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ABSTRACT

AbnormaI heart rhythms are often associated with serious illness and sometimes cause

death. A new strategy to control cardiac arrhythmias involves precisely-timed elec­

trical stimulation of the heart in an attempt to restore nonnaI dynamics. In the first

part of this thesis, 1 demonstrate that a particular abnormal heart rhythm is caused

by a period-doubling bifurcation. 1 describe a new control technique that suppresses

the abnonnaI rhythm by directing the timing of electrical stimuli according to a sim­

ple feedback aIgorithm. Subsequent analysis of the feedback controller revealed a

rich structure of stability zones that can be used for automatic adaptation of the

previously fixed feedback gain parameter.

While electrical stimulation of the heart guided by feedback control is a promising

new treatment, the standard means of controlling an abnonnal heart rhythm involves

accurate diagnosis of the arrhythmia mechanism followed by appropriate medical or

surgicaI intervention. Since different arrhythmia mechanisms often have very different

treatments, accurate diagnosis is crucial. In the second part of this thesis, 1 describe

a new diagnostic technique that identifies the different spatio-temporal symmetry

properties of electrical wave patterns underlying different mechanisms of cardiac ar­

rhythmia. For one of the arrhythmia mechanisms, the surgjcaI treatment involves

locating and destroying an abnormal region of the heart that generates unwanted

electrical oscillations. 1 present new techniques for locating these abnormal regjons

and 1 suggest a procedure to confirm when the correct location has been found.
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RESUME

Les anomalies du rythme cardiaque sont souvent asssociées à des troubles graves et

peuvent être mortelles. Une nouvelle stratégie de contrôle des ces arythmies met en

jeu des stimulations électriques précisément minutées, dans le but de restorer une dy­

namique normal. Dans la première partie de cette thèse, je démontre qu'un type par­

ticulier d'anomalie du rythme cardiaque est associé à une bifurcation de doublement

de période et je décris une nouvelle technique de contrôle qui pennet de supprimer

le rythme anormal en réglant le moment des stimulations électriques conformément

à un algorithme de rétrocontrôle simple. L'analyse subséquente du mécanisme de

rétrocontrôle a révélé une grande richesse structurale des zones de stabilité, qui peut

être utiliées pour l'adaptation automatique du paramètre de gain du rétrocontrôle

précédemment fixé.

Tandis que la stimulation électrique du cœur guidée par rétrocontrôle est un nouveau

traitement prometteur, les moyens standard de contrôle des rythmes cardiaques anor­

maux impliquent un diagnostic précis du mécanisme de l'arrythmie suivi d'une inter­

vention médicale ou chirurgicale appropriée. Les différents mécanismes d'arrythmie

demandant souvent des traitements très différents, la précision du diagnostique est un

point crucial. Dans la seconde partie de cette thèse, je décris une nouvelle technique de

diagnostic qui pennet d'identifier les propriétés de symétrie spatio-temporelle des on­

des électriques sous-jacentes aux différents mécanismes d'arrythmie cardiaque. Pour

l'un de ces mécanismes, le traitement chirurgical implique la localisation et la destruc­

tion d'une région anonnale du cœur qui génère des oscillations électriques indésirables.

Je présente des techniques nouvelles de localisation de ces régions anonnales and je

suggère une procédure permettant de confirmer l'exactitude de la localisation trouvée.
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PREFACE

In the course of my doctoral studies, 1 have benefited frOID collaborations with re­

searchers trained in chemistry, medicine, physiology, engineering, and physics. Sucb

a research environment provided me with unique interdisciplinâ.:.J" ~periences and

opportunities. But interdisciplinary research has its share of problems. For example,

what joumals are best suited for communicating research on controlling abnormal

heart rhythms using tools from nonlinear dynamics and geometry? ïn considering

that question, we thought that it was important to report each study to the mast

appropriate community - to cardiologists when our results could directly influence

the interpretation or treatment of an arrhythmia; ta physicists when our techniques

involved symmetry arguments or dynamic control.

Communicating our results to bath physicists and cardiologists has resulted in

this manuscript-based dissertation that brings together the style, language, and con­

ventions of both communities. Chapters 2 and 6 are based on papers that have

been published in a cardiology journal, whereas chapter 3 has been published in a

physics journal and chapter 5 is presently under review in a physics journal. Since

this is a physics thesis, 1 have provided the necessary cardiology background in the

Introduction.

Contributions by the varions Authors

Chapter 2 is based on the manuscript Alternation of Atrioventricular Nodal

Conduction Time During Atrioventricular Reentrant Tachycardia: Are

Dual Pathways Necessary?, by F. Amellal, K. Hall, L. Glass, and J. Billette, J.

Cardiovasc. Electrophysiol. 7 943-951 (1996). Ail of the authors contributed to the

design of the experimental protocols. The experiments were performed in Jacques

Billette's laboratory by Farid AmellaI with my assistance. 1 performed aIl of the

data analysis, played a leading role in the interpretation of the results, and wrote the

majority of the manuscript. 1 developed the model of AV nodal conduction presented

in the Appendix ta Chapter 2 which was not included in the original publication.
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Chapter 3 is based on the text of Dynamic Control of Cardiac Alternans,

by K. Hall, D. J. Christini, M. Tremblay, J. J. Collins, L. Glass, and J. Billette,

Phys. Rev. Lett. 78, 4518-4521 (1997). This study was motivated by a previous

numerical study by David Christini and Jim Collins who suggested the experiments.

1 modified their control a1gorithm and Maurice Tremblay incorporated the new algo­

rithm in an electronic stimulator. David Christini assisted me in the design of the

e.xperimental protocols. 1 performed the experiments in Jacques Billette's laboratory

with the help of Karim Jalife, who dissected the rabbit hearts, and Lise Plamondon

who pro\~ided technical assistance. 1 analyzed all of the data and wrote the majority

of the manuscript.

Chapter 4 is based on a manuscript that is to be submitted for publication. 1

developed the theory and analyzed the intricacies of the experimental data from the

previous chapter. The stability zones presented in this chapter were independently

discovered by Joshua Socolar and Daniel Gauthier (J. E. S. Socolar and D. J. Gau­

thier, Phys. Rev. Lett. 79, 4938 (1997)) .

Cbapter 5 bas been submitted to Physical Review Letters and is currently under

review. 1 developed the theory, performed the computer simulations, and wrote the

manuscript under the supervision of Leon Glass.

Chapter 6 is based on the manuscript Locating Ectopie Foci, by K. Hall and

L. Glass, in press J. Cardiovasc. Electrophysiol. (1999). 1 developed the theory,

performed the computer simulations, and wrote the manuscript under the supervision

of Leon Glass.
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CHAPTER 1

INTRODUCTION

Four weeks into the development of the human embryo, a small cluster of ceUs begin a

cadence that wiIllast a lifetime [1]. These immature ceUs will eventuaUy form a heart

that can beat more than one billion times - but when it fails, the result is deadly.

In addition to its obvious physiological importance, the heart was once thought

ta be the seat of the human sou!, intellect, and emotion [1]. Thus, it is not surpris­

ing that this vital organ has been the subject of countless poets, philosophers, and

physicians - but physicists have also been intrigued by the heartbeat and its complex

rhythms. In particular, cardiac dynamics have been the focus of intensive study using

techniques from the field of nonlinear dynamics [2]. Yet, despite the many cases of

successful nonlinear analyses of the heartbeat, there has been little progress on the

most clinically important problem: control of abnormal heart rhythms.

In this dissertation 1 hope to make a contribution to the growing field of cardiac

control by attacking the problem along two !ines: i) investigate the dYDamics of an

abnormal heart rhythm and devise a practical method ta restore normal dynamics,

and ii) exploit the spatio..temporal patterns of abnormal cardiac activation to improve

diagnostic methods and locate abnormal sources of cardiac activity.

Background and Thesis Outline

1.1 The Normal Heartbeat

The heart is a four chambered pump. The left two chambers are responsible for

pumping oxygen-rich blood to the body, while the right two chambers pump deoxy­

genated blood ta the lungs where it is oxygenated. The upper two chambers, called

the atria, assist in filling the cavities of the lower, more powerful ventricles.

The rate of the normal heartbeat is set by the transmembrane voltage oscilla­

tions, called action potentials, of ceUs in a small region of tissue called the sinoatrial

(SA) node located at the top of the right atrium. For each heartbeat, the SA node

1
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sends out a wave of electrical activity that propagates through the atria causing them

to contract. The wave converges on a specialized structure called the atrioventricu­

lar (AV) node whicb is the only normal electrical connection between the atria and

ventricles. The remainder of the boundary between the atria and the ventricles is

composed of connective tissue which is fibrous and does not conduct electrical im­

pulses. Conduction through the AV node is slow (5 cm/s compared to 100 cm/s in

the atria). The slow conduction leads to a delay of 0.1 - 0.2 seconds between the

activation of the atria and the ventricles. This delay allows for complete filling of the

ventricles thereby improving the heart's pumping efficiency. The massive ventricles

are subsequently activated nearly synchronously via rapid conduction of the cardiac

impulse througb the Purkinje fibre network extending throughout the ventricles.

When the above sequence ofelectrical events is disrupted, the heart bas an abnor­

mal rhythm or an "arrhythmia". Depending on the mechanism of the arrhythmia, the

pumping capacity of the heart can he impaired to sucb an extent that the patient's

life may be in jeopardy [3] .

1.2 Abnormal Heart Rhythms as a Dynamical Disease

Cardiac arrhythmia is an example of a "dynamical disease" [4] where healthy dynam­

ics are replaced by diseased dynamics because of a change in one or more physiological

control parameters. For example, a reduction of blood supply to the heart muscle

(myocardial ischemia) can change a normal region of the heart into a rapidly firing

spontaneous pacemaker that causes the heart to beat too fast (tachycardia) [3]. In

order to understand the origin of abnormal heart rhythms, researcbers are developiog

realistic biophysical models of the heart 's electrical activity. The hope is that sucb

models will oot only elucidate the mechanisms of disease-causing bifurcations, but

also suggest therapies to restore nonnal dynamics.
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1.3 Models of the Heart's Electrical Activity

An early theoretical model of the heart's electrical activity was published in 1928

by van der Pol and van der Mark who likened the heartbeat to an electric circuit

whose resistance has a nonlinear dependence on the current [5, 6]. The peculiar

'~eIaxation oscillation" of the system is characterized by a periodic slow storage of

energy followed by its rapid release - a pattern that resembles the electric potentia1

across the membrane of a cardiac pacemaker cell [7].

Relaxation oscillators are reminiscent of the heartbeat because of their unique

response to external periodic forcing [5, 8].The amplitude of the forced oscillation

is relatively insensitive to the frequency of forcing, unlike the weil known resonance

properties of linear oscillators, and the relaxation oscillation can be entrained to

the forcing period for a wide range of forcing frequencies. Since the heartbeat was

known to have similar entrainment properties when subjected to periodic electrical

stimulation [8], van der Pol suggested that the heart is composed of coupled relaxation

oscillators. By coupling three relaxation oscillators together, corresponding to the

atria, AV node, and the ventricles, van der Pol and van der Mark were able to mimic

the normal heartbeat as weIl as severa1 clinically observed arrhythmias [6]. Their

seminal study paved the way for mathematical modeling in cardiology.

It was soon realized that the underlying mechanism of the heart 's relaxation os­

cillation is the flow of ions through various specia1ized channels in the cell membrane.

The conductance of an ion channel is a nonlinear function of the transmembrane

voltage, and each channel only allows the flow of a specific type of ion. Biophysical

models of cardiac electrical activity [9] were developed based on Hodgkin and Hux­

ley's Nobel prize winning study of the ionic currents involved in the generatioD of

action potentiaIs in the squid nerve [10]. However, unlike the squid nerve, where only

two types of ions (sodium and potassium) are responsible for the principal currents,

the heart has many more currents and the resulting mathematical models are very

complex - sometimes involving more than 20 coupIed nonlinear ordinary differential

equations. The daunting complexity of modern biophysica1 models is believed to

reHect the inherent intricacies of the cardiac cel!.
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1.4 Low-Dimensional Dynamics of the Heartbeat

Despite the complexity of the underlying physiology, the dynamics of the heartbeat

cao often be described by low-dimensional maps that can be measured experimentally.

For example, Guevara et al. [11] used an experimentally measured one-dimensional

rnap to predict the complex dynamics of spontaneously beating embryonic chick ven­

tricular cell aggregates in response to periodic electrical stimulation.

vVhy does this experimental system have low-dirnensional dynamics? Although

the transmembrane voltage oscillation of a cardiac pacemaker cell is described by

many coupled nonlinear ordinary differential equations, the attractor in these equa­

tions is a limit cycle. The behavior of a limit cycle oscillation in response to periodic

forcing can often be described by an experimentally measurable one-dimensional map

as follows.

An isolated perturbation of a limit cycle oscillation alters the timing of the rhythm

so that it is shifted relative to an unperturbed oscillation. The magnitude of the phase

shift depends on the timing of the perturbation as weIl as its amplitude. For a fixed

amplitude b, the phase shiIt can be measured as a function of the time when the

perturbation was delivered. If the period of the spontaneous rhythm is Ta then the

phase of the oscillation is: cP = t /To mod 1, where t is the time since sorne marker

event that defines ifJ = o. If a perturbation is applied at a phase cPo, then the resulting

phase shift can be measured by examining the timing of subsequent beats relative to

where they would have occurred in the absense of a perturbation. If the perturbed

rhythm is advanced in time by an amount Ât (after transients have dissipated), then

the phase of the rhythm is reset to a new phase cPl given by: cPl = tPo + Ât/To. Thus,

by rneasuring the time shifts for stimuli applied at different phases tPo, we obtain the

so-called phase resetting curve:

cPl = g(tPo, b) (1.1)

•
for a fixed stimulus magnitude b.

If we assume that the system quickly relaxes back to the limit cycle arter a pertur-
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bation, then the phase of the oscillation shortly after a perturbation is approximately

equaI to cPl' Thus, if stimuli are delivered periodically with a period rTo, then the

second stimulus arrives at a phase cPl + r = g(tPo, b) +r, and the arrivai phases of all

subsequent stimuli are given by the map:

(1.2)

••

•

where tPn+ L is the arrival phase of the n + 1 stimulus.

By measuring the phase resetting curve 9 using isolated stimuli of amplitude b,

and given the initial stimulus phase cPo, the one-dimensional map (1.2) predicts the

dynamics of the limit cycle oscillation in response to periodic stimulation. The map

is effective for a range of stimulation periods long enough so that the system has time

to relax back to the limit cycle between successive stimuli.

Experimental observations of phase resetting and entrainment of the electrical

oscillations in aggregates of embryonic chick ventricular cells confinn that the dy­

namics of the system are weIl described by the one-dimensional map (1.2) [11]. The

map exhibits complex bifurcations and chaos that have been observed in the cardiac

e.,"Cperiments.

Other examples of low-dimensional cardiac dynamics include the propagation of

electrical impulses in Purkinje fibres and ventricular muscle [12], as weIl as atrioven­

tricular conduction rhythms [13] - aIl of which can be approximated by experimentally

measured one-dimensional maps.

1.5 Dynamic Control Techniques

Traditional control techniques utilize a system's governing equations to contra! the

dynamics [14]. Sucb techniques work well when the system under control is a mechan­

ical or electronic device whose goveming equations are derived from first principles

using well-known physicaIlaws. But since the heart is not man-made, the equations

of cardiac biophysical models are necessarily based on incomplete information pieced

together using ionie current measurements from many different experiments. New
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types of ion channels are discovered routinely and the roodels quickly become out­

dated. Thus, traditional control techniques are ill-suited for the control of abnonnal

heart rhythms.

A new class of feedback control techniques [15, 16] could possibly be applied to

control abnormal cardiac rhythms because they do not require explicit knowledge

of the system's underlying equations. Although these techniques were originally de­

signed for the control of low-dimensional chaos, they can also be applied to control

nonchaotic dynamics [17, 18] and therefore may he applicable to low-dimensional

cardiac rhythms.

1.5.1 OGY Control

In 1990 Ott, Grebogi, and Yorke (OGY) [15] developed a feedback control tech­

nique for the stabilization of unstable periodic orbits embedded in a low-dimensional

chaotic attractor. 1 will describe how the OGY control technique applies to the

one-dimensional map: X n + 1 = [(Xn , Àn ), where X n is a measurable quantity and

Àn is an experimentally accessible parameter. The goal is to stabilize an unstable

fixed point X· =[(X·, Ào) by applying perturbations c5Àn to the control parameter

Àn = >'0 + c5Àn , where Ào is the unperturbed value of the control parameter. The

magnitude of the perturbation is chosen to be proportional to the distance from the

fixed point:

(1.3)

•

where Q is a constant feedback gain parameter.

Notice that only Q and X· need to be specified in order to apply the algorithm.

However, for the purpose of choosing a, the original OGY technique assumes that

X·, CU) lx. =A, and C~) 1'\0 =B are known. For stationary chaotic systems,

these quantities cao be determined by measuring the retum map X n +1 versus X n .

The fixed point X· intersects the identity Hne X n +1 = X n and because of the ergodic

properties ofchaotic systems, the system will eventually approach an arbitrarily small

neighbourhood around X·. When this happens, A cao be measured by fitting a Hne
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to return map points near X·. If..\o is shifted to ..\0 + 8..\, where 6..\ is a small constant

perturbation, then B can be measured by observing the new value of the fixed point.

In the vicinity of the fixed point the system is described by the linear map:

(1.4)

where Çn = X n - X·. Substituting (1.3) for 8..\n gÏves:

(1.5)

The optimal value for the feedback gain parameter is a = 2A/B so that the next

iterate of the map is directed to the fixed point. However, for a in the range:

the linear system (1.5) will approach the formerly unstable fixed point X·. Since

stabilization is only guaranteed for the linear system, the OGY algorithm is turned

on only when ~1t:: waotic system wanders in the vicinity of the unstahle fixed point

where the linear approximation is valid.

•
2(A - 1) 2(A + 1)

B <a< B ' (1.6)

•

1.5.2 Delayed Feedback Control

In arder to apply the OGY algorithm, the value of the unstahle fixed point X·

must be determined prior to initiation of the control. This requirement can be met

for stationary chaotic systems where X· can he identified in a pre-control learning

phase. However, biologjcal systems are typically nonstationary and the value of X·

may drift appreciably over the course of an experiment. Furthermore, in the case of

nonchaotic dynamics, the system may not approach X· before the control is initiated

which makes it difficult to estimate.

In 1992 Pyragas [16] proposed a delayed feedhack controller that does not require



• 8

X· to be specified:

(1.7)

Notice that, like the OGY control1er (1.3), the perturbations of the delayed feedback

controller (1.7) go to zero as the system approaches the fixed point. The time delayed

variable Xn - 1 increases the dimension of the system 50 that the tw<>-<iimensional

linearized controlled system is:

provided that A < 1.

The delayed feedback controller has the advantage that an unknown fixed point

can be stabilized as long as a is in the range given by (1.9). This is advantageous

because biological systems typically drift over time, and the location of a drifting

fixed point can be tracked. However, this advantage cornes at a price: the control

technique can only stabilize fixed points where the slope of f at the fixed point is

within the range -3 < A < 1.

•

which stabilizes X· when the feedback gain ct is in the range:

2 (A + 1)
-B <a< ~B--=-

(1.8)

(1.9)

•

1.6 Previous Studies of Cardiac Control

In 1992, Garfinkel et al. modified the OGY control algorithm [15] to control the

irregular beating of a piece of rabbit heart [19]. This study, and a similar subsequent

study controlling irregular dynamics in a rat brain [20], generated much controversy

[17,21]. One point of contention was whether or not the respective biological systems

were, in fact, chaotic as claimed. Furthermore, it is unclear whether or not either

study actually utilized the system's underlying dynamics for control. This problem

stems from their modification of the OGY control technique that originally called
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for small control interventions applied to some accessible experimental parameter.

Rather, the biological control studies directly modified the variable they wanted to

control.

Other control techniques have been applied to mode! cardiac systems [18, 21, 22],

but most of these studies use an additive forcing term for control that would be

difficult to incorporate in a real physiological experiment [22].

