
A method for selecting macro-scale structures with axially loaded members

D. Pasini1, S.C. Burgess2, D. J. Smith3

1 Department of Mechanical Engineering, McGill University, Montreal, Quebec, H3A 

2K6, Canada. Corresponding author contacts: email damiano.pasini@mcgill.ca, tel. 514 

398 6295, fax. 514 398 5256

2 Department of Mechanical Engineering, Bristol University, Queen's Building, 

University Walk, Clifton, Bristol, BS8 1TR. U.K. email s.c.burgess@bristol.ac.uk, tel. 

+44 (117) 331 7642.

3 Department of Mechanical Engineering, Bristol University, Queen's Building, 

University Walk, Clifton, Bristol, BS8 1TR. U.K. email David.Smith@bristol.ac.uk, tel.: 

+44 (117) 928 8075.

* Title Page w/ ALL Author Contact Info.

mailto:damiano.pasini@mcgill.ca
mailto:s.c.burgess@bristol.ac.uk
mailto:David.Smith@bristol.ac.uk


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Structural Form Selection

1

A method for selecting macro-scale structures with axially loaded members

ABSTRACT

This paper presents a method to support the selection of lightweight large-scale structures. 

The method enables the ranking of alternative structural forms, whose axially loaded members 

can resist to either instability failure or material yield. Unlike previous approaches for concept 

design, this work models buckling failure to assess the interaction between the choice of a

structural form and the choice of the cross-section shapes of its constituents. Shape transformers 

and scaling factors are introduced to characterize the structural efficiency of alternative cross-

sectional shapes. Such parameters are dimensionless and enable to measure the shape efficiency 

without specifying the details of the cross-section geometry. The approach eases optimization at

the concept design stage and it permits to assess how the selection of the member cross-sections 

impacts the lightweight potential of the structural topology. The model is used to construct charts 

for optimizing and selecting alternative forms.

The method is applied in an industrial setting in order to compare three different structural 

concepts for a particular design application. The case study identified the potential performance 

of three structural forms and gave insight into the selection of the parameters that most influence 

structural performance.

KEYWORDS: lightweight design, optimization charts, performance indices, Shape 

Transformers, structural concept selection.
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1 Introduction

Mass-efficiency is often an important design goal for large-scale structures such as bulk 

material handling equipment, cranes and bridges. A single machine for bulk handling of iron ore 

or coal can weigh up to several thousand tonnes. Such a large mass leads to high material costs, 

high manufacturing costs and high transport costs. Low mass is also an important means for

reducing environmental impact. In order to achieve low mass it is necessary to select an efficient 

structural form at the conceptual design stage. The selection of an efficient structural form is a 

challenge for a number of reasons:

 There is a wide range of different structural forms to choose from.

 There is a wide range of cross-sectional shapes and materials of constituent elements to 

choose from.

 Buckling failure modes must be considered in the selection process, especially for large 

structural forms.

Over the last century, many authors have investigated the optimum selection of structural 

concepts. Michell (1) was the first who set the basis of a fundamental theory for modeling

optimum structural forms. In the 1960's Chan (2) and Chan (3) used the Michell theory to 

develop a method of graphical construction of theoretically optimal layouts. Cox (4) attempted to 

prove the validity of the fundamental theory for practical cases of structural design. In more 

recent years, Burgess (5) presented a method for ranking the efficiency of simply supported and 

centrally loaded structures using optimum Michell layouts as a benchmark. This was also applied 

to structures subjected to different load cases (6). However, in all the above research studies for 

concept design, failure by buckling was not modelled.  
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Other related works by Cox (4), Shanley (7), Caldwell and Woodhead (8), and Ashby (9)

focused on cross-sectional shape selection and material selection of a single structural element. 

However, these methods cannot be integrated with form selection unless all dimensions of cross-

sections (length, width, and thickness) are assumed to remain proportional. This limitation was 

overcome recently with a method that can model the efficiency of cross-sections where there is 

scaling in any arbitrary direction (10-12).

