
1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibllographic 5eNices Branch des seNices bibliographiques

395 Wellinglon Street 395. rue Wellington
Onawa.Onlano Ottawa (OnlanO)
K1AON4 K1AON4

NOTICE

0", /oIr M.,<,,' ...'~..

AVIS

,"

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for mlcrofilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qUCllité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec' l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•
Fabricating and Testing a VLSI Systolic
Convolution Cell for Image Processing

Anthony Botzas

B. Eng., (McGill University), 1990

Department of Electrical Engineering

McGill University

Montréal

July, 1994

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master's Degree of Engineering

© Anthony Botzas, 1994

1+1 National Ubrary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Braneh des services bibliographiques

395 Welli~ton Sireet 395. rue Wellington
Ottawa. Ontario 0t1awa (Onlario)
K1A0N4 K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LffiRARY OF CANADA TO
REPRODUCE, LOAN, DISTRmUTE OR
SELL COPIES OF HISIHER TTiESIS BY
ANY MEANS AND lN ANY FORM OR
FORMAT, MAIaNG THIS niESIS
AVAILABLE TO lNTERESTED
PERSONS.

niE AUTHOR RETAINS OWNERSHIP
OF niE COPYRIGHT lN HISIHER
THESIS. NEITIŒR THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HISIHER
PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BffiLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRmUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE lNTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA TIiESE. NI LA TIiESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99957-8

Canad~

Fabricating and Testing a VLSI Systolic
Convolution Cell

Anthony Botzas

B. Eng., (McGill University), 1990

Department of Electrical Engineering

McGill University

Montréal

July,1994

A thesis submitted to the Facu1ty of Graduate Studies and Research

in partial fulfillment of the requirements for the àegree of

Master's Degree of Engineeri.--:g

© Anthony Botzas, 1994

• Abstract

The two-dimensional discrete convolution operator is targeted for performance im­

provement in order to speed up image processing work Joads. 5ince the large com­

putation requirements for this operation are especially taxing to single processor

computers, the approach is to consider par<lllei processing alternatives. Of the par­

allel processor classes considered, systolic arrays are singled out as the preferred

parallel processing solution for the convolution problem.

Therefore, the design of a pipelined double precision floating point VLSI sys­

tolic cell for convolution is described. The arithmetic operations are distributed into

three pipelined stages, enabling the cell to process each set of operands within 16

clock cycles. Once fabricated and tested, the systolic chip yielded an 80 MFLOPS

performance which is a remarkable improvement over available general purpose

computers.

i

• Résumé

L'objectif du circuit pour la convolution bi-dimensionelle est d'accélérer le traite­

ment des images digitales. Étant donné la complexité de l'opération, la convolution

à deux dimensions place un lourd fardeau sur les processeurs séquentiels. Nous vi­

sons donc les méthodes de calculs parallèles pour la tâche. De tous les modèles de

parallelisme considérés, nous démontrons les tableaux systoliques comme étant la

solution de choix.

Pour cette raison, nous présentons la conception d'un circuit VIS! pour la con­

volution en pipeline utilisant des éléments systoliques. r.:arithmétique requise, qui

est à point flottant et de double précision, estdistribuée sur trois stages de la pipeline.

Ceci permet à chaque élément systolique de procéder à l'intérieur de seulement

seize coups de l'horloge digitale. Une fois fabriqué et vérifié, le circuit à présenté

une performance de 80 MFLOPs. Ceci démontre une accélération considérable par

rapport aux ordinateurs conventionnels.

ü

• Acknowledgements

The author would like to thank Professor A. S. Malowany for his supervision in the

research and the writing process of this thesis.

Thanks are also due to the McGill Research Centre for Intelligent Machines (McRCIM).

the VLSI laboratory of McGill University and the Canadian Microelectronics Cor­

poration (CMC) for providing the tools with which this research was conducted.

The author would like to thank the "veterans" a. Drolet, J.F. Panisset, J.F. Côté

and F. Larochelle) of the convolution project for laying the f01;1ndation on which this

thesis stands.

The author is greatful to Prof. N. C. Rumin and Prof. G. Roberts, for their VLSI

tutelage and to Eric Masson for a partnership that not only fostered a love of VLSI

design but engendered a career.

The author is also immensely thankful to his family, friends, and co-workers for

their constant encouragement and support in completing his thesis while working

in industry.

iii

•
Chapter1

Table of Contents

Introduction . 1

1.1 The Convolution Problem .

1.1.1

1.1.2

Convolution in Signal-Processing

Convolution in Irnage-Processing

3

3

5

1.1.3 Applying the Convolution Operator 7

12 C . 1 r 'd . 10omputatior,.::. _()nsl erations .

12.1 Uniprocessor Performance .. 11

12.2 Transforming the Domain of the Convolution Problem 15

12.3 Frequency Domain Versus Spatial Domain Processing 17

1.3 Summary..................................... 20

Chapter 2 Parallel Processing Solutions .. 21

2.1 Inherent Parallelism ., 22

22 Basics of Pa.-allel Algorithms .. 24

2.3 General-Purpose Parallel Processing Options 25

2.3.1 Archîtect'.ue Taxonomy .. 26

2.32 MIMD Farallel Processors. .. 27

2.3.3 MIMD-based Parallel Processing Paradigms 29

2.3.4 Synchronous Parallel Processing Architectures 30

2.4 Systolic Anay Architectures 35

2.4.1 Basic Architecture .. 35

. 2.42 Key Architectural Considerations 37

2.4.3 Balanced Systems .. 38

iv

•
2.4.4 Convolution Revisited.

2.5 Summary....................

-la

-lI

Chapter 3 A Systolic Solution. 44

3.1 System Architecture View . 4-l

3.1.1 The Sensor Computing Environment -l5

3.1.2 Interfacing Requirements .. 46

3.1.3 Data Stream Manipulation .. 46

3.2 Systoiic Convolution Array . 48

3.3 Systolic Cell. .. 49

3.3.1 XInput Register .. 50

3.32 Multiplication Stage 1 . 51

3.3.3 Addition Stage 2 .. 53

3.3.4 Normalization Stage 3 . 53

3.3.5 Partial Sum Transmission Unit . 54

3.4 Summary..................................... 54

Chapter 4 Fabricating and Testing the Systolic Convolution Cell . 55

4.1 Fabrication Process. .. 55

4.1.1 CM0S3 DLM Processing Steps .. 55

4.12 CM0S3 DLM Design Rules . 57

4.1.3 Packaging and Bonding .. 58

4.1.4 CADENCE VISr Design Software 60

4.1.5 Design Files and File Hierarchy 60

4.1.6 Edge Database Format 61

4.1.7 Schematic Representations .. 62

4.1.8 Custom Layout. .. 63

v

4.1.9 Layout Submission 66

4.2 Testing 67

4.2.1 Functional Testing 67

4.2.2 Manufacturing Testing .. 68

42.3 Testing Process .. 70

4.2.4 IIO Specification. .. 75

4.2.5 Manufacturing-Test Principles . 86

42.6 Manufacturing-Test Strategies for the Systolic Cell 88

42.7 Design for Testability .. 91

4.3 Surnmary..................................... 93

Chapter 5 Conclusion................................. 94

References .. 96

Appendix A Convolutian Benchmark 102

Appendix B Parallel Convolution Benchmark. 105

Appendix C Overview of the IEEE Floating-Point Standard lOS

Appendix D VHDL Simulations. 110

Appendix E VLSI Design Life Cycle Activity . 119

Appendix F Design Block Hierarchy . 121

Appendix G Automated Testing Environment . 145

vi

..

• List of Figures

1.1 Example of a two-dimensional convolution.. . . 6

1.2 Laplacian, y2W', kemel used in edge-detection. 9

1.3 Example of edge-detection with a Laplacian filter. 10

1.4 Frequency domain approach to convolution. . . . 15

1.5 Frequency domain approach versus spatial domait. approach. 18

1.6 Maximum kemel size for which convolution in the spatial domain used
less flops than convolution done in the frequency domain. 19

2.1 Parallel computer architectures according to Duncan's taxonomy. 27

2.2 MasPar MP-l interconnection network. 34

2.3 Two-dimensional systolic array connection topologies. 36

2.4 Comparison between (a) the traditional SISD computation model and (b)
the systolic computation mode!. 39

2.5 Design SYST1: systolic convolution array. 42

3.1 Architecture of the systolic convolution processing system. . 45

32 Systolic convolution array. .

3.3 Systolic cell architecture. .

3.4 Timing diagram for the systolic cell.

49

50

51

4.1 Top and bottom view of package.. 59

42 Top-level-block schematic representation illustraUng the floor plan of the
systolic œil. .. 62

4.3 Sample œlllayout of a flip-flop. ...

4.4 Layout representation.

64

65

4.5 VHDL simulation of the SYST2 design. 69

vii

4.6 The test environment. .. 71

• 4.7 A.C testing load circuit.

4.8 Oscilloscope trace of 1MHz CLK signal used in A.C tests.. .

74

79

4.9 5witching waveforms at initialization. 81

4.10 Coefficient switching waveforms in coefficient-Ioad mode. 82

4.11 Input and output switching waveforms.. 85

Cl Double precision floating-point representation.

E.1 Levels of abstraction in VLSI design.

. .. 108

. .. 119

E.2 VLSI design Iife cycle activity. 120

F.1 fullcircuit2: Top-level-block schematic representation of systolic cell. 127

F.2 fu11circuit2/XJeg28x4: 28 x 4 shift register circuit for the X input data. .. 128

F.3 fu11circuit2/XJeg28x4/XJine: Example of an iterative specification of an
array of flip-flops. " . 129

F.4 fullcircuit2/XJeg28x4/XJine/ff.1: Example of a typical delay flip-flop
with "hold" capability. 130

F.5 fullcircuit2/XJeg28x4/XJine/ff.1/fff: Example of a typical one-phase,
master-slave, flip-flop implementation. 131

F.6 fullcircuit2/XJeg28x4/XJine/ff.1/inv~ass: Example of an inverting pass
gate implementation. 132

F.7 fullcircuit2/Yin.exp: Exponent portion of Y input circuit. 133

F.8 fullcircuit2/Yin.man: Mantissa portion of Y input circuit. 134

F.9 fullcircuit2/Yout.exp: Exponent portion of Y output circuit. 135

F.1D fullcircuit2/control: Global control circuitry. 136

F.U fu11circuit2/stagel.exp: Exponent portion of first stage multiplication circuit. 137

F.12 fullcircuit2/stagel.man : Mantissa portion of first stage multiplication circuit.138

F.13 fullcircuit2/stage2.exp : Exponent portion of second stage addition circuit. . 139

F.14 fuIlcircuit2/stage2.man : Mantissa portion of second stage addition circuit. . 140

viii

•
F.IS jullcircuit2/stage3.exp: Exponent portion of third stage normalization

circuit. 141

F.16 jullcircuit2/stage3.man : Mantissa portion of third stage normalization
circuit. 142

F.17 jullcircuit2: Top-level-block layout representation of systolic cell. 143

F.IS jullcircuit2: Top-level-block "exploded" layout representation of systolic
cell. 144

ix

• List of Tables

1.1 Results of the CONY benchmark on the spectrum of available
uniprocessors currently used to perforrn image-processing tasks.. 13

2.1 Cost of various paraIlel processing options. 25

3.1 Features of the convolution system. .. 47

4.1 Pin description.

4.1 Pin descriptior' (continued) .

42 D.C. characteristics. . .

4.3 Modes of operation in the systolic ceIl.

4.4 Initialization switching characteristics.. . . .

4.5 Coefficient switching characteristics.

. 76

77

78

. 78

80

83

4.6 Input and output switching characteristics. 86

x

• Chapterl Introduction

Arndahl's Law states that the performance improvement to be gained from using

sorne faster mode of execution is limited by the fraction of the rime the faster mode

canbe used [Arndahl, 1967). That is to say that perhaps the most important and per­

vasive principle of computer design is to make the common case fast ln making a

design tradeoff, favour the frequent case over the infrequent case. This principle

also applies when determining how to spend resources since the impact on mak­

ing sorne occurrence faster is higher if the occurrence is frequent. Thus, improving

the frequent event, rather ti.an the rare event, will obviously help performance and

increase "speedup" [Hennessy and Patterson, 1990i.

Having impressed on the reader this keystone notion of performance im­

provernent and taking into account the author's affinity toward image-processing

and VISI design, this thesis will aim to investigate and demonstrate a cost­

effective means by which one can significantly improve the performance of image­

processing tasks.

As practiced at present, image-processing relies to a great extent on two ma­

jor, effectively distinct and self-eontained domains of activity, computational al­

gorithms and processor architectures -especially those architectures facilitated by

VISI technology [Offen, 1985). Given the goal above, the scope of this thesis will

lie in the latter domain and will fecus on the design and test of a high-performance

image-processing system.

The approach herein is to first isolate the most frequent operations ernployed

in "typical" image-processing programs, and as per Arndahl's Law, to markably

reduce the associated execution times of these operations 50 as to have the greatest

impact on the total execution time of a given program. Of course, there is no such

1

1. Introduction

thing as a typical image-processing program owing to the vast diversity of image­

processing applications. And aside from the Abingdon Cross benchmark survey

[Uhr, 19861 [Preston, 19891, little has been published about the workloads of image­

processing systems.

The Abingdon Cross, which is presented [Lindskog, 19881 as a benchmark

method for comparing the performance of image-processing architectures, has

proved valuable to this thesis. Briefly put, the task is to find the medial axis of

a cross in a noisy background where the signal to noise ratio is 0 dB. But unlike

benchmarks for general-purpose computers [Lubeck et al., 19851 [McMahon, 19891

[Berry et al., 19881 which require the participant to compile and execute specific

lines of Fortran code, the Abingdon Cross benchmarkpresents the participant with

an image-processing problem without specifying the algorithm to be employed in

its solution. Without a predefined algorithm and code, one cannot gain any specific

knowledge with regard to instruction mix or instruction frequency, yet one can still

draw >orne general but valuable information with regard to workload in image­

processing systems. The common trait in almost ail the algorithms used by partici­

pants of the Abingdon Cross benchmarksurvey is the utiIization ofspatial-domain

linear operators for noise reduction and edge-detection.

Hence, if one desires to build an image-processing system suited to fast ex­

ecution of the Abingdon Cross benchmark, one would likely begin by impie­

menting in speedy hardware those frequently used operators such as the afore­

mentioned noise filters and edge-detectors. Indeed, a general-purpose image­

processing system should also be designed in this vein since a major preoccupation

in image-processing is the filtering-out of noise and the enhancement of (edge) de­

tail in order to emphasize certain specific properties [Levine, 19851 as is apparent

in applications involving computer vision [Hall, 19791 [Ballard and Brown, 1982],

robot vision [Briot, 1986], remote sensing [Mulders, 1987], acoustical imaging

[Shimizu et al., 19881, and tomography [Axel et al., 1983]. Moreover, one can ap­

preciate that these operators are also of prime concern to biological visual systems

2

•
1. Introduction

[Hartline, 1949) [Hartline and Ratliff, 1954) [Hartline and Ratliff, 1957).

Most existing code for noise reduction and edge-detection relies on one linear

operator known as the convolution operator. Thus the underlying premise of this

thesis is that targeting the convolution operator for high-performance hardware

implementation will have a high impact on the execution time of image-processing

programs. And in the next section, the convolution operator is introduced and will

remain as the "problem" on which this research effort will concentrate.

1.1 The Convolution Problem

The first priority in the quest to reduce image-processing execution time must be

the speeding up of convolution computations. But a discussion on computational

considerations cannot proceed until the operator itself is thoroughly defined. To

start, the definition of convolution is first examined from a one-dimensional sig­

nal processing perspective. The context is then shifted to two-dimensional image­

processing, and subsequently sorne examples are comprised so as to reinforce the

definitions presented.

1.1.1 Convolution in Signal-Processing

Practitioners of discrete-time signal processing will attest that a linear time­

invariant system is completely characterized by its impulse response h[iJ, in the

sense that, given h[i] it is possible te compute the output sequence y[i] due to any

input xli] using

Here,

N-l

y[i] = L h[n] xli - nJ
n=O

(1.1)

3

•
1. Introduction

h[iJ represents the N -Iength system's response to the unit sample sequence 5[i] also

known as the discrete impulse function [Proakis and Manolakis, 1988]. As weil, ail

signais are assumed to be causal and of finite length. Equation (1.1) is commonly

called the "convolution sum". If y[i] is a sequence whose values are related to the

values of two sequences h[i] and xli] as in Eq. (1.1), y[i] is said to be the convolution

of xli] with h[i] and is represented by the notation:

y[i] = h[i] *xli]. (1.2)

It is apparent in Eq. (1.1) that in forming the input sequence xli - n], one must

fold the sequence x[n] about its origin to produce x[-n] and displace it by i. Evalu­

ating y[i] then requires multiplying each of the overlapping samples of the h[n] and

xli - n] sequences and subsequently summing these products. Moreover, the com­

mutativity of fuis operation implies that one can also choose to fold the impulse

response h[i] instead of x [i].

Equation (1.1) is readily extensible to two dimensions. Oearly, the twc­

dimensional convolution of an input sequence x[i,i] with an N x M impulse re­

sponse h[i, i] is given by:

N-1M-l

y[i,i] = L: L: h[n, m] xli - n,i - m]
n=O m=O

(1.3)

Thus the fundamental expressions for discrete convolution have been pre­

sented, and it remains te be seen how these expressions are manipulated from an

image-processing perspective.

4

•
1. Introduction

1.1.2 Convolution in Image-Processing

In digital image-processing, the two-dimensional signals in Eq. (1.3) are said to

represent "images". In a strict theoretical sense, an image is defined as a two­

dimensional, almost invariably Cartesian, array ofdata resulting from sampling the

projected instantiation of a local variable, the scene brightness function, obtained

via a sensing device. The function values are either brightness values or vectors

of brightness values sensed in different spectral bands, e.g. colour images. In the

black-and-white case these values are usually called grey levels. The array values

are typically real, non-negative, bounded, and implicitly zero outside the field of

view bounded by the array dimensions. In addition, these digitized arrayelements

are referred to as picture elements or "pixels".

In this thesis, however, the tendency is to view images as matrix entities. And

hence the above Cartesian constraint on images is relaxed to include only those

two-dimensional sequences whose pixels are addressed by positive integer indices.

One such loose but preferred representation of Eq. (1.3) is the matrix element ex­

pression which follows:

N-1M-l

Y[i,j] = I: I: W[n + 1, m + l]I[i + n - N/2,j +m - M /2] (1.4)
n=O m=O

In Eq. (1.4), W is an N x M matrix which is usually referred to as a "convolution

kemel" and acts like an impulse response which is convolved with an input image

1 to produce the output image Y. Each pixel Y[i,j] is simply the weighted sum of

the corresponding pixel value I[i,j] and the values stored in neighbouring pixels.

The weights and number of neighbouring pixels that are included in the weightec1

SUffi are determinec1 by the size and contents of the kemel W. Fig. 1.1 illustrates

an example of how a 3 x 3 convolution is computed by sliding a kemel W over an

image 1, multiplying each kemel coefficient with the underlying pixel value, sum­

ming the products, and storing this SUffi in an image buffer Y.

5

•
1. Introduction

KemelW

r-t'.11 lI(l,2J lI(l,2J

• Kemel s!ides
~ll W!>,2J W!>,2J

~11
_. overimage

l
!

• ,

.. I[ij] f-

t

ImageI

Y[iJ] = W[I.1]I[i-IJ-I] + W[l,2] I[i-IJ] + W[I.3]I[i-IJ+I]

+ W[2,I] I[iJ-I] + W[2,2] I[iJ] + W[2,3]I[iJ+I]

+ W[3.1]I[i+IJ-I] + W[3.2] I[i+IJ] + W[3.3] I[i+IJ+I]

Figure 1.1: Example of a two-dimensional convolution of an image J with a 3 x 3
kemel W resulting in an image Y = W' • J.

6

•

e

1. Introduction

Note that the row and column indices of 1 in Eq. (1.4) do not contain a -71 and

a -m respectively which implies that there is no folding of the image in each di­

mension. And neither is there a folding of IF. Without a folding of either 1 or II·, it

seems that the expression in Eq. (1.4) violates the mathematical integrity of Eq. (1.3).

However, it should be stated that the kemel W is often radiaIly symmetrical and for

aIl intents and purposes can be considered "pre-folded". For the cases where the

kemel is asymmetrical, it becomes necessary to qualify Eq. (1.4) by adding that the

W is considered to be the folded version of an original kemel W'. In other words, a

convention is adopted where a given kemel W' should be rotated by 180 degrees to

yield W prior to going through the convolution operator as defined in Eq. (1.4) and

Fig. 1.1. The reason for separating the folding process from the deSnition of con­

volution has to do with facilitating hardware implementation, which will become

more evident in Chapter 3. With this definition now in place, the classification and

application of the convolution operation is discussed next.

1.1.3 Applying the Convolution Operator

Image-processing operations can be classified as either "point", "local" or "geomet­

ric" operations. Point operations involve transforming single pixels in a way that

does not depend on any neighbouring pixels. Local operations involve transfor­

mations on pixels so that the new value of each pixel depends also on the values of

pixels in sorne neighbourhood. Geometric operations involve pixel values at sorne

other point, defined by a geometric transformation, or in a neighbourhood of that

point.

Convolution, then, is defined as a locallinear operator, and as such, it is very

frequently used in the first stage of image analysis [Levine, 1985]. As was noted

before, most initial filtering, edge-detection, correlation and compression relies to

a large exten~on convolution. At this point it would be instructive to reinforce the

definition above with sorne practical examples of convolution kemels and their ef-

7

•
1. Introduction

fect on images.

Consider first the case of a simple averaging filter. If aIl the weights were

the same in a 3 x 3 kemel, then a given pixel in a convolved image Y would

be the equally-weighted sum of the corresponding pixel in 1 and its eight imme­

diate neighbours. The overall convolution effect would be simply to average or

"smooth" abrupt spatial changes in pixel intensity.

An example of an edge-detection kemel proves a little more involved. Yet

such an example is worth presenting, for it demonstrates that if the kemel is care­

fully chosen, a single convolution "pass" can do a substantial portion of image­

processing work. The edge-detection problem is to outline discontinuities or

abrupt spatial changes in pixel intensity [Schumann, 1904]. Mau and Hildreth

[Marr and Hildreth, 1980] confront the issueby first proposing a Gaussian operator

as an optimal smoothing filter. This implies convolving an image with a kemel W'

whose weights are determined by the following two-dimensional Gaussian func­

tion:

1 (·2 ·2)
W'(. .) = _ (l +J)

l, J 21l"u2 exp 20-2 (1.5)

The intensity changes in an image 1 will manifest themselves in the outputs

W' * 1 as peaks in the first derivative D(W' * 1), or as zero-crossings in the sec­

ond derivative D2(W' *1) in the appropriate direction. Inother words, the original

edge-detection problem may be replaced by an equivalent one in which the zero­

crossings of D2(W' *1) or, what is equivalent, D2W' *1 are sought. Thus the kernel

used for the edge-detection becomes:

W(i,j) =D2W'(i,j) (1.6)

and assuming linear local intensity variations near a zero-crossing it can be

8

•
1. Introduction

shown [Marr and Hildreth, 19801 that a Laplacian operator may be employed in

place of Eq. (1.6) such that the kemel Hf is acquired by \,2\1"', an orientation inde­

pendent second-order differential operator:

(1.7)

Equation (1.7) is plotted in Fig. 1.2 with fT = 1 and a domain translation to facil­

itate the mapping to a 9 x 9 kemel matrix w.

..

Figure 1.2: Laplacian, y2W', with a (low) " = 1. The domain has bcen translated

such that 1 ~ i ~ 9 and 1 ~ j ~ 9 resulting in a function that maps accordingly
into a 9 x 9 kemel W.

Hence the inherently pre-folded, edge-detecting kemel as plotted in Fig. 1.2 is

coded into a convolution program which also takes as its input a real image in the

PGM (portable graymap) file format. The results are revealed in Fig. 1.3 and depict

the effectofa Laplacian filter and the subsequent detection of zero-crossings where

zero is represented. by some intermediate gray-Ievel in the output. In addition, us­

ing a larger kernel in the convolution (with a correspondingly larger fT) yields an

edge-map with less detail. The chosen kemel size of9 x9 seemssufficiently large for

extracting the right amount of detail from the given real image, though perhaps not

50 for other images. Mainly, it is hoped that the above discussion has adequately

defined convolution and has alluded to the pivotai role that this mathematical op-

9

•
1. Introduction

(a) (h) (c)

Figure 1.3: Example of edge-c!etection with a Laplacian roter. (a) Original image.
(h) Output image after convolution with" Laplacian kemel. (c) Detection of zero­
crossings.

erator plays in the realm of image-processing.

It shall be seen shortly that convolution's formidable image-processing power

comes at the expense of a relatively lengthy execution time when it is performed

on general-purpose uniprocessor architectures. Parallel processing architectures,

on the other hand, will then be presented to be much more suitable for convolution

implementation allowing for a considerable amount of speedup.

1.2 Computational Considerations

The time taken by a computer to complete a convolution operation is perhaps

the most important consideration in this thesis. The sheer volume of data and

floating-point arithmetic calculations needed te convolve a standard sized image

can be overwhelming with regard te the available computational power and mem­

ory bandwidth of single processor machines used te run image-processing pro-

grams.

Firstly, consider the convolution of a K x Limage with an N x M kernel.

The weighted sum of an N x M neighbourhood of pixels requires N M multi-

10

•
1. Introduction

plication operations and N M additions. Therefore, performing these operations

for each of the K L (overlapping) neighbourhoods necessitates 2/U.;\'.H opera­

tions in aIl, excluding any arithmetic overhead required in resolving software loop

counters. Techniques that take advantage of kemels with certain properties exist

[Gonzalez and Wmtz, 1987), yet for the general case the number of arithmetic op­

erations in a convolution operation remains in the order of 1{ LNM. This amount

of computation is truly significant. For instance, the edge-detection example in

Fig. 1.3 employed a 9 x 9 convolution on a standard 512 x 512 image and demanded

over 21 million floating-point multiplications and 21 million floating-point addi­

tions.

1.2.1 Uniprocessor Performance

oIt should come as no surprise that aIl these calculations take a relatively long pe­

riod of time to execute on general-purpose uniprocessor workstations on which

most image-processing programs are currently being developed. However, just

how long a convolution operation takes to execute is not easily reported since exe­

cution time is dependent on a myriad of factors. Forexample, the total elapsed time

of a convolution routine is clearly code dependent, compiler dependent, machine

dependent, 1/0 dependent, and also operating system dependent and is therefore

given to large fluctuations owing to the wide range of influence of these numer­

ous factors. In view of its varying nature, convolution execution time can only be

meaningful if related in a very definitive context with deference to the above fac­

tors. Hence, it is undertaken to establish a weIl defined framework for presenting

the elapsed time of a convolution operation.

