I & Nationai Library
' of Canada

Acquisitions and

Biblioth2que nationale
du Canaca

Direction des acquisitions et

Biblographic Services Branch des services bibliographiques

395 Wellington Street
Otiawa, Ontano
K1A QNS KIAON

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
_ this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

A

Canada

395, rue Wellington
Ottawa (Ontano)

Yot Ve refoverice

Chur biv NI 1@ Tevewic ¢

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$’il manque des pages, veuillez
communiquer avec - 'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a Il'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme patrtielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Fabricating and Testing a VLSI Systolic
Convolution Cell for Image Processing

Anthony Botzas

B. Eng., (McGill University), 1990

Department of Electrical Engineering
McGill University
Montréal
July, 1994

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master's Degree of Engineering

© Anthony Botzas, 1994

l * l National Library Bitliothéque nationale
of Canada du Cana

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Wellinglon Street 395, rue Welington

Ottawa, Ontano Ottawa (Ontanic)

K1A QN4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

YOun i bOING soMdeEOCR

Our fies T R erevige

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99957-8

Canadi

Fabricating and Testing a VLSI Systolic
Convolution Cell

Anthony Botzas

B. Eng., (McGill University), 1990

Department of Electrical Engineering
McGill University
Montréal
July, 1994

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master’s Degree of Engineering

© Anthony Botzas, 1994

Abstract

The two-dimensional discrete convolution operator is targeted for performance im-
provement in order to speed up image processing work loads. Since the large com-
putation requirements for this operation are especially taxing to single processor
computers, the approach is to consider parallel processing alternatives. Of the par-
allel processor classes considered, systolic arrays are singled out as the preferred

parallel processing solution for the convolution problem.

Therefore, the design of a pipelined double precision floating point VLSI sys-
tolic cell for convolution is described. The arithmetic operations are distributed into
three pipelined stages, enabling the cell to process each set of operands within 16
clock cycles. Once fabricated and tested, the systolic chip yielded an 80 MFLOPS

performance which is a remarkable improvement over available general purpose

computers.

Résumé

L'objectif du circuit pour la convolution bi-dimensionelle est d’accélérer le traite-
ment des images digitales. Etant donné la complexité de 1’opération, la convolution
a deux dimensions place un lourd fardeau sur les processeurs séquentiels. Nous vi-
sons donc les méthodes de calculs paralléles pour la tiche. De tous les modeéles de
parallelisme considérés, nous démontrons les tableaux systoliques comme étant la

solution de choix.

Pour cette raison, nous présentons la conception d"un circuit VLSI pour la con-
volution en pipeline utilisant des éléments systoliques. Uarithmétique requise, qui
est a point flottant et de double précision, est distribuée sur trois stages de la pipeline.
Ceci permet a chaque élément systolique de procéder a l'intérieur de seulement
seize coups de I'horloge digitale. Une fois fabriqué et vérifié, le circuit & présenté
une performance de 80 MFLOPs. Ceci démontre une accélération considérable par

rapport aux ordinateurs conventionnels.

Acknowledgements

The author would like to thank Professor A. S. Malowany for his supervision in the

research and the writing process of this thesis.

Thanks are also due to the McGill Research Centre for Intelligent Machines (McRCIM),
the VLSI laboratory of McGill University and the Canadian Microelectronics Cor-
poration (CMC) for providing the tools with which this research was conducted.

The author would like to thank the “veterans” (J. Drolet,].F. Panisset, J.F. Coté
and F. Larochelle) of the convolution project for laying the foundation on which this
thesis stands.

The author is greatful to Prof. N. C. Rumin and Prof. G. Roberts, for their VLSI
tutelage and to Eric Masson for a partnership that not only fostered a love of VLSI

design but engendered a career.

The author is also immensely thankful to his family, friends, and co-workers for

their constant encouragement and support in completing his thesis while working
in industry.

Table of Contents

Chapter1l Introduction 1
11 TheConvolutionProblem 3
1.11 Convolution in Signal-Processing 3

1.12 Convolution in Image-Processing 5

113 Applying the ConvolutionOperator 7

12 Computatioral! Considerations o oL 10
1.2.1 Uniprocessor Performance 11

122 Transforming the Domain of the Convolution Problem 15

123 Frequency Domain Versus Spatial Domain Processing 17

13 Summary e e e 20
Chapter2 Parallel Processing Solutions 21
21 InherentParallelism 22
22 Basicsof Parallel Algorithms 24
2.3 General-Purpose Parallel ProcessingOptions 25
231 ArchitectureTaxonomy ittt i, 26

232 MIMDFaralleProcessors. 27

233 MIMD-based Parallel Processing Paradigms 29

234 Synchronous Parallel Processing Architectures 30

24 Systolic Array Architectures 0ttt i 35
241 BasicArchitecture 35
242 Key Architectural Considerations 37
243 BalancedSystems 38

iv

244 ConvolutionRevisited 40

‘ 25 Summary e 41

Chapter3 A Systolic Solution

............................. 14
3.1 System Architecture View e 4
3.1.1 The Sensor Computing Environment 15

312 InterfacingRequirements 46

3.13 DataStreamManipulation 46

32 SystolicConvolution Array 48
33 SystolicCell. e 49
331 XInputRegister 50

332 MultdplicationStagel L oo 0oL, 51

333 AdditionStage2 i e e 53

334 NormalizationStage3 53

3.35 Partial Sum TransmissionUnit 54

34 SUMMAIY . . v v v v vt vttt it e e e e e 54
Chapter4 Fabricating and Testing the Systclic ConvolutionCell 55
41 FabricaonProcess. i e 55
411 CMOS3DLMProcessingStepso iy 55

412 CMOS3DLMDesignRules 57

413 PackagingandBonding, 58

414 CADENCE VLSIDesignSoftware 60

415 DesignFilesandFileHierarchy 60

416 EdgeDatabaseFormat 61

417 SchematicRepresentations 62

. 418 CustomBLayout................, 63

419 LayoutSubmission 66

82 TeSHNG . . 67
421 FunctionalTesting, ... 67

422 ManufacturingTesting 68

423 TestingProcess o 70

424 I/OSpecification 75

425 Manufacturing-TestPrinciples 86

4.2.6 Manufacturing-Test Strategies for the SystolicCell 88

427 DesignforTestability 91

43 SUMIMATY . . . L . o vttt e it e e e it e e e e e 93
Chapter5 Conclusion, 94
References e, 96
Appendix A ConvolutionBenchmark_ 102
Appendix B Parallel ConvolutionBenchmark 105
Appendix C Overview of the IEEE Floating-PointStandard 108
Appendix DVHDL Simulations 110
Appendix E VLSI Design LifeCycle Activity 119
Appendix F Design BlockHierarchy 121
Appendix G Autcmated Testing Environment 145

vi

List of Figures

1.1 Example of a two-dimensional convolution. 6
1.2 Laplacian, V2W’, kernel used in edge-detection. 9
1.3 Example of edge-detection witha Laplacian filter. 10
14 Frequency domain approachtoconvolution. 15
1.5 Frequency domain approach versus spatial domait. approach. 18
1.6 Maximum kernel size for which convolution in the spatial domain used

less flops than convolution done in the frequency domain. 19
21 Parallel computer architectures according to Duncan’s taxonomy. 27
22 MasPar MP-1 interconnectionnetwork. L 34
2.3 Two-dimensional systolic array connection topologies. 36
24 Comparison between (a) the traditional SISD computation model and (b)

the systolic computationmodel. L oL 39
2.5 Design SYST1: systolic convolutionarray. 42
3.1 Axchitecture of the systolic convolution processing system. 45
3.2 OSystolicconvolutionarray. oy 49
3.3 Systoliccellarchitecture. 50
34 Timing diagram forthesystoliccell. 51
41 Topandbottomviewofpackage.. 59
4.2 Top-level-block schematic representation illustraiing the floor plan of the

systoliccell. e e 62
43 Sample celllayoutofaflipflop. 64
44 Layoutrepresentation.., 65
45 VHDL simulation of the SYST2design. 69

46 Thetest enVIIONIMENt. . -« & & & v o e e e e e e e e e e e e e e e 71

47 AC. testingloadcircuit. oo 74
4.8 Oscilloscope trace of IMHz CLK signalused in A.C. tests.. 79
49 Switching waveforms atinitialization. 81
4.10 Coefficient switching waveforms in coefficient-load mode. 82
4.11 Inputand output switchingwaveforms. 85
C.1 Double precision floating-point representation. 108
E.1 Levels of abstractionin VLSIdesign. 119
E2 VLSIdesignlifecycleactivity. 120
F1 fullcircuit2: Top-level-block schematic representation of systolic cell. 127

F2 fullcircuit2/X reg 28x4 : 28 x 4 shift register circuit for the X input data. . . 128
E3 fullcircuit2/X reg_28x4/X line : Example of an iterative specification of an

arrayof flip-flops. e i 129
F4 fullcircuit2/X reg_28x4/X line/ff1 : Example of a typical delay flip-flop

with “hold” capability. oo o 130
F5 fullcircuit2/X reg 28x4/X line/ff 1/fff : Example of a typical one-phase,

master-slave, flip-flop implementation. 131
F6 fullcircuit2/X reg 28x4/X line/ff_-1/inv_pass : Example of an inverting pass

gateimplementation. L o i il 132
E7 fullcircuit2/Yin exp : Exponent portion of Y inputcircuit. 133
E8 fullcircuit2/Yin_man : Mantissa portion of Y inputcircuit. 134
F9 fullcircuit2/Yout exp : Exponent portion of Y output circuit. 135
F10 fullcircuit2/control : Global controlcircuitry. 136

F11 fullcircuit2/stagel_exp : Exponent portion of first stage multiplication circuit. 137
F12 fullcircuit2/stagel .man : Mantissa portion of first stage multiplication circuit.138
F13 fullcircuit2/stage2_exp : Exponent portion of second stage addition circuit. . 139

F14 fullcircuit2/stage2_man : Mantissa portion of second stage addition circuit. . 140

aae

.. 141
F16 fullcircuit2/stage3_man : Mantissa portion of third stage normalization

clrcuit. . . .o 142
F17 fullcircuit2 : Top-level-block layout representation of systoliccell. 143
F.18ufullcircuit2 : Top-level-block “exploded” layout representation of systolic

cell. . L e e e 144

List of Tables

1.1 Results of the CONV benchmark on the spectrum of available

uniprocessors currently used to perform image-processing tasks.. 13
21 Cost of various parallel processingoptions. 25
3.1 Featuresof the convolutionsystem. 47
41 Pindescription.. e e e 76
41 Pindescriptior (continued). oL oL 77
42 D.C.characteristics. i it e e, 78
43 Modes of operationinthesystoliccell. 78
4.4 Initialization switching characteristics. 80
45 Coefficient switching characteristics. 83
4.6 Inputand output switching characteristics. 86

Chapter1 Introduction

Amdahl’s Law states that the performance improvement to be gained from using
some faster mode of execution is limited by the fraction of the time the faster mode
canbe used [Amdahl, 1967]. Thatis to say that perhaps the most important and per-
vasive principle of computer design is to make the common case fast: In making a
design tradeoff, favour the frequent case over the infrequent case. This principle
also applies when determining how to spend resources since the impact on mak-
ing some occurrence faster is higher if the occurrence is frequent. Thus, improving
the frequent event, rather than the rare event, will obviously help performance and

increase “speedup” [Hennessy and Patterson, 1990].

Having impressed on the reader this keystone notion of performance im-
provement and taking into account the author’s affinity toward image-processing
and VLSI design, this thesis will aim to investigate and demonstrate a cost-
effective means by which one can significantly improve the performance of image-

processing tasks.

As practiced at present, image-processing relies to a great extent on two ma-
jor, effectively distinct and self-contained domains of activity, computational al-
gorithms and processor architectures -especially those architectures facilitated by
VLSI technology [Offen, 1985]. Given the goal above, the scope of this thesis will
lie in the latter domain and will focus on the design and test of a high-performance

image-processing system.

The approach herein is to first isolate the most frequent operations employed
in “typical” image-processing programs, and as per Amdahl’s Law, to markably
reduce the associated execution times of these operations so as to have the greatest

impact on the total execution time of a given program. Of course, there is no such

1. Introduction

thing as a typical image-processing program owing to the vast diversity of image-
processing applications. And aside from the Abingdon Cross benchmark survey
[Uhr, 1986] [Preston, 1989}, little has been published about the workloads of image-

processing systems.

The Abingdon Cross, which is presented [Lindskog, 1988] as a benchmark
method for comparing the performance of image-processing architectures, has
proved valuable to this thesis. Briefly put, the task is to find the medial axis of
a cross in a noisy background where the signal to noise ratio is 0 dB. But unlike
benchmarks for general-purpose computers [Lubeck ef al., 1985] [McMahon, 1989]
[Berry et al., 1988] which require the participant to compile and execute specific
lines of Fortran code, the Abingdon Cross benchmark presents the participant with
an image-processing problem without specifying the algorithm to be employed in
its solution. Without a predefined algorithm and code, one cannot gain any specific
knowledge with regard to instruction mix or instruction frequency, yet one can still
draw some general but valuable information with regard to workload in image-
processing systems. The common trait in almost all the algorithms used by partici-
pants of the Abingdon Cross benchmark survey is the utilization of spatial-domain
linear operators for noise reduction and edge-detection.

Hence, if one desires to build an image-processing system suited to fast ex-
ecution of the Abingdon Cross benchmark, one would likely begin by imple-
menting in speedy hardware those frequently used operators such as the afore-
mentioned noise filters and edge-detectors. Indeed, a general-purpose image-
processing system should also be designed in this vein since a major preoccupation
in image-processing is the filtering-out of noise and the enhancement of (edge) de-
tail in order to emphasize certain specific properties [Levine, 1985] as is apparent
in applications involving computer vision [Hall, 1979] [Ballard and Brown, 1982],
robot vision [Briot, 1986], remote sensing [Mulders, 1987], acoustical imaging
[Shimizu et al., 1988], and tomography [Axel et al., 1983]. Moreover, one can ap-
preciate that these operators are also of prime concern to biological visual systems

1. Introduction
[Hartline, 1949] [Hartline and Ratli*f, 1954] [Hartline and Ratliff, 1957].

Most existing code for noise reduction and edge-detection relies on one linear
operator known as the convolution operator. Thus the underlying premise of this
thesis is that targeting the convolution operator for high-performance hardware
implementation will have a high impact on the execution time of image-processing
programs. And in the next section, the convolution operator is introduced and will

remain as the “problem” on which this research effort will concentrate.

1.1 The Convolution Problem

The first priority in the quest to reduce image-processing execution time must be
the speeding up of convolution computations. But a discussion on computational
considerations cannot proceed until the operator itself is thoroughly defined. To
start, the definition of convolution is first examined from a one-dimensional sig-
nal processing perspective. The context is then shifted to two-dimensional image-

processing, and subsequently some examples are comprised so as to reinforce the
definitions presented.

1.1.1 Convolution in Signal-Processing

Practitioners of discrete-time signal processing will attest that a linear time-
invariant system is completely characterized by its impulse response 4[z], in the
sense that, given h[f] it is possible to compute the output sequence y[z] due to any
input z{z] using

N-1

vl = Z h[n] z[t — n] (1.1)

n=0

Here,

1. Introduction

h{7] represents the N-length system’s response to the unit sample sequence é[¢] also
known as the discrete impulse function [Proakis and Manolakis, 1988]. As well, all
signals are assumed to be causal and of finite length. Equation (1.1) is commonly
called the “convolution sum”. If y[i] is a sequence whose values are related to the
values of two sequences h[i] and z(i] as in Eq. (1.1), y[z] is said to be the convolution

of z[i] with [z} and is represented by the notation:

y[z] = Afz] * zfz). (1.2)

It is apparent in Eq. {1.1) that in forming the input sequence z[¢ — n], one must
fold the sequence xz[n] about its origin to produce z[--n] and displace it by i. Evalu-
ating y([z] then requires multiplying each of the overlapping samples of the A[n] and
z[z — n] sequences and subsequently summing these products. Moreover, the com-
mutativity of this operation implies that one can also choose to fold the impuise

response h[z] instead of z[i].

Equation (1.1) is readily extensible to two dimensions. Clearly, the two-
dimensional convolution of an input sequence zfi, j] with an N x M impulse re-

sponse ki, j] is given by:

N=1M-1

ylijl= 3 2 klnym]zfi - n,j —m] (1.3)

n=0 m=0
Thus the fundamental expressions for discrete convolution have been pre-
sented, and it remains to be seen how these expressions are manipulated from an

image-processing perspective.

1. Introduction

1.i.2 Convolution in Image-Processing

In digital image-processing, the two-dimensional signals in Eq. (1.3) are said to
represent “images”. In a strict theoretical sense, an image is defined as a two-
dimensional, almost invariably Cartesian, array of data resulting from sampling the
projected instantiation of a local variable, the scene b.ri'ghmess function, obtained
via a sensing device. The function values are either brightness values or vectors
of brightness values sensed in different spectral bands, e.g. colour images. In the
black-and-white case these values are usually called grey levels. The array values
are typically real, non-negative, bounded, and implicitly zero outside the field of
view bounded by the array dimensions. In addition, these digitized array elements

are referred to as picture elements or “pixels”.

In this thesis, however, the tendency is to view images as matrix entities. And
hence the above Cartesian constraint on images is relaxed to include only those
two-dimensional sequences whose pixels are addressed by positive integer indices.
One such loose but preferred representation of Eq. (1.3) is the matrix element ex-
pression which follows:

Y[, 5] = hfnf Win+1lm+1)Ii+n—N/2,j+m—M/2] (14)

n=0 m=0

In Eq. (14), W is an N x M matrix which is usually referred to as a “convolution
kernel” and acts like an impulse response which is convolved with an input image
I to produce the output image Y. Each pixel Yz, j] is simply the weighted sum of
the corresponding pixel value I[7, j] and the values stored in neighbouring pixels.
The weights and number of neighbouring pixels that are included in the weighted
sum are determined by the size and contents of the kernel W. Fig. 1.1 illustrates
an example of how a 3 x 3 convolution is computed by sliding a kernel W over an
image I, multiplying each kernel coefficient with the underlying pixel value, sum-
ming the products, and storing this sum in an image buffer Y.

1. Intreduction

Kernel W
X} ’m.n WI3}
. o ~——— Kernel slides
sl over image
wrLy

2
] l

Yligl= WLI]I[i-14-1] + W[1.2]I{i-1,j] + W[1,3] Ifi-1,j+1]
+WI1]I[ij-1] +WR21I[H§] + W[23]I[ij+1]
+ W[3,1] I[i+14-1] + W[3.2] I[i+1 4} + W[3,3] I[i+1j+1]

Figure 1.1: Example of a two-dimensional convolution of an image I witha3 x 3
kernel W resulting in an image Y = W' = .

1. Introduction

Note that the row and column indices of / in Eq. (1.4) do not contain a —» and
a —m respectively which implies that there is no folding of the image in each di-
mension. And neither is there a folding of 1}". Without a folding of either / or IV, it
seems that the expression in Eq. (1.4) violates the mathematical integrity of Eq. (1.3).
However, it should be stated that the kernel W' is often radially symmetrical and for
all intents and purposes can be considered “pre-folded”. For the cases where the
kernel is asymmetrical, it becomes necessary to qualify Eq. (1.4) by adding that the
W is considered to be the folded version of an original kernel W”. In other words, a
convention is adopted where a given kernel W’ should be rotated by 180 degrees to
yield W prior to going through the convolution operator as defined in Eq. (1.4) and
Fig. 1.1. The reason for separating the folding process from the definition of con-
volution has to do with facilitating hardware implementation, which will become
more evident in Chapter 3. With this definition now in place, the classification and

application of the convolution operation is discussed next.

1.1.3 Applying the Convolution Operator

Image-processing operations can be classified as either “point”, “local” or “geomet-
ric” operations. Point operations involve transforming single pixels in a way that
does not depend on any neighbouring pixels. Local operations involve transfor-
mations on pixels so that the new value of each pixel depends also on the values of
pixels in some neighbourhood. Geometric operations involve pixel values at some

other point, defined by a geometric transformation, or in a neighbourhood of that
point.

Convolution, then, is defined as a local linear operator, and as such, it is very
frequently used in the first stage of image analysis [Levine, 1985]. As was noted
before, most initial filtering, edge-detection, correlation and compression relies to
a large extent on convolution. At this point it would be instructive to reinforce the

definition above with some practical examples of convolution kernels and their ef-

7

1. Introduction

fect on images.

Consider first the case of a simple averaging filter. If all the weights were
the same in a 3 x 3 kernel, then a given pixel in a convolved image Y would
be the equally-weighted sum of the corresponding pixel in / and its eight imme-
diate neighbours. The overall convolution effect would be simply to average or

“smooth” abrupt spatial changes in pixel intensity.

An example of an edge-detection kernel proves a little more involved. Yet
such an example is worth presenting, for it demonstrates that if the kernel is care-
fully chosen, a single convolution “pass” can do a substantial portion of image-
processing work. The edge-detection problem is to outline discontinuities or
abrupt spatial changes in pixel intensity {Schumann, 1904]. Marr and Hildreth
[Marr and Hildreth, 1980] confront the issue by first proposing a Gaussian operator
as an optimal smoothing filter. This implies convolving an image with a kernel W’
whose weights are determined by the following two-dimensional Gaussian func-

tion:

(#*+ %)
2ol exp(— 202)

W'(i,j) = (1.5)

The intensity changes in an image / will manifest themselves in the outputs
W’ x I as peaks in the first derivative D(W’ * I), or as zero-crossings in the sec-
ond derivative D?(W' I in the appropriate direction. In other words, the original
edge-detection problem may be replaced by an equivalent one in which the zero-
crossings of D?(W'* « I) or, what is equivalent, D2W' » I are sought. Thus the kernel
used for the edge-detection becomes:

W(i,j) = D*'W'(i,5) (1.6)

and assuming linear local intensity variations near a zero-crossing it can be

1. Introduction

shown [Marr and Hildreth, 1980] that a Laplacian operator may be employed in
place of Eq. (1.6) such that the kernel W is acquired by V211", an orientation inde-

pendent second-order differential operator:

1. P+

Wi,) = 5 (2 S5 expl-)

202

] (1.7)

Equation (1.7) is plotted in Fig. 1.2 with ¢ = 1 and a domain translation to facil-
itate the mapping to a9 x 9 kernel matrix W.

£ 5

a
L
i

waj

s o £ ¢

Figure 1.2: Laplacian, VW, with a (low) & = 1. The domain has been translated
suchthatl < i € 9and1 £ j < 9 resulting in a function that maps accordingly
intoa9 x 9 kemnel W.

Hence the inherently pre-folded, edge-detecting kernel as plotted in Fig. 1.2 is
coded into a convolution program which also takes as its input a real image in the
PGM (portable graymap) file format. The results are revealed in Fig. 1.3 and depict
the effect of a Laplacian filter and the subsequent detection of zero-crossings where
zero is represented by some intermediate gray-level in the output. In addition, us-
ing a larger kernel in the convolution (with a correspondingly larger o) yields an
edge-map with less detail. The chosen kernel size of 9x9 seems sufficiently large for
extracting the right amount of detail from the given real image, though perhaps not
so for other images. Mainly, it is hoped that the above discussion has adequately
defined convolution and has alluded to the pivotal role that this mathematical op-

9

1. Introduction

(a) (d) (c)

Figure 1.3: Example of edge-detection with a Laplacian filter. (a) Original image.
(b) Output image after convolution with 2 Laplacian kemel. (¢) Detection of zero-
crossings.

erator plays in the realm of image-processing.

It shall be seen shortly that convolution’s formidable image-processing power
comes at the expense of a relatively lengthy execution time when it is performed
on general-purpose uniprocessor architectures. Parallel processing architectures,
on the other hand, will then be presented to be much more suitable for convolution

implementation allowing for a considerable amount of speedup.

1.2 Computational Considerations

The time taken by a computer to complete a convolution operation is perhaps
the most important consideration in this thesis. The sheer volume of data and
floating-point arithmetic calculations needed to convolve a standard sized image
can be overwhelming with regard to the available computational power and mem-
ory bandwidth of single processor machines used to run image-processing pro-

grams.

Firstly, consider the convolution of a K x L image with an N x M kernel.

The weighted sum of an N x M neighbourhood of pixels requires NM multi-

10

1. Introduction

plication operations and N M additions. Therefore, performing these operations
for each of the KL (overlapping) neighbourhoods necessitates 2K LN M opera-
tions in all, excluding any arithmetic overhead required in resolving software loop
counters. Techniques that take advantage of kernels with certain properties exist
[Gonzalez and Wintz, 1987], vet for the general case the number of arithmetic op-
erations in a convolution operation remains in the order of &' LN M. This amount
of computation is truly significant. For instance, the edge-detection example in
Fig. 1.3 employed a 9 x 9 convolution on a standard 512 x 512 image and demanded
over 21 million floating-point multiplications and 21 million floating-point addi-
tions.

1.2.1 Uniprocessor Performance

Tt should come as no surprise that all these calculations take a relatively long pe-
riod of time to execute on general-purpose uniprocessor workstations on which
most image-processing programs are currently being developed. However, just
how long a convolution operation takes to execute is not easily reported since exe-
cution time is dependent on a myriad of factors. Forexample, the total elapsed time
of a convolution routine is clearly code dependent, compiler dependent, machine
dependent, I/O dependent, and also operating system dependent and is therefore
given to large fluctuations owing to the wide range of influence of these numer-
ous factors. In view of its varying nature, convolution execution time can only be
meaningful if related in a very definitive context with deference to the above fac-
tors. Hence, it is undertaken to establish a well defined framework for presenting

the elapsed time of a convolution operation.

First, one must carefully define what one means by elapsed time. This is the la-
tency to complete a task, including disk accesses, memory accesses, input/output
activities, operating system overhead — basically everything. However, since with
multiprogramming the CPU works on another program while waiting for I/O and

11

1. Introduction

may not necessarily minimize the elapsed time of one program, there needs to be a
term to take this activity into account. “CPU time” recognizes this distinction and
means the time the CPU is computing not including the time waiting forI/O or run-
ning other programs. Hence, CPU time seems a fair way to cite the true duration of
a convolution routine since it excludes I/0 and “load” factors which can account
for unpredictably large latencies that are usually unrelated to the particular task at
hand. CPU time can be further divided into the CPU time spent in the program,
called “user CPU time”, and the CPU time spent in the operating system perform-
ing tasks required by the program, called “system CPU time”. And thus to further
weed out the effects of random system elements such as time spent paging image
arrays, the system CPU time is neglected and only user CPU time is considered as

an “honest” way to report uniprocessor performance on the convolution operation.