This paper presents a method for modeling the efficiency of large-scale structural forms 

where buckling is included. Whereas previous approaches for concept selection consider yield as 

the only failure mode (1-8), this work introduces shape transformers, scaling factors and an 

envelope efficiency parameter to characterize the geometric cross-section properties that govern 

buckling resistance. Parametric equations and design charts are developed to support the selection 

of structural forms and have been applied to an industrial case study. The charts give the designer 

insight into the interaction between cross-section selection and form selection. 

2 Research context

This research work was carried out in collaboration with a company specializing in handling 

equipment for loading, unloading and storing bulk products. A main service of the company is to

design and manufacture machines specialized in moving raw material from their source to the 

ultimate point of use via railways, ships and conveying systems. A typical example of machine is 

shown in Figure 1. The installations range from 300 to 6000 tonnes per hour with boom lengths 

up to 65 metres and bucket wheel diameter up to 10 meters. The main mass of the structure can 

slew on an axial bearing in order to form parallel piles on each side of the railway track. The 

machine shown in Figure 1 is named reclaimer because it recovers material from the bucket 

wheel to the central pillar.
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2.1 Industrial requirements

The company aimed to identify alternative concepts for the reclaimer (Figure 1) that could 

exploit the potential of the structural form. Besides this purpose, the industry specifies others 

requirements that include:

1. developing a systematic method that could model the efficiency of different pin-

jointed frame topologies in two dimensions.

2. including buckling failure in the modeling from the concept stage and assessing its 

impact on the selection of structural form concepts.

3. exploring how the structural efficiency changes with the framework size, which is

specified by the max height and span of a machine.

4. discriminating the efficiency benefits provided by the form of a structure from those 

provided by its cross-sections.

5. providing design charts that show trends of performance in addition to the optimum 

values. 

2.2 Assumptions

For modeling structural efficiency at the concept stage of design, the following simplifications 

were arranged with the industry:

1. The main load is assumed to be static and uniformly distributed over the horizontal 

boom (Figure 2). Its magnitude includes the weight of the raw material and an 

estimation of its own weight. On the opposite side, however, there is no restriction on 

the position and load distribution of the counterweight.
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2. The proposed alternatives are assumed to be pin-jointed two dimensional frameworks 

and to have joints with negligible weight and stiffness. The equations of equilibrium 

are used to estimate the internal forces. 

3. The constituent members have uniform cross-section along their lengths. 

4. The maximum allowable stress, y, is the same in tension and compression.

The above assumptions are used in Section 3 to formulate the structural weight for a pin-

jointed framework that may fail for material yield and for buckling collapse.

3 The objective function

Consider a pin-jointed structure consisting of n members and made from a single type of 

material. The length of a typical member i is Li, its area is Ai and the volume is AiLi. The total 

weight, W, of the structure is the objective function and it is given by:





n

i
ii LAgW

1

 (1a)

where is the density of the material and g is the gravitational constant.

Compression and tension members are included in Equation (1a), so that the structural weight 

is:









 



n

i

c
i

c
i

n

i

t
i

t
i LALAgW

11

 (1b)
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where c
iA , c

iL  and t
iA , t

iL  are the cross-sectional areas and lengths of the compression and 

tension elements respectively. We now derive the expression of the area c
iA  and t

iA  required to 

withstand the external load. 

3.1 Structural weight of frames failing for yield

If buckling does not occur, material yield causes structure failure. This scenario has been 

investigated extensively in the past to contrast the lightweight potential of alternative topologies 

for pin-jointed frames (1-8).

The variables c
iA  and t

iA  of each structural member can be simply expressed in term of the 

load and the yield stress, and they can be substituted into Equation (1b). For tension members, the 

minimum area, t
iA , does not depend on the shape of the cross-section and it is given by:

y

t
it

i

F
A


 (2)

where t
iF  is the internal force in each tension element caused by the load requirement.

