in this case). The joint probability distribution ( )/YP  refers to the likelihood function or sampling 

distribution which can perform inference (Mishalani and Madanat 2002). ( )P  is the prior 

distribution of the unknown model parameter, and ( )YP /  is the target distribution or posterior 

distribution given the set of observations. Based on Bayes’ rule of the known value Y, the posterior 

distribution of parameters of models is formulated by: 

 ( )
( )
( )

( ) ( )
( )YP

YPP

YP

YP
YP




/,
/ ==  (2-8) 

Clearly, ( )YP  cannot be regarded as a function of the parameter  . But it can be considered as 

normalizing constant for fixed Y . The posterior distribution density can be in proportion to the 

product of prior distribution density if the normalizing constant is omitted. The likelihood function 

is then shown as: 

 ( ) ( ) ( ) // YPPYP   (2-9) 

The first step for the application is to propose a model for ( )YP ,  followed by computing the target 

density ( )YP /  (Mishalani and Madanat 2002). The Non-informative density can be assumed to 
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realize uniform distribution on the basis of the Bayes-Laplace “principle of insufficient reason” 

(Sorensen and Gianola 2002). Thus, the posterior distribution density is proportional to the 

likelihood function. The joint probability theory can be applied to simplify the likelihood function 

of unknown transition probability density of the Markov model for the specific bridge data set Y = 

(y1, y2, y3, …, yn), and this can derive a logarithmic form for computation (Tran 2007; Micevski et 

al. 2002; Ranjith et al. 2013) as: 

 ( )  ( )
= =

=
T

t i

it

t

i CNYL
1

5

1

log/log   (2-10) 

where, ( )/YL  refers to the likelihood of finding the condition rating data set Y = (y1, y2, y3, …, 

yn) of a bridge element from a bridge group having n records; t represents the age in years of the 

bridge element; T is the biggest age observed in the dataset; t

iN  refers to the number of elements 

in the condition state i at the year of t; itC  represents the possibility in condition state i at the year 

of t and can be expressed as a function of TPM by Eq.2-4. 

 

2.5 Optimization procedures 

A vital element in the control of assets relating to infrastructure, decision-making (DM) establishes 

techniques utilized for intervention by management in the project. However, DM is not an easy 

task, as a variety of challenges such as contradictory goals, uncertainties, and limited resources 

should be clarified by decision-makers. Quantifying the net‐benefit of the intervention taking into 

consideration the effects on service and intervention costs is needed, as the use of proxies make it 

very difficult to make consistent and comparable decisions, especially speaking with managers. 
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Moreover, certain room should be provided to decision-makers for their personal judgement based 

on the ever-changing situations. 

Fortunately, with development of computer technology, reliable optimization techniques become 

more popular and can be efficiently applied for DM problems (Ng et al. 2011). 

The two most common forms of optimization are single-objective optimization (SOO) and multi-

objective optimization (MOO) (Hillier 2012). The former seeks to maximise or minimise a 

singular objective with different constrains, whereas the goal of the latter is to find the best trade-

off amongst multiple objectives while ensuring an effective solution in optimization. In addition 

to pursuing an ideal assessment of the objective, SOO aims to also satisfy any constrains attached. 

This is exemplified in a situation where SOO is utilized to allow management intervention at a 

good level of service but at a budgeted cost (Zhang et al. 2017). Similarly, the optimization of the 

functionality of infrastructure can be achieved on a limited annual budget (Rashedi and Hegazy 

2015). By comparison, MOO produces Pareto solutions and the optimal values cannot be improved 

if another objective is not sacrificed (Horn et al. 1994). Moreover, in most circumstances, MOO 

deals with numerous Pareto solutions, typically referred to as Pareto Front and satisfies all 

constrains. The number of Pareto solutions is left to the discretion of the policy makers (Chen and 

Bai 2019). 

Contradicting functions of multiple objectives raise the difficulty of resolving a MOO issue. For 

example, the weighty expenditure linked to the upkeep and repair of infrastructure improves its 

ability to continue and stay in good service. Therefore, these two objectives – to manage costs and 

to provide a better service – contradict each other. An effective solution to this would be what is 

most commonly known as scalar optimization which effectively prioritises objectives to facilitate 

the formation of a single composite objective function (Bhatti 2012). Using data on transportation 
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acquired from Wyoming Department of Transportation, Shim and Lee (2017) recently put forward 

a mathematical framework for a multi-objective problem related to bridge deck interventions. 

However, the assigned weights for the two objective functions are random and thus render the 

model limited.  

The relationships between objectives, their values and the possibility for trade-off alternatives are 

all better informed with the Pareto Solution Set which can help find solutions to current issues as 

well as create balanced objectives and assist with making informed judgments (Chen et al. 2015; 

Rifai et al. 2016; Santos et al. 2019; Chen and Bai 2019). 

 

2.6 Optimization methodology 

Two types of modeling methods, namely heuristic and deterministic, can generally solve 

optimization problem. Silver et al. (1980) interpreted heuristic method as an intuitive method 

aiming at acquiring plausible solution via the intelligent explanation. In most cases, heuristics are 

based on accepted basic knowledge, which is embodied in relative general knowledge and 

unrelated repetitive solutions (Yaseen and Al-Slamy 2008). On the other side, in virtue of inference 

and mathematical theorem, deterministic methods are deemed as mechanic ones to render solutions 

to optimization problems Moteleb (2010). 

Genetic algorithm (GA) is a random search measure in terms of natural selection mechanism, 

equipped with a simple process but powerful function (Goldberg and Holland 1988). Initiating 

from initial population of random solution called “chromosomes”, each chromosome contains unit 

sequences known as “genes” that are able to encrypt specific components in the solution. It is 

simple and maneuverable to take advantage of GA methods, involving the complex DM problems 
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proposed in recent literature (Belevičius et al. 2013; Morcous and Lounis 2005; Elhadidy et al. 

2015; Hadiwardoyo et al. 2017). Meanwhile, it has also been used in the field of infrastructure 

management. Farran and Zayed (2012) made full use of GA and the Markov Chains to ascertain 

the optimized repair scheme of the bridge. 

 Eberhart and Kennedy (1995) exploited a strong algorithm, Particle Swarm Optimization (PSO), 

to resolve the sophisticated continuous problems. For the sake of mimicking the animals’ social 

behavior such as fish of school and birds in flocks, PSO randomly starts with individuals or particle 

flies, in order to find the best solution in search space. Each particle is recognized by its location 

and velocity. Founded in 1999, Multi-Objective PSO (MOPSO) has amounts of software and 

extensive literature and applications; Within the scope of engineering management, the problem 

of MOO has become a developing field. AL-Smadi (2019) solved the PSO based method to 

optimize the building maintenance strategy in light of the cost, while (Babapour et al. 2018) has 

used MOPSO technology to evaluate the cost-effectiveness tradeoffs in the pavement maintenance 

strategy. 
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 Markov Chain Based Stochastic Modeling of Chloride Ion 

Transport in Concrete Bridges 

 

Abstract 

Over the last decade, there has been an increasing interest in models for the evaluation and 

prediction of the condition of bridges in Canada due to their large number in an advanced state of 

deterioration. The models are used to develop optimal maintenance and replacement strategies to 

extend service life and optimally allocate financial and technical resources. The main process of 

deterioration of concrete bridges in Canada is corrosion of the reinforcing steel due to the 

widespread use of de-icing salts. In this article, numerical models of the diffusion process and 

chemical reactions of chloride ions in concrete are used to estimate the time to initiation of 

corrosion and for the progression of corrosion. The analyses are performed for a range of typical 

concrete properties, exposure and climatic conditions. The results from these simulations are used 

to develop parametric surrogate Markov chain models of increasing states of deterioration. The 

surrogate models are more efficient than physical models for the portfolio analysis of a large 

number of structures. The procedure provides an alternative to Markov models derived from 

condition ratings when historical inspection data is limited. 

Keywords: Concrete bridges, deterioration, Markov Chain, transition probabilities, chloride ions 

content. 
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3.1 Introduction 

Reinforced concrete bridges are critical elements of the transportation network in Canada. Many 

of these bridges are reaching the end of their service life and showing advanced stages of 

deterioration. Due to the large number of structures requiring repairs or replacement, a rational 

procedure is needed to prioritize interventions and optimally allocate financial and technical 

resources. The main process of deterioration for concrete bridges in Canada is due to the use of 

de-icing salts to maintain bare pavement conditions during winter (NACE 2012). Several physical 

models are available to predict the ingress of chloride ions in concrete. The simplest models are 

based on the diffusion equation (Crank and Gupta 1975) while more advanced models can account 

for other ion transport mechanisms, types of exposure, climatic conditions (Conciatori et al. 2010; 

Conciatori et al. 2009b) and chemical reactions (Samson and Marchand 2007). Most models are 

developed for undamaged concrete elements; however, corrosion induced cracking of the concrete 

can greatly accelerate the deterioration process once corrosion has progressed (Jefremczuk 2005).  

The model used in this application is TransChlor® (Conciatori et al. 2010), which uses hourly 

climate data (precipitation, temperature, relative humidity, solar radiation) to replicate the 

application of de-icing salts within a given climatic region. The model also differentiates between 

the types of exposure (direct, splash or mist) for different bridge elements. However, the one-

dimensional finite element program is computer intensive, which limits its application in practice 

to a limited number of cases. 

When data from inspections and condition assessments are available, statistical models for the 

evolution of condition states can be used as an alternative to physical models. Markov chain 

models have been used extensively for predicting conditions states (Jiang and Sinha 1989; Cesare 
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et al. 1992; Thomas and Sobanjo 2016). The transition probabilities for these models are usually 

estimated using statistics from inspection data but have also been derived from simulations with 

physical models that are correlated to condition states (O’Connor et al. 2011).  

The transition probabilities can be parametrized as a function of physical characteristics of the 

concrete or of the climatic region. The latter approach is proposed in this work to derive 

parametrized transition probabilities for specified geographical regions as a function of concrete 

properties. For this purpose, a multinomial logit model is used for the transition probabilities as a 

function of diffusion properties of concrete for specific climatic and exposure conditions. The 

model is applied and demonstrated for bridges located in the Montreal area. 

 

3.2 Bridge Deterioration Modeling 

Decisions on the maintenance, rehabilitation or replacement of bridges are based on evaluations 

of current condition and predicted residual life. Current condition is evaluated qualitatively from 

inspection reports and rating procedures and quantitatively using standards that account, among 

others, for the level of investigations performed for a specific structure (CSA 2014). Similarly, 

future conditions can be qualitatively extrapolated from current conditions when historical data 

from inspections and condition ratings is sufficient to develop empirical prediction models or 

quantitatively by using numerical models of deterioration. In the latter case, predictions may be 

tainted by large uncertainties on the model, the history of exposure, and material properties, which 

must be accounted for in the development of maintenance and rehabilitation strategies (Estes and 

Frangopol 2005). 
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Discrete Markov chain models are usually derived for a small number (3 to 4) of condition states. 

Four types of models are most often used for this purpose: 1) Physical models to determine the 

time to the initiation of corrosion, 2) Regression Models, 3) Duration Models, and 4) Artificial 

Intelligence Prediction Models. 

Regression models are the most commonly used by agencies for modeling asset performance. 

Adaptive methods and latent variables can be employed to gradually forecast condition as a 

function of previous performance and features as well (Washington et al. 2010b). If inspection 

data on bridge condition is not available, a duration model can be used to determine the residual 

life defined as the period of time remaining before the threshold of lowest admissible performance 

is reached (Caner et al. 2008). Duration (also survival or reliability) analysis is a probabilistic 

method to predict the time to failure of a structure and is commonly used for mechanical and 

electrical components (Yang 2007). Duration models may be parametric, semi-parametric, or non-

parametric (Washington et al. 2010a). Artificial Intelligence (AI) refers to computer techniques 

for automating decisions based on a set of inputs. AI techniques include genetic algorithm (GA), 

expert systems, case based reasoning (CBR) and artificial neural networks (ANN). Sobanjo (1997) 

uses ANN for modeling bridge deterioration. A multilayer ANN is used to relate the condition of 

the bridge superstructure to the number of years of service of the bridge and other relevant inputs. 

Tokdemir et al. (2000) use ANN to forecast the bridge condition as a function of bridge geometry, 

level of traffic, years in service and structural attributes as explanatory variables. 

The development of deterioration functions for bridge is most often accomplished with discrete 

Markov chains. The Markov chain is defined for a sequence of condition states starting with a new 

structure and ending with a failed or obsolete structure (Micevski et al. 2002). The condition states 

can be defined on either a qualitative or quantitative scale. The Markov chain is a memoryless 
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process since the probability of transition probabilities from one state to the next are only a function 

of the current state (Morcous 2006). The Markov chain is completely characterized by the 

transition probabilities and the initial probabilities for each state. The transition probabilities are 

typically defined for a standard step or time interval of 1 year corresponding to the interval between 

inspections. The transition probabilities can be parametrized as a function of material properties, 

degree of exposure, and even number of years of service. The probabilities can be displayed on a 

directed graph (Figure 3-1 or in a matrix (Table 3-1)) (Jiang and Sinha 1989).   

 

 

 

 

 

Table 3-1: Example of Markov Chain transition matrix. 

Figure 3-1 Example Markov Chain graph with three states. 
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Markov Transition Matrix 

State at time t State at time t+1 

Good (G) Fair (F) Poor (P) 

Good (G) 95.3 4.6 0.1 

Fair (F) 0 93.2 3.9 

Poor (P) 0 0 100.0 

 

3.3 Modeling of Chloride Ions Transport 

In probabilistic service life prediction for reinforced concrete structures, modeling, the time to 

initiation of corrosion is the most critical parameter (Shafei and Alipour 2015). The time to 

initiation of corrosion corresponds to the time required for the chloride ion content (e.g. % of Cl- 

per unit weight of cement) to reach a critical level (Ccrit). Reported values for the critical level vary 

greatly due to differences in the definition of initiation, the type of reinforcement, and the 

stochastic nature of corrosion. In some cases, the critical value corresponds to the depassivation of 

the protective layer at the surface of the reinforcing steel while from a practical engineering point 

of view it is identified as the level when the degree of deterioration of the concrete becomes 

unacceptable which is highly subjective (Deb 2012). 

The surrogate Markov model is derived by defining a set of discrete states for the chloride ion 

concentration at the depth of the reinforcement from the concrete surface. Historical climatic data 

is used to model the time series for the chloride content and uncertainties associated with transport 

properties are addressed by performing a set of analyses for optimally selected values from the 

probability distribution functions of the transport and diffusion parameters using the Rosenblueth 

point estimation procedure (Conciatori et al. 2009b; Rosenblueth 1975; Wolofsky 2011a). The 



35 

  

simulation is used to generate a large sample of state transitions for estimating the transition 

probabilities. In this application, only direct exposure is considered since the analysis is performed 

only for the concrete deck. Hourly climate data was obtained for a period starting at the beginning 

of the service life (1965) of a typical older bridge in Montreal until present (Figure 3-2). 

  

 

Figure 3-2 Sample of climate data for Montreal (A) temperature; (B) relative humidity; (C) 

precipitation; (D) solar radiation. 
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The TransChlor® model includes the effects of two primary chemical reactions: carbonation and 

adsorption of chloride ions by the cement paste. The model is implemented through a 1-

dimensional linear finite element model for the transport of chlorides in space and a finite 

difference model in time. The transport modules include thermal and vapor transfers, liquid water 

transport with and without chloride ions, capillary suction, chloride ion diffusion in water, and 

carbon dioxide diffusion in concrete (Conciatori et al. 2010; Wolofsky et al. 2015). Calculations 

are performed at intervals of 1 hour which provide the adequate level of resolution for the 

simulation of temperature profiles, precipitation history and wetting/drying cycles (Conciatori et 

al. 2008; Conciatori et al. 2010). Computing time for 45 years exposure period is in the order of 2 

to 24 hours depending on the performance of the computer. 

 

3.4 Experimental Design 

TransChlor® allows a probabilistic analysis for up to four concrete properties to account for 

uncertainties on material properties. The four concrete properties are: 1) the water vapor transport 

diffusion parameter (DHR), 2) the liquid water capillary suction parameter (DCAP), 3) the chloride 

ion transport diffusion parameter (DCL), and 4) the carbonation parameter (DCO2). The four 

concrete properties are assumed to be mutually independent random variables that are fully 

characterized by their mean and variance. The two-point Rosenblueth method for calculating 

moments of a random variable is used to propagate uncertainty in the transport model and to 

estimate the mean and variance of chloride ion concentrations as a function of time and depth 

inside a concrete element. Numerical integration methods or Monte-Carlo modeling can be used 

in theory as an alternative, however, these are computationally too intensive for the transport 
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model (Conciatori et al. 2014). Details of the Rosenblueth point estimators method and 

comparisons with results from Monte Carlo simulations are presented in (Conciatori et al. 2014). 

The Rosenblueth method is used to estimate the mean value of the chloride content and its standard 

deviation as a function of time and depth into the concrete elements. In this work, only the three 

main contributors (DHR, DCAP, DCL) to uncertainty are included in the analysis which requires a 

total of 23 = 8 simulations. 

In the simulations, the lower value is represented by 𝑋1 and the upper value by  𝑋2. The formulas 

used to determine the distinct values (𝑋1, 𝑋2) and the associated probabilities (𝐹1, 𝐹2) are defined 

as follows (Rosenblueth 1975; Conciatori et al. 2009b) 

𝑭𝟐 =
𝟏

𝟐
[𝟏 −

𝜷

|𝜷|
√𝟏 −

𝟏

𝟏 + (𝜷/𝟐)𝟐
] (3-1) 

𝑭𝟏 = 𝟏 − 𝑭𝟐 (3-2) 

𝑿𝟐 = 𝝁𝒙 + 𝝈𝒙 ∙ √
𝑭𝟏

𝑭𝟐
 (3-3) 

𝑿𝟏 = 𝝁𝒙 − 𝝈𝒙 ∙ √
𝑭𝟐

𝑭𝟏
 (3-4) 

The distinct values (𝑋1, 𝑋2) and the associated probabilities (𝐹1, 𝐹2) for a normal and lognormal 

distribution are shown in Table 3-2 (Conciatori et al. 2009b): 

Table 3-2: Distinct Values and Associated Probabilities for Normal and Log-normal Distribution.  
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Distribution 
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The distinct values and associated probabilities are optimal for the estimation of the moments of 

the random variables and in particular for the mean value and the variance. Estimates of the initial 

moment of order n for the chloride ion content at time t and depth d are obtained with the following 

expressions, 

𝒀(𝒕, 𝒅)𝒏 = ∑𝑷𝒊 ∙ 𝒚(𝒕, 𝒅)𝒊
𝒏

𝟐𝒓

𝒊=𝟏

 (3-5) 

𝒚(𝒕, 𝒅)𝒊 = 𝒇(𝒙𝟏𝜹𝟏
, 𝒙𝟐𝜹𝟐

, ⋯ , 𝒙𝒓𝜹𝒓
, 𝒕, 𝒅) (3-6) 

𝑷𝒊 = ∏𝒑𝜹𝒋

𝒓

𝒋=𝟏

 (3-7) 

where δj is the point estimate identifier (+,-) for variable j, and Pi is the probability associated with 

a given combination of transport properties. The average values of DHR, DCL and DCAP, coefficient 

of variation and distinct values with their associated probabilities are shown in Table 3-3. The 

average values and coefficient of variation are determined from data bases for concrete typical at 

the time of construction of the bridges (Conciatori et al. 2009b). Previous studies also indicate the 
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lognormal distribution is appropriate for the distribution of the diffusion parameters as well as for 

the distribution for the chloride content given the duration of exposure and depth into the concrete 

(Wolofsky 2011a). 

Table 3-3: Average Values, Distinct Values, and Associated Probabilities (lognormal).  

Parameter  μ (mm2/s) C.O.V X1 (mm2/s) X2 (mm2/s) F1 F2 

DHR 1.3×10-4 30% 9.28×10-5 1.67×10-4 0.573 0.427 

DCAP 6.5×10-4 30% 4.64×10-4 8.34×10-4 0.573 0.427 

DCL 4.9×10-6 40% 3.09×10-6 6.68×10-6 0.595 0.405 

 

The results are obtained as a function of depth in increments of 2 mm into the concrete for three 

types of exposure: mist, splash and direct. Figure 3-3 and Figure 3-4 illustrate simulations results 

from the TransChlor® model for the 8 cases at depths of 26 mm and 50 mm for direct exposure. 

The digits in the legend stand for the distinct points (0 or 1 or 2) that are used for each simulation. 

The first three values respectively stand for DHR, DCAP, and DCL. For example, the curve (1220) 

represents the lower value 1 for DHR, the higher value 2 for DCAP and DCL and the value 0 for a 

deterministic value for DCO2. The simulation was performed for a duration of 16,425 days 

(approximately 45 years) incorporating hourly climate data (air temperature, relative humidity, 

precipitation, and solar radiation). The depth of 50 mm is selected since it is common for the 

thickness of the concrete cover for reinforced concrete. The depth of 26 mm is not common and is 

used to illustrate the increase in deterioration rates when the reinforcement is not properly placed.  
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Figure 3-3 Dataset simulated from TransChlor® for 50 mm depth. 

Figure 3-4 Dataset simulated from TransChlor® for 26 mm depth. 
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Figure 3-3 and Figure 3-4 show that the chloride ion content fluctuates significantly as a function 

of climatic exposure and concrete properties. However, for modeling the deterioration of concrete 

structures, it may be sufficient to determine the variability in the annual average level of chloride 

ions. The average annual total chloride ion content is shown in Figure 3-5 and Figure 3-6 at depth 

of 26 mm and 50 mm for each of the 8 simulations. These indicate that the average annual amount 

of chloride ions increases and reach a steady state after a few decades of service but can fluctuate 

significantly due to the variability in annual winter conditions. They also indicate that the level of 

chloride ions is very dependent on material properties which can vary among a population of 

structures with similar service life. 

 

 

 

Figure 3-5 Annual average of chloride ions content based on TransChlor® Dataset for 50 mm 

depth. 
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The objective of this work is to use Markov chains to capture the trends and variability observed 

in chloride ion content for a given location and concrete material properties as predicted by 

TransChlor®. The Markov model can then be used as a surrogate model to the full finite element 

model to develop optimal strategies for the maintenance and replacement of bridges. The surrogate 

model is developed for a given climatic region and is applicable to a set of bridges with varying 

material properties. The transition probabilities of the Markov process are parametrized by using 

a logistic regression model where concrete properties are the independent variables. 

 

Figure 3-6 Annual average of chloride ions content based on TransChlor® Dataset for 26 mm 

depth. 
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3.5 Surrogate Markov chain Model 

3.5.1 Modeling chloride ions content prediction with Markov Chains 

Markov Chains are adopted to develop prediction models of chloride ions content for reinforced 

concrete with two concrete cover thicknesses (26 mm and 50 mm). The probability of being in a 

given future chloride state is determined only by the current state. This property is represented by 

a stochastic process (Xt) and a discrete state space as below (Parzen 1962):  

𝑃(𝑋𝑖+1 = 𝑖𝑖+1|𝑋𝑖 = 𝑖𝑖, 𝑋𝑖−1 = 𝑖𝑖−1,……,𝑋1 = 𝑖1,𝑋0 = 𝑖0) = 𝑃(𝑋𝑖+1 = 𝑖𝑖+1|𝑋𝑖 = 𝑖𝑖)  (3-8) 

where 𝑃 is the transition probabilities and 𝑖 is the step. 