In coding up a simple convolution routine in order to measure the elapsed user
CPU time, it was realized that the goal, in effect, was to constructa benchmark pro-
gram that would not only relate a typical convolution latency but would also com-
pare the suitability of different machines in performing convolution. The resulting
benchmark code which was dubbed the “CONV” benchmark is included in Ap-
pendix A. Expressly, this benchmark records the bare processing time needed to
execute the double-precision floating-point process code within the main loops of
a typical convolution routine. Results of the CONV benchmark were gathered from
every available workstation and are ordered and presented in Table 1.1. Since a
benchmark’s most important feature is reproducibility, all information relating to
its compilation and execution need also be reported. The computers tested with
this benchmark are specified by model and associated microprocessor.

From Table 1.1, it is noticeable that the convolution benchmark was run on
the gamut of Silicon Graphics and Sun workstations. The best performance was
achieved with a Silicon Graphics Indigo™ station which required at least 21 seconds
to perform the convolution. At the other extreme, a Sun 3 architecture faired the
worst requiring at least 15 minutes 53 seconds to accomplish the same task! Ergo,

12

1. Introduction

Machine Type Microprocessor User CPU Time
SGI INDIGO XS MIPS R4000 - 50 MHz 21sec
SPARCstation 10/30 SuperSPARC - 33MHz 29sec
IRIS 4D/420VGX MIPS R3000 - 40 MHz 36sec
PERSONAL IRIS MIPS R3000 - 36 MHz 40sec
SPARCstation 2 SPARC - 40MHz Slsec
SPARCstation ELC ~ SPARC - 33MH2 lmin lsec
SPARCserver 470 SPARC - 33MHz Imin 6sec
SPARCstationIPC~~ SPARC - 25MHz Imin 30sec
SPARCstation 1+ SPARC - 20Mxlz lmin 37sec
SPARCstation 1 SPARC - 20MHz lmin 58sec
SPARCstation SLC ~ SPARC - 20MHz 2min 7sec¢
Sun 3/50 Motorola 68020 15min 53sec

Table 1.1: Results of the CONV benchmark on the spectrum of available unipro-
cessors currently used to perform image-processing tasks. GCC version 2.3.3 was
used to compile the benchmark for each architecture with exception to the SUN 3
which only supported GCC version 2.0.

even with the best machine, the requisite 42 million FLOPS in the CONV bench-
mark took 21 seconds to complete which amounts to nothing more than 2 double-
precision MFLOPS of delivered performance. However, going through lengths to
highly optimize the code in the CONV benchmark it is possible to further improve
this figure of performance on the R4000-based Indigo. For instance, setting machine
dependent compiler options to schedule instructions specifically for the R4000 chip
and to issue instructions from level 2 of the MIPS ISA (Instruction Set Architec-
ture) with branch prediction, unrolling all loops, and using temporary local reg-
isters to store partial convolution results, a CONV performance of 7 MFLOPS was
attained. But, this is still worse than the 9.4 MFLOPS quoted for an Indigo run-
ning the LINPACK benchmark [Wilson, 1993] and worse still than the 16 MFLOPS
rate published by Silicon Graphics for this same machine. The disparity can be at-
tributed to memory latency which is discussed next.

The architechures tested above are all high-performance RISC (Reduced Instruc-
tion Set Computer) architectures each with a pipelined FPU (Floating Point Unit)

13

1. Introduction

which relies on a continuous stream of incoming data to sustain maximum process-
ing throughput. No matter how well the compiler schedules instructions, there will
invariably be times when the FPU is stalled for a period, typically 2 or 3 clock cy-
cles, awaiting input data that is in main memory. In convolution, the problem of
pipeline stalls due to memory latency is especially aggravated by the vast num-
ber of inherent load (and store) instructions, limiting the already limited computa-
tional power available in single processor architectures. For example, in the CONV
benchmark, each store instruction issued corresponds to a pixel result destined for
the image buffer Y; yet, each of these 218 results requires 81 load instructions to ac-
cess the neighbourhood of pixels in I and 81 loads for the weights in W. Despite
the prevalence of cache systems in all architectures tested, this volume of loads puts
overwhelming demands on the CPUs” memory substems engendering the some-
what debilitated performance in uniprocessor machines that was observed with the
CONYV benchmark.

Generally, the general-purpose single-processor systems studied are not very
well-suited to the sort of numerical processing that the convolution operation calls
for. Parallel processors, alternatively, will soon be shown to more readily conform
to the task at hand. But first there remains an important issue with regard to con-
volution or rather the computational considerations of convolution that needs ad-
dressing. Above the focus was on spatial domain computation of the convolution
operator; however, in certain instances convolution is best carried out in the fre-
quency domain. It is essential to investigate the frequency domain approach since
in the cases where it proves less computationally intensive than the spatial domain
approach, frequency domain calculations instead of spatial domain calculations

should serve as the basis for computing convolution.

14

1. Introduction

1.2.2 Transforming the Domain of the Convolution Problem

It is sometimes more efficient to compute convolution by transforming the image
and kernel arrays to the frequency domain, multiplying the transforms point by
point, and then inverse transforming the result. This is the thrust of the frequency
domain approach which is also represented by Fig. 1.4, and in this subsection, a the-
oretical discussion will unfold the mysteries behind the requisite frequency domain

transformations.

Kemel wlij]

@ DFT W0}

Pointwise

Multiplicntioy

Yiuo] IDFT B Output lmage ylij1]

Figure 1.4: Frequency domain approach to convolutiony = wez. The input image
z[7, 7] and kemel w(z, j] are each passed through a DFT routine which transforms
the spatial domain [z, j] to the frequency domain [u, v]. The transforms, W[k, v] and
X[u,), are then multiplied point by point to yield Y[u, v]. The inverse transform
is then applied to Y to recover the output image y[i, j].

The frequency domain approach takes advantage of the Fourier duality of the
convolution and multiplication operators. Specifically, by the Convolution Theo-
rem and the Modulation or Windowing Theorem [Oppenheim and Schafer, 1989),
discrete-time convolution of sequences is equivalent to multiplication of corre-
sponding periodic Fourier transforms, and likewise, multiplication of sequences is
equivalent to periodic convolution of corresponding Fourier transforms. Hence, a

15

1. Introduction

simple pointwise multiplication operator should be used in lieu of the more labori-
ous spatial convolution operator provided the discrete Fourier transform, or DFT,

and its inverse, the IDFT, are painlessly computed.

When calculated by the brute-force method the two-dimensionai DFT of an
N x N, image which is defined by the following complex valued equation
[Press et al., 1988] [Burrus and Parks, 1985]

Na=1 Ny—-1
Xiny,na] = Z Z exp(2nikana/N2) exp(2mikina /Ny) z[ky, kol (1.8)

k=0 ky=0

necessitates in the order of N1>N>* operations or K* operations if one assumes a
square K x K image. This amount of computation is hardly painless, and if it were
not for the recursive Fast Fourier Transform or FFT algorithm, one surely would
never consider doing anything in the frequency domain. Fortunately, the FFT algo-
rithm, whose “discovery” was credited to Cooley and Tuckey in 1965, can be used
to compute the DFT in much fewer operations.

The FFT [Brassard and Bratley, 1988] is basically a divide and conquer algo-
rithm which relates the transform of a one-dimensional sequence of N points to
two sequences of N/2 points. It can be used recursively to subdivide the data all
the way down to transforms of length 1 which are simply identity operations. The
algorithm works well only when the original N is an integer power of 2; hence, most
data sets which are not powers of two are padded with zeros up to the next power
of two. The points as given are therefore just the one-point transforms. One com-
bines adjacent pairs to get two-point transforms, and so on, until the first and sec-
ond halves of the whole data set are combined into the final transform. Each combi-
nation takes of order N complex number multiplications and additions, and there

are evidently log, N combinations, so the whole algorithm is of order Nlog, N.

Now, by pulling the exponential of “subscript 2” outside of the sum over k&
in Eq. 1.8, one can see instantly that the two-dimensional FFT can be computed

16

1. Introduction

by taking one-dimensional FFTs sequentially on each index of the original two-

dimensional array. Symbolically,

X[n1,n3] = FFT-on-index-2(FFT-on-index-1(x[k1. 42])) {1.9)

Thus it is shown that a two-dimensional FFT can be efficiently implemented
in this manner by first taking transforms along each row of an image and subse-
quently along each column of the resulting intermediate data representation. Ergo,
the transform of a K’ x K image would be expected to take in the order of K'log, K
operations for each of the A rows plus A" columns. Thus, the number of opera-
tions in a two-dimensional DFT using the FFT algorithm wouid be proportional to
K(Klog,K) or K¥log,K, a considerable improvement over the brute-force DFT al-
gorithm which requires in the order of K* flops.

Further along these theoretical lines, it can also be shown that the frequency do-
main approach for the convolution problem involves K2 operations to carry out the
pointwise multiplication of the transformed image and kernel, and subsequently,
a certain number of operations for the inverse transform of this result. Since the
inverse Fourier transform can also be calculated (with minor modifications in the
input) by using the K%log, K algorithm designed for the forward transform, then
the entire convolution can be performed in that same order of K2log, K. However,
as will be seen next, the multiplicative constant for the latter “order” expression can
prove significant and that transforming the domain of the convolution problem is
advantageous only for larger kernels.

1.2.3 Frequency Domain Versus Spatial Domain Processing

The results of an experiment to measure the computational intensity of each ap-

proach to the convolution problem are presented in Fig. 1.5. Convolution imple-

17

1. Introduction

mentations using the frequency domain and spatial domain approaches were car-
ried out on a uniprocessor machine and the number of floating point operations, or

flops, were tallied at run-time.

Frequency Domain Approach

flops (in miflions)
3

Spatial Domain Approach

DJo'

4 6 3 10 12 14 16
Kemel Size M

Figure 1.5: Frequency domain approach versus spatial domain approach. The
number of floating-point operations required are plotted against kernel size M.

If the order expressions established above are taken as exact indications of the
number of flops required for each approach, the breakeven point would be ex-
pected to occur when the K2M? spatial domain flops equaled the K%log,K flops.
{Recall thata K x K image is being convolved with an M x M kernel) Therefore,
for a standard K = 512 image size, the two approaches would be of equal compu-
tational intensity when M? = log, K, or simply when M = 3. However, the un-
dergone experiment in which complex multiplications were counted as 6 flops and
complex additions were counted as 2 flops suggested that the frequency domain
approach did not become computationally expedient until the kernel size M ex-
ceeded 11. Fig. 1.6 delineates this breakeven point and summarizes the breakeven
points for different values of image size K.

18

1. Introduction

[-
] O SO O : :
| SRR UUPIS el .-
10|_
- :
Y
©] PR M IR 2 SO U UURSR B DUUD ST BN SRR T S -
o :
& :
x® : :
Y XEEE IERTTTS 2 Xon ST Y PP A SRRPAITS B RPOUTY I [XPTTOUN [N DTSRRI S YT T SRR
: Km512]
P A 00 00 1 O U U OO B O
sl I OPREIOU Y GRS OO0 1 N X OO X OO SO DU I S
1 2 3 4 5 6 7 3 9 10 11
log (Image Size K)

Figure 1.6: Maximum kernel size M for which convolution in the spatial domain
used less flops than convolution done in the frequency domain. Values of M are
plotted for different values of image size K.

It should be cautioned that these results are largely implementation dependent,
yet they are interesting because they serve to dispel any misconceptions that the fre-
quency domain approach might be a panacea for the convolution problem. Quite to
the contrary, all observations indicate that the frequency domain approach is only
effective for convolutions that employ large kernels. The great overhead in flops
and the multitude of calls to memory needed to transform the domain of the prob-
lem cannot be justified for convolutions that use small kernel sizes. In these cases
where the kernel is much smaller than the input image, which will also be a require-

ment for the hardware implementation to come, convolution is best handled in the
spatial domain.

19

1. Introducton

1.3 Summary

To summarize, the convolution operation was targeted for performance improve-
ment because it was perceived as the most frequently used operation in image-
processing tasks. The convolution operator was therefore introduced and defined
and followed by some practical examples which reinforced the latter definitions.
Furthermore, since much of the development of image processing programs occurs
on relatively low-cost, general-purpose, uniprocessor workstations, convolution
performance was first evaluated on such machines. In addition, whether domain
transformations are employed or not, the essential point remains that the huge vol-
ume of data and floating-point arithmetic calculations needed to convolve a stan-
dard sized image can be overwhelming with regard to the available computational
power and memory bandwidth of single processor machines. Alternatively, in the
next chapter, parallel processing will be presented as the logical answer to over-

coming the tremendous computing requirements of the convolution operation.

20

Chapter 2 Parallel Processing Solutions

The point of parallel processing is to reduce the elapsed time to complete the job at
hand [Karp, 1987]. Executed on a uniprocessor that can sustain a 1-MFLOPS com-
putation rate, an implementation of a sequential algorithm for convolution that en-
genders say 42, 000, 000 floating point operations can run to compietion in about 42
seconds. Now, if the convolution problem can be reformulated into a parallel algo-
rithm and implemented to run concurrently on say 10 processors each capable of
1 MFLOPS, the convolution job should ideally take one tenth the processing time
or 4.2 seconds. Although it is implied that = processors give a speedup of z, real
systems usually fall short of such ideal speedups hindered by inefficiencies due to
synchronization, communication, or work imbalances among the multiple parallel
processors. Essentially however, in spite of the realities imposed by coding style,
the architecture of the machine, and the specific hardware implementation, paral-
lel processing stands as the only feasible means by which one can attain dramatic

performance improvement [van Zee and van de Vorst, 1989].

Expressly, the convolution problem, which is inherently parallel in nature, can
be quite easily “parallelized”, and as such can be readily implemented with consid-
erable speedup on various general-purpose parallel processing computers. How-
ever, this chapter will attempt to instill the notion that a general-purpose parallel
computer is not a cost-effective option for the rather specialized problem of con-
volution, and that maximum gain and cost-efficiency can best be achieved with a
special-purpose hardware accelerator employing a type of synchronous parallel ar-
chitecture known as the systolic array.

21

2. Parallel Processing Solutions

2.1 Inherent Parallelism

The convolution computational problem is inherently parallel in nature. This char-
acterization simply implies that by virtue of its iterative nature, the convolution
task is very easily divided into smaller subtasks which can be completed in par-
allel. Observe the sequential algorithm which is typified by the main loops in the
CONV benchmark:
for (i=IBEGIN; i<=I.ND; ++i)
for (j=JBEGIN; 3j<=JEND; ++3)
for (m=MBEGIN; m<=MEND; ++m)

for (n=NBEGIN; n<=NEND: ++n)
Y(i][ji+= Wlm) [n] * I[i+m-IOFFSET] [3+n-JOFFSET];

This algorithm basically uses two pairs of nested loops to index the convolu-
tion sum iteratively. Moreover, indices [z, j] index the output image data, [m, n] in-
dex the kernel data, and the input image data is indexed by a combination thereof.
This algorithm can clearly be divided (and conquered) in countless ways. One im-
portant approach finely partitions the compute work into small identical and inde-
pendent subtasks which operate concurrently on different portions of data. This in-
nate fine-grain data parallelism is readily demonstrated by unrolling the outer pair
of loops of the algorithm above to yield a sequence of copies of the inner double-
loops.

for (m=MBEGIN; m<=MEND; ++m)
for (n=NBEGIN; n<=NEND; ++n)
Y[01{0]+= Wm] [n] * I[0+m-IOFFSET] [0+n-JOFFSET];
for (m=MBEGIN; m<=MEND; ++m)
for (n=NBEGIN: n<=NEND; ++n)
Y{0i1([1)+= WIml [n] * I[0+m-IOFFSET] [1+nt-JOFFSET];
for (m=MBEGIN; m<=MEND; ++m}
for (n=NBEGIN; n<=NEND; ++n)
Yi0l([(21+= Wim]l [n] * I[O+m-IOFFSET] [2+n-JOFFSET];

for (m=MBEGIN; m<=MEND; ++m)
for (n=NBEGIN; n<=NEND; «++n)
¥Y[511] [5111+= W{m] [n] * I[511+m-IOFFSET] [511+n-JOFFSET];
Here, each double-loop is identical in that each serves to accumulate the

weighted sum of a given neighbourhood of input pixels, and each is responsible

22

2. Parallel Processing Solutions

for a one pixel result in the output buffer Y. Hence, each double-loop, which repre-
sents a rather small number of iterations (81 for the CONV benchmark), may be ex-
ecuted in paralle] each on a separate processor. If there existed a parallel computer
with as many processors as double-loops in the above routine, a CONV benchmark

parallelized in this fashion would exhibit an ideal speedup of 512° = 262, 144!

By virtue of its inherent parallelism, the above sequential routine was quite ef-
fortlessly shown to be data-parallelizable in a fine-grain manner; yet attempts to
break down the compute work further into finer, identical grains may present more
of a challenge. Even though more “available parallelism” has already been demon-
strated than current parallel computers (¢1993) can exploit, it is worth briefly trying
to discern still a higher degree of parallelism because the attempt points to a gen-
eral problem in the art and science of converting sequential algorithms into parallel
algorithms —the problem of data dependence. First, a basic premise for the concur-
tent operation of an array of parallel processors is that no processor’s current com-
putations should depend on the current computations of another processor. Now,
consider unrolling each one of the double loops above in hopes of running each
atomic iteration on a single processor. For instance, unrolling only the fist double-

loop gives:
Y[0] [0)+= W[0]) [0] * I[0+0-IOFFSET] {0+0-JOFFSET];
Y[0]1[0)+= W[0] [1] * I[0+0-IOFFSET] [0+1-JOFFSET);
Y[0][0]+= W[0][{2] * I[0+0-IOFFSET] [0+2-JOFFSET];
Y101 [0])+= W[B1{8] * I[0+8-IOFFSET] [0+8-JOFFSET];

And it could be seen that each of these iterations/instructions operates on differ-
ent input data, yet each stores its cumulative result in the same Y'[z][5]. This implies
an output data dependence. Generally, if each iteration within each double-loop is
run in parallel on independent processors, then each processor will try {undesir-
ably so) to update a global value of Y[i][j] at the same time. Rather, each of these
processors should have to wait its turn to update Y’ if the correct weighted sums
are to be accumulated. Thus the sequential nature of the latter accumulation de-
feats the purpose of concurrent processing. Indeed, the pervasive point to be made
is that most problems of interest, convolution included, possess certain inherently

23

2. Parallel Processing Solutions

sequential algorithmic components [Kuck, 1980] that present themselves in terms
of data dependencies which invariably complicate or even limit the parallelization
process. Section 2.4 will elaborate on how parallelization of such sequential com-

ponents can be performed.

2.2 Basics of Parallel Algorithms

Thus far, parallelism has been investigated with no mention as to parallel archi-
tecture specifics. Merely the form of the sequential algorithm and the sort of par-
allelization that it conjectures have been presented. Hence, before exact models
of parallel processing are introduced, it would be appropriate to touch upon, in
some semblance of rigour, two important parameters with which parailel algo-
rithms have and will be compared.

Within this thesis, T is denoted as the execution time for the “best” serial algo-
rithm, and T}, as the execution time for a parallel algorithm using p processors. The
speedup, Sy, can therefore be defined as

T
Sy, = Fp (2.1)

And the “efficiency” or “utilization”, E, of the parallel algorithm is given by

E,=22 (2.2)

If a parallel algorithm is 100% efficient, then one observes “linear” speedups.
As intimated at the outset of this chapter, however, efficiency is practically never
100%, due to synchronization or communication costs. And in those cases where
task granularity is irregular, suboptimal load balancing among parallel processors
also works to further erode this figure.

24

2. Parallel Processing Solutions

2.3 General-Purpose Parallel Processing Options

The road to parallelizing convolution is a convoluted one. To begin, parallel pro-
cessing solutions offer large-scale speedups for the convolution problem and many
other inherently parallel problems. From a practical standpoint, commercially
available, general-purpose, parallel processing computers can indeed be very ef-
fective, but it is most consequential that their high price tags place them beyond the
reach of many academic and industrial organizations. Table 2.1 provides a cursory
look at the cost of the state of the art in parallel computing. The cheapest option
is shown to be a network of uniprocessor workstations. Albeit for communication
intensive tasks such as the convolution of an image, the extensive communication
overhead in using network constructs such as sockets [Horspool, 1986] or higher-
level remote procedure calls (RPCs) negates the associated increase in computing
power. At the other end of the spectrum, supercomputers are recognized as often
the most appropriate resource for performing certain complex and important tasks
[Ratiner, 1985], but evidently they are prohibitively expensive.

Parallel Processing Options Examples Cost
Network of workstations Network of SPARCstations Lowest cost
Multiprocessor workstations DEC Firefly,

Apolio DN 10000,

Solbourne,

Xerox Dragon,

SUN SPARCstation 20 $60,000.
Shared memory multiprocessors Sequent Symmetry,

Encore Multimax $200-400,000.
Distributed memory multiprocessors Intel iPSC hypercube,

NCUBE $200-400,000.
Supercomputers Connection Machine CM-5,

Intel Paragon,

Kendall Squares KSR-1 $5,000,000.

Table 2.1: Cost of various parallel processing options.
Having secured the significance of the cost factor in the search for optimal par-

25

L Y]

2. Parallel Processing Solutions

allel solutions for convolution, what remains is to establish an order of logic with
which to lead into one such cost-effective solution. Finding one’s way through the
“megalopolis” of parallel processing options requires some sort of map. Hence,
this section will take on the “big picture” of parallel computing, putting order to
the parallel-processing options via a taxonomic survey. The parallel architectures
to be surveyed in this section are mostly general-purpose in nature, hence the ti-
tle above. Yet the subclass of architecture that will prove most cost-effective and
thus most fundamental to this thesis will be special-purpose, and its discussion is
deferred for the subsequent section (Section 2.4).

2.3.1 Architecture Taxonomy

The diversity of recently introduced parallel computer architectures confronts the
taxonomist with what R.W. Hockney felicitously terms “a confusing menagerie of
computer designs” {Hockney and Jesshope, 1988]. Placing the architectural alter-
natives in a coherent framework requires the adoption of an uptodate taxonomic
system. According to Flynn’s taxonomy [Flynn, 1966] which classifies computers
based on their instruction and data streams, parallel architectuzes would fall under
the multiple-instruction, multiple-data (MIMD) and single-instruction, multiple-
data (SIMD) classifications. Although these distinctions provide a useful shorthand
for characterizing architectures, they are insufficient for classifying various mod-
ern computers. Other taxonomies exist [Shore, 1973], but favoured in this thesis is
a more contemporary grouping proposed by Duncan [Duncan, 1990]. This classi-
fication scheme, sketched in Fig. 2.1 leads one to consider processors in terms of
MIMD, MIMD-based paradigms, and synchronous architectures.

r

2. Parallel Processing Solutions

MIMD

Distributed Memory
Shared Memory

MIMD/SIMD

Parallel Coamputer Architectiires

Wavcfront

\, Vector

. Systolic

Figure 2.1: Parallel computer architectures according to Duncan’s taxonomy.

2.3.2 MIMD Parallel Processors

MIMD architectures employ multiple processors that can execute independent in-
struction streams, using local data. Thus, MIMD computers support parallel solu-
Hons that require processors to operate in a largely autonomous manner. Rattner
refers to this kind of parallel execution as “concurrency” [Rattner, 1985] which is
the highest level form of parallelism, denoting independent operation of a collec-
tion of simultaneous computing activities. That is to say thata given task is divided
coursely into a number of sizable subtasks which are executed asynchronously on
independent processors. Depending on how their associated subtasks (software
processes) interact, these processors can be classified as loosely coupled, interact-
ing by passing messages to one another, or tightly-coupled, interacting via shared

memory.

27

2. Parallel Processing Solutions

Loosely coupled systems are also referred to as distributed memory architec-
tures because memory is not centralized but distributed locally on each processor.
The only way for the application to share data among processors in these systems is
for the programmer to explicitly code commands to move data from one processor
to another. Examples of recent distributed memory, message passing machines are
the Parsytec GC [Par, 1991], the nCube 2 [nCU, 1992] and the iPSC 860 [Int, 1993].
Although many processor interconnection schemes exist [Feng, 1981], the nCUBE
and iPSC systems are noted for exploiting powerful hypercube interconnection net-
works [Seitz, 1985] [Palmer, 1986] [Freer, 1987] which boast the densest and most

efficient inter-processor wiring.

Alternatively, shared-memory architectures such as the Sequent Symmetry
[Lovett and Thakkar, 1988] accomplish inter-processor coordination by providing
a global, shared memory that each processor can address. While computers in this
subclass do not have some of the problems encountered by message-passing archi-
tectures, such as message sending latency as data is queued and forwarded by in-
termediate processor nodes, they do suffer from other problems such as data access
synchronization and cache coherency. Also, the aggregate memory bandwidth will
limit the number of processors that can be accommodated on these systems.

Naturally, the third form in MIMD architectures is manifested in hybrid sys-
tems such as the IBM RP3 [Pfister, 1985], the BBN Butterfly [Crowther, 1985], and
the Cedar [Gajski, 1986]. A machine in this subclass has some of the properties of
shared memory systems and some of those of message passing. Though all mem-
ory is actually local to a given processor, the operating system makes the machine
look like it has a single, global memory. Thus, programs are written as if for a
shared memory system; however, the performance considerations resemble those

of a message passing machine.

MIMD computers are generally considered course-grain machines that perform
weli on problems that have a low degree of available parallelism and a low propor-

28

2. Parallel Processing Solutions

tion of communication among subtasks. As such, their design philosophy does not
seem particularly suited to the inherent, fine-grain, data parallelism in the convolu-
tion problem and other fine grain tasks prevalent in image processing algorithms.
For instance, convolution can be handled by dividing the input image into chunks
to be worked upon separately amongst the » available processors of a MIMD sys-
tem. Explicitly, a MIMD convolution program would likely “fork” n corresponding
processes that would operate concurrently on n “sub-images”. Since n tends to be
relatively small (< 1000), the speedups for MIMD convolution are less than dra-
matic. Moreover, efficiency would presumably be poor as MIMD parallel convo-
lution incurs a profound communication cost due to either an excessive number of
shared-memory accesses (shared-memory contention) or an immoederate number

of messages for the access of border data in neighbouring sub-images.