Similarly, for compressive members where buckling does not govern, the minimum area, c
iA , 

of an element does not depend on the shape of the cross-section and it is given by:

y

c
ic

i

F
A


 (3)

where c
iF  is the internal force in each compression member caused by the load requirement.

Substituting Equations (2) and (3) in (1b) gives the total weight of a framework as:
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

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
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11

 (4)

Equation (4) confirms that the weight of a structure varies with the number of members, n, 

the forces magnitude, the member lengths as well as the material properties. Because the 

geometry of a cross-section is not a variable, only a change of the structural form affects the

objective function. Minimizing Equation (4) provides the optima number and member lengths 

that yield the lightest topology.

In the past (1-6), equation (4) was used to explore the lightweight potential of alternative 

theoretic pin-jointed frames. However, for practical structures, especially for large-scale

structures, equation (4) is of limited use, for buckling is often a common failure mode that cannot

be neglected. The following section discusses such an issue and addresses a way to include 

instability resistance in the model.

3.2 Structural weight for frames failing for either buckling or yield

Large-scale structures can fail by mechanical instability before the yield compressive 

stress is reached. In this case, Equation (3) does not describe the minimum area for compressive 

member and Equation (4) does not give the correct estimation of the structural weight. The 

reason is that the resistance to buckling is determined by the efficiency of the cross-section and 

the element length. Therefore, an expression of the cross-section area is required to prevent 

buckling failure. This section examines models for buckling prediction and presents the approach 

that will be used in this work.
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The Euler formula is commonly used to model buckling failure. It is quite appropriate for 

long and slender struts with very small imperfections, but it gives an inaccurate prediction for

practical cases. Real struts of any slenderness, indeed, collapse at buckling loads less than the 

Euler estimations. Improved models propose to adjust the formula with a different value of the 

Young’s Modulus. For example, Engesser (13) suggests replacing the Young’s modulus with the 

tangent modulus, Et, while Karman (14) proposes to use the reduced modulus, Er. However, both 

the models do not describe accurately instability. The merit of presenting an exhaustive model 

capable of describing the phenomenon is of Shanley (15). His theory of inelastic buckling 

explains that buckling starts at Et and reaches Er when the load increase causes large deformation. 

Although Shanley’s theory gives an accurate prediction of instability, its use can be 

problematic when buckling is modeled at the concept stage. The reason is that the estimation of 

both Et and Er requires experimental data. The former needs the strain-stress distribution to be 

evaluated, and the latter involves also the modeling of the convex and concave side of a strut.

Because the focus of this work is placed on the concept design, a handier model is 

necessary. We decide to opt for the Rankine and Gordon formula. This approach is not as 

accurate as that of Shanley, but it has the advantage that only material and geometric properties

are needed. The formula is semi-empiric and it describes the stress caused by either buckling or 

yield failure for a strut of any length and with geometric imperfections. His expression, f ,

represents the stability and strength constraint of a compressive member, i, such that:

2

1 













gi

c
i

y

c
i

c
i

f

r

LA

F




 (5)
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where 
E
y

2


   depends on the material properties and rgi, is the radius of gyration of the 

cross-section. 

From Equation (5), the minimum area, c
iA , required to prevent both yield and buckling 

failure is: 

2

22 )(

giy

c
igi

c
ic

i
r

LrF
A




 (6)

The key parameter in equation (6) is the radius of gyration. Once the designer specifies the 

cross-section geometry of a member of given length and material, rg can be evaluated to 

determine the design variable, c
iA , which represents the minimum area required by each member 

to withstand the internal force c
iF . 

It is noted that c
iA  is the minimum area of all compressive loaded members of a frame. 

However, some elements are loaded more than others and are more vulnerable to buckling. A

valuable alternative to this approach where the cross-sectional area, i.e. expression (6), of each

members is minimized with respect to the member stability constraint, i.e. Expression (5),

involves two steps, as described in (16). The first is to impose a change of the cross section area

for only the heavily loaded members. The second is to include in the problem formulation the 

stability constraint of the overall system. 