3.5.2 Computations with Markov Chains 

Given the initial state probabilities vector 𝑞(0) the future probability state vector 𝑞(𝑡) at the 

transition periods t can be calculated as the matrix product (Collins 1975): 

𝑞(𝑡) = 𝑞(0) × 𝑃𝑡 (3-9) 

where, 

𝑃𝑡 =

[
 
 
 
 
 
𝑃1,1 𝑃1,2 … 𝑃1,n

𝑃2,1 𝑃2,2 … 𝑃2,n

. . . … . .

. . . . … . .

. . . . … . .
𝑃n,1 𝑃n,2 … 𝑃n,n]

 
 
 
 
 

 

(3-10) 



44 

  

𝑸(𝒕) =

[
 
 
 
 
 
𝒒𝟏(𝟎) 𝒒𝟐(𝟎) … 𝒒𝐧(𝟎)
𝒒𝟏(𝟏) 𝒒𝟐(𝟏) … 𝒒𝐧(𝟏)

. . . … . .

. . . . … . .

. . . . … . .
𝒒𝟏(𝒏) 𝒒𝟐(𝒏) … 𝒒𝐧(𝒏)]

 
 
 
 
 

 (3-11) 

In this application, 𝑞(0) is defined as [1, 0, 0, 0, 0, 0], which states that for the probability that 

chloride ions content will be in the first category at time zero is 100%, which corresponds to a new 

structure. 

State probabilities for the next time interval can be derived from Eq. 3-11: 

𝒒𝟏(𝟏) = 𝒒𝟏(𝟎)𝑷𝟏,𝟏 + 𝒒𝟐(𝟎)𝑷𝟐,𝟏 + ⋯+ 𝒒𝐧(𝟎)𝑷𝐧,𝟏 (3-12) 

𝒒𝐧(𝒏) = 𝒒𝟏(𝒏 − 𝟏)𝑷𝟏,𝐧 + 𝒒𝟐(𝒏 − 𝟏)𝑷𝟐,𝐧 + ⋯+ 𝒒𝐧(𝒏 − 𝟏)𝑷𝐧,𝐧 (3-13) 

The expected chloride ion content at time t is determined from the calculated transient 

probabilities, where, t is the time in years as (Butt et al. 1987):  

𝑬(𝑪𝒍(𝒕)) = ∑𝒒𝒊(𝒕) ∙ 𝑪𝒍𝒊

𝒏

𝒊=𝟏

 (3-14) 

where 𝐶𝑙𝑖 is the middle value for state i. 

The standard derivation is obtained as, 

𝑬(𝑪𝒍𝟐(𝒕)) = ∑𝒒𝒊(𝒕) ∙ 𝑪𝒍𝒊
𝟐

𝒏

𝒊=𝟏

 (3-15) 
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𝑆𝐷(𝐶𝑙(𝑡)) = √𝐸(𝐶𝑙2(𝑡) − 𝐸(𝐶𝑙(𝑡))
2
) (3-16) 

 

3.6 Parametrization of Transition Probabilities 

In this study, DCL, DCAP and DHR were employed to parametrize transition probabilities for the state 

probabilities of chloride content using a multinomial logit model (Allison 2012): 

𝒍𝒏(
𝑷𝒊𝒋

𝟏−𝑷𝒊𝒋
)= 𝜶𝟎 + 𝜶𝟏𝑫𝑯𝑹 + 𝜶𝟐𝑫𝑪𝑨𝑷 + 𝜶𝟑𝑫𝑪𝑳 (3-17) 

where 𝛼0 is a constant and 𝛼1, 𝛼2, 𝛼3 are coefficients and 𝑃𝑖𝑗 are transition probabilities from state 

i to state j given the initial state i. The estimation of the surrogate model is detailed in the following 

steps:  

(1) The range of chloride content is divided into a given number (e.g. 3 or 6) of states (Table 3-4). 

Results for the chloride content at a given depth (e.g. 26 mm) are used to obtain transition counts 

for each period of reference (e.g. one year). The counts for the initial state 1 are shown in Table 3-

5. 

Table 3-4: Transition counts matrix of the chloride ions content for 26mm depth.  

Categories  
Content at year n+1 

0 to 10 10 to 20 20 to 30 

Content at 

year n 

0 to 10 N11 N12 N13 

10 to 20 N21 N22 N23 

20 to 30 N31 N32 N33 
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Table 3-5: Counts for the initial state 1, 26mm depth.   

Response DHR DCAP DCL Counts 

0 to 10 1 1 1 N11(1) 

10 to 20 1 1 1 N12(1) 

20 to 30 1 1 1 N13(0) 

0 to 10 1 1 2 N11(3) 

10 to 20 1 1 2 N12(1) 

20 to 30 1 1 2 N13(0) 

0 to 10 1 2 1 N11(2) 

10 to 20 1 2 1 N12(2) 

20 to 30 1 2 1 N13(0) 

0 to 10 1 2 2 N11(3) 

10 to 20 1 2 2 N12(1) 

20 to 30 1 2 2 N13(0) 

0 to 10 2 1 1 N11(0) 

10 to 20 2 1 1 N12(1) 

20 to 30 2 1 1 N13(0) 

0 to 10 2 1 2 N11(0) 

10 to 20 2 1 2 N12(1) 

20 to 30 2 1 2 N13(0) 

0 to 10 2 2 1 N11(0) 

10 to 20 2 2 1 N12(1) 

20 to 30 2 2 1 N13(0) 

0 to 10 2 2 2 N11(0) 

10 to 20 2 2 2 N12(1) 

20 to 30 2 2 2 N13(0) 

 

 (2) Obtain the 𝛼0, 𝛼1, 𝛼2, 𝛼3 of the Eq. 3-17 using maximum likelihood estimation. 

(3) Predicted values 𝑃𝑖𝑗 as a function of the diffusion parameters are then obtained as. 

𝑷𝒊𝒋 =
𝒆𝜶𝟎+𝜶𝟏𝑫𝑯𝑹+𝜶𝟐𝑫𝑪𝑨𝑷+𝜶𝟑𝑫𝑪𝑳

𝟏 + 𝒆𝜶𝟎+𝜶𝟏𝑫𝑯𝑹+𝜶𝟐𝑫𝑪𝑨𝑷+𝜶𝟑𝑫𝑪𝑳
 (3-18) 
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Table 3-6 compares the performance of the predicted probabilities for all the cases at 26mm depth 

from STATISTICA® and Surrogate Markov chain Model and shows good agreement with the data 

obtained from the finite element model. 

Table 3-6: Predicted probabilities from STATISTICA® and Surrogate Markov Chain Model for 

the cases of 26mm depth. 

Cases(26mm) Categories 0 to 10 10 to 20 20 to 30 

1110 

0 to 10 0.5000(0.5000) 0.5000(0.5000) 0.0000(0.0000) 

10 to 20 0.0000(0.0000) 0.9970(1.0000) 0.0030(0.0000) 

20 to 30 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 

1120 

0 to 10 0.7500(0.7500) 0.2500(0.2500) 0.0000(0.0000) 

10 to 20 0.0000(0.0000) 0.8710(0.9300) 0.1290(0.0700) 

20 to 30 0.0000(0.0000) 0.3750(0.4760) 0.6250(0.5240) 

1210 

0 to 10 0.5000(0.0000) 0.5000(0.5000) 0.0000(0.0000) 

10 to 20 0.0256(0.0256) 0.9744(0.9670) 0.0000(0.0074) 

20 to 30 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 

1220 

0 to 10 0.7500(0.7500) 0.2500(0.2500) 0.0000(0.0000) 

10 to 20 0.0000(0.0000) 0.8966(0.8560) 0.1034(0.1540) 

20 to 30 0.0000(0.0000) 0.2000(0.1190) 0.8000(0.8810) 

2110 

0 to 10 0.0000(0.0000) 1.0000(1.0000) 0.0000(0.0000) 

10 to 20 0.0000(0.0000) 1.0000(0.9810) 0.0000(0.0190) 

20 to 30 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 

2120 

0 to 10 0.0000(0.0000) 1.0000(1.0000) 0.0000(0.0000) 

10 to 20 0.0000(0.0000) 0.7000(0.6690) 0.3000(0.3310) 

20 to 30 0.0000(0.0000) 0.6667(0.5990) 0.3333(0.4010) 

2210 

0 to 10 0.0000(0.0000) 1.0000(1.0000) 0.0000(0.0000) 

10 to 20 0.0000(0.0000) 0.9250(0.9550) 0.0750(0.0450) 

20 to 30 0.0000(0.0000) 1.0000(1.0000) 0.0000(0.0000) 

2220 

0 to 10 0.0000(0.0000) 1.0000(1.0000) 0.0000(0.0000) 

10 to 20 0.0000(0.0000) 0.4000(0.4540) 0.6000(0.5460) 

20 to 30 0.0000(0.0000) 0.1563(0.1816) 0.8438(0.8184) 
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3.7 Results and discussions 

The transition probabilities from the Markov process are used to predict chloride ions content at 

various depths as a function of time and are compared to the TransChlor® results. Predictions are 

obtained at depths of 26mm and 50mm for a period of 45 years. The results show the state 

probabilities of content of chloride ions as a function of time. The state probabilities are used to 

obtain the annual average and standard deviation of chloride content as a function of time and 

compared to the simulated values from TransChlor®. The blue and green lines correspond to the 

95% confidence interval for chloride ion content and the yellow line corresponds to the data from 

the TransChlor® simulation. The results indicate a good agreement between the original and 

surrogate model. 

 

Figure 3-7 Transition probabilities and expected categories of chloride ions content for Case 

1120 at 50 mm considering 45 year period. 
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Figure 3-8 Transition probabilities and expected categories of chloride ions content for Case 

1220 at 50 mm considering 45 year period. 
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Figure 3-9 Transition probabilities and expected categories of chloride ions content for Case 

2120 at 50 mm considering 45 year period. 
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Figures 3-7 through 3-10 show results at a depth of 50 mm with six states over the range of chloride 

content from 0 to 30 kg/m3. For the scenarios 2120 and 2220, the average chloride content 

increases rapidly from the start of the service life to the seventh year and then slows down until 

the tenth year. Upon completion of the prediction period of 45-years, the probabilities for state q5 

(20 to 25 kg/m3) is approximately 70% for both scenarios. The scenarios 1120 and 1220 exhibit a 

more gradual increase which stabilizes after the twentieth year of service 50% probability for the 

15 to 20 kg/m3 state. The comparison indicates that the concentrations are very sensitive to values 

of DHR. Conversely, changes in DCL do not significantly affect the evolution and levels of chloride 

ion content. The effect of DCAP is the least influential among diffusion parameters. Finally, the 

Figure 3-10 Transition probabilities and expected categories of chloride ions content for Case 

2220 at 50 mm considering 45 year period. 
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expected chloride content is overestimated for some scenarios in the initial portion of the service 

life, however, the predictions improve over time and a good match is obtained after the initial stage 

of the service life. 

 

 

 

 

 

 

 

Figure 3-11 Transition probabilities and expected categories of chloride ions content for Case 

1120 at 26 mm considering 45 year period. 
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Figure 3-12 Transition probabilities and expected categories of chloride ions content for Case 

1220 at 26 mm considering 45 year period. 
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Figure 3-13 Transition probabilities and expected categories of chloride ions content for Case 

2120 at 26 mm considering 45 year period. 
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Figures 3-11 to 3-14 show results obtained at a depth of 26 mm. In this case, the results are obtained 

for three states for a range of chloride content from 0 to 30 kg/m3. A smaller number of states is 

used in this case given that high levels of chloride content are attained earlier in the service life. 

For the scenarios 2120 and 2220, the chloride ion content increases rapidly during the first two 

years of service, and then reaches a steady state after the third year. Upon completion of the 45-

year prediction period, the probability (q2) in the state 10 to20 kg/m3 is around 65% for the 

scenario 2120 and 75% for the scenario 2220. Meanwhile, for scenarios 1120 and 1220, the 

chloride content increases rapidly in the first year and thereafter maintains a relatively steady rate 

of increase, which starts to stabilize after the fifteenth year. The results indicate that DHR has most 

effect on the rate of penetration of chloride ions while DCL has an effect mainly on the long-term 

Figure 3-14 Transition probabilities and expected categories of chloride ions content for Case 

2220 at 26 mm considering 45 year period. 
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maximum level of chloride ions. The predicted values for the average chloride ion content is 

slightly underestimated for low values of DHR in the early years of the service life, but are well 

matched in all cases in the latter part of the service life. 

 

3.8 Conclusions 

Currently, there are significant concerns over the state of bridges in North America, due to their 

advanced state of degradation. Thus, it is important to adopt efficient maintenance strategies to 

ensure that bridges are safe and in working condition for the longest possible period of time. The 

main mechanism of deterioration of concrete bridges in Canada is due to the widespread use of 

deicing salts and the ingress of chloride ions and their effect on reinforcing steel. This paper 

presents a new method of forecasting the chloride ions content based on the Markov Chain-based 

stochastic model. Transition probabilities for this model are obtained for the states defined as 

increasing levels of chloride ion content, while simulation data from the TransChlor® model is 

used to estimate the parameters for the surrogate model. A logistic model is used to predict the 

transition probabilities between each level as a function of concrete properties. This model can 

then be used for a wide variety of bridges as well as for different climatic regions. This approach 

is particularly well-suited to the analysis of maintenance and replacement strategies over a large 

portfolio of structures located in diverse climatic regions. The deterioration models can also be 

used in conjunction with inspection data when the latter is available over a sufficient long historical 

period. 

This research demonstrates it is possible to forecast the content of chloride ions in concrete bridges 

efficiently using Markov Chain models. Future research with this approach can be used to relate 
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stages in the process of deterioration to observations from periodic inspection reports as well as 

from more detailed surveys on the physical state of structural elements. The model can also be 

extended to other elements of the bridge besides the slab which are not directly exposed to chloride 

ions. This can be used to develop maintenance and replacement that encompass all elements of the 

bridge in terms of timing and opportunity costs.  
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Preface to Chapter 4 

 

In the previous chapter, numerical models of the diffusion process and chemical reactions of 

chloride ions in concrete are used to estimate the time to initiation of corrosion and for the 

progression of corrosion. The main mode of corrosion of concrete bridges in Canada is due to the 

widespread use of deicing salts and the ingress of chloride ions and their effect on reinforcing steel. 

The analyses are performed for a variety of typical concrete properties, exposure and climatic 

conditions. One of the important findings of the previous chapter is related to the efficiency of 

forecasting the content of chloride ions in concrete bridges using Markov Chain-based models. 

This approach can be used to relate states in the process of deterioration and thereafter to develop 

optimal maintenance and replacement strategies to extend service life and optimally allocate 

financial and technical resources. To this extent, Chapter 4 introduces a framework that 

incorporates risks in economic benefits and costs by modelling the interactions and uncertainties 

associated with physical and financial variables in the context of infrastructure management. 
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 Flexible Decision Analysis Procedures for Optimizing the 

Sustainability of Ageing Infrastructure under Climate Change 

Abstract 

Currently, there is significant interest in ensuring the sustainability and serviceability of 

infrastructure systems in the context of climate change. Indeed, a large proportion of existing 

structures already are in an advanced state of deterioration, thus affecting the sustainability and 

usefulness of these structures, and highlighting the need for better planning and decision analysis 

tools. Such tools would benefit from improved models to predict the residual life of structures, to 

estimate benefits derived from infrastructures, to account for uncertainties associated with physical 

and financial processes, and to provide more flexibility in decision-making strategies. These 

concepts are investigated through application of a risk-based decision-making model for reinforced 

concrete bridge decks in Montreal to estimate the optimal timing for deck repairs. A probabilistic 

deterioration model is used to predict the residual life of concrete decks as a function of exposure 

to de-icing salts using historical data and predictions from climate change scenarios. Historical 

data is used to validate model assumptions by comparing predicted condition states to observations 

from periodic inspections, while the climate scenarios are used to evaluate the impact of climate 

change on deterioration rates assuming that current deck design and de-icing salt management 

strategies are not modified. In this instance, the optimal timing for the first major repair is 

influenced by the uncertainty involved with climate change predictions and the future availability 

of funds, while ensuring the safety of users and the required level of service. The proposed 

framework, based on a cost-benefit analysis, is applicable to any infrastructure project.  

Keywords: sustainability; infrastructure; deterioration; changing climate; optimal strategies. 
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4.1 Introduction 

4.1.1 Background 

The management of ageing infrastructures presents many challenges to their owners and operators. 

Large investments are required to maintain existing infrastructures, to rectify deficiencies, and to 

eventually replace or upgrade them (Herrmann 2013; OECD 2013; Ottesen 2011). Among these, 

reinforced concrete (RC) structures represent a significant part of the built environment, which are 

the focus of the present study. Among the numerous decision analysis tools that have been 

developed to assist managers, models to estimate the residual life of existing structures are among 

the most important for identifying the optimal timing of repairs in the lifecycle of a structure. 

Moreover, financial considerations such as cost functions are important factors affecting decisions. 

Both physical and financial processes have uncertainties that must be properly integrated in the 

decision analysis to yield accurate results. The purpose of this paper is to present a novel approach 

that models the physical deterioration process through a probabilistic chloride ion diffusion model, 

and that incorporates uncertainties in both physical and financial processes. The model is used to 

predict the optimal replacement date for the concrete decks of bridges in the context of climate 

change. A distinctive feature of the model is the inclusion of flexibility in decision-making through 

an explicit valuation of real options, which take on greater importance in the presence of multiple 

sources of uncertainty (Power et al. 2015). Improving these models will also contribute to a better 

understanding of the sustainability of infrastructures. Here a broad definition of sustainability is 

considered (Leyden et al. 2007). Sustainability is evaluated in relation to impacts on social, human, 

physical and natural capital. Optimizing strategies of repairs and replacement contribute to 

increasing the quality and quantity of the infrastructure capital by making these investments last 

longer. The purpose of this model is to help make better long-run public investments, and by being 
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more durable and longer-lasting they will provide sustainable benefits to the population, as well 

as less environmental impact. 

The durability of RC bridge decks is influenced both by environmental and operational conditions. 

Among these, exposition to chloride ions is one of most important factors that contributes to the 

premature deterioration of these structures (Bastidas-Arteaga et al. 2011; Breysse et al. 2014; 

Saetta et al. 1993). Once a RC structure has been exposed to chloride ions, the sequence of events 

is: 1) initiation of corrosion, 2) expansion of steel due to corrosion products, 3) cracking of the 

concrete cover and 4) spalling of the concrete cover. The durability of RC structures can be 

significantly reduced when deterioration processes are combined with high service loads. Climate 

change can also adversely affect the durability of structures by increasing the number of freeze-

thaw cycles, the level of relative humidity, average temperatures, and frequency of winter 

precipitation. Talukdar et al. (2012) estimate that climate change has increased carbonation depth 

by 45% for concrete structures in Vancouver and Toronto over the past ten decades. Similarly, De 

Larrard et al. (2014) estimate that climate change has significantly increased the risk of corrosion 

initiation resulting from carbonation in several French cities. Bastidas-Arteaga and Stewart (2013) 

propose a probabilistic cost-benefit procedure to analyse two climate change adaptation strategies 

for new RC structures exposed to chloride ions. The results indicate that the cost effectiveness of 

specific adaptation strategies is dependent on the climate change scenario, exposure conditions 

and type of structural system. 

4.1.2 Aims and scope 

Numerous studies have addressed the effect of exposure conditions on the deterioration of concrete 

structures. However, few studies have examined the effect of climate change on the serviceability 

of these structures and its impact on infrastructure management strategies. In this setting, the 
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optimal timing for the first major repair is influenced by the uncertainty involved with climate 

change predictions and the future availability of funds, while ensuring the safety of users and the 

required level of service. The proposed framework, based on cost-benefit analysis, is applicable to 

any infrastructure project and is illustrated for typical concrete bridge decks in Montreal. This 

framework incorporates risks in economic benefits and costs by explicitly modelling the 

interactions and uncertainties associated with physical and financial variables. 

 

4.2 Modelling of climate change effects and uncertainty 

Since most infrastructures are designed for service lives greater than 50 years, long-term effects 

associated with climate change should be considered for future designs. Similarly, while the built 

environment was designed under the implicit assumption that current climate conditions are 

stationary, the expected durability of these structures could be severely reduced in the future, and 

could affect the planning and budgeting for major repairs or replacement of infrastructures. 

Climate change models can be classified as a function of the spatial resolution of the prediction 

domain. Global Climate Models (GCMs) cover the entire planet and have a grid resolution of 

around 200 km, while Regional Climate Models (RCMs) have a spatial resolution below 45 km 

(Figure 4-1). Results for a specific location require the use of higher resolution models or 

statistically downscaled data (Charron 2016). 
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Climate changes are driven mainly by the emission of greenhouse gases (GHGs). Emissions 

scenarios describe plausible future releases of greenhouse gases, aerosols, and other anthropogenic 

gases into the atmosphere on the basis of a coherent and internally consistent set of assumptions 

about technological change, demographic and socioeconomic development, and their interactions 

(IPCC 2007). Concentrations of greenhouse gases are described by using Representative 

Concentration Pathways (RCPs). RCPs are greenhouse gas concentration trajectories adopted by 

the IPCC for its fifth Assessment Report (AR5) in 2014 which replaced the Special Report on 

Emissions Scenarios (SRES) projections published in 2000 (Table 4-1). The four scenarios that 

are generally considered have the designations RCP2.6, RCP4.5, RCP6, and RCP8.5, where the 

numerical value refers to radiative forcing values (+2.6, +4.5, +6.0, and +8.5 W/m2) in the year 

Figure 4-1 GCMs and RCMs (Source: (Charron 2016)). 
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2100 (Table 4-1). For example, RCP2.6, which corresponds to a scenario with the smallest change 

in global temperatures, assumes that global greenhouse gases will reach their peak between 2010 

and 2020, and that emission of GHGs will then decline. Conversely, RCP8.5 assumes a steady 

increase in CO2 emissions and corresponds to a scenario with the highest projected changes in 

global temperatures by the end of this century. 

Table 4-1: Key characteristics of RCPs and SRES scenarios (Source: Charron (2016)).   