First, one must carefu11y define what one means by elapsed time. This is the la­

tency to complete a task, including disk acœsses, memory acœsses, input/output

activities, operating system overhead - basica11y everything. However, since with

multiprogramming the CPU works on another program while waiting for 1/0 and

11

•
1. Introduction

may not necessarily minimize the elapsed time of one program, there needs to be a

term to take this activity into acc::>unt. "CPU time" recognizes this distinction and

means the time the CPU is computing not inc1uding the time waiting for 110 or nm­

ning other programs. Hence, CPU time seems a fair way to cite the true duration of

a convolution routine since it exc1udes 1/0 and "load" factors which can account

for unpredictably large latencies that are usually unrelated to the particular task at

hand. CPU time can be further divided into the CPU time spent in the program,

called "user CPU time", and the CPU time spent in the operating system perform­

ing tasks required by the program, called "system CPU time". And thus to further

weed out the effeets of random system elements such as time spent paging image

arrays, the system CPU time is neglected and only user CPU time is considered as

an "honest" way te report uniprocessor performance on the convolution operation.

In coding up a simple convolution routine in order to rr.easure the elapsed user

CPU time, it was realized that the goal, in effect, was te constructa benchmarkpro­

gram that would not only relate a typical convolution latency but would also com­

pare the suitability of different machines in performïng convolution. The resulting

benchmark code which was dubbed the "CONY" benchmark is inc1uded in Ap­

pendix A. Expressly, this benchmark records the bare processing time needed to

execute the double-precision floating-point process code within the main loops of

a typical convolution routine. Results of the CONY benchmark were gathered from

every available workstation and are ordered and presented in Table 1.1. Since a

benchmark's most important feature is reproducibility, all information relating to

its compilation and execution need also be reported. The computers tested with

this benchmark are specified by model and associated microprocessor.

From Table 1.1, it is noticeab1e that the convolution benchmark was run on

the gamut of Silicon Graphies and Sun workstations. The best performance was

achieved with a Silicon Graphies IndigcjM station which required at least 21 seconds

te perform the convolution. At the other extreme, a Sun 3 architecture faired the

worst requiring at least 15 minutes 53 seconds ta accomplish the same task! Ergo,

12

•
1. Introduction

Machine Type Microprocessor User CPU lime

SGI INDIGO XS MIPS R4000 - 50 MHz 21sec
5PARCstation 10/30 5uperSPARC - 33MHz 29sec
IRIS 40/420VGX MIPS R3000 - 40 MHz 36sec
PERSONAL IRIS MIPS R3000 - 36 MHz 40sec
5PARCstation 2 5PARC-40MHz 51sec
5PARCstation ELC 5PARC - 33MHz 1min lsec
5PARCserver 470 5PARC-33MHz 1min 6sec
5PARCstation IPC 5PARC-25MHz 1min 30sec
5PARCstation 1+ 5PARC - 20MHz 1min 37sec
5PARCstation 1 5PARC-20MHz 1min 58sec
5PARCstation 5LC 5PARC - 20MHz 2min 7sec
5un3/50 Motorola 68020 15min 53sec

Table 1.1: Results of the CONY benchmark on the spectrum of available unipro­
cessors currently used to perform image-processing tasks. Gee version 2.3.3 was
used to compile the benchmark for each architecture with exception to the SUN 3
wlùch oniy supported Gee version 2.0.

even with the best machine, the requisite 42 million FLOPS in the CONV bench­

mark took 21 seconds to complete which amounts to nothing more than 2 double­

precision MFLOPS of delivered performance. However, going through lengths to

highly optimize the code in the CONV benchmark it is possible to further improve

this figure ofperformanceon the R400o-based Indigo. For instance, setting machine

dependent compiler options to schedule instructions specifically for the R4000 chip

and to issue instructions from level 2 of the MIPS ISA (Instruction Set Architec­

ture) with branch prediction, unrolling allloops, and using temporary local reg­

isters to store partial convolution results, a CONV performance of 7 MFLOPS was

attained. But, this is still worse than the 9.4 MFLOPS quoted for an Indigo run­

ning the Ln\IPACK benchmark [Wilson, 1993) and worse still than the 16 MFLOPS

rate published by Silicon Graphies for this same machine. The disparity can be at­

tributed to memory latency which is discussed next.

The architectures tested above are ail high-performance RISC (Reduced Instruc­

tion Set Computer) architectures each with a pipelined FPU (Floating Point Unit)

13

•
1. Introduction

which relies on a continuous stream of incoming data to sustain maximum process­

ing throughput. No matter how weil the compiler schedules instructions, there will

invariably be times when the FPU is stalled for a period, typically 2 or 3 clock cy­

cles, awaitir.g input data that is in main memory. In convolution, the problem of

pipeline stalls due to memory latency is especially aggravated by the vast num­

ber of inherent load (and store) instructions, limiting the already limited computa­

tional power available in single processor architectures. For example, in the CONV

benchmark, each store instruction issued corresponds to a pixel result destined for

the image buffer Y; yet, each of these 218 results requires Slload instructions to ac­

cess the neighbourhood of pixels in l and SI loads for the weights in W. Despite

the prevalence ofcache systems in all architectures tested, this volume of loads puts

overwhelming demands on the CPUs' memory substems engendering the sorne­

what debilitated performance in uniprocessor machines that was observed with the

CONV benchmark.

Generally, the general-purpose single-processor systems studied are not very

well-suited te the sort of numerical processing that the convolution operation calls

for. Parallel processors, altematively, will soon be shown te more readily conform

to the task at hand. But first there remains an important issue with regard to con­

volution or rather the computational considerations of convolution that needs ad­

dressing. Above the focus was on spatial domain computation of the convolution

operater; however, in certain instances convollAtion is best carried out in the ire­

quency domain. It is essential te investigate the frequency domain approach since

in the cases where it proves less computationally intensive than the spatial domain

approach, frequency domain calculations instead of spatial domain calculations

should serve as the basis for computing convolution.

14

•
1. Introduction

1.2.2 Transforming the Domain of the Convolution Problem

It is sometimes more efficient to compute convolution by transforming the image

and kemel arrays to the frequency domain, multiplying the transforms point by

point, and then inverse transforming the result. This is the thrust of the frequency

domain approach which is also represented by Fig. 1.4, and in this subsection, a the­

oretical discussion will unfold the mysteriesbehind the requisite frequency domain

transformations.

Kcmclwu.n

.!!!!:!.. Output Im.go YU.II

Fîgure1.4: Frequencydomainapproachtoconvolutiony = wo:r. The input image
z[i,J1 and kemel w[i,i] are each passed through a DF! routine which transforms
the spatialdomain [i, J1 to the frequency domain [u, v]. The transforms, W[u, v] and
X[u, v], are then multiplied point by point to yield Y[u, v]. The inverse transform
is then applied to Y to recover the output image y[i, J1-

The frequency domain approach takes advantage of the Fourier duality of the

convolution and multiplication operators. Specifically, by the Convolution Theo­

rem and the Modulation or Wmdowing Theorem [Oppenheim and Schafer, 1989],

discrete-time convolution of sequences is equivalent to multiplication of corre­

sponding periodic Fourier transforms, and likewise, multiplication of sequences is

equivalent to periodic convolution of corresponding Fourier transforms. Hence, a

15

•
1. Introduction

simple pointwise multiplication operator should be used in lieu of the more labori­

ous spatial convolution operator provided the discrete Fourier transform, or DFT,

and its inverse, the 10FT, are painlessly computed.

When calculated by the brute-force method the two-dimensional DFT of an

NI x N2 image which is defined by the following complex valued equation

[Press et al., 19881 [Burrus and Parks, 19851

N,-I N,-I

X [nI, n2] = I: I: exp(2..ik2n2/N2) exp(2..iklnl/Nd x[kl, .\."2] (1.8)
1<::=0 k,=O

necessitates in the order of NI
2Nl operations or K4 operations ifone assumes a

square K x K image. This amount of computation is hardly painless, and if it were

not for the recursive Fast Fourier Transform or FFT algorithm, one surely would

never consider doing anything in the frequency domain. Fortunately, the FFT algo­

rithm, whose "discovery" was credited to Cooley and Tuckey in 1965, can be used

to compute the DFT in much fewer operations.

The FFT [Brassard and Bratley, 19881 is basicaIly a divide and conquer algo­

rithm which relates the transform of a one-dimensional sequence of N points to

two sequences of N/2 points. It can be used recursively to subdivide the data ail

the way down to transforms of length 1 which are simply identity operations. The

algorithm worksweil only when theoriginal N is anintegerpowerof2; hence, most

data sets which are not powers of two are padded with zeros up to the next power

of two. The points as given are therefore just the one-point transforms. One com­

bines adjacent pairs to get two-point transforms, and 50 on, until the first and sec­

ond halves of the whole data set are combined into the final transform. Each combi­

nation takes of order N complex number multiplications and additions, and there

are evidently log2N combinations, 50 the whole algorithm is of order Nlog2N.

Now, by pulling the exponential of "subscript 2" outside of the sum over kt

in Eq. 1.8, one can see instantly that the two-dimensional FFT can be computed

16

•
1. Introduction

by taking one-dimensionaI FFTs sequentially on each index of the original two­

dimensional array. Symbolically,

Xh, n21 = FFT-on-index-2(FFT-on-index-l(x[kt • k2])) (1.9)

Thus it is shown that a two-dimensional FFT can be efficiently implemented

in this manner by first taking transforms along each row of an image and subse­

quently along each colurnn of the resulting intermediate data representation. Ergo,

the transform of a K x K image would be expected to take in the order of I\log2 I\

operations for each of the K rows plus K columns. Thus, the number of opera­

tions in a two-dimensional DFT using the FFT algorithm would be proportional to

K(Klog2K) or I{210g2K, a considerable improvement over the bmte-force DFT al­

gorithm which requires in the order of K4 flops.

Further along these theoreticallines, it can aIso be shown that the frequency do­

main approach for the convolution problem involves K2 operations to carry out the

pointwise multiplication of the transformed image and kemel, and subsequently,

a certain number of operations for the inverse transform of this result. Since the

inverse Fourier transform can aIso be calculated (with minor modifications in the

input) by using the J(210g2K algorithm designed for the forward transform, then

the entire convolution can be performed in that same order of K210g2K. However,

as will beseen next, the multiplicative constant for the latter "order" expression can

prove significant and that transforming the domain of the convolution problem is

advantageous only for larger kemeIs.

1.2.3 Frequency Domain Versus Spatial Domain Processing

The results of an experiment te measure the computational intensity of each ap­

proach te the convolution problem are presented in Fig. 15. Convolution impIe-

17

•
1. Introduction

mentations using the frequency domain and spatial domain approaches were car­

ried out on a uniprocessor machine and the number of floating point operations, or

flops, were tallied at run-time.

SpllliAl DonWn Apprœch

120

100

80

~
]

60
§.

8-
c

010

20

O
2 4

Frcquency Domwn Appf04Ch

8 10
Kcrnel Sile M

12 14 16

Figure 1.5: Frequency domain approach versus spatial domain approach. The
number of Boating-point operations required are plotted against kemel size M.

If the order expressions established above are taken as exact indications of the

number of flops required for each approach, the breakeven point would be ex­

pected to occur when the K2M2 spatial domain flops equaled the K2log2K flops.

(Recall that a K x K image is being convolved with an M x M kernel.) Therefore,

for a standard [(=512 image size, the two approaches would be of equal compu­

tational intensity whe."l M2 = log2K, or simply when M = 3. However, the un­

dergone experiment in which complex multiplications were counted as 6 flops and

complex additions were counted as 2 flops suggested that the frequency domain

approach did not become computationally expedient until the kernel size M ex­

ceeded 11. Fig. 1.6 delineates this breakeven point and summarizes the breakeven

points for different values of image size K.

18

•
1. Introduction

14 .

I:! .

Il ----~----------------,-----:-----,--.------ ,.--

10 .

::c
.~
~ s ..

!

,..;- -:-
.-:- r-; . . .

,..;-

..

6 ; ; .

4 .•..... ; ~ ;" ; ~ ~ .

...•... ..•.. .•.. ,1",'"2,
• i':

•

2 3 • S 6 7
loS (lnuage Sizc K)

8 9 10 \1

Figure 1.6: Maximum kemel size M for wlùch convolution in the spatial domain
used less flops !han convolution done in the frequency domain. Values of M are
plotted for different values of image size K.

It should be cautioned that these results are largely implementation dependent,

yet they are interesting because they serve to dispel any misconceptions that the he­

quency domain approach mightbe a panacea for the convolution problem. Quite to

the contrary, all observations indicate that the frequency domain approach is only

effective for convolutions that employ large kemels. The great overhead in flops

and the multitude of ca11s to memory needed to transform the domain of the prob­

lem cannot be justified for convolutions that use small kemel sizes. In these cases

where the kemel is much smaller than the input image, which will also be a require­

ment for the hardware implementation to come, convolution is best handled in the

spatial domain.

19

•
1. Introduction

1.3 Summary

To summarize, the convolution operation was targeted for performance improve­

ment because it was perceived as the most frequently used operation in image­

processing tasks. The convolution operator was therefore introd'.:ced and defined

and followed by sorne practical examples which reinforced the latter definitions.

Furthermore, since much of the development of image processing prograrns occurs

on relatively low-eost, general-purpose, uniprocessor workstations, convolution

performance was first evaluated on such machines. In addition, whether domain

transformations are employed or not, the essential point remains that the huge vol­

ume of data and floating-point arithmetic calculations needed to convolve a stan­

dard sized image can be overwhelming with regard to the available computational

power and memory bandwidth of single processor machines. Altematively, in the

next chapter, parallel processing will be presented as the logical answer to over­

coming the tremendous computing requirements of the convolution operation.

20

• Chapter2 Parallel Processing Solutions

The point of parallel processing is to reduce the elapsed time to complete the job at

hand [Karp, 1987). Executed on a uniprocessor that can sustain a I-MFLOPS com­

putation rate, an implementation of a sequential algorithm for convolution that en­

genders say 42, 000, 000 floating point operations can run to completion in about 42

seconds. Now, if the convolution problem can be reformulated into a parallel algo­

rithm and implemented to run concurrently on say 10 processors each capable of

1 MFLOPS, the convolution job should ideally take one tenth the processing time

or 4.2 seconds. Although it is implied that x processors give a speedup of x, real

systems usually fall short of such ideal speedups hindered by inefficiencies due to

synchronization, communication, or work imbalances among tlle multiple parallel

processors. Essentially however, in spite of the realities imposed by coding style,

the architecture of the machine, and the specific hardware implementation, paral­

lei processing stands as the only feasible means by which one can attain dramatic

performance improvement [van Zee and van de Vorst, 1989).

Expressly, the convolution problem, which is inherently parallel in nature, can

be quite easily "parallelized", and as such can be readily implemented with consid­

erable speedup on various general-purpose parallel processing computers. How­

ever, this chapter will attempt to instill t.i.e notion that a general-purpose parallel

computer is not a cost-effective option for the rather specialized problem of con­

volution, and that maximum gain and cost-efficiency can best be achieved with a

special-purpose hardware accelerator employing a type of synchronous parallel ar­

chitecture known as the systolic array.

21

•
2. Parallel Pr~ing Solutions

2.1 Inherent Parallelism

The convolution computational problem is inherently parallel in nature. This char­

acterization simply implies that by virtue of its iterative nature, the convolution

task is very easily divided into smaller subtasks which can be completed in par­

alIel. Observe the sequential algorithm which is typified by the main loops in the

CONV benchmark:

for li=IBEGIN: i<=I~: ++il
for (j=JBEGIN: j<=JEND: ++j)

for Im=MBEGIN: m<=MEND; ++ml
for (n=NBEGIN: n<=NEND: ++n)

Y[i] [j]+= W[m] [n] • I[i+m-IOFFSET] [j+n-JOFFSET]:

This algorithm basically uses two pairs of nested loops to index the convolu­

tion sum iteratively. Moreover, indices [i,j] index the output image data, [m, n] in­

dex the kemel data, and the input image data is indexed by a combination thereof.

This algorithm can clearly be divided (and conquered) in countless ways. One im­

portant approach finely partitions the compute work into small identical and inde­

pendent subtasks which operate concurrently on different portions of data. This in­

nate fine-grain data parallelism is readily demonstrated by unrolling the outer pair

of loops of the algorithm above to yield a sequence of copies of the inner double­

loops.

for (m=MBEGIN: m<=MEND: ++m)
for (n=NBEGIN: n<=NEND: ++n)

Y[O][O]+= W[m] [n] • I[O+m-IOFFSET] [O+n-JOFFSET]:
for (m=MBEGIN: m<=MEND: ++m)

for (n=NBEGIN: n<=NEND: ++n)
Y[O][l]+= W[m] [n] • I[O+m-IOFFSET] [l+n-JOFFSET];

for (m=MBEGIN: m<=MEND; ++m)
for (n=NllEGIN; n<=NEND; ++n)

Y[O] [2]+= W[m][n] • I[O+m-IOFFSET] [2+n-JOFFSET]:

for (m=MBEGIN; m<=MEND; ++m)
for (n=NBEGIN; n<=NEND; ++n)

Y[511] [511]+= W[m][n] • I[511+m-IOFFSET] [511+n-JOFFSET];

Here, each double-loop is identical in that each serves to accumulate the

weighted sum of a given neighbourhood of input pixels, and each is responsible

22

•
2. Parallel Proœssing Solutions

for a one pixel result in the output buffer Y. Hence, each double-loop, which repre­

sents a rather small number of iterations (81 for the CONY benchmark), may be ex­

ecuted in parallel each on a separate processor. If there existed a parallel computer

with as many processors as double-Ioops in the above routine, a CONY benchmark

parallelized in this fashion would exhibit an ideal speedup of 5122 = 262.144 !

By virtue of its inherent parallelism, the above sequential routine was quite ef­

fortlessly shown to be data-parallelizable in a fine-grain manner; yet attempts to

breakclown the compute work further into finer, identical grains may present more

of a challenge. Even though more "available parallelism" has already been demon­

strated than currentparallel computers (c1993) can exploit, it is worth briefly trying

to discem still a higher degree of parallelism because the attempt points to a gen­

eral problem in the art and science ofconverting sequential algorithms into parallel

algorithms -the problem of data dependence. First, a basic premise for the concur­

rent operation of an array of parallel processors is that no processor's current com­

putations should depend on the current computations of another processor. Now,

consider unrolling each one of the double loops above in hopes of running each

atomic iteration on a single processor. For instance, unrolling only the fist double­

loop gives:
Y[O) [0)+= W[O] [0) • I[O+O-IOFFSET] [O+O-JOFFSET);
Y[O) [0]+= W[O] [1] • I[O+O-IOFFSET) [O+l-JOFFSET];
Y[O)[O)+= W[O) [2) • I[O+O-IOFFSET] [0+2-JOFFSET);

Y[O) [0]+= W[S)[S] • I[O+S-IOFFSET) [O+S-JOFFSET];

And it could beseen that eachof these iterations/instructions operates on differ­

ent input data, yet each stores its cumulative result in the same Y[i][j]. This implies

an output data dependence. Generally, if each iteration within each double-loop is

run in parallel on independent processors, then each processor will try (undesir­

ably 50) to update a global value of Y[i][j] at the same time. Rather, each of these

processors should have to wait its tum to update Y if the correct weighted suros

are to be accumulated. Thus the sequential nature of the latter accumulation àe­

feats the purpose ofconcurrent processing. Indeed, the pervasive point to be made

is that most problems of interest, convolution included, possess certain inherently

23

•
2. Parallel Processing Solutions

sequential algorithmic components [Kuck, 1980] that present themselves in terms

of data dependencies which invariably complicate or even Iimit the parallelization

process. Section 2.4 will elaborate on how parallelization of such sequential com­

ponents can be performed.

2.2 Basics of Parallel Algorithms

Thus far, parallelism has been investigated with no mention as to parallel archi­

tecture specifies. Merely the form of the sequential algorithm and the sort of par­

allelization that it conjectures have been presented. Henee, before exact models

of parallel processing are introduced, it would be appropriate to touch upon, in

sorne semblance of rigour, two important parameters with which parallel algo­

rithms have and will be compared.

Within this thesis, T is denoted as the execution time for the "best" serial algo­

rithm, and Tp as the execution time for a parallel algorithm using p processors. The

speedup, Sp, can therefore be defined as

(2.1)

And the "efficiency" or "utilization", Ep, of the parallel algorithm is given by

E
_ Sp

p-
p

(2.2)

If a parallel algorithm is 100% efficient, then one observes "linear" speedups.

As intimated at the outset of this chapter, however, efficiency is practically never

100%, due te synchronization or communication costs. And in those cases where

task granularity is irregular, suboptimalload balancing among parallel processors

also works te further erode this figure.

24

•
2. Parallel Processing Solutions

2.3 General-Purpose Parallel Processing Options

The road to parallelizing convolution is a convoluted one. To begin, parallel pro­

cessing solutions offer large-scale speedups for the convolution problem and many

other inherently parallel problerns. From a practical standpoint, commercially

available, general-purpose, parallel processing computers can indeed be very ef­

fective, but it is most consequential that their high price tags place them beyond the

reach of many academic and industrial organizations. Table 2.1 provides a cursory

look at the cost of the state of the art in parallel computing. The cheapest option

is shown to be a network of uniprocessor workstations. Albeit for communication

intensive tasks such as the convolution of an image, the extensive communication

overhead in using network constructs such as sockets [Horspool, 1986] or higher­

level remote procedure caIls (RPCs) negates the associated increase in computing

power. At the other end of the spectrum, supercomputers are recognized as often

the most appropriate resource for performing certain complex and important tasks

[Rattner, 19851, but evidently they are prohibitively expensive.

Parallel Processing Options Examples Cost
Network ofworkstations Network of SPARCstations Lowestcost
Multiprocessor workstations DEC Firefly,

Apollo DN 10000,
Solbourne,
Xerox Dragon,
SUN SPARCstation 20 $60,000.

Shared memory multiprocessors SequentSymmetry,
Encore Multimax $20Q-400,000.

Distributed memory multiprocessors Intel iPSC hypercube,
NCUBE $20Q-400,000.

Supercomputers Connection Machine CM-5,
Intel Paragon,
Kendall Squares KSR-l $5,000,000.

Table 2.1: Cost ofvarious para1lel processing options.

Having secured the sigrùficance of the cost factor in the search for optimal par-

25

•
2. Parallel Processing Solutions

alIeJ solutions for convolution, what remains is to establish an order of logic with

which to lead into one such cost-effective solution. Finding one's way through the

"megalopolis" of paralIel processing options requires sorne sort of map. Hence,

this section will take on the "big picture" of parallel computing, putting order to

the parallel-processing options via a taxonomie survey. The parallel architectures

to be surveyed in this section are mostly general-purpose in nature, hence the ti­

tle above. Yet the subclass of architecture that will prove most cost-effective and

thus most fundamental to this thesis will be special-purpose, and its discussion is

deferred for the subsequent section (Section 2.4).

2.3.1 Architecture Taxonomy

The diversity of recently introduced parallel computer architectures confronts the

taxonon-Jst with what R.W. Hockney felicitously terms "a confusing menagerie of

computer designs" [Hockney and Jesshope, 1988]. Placing the architectural alter­

natives in a coherent framework requires the adoption of an uptodate taxonomic

system. According to Flynn's taxonomy [Flynn, 1966] which classifies computers

based on their instruction and data streams, parallel architectures would fall under

the multiple-instruction, multiple-data (MlMO) and single-instruction, multiple­

data (SIMD) classifications. Although these distinctions provide a useful shorthand

for characterizing architectures, they are insufficient for classifying various mod­

em computers. Other taxonomies exist [Shore, 1973], but favoured in this thesis is

a more contemporary grouping proposed by Duncan [Duncan, 1990]. This classi­

fication scheme, sketched in Fig. 2.1 leads one ta consider processors in terms of

MIMD, MlMD-based paradigrns, and synchronous architectures.

26 ..

•
2. Parallel Processing Solutions

Figur.! 2.1: Parallel computer architectures according to Duncan's taxonomy.

2.3.2 MIMD Parallel Processors

MIMD architectures employ multiple processors that can execute independent in­

struction streams, using local data. Thus, MIMD computers support parallel solu­

tions that require processors to operate in a largely autonomous manner. Rattner

refers to this kind of parallel execution as "concurrency" [Rattner, 1985] which is

the highest level form of paral1elïsm, denoting independent operation of a collec­

tion of simultaneous computing activities. That is to say that a given task is divided

coursely into a number of sizable subtasks which are executed asynchronously on

independent processors. Depending on how their associated subtasks (software

processes) interaet, these processors can be classified as loosely coupled, interaet­

ing by passing messages to one another, or tightly-coupled, interaeting via shared

memory.

27

•
2. Parallel Processing Solutions

Loosely coupled systems are also referred to as distributed memory architec­

tures because memory is not centralized but distributed locally on each processor.

The only way for the application to share data among processors in these systems is

for the programmer to explicitly code commands to move data from one processor

to another. Examples of recent distributed memory, message passing machines are

the Parsytec GC [Par, 1991], the nCube 2 [nCU, 1992) and the iPSC 860 [Int,1993).

Although many processor interconnection schemes exist [Feng, 1981], the nCUBE

and iPSC systems are noted for exploiting powerfulhypercube interconnection net­

works [Seitz, 1985) [Palmer, 1986) [Freer,1987) which boast the densest and most

efficient inter-processor wiring.

Altematively, shared-memory architectures such as the Sequent Symmetry

[Lovett and Thakkar, 1988) accomplish inter-processor coordination by providing

a global, shared memory that each processor can address. While computers in this

subclass do not have sorne of the problems encountered by message-passing archi­

tectures, such as message sending latency as data is queued and forwarded by in­

termediate processor nodes, they do suffer from other problems such as data access

synchronization and cache coherency. Also, the aggregate memory bandwidth will

lirnit the number of processors that can be accommodated on these systems.

Naturally, the third form in MIMD architectures is manifested in hybrid sys­

tems such as the IBM RP3 [Pfister, 1985], the BBN Butterfly [Crowther, 1985), and

the Cedar [Gajski, 1986]. A machine in this subclass has sorne of the properties of

shared memory systems and some of those of message passing. Though all mem­

ory is actually local to a given processor, the operating system makes the machine

look like it has a single, global memory. Thus, programs are written as if for a

shared memory system; however, the performance considerations resemble those

of a message passing machine.

MIMD computers are generally considered course-graîn machines that perform

weIl on problems that have a low degree of available parallelism and a low propor-

28

•
2. Paral!el Proccssing Solutions

tion of communication among subtasks. As such, their design philosophy does not

seem particularly suited to the inherent, fine-grain, data parallelism in the convolu­

tion problem and other fine grain tasks prevalent in image processing algorithms.

For instance, convolution can be handled by dividing the input image into chunks

to be worked upon separately amongst the Il available processors of a MlMD sys­

tem. Explicitly, a l'vIIMD convolution program would likely "fork" Il corresponding

procesSèS that would operate concurrently on Il "sub-images". Since Il tends to be

relatively small « 1000), the speedups for MlMD convolution are less than dra­

matie. Moreover, efficiency would presumably be poor as MlMD parallel convo­

lution ineurs a profound communication cost due to either an excessive number of

shared-memory accesses (shared-memory contention) or an immoderate number

of messages for the access of border data in neighbouring sub-images.