We now recall that one key requirement of the Industrial partner is to explore how the choice 

of the member cross-sections impacts the selection of a topology concept. If equation (6) were 

used in such a form, then the designer would be forced to decide at the onset all the geometric 

details of a cross-section, and then calculate the value of rg. As known, this task is left at later 

design stages when the details of the geometry are defined. A way to avoid such a decision is to 
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provide dimensionless parameters that describe the efficiency of a cross-section and that may be 

substituted in equation (6). A method to do so is presented in the following section.

4 Modelling the buckling resistance of different cross-sections

To express the radius of gyration in term of dimensionless parameters, we resort to Shape 

Transformers and scaling factors (10-12). This approach has been introduced recently for

comparing the relative efficiency of cross-sections in bending and for developing charts of 

material and shape selection. It is well suited to optimize and select concepts at the early stage of 

design.

The method is based on the idea that a cross-section can be described by two distinct aspects: 

the Envelope and the Shape. As shown in figure 3, the Envelope is the rectangle described by the 

cross-section size, while the Shape is the figure enclosed in it. These entities are defined to 

decouple the structural efficiency in two contributions: the first is governed by the Envelope 

scaling, and the second by the properties of the Shape.

To compare the relative efficiency of cross-sections, a reference square is introduced and the 

following symbols apply:

For the  reference square

Bo, Ho width and height where Bo = Ho

ADo   = area of square 

IDo     = second moment of area of square

For a generic cross-section of any Shape

A  = area of shape

I = second moment of area 
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rg = radius of gyration

For the Envelope of the generic cross-section:

B,H:  width and height

AD = area of Envelope

ID   = second moment of area of Envelope

rgD   = radius of gyration

Expressions of area, A, second moment of area, I, and radius of gyration, rg,, are shown in 

Table 1 for some common cross-sections.

4.1 Shape contribution to structural efficiency

The Shape contribution to the cross-section efficiency is governed by a combination of Shape 

transformers. These are dimensionless measures of the geometric quantities of a cross-section

and are analogues to the material properties, for they specify Shape properties that are invariant 

to any cross-section scaling. 

For example, two Shape Transformers A  and I can be introduced to describe the 

transformation of the area and second moment of area of a generic shape into its rectangular 

Envelope. They are given by:














D
A

D
I

A

A

I

I




(7)
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Another important properties of a cross-section geometry is the Envelope Efficiency 

parameter,, of a section. Such a measure quantifies how efficiently the Shape fills the cross-

section Envelope.  is defined as

2

2

gD

g

A

I

r

r





 (8)

The Envelope Efficiency parameter gives a direct indication of the structural performance of 

different shapes for a given envelope.

We now examine expressions of the geometric quantities of cross-sections.

For rectangles 

1

1

1









gDg

ID

AD

rr

II

AA

for a generic cross-section 

DA AA  (9a)

DI II  (9b)


2

2

gD

g

r

r
(9c)

Table 2 reports the shape attributes of alternative concepts, with at least one axis of symmetry. As 

can been seen, Aand I characterize the area and second moment of area of a shape concept, 

regardless its size. Shape Transformers have been used recently to classify shapes. Families, e.g. 

the Ellipses and the Rectangles, and classes of shapes can describe different shapes in a way 

similar to material classification. When shape transformers are plotted into an efficiency map, 
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members of a family cluster together and the visualized bounds help optimize design choices at 

different length scale (12). Each concept has a specific properties range, with values that vary 

with respect to the area filling the envelope. When the material fills completely the shape, we 

have a solid shape, and (AI) assume the range upper bounds; whereas for hollow shapes, 

(AI) may decrease up to zero, which corresponds to an empty Shape. For example, AI

are the properties of a solid rectangle, the stiffest among constrained cross-sectional shapes. For 

hollow rectangles, (0<AI1). Solid and hollow rectangles belong to the Rectangles 

family, characterized by an efficiency range 3. For other families, i.e. shape concepts, A

and I are constants less than 1. A solid Ellipse, for instance, has always properties 

(A/4I316) regardless of any Envelope scaling. For their respective hollow Ellipses, the 

shape transformers vary, but always within the ranges (0<A/4I316). 