Scenario 
Radioactive 

forcing 

CO2 

equivalent 

(ppm) 

Temp. 

anomaly 

(°C) 

Pathway 

SRES temp 

anomaly 

equivalent 

RCP8.5 8.5W/m2 in 2100 >1370 4.9 Rising SRES A1FI* 

RCP6.0 6 W/m2 post 2100 ~850 3.0 

Stabilizing 

without 

overshoot 

SRES B2 

RCP4.5 
4.5W/m2 post 

2100 
~650 2.4 

Stabilizing 

without 

overshoot 

SRES B1 

RCP2.6 

(RCP3P

D) 

3W/m2 mid-

century, 

decline to 

2.6W/m2 by 2100 

~490 1.5 
Peak and 

decline 
None 

 

The overall impact of climate change on the future weather of the Montreal area was estimated by 

using data from the Canadian Regional Climate Model (CanRCMs). Figures 4-2 and 4-3 present 

the yearly average temperatures and the annual number of rainy days (daily precipitation >0.1 mm) 

for the past 45 years and the future 90 years predicted from scenarios RCP4.5 and RCP8.5 

representing high and medium emissions, respectively. 
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Figure 4-2 Yearly average temperature. Historical Records and projections between RCP8.5 

and RCP4.5 
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Figure 4-3 Total yearly number of rainy days (daily precipitation >0.1 mm). Historical 

Records and projections from RCP8.5 and RCP4.5 
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Yearly average temperatures were stationary between 1965 to 1980 (Figure 4-2), but have been 

steadily increasing during recent decades by approximately 1.5°C. Scenario RCP8.5 indicates that 

yearly average temperatures would keep increasing with the similar trend, attaining around 15°C 

by the end of this century, which is a 6°C increase relative to present. Scenario RCP4.5 on the 

other hand, reaches a stable level after a steady increase for the first 30 years, and ends up at 12°C 

for a total increase of 3°C relative to present. Historical records for the number of annual rainy 

days show a significant increase over the last 30 years and the trend continues into the next century 

with a slightly larger trend for scenario RCP8.5. In summary, the number of rain days is expected 

to increase by more than 25% in the second half of the century compared to the historical record. 

 

4.3 Model for the deterioration of concrete bridges 

The main mode of deterioration of RC structures in northern climates is corrosion associated with 

exposure to chloride ions. Rates of deterioration are dependent on material properties of the 

concrete (diffusion coefficient), geometrical characteristics (cross-sectional dimensions, depth of 

cover), exposure conditions (mist, splash or direct) and climate (temperature, humidity and winter 

precipitation). This study focuses on serviceability limit states and corrosion damage ending with 

severe cracking and spalling of the concrete cover. The time to the final stage of corrosion damage 

(spalling, Tsp) is divided into two stages: (i) corrosion initiation (Ti) and, (ii) corrosion propagation 

(Tp, time to onset of spalling) such that, Tsp = Ti + Tp. 
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4.3.1 Corrosion initiation 

The time to initiation of corrosion is a function of the amount of de-icing salts used during the 

winter, the properties of the concrete, the thickness of the concrete cover and the critical level of 

chloride ions to initiate corrosion. In the following, the concentration of chloride ions is evaluated 

for thickness covers of 25 mm and 50 mm. Probabilistic estimates of chloride concentrations as a 

function of time and depth are obtained with TransChlor®, which is a one-dimensional finite 

element program that models the ingress of chloride ions in concrete as a function of time and 

depth (Conciatori et al. 2009b). Climate variables that are used as input by TransChlor® are hourly 

air temperature, relative humidity, precipitation, and solar radiation. The air temperature, relative 

humidity and precipitation are used to determine the amount and frequency for spreading de-icing 

salts at the surface of the concrete slab. The exposure to chlorides can be direct, by splashing or 

by mist depending on the position of the exposed concrete element. In the case of the concrete 

deck, only direct exposure is considered. 

The time to initiation of corrosion is defined as the time required for the chloride ion content (e.g. 

% of Cl- per weight of cement) to reach a critical level (Ccrit). The critical chloride content varies 

with the type of reinforcement and the nature of the corrosion process and can be described 

probabilistically. In this application, chloride ion thresholds are assumed to follow a lognormal 

distribution (Figure 4-4). Since there is also uncertainty associated with the material properties of 

the concrete and model predictions, the chloride ion content as a function of depth and time is also 

assumed to follow a lognormal distribution (Figure 4-5). The average and standard deviation of 

the chloride ion content is obtained by assuming that the transport properties of the chloride ions 

(the diffusion coefficient of chloride ions DCL, the diffusion of hydroxides DOH and diffusion by 
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capillarity, DCAP) are lognormally distributed. The propagation of the uncertainty on transport 

properties is performed by using Rosenblueth point estimates (Conciatori et al. 2009b). 

 

 

 

 

Figure 4-4 Chloride Ion Distribution as a function of time and depth (Wolofsky 2011a). 

Figure 4-5 Chloride content at a given depth and time and Chloride Threshold level 

(Wolofsky 2011a). 
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The probability distribution function for the time of initiation of corrosion at a given depth is 

obtained as a convolution integral of the distribution for the critical chloride ion level and the 

chloride concentration at a given depth and time (Figures 4-5 and 4-6) (Conciatori et al. 2009b).  

 

Figure 4-6 Cumulative Probability of time to initiation of corrosion at a given depth 

(Wolofsky 2011a). 
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4.3.2 Corrosion propagation 

The depassivation of the surface layer of the reinforcing steel results in the corrosion of the steel. 

The corrosion of the reinforcement leads to corrosion products (i.e. rust) and a reduction of the 

cross-sectional area of steel. The volume of rust is much larger than that of the original steel, 

leading to expansion and pressure on the concrete. As a result, the concrete cover eventually cracks 

and spalls and the bond between reinforcement and concrete is compromised which leads to a 

reduction of the overall strength and ductility of the reinforced concrete element. 

The accurate estimation of corrosion rates is difficult since they depend on the presence of oxygen 

and moisture which are highly variable. Some prediction models use molecular equations for the 

corrosion reactions to convert rates of oxygen diffusion to steel corrosion rates (Vu and Stewart 

2000). However, the corrosion current density obtained from experiments or field measurements 

are considered to provide among the most accurate estimates of the corrosion rate (Stewart and 

Rosowsky 1998). In this application, a model where the corrosion rate varies with ambient 

temperature is adopted (Duracrete 2000): 

 ( ) ( )( ) 201
20,

−+= tTKjtj crr  (4-1) 

where 
20,rj  is the corrosion rate at 20°C, T(t) is the temperature at time t (in °C) and Kc is a factor 

that depends on temperature (Kc = 0.025 if T(t) < 20°C or Kc = 0.073 if T(t) > 20°C). 

Simplified models for corrosion-induced delamination and spalling of the concrete cover were 

proposed by Bazant (1979) as well as Lounis and Daigle (2008). Once an internal crack has 

propagated through the thickness of the concrete cover, the stresses resulting from corrosion 

products are assumed to remain constant until the cover delaminates or spalls off. Lounis and 
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Daigle (2008) propose the following equation for the time between corrosion initiation to the start 

of spalling (i.e. the propagation time), 

 c
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where S = rebar spacing; ρr = density of corrosion products (assumed at 3,600 kg/m3 for Fe(OH))3; 

ρs = density of steel (7,860 kg/m3); α = molecular weight ratio of metal iron to the corrosion product 

(assumed at 0.52); and jr = corrosion production rate per unit area (µA/𝑐𝑚2) (Bazant 1979). This 

model is used to relate changes in the diameter of steel rebars to corrosion-induced damage limit 

states (Lounis and McAllister 2016). The random variables that are considered in the model are 

listed in Table 4-2. 

Table 4-2: The random variables loading in the propagation model.    

Variables Units Distribution Mean COV 

Cover thickness, 𝑐𝑡 mm Deterministic 25/50/70 — 

Bar spacing mm Log-normal 150 5 

Bar diameter mm Deterministic 16 — 

Concentration threshold for 

Corrosion initiation, 𝐶𝑡ℎ 
wt. (%) cem. Log-normal 1.35 20 

Reference corrosion rate, 𝑗𝑟,20 µA/cm2 Log-normal 0.8 20 

28 Day concrete compressive 

strength, 𝑓𝑐 
 𝑀𝑃𝑎 Normal 45.5 18 

Concrete tensile strength, 𝑓𝑡′  𝑀𝑃𝑎 Normal 0.53(𝑓𝑐)
0.5 13 

Concrete elastic modulus, 𝐸𝑐 𝑀𝑃𝑎 Normal 4600(𝑓𝑐)
0.5 12 

Note: COV = coefficient of variation (%),      
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fc = Concrete compressive strength 

 

The determination of the time-dependent probability of serviceability limit states is complex due 

to the high level of nonlinearity of the performance functions. In this paper, the total time for the 

onset of spalling is defined as, 

 ( )spalling to  npropagatioinitiationtotal TTT +=
 

(4-3) 

and its cumulative distribution function is obtained from, 
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where, ( )pT tF
initiation

 and ( )
pT tF

npropagatio
 are the cumulative distribution functions for the time to 

initiation of corrosion and the time for corrosion propagation respectively. Since the time from 

initiation of corrosion to spalling is usually long, and the models for crack growth are mostly linear 

functions of time, the stages of deterioration are divided into: Stage A) the initial stage, from the 

start of the service life to the initiation of corrosion, Stage B) the initial stage of corrosion 

propagation, from the start of the initiation of corrosion to the midpoint until spalling of the 

concrete cover, Stage C) the final stage of corrosion propagation, for the remainder of time until 

spalling, and Stage D) spalling of the concrete cover. These four states correspond to the four states 

used by the MTM (Ministère des Transports, de la Mobilité durable et de l’Électrification des 

transports) in classifying the state of bridge components following an inspection. 
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 )()( ttPtP iA =  (4-5) 

 ])2/[()( tttPtP piB +=  (4-6) 

 ( ) )](2[)( pipiC tttttPtP ++=   (4-7) 

 ( ) ( )( )piD tttPtP +=
 

(4-8) 

4.4 Decision-Making Model 

The decision model uses the Net Present Value (NPV) of the difference between expected bridge 

revenues and expected costs of the first major repair to perform a Cost-Benefit Analysis (CBA). 

Revenues can be either monetary or can represent the value of user time saved. However, as shown 

in the real option literature, the NPV approach is not a reliable criterion if decision-making 

flexibility found in investment projects is not considered (see e.g. Myers (1977); McDonald and 

Siegel (1986); Dixit and Pindyck (1994)). Indeed, Power et al. (2015) show that the option to delay 

an investment can affect the optimal investment timing in infrastructure projects (see also Bar-Ilan 

and Strange (1996); Panayi and Trigeorgis (1998) for more details about the importance to 

consider the delaying option). In the following, the procedure of Power et al. (2015) is included in 

the investment decision analysis by offering an option to delay a first major deck repair at the time 

when the economic conditions are most favorable.  

The decision-analysis process is modelled using a three-year cycle, which corresponds to the 

typical inspection cycle of bridges by the MTM. The investment options to the decision-maker are 

to make repairs early in the service life (in order to avoid larger and more expensive repairs when 
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the state of deterioration is more advanced), or to delay the repairs—if, say, current interest rates 

are high or if there is much uncertainty about the rate of deterioration and climate change scenarios. 

In northern climates, bridges are generally designed for a service life between 50 to 100 years. 

However, most bridges show signs of early deterioration after only 20 to 30 years. In this study, 

simulations are performed over a period of 90 years spanning a historical period of 45 years and 

the next 45 years in order to capture the effects of climate change scenarios on the durability of 

existing, as well as of new, structures. 

Monte Carlo simulation is used to describe uncertainties in the evolution of bridge deterioration 

as well as economic factors over time. A total of 10,000 simulations are performed, which 

represent distinct scenarios for the lifetime of the bridge. The NPV for each path is calculated at 

intervals of 3 years and the optimal repair date corresponds to the date yielding the maximum NPV 

for each scenario: 

 𝑁𝑃𝑉𝑠 = (𝑅𝑒𝑣𝑡 − 𝐶𝑡) × ∑
1

(1 + 𝑟𝑡)𝑡

𝑇−1

𝑡=0
 (4-9) 

 𝑁𝑅𝑒𝑣𝑡 × ∑
1

(1 + 𝑟𝑡)𝑡

𝑇−1

𝑡=0
, [−45 ≤ 𝑇 ≤ +45] (4-10) 

where 𝑁𝑃𝑉𝑠 is the net present value for scenario 𝑠, 𝑁𝑅𝑒𝑣𝑡 is the Net Revenue which corresponds 

to the difference between the revenue (𝑅𝑒𝑣𝑡) and the costs (𝐶𝑡) at time 𝑡, 𝑇 is the design lifetime 

of the structure, and 𝑟𝑡  is the risk-adjusted interest rate at time 𝑡  (i.e., yields on Government 

bonds). Because the model uses the short-term interest rate, the second term in the NPV equation 

discounts the Net Revenue to the initial time. To compute our NPV in each scenario, the model 

includes stochastic models for the evolution of demand, prices, inflation, interest rates and rate of 

deterioration (Power et al. 2015). 
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4.4.1 Estimation of the additional revenue 

Assuming that initial construction costs are considered as sunk costs, the additional revenue from 

investment Revt can be defined following Power et al. (2015) and Bastien (2017):  

 𝑅𝑒𝑣𝑡 = 𝑀𝑡 × 𝑆𝑃𝑡 × 𝐻𝑟𝑠𝑡 × 𝑄𝑡 × exp(𝜋 × 𝑡) (4-11) 

where SPt is Shadow Price (economic value to the user of one hour saved), Hrst is the number of 

hours (or fraction) saved by using the infrastructure, Qt is the estimated quantity or volume of 

traffic on the infrastructure in one year (Šliupas 2006), exp(𝜋 × 𝑡) is the Consumer Price Index at 

time t relative to the starting date time 0, given that π is the continuous rate of inflation. Finally, 

Mt is the adjustment to shadow price due to a lower condition rating of the bridge, such that 0 ≤

𝑀𝑡 ≤ 1 .Indeed, when the condition is below “A”, regular maintenance is more frequent which 

increases congestion and delays.  

The value of 0.8 is used for condition rating B, 0.6 for condition rating C, and 0 for condition 

rating D. This parameter can be used to account for user safety in the equation as well as the 

negative effect on bridge usefulness of increased maintenance needs. In this paper, the shadow 

price and the time saved by using the bridge are the only fixed parameters. A baseline value of 

$14.74 for the shadow price was estimated from Transport Canada data for the period 1994 to 

2011. This shadow price corresponds to the average value (given by a car driver to an hour saved) 

in the case the purpose of travel is unknown. For the time saved, a baseline value of 5.4 minutes 

was obtained from data in urban areas of the province of Quebec for bridges having deck areas of 

1,000 m2. The total annual number of trips Qt is calculated as follow: 

 𝑄𝑡(1 − 𝐿) = 𝜖𝑡 (4-12) 
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where L is the lag operator, t is a normally distributed random variable describing the growth rate 

of Q, and we impose that Q cannot exceed twice its initial value due to capacity constraints. The 

parameters of the normal distribution for t are fitted to the Quebec real GDP growth rate which is 

a good proxy for the evolution of Q. 

Since inflation is measured on a quarterly basis, this is the frequency at which we estimate the time 

series model. To model 𝜋𝐺,𝑞 , the quarterly inflation rate, the mean reverting process of Ornstein-

Uhlenbeck is used (Chang et al. 2013): 

 𝜋𝐺,𝑞 = 𝜋𝐺,𝑞−1 + 𝜁(𝜉 − 𝜋𝐺,𝑞−1) + 𝜖𝐺,𝑞 (4-13) 

where the parameters ζ and ξ are estimated from Statistics Canada data. In Power et al. (2015) the 

values are 0.10 and 0.017 respectively. The error term 𝜖𝐺,𝑞 is a zero-mean random variable that is 

distributed normally with variance estimated from the same data.  

The annual rate of general inflation (for use with the Consumer Price Index level) is obtained 

directly from the quarterly frequency using the standard compounding formula.  

4.4.2 Estimation of costs for the first major repair 

When the first major repair is performed, the cost is assumed to be: 

 𝐶𝑡 = (1 − 𝑆𝑡𝑎𝑡𝑒𝑡) × 𝑆𝑧 × 𝑈𝐶 × exp (𝜋𝑀 × 𝑡) (4-14) 

where Statet is the state of the infrastructure (new = 100%), Sz is the size or area of the deck, UC 

is the unit cost, and exp (𝜋𝑀 × 𝑡) is the Producer Price Index level at time t relative to starting 

time 0 and which is based on the materials rate of inflation πm. For the baseline model, we consider 

an area of 1,000 m2 and unit costs of $1,000 per m2. 
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As with the general rate of inflation, the rate of inflation for materials and labor 𝜋𝑀,𝑖 is estimated 

using a Ornstein-Uhlenbeck process (Power et al. 2015). The quarterly material and labor costs 

inflation rate is modelled as:  

 𝜋𝑀,𝑞 = 𝜋𝑀,𝑞−1 + 𝜁(𝜉 − 𝜋𝑀,𝑞−1) + 𝜖𝐺,𝑞 (4-15) 

where the parameters 𝜁 and 𝜉 are estimated from Statistics Canada data. In (Power et al. 2015) the 

values are 0.10 and 0.032 respectively. The error term 𝜖𝑀,𝑞 is a zero-mean random variable that is 

distributed normally with variance estimated from the same data. Moreover, we impose a 

correlation structure between the interest rate, the general rate of inflation, and the materials rate 

of inflation. These empirical correlations [𝜌1,2, 𝜌1,3, 𝜌2,3] are estimated from the same data for 

Canada.  

The annual rate of materials inflation (for use with the Producer Price Index level) is obtained 

directly from the quarterly frequency using the standard compounding formula.  

4.4.3 The present value of revenues or benefits 

A general version of the short-rate model of the interest rate is provided by Chan et al. (1992) and 

implemented for infrastructure investments by Power et al. (2015). In the continuous time 

specification, this interest rate r evolves as an Ornstein-Uhlenbeck stochastic process: 

 𝑑𝑟𝑡 = 𝛼(𝛽 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑡
𝛾
𝑑𝑊𝑡 (4-16) 

This process can be estimated using data on yields for Canadian Government bonds. We use the 

parameter values obtained in Power et al. (2015) such that 𝛼 = 0.135 , 𝛽 = −0.0395 , 𝜎 =
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0.1463, and 𝛾 = 0.1946. To go from a quarterly to an annual frequency model, the standard 

compounding formula is used.  

The relationships within the model are represented in the relationships diagram in Figure 4-7, 

 

 

 

Figure 4-7 Schematic representation of the model. 
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4.5 Discussion of results 

The deterioration model is used to estimate the probability distribution function for the time to 

reach each of the four stages of deterioration (A to D) defined previously. Estimates are obtained 

using the historical climatic data during the last 45 years and for the next 45 years using data for 

climate scenarios RCP4.5 and RCP8.5. The results can be used to compute transition probabilities 

from one state to another for the specified inspection cycle. The latter can be compared to empirical 

estimates of transition probabilities obtained from periodic inspection reports for calibration 

purposes. 

Figures 4-8 and 4-9 illustrate the resulting probabilities of the condition states for the three climate 

scenarios for concrete covers of 25mm and 50mm. The 50mm depth is selected since it is common 

for concrete covers of bridge decks. The 25mm depth is not as common and is used to illustrate 

the effect of a smaller or improperly executed concrete cover on rates of deterioration. For all 

climate scenarios, the structure is assumed to be initially new and the same salt spreading protocol 

is used during winter precipitation. 

 

 

 

 

 

 

 



85 

  

 

Figure 4-8 Condition state probabilities as a function of time(year) for a concrete cover of 

25 mm (1) historical climate, (2) Climate Scenario RCP4.5, (3) Climate Scenario RCP8.5. 
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Figure 4-9 Condition state probabilities as a function of time(year) for a concrete cover of 

50 mm (1) historical climate, (2) Climate Scenario RCP4.5, (3) Climate Scenario RCP8.5. 
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Results show that the time to the initiation of corrosion is highly dependent on the number of 

precipitation days during the winter which trigger salt usage. Historically, the number of days with 

winter precipitation have been steadily increasing for the Montreal area over the last decades and 

the trend is maintained with both climate change scenarios despite an overall increase in average 

winter temperatures (Figures 4-2 and 4-3). For steel reinforcement with a 50mm cover, time to 

initiation of corrosion for historical exposures is within the first 10 years of the service life while 

for both climate change scenarios, time to initiation of corrosion is within the first 5 years of the 

service life. The model indicates that a large proportion (~ 90%) of the decks that were built 45 

years ago have reached their design life (defined as spalling of the cover). This observation is 

consistent with records of the MTM on the service life of concrete decks. For both climate change 

scenarios, the warmer temperatures and humidity also contribute to a more rapid deterioration of 

the concrete deck with 90% of the decks reaching the end of their service life after 35 years. There 

is not much difference in the results for the two climate change scenarios despite that scenario 

RCP8.5 has a slightly larger number of winter precipitation events. 

For steel with a 25mm concrete cover, the level of chloride ions is on average much higher than at 

50mm; however, capillarity effects and dilution is more prevalent resulting in higher variability in 

the ions chloride content. The time to initiation of corrosion and to spalling of the concrete cover 

are much quicker resulting in premature end to the service life. The results for a concrete cover of 

25mm are more similar for all three scenarios since the time to initiation of corrosion is very short 

in all cases (~ 2 years). Furthermore, the probability for spalling is 90% after only 20 years of 

exposure for the two climate change scenarios and only 25 years for the historical scenario. The 

increase in the corrosion rate between the RCP4.5 and RC8.5 climate change scenarios can be 

attributed to average temperature levels increasing by 4.5°C and 5°C by the year 2055 respectively 
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compared to the 1965 levels. The impact of changing temperature is considered to be a significant 

factor in the time-varying corrosion propagation model, as higher temperatures can accelerate 

corrosion rates. 

Cost-benefit analyses are performed for all three climate scenarios and the two concrete covers to 

determine the optimal time for the first repair of a bridge deck (Figures 4-10 and 4-11). The stacked 

histograms show the distribution of the optimal dates for deck replacements. The color-coded 

histograms indicate the state of the bridge deck at the time of the optimal repair. 

 

 

Figure 4-10 Stacked histogram of the optimal date of the bridge deck first repair at 25 mm 

(1) historical climate, (2) Climate Scenario RCP4.5, (3) Climate Scenario RCP8.5. 

Figure 4-11 Stacked histogram of the optimal date of the bridge deck first repair at 50 mm 

(1) historical climate, (2) Climate Scenario RCP4.5, (3) Climate Scenario RCP8.5. 



89 

  

The results indicate that the most likely time for repair for a 50mm concrete cover is year 27 for 

both climate change scenarios and year 36 for the historical record. For 25mm concrete cover, the 

most likely dates for repair are respectively 15 and 18 years for the climate change and historical 

scenarios. The dominant factor that dictates the optimal intervention time is the rate of 

deterioration of the concrete deck, while the uncertainties on the financial variables play a 

secondary role. The discount rate (interest rate) and its uncertainty contribute to reduce in part the 

effect of premature deterioration associated with the climate change scenarios. For all scenarios, 

the optimal time for repairs corresponds mostly to decks that are in State D. This observation 

suggests that the initiation of spalling could be the signal to implement the first repair. 

 

Table 4-3: Average NPV of 10,000 simulations for each scenario with no repair for each decision 

year.   