We chose to avoid these problems by controlling a nonchaotic cardiac rhythm,

called an alternans rhythm, in a piece of rabbit heart. Unlike the previous biological

control studies, the dynamics of this system can be well characterized and the control

interventions were applied to an accessible experimental parameter. Furthermore,

control of cardiac alternans has clinical implications since alternans rhythms are a

risk factor for sudden death [23].

1.7 Alternans Rhythms

Alternans rhythms are a class of arrhythmias that are characterized by a sequential

alternation of cardiac activity between two patterns. For example, the strength of

the heart 's mechanical contraction may follow a strong: weak, strong, weak sequence

[24], the body surface measurement of the heart's electrical activity (i.e. the electro­

cardiogram or ECG) may give a signal that alternates between two different patterns

[23, 25], or the shapes of sequential action potentials measured from a cardiac cell

may alternate frorn one beat to the next [26].

Particularly intriguing is the observation that ECG alternans are sometimes ob­

served prior to a dangerous arrhythmia called fibrillation. Fibrillation is caused by

irregular electrical wave patterns resulting in uncoordinated and inefficient contrac­

tions of the heart. Sorne researchers have suggested that fibrillation is an exam­

pIe of spatio-temporal chaos [27]. Since alternans bear a striking resemblance to a

period-doubled rhythm, it is tempting to hypothesize that fibrillation is achieved via

a period-doubling cascade and that the observed alternans precursor is simply the

first step in the bifurcation sequence [28]. However, there is little evidence to support

such a hypothesis.
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Nevertheless, there is good evidence suggesting that alternans rhythms are asso­

ciated with cardiac electrical instability [29] and are a risk factor for sudden cardiac

death [23]. Although alternans have been observed in a variety of cardiac preparations

[24, 25, 26, 30], period-doubling is a possible unifying mechanism. But cardiologists

do not usually associate alternans with a period-doubling bifurcation.

1. 7.1 A V nodal Alternans

Alternation of the AV nodal conduction time is often observed during an arrhythmia

that occurs in patients with an abnormal accessory electrical pathway connecting

the atria and the ventricles in addition to the nonnal AV nodal connection [31]. In

these patients an impulse can propagate nonnally through the AV node and back­

wards tbrough the accessory pathway thereby re-exciting the atria and completing a

self-exciting reentrant loop (Figure 1.1). This arrhythmia is called orthodromie AV

reentrant tachycardia and, when the heart rate is fast enough, conduction through

the AV node can alternate in a fast, slow, fast, slow pattern.

The AV nodal conduction time alternans have been attributed to alternating prop­

agation between two parallel pathways [32]. The two pathways are believed to have

different conduction properties: one pathway conducts faster than the other, but the

slower pathway requirE~ less time to recover between impulses. This implies that for

slow heart rates, the fast pathway is the effective pathway since it delivers the cardiac

impulse to the nodal output first. However, as the heart rate increases, the cardiac

impulse eventually blocks in the fast pathway, dne to a short recovery time, and the

slow pathway becomes the effective pathway. If the conduction is slow enough then

the next impulse may arrive at the atria late enough for the fast pathway to recover,

and a fast, slow, fast, slow pattern wonld be observed.

To test for dual AV nodal pathways during a nonnaI heart rhythm, the atria

are electrically stimulated 50 that the recovery time of the AV node is progressively

shortened. If the patient has dual AV nodal pathways then there is a discontinuons

increase in the AV nodal conduction time as the effective pathway shifts from the fast

to the slow pathway. This discontinuons jump in the measured AV nodal recovery
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curve (Le. the nodal conduction time versus the recovery time) is the clinical criterion

for dual AV nodal pathways. Although recovery curves are not usually measured in

people with alternating AV nodal conduction times during reentry, dual pathways are

sometimes presumed ta be the underlyjng cause.

However, a recent study by Sun et al. [33] proposed a mathematical model of AV

nodal conduction that demonstrated conduction time altemans in a single pathway

arising from a period-doubling bifurcation. The modei incorporated experimental

observations of how the AV nodal conduction time depends on the rate of the heart­

beat. Careful experimentation has revealed that the AV nodal conduction time is

determined by three rate-dependent functional properties: recovery, facilitation, and

fatigue [34].

The recovery property refers to the observed increase in AV nodal conduction time

with a decrease in the recovery time between impulses. The recovery time is usually

assessed by the time interval between activation of the His bundie (the nodal output)

and the next atrial activation (HA interval). When the recovery time is held fixed, the

AV nodal conduction time is a decreasing function of the previous conduction time.

This property is called facilitation and, along with the recovery property, accounts

for the short-term dynamics of the AV node. The fatigue property is a superimposed

slow increase in the AV nodal conduction time as the heart rate is increased.

When these rate-dependant properties were incorporated in a finite difference

equation model of AV nodal conduction, Sun et al. observed that the AV nodal

conduction time could altemate as a result of a period-doubling bifurcation.

Sa, the question is: Are dual pathways necessary for AV nodal conduction time

alternans in a real heart, or are they caused by a period-doubling bifurcation? In

Chapter 2, 1 will describe the results of our rabbit AV node experiments that were

designed to answer that question by simulating the reentrant arrhythmia where AV

nodal altemans are observed clinically. The retrograde propagation through the ac­

cessory pathway was mimicked using a protocol called fixed-delay stimulation. We

detected when the cardiac impulse exited the AV node by placing an electrode at the

output of the node called the His bundle. After a fixed time interva1, corresponding to

the desired retrograde accessory pathway conduction time, we stimulated the rabbit
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heart at the top of the right atrium. By varying the fixed delay, we simulated acces­

sory pathways with different conduction times and generated AV nodal conduction

time alternans when the fixed delay was short enough. Like previous observations

of cardiac altemans in other settings, the AV nodal alternans indicated electrical

instability in our experiments.

We concluded that dual pathways were not the cause of the alternans in our exper­

iments, but rather the alternans were likely caused by a period-doubling bifurcation.

This implies that the dynamics are low-dimensional and that there exists an unstable

period-l fixed point between the aItemating conduction times. Thus, it may be pos­

sible to stabilize the period-l fixed point and suppress the altemans rhythm using a

control technique like the ones previously described.

1.8 Control of Cardiac Alternans

In Chapter 3, 1 describe a feedback control technique that was used to suppress AV

nodal conduction time alternans in the rabbit heart. Since the dynamics of the AV

nodal alternans are described by a slowly-drifting one-dimensional map, the inter­

pretation of the control interventions was clear: stabilization of a formerly unstable

period-l fixed point. Furthermore, our control study was the first example of bio­

logical control that adapted to system nonstationarities - a ubiquitous property of

biological systems.

The control technique used in our experiments was a modified version of the de­

layed feedback control discussed above. The modifications were introduced as a result

of biologicallimitations, but subsequent stability analysis of our control algorithm re­

vealed a rich structure of new stability zones. In Chapter 4, 1 present the results of

this analysis and show sorne examples from the experiments. Finally, 1 will use the

structure of the stability zones to modify the control algorithm 50 that the feedback

gain parameter is automatically adapted.
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1.9 Other ways to Control Arrhythmias

Although dynamie control of eardiae arrhythmias is an exciting area of researcb, clin­

ical implementation of sucb techniques has yet to be realized. Rather, present-day

control of elinieal arrhythmias involves aeeurate diagnosis of the arrhythmia mecha­

nism followed by either medical or surgieal intervention.

1.9.1 Diagnosis of Arrhythmia Mechanism

The mechanism of an arrhythmia can often be diagnosed on the basis of body sur­

face measurements of the heart's eleetricaI signai eaIled an eleetrocardiogram [35].
Intensive study of these electrical signais over the past century has led to a beau­

tiful set of interpretive techniques that are invaluable for the assessment of eardiae

health. Indeed, c1inieal cardiac eleetroeardiography is one of the most widely-used

and informative medicaI procedures.

However, sometimes different arrhythmia mechanisms produee indistinguishable

surface eleetroeardiograms making it diffieult to ohtain a definitive diagnosis. More

detailed information about the heart's electrieaI activity can he ohtained by threading

catheters through blood vessels and placing electrodes at strategie locations on the

inner surface of the heart [36]. These electrodes are used to monitor local electrica1

activity and deliver electrical stimuli. Assessing the heart's response to electrieal

stimuli is ealled electrophysiological testing which cao he used to assist arrhythmia

diagnosis.

1.9.2 New Techniques for Arrhythmia Diagnosis

Despite the suecess of electrophysiologieal testing, sorne arrhythmia mechanisms re­

main difficult to distinguish. In Chapter 5 we suggest a new procedure that eould be

used ta distinguish between two superfieiaIly similar arrhythmias that cause the heart

to beat too fast (tachycardia): anatomieal reentry and ectopie tachyeardia. Sinee the

treatments for these arrhythmias can be radically different, aeeurate diagnosis is cru­

cial.
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Ectopie tachycardia is caused by an abnormal (ectopie) region of the heart that

generates rapid oscillatory activity. The resulting abnormal pacemaker region beats

faster than the normal SA node pacemaker which becomes entrained to the faster

rhythm. Therefore, the origin of the cardiac impulse shifts and the heart rate is set

by the rate of the ectopie pacemaker.

Anatomical reentry is caused by an electrlcal impulse propagating in a circuitous

pathway around an obstacle such as a valve, the opening to a blood vessel, or a piece

of damaged tissue. Since the period of circulation is usually faster than the intrinsic

rate of the SA node, the nonnal pacemaker is overdriven and a rhythm similar to

ectopie tachycardia resu1ts.

Presently, diagnosis of the arrhythmia mechanisID is based on the following em­

piriealobservations [36]: i) Initiation of ectopic tachycardia is often characterized. by

a graduaI increase in heart rate, called "warm-up". Furthermore, the ectopic tachy­

cardia may "cool-down" with a gradual decrease in heart rate before the tachycardia

stops; ii) Unlike ectopie tachycardia, anatomieal reentry cao often he initiated. and

terminated hy electrlcal stimulation.

Unfortunately, while these criteria are useful, they are not absolute. It is sorne­

times difficult to terminate reentry using electrical stimuli. Furthermore, tenninating

a rhythm with a stimulus doesn't necessarily imply a reentrant mechanism since

pacemaker activity can also he terminated in this manner [38]. AIso, the warm-up

phenomenon upon initiation of ectopic tachycardia is sometimes not observed simply

because the rhythm may be on-going. Furthermore, the cool-down phenomenon has

been observed prior to tennination of reentry [33, 37].

Thus, a new technique to differentiate these arrhythmias might improve the ac­

curacy of diagnosis. In Chapter 5, 1 will present a new diagnostic procedure that

identifies the arrhythmia mechanisms based on their different spatio..temporal activa­

tion patterns: reentry corresponds to a topologjcal spiral pattern whereas an ectopie

pacemaker produces a topologjcal target pattern. In principle, the two patterns could

be distinguished by using a large number of electrodes to map the activity on the

heart's surface. However, sucb a procedure is neither practical nor desirable.

We suggest a method for disceming targets from spirals using only two electrodes.
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We test the method in computer simulations of targets and spirals in a sheet of ex­

citable media. Our method reveals the diHerent spatiû-temporal symmetry properties

of topological targets and spirals by measuring local activity and delivering stimuli

at two points in space.

1.9.3 Surgical Control of Etopic Tachycardia

If the cause of the tachycardia is an ectopie pacemaker, then the patient can be cured

thanks to a recent advance in clinical cardiac electrophysiology. Once the location

of the ectopie pacemaker is found, a catheter can he placed at the offending location

and the abnormal tissue cao be ablated by applying radiofrequency current through

the electrode [36]. This process destroys the ectopie pacemaker and the SA node

subsequently resumes its nonnal pacemaking activity.

The trick is finding the ectopie pacemaker. In principle, the localization strategy is

simple: find the position that is activated the earliest since this site must correspond

to the source of the rhythm. In practice, this requires a lengthy procedure where

electrodes are dragged over the endocardial surface untiI an early activation site is

found. The placement of electrodes is directed by a process of trial and error. As a

result, it is often necessary to apply radiofrequency current at several early activation

sites before targeting the ectopie focus [39].

In Chapter 6 we propose two new localization techniques that were used to locate

a pacemaker in a computer simulation. Our techniques are based on the geometry

of wave propagation in homogeneous isotropie excitable media. Since the heart is

neither homogeneous Dor isotropic, we used an iterative procedure to converge on the

pacemaker source. Furthennore, we developed a confinnation strategy that could he

used to check that the ablation electrode is at the correct location before applying

radiofrequency current.
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Abnormal
Pathway

Figure 1.1: Schematic of orthodromie AV reentrant tachycardia. The dark arrows
refer to the circulating reentrant cardiac impulse.
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CHAPTER 2

ATRIOVENTRICULAR NODAL CONDUCTION TIME

ALTERNANS

2.1 Foreward

Alternation of the atrioventricular nodal conduction time (NCT) is often observed

during supraventricular tachycardia l [1, 2, 3, 4, 5, 61. It is especially prominent near

the tennination of the tachycardia and therefore may reftect instability [2, 7, 8, 9,

10, Il, 12]. The altemation is enhanced in response to phannacologic or hypoxic

increases of AV nodal refractoriness [2, 4, 6, 13]. A typical example occurs in the

orthodromie AV reentrant tachycardia associated with Wolff-Parkinson-White syn­

drome. The reentrant circuit of this tachycardia is composed of an antegrade pathway

through the AV conduction system and a retrograde accessory AV bypass pathway

[14]. Because the retrograde delay is nearly constant during this tachycardia, the cy­

cle length altemation is clearly due to beat-to-beat changes in NCT. This sequential

aIternation of NCT has often been attributed to altemating conduction between dual

AV nodal pathways [3, 5]. However, it has also been suggested that the alternation

may arise solely from the functional properties of the AV Dode [4, 8, Il, 12]. In a

recent study [12], we observed the NCT altemation in an in vitro rabbit heart model

of AV reentrant tachycardia and proposed that the alternation resulted from the in­

trinsic dynamics of the AV node. The main goal of the present study was to further

investigate the characteristics of the altemation and to elucidate its mechanism.

2.2 Methods

2.2.1 Preparation and Apparatus

The experiments were performed in six superfused isolated rabbit heart preparations.

Animal care was conducted according to the guidelines of the American Physiological

1Supraventricular tachycardia refers to a rapid heart rate whose anatomical site of origin is above
the ventricles.
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Society and the University of Montreal. The preparation, perfusion system, stimu­

lation techniques, and recording system were as previously described [15J. Briefty,

the preparation (Figure 2.1A), including the right atrium, AV node area, and up­

per part of the ventricular septum, was mounted in a tissue bath. The bath was

perfused at 200 mL/min with a 6-L volume of oxygenated (95% O2 , 5s01ution and

maintained at 3'r' C and pH 7.38. Its composition (in mM) was 128.2 NaCI, 4.7 KCI,

2.0 CaCl~h 1.0 MgCI2 , 20.0 NaHC03 , 0.7 NaH2P04 and 11.1 dextrose. A bipolar

platinum-iridium stimulation electrode was placed on the crista terminalis near the

sinus node. As indicated in Figure 2.1A, unipolar electrograms were recorded from

the upper atrium (UA), low crista terminalis (CT), low interatrial septum (lAS) and

His bundle (HIS). An additional electrogram (E) was recorded from the surface of

the Dode. This electrode was positioned using a micromanipulator and visual control

through a dissecting microscope. A similar nodal electrogram has recently been used

to monitor intranodal activation [16]. Ali recording electrodes consisted of sharply

cut, teHon insulated, 0.01" silver wires. The eleetrograms, stimulation pulses, a time

code and a tachogram were digjtized at a sampling rate of 5 kHz per channel and

recorded on a video tape. The bandwidth was 0.1 Hz to 3 kHz. Stimulation intervais

were generated with an aeeuracy of 1 ms and a precision of 0.47 Jlsec using a locally

developed computer algorithm [17]. Stimulation pulses had voltages which were twiee

threshold and a duration of 2 ms. Data analysis was performed off- line.

2.2.2 Rabbit Heart Model of Orthodromie AV Reentrant Taehycardia

Since the retrograde accessory pathway has a nearly constant conduction time [14],

the time interval between the His bundle activation and atrial activation is fixed. This

implies that the retrograde pathway can be electronieally mimicked by stimulating

the atrium aCter a fixed delay from detecting the activation of the His bundle [8,

9, Il, 12J. This fixed HS interval stimulation protoeol formed the basis of our in

vitro model of orthodromie AV reentrant tachycardia and is schematieally depicted

in Figure 2.1B. The excitation propagates from the upper atrium to aetivate the

low crista and low septum nodal inputs. The activation of the inputs triggers a
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nodal response documented by a His bundle deflection. Each His-bundIe activation is

detected and the next stimulation is given with a predetermined H5. The retrograde

delay of the accessory pathway is thus modeled by fixing the HS value.

2.2.3 Stimulation Protocols

After a 3D-min stabilization period, the preparation was paced for 15 minutes at a rate

which resulted in an atrial cycle length 30 ms shorter than that of the spontaneous

sinus rhythm (SCL = 376 ± 43 ms, n=6). An incremental pacing protocol was

performed to determine the HS which results in a nodal black. As illustrated in

Figure 2.1C, the tachycardia was initiated by stimulating the atrium with a fixed

HS (HSinit = 70 ± 22 ms, n=6) which was 30 ms longer than that which resulted

in a nodal block during incremental pacing. This pacing rate was maintained for 5

min in order to establish a steady state NeT and cycle length. The HS was then

progressively decreased by 2 ms steps, with each step being maintained for at least 1

min.

2.2.4 Interual Measurements

Activation times, defined by the negative peaks of the first time derivatives of the elec­

trograms, were determined with 0.25 ms precision. This analysis was performed off

!ine using Asyst acquisition software from Keithley and Data Pack analysis software

from Run Technologies. Time intervals between the stimulation pulses, atrial elec­

trograms, and His bundle activation were determined with 0.35 ms precision. Data

is presented as mean ± standard deviation.

2.2.5 Definitions

The AV node includes the anatomical structures corresponding to the transitional,

midnodal and lower nodal cells. The atrial reference site (A) was taken from the low

interatrial septum. NCT refers to the time interva1 between the atrial activation and

the following His bundle activation. The AV nodal functional properties of recovery,
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facilitation and fatigue are as previously described [15, 18]. Briefly, the recovery

property refers to the increase cf the NeT with a decrease in nodal recovery time as

assessed by the His-atrial (HA) intervaI. Facilitation refers to a decrease in the NCT

for a given recovery time when the previous cycle is shortened. This effect is most

pronounced for short recovery tirnes. Fatigue is defined as a slow, rate-dependent

increase of the NCT.

2.3 Results

2.9.1 Progressive Onset of Alternation

The alternation of both the cycle length and the NCT developed progressively with

decreasing HS (Figure 2.2). In the illustrated example, the tachycardia resulting from

a 60 ms HS gave a constant NCT and cycle length. As the HS was decreased to 56

ms, NCT increased due to a reduction of the nodal recovery time associated with this

pacing rate. Since the decrease of HS was offset by the increase of the NCT, the cycle

length remained virtually unchanged. As the HS was further decreased, a sequential

altemation of progressively larger magnitude developed. Such a progressive onset of

sequential altemation between two levels was observed in 4 out of 6 preparations.

Since the retrograde delay was fixed and the atrial conduction time was constant,

the NCT alternation accounted entirely for the cycle length alternation. Although

the NCT alternation was usually \.luite small (~NCTmax = 4.6 ± 0.5 ms, n=4) and

required high experimental precision to he detected, it was consistently observed and

maintained for long periods of time.

2.3.2 Spontaneous Termination and Reinitiation of the Tachycardia

The HS decrease eventually resulted in a nodal block which temporarily terminated

the tachycardia. Figure 2.3A and B show typical beat to beat NCT changes and cor­

responding electrograms, respectively. The termination was preceded by an increase

in NCT alternation (Figure 2.3A and B). The last successful conduction through the

AV node always corresponded to the lower branch of the altemation. Atrial stimula-
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tion temporarily ceased due ta the absence of a His bundle complex (Figure 2.3B). A

spontaneous atrial beat (arrow) was generated after a time interval greater than the

spontaneous sinus rhythm. The spontaneous atrial beat propagated to the His bUD­

dIe with a short NCT and reinitiated the tachycardia. The next NCT was markedly

prolonged, probably because of the absence of facilitation. The retum of facilitatory

effects at the next beat caused substantial NCT shortening. Subsequently, the NCT

gradually increased and resumed its alternation with an increasing magnitude. The

tachycardia persisted until another nodal block occurred. Sucb transient nodal blacks

preceded by NeT altemation were observed in all but one preparation. In the latter,

1:1 nodal conduction persisted even at an HS of 0 ms.