2.3.3 MIMD-based Parallel Processing Paradigms

MIMD/SIMD hybrids, dataflow architectures, reduction machines, and wavefront
arrays are a some of the parallel processing models that do not readily befit Flynn’s
MIMD categorization. Although these paradigms are predicated on MIMD princi-
ples of asynchronous operation and concurrent manipulation of multiple instruc-
tion and data streams, each of these architectures is also based on a distinctive or-
ganizing principle as fundamental to its overall design as its MIMD characteristics.

Firstly, MIMD/SIMD hybrid models [Lipovski and Malek, 1987] allow selected
portions of a MIMD architecture to be controlled in SIMD fashion. Although these
models are interesting from an image-processing perspective, it will be argued
shortly that convolution and other low-level vision algorithms are best supported

by maximizing the SIMD resource.

Dataflow architectures [Srini, 1986] feature an execution paradigm in which

instructions are enabled for execution as soon as all of their operands be-

29

2. Parallel Processing Solutions

come available. Thus, these “data-driven” processors such as the Datawave
[Schmidt and Caesar, 1991] fair well for asynchronous tasks with numerous data
dependencies and have been shown to achieve high degrees of concurrency. But
despite all their merits, dataflow remains the architecture of choice only when si-
multaneity is low, irregular, and run-time dependent [Briggs and Hwang, 1984] -

characteristics which are the antithesis of low-level image processing.

Reduction architectures, also referred to as “demand-driven” architectures
[Treleaven et al., 1982], implement an execution paradigm in which an instruction
is enabled for execution when its results are required as operands for another in-
struction already enabled for execution. Like the data-driven architectures above,
reduction architectures are not a practical choice for the low-level processing of im-

ages.

Lastly, wavefront array processors [Kung, 1987] are based on a MIMD architec-
tural paradigm which combines an asynchronous dataflow execution model with
“systolic data pipelining”. Pipelines and systolic arrays will be the focus of Sec-
tion 2.4 wherein it will be seen that simple, synchronized dataflow contributes to
the many desirable properties of systolic architectures. However, wavefront arrays
replace the global clock and explicit time delays used for synchronizing systolic
data pipelines with asynchronous handshaking as the mechanism for coordinating
inter-processor data movement. Thus wavefront arrays, despite their close resem-
blance to the impending systolic solution, increase control complexity and will be
forsaken in favour of their simpler sibling -the systolic architecture.

2.3.4 Synchronous Parallel Processing Architectures
Synchronous computers essentially include vector, SIMD and systolic processors

all of which perform concurrent operations in lockstep fashion, synchronized with
either control units or global clocks. Hence, unlike the autonomous MIMD proces-

30

2. Parallel Processing Solutions

sors, synchronous processors perform in a very deterministic manner. The goal of
synchronous architectures appears to be the fine division of compute work among
multiple processors which makes them excellent candidates for fine-grain image-

processing problems such as convolution.

Pipelined vector processors [Briggs and Hwang, 1984] such as the Cray X-MP
[Larson, 1984] [Robbins and Robbins, 1989] and the IBM 3090 [IBM, 1985 are char-
acterized by multiple, pipelined functional units which implement arithmetic and
Boolean operations for both vectors and scalars and which can operate concur-
rently. Since such architectures can support task-level parallelism, they could ar-
guably be termed MIMD architectures, although vector processing capabilities are
the fundamental aspects of their design. The pipelined processing units in vec-
tor machines are said to exploit low-level “temporal parallelism” by performing
a vector operation in stages and by overlapping execution such that at any given

time each stage in the vector pipeline is processing a different element in the vector
stream.

SIMD computers, on the other hand, will be shown to exploit a higher level
“data-parallelism” [Hord, 1990]. These architectures, which can be further classi-
fied in terms of associative memory systems and and processor arrays, have tradi-
tionally employed a central control unit, multiple processors, and an interconnec-
tion network for either processor-to-processor or processor-to-memory communi-
cations. The control unit broadcasts a single instruction to all processors, which ex-
ecute the instruction in lockstep fashion on local data. Individual processors may
be allowed to disable or “sit out” the current instruction.

Computers built around associative memories [Kohonen, 19871 form a distinc-
tive type of SIMD architecture that uses special comparison logic to access stored
data in paralle} according to its contents. Modern associative memory processors
are not particularly suited to image-processing applications; rather, they have nat-
urally been geared to database-oriented applications, such as tracking and surveil-

31

2. Parallel Processing Solutions

lance.

Finally, image-processing seems to have gained much from the SIMD archi-
tectural paradigm as realized by general-purpose, processor array architectures.
Historically, processor arrays such as the Illiac IV [Barnes, 1968], the MPP (mas-
sively parallel processor) [Batcher, 1980], the ICL DAP (distributed array processor)
[Hockney and Jesshope, 1988], and more recently, machines such as the ACMAA
(access constrained memory array architecture) [Balsara and Irwin, 1991} and the
Connection Mac'une [Hillis, 1985] [Thi, 1992], have often been used as image-
processing “engines”. These parallel computers typically employ a high number
(> 1000} of simple processors or PE’s (processing elements). Although they lack the
autonomy and computing power of MIMD processors, the PE’s within large pro-
cessor arrays have been shown to make short work of inherently, fine-grain, data-

parallel problems.

In keeping with the “practical” nature of this thesis, it is highly desirable to di-
gress somewhat in order to substantiate this latter claim by demonstrating the ef-
ficacy of an array processor in solving the convolution problem. To this effect, an
experiment was conducted that does indeed demonstrate the effectiveness of one
array processor in as much as it was found to yield the best convolution perfor-
mance presented thus far in this thesis. But when the cost of this array processor is
factored in, this parallel solution can hardly be deemed “cost-effective”.

The MasPar Experiment

The MasPar experiment entailed the parallelization of the sequential convolution
algorithm as suggested in Section 2.1 and the subsequent implementation on an
available MasPar MP-1 [Mas, 1992] array processor. The resulting parallel code
constitutes a new benchmark called “PARCONV” and is featured in Appendix B.
The MP-1 employs 2,048 PE’s configured in a 64 x 32 toroidal mesh shown in
Fig. 22. As was dore in the CONV benchmark, the time taken to execute the

32

2. Parallel Processing Solutions

double-precision floating-point process code within the computational portion of
the PARCONV benchmark was measured, although instead of user CPU time, this
figure is referred to as “DPU time” to reflect the isolated processing time of the Data
Parallel Unit (See Appendix B). Hence, the DPU time (or Tans) was observed to
be 3.69 seconds implying a processing rate of 11.4 MFLOPS. Numerous attempts
were made to further optimize the code in the PARCONV benchmark yet the fastest
version that utilized specialized “uni-directional” routines for inter-processor pixel
transfers presented a mere 13.4 MFLOPS. When compared to the sequential al-
gorithm executed on the Silicon Graphics Indigo station this implies a speedup,
Sa0as, of about 2 with a near nil efficiency. In all fairness, however, it is important
to remark that this speedup is substantial when one considers that the MP-1 em-
ploys very simple 4-bit processing elements each running at 1.8 MIPS (millions of
non-floating-point instructions per second) and that the 64-bit, double-precision,
floating-point performance of one PE is orders of magnitude below that of the In-
digo’s R-4000 processor.

But perhaps the most important consideration is the cost-effectiveness of the
MP-1 processor array. Given that the MasPar MP-1’s price was $100,000 four years
ago and assuming it is the same today, one can estimate the cost per MFLOPS of
convolution processing power to be $7,500/MFLOPS. Hence, with regard to this
cost/performance metric, it is highly questionable whether floating-point convo-
lution on the MP-1 is a cost-effective operation.

Taking a step back to review the architectures surveyed, it is clear that of the
three classes of parallel computer architecture studied, synchronous architectures
conform most to the fine-granularity of image-processing tasks. In particular, SIMD
array processors were recognized as the natural choice in implementing inherently
data-parallel problems. The MasPar experiment illustrated how an array proces-
sor befits a parallelized convolution routine and how the MP-1 supports the high-
est convolution computation rate reported so far. However, there remains one
last subdlass of synchronous architecture which has yet to be presented, namely

33

2. Parallel Processing Solutions

Figure 2.2: MasPar MP-1 interconnection network. The 2, 048 PE’s are configured
in a 64 x 32 toroidal mesh. Each PE in the array is connected to its eight nearest
neighbours.

the systolic array. It is introduced next as a special-purpose synchronous architec-
ture which has dramatic performance potential. More importantly however, paral-
lelization by means of a systolic array will be offered as an inexpensive, and there-
fore highly cost-effective, parallel processing solution which will be adopted in a
high-performance image-processing system thereby forming the foundation for the

main work in this thesis.

2. Parallel Processing Solutions

2.4 Systolic Array Architectures

Traversing the highways and byways of parallel computing in search of an archi-
tecture which will support a high performance, cost-effective convolution imple-
mentation, one ultimately ends up in the domain of systolic array architectures.
First proposed by H.T. Kung {Kung, 1982], the systolic array is a type of parallel,
synchronous architecture whose use has been chiefly application-specific. Thus,
the context is being switched from general-purpose computer systems to special-
purpose computer systems or to what will be alternately referred to in this the-
sis as “hardware accelerators” implying high-performance, special purpose sys-
tems which are typically used in meeting specific application requirements or in
off-loading computations that are especially taxing to general-purpose computers.
Principally, the systolic array architecture will be presented as a general method-

ology for mapping high-level computations into high-performance, cost-effective
hardware structures.

2.4.1 Basic Architecture

Pipelines and systolic arrays represent a general means by which sequential al-
gorithms can be parallelized. A pipelined system, for instance, operates like
an automobile assembly line in which different people work on the same car at
different times and many cars are assembled simultaneously. Analogously, in-
put data enters at one end of a computation pipeline and partial results flow
from stage to stage until the last stage completes the computation and yields
the result. Systolic arrays function much in the same manner yet they are not
constrained to operate in linear schemes characteristic of pipelines. Rather, as
shown in Fig. 2.3, they can be rectangular, triangular, or hexagonal to make use
of higher degrees of parallelism. Moreover, to implement a variety of computa-
tions, data flow in a systolic system may be at multiple speeds in muitiple direc-

35

2. Parallel Processing Solutions

tions — both inputs and (partial) results flow, whereas only results flow in classi-
cal pipelined systems. Examples of two-dimensional systolic arrays are plentiful
[Guibaset al., 1979] [Lehman and Kung, 1980] [Kung and Leiserson, 1978]
[Gentleman and Kung, 1981}.

(a) (b)
(c)

[

Figure 2.3: Two-dimensional systolic array connection topologies are typically (a)
rectangular, (b) triangular, or (c) hexagonal.

A systolic system primarily consists of a set of interconnected cells, each capable
of performing some simple operation. Simple, regular comxmunication and control
structures have substantial advantages over complicated ones in design and imple-
mentation; therefore, cells in a systolic system, which are basically simple process-
ing elements, are typically interconnected to form a systolic array or a systolic tree.
Information in a systolic system flows among cells in a pipelined fashion, and com-
munication with the outside world occurs only at the boundary cells. Kung likens
this ‘thythmically recurrent’ flow of data to the flow of blood within the body and

36

2. Parallel Processing Solutions

thus adopted the medical term "systolic” for this subclass of architectures.

“..data flows from the computer memory in a rhythmic fashion,

passing though many processing elements before it returns to memory,

much as blood circulates to and from the heart.” [Kung, 1982]

2.4.2 Key Architectural Considerations

Discussion on special purpose computer systems in this thesis represents a narrow-
ing of scope or search space for systems which can handily overcome the convolu-
tion problem. To high-light the allure of the systolic subclass of architectures, we
must first review some key architectural factors that constrain the design space of
a special-purpose system. These elements, which will ultimately lead us toward

a systolic approach, are essentially cost-effectiveness, computation rate, and 1/0O
bandwidth.

Firstly, cost-effectiveness is a crucial consideration. The cost of a special-
purpose system must be low enough to justify its limited applicability. Especially
in VLSI designs, where a single chip comprises hundreds of thousands of compo-
nents, great savings can be achieved if we were to choose an architecture that read-
ily lends itself to decomposition into a few types of simple substructures or building
blocks, which are used repetitively with simple interfaces. The proposed systolic
architecture would be quite appropriate in this regard. In addition, such special-
purpose systems based on simple, regular designs are likely to be modular and
therefore easily adjustable to various cost/performance goals.

Secondly, as we have mentioned before, a high computation rate, which is a con-
stant challenge to the special-purpose system designer, must be derived from the
concurrent use of many processing elements. Though the degree of concurrency in
special-purpose systems is largely determined by the underlying algorithm which
should be designed to introduce high degrees of pipelining and multiprocessing,

37

2. Parallel Processing Solutions

the burden of fully utilizing the available parallelism rests on architectures such as
the systolic type which can realize massive concurrency in a relatively straight for-
ward and facile manner. In turn, the consequences of massive parallelism are man-
ifested in terms of synchronization problems. When a large number of processing
elements work simultaneously, coordination and communication become signifi-
cant and more so in VLSI technologies where routing costs dominate the power,
time and area required to implement a computation. Hence the simple, regular

communication and control found in systolic systems is extremely welcome.

Finally, I/O considerations greatly influence overall performance. The ultimate
goal in any special-purpose system is to balance the computation rate with that of
the available host I/O bandwidth. Furthermore, in Fig. 2.4 we may observe that
if the performance of a traditional computation model is limited by its I/O band-
width, then no matter how fast the special-purpose system operates, there can be
no improvement in throughput. However, orders of magnitude in throughput can
be gained if multiple computations are performed per 1/0O access such as in the sys-
tolic approach. If the small systolic array in Fig. 2.4 uses each data item six times
within six different overlapped operations, then the throughput or the amount of
work done in a given time will increase six fold. Lastly, since an accurate a priori
estimate of available I/O bandwidth in a complex system is usually impossible, a
modular or systolic design will certainly prove auspicious as it is more easily ad-
justed to match a variety of I/O bandwidths.

24.3 Balanced Systems

In the above discussion we have alluded that the systolic architecture which pos-
sesses the said features of simplicity, regularity, and modularity, is quite amenable
to the requirements of our special-purpose system. A systolic architecture would
indeed seem optimal if only the algorithm that we hope to implement also lends
itself to a systolic solution. The next subsection will show that this is truly the case,

38

2. Parallel Processing Solutions

(a)]
— MEMORY -—
S MILLION

100 ns OPERATIONS
PER SECOND

AT MOST
. . PE
(b) 30 MOPS
I IBLE
MEMORY POSS

100 ns

Figure 2.4: Comparison between (a) the traditional SISD computation model and
(b) the systolic computation model.

but before we proceed in this vain let us further develop the concept of a balanced
system.

Recall our earlier discussion aboutbalanced special-purpose systems. We stated
that balancing computation rate and I/O bandwidth is the highest goal in special-
purpose system design. Ideally, we would like the system to fetch and write data at
the fastest possible rate, while all the processing occurs simultaneously. Since I/0
bandwidth is usually very difficult to improve without a great increase in cost, it
is the computation rate that designers usually try to improve upon so as to make
I/0 bandwidth the only rate determining factor in system throughput. We shall
call such ideal systems optimally balanced because they achieve the maximum
throughput allowed by the 1/O bottleneck.

Now, depending on the nature of the memory, the special-purpose processor,
and the type and number of elementary operations to be performed to complete a
certain routine, the throughput may be either limited by the computation rate or

39

2. Parallel Processing Solutions

the memory access rate. The former implies an ‘I/O-bound’ problem and the lat-
ter is ‘compute-bound’. In I/O-bound tasks the memory cannot feed the processor
fast enough whereas compute-bound tasks are characterized by the processor’s in-

ability to compute at the rate dictated by the I/O bandwidth.

2.44 Convolution Revisited

The convolution problem can be viewed as an algorithm which combines two data
streams, namely the kernel weights W(i,j) and the pixel values I(ij), in a certain
manner to form the resultant data stream Y(i,j). Moreover, convolution and nu-
merous other routines such as filtering, pattern matching, correlation, interpola-
tion, polynomial evaluation (including discrete Fourier transforms), and polyno-
mial multiplication and division can be classified as being compute-bound tasks
and can thus be sped up with a systolic approach.

The notion of a compute-bound task is defined by Kung as a task in which the
total number of elementary operations performed is greater than the total number
of input and output elements. Otherwise the task is considered to be I/O-bound.
This definition presupposes that whenever the number of operations exceeds the
memory accesses, the special-purpose processor will be compute-bound and will
not be able to compute results as fast as the memory is able to read and write. We
may accept Kung’s definition as a rough measure for the purposes of general prob-
lem classification, but we must always keep in mind that an a priori classification

cannot be accomplished without the actual system parameters.

Hence, using Kung's definition, we may classify corivolution and other pixel-
group routines as compute-bound tasks. In the convolution of an N x N image
with an M x M kernel, for example, we must load M2 +- N2 operands (and store the
N2 results), yet perform considerably more (2M2N?) elementary cperations on the
incoming data. Thus the throughput is likely to be constrained by the computation

40

2. Parallel Processing Solutions

rate.

Speeding up compute-bound routines such as convolution, may often be ac-
complished in a relatively simple and inexpensive manner, that is, by the systolic
approach. By replacing a single processing element with an array of PE’s or cells, as
illustrated in 2.4, the computation throughput can be increased until the system is
optimally balanced. As Kung points out, the crux of this approach is to ensure that
once a data item is brought out from the memory it can be used effectively at each
cell as it is “pumped” from cell to cell in the array. And this is possible for a wide
class of compute-bound computations where multiple operations are performed on

each data item in a repetitive manner.

As an example of the systolic approach, Kung’'s “W2" architectural design is
implemented at the register transfer iogic level in a VHDL (Very High Speed Inte-
grated Circuit Hardware Description Language) simulator and the results are rep-
resented in Fig. 2.5. The VHDL implementation is referred to as SYST1 and appears
in Appendix D. The approach here is to configure an array of processing cells as
shown in Fig. 2.5(a) each of which has the characteristic functions for Y,.. and X,
shown in Fig. 2.5(b). Tnough the weights W (which are equal to 2 for this exam-
pie) stay stored in the individual cells, it is important to note that the partial re-
sults Y move twice as fast as the inputs X yielding the corract first convolution sum
(X1W1 4 X2W2 + X3W3) after an initial latency as shown Fig. 2.5(c).

2.5 Summary

Of the parallel processor classes considered, the synchronous class appears to be the
best suited for low-level image-processing applications. Specifically, since systolic
arraysare simple, modular, expandable, and yield high performance, they meet the
architectural challenges of special-purpose systems, and are therefore the preferred
parallel processing solution for the convolution problem.

41

2. Parallel Processing Solutions

(a)
] 7 o
_’L’-} X6 _X_5_> X3 Ljy- x2 i}- |_ ——— —_—
P R L LT w3 - w2 — w1 —
L L S
®)
Xin l—Xj Xout Yout =—— Yin + W -+ Xin
I_ _-‘ X -— Xin
Yin Yout
l_w_ll Xout — x

© v‘m N EEEEE R
moy 3. (.7 12 bo§.1 .3 1| 5 1.9 .1 8 |9
”‘“ S ——] — - :
o6 3 1 ¢ [2) 4 [37§ 18-
mmul SR EE TN | A S N A
1 I S G O
nummp_i. b. [W 1 ¢ T @ gL 5 T .1 B 1 1.
ngny 0 - 1.6 4 P 1.8l § [BT 6 |8
a2 4 - & (-2l # @ »-]-2 |3
ful o L [S S Y U B

Figure 2.5: (a) Design SYST1: systolic convolution array (a) and cell (b) where
weights stay and inputs, X, and partial results, Y, both move systolically in the same
direction but at different speeds. A VHDL simulation (c) on the Vantage simulator
verifies that this architecture yields valid results after2 x (ARRAYLENGTH —1)+1
clock edges.

2. Parallel Processing Solutions

To end, we should note that systolic architectures are also advantageous in
terms of higher level concerns such as scalability, software overhead, and usability.
A unique characteristic of the systolic approach is that as the number of cells ex-
pands, the system cost and performance increases proportionally, provided that the
size of the underlying problem is sufficiently large. For example, a systolic convo-
lution array can use an arbitrarily large number of cells cost-effectively, if the kernel
sizeis large. This is in contrast to other parallel architectures which are seldom cost-
effective for more than a small number of processors. Furthermore, software over-
head associated with operations such as address indexing are totally eliminated in
systolic systems. This advantage alone can mean a substantial performance im-
provement over conventional general-purpose computers. Lastly, from a user’s
point of view, a systolic system such as the one we will present in the next chap-

ter is easy to use ~one simply pumps in the input data and then receives the results
“on-the-fly”.

43

Chapter 3 A Systolic Solution

In Chapter 2 the requirement for a systolic approach is arrived at largely in an-
swer to the problem of parallelizing convolution. In essence, the research per-
formed in Chapters 1 and 2 forms the “bedrock” of the requirements definition
of a convolution processing system. These chapters give an answer to the ques-
tion “Why?” which is often the first question asked in any system design review.
Despite the longevity of the convolution project {[Boudreault and Malowany, 1986]
[Haule, 1990) [Panisset et al., 1990] [C6té, 1990] [Larochelle, 1991] [Drolet, 1992],
the purpose or driving force behind the project has never been covered at any great
detail. Hence the attempt was made to address the highest level of abstraction of a
convolution system design as graphed in Appendix E. What would naturally fol-
low as a topic for this chapter is the system specification and the implementation
of one systolic solution [Malowany et al., 1990] [Malowany et al., 1991] for the con-
volution problem. This will serve to pave the way for discussion on the results of
the laboratory work required to fabricate and test a VLSI systolic cell that is to con-
stitute the core of the systolic solution.

3.1 System Architecture View

The core of the convolution processing system is the systolic array of processing el-
ements shown in Fig. 3.1. For maximum performance to be obtained each process-
ing element should be a high-speed custom VLSI chip which performs the basic
multiply and accumulate convolution cperations in double precision IEEE format.
Configured in 9 rows of 9 custom chips, the array allows a 9 x 9 convolution kernel
to be applied in a single pass. The array can also be corfigured for one dimensional
data, in which case an FIR filter with 81 coefficients is implemented.

3. A Systolic Solution

VYMEbus

INTERFACE |+—of—— INPUT FIFO — B convanrer |—
CONTROLLER

W
MICROPROCESSOR g T l o i
o > owa R Oby 9
5 a s E Tow § =4 SYSTOLIC -
§ :J:;i' é row 6 -t~ CONVOLUTION =
s §§ 5 row 7 -t ARRAY
8 5 row §
‘5’ row 9

"_"'I LOCAL RAM
I H OUTPUT
— LOCAL ROM |t p——— QUTPUT FIFO = M CONVERTER

Figure 3.1: Architecture of the systolic convolution processing system.

Clearly, the dedicated systolic processing cells need much additional support
circuitry that will supply the data sequence to the rows of the array in a timely fash-
ion and that will store it after processing. Details of the board-level work for the
convolution project can be found in [Panisset et al., 1990] [Drolet, 1992].

3.1.1 The Sensor Computing Environment

The convolution processing system is to be implemented as an “intelligent” periph-
eral that can be easily integrated in the local image-processing environment which
is referred to as the Sensor Computing Environment [McRCIM, 1990]. The Sensor
Computing Environment is a multiprocessor VMEbus based system which incor-

3. A Systolic Solution

porates a number of single-board computers and peripheral boards such as a laser
range-finder and a variable camera. They run under VxWorks (WindRiver Soft-

ware), a real-time “flavour” of the UNIX operating system.

3.1.2 Interfacing Requirements

To meet the VMEbus interfacing requirements, the convolution processing system
inciudes a DMA (Direct Memory Access) engine built from an embedded Motorolla
68020 microprocessor and a VIC VIC-068 VMEbus interface controller. The DMA
engine is responsible for fetching the image data from the host computer memory

and for writing back the convolved image.

3.1.3 Data Stream: Manipulation

The source image is read by the DMA engine in 4Kbyte bursts and transferred
into the source FIFO (first-in first-out) queue [Botzas and Masson, 1990] where it

is handed out in piecemeal fashion to the input converter.

The input converter subsequently takes the data from the FIFO and optionally
converts it into the double-precision floating-point format suitable for the systolic
array processing elements. Input conversion is required since image data often
originates ir integer format. For instance, frame-grabbers typically generate 8-bit
integer data and devices such as tre laser range-finder used in the sensor comput-
ing environment produce 16 bit integer values. Moreover, the input converter can
also pass along data already in floating-point format -data which may have origi-

nated from the results of a previous convolution routine.

Next, a delay memory circuit (DMC) then takes care of feeding the lines of the
image to the convolution array in the proper sequence. Each line is sent to the array
9 times, once for each row in the array. In addition, the DMC handles the border

46

3. A Systolic Solution

effects by extending the source image with a border of zero-valued samples. It may

also be used to up-sample the data, priming it for interpolation.

The data coming out of the systolic array is processed by the output converter
which maps the floating-point numbers back into integer format if required. This
proves to be useful when the resulting image is destined for display on an RGB
monitor which typically accepts 8-bit intensity values. The output converter may
be bypassed if magnitudes or numerical precision are unnecessarily sacrificed in
the integer conversion, or if the data is to be fed back for another round of floating-

point processing.

The output data is then written to the output FIFO after which the DMA en-
gine ensures that convolved samples are written back to host memory whenever
the FIFO is half-full. In other words, when there is a sufficient amount of processed
data available, it is transferred back to the host computer which initiated the con-
volution operation.

Table 3.1 summarizes some features of the proposed systolic convolution pro-

cessing system.

Feature Description
Architecture Systolic
Signal type 1-Dor2-D
Number of processors 81
Kernel configuration 9 x 9(2-D)
81 x 1(1-D)
Arithmetic Double precision
floating-point (TIEEE 754)
Interpolation Up-sampling
(2% or 4x)
DMA engine MC68020
with VTC VIC-068
Estimated performance 126 MFLOPS
with 12.5 MHz clock

Table 3.1: Features of the convolution system.