NPVs RCP8.5,50mm RCP8.5,25mm RCP4.5,50mm RCP4.5,25mm History,50mm History,25mm 

3 $20,279,609 $17,089,178 $20,305,845 $17,163,072 $22,083,822 $17,506,417 

6 $36,049,715 $32,557,707 $36,075,952 $32,676,268 $42,462,343 $33,179,933 

9 $50,567,362 $44,469,660 $50,599,509 $44,592,302 $60,210,998 $46,014,806 

12 $63,247,427 $51,911,830 $63,277,489 $52,223,635 $73,822,814 $55,192,988 

15 $73,389,438 $54,977,001 $73,451,602 $55,344,917 $86,222,491 $60,277,382 

18 $80,937,518 $54,748,588 $81,157,489 $55,203,208 $97,427,038 $62,155,572 

21 $85,941,728 $54,070,145 $86,294,392 $54,328,016 $106,881,167 $62,052,424 

24 $88,577,357 $52,772,831 $89,148,939 $52,953,048 $114,416,907 $61,119,504 

27 $89,460,841 $51,322,171 $90,367,542 $51,458,036 $120,140,083 $59,845,001 

30 $89,336,315 $49,845,543 $90,365,559 $49,962,266 $123,969,896 $58,485,944 

33 $88,696,688 $48,408,546 $89,818,444 $48,511,828 $126,051,633 $57,109,351 

36 $87,773,818 $47,025,014 $88,982,351 $47,117,936 $127,096,165 $55,768,291 

39 $86,744,428 $45,708,547 $88,014,460 $45,786,421 $126,970,897 $54,488,760 

42 $85,667,709 $44,455,587 $86,958,347 $44,534,674 $126,809,643 $53,257,121 

45 $84,600,952 $43,277,005 $85,909,512 $43,355,382 $126,189,629 $52,097,387 
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Table 4-3 presents the average NPV from implementing major repairs as a function of time for 

each scenario. A general trend can be observed where NPV increases at a rapid rate at the 

beginning of the service life, and thereafter increases at a slower rate until it reaches its optimal 

value. After reaching its maximum, the NPV decreases at a slow rate. This result implies that, as 

expected, it is not optimal to conduct major repairs very early or late in the life of the bridge. 

However, even sub-optimal repair dates correspond to positive NPV, meaning the repairs are 

nonetheless a good investment. Another observation from this data is that the difference between 

the NPV for the historical and climate change scenarios increases with time. This suggests that 

climate change has the effect of bringing forward the optimal date for repairs and moreover 

accelerates the post-optimal date decrease in NPV. Therefore, if a bridge stays in a fairly good 

rating for a long period of time (historical scenarios), it generates greater benefits in the absence 

of repairs, unlike the case of a bridge that is deteriorating rapidly (predicted scenarios), and 

therefore is in greater need of repairs to generate benefits. It is important to keep in mind that the 

NPVs presented above are for a stylized problem, and should not be considered as applicable for 

all possible situations. Moreover, the benefits identified are for the bridge deck with a life span of 

45 years. Future research could explore a more thorough analysis accounting for repair costs for 

other elements of the bridge. 

Life-cycle costs include multiple other costs that are not currently accounted for in the model such 

as initial construction costs, cost of maintenance, repairs, replacements and disposal and could be 

used in future applications. Obsolescent or outdated assets, can be evaluated in this framework 

when costs associated with the service life or the services provided by the structure cannot meet 

expected performance levels. 
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4.6 Conclusions 

Improving the sustainability and serviceability of infrastructures in the most economical way are 

important objectives for decision-makers given the current state of uncertainty with climate change 

and the general state of the infrastructure. This study applies a risk-based decision-making model 

for optimizing the time for the first major intervention of a structure. The method is demonstrated 

for reinforced concrete bridge decks in Montreal. Features of the procedure are the modelling of 

both the physical and financial variables that affect the costs and benefits associated with 

infrastructures and allowing for some flexibility for managers in the timing of their funding 

decision to account for a context of high uncertainty for both physical and financial processes. The 

method is demonstrated for reinforced concrete bridge decks in Montreal, for which detailed data 

are available, for current structures using historical climate data and for new bridges using data for 

two climate change scenarios. 

The results show that the model can accurately predict the distribution of the service life for current 

concrete decks given the historical climate. The results also indicate that under climate change 

scenarios, the service life of new structures designed using current procedures and subjected to 

current policies for the use of de-icing salts would be significantly reduced. The reduction in the 

service life is mainly due to an increase in the number days with precipitation during the winter 

despite an increase in average temperatures. The decision analysis model indicates that the optimal 

replacement time for current concrete decks is between 27 and 36 years after the start of their 

service, while it would be significantly reduced under climate change scenarios. 

The optimal decision for the replacement of the concrete indicates that it is generally close to the 

end of the service life of the deck. However, the rate in the change of the NPV is quite slow when 
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we are close to the optimal repair date, indicating that there is flexibility in either carrying out or 

delaying a replacement. The probability distribution in optimal dates reflects both the uncertainties 

in the physical process of deterioration as well as in the financial variables. 
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Preface to Chapter 5 

 

The previous chapter introduces a single framework combining a rich description of both the 

physical and economic variables and their stochastic evolution over time, which also allows 

different climate change scenarios to better capture the true long run uncertainty facing decision-

makers in infrastructure. The model was illustrated for the case of the first intervention on a bridge. 

Therefore, there are interesting possible extensions of the model to pay closer attention to the cycle 

of renewals, such as the optimization problem of multiple preventive maintenances and major 

repairs during the lifetime of the bridge, and moreover better understanding the link between minor 

and major repairs. In Chapter 5, the Meta-heuristic algorithms in conjunction with the deterioration 

model are then used to optimize the DM for RC bridge decks in Montreal. Based on the Pareto 

optimal solutions, a decision-maker can acquire a wealth of pertinent information from a sequence 

of M&R strategies through the consideration of all specified policies and constraints. 

 

 

 

 

 

 

 



97 

  

 Multi-objective optimization for maintenance strategies of 

infrastructure projects under the influence of climate change 

 

Abstract 

Infrastructure asset management is an important research area concerned with efficient and 

sustainable utilization and maintenance of infrastructure. Considering the numerous sources of 

uncertainties associated with the performance of structures and economics over their life cycle, a 

risk-informed decision-making process is proposed to identify the most effective strategies to 

satisfy performance requirements at minimal cost. The decision problem is formulated as a multi-

objective optimization problem for targeted performance levels and total costs and solved using 

both Multi-Objective Particle Swarm Optimization (MOPSO) and a Non-dominated sorting 

genetic algorithm II (NSGA-II). Solutions are presented in the form of a Pareto front, which 

corresponds to a set of optimal solutions satisfying both objectives at varying degrees. The 

presentation of optimal solutions as a Pareto Front defines a spectrum of solutions that provides 

flexibility as a function of the priorities of the decision-maker. The primary goal of this study is to 

determine the type and optimal sequence of maintenance/repair/replacement activities over the 

service life of a structure and moreover, have a better understanding of the effectiveness and 

interaction between minor and major repairs. The results indicate that annual budget constraints 

have a significant effect on the Pareto front and the schedule associated to individual solutions. 

The findings also show that under climate change scenarios, the service life of infrastructure 

facilities that are designed according to current practices could be greatly reduced without proper 

adjustments. 
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Keywords: decision-making; infrastructure; deterioration; climate change; Multi-objective 

optimization. 

 

5.1 Introduction and Background 

Infrastructure assets, such as bridges, roads, pipelines, etc., provide essential services to society as 

well as a support for economic activities. Infrastructure asset management is an important area of 

research to promote an efficient use of these resources and their long-term sustainability. This 

objective is getting more challenging since an increasingly large proportion of infrastructure assets 

are in need of repair and replacement (Chen and Bai 2019). The sheer magnitude of this task 

requires state-of-the-art procedures to schedule appropriate activities both in time and in space. In 

this article, procedures are proposed to optimize repair and replacement strategies for reinforced 

concrete bridges in northern climates where the main contributor to deterioration is the application 

of de-icing salts and the ingress of chloride ions into the concrete (Bastidas-Arteaga et al. 2011; 

Breysse et al. 2014; Saetta et al. 1993). For long term planning, consideration should also be given 

to potential climate change effects that may affect the rate of deterioration. Such effects include 

increasing average air temperature, winter precipitation frequency and amount, number of freeze-

thaw cycles, and relative humidity levels (Zhang, Chouinard, Power, Tandja M, et al. 2018; Palko 

and Lemmen 2017). In planning and optimizing activities, consideration should be given to 

economic factors as well to societal impacts such as level of safety, noise, environmental impacts 

and traffic delays (Menon et al. 2009). Maintenance scheduling and budgeting can affect users and 

the economy for periods of time that extend beyond the lifecycle of individual infrastructure 
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components. Therefore, an optimized infrastructure management strategy is essential for 

sustainability and efficiency purposes (Marlow et al. 2010; Santos et al. 2017). 

 

5.1.1 Optimization procedures with conflicting objectives 

Decision-making is an essential part of infrastructure asset management. This involves selecting 

intervention strategies for multiple projects by specifying maintenance/repair/replacement tasks 

and timing of activities that minimize costs and increase infrastructure performance. It is not an 

easy task since a number of constraints must be considered, such as limited resources and multiple 

goals, in a context of uncertainty. With the recent development of machine learning algorithms, 

more reliable optimization techniques can be efficiently applied for such problems (Ng et al. 2011). 

Generally, optimization techniques can be classified as single-objective optimization (SOO) and 

multi-objective optimization (MOO) techniques (Hillier 2012). SOO targets the minimization 

(maximization) of one objective with multiple constraints, whereas MOO uses trade-offs between 

multiple objectives to find optimal solutions. One common use of SOO is to minimize the cost of 

management interventions while satisfying the required service level (Zhang et al. 2017). Although 

SOO can present a variety of solutions by altering the constraints, a large amount of computation 

time is required for each solution. MOO is preferable since it is possible to compare a set of 

optional solutions that are feasible and obtained under various conditions. Moreover, MOO 

techniques usually do not provide unique solutions and provide instead a set of multiple Pareto 

solutions (non-dominated solutions) or Pareto front satisfying all constraints (Horn et al. 1994). 

Policy-makers can select solutions along the Pareto front according to their objectives or priorities 

(Chen and Bai 2019). 
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In many instances, multiple objective functions may be incompatible, which increases the 

difficulty of solving the MOO problem. For instance, a large expense for maintenance and repair 

reduces the deficiencies of the structure, thereby improving the level of service. Thus, the two 

objective functions of (maximizing) service and (reducing) cost for interventions are two objective 

functions that are contradictory to each other. Assigning weights to different objectives in terms 

of their priorities enables the creation of a single composite objective function. This approach is 

usually called scalar optimization and is one of the most effective methods to minimize 

contradictory objectives (Bhatti 2012). Recently, Shim and Lee (2017) proposed a framework for 

a multi-objective problem of bridge deck interventions using transportation data obtained from the 

Wyoming Department of Transportation. Their model has two objective functions: (1) 

minimization of the structurally deficient deck area and (2) minimization of the budget of 

maintenances and repairs. However, it has limited application since the definition of weights is 

arbitrary and specific to their case. Santos et al. (2018) developed a tri-objective optimization 

framework for pavements that includes a comprehensive assessment of life-cycle costs from the 

production and transportation of materials, construction, maintenance, traffic management of the 

work-zone during construction and maintenance and usage up to end-of-life. The objective 

functions are: (1) Minimization of the present value of the total life cycle road costs; (2) 

Maximization of the pavement performance during the project analysis period; and (3) 

minimization of the life cycle environmental liabilities arising from all pavement life cycle stages. 
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A Pareto Solution Set (PSS) provides information on the relations between objectives, objective 

values and trade-offs between objectives thereby leading to better-informed decisions (Chen et al. 

2015; Rifai et al. 2016; Santos et al. 2019; Chen and Bai 2019). The concept of Pareto optimality 

is illustrated in Figure 5-1 in the case of two objectives f1 and f2. The region of feasibility represents 

all feasible solutions for the set of objective functions. Feasible solutions respect the constraints 

on the system; however, optimal solutions based on minimization of the objectives are located on 

the outer lower left edge of the feasible region. 

 

In multi-objective optimization, sorting the Pareto front can be used to measure the suitability of 

a solution in a specific iteration. By means of this sorting, the set of non-dominated solutions that 

define the Pareto front is identified and it is assigned a rank of one. These solutions are then 

separated, and the solutions that remain are compared in order to identify a new set of non-

Figure 5-1 The concept of Pareto front. 
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dominated solutions with a rank of two. This procedure is continued until there is a ranking of the 

whole population (Elhadidy et al. 2015), as shown in Figure 5-2. 

 

 

5.1.2 Optimization procedures classified by solution approach 

Optimization methods can also be classified in terms of the algorithm type used to solve the 

problem. Solution methods can be categorized as heuristic, deterministic and other. Silver et al. 

(1980) describe heuristics as an intuitive approach in which intelligent interpretation of the 

objectives to obtain a reasonable solution is the optimization solution. On the other hand, Moteleb 

(2010) describes deterministic methods as those where optimal solutions are obtained based on 

corollaries and mathematical theorems. Other than these two basic methods, hybrid methods have 

also been proposed. Wu et al. (2008) proposed a hybrid model for the optimization of pavement 

Figure 5-2 Pareto front Sorting. 
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preservation strategies on the basis of an analytic hierarchy process for priority setting under 

multiple principles, and goal programming for achieving multiple objectives. The model aims to 

maximize the service life of the pavement while minimizing the total preservation cost. 

Note that other types of solution-method classification also exist in the literature (e.g., for nonlinear 

global optimization (Bierlaire et al. 2010), for combinatorial optimization (Blum and Roli 2003). 

In addition, some solution approaches are sometimes combined with filtering techniques for 

reducing the solution space without losing any optimality (Hertz et al. 2005). 

Priority-based methods are some of the most common deterministic methods which specify the 

management outcomes by defining the decision criteria of management. Rules are defined 

according to perceived or stated priorities either before or during the optimization process (Lin et 

al. 2012). Numerical solution techniques are common in solving deterministic objectives. 

Examples of these techniques are dual, dynamic, linear, branch and bound programming. Such 

methods usually follow strict standards and algorithms, which lead to a limited scope of application. 

These methods are commonly used in large-sized decision-making problems with simple outcome 

relationships (Anastasopoulos et al. 2013; Chen and Bai 2019; Kale et al.). 

One of the most popular choices for MOO is genetic algorithms (GA). Here, possible outcomes, 

such as sequences of management interventions and strategies, are modeled as genes undergoing 

crossover and mutation in order to create the solutions (Schmitt 2001). GA methods are easy to 

control and flexible for solving complex decision-making problems (Belevičius et al. 2013; 

Morcous and Lounis 2005; Elhadidy et al. 2015; Hadiwardoyo et al. 2017). GA as a global search 

and optimization approach has a broad range of applications and provides accurate solutions and 

high efficiency. GA also has been applied in bridge rehabilitation and pavement management 

systems (Elhadidy et al. 2015; Santos et al. 2018). Farran and Zayed (2012) use GA along with 
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Markov Chains to determine the profile of optimal rehabilitation sequences of the Metro system 

of Montreal. Pavement maintenance strategies for road networks in Indonesia have been 

investigated through a GA structure to optimize the road services while minimizing costs 

(Hadiwardoyo et al. 2017).  

Particle Swarm Optimization (PSO) is a powerful stochastic optimization technique developed by 

Eberhart and Kennedy (1995). PSO mimics numerically the social behavior of animals, like fish 

in schools and birds in flocks. The initial population of solutions consists of random individuals 

or particles “flying” in the search space to find the optimal solution. Each particle is characterized 

by its location and velocity. The number of parameters to specify for the optimization is small and 

their effect on the optimal solutions is not very significant in comparison with other techniques of 

optimization (Poli et al. 2007). PSO has been used to optimize building maintenance strategies 

based on cost (AL-Smadi 2019), for forest road vertical alignment optimization (Babapour et al. 

2018), and to assess the cost-effectiveness of trade-offs in flexible pavement maintenance 

strategies (Chou and Le 2011). 

Multi-Objective PSO (MOPSO) is a growing field to solve MOO problems, with applications in 

electrical engineering, industrial engineering and civil engineering (Lalwani et al. 2013). MOPSO 

techniques have been used by (Chou and Le 2011) to assess the cost-effectiveness of trade-offs in 

a flexible strategy of pavement maintenance. AL-Smadi (2019) applies the MOPSO algorithm to 

find the optimal treatment action among eight maintenance actions for the EV building of 

Concordia University. 

Recently, the prediction of service life for infrastructure has been performed by using probabilistic 

concepts and approaches for single objective optimization. This is due to the inherent random and 

uncertain nature of deterioration processes from initiation to propagation. A generalized 
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probabilistic framework was proposed by (Kim et al. 2013) for planning optimal inspection and 

maintenance activities for deteriorating structures. More recently, Zhang, Chouinard, Power, 

Tandja, et al. (2018) presented a novel framework that optimizes the date for the first major 

replacement of a concrete deck with a model that considers time-dependent deterioration processes 

as well as financial uncertainties. 

 

5.1.3 Common decision-making maintenance, repair and replacement 

strategies 

Maintenance, repair and replacement strategies can be formulated as an optimization problem 

under constraints. Sarma and Adeli (1998) and Frangopol (2011) review research on the cost 

optimization of concrete structures and argue that life-cycle cost optimization should replace initial 

cost optimization. Zhang and Wang (2017) develop a decision model for determining a prioritized 

maintenance schedule for a deteriorated bridge network. It uses network analysis methods and 

meta-heuristic optimization algorithms to integrate the rating of bridge capacity and condition, 

traffic impacts as well as the location parameters into one global objective function that defines 

the whole maintenance cost and network reliability. Maintenance actions must be effectively 

planned throughout the life cycle of infrastructures to optimize budget allocation under the 

constraints of functionality and safety (Frangopol and Soliman 2016). A proper maintenance plan 

can reduce the degree of damage and provide the required level of service of a deteriorating 

structure. 

Several methodologies have been proposed to model the deterioration of infrastructure and to 

assess underlying risks. Among them, Markov chain models have been widely used to predict the 
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evolution of the state of a large group of deteriorating structures and to select optimum M&R 

strategies (Jiang and Sinha 1989; Cesare et al. 1992; Thomas and Sobanjo 2016). The parameters 

(transition probabilities) for these models are derived primarily from statistics computed from 

databases of past inspection and condition assessment reports. Transition probabilities have also 

been derived from physical simulation models that have been correlated to defined performance 

levels (O’Connor et al. 2011; Zhang, Chouinard, and Conciatori 2018). However, it is a difficult 

task to predict the remaining service life of a structure due to uncertainties on initial conditions, 

time to initiation of corrosion and propagation of deterioration (Frangopol 2011). Visual 

inspections remain the primary source of information for evaluating and monitoring the condition 

of typical bridge structures. An accurate prediction model can be used in conjunction with visual 

inspections to improve the assessment of the infrastructure present and future state.  

 

5.1.4 Motivation 

The main objective of this paper is to develop a general and simplified framework to determine 

optimal Maintenance and Rehabilitation (M&R) interventions that maximize benefits and 

minimize probabilities of disruptions during a given period of analysis for a single structure. The 

expected cost of M&R strategies for the bridge should take into account economic considerations, 

timing of implementation, as well as serviceability and sustainability. M&R activities should be 

planned and scheduled in order to minimize disruptions of operations in the transportation 

network. The corresponding set of Pareto optimal solutions can be used by the decision-maker to 

better understand the relationships between the multiple objectives and trade-offs involved for 

optimal solutions. 
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This study attempts to develop a system of decision support that is able to provide numerous 

alternative plans of maintenance through the application of MOO. The optimization procedures 

are then demonstrated for typical bridges located in Montreal, Canada. The results are 

demonstrated for a sequence of M&R strategies for the concrete deck. Historic climate data is used 

to evaluate the current condition of existing bridges, while climate change scenarios are used to 

predict the residual life of both existing bridges and newly constructed bridges. 

 

5.2 TransChlor® model 

Corrosion is the key mode of deterioration of reinforced concrete (RC) structures in Northern 

climates, and this is related to the use of de-icing salts. Deterioration is affected by geometrical 

properties (thickness of concrete cover, cross-sectional dimensions), material characteristics 

(diffusion coefficients), climate (humidity, temperature, and winter precipitation), and exposure 

conditions (splash, mist or direct) (Angst 2018; Cao et al. 2019; Zhang, Chouinard, Power, Tandja 

M, et al. 2018). Fick’s second diffusion law has often been used to derive profiles of chloride ions 

concentration in concrete (Nilsson et al. 1996), (Hunkeler 2005). The critical chloride content (Ccrit) 

is a material property and is defined as the level above which the corrosion of the reinforcement is 

initiated. Ccrit is highly variable and is affected by the binder type, w/c ratio, steel surface condition 

(Angst 2011). 

In this application, the TransChlor® software is used to simulate the transport of chloride ions in 

the concrete. The framework and the main steps of the TransChlor® are illustrated in Figure 5-3. 

Historical hourly climate data (or climate change scenarios) are used to simulate the exposure of 

the structures to de-icing salts in the winter. The transport model uses the finite element method 
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and a finite difference method to simulate the evolution of chloride ions profile respectively in 

space and time. The program also incorporates probabilistic analyses to estimate the distribution 

of the chloride ions content as a function of time and depth to account for uncertainties on concrete 

and steel properties. A more detailed description of the model is provided in (Conciatori et al. 

2018). 

 

 

 

Figure 5-3 Flowchart of computations in TransChlor®. 



109 

  

5.3 Test case for Montreal, Canada 

The bridge for the case study was built in 1959, it has four traffic lanes and consists of a portico 

with two symmetrical spans (each free span is 11.4 m in length). The thickness of the deck is 1 m 

at the supports and 0.60 m at the centre. Field investigations of the bridge include a visual 

inspection and Torrent® permeability and resistivity tests performed at several locations on the 

underside of the slab and the wing walls (Figure 5-4). Locations 1 to 4 are located underneath the 

slab, while locations 5 to 7 are located on the wing wall. The Torrent® method was used to 

determine the air permeability kT of the concrete (Torrent 1992). Table 5-1 provides the 

correspondence between the subjective descriptions of the concrete quality as a function of kT for 

non-saturated mature concrete. When the concrete is wet or partially saturated, an electric 

resistivity (ρ) test is also performed to correct measurements since these are reduced in the presence 

of water (Torrent and Frenzer 1995; Adámek and Juránková 2010). Both parameters (kT, ρ) are 

combined to determine the quality of the concrete from a chart (Figure 5-5). The results of the tests 

indicate that the overall permeability of the concrete for the bridge is high or that the concrete is 

of poor quality. The transport of substances in concrete directly depends on the material 

permeability (Conciatori et al. 2010). By testing the permeability, we are able to determine the 

transport parameters of TransChlor® Model, so as to simulate the chloride profile as accurately as 

possible. 
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Table 5-1: Quality Classes of Cover Concrete for non-saturated concrete (Proceq 2005).    

Quality of cover concrete Index kT (10-16m2) 

Very bad 5 >10 

bad 4 1.0-10 

normal 3 0.1-1.0 

good 2 0.01-0.1 

Very good 1 <0.01 

 

Figure 5-4 Locations of field tests performed on the bridge 
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5.4 Optimization model for maintenance and repairs 

5.4.1 Optimization methodologies 

The process of optimization for bridge maintenance and repairs requires the inclusion of a 

deterioration model. The computational effectiveness of the proposed technique for optimizing the 

sequence and timing of maintenance and repairs activities is implemented by the effective heuristic 

algorithm, MOPSO. A multi-objective Genetic Algorithm (MOGA) was also used for bi-objective 

optimization for the purposes of validation and comparison. The proposed technique provides 

schedules of bridge maintenance that account for two objectives of conflicting objectives, 

minimization the cost of M&R interventions and minimization of disruptions to users. 