2.9.9 Origin of NeT Altemation

In an attempt to localize the origin of the NCT altemation, we positioned an electrode

CE) near the central area of the node (Figure 2.1). The E electrogram defiection was

slower than atrial or His bundle defiections and occurred weIl after the last atrial

activation. Using the E signal, the NCT could be divided into proximal (AE) and

distal (EH) components. The AE reflected the contribution of the inputs to NCT

[16]. Figure 2.4 shows the local dynamics shortly after a restarting of the tachycardia

with a 40 ms HS. The graduai onset of NCT altemation is observed in the EH but

not in the AE. Although the exact anatomical locus of the alternation cao Dot he

identified with precision, these results indicate that the site is distal to the E electrode

and thus unlikely involves the inputs. Similar results were found in all but one of

the preparations exhibiting alternation. The other case demonstrated a significant

altemation in the morphology of the nodal electrogram (E), even for HS too long ta

induce NCT altemation. As a result, the proximal and distal intervals were observed

to altemate oppositely even when the NCT was constant. This made it difficult to

localize the region of the NCT alternation in this case.
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2.3.4 Continuous Recovery Curves

Recovery curves were obtained at three basic cycle lengths in all preparations. In

every case, the recovery curves were smooth and continuous, without breaks or jurnps,

as depicted for one preparation in Figure 2.5. Changes in the recovery curve with

different basic cycle lengths are consistent with previous findings and reflect the AV

nodal functional properties of facilitation and fatigue [15, 18].

2.3.5 Mathematical Modeling

A mathematical model quantifying the properties of AV nodal recovery and facilita­

tion showed that, for the fixed US stimulation protocols similar to those used in the

present study, the NCT is a unique function of previous NCT, NCTn+ l = f(NCTn ),

when the level of fatigue is constant [12]. This means that we cao plot a curve

of possible beat-to-beat conduction tirnes, NCTn+1 versus NCTn (Figure 2.6A). By

iterating this function starting at sorne initial value (NCTd, we obtain the NCT

sequence plotted in Figure 2.6B. Graphically, this iteration is performed by a process

called cobwebbing and is illustrated in Figure 2.6A. Notice that there exists a NCT

value where the curve intersects the identity line, NCTn+ 1 = NCTn . This point,

NCT-, is called a fixed point because at this point NCT- = f(NCT-). It tums out

that when the slope of the curve is sufficiently shallow at the fixed point, the NCT

sequence converges to it as shown in Figure 2.6A. In this case, NCT- is called a stable

fixed point. Therefore, a perturbation of the steady state would result in a damped

altemation (Figure 2.6B) which relaxes to the stable 6.xed point value (NCT-), as

previously observed by Simpson et al [11].

The level of fatigue varied so slowly in our experiments that it did not produce

appreciable changes in the NeT from one beat to the next. Therefore, the shape of the

N CTn+ l versus N CTn curve remains unchanged. However, the slow increase of fatigue

will slowly moved the curve up and right in the manner depicted in Figure 2.7A. Notice

that NCT- slowly increases with increasing fatigue. Therefore, the observed NCT

will gradually increase as shown in Figure 2.78. If the fatigue increases enough, the

slope of the curve at NCT- will reach a critical degree of steepness (i.e. slope = -1)
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where NeT- becames unstable (Figure 2.8A). When this happens, the observed NeT

will no longer be NeT- but will sequentially alternate between two values, NCTi

and NeT;, one of which is larger than the fixed point value and the other is smaller.

The resulting beat-t~beataltemation may be stable (Figure 2.8B) or may gradually

iDcrease with increasing fatigue (not shawn).

2.4 Discussion

2.4.1 Mechanism of NeT Alternation

Cycle length alternation during AV reentrant tachycardia has often been attributed

to alternating conduction between fast and slow AV nodal pathways [3, 5J. If sucb a

mechanism were responsible for the sequential alternation of NCT, then one would

expect the alternation to begin abruptly with a discontinuous jump caused by a shift

of the conduction from fast to slow pathway [19]. This did not happen. We observed

a graduai onset of NCT alternation with increasing magnitude (Figures 2.2, 2.3 and

2.5). This observation cannot be easily explained by the dual pathway theory.

Another finding was the continuity of the AV nodal recovery curves at all 3 basic

cycle lengths studied (Figure 2.5). While a jump or break in the AV nodal recov­

ery curve is the hallmark of dual pathway physiology in humans [19, 20], continuous

recovery curves without breaks or jumps were found in all preparations. This ob­

servation mIes out dual nodal pathway physiology as clinically defined. However,

because reentry cao occur in both human and rabbit heart without a discontinuity in

the recovery curve [21], one may suggest that the absence of discontinuity does not

in itself mIe out the existence of dual pathways nor their involvement in the alter­

nation. Nevertheless, our observation that the alternation was confined to the distal

conduction time (Figure 2.4) makes it unlikely that dual nodal inputs are involved

in this phenomenon. As suggested by the success of the ablation therapy for nodal

reentrant tachycardia [20J and by other characteristics of nodal reentry [22J, the in­

puts constitute the main component of the dual pathways. Therefore, it is unlikely

that dual pathway physiology is responsible for the alternation in our preparations.
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In a previous study [12], we proposed that the NeT a!temation resulted from the

intrinsic dynamics of the AV node. We showed that a mathematical model of the

AV nodal functiona! properties could generate NeT altemation by a process called a

period doubling bifurcation. As shown in Figures 2.6- 2.8, the period doubling mech­

anism is consistent with our present findings. This model predicts a graduaI onset of

NeT altemation with increasing magnitude as the HS is decreased (Figures 2.2- 2.4).

These theoretical considerations suggest that the altemation is a natura! consequence

of the AV nodal functional properties.

2.4.2 Magnitude of the Alternation

Since the magnitude of the cycle length alternation was usually quite small, it is

probably below the current resolution of most clinical studies. Nevertheless, the

existence of a small magnitude cycle length alternation preceding the termination of

the tachycardia may point to a general mechanism of reentry termination [7, 10, Il].

A recent theoretical study of reentry showed that an alternation of the action potential

duration of a circulating reentrant pulse strongly reftects reentry instability [10]. For

sorne model parameters, the cycle length altemation during this unstable reentry

was shown to be very small. Therefore, the present study supports the hypothesis

that even a very small cycle length altemation may be an important indicator of

instability. Based on these considerations, we predict that cycle length altemation

will often be observed prior to the termination of clinical tachycardias provided that

the measurements are carried out with sufficient precision.

The magnitude of the altemation is not always smalI. The magnitude of NeT al­

temation is dramatically increased in response to pharmacologic or hypoxic increases

of AV nodal refractoriness [2, 4, 6, 13]. Such conditions may be quite common in

a clinical environment. Therefore, a relatively large magnitude alternation of cy­

cle length might often he observed prior to the termination of tachycardia in sucb

patients.
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2.4.3 Implications

The alternation of the NeT in this study results from the rate- dependent nodal

properties. Similar observations are expected for any tachycardia driving the AV

node near its upper 1:1 conduction limit. We propose that similar mechanisms could

produce cycle length alternation in a variety of reentrant arrhythmias. For example,

Ortiz et. al. [23] found that a cycle length altemation preceded the termination of

atrial Hutter. They showed that the altemation was due to beat-to-beat changes of

the conduction time through regions of the reentrant circuit where the conduction was

slow. The tachycardia was tenninated by a block occurring in the slow region. The

final beat corresponded to the lower branch of the altemation. These observations

are very similar to the events preceding the spontaneous tennination of AV reentrant

tachycardia in our experimental modeI.

Very small electrical altemans have also been associated with the development of

ventricular arrhythmias [24]. This may be related to our observation that alternation

often precedes conduction block in a slow region. For example, a region of depressed

myocardium may result in conduction time altemation and the development of a local

black, thereby initiating functional reentry and possibly fibrillation.

In conclusion, our resuIts demonstrate that NeT and concomitant cycle length

aItemation can arise during orthodromie AV reentrant tachycardia when the retro­

grade delay is sufficiently short. This altemation bas a graduaI onset and increases in

magnitude witb the shortening of the retrograde delay. Further shortening eventually

results in an AV nodal block which temporarily tenninates the tachycardia. The last

successful propagation through the AV node corresponds to the lower branch of the

aIternation. The reinitiation of the tachycardia is triggered by a spontaneous beat

successfully propagated through the AV node. These characteristics of the altema­

tion are predictable from the known functional properties of the AV node without

postulating dual pathway physiology.
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2.5 Appendix

The previous mathematical model of AV node conduction [12] was based on the

rate-dependent functional properties of the AV Dode. In this model, it was assumed

that the shape of the decreasing facilitation function, NCTn +l = f(NCTn ) , was

concave clown. The proposed bifurcation mechanism was that the fatigue property

generated a slow vertical shift of f, and since f was concave down, the vertical shift

caused the slope at the drifting fixed point to decrease (Fig. 2.9A). A period-doubling

bifurcation occurred when the slope became less than -1, thereby destabilizing the

period-1 rhythm and generating an altemans rhythm. This bifurcation mechanism

relies on two assumptions: i) fatigue causes a vertical shift of f, and ii) f is concave

down.

The physiological mechanism for facilitation has been suggested to result from

the properties of the action potentials of cells in the distal node. Here, we show that

a simple model incorporating this physiological mechanism has implications for the

shape of f as weIl as the proposed bifurcation mechanism.

Our simple model is a special case of a class of models proposed by Chialvo et al.

[25j for the dynamics of propagation along Purkinje fibers. Figure 2.9B il1ustrates the

variables in the mode!. Our basic assumption is that both the AV nodal conduction

time (AH interval) and the action potential duration (APD) of the distal nodal cells

(H cells) are functions of the time interval between the end of the H action potential

and the next atrial activation called the diastolic interval (DI):

NCTn +1 - P(Dln ) ,

APDn +l - Q(Dln ).

(2.1)

•

The function P is called the recovery curve and Q is called the restitution curve.

Since our recordings were obtained using unipolar extracellular electrodes, the

action potentials were not measured and the diastolic interval was not controlled.

Rather, our fixed-delay stimulation protocol held the HA interval fixed at sorne in­

terval À. But since Dln = À - Q(Dln - 1) and Dln - l = p-1(NCTn ) , the diastolic
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interval can be expressed in terms of À:

(2.2)

and thus the nodal conduction time can be expressed as a function of the previous

conduction time for fixed À.

Given the following analytic fOnfis for P and Q [26]:

P(DIn} - a + b exp(-Dln/Tre~J,

Q(Dln) - c - d exp (-DIn/Tru ) ,

(2.3)

•

by substituting (2.3) and (2.2) into (2.1) the AV nodal conduction time is given by:

(2.4)

where h is the following àecreasing function:

(2.5)

•

where K, = b exp(C/Trec ) and ~ = db--r /Trec with ; = Trec/Tru.

Equation 2.4 predicts that a decrease in the fixed-delay time À causes f to become

a steeper function. Therefore, the fixed point can become destabilized and alternans

can be generated by decreasing À just as we observed in the experiments (Fig. 2.2).

This simple model predicts the shape of f: if; < 1 then f is concave up every­

where, whereas if; > 1 then f is a bell-shaped function. Therefore, the assumption

that f is strictly concave down is not supported by our simple model of facilitation.

This means that the period-doubling mechanism suggested in the previous AV Dode

model is not likely because a vertical shift of f due to fatigue will decrease, rather

than increase, the magnitude of the slope at the fixed point. If our simple model is

correct, then fatigue must he more than a simple vertical shift of f. Rather, fatigue

probably shifts f up and to the right as depicted in Figure 2.7.
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Figure 2.1: A, preparation with anatomie landmarks, pacing site (rectangular pulse)
and recording sites (closed circles). B, schematic representation of our model of
atrioventricular reentrant tachycardia with the two nodal inputs, the Dode itself and
the retrograde retum pathway to the atrium simulated by an electronic circuit. The
His-stimulus (HS) interval controls the retrograde delay of the reentrant circuit. C,
electrograms recorded during the initiation of the tachycardia with an HS of 60 ms.
UA, upper atrium. CT, low crista terminalis. lAS, low interatrial septum. CS,
coronary sinus. HIS, His-bundle. TV, tricuspid valve. E, nodal electrode.
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Figure 2.3: A, beat to beat changes of NCT observed during spontaneous tennina­
tion and restarting of the tachycardia associated with a constant HS of 40 ms. The
last conducted beat corresponds to the lower branch of NCT altemation. A sponta­
noous atrial beat (arrow) reinitiates the tachycardia. Corresponding electrograms are
depicted in B.
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Figure 2.4: Origin of NeT alternation during restarting tachycardia initiated with a
40 ms HS. While both NeT and distal conduction time (EH) similarlyaltemate, the
proximal conduction time (AE) does not.
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Figure 2.6: A, schematic representation of a function, f, relating successive NCT for
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Figure 2.7: Simulation of the effects of AV nodal fatigue. A, as fatigue increases, the
function f is slowly shifted up and right. The fixed point, NeT-, slowly increases
and gives the NeT sequence shown in B. Notice that the slope of the function at the
fixed point is becoming more negative with increasing fatigue.
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Figure 2.8: A, NCT altemation occurring when the slope of the function, f, at the
fixed point, J.VCT·, becomes less than -1. The graph predicts that the magnitude of
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CHAPTER 3

DYNAMIC CONTROL OF CARDIAC ALTERNANS

3.1 Foreward

Control techniques from the field of nonlinear dynamics [1] have been used to control

both chaotic [2] and nonchaotic [3] dynamicai systems. Since these control methods

do not require knowledge of the system's goveming equations, they are particularly

applicable in biology where detailed mathematical models are usually unavailable.

Control of biological dynamics is important for medical science since abnormal phys­

iological rhythms can be life-threatening [4]. Attempts have already been made to

control bath experimental [5] and model [6, 7] biological systems. However, none of

these studies used control algorithms which adapted to evolving system parameters.

Since physiological environments typically drift over time, practical biological control

schemes must adapt ta these changes. Bere, we utilize an algorithm which controls

an evolving cardiac arrhythmia called an altemans rhythm in the rabbit heart.

3.2 Cardiac Alternans Rhythms

Cardiac altemans rhythms are characterized by an altemation of the timing or mor­

phology of the heart's electrical activity frOID one beat to the next. While the clinical

importance of cardiac altemans has only recently been recognized [8], their discovery

dates back ta the earliest recordings of cardiac electrical signaIs [9]. We generated

cardiac altemans by electrically stimulating a piece of dissected rabbit heart l
. Each

stimulus delivered ta the upper atrium caused a wave of electrical activity to propa­

gate through the atrium, the atrioventricular node and out the His bundle (Fig. 3.1A).

We measured the electrical activity near an atrial input of the AV node and at the

His bundle output (Fig. 3.1B). X, was the time for the impulse to pass through the

IThe experimental methods used in this study are identical to those described in the previous
chapter with the exception that the altemans magnitude was increased by either inducing tran­
sient hypoxia (n=2), or using a combination of hypoxia and the calcium channel blocker verapamil
(30 ng/ml) (n=3). These maneuvers decreased the electrical excitability of the preparation and
mimicked the situation where large amplitude AV nodal alternans have been observed clinically [8].
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AV Dode. The output impulse was re-injected into the atrium after a time delay À.

When À was made sufficiently small, the conduction time through the AV node began

to alternate [10] (Fig. 3.1B).

3.3 AV Node Dynamics

The dynamics of AV nodal conduction can be characterized by a one-dimeDsional

map

(3.1)

where Xn is the AV nodal conduction time following the nth atrial stimulus, À is the

time delay from His bundle activation to the next atrial stimulus, and f is a nonlin­

ear, decreasing function of both arguments which relates the successive conduction

times [10]. The map is represented as a graph in Fig. 3.2A. This rnap determines the

sequence of AV nodal conduction times, Xl: X 2 , X 3 , •.• , X n given sorne initial con­

duction time, X o, for fixed À. The intersection of the curve with the Hne of identity

(Xn + 1 = X n ) defines the period-1 fixed point X· = f(X·, À). If 1UI < 1 at X·, then

X· is stable and the sequence of conduction times will converge to X· (Fig. 3.2A).

If Nf at x· becornes less than -1, then X· loses stability and a period-2 cycle gains

stability. In our preparation, this period-doubling bifurcation causes the alternans

rhythm [10]. For example, Fig. 3.28 shows a sequence of conduction times divergjng

from the fixed point (dashed arrows) and the development of altemans (solid arrows)

for one of our preparations. Slow nonstationary effects are associated with graduai

defonnations of f over several iterations, which can both shift X· and change the

slope of f at X·.

3.4 Alternans Control Algorithm

Since altemans arise when a fixed point loses stability in the manner described above,

the unstable fixed point must lie between the alternating X's. Control of altemans can

be achieved by directing the system towards the unstable fixed point by varying À for
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certain beats2 • This procedure is schematically depicted in Fig. 3.2C. By shortening

À by an appropriate amount dÀn after a large X n , the map f shifts to the dashed

curve. The subsequent X n +1 is thereby directed doser to the unstable fixed point X·

as shown by the dashed arrow.

The simplest way to choose the magnitude of dÀn is to make it proportional to the

distance between the system's present state point, X n , and the unstable fixed point.

Therefore, the stimulus delay time for beat n + 1 was shortened by an amount 6.Àn ,

where

The proportionality constant ct established the sensitivity of the control algorithm.
..-
X· was the cunent estimate of X· approximated as the midpoint of the alternating

X's
..- 1
X· = 2"(Xn + Xn-d.

This fixed point estimate was recomputed after each beat allowing us to adaptively

locate the real fixed point. It is not necessary to know the analytic fonn of f to apply

this algorithme

3.5 Results

We used this control method to suppress alternans rhythms in 5 rabbit heart prepara­

tions. The left panels of Fig. 3.3 show the sequence of AV nodal conduction times Xn

before, during, and after the control period along with the corresponding values for

Àn in 3 different preparations. The right panels are points of f obtained during the

transient periods at the onset (+) and following the termination ( • ) of the control.

Fig. 3.3A shows control of nonstationary alternans which have an increasing magni­

tude and a slow average drift of the AV nodal conduction time. Because the unstable

fixed point was adaptively located, its evolution was tracked. The right panel shows

the shift of f over the course of the control. Fig. 3.38 shows that when control was

20ur control algorithm is a modified version of the one used in reference [7]. Our modifications
ensured that the algorithm changed the stability, but not the location, of the uncontrolled system'8

unstable period-l fixed point.
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initiated near the onset of alternans, relatively small perturbations (less than 2 ms)

were required to suppress its development. In this case, the unstable fixed point did

Dot evolve appreciably over the course of the control.

The control technique requin~ that we choose an appropriate proportionality con­

stant Cl'. In our experiments, ct was chosen by trial and error. If a was too small the

alternans magnitude was reduced, but not eliminated. For example, the preparation

depicted in Fig. 3.3C shows that the tirst control attempt, with al = 3.3, was not

sufficient to eliminate the altemans. The next attempt, with a2 = 5.0, was successful.

These observations 100 us to examine the stability conditions of the controlled system.

3.6 Stability of the ControUed Fixed Point

Turning on the control algorithm had the effect of transforming the one-dimensional

map 3.1 into the following two-dimensional system:

• Cl'
- f(Xn , À - 2"(Xn - Yn »)

- Xn

(3.2)

The period-l fixed point of this system (X-, Y·) has the property: X· = Y·, which is

also the value of the uncontrolled system's fixed point. The Jacobian of this system

is

(3.3)

•

where A = U and B =~. In our case, both A and B are negative at the fixed

point.

The fixed point is stable provided that the Jacobian has eigenvalues which faIl
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within the unit circle. This condition is met for Ct in the following range:

clAI- 1) 2
IBI < Ct < lBî' (3.4)

•

•

where all terms are evaluated at the fixed point. Although it is not necessary to

know the analytic form of f to apply the control algorithm, the properties of the map

determine the range of Ct which gives effective control.