2.3.3 MIMD-based Parallel Processing Paradigms

l'vIIMD/SIMD hybrids, dataflow architectures, reduction machines, and wavefront

arraysare a sorne of the parallel processing modeIs that do not readily befit Flynn's

l'vIIMD categorization. Although these paradigrns are predicated on l'vIIMD princi­

pIes of asynchronous operation and concurrent manipulation of multiple instruc­

tion and data streams, each of these architectures is aIso based on a distinctive or­

ganizing principle as fundamental to its overall design as its l'vIIMD characteristics.

Firstly, l'vIIMD/SIMD hybrid modeIs [Lipovski and Malek, 1987) allow selected

portions of a l'vIIMD architecture to be controlled in SIMD fashion. Although ~1ese

models are interesting from an image-processing perspective, it will be argued

shortly that convolution and other low-Ievel vision algorithms are best supported

by maximizing the SIMD resource.

Dataflow architectures [Srini, 1986) feature an execution paradigm in which

instructions are enabled for execution as seon as all of their operands be-

29

2. Parallel Processing Solutions

come available. Thus, these "data-driven" processors such as the Datawave

[Schmidt and Caesar, 1991] fair weil for asynchronous tasks with numerous data

dependencies and have been shown to achieve high degrees of concurrency. But

despite ail their merits, dataflow remains the architecture of choice only when si­

multaneity is low, irregular, and run-tirne dependent [Briggs and Hwang, 1984]­

characteristics which are the antithesis of low-Ievel image processing.

Reduction architectures, also referred to as "demand-driven" architectures

[Treleaven et al., 1982], implement an execution paradigm in which an instruction

is enabled for execution when its results are required as operands for another in­

struction already enabled for execution. Like the data-driven architectures above,

reduction architectures are not a practical choice for the low-level processing of im­

ages.

Lastly, wavefront array processors [Kung, 1987] are based on a MIMD architec­

tural paradigm which combines an asynchronous dataflow execution model with

"systolic data pipelining". Pipelines and systolic arrays will be the focus of Sec­

tion 2.4 wherein it will be seen that simple, synchronized dataflow contributes to

the many desirable properties of systolic architectures. However, wavefront arrays

replace the global clock and expliàt tirne deIays used for synchronizing systolic

data pipelines with asynchronous handshaking as the mechanism for coordinating

inter-processor data movement. Thus wavefront arrays, despite their close resem­

blance to the impending systolic solution, increase control complexity and will be

forsaken in favour of their simpler sibling -the systolic architecture.

2.3.4 Synchronous Parallel Processing Architectures

Synchronous computers essentially include vector, SIMO and systolic processors

aIl of which perform concurrent operations in lockstep fashion, synchronized with

either control units or global clocks. Hence, unlike the autonomous MIMD proces-

30

•
2. Parallel Processing Solutions

sors, synchronous processors perform in a very deterministic manner. The goal of

synchronous architectures appears to be the fine division of compute work among

multiple processors which makes them excellent candidates for fine-grain image­

processing problems such as convolution.

Pipelined vector processors [Briggs and Hwang, 1984) such as the Cray X-MP

[Larson, 1984) [Robbins and Robbins, 1989) and the IBM 3090 [IBM, 1985) are char­

acterized by multiple, pipelined functional units which implement arithmetic and

Boolean operations for both vectors and scalars and which can operate concur­

rently. Since such architectures can support task-level parallelism, they could ar­

guably be termed MIMD architectures, although vector processing capabilities are

the fundamental aspects of their design. The pipelined processing units in vec­

tor machines are said to exploit low-level "temporal parallelism" by performing

a vector operation in stages and by overlapping execution such that at any given

time each stage in the vector pipeline is processing a different element in the vector

stream.

SIMD computers, on the other hand, will be shown to exploit a higher level

"data-paraIIelism" [Hord,1990). These architectures, which can be further cIassi­

fied in terms of associative memory systems and and processor arrays, have tradi­

tionally employed a centraI control unit, multiple processors, and an interconnec­

tion network for either processor-to-processor or processor-to-memory communi­

cations. The control unit broadcasts a single instruction to aIl processors, which ex­

ecute the instruction in lockstep fashion on local data. Individual processors may

be allowed to disable or "sit out" the current instruction.

Computers built around associative memories [Kohonen, 1987) form a distinc­

tive type of SIMD architecture that uses special comparison logic to access stored

data in paraIIeI according to its contents. Modern associative memory processors

are not particularly suited to image-processing applications; rather, they have nat­

urally been geared to database-oriented applications, such as tracking and surveiI-

31

2. Parallel Processing Solutions

lance.

Finally, image-processing seems to have gained much from the SIMO archi­

tectural paradigm as realized by general-purpose, processor array architectures.

Historically, processor arrays such as the llliac IV [Bames, 19681, the MPP (mas­

sively parallel processor) [Batcher, 19801, the ICL DAP (distributed arrayprocessor)

[Hockney and Jesshope, 19881, and more recently, machines such as the ACMAA

(access constrained memory array architecture) [Balsara and Irwin, 1991) and the

Connection MaC:"Jne [Hillis, 1985) [Thi, 19921, have often been used as image­

processing "engines". These parallel computers typically employa high number

(> 1000) of simple processors or PE's (processing elements). Although they lack the

autenomy and computing power of MIMD processors, the PE's within large pro­

cessor arrays have been shown to make short work of inherently, fine-grain, data­

parallel problems.

In keeping with the "practical" nature of this thesis, it is highly desirable te di­

gress somewhat in order to substantiate this latter claim by demonstrating the ef­

ficacy of an array processor in solving the convolution problem. To this effect, an

experiment was conducted that does indeed demonstrate the effectiveness of one

array processor in as much as it was found te yield the best convolution perfor­

mance presented thus far in this thesis. But when the cost of this array processor is

factored in, this parallel solution can hardly be deemed "cost-effective".

The MasPar Experiment

The MasPar experiment entailed the parallelization of the sequential convolution

algorithm as suggested in Section 2.1 and the subsequent implementation on an

available MasPar MP-l [Mas, 19921 array processor. The resulting parallel code

constitutes a new benchmark called "PARCONV" and is featured in Appendix B.

The MP-l employs 2,048 PE's configured in a 64 x 32 toroidal mesh shown in

Fig. 2.2. As was done in the CONV benchmark, the time taken te execute the

32

•
2. Parallel Processing Solutions

double-precision floating-point process code within the computational portion of

the PARCONV benchmark was measured, although instead of user CPU time, this

figure is referred to as "DPU time" to reflect the isolated proeessing time of the Data

Parallel Unit (See Appendix B). Hence, the DPU time (or T2(118) was observed to

be 3.69 seconds implying a processing rate of 11.4 MFLOPS. Numerous attempts

were made to further optimize the code in the PARCONV benchmark yet the fastest

version that utilized specialized "uni-directional" routines for inter-processor pixel

transfers presented a mere 13.4 MFLOPS. When compared to the sequential al­

gorithm executed on the Silicon Graphies Indigo station this implies a speedup,

52048, of about 2 with a near ni! efficiency. In ail faimess, however, it is important

to remark that this speedup is substantial when one considers that the MP-1 em­

ploys very simple 4-bit processing elements each running at 1.8 MIPS (millions of

non-floating-point instructions per second) and that the 64-bit, double-precision,

floating-point performance of One PE is orders of magnitude below that of the In­

digo's R-4000 processor.

But perhaps the most important consideration is the cost-effectiveness of the

MP-1 processor array. Given that the MasPar MP-l's priee was $100,000 four years

ago and assuming it is the same today, one can estimate the cost per MFLOPS of

convolution processing power to be $7,s00/MFLOPS. Henee, with regard to this

cost/performanee metric, it is highly questionable whether floating-point cOnvo­

lution On the MP-1 is a cost-effective operation.

Taking a step back to review the architectures surveyed, it is clear that of the

three classes of parallel computer architecture studied, synchronous architectures

conformmost to the fine-granularity ofimage-processing tasks. In particular, SIMO

array processors were recognized as the natural choice in implementing inherently

data-parallel problems. The MasPar experiment illustrated how an array proces­

sor befits a paralle1ized convolution routine and how the MP-l supports the high­

est convolution computation rate reported so far. However, there remains one

1ast subclass of synchronous architecture which has yet to be presented, namely

33

•
2. Parallel Processing Solutions

Figure 2.2: MasParMP-l inteICOnnection network. The 2, 048 PE's are con.6gured
in a 64 x 32 toroidal mesh. Each PE in the array is connected to ils eight nearest
neighbours.

the systolic array. It is introduced next as a special-purpose synchronous architec­

ture which has dramatic performance potential. More importantly however, paral­

lelization by means of a systolic array will be offered as an inexpensive, and there­

fore highly cost-effective, parallel processing solution which will be adopted in a

high-performan~image-processing system thereby forming the foundation for the

main work in this thesis.

34

2. Parallel Processing Solutions

2.4 Systolic Array Architectures

Traversing the highways and byways of parallel computing in search of an archi­

tecture which will support a high performance, cost-effective convolution impie­

mentation, one ultimately ends up in the domain of systolic array architectures.

First proposed by H.T. Kung !Kung, 1982], the systolic array is a type of parallel,

synchronous architecture whose use has been chiefly application-specifie. Thus,

the context is being switched from general-purpose computer systems to special­

purpose computer systems or to what will be altemately referred to in this the­

sis as "hardware accelerators" implying high-performance, special purpose sys­

tems which are typically used in meeting specifie application requirements or in

off-Ioading computations that are especially taxing to general-purpose computers.

Principally, the systolic array architecture will be presented as a general method­

ology for mapping high-Ievel computations into high-performance, cost-effective

hardware structures.

2.4.1 Basic Architecture

Pipelines and systolic arrays represent a general means by which sequential al­

gorithms can be parallelized. A pipelined system, for instance, operates like

an automobile assembly line in which different people work on the same car at

different times and many cars are assembled simultaneously. Analogously, in­

put data enters at one end of a computation pipeline and partial results flow

from stage to stage until the last stage completes the computation and yields

the result. Systolic arrays function much in the same manner yet they are not

constrained to operate in linear schemes characteristic of pipelines. Rather, as

shown in Fig. 2.3, they can be rectangular, triangular, or hexagonal to make use

of higher degrees of parallelism. Moreover, to implement a variety of computa­

tions, data flow in a systolic system may be at multiple speeds in multiple dîrec-

35

•
2. Parallel Processing Solutions

tions - both inputs and (partial) results flow, whereas only results flow in classi­

cal pipelined systems. Examples of two-dimensional systolic arrays are plentiful

[Guibas et al., 1979] [Lehman and Kung, 1980] [Kung and Leiserson, 1978]

[Gentleman and Kung, 1981].

(a) (b)

Figure 2.3: 1Wo-dimensionalsystolicarray connection topologies are typically (a)
rectanguiar. (b) trianguiar. or (c) hexagonal.

A systolic system primarily consists ofa setof interconnected cells, each capable

of performing some simple operation. Simple, regu1ar communication and control

structures havesubstantial advantages overcomplicated ones in design and impie­

mentation; therefore, cells in a systolic system, which are basically simple process­

ing elements, are typically interconnected to form a systolic array or a systolic tree.

Information in a systolic system flows among cells in a pipelined fashion, and com­

munication with the outside world occurs oruy at the boundary cells. Kung likens

this 'rhythmically recurrent' flow of data to the flow ofblood within the body and

36

•
2. Parallei Processing Solutions

thus adopted the medical term 'systolic' for this subclass of architectures.

"...data flows from the computer memory in a rhythmic fashion,

passing though many processing elements before it retums to memory,

much as blood circulates to anà from the heart." [Kung, 1982)

2.4.2 Key Architectural Considerations

Discussion on special purpose computer systems in this thesis represents a narrow­

ing of scope or search space for systems which can handily overcome the convolu­

tion problem. To high-light the allure of the systolic subclass of architectures, we

must first review sorne key architectural factors that constrain the design space of

a special-purpose system. These elements, which will ultimately lead us toward

asystolie approach, are essentially cost-effectiveness, computation rate, and 1/0

bandwidth.

Firstly, cost-effectiveness is a crucial consideration. The cost of a special­

purpose system must be low enough te justify its limited applicability. Especially

in VISI designs, where a single chip comprises hundreds of thousands of compo­

nents, great savings can be achieved ifwe were to choose an architecture that read­

ily lends itself to decomposition into a few types ofsimple substructures or building

blocks, which are used repetitively with simple interfaces. The proposed systolic

architecture would be quite appropriate in this regard. In addition, such special­

purpose systems based on simple, regular designs are likely to be modular and

therefore easily adjustable to various cost/performance goals.

Secondly, as wehave mentioned before, a high computation rate, which is a con­

stant challenge te the special-purpose system designer, must be derived from the

concurrent use of many processing elements. Though the degree of concurrency in

special-purpose systems is largely determined by the underlying algorithm which

should be designed te introduce high degrees of pipelining and multiprocessing,

37

•
2. Parallel Processing Solutions

the burden of fully utilizing the available parallelism rests on architectures such as

the systolic type which can realize massive concurrency in a relatively straight for­

ward and facile manner. In tum, the consequences of massive parallelism are man­

ifested in terms of synchronization problems. When a large number of processing

elements work simultaneously, coordination and communication become signifi­

cant and more so in VISI technologies where routing costs dominate the power,

time and area required to implement a computation. Hence the simple, regular

communication and control found in systolic systems is extremely welcome.

Finally, 1/0 considerations greatly influence overall performance. The ultimate

goal in any special-purpose system is to balance the computation rate with that of

the available host 1/0 bandwidth. Furthermore, in Fig. 2.4 we may observe that

if the performance of a traditional computation model is 1imited by its 1/0 band­

width, then no matter how fast the special-purpose system operates, there can be

no improvement in throughput. However, orders of magnitude in throughput can

begained ifmultiple computations are performed per1/0access such as in the sys­

tolic approach. If the small systolic array in Fig. 2.4 uses each data item six times

within six different overlapped operations, then the throughput or the amount of

work done in a given time will increase six fold. Lastly, since an accurate a priori

estimate of available 1/0 bandwidth in a complex system is usually impossible, a

modular or systolic design will certainly prove auspicious as it is more easily ad­

justed te match a variety of1/0 bandwidths.

2.4.3 Balanced Systems

In the above discussion we have alluded that the systolic architecture which pos­

sesses the said features of simplicity, regularity, and modularity, is quite amenable

te the requirements of our special-purpose system. A systolic architecture would

indeed sèem optimal if only the algorithm that we hope ta implement also lends

itself te a systolic solution. The next subsectionwill show that this is truly the case,

38

•
2. Parallel Processing Solutions

1

(a)

Il 1
IŒMOR'r

5 MILLION

' ''-L[:J
OPERATIONS
PER SECOND

AT MOST

30 MOPS(b)

1 1
POSSIBLE

1ŒII0RY

100 ns

1
PZ

1

PZ

1
PZ

1

PZ

1

PZ

1

PZ

1

Figure 2.4: Comparison between (a) the traditional SISD computation model and

(b) the systolic computation mode!.

but before we proceed in this vain let us further develop the concept of a balanced

system.

Recall ourearlier discussion aboutbalanced special-purpose systems. We stated

that balancing computation rate and 1/0 bandwidth is the highest goal in special­

purpose system design. Ideally, we would like the system to fetch and write data at

the fastest possible rate, while ail the processing occurs simultaneously. 5ince 1/0

bandwidth is usually very difficu1t to improve without a great increase in cost, it

is the computation rate that designers usually try to improve upon 50 as to make

1/0 bandwidth the only rate determining factor in system throughput. We shall

call such ideal systems optimally balanced because they achieve the maximum

throughput aIlowed by the 1/0 bottleneck.

Now, depending on the nature of the memory, the special-purpose processor,

and the type and number of elementary operations to be performed to complete a

certain routine, the throughput may be either limited by the computation rate or

39

•
2. Parallel Processing Solutions

the memory access rate. The former implies an 'I/0-bound' problem and the lat­

ter is 'compute-bound'. In I/0-bound tasks the memory cannot feed the processor

fast enough whereas compute-bound tasks are characterized by the processor's in­

ability to compute at the rate dictated by the 1/0 bandwidth.

2.4.4 Convolution Revisited

The convolution problem can be viewed as an algorithm which combines two data

strearns, namely the kernel weights W(i,j) and the pixel values I(i,j), in a certain

manner to form the re,-ultant data stream Y(i,j). Moreover, convolt,tion and nu­

merous other routines such as filtering, pattern matdoing, correlation, interpola­

tion, polynomial evaluation (including discrete Fourier transforms), and polyno­

mial multiplication and division can be classified as being compute-bound tasks

and can thus be sped up with a systolic approach.

The notion of a compute-bound task is defined by Kung as a task in which the

total number of elementary operations performed is greater than the total number

of input and output elements. Otherwïse the task is considered to be I/0-bound.

This definition presupposes that whenever the number of operations exceeds the

memory accesses, the special-purpose processor will be compute-bound and will

not be able to compute results as fast as the memory is able to read and wrïte. We

may accept Kung's definition as a rough measure for the purposes of general prob­

lem classification, but we must always keep in mind that an a priori classification

cannot be accomplished without the aetual system pararneters.

Hence, using Kung's definition, we may classify convolution and other pixel­

group routines as compute-bound tasks. In the convolution of an N x N image

with an Mx M kemel, for example, we must load M2 +N2 operands (and store the

N2 results), yet perform considerably more (2M2N2) elementary operations on the

incoming data. Thus the throughput is likely to be constrained by the computation

40

•
2. Parallel P~oœssing Solutions

rate.

Speeding up compute-bound routines such as convolution, may often be ac­

complished in a relatively simple <'nd inexpensive manner, that is, by the systolic

approach. By replacing a single processing element with an array of PE's or cens, as

illustrated LrI 2.4, the compumtion throughput can be increased until the system is

optimally balanced. As Kung points out, the crux of this approach is to ensure that

once a àata item is brought out from the memory it can be used effectively at each

cell as it is "pumped" from cell to cell in the array. And this is possible for a wide

class ofcompute-bound computations where multiple operations are perforrned on

each data item in a repetitive manner.

As an example of the systolic approach, Kung's "W2" arclütectural design is

implemented at the register transfer logic level in a VHDL (Very High Speed Inte­

grated Circuit Hardware Description Language) simulator and the results arc rep­

resented in Fig. 2.5. The VHDL implementation is referred to as SYSTI and appears

in Appendix D. The approach here is to configure an array of processing cells as

shown in Fig. 25(a) each of which has the characteristic functions for Y.u' and X.ut

shown in Fig. 25(b). Tnough the weights W (which are equal to 2 for this exam­

pIe) stay stored in the individual cells, it is important to note that the partial re­

sults Y move twice as fast as the inputs X yielding the correct first convolution sum

(XlWl + X2W2 + X3W3) after an initiallatency as shown Fig. 2.5(c).

2.5 Summary

Ofthe parallel processorclassesconsidered, the synchronousclass appears to be the

best suited for low-level image-proccssing applications. Specifically, since systolic

arrays are simple, modular, expandable, and yield high performance, they meet the

architectural chal1enges ofspecial-purpose systems, and are therefore the preferred

parallel processing solution for the convolution problem.

41

2. Parallel Processing Solutions

•
(a)

r- I r- I
X]> X6 _>:?_> X4~

r- I
~Je ~ ~

'!?> _'.:_> ~
~ -1 ~ -1 ~ -1

W3 ---- W2 ---- WI ~

L --.J L --.J L --.J

(b)

Xin r- I XOIII YOUl - Yin + W • Xin---- X -
~ -1 X - Xin

Yin YOIII
~ W - XOUl XL -1 -

(e) ~ 20 JJ 40 !iJ fil 70 00 9l 100 110 120 li

IXIH L 1 •) .1 ? 1. , . 1 1 ; . 1 • q .1 a 1

IYIH 0

IIDITl0J ;-If . r ·-t ·1 r 1" ., l' l' 1 · ; ·1 q.

1IDIT11i n' l' 3 .) l' ? . ·, -'1 -r·
1IDIT12J 0 l' l' 1 ·) ï 1 '

ffllJIlOI o 1. 6 • . 14 4. 1 • 11 . .6 1. 10. 1 · 18 •1 16 .

ffllJIlIl ·0 • 1 . 6 •1 ?II 1 • 18 l, 1• 18· 1 · 16 .1 28·
ffllJIl21 8 ·1 ,. 1· -?fi • 94 1· 11· 1 .')') ·1 ?R-'

~~lllK

Figure 2.5: (a) Design SYSTI: systolic convolution array (a) and cell (b) where

weights stayand inputs, X,and partial results,y,bothmovesystolically in thesame

direction but at different speeds. A VHDL simulation (c) on the Vantage simulator

verifies that this architecture yields valid results after2 x (ARRAYLENGTIi-1)+1
dock edges.

42

•
2. Parallel Processing Solutions

To end, we should note that systolic architectures are also advantageous in

terms of higher level concems such as scalability, software overhead, and usability.

A unique characteristic of the systolic approach is that as the number of ceUs ex­

pands, the system cost and performance increases proportionaUy, provided that the

size of the underlying problem is sufficiently large. For example, a systolic convo­

lution array can use an arbitrarily large number of ceUs cost-effectively, if the kemel

size is large. This is in contrast to other paraUel architectures which are seldom cost­

effective for more than a small number of processors. Furthermore, software over­

head associated with operations such as address indexing are totaUy eliminated in

systolic systems. This advantage alone can mean a substantial performance im­

provement over conventional general-purpose computers. Lastly, from a user's

point of view, a systolic system such as the one we will present in the next chap­

ter is easy to use -one simply pumps in the input data and then receives the results

"on-the-fly".

43

Chapter3 A Systolic Solution

In Chapter 2 the requirement for asystolie approach is arrived at largely in an­

swer to the problem of parallelizing convolution. In essence, the research per­

formed in Chapters 1 and 2 forms the "bedrock" of the requirements definition

of a convolution processing system. These chapters give an answer to the ques­

tion "Why?" which is ohen the first question asked in any system design review.

Despite the longevity of the convolution project [Boudreault and Malowany, 19861

[Haule, 19901 [Panisset et al., 1990] [Côté, 19901 [Larochelle, 19911 [Drolet, 1992],

the purpose or driving force behind the project has never been covered at any great

detai!. Henœ the attempt \Vas made to address the highest level of abstraction of a

convolution system design as graphed in Appendix E. What would naturally fol­

low as a topic for this chapter is the system specification and the implementation

of one systolic solution [Malowany et al., 19901 [Malowanyet al., 19911 for the con­

volution problem. This will serve ta pave the way for discussion on the results of

the laboratory work required to fabricate and test a VISI systolic œil that is to con­

stitute the core of the systolic solution.

3.1 System Architecture View

The core of the convolution processing system is the systolic array of processing el­

ements shown in Fig. 3.1. For maximum performance to be obtained each process­

ing element should be a high-speed custom VISI chip which performs the basic

multiply and accumulate convolution operations in double precision IEEE format.

Configured in 9 rowS of9 custom chips, the arrayallows a 9 x 9 convolution kemel

to beapplied in a single pass. The array can alsobe configured for one dimensional

data, in which case an FIR filter with 81 coeffièents is implemented.

44

3. A Systolic Solution

VMEbus -J 1-- INTERfACE INPL'THfO INPUT 1.
CONTROLLER CONVEKTf.KIJ

j
1: rowl

68020 :> row:!.
..LJLJLLiJ.- - u ...1...1...1 ...+...+...J..1...J.MICROPROCESSOR '" row3

"> Ü ...1.. •by.· . .J..
", .. ,. row4

~
:::>~

'" ...L SYSTOLlC.L···
" CQ~ 9 row~ ..+CONVOLU110N -J...S1 ..:Il;. .:i row6

~
tS., :< row7 "'r ARRAY .•.•.

S~
,.

:+:r:p:::rr:r::1::~ rowg
~

"' row9

-~ l-
e

I-~
LOCALRAM

-~ LOCAL ROM I--~ OUTPUT ~lFO

Figure 3.1: An:hitecture of the systolic convolution processing system.

Gearly, the dedicated systolic processing cells need much additional support

circuitry that will supply the data sequence to the rows of the array in a timely fash­

ion and that will store it after processing. Details of the board-Ievel work for the

convolution project can be found in [Panisset et al., 1990] [Drolet, 1992].

3.1.1 The Sensor Computing Environment

The convolution processingsystem is to be implemented as an "intelligent" periph­

eral that can be easily integrated in the local image-processing environment which

is referred to as the Sensor Computing Environment [McROM, 1990]. The Sensor

Computing Environment is a multiprocessor VMEbus based system which incor-

45

•
3. A Systolic Solution

porates a number of single-board computers and peripheral boards such as a laser

range-finder and a variable camera. They run under VxWorks (WmdRiver Soft­

ware), a real-time "flavour" of the UNIX operating system.

3.1.2 Interfacing Requirements

To meet the VMEbus interfacing requirements, the convolution processing system

includes a DMA (Direct Memory Access) engine built from an embedded Motorolla

68020 microprocessor and a VTC VIC-068 VMEbus interface controller. The DMA

engine is responsible for fetching the image data from the host computer memory

and for writing back the convolved image.

3.1.3 Data Stream Manipulation

The source image is read by the DMA engine in 4Kbyte bursts and transferred

into the source FIFO (first-in first-out) queue [Botzas and Masson, 1990] where it

is handed out in piecemeal fashion to the input converter.

The input converter subsequently takes the data from the FIFû and optionally

converts it into the double-precision floating-point format suitable for the systolic

array processing elements. Input conversion is required since image data often

originates in integer format. For instance, fram~grabbers typically generate 8-bit

integer data and devices such as me laser range-finder used in the sensor comput­

ing environment produce 16 bit integer values. Moreover, the input converter can

also pass along data already in floating-point format -data which may have origi­

nated from the results of a previous convolution routine.

Next, a delay memory circuit (DMC) then takes care of feeding the lines of the

image to the convolution array in the proper sequence. Each line is sent to the array

9 times, once for each row in the array. In addition, the DMC handles the border

46

•
3. A Systolic Solution

effects by extending the source image with a border of zero-valued samplcs. lt may

also be used to up-sample the data, priming it for interpolation.

The data coming out of the systolic array is processed by the output convertcr

which maps the floating-point numbers back into integer format if required. This

proves to be useful when the resulting image is destined for display on an RGB

monitor which typically accepts 8-bit intensity values. The output convcrter may

be bypassed if magnitudes or numerical precision are unnecessarily sacrificed in

the integer conversion, or if the data is to be fed back for another round of floating­

point processing.

The output data is then written to the output FIFO after which the OMA en­

gine ensures that convolved samples are written back to host memory whenever

the FIFO is half-full. In otherwords, when there is a sufficient amount of processed

data available, it is transferred back to the host computer which initiated the con­

volution operation.

Table 3.1 summarizes sorne features of the proposed systolic convolution pro­

cessing system.

Feature Description
Architecture Systolic
Signal type 1-0 or 2-D
Number of processors 81
Kemel configuration 9 x 9 (2-D)

81 x 1 (1-0)
Arithmetic Double precision

floating-point (IEEE 754)
Interpolation Up-sampling

(2x or4x)
DMAengine MC68020

with VTC VIC-068
Estimated performance U6MFLOPS

with 12.5 MHz dock

Table 3.1: Features of the convolution system.