47

3. A Systolic Solution

3.2 Systolic Convolution Array

Fig. 3.2 illustrates how the systolic processing elements or cells are to be configured
to perform the discrete convolution of image data. For simplicity, a 3 x 3 array is
shown, however the reader can well extrapolate the information for the proposed
9 x 9 array size. Firstly, each systolic cell in the two-dimensional array is loaded
with coefficients C, through Cy that correspond to entries in the convolution ker-
nel matrix. For optimal performance the array size should match the dimensions
of the kernel. Furthermore, the first (top left) cell in the array is supplied with a zero
valued Y;, representing an initialized partial convolution sum. The remaining task
is to feed each row of the array with pixel intensity values that come from consecu-
tive lines in the image. Input pixel data then flows through the X, and X,.. ports
of each cell and is multiplied with the local coefficient and added to the incoming
partial convolution sum from the Y;, ports. The partial convolution results thus
flow out from the Y. ports until each cell has made its contribution and a complete
weighted sum of all pixels involved is produced at the last (bottom right) cell in the
array. It is important to note that inputs and results flow at different speeds and
that each input pixel is combined with each partial result at some point in the array
so that convolution results are produced at every pipeline cycle aftzr the initial la-
tency. If the delay memory circuit does its job, the rows in the array are constantly
fed with serial image data and the effect is like sliding a convolution operator over
the breadth of the image —although it would appear more like the image is being
squeezed through the convolution operator. Lastly, the array can be configured in
a linear scheme which implies that the multiplexers at the left array boundary are
simply made to select a one-dimensional data stream rather than the consecutive-
line data from a two-dimensional image. This systolic convolution array function-
ality will be revisited when data fiow validation is done in the following chapter.

3. A Systolic Selution

Tow 1
xin Xout |—=—— 0§ Xin Xout j——= N Xin Xout
Cl c2 c3
Q =l Yin Yout |—§ Yin Yout |—R Yin Your
2 i =l Xin Xout R Xin Xout |=——e= Xin Xout
=
c4 cs [+]
e Yin Yout |——=§ Yin Yout |——=Q Yin Yout

c7 c8 co

Figure 3.2: Systolic convolution array.

3.3 Systolic Cell

Fig. 3.3 and Fig. 3.4 represent the systolic cell architecture and associated tim-
ing of the individual processing stages. The systolic cell is designed [Caté, 1990]
[Larochelle, 1991] to multiply a pixel intensity by a given coefficient and add this
product to a partial sum. The architecture is organized into three stages which
perform the multiplication, addition, and normalization operations in a pipelined
fashion. Each operation requires exactly 16 clock cycles (labeled clock 0 through
clock 15) for completion. The incoming pixel intensity is multiplied by the coeffi-
cient value in Stage 1 and the result is transmitted to Stage 2 at clock cycle 15. While
Stage 1 begins its operations on the next pixel intensity, Stage 2 adds the previous
result from Stage 1 to the incoming partial sum in the following 16 clock cycles. Fi-

49

3. A Systolic Solution

nally, in Stage 3 the floating-point sum from Stage 2 is normalized during the sub-
sequent 16 clock cycles. All internal stage data transfers are 64-bit parallel transfers
whereas input

output communication to and from the cell is done on 4-bit (nibble) serial basis. The
key design features of the individual components of the systolic cell are presented

next.

Xin —%e 32 by -BIT WIDE SHIFT REGISTER - - Xout

MULTIPLICATION
STAGE 1
6‘&
ADDITION & NORMALIZATION
STAGE2 i STAGE 3
“%
‘ 1Sby4 16by 4 ‘
Yin —l—e SHIFT SHIFT —<e Yout
REGISTER REGISTER

Figure 3.3: Systolic cell architecture.

3.3.1 XInput Register

The X input register is a 32 by 4-bit wide shift register which delays the incoming
pixel intensities by 32 clocks cycles before transmitting them to the next systolic cell.

50

3. A Systolic Solution

T
Xin XI | Xi2) | XI3 § Xta) | X[5) | Xie) | X7 : XIKE | Xp9) { NINOL | XEE X210 XPIR] X0 XQISH| NJop | XU | NE
Yin YUSH] Y0 | Y1 | YI21] YIM | YIS | YIST | Yol | Y07 [YIR) | Y190 { YRR | YERer | YOy | Yria g yodn | yiist | viog
. . H . N
R S e R T R
Stagel LR O ! . L ' | vatit [
v ' N J ; . [.
::E::EEE a':'e: Vo |
Stage3 T e ey Sttt S SRRt S ST [e | oyl |
: : 1] 1] * n + L]
Your vy v [v { v]y v Ly yen |y Ly v epo] vy voalynsbyrna s vim
H \ v . . . H H \ . H . ' . j ' .

0 t 2 3 4 5 6 7 8 9 1 11 12 13 4 t5 0

Figure 3.4: Timing diagram for the systolic cell. The .\ and Y data streams are
merged to form the output stream Y”, and cach stream is shown indexed with re-

spect to nibble. Each stage yields valid data on cycle 15 whereupon all transfers
OCCUL.

3.3.2 Multiplication Stage 1

Coefficient Register

The coefficient values must be loaded before any convolution processing can occur.
Therefore, a systolic cell has a mode in which it can bit-wise load a double-precision
floating-point coefficient value into a 64-bit shift register called the coefficient reg-
ister. By connecting the C,.. of each cell to the C;, of an adjacent cell in the array,
the coefficient registers can be chained together forming a single shift register from
which all coefficients in the array can be clocked in seriaily.

51

3. A Systolic Solution

Mantissa Multiplication

As is customarily taught in elementary schools, long-multiplication can be facili-
tated by considering the multiplier in smaller chunks (or digits) which individu-
ally are easier to manipulate since the pupil (or machine) can refer to a short pre-
memorized multiplication table. In the stage 1 mantissa multiplication of the co-
efficient with the input X, the scenario is much the same. The X;, binary input
is considered in 4-bit (nibble) chunks. Because the coefficient is constant during
the entire convolution process, it is possible to compute in advance a multiplica-
tion look-up table that stores the multiplication results of the coefficient multiplied
with all possible numbers represented by a 4-bit binary number. There are 16 such
multiplication results that are computed once at initfalization of the chip. During
run-time, the incoming X;, nibble indexes one of these multiplication results via
a multiplexer. All that remains then is the accumulation of the left-shifted multi-
plication results using a carry-look-ahead adder. One multiplication result is ac-
curmnulated per cycle to a register called the product register. The multiplier X;, is
cycled in nibble-by-nibble and the overall multiplication result is only valid once
all 13 nibbles of the incoming 52 bit mantissa have been shifted in and processed.

Exponent Addition

Thelast three nibbles in the 64-bit floating-point X;, input contain the the exponent
and the sign-bit. During the last (16th) cycle of the clock, the exponent circuitry
reaches into the X;, shift register and adds the exponentbits with those of the stored
coefficient exponent. As well, the resulting sign is generated.

52

3. A Systolic Solution

3.3.3 Addition Stage 2

The addition of the incoming partial sum Y}, and the product from Stage 1 is per-
formed in Stage 2. Stage 2 receives both of its operands at the rising edge of the first
clock (clock 0). The first 60 bits of the partial sum ¥;, input have been loaded in a
15 x 4 shift register during the previous 15 clock cycles. The remaining 4 bits are
already present at the Y input pins.

Since this numerical processing is being conducted in floating point arithmetic
the operands must be aligned before addition can take place. Floating point addi-
tion involves determining which operand is bigger, aligning the smaller number to
the bigger one and then summing the two mantissas. The exponent value of the big-
ger number is unchanged and will be the exponent of the sum. The alignment takes
place by shifting right the mantissa value of the smaller number by the number of
bits corresponding to the difference between the two exponents. If the difference
between the two exponents exceeds 54, the mantissa of the smaller number will be

completely shifted out and the bigger number will be completely unaffected by the
addition.

3.3.4 Normalization Stage 3

Stage 3 is responsible for normalizing the results from Stage 2. A floating-point
number is normalized when the left-most 1 in the mantissa is exactly to the left of
the binary point. The mantissa is therefore shifted left until the latter condition is
met and the exponent is decremented by the same value since each shift left oper-
ation is like multiplying by two and therefore the whole number must be divided
by two to retain its numerical correctness which means subtractirg 1 from the ex-
ponent.

53

3. A Systolic Solution

3.3.5 Partial Sum Transmission Unit

The 16x4 shift register is responsible for the transmission of the partial sum to the
next cell. The normalized number from Stage 3 is loaded into the register on the
rising edge of Pulse 0. It is shifted out four bits at a time during the foliowing 16
clock cycles. Note that this nibble-wise serialization of I/O data greatly reduces the

amount of interconnecting pins and wires between cells.

3.4 Summary

The problem of parallelizing the two-dimensional convolution operator requires a
systolic solution. Hence, a board-level solution is presented that is to be integrated
as a peripheral in the Sensor Computing Environment. The core of this systolic sys-
tem architecture employs a 9 x 9 systolic array of processing cells. Each systolic cell
isimplemented ona VLSI chip and is organized into three stages which perform the
double precision floating-point multiplication, addition, and normalization opera-

tions in a pipelined fashion.

Chapter 4 Fabricating and Testing the Systolic Convolution
Cell

Although many design issues for the systolic convolution cell have been ccered
thus far, the cell design and its VLSI implementaticn are certainly not new and
have been addressed before [Cété, 1990] {Larochelle, 1991]. What this thesis is ex-
clusively responsible for, however, is bringing about a manufactured and tested
systolic chip that could be used in high performance image processing systems.
This chapter directs its attention on the author’s practical work in achieving these
goals. In terms of the VLSI design life cycle activity as charted in Appendix E, the
author was chiefly responsible for all activities following and partially including

“layout/unit simulation”.

4.1 Fabrication Process

Preparing the systolic convolution cell for fabrication requires an intimate familiar-
ity not only with the design but with the CMOS process used, with the rules that
constrain the process mask and packaging features, with the design and validation

tools that are required, and with the design submission process.

411 CMOS3 DLM Processing Steps

Prototype integrated circuit fabrication was available through the Canadian Micro-
electronics Corporation (CMC) using a process called CMOS3 DLM - a Northern
Telecom Electronics 3-micron single polysilicon, double metal P-well CMOS pro-
cess. Because of the 3-micron minimum feature size, the supply voltages of the fin-
ished devices are limited to 5 volts. The CMOS3 DLM process is actually quite a

55

4. Fabricating and Testing the Systolic Convolution Cell

unique and elaborate process and it needed to be thoroughly understood prior to

the commencement of any layout related work.

CMOQOS3 DLM has 13 processing steps each with its corresponding mask listed

below:

o P-well

o N-well

e Device well
¢ P-guard

¢ Capacitor P-doping
¢ Polysilicon
o N+

o P+

e Contact

¢ Metall

s Via

e Metal2

e Passivation

Once P-well and N-well regions are defined, the device well processing step de-
fines the regions which will become drains, sources, channel regions, diffusion in-

terconnects, and capacitors if present.

The next photolithographic step uses the P-guard mask to accomplish a P-
implant into P-well regions which eventually defines the threshold voltage of the
P-channel transistors.

After defining the bottom plates of capacitors (there are none in the systolic cell)
with heavily doped P+ using the capacitor mask, the polysilicon {5102) mask is

56

4. Fabricating and Testing the Systolic Convolution Cell

used to define the gate regions, poly interconnections, and the upper plates of ca-

pacitors if present.

The subsequent N+ and P+ processing steps are used to further define source

and drain regions and contact regions.

Once contact regions have been etched out, the first layer of aluminum is de-
posited over the entire surface and the metall mask is used in a photolithographic

operation to define the metallization lines.

A second layer of SiO2 is deposited over the entire surface and the “via” mask

is used to etch out via regions which are used to connect metall to metal2.

Once the second layer of aluminum has been evaporated over the wafer, the
metal? mask defines the metalization lines whose purposes include bonding and

probe pad placement.

Lastly a passivation layer is deposited over the entire surface and the passiva-

tion mask is used to etch out regions over the metal bonding pads and probe pads.

4.1.2 CMOS3 DLM Design Rules

To make the layout representation of the systolic cell design suitable for fabrica-
tion, more than two weeks were spent entirely devoted to fixing masks that vio-
lated the Northern Telecom Electronics 3-micron CMOS process design rules. The
design rules that were breached included those that specified minimum feature size
for each layer (mask), those rules that specified minimum spacing between features
of the same layer, the rules that constrained the geometry of a layer that either com-
pletely surrounded or partially overlapped the geometry of another layer, and the
rules for the 68-pin PGA package. All these design rules were specified using a 5-
micron scale (design scale microns) for the minimum feature size. The designs are

scaled down at Northern Telecom to 60% of the specified dimensions prior to the

57

4. Fabricating and Testing the Systolic Convolution Cell

creation of the pattern generator (PG) tapes.

4.1.3 Packaging and Bonding

The final steps in manufacturing chips are packaging and bonding. Once the the
systolic cell is fit into the cavity of a package, bonding is achieved by connecting
the fingers surrounding the package cavity to a standard pad frame supplied by
the CMC or it may be custom designed. In the case of the convolution cell chip,
the huge transistor-count (nearly 50 thousand) necessitated a special request for an
“cversized” pad frame that exceeded the dimensions of the standard size-A (full-

size} pad frame.

Also requested was a 68-pin grid array (PGA) package with a removable lid that
permits physical access to the chip and bonding wires, to allow for probing or other
diagnostic procedures. Once the chips returned from fabrication, all the lids were
indeed removed for a microscopic inspection of the silicon. No visible defects were

observed.

In Fig. 4.1 the 68-pin PGA package has been reproduced perfectly to scale. The
top view is shown with the lid removed while the bottomn view portrays the pin
numbering scheme. The cavity size of the PGA is approximately 1 square centime-
ter or 410 square mils where 1 mil is the popular unit of VLSI dimensions represent-
ing 1 millionth of an inch.

There are 17 metal fingers on each side of the square for bonding wire connec-
tions. These bonding wires connect to bonding pads on the pad frame, and like
the rules which govern mask geometry features there are also rules for pad place-
ment. The sharper the angle of the bonding wire (for example, greater than 45 de-
grees), the greater the strain on the wire and the more unreliable the connection.
The longer the bonding wire, the greater the risk that the wire will droop and pos-
sibly cause a short circuit to other wires. The risk is compounded if all the bonding

58

4. Fabricating and Testing the Systolic Convolution Celt

./
ygeorerorrrere
cJojolojolololcIcIce)
®® @ @
® @ @O
3X3) ®®
®® ® @
®® @ ®
®® L @O
YD) ®®
Sl rRrrEEIcIS

SlciclRREIE,

Figure 4.1: Top and bottom view of package.

59

4. Fabricating and Testing the Systolic Convolution Cell

pads are placed close together on one side of the design. Moreover, the pads should
be collinear in placement to prevent bonding wire paths from crossing. The insight
gained with respect to pad placement can be summarized as follows: place each
pad so that the length of the bonding wire to the corresponding connection finger
on the package is minimized and the separation between adjacent bonding wires

is maximized.

4.1.4 CADENCE VLSI Design Software

A large part of this thesis involved learning to use CADENCE’s VLSI Design soft-
ware tools. The EDGE Design Framework™ provides a completely integrated set
of VLSI design and verification tools in a menu-driven, graphical environment. A
few basic concepts with regard to the VLSI design tools used will lend insight as to
how a project of this magnitude is realized.

4.1.5 Design Files and File Hierarchy

The overall design of a chip can be looked upon as a hierarchy of blocks, with each
block representing some functional unit of the complete chip. The block size is de-
pendent upon the design approach taken for the chip and could be anything from
a single transistor to a complete microprocessor. Each block may incorporate sym-
bolic instances of other blocks, in which case a hierarchy of blocks will be formed.

The blocks themselves may have many different representations depending
on the role of the block in the overall design. There are representations for
“schematic”, “symbolic”, “layout”, “extracted”, “silos”, “spice”, and “autoLay-
out”, toname just a few. The representations are further divided into revisions. The
“current” revision contains the most recently saved revision. There can be many

“backup” revisions as well.

4. Fabricating and Testing the Systolic Convolution Cell

Within the UNIX file system, all the blocks used in a design, except those from
some common libraries, are usually created in a common directory. The blocks are
simply subdirectory entries in this common directory. The representations are sub-
directory entries in the block directories. The revisions are the actual binary design

files, which are stored in the representation sub-directories.

4.1.6 Edge Database Format

In the EDGE environment, all design files, independently of what type of repre-
sentation they are intended for, share a common database format. The database
format is flexible enough to be able to describe representations which contain only
geometry, such as “layout”, representations which contain only electrical connec-
tivity, such as "extracted”, representations which contain only textual information,
such as “silos” and “spice”, and representations which contain all three, such as
“schematic” and “symbol”. The database format also provides the means to de-

scribe the instance hierarchy and attach properties to any of the database objects.

Geometry, instances, pins terminals, nets, labels and properties are all objects
in the EDGE database format. Geormnetrical objects are stored as sets of coordinate
points which describe boxes, polygons or other shapes drawn on particular layers.
Instances are pointers to symbol representations of other blocks. Each instance is
assigned a unique name within the schematic to distinguish it from cther instances
of the same block. Pins and terminals are used to describe input/output terminals
of the schematic and of each instance in the schematic. Nets are used to describe
the connectivity between all the terminals in the block. Labels are used to put text
strings in the design and properties are to describe characteristics of the entire de-
sign file or the specific objects in the design file.

61

4. Fabricating and Testing the Systolic Convolution Cell

4.1.7 Schematic Representations

The schematic representations of a block is one in which the electrical functionality
of the block is described using instances of symbols, pins for the input and output
terminals, and wires that represent the interconnection nets. Fig. 4.2 shows the top-
level-block schematic representation which also illustrates the floor plan of the sys-
tolic cell. Further, in Appendix F an effort was made using the SKILL programming
language native to CADENCE tools to capture the complete hierarchy of schematic
representations. The schematics of some of the key blocks in this hierarchy are also

included.
lll'r]
S — =
X_rcg__28x4_—:_ _ﬁé-
——Di
stegel._man
T Eontrol
=S stagel_exp -
inv 1
s Tin_exp L Yin_rman
e ! e 3
S il >"':"!L::[‘
L r_——_——
L le—
stoge2_ex stege2_man
T
' 1
stage.li_exp— stage3_mon
- _C
Youi_exp Yout_man =
Full Circuit » "'<1‘[... .
:':'Q' =3 e

Figure 4.2: Top-level-block schematic representation illustrating the floor plan of
the systolic cell.

62

4. Fabricating and Testing the Systolic Convelution Cell

4.1.8 Custom Layout

The layout representation of a block is one in which the masks used for the fabrica-
tion process are described geometrically using rectangles and polygons on different
process related layers. The layers (masks) used depend on the technology in which
the block is being implemented. In our case the layers file was setup to contain all
the layers necessary for the CMOS3 DLM technology.

As in the case of hierarchical schematics, hierarchical layouts are used to re-
duce the complexity of large layouts. Custom layout is a tedious and involved task,
hence one tries to create a small core set of essential layout blocks that can be in-
stantiated together in more complex arrangements to build the major blocks of the
layout. Layout revision files tend to be encrmous, due to the amount of geomet-
rical information being stored. Since instances are simply pointers to the master
block (not copies) significant memory savings can be achieved and the computer
can work with the data far more efficiently. In addition, if a change is made within

a layout block, the change is reflected immediately in all instances of that block.

The layout for the systolic cell was totally “custom” which does mean that the
layout representation of each and every block was created manually. A sample cell
layout of a flip-flop is shown in Fig. 4.3. The dark patches in this figure highlight
the placement of P-type (pin) metall and metal2 layers which are used to impress
or probe signals on desired nodes during simulation. Indeed since the designers
of some of the lower level blocks had neglected to save the corresponding simula-
tion files, many such lower level layout representations required revalidation with
the HSPICE simulator before the chip could be sent out for fabrication. Fortunately,
only a few small clock buffers had to be “squeezed” into the top-level layout to en-
sure sufficient clock drive. The overall layout representation both in its hierarchical
form and its “exploded” form appears in Fig. 4.4 and in Appendix F.

4. Fabricating and Testing the Systolic Convolution Cell

) i u
] e X
= = T

! R X %4 X E‘__ I i
iy i e—— p— |

! L] @ HooE _I-&r|—===u @ : !

L 1 _I_—
S -

X -) X oKl PHIBAR —

X =] R [[RHH®] |2 ||[X %
S s o e N —]
e g ———

R R R RR| R <

X —_—5 e -

X

Figure 4.3: Sample cell layout of a flip-flop. The dark patches highlight the place-
ment of P-type (pin) metall and metal2 which is used to impress or probe signals
on desired nodes during simulation.

4. Fabricating and Testing the Systolic Convelution Cell

,:_a'_—_—_";:“l:f;:::‘.“-_—-z:—;__ AN N Tt P % d N . T_]

.*‘ i [g r‘".r,?.! B \E

K _reg 2% 1 i3 -
-

. -

ISLage

" ._- | %
-
- Yird dnan
7 Ty o 1

i t:tOg@h:__f’TUI %
! letaged o _
| ('}?L;[)) stage3lnan |
i Yout_exd = Yout] man
8o o g — o

Figure 4.4: Layout representation.

4. Fabricating and Testing the Systolic Convolution Cell

4.1.9 Layout Submission

Once a valid layout was produced that passed all design and packaging rules, it
was a challenge to export the design data from the CADENCE environment to the
site of the Canadian Microelectronics Corporation. All design data submitted to the
CMC must be in the Caltech Intermediate Form (CIF 2.0). A complete description
of CIF syntax is given in [Mead and Conway, 1980}. The CMC checks submitted
designs with their own design rule checker called DRACULA™ which utilizes more
conservative rules than those used in the CADENCE environment. The increased
constraints imposed by the CMC had caused further rule violations, and the design
had to be resubmitted 6 times before it was accepted for fabrication. After 6 months,
5 manufactured chips returned from the Northern Telecom Electronics fabrication
laboratory. The focus then turned to the anxiously awaited though momentous task

of testing the systolic convolution chip.

4. Fabricating and Testing the Systolic Convolution Cell

4.2 Testing

While in real estate the refrain is “Location! Location! Location!”, the comparable
advice in IC design according to [Weste and Eshraghian, 1993] should be “Testing!
Testing! Testing!”. Indeed, we will now look upon the testing of the systolic convo-
lution cell under a structured framework in which the key aspects of VLSI testing
are also surveyed.

Due to the complexity of the manufacturing process not all die on a wafer cor-
rectly operate. Small imperfections in starting material, processing steps, or in pho-
tomasking may result in bridged connections or missing features. Hence it is the
aim of a test procedure to determine which die are good and should be used in end

systems.

Tests may fall into two main categories. The first set of tests verifies that the
chip performs its intended function. In our case, the intended function is the basic
floating point multiplication, addition, and normalization required of the systolic
cell. These initial tests assert that all the components in the chip, acting in concert,
achieve the desired function. These tests are usually used early in the design cycle

to verify the functionality of the circuit and are called functional tests. They may
be lumped into the verification activity.

The second set of tests verifies that every gate and register in the chip functions
correctly. These tests are used after the chip is manufactured to verify that the sili-
con is intact. These are called manufacturing tests. Generally speaking, the nature

of design usually leads one to consider function before manufacturing concerns.

421 Functional Testing

For most systems, functionality tests involve proving that a circuit is functionally
equivalent to some specification. That specification might be a verbal description,

67

4. Fabricating and Testing the Systolic Convolution Cell

a plain-language textual specification, a description in some high-level computer
language such as C, FORTRAN, PASCAL, or Lisp or in a hardware-description lan-
guage such as VHDL, ELLA, or Verilog, or simply a table of inputs and required
outputs. Functicnal equivalence may be carried out at various levels of the design
hierarchy. If the description is in a behavioural language, the behaviour at a system

level may be verifiable.

For the systolic convolution array, a top-level, behavioural and structural VHDL
specification is included in Appendix 0. A sample simulation result shown in
Fig. 4.5 verifies the intended functionality of a simple three-cell systolic array. By
virtue of the row latency in the SYST2 systolic design, accurate convolution sums of
the current pixel intensity X;, and its two serial predecessors occur seven pipeline-
clock edges after the current sample. Note that all weights in this example are all
equal to 2, and that the initial partial sum input ¥, to the left-most bo::ndary of the
array is fixed to zero. The first convolution sum, hence, for the Xin values of 3, 7,
and 2 is 24. The convolution sum for the next sequence 7, 2, and 6 is 30, and so on.
This kind of functional verification at the system specification level was precursor
to basic functional testing of the systolic cell itself. These basic functional tests were
conducted on the manufactured chip itself and were used not only to verify basic
functionality but to provide valuable input/output specifications of all ports on the
chip.

4.2.2 Manufacturing Testing

Whereas functionality tests seek to verify the function of a chip as a whole, manu-
facturing tests are used to verify that every gate operates as expected. The need to
do this arises from a number manufacturing defects that might occur during chip
fabrication. Typical defects may include laver-te-layer shorts (ie. metal-to-metal),
discontinuous wires, or thin-oxide shorts to the substrate or well. These in turn

lead to particular circuit maladies, including nodes shorted to power or ground,

68

4. Fabricating and Testing the Systolic Convolution Cell

-
B EEEEEEEEEEEE
e N - f.1 3 1 = 1.9 1 § 1t
Bih . N
prel 1 T3 7 111§ 1 31 5 T T
PO § S N AN A R B S O
el u S S T N M
LY I S O NN VO Y A N
nmny___ : : N T R
1t} j - 15 12
o IR i i H e B R i et

R L EEE
o I T T T TP O Y I O T I I
L S S T
MR 31T § T 0 W [¢ 1 [1 & T_
pnc3 5 i 9 f g 6 of @ Togci o T
I O S O O 0 D G
rmegy 8 1 % L B 1 @ J @ {.®] ¥ I
mopds o8 o[$ 4 o® 4 0¥ - |-% -] & fo..
miggay -2 -1 % | 2§ -8 1 % [-4-]1 g [
L iy By B M T e B e i s

Figure 4.5: VHDL simulation of the SYST2 design on the Vantage simulator

demonstrates valid results after 2 x (ARRAYLENGTH — 1) + 3 clock edges.