Because many beats had conduction times which were less than X·, 6Àn was

often negative, implying that the stimulus should have been delayed for tbose beats.

However, in clinical situations where altemans occur naturally, beats induced via

electrical stimulation can only shorten À. Therefore, premature stimuli were delivered

only after beats with conduction times larger than X*. Otherwise, "An was set to

zero and the stimulus was delivered at the unperturbed delay, À. This modification

doubles the lower Iimit of effective Ct and the upper limit increases as described in

Chapter 4.

To estimate the lower limits of effective a in our experiments, we assumed that

f had the following fonn: f(Xn , À) = a + exp (-Alr)h(Xn ), where a and T are

parameters which can be detennined experimentally, and h is an unknown decreasing

function [10]. Therefore, at the fixed point B = -*(X· - a). Previous studies have

shown that typical values for a and Tare 80 ms and 70 ms respectively. [10]. Using

these parameters, and X· and A determined from the maps in Fig. 3.3, we estimated

that the lower Iimits of effective Ct are 2, 0.7, and 5 for the preparations shown in

Figures 3.3A, B, and C respectively. These Iimits agree with our observations.

3.7 Complex Alternans

In sorne preparations the altemans rhythm was more complex. For example, Fig. 3.4A

shows irregular oscillations superimposed over each altemans branch. This kind of

behavior is seen when the curve f shifts back and forth with a period of about 20 beats

(Dot shown). The physiological mechanism of sucb a nonstationarity is unlmown.

Nevertheless, the control algorithm successfully eliminated these irregular alternans
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(Fig. 3.4B, C), thus showing that the technique is robust ta complex rhythms.

3.8 Discussion

Previous biological control experiments implemented a pre-control leaming phase ta

estimate X· which was held constant over the course of the control [5]. Any error in

the fixed point estimate leads ta a controlled fixed point which differs from that of

the uncontrolled system. Furthermore, an evolving fixed point of the original system

can not he tracked using sucb a scheme.

Sïnce we recomputed our fixed point estimate X· after each beat, our control

algorithm accurately targeted the original system's unstable period-l fixed point.

Slow evolution of the fixed point was tracked. However, since f slowly evolves, the

limits on the range of effective Cl: correspondingly change. Therefore, while Cl: may

initially he in the effective range, the system's evolution may lead ta destabilization.

In most cases, the range of effective ct was sufliciently large sa that the graduai

evolution of the system did not destabilize the fixed point.

Suppression of cardiac altemans has important clinical implications given that

alternans in the ECG morphology often precedes life-threatening arrhythmias and is

a risk factor for sudden death [8]. If a control algorithm similar to the one used in

the present study was incorporated in a prosthetic cardiac pacemaker, sucb altemans

rhythms might he suppressed and a route to a fatal arrhythmia curtailed.
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Figure 3.1: A) Schematic diagram of the rabbit heart preparation and pacing strat­
egy. Following detection of His bundle (HIS) activation, we applied the next atrial
stimulus after a time delay, À, which was our control parameter. B) Stimulation
pulses and electrograms recorded from the atrium and His bundle during alternans.
The conduction time, X, through the atrioventricular node (AVN) was defined as the
time interval between atrial and His bundle de8ections. Here we show an altemation
of X between 119 ms and 165 ms for À = 90 ms.
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Figure 3.2: The difference equation, X n+1 = f(Xn , À), relating successive AV nodal
conduction times and a schematic of the control mechanism. A) Convergence of
successive conduction times to a stable fixed point, X·, when the slope of f(Xn , À) at
X· is greater than -1. B) Development of altemans in one of our preparations when
the slope of f(Xn , À) at X· was Jess than -1. C) Effect of a premature stimulation,
À - 8Àn , on f. A premature stimulation applied after a beat with a long AV nodal
conduction time directs the subsequent conduction time closer to X· (dashed arrow).
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Figure 3.3: Control of alternans in three preparations. A) AV nodal conduction times
X n and delay times Àn in the first preparation. Control was implemented frOID beat
266 to 787 (2 minutes) with a = 2.5. The right panel plots X n +1 versus X n at the
onset (+) and following the termination ( • ) of the control sequence. The fixed point
X· after the control was 130 ms and the slope of the map at this point was -1.7. B)
X n and Àn in the second preparation. Control was implemented from beat 319 to 550
for a = 1.7. X· after the control was 123 ms and the slope at the fixed point was -1.2.
C) X n and Àn in the third preparation. The fust control attempt was implemented
frOID beat 79 to 134 with al = 3.3. The second control attempt was implemented
frOID beat 219 to 255 with a2 = 5.0. Mter the second control, X· was 92 ms and the
slope at the fixed point was -1.5.
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CHAPTER4

RE8TRICTED CONTROL OF ONE-DIMEN8IONAL

MAP8

4.1 Foreward

Recent success controlling complex dynamics of nonIinear physical and chemical sys­

tems [1] has opened the door for the control of biological rhythms. Sorne researchers

have speculated about the medical implications of controlling heartbeat dynamics or

brain rhythms [2, 3], but biological systems typically have characteristics that require

special consideration. For example, all biological control studies to date [2, 3] have

required that the control interventions be unidirectional- only allowing shortening of

a parameter. This restriction can have detrimental effects on the ability to control

these systems [4]. To extend the analogy of dynamic control being like balancing a

meter stick 00 one's palm [5], restricted control is like t[YÏng to balance the meter

stick by ooly allowing hand movements in one direction.

Surprisingly, the unidirectional restriction can improve the cootrollability of sorne

systems. Here, we will describe how restricted control can introduce new stability

zones, and we show that sorne of these zones were observed in our recent cardiac

control experiments [3J. Furthermore, the structure of the stability zones suggests

a way to modify the original control algorithm to automatically adapt the feedback

gain parameter.

4.2 Delayed Feedback Control of Systems Described by

One-Dimensional Maps

The cardiac dynamics in our experiments were described by a one- dimensional map:

(4.1)
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where X n is the variable under control and ~ is the control parameter. The goal is

to stabilize an unstable period-1 fixed point X· = !(X., À) by perturbing >. by an

amount:

(4.2)

•

where a is a feedback gain parameter. This is an example of delayed feedhack control

originally proposed by Pyragas [6]. The controlled system's fixed point is identical to

the uncontrolled system. Thus, if the lixed point drifts over the course of the control

(as is typical for biological systems) the controlled system will track the fixed point

provided that the system stays in the stable range of the feedback gain ct.

4.3 Linear Stability Analysis of Unrestricted Delayed

Feedback Control

Linearizing about a lixed point at the origin gives:

(4.3)

Yn+1 - X n ,

where A =If, and f3 =~(~) where both derivatives are evaluated at the fixed

point. In the case of our cardiac experiments, A < -1 and {3 < o.
The eigenvalues of (4.3) are (A - {3 ± y'(A - [J)2 + 4f3)/2. The fixed point is

stable provided that bath eigenvalues fall inside the unit circle. This condition is met

when:

1
-1 < {3 < 2(A + 1), (4.4)

•
provided that A < 1 [3]. Note that the stability zone shrinks to zero for A 5 -3 [7]

thereby limiting the applicability of the unrestricted control algorithm to maps with

a sufficiently shallow slope at X* .
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4.4 Restricted Control

Restricting the above control algorithm by only allowing shortening of À gives the

following linearized system:

where

{

1 if (Xn - Yn ) > 0,
8 n =

o otherwise.

(4.5)

(4.6)

•

•

Thus, when en = 1 the control is tumed on, and when en = 0 the control is turned

off.

4..4.1 Geometrie Interpretation of Restrieted Control

Geometrically, the restriction 4.6 means that perturbations will only he applied if

points on the return map lie ahove the line of identity Xn + 1 = X n (the dotted

diagonalline in Figure 4.1). For example, Figure 4.1A shows how the restricted control

algorithm stabilizes the unstable fixed point X· in a linear system with A = -4 and

{3 = -3.1. The solid line corresponds to the uncontrolled system and the dashed lines

correspond to the perturbed system. X· is at the intersection of the solid and dotted

lines. In this case, the first control intervention causes the next iterate to faU below

the Hne of identity implyjng that the ne.xt iterate will be uncontrolled. Furthermore,

since the first controlled iterate was less than the fixed point, the next iterate will

he ahove the identity Hne. Thus, control is applied every other iterate so that the

sequence of en is 0101. ... In this case, the fixed point is stabilized because control

directs the system doser to the fixed point. For larger values of {3 the fixed point is

not stabilized, but the oscillatory growth of Xn is slowed (not shown).

In our cardiac experiments, if the gain parameter a is increased, then {3 becomes
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more negative. Figure 4.1B shows the situation when {3 is decreased to -3.23. As in

the previous example, the fust controlled iterate is below the Hne of identity (implying

that the next iterate is uncontrolled). However, in this case the perturbation is bigger

and the controlled iterate is slightly larger than the fixed point. This means that the

next iterate is also below the Hne of identity and the control is applied in a 001001. ..

sequence. This sequence is stable for {3 = -3.23 because the first control1ed iterate

directed the system doser to the fixed point. But if {3 is decreased to -3.4, we see

from Figure 4.1C that the same control sequence is unstable because the system is

directed away from the fixed point.

If a is further increased, then a new control sequence is achieved. Figure 4.1D

shows a stable 011011. .. sequence for /3 = -5.76. In tbis case, the first perturbation

is so large that the controlled iterate is al50 above the line of identity, implying that

the next iterate is also controlled. The second controlled iterate is below the Hne of

identity and below the fixed point, thereby gjving the 011011. .. sequence. In this case,

the fixed point is stabilized because the second controlled iterate is directed doser to

the fixed point. However, larger values of {3 gjve an unstable 011011. .. sequence (not

shown) because the second controlled iterate is directed farther from the fixed point.

Just like the transition from the stable 0101... sequence to the stable 001001...

sequence depicted in Figures 4.1A and B, there is a transition from the stable 011011...

sequence to the stable 00110011... sequence as /3 is further decreased (Figure 4.1E

shows the case for {3 = -5.798) and the 00110011... sequence becomes unstable as {3

is decreased still further (Figure 4.1F depicts /3 = -5.82).

For the linear system (4.6), the progression of unstable and stable periodic control

sequences continues indefinitely as {3 is decreased. In other words, the switching

parameter en imposes the following progression of control sequences: unstable 01",

stable 01", stable 001 le, unstable 001 le, unstable 01"+1, ... , where 1" denotes k control

perturbations in a row before the sequence repeats and k progresses from one to

infinity as /3 is decreased from zero.
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4.4.2 Computation of the Stability Zones l

Since we know the progression of the control sequences imposed by the switching

term en, Xk+ l can be expressed as:

(4.7)

where ek is given by the following iterative expression:

(4.8)

•

•

with eo = A and el = A2 + ,8(1 - A) or el = A 2 for the 01k or DOIt sequences

respectively. In this study, we consider the case A < -1 since that is when the fixed

point is unstable.

The boundaries of the stability zones are computed by using the criterion that

stable sequences move the system closer to the fixed point after one control sequence.

Since "'Yk+1 is the last iterate of the first 01k control sequence and X k +2 is the last

iterate of the first 001 k sequence, the stability conditions are et < 1 and ek+l < 1

for the 01k and 001k sequences respectively. Therefore, the boundaries are given by

k degree polynomials in {J. For example, the k = 1 control sequences are stable for

1 + A + liA < ,8 < 1 + A for A < -1. Figure 4.2 depicts the stable zones for k = 1

and k = 2. The condition ek = 0 marks the boundary between the stable 01k and

001k sequences (grey Hnes in Fig. 4.2) where the fixed point is reached after a single

control sequence 01k .

The striking feature of this analysis is that the domain of control is extended by

the restriction. Figure 4.2 shows that the linearized system has stable sequences for

an arbitrarily negative slope A. This contrasts with the unrestricted system, whose

control domain is bounded by the dashed Hnes in Figure 4.2, that cao only stabilize

fixed points with sIopes greater than -3.

While there are an infinite number of stable zones corresponding to an arbitrary

IThe stability zones were independently discovered by Socolar and Gauthier [8] using dift'erent
techniques.
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number k control perturbations in a row, the stability zones are bounded by the curve

(3 = A-2-2v'1 - A. This boundary is computed by recognizing that as k approacbes

infinity, the control is always on sucb that X n+ 1 > X n for every iterate. Thus, the

algorithm behaves just like the unrestricted control (4.3) with real eigenvalues greater

than one - a condition met only when {3 is below the boundary.

4.4.3 Experimental Observation of different control sequences

Although our experimental cardiac system was not linear, application of the restricted

control algorithm resulted in several of the control sequences predicted in the above

linear system. These control sequences were especially clear at the initiation of the

control where the control perturbations were relatively large and therefore easy to

see.

For example, Figure 4.3A shows the variable X n and the control parameter Àn

during an unstable 01 sequence for a feedback gain a = 3.3. This example corresponds

to the initiation of the first control sequence of Figure 3.3C (the baseline value .\0
is shifted by -55 ms to assist in plotting the data). The fust controlled beat is

indicated by the arrow and corresponds to a negative perturbation of Ào (all control

perturbations are negative as imposed by the switching term en). Since the system

is nonlinear, oscilatory growth of X n is quenched and the original large amplitude

alternation of X n is reduced in magnitude - but not eliminated.

However, as shown in Figure 4.38 (corresponding to the second control sequence

shown in Fig.3.3C) when ct is increased to 5.0 the system shifts to a stable 001

sequence that eliminates the alternation of X n . The first controlled beat is indicated

by the arrow. ARer the fourth perturbation to Àn (beat 323), the system shifts to a

stable 0101 sequence. This shift is due to the close proximity of these stable zones

(Fig. 4.2) and any noise or drift in the system cao cause sucb transitions.

Figure 4.3C shows a stable 0011 control sequence that eliminated the alternation

of Xn in another preparation with a = 2.5. Again, the system switches to its adjacent

stable 011 control sequence shortly after the control was initiated.
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4.5 Automatic adaptation of the feedhack gain

The control algorithm requires that the feedhack gain parameter a be specified. In

our cardiac experiments: we chose a by trial and error. However, the structure of the

stability zones suggests a way to automatically adapt a so that X· can be stabilized

more robustly.

Since multiple perturbations away from the fixed point are not desirable: the

optimal stability zone is the k = 1 zone. Furthermore, since the stable k = 1 zone has

the largest area, it will be the mast robust to noise and drifting system parameters.

Therefore, to target tbis zone we adapt a according to:

where 6a is a small increment. When (~) lx· is negative (as in our cardiac experi­

ments) a and 50: are positive. Otherwise they are negative. This simple algorithm is

motivated by examining the stability zones in Figure 4.2. Hais too small then this

corresponds to {3 being above the k = 1 boundary and the control sequence will he

an unstable 01 sequence. If 0: is too large, then {3 is below the optimal 01 boundary

depicted by the uppermost grey curve in Figure 4.2. Thus, the adaptation will adjust

the system so that it oscillates between the stable 01 and stable 001 sequences pro­

vided that the increment 60: is small enough so that the stepsize of {3 is sufficiently

less than the thickness of the k = 1 stability zone.

To illustrate the adaptive algorithm, we used the restricted controller:

•
{

a n _ 1 + 5a if 8 n - 4 to 8 n - 1 was 0101 or 1010,
crn=

an-l - 5a otherwise,
(4.9)

(4.10)

•
with 0:0 randomly chosen between 0 and -10 and 5a = -0.1. We applied (4.10) to

the quadratic map:

(4.11)
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where (n is a normally distributed random variable with a mean of zero and a variance

of 0.001. Our goal was to stabilize the fixed point X· = (>'0 - 1)/"\0'

Figure 4.4 shows the results for adaptive control of the quadratic map. For iterates

1-500, "'0 = 3.3 corresponding to an uncontrolled stable period-2 orbit. Control was

initiated at iterate n = 125 and the random initial value of an was -2.03. The adaptive

algorithm stabilized X· and the subsequent fluctuations of an kept the system in the

k = 1 stability zone. The control was shut off at n = 375 and the period-2 cycle

returned.

At n = 501, >'0 was switched to 3.52 which corresponds to a period-4 rhythm.

The control was initiated at n = 626 with a random initial value of G n = -8.38.

The adaptive control stabilized X· and the control was turned off at iterate 876. At

n = 1002, >'0 was switched to 3.65 which is in the chaotic regime. Control was initiated

at n = 1127 with the initial an = -8.32 and X· was stabilized after approximately

130 iterates. When the control was shut off at n = 1378 the chaos resumed.

Since the adaptive algorithm was designed ta track a drifting fixed point, we

applied the control ta a quadradic map with "0 starting at 3.3 and increasing by an

increment of 0.007 every iterate. The small increments ta >'0 introduced a slow drift

in the system. Control was initiated at iterate 250 and Figure 4.5 shows that the

drifting fixed point was tracked and stabilized weIl into the chaotic regime.

4.6 Conclusion

The biological restriction of unidirectional control perturbations surprisingly enhances

the controllability of systems described by one-dimensional maps. Since biological

systems typically drift over time, dynamic control algorithms must adapt to these

changes. The restricted delayed feedback control technique allows for moderate track­

ing of the fixed point as long as the system remains in a stability zone. However, a

simple modification of the restricted control algorithm allows for automatic adapta­

tion of the previously fixed feedback gain parameter to ensure that the drifting system

is directed to, and remains in, the largest stability zone.
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Figure 4.1: Retum maps showing the progression of control sequences as {3 is de­
creased. The dotted diagonal line is the identity line and the solid line is the un­
controlled system with slope A = -4. The dashed lines shows the system when per­
turbed by control interventions. A) {3 = -3.1 results in a stable 01 control sequence.
B) {3 = -3.23 results in a stable 001 sequence. C) {3 = -3.4 gives an unstable 001
sequence. D). {3 = -5.76 gives a stable 011 sequence. E) (J = -5.798 gives a stable
0011 sequence. F) {J = -5.82 gives an unstable 0011 sequence.
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CHAPTER5

HOW TO TELL A TARGET FROM A SPIRAL: THE

TWO PROBE PROBLEM

5.1 Foreward

Targets and spirals are topologically distinct wave patterns that have been ob­

served in a variety of physical, chemical, and biological systems [1, 2]. A target

pattern is produced by concentric waves traveling away from a rhythmic source,

whereas a spiral wave is generated by a rotating source. Despite their different

mechanisms, bath wave patterns lead to indistinguishable rhythms when mea­

sured at a single point in space. This ambiguity sparked the early debate over

the mechanism of the periodic radio waves measured from pulsars l [3], and has

implications for the mechanisms of several biological rhythms, sorne of which are

life-threatening [2, 4].

Our interest in distinguishing spirals from targets is motivated by a problem

in cardiac electrophysiology: targets and spirals underly serious arrhythmias in

the heart [4] and cardiologists need to diagnose the mechanism to launch the

appropriate therapy. However, cardiac targets and spirals are not re3dily distin­

guishable since it is presently impossible to measure a high-resolution activation

map in an intact human heart. Rather, a small number of probes can be placed on

the heart's inner surface in arder to measure local electrical activity and deliver

stimuli [5].

Here, we pose the following problem: what is the minimum number of probes

required to distinguish a target from a spiral? We show that the answer is two,

provided that the waves propagate in an "excitable" medium, Iike the heart.

1Periodic radio waves may he caused by a stationary "pulsating" source or a rotating source
called a "lighthouse" mode!.
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5.2 Wave Propagation in Excitable Media

An excitable system [1, 6] is characterized by the following properties: i) there

is a stable rest state; ii) a suprathreshold perturbation away from the rest state

causes an excitation (i.e. a "large" excursion in phase space); and iii) after an

excitation, there is a refractory time period when another perturbation will not

give a new excitation [6]. When excitable e1ements are coupled together in space,

the resulting excitable medium can support excitation waves.

A local stimulus delivered to an excitable wave pattern cao cause a global spatio­

temporal change. For example, a time-shift of the wave pattern is caused by a

sufficiently large stimulus delivered at the right time and location [7, 8]. The

time-shift of the rhythm is called phase resetting, or simply resetting (Fig. 5.1).

We will show that stimuli delivered at a single probe cannot distinguish between

a target pattern and a spiral wave. However, targets and spirals can be distin­

guished by interchanging the stimulus location between two probes and measur­

ing the resetting response for both arrangements. This procedure identifies the

wave pattern by exploiting the different spatio-temporal symmetry properties of

targets and spiraIs.