Besides I , A , Table 2 lists also expressions of , which is the efficiency of a cross-section 

shape regardless its size. The ranges of  are given to assist early design choices. They free a 

designer from specifying the geometric details of a cross-section. Specific thresholds permits 

efficiency comparison between shape concepts. The higher , the better the buckling resistance of 

the shape. These ranges, however, are theoretical because real cross-sections have reduced ranges 

due to the difficult task of manufacturing a material into a thin wall, shear failure requirements, 

and local instability. Shape transformers have been recently used to develop design charts that 

give insight into material and shape selection at different length scale (10-12).

4.2 Envelope contribution to structural efficiency

For a given type of shape such as a rectangular section, it is well known that deep sections are 

most efficient. This section describes a way of modeling the efficiency of different envelopes for 
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a given shape. We specify a linear multiplicator, v, for the relative arbitrary envelope scaling 

between the height of the cross-section and the square, as: 

oH

H
v  (10)

Thus the radius of gyration, gDr , of a generic rectangle (A=I==1) with respect to that, gDor , of 

the reference square is given by:

2
2

2

v
r

r

gDo

gD  (11)

Figure 4 shows how a square reference is transformed into a generic I cross-section by 

selecting the appropriate shape properties, A  and I . The figure shows also how v describes its 

relative scaling in the vertical direction. Envelope scaling in other directions have been also 

explored (10), but this work models only vertical scaling. From Equation (10), it is clear that 

maximizing the multiplicator, v, increases the resistance to buckling of each loaded member.

4.3 Total contribution: Shape and Envelope

Shape Transformers and Envelope multiplicators are used in this section to express the radius 

of gyration in the Ranking Gordon formula. 

Expression (11) is now substituted in (9c) such that the radius of gyration of a generic cross-

section relative to that of the reference square is given by:
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2

2

v
r

r

gDo

g  (12)

This expression shows that  and v describe the contributions to buckling resistance of the Shape 

and of the Envelope. Since the measures are dimensionless and decoupled, the designer can set 

the cross-section geometry without being forced to decide its real dimensions.

In the next section, Equation (12) is used in the Rankine Gordon formula to derive the cross-

section area for buckling resistance.

4.4 Cross-section area preventing buckling and yield failure 

To derive the cross-section area resisting buckling, we replace expression (12) in (6) such 

that:

22

222

gDoy

c
igDoc

i
c
i

rv

Lrv
FA



 
 (13)

where 
E
y

2


  . 

For a given load, material and member length, Equation (13) allows the selection of shape 

properties and envelope parameter to quantify the amount of material required to avoid buckling

and yield failure in each member of a pin-jointed frame.

The solution of the problem is now carried out into two steps. The first is the structural 

problem solved through the classic matrix formulation for a given pin-jointed framework. This 

requires the use of equilibrium and compatibility conditions to determine the unknown internal 

forces, c
iF , as function of the material properties and design variables. The second one is the 
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optimization problem resolved by finding the cross-section area variables that minimize the 

objective function. This involves minimizing the frame weight given by 1(b) with respect to the

stability and strength constraint, i.e. relation (13), of each frame member. For a given concept, the 

result is an optimal function, which is expressed in term of the cross-section properties, that

enable the search of the lightest structural form. The designer can therefore evaluate the impact 

that the selection of the shape transformers has on the choice of an optimum topology. This is 

shown in the next section for three concepts of interest to the collaborating company. 

5 Industrial case study: the alternative structural forms

Figure 5 illustrates three structures alternatives to that shown in Figure 2. They are referred in 

this work as “Web”, “Parallel” and “Convergent”. They were selected for a number of reasons.