Figure 5-5 Nomogram for determining the quality classes of concrete as a function of air 

permeability and resistivity (test results are shown as red dots) (Proceq 2005). 



112 

  

PSO has been used as an effective algorithm of optimization in a wide range of applications 

(Parsopoulos and Vrahatis 2002). PSO is a technique based on the evolution of an initial population 

of solutions, and in some respects is similar to algorithms that are evolutionary (e.g. EA), apart 

from the fact that, as opposed to evolving, each possible solution (particle) are characterized by its 

location and velocity in the search space. 

This technique is initialized with a set of randomly generated particles and the optima is sought 

based on the update of the particle position at each iteration. Two optimum values are used to 

update the position of each particle: the Global Best (gbest) and the Personal Best (pbest) solutions. 

Pbest corresponds to the optimal value reached at a given iteration by a given particle, while gbest 

is the optimized solution achieved by the swarm at the current iteration, which leads other particles 

to its location. The particles flight in the solution is defined as follows: 

 𝑉𝑇
𝑆(i+1)= w 𝑉𝑇

𝑆(i)+𝑐1𝑟1 (pbes𝑡𝑇
𝑆(i)-𝑋𝑇

𝑆(i))+ 𝑐2 𝑟2 (gbest-𝑋𝑇
𝑆(i)) (17) 

 𝑋𝑇
𝑆(i+1)=𝑋𝑇

𝑆(i)+𝑉𝑇
𝑆(i+1) (18) 

where 𝑉𝑇
𝑆 is the velocity of the particle T with S dimension, i is the iteration; w is the inertia weight 

of particle movement, which is used to regulate the impact of the prior velocity on the current 

velocity. Large values of w maintain previous particle velocities and increases the velocity, which 

minimizes the possibility of confinement to a local optimum. Conversely, small values of w reduce 

the velocity of particles and promotes a local search in the solution space; c1 is the cognitive 

acceleration coefficient, c2 is the social acceleration coefficient; both 𝑟1 and 𝑟2 are independent 

uniformly distributed random variables between 0 and 1; pbes𝑡𝑇
𝑆(i) is the best solution achieved 

by the Tth particle at the ith iteration, gbest is the optimal solution achieved by the swarm at the ith 

iteration , 𝑋𝑇
𝑆(i) is the current position of Tth particle in iteration i and 𝑉𝑇

𝑆(i+1) is the velocity of 
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the Tth particle at iteration i+1 (Lalwani et al. 2013). The equations, parameters, velocity and 

position updates of the MOPSO are similar to those of PSO, except for the objective functions. 

The steps of MOPSO can be summarised as follow: (1) Randomly define the location of each 

particle in the solution space between the specified minimum and maximum values, (2) Randomly 

define the initial velocity of each particle within the specified minimum and maximum values, (3) 

Update the velocity of each particle using Equation 1, (4) Update the best solution (pbest) for each 

particle, (5) Add all non-dominated solutions into the current archive; (6) Delete the dominated 

archived solution, (7) Update the overall best solution (gbest), which is chosen from the archived 

member that dominates the fewest feasible solutions in the current iteration. The flowchart of 

MOPSO algorithm is shown in Figure 5-6: 
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Genetic algorithms (GA) are classified as stochastic search tools and emulate natural selection 

mechanisms, which usually are simple but robust and powerful processes (Goldberg and Holland 

1988). They start with a random initial population of solutions that are defined as “chromosomes”, 

where each chromosome is comprised of a sequence of units that form “genes” that encrypt 

specific components of a solution. In the optimization or search process, chromosomes advance 

over consecutive iterations or “generations”, unless the problem congregates with chromosomes 

that reflect the approximate or optimal solution to the problem (Gen and Cheng 2000). The 

reproduction operations are primarily crossovers and mutations. Crossover combines genes from 

the chromosomes of two predecessors and produces an offspring from each pair of parents (Figure 

5-7(a)), while mutations generate offspring by introducing a variation in individual chromosome 

Figure 5-6 MOPSO algorithm. 
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of a predecessor (Figure 5-7(b)). 

 

 

In this study, NSGA-II, one of the most effective heuristic methods in MOGA’s family (Deb et al. 

2002), was used. The differences between simple GA and NSGA-II lie in GA’s process of 

‘selection’. For each generation in NSGA-II, the parent and offspring populations are combined to 

create a new population. The evaluation of dominance ranking is subsequently conducted for the 

combined population set. In the evaluation of dominance ranking, the number of alternative 

solutions that are dominant over that solution is determined for each solution of the new 

population; the solutions are then ranked in accordance with the amount of solutions that are 

dominant over them. Basic steps of the NSGA-II algorithm are shown in Figure 5-8. 

Figure 5-7 Reproduction operation: (a) crossover and (b) mutation operations. 
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5.4.2 Deterioration Model 

(Zhang, Chouinard, Power, Tandja, et al. 2018) use a probabilistic deterioration model for concrete 

decks derived from chloride ion transport models and climate change scenarios. In this research, 

the deterioration model is defined using a similar methodology for durability limit states consistent 

with CSA S408-11 (2011). The time to the final stage of the design service life (Spalling, Tsp) is 

divided into two stages: 1) corrosion initiation (Ti) and, 2) corrosion propagation (Tt) thus, Tt = Ti 

+ Tp. 

Figure 5-8 NSGA-II algorithm. 
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The determination of the probability of serviceability limit states that are time-dependent is 

complex due to the nonlinearity of the performance functions. The time to the onset of spalling is 

defined as, 

 𝑇𝑡 = 𝑇𝑖 + 𝑇𝑝 (19) 

and its cumulative distribution function is obtained from Equation 4, 

 

𝐹𝑇𝑡
(𝑡𝑡) = 𝑃[(𝑡𝑖 + 𝑡𝑝) < 𝑡] = ∫ 𝑓𝑇𝑝

(𝑡𝑝)
𝑡𝑡

0

∫ 𝑓𝑇𝑖
(𝑡𝑖)𝑑𝑡𝑖

𝑡𝑡−𝑡𝑝

0

𝑑𝑡𝑝 

= ∫ 𝑓𝑇𝑝
(𝑡𝑝)

𝑡𝑡

0

⋅ 𝐹𝑇𝑖
(𝑡𝑡 − 𝑡𝑝)𝑑𝑡 

(20) 

where,𝑓𝑇𝑖
(𝑡𝑖)and𝑓𝑇𝑝

(𝑡𝑝)are the probability density functions for the time to the initiation of 

corrosion and the time of corrosion propagation up to the onset of spalling of the concrete cover 

respectively. Since the time from corrosion initiation to spalling is usually long, and the crack 

growth models are mainly linear functions in time, the deterioration is divided into four stages. 

Stage 1 is the initial period, from the beginning of the service life to the initiation of corrosion. 

Stage 2 is defined from the beginning of the corrosion initiation until the crack widths reach 

0.8mm. Stage 3 is the final phase of the propagation of corrosion, from the previous stage to the 

onset of concrete cover spalling, which corresponds to Stage 4 (Figure 5-9). The four states defined 

herein can be related to current visual inspection and condition assessment procedures and is 

applicable to a wide range of structures. 

 Stage 1: 1( ) ( )iP t P t t=   (21) 
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 Stage 2: 2( ) [( / 2) ]i pP t P t t t= +   (22) 

 Stage 3: ( )3( ) [ 2 ( )]i p i pP t P t t t t t= +   +   (23) 

 Stage 4: ( ) ( )( )4 i pP t P t t t=  +
 

(24) 

Estimates of the concentration of chloride as a function of depth and time in the concrete deck are 

obtained with TransChlor® as described previously. The time to the corrosion initiation (ti) is 

defined as the length of time needed for chloride ion levels to reach the critical level for corrosion 

for the corresponding type of reinforcing steel. The length of time between the initiation of 

corrosion to the onset of spalling (tp) is estimated using the expression proposed by (Lounis and 

Daigle 2008), 

Figure 5-9 Definition of durability condition states. 
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where S = rebar spacing; ρr = density of corrosion products (assumed at 3,600 kg/m3 for Fe(OH)3); 

ρs = density of steel (7,860 kg/m3); α = molecular weight ratio of metal iron to the corrosion 

product (assumed at 0.52); and jr = corrosion production rate per unit area (µA/cm2) (Bazant 

1979). The model is utilized to relate the increase in rebar diameter due to corrosion build-up to 

corrosion-induced limit states (Lounis and McAllister 2016). The random variable that are used in 

the model are summarized in Table 5-2.  

Table 5-2: Variables of the propagation model.    

Variables Units Distribution Mean COV 

Cover thickness, 𝑐𝑡 mm Deterministic 25/50/70 — 

Bar spacing mm Log-normal 150 5 

Bar diameter mm Deterministic 16 — 

Concentration threshold for 

Corrosion initiation, 𝐶𝑡ℎ 
wt. (%) cem. Log-normal 1.35 20 

Reference corrosion rate, 𝑗𝑟,20 µA/cm2 Log-normal 0.8 20 

28 Day concrete compressive 

strength, 𝑓𝑐 
 MPa Normal 45.5 18 

Concrete tensile strength, 𝑓𝑡
′  MPa Normal 3.58 13 

Concrete elastic modulus, 𝐸𝑐 MPa Normal 31029 12 

Note: COV = coefficient of variation (%),  

fc = 28 Day concrete compressive strength 
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The elements of the yearly transition probabilities matrix (TPM (𝑃𝑡)) are by definition null except 

for the elements on and above the diagonal. Given the initial state probabilities vector 𝑞(0), the 

future probability state vector 𝑞(𝑡) (t = 1, 2, …, T) after t years is (Collins 1975): 

𝑞(𝑡) = 𝑞(0) × 𝑃t (26) 

where, 

𝑃 =

[
 
 
 
𝑃1,1 𝑃1,2 … 𝑃1,j

𝑃2,1 𝑃2,2 … 𝑃2,j

… … … …
𝑃𝑖,1 𝑃𝑖,2 … 𝑃𝑖,j]

 
 
 
 

(27) 

𝑞(𝑡) =

[
 
 
 
 
 
𝑞1(0) 𝑞2(0) 𝑞3(0) 𝑞4(0)
𝑞1(1) 𝑞2(1) 𝑞3(1) 𝑞4(1)

… … … …
… … … …
… … … …

𝑞1(𝑇) 𝑞2(𝑇) 𝑞3(𝑇) 𝑞4(𝑇)]
 
 
 
 
 

 (28) 

In this application, 𝑞(0) is defined as [1, 0, 0, 0], which states that the structure is new at time zero. 

In this application, TPMs were estimated for three climate scenarios and three concrete covers. 

The transition probabilities are obtained by minimizing the sum of absolute differences between 

q(t) and Q(t), where Q(t) is the vector of state probabilities at time t [P1(t) P2(t) P3(t) P4(t)] (t = 1, 

2, …, T) predicted from the deterioration model. 

 
Minimize∑|𝑞(𝑡) − 𝑄(𝑡)|

𝑇

𝑡=1

 

Subject to: 0 ≤ 𝑝𝑖𝑗 ≤ 1  𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, 3, 4 

(29) 
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∑𝑝𝑖𝑗

4

𝑗=1

= 1 

The use of the absolute differences prompts a faster optimization routine and does not induce 

significant losses in the final solution relative to that obtained from the quadratic loss function 

(Portnoy and Koenker 1997). The Optimization was carried out in MATLAB® environment and 

using the FMINCON function (Byrd et al. 2000). 

 

5.4.3 Problem formulation 

In this application, four basic types of M&R activities are considered, “Do-Nothing” (A), “Minor 

Maintenance” (B), “Major Maintenance” (C), and “Replacement” (D) and used to define 

sequences of activities during the lifetime of the structure. “Minor maintenance” includes cleaning 

and the sealing of joints and repair of cracks and superficial local repairs on the slab (above the 

reinforcement). “Major maintenance” primarily comprises localized repair of the concrete to a 

depth below the reinforcement as well as the sealing of joints and the use of epoxy injection to fill 

racks. Often, quick setting concrete will be used for both minor and major repairs to minimize the 

length of disruptions in the transportation network. The “Replacement” entails the construction of 

a new slab including new reinforcement. 

The cost data for each M&R activity as a function of the condition states are obtained from a 

sample of maintenance, repair and replacement activities in the Montreal area (Table 5-3). For 

example, at Condition state 3, Action B (minor maintenance) has a cost of $800 per m2. 
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Table 5-3: Cost matrix of M&R strategies (C$/m2). 

Condition state 
M&R activities 

A B C D 

1 0 0 0 0 

2 0 800 0 0 

3 0 800 1500 2000 

4 0 0 1500 2000 

 

M&R activities are assumed to be performed at the start of each fiscal year and transition states 

are observed at the end of the fiscal year. In this study, only discrete states are considered since 

the inspection and maintenance activities are assumed to be performed on an annual basis. The 

yearly TPMs for the four actions are proposed in Table 5-4. For the “Do-nothing” option, Equation 

13 is used to calculate the TPM (Table 5-5), which is utilized to describe the stochastic process of 

deterioration. For minor repairs, the TPM is defined such that given a bridge is initially in state 3, 

it will be in state 2 after the minor repair. Minor repairs are not performed if the bridge deck is in 

state 4. In this instance, the state of deterioration is considered too severe for minor repairs. For 

major maintenance actions, the TPM is defined such that a bridge deck in either state 3 or 4 will 

be in state 2 after repair, which implies that the reinforcing steel has not been replaced after a major 

repair. For deck replacements, the state after replacement is assumed to be 1 (new state) regardless 

of the current state.  

Table 5-4: Yearly Transition Probability Matrices (at the time of actions). 

  Action A: Do Nothing  Action B: Minor Maintenance 

 Condition state 1 2 3 4  1 2 3 4 

1 P11  P12  0 0  1 0 0 0 

2 0 P22 P23 0  0 1 0 0 
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3 0 0 P33 P34  0 1 0 0 

4 0 0 0 1  0 0 0 1 

          

 Action C: Major Maintenance  Action D: Replacement 

 Condition state 1 2 3 4  1 2 3 4 

1 1 0 0 0  1 0 0 0 

2 0 1 0 0  1 0 0 0 

3 0 1 0 0  1 0 0 0 

4 0 1 0 0  1 0 0 0 

 

The current condition state at any time is random and is represented by a vector where the elements 

are the probabilities 𝑞𝑖 for each state. The expected current state of the deck at time t is: 

 E(X(t)) = ∑ 𝑞𝑖
4
𝑖=1 (𝑡) ∗ (i) for i =1...4  (30) 

In the optimization process, each possible solution is comprised of a sequence of yearly M&R 

tasks (A, B, C or D) over a time horizon of T years.  

 

5.4.4 Objective functions 

The multi-objective optimization is to identify M&R strategies that minimize Net Present Value 

of cost (NPVC) and minimize probabilities of disruptions during the lifetime of the bridge. Thus, 

the first objective is defined as: 

 

𝑁𝑃𝑉𝐶 = ∑
𝑆𝑧 ∙ 𝑈𝐶 ∙ 𝑒𝜋𝑚𝑡

(1 + 𝑟𝑡)𝑡
− 

𝑅𝑉

(1 + 𝑟𝑡)𝑡

𝑇−1

𝑡=0
  (31) 

where, 𝑇  is the time period of analysis, and 𝑟𝑡  is the discount rate at time t (i.e., yields on 

Government bonds), Sz is the area of the deck, and UC is the unit costs for the different M&R 
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strategies. Moreover, to capture rising costs over time we use 𝑒𝜋𝑚𝑡 as the Producer Price Index 

level at time t where πm is rate of inflation for the cost of materials. Unit costs for M&R actions 

are listed in Table 5-3 for the baseline model and a deck area of 1,000 m2. 𝑅𝑉 is the residual value 

of the infrastructure asset and is calculated as: 

 𝑅𝑉 = 𝑆𝑡𝑎𝑡𝑒50 ∙ 𝐶𝑜𝑠𝑡𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 (32) 

where 𝑆𝑡𝑎𝑡𝑒50 is the residual state of the bridge at year 50 and 𝐶𝑜𝑠𝑡𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 is the cost for 

reconstruction of the new deck. The argument is that if a given strategy leaves the infrastructure 

in better shape than a different strategy after 50 years of service life, the first one is better (other 

things equal) as it will have lower costs in future periods. 

For a RC bridge deck, the end of life is determined as the date when the critical level of deck 

spalling and delamination is reached (FHWA 1995; Lounis et al. 2006). Therefore, the second 

objective function is defined to minimize the probability of spalling (failure) during the service 

life: 

 Min. 𝑃𝑠𝑝𝑎𝑙𝑙𝑖𝑛𝑔 (33) 

An overview of the proposed framework is shown in Figure 5-10. 
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5.5 Application of the model and discussion of the results 

The deterioration model is used to evaluate the probability distribution function for the time to 

reach each of the four condition states (A to D) defined previously. Historical climatic data from 

Environment Canada (Canada 2019) is used over the period 1959-2009 to model the current state 

of the bridge while climate change scenarios RCP 8.5 and RCP 4.5 from the Canadian Regional 

Climate Model (CanRCMs) are used to generate predictions over the next 50 years (2009-2059). 

The results are then used to determine the TPM for the three climate scenarios and (historical, RCP 

8.5 and RCP 4.5) to model the deterioration process for the optimization analysis. 

Figure 5-10 An overview of the proposed framework. 
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Historical records for the number of annual winter precipitation days reveal a considerable increase 

over the period 1979 to 2009 compared to the period from 1959 to 1979. The predictions from 

RCP8.5 and RCP4.5 of winter precipitation for the period 2009 to 2059 remain at the high levels 

of 1999 to 2009 (Figure 5-11). To summarize, the number of winter precipitation day is anticipated 

to rise by over 30% during the next 50 years in comparison to the historical record. 

 

Figure 5-12 presents the resulting transition probabilities of the condition states for concrete covers 

of 25mm, 50mm and 70mm, for the three climate scenarios. The 70 mm concrete cover 

corresponds to the average concrete cover for the bridge under study, while the 50mm depth is the 

concrete cover for most existing bridges and the 25 mm cover is used to assess the effect of 

Figure 5-11 Total yearly number of winter precipitation days (daily precipitation > .1mm). 

Historical Records and projections from RCP8.5 and RCP4.5. 
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improperly placed reinforcement on deterioration rates. For all climate change scenarios, the salt 

spreading protocol in future years is assumed to remain the same as the current protocol. 

The simulation results show that the initiation time to corrosion is mainly dependent on the number 

of days of precipitation during the winter. With 70 mm concrete cover, the initiation time to 

corrosion for historical exposure is within the first 30 years of the service life, while the initiation 

time to corrosion is approximately 10 years under both climate change scenarios due to the 

significant increase in the number of days with precipitation during the winter. 

The model also shows that 40% of the decks constructed 50 years ago that had no or little 

preventive maintenance (which corresponds to the current practice in many cities) have decks that 

have reached the end of their service life (i.e., concrete cover is spalling). If a similar lack of 

maintenance practices were followed for new constructions, the simulations indicate that for both 

climate change scenarios, due to higher temperatures and more frequent winter precipitation, the 

proportion of concrete decks that have reached the end of their service life after 50 year increases 

to 80%.  

Results for concrete covers of 50mm and 25mm are similar for the historical and climate change 

scenarios since initiation times are short (around 5 years and 2 years for 50 mm and 25 mm cases, 

respectively). The probability for spalling is 90% after 20 years of service for 25 mm covers and 

35 to 40 years for 50 mm covers. Note that the climate scenario RCP 8.5 is associated with the 

most rapid deterioration processes due to higher temperatures during the winter, which increase 

the corrosion rate. 
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Table 5-5: Yearly Transition Probability Matrices for three climate scenarios (Historical, RCP4.5 

and RCP8.5) and concrete cover thickness (25mm, 50mm and 70mm). 

  Concrete cover thickness 

    25mm  50mm  70mm 

  1 2 3 4  1 2 3 4  1 2 3 4 

Historical  

Scenario 

1 0.001  0.999  0 0  0.807  0.193  0 0  0.954  0.046  0 0 

2 0 0.843  0.157  0  0 0.906  0.094  0  0 0.970  0.030  0 

3 0 0 0.862  0.138   0 0 0.926  0.074   0 0 0.998  0.002  

4 0 0 0 1  0 0 0 1  0 0 0 1 

                

RCP4.5  

Scenario 

1 0.001  0.999  0 0  0.777  0.223  0 0  0.899  0.101  0 0 

2 0 0.831  0.169  0  0 0.893  0.107  0  0 0.938  0.062  0 

3 0 0 0.842  0.158   0 0 0.910  0.090   0 0 0.960  0.040  

4 0 0 0 1  0 0 0 1  0 0 0 1 

                

Figure 5-12 Condition state probabilities as a function of time (year) for three climate scenarios 

(Historical, RCP4.5 and RCP8.5) and concrete cover thickness (25mm, 50mm and 70mm). 
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RCP8.5  

Scenario 

1 0.060  0.940  0 0  0.679  0.321  0 0  0.861  0.139  0 0 

2 0 0.831  0.169  0  0 0.889  0.111  0  0 0.930  0.070  0 

3 0 0 0.838  0.162   0 0 0.910  0.090   0 0 0.948  0.052  

4 0 0 0 1  0 0 0 1  0 0 0 1 

 

The MOPSO and NSGA-II algorithms were programmed into MATLAB® subroutines 

(MATLAB, 2018), and ran using a desktop version of the Windows 10 Enterprise operating system 

and Intel Core i7-8700HQ 3.20 GHz processor with 64.00 GB of RAM. The parameter settings 

for a trial study of the MOPSO algorithm are as follows: (1) number of iterations: 300; (2) number 

of particles in swarm: 300; (3) initial weight: 0.5 (according to Eberhart and Kennedy (1995), who 

recommended an initial weight between 0 to 1); (4) acceleration rates: c1 = 2 and c2 = 2 (as 

suggested by Babapour et al. (2018)); and (5) velocity boundary (Vmax): 0 and 4; The GA settings 

were set-up at the condition where population was 300, crossover rate was 0.8, mutation rate was 

0.1 (the almost optimum rate for mutation and cross over indicated by Babapour et al. (2018), and 

the number of generations was 300. 

Figures 13 to 18 illustrate the Pareto-optimal front following 300 iterations in the objective space 

over the planning horizon for the two optimization techniques. Figures 13 to 15 compare the trade-

off solutions for different concrete cover thicknesses while Figures 16 to 18 illustrate the 

differences among climate scenarios for given concrete cover thicknesses. Each color-coded 

triangle and dot in these figures represent a bridge deck M&R strategy using MOPSO and NSGA-

II respectively, and accordingly, provides a unique and optimal solution. 