5.3 Target and Spiral Phase Fields

Let T(r) be the time when the wavefrollt passes through the position r. A probe

located at r records T(r) as the time at which the activation variable crosses sorne

threshold. The spatio-ternporal activation pattern can be described by identifying

the phase of the rhythm t/J at alilocations and times t:

t - T(r)
t/J(r, t) = T

o
(mod 1), (5.1)

•
where t/J advances from 0 to 1 with the period of the rhythm. The local phase dif­

ference rneasured at locations ri and r2 is determined by the time delay between
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the activation of probes at different locations:

(5.2)

where ~tl2 = r(rd -r(r2) is the time difference between the activation of probes

Pl and P2'

The phase field of a target pattern is given by

where (J = - 21r .,p(r) describes the shape of the spiral wave-front rotating clock­

wise around a circular obstacle at the origin [9].

where C is the propagation velocity2 and (r,8) are the radial and angular coordi­

nates of a polar coordinate system with the origÏn at the center of the pacemaker

region. The spiral phase field is given by:

•

t r
t/J(r, 8, t) = -;;;- - --;r;- (mod 1),

.L 0 C.L 0

t (J
t/J(r, (J, t) = Ta + 1/J(r) + 21r (mod 1),

(5.3)

(5.4)

5.4 Symmetry Properties of Targets and Spirals

The target and spiral phase fields have different symmetry properties. Let the

operator k." denote a rotation of the plane about the origin by an angle cp and let

Tt denote a time translation by an amount t. The symmetry properties of the two

phase fields are expressed by their invariance under the following transformations:

target: ft;,t/J(r,t) - t/J(r,t),

spiral: 'ft.ft;,t/J(r,t) - t/>(r,t),

'tIcp
• cpTot =-.

21r

(5.5)

•
2Because of curvature e1fects, the propagation velocity c generally depends on the distance r

from the pacemaker. For simplicity, we have taken c to be a constant. Nevertheless, our results
apply provided tbat the time for a wave to propagate !rom the pacemaker ta the stimulus probe is
approximately equal to the time for the stimulus wave to propagate 10 the pacemaker.
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Thus, the target pattern is invariant under a rotation about an arbitrary angle,

whereas the spiral pattern is invariant under a rotation combined with a partic­

ular time translation. We will show how two probes can he used to reveal the

different symmetry properties by measuring the resetting response of the wave

patterns.

5.5 Phase Resetting Targets and Spirals

To illustrate our technique, we investigated the effects of stimuli on a target

pattëm and a spiral wave rotating around a circular obstacle in the modified

FitzHugh-Nagumo model:

where v is the excitation variable, w is the recovery variable, f3 = 0.7, 1 = 0.5, and

f = 0.3. The diffusion coefficient D = 1 cm2 S-I. l,oc is a constant CUITent applied

to a localized region at the center of the sheet in order to either make it oscil­

late, mimicking a pacemaker, or depress excitahility thereby creating an obstacle

around which a spiral wave cao propagate. lstim (t) is a pulsatile stimulation cur­

rent used for resettiog. The sigmoidai fuoction g(v) = (WH -WL)/(l +e-kv ) +WL

controis the rate of the pacemaker, where k = 4.0, WH = 0.6, and WL = 0.13

in the pacemaker region and 0.4 everywhere else. For the spiral wave k = 4.0,

WH = 0.6, and WL = 0.4. The equations were soived using a simple Euler inte­

gration scheme on an 80 x 80 grid with zero-Bu.x boundary conditions, a spatial

discretization of 0.4 mm and a time step of 0.05 ms3 . Figure 5.1 shows resetting

of a target and a spiral with periods To of 59.7 ms and 47.7 ms respectively. We

3Halving either the time step or spada! discretization step decreases the period of the rhythm
by less than 0.2% and points on the resetting curves are changed by less than 1%. Thus, we can be
confident of convergence of our numerical algorithm.

•

•

ôv
nt

8w
ôt

1 1 3) 2 )- ;(v - 3V - w + DV v + l,oc + ltltim(t ,

- f(V + 13 - ,w)g(v)

(5.6)
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measured the activity at two probes labeled Pl and P2 and delivered the stimuli

to probe PL.

The local phase 4>i of the stimulus is measured at both probes. The effect of the

stimulus is determined by measuring the successive activation times since the

activation prior to the stimulus Tfi), TJi) ,... , TP) where the index i indicates the

probe and the index j indicates the number of activations since the stimulus

was delivered (Fig. 5.2A) [7]. The local activation times Tjï) depend on bath the

phase and the location of the stimulus.

Figure 5.2B shows the normalized resetting curves for the spiral and target pat­

terns using stimuli delivered and measured at probe PL. The local phase measure­

ments at probe P2 is given byequation (5.2). Furthermore, the resetting curves

measured at P2 are gjven by:

(5.7)

for j large enough so that the transient effects of the stimulus have dissipated.

Thus, the resetting curves measured at different probes are related by a horizontal

shift equal to the phase lag between the probes (not shown). This is a general

result expressing the fact that the resetting response of the rhythm is independent

of the measurement location.

The resetting curves obtained at the stimulus probe are strikingly similar for

both targets and spirals (Fig. 5.2B). The similarity is easily explained. Early

stimuli fall in the refractory and therefore have no effect on the rhythm. Sucb

stimuli give the fiat part on the left of the resetting curve. On the other hand,

a late stimulus resuIts in a new wave that is annihilated before interacting with

the pacemaker or the tip of the spiral. Thus, late stimuli faIl in an "interference

zone" and also have no effect on the rhythm. Gnly stimuli at intermediate phases

reset the rhythm and result in the diagonal part of the resetting curve.

Therefore, the resetting curve measured at the stimulation probe is divided into

three zones: the refractory zone at small phases, the resetting zone at interme-
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diate phases, and the interference zone at late phases. The stimulus phase 4>*
marks the juncture between the resetting and interference zones.

The position of 4>* is detennined by the distance between the stimulation probe

and the source of the rhythm. Since a resetting stimulus must generate a wave

that interacts with the source, the stimulus must he delivered early enough so

that the wave has time to travel interact with the pacemaker or the tip of the

spiral. A wave generated by a late stimulus will he annihilated by the original

target or spiral wave before interacting with the source. Therefore, the greater

the distance from the source, the smaller the junction phase t/J*.

Figure 5.2C shows the resetting curves measured at the stimulation probe P2­

Comparing with the resetting curves from stimuli delivered at Pl (Fig. 5.2B), we

find that tP; < tPi for both the target and the spiral, implying that P2 is farther

from the source than Pl-

5.6 Distinguishing a Target frOID a Spiral

5.6.1 Homogeneo'US Media

Because of the rotational symmetry of the target pattern, the time delay be­

tween activation of the probes depends on their relative distance from the source:

Ât 12 = (Tl - T2)/C. Therefore, for a target pattern the time delay between the

activation of two probes predicts the shift of the junction phase tP* resulting from

interchanging the stimulation site between the probes:

(5.8)

•
where 4>; is the juncture phase measured at the stimulus site i. The factor of

2 arises from equation (5.2) since the phase measurements are made at their

respective stimulation sites. Since the spiral pattern lacks rotational symmetry,

probe activation delays alone cannat predict the change in the interference zones
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caused by interchanging the location of the stimulus. Therefore, targets and

spirals can be distinguished on this basis.

To illustrate this symmetry property, we applied prediction (5.8) in our simula­

tions of the FitzHugh-Nagumo mode!. From Figure 5.2B, we find that tl>î = 0.57

and 0.84 for the target and spiral patterns respectively. Similarly, Figure 5.2C

shows that tPi = 0.45 for the target and tP2 = 0.68 for the spiral. The activation

time delays were at12 = -3.5 ms for the target and at12 = 8.0 ms for the spiral.

Thus, as expeeted, (5.8) is satisfied for the target pattern but not for the spiral

for this arrangement of probes.

Whereas a target pattern satisfies (5.8) for any two probes positions, a spiral

pattern will satisfy (5.8) only in the special case where the probes are placed

along a curve whose shape depends on the shape of the spiral. Measurement

uncertainties may also lead to 5.8 being satisfied for a spiral. For example, in the

real heart it is likely that the largest uncertainties are associated with measuring

the junction phases tP~ and tP;. Since the junction phases appear as a differenee

on the left side of equation (5.8), their absolute uncertainties add together and

equation (5.8) may be satisfied within experimental uncertainty even for a spiral.

Thus, failure to satisfy (5.8) mies out a target pattern, but resetting from more

than two probes should be used to confirm a target.

5.6.2 Heterogeneous Media

Although our analysis is based on the rotational symmetry properties of tar­

get patterns in homogeneous media, equation (5.8) is also satisfied for target

patterns with broken rotational symmetry arising from anisotropie wave propa­

gation. Provided that the time for a wave to propagate from the pacemaker to

the stimulus probe is approximately equal to the time for the stimulus wave to

propagate to the pacemaker, the broken rotational symmetry is compensated by

the anisotropie propagation of waves generated by stimuli. Thus, equation (5.8)

can be used to identify topologjcal target patterns.
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For example, Figure 5.3A shows a highly distorted target pattern with a period

of To = 61.6 ms that was produced by inhomogeneous anisotropic diffusion.

This pattern was created by integrating equation (5.7) on a domain with four

randomly chosen squares of average size 30 x 30 grid points where each square was

assigned random diffusion coefficients, averaging 1 cm2 s- L in one direction and

1.5 cm2 S-L in the perpendicular direction. Eisewhere, the diffusion coefficients

were assigned the average values4
• We measured the activity at PL and 1>2 and

found that ÂtL2 = 0.8 ms. The curves in Figure 5.3B show the resetting response

for stimuli delivered at PL (left panel) and 1>2 (right panel). We find that iPi = 0.55

and tP; = 0.58, thereby confirming that equation (5.8) is satisfied for the distorted

target pattern.

Since inhomogeneity and anisotropy do not affect our ability to identify a dis­

torted target pattern, our techniques will work in excitable media with complex

wave propagation. Furthermore, our technique also applies to target patterns

in three dimensions since they are also described by the rotationally symmetric

phase field (5.3).

5.7 Conclusion

Targets and spirals are believed to correspond to different mechanisms of cardiac

arrhythmia with different therapies [4, 5, 10]. Therefore, distinguishing between

them is of crucial clinical importance. Our two probe diagnostic technique uses

resetting stimuli to identify the geometry of the propagating waves. Since reset­

ting stimuli are routinely used for other diagnostic purposes [5, Il], we suggest

that cardiologists will he able to use our method to distinguish targets from

spirals in clinical settings.

4The source code for choosing the diffusion coefficients is presented in Appendix B.



•

•

•

BmLIOGRAPHY

[1] S. K. Scott, Oscillations, Waves, and Chaos in Chemical Kinetics (Ox­

ford Univ. Press, Oxford, 1994); Waves and Patterns in Chemical and Bi­

ological Media, OOited by H. L. Swinney and V. I. Krinsky (MITjNorth­

Holland, Cambridge, MA,1992); R. Suzuki, Adv. Biophys.9, 115 (1976); M.

W. Mueller, W. D. Arnett, Astrophys. J. 210, 670 (1976).

[2] G. Bub, L. Glass, N. G. Publieover, A. Shrier, PNAS 95:10283 (1998); L.

Glass, M. C. Mackey, From Clocks to Chaos: The Rhythms 01 Lile (Prince­

ton University Press, Princeton, 1988); N. A. Gorelova, J. Bures, J. Neu­

robiol. 14:353 (1983); A. T. Winfree, The Geometry of Biological Time

(Springer-Verlag, New York, 1980); K. Hara, P. Tydeman, M. Kirschner,

PNAS 77: 462 (1980); V. I. Koroleva, J. Bures, Brain Res. 173:209 (1979);

M. Shibata, J. Bures, J. Neurobiol. 5:107 (1974).

[3] A. Hewish, Sei. Am. 219(10), 25 (1968) .

[4] L. Glass, Physics Today 45, No. 8, 40 (1996); J. M. Davidenko, A. M.

Pertsov, R. Salomonsz, W. Baxter, and J. Jalife, Nature 355, 349 (1992);

A. T. Winfree, When Time Breaks Doum (Princeton UDiv. Press, Princeton,

1987); M. A. AIlessie, F. 1. NI. Bonke, and F. J. G. Schopman, Circ. Res.

33, 54 (1973);.

[5] M. E. Josephson, Clinical Cardiac Electrophysiology: Techniques and Inter­

pretation, 2nd 00. (Lea &. Febiger, Philadelphia, 1993).

[6] J. Keener, J. Sneyd. Mathematical Physiology (Springer-VerIag, New York,

1998); J. J. Tyson, J. P. Keener, Physica D 32:327 (1988).

[7] L. Glass and M. E. Josephson, Phys. Rev. leU. 75, 2059-2062 (1995); T.

Nomura and L. Glass, Phys. Rev. E 53,6353-6360 (1996);

[8] V. 1. Krinsky, V. N. Biktashev, and A. M. Pertsov, Ann. N. Y. Aead. Sei.

591, 232 (1990); W. Quan and Y. Rudy, Circ. Res. 66, 367 (1990); PACE

14, 1700 (1991); Y. Rudy, J. Cardiovase. Electrophysiol. 6, 294 (1993); J .

M. Davidenko, R. Salomonsz, A. M. Pertsov, W. T. Baxter, and J. Jalife,

77



•

•

•

78

Circ. Res. 77, 1166 (1995); L. Boersma, J. Brugada, C. Kirchhof, and M.

A1lessie, Circulation 89, 852 (1994).

[9] A counter-clockwise rotation is described by changing the sign of the 8/2tr

term in the spiral phase field. See J. D. Murray, Mathematical Biology, 2nd

ed. page 348 (Spinger-Verlag, Berlin, 1993).

[10] We have developed a geometrical technique for localizing abnonnal pace­

makers. K. Hall and L. Glass, in press J. Cardiovasc. Electrophysiol. (1999).

[11] H. C. Strauss, A. L. Saroff, J. T. Bigger, E. G. V. Giardina, Circulation 47:

86 (1973); B.H. Sarter, D. Schwartzman, D.J. Callans, C.D. Gottlieb, F.E.

Marchlinski, J. Cardiovasc. Electrophysiol. 7:1082 (1996); H. Kottlcamp, G.

Hindricks, H. Shenasa, X. Chen, T. Wichter, M. Borggrefe, G. Breithardt,

ibid 7:916 (1996); M. Tritto, P. Calabrese, ibid 7:632 (1996); K. Asami, F.

Suzuki, H. Ashikawa, K. Hiejima, J. Electrocardiol. 29:149 (1996); D. J.

Callens, M. Zardini, C. D. Gottlieb, M. E. Josephson, J. Am. Coll. Cardiol.

27 1106 (1996) .



• 79

40 ms

120ms90 ms

20 ms

60 ms30 ms

lOms

Oms

B

c

A

•

•

Figure 5.1: Resetting of a target pattern and a spiral wave. A) A target pattern
with period Ta = 59.7 ms generated by a pacemaker at the center of the square.
B) The stimulus delivered at Pl at phase tPl = 0.4 rt~ults in a wave that causes
the pacemaker to fire prematurely and thereby resets the rhythm. C) A spiral wave
propagating around a circular obstacle with a period Ta = 47.7 ms. D) The stimulus
delivered at Pl at tP = 0.4 generates a wave that collides with the obstacle and breaks
into two waves circulating in opposite directions. The wave traveling in the same
direction as the original wave continues on to reset the rhythm. The original wave
callides with the oppositely traveling wave and both are annihilated.
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Figure 5.2: Resetting curves for stimuli delivered at Pl' A) Definition of measurements
at probe Pi. B) The resetting curves as measured at the stimulus probe Pl for a target
(left) and a spiral (right). The phase iPt at the junction between the interference and
resetting zones is marked by the dotted vertical line. C) Resetting curves for stimuli
delivered at P2, iP; (dotted vertical line) is shifted to the left compared to iPr in B)
because P2 is farther from the source of the rhythm. The magnitude of the shift is
predicted by equation (5.8) in the case of the target but not for the spiral.
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Figure 5.3: A) A distorted target pattern with To = 61.6 ms caused by heterogeneous
anisotropie diffusion. B) The resetting curve measured at the stimulation site Pl (left
panel) shows that the junction phase 4>r = 0.55, wheras the resetting curve measured
from stimulation site P2 (right panel) shows that the junction phase is 4>2 = 0.58.
Equation (5.8) is also satisfied for the distorted target.
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CHAPTER6

LOCATING ECTOPIC FOCI

6.1 Foreward

Ectopie depolarizations can arise from many areas of the heart [1]. Frequent

ventricular ectopie beats can he incapacitating in sorne patients [2], persistent

atrial ectopie tachycardia ean lead to heart failure [3, 4, 5], and recent reports

suggest that atrial fibrillation can be generated by a rapidly firing atrial focus

[6, 7,8]. \\llile ectopie rhythms are often refractory to phannacological treatment

[9, 10, Il], radiofrequency catheter ablation of the ectopie focus is an effective

therapy [2, 5, 7, 8, 10, Il, 12, 13, 14].

Locating an ectopie pacemaker is presently achieved by mapping the electrical

activation of the endocardial surface in an attempt to find the site of earliest

activation [2, 5, 10, 12, 13, 14]. The mapping process is time-consuming and

involves much trial and error. As a result, it is sometimes necessary to apply

radiofrequency current at severa! sites before targeting the ectopie focus [2, 5, 7,

10, 12, 13, 14].

We suggest that an ectopie focus can he located hy simple geometric strategies

using three or more intracardiac electrodes. Specifically, we propose that the site

of OrigiD of an ectopie depolarization can be estimated from the activation se­

quence of electrodes placed away from the ectopie focus. Furthennore, in the case

of an on-going ectopie rhythm, the resetting response of the ectopie pacemaker

to stimuli applied at an outlying electrode can be used to estimate the distance

to the pacemaker.

We devise two localization strategies based on these ideas and test them using

a computer simulation of a pacemaker in an excitable sheet. While the basic

strategies are sensitive to the electrode arrangement and measurement UDcer­

tainties, by iterating our techniques we were able to locate the pacemaker in a

82
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homogeneous isotropie excitable sheet as well as in an inhomogeneous anisotropie

sheet.

6.2 Methods

6.2.1 Numerical Simulations

We implemented the following modification of the FitzHugh- Nagumo equations

in two spatial dimensions:

where v is the transmembrane voltage, w is the total slow cUITent, /3 and 7

are constants whose values were chosen to be 0.7 and 0.5 respectively. lpace is a

constant CUITent applied to the pacemaker region in order to make it oscillate.

Illtim(t) is a pulsatile stimulation CUITent used for resetting. The small parameter

Il = 0.3 controls the relative time SCales of the action potential upstroke and

plateau. The sigmoidal function f (v) allows us to control the rate of the pace­

maker by adjusting the amount of time spent in phase 4 of the action potential.

f (v) also affects the action potential duration. In our simulations

•

av 1 1 3 ) 2. ( )8t - Il (v - J'v - w + D'V v ~ IJH1U + I~tim t ,

aw
8t - Il(V + (3 - 7 w )f(v)

(6.1)

••

where k = 4.0, WH = 0.6, and WL = 0.13 in the pacemaker region and 0.4

everywhere else.

The equations were solved using a simple Euler integration scheme with zero-flux

boundary conditions, a spatial discretization of 0.4 mm and a time step of 0.05

ms. Simulations for the hyperbolic localization strategy used a 160 x 160 grid

whereas the localization by resetting strategy uf»ed an 80 x 80 grid.
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\Vhen simulating homogeneous isotropie excitable media, the diffusion coefficient

was chosen to he 1 em2 S-L everywhere. For hyperbolic localization in inhomoge­

neous anisotropie media, we assigned diffusion coefficients by randomly identify­

ing fifteen squares of average size 52 x 52 ± Il grid points with each square being

assigned random anisotropie diffusion coefficients, averaging 0.9 + 0.5 cm2 S-1

in one direction and 1.9 ± 0.6 cm2 S-L in the perpendicular direction. Elsewhere,

the anisotropie diffusion coefficients were 8SSigned the values of 1 cm2 S-L in one

direction and 2 cm2 S-L in the other1. For localization by resetting, we randomly

assigned anisotropie diffusion coefficients to eight squares of average size 23 x

23 ± 8 grid points. The diffusion coefficients averaged 0.7 ± 0.5 cm2 S-L in one

direction and and 2.2 ±0.7 cm2 S-L in the other direction.