The Web frame is examined because it serves as the benchmark of the analysis. The 

benchmark defines an optimum form for a particular load so that the efficiency of the other 

topologies can be put into perspective. Sometimes, it can be a non-practical structure, but it has

the purpose of showing that there is not a great benefit in optimizing a topology when the 

objective function gets close to that of the benchmark. Michell (1) demonstrated that the double 

cantilever illustrated in Figure (6a) is the lightest form when the failure mode of a simply 

supported and centrally loaded framework is yield. Figure (6b) shows the same Michell structure 

where the central point load and reaction are inverted (support in the central position and point 

loads at the end). The nesting of the inverted Michell structure (Figure 6b) is depicted in Figure 

(6c). The end point loads are replaced by a uniformly distributed load carried by infinite number 

of ties (semicircle). This theoretical structure, referred as “derived Michell frame”, is the 

benchmark because it is the lightest form in yield design. It will be shown that for an appropriate 

number of ties, its performance approaches that of the Web.
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The Parallel and the Convergent concepts have been proposed for their potential. First, these 

forms may gain a benefit from the ties action, which is usually significant for large scale 

structures, such as suspended bridges. In general, ties are more efficient than beams because they 

have fully stressed cross-sections, while in beams there is redundant material close the neutral 

axis. Second, the higher the number of ties, the smaller is the bending induced in the horizontal 

arms, which function mainly as struts. Third, if the number of supports provided by the ties is 

greater than 8, internal forces can be computed by assuming that each tension member will carry

approximately half of the uniform load between two ties with exception to those at the 

extremities (17). Finally, the Parallel and the Convergent are forms suitable to examine how the

structure weight profits by changing the height to width ratio, which is a variable of major 

interest to the industrial partner.

As suggested by the industry, the alternative forms shown in Figure 3 are modeled as two-

dimensional pin-jointed frames. The members in the third direction, i.e. out of plane, have modest 

buckling length and are not as unstable as those in the plane. They have a minor impact into the 

efficiency of the truss. For this reason, the industry decided to focus their investigation on in-

plane buckling, although out of plane fix-fix buckling should also be considered. Such a choice 

has been regarded as viable especially because the work deals with the concept stage of design. 

Here, the solutions may not need be accurate but rather should provide trends of performance 

that, although estimated, offers valuable insight to the industrial engineers.

The following sections examine the efficiency of the alternative structures by using the 

analysis of section 3.1 for yield design and that of section 4.4 when buckling is included.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Structural Form Selection

18

5.1 Buckling not modeled

When buckling does not occur, the structural weight is given by Equation (4). The weight of 

the derived Michell frame can be calculated for an unbounded number, n, of ties and struts and is 

given by:

y

g
PLW




 (14)

Expression (14) is given for an infinite number of members and it is independent on n. However, 

for a finite number of ties n and angle , as shown in Figure 3(a), the weight of the Web frame 

can be written as:
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The weight of the parallel frame is given as a function of  (Figures 3(b)) by:
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Similarly, the weight of the convergent frame (Figure 3(c)) is:
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 (17)

where n is the number of ties, y is the yield stress, g is the gravity,  is the density.

Optimum values. 

Beta is the angle governing the overall framework size. This variable (H/L in Figure 3) 

describes the max height to width ratio of the machine and, as mentioned, it is of interest to the 

company. The best beta value that optimizes the structural weight is given by minimizing the 

expressions (16), and (17). With the following data from the industry:

n = 10, L=50m, p = 50 KN/m,= 7900 kg/m3, y= 300 MPa, E=210*103 MPa, we obtain:
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Derived Michell frame W    = 102 KN

Web: W    = 112 KN

Convergent: Wmin= 160 KN for  = 58.18

Parallel: Wmin = 142 KN for = 45

n=10 is a sufficient number of ties to meet the assumptions and to get the performance of the 

Web closed to that of the derived Michell's frame. Therefore, the Web form is taken as the 

benchmark structure to compare to the Convergent and the Parallel forms.