47

•
3. A Systolic Solution

3.2 Systolic Convolution Array

Fig. 3.2 iIlustrates how the systolic processing elements or cells are to be configured

to perform the discrete convolution of image data. For simplicity, a 3 x 3 array is

shown, however the reader can weil extrapolate the information for the proposed

9 x 9 array size. Firstly, each systolic cell in the two-dimensional array is loaded

with coefficients CI through C9 that correspond to entries in the convolution ker­

nel matrix. For optimal performance the array size should match the dimensions

of the kemel. Furthermore, the first (top left) cell in the array is supplied with a zero

valued Yon representing an initialized partial convolution sumo The remaining task

is to feed each row of the array with pixel intensity values that come from consecu­

tive lines in the image. Input pixel data then flows through the Xin and X.ut ports

of each cell and is multiplied with the local coefficient and added to the incoming

partial convolution sum from the Yin ports. The partial convolution results thus

flow out from the Y.ut ports until each cell has made its contribution and a complete

weighted sum of ail pixels involved is produced at the last (bottom right) cell in the

array. It is important te note that inputs and results flow at different speeds and

that each input pixel is combined with each partial result at some point in the array

so that convolution results are produced at every pipeline cycle afu:r the initial la­

tency. If the delay memory circuit does its job, the rows in the array are constantly

fed with seriai image data and the effect is like sliding a convolution operator over

the breadth of the image -although it would appear more like the image is being

squeezed through the convolution operator. Lastly, the array can be configured in

a linear scheme which implies that the multiplexers at the left array boundary are

simply made te select a one-dimensional data stream rather than the consecutive­

line data from a two-dimensional image. This systelic convolution array function­

ality will be revisited when data flow validation is done in the following chapter.

48

•
3. A Systolic Solution

"""1 Xi. %<Ne - %iD %<Ne - Xi. Xoue

Cl C2 C3

0- Tin Toue - Tin Toue - YiD Toue 1-

_,Lj;J_f-- %iD %<Ne - Xi. %<Ne - %iD %<Ne-,n
C4 CS C6

c...- Tin Tout - Tin Tout - n. Tout 1-

Lj;J3 HlJX %iD %<Nt - zin Zout - %iD Xout -:.2!....- 2:D

C7 CS C9

""- Tin T...t - Tin Tout - Tin Tout~

Figure 3.2: Systolic convolution array.

3.3 Systolic Cell

Fig. 3.3 and Fig. 3.4 represent the systolic cell architecture and associated tim­

ing of the individual processing stages. The systolic cell is designed [Côté,19901

[Larochelle, 19911 to multiply a pixel intensity by a given coefficient and add this

produet to a partial sumo The architecture is organized into three stages which

perform the multiplication, addition, and normalization operations in a pipelined

fashion. Each operation requires exaetly 16 clock cycles (labeled clock 0 through

clock 15) for completion. The incoming pixel intensity is multiplied by the coeffi­

cient value in Stage 1 and the result is transmitted to Stage 2 at clock cycle 15. While

Stage 1 begins its operations on the next pixel intensity, Stage 2 adds the previous

result from Stage 1 to the incoming partial sum in the following 16 c10ck cycles. Fi-

49

•
3. A Systolic Solution

nally, in Stage 3 the floating-point sum from Stage 2 is nonnalized during the sub­

sequent 16 dock cydes. Ali internai stage data transfers are 64-bit parallel transfers

whereas input

output communication to and from the cell is done on 4-bit (nibble) seriai basis. The

key design features of the individual components of the systolic cell are presented

next.

Xln+ 32 by "'BIT WIDE SHIFT REGISTER Xout

·t.-------.
MULTlPUCATlON

STAGE 1

ADDmON M, NORMALIZATlON
STAC;E~

, ,
STAGE 3

Yin
15by4
SHIFT

REGISTER

Figure 3.3: Systolic œil architecture.

16by4
SHIFT

REGISTER

•-+ Youl

3.3.1 X Input Register

The X input register is a 32 by 4-bit wide shift register which delays the incoming

pixel intensities by32docks cycles before transmitting them to the nextsystolic cell.

50

•
3. A Systolic Solution

Xin

Sbge1 I_--.;...·_.... ·..;.···_··.. ·....;..·_........;....---.;..---..;.---':-.;---:-....;---.;...---;.........;_~·I~".•...•.•----J..:,:...... ... :... ", ;. H' .: ," .-" ", ~

Yin

Stlgc2

· , . , . . , . . .
• • • • l , , • • •

=I::::(::r::::::r::r:!:r::r:::!r, : .. : , ,
• 1 • , , , , •

...~
Stlge3

Yout

CLK

=:] :::::~:::::::i::::::::i::::::i:~~:·:i .. ':., ..'::'I~
1 • , , , • l , , •

o 2 3 4 5 6 7 8 9 10 Il 12 13 14 IS 0

Figure 3.4: T1IIIing diagram for the systolic ce11. The X and Y data streams are
merged to forro the output stream Y', and each stream is shown indexed with re­

spect to nibble. Each stage yields valid data on cycle 15 whereupon a11 transfers
occur.

3.3.2 Multiplication Stage 1

Coefficient Register

The coefficient values must be loaded before any convolution processing can occur.

Therefore, a systolic cell has a mode in which it can bit-wise load a double-precision

floating-point coefficient value into a 64-bit shift register called the coefficient reg­

ister. By connecting the Cout of each cell to the Côn of an adjacent cell in the array,

the coefficient registers can be chained together fonning a single shift register from

which aU coefficients in the array can be clocked in serially.

51

•
3. ASystolic Solution

Mantissa Multiplication

As is customarily taught in elementary schools, long-multiplication can be facili­

tated by considering the multiplier in smaller chunks (or digits) which individu­

ally are easier to manipulate since the pupil (or machine) can refer to a short pre­

memorized multiplication table. ln the stage 1 mantissa multiplication of the co­

efficient with the input Xi" the scenario is much the same. The Xi" binary input

is considered in 4-bit (nibble) chunks. Because the coefficient is COI'lstant during

the entire convolution process, it is possible to compute in advance a multiplica­

tion look-up table that stores the multiplication results of the coefficient multiplied

with ail possible numbers represented by a 4-bit binary n'.UIIber. There are 16 such

multiplication results that are computed once at initialization of the chip. During

run-time, the incoming Xi" nibble indexes one of these multiplication results via

a multiplexer. AlI that remains then is the accumulation of the left-shifted multi­

plication results using a carry-look-ahead adder. One multiplication result is ac­

cumulated per cycle to a register called the product register. The multiplier Xi" is

cycled in nibble-by-nibble and the overall multiplication result is only valid once

alI 13 nibbles of the incoming 52 bit mantissa have been shifted in and processed.

Exponent Addition

The last three nibbles in the 64-bit floating-point Xi" input contain the the exponent

and the sign-bit. During the last (16th) cycle of the clock, the exponent circuitry

reaches into the Xi" shift register and adds the exponentbits with those of the stored

coefficient exponent. As weIl, the resulting sign is generated.

52

•
3. A Systolic Solution

3.3.3 Addition Stage 2

The addition of the incoming partial sum }.;,. and the product from Stage 1 is per­

formed in Stage 2. Stage 2 receives both of its operands at the rising edge of the first

dock (dock 0). The first 60 bits of the partial sum }.;" input have becn loaded in a

15 x 4 shift register during the previous 15 dock cydes. The remaining 4 bits are

already present at the Y input pins.

Since this numerical processing is being conducted in floating point arithmetic

the operands must be aligned before addition can take place. Floating point addi­

tion involves determining which operand is bigger, aligning the smaller number to

thebiggeroneand the.'l summing the two mantissas. Theexponent value of the big­

ger number is unchanged and will be the exponentof the sumo The alignment takes

place by shifting right the mantissa value of the smaller number by the number of

bits corresponding te the difference betwecn the two exponents. If the difference

betwecn the two exponents excecds 54, the mantissa of the smaller number will be

completely shifted out and the bigger number will be completely unaffected by the

addition.

3.3.4 Normalization Stage 3

Stage 3 is responsible for normalizing the results from Stage 2. A floating-point

number is normalized when the left-most 1 in the mantissa is exactly to the left of

the binary point. The mantissa is therefore shifted left until the latter condition is

met and the exponent is decremented by the same value since each shift left oper­

ation is like multiplying by two and therefore the whole number must be divided

by two te retain its numerical correetness which means subtractirg 1 from the ex­

ponent.

53

•
3. A Systolic Solution

3.3.5 Partial Sum lransmission Unit

The 16x4 shift register is responsible for the transmission of the partial sum to the

next celI. The normalized number from Stage 3 is loaded into the register on the

rising edge of Pulse O. Il is shifted out four bits at a time during the following 16

clock cycles. Note that this nibble-wise serialization of1/0 data greatly reduces the

amount of interconnecting pins and wires between cells.

3.4 Summary

The problem of paralIelizing the two-dimensional convolution operator requires a

systolic solution. Hence, a board-Ievel solution is presented that is to be integrated

as a peripheral in the Sensor Computing Envïronment. The core of this systolic sys­

tem architecture employs a 9 x 9 systolic array of processing celIs. Each systolic celI

is implemented on a VLSI chip and is organized into th.--ee stages which perform the

double precision f1oating-point multiplication, addition, and normalization opera­

tions in a pipelined fashion.

54

• Chapter4 Fabricating and Testing the Systolic Convolution
Cell

Although many design issues for the systolic convolution cell have been cr... crcd

thus far, the cell design and its VLSI implementaticn are certainly not new and

have been addressed before [Côté, 1990] [Larochelle, 19911. Whal this thcsis is cx­

clusively responsible for, however, is bringi:lg about a manufactured and testcd

systolic chip that could be used in high performance image processing systems.

This chapter directs its attention on the author's practical work in achieving thL'SC

goals. In terms of the VLSI design life cycle activity as charted in Appendix E, the

author was chiefly responsible for ail activities following and partially inc1uding

"layout/unit simulation".

4.1 Fabrication Process

Preparing the systolic convolution cell fc.,! fabrication requircs an intimate familiar­

ity not onIy with the design but with the CMOS process used, with the rules that

constrain the process mask and packaging features, with the design and validation

tools that are required, and with the design submission process.

4.1.1 CMOS3 DLM Processing Steps

Prototype integrated circuit fabrication was available through the Canadian Micro­

electronic:: Corporation (CMC) using a process called CMOS3 DLM - a Northern

Telecom Electror-jcs 3-micron single polysilicon, double metal P-well CMOS pro­

cess. Because of the 3-micron minimum feature size, the supply voltages of the fin­

ished devices are limited to 5 volts. The CMOS3 DLM process is actually quite a

55

4. Fabricating and Testing the Systolic Convolution Cell

unique and elaborate process and it needed to be thoroughly understood prior to

the commencement of any layout related work.

CMOS3 DLM has 13 proces~ing steps each with its corresponding mask listed

below:

• P-well

• N-well

• Deviee weil

• P-guard

• Capacitor P-doping

• Polysilicon

• N+

• P+

• Contact

• Metall

• Via

• Metal2

• Passivation

Once P-well and N-well regions are defined, the device weIl processing step de­

fines the regions which will become drains, sources, channel regions, diffusion in­

tereonneets, and eapacitors if present.

The next photolithographie step uses the P-guard mask to aeeomplish a P­

iiüplant into P-well regions which eve..'1.tually defines the threshold voltage of the

P-channei transistors.

After defining the bottom plates ofeapacitors (there are none in the systolic ceIl)

with heavily doped P+ using the eapacitor mask, the polysilieon (5i02) mask is

•
4. Fabricating and Testing the Systolic Convolution Cdl

used to define the gate regions, poly interconnections, and the upper plates of ca­

padtors if present.

The subsequent N+ and P+ processing steps are used to further define source

and drain regions and contact regions.

Once contact regions have been etched out, the first layer of alurninurn is de­

posited over the entire surface and the rnetall rnask is used in a photolithographie

operation to define the rnetallization lines.

A second layer of 5i02 is deposited over t.'le entire surface and the "via" rnask

is used tO etch out via regions which are used to connect rnetall to rneta12.

Once the second layer of alurninurn has been evaporated over the wafer, the

meta12 mask defines the metalization lines whose purposes indude bonding and

probe pad placement.

Lastly a passivation layer is deposited over the entire surface and the passiva­

tion mask is used to etch out regions over the metal bonding pads and probe pads.

4.1.2 CMOS3 DLM Design Rules

To make the layout representation of the syslolic cell design suitable for fabrica­

tion, more than two weeks were spent entirely devoted to fixing masks that vie­

lated the Northem Telecom Electronics 3-micron CMOS process design rules. 'The

design rules that werebreached induded those that specified minimum feature size

for each layer (mask), those rules that specified minimum sl'adng between features

of the same layer, the rules that constrained the geometry ofa layer that either com­

pletely surrounded or partially overlapped the geometry of another layer, and the

rules for the 68-pin PGA package. AlI these design rules were specified using a 5­

micron scale (design scale microns) for the mini..-nurn feature size. The designs are

scaled down at Northem Telecom to 60% of the specified dimensions prior to the

57

•
4. Fabricating and Testing the Systolic Convolution Cell

creation of the pattern generator (PG) tapes.

4.1.3 Packaging and Bonding

The final steps in manufacturing chips are packaging and bonding. Once the the

systolic cell is fit into the cavity of a package, bonding is achieved by connecting

the fingers surrounding the package cavity to a standard pad frame supp!ied by

the CMC or it may be custom designed. In the case of the convolution cell chip,

the huge transistor-count (nearly 50 thousand) necessitated a special request for an

"oversized" pad frame that exceeded the dimensions of the standard size-A (full­

size) pad frame.

AIso requested was a 68-pin grid array (PGA) package with a removable!id that

permits physica:I access to the chip and bonding wires, to allow for probing or other

diagnostic procedures. Once the dlÏps returned from fabrication, aIl the !ids were

indeed removed for a microscopic inspection of the silicon. No visible defeets were

observed.

In Fig. 4.1 the 68-pin PGA package has been reproduced perfectIy to scale. The

top view is shown with the !id removed while the bottom view portrays the pin

numbering scheme. The cavity size of the PGA is approximately 1 square centime­

ter or 410 square mils where 1 mil is the popular unit of VlSI dimensions represent­

ing 1 millionth of an inch.

There are 17 metal fingers on each side of the square foi' bonding wire connec­

tions. These bonding wires connect te bonding pads on the pad frame, and like

the rules which govern mask geometry features there are also rules for pad place­

ment. The sharper the angle of the bonding wire (for example, greater !han 45 de­

grees), the greater the strain on the wire and the more unreliable the connection.

The longer the bonding wire, the greater the risk that the wire will droop and pos­

sibly cause a short circuit te other wires. The risk is compounded if aIl the bonding

58

•
4. Fabricating and Testing the Systolic Com'olution Cdl

e/
/

/00®®@@8@@
@(j)Œ)®0®@@@@@
@@ @@
@@ @@
@@ @@
@@ @@
@@ @@
@@ @@
@(§ @@
@@@@@@@@@@@

@l@@@@@@@@

Figure 4.1: Top and bottom view of package.

59

•
4. Fabricating and Testing the Systolic Convolution Cell

pads are placed close together on one side of the design. Moreover, the pads should

be collinear in placement to prevent bonding wire paths from crossing. The insight

gained with respect to pad placement can be summarized as follows: place each

pad so that the length of the bonding wire to the corresponding ccnnection finger

on the package is minimized and the separation between adjacent bonding wires

is maximized.

4.1.4 CADENCE VLSI Design Softwa1"e

A large part of this thesis involved leaming to use CADENCE's ViS! Design soft­

ware tools. The EDGE Design Frameworlè"" provides a completely integrated set

of ViS! design and verification tools in a menu-driven, graphical environment. A

few basic concepts with regard to the ViS! design tools used wiIIlend insight as to

how a project of this magnitude is realized.

4.1.5 Design Files and File Hierarchy

The overall design of a chip can be looked upon as a hierarchy of blocks, with each

block representing some functional unit of the complete chip. The block size is de­

pendent upon the design approach taken for the chip and could be anything from

a single transistor to a complete microprocessor. Each block may incorporate sym­

bollc instances of other blocks, in which case a hierarchy of blocks will be formed.

The blocks themselves may have many different representations depending

on the role of the block in the overall design. There are representations for

"schematic", "symbolic", "layout", "extracted", "silos", "spice", and "autoLay-

out", to name justa few. The representations are further divided into revisions. The

"current" revision contains the mest recently saved revision. There can be many

"backup" revisions as well.

60

•
4. Fabricating and Testing the Syslolic Com'olution Cel!

Within the UNIX file system, a11 the blocks used in a design, except those from

some common libraries, are usua11y created in a common directory. The blocks are

simply subdirectory entries in this common directory. The representations are sub­

directory entries in the block directories. The revisions are the actual binary design

files, which are stored in the representation sub-directories.

4.1.6 Edge Database Format

In the EDGE environment, a11 design files, independently of what type of repre­

sentation they are intended for, share a common database format. The database

format is flexible enough to be able to describe representations which contain only

geometry, such as "layout", representations which contain only electrical connec­

tivity, such as "extracted", representations which contain only textual information,

such as "silos" and "spice", and representations which contain aU three, such as

"schematic" and "symbol". The database format also provides the means to de­

scribe the instance hierarchy and attach properties to any of the database objects.

Geometry, instances, pins terminais, nets, labels and properties are a11 objects

in the EDGE database format. Geometrical objects are stored as sets of coordinate

points which describe boxes, polygons or other shapes drawn on particular layers.

Instances are pointers te symbol representations of other blocks. Each instance is

assigned a unique name within the schematic to distinguish it from other i...,stances

of the same block. Pins and terminais are used to descnbe input/output terminais

of the schematic and of each instance in the schematic. Nets are used to describe

the connectivity between alI the terminaIs in the block. Labels are used to put text

strings in the design and properties are to describe dlaracteristics of the entire de­

sign file or the specifie objects in the design file.

61

4. Fabricating and Testing the Systolic Convolution Cell

4.1.7 Schematic Representations

The schematic representations of a block is one in which the electrical functionality

of the block is described using instances of symbols, pins for the input and output

terminaIs, and wires that represent the interconnection nets. Fig. 4.2 shows the top­

level-block schematic representation which also illustrates the floor plan of the sys­

tolic cell. Further, in Appendix F an effort was made using the 5KILL programming

language native te CADENCE tools te capture the complete hierarchy of schematic

representations. The schematics of sorne of the key blocks in this hierarchy are also

included.

h
T .

X_rC9_28x4 _ L_ -- ~~
.~. --- -

=fton'.~ L
stcge1_ mon

=~
• -=::::!. -- - stogef-exp -=

i~.
• .L lIn exp

:::q;;;.
Yln.men +- J 1. ïJ..d

II -~ '1
stoge2_ex :: - sloge2_mon -i-

l ::: , l. 11
• 1 1 1III-..... -

stoge~_ex
_:J l' 11
= sloge3_mon .i-

l - 1
l Il l
1 1 -Veut_exp - YouLmon -

~- --
Full Circuit • ~ &:!'k-

Figure 4.2: Top-level-block schematic representatïon illustrating the floor plan of

the systolic cell

62

4. Fabricating and Testing the Systolic Convolution Cdl

4.1.8 Custom Layout

The layout representation of a block is one in which the masks used for the fabrica­

tion process are described geometrical!y using rectangles and polygons on different

process related layers. The layers (masks) used depend on the technology :n which

the block is being implemented. ln our case the layers file was setup to contain al!

the layers necessary for the CM0S3 DLM technology.

As in the case of hierarchical schematics, hierarchical layouts are used to Te­

duce the complexity oflarge layouts. Custom layout is a tedious and involved task,

hence one tries to create a small core set of essentiallayout blocks that can be in­

stantiated together in more complex arrangements to build the major blocks of the

layout. Layout revision files tend to be enormous, due to the amount of geomet­

rical information being stored. 5ince instances are simply pointers to the master

block (not copies) significant memory saVÙlgs can be achieved and the computer

can work with the data rar more efficiently. ln addition, if a change is made within

a layout block, the change is reflected immediately in al! instances of that block.

The layout for the systolic cell was totaIly "custom" which does mean that the

layout representation oreach and every block was created manually. A sample ceIl

layout of a flip-flop is shown in Fig. 4.3. The dark patches in this figure highlight

the placement of P-type (pin) metall and meta12 layers which are used to impress

or probe signaIs on desired nodes during simulation. lndeed since the designers

of some of the lower level blocks had neglected to save the corresponding simula­

tion files, many such lower levellayout representations required revalidation with

the HSPlCE simulator before the chip could be sent out for fabrication. Fortunately,

oruy a few small dock buffers had to be "squeezed" into the top-Ievellayout to en­

sure sufficient dock drive. The overalllayout representation both in its hierarchical

form and its "exploded" form appears in Fig. 4.4 and in Appendix F.

63

PH'

•
4. Fabricating and Testing the Systolic Convolution Cell

~H-,--+-H-I'~lxt1~ ~ 1= H~1~ ~~ -@. 1~ Il~1
~

IIIX

Figure 4.3: Sample celllayout of a flip-flop. The dark patches lùghlight the place­
ment of P-type (pin) metall and metal2 wlùch is used to impress or probe signals
on desired nodes during simulation.

64

4. Fabricating and Testing the Systolic Convolution Cdl

•,
~
, . tcge2_ li ""

! 1TITrrM~~:====J'9"ii~"":::::::===it·
lJ.Illdill~~ t age / _ ni CI 1

.toge3. "I."...,..;R-,4L-------,,_++------IfHll
, 1111 '-' stoqe.:> non

Figure 4.4: Layout representation.

65

•
4. Fabricating and Testing the Systolic Convolution Cel!

4.1.9 Layout Submission

Once a valid layout was produced that passed ail design and packaging mIes, it

was a challenge to export the design data from the CADENCE environment to the

site of the Canadian Microelectronics Corporation. Ail design data submitted to the

CMC must be in the Caltech Intermediate Form (CIF 2.0). A comylete description

of CIF syntax is given in [Mead and Conway, 1980]. The CMC checks submitted

designs with their own design rule checker called DRACULA"" which utilizes more

conservative mIes than those used in the CADENCE environment. The increased

constrai..,ts imposed by the CMC had caused further mIe violations, and the design

had to be resubmitted 6 times before it was accepted forfabrication. After 6 months,

5 manufactured chips retumed from the Northem Telecom Electronics fabrication

laboratory. The foeus then tumed to the anxiously awaited though momentous task

of testing the systolic convolution chip.

66

•
4. Fabricating and Testing the 5ystolic Con\'l)lution Cel1

4.2 Testing

While in real estate the refrain is "Location! Location! Location!", the comparable

advice in le design according to [Weste and Eshraghian, 1993) should be "Testing!

Testing! Testing!". Indeed, we will now look upon the testing of the systolic convo­

lution cell under a structured framework in which the key aspects of VLSI testing

are also surveyed.

Due to the complexity of the manufacturing process not all die on a wafer cor­

rect1y operate. Small imperfections in starting materiaI, processing steps, or in pho­

tomasking may result in bridged connections or missing features. Hence it is the

aim of a test procedure to determine which die are good and should be used in end

systems.

Tests may fall into two main categories. The first set of tests verifies that the

chip performs its intended function. In our case, the intended function is the basic

floating point multiplication, addition, and normalization required of the systolic

cell. These initial tests assert that ail the components in the chip, acting in concert,

achieve the desired function. These tests are usually used early in the design cycle

to verify the functionality of the circuit and are called functional tests. They may

be lumped into the verification activity.

The second set of tests verifies that every gate and register in the chip functions

correctly. These tests are used after the chip is manufactured to verify that the sili­

con is intact. These are called manufacturing tests. Generally speaking, the nature

of design usually leads one to consider function before manufacturing concems.

4.21 Functional Testing

For most systems, functionality tests involve proving that a circuit is functionally

equivalent to sorne specification. That specification might be a verbal description,

67

•
4. F~bricating and Testing the Systolic Convolution Cell

a plain-language textual specification, a description in ;;orr.e high-Ievel computer

language such as C, FORTRAN, PASCAL, or Lisp or in a hardware-description lan­

guage such as VHOL, ELLA, or Verilog, or simply a table of inputs and required

outputs. Functicnal equivalence may be carried out at various levels of the design

hierarchy. If the description is in a behaviourallanguage, the behaviour at a system

level may be verifiable.

For the systolic convolution array, a top-Ievel, behavioural and structural VHDL

specification is included in Appendix D. A sample simulation result shown in

Fig. 4.5 verifies the intended functionaiity of a simple three-cell systolic array. By

virtue of the row latency in the SYST2 systolic design, accurate convolution sums of

the current pixel intensity Xin and its two seriaI predecessors occur seven pipeline­

dock ~dges after the current sample. Note that ail weights in this example are ail

equal to 2, and that the initial partial sum input yin to the lcft-most b01mdary of the

ar.ay is fixed to zero. The first convolution sum, hence, for the X in values of 3, 7,

and 2 is 24. The convolution sum for the next sequence 7,2, and 6 is 30, and 50 on.

This kind of functional v~rification at the system specification level was precursor

to basic functional testing of the systolic cell itself. These basic functional tests were

conducted on the manufactured chip itself and were used not only to verify basic

functionality but to provide valuable input/output specifications of ail ports on the

chip.

4.2.2 Manufacturing Testing

Whereas functionality tests seek to verify the function of a chip as a whole, manu­

facturing tests are used to verify that every gate operates as expected. The need to

do this arises from a number manufacturïng defects that might occur during chip

fabrication. Typical defects may include laver-to-Iayer shorts (ie. metal-to-metal),

discontinuous wires, or thin-oxide shorts to the substrate or weil. These in turn

lead to particular circuit maladies, including nodes shorted to power or ground,

68

•
4, Fabricating and Testing the Systolic Con\"olution Cdl

1 ~ ~ j) 40 51) &J 70 EJ ;.J lel 1:0 l:'J r

IXIN j . 1 ; . 1 1 . t 1 · j 1 ~. 1 Q 1 5 1 c

nm Q

mmloJ .0 1 j 1). 1 2 1 '5 l' j . 1 5 '1 c

mml!1 O· 1 3 • 1 .) l' 1 1 · h 1 3 .

olllil2) 0 l' j 1) 1 1

hTlJTiOI 0 1 ~ 1 14 , 1 • 1. 12 ' 1 · 6 .1 10 ..,

rm.~I!1 0 • 1 5 1· 21). 1 · 18
, 15 ..,

nOm2J . 0 1 · h ·1 711·

fl~J:L ~l""1a.K ' :' • LrLIL. .'--

1

l~~ 200III loID 1:<1 lro lin 100 210 22J 2]) 20ID 250
1

IXIH • 1 .10 1 tl. 1 • tl .1 t1 1. 14 1 .1\ 1 •

nm 0

mmlOI ·9 1 8 • 1 ~
,. 10 . , '11 '1 12 1 • Il ' 1 14 ,.

mmlll · J 1 ; · , ~
,. B . 1

. , " tU , . li · , 17 l'

mml21 ·2 1 6 · 1 1 r 5 1
. , ï 8' 1 • c · 1 10 r

I\TlJTIOI •10 1 t8 • 1 16 1. lB . 1 .211 .t ?? 1 • 24 • 1 15 1.

I\1lJ1ll1 ·15 1 18 • 1 16 1. 28· 1 l4 1 •):1 • 1 47 1..