6.2.2 Localization Strategies

Our strategies make the simplifying assumption that the conduction veloeity is

approximately constant and isotropie. This implies that an impulse generated

by the pacemaker propagates radially and creates a circular activation pattern.

We measured the time-course of the transmembrane voltage at three electrode

positions which were 6 mm apart and arranged along the vertices of a right

triangle, thus simulating a catheter. The time of electrode activation was taken

to be the time at which the voltage crossed zero. In all of our simulations, we

estimated the conduction velocity by stimulating at one electrode and measuring

the time delays to activation of the other two electrodes. The conduction velocity

was computed using the average of the two time delay measurements, and was

calculated once per trial using the initial electrode configuration. Since the radius

of an ablation lesion is about 3 mm [21], the ectopie focus was considered to be

located if an electrode was placed within 3 mm of the center of the pacemaker

region.

1The source code for assigning the diffusion coefficients is presented in Appendix B.
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Hyperbolic Localization

Our localization technique based on electrode activation sequences is strikingly

similar to an artillery localization strategy called "sound-rangjng". During World

\-Var l, a method was devised for locating long-range enemy guns by listening to

a gunshot at three locations. Since the listening posts were different distances

from the gun, the gunshot was heard at different times. Each listening post

was electrically connected so that the three dctonations could be recorded on

one chronograph. By measuring the time delays between the recorded gunshots,

soldiers could compute the location of the enemy gun [15, 16].

If the gun is analogous to an ectopic focus then the listening posts are like intrac­

ardiac electrodes. Subsequent to an ectopic depolarization, a time delay between

activation of a pair of electrodes implies that one of the electrodes is doser to the

ectopie focus than the other. The difference in distance from the ectopic focus

is given by the product of the measured time delay and the conduction velocity.

Since the curve defined by a fixed differential distance between two focal points

is a hyperbola [15, 17], the ectopie focus lies somewhere on a hyperbola with its

foci at the electrodes.

By measuring the time delay to activation of a third electrode, the predicted loca­

tion of the ectopie focus is at the intersection point of two hyperbolae (Fig. 6.1A).

In the Appendix we derive the coordinates of the intersection point and hence

obtain the predicted location of the ectopic focus.

Localization by Resetting

Resetting of an ectopie pacemaker using stimuli applied to an electrode away

from the pacemaker is identical to the protocol used to measure the sinoatrial

conduction time. The standard sinoatrial conduction time test involves deliver­

ing premature atrial stimuli at various coupling intervals during a sinus rhythm

[18, 19]. A premature stimulus causes a wave of activation to propagate towards

the pacemaker. Depending on its timing, the incoming wave may collide with
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an outgoing wave generated by the pacemaker. The range of coupling intervals

where this happens is called the interference zone. Altematively, an earlier stim­

ulus generates a wave that invades and resets the pacemaker. Hy measuring the

resetting response to stimuli at various coupling intervals, one can compute the

sinoatrial conduction time [18, 19].

We propose that the same protocol can he applied during an ectopic rhythm to

measure the conduction time hetween the stimulation electrode and the ectopic

pacemaker. In fact, resetting of an ectopic pacemaker has previously been ob­

served with results similar to that of the sinus node [9, 20]. Given an estimate

of the conduction velocity, the distance from the electrode to the ectopic focus

can he determined. Therefore, the ectopic focus lies on a circle centered on the

stimulation electrode with a radius equal to the distance between the electrode

and the pacemaker.

We show in the Appendix that by measuring the times of activation at other

sites, we can also detennine the distance from these electrodes to the pace­

maker. Therefore, the ectopie focus can he localized to the intersection of three

circles centered about three electrodes, one of which delivered resetting stimuli

(Fig. 6.1B). Altematively, the coordinates of the ectopic focus correspond to the

intersection of the circle centered at the stimulation electrode and a hyperhola

determined hy the activation delay between the stimulation site and another

electrode (Fig. 6.1C). In this case, the activation time of a third electrode is used

to discriminate between the two intersection points.

6.2.;] Sensitivity of the localization strategies

The predicted location of the ectopie focus is sensitive to the position, orientation,

and arrangement of the electrodes as weB as measurement uncertainties. These

factors are analyzed in the Appendix. The resulting imprecision means that the

predicted location may not correspond to the real ectopie focus - but it is closer

than the initial catheter position. Therefore, we expect to converge on the true
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ectopie focus by mo"ing the catheter to the predicted location and repeating the

localization scheme. Specifically, we moved the catheter such that the electrode

that was activated latest was moved to the predicted pacemaker location and

the orientation of the catheter was preserved.

6.2.4 Confirmation strategy

Once a putative ectopie pacemaker location has heen identified, how can we he

sure that it is at the correct location before applying radiofrequency energy? In

addition to the established strategies of pace mapping and activation sequence

mapping [12, 22], the resetting procedure suggests a new technique to confirm

the location of an ectopie pacemaker. H stimuli are delivered directly to the

pacemaker, then we expect that the interference zone on the resetting curve

will he eliminated. Therefore, a resetting protocol eould be used to confirm the

location of an ectopie pacemaker, regardless of how the putative location was

found.

Since the entire resetting protocol is time-consuming, this may not he a practical

confirmation strateg}r. However, we do not need to determine the exact distance

ta the pacemaker. We only need to know if we are within the ablation lesion

radius Tabl which is roughly 3 mm [21]. This eao he determined by checking to

see if resetting results from a single stimulus delivered at a coupling interval CI
given hy:

-- 2Tabl
CI = CL(l- vCL). (6.2)

where CL is the cycle length of the ectopie rhythm and v is the conduction

velocity. Resetting oecurs if the time interval between the stimulus and the next

unpaced beat, called return cycle (RC), satisfies the following inequality:

•
RC < CL(2 - Ô/CL). (6.3)
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If the stimulus resets the rhythm then the ectopie pacemaker is within the abla­

tion radius of stimulation electrode.

6.3 Results

6.3.1 Hyperbolic Localization

Homogeneous isotropie excitable sheet

A pacemaker with a radius of 1.2 mm was placed at cartesian coordinates (1.6

cm, 1.6 cm) where the origin is at the bottom left corner of a 6.4 cm x 6.4 cm

square of homogeneous isotropie excitable media deseribed by equation (6.1).

This produced a periodie cireular spread of excitation depicted in Figures 6.2A

and B. We measured the activation times of the three eleetrodes on our simulated

catheter and performed 10. trials of hyperbolic loealization corresponding to 10

random initial catheter positions and orientations.

Since we knew the relative positions of the electrodes and we estimated the con­

duction veIocity to he 56.9 cm/s, the measured activation delays defined two

hY1Jerbolae and the predicted pacemaker location was at their point cf inter­

section. We computed the intersection point using equations (6.9) and (6.10)

derived in the Appendix.

In 2 of the 10 trials, the pacemaker was localized after the first iterate. For exaIn­

pie, Figure 6.2A shows the results for trial 3 where the intersecting hyperbolae

were detennined by the depicted initial electrode configuration with measured

time delays of 3.0 ms and 5.2 ms. In the other 8 trials, the first iterate gave

a predieted pacemaker location that was doser than the initial catheter posi­

tion, but not within 3 mm of the pacemaker. Subsequent iterates converged on

the true pacemaker location in all of the trials. For example, Figure 6.2B shows

the results for trial 4 where the pacemaker was located after two iterates. The

average number of iterates required to locate the pacemaker was 2.2 ± 0.8.
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Inhomogeneous anisotropie excitable sheet

The irregular, elongated activation pattern of a pacemaker in an inhomogeneous,

anisotropie sheet is depicted in Figures 6.2C and D. Again, we measured the

activation times of the three electrodes and performed 10 trials of hyperbolic

localization corresponding to 10 random initial catheter positions and orienta­

tions. The measured conduction velocity was different for each trial depending

on the initial catheter location and orientation. The average conduction velocity

was 65 ± 8 cm/s.

Only lof the 10 trials (trial 2) located the pacemaker after one iterate (Fig. 6.2C).

Rather, an average of 4 ± 3 iterates were required to locate the pacemaker in 9

out of 10 trials. For example, Figure 6.2D shows the results of trial 9 where the

pacemaker was located after 2 iterates. In one trial, the hyperbolic localization

failed on the fourth iterate since the computed hyperbolae did not intersecte Nev­

ertheless, the three prior iterates directed the catheter closer to the pacemaker.

6.3.2 Localization by Resetting

Homogeneous isotropie excitable sheet

Due to the computation time required to simulate the resetting protocol, we

reduced the size of the excitable sheet to 3.2 cm x 3.2 cm with the pacemaker

being centered at coordinates (0.8 cm, 0.8 cm). The cycle length of the rhythm

was 59.7 ms. We performed 5 trials of localization by resetting starting from

random initial catheter positions and orientations.

We applied stimulation pulses at various coupling intervals with a magnitude

of 1.0 and a duration of 5 ms to a 1.2 mm radius around the electrode that

was activated earliest. Figure 6.3A shows the effect of a stimulus given in the

iDterference zone for the initial electrode arrangement in trial 1. Sucb a stimulus

caused a wave of activation to propagate towards the pacemaker, but it was

annihilated by an outgoing wave. Therefore, stimuli delivered in the interference
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zone had no effect on the pacemaker. Figure 6.3B shows the effect of a resetting

stimulus where the wave generated by the stimulus iDvaded the pacemaker region

and resulted in a time-shift of subsequent pacemaker beats.

The extent of resetting was determined by measuring the return cycle (RC),

as a functioD of the coupling interval of the stimulus (CI) (Fig 6.4A). These

intervals are typically normalized by dividing by the cycle length (CL) of the

rhythm2 [18, 19].

Figure 6.4B depicts the results of our resetting simulations for trial 1. The diag­

onal dashed line is called the compensatory line and points that fall on this line

ccrrespond to an absence of resetting. Thus, stimuli given at coupling intervals

in the interference zone gave return cycles that feU on the compensatory line.

As labeled on Figure 6.4B, the height of the plateau of the resetting curve deter­

mines the conduction time from the electrode to the pacemaker and back (2CT)

[18, 19]. Therefore, the one-way electrode-pacemaker conduction time (CT) is

related to the size of the interference zone and is given by:

CT = ~CL(l - cr/CL), (6.4)

•

where CI· is the coupling interval at the junction between the interference and

resetting zones. For trial 1, CI· /CL was about 0.52 which gave a one-way con­

duction time of 22.9 ms. Given that the estimated conduction velocity was 56.9

cm/s, the distance from the stimulation electrode to the pacemaker was esti­

mated to be 1.3 cm. Since the activation delay times were 10.1 ms and 15.4 ms,

the predicted pacemaker location was at coordinates (0.85 cm, 0.87 cm) corre­

sponding to the intersection of three circles or the intersection of a circle and a

2The resulting resetting curves are plotted difl'erently in Chapters 5 and 6 corresponding to
the different conventions in the physics literature (Chapter 5) and cardiology literature (Chapter 6).
\Vhereas Chapter 5 plots the normalized time interva1s Ti/To versus the stimulus phase r/J (see Figure
5.2A), Chapter 6 plots the return cycle Re == T2 /To - t/> versus the normalized stimulus coupling
interval CI/CL = CI/To == '" (see Figure 6.4). The relationship between the plots translates to the
follov"ring rule: horizontal lines transform into diagonals and visa versa. The difl'erent "zones" of the
resetting curves are important for the analysis and they are labelled consistently in both chapters.
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hyperbola (Fig. 6.5A). These intersection points were computed using Appendix

equations (6.17) and (6.18) respectively.

In 3 out of the 5 trials, the initial catheter position was too far away to reset

the rhythm. In sucb cases, we reasoned that CI- was at most equal to the local

refractory period around the stimulation electrode which was 20 ms. Therefore,

the local refractory period defined a minimum distance to the pacemaker. The

localization strategy was iterated using this minimum distance as the radius of

the circle centered about the stimulation electrode.

Figure 6.58 shows the results for trial 4. In this case, there was no resetting for

the initial catheter position. But after the first iterate of the localization strategy,

resetting was observed for stimuli given at normalized coupling intervals shorter

than 0.75 and the pacemaker was located on the next iterate. The pacemaker

was Iocated in ail 5 trials after an average of 1.2 ± 0.4 iterates.

Inhomogeneous anisotropie excitable sheet

In arder to test the resetting strategy in an inhomogeneous anisotropie sheet,

we simulated a 3.2 cm x 3.2 cm sheet with a pacemaker at coordinates (0.8

cm, 0.8 cm). The irregular periodic activation pattern is shown in Figures 6.5C

and D and the cycle length of the rhythm was 63.9 ms. We performed 5 trials

of localization by resetting starting from random initial catheter positions and

orientations. The average conduction velocity for the 5 trials was 56 ± 4 cm/s.

An average of 1.4 ± 0.5 iterates were required to locate the pacemaker in 5 out

of 5 trials. In 3 out of the 5 trials, the initial catheter position was too far away

to reset the rhythm. In these cases, we used the local refractory period of 18.5

ms as our upper estimate of CI-. Figure 6.5C shows the results of trial 1 where

the pacemaker was located after 2 iterates. In 3 cases, movement of the catheter

to an erroneous predicted location caused one of the other electrodes to fall in

the correct position. For example, Figure 6.5D shows the n~ults of trial 3.
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6.9.9 Confirmation strategy

We applied the confirmation strategy to trial 2 of the hyperbolic localization

scheme in an inhomogeneous anisotropie sheet where the cycle length was 81.6 ms

(Fig. 6.2C). We applied resetting stimuli at the earliest activated electrode and

Figure 6.6 shows the resulting resetting curve (e) which had a large interference

zone and therefore was not at the true pacemaker location. However, resetting

stimuli delivered at the predicted pacemaker location resulted in a resetting curve

with no interference zone (0) which suggests that the electrode was at the correct

position.

But is the electrode within the 3 mm ablation radius? This question was ad--dressed by checking to see if a single stimulus given at the coupling intervaI CI

from equation (6.2) resulted resetting according to the inequality (6.3). Since the

velocity for trial 2 was estimated to be 66.8 cm/s, equation (6.2) implied that

the nonnalized coupling interval for the single stimulus was êï/CL = 0.89. The

resulting return cycle was 83.9 ms which satisfied the resetting condition (6.3) ­

but only by 6.6 ms.

6.4 Discussion

In the present study, we suggest that an ectopie focus can be located using

measurements from resetting and electrode activation sequences. The hyperbolic

Iocalization strategy can he applied to isolated ectopie depolarizations, whereas

the resetting strategy cao only be used during an on-going ectopie rhythm with

a relatively constant cycle length.

By assuming a constant propagation velocity, our localization techniques neglect

curvature and recovery effects which are general properties of excitable media.

Nevertheless, our simulations showed that the pacemaker region was accurately

located by iterating our localization techniques in homogeneous isotropic media

as weIl as inhomogeneous anisotropic media.
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Our localization strategies and computer simulations were carried out on a fiat

surface. This is an obvious but not necessarily fatal flaw of the present formula­

tion. While the heart is clearly not fiat, sorne regions may be thin enough to he

approximated by a surface. Our techniques could he used to locate the break­

through site of an ectopie focus by measuring the shape of the endocardial surface

and solving our localization equations in an endocardial coordinate system.

A new electromagnetic mapping technology was recently introduced that could

accomplish this task [23, 24]. Catheters with high-resolution location sensors can

be dragged over the endocardium thereby creating an anatomical map of the

endocardial surface. The relative positions of the catheters with respect to the

endocardial surface is detennined hy integrating the sensed electromagnetic fields

to a set ofknown radiated fields. This technology could he used to automatically

compute the predicted location of an ectopie focus in an endocardial coordinate

system and efficiently guide the mapping process.

Since our localization techniques require an iteration process hefore locating the

ectopie focus, they must be used in conjunction with a confirmation strategy

sucb as pace mapping [22] or activation sequence mapping [12]. Interestingly, our

hyperholic localization analysis has implications for activation sequence mapping.

Activation sequence mapping works by comparing the activation sequence of sev­

era! intracardiac recording sites during an ectopie tachycardia \\ith the sequence

during pacing at the putative ectopie focus (12]. If the activation sequence is the

same then it is assumed that the pacing electrode is at the true ectopie focus.

However, our results suggest that depending on the orientation and number of

recording electrodes there may he more than one pacing site giving rise to the

same paced activation sequence.

For example, if only two recording sites are used then there is a continuum of

pacing sites giving the same paced activation sequence, although the morphology

of the electrograms would generally vary depending on the stimulation site. In

the case of homogeneous isotropie conduction, the continuum corresponds to a

hyperbolic curve, but in the real heart we would expect a distorted hyperbola.
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Similarly, if three recording electrodes are used then there may he two pacing

sites giving the same activation sequence corresponding to two intersection points

of hyperbolae. Whether or not one of these sites can he ruled out depends on

the orientation and activation sequence of the electrodes, and our hyperholic

localization equations could be used to rule out an alternative ectopie Cocus.

Otherwise, the pacing electrode may be at the wrong spot. This suggests that

one should consider the morphology of the electrograms in addition ta their

timing. Nevertheless, a fourth recording electrode could he used ta resolve the

ambiguity.

\Ve suggest an additional method for confirming a pacemaker location. While

our confirmation strategy was successful in our simulations, it may he difficult

ta apply in a clinical situation because the cycle length of a clinical ectopie

rhythm is typically much longer than what we found in our simulations. There­

fore, according to (6.2) and (6.3), our confirmation strategy would require the

precise measurement of a very small amount of resetting. This requirement may

he impractical due to measurement uncertainties and any variability of cycle

length.

Rather than verifying the correct pacemaker site, our confirmation strategy could

be used to mIe out an erroneous location. As shown in Figure 6.6, stimuli de­

livered near the pacemaker result in resetting that can be easily measured for

a large range of coupling intervals. However, when stimuli are delivered away

from the pacemaker, the resetting curve has an interference zone for a moderate

range of late coupling intervals. Therefore, a putative pacemaker location cao he

ruled out if there is no resetting for a stimulus delivered at a moderately late

coupling interval. Furthermore, such a stimulus defines a minimum distance from

the pacemaker according to equation (6.4).

In conclusion, simple geometric strategies cao he used to locate a pacemaker

in both a homogeneous isotropie excitable sheet as well as an inhomogeneous

anisotropic sheet. The sensitivity of the localization strategies requires that they

be iterated in order ta find the pacemaker. Since the iterates converge rapidly on
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the ectopic focus, our techniques could be used to efliciently guide the mapping

process. Furthennore, once a candidate ectopic pacemaker has been identified,

we suggest a simple test to help determine whether or not the candidate corre­

sponds to the real ectopic pacemaker. While the results frOID our simulations are

encouraging, the utility of our localization strategies has yet to be detennined in

a c1inical setting.

6.5 Appendix

6.5.1 Hyperbolic Localization

Coordinates of intersecting hyperbolae

It is convenient to use a polar coordinate system to compute the intersection

points of two hyperbolae. We choose one of the electrodes to be at the origin

and label it el (Fig. 6.7A). The 0 = 0 Hne is defined to he along the line joining

el to another electrode which is labeled e2. The distance between el and e2 is

known and is labeled 2Cl' The third electrode e3 is at a position (r,O) = (2C2,4»

(Fig. 6.7A).

Since the circular activation front propagates radially, a measured activation

delay between recording sites implies that the electrodes are different distances

frOID the source. This difference in distance is given by the conduction velocity v

multiplied by the measured activation delay between the electrodes. For example,

if the activation delay between el and e2 is ~tl2 then the differential distance from

the source is 2al = V~tl2' Similarly, for a delay of ~tl3 between the activations

of el and e3, the differential distance is 2a2 = V~tI3'

The hyperbola is defined by the set of points that are an equal difference in

distance from two focal points [15, 17]. In our case, the focal points of the two

hyperbolae are the electrode pairs (el ,e2) and (el ,e3)' Therefore, the two activa-
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tion delays ~t12 and ~tl3 define two hyperbolae given by:

~-aî
r--......::....-~-

- Cl COS (J + al '

and

(6.5)

(6.6)

with focal points corresponding to the above electrode pairs respectively.