Design charts

Design charts are used to examine performance trends, one of the goal of the industrial 

partner. Equations (14), (15), (16), and (17) are plotted as function of  to explore how the 

structural weight changes with the size of the machine. The results are shown in Figure 5. 

Among real structures, the web structure is the best for yield design because it is derived from 

the Michell layout. The performances of Parallel and Convergent frames are quite close. 

Although the convergent can provide a minimum lower than that of the parallel, the latter 

performs better for beta angle greater than 60°. The chart shows also that the convergent is less 

sensitive to variation of the size machine. 

In this scenario, the members are assumed to be always stable for buckling and the best 

structural form does not depend on the selection of the cross-section. This result is consistent to 

that obtained with previous methods for concept form selection (1-6). However, they were of 

limited use for the industry involved in this case study.
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5.2 Buckling considered

When buckling is taken into account Equation (13) describes the stability and strength 

constraint to be used to solve the optimization problem. This section examines the three 

alternative forms for different cross-section efficiencies. We use the data from the company to 

assess the impact of buckling and to obtain insight into how the cross-section selection may affect 

the selection of a structural form. 

Optimum values

Although a number of cross-section efficiencies were examined, this work presents, as an 

example, the results of four cases. The first two (Figures 8 and 9) describe cases where the 

designer decides to keep the cross-section size unaltered and assesses the impact of a shape 

change. As a result the efficiency of the topology is affected only by the shape efficiency 

parameter . On the contrary, the other two cases (Figures 10 and 11) represent scenarios where 

the designer does not attempt to minimize weight by optimizing the shape; rather he chooses to 

scale the envelope. Hence the shape efficiency contribution remains constant and the envelope 

contribution is the only one governing relative weight variation. The following report the four 

cases.

1) We start with solid circular cross-sections that have shape efficiency of  (see Table 

2). The minimum structural weight and the optimum values of the variable  are:

Web: W     = 886 KN

Convergent: Wmin = 1876 KN for  =62.64

Parallel: Wmin = 298 KN for  =54.88
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2) Then we select a different shape, i.e. hollow circular cross-section, that still belong to the 

Ellipses family. From Table 2, the shape efficiency contribution for this family should be in the 

range 3/4 < 9/4. We chose and we do not impose any scaling of the envelope with respect 

to the previous case. Thus, the minimum structural weight and the optimum values of the variable 

 are given by:

Web: W     = 489 KN

Convergent: Wmin = 931 KN for  =58.7

Parallel: Wmin = 189 KN for  =51.1

3) In this scenario, we change shape properties as well impose envelope scaling. An hollow 

rectangular cross-section with shape efficiency of  is chosen. The envelope scaling is 

imposed to be v= 0.6. Here, the minimum structural weight and the optimum values of the 

variable  are:

Web: W     = 586 KN

Convergent: Wmin = 1170 KN for  =60.4

Parallel: Wmin = 216 KN for  =52.5

4) Finally, a hollow rectangular cross-sections with the same shape efficiency, i.e.  of 

case 3 is scaled with v= 1.1. In this case, the structural weight and the optimum values of the 

variable  are given by:
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Web: W     = 440 KN

Convergent: Wmin = 804 KN for  =57.2

Parallel: Wmin = 175 KN for  =50

Comparing the above values with those obtained in Section 4.1 shows that it is essential to 

include the modeling of buckling at the concept stage. Buckling lowers failure resistance and 

extra material is required to prevent failure. As expected, the impact on the efficiency is 

substantial. The weight can double that obtained for yield failure in the best scenario. But in the 

worse, it can be up to 18 times. 

Design charts

This section examines the weight trends for the alternative structural forms resisting buckling. 

The plots are shown in Figures 8, 9, 10, and 11, and are given in term of shape and envelope 

contributions for the cross-section efficiencies considered in this work. These are shown at the 

top of each chart. A number of insight can be drawn by inspecting the charts.