1\1lJ11~1 '20 1 · 24 ' 1 '1\ 1· 1). 1 'lR ·1 ~ 1 • 44 • 1 Il 1·

~.IQ.K · .. '" '" .· "

Figure 4.5: VHDL simulatbn of the SYST2 design on the Vantage simulator
demonstrates valid results after 2 x (ARRAYLENGTIi - 1) + 3 dock edges.

69

•
4. Fabricating and Testing the Systolic Convolution Cell

nodes shorted to each other, floating inputs, or disconnected O'ltputs. In general,

manufacturing-test generation assumes that the chip runctions correctJy, and ways

of exercising ail gate inputs and of monitoring ail gate outputs are required.

4.2.3 Testing Process

Having introduced the concept of functionalîty testing and manufacturing testing,

it shouJd be made apparent that conducting these tests on a chip once it has re­

tumed from the fabrication laboratory can be a long and arduous process. How­

ever, if time is spent to suitably prepare and automate frequently performed tasks

then the tests can be made Jess overwhelming.

The first con("em in the mechanics of testing the systolic convolution cell was

in deveJoping a good testing environment. The test environment constituted those

devîces which were used to stimulate the chip under test as weil as those which

were used to analyze the resulting responses. Conventional methods were first con­

sidered in which the chip would be "bread-boarded" and manually tested with a

data generator/ data analyzer pair. Yet in light of the lengthy iterative testing pro­

cess at hand, it was concluded that this approach would prove far too time consum­

ing and laborious.

The availability of "networked" testing equipment opened up the much more

attractive possibility of a "fully-automated" testing environment. The testing

equipment which still comprised primarily of a data generator and data analyzer

were brought under remote-control from a senes of centialized test programs that

ensured expediency in the test process. Tests could be run and rerun with ail but

a few seconds delay. Hence, as will be stated shortly, much software deveiopment

effort was invested in the ways of test environment automation, and this work was

as much a part of this thesls as it was a direct contribution to the testing community

of the VIS! laboratory of McGill University.

70

•
4. Fabricating and Tcsting the Systolic Com'olution Cdl

Automated Test Environment

The overall block diagram of the automated test environment is shown in Fig. 4.6.

As can be seen, the controlling computer is linked to the test equipmcnt through an

HP-IB bus. This bus allows two-way communication between the compute. and

other devices in the form of commands and data transport. In this way, a11 data

gathered by the test equipment is accessible by the controller and can be processed

using a variety of sofnvare tools in a UI\TJX environment. This importing of "mea­

sured" results into the computer workstation also great,y facilitated the testing pro-

cess.

HP 1S42SA

~
HP 1~lolA

1TESTIlEAD E ~ TRI-sTATE UNIT

@~•
~ ,

1

HPRISIA
E ~ E OATA GEN. E.XTENDER

··.-...
HI'tHl«IA

HP·lB AM....,,, ()./ E ~ DATA GENERATOR
~...
s:.: HP818ZA,

1::: E " OATA ANALY.I.F.R

SPARCwtion 1

~ jwilh Ht~S4SI0A

1E ~ E OSCILLOSCOPESCSlollllllS IEEE 488
Il'o"I'ERfACE

"j HP6632A

1E oc POWER SUPPLY

"j HP 34S8A

1E MULTIMETER

07. OJI

09./0

22

Figure 4.6: The test environment was automated via a SPARCstation 1 and an
IEEE488 interface to the HP-lB bus.

71

4. Fabricating and Testing the Systolic Convolution CeU

Testhead Layout

The connection between the test equipment and the device under test (DUT) was

accompiished with a Hewlett-Packard 15425A testhead. The outer ring of the test­

head can accommodate up to 84 connections of which 27 are double (bidirectional)

channels. These channels are connected to 84 "pogo" pins at the inner ring through

optionalload resistors and relays. Finally, the pogo pins are connected to a 4D-pin

socket which receives the DUT.

A list of channel assignrnents for the testhead appears in the section entitled

"Testhead Configuration" under Appendix G. This table maps the channels that

connect to the data analyzer and data generator to the pogo pins, to the pin num­

bers on the testhead socket which reœives the test-board, to the corresponding sig­

nal names and pin numbers of the actual chip.

ln addition to the AC-measurement channels, the HP 15425A has connections

for OC power and ground. Excluding the DC measurement ring, there are three

separate OC rails labeled D1'51, D1'52, and D1'53, ail sharing a common ground.

These supplies occupy channels 55, 54, and 53 respectively and can be accessed

through "banana" plugs on the top face of the unit. The groU.lld pin appears on

channel 56 and is also common to the DC-measurement ring.

Test Process Software Development

The controlling host SPARC workstation depicted in Fig. 4.6 was interfaced with

the rest of the HP test equipment via an HP-lB bus. Specifically used were a SCSI

IEEE controller by IOtecli'" consisting mainly of the SCSI488 IEEE488 interface card

and the Driver488 software which provided the core software interface between

UNIX and the IEEE interface. Thus given this rudimentary network connectivity

and a basic set of communication directives for the HP-lB bus, it was undertaken

to develop a complete software base for higher-Ievel utility functions including a

72

•
4. Fabricating and Testing the Systolic Com'olution Cdl

front-end user interface for the test process. To this. a script writing mechanism ac­

companied bya parser and syntax checker was also created for users who wished

to write their own scripts in the native language of the data generator and data ana­

lyzer and the other devices on the right side of Fig. 4.6. Sample initialization scripts

are induded in Appendix G.

Device-Under-Test Board

In order to test the sytolic cell in its square 68-pin package, a device-under-test

board was built to fit over the rectangular 4D-pin socket of the testhead. The board

was fust populated and tested with a few standard CMOS parts such as shift­

registers and 4-bit adders so that confidence could be gained in the testing process

prior to strapping in the real systolic part. Once the test environment itself was

tested and tuned to the CMOS technology, the board was rewired and populated

solely with the systolic chip and sorne of the associated capacitors drawn in Fig. 4.7.

The purpose of the capacitors were chiefly for output load equivalents and for noise

reduction from the powersupply. CL îndudes the probe and jig capacitance and the

22pF (electrolytic) and O.lpF capacitors filter out low and high frequency noÎSP. Te­

spectively. It is regrettable thatthe latter noise reduction capacitors were not used at

the outset of the testing process, and it is suspected that at least 4 systolic cell chips

may have fallen victim to "latch-up" as a result. Since the latch-up phenomenon is

blamed for destroying all but one of five chips manufaetured, a brief account fol­

lows.

Latch-Up

Latch-up is an undesirable effect that plagues CMOS technologies. The result of

this effect is the shorting of t.'le VDD (Sv) and Vss (Cv ground) lines, usually Te­

sulting in chip self-destruction. The source of the latch-up effect (Troutman, 1986)

[Estreich and Dutton, 1982] may be explained by parasitic bipolar devices which

73

4. Fabricating and Testing the Systolic Convolution Cell

1

Vdd

Deviee
Output

Test
....:!:..'--o

Under ::"1 Point
-,....-

Test 22uF 0.1 uF

C L =1SOpF

Gnd

Figure 4.7: A.C testing load circuit. CL includes the probe and jig capacitance.
The 22pF (elecb:olytic) and O.lpF capacitors fllter out lowand high frequency noise
respectively trom the voltage source.

are an unwanted byproduct of producing pMOS and nMOS tr<. :lSistors. Under the

right conditions the latent parasitic circuit becomes active or "snaps" and draws a

large current while maintaining a low voltage across its terminaIs. Latch-up can be

triggered by transient currents or voltages that may occur intemally to a chip dur­

ing power-up or extemally due to voltages or currents beyond normal operating

ranges. Radiation pulses can also cause latch-up; however, this was not considered

the likely factor in our case.

Since current has to be injected into the emitters of the parasitic device for latch­

up to accur, such a condition is likely to befall the1/0circuits employed ona CMOS

chip, where the internai circuit voltages meet the external world and large currents

can fIow. lt is therefore suggested that in future "spins" of the systolic cell that ex­

tra precautions be taken with the peripheral circuits. For instance, placing an abun­

dance of substrate contacts over the peripheral transistors serves to short out para­

sitic devices rendering them harmless. lt is also highly advised that the aforemen­

tioned noise reduction capacitors not be omitted from the DUT board.

74

•
4. Fabricating and Testing the Systolic Convolution Cdl

4.2.4 If0 Specification

11 addition to providing functional specification verification of a chip, functionality

tests may aiso serve to extract valuable timing information which is part and par­

cel of an input/output port specification. An I10 specification is indeed required

if the chip is to be used as a module in a systolic system. However, before I10 tim­

ing is discussed it is essential that each port on the chip be thoroughly described

first. Table 4.1 presents a complete description of the 24 pins of the double-precision

floating-point systolic convolution cell chip.

DC Characteristics

Once the chip was socketed and powered up, the DC parameters were recorded.

Table 4.2 lists sorne OC characteristics that were measured during the testing pro­

cess. Digital input voltages ranged from -0.4 volts for a logic zero (LOW) to 6.0

volts for a logic one (HIGH). The latter HIGH voltages may seem excessive for the

data generator but an excess 0.5 volts can at least be accounted for by the 10% fluc­

tuation of the available power supply. Furthermore, the maximum power supply

current that was drawn by the chip recorded as high as 20.2mA which indicatcs an

unusually high power dissipation in the order of 100mW. Lastly, the 1MHz test

dock supplied to the circuit is traced in Fig. 4.8. The duty cycle is 50% and the

transitions are driven sharply at roughly 12ns il piece. It is important to note that

these transition times are further eroded as the clock is routed intemally through

the chip's clock-buffer tree.

Operating the Systolic CelI

True to the philosophy of systolic designs, the systolic cell chip has simple control

mechanisms that rnitigate the global synchronization overhead required of large ar­

rays. Once the chip has been set to a known state using the PRESET signal it is al-

75

•
4. Fabricating and Testing the Systolic Convolution Cell

Symbol Pin No. Type Name and Function
ClK 1 Input Clock: This line provides the basic timing for

the systolic cell. A symmetric dock signal
(500;. duty cycle) is input and used in a single
phase clocking scheme.

YoutO-Yout3 7-10 Output Y output data: The Y output data bus out-
puts the correct1y normalized pa..-tial convo-
lution sum. Along with the Ym bus, the Yout
bus provides a data path for a systolic array
which enables partial results to move systoli-
cally from œil to œil.

Cout 11 Output Coefficient output: This is the output of the
!cemel coefficient register. ln a systolic ar-
ray the coefficient inputs and outputs are
chained together sa that cach œil can be se-
rially loaded via the boundary œil.

XoutO-Xout3 12-15 Output X output data: The X output data bus along
with the input data bus provides a data path
for a systolic array which enables the inputs
to move systolically from œil to œil.

C-lOAO 29 Input Coefficient load: When held HIGH this line
enables the kemel coefficient register to shift-
right synchronously unIess HOlD=l. Coef-
ficient data enters from Cin and exits from
Cout. When C_lOAO is lOW, the coeffi-
cientbits are held in plaœ. This control signal
must not be left floating.

HOlO 30 Input Hold: When this line is set HIGH, every flip-
flop in the systolic œil including those in the
coefficient register is held in its current state
until HOlO is reset to lOW. HOlO effec-
tively"stalls" the systolic œil. HOlO must
not be left floating.

Table 4.1: Pin desaiption.

76

•
4. Fabricating and Testing the Systolic Com'olution CciI

SymboJ Pin No. Type Name and Function

PRESET 31 Input Preset: When asscrted, the PRESET line pre-
sets the state counter in the control circuit tO

state 14. This provides a time refercnce for
subsequent operation. PRESET must not be
Jeft floating.

Xin3-XinO 37-40 Input X input data: These lines constitute the in-
coming ?Îxel-data bus. Aoating-point data is
fed in to the systolic cell nibble by nibble in
run mode with HOLD=O and C-LOAD=O.

Cin 41 Input Coefficient input: This line is the input to
the seriai bit register that holds the systolic
cell's kemel coefficient which is loaded in
during coefficient-Ioad mode when HOLD=O
and C_LOAD=l.

Ym3-YmO 42-45 Input Y input data: This is the incoming partial-
sum data-bus. Aoating-point nibble-data is
entered into the systolic cell in run mode un-
less gated by Ym_Dis.

YmJ)is 46 Input Yin disable: When held HlGH this line as-
serts zeros on the Yin data bus. When held
LOW the regular partial-sum inputs are fed
in. This line should not be left floating.
This function is especially useful at the input
boundary of a systolic array.

Abs_Val 49 Input Absolute value: When held HlGH this line
asserts a zero on the latch which stores the
sign-bit in the normali7..ation stage 3 of the
systolic cell. When held LOW the regu-
lar sign result from the addition stage 2 is
stored. This line should not be left floating.
This function is useful for processing pixel
data where only the magnitude information
is required.

Table 4.1: Pin description (continucd).

77

•
4. Fabricating and Testing the Systolic Convolution Cell

Syntbo! Parameter Min Max Units

l'Il. Input LOW voltage -0.4 +0.6 V

\I/ll Input HIGH voltage 4.0 l'cc + 0.5 V

VOl. Output LOW voltage - 0.2 V

1'0// Output HIGH voltage 4.75 - V

Icc Power supply current - 202 mA

l'cl. C10ck input LOW voltage -1.9 02 V
l'Cf[C10ck input HIGH voltage 4.7 6.4 V

Table 4.2: D.C. characteristics at ambient room temperature and l'cc =51' ± 10%.

lowed to operate in only one of three modes given in Table 4.3. The HOLO signal

deterrnines whether the chip is stalled or not; for exarnple, if HOLO is held mGH

then every memory element in the chip keeps its current state. The hold mode is

especially useful when synchronizing the individual systolic cells with other de­

vices in a systolic system. Moreover, when HOLO is not asserted then the chip may

operate in one of two remaining modes which is selected by the coefficient load

(CLOAO) signal. IfHOLO is LOW, setting CLOAO to mGH effectively stalls ev­

ery memory element in the chip except the seriai coefficient register which is en­

abled to load a coefficient bit-stream. For apparent reasons, this mode is called the

coefficient-Ioad mode and can be entered without regard to the state of the chip.

When HOLO is LOW and CLOAO is LOW then ail sequential elements in the chip

are enabled and the coefficient loads are dissabled. This latter mode is the main

mode of systolic operation and is thus named "run" mode. More will be said of

these modes as the timing of the input and output switching waveforms is reviewed

next.

SignaIs Mode of Operation
HOLD -1 holdmode
HOLD =0, C-LOAD =0 runmode
HOLD = 0, C-LOAD = 1 coefficient-Ioad mode

Table 4.3: Modes of operation in the systolic œIl.

78

4. Fabricating and Testing the Systolic Com'olution Cdl

•
:~ \/1
•

~ ~
"E.E ,
< -

o

·~2L-~O--2~~.----'-6~~'-~IO-~12""'-~'.----'~"-'---',.
lime in SC'COnd~ x 10 l

Figure 4.8: Oscilloscope trace of IMHz CLK signal used in A.c. test<. RL<c and
faIl times are approximately Uns. !..ar is slightly Jess !han 8MHz.

I/O TIming Specification

Manufacturing tests rely on accurate timing specifications so that input signais are

strobed in at the right time and output signaIs are sampled correctly. ln the fol­

lowing sections input/output timing specifications are presented with reference to

rising dock edges and signal transitions which indicate the beginning or ending of

a "nibble-slice" of data. The term "word" is used to reference a particular 64-bit

quantity of data that is further segmented into 16 "nibbles". Note that for the Xi"

and Y;n data streams, the last three nibbles sampled in represent the 12 bits of sign

and exponent data whereas the first 13 nibbles embody the mantissa data.

Furthermore, the ability to vary timing on a per-pin basis with the data genera­

tor allows a process known as "schmooing" to be carried out. The "schmoo" tests in

this thesis skewed the timing on inputs with respect to the chip dock 50 that setup

and hold violations were detected from observed changes in correlated output sig-

79

•
4. Fd"';~~ling and Testing the Systolk Convolution CeU

naIs. For instance, if ample setup time was given to an input signal which directly

affected the value of a particular output signal, then ail one would have to do is to

dccrease the setup for that input signal until a violation occurred that changed the

expected output result.

Chip Initialization

The contfCllling state machine in the systolic cell must be initialized to a known state

if it is to be synchronized with the incoming X in and }';n signaIs. For this reason a

PRESET signal exists for the purposes of initializing a Johnson or "ring" counter

which keeps track of the internaI states of the chip. The counter is decoded to pro­

duce strobes for internaI synchronization, and the effects of the PRESET signal is

tightly coupled with the observability of correct results at the output port y~ut. For

this reason, more will be said of the PRESET signal when the Y~ut timing is dis­

cussed. Fig. 4.9 and Table 4.4 specify the required timing of the PRESET signal

which effectively defines dock cyde 14. Inputs such as Xin must follow initializa­

tion to be synchronized to dock cycle 15. Furthermore, inputs such as Y inJJis,

Abs_Val, and yin should l-e synchronized to dock cyde 1.

Symbol Parameter Min Units
tper CLKperiod 126 ns-
t.U"

PRESET HIGH to CU< setup lime 30 ns

th" CLK to PRESET HIGH hold lime 0 ns
f-Jtud Ym.Dis HIGH to CLK setup lime 50 ns
t:Jua Abs_Val HIGH to CLK setup lime 50 ns

Table 4.4: Initia\ization switching characteristics. Note tnat a1though it is recom­
mcnded that :lbs_Val hesynchronized to the "fust"c10ck cycle 1, thisisnotacritical
requirement sinœ Abs_V al is only used 32 c10ck cycles afterward in the norma\iza­
tionstage.

80

4. Fabricating and Testing the Systolic Convoll:tion Cdl

:------- '"" ------.;

CLK \'--_----'!
- tMlr ---i----

PRESEr J
\'------'!

\'------:----
_ IMl\ ---;.--- t h\ ----:

xin<.'\:O> 'R_R_El.E_"_y"'_,_". --'X {MmrJO:niMtf'r1J)G,

:------- '"" ------.;
-_ ... '

"CLt\. \
" _---JI \'------'!

Yin-Dis

:---

______-...11
:---

______-...11

1"l1ll------:

- IMly --"':'_-- t hy --:
,

Yin<3:O>-------'R-R-E""--Y"'-,-".-------,X,.-----("'-,-"'-o-:.-ihb-'.-O-I--------)GI

Figure 4.9: Switching waveforms at initialization. The PRE5ET signal initializes
the Johnson counter in the control block causing the next c10ck cycle to be defincd
as clock cycle 14. X in should be synchronized to the subsequent c10ck cycle 15, and
Yin to clock cycle 1. If asserted, Yin_Dis and Abs_Val should be synchlOnizcd to

C:ock cycle 1.

81

4. Fabricating and Testing the Systo!ic Con\'olution Cd!

Coefficient Loading

To serially load 64-bits into the coefficient register, the HOLO signal m'~st be reset

while the CLOAO signal is asserted. Allowing for setup and hold times as indi­

cated in Table 4.5, the propagation delay for a valid Cout signal as ilIustrated in

Fig. 4.10 ranges from 35 to 45 nanoseconds. Note that propagation delays are mL'1i­

mum for a HIGH to LOW transition and maximum for a LOW to HIGH transition.

Also note that Cout sl-ifts out a bit 63 periods after it was first sampled at Cin.

'",,

CU(\ ! \ / Lss
,, 'wl ~ 'hl

C_LO,\OJ SS

~
t'III: ttw.: -----:.

Cin =x , ...,otJ ft.: hl, "" X :: x=
~XX

I\.'olpcr :tp:~

cou. f~"" ,.-1: bit".+1) :: XX (.....II'JI"'.".,,,.,

Figure 4.10: Coefficient switching waveforms in coefficient-load mode (Il0 LD =
0, C.LOAD =1).

Output Results

In run mode, 64-bit words are continuously being fed nibble by nibble at the input

ports of Xin and }in' The initial Xin nibble is synchronized to dock cyde 15 and the

associated }in nibble is synchronized to dock cyde 1. 47 dock periods after a Y;n

rubble has been sampled, the associated processed nibble is output at the Y.•• port

as shown in Fig. 4.11.

82

•
4. Fabricating and Testing the 5ystolic Convolution Cell

Parameters Description Min Max Units

I. w·r CLKperiod 126 - ns

(.ul CLOAD HIGH to CLK setup time 30 - ns

t'll CLK to CLOAD HIGH hold time 20 - ns

tl'l1le Cin to CLK setup time 30 - ns

th, CLK to Cin hold time 0 - ns
tp , Propagation delay from CLK to Cout Valid 35 45 ns

Table 4.5: Coefficient switching characteristics. Propagation delays are minimum
for a HIGH to LOW transition and maximum for a LOW to HIGH transition.

The You' signal proved to be very difficult to test. The crux of the problem was

that the last three nibbles of each Y~u' word which represented the exponent and

sign bit of the double-precision floating-point format were aIl set to HIGH indicat­

ing an overflow where none was expected. The mantissa seemed correct for most

cases yet even that too was incorrect for certain input values. Much effort was in­

vested in making sure that no setup or hold times wereviolated, yet aIl Y~u' tests still

failed consistently. However, enough correct values for the mantissa field were ob­

lained to adequately perform schmoo tests with regard to the PRESET and Y1I1..Dis

signal. In addition, the Abs_Val signal could not be accurately tested since the sign

bit of the Yout words was not operational, hence a conservative estimate was en­

tered in Table 4.4.

Fig. 4.11 and Table 4.6 display the input and output switching characteristics.

The X registers function perfectly shifting out a given nibble, 31 dock periods after

it was sampled. As mentioned before, You' mantissa nibbles were only accurate for

certain values of Xin, Gin, and Yin, and furthermore no pattern was apparent for

choosing inputs that would pump out valid outputs. Naturally, this leads one to

speculate whether there was a design error, an implementation error, or a fault in

the silicon. The latter scenario is a likely one and will be elaborated when dealing

with the issue of fabrication faults.

Lastly, the maximum dock frequency for which valid mantissa nibbles were

83

•
4. Fabricating and Testing the Systolic Convolution Cdl

recorded was slightly less than 8MHz which corresponds to a 126 n:mosecond pL~

riod. According to Eq. 4.1 and Eq. 4.1 this corresponds to a systolic array latency of

0.000342 seconds which is insignificant to the 0.524 seconds of total cxecution timc

required (Eq. 4.1 to process a 512 x 512 image. Hence, a systolic system that uses

an array of ceUs similar to the one that was fabricated and testcd in this thL'Sis is

expected to have a peak perforrnanceof approximately 80 MFLOPS (Eq. 4.1).

row latency = [2 * (ARRAYLENGTH -1)] +3 = 19 pipeline cycles

array latency = (ARRAYHEIGHT) * (row latency)

= 171 pipeline cycles

= 2,736 clock cycles

= 342,000 ns = 0.000342 seconds

execution time = (image size) * (1 pipeline cycle per result)

= 256K pipeline cycles

= 4,194,304 clock cycles *125ns per clock cycle

= 0.524 seconds

computation rate =42, 000, 000 FLOPs/(execution time)

= 80.2 MFLOPS

84

4. Fabricating and Testing the SystoEc Convolution Cell

;.------ '", -----.....;

:--- t
hh

\, .~.,s----,I- SS .\'---_-.J(
t wh -:~

\'--_-----:... ~-----Jr

O.K

HOl.D

Figure 4.11: Input and output switching waveforms in run mode (HOLD = 0,
C-LOAD =0).

85

•
4. Fabricating and Testing the Systolic Conyolution Cdl

Parameters Description Min Max Unil~

t'Per CLKperiod 126 - ns
l:tuh HaLO Law to CLK setup time 25 - ns
/1111 CLK to HaLO Law hold time 10 - ns
t:tux Xin to CLK setup time 30 - ns
Ih", CLK to Xin hold time 0 - ns
l,,,, Propagation delay from CLK to Xout Valid 35 45 os
t:my Yin to CLK setup time 30 - ns
Ih. CLK to Yin hold time 0 - ns
tpy Propagation delay from CLK to Yout Valid 38 50 ns

Table 4.6: Input and output switching characteristics. Input rL~ and faU timL'"
are typicaUy 15ns. Output propagation delays are maximum for LOW to HIGH
transitions.

4.2.5 Manufacturing-Test Principles

The probability of a particular transistor being defective once fabricated is minus­

cule. However, ifone SUffiS up these defect probabilities for ail transistors in a com­

plex chip then it is common to obtain a probability of a chip defect in the proximity

of fifty percent. The proportion of fabricated chips that are fault free is referred to as

the yield. Typical fabrication yields for mature processes tend to fluctua te around

the 40 percent mark. It cannot be overemphasized that manufacturing tests play

a critical role in VLSI design and must be given sufficient attention in this thesis.

However, before such testing can be addressed with respect to the systolic convo­

lution cell design, some testing principles are first defined.

Fault Models

To deal with the existence ofgood and bad parts one requires models for how faults

oCcu! and their impact on circuits. The most popular model is called the "Stuck­

At" mode!. A faulty gate input is modeled as a "stuck at zero" or "stuck at one".

These faults most frequently occu! due to thin-oxide shorts (the n-transistor gate

shorting with VSS or the p-transistor gate shorting with VDD) or metal-to-metal

86

•
4. Fabricating and Testing the Systolic Convolution Cell

shorts which cause the output of agate to be "stuck at" a 0 or 1 value. Other models

include "stuck-open" (open-circuit) or "shorted" (short-circuit) models.

Observability

The observability of a particular circuit node is the degree at which one can observe

that node at the output pins of an integrated circuit. This measure is important

when one desires to measure the output of agate within a large circuit to check

that it operates correctly. Ideally, one would like to be able to observe directly or

with moderate indirection (ie. one may have to wait a few cycles) every gate out­

put within an integrated circuit.

Controllability

Correspondingly, the controllability of an internai node within a chip is a measure

of the ease of setting that node to a 0 or 1 state. An easily controllable node would

be directly settablevia an input pad. Anode with little controllability might require

thousands of cycles to get it to the right state. Recommendations will be made on

how to increase the observability and controllability of the systolic œil when design

for testability is examined.

Fault Coverage

Fault coverage is a formai measure of the goodness of a test program. It expresses

the percentage of the chip's internai nodes that were checked for faults with the

applied test vectors. The method of calculation is as follows. In a gate-Ievel model

simulation, each node is taken in sequence and held to a O. For each node that is

artificially set to 0, the simulation is run and the outputs are compared with the out­

puts of a known "good machine" - circuit with no nodes artificially set to o. When

a discrepancy is detected between the faulty machine and the good machine, the

87

4. Fabricating and Testing the Systolic Com·olution Cell

fault is marked as detected and that particular simulation is stopped and the next

simulation to check the next node begins. Thus one can see what percentage of the

chip's internaI nodes have stuck-at-O detectability. And a similar approach can be

performed for a measure of stuck-at-l detectability. Both approaches are part of a

process known as "fault-grading".

4.2.6 Manufacturing-Test Strategies for the Systolic Cell

Although the chip has already been shown to fail sorne basic functional tests for

certain input vectors, this section will nevertheless recommend strategies for ob­

taining high fault coverage with the existing design. The proposed strategies are

meant to test each part of the chip independently. Since the chip is partitioned into

three stages, testing for each stage will be discussed in tum.