69

4. Fabricating and Testing the Systolic Convelution Cell

nodes shorted to each other, floating inputs, or disconnected ontputs. In general,
manufacturing-test generation assumes that the chip runctions correctly, and ways

of exercising all gate inputs and of monitoring all gate outputs are required.

4.2.3 Testing Process

Having introduced the concept of functionality testing and manufacturing testing,
it should be made apparent that conducting these tests on 2 chip once it has re-
turned from the fabrication laboratory can be a long and arduous process. How-
ever, if time is spent to suitably prepare and automate frequently performed tasks

then the tests can be made less overwhelming.

The first concern in the mechanics of testing the systolic convolution cell was
in developing a good testing environment. The test environment constituted those
devices which were used to stimulate the chip under test as well as those which
were used to analyze the resulting responses. Conventional methods were first con-
sidered in which the chip would be "bread-boarded” and manually tested with a
data generator/data analyzer pair. Yet in light of the lengthy iterative testing pro-
cess athand, it was concluded that this approach would prove far too time consum-

ing and laborious.

The availability of “networked” testing equipment opened up the much more
attractive possibility of a "fully-automated” testing environment. The testing
equipment which still comprised primarily of a data generator and data analyzer
were brought under remote-control from a series of centialized test programs that
ensured expediency in the test process. Tests could be run and rerun with all but
a few seconds delay. Hence, as will be stated shortly, much software deveiopment
effort was invested in the ways of test environment automation, and this work was
as much a part of this thesis as it was a direct contribution to the testing community
of the VLSI laboratory of McGill University.

70

4. Fabricating and Testing the Systolic Convolution Cell

Automated Test Environment

The overall block diagram of the automated test environment is shown in Fig. 4.6.
As can be seen, the controlling computer is linked to the test equipment through an
HP-IB bus. This bus allows two-way communication between the computer and
other devices in the form of commands and data transport. In this way, all data
gathered by the test equipment is accessible by the controller and can be processed
using a variety of software tools in a UNIX environment. This importing of “mea-
sured” results into the computer workstation also great:y facilitated the testing pro-

cess.

HP 1S425A HP [5414A
TESTHEAD - TRI-STATE UNIT
-]
HPRIR1A
-~ DATA GEN. EXTENDER
l HP 8180A
- DATA GENERATOR 07, 0%
HP 8182A 09, 10
b DATA ANALYZER .
SPARCstation 1
with HY S4510A 03
SCSI488/S IEEE 488 > OSCILLOSCOrE
INTERFACE
HP 66324 05
- DC POWER SUPPLY
HP 3458A 2
—_— MULTIMETER -

HP-IB Address: 4

I HP-IB RUS

HP-IB Addresses

Figure 4.6: The test environment was automated via a SPARCstation 1 and an
IEEEASS interface to the HP-IB bus.

71

4. Fabricating and Testing the Systolic Convolution Cell

Testhead Layout

The connection between the test equipment and the device under test (DUT) was
accompiished with a Hewlett-Packard 15425A testhead. The outer ring of the test-
head can accommodate up to 84 connections of which 27 are double (bidirectional)
channels. These channels are connected to 84 “pogo” pins at the inner ring through
optional load resistors and relays. Finally, the pogo pins are connected to a 40-pin
socket which receives the DUT.

A list of channel assignments for the testhead appears in the section entitled
“Testhead Configuration” under Appendix G. This table maps the channels that
connect to the data analyzer and data generator to the pogo pins, to the pin num-
bers on the testhead socket which receives the test-board, to the corresponding sig-

nal names and pin numbers of the actual chip.

In addition to the AC-measurement channels, the HP 15425A has connections
for DC power and ground. Excluding the DC measurement ring, there are three
separate DC rails labeled DPS1, DPS2, and DPS3, all sharing a common ground.
These supplies occupy channels 55, 54, and 53 respectively and can be accessed
through “banana” plugs on the top face of the unit. The ground pin appears on

channel 56 and is also common to the DC-measurement ring.

Test Process Software Development

The controlling host SPARC workstation depicted in Fig. 4.6 was interfaced with
the rest of the HP test equipment via an HP-IB bus. Specifically used were a SCSI
IEEE controller by IOtech™ consisting mainly of the SCSI488 IEEE488 interface card
and the Driver488 software which provided the core software interface between
UNIX and the IEEE interface. Thus given this rudimentary network connectivity
and a basic set of communication directives for the HP-IB bus, it was undertaken

to develop a complete software base for higher-level utility functions including a

72

4. Fabricating and Testing the Systolic Convolution Cell

front-end user interface for the test process. To this, a script writing mechanism ac-
companied by a parser and syntax checker was also created for users who wished
to write their own scripts in the native language of the data generator and data ana-
lyzer and the other devices on the right side of Fig. 4.6. Sample initialization scripts

are included in Appendix G.

Device-Under-Test Board

In order to test the sytolic cell in its square 68-pin package, a device-under-test
board was built to fit over the rectangular 40-pin socket of the testhead. The board
was first populated and tested with a few standard CMOS parts such as shift-
registers and 4-bit adders so that confidence could be gained in the testing process
prior to strapping in the real systolic part. Once the test environment itself was
tested and tuned to the CMOS technology, the board was rewired and populated
solely with the systolic chip and some of the associated capacitors drawn in Fig. 4.7.
The purpose of the capacitors were chiefly for output load equivalents and for noise
reduction from the power supply. C}, includes the probe and jig capacitance and the
22uF (electrolytic) and 0.1uF capacitors filter out low and high frequency noise re-
spectively. Itis regrettable that the latter noise reduction capacitors were not u::ed at
the outset of the testing process, and it is suspected that at least 4 systolic cell chips
may have fallen victim to “latch-up” as a result. Since the latch-up phenomenon is
blamed for destroying all but one of five chips manufactured, a brief account fol-

lows.

Latch-Up

Latch-up is an undesirable effect that plagues CMOS technologies. The result of
this effect is the shorting of the VDD (5v) and Vss (Ov ground) lines, usually re-
sulting in chip self-destruction. The source of the latch-up effect [Troutman, 1986]
[Estreich and Dutton, 1982] may be explained by parasitic bipolar devices which

73

4. Fabricating and Testing the Systolic Convolution Cell

vdd
Device Test
ut N +
Under Outp f) Point
Test 22 uF 0.1uF
C, =150 pF
Gnd

Figure 4.7: A.C. testing load circuit. C; includes the probe and jig capacitance.
The 22u F (electrolytic) and 0.1u F capacitors filter out low and high frequency noise
respectively trom the voltage source.

are an unwanted byproduct of producing pMOS and nMOS traasistors. Under the
right conditions the latent parasitic circuit becomes active or “snaps” and draws a
large current while maintaining a low voltage across its terminals. Latch-up can be
triggered by transient currents or voltages that may occur internally to a chip dur-
ing power-up or externally due to voltages or currents beyond normal operating
ranges. Radiation pulses can also cause latch-up; however, this was not considered
the likely factor in our case.

Since current has to be injected into the emitters of the parasitic device for latch-
up to occur, such a condition is likely to befall the I/Q circuits employed ona CMOS
chip, where the internal circuit voltages meet the external world and large currents
can flow. It is therefore suggested that in future “spins” of the systolic cell that ex-
tra precautions be taken with the peripheral circuits. For instance, placing an abun-
dance of substrate contacts over the peripheral transistors serves to short out para-
sitic devices rendering them harmless. It is also highly advised that the aforemen-
tioned nroise reduction capacitors not be omitted from the DUT board.

74

4. Fabricating and Testing the Systolic Convolution Cell

4.2.4 1/O Specification

I addition to providing functional specification verification of a chip, functionality
tests may also serve to extract valuable timing information which is part and par-
cel of an input/output port specification. An 1/0 specification is indeed required
if the chip is to be used as a module in a systolic system. However, before 1 /O tim-
ing is discussed it is essential that each port on the chip be thoroughly described
first. Table 4.1 presents a complete description of the 24 pins of the double-precision

floating-point systolic convolution cell chip.

DC Characteristics

Once the chip was socketed and powered up, the DC parameters were recorded.
Table 4.2 lists some DC characteristics that were measured during the testing pro-
cess. Digital input voltages ranged from —0.4 volts for a logic zero (LOW) to 6.0
volts for a logic one (HIGH). The latter HIGH voltages may seem excessive for the
data generator but an excess 0.5 volts can at least be accounted for by the 10% fluc-
tuation of the available power supply. Furthermore, the maximum power supply
current that was drawn by the chip recorded as high as 20.2m A which indicates an
unusually high power dissipation in the order of 100mW. Lastly, the IMHz test
clock supplied to the circuit is traced in Fig. 4.8. The duty cycle is 50% and the
transitions are driven sharply at roughly 12ns a piece. It is important to note that
these transition times are further eroded as the clock is routed internally through
the chip’s clock-buffer tree.

Operating the Systolic Cell

True to the philosophy of systolic designs, the systolic cell chip has simple control
mechanisms that mitigate the global synchronization overhead required of large ar-
rays. Once the chip has been set to a known state using the PRESET signal it is al-

75

4. Fabricating and Testing the Systolic Convolution Cell

Symbol Pin No. Type Name and Function

CLK 1 Input Clock: This line provides the basic timing for
the systolic cell. A symmetric clock signal
(50% duty cycle) is input and used in a single
phase clocking scheme.

Yout0-Yout3 7-10 Output Y output data: The Y output data bus out-
puts the correctly normalized partial convo-
lution sum. Along with the Yin bus, the Yout
bus provides a data path for a systolic array
which enables partial results to move systoli-
cally from cell to cell.

Cout 11 Output Coefficient output: This is the ocutput of the
kernel coefficient register. In a systolic ar-
ray the coefficient inputs and outputs are
chained together so that cach cell can be se-
rially loaded via the boundary cell

Xoutd-Xout3 12-15 Output X output data: The X output data bus along
with the input data bus provides a data path
for a systolic array which enables the inputs
to move systolically from cell to cell.

C.LOAD 29 Input Coefficient load: When held HIGH this line
enables the kernel coefficient register to shift-
right synchronously unless HOLD=1. Coef-
ficient data enters from Cin and exits from
Cout. When C_.LOAD is LOW, the coeffi-
cient bits are held in place. This control signal
must not be left floating.

HOLD 30 Input Hold: When this line is set HIGH, every flip-
flop in the systolic cell including those in the
coefficient register is held in its current state
until HOLD is reset to LOW. HOLD effec-
tively “stalls” the systolic cell. HOLD must
not be left floating.

Table 4.1: Pin description.

76

4. Fabricating and Testing the Systolic Convolution Cell

Symbol Pin No. Type Name and Function

PRESET 31 Input Preset: When asserted, the PRESET line pre-
sets the state counter in the control circuit to
state 14. This provides a time reference for
subsequent operation. PRESET must not be
left floating.

Xin3-XinQ 3740 Input X input data: These lines constitute the in-
coming pixel-data bus. Floating-point data is
fed in to the systolic cell nibble by nibble in
run mode with HOLD=0 and C_.LOAD=0.

Cin 41 Input Coefficient input: This line is the input to
the serial bit register that holds the systolic
cell’s kernel coefficient which is loaded in
during coefficient-load mode when HOLD=0
and C.LOAD=1.

Yin3-Yin0 4245 Input Y input data: This is the incoming partial-
sum data-bus. Floating-point nibble-data is
entered into the systolic cell in run mode un-
less gated by Yin.Dis.

Yin.Dis 46 Input Yin disable: When held HIGH this line as-
serts zeros on the Yin data bus. When held
LOW the regular partial-sum inputs are fed
in. This line should not be left floating.
This function is especially useful at the input
boundary of a systolic array.

Abs._Val 49 Input Absolute value: When held HIGH this line
asserts a zero on the latch which stores the
sign-bit in the normalization stage 3 of the
systolic cell. When held LOW the regu-
lar sign result from the addition stage 2 is
stored. This line should not be left floating.
This function is useful for processing pixel
data where only the magnitude information
is required.

Table 4.1: Pin description (continued).

4. Fabricating and Testing the Systolic Convolution Cell

Symbol Parameter Min Max Units
Vi Input LOW voltage 04 +0.6 v
Vin Input HIGH voltage 40 Vee+05 V
Vor Qutput LOW voltage —_ 02 v
Vou Output HIGH voltage 475 — \Y
Iec Power supply current —_ 20.2 mA
Ver Clock input LOW voltage -1.9 02 \Y
Veu Clock input HIGH voltage 4.7 6.4 Vv

Table 4.2: D.C. characteristics at ambient room temperature and Vcc = 5V £10%.

lowed to operate in only one of three modes given in Table 4.3. The HOLD signal
determines whether the chip is stalled or not; for example, if HOLD is held HIGH
then every memory element in the chip keeps its current state. The hold mode is
especially useful when synchronizing the individual systolic cells with other de-
vices in a systolic system. Moreover, when HOLD is not asserted then the chip may
operate in one of two remaining modes which is selected by the coefficient load
(C_.LOAD) signal. If HOLD is LOW, setting C_.LOAD to HIGH effectively stalls ev-
ery memory element in the chip except the serial coefficient register which is en-
abled to load a coefficient bit-stream. For apparent reasons, this mode is called the
coefficient-load mode and can be entered without regard to the state of the chip.
When HOLD is LOW and C_.LOAD is LOW then all sequential elements in the chip
are enabled and the coefficient loads are dissabled. This latter mode is the main
mode of systolic operation and is thus named “run” mode. More will be said of
these modes as the timing of the input and output switching waveformsis reviewed

next.

Signals Mode of Operation
HOLD =1 hold mode

HOLD =0, C.LOAD =0 runmode

HOLD =0, C.LOAD =1 coeffident-load mode

Table 4.3: Modes of operation in the systolic cell.

78

4. Fabricating and Testing the Systolic Convolution Cell

A Wi

Amplinnde

o "

6 .1 10 12 14 it 8
time in seconds

tr
ol
1)
=

Figure 4.8: Oscilloscope trace of IMHz CLK signal used in A.C. tests. Risc and
fall times are approximately 12ns. fu,q- is slightly less than 8MHz.

I/O Timing Specification

Manufacturing tests rely on accurate timing specifications so that input signals are
strobed in at the right time and output signals are sampled correctly. In the fol-
lowing sections input/output timing specifications are presented with reference to
rising clock edges and signal transitions which indicate the beginning or ending of
a “nibble-slice” of data. The term “word” is used to reference a particular 64-bit
quantity of data that is further segmented into 16 “nibbles”. Note that for the X,
and Y;, data streams, the last three nibbles sampled in represent the 12 bits of sign
and exponent data whereas the first 13 nibbles embody the mantissa data.

Furthermore, the ability to vary timing on a per-pin basis with the data genera-
tor allows a process known as “schmooing” to be carried out. The “schmoo” tests in
this thesis skewed the timing on inputs with respect to the chip clock so that setup

and hold violations were detected from observed changes in correlated output sig-

79

4. Faviicaiing and Testing the Systoliz Convolution Cell

nals. For instance, if ample setup time was given to an input signal which directly
affected the value of a particular output signal, then all one would have to do is to
decrease the setup for that input signal until a violation occurred that changed the

expected output result.

Chip Initialization

The controlling state machine in the systolic cell must be initialized to a known state
if it is to be synchronized with the incoming X;, and ¥}, signals. For this reason a
PRESET signal exists for the purposes of initializing a Johnson or “ring” counter
which keeps track of the internal states of the chip. The counter is decoded to pro-
duce strobes for internal synchronization, and the effects of the PRESET signal is
tightly coupled with the observability of correct results at the output port Y., For
this reason, more will be said of the PRESET signal when the Y., timing is dis-
cussed. Fig. 4.9 and Table 4.4 specify the required timing of the PRESET signal
which effectively defines clock cycle 14. Inputs such as X, must follow initializa-
tion to be synchronized to clock cycie 15. Furthermore, inputs such as Yin_Dis,
Abs_Val, and Yj, should be synchronized to clock cycle 1.

Symbol Parameter Min Units
Loer CLK period 126 ns
Lsup PRESET HIGH to CLK setup time 30 ns
thp CLK to PRESET HIGH hold time 0 ns
Laud Yin.Dis HIGH to CLK setup time 50 ns
sua Abs_Val HIGH to CLK setup time 50 ns

Table 4.4: Initialization switching characteristics. Note tnat although it is recom-
mended that Abs_Val be synchronized to the “first” clock cycle 1, thisis notacritical
requirement since Abs.Val is only used 32 clock cycles afterward in the normaliza-
tion stage.

80

4. Fabricating and Testing the Systolic Convolution Cell

T Cimd Ouile i4 e a5
: i
) ; . !
. pet - :
1 . :
* L} ' !
o N /N T\
* »
H :
\ R
. v , .
~ twp Ihp - N
:
PRESET J \

Xin<d:0o> IRRELEVANT X tword 0: nitble 0} X w0: 1)

P Chick Cyclr i == Chuk Cwile !
f i
. :
o tper -]
' '
- - ' 1]
\‘ : 0
e ; m
") 4
« = H
:
- lmd
'
:
:
:
Yin_Dix /
- lm d

Abs_V /
' .
Yin<3:0> IRRELEVANT X {word 0; nibible 0) X 0: 1)

Figure 4.9: Switching waveforms at initialization. The PRESET signal initializes
the Johnson counter in the control block causing the next clock cycle to be defined
as clock cycle 14. Xin should be synchronized to the subsequent clock cycle 15, and
Yin to clock cycle 1. If asserted, Yin_Dis and Abs.Val should be synchronized to
clock cycle 1.

81

4. Fabricating and Testing the Syvstolic Convolution Cell

Coefficient Loading

To serially load 64-bits into the coefficient register, the HOLD signal must be reset
while the C_LOAD signal is asserted. Allowing for setup and hold times as indi-
cated in Table 4.5, the propagation delay for a valid Cout signal as illustrated in
Fig. 410 ranges from 35 to 45 nanoseconds. Note that propagation delays are mini-
mum for a HIGH to LOW transition and maximum fora LOW to HIGH transition.
Also note that Cout skifts out a bit 63 periods after it was first sampled at Cin.

S N W S
—_

CLK \
croap [:

t

wl

: t
. e T e
L)

‘ : : 45
Cin {wewd a: bit m) E X
N 44

vt
3o :
fi.l‘,,..r Ve

2

Ty .
..:Nr.

.
: 4 S .
4 .
Cout XX fwond n=1: bitme 1) XX {wenrd n; et m)
£e
s

Figure 4.10: Coefficient switching waveforms in coefficient-load mode (HOLD =
0,C_LOAD =1).

Output Results

In run mode, 64-bit words are continuously being fed nibble by nibble at the input
ports of X;, and ¥i,. The initial X;, nibble is synchronized to clock cycle 15 and the
associated Y;» nibble is synchronized to clock cycle 1. 47 clock periods after a Y.,
nibble has been sampled, the associated processed nibble is output at the Y., port
as shown in Fig. 4.11.

82

4. Fabricating and Testing the Systolic Convolution Cell

Parameters Description Min Max Units
Loer CLXK period 126 —_ ns
Lot C_.LOAD HIGH to CLK setup time 30 — ns
Lhe CLK to C_LOAD HIGH hold time 20 —_ ns
Lane Cin to CLK setup time 30 —_ ns
Lhe CLK to Cin hold time 0 — ns
{oe Propagation delay from CLK toCout Valid 35 45 ns

Table 4.5: Coefficient switching characteristics. Propagation delays are minimum
for a HIGH to LOW transition and maximum for a LOW to HIGH transition.

The Y., signal proved to be very difficult to test. The crux of the problem was
that the last three nibbles of each Y,.. word which represented the exponent and
sign bit of the double-precision floating-point format were all set to HIGH indicat-
ing an overflow where none was expected. The mantissa seemed correct for most
cases yet even that too was incorrect for certain input values. Much effort was in-
vested in making sure that no setup or hold times were violated, yetall ¥, tests still
failed consistently. However, enough correct values for the mantissa field were ob-
tained to adequately perform schmoo tests with regard to the PRESET and Yin_Dis
signal. In addition, the Abs_Val signal could not be accurately tested since the sign
bit of the Yout words was not operational, hence a conservative estimate was en-
tered in Table 4.4.

Fig. 4.11 and Table 4.6 display the input and output switching characteristics.
The X registers function perfectly shifting out a given nibble, 31 clock periods after
it was sampled. As mentioned before, Y,.. mantissa nibbles were only accurate for
certain values of X;,, Cin, and Y}, and furthermore no pattern was apparent for
choosing inputs that would pump out valid outputs. Naturally, this leads one to
speculate whether there was a design error, an implementation error, or a fault in
the silicon. The latter scenario is a likely one and will be elaborated when dealing
with the issue of fabrication faults.

Lastly, the maximum clock frequency for which valid mantissa nibbles were

83

4. Fabricating and Testing the Systolic Convolution Cell

recorded was slightly less than SMHz which corresponds to a 126 nanosecond pe-
riod. According to Eq. 4.1 and Eg. 4.1 this corresponds to a systolic array latency of
0.000342 seconds which is insignificant to the 0.524 seconds of total execution time
required (Eq. 4.1 to process a 512 x 512 image. Hence, a systolic system that uses
an array of cells similar to the one that was fabricated and tested in this thesis is

expected to have a peak performance of approximately 80 MFLOPS (Eq. 4.1).

row latency = [2 x (ARRAYLENGTH - 1)] + 3 = 19 pipeline cycles

array latency = (ARRAYHEIGHT) * (row latency)
= 171 pipeline cycles
= 2,736 clock cycles
= 342, 000 ns = 0.000342 seconds

execution time = (image size) (1 pipeline cycle per result)
= 256K pipeline cycles
= 4,194, 304 clock cycles x 125ns per clock cycle
= 0.524 seconds

computation rate = 42, 000, 000 FLOPs/{execution time)
= 80.2 MFLOPS

4. Fabricating and Testing the Systolic Convolution Cell

: " per —
. ' .+ .
v Yuh - N o '
: ; : :
HOLD \ : : !
' H . N
' lwl T lhl N '
: : . < :
: H 1/(—
Xin<y:0» fwonld n; nibblr mj ' '
: Le :
; Cka :
- H
h L1N])P
— tpn e per I
] L *
A ‘l L A :
Xoutah:0> m twewad n-2; aibble me 1) :XX (wond n: nibhle m)
. ce p
L] :) :
h “aay " thy ' N
; : : ¢ :
. - . F F— g
Yin<h:> twind n; nibble m2) S ¢
: : (55~ :) :
; a7 ot lpy
— b b et -y
] 4 .
L] L :
Youtel:0» W {processed word n-3:; nibbir m-1) M {pencessed word n; nibble m-2)
Lc
oy

Figure 4.11: Input and output switching waveforms in run mode (HOLD = 0,

C-LOAD = 0).

4. Fabricating and Testing the Svstolic Convolution Cell

Parameters Description Min Max Units
Lper CLK period 126 — ns
Louh HOLD LOW to CLK setup time B — ns
thi, CLK to HOLD LOW hold time 10 — ns
lyur Xin to CLK setup time 30 — ns
thr CLK to Xin hold time 0 —_— ns
Lor Propagation delay from CLK to Xout Valid 35 45 ns
Laun Yin to CLK setup time 30 — ns
thy CLK to Yin hold time 0 —_ ns
Loy Propagation delay from CLK to Yout Valid 38 50 ns

Table 4.6: Input and output switching characteristics. Input rise and fall times

are typically 15ns. Qutput propagation delays are maximum for LOW to HIGH
transitions.

4.2.5 Manufacturing-Test Principles

The probability of a particular transistor being defective once fabricated is minus-
cule. However, if one sums up these defect probabilities for all transistors in a com-
plex chip then it is common to obtain a probability of a chip defect in the proximity
of fifty percent. The proportion of fabricated chips that are fault free is referred to as
the yield. Typical fabrication yields for mature processes tend to fluctuate around
the 40 percent mark. It cannot be overemphasized that manufacturing tests play
a critical role in VLSI design and must be given sufficient attention in this thesis.
However, before such testing can be addressed with respect to the systolic convo-

lution cell design, some testing principles are first defined.

Fault Models

To deal with the existence of good and bad parts one requires models for how faults
occur and their impact on circuits. The most popular model is called the “Stuck-
At” model. A faulty gate input is modeled as a “stuck at zero” or “stuck at one”.
These faults most frequently occur due to thin-oxide shorts (the n-transistor gate
shorting with VSS or the p-transistor gate shorting with VDD) or metal-to-metal

86

4. Fabricating and Testing the Systolic Convolution Cell

shorts which cause the output of a gate to be “stuck at” a0 or 1 value. Other models

include “stuck-open” (open-circuit) or “shorted” (short-circuit) models.

Observability

The observability of a particular circuit node is the degree at which one can observe
that node at the output pins of an integrated circuit. This measure is important
when one desires to measure the output of a gate within a large circuit to check
that it operates correctly. Ideally, one would like to be able to observe directly or
with moderate indirection (ie. one may have to wait a few cycles) every gate out-

put within an integrated circuit.

Controllability

Correspondingly, the controllability of an internal node within a chip is a measure
of the ease of setting that node to a 0 or 1 state. An easily controllable node would
be directly settable via an input pad. A node with little controllability might require
thousands of cycles to get it to the right state. Recommendations will be made on
how to increase the observability and controllability of the systolic cell when design
for testability is examined.

Fault Coverage

Fault coverage is a formal measure of the goodness of a test program. It expresses
the percentage of the chip’s internal nodes that were checked for faults with the
applied test vectors. The method of calculation is as follows. In a gate-level model
simulation, each node is taken in sequence and held to a 0. For each node that is
artificially set to 0, the simulation is run and the outputs are compared with the out-
puts of a known “good machine” - circuit with no nodes artificially set to 0. When
a discrepancy is detected between the faulty machine and the good machine, the

87

4. Fabricating and Testing the Systolic Convolution Cell

fault is marked as detected and that particular simulation is stopped and the next
simulation to check the next node begins. Thus one can see what percentage of the
chip’s internal nodes have stuck-at-0 detectability. And a similar approach can be
performed for a measure of stuck-at-1 detectability. Both approaches are part of a

process known as “fault-grading”.