A common problem during analysis is choosing a solution from the Pareto front. In general, when 

one objective of maintenance strategies is optimized, the other objective is often suboptimal. For 

example, examining the results of MOPSO and NSGA-II for climate scenario RCP4.5 with a 



130 

  

concrete cover with a thickness of 50mm (Figure 5-14), assuming that decision-makers are 

economically motivated, or that the budget is limited, solution S1 should be chosen because it 

minimizes the probability of spalling at the minimum NPVC. However, if the level of performance 

of the bridge deck is favored over cost, the solution S2 is optimal because it provides the highest 

performance (e.g., no spalling during the service life).  

 Lounis et al. (2006) propose that the end of the service life of RC decks in corrosive environments 

is reached when an estimated 30% of the deck area has spalled. In this case, optimal maintenance 

strategies corresponding to this criterion is represented beneath the horizontal red line in Figure 5-

14(a). Similarly, if the budget is set as $5M, the optimal solutions which satisfy this limit are 

shown on the left side of the vertical red line in Figure 5-14(a). As a consequence, an optimum set 

of generated results are available in the marked region. It would make sense in this case to select 

the points at the boundary (minimum cost at 30% spalling or minimum spalling at $5M).  

The six representative long-term maintenance plans extracted from the solutions of both 

optimization techniques are presented in Figure 5-14(b). Each rectangle corresponds to an interval 

of one year and each color-coded rectangular represents a possible action at that year. Choosing 

solution X1 for example, the M&R strategies are two major maintenances at year 14 and year 26, 

and one replacement at year 38, respectively. The digit (e.g., 1 to 4) above the rectangular indicates 

the expected state of the bridge deck being in that year. The results for maintenance plans X1, X2, 

X3 from MOPSO and Y1, Y2, Y3 from NSGA-II, are very close for both objectives. However, they 

exhibit differences in the sequence of maintenance activities. Looking more closely at the 

maintenance plan indicates that the two algorithms provide a different pattern of M&R actions. 

Specifically, Plans Y1, Y2 and Y3 of NSGA-II suggest more minor maintenance instead of major 

maintenance and replacement compared to X1, X2 and X3 of MOPSO, respectively. The 
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combination of frequent minor and major maintenances can prove to be equally effective as 

replacement (Action D).  

Furthermore, one of the most effective ways to optimize the life cycle cost-performance trade-off, 

when the expected level of the objective (NPVC or probability of spalling) varies, is to obtain a 

flexible solution. The Pareto front in Figure 14 (a) can logically be divided into three parts. Part 1 

includes solutions that have higher probabilities of spalling than solution X1 and Y1 (above X1 and 

Y1), Part 2 includes solutions (to the right of X3 and Y3) that have greater NPVC than solution X3 

and Y3, and Part 3 (in the lower left of the figure) includes solutions that have lower probabilities 

of spalling than solutions X1 and Y1 and lower NPVC than solutions X3 and Y3. In Part 1, NPVC 

slightly decreases as probability of failure increases significantly while in Part 2, NPVC 

substantially increases as the probability of spalling decreases. Moreover, we find that in the region 

of Part 2, the results from both algorithms are similar. However, in the Part 1 area, in most cases 

MOPSO has a slightly advantage over NSGA-II. Thus, at the same level of probability of spalling, 

MOPSO provides lower NPVC than NSGA-II. If the two objectives are equally important to the 

decision-makers, the solutions located in Part 3 could become appropriate trade-offs. Therefore, if 

no economic constraints exist, further M&R actions will reduce the probability of failure to a very 

low level (close to 0%). When there are constraints on budgets and performance level of the 

structure, solutions from the bi-objective optimization can provide optimal compromises between 

different objectives. Thus, the results show that the proposed method can lead to multiple useful 

solutions that provide some flexibility to decision-makers in practice. 
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Figure 5-13 Optimal solutions for three climate scenario and a concrete cover thickness of 25mm. 
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Figure 5-14 (a) Optimal solutions for three climate scenarios and a concrete cover thickness 

of 50mm; (b) Comparison of Maintenance Plan for the considered optimization techniques. 
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Figure 5-16 Optimal solutions for three climate scenario and a concrete cover thickness of 70mm. 

Figure 5-15 Optimal solutions for three concrete cover thickness for the RCP8.5 climate change 

scenario. 
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Figure 5-18 Optimal solutions for three concrete cover thickness for the Historical climate change 

scenario. 

Figure 5-17 Optimal solutions for three concrete cover thickness for the RCP4.5 climate change 

scenario. 
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Figure 5-19 compares the deterioration patterns of the bridge deck (in accordance with the six 

representative solutions shown in Figure 5-14). Every solution should comply with all of the 

requirements already noted in the optimization model. Note that the process of aging has an 

enormous impact on the rate of deterioration. The optimized solutions show that the condition state 

at year 50 lies between State 2 to State 3, which is the expected result for optimal utilization of the 

bridge infrastructure. Moreover, the solutions that we obtain, while always optimal, provide 

different choices of the decision boundaries. For example, if a minor maintenance strategy is 

favored in the optimal decision sequence, the optimal solution prompts continuous repair 

operations throughout the second half of the bridge lifetime. On the other hand, options for a major 

maintenance decision strategy will reduce the frequency of maintenance operations but may not 

be cost-effective and in addition cause more downtime of the bridge during the repair in a real-

world setting. 
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Figure 5-19 Optimized deterioration pattern for the six representative M&R actions of the bridge 

deck showing different action spread and level throughout the bridge lifetime. (a) two major 

maintenances and one replacement (X1); (b) three replacements (X2); (c) six major repairs (X3); 

(d) three minor maintenances, one major maintenance and one replacement (Y1); (e) five minor 

maintenances and two major maintenances (Y2); (f) four minor maintenances and four major 

maintenances. 
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Figure 5-20 Number of M&R actions as a function of NPVC for two optimization methods (a) 

MOPSO, RCP4.5, 50mm; (b) NSGA-II, RCP4.5, 50mm. 

Figure 5-21 Number of M&R actions as a function of Probability of Spalling for two optimization 

methods. (a) MOPSO, RCP4.5, 50mm; (b) NSGA-II, RCP4.5, 50mm. 
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Figures 20 and 21 show the number of M&R actions as a function of the Probability of spalling 

and NPVC, respectively. We can see clear differences between the two optimization approaches 

in terms of favorability to execute M&R actions. MOPSO prompts the “do nothing” action slightly 

more often than NSGA-II. In addition, at a 0.6 probability of spalling, MOPSO’s “do nothing” 

decision reaches saturation, which is faster than that obtained from NSGA. This behavior can be 

seen as an advantage of MOPSO over the NSGA-II. Additional sensitivity analysis shows the 

advantage of MOPSO, as depicted in Figure 5-21. While the slope of “do nothing” decision is 

similar in solutions obtained from both optimization approaches, when considering the NPVC, the 

slopes of action decisions are slightly higher in the case of NSGA-II solutions. This indicates that 

MOPSO solutions are able to return lower number of maintenance activities to achieve an optimal 

solution at the same NPVC. Moreover, the results shown in Figures 20 and 21 can help decision-

makers obtain the information about the number of different M&R actions that need to be 

performed during the 50 years when considering specific policy and better understand the 

relationship between different actions. It is important to note that changing the population size and 

other optimization parameters may affect the obtained results, but this is beyond the scope of the 

present work. 

Similar findings can be observed in other scenarios. The results also show that improper quality 

control at the time of construction for the placement of reinforcing steel (small concrete cover 

thickness) have a strong negative impact on durability. This will further lead to more M&R actions 

during the lifetime of the bridge to maintain the deck at the required performance level. Moreover, 

climate change is expected to negatively affect the durability of concrete structures in Montreal, 

and it needs to be taken into account when considering future allocations of the funds for 

infrastructure management. 
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5.6 Conclusions and future directions 

Improving the sustainability and serviceability of infrastructures in the most economical way are 

important objectives for decision-makers given the current state of uncertainty with climate change 

and the general state of the infrastructure.  

An inverse relationship generally exists between condition of bridge and profit during the 

operation. It means whenever bridge condition improves, the cost of maintenances will 

considerably increase. A proper trade-off strategy in these objectives is critical for facility 

managers. 

Therefore, a real case study on bridge in Montreal is conducted to demonstrate the availability of 

the optimization problem through the application of the two efficient Meta heuristic algorithms. 

For a single facility, the developed novel MOO model helps in determination of the sequence of 

M&R actions over a certain study period “N”, and by minimizing NPVC of the rehabilitations in 

making sure the acceptable level of performance of the infrastructure during the service life. 

The optimization techniques are used by developed methodology with Markov chain principles 

for infrastructure deterioration modelling. The first step is of identification of the data, then two 

individual models are made for Meta heuristic algorithms structure and Markov chain deterioration 

process. Then, under the single platform, the novelty also arises through considering the 

uncertainties with financial, climate change and the exposure to de-icing salts that integrated in the 

decision model. The results reveal that the deterioration model can accurately predict the service 

life distribution for current RC bridge decks taking into consideration the climate on a historical 

basis. The findings also show that under climate change scenarios, the service life of new RC 

facilities that have been designed utilising current procedures and that are subject to current 
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policies for using de-icing salts would be considerably reduced. The service life reduction is due 

in main to an increase in the number of precipitation days throughout the winter in despite of an 

increase in temperatures. The model of intervention effect is by nature dynamic, which means, 

certain intervention techniques and methods could be implemented with different levels of 

improvement effects. The analysis of the generated trade-offs between objectives shows that the 

model was able to generate a wide range of optimal trade-off solutions through the consideration 

of all specified policies and constraints, and therefore the decision-makers could select based on 

the available budget for bridge maintenance and the reliability.  

Note that it is necessary to determine the target failure probability in terms of durability for the 

structure and individual components on the basis of: a) the design life of the structure; b) the design 

life of components; c) maintenance complexity and costs; and d) limiting the state-dependent 

consequences of any failure. A consensus should be reached between the relevant authority with 

jurisdiction and the owners in terms of the criteria regarding a suitable level of reliability and 

serviceability. NSGA-II and MOPSO, which are efficient dealing with computationally complex 

optimization problems as techniques of MOO are implemented and compared. The findings also 

show that over NSGA-II, MOPSO has an advantage according to the optimal solutions in terms of 

NPVC and the probability of spalling. 

Future works can extend this work by considering M&R plans for different type of components of 

bridge over different time in management period. As certain results are subject to change in cost 

models, the systematic sensitivity analysis of cost models is recommended. Additionally, the 

detailed policies such as the time interval of the M&R actions can be introduced along with 

environmental and social effects of the NPVC model. 
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Preface to Chapter 6 

 

In the previous chapter, probabilistic models have been developed to propagate uncertainties and 

to estimate the probability distribution of the chloride ion content as a function of time and space, 

and for the time to the initiation of corrosion. In many instances, the degree of uncertainties on 

predictions can be very large which reduces the usefulness of the predictions in practical 

applications. A measure of decreasing these uncertainties is to obtain core samples in order to 

determine the chloride content at various depths from the concrete cover to update distribution 

parameters. In the next chapter, an efficient and novel system identification procedure based on a 

surrogate model and a Bayesian procedure for chloride ion levels as a function of time and space 

is proposed for updating the distribution of model parameters. Surrogate models are used to get an 

appropriate representation of the chloride ion transport model and to facilitate computations. This 

novel approach can be used in combination with single or multiples core samples obtained on a 

structure. 
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 Bayesian Estimation of Model Parameters for Chloride 

Ion Ingress in Concrete Using Core Sample Data 

 

Abstract 

Several models for predicting the residual life of concrete structures have been developed in recent 

years in response to the need to optimize inspection, repairs and replacement strategies for existing 

bridges and for the design of more durable structures. The dominant mode of deterioration of 

concrete bridge structures in northern climates is corrosion associated with the ingress of chloride 

ions from salt spreading. Finite element and finite difference models can be used to predict the 

concentration of chloride ions as a function of time and space in concrete and to estimate the time 

to the initiation of corrosion of the reinforcing steel. The input parameters to these models include 

environmental exposure data, salt spreading protocols and concrete properties. Data on 

environmental exposure and salt spreading protocols can be obtained from meteorological stations 

and roadway operators respectively such that the remaining uncertainties are mainly related to 

concrete properties. Prior distributions on concrete diffusion properties can be specified using 

compiled data bases of experimental data. Probabilistic methods are used to propagate 

uncertainties on concrete properties in the models and to derive the prior probability distribution 

function of chloride ion content as a function of time and depth. When chloride content is obtained 

from core samples, Bayesian updating procedures are proposed to update the probability 

distribution functions of concrete properties considering the type of exposure, the chloride ion 

profile and time of sampling. The proposed procedure can be applied for any number of core 

samples sampled at different times and accounts for correlations between chloride content 
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predictions at different times and depths. The proposed procedure is demonstrated for an existing 

bridge located in Montreal, Canada. 

Keywords: Bayesian updating; chloride ion; deterioration; core sample data; concrete bridge. 

 

6.1 Introduction 

The techniques for modelling deterioration processes for infrastructures have evolved rapidly over 

the last decades. This has been in response to the increasingly large number of ageing structures 

and the need to better predict their residual life and develop timely and economically optimal 

intervention plans for infrastructure portfolios. Corrosion of reinforcing steel due to exposure to 

chloride ions is the main cause of deterioration of concrete bridges in northern climates. The 

corrosion of reinforcing steel leads to concrete cracking, delamination and spalling of the concrete 

cover, reduction of reinforcement cross section, and loss of bond between the reinforcing steel and 

concrete, which result in a reduction in strength and ductility of both structural and non-structural 

elements. 

Several models for the transport of chloride ions in concrete have been proposed in the literature 

that account with varying degrees of detail and accuracy for the chemical interactions between 

concrete materials and chloride ions as well as for the type and level of environmental exposure. 

A probabilistic approach in the application of these models is favored since it explicitly accounts 

for the random nature of exposure, the uncertainties in the prediction models and the uncertainty 

on concrete properties (Bastidas-Arteaga et al. 2011; Saassouh and Lounis 2012; Zhang, 

Chouinard, and Conciatori 2018). Probabilistic approaches have been implemented through Monte 

Carlo simulation (Lounis and Mirza 2001), first-order or second-order reliability methods (Enright 
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and Frangopol 1998), and point-estimation methods and crossing theory (Stewart and Rosowsky 

1998; Conciatori et al. 2009b). In general, more advanced deterioration models require a large 

number of input parameters and are computationally more demanding, which limits the types of 

probabilistic analyses that can be performed efficiently. 

In this work, uncertainties associated with concrete properties, modelling of chloride ions ingress, 

and environmental exposure are considered. The application of the proposed probabilistic model 

is illustrated for a chloride-contaminated concrete bridge located in Montreal that was exposed to 

de-icing salts for over forty years and for which environmental and core sample data are available. 

First, the model used to predict the chloride content as a function of time and depth is described. 

Next, given prior distributions on concrete properties, point estimation methods are used to derive 

prior distribution of chloride content as a function of time and depth. Finally, given core sample 

data, a Bayesian updating procedure is proposed that can account for correlations in predictions as 

a function of time and space. 

 

6.2 Model for Chloride Ions Transport in Concrete 

The time to initiation of corrosion is the most critical parameter in the estimation of the residual 

life of a structure in northern climates exposed to de-icing salts. The time to initiation to corrosion 

can be estimated by using models for the propagation of chloride ions in concrete and data on the 

critical chloride ion content to initiate corrosion for a given type of reinforcing steel. In this 

application, the TransChlor® model was selected to provide estimates of chloride ion content as a 

function of time and depth into the concrete (Conciatori et al. 2008; Conciatori et al. 2010). This 

model uses the time history of climate data to simulate the application of de-icing salts at the 
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surface of concrete elements, and the penetration of the chloride ions into the concrete as a function 

of the type of exposure (direct, splash and mist). These features are important for updating model 

parameters using core sample data since simulation results can account for both the time history 

and type of exposure. The TransChlor® model is briefly described in the next section. A more 

detailed description of the model can be found in (Conciatori et al. 2018). 

The TransChlor® model accounts for two primary chemical reactions: carbonation and adsorption 

of chloride ions by the cement paste. The second chemical reaction is a reversible transformation 

and therefore can adsorb or release chloride ions into the concrete pore structure. The TransChlor® 

uses a finite element method to solve for the ion propagation in space within the concrete and a 

finite difference method to solve for the progression as a function of time. The transport modes 

include thermal and vapor transfers, liquid water transport with and without chloride ions, capillary 

suction, chloride ion diffusion in water, and carbon dioxide diffusion in concrete. Movements of 

substances in the concrete depend directly on the concrete permeability for all transport modes, 

except for thermal transfers. The time step used in the simulation is 1 hour. This time interval 

provides the required level of accuracy to properly account for precipitation history and 

wetting/drying cycles. 

Concrete properties that are considered as random variables are the water vapor diffusion 

coefficient (DHR), the free chloride ion diffusion coefficient (DCL) and the capillarity coefficient 

(DCAP). The exposure model used in the TransChlor® simulations is illustrated in Figure 6-1. 
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In the event of a precipitation event, the concrete surface is completely saturated, and the relative 

humidity reaches 100%. Depending on the location of concrete elements, three types of exposure 

are possible: Direct, Splash and Mist (Figure 6-2). Direct exposure starts right after the 

precipitation event while splash exposure is delayed by t1 hours to allow for water accumulation, 

and ends with t2, the time required for drying the surface after the precipitation event. Mist 

exposure is only a function of relative humidity.  

Figure 6-1 Exposure Types and Periods for TransChlor®. 

Figure 6-2 Types of exposures for bridge components. 
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De-icing salts are applied on the road surface if any of the four following conditions are met:  

1. (T ≤ Tlim) and (H ≥ Hlim), where T is air temperature, Tlim is temperature below which de-

icing salts are applied and similarly, H and Hlim are the relative humidity and the relative 

humidity above which de-icing salts are applied. In this application Hlim is set at 95% while 

the Tlim is obtained through iterative procedure to match annual amounts of de-icing salts 

used; 

2. Rain and (T ≤ Tlim), when a precipitation event coincides with air temperatures below Tlim. 

3. Snow, during snowing events; 

4. tevent ≥ tinterval, where tevent is the duration of an event after the passage of a de-icing truck 

and tinterval is the time interval between trucks.  

 

The program also incorporates a probabilistic analysis to derive the probability distribution 

function of chloride ion content as a function of depth and time. Uncertainties in predictions are 

due to uncertainties in exposure conditions and material properties of the concrete. The 

relationships between the various components of the model are represented in Figure 6-3. 
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In this application, the hourly environmental data observed during the service life of a given 

structure is used to model exposure, which greatly reduces this source of uncertainty. The residual 

uncertainty on exposure is related to the salt spreading rate. The salt spreading strategy is obtained 

from city records and/or from specifications for the salting equipment. For the purposes of this 

study, the rate of salt application for each salting operation is estimated from historical data 

(Wolofsky 2011b) and is assumed constant for the entire duration of the service life. 

The three diffusion material properties that are considered random by the TransChlor® model are 

water vapor transport (DHR), liquid water transport by capillary suction (DCAP), and chloride ion 

Figure 6-3 Flowchart of computations in TransChlor® 
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transport (DCL). The relation between the diffusion parameters and the chloride content is a 

monotonic function of the diffusion parameters for a given time (t) and depth (d) of concrete cover. 

 𝐶𝑙(𝑡, 𝑑) = 𝑔(𝐷𝐻𝑅 , 𝐷𝐶𝐴𝑃 , 𝐷𝐶𝐿|𝑡, 𝑑) = 𝑔(𝐷|𝑡, 𝑑) (34) 

Under these conditions, the probability density function of the chloride content can de derived 

from the joint distribution of the diffusion parameters, assumed to be independent,  

𝑓𝐷(𝑑) = 𝑓𝐷𝐻𝑅
∙ 𝑓𝐷𝐶𝐴𝑃

∙ 𝑓𝐷𝐶𝐿
, 

 𝑓𝐶𝑙(𝑐𝑙|𝑡, 𝑑) = |𝐽|−1𝑓𝐷 (𝑔−1(𝐶𝑙|𝑡, 𝑑)) (35) 

 

𝑓𝐶𝑙(𝑐𝑙|𝑡, 𝑑) = |𝐽|−1𝑓𝐷𝐻𝑅
(𝑔−1(𝐶𝑙|𝑡, 𝑑)) ∙ 𝑓𝐷𝐶𝐴𝑃

(𝑔−1(𝐶𝑙|𝑡, 𝑑))

∙ 𝑓𝐷𝐶𝐿
(𝑔−1(𝐶𝑙|𝑡, 𝑑)) 

(36) 

where 

 |𝐽| = |
𝜕𝑔

𝜕𝐷𝐻𝑅

𝜕𝑔

𝜕𝐷𝐶𝐴𝑃

𝜕𝑔

𝜕𝐷𝐶𝐿
|
(𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝐿)=𝑔−1(𝐶𝑙)

 (37) 

In TransChlor® the chloride content for a given time and depth has been shown to be lognormally 

distributed though Monte Carlo simulation given that the diffusion parameters are also 

lognormally distributed (Conciatori et al. 2009b). Since the lognormal distribution is preserved, 

this implies that the relations between the diffusion coefficients and chloride content are 

approximately conditionally linear for a given time and depth. Under this assumption, the 

conditional distribution of chloride content (Cl) can be fully characterized through its mean and 

variance, 
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 𝐸[𝐶𝑙(𝑡, 𝑑)] = ∭𝑔(𝐷|𝑡, 𝑑) ∙ 𝑓𝐷(𝑑)𝑑𝐷 (38) 

 𝑉𝐴𝑅[𝐶𝑙(𝑡, 𝑑)] = ∭(𝑔(𝐷|𝑡, 𝑑) − 𝐸[𝐶𝑙(𝑡, 𝑑)])
2
∙ 𝑓𝐷(𝑑)𝑑𝐷 (39) 

A two-point Rosenblueth method is used to propagate the uncertainty and estimate probabilistic 

moments for chloride ion concentrations as a function of time and depth (Conciatori et al. 2009b). 

Details of the procedure and comparisons with results from Monte Carlo simulations (MCS) are 

presented in (Conciatori et al. 2014). Considering a real function Y of a real variable X, it can be 

shown (Rosenblueth 1981) that the estimation of nth moment of Y can be calculated from point 

estimators of X independently of the distribution of the variable. The point estimators of X (X+ and 

X-) and their associated weights (p+ and p-) are defined as, 

 
X X X XX m X m   + + − −= + = −

 (40) 

 1p p p


 
−

+ − +

− +

= = −
+

 (41) 

 where           

2

1
2 2

X X
X

 
   + − +

 
= + = − 

 
 (42) 

and mX, σX and γX are respectively the mean, standard deviation and skewness of X. In the case 

where Y is a function of r independent variables, a set of two-point estimates are defined for each 

variable. An estimate for the nth moment of X is obtained by considering simulation result (yi) from 

all possible combinations (c = 2r) of the two-point estimates for the r random variables, 
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where δj is the identifier (+, -) of the point estimate for variable j, and Pi is the probability associated 

with a given combination (out of 2r combinations) of transport properties. In this case, the 

Rosenblueth point estimation method performs well given that the function is close to linear as a 

function of the diffusion parameters for a given time and depth of concrete cover (Christian and 

Baecher 1999). 