Stage 1 Mantissa Circuit

The fust stage multiplication circuit is comprised ofa product generator, a mantissa

carry-Iook-ahead adder, and the exponent adder. The product generator is com­

posed of multiplexers and ripple-carry adders. Since every multiplexed bit slice is

independent from the other bit-slices, the multiplexers are easily tested by multi­

plexing 1 and 0 values from each of their inputs. Next, the ripple-carry adders have

the desirable property ofbeing testable with random vectors. It can beshown that a

uniform distribution of input vectors (P(inputs) =0.5) should yield a uniform dis­

tribution ofoutput sums and ripple-carry-outs. The inputs of the adders are driven

by the coefficient register which allows for complete controllability. Moreover, ob­

servability is relatively easy if one controls the Xin signal to multiplex the outputs

of the seven ripple carry adders. Subsequently, with a null l'in signal the content of

the product register can be propagated through the second and third stages.

Themantissa carry-look-ahead adder of the first stage in the systolic cell is much

88

•
4. Fabricating and Testing the Systolic Convolution Cell

harder to test than the ripple-carry adders. The carry-look-ahead circuitry is much

more complex than a straightforward ripple. For example, the carry out corre­

sponding to bit 56 of the adder is a function of 113 inputs! A study of using random

patterns to test a carry-look-ahead scheme was conducted by [Larochelle, 1991] in

which the probability for controlling and observing the carry out corresponding to

bit 3 was minute. The implication was that nearly a billion vectors would have to

be applied before the probability of detecting a fauIt became acceptable.

To circumvent this impasse, Larochelle presented an aItemate (deterrninistic)

approach in which the carry-Iook-ahead circuit is partitioned with respect to its

building blocks and tested on a block by block basis. The pyramidal structure of the

adder is const-ucted using 4-bitcarry-Iook-ahead building blocks. As such, a 16-bit

adder is constructed with four 4-bit adders connected together with an extra level

of look-ahead circuitry. Likewise, a 64-bit adder requires a third level of look-ahead

circuitry and four 16-bit adders. Hence the problem breaks down to testing the ba·

sic full adder and the three leveIs of the look-ahead circuit. The full-adder is easily

tested by applying ail eight combinations of the two 1-bit inputs and the carry-in.

Testing each level of carry-Iook-ahead circuitry is aIso straightforward if one real­

izes that the carry-propagate and carry-generate outputs of each 4-bit carry-Iook­

ahead b1.ùlàing block are easily controlled through the inputs to the adder. To create

input test vectors for the second levellook-ahead circuitry one need only replicate

each bit in t."e initial4-bit test vector such that a "0" becomes.:. "0000" and a "1" be­

comes a "nu" thus creating a 16-bit test vector. Similarly, the third-Ievel is tested

by repeating each bit sixteen times instead of four.

One drawback to testing the 57-bit carry-look-ahead adder as descnbed above

is that one of its addends is a bus that is fed back from the partial-product regis­

ter, and this creates a controllability problem. Since some of the test vectors must

be applied through this feedback path, careful planning is required in loading the

partial product register with the required value.

89

4. Fabricating and Testing the SystQlic Con\"olution Cdl

Stage 1 Exponent Circuit

The first stage exponent circuit is cornposed 0 fan 11-bit ripple adder an 11-bit carry­

look-ahead adder. Controllability and observability do not require much effort for

these components since the inputs are driven directly by two shift registers and the

outputs are directly transmitted to State 2. Again the testing approach is the same

as for the adders in the mantissa but without the controllability problems.

Stage 2 Mantissa Circuit

The second stage mantissa addition circuit is made up of multiplexed registers, a

look-ahead adder, and a look-ahead two's complementer. The multiplexers of the

shift registers are tested during the testing of the Stage 2 exponent circuit. The

two's complementer is a look-ahead adder that adds 1 to the inverted output of

the other adder. Beth adders are tested using the look-ahead adder approach de­

scribed above. Controllability is achieved using the }';,. register and the content of

the product register in Stage 1. Observability is realized once the result is propa­

gated through Stage 3.

Stage 2 Exponent Circuit

Thesecond stageexponentcircuit constitutes two registers and an lI-bit carry-look­

ahead adder. One of the adder inputs is derived from a multiplexer which selects a

hard-wired "+8" value or a "-1" value. The result from Stage 1 as weil as the Yo,. in­

put can be used to load the content of the registers. The test results get transmitted

to Stage 3 every 16 clock cycles.

90

4. Fabricating and Testing the Systolic Convolution Cell

Stage 3 Nonnalization Circuit

The third stage mantissa drcuit has no combinationallogic. The registers with their

multiplexed inputs are tested at the same time as the exponent circuitry. The expo­

nent circuitry houses a single register and a carry-look-ahead adderwhich is config­

ured to add "+8" or "-1" until the leading 1 in the mantissa register is immediately

to the left of the binary point. Yin is used to load the contents of the exponent and

mantissa registers, and loading a zero valued Xin will propagate the same Yin value

to stage 3 which is directly observable from y~u"

4.2.7 Design for Testability

A major shortcoming in this systolic cell design was that it was not designed for

testability. This section surveys the design techniques that may be used te make all

nodes in a chip both controllable and observable, and thus testable. There are four

main approaches which are categorized as ad-hoc, scan-based, self-test, and IDDQ.

Once these categories are surveyed, recommendations will be made for redesigning

the systolic cell chip for increased testability.

Ad-hoc testing is a collection of design ideas aimed at reducing the combina­

tional explosion of testing. One common technique is to partition large sequential

circuits in order to reduce the number of cycles required for testing - the approach

being one of divide and conquer where a big circuit with many inputs is made eas­

ier to test by reducing it into multiple smaller sub-circuits each with fewer inputs.

A second ad-hoc approach is to add extra test-points for improved observability.

Still another method is to add multiplexers te provide altemate signal paths that

can be enabled during a "test mode" of a circuit. Lastly, one can provide for easy

state reset for improved controllability.

Scan-based approaches convert all registers in the circuit into serial shift regis-

91

•
4. Fabricating and Testing the Systolic Convolution Ccli

ters which are "chained" together via their seriai inputs and outputs. Testing pro­

ceeds by serially clocking the data through the "scan-chain" to the right point in

the circuit, running a single system clock cycle and serially clocking the data out

for observation.

Self-test and built in test techniques rely on augmenting circuits to allow them to

perform operations on themselves that prove correct operation. One method is sig­

nature analysis [Frowerk,1977] [Nadig, 1977). This involves the use of a pseudo­

random sequence generator to generate the input signais for a section of combina­

tional circuitry and then using a signature analyzer to observe the output signais.

One increasingly popular method of testing for bridging faults is called IDOQ

(VDO supply current Quiescent) or current-supply monitoring [Acken,1983]

[Lee and Breuer, 19921. This relies on the fact that when a CMOS logic gate is not

switching, it draws no OC current (except for leakage). \Vhen ét bridging fault oc­

curs, fer some combination of input conditions a measurable OC JDD will f1ow.

Testing consists of applying the normal vectors, allowing the signais to settle, and

the~measuring IDD' It is highly Iikely that given the unusually high power supply

current recorded in the OC characteristics Table 4.2 that the tested systolic cell chip

did indeed have a bridging fault. As just demonstrated, this kind of testing gives a

form of indirect massive observability at no cost in terrns of circuit overhead.

Having encountered the difficulties in devising testing schemes for circuits such

as those found in Stage 1 of the systelic cell, it is now clear that a partial scan chain

would greatly simplify test vector generation. For example, the Stage 1 controlla­

bility and observability problems would be completely resolved by simply config­

uring the partial product register into a shift register during a newly created test­

mode. Moreover, if it were chained to the X register such that Xin and X out pins

could be used to control and observe the contents of the partial-product register

during test-mode then only a few very minor gate changes and the addition of one

pin te designate the test-mode would have to be incurred.

92

•
4. Fabricating and Testing the Systolic Convolution Cel1

4.3 Summary

Before the systolic convolution chip cou!d be fabricated a deep-seated knowledge

was required of the systolic design, the CMOS3 DLM process, the associated de­

sign rules, the CADENCE design and validation tools, and the submission process.

Once the chip was validated in the CADENCE environment and the Vantage VHDL

simulator, and after it was sent for fabrication, the testing environment was suffi­

ciently automated such that testing process could be performed in an efficient man­

ner. Functional tests were run that spawned an 1/0 and timing specification for

the sytolic œil. These tests exposed a defect with the fabricated chip. Furthermore,

manufacturing test strategies were given and approaches for re-designing the sys­

tolic convolution chip for testability were recommended.

93

• Chapter5 Conclusion

The convolution operation was perceived as the most frequently used operation in

image-processing tasks and as such it was targeted for performance improvemenl.

Due to the huge volume of data and floating-point arithmetic ca1culations needed

to convolve a standard sized image, convolution was found to be overwhc1ming

with regard to the available computational powerand memory bandwidth of single

processor machines.

However, the convolution operator can be easily "parallelized" and sped up on

various general-purpose parallel processing computers. Of the parallel proccssor

classes considered, the synchronous class appeared to be the best suited for low­

level iIl'age-processing applications. Specifically, since systolic arrays are simple,

modular, expandable, and yield high performance at a lower relative cost, they

meet the architectural challenges of special-purpose systems, and are therefore the

preferred parallel processing solution for the convolution problem.

Hence, a systolic solution is presented that is to employa 9 x 9 systolic array

of processing cells. Each systolic cell is implemented on a VLSI chip and is orga­

nized into three stages which perform the required double precision floating-point

multiplication, addition, and normalization operations in a pipelined fashion.

Once the chip was validated in the CADENCE"" environment and on the Van­

tage VHDL simulator, and after it was sent for fabrication, the testing environment

was sufficiently automated such that the testing process could be performed in an

efficient manner. Functional tests were run that were used to generate 1/0 port

timing specifications. Unfortunately, sorne of the input vectors for these tests ex­

posed a defect with the fabricated chip. Since the IDDQ tests pointed in the direc­

tion of a bridging fault, a manufacturing error is suspected. Lastly, manufacturing

94

•
5. Conclusion

test strategies were given and approaches for re-designing the systolic convolution

chip for testability were recommended.

95

• References

[Acken, 1983] J. M. Acken, "Testing for bridging faults (shorts) in cmos circuits,"
in Proceedings ofthe 20th IEEE/ACM Desigll Automatioll COllferellcL', (Miami Beach,
Fla.), pp. 717-718, June 1983.

[Amdahl, 1967] G. Amdahl, "Validity of the single processor approach to achiev­
ing large scale computing capabilities," in Proc. AFIPS 1967 Sprillg Joillt Computer
Conf 30, (Atlantic City, N.J.), pp. 483-485, April 1967.

[Axel et al., 1983] L. Axel, P. H. Arger, and R. A. Zimmerman, "Applications of
computerized tomography to diagnostic radiology," Proceedings of the IEEE,
vol. 71, pp. 291-431, March 1983.

[Ballard and Brown, 1982] D. H. Ballard and C. M. Brown, Compllter Vision. Pren­
tice Hall, 1982.

[Balsara and Irwin, 1991] P. T. Balsara and M. J. Irwin, "Image processing on a
memory architecture," Journal 0fVLSI Signal Processing, vol. 2, pp. 313-324, May
1991.

[Bames, 1968] G. H. Bames, "The TIliac IV Computer:' IEEE Transactiolls 011 Com­
puters, vol. C-17, pp. 746-757, 1968.

[Batcher, 1980] K E. Batcher, "Design of a Massively ParaUel Processor:' IEEE
Transactions on Computers, vol. C-29, p. 836, 1980.

[Berry et al., 1988] M. Berry, D. Chen, and D. K. P. Koss, "The perfect club bench­
marks: Effective pe!-"formance evaluation of supercomputers:' tech. rep., Center
for Supercomputing Research and Development, University of Illinois, Urbana­
Champaign, Illinois, November 1988.

[Botzas and Masson, 1990] A. Botzas and E. L. Masson, "First in first out (fifo)
queue:' tech. rep., McGill University, 1990.

[Boudreault and Malowany, 1986] Y. Boudreault and A. Malowany, "A VLSI con­
volver for a robot vision system:' Proceedings of the Canadian Conference on Very
Large Scale Integration, pp. 265-270, 1986.

[Brassard and Bratley, 1988] G. Brassard and P. Bratley, Algorithmics, Theory and
Practice. EngleWood Cliffs, New Jersey: Prentice Hall, 1988.

[Briggs and Hwang, 1984] F. Briggs and K Hwang, Computer Architectures and Par­
allel Processing. New York, N.Y.: McGraw-Hill, 1984.

[Briot, 1986] M. Briot, Robot VISion and Sensory ContraIs. Springer-Vedag, Berlin: IFS
(publications) Ltd., 1986.

96

•
References

[Burrus and Parks, 1985] C. S. Burrus and T. W. Parks, DFT/FFTand Convolution Al­
gorithms: Theory and Implementations. New-York: Wiley Press, 1985.

[Côté, 1990] J.-F. Côté, "The design of a testable floating point convolution proces­
sor," Ma~'er's thesis, McGill University, November 1990.

[Crowther,1985] W. Crowther, "Performance measurements on a 128-node butter­
fly parallel processor," in Proceedings ofthe International Conference on ParaUe! Pro­
cessing, pp. 531-535, IEEE Computer Society Press, 1985.

[Drolet, 1992] J. Drolet, "The design of a floating point convolution system," Mas­
ter's thesis, McGill University, August 1992.

[Dllncan, 1990) R Duncan, "A survey of parallel computer architectures," Com­
puter, vol. 23, pp. 5-16, February 1990.

[Estreich and Dutton, 1982) D. B. Estreich and R W. Dutton, "Modeling Latch-Up
in CMOS Intcgrated Circuits and Systems," IEEE Transactions on CAD, vol. CAD­
1, pp. 347-354, October 1982.

[Feng,1981) T. Feng, "A survey of intereonnection networks," IEEE Computer,
pp. 12-27, Deeember 1981.

[Ferguson,1991) W. Ferguson, Jr., "Selecting math eoproeessors," IEEE Spectrum,
vol. 28, pp. 38-41, July 1991.

[Flynn, 1966) M. J. Flynn, "Very high speed eomputing systems," Proceedings ofthe
IEEE, vol. 54, pp. 1901-1909, December 1966.

[Freer,1987) J. Freer, Systems Design with Advanced Microprocessors. Howard W.
Sams & Co., 1987.

[Frowerk,1977) RA. Frowerk, "Signature Analysis - A New Digital Field Service
Method," Hewlett Packard Journal, pp. 2-8, May 1977.

[Gajski,1986) D. Gajski, "CEDAR," in Digest of Papers, Compcon (A. G. Bell, ed.),
IEEE Computer Society Press, 1986.

[Gentleman and Kung, 1981) W. Gentleman and H. Kung, "Matrix triangulariza­
tion by systolie arrays," Proc. SPIE, Real-Time Signal Processing 111, Society ofPhoto­
optical Instrumentation Engineers, vol. 298, 1981.

[Gonzalez and Wmtz, 1987) R C. Gonzalez and P. Wmtz, Digital Image Processing.
Reading, Massachusetts: Addison-Wesley, 1987.

[Guibas et al., 1979) L Gwbas, H. Kung, and C. Thompson, "Direct VISI impie­
mentation of eombinatorial algorithms," Proc. Conf. Very Large Scale Integration:
Architecture, Design, Fabrication, pp. 509-525, January 1979.

[Hall, 1979] E. L. Hall, Computer Image Processing and Recognition. Academie, 1979.

97

•
References

[Hartline and Ratliff, 1954] H. R. Hartline and F. Ratliff, "Spatial summation of in­
hibitory influences in the eye of limulus," Science, vol. 20, no. 312-l, p. 7S1, 1954.

[Hartline and Ratliff, 1957] H. R. Hartline and F. Ratliff, "Inhibitory interaction of
receptor units in the eye of the limulus," Joumal of General P1zysiolo~'!I, vol. -l0,
no. 3, pp. 357-376, 1957.

[Hartline,1949] H. R. Hartline, "Inhibition of activity of visual receptors by illumi­
nating nearby retinal elements in the limulus eye," Federation Procœdings, vol. S,
no. 3, p. 69, 1949.

[Haule, 1990] D. D. Haule, "Design of a VLSI system for image processing," Mas­
ter's thesis, McGill University, March 1990.

[Hennessy and Patterson, 1990) J. L. Hennessy and D. A. Patterson, Computer Ar­
chitecture: A Quantitative Approach. Morgan Kaufmann Inc., 1990.

[Hillis, 1985) W. D. Hillis, The Connection Machine. Massachusetts Institute of Tech­
nology Press, 1985.

[Hockney and Jesshope, 1988) R. W. Hockney and C. R. Jesshope, ParaUe1 Comput­
ers 2, Architecture, Programming and Algorithms. Bristol, England, and Philadel­
phia: Adam Hilger Ltd., 1988.

[Hord, 1990) R. M. Hord, ParaUel Supercomputing in SIMD Architectures. Boca Ra­
ton, Ann Arbor, Boston: CRC Press, 1990.

[Horspool, 1986) R. N. Horspool, C Programming in the Berkeley Unix Environment.
Prentice Hall, 1986.

[mM, 1985) mM Corp., IBM 3090 System Summary-Engineering/Scientific, 1985.

[IEE,1985) IEEE, IEEE Standard 754-1985for Binary Floating-Point Arithmetic, 1985.

[Int,1993] Intel Corporation, Parallel Supercomputers, 1993.

[Iverson,1992] L. Iverson, MeImage Library: McRCIM Image Processing Library and
Deve10pment Environment for the MasPar MP-l. Montreal, Quebec, Canada, 1992.

[Karp,1987] A. H. Karp, "Programming for parallelism," IEEE Computer, pp. 43­
57, May 1987.

[Kohonen, 1987] T. Kohonen, Content-Addressable Memories. New York, N.Y.:
Springer-Veriag, 1987.

[Kuck, 1980] D. Kuck, "High speed multiprocessing and compilation techniques,"
IEEE Transactions on Computers, vol. C-29, pp. 763-776, 1980.

[Kung and Leiserson, 1978] H. T. Kung and C. E. Leiserson, "Systolic arrays (for
VLSI)," Sparse Matrïx Symposium (SIAM 1979), pp. 256-282, 1978.

98

References

[Kung,1982) H. T. Kung, "Why systolic architectures?," Computer, vol. 15, pp. 37­
46,January 1982.

[Kung,1987) S.-Y. Kung, "Wavefront array processors-<oncept to implementa­
tion," IEEE Computer, vol. 20, pp. 18-33, July 1987.

[Larochel1e, 1991) F. Larochelle, "ViS! design of a double precision floating point
convolution systolic cell," Master's thesis, McGill University, March 1991.

[Larson, 1984) J. L. Larson, "An introduction to multitasking on the Cray X-Mn
multiprocessor," IEEE Computer, pp. 62-69, July 1984.

[Lee and Breuer, 1992) K.-J. Lee and M. A. Breuer, "Design and Test Rules for
CMOS Circuits to Facilitate IDDQ Testing of Bridging Faults," IEEE Transactions
on CAD, vol. 11, pp. 659-670, May 1992.

[Lehman and Kung, 1980] P. Lehman and H. Kung, "Systolic CVLSn arrays for re­
lational database operations," Proc. ACM - Sigmod 1980 Int'l Conf Management of
Data, pp. 105-116, May 1980.

[Levine, 1985] M. D. Levine, VISion in Man and Machine. McGraw-Hil1 Ine., 1985.

[Lindskog, 1988] B. Lindskog, PlCAP3. Dissertations no. 176, Linkoping Studies In
Science And Technology, Linkoping, Sweden, 1988.

[Lipovski and Malek, 1987] G. J. Lipovski and M. Malek, ParaI/el Computing: The­
ory and Comparisons. New York, N.Y.: Wùey and Sons, 1987.

[Lovett and Thakkar, 1988] T. Lovett and S. Thakkar, "The sequent symmetry mu!­
tiprocessor system," in Proceedings of the 1988 International Conference of ParaI/el
Processing, (University Park, Pennsylvania), pp. 303-310, 1988.

[Lubeck et al., 1985] O. Lubeck, J. Moore, and R Mendez, "A comparison of three
supercomputers: Fujitsu VP-200, Hitachi 5810/20, and Cray X-MP/2," Com­
puter, pp. 10-24, December 1985.

[Malowany et al., 1990] A. S. Malowany, J. Drolet, J. Panisset, J. F. Côté, and
F. Larochelle, "A double precision floating point convolution system," inProceed­
ings ofthe ASME International Computers in Engineering Conference, Vol. 2, (Boston,
Mass.), pp. 1-6, American Society of Mec.~anicalEngineers, August 1990.

[Malowany et al., 1991] A. S. Malowany, J. Drolet, and J. F. Panisset, "Design of a
floating point convolution processor," in Proceedings of the Canadian Conference
on Electrical and Computer Engineering, (Quebec City, Canada), pp. 13.5.1-13.5.4,
Canadian Society for Electrical and Computer Engineering, September 1991.

[Marr and Hildreth, 1980] D. Marr and E. Hildreth, "Theory ofedge deteetion," in
Proceedings ofthe Royal Society ofLondon, SeT. B, Vol 207, pp. 187-217,1980.

[Mas, 1992] MasPar ComputerCorporation, MasPar MP-1 Hardware Manuals, 1992.

99

•
RcferenC\.'S

[McMahon,1989] F. McMahon, "The Livermore FORTRAN kemels: A computer
test of numerical performance range," tech. rep., Lawrence Livermorc National
Laboratory, Univ. of Califomia, Livermore, Califomia, December 1989.

[McRCIM,1990] McRCIM, "Mcgill research center for intelligent machines annual
report," tech. rep., McGill University, 1990.

[Mead and Conway, 1980] C. Mead and L. Conway, Introduction ta VLSI Systems.
Addison-Wesley, 1980.

[Mulders,1987] M. A. Mulders, Remote Sensing in Sail Science. New-York: Elsevier
Science Pub., 1987.

[Nadig,1977] H. J. Nadig, "Signature Analysis - Concepts, Examples, and Guide­
lines," Hewlett Packard Journal, pp. 15-21, May 1977.

[nCU,1992] nCUBE Corporation, nCUBE 2: Tee/mical Overview, 1992.

[Offen,1985] R. J. Offen, VLSI Image Processing. Collins Professional and Technical
Books, 1985.

[Oppenheim and Schafer, 1989] A. V. Oppenheim and R. W. Schafer, Discrete-Time
Signal Processing. EngleWood Cliffs, New Jersey: Prentice Hall, 1989.

[Palmer, 1986] J. F. Palmer, "A VISI Parallel Computer," in Digest of Papers, Comp­
con (A. G. Bell, ed.), IEEE Computer Society Press, 1986.

[Panisset et al., 1990] J. F. Panisset, J. Drolet,J. F. Côté, F. Larochelle, and A. S. Mal­
owany, "A floating point convolution system," in 33rd Midwest Symposium on
CirCllits and Systems, (Calgary, Alb., Canada), pp. 397-400, IEEE Circuits and Sys­
tems Society, August 1990.

[Par,1991] Parsytec GmbH, Beyond the Supercomputer, Parsytce GC, 1991.

[Pfister, 1985] G. F. Pfister, "The IBM Research Parallel Processor Prototype (RP3),"
in Proceedings ofthe International Conference on Paral/el Processing, IEEE Computer
Society Press, 1985.

[Press et al., 1988] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, The Art of Scientijic Computing. Cambridge, New York,
Port Chester, Melbourne, Sydney: Cambridge University Press, 1988.

[Preston,1989] K. Preston, Jr., "The Abingdon Cross benchmark survey," Com­
puter, pp. 9-18, July 1989.

[Proakis and Manolakis, 1988] J. G. Proakis and D. G. Manolakis, Introduction ta
Digital Signal Processing. New-York: Maonillan, 1988.

[Rattner,1985] J. Rattner, "Concurrent processing: A new direction in scientific
computing," in AFIPS Conference Proceedings, vol. 54, p. 157, 1985.

100

References

[Robbins and Robbins, 1989) K. A. Robbins and S. Robbins, The Cray X-MP/Model
24: A Case Study in Pipelined Architecture and Vector Processing. Springer-Verlag,
1989.

[Schmidt and Caesar, 1991) U. Schmidt and K. Caesar, "Datawave: A single-chip
multiprocessor for video applications," IEEE Micro, vol. 11, pp. 22-25,88-93, June
1991.

[Schumann, 1904) F. Schumann, "Einige beobachtungen über die zusammenfas­
sung von gesichtseindrucken zu einheiten," Psychologische Studien, vol. 1, pp. 1­
32,1904.

[Seitz,1985) C. L. Seitz, "The cosmie cube," in Comm. ACM, vol. 28, (New York,
N.Y..), pp. 22-23, 1985.

[Shimizu et al., 1988) H. Shimizu, N. Chubachi, and J. Kushibiki, Acoustical Imag­
ing. New York, London: Plennum Press, 1988.

[Shore, 1973) J. E. Shore, "Second thoughts on parallel processing," Comput. Elect.
Eng., vol. 1, pp. 95-109, 1973.

[Srini, 1986) V. Srini, "An architectural comparison of dataflow systems," IEEE
Computer, vol. 19, pp. 68-88, March 1986.

[Thi, 1992) Thinking Machines Corporation, The Connection M.1chine CM-S Techni­
cal Summary, 1992.

[Treleaven et al., 1982) P. Treleaven, D. Brownbridge, and R. Hopkins, "Data­
driven and demand driven computer architectures," ACM Computing Surveys,
vol. 14, pp. 93-143, March 1982.

[Troutman,1986) R. R. Troutman, Latch-Up in CMOS Technology: The Problem and
Its Cure. !39ston, Mass.: Kluwer Academie Publishers, 1986.

[Uhr,1986) L Uhr, Evaluation of Multicomputers for Image Processing. Cambridge,
Mass: Academie Press, 1986.

[van Zee and van de Vorst, 1989) G.A. van Zee andJ.G. G. van de Vorst, ShellCon­
ference on Paral1el Computing. New York: Springer-Verlag,1989.

[Weste and Eshraghian, 1993) N. Weste and K. Eshraghian, Principles of CMOS
VLSI Design: A Systems Perspective, Second Edition. Addison-Wesley, 1993.

[Wùson, 1993) D. Wùson, "The Silicon Graphies Indigo R4000 workstation," Unix
Review, p. 53, January 1993.

101

• AppendixA Convolution Benchmark

,..............•..

conv - convolution ~nchmark

DESCRIPTION: This bcnchmark mcasures the timc uscd in cx.:ocuting
the process code within the main loops of ~ convolution
routine. The èc!ines bclow ensure maximum flcxibility
and serve to parametri~c the bcnchmark.
This bcnchmark cxists sol~ly to isolatc pcrfor~ncc ct
double-precision floating-point arithmctic found in
the hcart of imaçc-processino programs thôt cmploy
convolution operators.