4.2.6 Manufacturing-Test Strategies for the Systolic Cell

Although the chip has already been shown to fail some basic functional tests for
certain input vectors, this section will nevertheless recommend strategies for ob-
taining high fault coverage with the existing design. The proposed strategies are
meant to test each part of the chip independently. Since the chip is partitioned into
three stages, testing for each stage will be discussed in turn.

Stage 1 Mantissa Circuit

The first stage multiplication circuit is comprised of a product generator, a mantissa
carry-look-ahead adder, and the exponent adder. The product generator is com-
posed of multiplexers and ripple-carry adders. Since every multipiexed bit slice is
independent from the other bit-slices, the multiplexers are easily tested by multi-
plexing 1 and 0 values from each of their inputs. Next, the ripple-carry adders have
the desirable property of being testable with random vectors. It can be shown thata
uniform distribution of input vectors (P(inputs) = 0.5) should yield a uniform dis-
tribution of output sums and ripple-carry-outs. The inputs of the adders are driven
by the coefficient register which allows for complete controllability. Moreover, ob-
servability is relatively easy if one controls the X;, signal to multiplex the outputs
of the seven ripple carry adders. Subsequently, with a null ¥;, signal the content of
the product register can be propagated through the second and third stages.

The mantissa carry-look-ahead adder of the first stage in the systolic cell is much

88

4. Fabricating and Testing the Systolic Convolution Cell

harder to test than the ripple-carry adders. The carry-look-ahead circuitry is much
more complex than a straightforward ripple. For example, the carry out corre-
sponding to bit 56 of the adder is a function of 113 inputs! A study of using random
patterns to test a carry-look-ahead scheme was conducted by [Larochelle, 1991] in
which the probability for controlling and observing the carry out corresponding to
bit 3 was minute. The implication was that nearly a billion vectors would have to

be applied before the probability of detecting a fault became acceptable.

To circumvent this impasse, Larochelle presented an alternate (deterministic)
approach in which the carry-look-ahead circuit is partitioned with respect to its
building blocks and tested on a block by block basis. The pyramidal structure of the
adder is consructed using 4-bit carry-look-ahead building blocks. As such, a 16-bit
adder is constructed with four 4-bit adders connected together with an extra level
of look-ahead circuitry. Likewise, a 64-bit adder requires a third level of look-ahead
circuitry and four 16-bit adders. Hence the problem breaks down to testing the ba-
sic full adder and the three levels of the look-ahead circuit. The full-adder is easily
tested by applying all eight combinations of the two 1-bit inputs and the carry-in.
Testing each level of carry-look-ahead circuitry is also straightforward if one real-
izes that the carry-propagate and carry-generate outputs of each 4-bit carry-look-
ahead building block are easily controlled through the inputs to the adder. To create
input test vectors for the second level look-ahead circuitry one need only replicate
each bitin the initial 4-bit test vector such thata “0"” becomes & “0000” and a “1” be-
comes a “11i1” thus creating a 16-bit test vector. Similarly, the third-level is tested
by repeating each bit sixteen times instead of four.

One drawback to testing the 57-bit carry-look-ahead adder as described above
is that one of its addends is a bus that is fed back from the partial-product regis-
ter, and this creates a controllability problem. Since some of the test vectors must
be applied through this feedback path, careful planning is required in loading the
partial product register with the required value.

89

4. Fabricating and Testing the Systelic Convolution Cell

Stage 1 Exponent Circuit

The first stage exponent circuit is composed of an 11-bit ripple adder an 11-bit carry-
look-ahead adder. Controllability and observability do not require much effort for
these components since the inputs are driven directly by two shift registers and the
outputs are directly transmitted to State 2. Again the testing approach is the same

as for the adders in the mantissa but without the controllability problems.

Stage 2 Mantissa Circuit

The second stage mantissa addition circuit is made up of multiplexed registers, a
look-ahead adder, and a look-ahead two’s complementer. The multiplexers of the
shift registers are tested during the testing of the Stage 2 exponent circuit. The
two's complementer is a look-ahead adder that adds 1 to the inverted output of
the other adder. Both adders are tested using the look-ahead adder approach de-
scribed above. Controllability is achieved using the Y;, register and the content of
the product register in Stage 1. Observability is realized once the result is propa-
gated through Stage 3.

Stage 2 Exponent Circuit

The second stage exponent circuit constitutes two registers and an 11-bit carry-look-
ahead adder. One of the adder inputs is derived from a multiplexer which selects a
hard-wired “+8” value or a “-1” value. The result from Stage 1 as well as the Y, in-
put can be used to load the content of the registers. The test results get transmitted
to Stage 3 every 16 clock cycles.

90

4. Fabricating and Testing the Systolic Convolution Cell

Stage 3 Normalization Circuit

The third stage mantissa circuit has no combinational logic. The registers with their
multiplexed inputs are tested at the same time as the exponent circuitry. The expo-
nent circuitry houses a single register and a carry-look-ahead adder which is config-
ured to add “+8” or “-1” until the leading 1 in the mantissa register is immediately
to the left of the binary point. Y}, is used to load the contents of the exponent and
mantissa registers, and loading a zero valued X, will propagate the same Y, value
to stage 3 which is directly observable from Y,...

4.2.7 Design for Testability

A major shortcoming in this systolic cell design was that it was not designed for
testability. This section surveys the design techniques that may be used to make all
nodes in a chip both controllable and observable, and thus testable. There are four
main approaches which are categorized as ad-hoc, scan-based, self-test, and IDDQ.
Once these categories are surveyed, recoinmendations will be made for redesigning

the systolic cell chip for increased testability.

Ad-hoc testing is a collection of design ideas aimed at reducing the combina-
tional explosion of testing. One common technique is to partition large sequential
circuits in order to reduce the number of cycles required for testing - the approach
being one of divide and conquer where a big circuit with many inputs is made eas-
ier to test by reducing it into multiple smaller sub-circuits each with fewer inputs.
A second ad-hoc approach is to add extra test-points for improved observability.
Still another method is to add multiplexers to provide alternate signal paths that
can be enabled during a “test mode” of a circuit. Lastly, one can provide for easy
state reset for improved controllability.

Scan-based approaches convert all registers in the circuit into serial shift regis-

91

4. Fabricating and Testing the Systolic Convolution Cell

ters which are “chained” together via their serial inputs and outputs. Testing pro-
ceeds by serially clocking the data through the “scan-chain” to the right point in

the circuit, running a single system clock cycle and serially clocking the data out

for observation.

Self-test and built in test techniques rely on augmenting circuits to allow them to
perform operations on themselves that prove correct operation. One method is sig-
nature analysis [Frowerk, 1977] [Nadig, 1977]. This involves the use of a pseudo-
random sequence generator to generate the input signals for a section of combina-

tional circuitry and then using a signature analyzer to observe the output signals.

Ore increasingly popular method of testing for bridging faults is called IDDQ
(VDD supply current Quiescent) or current-supply monitoring [Acken, 1983]
[Lee and Breuer, 1992]. This relies on the fact that when a CMOS logic gate is not
switching, it draws no DC current (except for leakage). When a bridging fault oc-
curs, fer some combination of input conditions a measurable DC Ipp will flow.
Testing consists of applying the normal vectors, allowing the signals to settle, and
then measuring Ipp. Itis highly likely that given the unusually high power supply
current recorded in the DC characteristics Table 4.2 that the tested systolic cell chip
did indeed have a bridging fault. As just demonstrated, this kind of testing gives a

form of indirect massive observability at no cost in terms of circuit overhead.

Having encountered the difficulties in devising testing schemes for circuits such
as those found in Stage 1 of the systolic cell, it is now clear that a partial scan chain
would greatly simplify test vector generation. For example, the Stage 1 controlla-
bility and observability problems would be completely resolved by simply config-
uring the partial product register into a shift register during a newly created test-
mode. Moreovey, if it were chained to the X register such that X;, and X,.. pins
could be used to control and observe the contents of the partial-product register
during test-mode then only a few very minor gate changes and the addition of one
pin to designate the test-mode would have to be incurred.

92

4. Fabricating and Testing the Systolic Convolution Cell

4.3 Summary

Before the systolic convolution chip could be fabricated a deep-seated knowledge
was required of the systolic design, the CMOS3 DLM process, the associated de-
sign rules, the CADENCE design and validation tools, and the submission process.
Once the chip was validated in the CADENCE environment and the Vantage VHDL
simulator, and after it was sent for fabrication, the testing environment was suffi-
ciently automated such that testing process could be performed in an efficient man-
ner. Functional tests were run that spawned an I/O and timing specification for
the sytolic cell. These tests exposed a defect with the fabricated chip. Furthermore,
manufacturing test strategies were given and approaches for re-designing the sys-

tolic convolution chip for testability were recommended.

93

Chapter 5 Conclusion

The convolution operation was perceived as the most frequently used operation in
image-processing tasks and as such it was targeted for performance improvement.
Due to the huge volume of data and floating-point arithmetic calculations needed
to convolve a standard sized image, convolution was found to be overwhelming
with regard to the available computational power and memory bandwidth of single

processor machines.

However, the convolution operator can be easily “parallelized” and sped up on
various general-purpose parallel processing computers. Of the parallel processor
classes considered, the synchronous class appeared to be the best suited for low-
level image-processing applications. Specifically, since systolic arrays are simple,
modular, expandable, and yield high performance at a lower relative cost, they
meet the architectural challenges of special-purpose systems, and are therefore the

preferred parallel processing solution for the convolution problem.

Hence, a systolic solution is presented that is to employ a 9 x 9 systolic array
of processing cells. Each systolic cell is implemented on a VLSI chip and is orga-
nized into three stages which perform the required double precision floating-point

multiplication, addition, and normalization operations in a pipelined fashion.

Once the chip was validated in the CADENCE™ environment and on the Van-
tage VHDL simulator, and after it was sent for fabrication, the testing environment
was sufficiently automated such that the testing process could be performed in an
efficient manner. Functional tests were run that were used to generate I/O port
timing specifications. Unfortunately, some of the input vectors for these tests ex-
posed a defect with the fabricated chip. Since the IDDQ tests pointed in the direc-
tion of a bridging fault, a manufacturing error is suspected. Lastly, manufacturing

94

5. Conclusion

test strategies were given and approaches for re-designing the systolic convolution

chip for testability were recommended.

95

References

[Acken, 1983] J. M. Acken, “Testing for bridging faults (shorts) in cmos circuits,”
in Proceedings of the 20th IEEE/ACM Design Automation Conference, (Miami Beach,
Fla.), pp- 717-718, June 1983.

[Amdaht, 1967] G. Amdahl, “Validity of the single processor approach to achiev-
ing large scale computing capabilities,” in Proc. AFIPS 1967 Spring Joint Computer
Conf. 30, (Atiantic City, N.J.), pp. 483485, April 1967.

[Axel et al., 1983] L. Axel, P. H. Arger, and R. A. Zimmerman, “Applications of

computerized tomography to diagnostic radiology,” Proceedings of the IEEE,
vol. 71, pp- 291-431, March 1983.

[Ballard and Brown, 1982] D. H. Ballard and C. M. Brown, Computer Vision. Pren-
tice Hall, 1982.

[Balsara and Irwin, 1991] P. T. Balsara and M. J. Irwin, “Image processing on a

memory architecture,” Journal of VLSI Signal Processing, vol. 2, pp. 313-324, May
1991.

[Barnes, 1968] G. H. Barnes, “The Illiac IV Computer,” [EEE Transactions on Com-
puters, vol. C-17, pp- 746-757, 1968.

[Batcher, 1980] K. E. Batcher, “Design of a Massively Parallel Processor,” IEEE
Transactions on Computers, vol. C-29, p. 836, 1980.

[Berry et al., 1988] M. Berry, D. Chen, and D. K. P. Koss, “The perfect club bench-
marks: Effective performance evaluation of supercomputers,” tech. rep., Center
for Supercomputing Research and Development, University of Illinois, Urbana-
Champaign, Illinois, November 1988.

[Botzas and Masson, 1990] A. Botzas and E. L. Masson, “First in first out (fifo)
queue,” tech. rep., McGill University, 1990.

[Boudreault and Malowany, 1986] Y. Boudreault and A. Malowany, “A VLSI con-
volver for a robot vision system,” Proceedings of the Canadian Conference on Very
Large Scale Integration, pp. 265-270, 1986.

[Brassard and Bratley, 1988] G. Brassard and P. Bratley, Algorithmics, Theory and
Practice. EngleWood Cliffs, New Jersey: Prentice Hall, 1988.

[Briggs and Hwang, 1984] F. Briggs and K. Hwang, Computer Architectures and Par-
allel Processing. New York, N.Y.: McGraw-Hill, 1984.

[Briot, 1986] M. Briot, Robot Vision and Sensory Controls. Springer-Verlag, Berlin: IFS
(Publications) Ltd., 1986.

96

References

[Burrus and Parks, 1985] C.S. Burrusand T. W. Parks, DFT/FFT and Convolution Al-
gorithms: Theory and Implementations. New-York: Wiley Press, 1985.

[Caté, 1990] J.-F. Coté, “The design of a testable floating point convolution proces-
sor,” Mas*er’s thesis, McGill University, November 1990.

[Crowther, 1985] W. Crowther, “Performance measurements on a 128-node butter-
fly parallel processor,” in Proceedings of the International Conference on Parallel Pro-
cessing, pp- 531-535, IEEE Computer Society Press, 1985.

[Drolet, 1992] J. Drolet, “The design of a floating point convolution system,” Mas-
ter’s thesis, McGill University, August 1992.

[Duncan, 1990] R. Duncan, “A survey of parallel computer architectures,” Com-
puter, vol. 23, pp- 5-16, February 1990.

[Estreich and Dutton, 1982] D. B. Estreich and R. W. Dutton, “Modeling Latch-Up
in CMOS Inte grated Circuits and Systems,” IEEE Transactions on CAD, vol. CAD-
1, pp. 347-354, October 1982.

[Feng, 1981] T. Feng, “A survey of interconnection networks,” IEEE Computer,
pp- 12-27, December 1981.

[Ferguson, 1991] W. Ferguson, Jr., “Selecting math coprocessors,” IEEE Spectrum,
vol. 28, pp. 38—41, July 1991.

[Flynn, 1966] M. J. Flynn, “Very high speed computing systems,” Proceedings of the
IEEE, vol. 54, pp- 1901-1909, December 1966.

[Freer, 1987]]. Freer, Systems Design with Advanced Microprocessors. Howard W.
Sams & Co., 1987.

[Frowerk, 1977] R. A. Frowerk, “Signature Analysis - A New Digital Field Service
Method,” Hewlett Packard Journal, pp. 2-8, May 1977.

[Gajski, 1986] D. Gajski, “CEDAR,” in Digest of Papers, Compcon (A. G. Bell, ed.),
IEEE Computer Society Press, 1986.

[Gentleman and Kung, 1981] W. Gentleman and H. Kung, “Matrix triangulariza-
tion by systolic arrays,” Proc. SPIE, Real-Time Signal Processing IV, Society of Photo-
optical Instrumentation Engineers, vol. 298, 1981.

[Gonzalez and Wintz, 1987] R. C. Gonzalez and P. Wintz, Digital Image Processing.
Reading, Massachusetts: Addisor-Wesley, 1587.

[Guibas et al., 1979] L. Guibas, H. Kung, and C. Thompson, “Direct VLSI imple-
mentation of combinatorial algorithms,” Proc. Conf. Very Large Scale Integration:
Architecture, Design, Fabrication, pp. 509-525, January 1979.

[Hall, 1979] E. L. Hall, Computer Image Processing and Recognition. Academic, 1979.

97

References
[Hartline and Ratliff, 1954] H. R. Hartline and E Ratliff, “Spatial summation of in-
hibitory influences in the eye of limulus,” Science, vol. 20, no. 3124, p. 781, 1954.

(Hartline and Ratliff, 1957] H. R. Hartline and E Ratliff, “Inhibitory interaction of

receptor units in the eye of the limulus,” Journal of General Physiology, vol. 40,
no. 3, pp- 357-376, 1957.

[Hartline, 1949] H. R. Hartline, “Inhibition of activity of visual receptors by illumi-
nating nearby retinal elements in the limulus eye,” Federation Proceedings, vol. §,
no. 3, p. 69, 1949.

[Haule, 1990] D. D. Haule, “Design of a VLSI system for image processing,” Mas-
ter’s thesis, McGill University, March 1990.

[Hennessy and Patterson, 1990] J. L. Hennessy and D. A. Patterson, Computer Ar-
chitecture: A Quantitative Approach. Morgan Kaufmann Inc., 1990.

[Hillis, 1985] W. D. Hillis, The Connection Machine. Massachusetts Institute of Tech-
nology Press, 1985.

[Hockney and Jesshope, 1988] R. W. Hockney and C. R. Jesshope, Parallel Comput-
ers 2, Architecture, Programming and Algorithms. Bristol, England, and Philadel-
phia: Adam Hilger Ltd., 1988.

[Hord, 1990] R. M. Hord, Parallel Supercomputing in SIMD Architectures. Boca Ra-
ton, Ann Arbor, Boston: CRC Press, 1990.

[Horspool, 1986] R. N. Horspool, C Programming in the Berkeley Unix Environment.
Prentice Hall, 1986.

[1BM, 1985] IBM Corp., IBM 3090 System Summary-Engineering/Scientific, 1985.
[TEE, 1985] IEEE, IEEE Standard 754-1985 for Binary Floating-Point Arithmetic, 1985.
[Int, 1993] Intel Corporation, Parallel Supercomputers, 1993.

[Iverson, 1992] L. Iverson, McImage Library: McRCIM Image Processing Library and
Development Environment for the MasPar MP-1. Montreal, Quebec, Canada, 1992.

[Karp, 1987] A. H. Karp, “Programming for parallelism,” IEEE Computer, pp. 43—
57, May 1987.

[Kohonen, 19871 T. Kohonen, Content-Addressable Memories. New York, N.Y:
Springer-Verlag, 1987.

[Kuck, 1980] D.Kuck, “High speed multiprocessing and compilation techniques,”
IEEE Transactions on Computers, vol. C-29, pp. 763-776, 1980.

[Kung and Leiserson, 1978] H. T. Kung and C. E. Leiserson, “Systolic arrays (for
VLSI),” Sparse Matrix Symposium (SIAM 1979), pp. 256-282, 1978.

98

References

[Kung, 1982] H. T. Kung, “Why systolic architectures?,” Computer, vol. 13, pp. 37-
46, January 1982.

[Kung, 1987] S.-Y. Kung, “Wavefront array processors—concept to implementa-
tion,” IEEE Computer, vol. 20, pp. 18-33, July 1987.

[Larochelle, 1991] F. Larochelle, “VLSI design of a double precision floating point
convolution systolic cell,” Master’s thesis, McGill University, March 1991.

[Larson, 1984] J. L. Larson, “An introduction to multitasking on the Cray X-MP2
multiprocessor,” IEEE Computer, pp. 62-69, July 1984.

[Lee and Breuer, 1992] K.-J. Lee and M. A. Breuer, “Design and Test Rules for
CMOS Circuits to Facilitate IDDQ Testing of Bridging Faults,” IEEE Transactions
on CAD, vol. 11, pp. 659-670, May 1992.

[Lehman and Kung, 1980] P. Lehman and H. Kung, “Systolic (VLSI) arrays for re-
lational database operations,” Proc. ACM - Sigmod 1980 Int’l Conf. Management of
Data, pp. 105-116, May 1980.

{Levine, 1985] M. D. Levine, Vision in Man and Machine. McGraw-Hill Inc., 1985.

[Lindskog, 1988] B. Lindskog, PICAP3. Dissertations no. 176, Linkoping Studies In
Science And Technology, Linkoping, Sweden, 1988.

[Lipovski and Malek, 1987] G. J. Lipovski and M. Malek, Parallel Computing: The-
ory and Comparisons. New York, N.Y.: Wiley and Sons, 1987.

[Lovett and Thakkar, 1988] T.Lovettand S. Thakkar, “The sequent symmetry mul-
tiprocessor system,” in Proceedings of the 1988 International Conference of Parallel
Processing, (University Park, Pennsylvania), pp. 303-310, 1988.

[Lubeck et al., 1985] O. Lubeck, J. Moore, and R. Mendez, “A. comparison of three
supercomputers: Fujitsu VP-200, Hitachi 5810/20, and Cray X-MP/2,” Com-
puter, pp- 10-24, December 1985.

[Malowany et al., 1990] A. S. Malowany, J. Drolet, J. Panisset, J. F. Coté, and
E. Larochelle, “A double precision floating point convolution system,” in Proceed-
ings of the ASME International Computers in Engineering Conference, Vol. 2, (Boston,
Mass.), pp. 1-6, American Society of Mechanical Engineers, August 1990.

[Malowany et al., 1991] A. S. Malowany, J. Drolet, and J. F. Panisset, “Design of a
floating point convolution processor,” in Proceedings of the Canadian Conference
on Electrical and Computer Engineering, (Quebec City, Canada), pp. 13.5.1-13.5.4,
Canadian Society for Electrical and Computer Engineering, September 1991.

[Marr and Hildreth, 1980] D. Marr and E. Hildreth, “Theory of edge detection,” in
Proceedings of the Royal Society of London, Ser. B, Vol 207, pp. 187-217, 1980.

[Mas, 1992] MasPar Computer Corporation, MasPar MP-1 Hardware Manuals, 1992.

99

References

[McMahon, 1989] F. McMahon, “The Livermore FORTRAN kernels: A computer
test of numerical performance range,” tech. rep., Lawrence Livermore National
Laboratory, Univ. of California, Livermore, California, December 1989.

[McRCIM, 1990] McRCIM, “Mcgill research center for intelligent machines annual
report,” tech. rep., McGill University, 1990.

[Mead and Conway, 1980] C. Mead and L. Conway, Introduction to VLSI Systems.
Addison-Wesley, 1980.

[Mulders, 1987] M. A. Mulders, Remote Sensing in Soil Science. New-York: Elsevier
Science Pub., 1987.

[Nadig, 1977] H.]J. Nadig, “Signature Analysis — Concepts, Examples, and Guide-
lines,” Hewlett Packard Journal, pp. 15-21, May 1977.

[nCU, 1992] nCUBE Corporation, nCUBE 2: Technical Overview, 1992.

[Offen, 1985] R.]. Offen, VLSI Image Processing. Collins Professional and Technical
Books, 1985.

[Oppenheim and Schafer, 1989] A. V. Oppenheim and R. W. Schafer, Discrete-Time
Signal Processing. EngleWood Cliffs, New Jersey: Prentice Hall, 1989.

[Palmer, 1986] J. E. Palmer, “A VLSI Parallel Computer,” in Digest of Papers, Comp-
con (A. G. Bell, ed.), IEEE Computer Society Press, 1986.

[Panisset et al., 1990]]. F. Panisset, J. Drolet, J. F. Coté, F. Larochelle, and A. S. Mal-
owany, “A floating point convolution system,” in 33rd Midwest Symposium on
Circuits and Systems, (Calgary, Alb., Canada), pp. 397-400, IEEE Circuits and Sys-
tems Society, August 1990.

[Par, 1991] Parsytec GmbH, Beyond the Supercomputer, Parsytec GC, 1991.

[Pfister, 1985] G.E Pfister, “The IBM Research Parallel Processor Prototype (RP3),”
in Proceedings of the International Conference on Parallel Processing, IEEE Computer
Society Press, 1985.

[Press et al., 1988] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, The Art of Scientific Computing. Cambridge, New York,
Port Chester, Melbourne, Sydney: Cambridge University Press, 1988.

[Preston, 19891 K. Preston, Jr, “The Abingdon Cross benchmark survey,” Com-
puter, pp- 9-18, July 1989.

[Proakis and Manolakis, 1988] J. G. Proakis and D. G. Manolakis, Introduction to
Digital Signal Processing. New-York: Macmillan, 1988.

[Rattner, 1985] J. Rattner, “Concurrent processing: A new direction in scientific
computing,” in AFIPS Conference Proceedings, vol. 54, p. 157, 1985.

100

References

[Robbins and Robbins, 1989] K. A. Robbins and S. Robbins, The Cray X-MP/Model
24: A Case Study in Pipelined Architecture and Vector Processing. Springer-Verlag,
1989.

[Schmidt and Caesar, 1991} U. Schmidt and K. Caesar, “Datawave: A single-chip
multiprocessor for video applications,” IEEE Micro, vol. 11, pp. 22-25,88-93, June
1991.

[Schumann, 1904] F. Schumann, “Einige beobachtungen iiber die zusammenfas-
sung von gesichtseindrucken zu einheiten,” Psychologische Studien, vol. 1, pp. 1-
32, 1904.

[Seitz, 1985] C. L. Seitz, “The cosmic cube,” in Comm. ACM, vol. 28, (New York,
N.Y..), pp- 22-23, 1985.

[Shimizu et al., 1988] H. Shimizu, N. Chubachi, and J. Kushibiki, Acoustical Imag-
ing. New York, London: Plennum Press, 1988.

[Shore, 1973] J. E. Shore, “Second thoughts on parallel processing,” Comput. Elect.
Eng., vol. 1, pp. 95-109, 1973.

[Srini, 1986] V. Srini, “An architectural comparison of dataflow systems,” IEEE
Computer, vol. 19, pp. 68-88, March 1986.

[Thi, 1992] Thinking Machines Corporation, The Connection Machine CM-5 Techni-
cal Summary, 1992.

[Treleavenet al., 1982] P. Treleaven, D. Brownbridge, and R. Hopkins, “Data-
driven and demand driven computer architectures,” ACM Computing Surveys,
vol. 14, pp. 93-143, March 1982.

[Troutman, 1986] R. R. Troutman, Latch-Up in CMOS Technology: The Problem and
Its Cure. Boston, Mass.: Kluwer Academic Publishers, 1986.

[Uhr, 1986] L. Uhr, Evaluation of Multicomputers for Image Processing. Cambridge,
Mass: Academic Press, 1986.

[van Zee and van de Vorst, 1989] G. A. van Zee and J.G. G. van de Vorst, Shell Con-
ference on Parallel Computing. New York: Springer-Verlag, 1989.