 

6.3 Bayesian Updating Procedure 

The probabilistic estimation procedure described in the previous paragraph provides estimates of 

the conditional distribution of chloride ion content at a given time and depth using prior 

distributions on concrete diffusion parameters. The prior distributions of diffusion parameters are 

assumed to be independent and are obtained from databases on concrete properties for the type of 

concrete used in the structure under study. The uncertainty on chloride ion concentrations as a 

function of time and depth can be fairly large given the variability associated with concrete 

properties for a given mixture and adversely affect predictions of residual life used for optimizing 

maintenance and repair activities (Conciatori et al. 2009a). The uncertainty (standard deviation) 

on predictions also increase linearly as a function of time, which impacts the ability to properly 
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plan future interventions. When core samples are available after given periods of service, this 

information can be used to update the probabilistic model and greatly reduce uncertainties on 

predictions of the residual life. Bastidas-Arteaga et al. (2012) and Richard et al. (2012) propose an 

approach based on Bayesian Networks for parameter identification from core sample data. They 

use a priori uniform distributions for the concentration of chloride ions at the surface (Cs) and the 

effective chloride diffusion coefficient (D). A Monte Carlo simulation procedure is used to obtain 

the conditional probability of chloride content as a function of the parameters D and Cs for the erf 

diffusion model. However, Monte Carlo procedures are computationally too demanding with 

TransChlor®, which uses coupled non-linear finite element and finite difference models to generate 

the hourly time-histories of ion propagation as a function of time and depth. An alternative 

procedure that requires much fewer model evaluations is developed below. 

The posterior distribution for concrete parameters is defined as, 

 
𝑓
[

𝐷𝐻𝑅
𝐷𝐶𝐴𝑃
𝐷𝐶𝐿

]

′′ ∝ 𝑙 ([𝐶𝑙]|(𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝐿,)) ∙ 𝑓
[

𝐷𝐻𝑅
𝐷𝐶𝐴𝑃
𝐷𝐶𝐿

]

′  
(46) 

where 𝑓
[

𝐷𝐻𝑅
𝐷𝐶𝐴𝑃
𝐷𝐶𝑙

]

′ = 𝑓′𝐷𝐻𝑅
∙ 𝑓′𝐷𝐶𝐴𝑃

∙ 𝑓′𝐷𝐶𝐿
is the joint prior distribution for the three random variables 

and 𝑙 ([𝐶𝑙]|(𝐷𝐻𝑅,𝐷𝐶𝑙,𝐷𝐶𝐴𝑃,)) is the likelihood of the chloride ion concentrations observed in the 

core samples as a function of diffusion parameters, 

 𝑙 ([𝐶𝑙]|(𝐷𝐻𝑅,𝐷𝐶𝑙,𝐷𝐶𝐴𝑃,)) = ∏ ∏𝑓 (𝐶𝑖,𝑗|𝑡𝑖, 𝑑𝑖,𝑗, (𝐷𝐻𝑅,𝐷𝐶𝑙,𝐷𝐶𝐴𝑃,))

𝑛𝑖

𝑗=1

𝑛𝑐𝑜𝑟𝑒

𝑖=1

 (47) 
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where ncore is the number of core samples available on the bridge, ni is the number of chloride 

content measurements performed on the ith core sample, ti is the time at which the core sample was 

sampled, dij is the depth of jth chloride ion measurement on core sample i, and where 

𝑓 (𝐶𝑖,𝑗|𝑡𝑖, 𝑑𝑖,𝑗 , (𝐷𝐻𝑅,𝐷𝐶𝑙,𝐷𝐶𝐴𝑃,)) is the conditional distribution of chloride ion content given the 

diffusion parameters. Uncertainty on model predictions are represented by random variables for 

model and sampling uncertainty, 

 𝐶𝑖,𝑗(𝑐𝑜𝑟𝑒) = 𝐶𝑖,𝑗 (𝑝𝑟𝑒𝑑) ∙ 𝜀𝑚 ∙ 𝜀𝑠 (48) 

where the variables εm and εs are assumed to be lognormally distributed. In most instance, the 

computational requirements to evaluate the likelihood function is prohibitive and a simplified 

version of the numerical model has to be used. Chen et al. (2004) review uncertainty propagation 

in numerical models and suggest performing MCS on meta-models such as Response Surface 

Models (RSM). However, the recommended number of simulations required to estimate an RSM 

with three input parameters is greater than 100. 

An alternative is to perform the analysis with a locally linearized since the numerical model is 

close to linear as a function of the diffusion parameters for a given time and depth. For example, 

considering a conditional second moment analysis for the chloride content (Cl) at a given time and 

depth, the mean value vector and covariance matrix between chloride content and diffusion 

parameters are as follows, 
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 [

𝐶𝑙
𝐷𝐻𝑅

𝐷𝐶𝐴𝑃

𝐷𝐶𝑙

]~ [

𝜇𝐶𝑙

𝜇𝐷𝐻𝑅

𝜇𝐷𝐶𝐴𝑃

𝜇𝐷𝐶𝑙

] ,

[
 
 
 
 

𝜎𝐶𝑙
2 𝜎𝐶𝑙,𝐷𝐻𝑅

𝜎𝐶𝑙,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙,𝐷𝐶𝑙

𝜎𝐶𝑙,𝐷𝐻𝑅
𝜎𝐷𝐻𝑅

2 0 0

𝜎𝐶𝑙,𝐷𝐶𝐴𝑃
0 𝜎𝐷𝐶𝐴𝑃

2 0

𝜎𝐶𝑙,𝐷𝐶𝑙
0 0 𝜎𝐷𝐶𝑙

2
]
 
 
 
 

 (49) 

The elements of the mean value vector and covariance matrix are evaluated using prior 

distributions that reflect the large initial uncertainties associated with material properties. The 

conditional mean value for the chloride content given the diffusion parameter is then for the 

linearized model, 

𝜇𝐶𝑙|𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝑙
= 𝜇𝐶𝑙 + [𝜎𝐶𝑙,𝐷𝐻𝑅

𝜎𝐶𝑙,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙,𝐷𝐶𝑙] [

𝜎𝐷𝐻𝑅

2 0 0

0 𝜎𝐷𝐶𝐴𝑃

2 0

0 0 𝜎𝐷𝐶𝑙

2

]

−1

([
𝐷𝐻𝑅

𝐷𝐶𝐴𝑃

𝐷𝐶𝑙

] −

[

𝜇𝐷𝐻𝑅

𝜇𝐷𝐶𝐴𝑃

𝜇𝐷𝐶𝑙

])      (50) 

 𝜇𝐶𝑙|𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝑙
= 𝜇𝐶𝑙 + [

𝜎𝐶𝑙,𝐷𝐻𝑅

𝜎𝐷𝐻𝑅

2

𝜎𝐶𝑙,𝐷𝐶𝐴𝑃

𝜎𝐷𝐶𝐴𝑃

2

𝜎𝐶𝑙,𝐷𝐶𝑙

𝜎𝐷𝐶𝑙

2 ]([

𝐷𝐻𝑅 − 𝜇𝐷𝐻𝑅

𝐷𝐶𝐴𝑃−𝜇𝐷𝐶𝐴𝑃

𝐷𝐶𝑙 − 𝜇𝐷𝐶𝑙

]) (51) 

 

𝜇𝐶𝑙|𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝑙
= 𝜇𝐶𝑙 +

[
𝜌𝐶𝑙,𝐷𝐻𝑅

𝜎𝐶𝑙

𝜎𝐷𝐻𝑅

∙ (𝐷𝐻𝑅 − 𝜇𝐷𝐻𝑅
) +

𝜌𝐶𝑙,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙

𝜎𝐷𝐶𝐴𝑃

∙ (𝐷𝐶𝐴𝑃−𝜇𝐷𝐶𝐴𝑃
) +

𝜌𝐶𝑙,𝐷𝐶𝑙
𝜎𝐶𝑙

𝜎𝐷𝐶𝑙

∙ (𝐷𝐶𝑙 − 𝜇𝐷𝐶𝑙
)]      (52) 

 

This last equation is equivalent to a multilinear regression as a function of the diffusion parameters 

and each term of the equation can be evaluated efficiently using the Rosenblueth point estimation 
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procedure. The mean chloride content is obtained from equation 10 with n =1, while the slope 

parameter for each diffusion parameter (e.g. 
𝜌𝐶𝑙,𝐷𝐻𝑅

𝜎𝐶𝑙

𝜎𝐷𝐻𝑅

for DHR) is estimated as, 

 

 
𝜌𝐶𝑙,𝐷𝐻𝑅

𝜎𝐶𝑙

𝜎𝐷𝐻𝑅

≅
𝐸[𝐶𝑙|𝐷𝐻𝑅+

] − 𝐸[𝐶𝑙|𝐷𝐻𝑅−
]

𝐷𝐻𝑅+
− 𝐷𝐻𝑅−

 (53) 

 

where 𝐷𝐻𝑅+
 and 𝐷𝐻𝑅−

 are define in Eq. 7. The conditional variance of the chloride content is 

obtained as,  

𝜎𝐶𝑙|𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝑙

2 = 𝜎𝐶𝑙
2 − [𝜎𝐶𝑙,𝐷𝐻𝑅

𝜎𝐶𝑙,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙,𝐷𝐶𝑙]

[
 
 
 
 
 

1

𝜎𝐷𝐻𝑅
2 0 0

0
1

𝜎𝐷𝐶𝐴𝑃
2 0

0 0
1

𝜎𝐷𝐶𝑙
2 ]

 
 
 
 
 

[

𝜎𝐶𝑙,𝐷𝐻𝑅

𝜎𝐶𝑙,𝐷𝐶𝐴𝑃

𝜎𝐶𝑙,𝐷𝐶𝑙

]  (54) 

 𝜎𝐶𝑙|𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝑙

2 = 𝜎𝐶𝑙
2 − [

(𝜎𝐶𝑙,𝐷𝐻𝑅
)
2

𝜎𝐷𝐻𝑅

2 +
(𝜎𝐶𝑙,𝐷𝐶𝐴𝑃

)
2

𝜎𝐷𝐶𝐴𝑃

2 +
(𝜎𝐶𝑙,𝐷𝐶𝑙

)
2

𝜎𝐷𝐶𝑙

2
] (55) 

 

 𝜎𝐶𝑙|𝐷𝐻𝑅,𝐷𝐶𝐴𝑃,𝐷𝐶𝑙

2 = 𝜎𝐶𝑙
2 (1 − 𝜌𝐶𝑙,𝐷𝐻𝑅

2 − 𝜌𝐶𝑙,𝐷𝐶𝐴𝑃
2 − 𝜌𝐶𝑙,𝐷𝐶𝑙

2) (56) 

   

The conditional second moment analysis assumes that the conditional variance is constant as a 

function of predictor variables. This last equation can also be evaluated efficiently by using the 

Rosenblueth point estimation procedure. For example, 
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 𝜎𝐶𝑙|𝐷𝐻𝑅

2 = 𝜎𝐶𝑙
2 (1 − 𝜌𝐶𝑙,𝐷𝐻𝑅

2) ≅ 𝜎𝐶𝑙|𝐷𝐻𝑅+

2 ∙ 𝑃+ + 𝜎𝐶𝑙|𝐷𝐻𝑅−

2 ∙ 𝑃−  (57) 

where 𝑃+ and 𝑃− are defined in Eq. 8. 

The first-order second-moment models for the conditional mean and standard deviation are used 

to compute the likelihood of the diffusion parameters given core sample data. The prior 

distributions are used to estimate the conditional distributions and to compute the likelihood 

function of the diffusion parameters given the observations from core samples, for example, in the 

case of DHR,  

 𝑙𝑖𝑘(𝐷𝐻𝑅) ∝ ∏ ∏𝑓(𝐶𝑙𝑖𝑗|𝐸[𝐶𝐼|𝑑𝑖𝑗, 𝑡𝑖 , 𝐷𝐻𝑅], 𝜎[𝐶𝐼|𝑑𝑖𝑗 , 𝑡𝑖, 𝐷𝐻𝑅])

𝑛𝑖

𝑗=1

𝑛𝑐𝑜𝑟𝑒

𝑖=1

 (58) 

where the probability density function is the lognormal distribrution with the conditional mean and 

the condtional variance defined in Eqs 19 and 23 respectively. Similar expressions are derived for 

the likehilood functions for DCL and DCAP. 

If data from a core is available at different depths (e.g. 25 mm and 50 m), the procedure can be 

used to determine optimal model parameters for each depth separately or jointly for all depths and 

type of exposure. In the latter case, the joint conditional distribution for chloride content at two 

depths is used for the likelihood function. The mean value vector and covariance matrix for the 

variables is then, 
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[
 
 
 
 
𝐶𝑙25

𝐶𝑙50

𝐷𝐻𝑅

𝐷𝐶𝐴𝑃

𝐷𝐶𝑙 ]
 
 
 
 

~

[
 
 
 
 
𝜇𝐶𝑙25

𝜇𝐶𝑙50

𝜇𝐷𝐻𝑅

𝜇𝐷𝐶𝐴𝑃

𝜇𝐷𝐶𝑙 ]
 
 
 
 

,

[
 
 
 
 
 
 

𝜎𝐶𝑙25

2 𝜎𝐶𝑙25,𝐶𝑙50
𝜎𝐶𝑙25,𝐷𝐻𝑅

𝜎𝐶𝑙25,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙25,𝐷𝐶𝑙

𝜎𝐶𝑙25,𝐶𝑙50
𝜎𝐶𝑙50

2 𝜎𝐶𝑙50,𝐷𝐻𝑅
𝜎𝐶𝑙50,𝐷𝐶𝐴𝑃

𝜎𝐶𝑙50,𝐷𝐶𝑙

𝜎𝐶𝑙25 ,𝐷𝐻𝑅
𝜎𝐶𝑙50,𝐷𝐻𝑅

𝜎𝐷𝐻𝑅

2 0 0

𝜎𝐶𝑙25,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙50 ,𝐷𝐶𝐴𝑃

0 𝜎𝐷𝐶𝐴𝑃

2 0

𝜎𝐶𝑙25,𝐷𝐶𝑙
𝜎𝐶𝑙50,𝐷𝐶𝑙

0 0 𝜎𝐷𝐶𝑙

2
]
 
 
 
 
 
 

 (59) 

The conditional mean vector is then,  

𝜇
[
𝐶𝑙25
𝐶𝑙50

][⌈
𝐷𝐻𝑅
𝐷𝐶𝐴𝑃
𝐷𝐶𝑙

⌉

= 𝜇
[
𝐶𝑙25
𝐶𝑙50

]
+ [

𝜎𝐶𝑙25,𝐷𝐻𝑅
𝜎𝐶𝑙25 ,𝐷𝐶𝐴𝑃

𝜎𝐶𝑙25,𝐷𝐶𝑙

𝜎𝐶𝑙50,𝐷𝐻𝑅
𝜎𝐶𝑙50 ,𝐷𝐶𝐴𝑃

𝜎𝐶𝑙50,𝐷𝐶𝑙
] [

𝜎𝐷𝐻𝑅

2 0 0

0 𝜎𝐷𝐶𝐴𝑃

2 0

0 0 𝜎𝐷𝐶𝑙

2

]

−1

([

𝐷𝐻𝑅

𝐷𝐶𝐴𝑃

𝐷𝐶𝑙

] −

[

𝜇𝐷𝐻𝑅

𝜇𝐷𝐶𝐴𝑃

𝜇𝐷𝐶𝑙

])  (60) 

𝜇
[
𝐶𝑙25
𝐶𝑙50

][⌈
𝐷𝐻𝑅
𝐷𝐶𝐴𝑃
𝐷𝐶𝑙

⌉

= 𝜇
[
𝐶𝑙25
𝐶𝑙50

]
+

[

𝜌𝐶𝑙25,𝐷𝐻𝑅
𝜎𝐶𝑙25

𝜎𝐷𝐻𝑅

∙ (𝐷𝐻𝑅 − 𝜇𝐷𝐻𝑅
) +

𝜌𝐶𝑙25,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙25

𝜎𝐷𝐶𝐴𝑃

∙ (𝐷𝐶𝐴𝑃−𝜇𝐷𝐶𝐴𝑃
) +

𝜌𝐶𝑙25,𝐷𝐶𝑙
𝜎𝐶𝑙25

𝜎𝐷𝐶𝑙

∙ (𝐷𝐶𝑙 − 𝜇𝐷𝐶𝑙
)

𝜌𝐶𝑙50,𝐷𝐻𝑅
𝜎𝐶𝑙50

𝜎𝐷𝐻𝑅

∙ (𝐷𝐻𝑅 − 𝜇𝐷𝐻𝑅
) +

𝜌𝐶𝑙50,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙50

𝜎𝐷𝐶𝐴𝑃

∙ (𝐷𝐶𝐴𝑃−𝜇𝐷𝐶𝐴𝑃
) +

𝜌𝐶𝑙50,𝐷𝐶𝑙
𝜎𝐶𝑙50

𝜎𝐷𝐶𝑙

∙ (𝐷𝐶𝑙 − 𝜇𝐷𝐶𝑙
)
]   

(61) 

Similarly, the conditional covariance matrix can be derived as, 

Σ
[
𝐶𝑙25
𝐶𝑙50

]|⌈
𝐷𝐻𝑅
𝐷𝐶𝐴𝑃
𝐷𝐶𝑙

⌉

= Σ
[
𝐶𝑙25
𝐶𝑙50

]
−

[
𝜎𝐶𝑙25,𝐷𝐻𝑅

𝜎𝐶𝑙25,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙25,𝐷𝐶𝑙

𝜎𝐶𝑙50,𝐷𝐻𝑅
𝜎𝐶𝑙50,𝐷𝐶𝐴𝑃

𝜎𝐶𝑙50,𝐷𝐶𝑙
]

[
 
 
 
 
 

1

𝜎𝐷𝐻𝑅
2 0 0

0
1

𝜎𝐷𝐶𝐴𝑃
2 0

0 0
1

𝜎𝐷𝐶𝑙
2 ]

 
 
 
 
 

[

𝜎𝐶𝑙25,𝐷𝐻𝑅
𝜎𝐶𝑙50 ,𝐷𝐻𝑅

𝜎𝐶𝑙25,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙50,𝐷𝐶𝐴𝑃

𝜎𝐶𝑙25 ,𝐷𝐶𝑙
𝜎𝐶𝑙50,𝐷𝐶𝑙

]      (62) 
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Σ
[
𝐶𝑙25
𝐶𝑙50

]|⌈
𝐷𝐻𝑅
𝐷𝐶𝐴𝑃
𝐷𝐶𝑙

⌉

= Σ
[
𝐶𝑙25
𝐶𝑙50

]
−

[
 
 
 
 (𝜎𝐶𝑙25,𝐷𝐻𝑅

)
2

𝜎𝐷𝐻𝑅
2 +

(𝜎𝐶𝑙25,𝐷𝐶𝐴𝑃
)
2

𝜎𝐷𝐶𝐴𝑃
2 +

(𝜎𝐶𝑙25,𝐷𝐶𝑙
)
2

𝜎𝐷𝐶𝑙
2

𝜎𝐶𝑙25,𝐷𝐻𝑅
𝜎𝐶𝑙50,𝐷𝐻𝑅

𝜎𝐷𝐻𝑅
2 +

𝜎𝐶𝑙25,𝐷𝐶𝐴𝑃
𝜎𝐶𝑙50,𝐷𝐶𝐴𝑃

𝜎𝐷𝐶𝐴𝑃
2 +

𝜎𝐶𝑙25,𝐷𝐶𝑙
𝜎𝐶𝑙50,𝐷𝐶𝑙

𝜎𝐷𝐶𝑙
2

𝑠𝑦𝑚
(𝜎𝐶𝑙50,𝐷𝐻𝑅

)
2

𝜎𝐷𝐻𝑅
2 +

(𝜎𝐶𝑙50,𝐷𝐶𝐴𝑃
)
2

𝜎𝐷𝐶𝐴𝑃
2 +

(𝜎𝐶𝑙50,𝐷𝐶𝑙
)
2

𝜎𝐷𝐶𝑙
2 ]

 
 
 
 

   

(63) 

Given the vector of the conditional mean chloride content and the conditional covariance matrix, 

the likelihood function is then evaluated for the multivariate lognormal distribution. In this case, 

 [
𝑙𝑛(𝐶𝑙25|𝐷𝐻𝑅)

𝑙𝑛(𝐶𝑙50|𝐷𝐻𝑅)
]~𝑁 [[

𝜇𝑙𝑛(𝐶𝑙25|𝐷𝐻𝑅)

𝜇𝑙𝑛(𝐶𝑙50|𝐷𝐻𝑅)
] , [

𝜎𝑙𝑛(𝐶𝑙25|𝐷𝐻𝑅)
2 𝜎𝑙𝑛(𝐶𝑙25|𝐷𝐻𝑅),𝑙𝑛(𝐶𝑙50|𝐷𝐻𝑅)

𝑠𝑦𝑚 𝜎𝑙𝑛(𝐶𝑙50|𝐷𝐻𝑅)
2 ]] (64) 

where 

 

𝜎𝑙𝑛(𝐶𝑙25|𝐷𝐻𝑅),𝑙𝑛(𝐶𝑙50|𝐷𝐻𝑅)

= 𝑙𝑛(𝐸[𝐶𝑙25 ∙ 𝐶𝑙50]|𝐷𝐻𝑅) − 𝜇𝑙𝑛(𝐶𝑙25|𝐷𝐻𝑅)

− 𝜇𝑙𝑛(𝐶𝑙50|𝐷𝐻𝑅) − (
𝜎𝑙𝑛(𝐶𝑙25|𝐷𝐻𝑅)

2 + 𝜎𝑙𝑛(𝐶𝑙50|𝐷𝐻𝑅)
2

2
) 

(65) 

and 

 𝜌 = 𝑙𝑛 (
𝜎𝐶𝑙25|𝐷𝐻𝑅

,𝐶𝑙50|𝐷𝐻𝑅

𝐸[𝐶𝑙25|𝐷𝐻𝑅
] ∙ 𝐸[𝐶𝑙50|𝐷𝐻𝑅

]
+ 1) ∙

1

𝜎𝑙𝑛𝐶𝑙25|𝐷𝐻𝑅
∙ 𝜎𝑙𝑛𝐶𝑙50|𝐷𝐻𝑅

 (66) 

The likelihood function for the observations at 25 mm and 50 mm depth on core samples is, 
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𝑙𝑖𝑘(𝑙𝑛𝐶𝑙25, 𝑙𝑛𝐶𝑙50)

= ∏
1

2𝜋𝜎𝑙𝑛𝐶𝑙25
∙ 𝜎𝑙𝑛𝐶𝑙50

∙ 𝑙𝑛𝐶𝑙25 ∙ 𝑙𝑛𝐶𝑙50√1 − 𝜌2
𝑒𝑥𝑝 [−

1

2(1 − 𝜌2)
{(

∙ 𝑙𝑛𝐶𝑙25 − 𝜇𝑙𝑛𝐶𝑙25

𝜎𝑙𝑛𝐶𝑙25

)

2𝑛

𝑖=1

− 2𝜌 (
∙ 𝑙𝑛𝐶𝑙25 − 𝜇𝑙𝑛𝐶𝑙25

𝜎𝑙𝑛𝐶𝑙25

)(
∙ 𝑙𝑛𝐶𝑙50 − 𝜇𝑙𝑛𝐶𝑙50

𝜎𝑙𝑛𝐶𝑙50

) + (
∙ 𝑙𝑛𝐶𝑙50 − 𝜇𝑙𝑛𝐶𝑙50

𝜎𝑙𝑛𝐶𝑙50

)

2

}] 

(67) 

 

6.4 Application to Bridges in Montreal 

Among North American cities, Montreal has one of the most severe climates for the environmental 

exposure of its infrastructures and in particular bridges. A large proportion of the bridges in 

Montreal were constructed between 1960 and 1970. Materials used during that time period were 

predominantly cement type I at 350 kg/m3 with water/cement ratios of 0.5, an air content of 1.5% 

of mass of cement, and limestone aggregates. The distribution for the diffusion parameters for this 

type of concrete are listed (Table 6-1) and are derived from a compilation of concrete properties 

by (Conciatori et al. 2009a)  

The input parameters that control salt spreading in the simulations with TransChlor® are the 

average quantity of sodium chloride spread per intervention, and the time between two spreading 

operations (tinterval) during a precipitation event. The application rate of sodium chloride per 

intervention is set at 140 kg/Lane-km (Morin and Perchanok 2000) which is the mean application 

rate for expressways and bare pavement conditions in Eastern Canada. The mean value also 

matches the recommended application rate provided in the CEPA Priority Substance List 

Assessment Report (Canada 2001). The salt dissolution is very influential on numerical results and 
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is a highly uncertain parameter. Indeed the outcome of salt that has been spread is random and 

depends on factors such as traffic level and speed, and snow removal operations. 