The intersection point (r-, (r) of these hyperholae gives the coordinates of the

ectopie pacemaker. Therefore, from equations (6.5) and (6.6):

at the intersection point. After sorne algebra, we obtain:

(6.7)

where

Cl C2 COS tP
(6.8)cr -

~-aî ~ 2"- a2 '

{1
C2 sin cP

- 4 2'- a2
a2 al

'Y -
~-a~ cl 2'

l - al

Equation (6.7) can he solved for cos (J- by the quadratic formula:

•

(Je - aï ± {1 V 2 {12 _ 2cos - 2 a2 2 a2 cr + 'Y ,
cr +,.., a +,..,

and frOID equation (6.5), r* is given by:

* cî - aîr = .
Cl cos 0- + al

(6.9)

(6.10)
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The number of intersection points is determined by the number of real, positive

values of r* determined by the two values of cos 8* corresponding to the ± sign.

Hence, there may be zero, one or two intersection points.

Since cos 8 = cos (21r - 8), equation (6.9) does not completely determine (J*.

However, the value of ~tl3 resolves the ambiguity since the distance to e3 is ooly

consistent with one of the values for 8*.

Sensitivity analysis of hyperbolic localization

The precision of the hyperbolic localization strategy depends on the positioning

of the catheter, the orientation and arrangement of the electrodes, and the mea­

surement uncertainties. The catheter detennines both the interelectrode spacing

(corresponding to Cl and C2) and the electrode arrangement (corresponding to

4». The conduction velocity v and the electrode activation delays ~tl2 and ~t13

are the measurements with the largest uncertainties and they combine to give

the parameters a l and a2.

An uncertainty in the parameter a results in an uncertainty in the opening angle

w of the hyperbola (Fig. 6.7B). The opening angle is detennined by the hyper­

bola's eccentricity E = cfa sucb that:

tanw = VE2 - 1, (6.11)

where E > 1. The sensitivity of the opening angle to variations in the parameter

a is given by:

dw (.-2 2)-!da = - c- - a 2.

Therefore, the uncertainty in the opening angle is

•
(6.12)
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to first order in da. This means that the uncertainty of the opening angle is

minimized when the electrode spacing is large and the electrodes are oriented

sncb that there is a small time difference between their activation.

Uncertainties in the opening angles dWl and dW2 result in an uncertainty in the

predicted location of the ectopie Cocus. This uncertainty can be determined by

finding out how far the hyperbolic intersection point moves when the opening

angles Wl and W2 are varied. For small variations of the opening angles, the

intersection point moves by an amount D which has the following dependency:

(6.13)

•

•

where 'if; is the intersection angle between the hyperbolae which can be approxi­

mated by the angle of intersection between the lines that are asymptotic to the

hyperbolae:

(6.14)

D 2 is minimized when 'if; = 90° and the nncertainties in the opening angles are

small. Therefore~ the optimal electrode arrangement is such that the electrodes

are widely separated at right angles to each other and oriented so that they are

activated simultaneously.

6.5.2 Localization by resetting

Coordinates of intersecting circles

If the resetting protocol is performed by stimulating at electrode el then the

distance Tl between el and the pacemaker can he estimated as discussed ahove.

Therefore, the pacemaker must lie on the circle:
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where we have taken the origin of cartesian coordinates to be at el.

Given an estimate of the conduction velocity v, the activation delays Atl2 and

Atl3 determine how much farther e2 and e3 are from the pacemaker relative to

T2 - Tl + vAtl 2'

T3 - Tl + vAtl3'

(6.15)

and the pacemaker lies at the intersection of the three circles:

•

x2 +y2 2- Tl'

(x - X2)2 + (y - Y2)2 2 (6.16)- T2,

(x - X3)2 + (y - Y3)2 2- T 3 ,

where e2 and e3 are at coordinates (X2, Y2) and (X3, Y3) respectively.

For simplicity, we orient the axes of the coordinate system so that Y2 = O. There­

fore, by solving (6.16) we obtain the coordinates of the intersection point (x·, y.):

(6.17)
T~ - T~ +x~

2X2 '

2 (T? - T~ + x~ ) 2
- Y3 ± Ta - 2X2 - X3 ,

where the two expressions for y. allow us to resolve the ambiguity introduced by

the ± signs.

Coordinates of intersection between a circle and a hyperbola

•
l,From the previous section, if stimuli are delivered at el then the pacemaker

must lie on a circle of radius Tl centered at el. By measuring the activation delay

to e2 we can determine that the pacemaker lies on a hyperbola given by equation
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(6.5). Substituting T* = Tl into equation (6.5) we get:

(6.18)

•

where we have returned to the polar coordinate system depicted in Figure 6.6.

The ambiguity between 0* and its complement can be resolved by measuring the

activation delay to a third electrode e3, since its distance T3 is only consistent

with one of the values for O·.

Sensitivity analysis of localization by resetting

The precision of the resetting strategy is detennined by the orientation of the

electrodes in addition to uncertainties of the conduction time, propagation ve­

10city, and electrode activation delays. Sïnce the pacemaker location is identified

with an intersection point between a circle and a hyperbola, the uncertainty in

the predicted location is determined by finding out how far the intersection point

moves when the opening angle of the hyperbola and the radius of the circle are

varied.

If TL is the predicted distance ta the pacemaker, then the uncertainty of TL is

given by:

8Tl = v(8CT) + CT(6v),

where v is the propagation velocity, CT is the conduction time, and 8v and

6CT are the respective uncertainties. The uncertainty in the opening angle of

the hyperbola 8w is given by equation (6.12) above. If the circle's radius and

the hyperbola's opening angle are varied by 6Tl and 6w respectively, then the

intersection point moves by an amount D given by:

•
(6.19)
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Therefore, the uncertainty of the predicted pacemaker location is minimized for

a small 8w. This means that the optimal electrode arrangement is sncb that the

electrode spacing is large and the activation delays are small.
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Figure 6.1: a) Hyperbolic localization. An activation delay between a pair of intrac­
ardiae electrodes (eb e2, e3) defines a hyperbola upon which the ectopie focus lies.
Therefore, two electrode pairs define two hyperbolae and the pacemaker is located
at their intersection. b) &: c) Localization by resetting. Resetting stimuli are given at
electrode el and the pacemaker's response is used to estimate the electrode-pacemaker
distance. This distance defines a circ1e centered on the stimulation electrode and the
pacemaker lies on this circle. By measuring the activation delays ta the other elec­
trodes, the various electrode-pacemaker distances can be detennined and the pace­
maker can be located by computing either b) the intersection of three circles centered
about each of the electrodes with radii equal to their respective electrode-pacemaker
distances, or c) the intersection of the circle about the stimulation electrode and a
hyperbola.
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•
Figure 6.2: Hyperbolie loealization in homogeneous isotropie (left eolumn) and het­
erogeneous anisotropie (right eolumn) media. The large eoneentric eurves are the
contour Hnes of zero voltage. The hyperbolae are the solid black curves whose inter­
section corresponds to the predieted pacemaker location. a) Trial 3 in a homogeneous
sheet where the hyperbolae intersected within the 3mm target radius of the pacemaker
(gray circle). b) In trial 4, the first iterate gave a predieted location outside the target.
For the next iterate, the catheter was moved so that the latest aetivated electrode
was positioned at the predicted pacemaker location (arrow). The next iterate gave
hyperbolae that intersected within the target. c) Trial 2 in an inhomogeneous sheet
where the tare:et was hit on the first iterate. d) Trial 9 showine: eonvere:ence arter two
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Figure 6.3: a) A stimulus (arrow) given in the interference zone for trial 1 of re­
setting in a homogeneous isotropie shoot. When the normalized eoupling interval of
the stimulus was longer than 0.52 the wave generated by the stimulus eollided with
an outgoing wave generated by the pacemaker and had no effect on the subsequent
rhythm. Here, the nonnalized eoupling interval was 0.7. b) A resetting stimulus given
at a nonnalized coupling interval of 0.36 propagated into the pacemaker region and
reset the rhythm.
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Figure 6.4: a) Measurement of resetting for trial 1 in a homogeneous isotropie sheet.
Stimuli given at various coupling intervals (CI) resuIted in different degrees of reset­
ting, quantified by measuring the return cycle (RC) as a function of CI. Normalizing
for the cycle length (CL) allows for the comparison of different rhythms. b) The
normalized resetting curve shows that stimuli given in the interference zone yielded
points that fall on the dashed compensatory line, whereas resetting stimuli gave a fiat
part of the curve.
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Figure 6.5: Localization by resetting in homogeneous isotropie (left eolumn) and
heterogeneous anisotropie (right column) media. a) Trial 1 in a homogeneous sheet
where the pacemaker target (gray circle) was hit after one iterate. b) Trial 4 required
two iterates to locate the pacemaker. c) Trial 1 converged after 2 iterates in an
inhomogeneous anisotropie sheet. d) After the first iterate of trial 3, the catheter
was moved so that the latest activated electrode was at the predicted pacemaker
location (arrow). As a result, one of the other electrodes fell in the target regjon.
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Figure 6.6: Confinnation strategy. Stimuli were applied to the earliest activated elec­
trode in trial 2 of hyperbolic 10calization in an inhomogeneous anisotropie sheet (Fig.
2c). The resulting resetting curve (e) had a large interference zone, thereby ruling out
the stimulus location as a possible pacemaker site. Stimuli applied to the predicted
pacemaker location (hyperbolic intersection point in Fig. 2c) gave a resetting curve
(0) with no interference zone, thereby confinning the correct pacemaker location.
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Figure 6.7: a) Polar coordinate system and relative positions of the electrodes. b)
Geometry of intersecting hyperbolae.
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CHAPTER 7

CONCLUSION

In this thesis, 1 have described several aspects of cardiac control. The first part

of the thesis delt with characterizing the dynamics of an abnormal heart rhythm

and using feedback control to suppress the arrhythmia. The second part of the

thesis delt with diagnosis of an arrhythmia mechanism and developing methods

to assist in the surgical control of arrhythmias caused by ectopie foci.

7.1 Dynamic Cardiac Control

The abnonnal rhythm that was controlled in our experiments involved an al­

ternating AV nodal conduction time. The alternation was caused by a period­

doubling bifurcation consistent with a simple finite difference equation model

of AV nodal recovery and facilitation properties, although the slow drift of the

system due to fatigue remains poorly understood.

AV nodal altemans are not dangerous, but cardiac alternans occurring in other

areas of the heart are a harbinger of sudden death. If the dangerous alternans are

also caused by a period-doubling bifurcation, then a control algorithm sunHar to

ours could suppress the alternans and possibly prevent serious illness.

The dynamic control experiments presented in Chapter 3 were the first example

of biologieal control that tracked the evolution of a drifting fi..xed point. How­

ever, the degree to which tracking could be maintained was limited by the fixed

feedback gain parameter. In Chapter 4,1 presented a new control algorithm that

adapts the feedback gain parameter based on the dynamics of the control pertur­

bations. This algorithm may be especially useful for the control of nonstationary

biological systems since it requires little information about the system other than

the correct direction in which to apply the perturbations.

Using feedhack algorithms to direct the timing of electrical stimuli is a promising

approach to the control of ahnormal heart rhythms. However, the techniques

111
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based on feedhack control of low-dimensional dynamics have yet to he used in a

clinical situation or an in vivo experiment.

7.2 Diagnosis of Arrhythmia Mechanisms

The first step in the control of any cardiac arrhythmia is the accurate diagnosis

of the arrhythmia mechanism. In Chapter 5, 1 described a procedure to distin­

guish a spiral wave pattern from a target pattern by delivering resetting stimuli

and measuring activity at two electrode locations. Targets and spirals correspond

to different arrhythmia mechanisms that are sometimes diHicult to distinguish

using standard clinical electrophysiological testing. Our technique exploits the

different spatio-temporal symmetry properties of targets and spirals. Because

our technique requires only standard intracardiac stimulation and recording pro­

cedures, our diagnostic method could easily he incorporated in a typical cardiac

electrophysiology cIinic.

7.3 Locating Sources of Abnormal Cardiac Electrical

Activity

In Chapter 6, 1 presented two new methods to locate regÏons of abnonnal pace­

maker activity. The techniques were based on the geometry of wave propagation

in an excitable medium like the heart.

Unlike the diagnostic method of Chapter 5, the localization procedures require

new medical devices to help orient the intracardiac electrodes as weIl as compute

their relative positions and activation delays. The predicted location of the ec­

topie focus must be eomputed on-Hne and a catheter must somehow he guided

ta that spot. Fortunately, new technology is eurrently heing developed that will

facilitate these requirements.

Nevertheless, the confirmation strategy presented in Chapter 6 requires no new

technology and could he implemented immediately. AlI that is required is an
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appropriately timed electrical stimulus in order to ensure that the stimulation

electrode is at the correct location for ablation. The confirmation strategy is

based on the properties of resetting curves when the stimuli are delivered away

from the source of the rhythm.

7.4 Future Work

The material presented in this thesis suggests that methods from nonlinear dy­

namics and geometry can help control of ahnonnal heart rhythms. But much

work remains to be done.

Dynamic control of cardiac arrhythmias should begin with an understanding of

the dynamics of the abnormal rhythm. In our case, the AV nodal dynamics were

weIl approximated by a slowly drifting one-dimensional map. But the nature of

the drift is not weIl understood. New stimulation protocols that exploit the short­

tenn dynamics of the AV node should he developed in order to rapidly assess

AV nodal recovery and facilitation so that the evolution of these properties can

be measured over the course of the drift.

The restricted control algorithm used in Chapter 3 and analysed in Chapter

4 should he studied in higher dimensional systems since it is likely that sorne

cardiac arrhythmias are not descrihed hy one-dimensional maps. In particular,

it would he interesting to know if the stahility zones are also extended in higher

dimensional systems when compared with unrestricted control. Also, does the

adaptive algorithm extend to higher dimensions?

The phase resetting curves in Chapters 5 and 6 suggest that the dynamics of

reentrant arrhythmias and ectopie pacemakers may also he described hy one­

dimensional maps. It would he interesting to study whether or not feedback con­

trol techniques could direct the timing of electrical stimuli in order to eliminate

these arrhythmias.

Although the localization and continuation procedures of Chapter 6 were devel­

oped for ectopic pacemakers, they could also be used to localize microreentrant
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circuits or narrow reentrant pathways through damaged heart tissue. The local­

ization methods should direct electrodes towards all point-like sources of electri­

cal activity. These hypotheses should be tested in future numerical simulations

and experiments since there are significant clinical implications for locating and

confirming ablation sites to eliminate reentry.
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APPENDIXA

The follo\\'ing C++ source code was used in the resetting simulations for Chapter 5 and
Chapter 6:

i- Resetting of a reent~ant spiral arounà an obstacle *1

#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>
#include <iostream.h>
#include <math.h>

•

itdefine ROW 80
#define COL 80
#define H 0.04
#define K 0.05
#define Dl 0.001
#define 02 0.001
#define Icl O.
#define Ic2 -5.0
#define Wl h 0.6
#define Wl 1 0.4
#define W2 h 0.6
#define W2 1 0.4

1* n~~er of elements */
/* grid spacing (cm) *1
1* time step size (msec)*1
1* àiffusion coefficient (crnA 2/msec) in region 1*/
/* diffusion coefficient (cm A 2/msec) in region 2-1
/9 constant current in region 1*/
1* constant current in region 2*/
1* sigmoidal max amplitude in region 1 */
1* sigmoidal min amplitude in region 1 */
/* sigmoidal max amplitude in region 2 */
1* sigmoidal min amplitude in region 2 */

double v[2] [ROW+2] (COL+2]; 1* array of variables in the grid *1
double w[2] (ROW+2] (COL+2];

obstacle center */
radius of CN2 are coupled with D2 and Ic2*/
row position for stimulus *1
colurnn position of stimulus *1
physical size of stimulus region -1
positions for measurments */

Obst 40
CN2 8

•

#define
#define
#define
#define
#define
#àefine
#define
#define
#define
#àefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*
/*

Rstim 20 /*
Cstim 40 /*
Ssize 2 1*
Rrneasl 20 1*
Cmeasl 40
Rmeas2 40
Cmeas2 15
Rmeas3 60
Cmeas3 60
Vthresh 0.0 /*
nlearn 2 /*
nbtwn 7 /*
maxdel 50000 /*
prestep la /*
strtpre 950 /*
Iapp 1. 0 /*
Idur 20 /*
APDmin 40 /*

threshold voltage for ~~~se a *1
number of beats before stim 91
number of beats for each resetting trial*/
maximum delay before restarting *1
stepsize of coupling interval *1
starting coupling interval *1
applied current during stim *1
duration of stim *1
minimum duration of action potential *1
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double wini[ROW+2] [COLj:

;+ initial condition array +;
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int nstim = (strtpre 1 prestep) -1: ;* number of stimuli +/

;..- diffusion coefficient +;
;* constant current -r/
/+ amplitude of restitution in FHN +/
/ ... conduction time bet~een stim & meas */

measured cycle lengths */

D = 0.0:
Ic = 0.0:
W = 0.0:
ct = 0.0;
clml 0.0:;"­
clm2 0.0:
clm3 0.0:

double
double
double
double
double
double
double

double 'nnlmO
double vmlml
double vm2mO
double vm2ml
double ,rm3mO
double vm3ml

0.0: /~ current value of v at CNmeasl */
0.0; /* value of v at CNmeasl at last time step YI
0.0:
0.0;
0.0;
0.0;

0.0; /* activation time if apd > APDmin *;
0.0;
0.0;

•
double pottactml
double pottactm2
doubl~ pottactm3

double tactmlmO
double tactmlml
double tactm2mO
double ~actm2ml

double tactm3mO
double tactm3ml

0.0:
0.0:
0.0;
0.0:
0.0:
0.0:

/+ activation time at CNmeasl +/
/+ previous activation time at CNmeasl *1

double toffml 0.0:
double toffm2 0.0:
double toffm3 0.0:
double apdml 0.0;
double apdm2 0.0;
double apdm3 0.0:
int dmlcount 0; /*
int dm2count 0:
int drn3count 0;
int dscount = 0;
int ncount = 0;
int dur = 0:

/* end of action potential at CNmeasl */

/* apd at measl */

delay after activation at CNmeasl */

/* delay after activation at CNstim */
/* action potential counter +/
/* stimulus duration counter +/

•

double clmlmO 0.0:
CNmeasl */
double clmlml 0.0:
double clm2mO 0.0;
double clm2ml 0.0;
double clm3mO 0.0;
double clm3ml 0.0:
double Del strtpre:
double Tml 0:
double Tm2 0:

/+ cycle length for this beat rneasured at

/+ cycle length for the previous beat */

/* stim delay time from CNmeas activation */
/* activation times after stimulus */



• double Tm3 = 0;
double l = 0;

double phasel
double phase2
double phase3

0;
0;
0;

/* applied current *1

/* phase of stimulus *1
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1* function declarations */

double f(double, double);
double g(double, double);

main () {
/* connect input stream te files vinit.dat and winit.dat *1

ifstream vin ("vinit.dat");
ifstream win ("winit.dat");

if (!vin) cout « "error opening v input file" « endl;
if (!win) cout « "error opening w input file" « endl;

/+ connect output streams to .dat files *1

ofstream ofilel (llprcl.dat"); 1* pre at CNmeasl >rI
cfstream ofile2 ("prc2.dat");
ofstream ofile3 ("prc3.dat");
ofstream cfile4 ("explcg.dat"); 1* log of the simulation */

if ( !ofile1) cout « "error opening
if ( !ofile2) cout « "error opening
if ( !ofile3) cout « "error opening
if ( !ofile4) cout « "error opening

int old = 1;
int neww = 0;

prel output file" « endl;
prc2 output file" « endl;
prc3 output file" « endl;
explog output file" « endl;

•

1* read initial conditions *1

int i,j;
for (i = 1; i<= ROW; i++) {

for (j 1; j <= COL; j++)
vin » vini (i] [j];
win » wini[i] [j];
v [neww] (i] (j] vini [il [j];
w[neww] [il [j] = wini [il [j] ;
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/* no flux boundary conditions */

for (i=l;i<=ROW;i++) {
v [neww] [i] [0 J = .." (neww] [i] [1 J;
v[neww] [il [COL+l] = v[neww] [il [COL];