[Weste and Eshraghian, 1993] N. Weste and K. Eshraghian, Principles of CMOS
VLSI Design: A Systems Perspective, Second Edition. Addison-Wesley, 1993.

[Wilson, 1993] D. Wilson, “The Silicon Graphics Indigo R4000 workstation,” LInix
Review, p. 53, January 1993.

101

Appendix A

AL R R e e LAl L AR A AL AL AR R A

-

* NAME:

¢+ 4 & & & @

* DATE:

conv - convolution benchmark

DESCRIPTION: This benchmark measures the time used in executing

the process code within the main loops of a convolution
routine. The defines below ensure maximum flexibilizy
and serve to parametrize the benchmark.

This benchmark exists sololy to isolate performance ot
double-precision fleating-point arithmezic found in

the heart of image-processing programs that employ
convolurion operators.

COMPILER: GCC Version 2.3.3
OPERATING SYSTEM: Sun UNIX 4.2 Relcase: 3.5

Program Updated 93/02/23.,

* AUTHOR: Anthony Bot:zas

P R R L L e L R R R R e R A L el e L A Rl LR L)

#include <stdio.h>
#include <sys/time.h>
#include *cputime.h"

#define
#define
#define

#define
#define
#define

#define
#dafine
#define

#define
#define
#define

#define
#define

ISIZE 512
IBEGIN 4
IEND S07

JSIZE 512
JBEGIN 4
JEND 507

MSIZE 9
MBEGIN 0
MEND 8

NSIZE 9
NBEGIN 0
NEND 8

ICFFSET 4
JOFFSET 4

/* Global arrays for image data and kernel */
double I{ISIZE){JSIZE)., YIISIZE] [JSIZE), W[MSIZE][NSIZE];

Convolution Benchmark

102

A. Convolution Benchmark

mainl)
{
int 1.3.m,n0
double £1,t2;
/* initialization =*/
for (i=0; 1<ISIZE; ««i)
tor (j=0; j<JSIZE; ++j)
I(i}(31=3.14:
for (m=0; m<MSIZE; ++m)
for (n=0; n<NSIZE; ++n}
Wimlinl=2.72;
tl = ¢putime(User);
/* main loops of convolution operation */
for (i=TBEGIN; i<=IEND; ++i)
for (j=JFBEGIN; j<=JEND; +=3)
for (m=MBEGIN; m<=MEND; +-+m)
for (n=NBEGIN; n<=NEND: =+n)
Yii}[3] += Win}llm] * I[i+n-IQFFSET][3j+m-JOFFSET):
t2 = cputime(User);
/* print user mode scconds */
printf {"timez%g secs.\n", t2-tl);
}

FAAAALLL LA AL SRR AR Al Al ittt il il d il il il il ldl bl ity

L3

* NAME: cputime

* USACE: double cputime (option}:
- enum cputime_option option;

* DESCRIPTION: Returns the time consumed by a process.

- The options are as follows:

-

. System : Time spent executing system calls for the process.
- user Time spent executing the processes own code.

All All time spent executing for the process.

AAAAAA A AL AL LALLM AAAALLLLLAALLLALMMALLLLALLALALASLLLALALASLL LA LSS AT]

#include <sys/time.h>
finclude <sys/rescurce.h>
#include “cputime.h*

double cputime{option)
enum cputime_option option;
{
static struct rusage ru;
double result;

getrusage {RUSAGE_SELF, &ru) ;
result = 0;

if {option == System || option == All)
result = ru.ru_stime.tv_sec + {(ru.ru_stime.tv_usec/1000000.);

if (option == User || option == All)
result = ru.ru_utime.tv_sec + {ru.rxu_utime.tv_usec/1000000.);

return (result);
}

103

A. Convolution Benchmark

AR R R A R R R AR L A A R A A AR A AR AL LR AR AL R R A L]

* HEADER: cputime.h

= DESCRIPTION: Definitions for the function cputime.

tttt.".l.'..‘t.tt...t......!1.!!'.-.-.-.‘.‘.!..1'1‘.1...-..-1....1.‘1‘..,{
double cputime ();

enum cputime_option

{ System, J* Get time used exccuting system calls */
User, /" Get time used executing process code */
All /* Get all of the time used by a process */

¥:

104

Appendix B Parallel Convolution Benchmark

AR R R A A A LA S A AR AR il AL A AL Al AL

& ¢ & & & % L]

-

NAME: parconv - parallel convolution benchmark

DESCRIPTION:

MASPAR MP-1:

VIRTUAL
PROGRAMMING:

This is parallelized version of the CONV benchmark.

It runs ONLY on MasPar MP-x architectures. However,
the source code can conceivably be ported to other SIMD
architectures., The objective is to measure the time
used in executing the double-precision floating-point
process code within the computational portion of a
parallel convolution routine.

The MP-1 is an array processor comprised of a front
end DECstation and a data parallel unit {DPU)}. The
DPU consists of the array control unit (ACU) and the
processing clement array (PE array). The PE'S are
arranged in a 64 by 32 grid with nearest-neighbour
interconnocts. Thus there are 2K PE’'s on the MP-1.

Optimal image processing pertormance would be achieved
if the dimensions of the image array matched those of
the PE array. Then there would be one PE for each
pixel in the image. However, this is not the case

for the MP-1 since the 64x32 PE array cannot
accommodate the 512x512 image all at once. Thus,
virtuvalization technigques [Iverson, 1992] have been
developed to present a virtual programming environment
which detaches the MP-1 programmer from the physical
PE array dimensions. Hence, using "virtualization
macros" such as "ImageOpl" and *ImageOp2" belew, the
programmer indicates that the instructions enclosed in
braces, {}, should be performed in parallel on each PE
of a virtual array that matches the dimensions of the
image., Ergeo, virtualitation is accomplished via the
pre-processor which replaces cach virtalization macro
with a double locp over the imzge. Conceptually, the
macros break up the 512x512 image into 128 "tiles*
each with pixel dimensions 64x32. Therefore, each PE
instruction is iterated once for every tile in the
image.

COMPILER: AMPL_CC Version 3.0.12
OPERATING SYSTEM: ULTRIX 4.2a

DATE: Program Updated 93/02/23.
AUTHOR: Anthony Botzas

.Q-'....'..."-'I.'.""...'."'""'"-".*-i"..""..t.t't"*."'t't"'l

105

B. Parallel Convolution Benchmark

/™ INCLUDES */
#include <stdio h>

#ifdef _MPL

#dinclude <mpl.h>
#include <mprpe/rpe.h>
#celse

#include <rpe/rpe.h>
Hendif

F¥include <McImage/image.h>
#include <Mclmage/Dimagn.h>
#include <McImage/Dinet.h>»

/* DEFINES =/
/™ =consistent with the CONV benchmark */

#define ISIZE 512
#define JSIZE 512
#define MSIZE 9
ddefine NSIZE 9
#define IOFFSET 4
#define JOFFSET 4

main()

{

/* INITIALIZATION */

/* Define input and ocutput images. These are simple structures */
/* which embody both the image and a deseription of the */

/* virtualization mechanism which it uses. */

doublelmage InputlImage;

doublelmage OutputImage:

register double W[MSIZE) [NSIZE]: /* ACU registers (CReg’'s) */
register int m, n;

register plural double sum; /* PReg register defined on cach PE */

/* Allocate the input image and the convolution result image. */
double_allocalmage (&InpurImage, ISIZE, JSIZE):
double_allocalImage (&OutputImage, ISIZE, JSIZE):

/* Initialize kernel on CReg's. */
for (m=0; m<MSIZE: ++m}
for {n=0; n<NSIZE: ++n)
Wim) [n) = 2.72;

/* Virruvalization macro that initializes input image. */
ImageOpl(&Inputlmage,double,In p, {
Inp = 3.14; / This instruction ix executed on avery PE. */
/* Note that virtualization will iterata this =/
/* parallel instruction until the entire image */
/* dimensions have been traversed. */
})

106

B. Parallel Convolution Benchmark

/* COMPUTATION =/

Unig (DPU)Y. The =/

/* Start a real time counter in the Data Para 1 al
Blns for the Mp=-1}).*/

1
/* counter increments once every machine cycle
dpuTimerStarci):

1o
[

/* Virtualization macro that weights the neighbouring pixels and */
f* accumylates the result in the corresponding output image pixel. */f
ImageOp2 ! 40utputlmage,double,Out_p. &Inputlmage,double,In_p, {

sum = 0; /* vemporary accumulation register */
tor {m=0; m<MSIZE; ++m)
for {n=0:; n<NSIZE: ++n}
sum += Wim]n)] *

double_inet (&Inputlimage,m=10FFSET, n-JOFFSET) ;
/* inet fetches a neighbouring pixel given a */
/* relative displacement {dx,dy} */

Out_p = sum; / store valuce of convolution sum */

1S

printf{~time=%g secs.\n", dpuTimerElapsed() };

107

Appendix C Overview of the IEEE Floating-Point Standard

Manufacturers have in the past employed proprietary formats to store real num-
bers. Some of those formats did not even ensure correctly rounded results of com-
mon operations [Ferguson, 1991]. Due to the increased use of floating-point arith-
metic, the need for a standard representation became necessary. In 1985, an |EEE
working group presented the IEEE 754 standard whose goal was to improve soft-
ware and hardware portability. The standard describes such things as the floating-
point format (single and double precision), the combination (rounding) of floating-
point through common operations such as addition, multiplication and division,

and behaviour under error conditions (division by zero, overflow, etc.).

The converters on the hardware accelerator board comply with this standard.
Hence, an overview of the double precision floating-point representation is pre-
sented. For complete details on the IEEE 754 standard, the reader is referred to
[TEE, 1985].

52.bit Mantisxa

Figure C.1: Double precision fioating-point representation.

As depicted in Figure C.1, a double precision number is 64 bits long: one bit
for the sign (0 = positive, 1 = negative), 11 bits for the exponent and 52 bits for the
mantissa. To ensure a unique internal representation for each floating-point num-
ber, the exponent is adjusted so that the mantissa has an implied 1 before its binary
point. This “normalization” implies that the 1 in front of the binary point need not
be stored since it is always present. So, although there are 52 bits in the mantissa,
53-bit precision is provided.

108

C. Overview of the IEEE Floating-Point Standard

Moreover, the exponent value is represented using the “excess 1023 notation”
which implies an exponent range of -1023 to 1024. The decimal value, d, of a

floating-point number is hence given by
d = (_1)-“ * (1.1??(17?” * 2(r:rp-](]23) (C_l)

where s is the sign, mant and czp are the decimal equivalent of the mantissa and
the exponent respectively. In excess 1023 notation, an exponent with the maximum
value represents infinity (co) only if the mantissa is zero otherwise it is NaN (nota
number). An exponent with the minimum value represents a zero if the mantissa

is null, otherwise it indicates an underflow.

109

Appendix D VHDL Simulations

-- TOPLEVEL.VHDL

-- This is a toplevel simulation of a linear systolic convolution array.
-= Inputs and partial results move systolicly in the same direction:

== however, THE PARTIAL RESULTS MOVE FASTER THAN THE INPUTS .

== The convolution weights do not move.

== The test bench below automatically generates an array of leagth

-- ARRAYLENGTH and feeds it with a stream of input pixels.

== 2*{ARRAYLENGTH-1)+1 clock cdges after an input sample enters the

== first cell, a valid convolution sum of that sample and the previous
-- ARRAYLENGTH samples appears at the output of the last cell.

entity clock_gen is
generic (Tpw : time := 5 ns}: -=- default clock pulse width
port (phi : out bit); -- one nhasc

end clock_gen;

architecture behaviour of clock_gen is
constant CLOCK_PERIOD : time := 2+ (Tpwl;
begin
clock_driver: process
begin
phi <= 0, *1’ after Tpw:
wait for CLOCK_PERIOD;
end process clock_driver:

end behaviour:

entity synch_reg is

generic (Tpd : time := 1 ns); -- default propagation delay
port (& : in integer;
q : out integer := 0; -- default register content

clk : in bit);
end synch_reg:

architecture behaviour of synch_reg is
begin
process

begin

110

R

b -
-

wait Jntil elk =
q <= d after Tpd:
end process;

end behaviour:

D. VHDL Simulations

entity convolver is
generic {Tpd : time := 1 ns;

weight @ integer :z 1); -- default convolution weight
port (pixel : in integer:
insum : in integer:
outsum : out integer := 0; -- default conzents
clk : in bit);

cnd convolver;

architecture behaviour of convolver is
begin

process
begin

wait until clk = "1+;

outsum <= insum + (weight * pixel)
end process:

end behaviour;

-- default propagation delay

after Tpd:

entity syst_cell is
port (Xin : in integer;
Xout : out integer:
Yin : in integer;
Yout : out integer;
clk : in hit);
end syst_cell;

architecture structure of syst_cell is

component synch_reg
port (d ! in integer:
Q : out integer;
clk : in bit):
end component;

component convolver
generic (Tpd : time;
weight : integer):
port (pixel : in integer:
insum : in integer:
outsum : out integer:
elk : in bit):
end component;

sigqmal X : integer:
begin

regl: synch_reg

111

port map (d =» Xin, q =» X, e¢lk => clk);

regl: synch_reg
port map {d => X, q => Xout, clk => clk);:

conv: convolver
generic map (Tpd => 1 ns, weight => 2)
port map (pixel => Xin, insum => Yin, outsum =-> Yout, clk

cnd structure;

entity syst_array_test is
cnd syst_array_test:

architecture structurc of syst_array_tost is

component clock_gon
pozrt (phi : ouz big):
ond component;

component syst_cell
port (Xin : in integer;
Xout : out integer;

Yin : in integer:
Yout : out integer;
elk : in bit):

end component;

constant ARRAYLENGTH : integer := 3;

signal Xin, Yin : integer:

type int_array is arrvay (0 to ARRAYLENGTH-1) of integer;
signal Xout, Yout : int_array;

signal clk: bit;

begin

cg : clock_gen
port map {(phi => clk}:

cellQ: syst_cell
port map (Xin => Xin, Xout => Xout(0),
¥in =» Yin, Yout => Yout (0},
clk =» elk);

cell_array: for i in 1 to ARRAYLENGTH-1 gencrate
call: syst_cell
port map (Xin => Xout(i-1l), Xout => Xout{i},
Yin 2> Your(i-l), Yout => Youtli),
eclk => ¢lk);
end generate cell_array;

Xin <= 3, 7 afrer 16 ns,
3 after 64 ns,
8 after 112 ns,
1l after 160 ns, 1
14 after 208 ns, 1

afrter 32 ns, 6 after 48 ns,
after 80 ns, 9 after 96 ns,
afver 128 ns, 10 after 144 n=s,
after 176 ns, 13 after 192 ns,
after 224 ns, 16 after 240 ns;

MW N

D. VHDL Simulations

= clky;

~- Rin <= 1, 2 after 10 ns, 3 after 20 ns, 4 after 30 ns, 5 after 40
- 6 after SO ns, 7 after 60 ns, 8 after 70 ng, 9 after 80 ns.

ns.

112

- 10 after 90 nzm:

Yin <= 0;

end structure;

configuration syst_array_structure_test of syst_array_test is
for structure

for cqg : clock_gen
use entity work.clock_gen(behaviour)
generic map (Tpw =»> B ns}:

end for;

for all : syst_cell
use entity work.syst_cell (structure);
for structure
for all : synch_reg
use entity work.synch_reg({behaviour);
end for;
for conv : convolver
use entity work.convolver (behaviour):
end for;
end for;
cnd for;

end for:

end;

D. VHDL Simulations

113

D. VHDL Simulations

-=- TOPLEVEL.VHDL

=~ This is a toplevel simulation of a linevar systelic ceonvolution array.
== Inputs and partial results move systoliely in the same direction;

== hpwever, THE INPUTS MOVE FASTER THAN THE PARTIAL RESULTS.

== The convolution weights do not move.

-~ The test bench below automatically generates an array of length

== ARRAYLENGTH and fecds it with a stream of input pixels.

== 2*{ARRAYLENGTH-1}+3 clock ecdges after an input sample enters the

== first cell, a valid convolution sum of that sample and the previous
== ARRAYLENGTH samples appears at the output of the last cell.

entity clock_gen is
generic {Tpw : time := S ns): -=- defaulz clock pulse width
port (phi : out bit): -- one phase

end clock_gen;

architecture behaviour of clock_gen is
constant CLOCK_PERIOD : time := 2*(Tpw);
begin

clock_driver: process
begin
phi <=z *0°, *1* after Tpw;
wait for CLOCK_PERIOD;
end process clock_driver;

ond behaviour;

-- Synchronous Register

entity synch_reg is

generic (Tpd : time :z 1 ng); == Jdefault propagation delay
port (d : in integer;
q : out integer := 0; -- default register content

clk : in bit);
end synch_reg:

architecture behaviour of synch_reg is
begin

process
begin
wait until ¢lk = *1°;
¢ <= d after Tpd;
end process;

end behaviour:

«= Multiplication Stage

- - - - - . o e

114

entity mult_stage is
generic (Tpd : time 1= 1 nas; -- default propagation delay
weight @ integer = 1) == default convolution weight
purt {x @ in integer:
xw : out integer := 0Q;
clk: in bit):
end mult_stage;

architecture bechaviour ¢of mult_stage is
beqin

process
begin

wait until clk = *1*;

Xw <= X * weight after Tpd:
end process;

end behaviour;

entity add_stage is
generic {Tpd : time := 1 ns); -- default propagation delay
port (xw : in integer:
insum : in integer;
cutsum : out integer := 0:
clk : in bit);
end add_stage;

architecture behaviour of add_stage is

begin

process
begin

wait until clk = *1°:

ocutsum <= insum + xw after Tpd;
end process;

end behaviour:

entity norm_stage is
generic {Tpd : time :z 1 ns): «- default propagation delay
pore (innorm : in integer;
outnorm : out integer := 0;
clk 1 in bit);
end norm_stage;

architecturce behaviour of norm_stage is
begin

process
begin
wait until elk = *1°';
outnorm <= innorm after Tpd:
end process;

end behaviour;

D. VHDL Simulations

115

D. VHDL Simulations

entity syst_cell is

port (Xin in intege
Xout : out integer;
Yin in integer:

Yout : out intoger:
clk in bit);
end syst_cell;

.
b4

architecture structure of syst_cell is

component synch_reg

port (d : in integer:
q : out integer:
clk : in bit);

end component;

component mult_stage

generic (Tpd : time:
integer);

weight :

port (x in integer;
xw 1 out integer;
clk : in bit};

end component:

component add_stage
port (xXw
insum
outsum
clk : in bit);
end component;

component norm_stage
port {innorm :
outnorm : out

elk

end component;
signal X, X1, v1, Y2,

begin
xregl: synch_reg
port map {d => Xin,

xreg2: synch_reg
port map {d =» X, q

stagel: mult_stage
generic map (Tpd =»
port map (X => Xin,

yregin: synch_reg
port map (d => Yin,

stage2: add_stage
port map (xw => X1,

stageld: norm_stage
port map {innorm =>

in bit};

s in integer;
in integer:
! out integer;

in integer:

integer;

¥3 : integer:

q => X, clk =» ¢lk}:
clk => clk):

=> Xout,

1 ns, weight =» 2)
xw => X1, clk => clk);

q &> Y1, clk => ¢lk);

insum => Y1, outsum => Y2, clk =>

Y2, outnorm => Y3, clk => clk};

clk);

116

Yout <= Y3:

-- yregout: synch_reg

-- port map (d =» Y3, q@ =» Yout, clk => clk);

ond structure:

D. VHDL Simulations

entity syst_array_tcest is
end syst_array_test;

architecture structure of syst_array test is

component clock_gen
port iphi : out bit);
end component;

component syst_cell
port (Xin : in integer;
Xout : out integer;
¥in : in integer;
Yout : out integer;
clk : in bit);
end component;

constant ARRAYLENGTH : integer := 3;

signal Xin, Yin : integer:

type int_array is array (0 to ARRAYLENGTH-1) of integer;

signal Xout, Yout : int_array;

signal clk: bitg;
begin
cg : cleck_gen
port map (phi => clk):

celld: syst_cell

port map (Xin => Xin, Xout => Xout{0},
Yin =»> Yin, Yout => Yout(d),

elk => ¢lk);

cell_array: for i in 1 to ARRAYLENGTH-1 generate

cell: syst_cell

port map (Xin => Xout{i-1}, Xout => Xout{i},
Yin => Yout({i-1), You:t a> Yout(i),

clk => elk);
end generate cell _array;

Xin <= 3, 7 after 16 ns,
3 after 64 ns,

8 afrter 112 ns,

11 after 160 ns,

14 after 208 ns,

-« Xin <= 1, 2 after 10 ns,
- 6 after S0 ns,
- 10 after 90 ns:

Yin <= 0;

[y

(LN SN

3
7

after
after
after
after
after

after
after

32 ns,
80 ns,
128 ns,
176 ns,
224 ns,

6
9
1o
13
16

after
after
after
afcer
after

48
96
144
192
240

ns,
ns.,
ns,
ns,
ns;

20 ns, 4 after 30 ns, 5 after 40 ns,
60 ng, 8 after 70 na, 9 after 50 ns,

117

D. VHDL Simulations

. end structure:

configuration syst_array_structure_test of syst_array_test
for structure

for cg : clock_gen
use entity work.clock_gen(behaviour)
generic map (Tpw => B ns):

end for;

for all : syst_cell
use entity work.syst_cell({structure):
for structure
for all : synch_reg
use entity work.synch_reg{behaviour);
end for;
for stagel : mult_stage
use entity work.mult_stage{bchaviour);
end for;
for stage2 : add_stage
use entity work.add_stageibehaviour);
end for;
for staged : norm_stage
use entity work.norm_stage{behaviour);
end for;
end for;
end for:

end for:;

end;

118

Appendix E VLSI Design Life Cycle Activity
Hardware VLSI Design
Design
Requireraents Definition
Architecture Architecture System Specification
| SyvemDecomposiion
(also Repister Transfer Level)
. Switching Clocked Register / Logic
Implementation Network .
Flexible
Realization Geometry f--ct----essoms-eso-----aoe-
Fixed

Figure E.1: Levels of abstraction in VLSI design.

119

E. VLSI Design Life Cycle Activity

Requirements Definition

System Specification

LEVELS OF ABSTRACTION

MODEL PROPERTIES
Funectional
—————— e -
System Performunce
feasibility, | A__ e
Siume Transition
-errraennn -

Structural

N +* Functional
3 Simulation
g
= A .|\
] %
&l e ;
o) | &
213
' =
3 A
o0)
]
o 1
- 1
o]
-‘8‘ 1
= ol !
Sl _|¢% : ——
é 5 : mcgrallon_ —,
ol A : ¢ Chip
2| 2. Simulation
= 'g '
»
&
E! S
' 3
' B
1w
Y P
| 1
¢ '
' 1
' '
! ¢
1 '
Y Y Y
atrung applicabiliy
applicability s usually tramparent
Timbted comideration of thoe propertics

Figure E2: VLSI design life cycle activity.

120

Appendix F Design Block Hierarchy

;; PrintHicrarchy.skill

;: This is my recursive SKILL routine that prints the complete block
:: hivrarchy starting from the top level block ~fulleircuit2-.

;; It rtraverses the schematic represcentations in a depth-firse

;: manner printing out the current block hicrarchy in a format similar
;; to UNIX directory patils, For brevity, only instance masters are

;: printed (once).