COMPILER: Gee Version 2.3.3
• OPERATING SYSTEM: Sun UNIX 4.2 Rclcasc: 3.5

.. DATE:
l\UTHOR:

Program Updatcd 93/02/23 •
Anthony Bot:as

••••••.......••..••••••••.......••••••...•.....•..•.••••............••••.,

linclude <scdio.h>
linclude <sys/time.h>
linclude -cputime.h-

Idefine ISIZE 512
Idefine IBEGIN 4
Idefine IEND 507

Idefine JSIZE 512
Idefine JBEGIN 4
Idefine JEND 507

Idefine MSIZE 9
Idofine MBEGIN 0
Ide fine MENO 8

Idefine NSIZE 9
'define NBEGIN 0
tldofine NEND 8

Idefine IOFFSET 4
Idefine JOFFSET 4

/- Global arrays for image data and kernel -/
double I(ISIZE) [JSIZE). Y[ISIZE) (JSIZE). W[MSIZEI [NSIZE):

102

•
A. Convolution Benchmark

mninll
(

int Li,m,n;
doubl(~ t.1.::.2;

'* initidliz~tion +,
for (i=O: J,<ISIZE: ··il

tor tj~O; j<JSIZE: ··jl
Ilil [jJ;;3.H:

for (m=O; m<MSIZE; ··ml
for (0=0; n<NSIZE: ··nl

Wlmllnl =2.72;

t1 cputimcIUser);

,- mDin loops of convolution opcr~tion -/
for li=IBEGIN; i<=IENO; ·.. i)

for (j=JBEGIN; j<=JENO: .. j)
for Im=MBEGIN; m<=MEND; ·-ml

for (n=NBEGIN; n<=NE:NO: ·.n)
Y(i} [jl .= W[n] [ml .. l [i+n-IOFFSET) [j-m-JOFFSET] :

::.2:; cputimc(Uscr);

,- print user mode seconds -,
print! (+timc=%ç secs.\n-, ::.2-::.1);

, .

• NAME: cputimc

USAGE: double cputime (option):
enum cputimc_option option;

DESCRIPTION: Rcturns the time consumed by a process.
The options are as follows:

System
User
AU

Time spent executing system calls for the process.
Time spent executinq the processes own code.
All time spent executing for the proeess.

..................•.........•.... ~...•..... ~....~.....···················1
linclude <sys/time.h>
linclude <sys/resource.h>
linelude -cputime.h-

double cputime(option)
enum cputime_option option:
(

stotie struct rusage ru;
double result;

result • 0;

if (option =& System Il option == All)
result:ll ru.ru-stime.tv_sec. (ru.ru-stime.tv_usec/lOOOOOO.);

if (option =- User Il option == All)
result 11: ru.ru-utime.tv_sec • (ru.:ru.-utime.tv_usee/lOOOOOO.):

return (re.ult) :
)

103

•
A. Convolution Benchmark

; .

HEAOER: cpu~irnc.h

DESCRIPTION: Definitions for the !unccion cputim~.

... ;

do~blc cputime ();

cnum cpucimc_opcion
(System,

User.
All

) :

/* Gct time uscd cxccutinç system calls *'
,- Get cime uscd cxccuting proccss code *'
,- Gct 411 of the time uscd by ~ proccs~ *'

104

AppendixB Parallel Convolution Benchmark

{.....•.............................•.................••..................

NAME: parconv - paraI leI convolution benchmark

DESCRIPTION: This is par411cli~ed version of the CONV bcnc~~rk.

lt runs ONLY on KAsPar MP-x architectures. Howcver,
the source coàe can conccivably he portcd to other SIMD
architectures. The objective is to measure the time
used in executinQ the double-precision floating-point
process coàe within the computational portion of a
parallel convolution routine.

KASPAR MP-1: The MP-l is ~n array pr~essor comprisod of a front
end DECstation and a data parallel unit (OPU). The
DPU consists of the array control unit (ACU) and the
proccssinQ clement array (PE array). The PE's are
arrangod in a 64 by 32 grid with nearest-neighbour
interconnects. Thus there are 2K PE's on the MP-1.

•

•

•

VIRTUAL
PROCRAMMING: Optimal i~go processing pertormance would be achieved

if the dimensions of the image array matcheà those of
the PE array. Then thora would he one PE for each
pixel in the imb~e. However. this is not the case
for the MP-1 since the 64x32 PE array cannot
accommodate the S12xS12 image al1 at once. Thus.
virtuali:ation techniques [Iverson. 1992] have been
developed to present a virtual programming environment
which detaches the MP-l programmer from the physical
PE array dimensions. Honce. using -virtua1i:ation
macros- such as -ImagCOpl- and -ImagCOp2- below. the
programmer indicates thAt the instructions encloseà in
braces. (). shou1d be performed in para11el on each PE
of a virtuel array that matches th~ dimensions of the
image. Ergo. virtuali:ation is accomp1ished via the
pre-procossor which replaces oach virta1i:ation macro
with a dOuble loop over the iœge. Conceptua1ly. the
macros break up the S12xS12 image into 128 -tiles­
each with pixel dimensions 64x32. Therefore. each PE
instruction is iterated once for every tile in the
image.

COMPILER: AMP~CC Vorsion 3.0.12
• OPERATING SYSTEM: lJLTRIX 4.2a

• CATE:
.. AUTHOR:

Program Up(\aeed 93/02/23.
Anthony Bot:as

...,

105

•
B. Parallel Com'olution Bcnchmark

, .. INCLUOES .. /

#includc <stdio.h>

;Ii Edûf _MPL
lIincludû <mpl.h>
#includc <mp:Pc/rpc.h>
.clse
#includc <rpc/rpc.h>
.cndi!

#includc <Mclmagc/imagc.h>
#includc <Mclmagc/Dimag~.h>

#include <McI~gc/Dinct.h>

/' OEFINES '/
,- -consistent wich the CONV benchmark *'
#definc ISIZE 512
#dcfinc JSIZE 512
#dcfinc MSIZE 9
#define NSIZE 9
Idcfine IOFFSET 4
#definc JOFFSET 4

maint)
{

,. INITIALlZATION ""

,- ocfine input and output images. These are simple structures ""
,- which embody both the image and a description of the *''* virtuali:ation mechanism which it uses. -,
doublelmagc InputImage;
doubleImage OUtputlmago:

regiscer double W(MSIZE) (NSIZE]; ,. ACU rcgisters (CReg'S) .,
register inc m. n:

register plural double sumo ,- PReg register dcfinea on cach PE -,

,- Allocate the input image and the convolution result image. -,
double-allocaImage(&Inputlmage. ISIZE, JSIZEI:
double-alloealmage(&OUtputlmage. ISIZE. JSIZEI:

,- Initialize kernel on CReg·s. -,
for (m=O: m<MSIZE: ++m)

for CnaO: n<NSIZE: ++n)
W[m)[n] = 2.72:

,- Virtuali:ation macro that initiali:es input imago. -,
lmageoplC &Inputlmage.double,In-P, {

-In-P • 3.14: ,- This instruction i3 exeeutcd on every PE. -,
,- Note that virtuali:ation will iterata this -,
,- parallel instruction until the entire image -,
,- dimensions have been traversod. -,

}):

106

•
B. Parallel Convolution Benchrnark

;. CO~PUTATION el

/. St/Ht <l :,"1:<11 timo: COU:'lt.~r in the Di1ta Pùrll.ll~l Unit (DPU). The .,
1· couot ... r increments once {!vcry machine cycle (SOns for ::he XP-l) .'"/
dpu":'im,~rStil;'t(';

,. Virtuali=ation macro tndt weiqht~ the ncighbouring pixels and */
/. dccumulatcs the rcsult in the corrcspondino output iW~9C pixel .• ,
Imd~cOp2(&OutputI~qc.doublc.Out-P. &Inputlmagc.doublc.ln-p. (

sum 0; je tcmporary accumulation rcgistcr '"/

for (m=O; m<MSIZE; ··ml
for (n=O; n<NSIZE; .·n)

sum .= wtmllnJ ..
doublc_inct(&Inputlm4Qc.m-IOFFSET,n-JOFFSET);
,. inct fctchcs li. ncighbouring pixel given li. el
le relative displacement (dx.dy) .,

·Out-P = sum: le store value of convolution Surn el

) ;

printfl-timc=%Q secs.\n·, dpuTimerE14psed());

107

• AppendixC Overview of the IEEE Floating-Point Standard

Manufacturers have in the past employed proprietary formats to store real nllm­

bers. Sorne of those formats did not even ensure correctly rOllnded resllits of com­

mon operations [Ferguson, 1991]. Due to t.'e increased use of floating-point arith­

metic, the need for a standard representation became necessary. In 1985, an IEEE

working group presented the IEEE 754 standard whose goal was to improve soft­

ware and hardware portabiIity. The standard describes such things as the floating­

point format (single and double precision), the combination (rounding) of floating­

point through common operations such as addition, multiplication and division,

and behaviour under error conditions (division by zero, overflow, etc.).

The converters on the hardware accelerator board comply with this standard.

Hence, an overview of the double precision floating-point representation is pre­

sented. For complete details on the IEEE 754 standard, the reader is referred to

[IEE, 1985).

6.1 52 0

G
--I1-'b-il-~~----------------~1

~ 52.bit M~Ultis.Q
;;; E><po.".:

Figure Cl: Double precision floaling-poinl represenlalion.

As depicted in Figure Cl, a double precision number is 64 bits long: one bit

for the sign (0 = positive, 1 = negative), 11 bits for the exponent and 52 bits for the

mantissa. To ensure a unique internai representation for each floating-point num­

ber, the exponent is adjusted 50 that the mantissa has an implied 1 before its binary

point. This "normalization" implies that the 1 in front of the binary point need not

be stored since it is always present. So, although there are 52 bits in the mantissa,

53-bit precision is provided.

108

•
C. Overview of the IEEE Floating-Point Standard

Moreover, the exponent value is represented using the "excess 1023 notation"

which implies an exponent range of -1023 to 1024. The decimal value, d, of a

floating-point number is hence given by

d = (-1)' * (l.manl.) * 2(al'-1023) (C.1)

where -' is the sign, mani and exp are the decimal equivalent of the mantissa and

the exponent respectively. In excess 1023 notation, an exponent with the maximum

value represents infinity (00) only if the mantissa is zero otherwise it is NaN (not a

number). An exponent with the minimum value represents a zero if the mantissa

is nul!, otherwise it indicates an underflow.

109

• AppendixD

TOPLEVEL.\fHDL

VHDL Simulations

This i8 a toplcvcl simulation of ~ lincar systolic co:wolution drr~IY.

Inputs and partial rcsults movc systolicly in the S~mè direction:
howcvcr. THE PARTIAL RESULTS MOVE FASTER THAr: THE INPUTS .
The convolution wcights do not movc.

The test bcnch below automatically gcncratcs an array of lcngth
AR.RAYLENGTH ~nd fccès ie with il stream of input pixels.
2-(ARRAYLENGTH-l).1 clock cdgcs aftcr an input samplc cntcrs the
first cclI. a valid convolution sum of that samplc and the prcvious
ARRAYLENCTH samplcs appcars at the output of the last cclI.

-- Clock Gcnerator

entity clock-gen i5
gcncric (Tpw : time := 5 n8):
port (phi : out bit) ;

end clock.-gen:

dcfault clock pulse width
one !)hasc

architecture bchaviour of elock-gcn i8
constant CLOCK-PERIOD : time := 2-(Tpw);

be9in

c1ock-driver: process
begin

phi <= '0', '1' after Tpw:
wait for CLOCK-PERIOD:

end proces~ c1ock-driver:

end behaviour:

-- Synchronous Re;ister

entity synch-,re; is
generic (Tpd : time := 1 ns):
port (d : in integer;

q : out integer := 0:
c1k : in bit):

end synch-reg:

-- defau1t propagation de1ay

defau1t re;i3ter content

architecture behaviour of synch-re; is
begin

process
begin

110

•
wo.it ~ntil clk ~ '~';

Q <= cl dft~r Tpd;
l!nd proc'~:::':;

end bt~hll.... iour:

-- Synchronous Convolvcr

D. VHDL Simulations

cntity convolvcr is
gcneric (Tpd : time := 1 ns;

wcight : intcgcr ;= 1);
port (pixel : in intcQcr;

insum in intcgcr;
outsum out intcgcr := 0;
clk in bit):

end convolvcr;

-- default propagation dclay
dc:ault convolution weight

-- default cOntents

architecture bchaviour of convoIver i5
begin

proccss
bcqin

wait until clk = '1';
outsurn <= insum • (weight • pixel) after Tpd;

end proccss;

end bchaviour:

-- systolic r.ell

entity ayst_cell is
port (Xin : in integer;

Xout out integer:
yin in integer;
Yout out integer:
clk in bit);

end ayst_celI:

architecture structure of syst_cell i5

component syncn-reg
port (à : in integer;

q out integer;
clk : in bit):

end component:

component convolver
generic (Tpà time:

weight : integer);
port (pixel : in integer;

insum in integar:
outsum : out intoger;
clk : in bit):

end component;

signal X : integer;

beçin

111

•
D. VHDL Simulations

po:t ~p (cl => Xin. q => x. clk => clk);

:cg2: ~ynch_:cg

por~ map (cl => X. q ~> Xou~. clk => clkl:

conv: convolvcr
gcncric map (Tpd => l ns. wcight => :)
port map {pixel => Xin. in~um => Yin. outsum => Vout, clk ~> clk};

end structure:

~. Test Bcnch: systolic array

cntity syst_4rray_tcst is
end syst_array_test;

architecture structure of syst_array_tcst i8

component clock-gcn
port (phi: out bit):

end eomponcnt.;

component syst_cell
port (Xin : in integer;

Xout out integer;
yin in intcger;
Yout out integer;
elle. in bit);

end component:

constant ARR,AYLENCTH : intcgcr : = 3:
signal xin. Yin : inte;er:
type int-array is array (0 to ARRAYLENGTH-l) of integer:
signal Xout. Yout : int_array;
signal elk: bit:

OOgin

cg : clock..gen
port map (phi a> clk);

cellO: syst_cell
port map (Xin => Xin. Xout => Xout(O).

Yin => Yin, Yout => Yout(O).
clk. -> elk);

eell_array: for i in 1 to ARRAYLENGTH-l çenerate
cell: syst_eell

port map (Xin => Xout(i-l). Xout => xout(i),
Yin => Yout(i-l), Yout &> Youtti).
clk. => elk):

end çenerate eell_array;

Xin <= 3. 7 after 16 ns. 2 after 32 ns. 6 after 48 ns.
3 after 64 ns. 5 after 80 ns. 9 after 96 ns.
8 after 112 ns. 9 after 128 ns. la after 144 ns.

11 after 160 ns. 12 after 176 ns. 13 after 192 ns.
14 after 208 ns. 15 after 224 ns. 16 after 240 ns:

Xin <- l, 2 after la ns. 3 after 20 ns. 4 after 30 ns. 5 after 40 ns.
6 after 50 ns. 7 after 60 ns. 8 after 70 ns. 9 after 80 ns.

112

•
la lifter 90 n!>;

yin <= 0;

end =.:tructurc;

for ~tr\.lcture

for cq : clock_9èn
\.ln~ entity work.clock-gen(behaviourl
gcneric m4p (Tpw => 8 ns);

end for:

for aIl syst_cell
use entity work.syst_celllstructurel;
for structure

for aIl : syncn-re9
use entity WQrk.synen-reo(behaviourl:

end for:
for conv : eonvolver

URe entity work.eonvoJverlbehaviour):
and for;

end for:
end for;

end for:

end.

o. VHDL Simulations

113

O. VHOL Simulations

TOPLEVEL.VHDL

This is 4. toplcvcl simulation of ô liI1è.:lr systolic convolution ~lrr<1Y.

Inputs and partial rcsults movc systolicly in the Sdmc direction;
howcvcr. THE INPUTS MOVE FASTER T~~~ THE P.~TIAL RESULTS.
The convolution wcioht~ do not movc.

The test bcnch bclow 4.uto~tic4.11y gcncratcs 4.n array of lcnQth
ARRAYLENGTH and fcccls lt with a stream of input pixels.
2-(ARRAYLENCTH-l)+3 clock cdgcs after 4.n input samplc cntcrs the
first ccll. a valid convolution sum of thAt samplc and the prcvious
ARRAYLENGTH sarnples appcars at the output of the last ccll.

-- Clock Generator

cntity clock-gen i8
generic (Tpw : time := 5 ns):
port (phi: out bit):

end clock-gen:

default clock pulse width
one phase

architecture behaviour of clock-gcn is
constant CLOClLPERIOD : time : = 2* (Tpw) ;

begin

clock-driver: process
beqin

phi <= '0', 'l' after Tpw:
wait for CLOClLPERIOD:

end process clock-driver:

and behAviour;

-- Synchronous Ro;ister

entity synch-reg is
generic (Tpd : time := l ns):
pore td : in integer:

q : out integer := O.
clk: in bit):

end synch-reg:

-- default propagation delay

default register content

architecture behAviour of synch-reg is
begin

process
begin

wait until clk D'l':
q <= d after Tpd:

end process.

end behAviour •

•• Muleiplication Stage
..•.•.......•........••...._-_._---

114

'~nt i ty mul t_tit4q(~ i:;
r;'~n'~t'le (1'?d : tln\l~ 1 n:>;

w.~llJht : int(~q,:t' : = 11;
put't (x : in int'~get';

xw : out lntl~q~t' ::: 0;
elk: in bit);

,md mult_:;taql~;

-- défoult p~opdq4tion dcl~y

défoule convolutio~ wciqht

D. VHDL Simulations

drchitcctut'C béhaviour of mult_zt49c is
bcqin

pt'oc'~ss

bc9in
woit until clk ~ '1';
xw <: X • wcight aftcr Tpd;

ènd proccss;

end beMviour;

-- Addition Stooc

cntity adà-staoc is
9cnerie (Tpd time:= 1 ns);
port (xw in intcgcr;

insum in integer;
outsum : out intcgcr := 0;
c1k : in bitl;

cnd add.-staoc;

-- dcfault propagation dclay

architecture bchaviour of add.-stagc i8
bcgin

proccss
hegin

wait until clk = 'l':
outsum <= insum + xw afcer Tpd;

end process:

end behaviour:

-- Normali:ation Stage

entity no~staoc is
goncric (Tpd time:D 1 ns):
port (innorm in intOÇer;

outnorm : out intcger := 0:
clk : in bit):

end nortlLstaoe.

-- default propagation delay

architecture behaviour of no~stage is
~in

process
begin

wait until clk = 'l':
outnorm <. innorm after Tpd.:

end proccsll;

end behaviour;

115

• - - sys:olic ecll

cn:ity syst_ccll i5
po~t (Xln : in intcgcr;

Xout out intcger:
Yin in intcgcr;
Yout out intcgcr:
clk in bit);

end syst_ccll:

architecture structure of syst_ccll i8

componcnt synch_reg
port (cl : in intcgcr:

q out intcgcr:
cU: : in bit);

cnd c:omponcnt;

component mult_stage
çcncric (Tpd : time;

weight intcger);
port (x : in intcgcr:

xw out integer;
clk in bit);

end componcnt;

component aàà-stAgc
port (xw in integcr;

insum : in integcr:
outsum : out intcgcr:
clk : in bit):

end component.;

component nOrm-stage
port (innorm : in intcgcr:

outnorm : out intcgcr;
clk : in bit):

end component;

D. VHDL Simul~tions

signal X. Xl. Yl. Y2. Y3

beçin

intcgcr:

xregl: syncn-rcg
port map (d => xin. q => X. clk => clkl:

xreg2: synch-,reg
port ma? (à => x, q => Xout. clk => clk);

stagel: mult_stage
generie map (Tpd => l ns. weight => 2)
port map (x => Xin. xw => Xl. clk => elk);

yregin: synch..reg
port map (d => Yin. q => Yl. clk => clk);

stage2: aàà-stage
port map (xw a> Xl. insum a> Yl. outsum a> Y2. elk c> elk);

stage): norm-stag~

port. map (innorm => Y2. outnorm => Y3. elk => elk);

116

•
Yout <= v):

yrcqout: ~ynch_rc9

port ~p Id => Y3. q => Vout, clk => clk):

f~nd structure:

_. Test Bench: systolic array

cntity syst_orray_tcst is
cnd syst_array_test:

architecture structure of syst_array_test is

component clock-gen
port (phi: out bit):

cnd component:

component syst_cell
port (Xin : in integer;

Xout out intcgcr;
Yin in integer;
Yout OUt integer;
clk in bit):

end component;

constant ARRAYL'ENGTH integcr:= 3.
signal xin. Yin : integ~r:

type int_Array is orray (0 to ARRAYLENCTH-l) of integer:
signal Xout. Vout : int_array:
signol clk: bit:

beQ'in

cg : clock..gcn
port map (Phi ~> clk);

cellO: syst.-cell
port map (Xin -> Xin. Xout .> xout(O).

Yin œ> Vin. Yout => Yout(O).
clk => clk);

ccll_Array: for i in 1 to ARRAYLENGTH-l generate
cell: .Y.Lcell

port map (Xin -> Xout(i-ll. Xout -> Xout(il.
yin -> Yo~t(i-ll. Youe -> Youe(i).
clk -> clk);

end çeneraee cel~array;

D. VHDL Simubtions

Xin <_ 3. 7 after 16 na. 2 after 32 na. 6 afeer 48 na.
3 after 64 ns. S after 80 ns. 9 after 96 ns.
8 after 112 na. 9 after 128 ns. 10 after 144 ns.

11 after 160 na. 12 after 176 na. 13 after 192 na.
14 aft.er 208 na. 15 after 224 ns. 16 after 240 ns:

Xin <. 1. 2 after 10 na. 3 after 20 na. 4 aft.er 30 na. 5 after 40 ns.
6 after 50 na. 7 after 60 ns. 8 after 70 na. 9 after 80 ns.

10 after 90 na:

yin <. O.

117

C:ld st.:,uct.u:,c:

fo:, st.:'uct.urc

for cg : clock-gc:l
use ent.it.y work.clock-gen(bch~viour}

gcncric ~p (Tpw => 8 ns);
cnd for:

fo::' aIl syst_ccll
use cntity wo::,k.syst._cell(st.ructurcl:
fo::' st::,uctu::'e

for aIl : synch_::,cg
use cnt.it.y work.synch-rcg(bch4viourl:

end. fo::,;
for stagel : mult._st.age

use cntit.y work.mult._st.ogc(bchaviourl;
end for;
for stagc2 : add-st.age

use ent.it.y work.4dd-st.agc(bchaviour);
end for;
for st.age3 : norm-st.4ge

use ent.ity work.norm-st.ago(behaviourl;
end for:

end. for;
end for;

end. for;

end;

D. VHDL Simulations

118

AppendixE VLSI Design Life Cycle Activity

Hardware VLSI Design
Design

Rcquin:mcnL" Ikfinition------------------------.-.
Architecture Architecture System Spccilic:uion

S)'lIlcm Decomposition
(ll1..:o Rc:s,i.,""cr Tnm..fcr Levcl)

Switching Clcx:kcd Rcs.islcr 1Logic
Implementation ----.------------.------.--

Network
Circuit

Flexible
Realization Geometry ---------------------------

Fixe<!

Figure E.l: Levels of abstraction in VLSI design.

119

•
E. VLSI Design Lire Cycle Acti\'ity

MODEl PROPERTIES
Functional

.......>

.............>StrucmrJ.l

< ;S~I::al~c'-T~ra~n:::si~li~o~n ~.~

Pcrfonnanccoc·························-- _

A,
•,

,
WMlJ IIppliQbll1l:)'
appIlabUily IIU111111y~
llmkcd awairJmlM""lIl~ pn~

Key:

Figure E.2: VIS! design lifc cycle activity.

120

AppendixF

.. Prin~Hicrarchy.~kill

Design Block Hierarchy

•• This 13 my rccursivc SKILL routine chat princs the complc~c block
•. hicrarchy ~tartin9 trom the top level block ~fullcireuit2M.
.. :t tr~vcrscs the schcmbtic rcprcscntations in a àcpth-first
•• manner printino out the currant black hicrbrchy in a format similar
., to UNIX dircctory pot~lS. For brcvity. only instance rMstcrs arc
•. printcd (once) .

.. Auther: Anthony Bot:as
•• Date May 19th. 1993

;; ç:loblal
dontExpandList = '("ipin" "opin" ·ono" ·vdd" "nmos· ·pmos·

"inv· "patch" "padout" "buffer"
"nor2" "no.(3" "nor4"
·or2" "or3" "or4"
"nand2" "nand3" "nand4"
..and2" ..and3" ..and4 ..

)

procedure (PrintHicrarchYl1
prog(Irep outPort blockListl

outPort=outfile l "Hicrarchy* 1

rcpresentation = nil
whilel representation == nil

representation = dbOpen(*fullcircuit2 schematic current*
ifl reprcsentation == nil then

fprintfC outPort -Ca~~ot open rep - 's\o- dbErrorIS II

1
currentHier~rchyofBlocks = ocons(oil)

tpriotInstanceMastcrs(outPort representation currcntHierarchyofBlocks)
close(outPort)

procedure (fprintInstanceMasters(outfile rep blockStack)
prog(lrevBlockStack ins~st il

blockStack • cons(rep->blockName blockStack

revBlockStack • reverse(blockStack)
fort i 1 len~th(revBlockStackl-l

fprinef(ouefile *'s/* nth(i revBlockSeack)
)

fprintf(outfile *'n-)

toreachl instmase rep->instanceMastcrs
fprinef(outfile -\s - ins~st->blockName

push block

121

F. Design Block Hjer.m:hy

f orC.:l.ch (i:u~tm,).::;~ rcp~> in~: t.lnc,-'l'l.:a~~t ..':'~:
t'cp abO?.....nt strCoJ.t(instn4H.t-"block.'.:.lm.' w :.chl'm.ltic C'\H~·t·l1t· Il
itt ((rcp != nil) &os.