When the curves are compared to those obtained for yield failure (Figure 7), it can be seen 

that the ranking of the structural form has changed and there is a considerable effect on the 

selection of the best form. The Web is not the lightest structure concept because it has numerous 

struts required to withstand buckling. This feature impacts also the general performance trends of 

the concepts. The curves in buckling design are afar one from another and their relative position 

is not as close as that obtained for yield design.

The convergent frame performs always worse because the central pillar has to support a 

constant compressive force along the whole length. This does not occur in the parallel frame 

where the height decrease of each strut pair lowers the vertical load. Furthermore, the parallel is 
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to be preferred because its performance is less sensitive to variation of . This feature is 

significant because gives the designer the freedom to accommodate constraints that may limit the 

design space.

Other insight can be drawn by inspection of the charts in Figures 8-11. Reductions in weight 

are obtained by using the efficiency range shown in Table 2 for different shape concepts. For 

example, the plain comment that hollow sections perform generally better than solid cross-

sections for a given envelope can be obtained when the trends in Figure 8 are contrasted to those 

in Figure 9. However, the benefit differs for each typology. The convergent form makes the most 

of the selection of hollow cross-section, because the weight reduction is 50% of that obtained 

with solid cross-section. The same shape change applied to the Web and Parallel typologies, 

however, yield to a lower performance benefits, i.e. 45% and 37% respectively. On the other 

hand, when hollow shapes are chosen to provide the same efficiency, as the hollow rectangular 

cross-sections illustrated in Figures 10 and 11, the designer can still obtain 20% of weight 

variation by the sole envelope contribution. This confirms that decoupling the shape contribution 

from that of the envelope gives designers the freedom to decide whether the lightest typology is 

obtained by optimizing either the shape or the size or both. 

Besides the impact that the selection of the cross-section has on the choice of a structural 

form, the case study has shown also that the effect of ties is beneficial for large scale structures.

However, only a proper selection of the Shape and Envelope parameters can exploit the benefit of 

a structural form. 

6 Concluding remarks

Unlike previous methods of form selection for the early stage of design, this paper has 

presented a method for modelling the mass-efficiency of large-scale structures where buckling is 

included as a failure mode. The method models the geometric properties of arbitrary scaled cross-
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sections and defines dimensionless efficiency factors. These are included in parametric equations 

that are used at the concept stage in order to provide insight into the efficiency of a structural 

concept. Design charts have shown that the interaction between structural form and cross-sections 

of compressive members affects the selection of the best structure. The method has been carried 

out on an industrial case study in order to compare three different structural forms for a particular 

design application. The case study identified the potential of the three structural forms and gave 

insight into the selection of the parameters that optimize structural efficiency.
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Figure 1. Handling machine for material reclaiming.
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Figure 2 The structure cannot occupy the space where the conveyor belt is located, i.e. shadow region.
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Figure 3. The constituents of a cross-section: the Envelope and the Shape.
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Figure 4 The shape transformation of a cross-section and its envelope scaling in the vertical 

direction. 
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Figure 5 Three different structural forms: a) Web structure, b) Parallel structure and c) Convergent 
structure. (Note: dashed thin lines for tension members, continuous thick lines for compression and/or 
bending elements).
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Figure 6 a) Michell structure for point central load, b) Inverted Michell structure for end point loads, 
c) derived Michell frame for uniform load.
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Figure 7 Structure weight as a function of the angle  . Yield is the failure mode. 
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Figure 8 Weight as a function of the angle for solid circular sections
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Figure 9 Weight as a function of the angle  for circular hollow sections.
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Figure 10 Weight as a function of the angle  for hollow rectangular sections.
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Figure 11 Weight as a function of the angle  for hollow rectangular sections.
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Table 1. Area, A, and second moment of area about xx, Ixx, of common cross-sections
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Table 2. Shape Transformers for the area and second moment of area of cross-sections with 
c=b/B and d=h/H
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