:: Author: Anthony Botzas
:: Date : May 19th, 1993

;7 global
dontExpandList = *{~ipin®* =cpin* “gnd~ *vdd* “nmos” "pmos"
*inv" *patch” "padout® *buffer*
"nor2" "nord* "nor4*
"or2® "ori" "or4d-
nand2 "nandli" “nand4"
and2" “and3 “andd-"
}

procedure{ PrintHierarchy()
prog((rep outPort blockList)

outPort=ocutfile(*Hierarchy")

representation = nil
while[representation == nil
representation = dbOpen{ *fullecircuit? schematic currenc®)
if(representation == nil then
fprintf(outPort "Cannot open rep - %s\n" dbErrorlS ())
)

)
currentHierarchyofBlocks = nconsinil)

tprintInstanceMasters(outPort representation currentHierarchyofBlocks)
close(outPort)

}

procedure(fprintinstanceMasters(outfile rep blockStack }
progl (revBlockStack instmast i)

blockStack = cons{ rep~>blockName blockStack) ; push block

revBlockStack = reverse{ bleckStack)
for{ i 1 length{revBlockStack)-1
fprintf{ outfile *%3/* nth(i revBlockStack))
)
fprintf(outfile *"\n")

foreach(inatmast rep->instanceMastors
fprintf(outfile "%s * instmast~>blockName)
)

121

fprintfi(outfile *\nin")

F. Design Block Hierarchy

forcach! iastmaszt rep~rinstanceMasters
rep = abOpen(streat(instmast™ >blockName " schwematic current* 1)
IEL { (rop 'z nil) &S
{!member (repT»blockName dontExpandlLint))
doatExpandLint = cons| rep sblockName dontExpandlist b

fprintInstanceManters(outfile rop blockStack)

)
)
blockStack = cdr (blockStack)
)
j-

--=Qutput---

Format: Block hicrarchy/
List of instance masters in block.

fulleircuit2/s
padout stage2_cxp staged_exp X_reg_28x4 Yout_oxp
Yout_man stageld_man patch inv stage2_man
Yin_man Yin_oxp buffer ipin control

stagel_exp stagel_man opin

fulleircuit2/stage2_exp/
nor2 buffer
inv ipin
stage2_oxp_§

stage2_load opin
decline8 11_comp

fullcircuit2/stage2_exp/stage2_load/
huffer 11_comp nor2 inv opin
nor3 ipin

fulleircuit2/stagel_exp/stage2_load/11_comp/

Speadcomp ipin opin Spcadecompd Comp

fulleircuit2/stage2_exp/stage2_load/1l_comp/Speedcomp/
andd ipin inv gnad nmes
pmos vdd opin

fullecircuit2/stage2_exp/stage?_load/ll_comp/Specdcomp3/
and3 ipin inv gnd nmos
pmos vdd opin

fullcircuic2/stage2_aexp/stage2_load/1ll_comp/Comp/
xnor2 opin ipin inv nor2

fulleircuit2/stage2_exp/s2_dec_ctrl/
buffer nor3 nand3 nand2 opin
tE£ 1 inv nor ipin

fulleircuit2/stage2_exp/s2_dec_ctrl/f£_1/

opin ipin inv £Ef D inv_pass
fullcircuit2/stage2_exp/s2_dec_cerl/ff_1/££_D/

inv end vdd nmnos pmos

opin ipin
fullecircuit2/stage2_exp/s2_dec_ctrl/££ 1/inv_pass/

opin ipin gnd vdd nmos

pmos
fullecirecuit2/stage2_exp/decline8/

buffer 11_adder_2 opin ipin vdd

patch

82 _doe_ctrl
staged _oexp_v

;o pop block

122

tulleircuit2/etage2_oxp/decline8/11_adder_2/

ipin opin Dmos
gnd ved carryred
4hitadder

fullcircuit2/stage2_cxp/decline8/ll _adder_2/carryred/

vdd gnd inv
ipin pmos

fulleircuit2/stage2_cxp/decline8/1ll_adder_2/adder_red/
. gna

inv opin vdd
pmos nmos

fulleircuir2/stage2_cxp/declineg8/11_adder_2/adder/

nor? nand2 inwv
ipin gnd pmos

fullecireuitl/stage2_exp/declineB8/11_adder_2/4bicadderx/

carryfull opin ipin

nmoes

adder_red

opin

ipin

opin

nmos

adder

E. Design Block Hierarchy

inv

adder

vad

fullcircuit2/stage2_exp/decline8/11_adder_2/4bitadder/carryfull/

andd carry inv
pmos veld ipin

gnd
opin

nmos

fullcirecuit2/stage2_exp/decline8/1li_adder_2/4bitadder/carryfull/carry/

inwv gnd wdd
pmos nmos

fullcircuit2/stage2_cxp/stage2_exp_v/

opin €£_3 ipin

opin

buffer

fullcircuit2/stage2_exp/stage2_oxp v/ E£_3/

opin ipin inv

fulleircuit2/stage2_exp/stage2_exp £/

£f_2 nor3 nand4
buffer

inv_pass

opin

fulleircuit2/stage2_exp/stage2_exp f/rf_2/

opin ipin inv

fulleireuit2/stagel_exp/

butfer incl_decs stageld_ov

S3_exp_reg
fullcircuit2/stageld_exp/incl_decB/

11_adder_2 buffer inv

patch gnd
fulleircuitl2/staged_exp/stageld_ov/

buffer £f£ 1 inv

opin ipin

fulleircuit2/staged_exp/si_exp_reg/
and2 nord norl
nor2 ££_2 opin

fulleircuit2/X_reg_28x4/
X_line opin ipin

fullecircuit2/X_reg_28x4/X_line/

opin ipin ££.1
fulleizrcuit2/Your_exp/

opin nor2 ipin
fullcircuic2/Your_man/

inv_pass

opin

opin

nand2

buffer

buffer

buffer

ipin

ipin

££.D

ipin

ipin

nand4
ipin

buffer

123

F. Design Block Hierarchy

nund2 inv £i_1 opin nord
ipir buffor ££_2
fulleircuit2/stagel_man/
ipin 53 _man_ctel opin s3_man_roog
fullcircuitl/stagel_man/s3_man_ctrl/
norl or2 opin inv ipin
norl
fulleircuitd/stageld_man/si_man_reg/
£ 4 nard2 noxr3 nors opin
ipin buffer
fullecircuit2/stageld_man/s3_man_reg/££_4/
opin ipin inv inv_pass ££ D
fullcircuit2/stage2_man/
Twoscompl stage3_sign S4_adder s2_adder_ctrl opin
ipin s2_man_v s2_men_£
fullcircuit/stage2_man/twoscompl/
buffer opin ipin xord vdd
and3 and2 TWOSCarry
fulleircuitl/stage2_man/twoscompl/xor2/
opin ipin ¢nd nmos vdd
pmos
fullcircuit2/stagel_man/twoscompl/twoscarsy/
opin ipin andd and3 and2
fulleircuicl/stage2_man/stagei_sign/
opin ipin nor2 buffer inv
££_2
fullcircuit2/stage2_man/54_adder/
hffer carry carryred 16_adder gbitadder
ipin opin
fulleircuit2/stage2_man/S4_adder/16_adder/
inv carryfull patch 4bitadder opin
ipin
fulleircuit2/stage2_man/s2_adder_ctrl/
xnor2 nand2 nor2 or2 inv
xor2 ipin opin
fulleircuit2/stage2_man/s2_man_v/
inv norl ff_4_clear ff_2 £E_1
ipin opin nor2 buffer
fulicireuiv2/stage2_man/s2_man_v/£f_4_clear/
nor2 opin ipin inv inv_pass
tf_ D
fulleircuit2/stage2_man/s2_man_£/
inv opin xnor2 ipin buffor
£f£_2
fulleircuit2/Yin_man/
opin ipin buffer ££_1
fulleirouit2/Yin_exp/
and3 ££_1 buffer norz2 nord
nor4 opin ipin

fulleircuit2/control/

124

fi_1p ipin buffer norl
opin

twillecircuit2/control/fE _1p/
opin ipin inv inv_pass

fulicireuit2/control/{t_ip/ffp/
inv gnd wdd opin
nmos ipin

tulleircuit2/stagel_exp/
ov_staqel ov_stagel-2 A_exp_reg opin
xor2 cocf_cxp 11_adder

fulleircuit2/stagel_exp/ov_stagel/
butfer orld nor2 nand2
opin ipin nor3 nand3

fullecircuit2/stagel_exp/ov_stagel-2/
opin ipin buffer inv

tulleircuit2/stagel_exp/X_exp_reg/
nor2 nand2 buffer uD-ov
£f_1 ipin

fullcircuit2/stagel_coxp/X_exp_reg/UD-OV/
opin ipin nord norld
nandl

fullcircuit2/stagel_cxp/coct_exp/
uD-ov adder_402 f£_1 opin
buffer

fullcircuit2/stagel_exp/coci_exp/adder_402/
ipin addercarry opin

fulleircuitl/stagel_exp/coef_exp/adder_402/addercarry/
inv opin vdd ipin
pmos nmos

fullcioscuit2/stagel_exp/ll_adder/
huffer inv gnd patch
carryred ipin 4bitadder

fullecircuit/stagel_man/
patch inv buffer opin
cocf_man prod_reg 57_adder prodgen

fulleircuit2/stagel_man/coef_man/
coef_ctrl opin ipin buffer

fullcircuitl/stagel_man/coef_man/coef_ctxl/
nor2 buffor opin inv

fullecircuit2/stagel_man/prod_reg/
prod_man buffer ar2 opin
ipin

fulleircuit2/stagel_man/prod_reg/prod_man/
££f_1m £f£_1 buffer nor2
inv ipin

fullcircuit2/stagel_man/prod_reg/prod_man/££_lm/
££_D inv_pass and2 opin
ipin

fulleircuitl/stagel_man/57_adder/
carry gnd carryred addercarry

F. Design Block Hierarchy

inv

th
+h
d

pnos

ipin

ord

nandd

nand4

ipin

opin

ipin

££.1

ipin

inv

opin

inv

16_adder

125

F. Design Block Hierarchy

opin ipin patch sbitadder

fullcircuitl/stagel_man/prodgen/
inv buffer ££_1 opin prodgen_cirl
productgen ipin

fulleircuit/stagel_man/prodgen/prodgen_ctrl/
or4 buffer opin nand?2 nord

inv ipin

fullecircuitl/stagel_mansprodgen/productgen/

prodslice patch opin ipin

fulleircuit2/stagel_man/prodgen/productgen/prodslice/
addercarry patch opin inv vdd
pmos inv_pass ipin

'

126

F. Design Block Hierarchy

-U-—v\m-) .Vﬂ.
los G 4 wnoug iy
e T
—— . uoDWITINOA = dxa”ynoy,
e uowgobols S nhxc..n_ooo_m
—QLI
\MA—?bll
— "
L = | _?np..
uow~zaboys = =(ixa~zoboys
= e m =)
B UBW UL [dxa“uis i ot
* Ay
dxa~yaboys, | o~ "
e - l.laAHaT.
* Flosuoy,
: uow "1 aboys .
ra e aee
l—.llcwv!._ T Lmel@Ublx
-t...lsow.l

Figure E1: fullcircuit2: Top-level-block schematic representation of systolic cell.

127

F. Design Block Hierarchy

Outf—a—FP xout<3 0>

X_ne

CtK

L— In
<24oh> g Ipolg

X
L
=
< Eal =
-
q
<
A b X
2 2 e
LY
£
E.3

Figure E2: fullcircuit2/Xreg 28x4: 28 x 4 shift register circuit for the X input data.

128

F. Design Block Hierarchy

| H
3
o
™
a
.
c" ~> 3
:’ <

— Ho'2
CuK

€140 PB4

'n

buf

2
Y

o

Figure E3: fullcircuit2/X reg 28x4/Xdine : Example of an iterative specification of
an array of flip-flops.

129

F. Design Block Hierarchy

o

—— & —JCt

inv

o P

raa

Figure E4: fullcircuit2/X reg 28x4/X linefff.1 :
with “hold” capability.

Example of a typical delay flip-flop

130

F. Design Block Hierarchy

Po

gnd!
N

op—a9
inv

Flip—Flop
m

CLK

Figure E5: fullcircuit2/X reg 28x4/X Jine/ff1/fff : Example of a typical one-phase,
masterslave, flip-flop implementation.

131

F. Design Block Hierarchy

g
5 3
<3 <
‘ w

Inverter Pass
wow I
N Pp—-—==
HiGH P

Figure F6: fullcircuit2/Xreg 28x4/X Jinefff-1/invpass : Example of an inverting
pass gate implementation.

132

F. Design Block Hierarchy

] .
Rl LA
v

ZJou

JUauoOdxg UL

Lo

Rl

Figure E7: fullcircuit2/Yinexp : Exponent portion of Y input circuit.

133

erarchy

F. Design Block Hi

o £ ———] 152
ETRTTY . R—
+"q ”_. el
— - -I *— -.L
" N e & L
TSI T I O 0T LTS U «r w6 y—
tr—e \r (431218 rraiaiara-ria 1T .t TR IO G e
[L)
19 gl
¢ T -— 7 v
ot | re I..Q.J..J‘».. 8
STV TR oot P yen |l ey TR IRt —{? A
e TR IIOTR TR T . € M3 R R IEIAIR ALY i Tra £ rii
(3] []
I-l.‘ BTreA
OSSHUDKY Wiy 4 rq
. - Laca) -A—--A_.I-.".
€1 ¥l

134

Mantissa portion of Y input circuit.

-
-

fullcircuit2/Yinman

Figure E8

F. Design Block Hierarchy

-—d <2ern
@ >r ll-—crro— —Aa s

Figure E9: fullcircuit2/Yout exp : Exponent portion of Y output circuit.

135

F. Design Block Hicrarchy

Re VAR

HOLVYINIDTISINd

g

¥IINNOD NOSNHOP

Figure E10: fullcircuit2/control : Global control circuitry.

136

F. Design Block Hierarchy

i 2!
E] 2 2§ 3 3
v 9 v Oh L]
1
L X
I
it
$ g
3 5
¢
8
|
.
I
11111 3 [E X T ill-l (Y
! & = |11 Lt
7308 EELE N EHE
w3 e Coinvex !
.’ -8 AN
Y s, by, T Y [y i | ;T —Bmmpgeryr P (811 20" P
t o ““.‘ _._J*-‘“‘)‘] %
? A Fre -t
' m—e wy & T =
LI > i 144
5 3o i
i]
L ZJOX 3]

-

recdtz I

[2

Figure E11: fullcircuit2/stagel exp : Exponent portion of first stage multiplication
circuit.

137

L=

F. Design Block Hierarchy

T BRI Y * T
g ;
g N e
4]
edten 4 b aul
Ll & + .-
” £V % R mry
3 Ibasposd M—* u
P
.
« gﬂiwlkw
TE i
g
3 JOPPONALS
L
—
e —4 o pgsijuoy | abolg
el —--9
e f—m 4
CUD“UO._Q e
! fial—w & e
aor @i —
@aprar—e P strn
ST TR B T a—w m B —dll
¢
nq o L1 415 S——
44...1&-_|.A_ﬂ04-1 Iﬁ
[4 7 unl—e
M oo) e I roa ey
T P 4 R g =
uowsrTjaa) rni—e & o

Figure F12: fullcircuit?/stagel man : Mantissa portion of first stage multiplication

circuit.

138

F. Design Block Hierarchy

”q
Hrds g -)\._I- iy

g L4

dwodqyy
Ty

I

- $

o i S i
~1-1- #—{ ety _.t-lAvnltnﬂ

*a ”l -1-1- 8 —raa -Wl..“ % -Ha kel

[Ll

LESH L

]

X
i*a ”_ m
Il.-n-.. n v e r -y
113 —1&\—
] v hald
o w 1
F
vop——o} v
a—iro :
-
A N ¥ andeamgabon
rewad 1
— P .
TN
P LY
.:T.HQQ e o s
* i) =
»
u e j
.NLO o™ P Pl 1] FdeeTzatais
w L 3 wu
L)
Al _
[ar] 2
e | o ol n prorzator
ey — iy w
AT
XY > —10xA wm _
3 L
[w Iy “ gLy
ol Pt

139

fullcircuit2/stage2.exp : Exponent portion of second stage addition cir-

Figure F13
cuit.

E. Design Block Hicrarchy

3 H
& n
ainine el Y pen- ¥ i etived : P rrian,
3 3
]
- L3
E: 3
s 1) 3y s 3 -
I il
—_] ’ .
i33 §
[— 2 v
3
d [
% bl
g _i o
i 3
‘I! - v [] :I-II a _H_I []
i;] I 4 Hl 3 it]

Figure F14: fullcircuit2/stage2_man : Mantissa portion of second stage addition cir-
cuit.

140

F. Design Block Hierarchy

| T T

o rc

o s

Agy=18
Horg-18
o be
O«

Stage S Exponent
1
=‘l\2's-
L out

Nyt —————————
14

a - e
! :. < -,.3 E
b4 I T8
o
@ 3
! <
WIPN O <o —e B0V
v G
- c
o SEBNT 4 <EFBLIMTS

Crpletd gy

Figure E15: fullcircuit2/stage3.exp : Exponent portion of third stage normalization
circuit.

141

F. Design Block Hierarchy

L 4
| o
l I
g ha
<0 (50wt P < 05N
T
) Pp—————a— 40} y(.“,m —
<g erani) e <8 un'u::'
3
T -
nYel -
18353 &
sesen @
Al [N]
. h
AN
u§ ¥
f oo
3 e
3
1333}
ae
T
}

Figure E16: fullcircuit2/stage3 man : Mantissa portion of third stage normalization
reuit.

142

F. Design Block Hierarchy

) <]

X9 INOL

—cobDg

i

v~ zob0)§

dxa ui”;

b1 ob01g

PR 5. N

s

R¢ baa~

T
P4 M

13U

b0

| . |

podTYy

Figure F17: fullcircuit2 : Top-level-block layout representation of systolic cell.

143

F. Design Block Hierarchy

il = = ‘W—ﬁ ‘
: . | i H ! 1 i
!
NE B
| . i
I | Ti
|) —
i
r 1 1 W jm |
0|
' - EL——— ’ 19
Figure E18: fullcircuit2 : Top-level-block “exploded”layout representation of sys-
tolic cell.

144

Appendix G

Automated Testing Environment

TEST HEAD CONFIGURATION

DIGITAL SIGNALS

Data Generator

Address Pin Socket Signal ICPin
0-0 7 26 Xin{Q) 40
0-1 9. 27. Xin{(l)y 29
0-2 12, 28. Xin(2) 26
0-3 14. 29. Xin(3) 37
1-0 16. 30. Yin(0Q)} 45
1-1 18. 3l. fin{l}) 44
1-2 20. az. Yin(2} 43
1-3 22. 33. ¥in{3d) 42
2-0Q 25, 6. PRESET 31
2-1 27. 7. HOLD 30
2-2 29. 8. C_LOAD 29
2-3 a1. 10.

4-0 33. 11. Cin 41

4-1 35. 12. Yin_Dis 46
4-2 37. 13, Abs_val 49
4-3 40. 14.

5-0 42. 15.

S=-1 44, 16.

5-2 46. 17.

5-3 48.

6=-0 53.

6-1 52.

6-2 57.

6~-3 59.

Clock 1 84. <-- tho clock output S. CLX 1
Clock 2 3. «<-- the clock output 19.
Strobe S. <=-- the strobe output

Data Analyzer

Address Pin

o-0 61. 34.
0-1 10. 35.
0=-2 64, 36.
0-3 65. a7.
2-0 €6, 38.
2-1 67. 39.
2-2 68. 40.
2=3 69, 1.
1-0 24,

Xout (Q)
Xoun(l)
Xout (2}
Xout (3}

Xin(0)
Xin{l}
Xin{2)
Xin(3)

12
13
14
15

40
39
38
37

145

G. Automated Testing Environment

1-1 70.

1-2 7%,

1-3 T2

3-0 73.

3-1 74

-2 75,

3-3 39.

4-0 76,

4-1 77.

4-2 78.

4-3 79.

S=-0 80.

5-1 81.

5-2 82.

5-3 83.

Ground 56. 23.

Ext Cloek 60, <== ext clock input 18. CLK 1
DPS1 S5. 22.

bps2 4. vdd 32,55,62,63, 66
DPS3 9.

GND S6. 2. Vvgs 21,52,53,57.68

146

G. Automated Testing Environment

AR R e R A R A R R A R R A AR A A A L L R A AR R A et i

.BlE0initrec

HP 81B0A initialirzation run commands.

These commands are read in by my HP interface program HPINIT.
My parser and syntax checker expects comments as in € language.
It is also wige to delimit commands with semicolons.

Note that the purpose of this file is to load an initial sect of
desirable param=ters on cach "page® of the data GENERATOR.

AUTHOR: ANTHONY BOTZAS

N N R A N L R R N R P P N TR PRI RN R R R AP E TR R RT T T LG LT R TN S

r33;

/* sat generator tc a known state */

N R R N L N R R R I P S R I NP R P PR P N E S R SN L R TP r R PR R P I T TR w TR w

2 & & & & @ t 8 & & & #

[2NN I A R Y I B N I Y N B B)

L

RSS

Rocalls the standard parameter set written by the manufacturer for
the HPB180 Data Generator. “rss* performs the following actions:
[Note: I have put arrows next to the settings which are no:
particularly desirable zo me. I plan to reset these explicitly
after the rss command,]

rss = Recall Standard Set
+. .CONTROL PAGE...
stp ; stop

fad ¢
---> lad 1023

first address
last address

LY)

cyml ; cycle mode auto

sthl ; strobe broaks off

elkl ; elock source internal

thr Ov ; input threshold

impl + input impedance 50 ohms

ruil ; Tun input off

spil ; stop input off

bril ; break input off
stol ; strobe output as NRZ data channel
--=> 812 ; strobe level ECL (on ourput page)
outl ; outputs off

+. .TIMING PAGE...

==~> per 100ns : clock pericd {£alQMegHsz)
del lc Ons ; delay clock 1

fme 1lc 1 ; format clock 1 RZ

===> wid 1c &0ns ; width clock 1
del 2¢ SOns ; delay clock 2

fmt 2¢ 2 format clock 2 RZ=50%

. oy

wid 2¢ 10ns width clock 2

147

del Oxx Cns
fmt xx 3
del yy Ons

... QUT
liml

——=>h
-——> 1
hils
lolB
hilc
lolC
kilD
lolD

G. Automated Testing Environment

; delay all channels
; format all channcls NRZ
: delay all extenders

PUT PAGE...

ilAa 0.25v
olA -0.25v
Sv

0w

-0.8v
-1.8v
2.4v

Q.8v

lba xx
nor xx

...DATA PAGE...

SSC

: load impedance S0 ohms

;: high level label A
; low level label A

; high level label B

: low level label B

; high level label C©

; low level label €

; high level label D

; low level lakel D

; select label A for all channels
; select normal polarity for all
; channels

; set standard configuration
; on the data page

N N P R N N N R A R R T TN IR PR SR NPT SN T YISIILIRSILISISICLITIILEIS)

FaAd

TIMING PAGE */

/* Clock signal </

fmt 1lc 1;

per 1lu
wid lc
del lec

3;
S00ns;
Ons:

/* return to zore format */
/* 1,0 MHz */

/* 500ns pulse width */
/* no delay w.r.t. strobe */

/* Xin{(0..3) on Connector 0 */

fmt 00
del 00

fme 01
del 01

fmc 02
del 02

fmt 03
del 03

/" Yin(0..3} on

fmt 10
del 10

fme 11
del 11

fme 12
del 12

£me 13
del 13

3:
Ons;

KH
Ons;

/* non-return to zeroc format */

Connector 1 */

148

FAl

A

/.
/-
/"
Fad
FA
I!
I.
FA
FAl

out2: /* outputg ON */

‘f'

{mr
del

20 3;

21

1 20 Onz:

3.

Ons:

22 3;

22 0Ons;

PREGET, HOLD,

G. Automated Testing Environment

and COEF_LOAD on Connccter 2 */

/* Cin, Yin_Dis, and Abs_Val on Connector 4 */

fme
del

fmt
del

fmt
del

40

40 Ons;

41

41 Ons;

42

42 Ons;

3:

3:

3;

QUTPUT PAGE */

hilA Sv;

stll;

DATA PAGE */
pag 4: cld; cls:

cas by 00 01 02 03;
ads by 20 21 22;

lolA Ov;

’.

A
/e

set TTL levels for Label A */

strobe level TTL */
{rot really necessary) */

ads by 10 11 12 13;

ads by 40 41 42;

fad 0000; lad 0008;
tsa 0000;

ADDR

0000
0001
0002
0003
0004
0005
0006
0007
o008

run;

~/
~/
~!
"/
./
./
./
~/
/

for
for
for
for
for
for
for
for
for

E

W

DATA
Xin

Qo000
1000
0000
1000
0000
1000
0000
1000
0000

Yin

00c0o
Qo000
0000
0000
Qooo
0000
0000
ocoo
0co0

PRESET
HOLD
Coaf_LOAD

Q00
000
000C
ooo
Qoo
000
000
000
000

Cin .
Yin_Dis *
Abs_Val =/

000;
000;
000;
000;
000;
000;
000;
000;
000;

149

G. Automated Testing Environment

R R e R R R

= .8182ini

trc

* HP Bl82A initialization run commands.
= These commands are read in by my HP interface program HPINIT,

My parser and syntax checker expects comments as in € languaqe.
It is also wise to delimit commands with semicolons,
Note that the purposc of this f£ile is to load an initial set ot

* desirable parameters on each "page” of the data ANALYZER.

= AUTHOR: ANTHONY BOTZAS

LR AR R L R R Al A A Rl A R L AR A RS e N R

/* stop operation "/

/* recall standard set v/

Faddd Al Al A Al L L AL e Al e AL R L R L

" RCL4

- -

* Recalls the standard parameter set written by the manufacturer for
the HPB182 Data Alalyzer. "rcl4” performs the following actions:
{Note: I have put arrows next to the settings which are not

- particularly desirable to me. I plan to reset these axplicitly

- after the rcld command.]

* ,..CONTROL PAGE...

- opr 1 ; trigger start analysis

- ; for recording post-trigger data

« gld 2 ; glitch detect off

v ===>clk 1 : eclock sourco EXTERNAL

* c¢cks 1 ; clock slope positive

* ckt 1.4v ; clock threshold

* ckd 0.00ns : clock delay

-

* ecql 3 ; clock qualifier level don't care

* cqt 1l.4v ; clock qualifier threshold

v eqi 2 ; clock qualifier impedance 100Kohms
.

* ckw 10.0n8 ; clock width [(for external clock

- ; in TRG STRT COMP MODE)

* tas 3 : trigger arm slope don't care

* tat 1l.4v ; trigger arm threshold

* tai 2 : trigger arm impedance 100Xohms

* twd XXX... : trigger word don't care

- gl 3 ; trigger qualifier level don’t care
. tgt l.4v ; trigger qualifier threshold
- tqgi 2 ; trigger gualifier impedance 100Keohms
-

- tre 01 ; trigger count

- age 2 ; allow gaps in count NGO

-

- trd 00000 ; trigger delay

- sps 3 : stop slope internal

- spt 1.4v : stop threshold

v spi 2 ; stop impedance 100Kohms

« —--> spd 1023

stop delay

-

150

G. Automated Testing Environment

. ; stop occurs 1022 clock periods after wriggerin
- spe 1 ; stop on error OFF {real time compore mode}
- aad & ; autoarming OFF

. cyp-1 ; eycling period OFF

* L. INPUT PAGE. ..

. c__ 1 ; 4ll installed connecters SINGLE threshold

- ;: BlB2A software interrogates hardware to

- ; determine how many connectors are installed
- si_ 1.40v ; all labels single threshold value

. lo_ 0.Bvw : all labels lower threshold value

. up_ 2.00v ; all labels upper threshold value

- 1bl aaa... ; all channels label A

* --->cas b ... ; 4 chanmnels for every installed connector

* ...EXPECTED DATA PAGE...

- tacd 0000 ; top address

* ...STATE LIST PAGE...

- dse 1 : Qisplay errors YES (if
. ; gliteh detect ON)

* ...TIMING DIAGRAMS PAGE...

-

. cad 0000 ; cursor address

. dse 1 ; display errors YES (if
- : glitch detect ON)

. hoz 1 ; horizontal zoom factor
. vez 1 ; vertical szoom factor =

* ...ERROR MAP PAGE...
. cte 2 ; error count OFF

- dsg 1

glitch Qetect ON)

display glitches YES (if

user switches

user switches

"

1

[

user switches

-.-.‘t------.t..-.-'--.--.-.-'-c---'--.-.---'wo---.'-w-q-----'qq-w'--q.wo/

/* CONTROL PAGE */
clk 1; /* clock source EXTERNAL */

/* INPUT PAGE */ /= these channels have to */

/* appear in reverse order */

cas B 03 02 01 00; /* Xour(3..0 =/
ads B 23 22 21 20: /* Xin(3..0y =~/

pag §;

run;

151