(!:nc:nbcr(rèp->hlockNmllè àontExp.lndLi:.tl l l tllt"1l
dOntExpilndLi~,t :: con:. (rcp-:-blockN.lm.... dontExp.'ndLi:;~

~p:,intlnstancc!,,!,).:,tL'r:,(outCile n'p blockSt"ck 1

l
blockStack = cdr(blockStdck)

'"

Format: Block hicrarchYI
List of instance ~stcrs in block.

fullcircui t2/
Pllàout
Yout_m",n
Yil1-man
stagcl_cxp

stagc:Lcxp
stl'gc3_man
Yirl-cxp
st"'9cl_tMn

St49c3_cxp
PAtch
buffcr
opin

X-r c9_28x4
inv
i'Pin

Yout_exp
stagc2_m.ln
cont.rol

fullcircuit2/stage2_cxpl
nor2 buffcr
inv ipio
stagc2_cxp_f

stagc2_1oad
àcclinc8

s:Ldcc_ct r l
st.:t9c2_cxp_v

fullcircuit2/stagc2_cxp/stagc2_locd/
buffer ll_comp nor2
nor3 ipin

inv opin

fullcircuit2/stagc2_cxp/stagc2_load/ll_comp/
Specdcomp ipin apin Spccdcomp3 Comp

fullcircuit2/stagc2_cxp/stagc2_load/l1_comp/Spccdcomp/
and4 ipin inv gnd nmos
pmos vdd opin

fullcircuit2/stagc2_cxp/stage2_load/l1_comp/S~~dcomp31

and3 ipin inv gnd nmos
pmos vdd opin

fullcircuit2/stage2_exp/stage2_1oad/ll_comp/Compl
xnor2 opin ipin inv nor2

fulleircuit2/stagc2_exp/s2_dec_ctrll
buffer nor3 nand3
ff_l inv nor2

nand2
ipin

opin

fullcircuit2/stage2_exp/s2_dec_ctrl/ff_ll
opin ipin inv ff_D inv-Pnss

fullcircuit2/stage2_exp/s2_dec_ctrl/ff_l/ff_OI
inv gnd vdd nmos pmos
opin ipin

vddipin

fulleircuit2/stage2_exp/s2_dec_ctrl/ff_l/inv-Pass/
opin ipin qnd vdei runos
prlJos

fullcirc~it2/stage2_exp/deelinc81

buffer 11_adder_2 opin
patch

122

tul~circuit2/~~~qc2_~xp/declinc8/11_4ddcr_21

ipin apin pmos ~~os

gnd vdd cbrryr~d addcr_rcd
'bi tddd(~r

fullcircuit2/stdqc2_éxP/dcclinr.8/11_Addcr_2/carryrcdl
vdd gnd inv opin
ipin pmo=>

i:w
aède:

f'_'TlOS

F. Design Block Hierarchy

fullcircuic2/sta9c2_cxP/decli nc8/11_Aèdcr_2/addcr_rcdl
inv apin vdd ipin gnd
pmo:q runos

fullcircuit2/staçe2_cX?/dcclinc8/11_adder_2/addcrl
nor2 nand2 inv apin vdd
ipin çnd pmos nmos

fullcircuit2/stagc2_cxp/dcclincS/ll_adder_2/4bicaddcr/
carryfull opin ipin bdder

fullcircuic2/st4gc2_cxp/declinc8/11_4dder_2/4bitadder/carryfulll
and4 carry inv qnd ~~os

pmos vdd ipin apin

fullcircuit2/stagc2_cxp/declinc8/11_adder_2/4bitadderlcarry!ull/carryl
inv qnd vdd apin ipin
pmos nmos

fullcircuit2/st4ge2_cxp/stAge2_exp_vl
opin ff_3 ipin buffer

!ullcircuit2/stage2_exp/stAge2_~xp_v/ff_3/

opin ipin inv inv-Pass ff_C

fullcircuit2/st8gc2_cXP/st8ge2_cxp_fl
ff_2 nor3 nanà4
buffer

opin ipin

fullcircuit2/st8çe2_exp/stAçe2_exp_f/tf_2/
opin ipin inv inv-P4ss ff_D

fullcircuit2/stAge3_cXPI
buffer incl_dec8
s3_exp_reç

stGçc3_ov opin ipin

fullcircuit2/st8ge3_cXP/incl-decB/
11_adder_2 buffer inv
pa. tch çnd

fullcircuit~/stage3_exp/stGge3_ov/

buffer ff_l inv
opin ipin

fullcircuit2/st8ge3_exp/s3_exp_re;/
and2 nor4 nor3
nor2 ff_2 opin

opin

nanà2

nand3
buffer

ipin

nand3

nand4
ipin

fullcircuit2/X-reç_28x4/
X-line o~in ipin buffer

fullcircuit2/X-re;_28x4/X-line/
opin ipin ft-l buffer

fullcircuit2/You~expl

opin nor2

fullcircuit2/YOu~/

ipin buffer

123

fulleircui~2/s~agc3_mdnl

ipin s3_~n_ct:l•
:'lbnd2
ipin

i:w
butfcr

opin

F. Design Block Hierarchv

!ullcircuit2/stagc3_man/s3_~n_ctrl/

:10:2 0:2 opin
nor3

inv ipin

!ul1circuit2/sta9c3_~n/s3_rnan_rcgl

:!_~ nar.d2 nor3 nor~

ipin bu!!cr

!ullcircuit2/sta9c3_man/s3~~rC9/:f_4/

opin ipin inv inv~ss

opin

!ullcireuit2/stagc2~~nl

twoscompl stagc3_sign
ipin s2_man-v

fullcircuit2/stac;c2JM.n/twoscompll
buffer opin ipin xor2
and3 anà2 twosearry

fullcircuit2/stage2_man/twoscompl/xor2/
opin ipin gnd nmos
pmos

fullcircuit2/sta9c2~n/twoscompl/twosearryl

opin ipin anà4 and3

vdd

vdd

and2

fullcircuic2/stage2JM.n/st4gc3_signl
opin ipin nor2
fCl

fullcireuit2/stagc2_man/S4_4ddcrl
buffer carry carryred
ipin opin

buffer inv

4bitadder

fullcircuit2/stage2_man/54_adder/16_Adècr/
inv carryfull patch 4bitadder opin
ipin

fullcireuit2/stage2-man/s2_adder_ctrl/
xnor2 nand2 nor2
xor2 ipin opin

fullcircuit2/stage2~n/s2~v/

inv nor3 ff_4_clear
ipin opin nor2

or2 inv

fullcireuit2/stage2-man/s2~v/ff_4_clear/

nor2 opin ipin jnv
fCD

inv-P4ss

fullcireuit2/staçe2~/s2~f/

inv opin xn~r2

ff_2
ipin buffer

fullcireuit2/Yi~/

opin ipin

fullcireuit2/Yin-exp/
ancl3 ff_l
nor4 opin

fullcireuit2/control/

buffer

buffer
ipin

nor2 nor3

124

•
! t_Ip ipin
opin

t'Ille i reu i t2/control /! !_lpl
opio ipin

bu! fer

inv

no:3 i:w

F. Design Block Hierarchy

tullcircult2/control/!f_lp/!fp/
inv qnè vdd
n:no:; ipin

opin pmo::;

tullcircuit2/5tdgcl_cxpl
oV_5tdqcl ov_stagcl-2
xor2 cccf_exp

X_exp_reg
ll_",dder

opin ipi:"l

fullcircuit2/st4Qcl_cxp/ov_stagel/
but fer or3 nor2
opin ipin nor3

fullcircuit2/st49cl_cxp/ov_st4gel-2/
opin ipin buffer

tulleircuit2/stagel_cxp/X-exp_reg!
nor2 nanà2 buffer
ff_1 ipin

fullcircuit2/stagel_cxp/X-cX?_reg/UC-OVI
opin ipin nor4
nand3

fullcircuit2/stagel_cxp/cocf_cxpl
uo-cv adder_402 ff_l
buffer

rnmd2
rut.:'là3

inv

uo-cv

nor3

opin

or2
nand4

opin

nand4

ipin

fullcircuit2/stagcl_cxp/cocf_cxp/adder_4021
ipin addcrcarry opin

fullcircuit2/stogel_exp/eoef_exp/adder_402/addercarry/
inv opin vdd ipin gnd
pmos nmos

fullci~cuit2/stagel_exp/ll_adder/

buffer inv gnd
carryrcd ipin 4bitadder

patch opin

fullcireuit2/staoel~n/

patch inv
eoof_man prod-rog

buffer
S7_adder

opin
prodgcn

ipin

ful]eircuit2/stagel~n/coef~n/

eoef_ctrl opin ipin buffer fLl

fulleircuit2/stagel_man/eoef~/eoQf_etrl/

nor2 buffer opin inv ipin

fulleircuit2/stagel_man/prod-reg/
prodLman buffer or2
ipin

opin inv

fulleircuit2/staoel~n/prod-reg/pr~/

ff_lm ff_l buffer nor2
inv ipin

fullcireuit2/stagel~/prodLreg/prod-man/ff_lm/

ff_O inv-Pass and2 opin
ipin

opin

inv

fullcireuit2/staoel~/S7_adder/

carry gnd earryrecl addercarry

125

fullcircuit2/st49cl_~n/prod9cnl

inv buffer ft_l
productgcn ipin•
opin ipin p.:\tch

opin

F. Dt.'sign B10ck Hit.'rarchy

fullc i :cu i t21 s tôgel_~n/prodgen1prOdgf'n_ct r 11
or~ buffer opin ndnd2 nor:!
inv ipin

fullci:cuit2/stôgel_mdn/prodgcn/productgcnl
p:odslice Plltch opin ipin

fullei:cuit2/stôgcl_man/prodgcn/productgcn/prodsliccl
ôddc:côrry pôtch opin inv vdd
pmos inv-P4ss ipin

"/

126

F. Design Block Hierarchy

•
Hf ,:> Wh l!! : iiI .1 l••.. ..
'"' 1

1

1

1 ;::::=

.•hl. i;'
: 1 .:rl

.~
l
1

Figure F.I: fullcircuit2: Top-level-block schematic represenrntion ofsystolic œil.

127

F. Design Block Hierarchy

III
1•
1

".<
:'

-

'"
1 ~.

A II ~" u
~ %

"<
X

Figure F.2: fullcirt:Uit2/XJeg.28x4: 28 x 4 shift register circuit for the Xinput data.

128

F. Design Black Hierarchy

~
d
il

::l L"Cl•

~
,....)0 .È

~ " <• 3c, u

!
;

,

L ;.
~

v
v, v

• "5
",'

"5
- .c .c

< <

•..
:

f
,r-'
i

~ :5
x u

Figure F.3: jullcircuit2/X.reg.28x4/XJine: Example of an iterative specification of
an array of f1ip-flops.

129

F. Design Block Hicrarchy

°•

1,.°0 1
~ t

al•
>

~c.-
•

~• •

Q-Q. a •a
f ?Hi !~

~r~ -TT
!

"+

·~t a

• l

Figure E4: fullcircuit2/X.reg.28x4/XJine/ffJ : Example of a typical delay ffip-f1op
with HholdHcapability.

130

F. Design Black Hierarchy

....
C

~

o

>c
0­
o

u...
t
0-

u...

o

'1
3
u

Figure F.S: fullcirruit2/X.reg.28x4/XJine/ff..l/Jff: Example of a typical one-phase.
master-slave. flip-flop implementation.

131

F. Design 810ck Hicrarchy

"0

I~

1

(Jl
(Jl

o
0..

'-
al
~

'­
al
>c

Figure E6: fullcircuit2/X.reg.28x4/Xline/ff.1/itlV-1Jass : Exarnple of an inverting
pass gate implementation.

132

+-'
C
Q)

C
o
0...
X
w

1
c
>-

"'"'-o
c:

:. ~,
= :.

'f!
d
•

l•
~I

N
'-

~
0
c:

l
o. ~3.

•
~ .. 1::. Q

~ f a
1

i

F. Design Black Hierarchy

Figure F.7: jllllcirr:uit2/Yin.exp : Exponent portion of Y input circuit.

133

•
F. Design Block Hicrarch\'

r
o
'".~
ë
o
:i

1

0

l
•

>' , .

-~ ~•
~-----11

1. ~? •, a

1- : • 1;'n; • 1n.
. t t

~ .
..]

1 ~~~~
m'

ft.~ ! •
ft ! j
• • -

Figure F.S: juIlciTCUit2/Yin.man : Mantissa portion of Y input circuit.

134

•
F. Design Block Hierarchy

~._--------------------------,

l l

o

.. i~,·l' ~#]
~. < <

•
;:

\::1 1"
g L,--J

Figure F.9: fulldrcuil2/Youl.exp : Exponent portion of Y output circuit.

135

•

c::
o....
<::
c::
LU
Z
Ld

"1
LU
Cf)
....J
:::>
Cl.

;
>e •c:: .~ -1 ,

LU
l .1. J 1....

ijz
:::>
0
u

1
Z
0
Cf)

~Z
J:
0 ~~ ;...,

;~ j

=~
J

1
T•
Î

Figure ElO: fullcircuit2/control : Global control circuitry.

136

•
F. Design Block Hierarchy

~
,

"c i ' .
~~~ s• • • .. • •i

1 1

1 Il 1, 1
1

~ iii 1

1.. ,
1.',

: l. 1•
j }• ,

i

•
~

....-~

"j.d.ll
• 1 1 11 1 1

••::1 .; "'"- i-"""
_....

,.- J '.~ .....~ h
~ Z:JOX H
!

1'- . .
ID ""•

;
~

Figure EU: jullcircuit2/stagel.exp: Exponent portion of first stage multiplication
circuit.

137



F. Dcsi~ Block Hi~rarch\', .

,,,
III,

.a
•

·..;
",.··

! q
~ • ;; a! ! ~ 0

'".!!!
c:
0

:::;

li)

a-
0

Cii

., • 3•
~ !~ 1,

1 L...---t 1• i!

1

•, - 1
1

., a •1

1

1

~ "
"

~-=J
c:

10 c:
E J- e:>

_1 q.1~~
a- -....I~)o' "0 -- ~«w ...:~.. ,"",' .(""_-"l.•(,,~1--

li) 0
0 ~ ~

c- a;
U "C ~.._

.~o:._

"0 a-
0 li)

:ë
~

1
r- "0
.1) ~

=
0-.

1 ~

~h! a ~ j ;; ~ i r~1 ~ ~

W + ~ 1 ~ 1 ~ .Ji!

1

~. 1 l'S y,. • ,.

Figure EU: fullcircuit2/stage1.Jn/ln : Mantissa portion of first stage multiplication

circuit.

138



•
F. Design Block Hierarchy

••i ,~~ . 1

~ 1~ ..:.'~' • ,i.- -~
N q~

0
ii i

,
<:

~ 'i },
~: ~Z:~ •• • -li

1• .
l

1> ~ 7
\

t~• 1
.~ • •

i~ ",
• •

l I '. I~• .l. d .h ..
1

,
1 r:--: Il1

t 1
~

~S~.11 1 -!
~.

ri "ii •

~g
1: 1

.
-Y1~~ in ao- im· • ,.J ••
h·',. .- ! •/"" " ~

~ E-- -;:::: 0:::=. ·.II"1IlCl -;:::: ............- e-. ·_w ';:::: ...... 00__" .,,- ......-::
~ • ;la

~ • d -, ;.-". --,
~

rI' Ë ~

~ Ë

Figure F.13: fullcircuit2/stage2.exp: Exponent portion ofsecond stage addition cir­
cuit.

139



F. ~sign Block Hicrarchy

-

--

1

T
---

t i .
1 ••

1

--:::::.: i- r;::: :' 1 _ • .-.- - :::::"'" ~ ---~ -~-- -~~---, !

~
~
i.

L.
,

~i-~ -
_, J\i al II! Iii; ,

• ! l l l
1 l1 1

111 ,
• --i -,
~-----i-l-
it -=if--'

•li !'j li!

Figure E14: fullcircuit2/stage2..man : Mantissa portion ofsecond stage addition cir­

cuit.

140



•
F. Design Block Hierarchy

·. •
1~ ·

" ·-+-' 2: ., · ~0 00c
~

... • •
Q)

1 Ilc --1
0 i i i i
Q 1 § Sb

X
2

~W .
i
;!

n • d
•• •Q) ii~~ •d

QI
0

-1-'
(f)

. i
1: ........a ~

~i~~
•

2j

'" <Xl
~ u, ~

<AI>"" ~ <~'I)o1l"lO <AI>\!:J
~ u1
~ <1:1,>w"S

c
<e:I,)o1'll'r.ô

•
~
~

::

Figure F.IS: fullcirr:uit2lstage3.ap: Exponent portion of third stagenorma1ization
circuit.

141



•
F. Design Black Hicrarchy

·u
•

1•
1 ~ 1
~ •

<III rç:"-Nl

..., F
~ <.:ç)lf'IO .

<U'Ç)I"Nl -:

-.f--

ii i~?, â~ .. ~$.

1•

t~
····r â
Ü~~,

•
f ""

! ~

!hH
ft
•

Figure E16: ful1circuit2/stage3.man : Mantissa portion of third stagenormalization
circuit.

142



F. Design Block Hierarchy

;; 1 0; 1 ;; 1 ;; Il ;; Il ;; 1 ;; 1 ;; 1 ;;
1

, '"'!.PI,

L .>..

00
lI21 E 10

E
1

c

1

0 c
c:

~ I~I~
1 • 1 1 '-1

\ I.=: - ~ n ......,
>-

Q) :::J

Q) ~ :i?-
OJ 0

OJ ..;...J
(/)

0 0
J

1 - J.

~ '" • 1 ~'-

~~,~
i Il.....

~ '"li c [l..

I~ u ....... c

N 1 1 ni =x
1 ~ x N = vIIl> Q)

0' Q) Q) ="5 0
10 Q) Q) - Cl) CJl i= 0'- 0 0 0 =>-~I ......, -+J ....... -

F"t"1 F"t.. JI

Figure F.17: fullcirruit2 : Top-level-block layout representation of systolic cell.

143



F. Design Block Hierilrchy

Figure F.IS: ful/circuit2 : Top-level-block "explodedHlayout representation of sys­
toli,œIL

144



AppendixG Automated Testing Environment

TBST HEAD CONFICURATION

DIGITAL SICNALS

OAt4 Gcnorotor
AddroGG Pin Sockot Signal ICPin.

0-0 7. 26. Xin(O) 40
0-1 9. 27. Xin(l) 39
0-2 12. 28. Xin(2) 36
0-3 14. 29. Xin(31 37

1-0 16. 30. YinCO) 45
1-1 18. 3l. 1in(1) 44
1-2 20. 32. Yin(2) 43
1-) 22. 33. Yin() 42

2-0 25. 6. PRESET 31
2-1 27. 7. HaLD 30
2-2 29. 8. C_LOAO 29
2-3 3l. 10.

4-0 33. ll. Cin 41
4-1 35. 12. Yin-Dis 46
4-2 37. 13. Abs_Val 49
4-3 40. 14.

5-0 42. 15.
5-1 44. 16.
5-2 46. 17.
5-3 48.

6-0 50.
6-1 52.
6-2 57.
6-3 59.
Clock l 84. <-- tha clock output 5. CLK 1
Clock 2 3. <-- the clock output 19.
Strobe 5. <-- the • crabe out'Put

Data Ana.ly:er
Addross Pin

0-0 6l. 34. Xout(O) 12
0-1 10. 35. Xout(l) 13
0-2 64. 36. Xout(2} 14
0-3 65. 37. Xout(3) 15

2-0 66. 38. Xin(O) 40
~-l 67. 39. Xin(11 39
2-2 68. 40. xin(2) 38
2-3 69. 1. Xin() 37

1-0 24.

145



•
70.
ïl.
'72.

)-0 73.
3-1 74.
3-2 75.
3-3 39.
4-0 76.
4-1 77.
4-2 78.
4-3 79.
5-0 80.
5-1 8l.
5-2 82.
5-3 83.

Cround
Ext Clocit

OPSl
OPS2
DPS3
CNO

56.
60. <-- cxt clock input

55.

56.

G. Automated Testing Em'ironmcnt

23.
18. CLK 1

22.
4. vdd 32.55.62.63.66
9.
2. Vss 21.52.53.57,68

146



G. Automated Testing Environment

1····················································· .
. 8180initrc

HP 8180A initiall:ation run co~~nds.

These co~~nds ar~ read in by my HP interface program HPINIT.
My parncr and syntax checkcr cxpccts co~~cnts dS in C :anguaqc.
lt i5 a1so wis~ to dclimit commands with semicolons.
Note th4t the purpos~ of this file i8 to load an initial set of
desirable param~tcrs on cach -page· of the data GENERATOR.

AUTHOR: ANTHONY BOTZAS.................•.....••••........••..........•.••.......•••............,

rss: ,- set çcncrator to a known state *'
1····················································· .

RSS

Roealls the standard parametcr set written by the manufacturer for
the HPB1BO DGt~ Gener~tor. -rss- performa the following actions:
{Note: l have put ~rrows next to the settings which ~re not
particul~rly desirab1e to me. l plan to reset these explicitly
after the ras command.}

ras = Rcc~ll St~ndard Set
•

••• CONTROL PAGE •••

stp

fad 0
---> lad 1023

c:yml

8tbl

clkl

• thr Ov
• impl

ruil
spil
brU

stol
---> 8t12

• outl

• ••• TIMING PAGE •••
•

---> pcr lOOns

• del le Ons
fme le l

---> wid lc 40na

deI 2e SOns
fme 2e 2
wid :!c lOns

•

stop

first ~ààrcss

last adàress

cycle mode auto

strobe brc~ks off

clock source internal

input thresholà
input impedance SO ohms
t'Un input off
stop input off
break input off

strobe output as NRZ data channel
; strobe 1evel &CL (on output page)

outputs off

clock perioà (f-10He;H:)

dclay c:lock l
format c:lock 1 RZ

width c:lock l

dclay c:lock 2
format. clock 2 RZcSO\
width clock 2

147



del Oxx Ons
frot. xx 3
d~l yy Ons

... OUTPUT PAGE ...

lim::'

---> hilA O.2Sv
---> 101A -0.2Sv
hila Sv
lola Ov
hilC -O.Sv
10iC -l.Sv
hilD 2.'v
1010 O.Sv

lb<> )0(

nor xx

••• DATA PAGE•••

sse

G. Automated Testing Em'ironment

; d~l~y nll chnnncls
formôt. ~ll chnnncl~ NF:
dclay aIl ext.endcrs

load imp~dancc 50 ohms

; high l~v~l label A
; lo~ level label A

high level label B
low lavaI label B
hi9h level label C
low level label C
hi~h level l~bel D
low level label D

select label A for all channels
select. normal polarity for aIl
channcls

set standard configurat.ion
on the data PAge

•••••••••••.•.•.•••••.•.....•.•.•.................•...................... /

/. TIMING PAGE ./

/. Clock signal ./

fmt le 1:
per lus:
wid lc SOOns;
deI 1c Ons;

/. return to :oro format ./
/" 1.0 MH. "/

/. SaOns pulse width ./
/. no delay w.r.t. strobo ./

/. Xin(O .. 3) on Connector a ./

fmt 00 3: /- non-return to :ero format ./
del 00 Ons;

fmt 01 3:
del 01 Ons:

fmt 02 3:
del 02 Ons:

fmt 03 3:
del 03 Ons:

'" YinlO. ,3) on Connector 1 .,
fmt 10 3:
deI 10 Ons;

fmt 11 3:
del 11 Ons:

fmt 12 3:
del 12 Ons:

fmt 13 3:
del 13 Ons:

148



• 1" PRE5E1'. HOLD, and COEF_LOAD on Connect.or :2 .;

!mt 20 3;
d.~~ 20 On~:

lmt 21 3 ;
dl:l 21 On:;;

(mt. 22 3 ;
del 22 Ons;

fmt 40 3;
deI 40 Ons;

fmt 41 3:
del 41 Ons:

fmt 42 3.
del 42 Ons;

G. Automated Testing Environment

,- OUTPUT PACE */

hUA Sv; lalA Cv; ,- set TTL levcls tor Label A -,

stll; '" strobe level TTL *'
'" (not rc~lly necessary) "'

,- DATA PAGE *'
""g 4; cId; cls:

cas by 00 01 02 03; aels by 10 11 12 13;
ads by 20 21 22; ads by 40 41 42;

fad OOOU: lad 0008;
tsa 0000;

'" PRESET Cin
AODR STR DATA HOLD Yin.-Dis •

xin Yin CO'Jf_LOAD Abs_Val "'
'" 0000 "' for l 0000 0000 000 000;

'" 0001 "' for 1 1000 0000 000 000;

'" OOC2 "' for 1 CCOC 0000 OOC 000;

'" C003 -, for 1 1000 0000 000 000;

'" 0004 "' for 1 0000 0000 000 OOQ;

'" 0005 "' for l 1000 OO~O 000 000;

'" 0006 "' for 1 0000 0000 000 000:

'" 0007 "' for 1 1000 0000 000 000;

'" OOOB "' for 1 0000 0000 000 000;

out2: '* outputn ON "'run;

149



•
G. Automated Testing Em·ironment

J ••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••

. 8182i:'l.itrc

HP 8182A initiali::.:lt,ion run comrn.:lnd~•.
These co~~nds arc rc~d in by my HP intcrf~cc proqr~m HPINIT.
My parscr and SyntlloX chcckc: cxpccts cornmcnts ,'U' in C 1.1nqu,,(1l'.
lt is also wise tO dclimit co~nds with scmicolon~.

Note t.hat the purposc of this file i5 to lOlld <ln initidl ~ct ot
dcsirable parametcrs on cach ·page· of the datd ~~ALY:ER.

AUTHOR: ANTHONY BOTZAS........................................................•................ /

stp:

rc14;

/- stop operation e,
le rccall standbrd set el

1····················································· .
RCL4

Rccalls the standard paramet~r set written by the ~nufacturer for
the HP8182 Data Ala1y:cr. -rcl4- performs che followinq actions:
[Note: l have put arrows next to the settin;s which are not
parcicularly dcsirable to me. l plan to res~t these Qxplicitly
after the rc14 command.]

..• CO~"'ROr. PAGE ...

opr 1 ; triggcr start analysis
for recordinq post-triggcr data

gld 2 qlitch detcct off

• ---> clk 1
cks l
ckt 1.4v
ckd O.OOns

eCll 3
cqt l.4v
cqi 2

•
ckw 10.0ns

tas 3
• tat 1.4v

tai 2

<wd XXX •••

<Cll 3
<Cl< 1.4v
<Cli 2

<re 01

age 2

<rà 00000

,p, 3

e .p< 1.4v
spi 2

• ---> .pd 1023

; clock sourCQ EXTERNAt.
clock slopo positive
clock chreshold
clock delay

clock qualifier levol don't care
clock qualifie~ threshold
clock qualifier impedance lOOKohms

clock width lfor external clock
: in TRG STRT COMP MODEI

triqger arm slope don't care
crigqer arm chreshold
trigger arm impedancc lOOKohms

triqger word don't caro

trigger qualifier level àon'c caro
trigqer qualifier throshold
trig;er qualifier impedance lOOKohms

trigger count

allow gaps in counc NO

trigger delay

stOp slope incernal
stop thresholcl
stop impeàance 100Kohms
stop clelay

150



• :;p.~ 1
<lnd .:,

cyp-l

· •. n;pU'I' PACE .•.

si 1.~Ov

10_ o.av
up_ 2.0Qv

lbl aaa •.•

---> c.::s~ b ...

G. Automated Tesilllg Environrnent

~~op occur~ 1023 clock p~rioè~ à:~cr triçgcring
~:op O~ error OFF (rcal time comp~rc moèe)
llut.odrrn.inq OFF
cycling pcriod OfF

bll in~t.dllcd conncCtcr~ S!~CLE th:cshold
8182A software interrog4tcS h~rdwllrc tO
dctcrmine how ~ny co~~cctors arc installcd
all labels single thrcshold vllluc
all lAbels lower thrcshold value
all labels upper thrcshold value

all channcls label A

, channcls fOr eve~ instal1ed co~~cctor

• •• E."<PECTEO DATA PAGE •••

t4d 0000 ; top address

••• $TATE LIST PAGE •••

cise 1 display errors YES (if user $witches
qlitch doteet ON)

.••TIMING DIAGRAMS PAGE •••

c4à 0000 cursac adclrcss

cise 1 display errors YES (if user switchcs
qlitch èctect ON)

ho:: 1 hori::ontal ::oom factor • 1
ve: 1 vertical :oom factor = 1

• •• ERROR MAP PAGE •••

cte 2

dsg l

error count OFF

display qlitches YES (if user switches
qlitch detect ONl

------------------------------------------------------------------------+/
,- CONTROL PACE -,

clk 1: /- cloek source EXTERNAL -/

,- these channels have to -/
/- appear in reverse order -,

cas B 03 02 01 00;
aès B 23 22 21 20:

paq 6:
run:

" Xoutt3 .. 0) "'
" Xinl3 .. 0) "'

151