Figure 6-4 illustrates the influence of the application rate of sodium chloride on chloride ion 

concentration as a function of depth from the exposed surface after 45 years of exposure for a 

structure in Montreal (Wolofsky 2011b). The time between salting operations during a winter 

storm is set at 8 hours for typical bridges. The analysis simulates exposure for the last 45 years of 

service life using hourly climatic data for Montreal. The climate data obtained from Environment 

Canada was in 1/10°C (Figure 6-5). The concrete is modelled with finite elements (1D) with a 

resolution of 2 mm and for a maximum depth of 400 mm. This thickness is larger than the actual 

thickness of the slab but has been selected to avoid numerical issues with open boundary 

conditions. Note that since the deck is part of a box girder, the internal face of the slab is not 

exposed to the environment or salt. 

A probabilistic analysis is performed to account for the uncertainty on material properties. The 

TransChlor® model allows the user to consider up to four variables for concrete properties in the 

probabilistic approach 1) the hydraulic transport of water by diffusion (DHR), 2) the hydraulic 

transport of water by capillary suction (DCAP), 3) the ionic transport of chlorides (DCL), and 4) the 

carbonation (DCO2). The temperature of concrete influences the hydraulic transport properties 

(DHR, and DCAP), as well as the ionic transport of chlorides (DCL) and water concentration 

influences the ionic transport of chlorides, (DCL), and carbonation, (DCO2). These dependencies are 

incorporated directly in the TransChlor® software (Conciatori et al. 2010). For the probabilistic 

analysis, all the parameters except for carbonation were selected, since analyses indicate that the 

depth of carbonation for all exposure conditions did not exceed 10 mm after 45 years. Therefore, 

only three variables were considered which requires 8 (=23) simulations for the application of the 
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Rosenblueth point-estimation procedure. The exposure conditions selected for the simulations 

correspond to splash and direct exposures, which are representative of exposure conditions where 

core samples were collected. For the probabilistic approach, mean and standard deviations for the 

three parameters are specified and used to compute the mean and standard deviation of the chloride 

ion concentration as a function of time and depth (Table 6-1). As discussed in (Conciatori et al. 

2009b; Conciatori et al. 2014) the lognormal distribution is used for all the random variables. 

During the winter months, the concentrations of chloride ions fluctuate greatly near the concrete 

surface (i.e. within the breathing zone). This is due to capillary action and from alternating periods 

of high surface concentrations of chloride ions (during and shortly after salting operations) 

followed by low surface concentrations of chloride ions. Comparing the simulation results at 25 

mm and 50 mm depths indicates that the chloride ion concentration at 25 mm depth is much more 

variable in time than the corresponding measurements at 50 mm depth and that predictions are 

dependent on meteorological conditions prior to sampling (Figure 6-4 and Table 6-2). The peaks 

in the figures correspond to salting operations while the downward trends correspond to summer 

months when chloride ions slowly diffuse deeper into the concrete. In this case, all core samples 

were obtained outside the winter period. In this case, the simulations with TransChlor® correspond 

to the same time during the service of the structures when core samples were obtained. If core 

samples are obtained at different times during the service life, results should be compiled for each 

time of sampling. In this case, it is important to note that the core samples were obtained during 

the summer months, long after the concrete surface was exposed to the application of de-icing 

salts. 
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Figure 6-4 Chloride ion distribution at the depth of A) 25 mm and B) 50 mm in 45 years with the 

salt/water dissolution ratio of 8%. Chloride ion profiles after 45 years for salt/water dissolution 

ratio of C) 6% and D) 8%. 
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Table 6-1: Average values, distinct values, and weights for Rosenblueth point estimation. 

 

Parameter  μ (mm2/s) μ (ln) s (ln) C.O.V 

(%) 

X- 

(mm2/s) 

X+ (mm2/s) p- p+ 

DHR 

(mm2/s) 

1.3 × 10-4 -8.99 0.294 30 9.28 × 10-5 1.67 × 10-4 0.573 0.427 

DCAP 

(mm/s) 

6.5 × 10-4 -7.38 0.294 40 4.64 × 10-4 8.34 × 10-4 0.573 0.427 

DCL 

(mm2/s) 

4.9 × 10-6 -12.3 0.385 10 3.09 × 10-6 6.68 × 10-6 0.595 0.405 

B A 

C D 

Figure 6-5 Typical Data on Exposure Conditions for Montreal. (A) Air temperature, (B) Relative 

humidity, (C) Precipitation, and (D) Solar radiation. 
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Results from measurements on core samples are compared with predictions for direct exposures 

at depths of 25 mm and 50 mm. The measurements of chloride ion content on cores are quite 

variable, which can be attributed to the spatial variability of concrete properties and of local 

exposure conditions (Suo and Stewart 2009). 

Table 6-2: Chloride content after 45 years at 25mm and 50mm depth for direct exposure (run: 

ijk, i: DHR, j: DCAP, k: DCL). 

Run 

(ijk) 

Parameter Chloride ion content 

DHR DCAP DCL 25mm 50mm 

111 9.280 × 10-5 4.460 × 10-4 3.090 × 10-6 9.987 5.212 

112 9.280 × 10-5 4.460 × 10-4 6.680 × 10-6 9.011 4.984 

121 9.280 × 10-5 8.340 × 10-4 3.090 × 10-6 6.136 5.301 

122 9.280 × 10-5 8.340 × 10-4 6.680 × 10-6 6.152 4.612 

211 1.670 × 10-4 4.460 × 10-4 3.090 × 10-6 8.118 6.390 

212 1.670 × 10-4 4.460 × 10-4 6.680 × 10-6 7.822 6.302 

221 1.670 × 10-4 8.340 × 10-4 3.090 × 10-6 2.912 6.710 

 

Table 6-3: Rosenblueth point estimates for the conditional mean and standard deviation of 

chloride content at 25 mm and 50 mm depth. 

Depth 25mm 50mm 

DHR µcl|DHR σcl|DHR µlncl|DHR σlncl|DHR µcl|DHR σcl|DHR µlncl|DHR σlncl|DHR 

1.670 × 10-4 5.920 2.416 1.701 0.392 6.415 0.185 1.858 0.029 

9.280 × 10-5 8.119 1.744 2.072 0.212 5.078 0.241 1.624 0.048 

DCAP µcl|DCAP σcl|DCAP µlncl|DCAP σlncl|DCAP µcl|DCAP σcl|DCAP µlncl|DCAP σlncl|DCAP 

8.340 × 10-4 4.857 1.499 1.535 0.302 5.652 0.791 1.722 0.139 

4.460 × 10-4 8.911 0.873 2.183 0.098 5.647 0.617 1.725 0.109 

DCL µcl|DCL σcl|DCL µlncl|DCL σlncl|DCL µcl|DCL σcl|DCL µlncl|DCL σlncl|DCL 

3.090 × 10-6 7.298 2.524 1.931 0.336 5.795 0.641 1.751 0.110 

6.680 × 10-6 7.006 1.992 1.908 0.279 5.435 0.720 1.684 0.132 
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The conditional distribution of the chloride content as a function of diffusion parameters is 

obtained at first by neglecting the modelling and the sampling uncertainty in order to evaluate the 

sensitivity of the model to the diffusion parameters. The conditional distribution of the chloride 

content as a function of DHR shows different tendancies at 25 mm and 50 mm depths (Figure 6-6). 

Cl decreases with increasing DHR at shallow depths since a higher DHR promotes higher mobility 

of water down into the concrete as shown by the large fluctuations of Cl with each precipitation 

event. At 50 mm depth, the Cl increases with DHR since more of the Cl is transported inside the 

concrete and concnetratinos are less sensitive to precipitation events. Note that since the core 

samples are taken during the summer months, the DHR at 25 mm depth influences the flushing of 

the Cl out of the concrete with precipitation events while at 50 mm, it promotes the migration of 

Cl from the shallow locations to deeper locations within the concrete. The results at 50 mm also 

indicates that DHR is the most influential parameter since there is very little varaibility in the 

chloride content as a function of DHR. For the chloride ion content at 25 mm, the likelihood 

function of DHR given core sample data is very close to the the prior distrituion such that the 

posterior distribution is similar to the prior but with less uncertainty with a mode close to 1.1x10-

4. For the chloride content at 50 mm, the likelihood function is very narrow and shifted towards 

low values of DHR. The mode of the posterior distribution is close to 0.7x10-4. The conditional 

distribution of chlroide content at 50 mm has a small conditional variance indicting that DCAP and 

DCL have little effect. Combining the data at both depths by assuming independence results in a 

posterior distribution with a mode at 8.0x10-4 (Figure 6-7). The difference observed between 

predictions and core sample data is attributed to modelling and sampling uncertainty, which is 

modelled as a combined lognormal random variable with mean of 1 and a coefficient of variation 
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of 0.20. When considering these uncetainties, the mode of the posterior distribution are more 

consistent and have a joint posterior mode at 1.05x10-4 and a large variance. 

 

Figure 6-6 Prior, likelihood and posterior distributions of DHR at A) 25 mm and B) 50 mm depth; 

C) 25 mm (with model and sampling uncertainties) and D) 50 mm depth (with model and 

sampling uncertainties) (the black lines correspond to the conditional distribution of Cl as a 

function of DHR, the red lines corresponds to the core sample data). 



176 

  

 

 

Figure 6-8 shows that the diffusion coefficient by capillarity is the most influential parameter for 

the chloride ion concentration at 25 mm depth, which decreases significantly with an increase in 

DCAP. As expected, this parameter is not influential for the chloride ion content at greater depths 

(> 50 mm). The Cl at 25 mm is highly depenedent on DCAP since it is greatly affected by capillarity 

due to its proximity to the surface, the Cl at 50 mm is almost constant with DCAP because capillarity 

effect are negligible at these depths. The likelihood funtion is almost uniform and the posterior 

distribution at 50 mm is similar to the prior distribution. For a depth of 25 mm, the mode of the 

posterior distribution is shifted to higher values and is equal to 0.0065 and has smaller uncertainty. 

As would be expected the likelihood function when combining the data at the two depths is 

dominated by the results at 25 mm (Figure 6-9). The results are very similar when he sampling 

and modelling uncertainties are consisdered. 

Figure 6-7 Prior, likelihood and posterior distributions of DHR for the combined likelihoods 

assuming independence: A) No model and no sampling uncertainty; B) With model and sampling 

uncertainties. 
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Figure 6-8 Prior, likelihood and posterior distributions of DCAP at A) 25 mm and B) 50 mm depth; 

C) 25 mm (with model and sampling uncertainties) and D) 50 mm depth (with model and 

sampling uncertainties) (the black lines correspond to the conditional distribution of Cl as a 

function of DCAP, the red lines corresponds to the core sample data). 



178 

  

 

Figure 6-10 shows that the choride ion diffusion coefficient (DCL) has very little influence on the 

chloride ion content at both 25 mm and 50 mm depths as compared to the other two coefficients. 

 

 

 

Figure 6-9 Prior, likelihood and posterior distributions of DCAP for the combined likelihoods 

assuming independence: A) No model and no sampling uncertainty; B) With model and sampling 

uncertainties. 
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The posterior distribution for the combined likelihoods is very similar to the one obtained for 

50 mm (Figure 6-11). 

Figure 6-10 Prior, likelihood and posterior distributions of DCL at A) 25 mm and B) 50 mm 

depth; C) 25 mm (with model and sampling uncertainties) and D) 50 mm depth (with model and 

sampling uncertainties) (the black lines correspond to the conditional distribution of Cl as a 

function of DCL, the red lines corresponds to the core sample data). 
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Next, the updating procedure is implemented such that the likelihood function is based by 

considering the best diffusion parameters given observations on a core at multiple depths. The 

correlation coefficients for the chlroride ion content at 25 mm and 50 mm are computed for each 

of the diffusion parameters and are presented in Table 6-4. The coefficients indicate that the 

chloride content at the two depths are negatively correlated.  

 

Table 6-4: Correlation coefficients (lognormal and normal) for the conditional distributions of 

Chloride ion content at 25 mm and 50 mm given DHR, DCAP and DCL. 

  𝜌𝐶𝑙25𝐶𝑙50
 𝜌𝑙𝑛𝐶𝑙25𝑙𝑛𝐶𝑙50

 

DHR 1.670 × 10-4 -0.436 -0.455 

Figure 6-11 Prior, likelihood and posterior distributions of DCL for the combined likelihoods 

assuming independence: A) No model and no sampling uncertainty; B) With model and sampling 

uncertainties. 
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9.280 × 10-5 -0.180 -0.182 

DCAP 

8.340 × 10-4 -0.942 -0.988 

4.460 × 10-4 -0.523 -0.527 

DCL 

3.090 × 10-6 -0.610 -0.637 

6.680 × 10-6 -0.305 -0.314 

The mode of the posterior of DHR is similar to the one obtained previously under the assumption 

of independence (Figure 6-12). 

 

 

In the case of DCAP, the mode of the distribution is similar to the one obtained previously under the 

assumption of independence but the uncertainty of DCAP is greatly reduced because the chloride 

contents at 25 mm and 50 mm are strongly negatively correlated (Figure 6-13). 

Figure 6-12 Prior, likelihood and posterior distributions of DHR for the joint distribution of 

chloride ions at 25 mm and 50 mm jointly: A) No model and no sampling uncertainty; B) With 

model and sampling uncertainties. 
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In the case of DCL, the effect of the negative correlation between chloride concentrations at 25 mm 

and 50 mm depths is to shift the posterior distribution to slightly values of DCL but effect is 

negligible when both sampling and model uncertainties are considered (Figure 6-14). 

Figure 6-13 Prior, likelihood and posterior distributions of DCAP for the joint distribution of 

chloride ions at 25 mm and 50 mm jointly: A) No model and no sampling uncertainty; B) With 

model and sampling uncertainties. 

Figure 6-14 Prior, likelihood and posterior distributions of DCL for the joint distribution of 

chloride ions at 25 mm and 50 mm jointly: A) No model and no sampling uncertainty; B) With 

model and sampling uncertainties. 
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6.5 Conclusions and Recommendations 

The techniques for modelling deterioration processes for infrastructures have evolved rapidly over 

the last decades in the context of the increasing number of ageing structures and the need to predict 

their residual life as accurately as possible in order to maintain an acceptable level of reliability 

for existing structures and for developing timely and economically optimal intervention plans. For 

structures located in northern climates, the dominant mode of deterioration of concrete is corrosion 

associated with the ingress of chloride ions from salt spreading. Given the uncertainty and 

variability in these parameters, the analysis of chloride ion ingress is best performed 

probabilistically. Prior distributions on concrete parameters can be generally obtained from 

databases for similar concretes. When core samples with chloride content are available, this 

information can be used to reduce the uncertainty on model parameters through Bayesian updating 

and improve residual life predictions.  

The main contribution of this work is the development of an efficient updating procedure to reduce 

the uncertainty on diffusion parameters of concrete, using observations from core sample data. A 

reduction in this uncertainty allows for improved estimates of the residual life of structures, which 

is the most important input in planning and allocating funds for maintenance/repair/replacement 

of bridges. The procedure can be applied for multiple core samples as well as for observations of 

chloride content at different depths. 

The likelihood function given core sample data is derived using a conditional surrogate model for 

the time and depth at which core sample data is available. The surrogate model is based on the 

conditional mean and the conditional variance, which are estimated efficiently with Rosenblueth 

point estimators, and the assumption of the lognormal distribution for the chloride content. The 
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model can also account for the spatial correlation between predictions at different depths. The 

updating procedure is illustrated for a bridge located in Montreal that has been in service for forty 

years with data available from 3 core samples at depths of 25 mm and 50 mm.  

Moreover, the likelihood function provides a means of evaluating the predictive ability of the 

model by comparing the range of optimal diffusion parameters for different depths. Results can 

also be used to analyze the sensitivity of the predictions in relation to each of the random variables. 

In this case, the results indicate that at shallow depths (25 mm) the chloride content is mainly 

controlled by diffusion capillarity diffusion coefficient (DCAP) with little uncertainty contributed 

by the other two diffusion parameters. Conversely, at 50 mm depth, the chloride content is 

controlled mainly by the hydraulic diffusion coefficient (DHR) with little uncertainty contributed 

by the other coefficients. For both depths, the chloride diffusion coefficient plays a minor role. 

The results also show that sampling uncertainty can be fairly large and could be attributed to the 

spatial variability of the penetrating chloride ions, for example due to local pounding of water at 

the surface of a slab. 

The results that were presented was for core samples collected on the deck of a bridge. The next 

step would be apply the procedure to a bridge with a larger number of core samples obtained at 

different times during the service life of the bridge and at locations with exposure associated with 

the splash zone and with mist exposures (e.g. under an overpass), which often exhibit more severe 

degradations due to the large number of wet/dry cycles. 
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 Original Research Contributions and Recommendations 

for Future Research 

 

7.1 Original Research Contributions 

• In this study, numerical models of the diffusion process and chemical reactions of chloride 

ions in concrete are used to estimate the time to initiation of corrosion and for the 

progression of corrosion. The analyses are performed for a range of typical concrete 

properties, exposure and climatic conditions. The results from these simulations are 

successfully used to develop parametric surrogate Markov chain models of increasing 

states of deterioration. The surrogate models are more efficient than physical models for 

the portfolio analysis of a large number of structures. The procedure provides an alternative 

to Markov models derived from condition ratings when historical inspection data is limited. 

• This research introduces a new framework that incorporates risks in economic benefits and 

costs by modelling the interactions and uncertainties associated with physical and financial 

variables in the context of infrastructure management. This framework includes in the 

model a variable capturing traffic density and the loss of usefulness to the driver 

(congestion implies less time saved). As the metropolitan area grows, the bridge may not 

yield much economic benefit if there is too much congestion. Moreover, the framework 

also allows for different climate change scenarios to better capture the true long run 

uncertainty facing decision-makers in infrastructure. By making the infrastructure last 

longer and by postponing the need for building new infrastructure, the proposed approach 
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in this work is environmentally more sustainable and is applicable to any infrastructure 

project. 

• This study also successfully develops an efficient updating procedure to reduce the 

uncertainty on diffusion parameters of concrete, using observations from core sample 

data. A reduction in this uncertainty allows for improved estimates of the residual life of 

structures, which is the most important input in planning and allocating funds for 

maintenance/repair/replacement of bridges. The procedure can be applied for multiple core 

samples as well as for observations of chloride content at different depths. A surrogate 

model is also proposed for the conditional mean and variance of the chloride content given 

that the core sample was obtained at a given time and depth using a point estimation 

procedure that greatly reduces the requirements for the number of simulations that need to 

be performed with the full finite element/finite difference model. The model can also 

account for the spatial correlation between predictions at different depths. 

• Considering the numerous sources of uncertainties associated with the performance of 

structures and economics over their life cycle, a risk-informed decision-making process is 

proposed in this research to identify the most effective strategies to satisfy performance 

requirements at minimal cost. The decision problem is formulated as a multi-objective 

optimization problem for targeted performance levels and total costs and solved using both 

MOPSO and NSGA-II. The presentation of optimal solutions as a Pareto Front defines a 

spectrum of solutions that provides flexibility as a function of the priorities of the decision-

maker. The proposed work is also able to determine the optimal sequence of 

maintenance/repair/replacement activities over the service life of a structure, and 
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moreover, have a better understanding of the effectiveness and interaction between minor 

and major repairs. 

• The analysis of the generated trade-offs between objectives shows that the model was able 

to generate a wide range of optimal trade-off solutions through the consideration of all 

specified policies and constraints, and therefore the decision-makers could select the 

maintenance strategy for a specific bridge based on the available budget. A consensus 

should be reached between the relevant authority with jurisdiction and the owners in terms 

of the criteria regarding a suitable level of reliability and serviceability. 

 

7.2 Recommendations for Future Work  

• The original procedures that are developed in this thesis were applied to the concrete deck 

of a reinforced bridge. The next step is to expand the application of these procedures to the 

other elements of bridge that have different deterioration rates and impacts on level of 

service. One interesting aspect will be to examine the performance of models for elements 

in the splash and mist exposure zones in a bridge, which are produce multiple wet/dry cycle 

and zones where severe damage is often observed. Results from research that is currently 

being done on the micro-climate of bridges (temperature and humidity profiles, splash and 

mist patterns) should be incorporated in future deterioration models. 

• Results obtained in this thesis have highlighted how core sample data can be used to update 

parameters for deterioration models. The method should be used on bridges with more core 

samples and also on bridges where samples have been obtained form elements with 
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different types of exposure (i.e. splash and mist). The results from updating would be useful 

to make inferences on the performance of the model for the different types of exposures. 

The model updating procedure should be extended to include the case where embedded 

chloride ion probes provide continuous information on the chloride content. 

• The observations of visual distress at the surface of concrete elements are the primary input 

for the condition assessment of bridge elements. There is a need to better understand the 

relation between these visual signs of distress and the true state of deterioration. This can 

be accomplished through the models and the procedures that have been outlined in the 

thesis.  

• The optimization procedures that were presented in this thesis could be extended to include 

all possible tasks in the maintenance/repair of bridge elements to minimize the number of 

disruptions during the lifecycle of a bridge as well as for a network of bridges. In the latter 

case, impacts on overall transportation networks can be greatly amplified. 

• The evaluation of costs associated with users are based on shadow costs associated with 

the average user of the bridge. In some cases, these costs have been shown to greatly exceed 

the costs of repairs themselves. There is a need to revaluate shadow prices in order to 

determine if they truly represent the economic impact to maintenance/repair traffic 

disruptions since they have potentially a dominant impact on optimal planning decisions. 

 