}

for (i=l;i<=COL;i++) {
v [neww] [0] (i J = v [neww] (1] [i l ;
v(neww] (ROW+1] [il = v[neww] [RON] [i];

/* start integrating equations */

int time = 0;
int k = 1;
int trial = k;

int i,j;
for (i 1; i <= ROW; i++) { /* cell loop ... /

for (j 1; j <= COL; j++) {•

while (k <= nstim ) {
time++;
if (dur> 0) dur++;
int n = old;
old = neww;
neW\o1 = n;

/* continue until fini shed protocol

•

/* record time of potential activation at CNmeas, cl, ct, Y/
/* and compute the stimulation delay time Del */

if (i == Rmeasl && j == Cmeasl && vrnlmO >= Vthresh &&
vrn1m1 < Vthreshl

ncount++;
dmlcount = 0;
pottactm1 = (Vthresh - ~~lm1}/{vrnlmO - vm1ml) + time - 1;
tactm1m1 = tactm1mO;
tactmlmO = pottactml;
clm1 = tactm1mO - tactmlm1;
Tml += clm1;
clmlm1 = clmlmO;
clmlmO = clml;
ofile4 « "activation time at el "« tactmlmO « endl;
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if (i == Rmeas2 && j == Cmeas2 && vm2mO >= Vthresh &&
'nn2ml < Vthresh) {

d.m2count = 0:
pottactm2 = (Vthresh - v~2ml)/(vm2mO - vm2ml) + time - L:
tactm2ml = tactm2mO;
tactm2mO = pottactm2:
clm2 = tactm2mO - tactm2mI:
Tm2 += clm2;
clm2ml = clm2mO:
clm2mO = clm2:
ofile4 « "activation time at e2 "« tactm2mO « endl;

if (i == Rrr.eas3 && j == Cmeas3 && vm3mO >= Vthresh &&
vm3ml < Vthresh) {

d.m3count = 0:
pottactm3 = (Vthresh - vm3ml)/(vrn3mO - vm3ml) + time - 1;
tactm3ml = tactm3mO;
tactm3mO = pottactm3;
clm3 = tactm3mO - tactm3ml;
Tm3 += clm3;
clm3ml = clm3mO;
clm3mO = clm3;
ofile4 « "activation time at e3 "« tactm3mO « endl:

/* increment duration above Vthresh */

os: (i -- RIneasl && j Cmeasl && vrnlmO >= Vthresh)~.l..

dmlcount++;
-s: (i == Rmeas2 && j Cmeas2 && vrn2mO >= Vthresh)~ ...

dm2count++:
if (i -- Rmeas3 && j Cmeas3 && ,,~3mO >= Vthresh)

dm3count++;

/* if the incursion above Vthresh was not an p..P */
/..,. then make the necessary corrections *1

if (i == Rmeasl && j == Cmeasi && vrnlmO <= Vthresh &&
vmlml > Vthresh && drnlcount < APDmin) {

if (ncount != 0) ncount--:
dmlcount = 0:
tactmlmO = tactmlml;
Tml -= clml;

if (i == Rmeas2 && j == Cmeas2 && vrn2mO <= Vthresh &&
vrn2mI > Vthresh && àrn2count < APDmin) {

dm2count = 0:
tactm2mO = tactm2ml;
Tm2 -= clm2;
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•

•

if (i == Rmeas3 && j == Cmeas3 && vm3mO <= Vthresh &&
v.m3ml > Vthresh && dm3count < APDmin) {

dm3count = 0;
tactm3mO = tactm3ml;
Tm3 -= clm3;

1* determine apd at CNmeas and write cl & apd to files YI

if (i == Rmeasl && j == Cmeasl & vTLlmO <= Vthresh &&
vrnIml > Vthresh && dmlcount >= APDmin)

toffml = (Vthresh - 'nnIml) 1 (vrnlmO - vmlml) + time -1;
apdml = toffml - tact~lmO;

ofile4 « ncount «" cl "« clrol « " Del
« Del «" apd = " « apdml « endl;

if (ncount > nlearn) {
ofiiel « phasel « " " « Tml « endl;

if (i == Rmeas2 && j == Cmeas2 & vm2mO <= Vthresh &&
vm2rni > Vthresh && dm2count >= APDmin) {

toffm2 = {Vthresh - v.m2ml) 1 (vm2mO - vm2ml) + time-li
apdm2 = toffm2 - tactm2mO;
if (ncount > nlearn) {

ofile2 « phase2 « " " « Tm2 « endl;

if (i == Rmeas3 && j == Cmeas3 & v.m3mO <= Vthresh &&
vm3ml > Vthresh && dm3count >= APDmin) {
toffm3 = (Vthresh - vm3ml) 1 (vm3mO - vrn3ml) + time -1;
apdm3 = toffm3 - tactm3mO;
if (ncount > nlearn) {

ofile3 « phase3 « " " « Tm3 « endl;

1+ continue incrementing delay counter +1

if ( i Rmeasl && j -- Cmeasl && vrnImO < Vthresh &&
dmlcount > APDrnin) dmlccunt++;

if (i Rmeas2 && j -- Cmeas2 && vrn2mO < Vthresh &&
dm2count > APDmin) dm2count++;

if (i Rrneas3 && j -- Cmeas3 && vm3mO < Vthresh &&
dm3count > APDmin) dm3count++;

if (i Rstim && j -- Cstim && ncount >= nlearn)
dscount++;
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/* STIMULATION */

if (i == Rstim && j == Cstim && ncount == nlearn &&
trial == k && dscount >= Del && dscount < Del +1) {

trial++;
phasel dm1count;
phase2 = dm2count;
phase3 = dm3count;
Tml 0;
Tm2 0;
Tm3 0;
dur 1;
Del strtpre - k • prestep;
ofile4 « "delay = n « dscount « endl;
dscount = 0;

if (i >= Rstim - Ssize && i <= Rstim + Ssize &&
j >= Cstim - Ssize && j <= Cstim + Ssize && dur> 0)

if (dur < Idur) l = Iapp;
else dur = 0;

}

else l = 0;

/* COMPUTE ARRAY FOR NEXT TIMESTEP */

if (ncount == nbtwn 1 1 d~lcount >= maxdel)
ncount: = 0;
dmlcount 0;
dm2count = 0;
dm3count = 0;
int rlim, clim;
for (rlim = 1; rlim<= ROW; rlim++) {

for (clim = 1; clim <= COL; clim++)
v[neww] [rlim] [clim] = vini[rlirn) [clim);
v [old] [rlim] [clirn] = vini [rlim] [clim] ;
w [nevlw] [rlim] [clirn] = wini [rlirn] [clim] ;
weald] [rlim] [clim] = wini [rlim] [clim];

}

ofile4 « "return to initial conditions" « endl;
k++;
dscount = 0;
time = 0;



• /* integration step */

v[neww] [il [j] = v[old] ri] [j] +
K * f(v"[old] ri] [j], w[old] [il [j]) + K*(I + Ic) +

K ... D ... (v[old] ri] [j+l] + v[old] [il [j-l] ­
2*v[old] Li] [j] ) / (H * Hl +

K * D * (v[old] [i+l) [j] + v[old] [i-l] [j] ­
2*v[old] Ci] [j]) / (H ... H):

w[neww} Ci] [j] = w[old] Ci] [j] + K * g(v[old] ri] [j],
w[old][ij[j])* W:

/ ... set parameters for obstacle */

if (i-Obst)*(i-Obst)+(j-Obst)*(j-Obst) < CN2*CN2) {
D = D2:
Ic = Ic2:
W = (W2 h - W2 1)/(1 + exp (-v[neww] Ci] [j]» +W21:
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else {
D = Dl;
Ic = Ici:
W = (Wl h - W1 l i / (1 + exp {- v [ neww} [i] [j] » +WIl:•

•

if (i == Rmeasl && j == Cmeasl) {vmIrnl
vrnlmO = v[neww] [il [j J ;}

if (i == Rmeas2 && j == Cmeas2) {vm2ml
vm2mO = v [neww] (i] (j] : }

if (i == Rrneas3 && j == Cmeas3) {vm3ml
vrn3mO = v [ neww] [i] [j] : }

/* boundary conditions */

for (i=l:i<=ROW:i++) {
v [ne'dW] [i] [0] = v [neww] [i] [1] :
v[neww] ri] (COL+l] = v(neww] ri] [COL]:

for (i=l:i<=COL:i++) {
v [neww] [0] [i] = v [neww] [1] [i] :
v [neww] [ROW+l] ri] = v[neww] [RO~l] [i];

vrnlmO:

vrn2mO:

vrn3mO;
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/. defi~e the 2 dimensional differential equatio~ +/

double f(double v, double w)
double EpS = 0.3;
return (v - v*v*v/3.0 - w)/eps;

double g(àouble v, double w)
àouble eps = 0.3;
double beta = 0.7;
àouble gamma = 0.5;
return eps • (v + beta - garnma*w);
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APPENDIXB

The follo\\ing C++ source code was used to assign random inhomogeneous anisotropie
diffusion coefficients for the simulations in Chapter 5 and Chapter 6:

~include <stàio.h>
#include <stdlib.h>
#incluàe <fstream.h>
#include <iostream.h>
~include <math.h>

•

~define ROt'l 80
#define COL 80

#define Diffx 0.001
direction .... ;
#define Diffy 0.0015
direct:ion *;

#define Nisl 5
#define ILS 30.0

double ns = 0.001;

double nsilsz = 5.0;

double Dx[ROW+2] [COL];
double Dy[ROW+2] (COL];

/. n~~e~ of grid points */

/ .... average diffusion coefficient in x

/* average diffusion coefficient: in y

/* number of square islands .;
/* average island size */

double dxtemp
double dytemp

int: islsz = 0;
int isllocx=O;
int isllocy=O;

int: = 0;
int: = 0;
int sIn = 0;

main ()

Diffx;
Diffy;

•
/* connect output streams te *.dat files */

ofstream ofilel ("diffx.dat");
ofstream ofile2 ("diffy.dat");
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if ( !ofilel) cout « "error opening vinit output file" «
endl;

if ( !ofile2) cout « "error opening winit output file" «
endl;

for (i = 1; i<= ROW; i++) {
for (j = 1; j <= COL; j++)

Dx[i] [j] Diffx;
Dy[i] [j] = Diffy;

for (isln = 1; isln <= Nisl; isln++) {
islsz = ILS + nsilsz • (drand48()- 0.5);
isllocx = 70 * (drand48 () ) ;
isllocy = 70 * (drand48());
dxtemp = Diffx + ns • (drand48() - 0.5);
dytemp = Diffy + ns * (drand48() - 0.5);
cout « "location = If « isllocx «", "« isllocy « If

size "« islsz

•

•

«", diffusion coeff's = " « dxtemp « If,
dytemp « endl;

for (i = 1; i<= ROW; i++) (
for (j = 1; j <= COL; j++) {

if (i >= isllocx && i <= isllocx + islsz
&~ j >= isllocy && j <= isllocy + islsz) {
Dx[i] [j] = dxternp;

Dy[i] [j] = dytemp;

for (i = 1; i<= ROW; i++) {
for (j = 1; j <= COL; j++)

ofilel « Dx[i] [j];
ofile2 « Dy[i] [j];

" «
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APPENDIXC

The following Matlab source code performs the hyperbolic localization procedure from
Chapter 6.

% This M-file uses hyperbolic localization to compute and plot
% the coordinates of an ectopic pacemaker.

clear;

pmkr = input (' inpm: the PACEtv'.AKER location "[row colj":');

% input electrode positions

% compute interelectrode distances

•
el
e2
e3

dl2
dl3
d23

input('input coordinates of ELECTRODE el "[row col]":
input('input coordinates of ELECTRODE e2 "[row col)":
input('input coordinates of ELECTRODE e3 "[row col)":

sqrt«el(1,1)-e2(1,I))"2 + (el(1,2) - e2(1,2))"2);
sqrt«e1(1,1)-e3{1,1))"2 + (el(1,2) - e3(1,2))"2};
sqrt«e3(1,1)-e2(1,1))"'2 + (e3(1,2) e2(l,2})"'2);

, ) ;

, ) ;
, , .

1 ,

% input activation times and velocity estimate

tl input (' input TIME of activation for el: ');
t2 input('input TIME of activation for e2: '};
t3 input('input TIME of activation for e3: '};

v = input('input an estimate of the conduction VELOCITY: ');

tail = 0;

% deterimine the electrode arrangement

ecc 12
ecc 13
ecc 23

d12/{v· abs(tl - t2));
d13/{v· abs(tl - t3);
d23/(v· abs(t2 - t3);

[ecc, orderecc] = sort([ecc_12 ecc 13 ecc_23]);

•
if (orderecc(l) == 3)

e a el; t a tl;
e_b = e2; t b t2;
e c = e3; t c t3;
d=ab = d12;-d_ac = d13; d bc

elseif (orderecc(l) == 2)
e a = e2; t a = t2;

d23;



• e_b = el; t_b = tl;
e_c = e3; t_c = t3;
d ab = d12; d_ac = d23; d bc

elseif (orderece(l) == 1)
e a e3; t a t3;
e_b = el; t_b = tl;
e_c = e2; t_c = t2;
d ab = d13; d ac = d23; d bc

end

% determine the hyperbola parameters

d13;

d12;
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•

cl = O.S*sqrt«e_a(I,I)-e_b(l,I))~2 + (e_a(1,2) - e_b(1,2))~2);

al = O.S*v*(t b -t al;
eecl = abs(cl/al);-
c2 = O.S*sqrt«e_a(l,I)-e_c(l,l) l~2 + Ce_a(l,2) - e_c(1,2»)~2);

a2 = O.S*v*(t e - t al;
ecc2 = abs(c2/a2); -
A = (d_ab~2 + d_ac A 2 - d_bc A2l/(2*d_ab*d_ac);

if «ecel <= 1 1 eec2 <= 1)
disp('Warning! At least one eceentricity is less than 1.');

pause(2);

end

% CASE #1: TWO HYPERBOLAS

% compute the intersection points first in polar ccordinates

if (eccl > l & ecc2 > 1)
B = sqrt(l - AA2);

alpha = cl/(cl~2 - a1 A 2} - c2*A/(c2~2 - a2~2);

beta = c2*B/(c2 A2 - a2 A2};
gamma = a2/(c2 A 2 - a2 A 2) - al/(cl A 2 - al A 2);

costhl

costh2

(alpha*gamma + beta*sqrt(alpha A 2 + beta~2 ­
gamma~2))/(alphaA2 + beta A2);

(alpha*gamma - beta*sqrt(alpha A2 + beta A 2 ­
gamma~2))/(alphaA2 + beta~2);

•

rI (cl~2 - alA2)/(cl*costh1 + al);
r2 (cl~2 - al~2)/(cl*costh2 + al);

% determine whether the angle is theta or 2 pi - theta

eaxis = (e_b - e_a)/sqrt(dot(e_b-e_a,e_b-e_a));
eoffaxis = (e_c - e_a)/sqrt(dot(e_c-e_a,e_c-e_a));

if (eaxis(I,I) -= 0)
testperp = (-eaxis(I,2)/(eaxis(1,1» 1];
if (eaxis(1,l) > 0)

perpaxis = testperp / sqrt(dot(testperp,testperp»)i
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else

else
end

perpaxis - testperp /sqrt(dot(testperp,testperp»;

if (eaxis(1,2) > 0)
perpaxis [-1 0];

else

end
perpa:<is [1 0 j ;

•

end
testvec = cross([eaxis(l,l) eaxis(1,2) 0], [eoffaxis(l,l)

eoffaxis(1,2) 0]);

if (testvec(1,3) > 0)
phi acos(dot(eaxis,eoffaxis);

else
phi 2* pi - acos(dot(eaxis,eoffaxis);

end

if (rI> a & imag(rl) == 0)
d_thetal = sqrt(rl A 2 + d_ac A 2 - 2*rl*d_dc·cos(acos(costhl)

- phi»;
d_2pimthetal = sqrt(rl A 2 + d_ac A 2 -

2*rl*d ac·cos (acos (costhl) + phi);
if (abs(v * (t c - t a) - (d thetal-rl» <

abs(v • (t_c - t_a) - (d_2pimthetal-rl) l)

thetal = acos(costhl);

else

end

thetai 2 * pi - acos (costil1) ;

•

% now find estimated cartesian coordinates

rvecl = rl*[costhl sin(thetal)];

disp('the hyperbolae intersect at: 'l;
eloci = e a + rvecl(l,l)*eaxis + rvecl(1,2)*perpaxis

% compute the distance to the pacemaker

disp('the distance to the pacemaker is: ');
distl = sqrt(dot(elocl-pmkr,elocl-pmkr»

pause(2);
end

% repeat for the other possible intersection point

if (r2 > 0 & imag(r2) == 0)
d theta2 sqrt(r2 A 2 + d ac A 2 - 2*r2*d_ac*cos(acos(costh2)

- phi»;



• d_2pimtheta2 = sqrt{r2 A2 ~ d_acA2 ­
2kr2*d_ac*cos(acos(costh2) + phi»;

if {abs(v * (t_c - t_a) - (d_theta2-r2)) <
abs{v * (t_c - t_aJ -(d_2pimthe~a2-r2))

theta2 = acos(costh2);

else
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end

~heta2 2 * pi - acos(costh2);

•

•

% now find estimated coordinates

rvec2 = r2*(costh2 sin{theta2)};

disp('the hyperbolae intersect at: ');
eloc2 = e a + rvec2(1,1)*eaxis + rvec2{1,2)*perpaxis

% compute the distance to the pacemaker

disp('the distance ta the pacemaker is: ');
dist2 = sqrt(dot(eloc2-pmkr,eloc2-pmkr)}

pause(2) ;
end

if (rI> a & r2 > a & imag(rl) == a & imag(r2} == O}
disp('The hyperbolae intersect at two locations');

end

if «rI < a & r2 < a) 1 (imag(rl) -= 0 & imag(r2} -= a})
disp('Localization failed: hyperbolae don't intersect'j;
fail = 1;

end

end

% CASE #2: ONE HYPERBOLA AND ONE LINE

if (eccl <= 1 & ecc2 > l) disp('Warning: using only one hyperbola');
eline3 = e_b - e_a;
ehyp3 = e c - e a;
costh3 = - -

dot(eline3,ehyp3)/(sqrt(dot(eline3,eline3))*sqrt(dot(ehyp3,ehyp3}»;
testvec3 = cross«(ehyp3(1,1) ehyp3(1,2) 0], [eline3(1,1)

eline3(1,2) 0]);
if (testvec3(1,3) > 0)

r3 = (c2 A2 - a2A2)/(-c2*costh3 + a2);

else

end



• rvec3 = - r3 * eline3/sqrt(dot(eline3,eline3);

disp('the estimated coordinates are (line + h~~erbola): Il;
eloc3 = e a + rvec3

% compute the distance to the pacemaker

disp('the distance to the pacemaker is: Il;
dist3 = sqrt(dot(eloc3-pmkr,eloc3-pmkr»

pause(2);
end
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__ (ecc2 <= 1 & eccl > 1) disp('Warning: using only one hyperbola'};
eline4 = e_c - e_a;
ehyp4 = e_b - e_a;
costh4 =

dot(eline4,ehyp4)/(sqrt(àot(eline4,eline4) )*sqrt(dot(ehyp4,ehyp4) »);
testvec4 = cross([ehyp4(l,l) ehyp4(1,2) 0], [eline4(1,1)

eline4(1,2) 0]);
if (testvec4(1,3) < 0)

r4 = (cl~2 - al~2)/(-cl*costh4 ~ al);

•
else

end

r4 (cl~2 - al~2)/(cl*costh4 + al);

•

rvec4 = - r4 w eline4/sqrt(dot(eline4,eline4});

%àisp('the estimated coordinates are (line + hyperbola): Il;
eloc4 = e a + rvec4

% compute the distance to the pacemaker

disp('the distance to the pacemaker is: Il;
dist4 = sqrt(dot(eloc4-pmkr,eloc4-pmkr)

pause(2);
end

% plot the relative electrode positions and pacemaker estimate

% figure indicating loci

figure(l);axis([O 160 a 160]); axis square; holà;

plot (pmkr (1, 1) , pmkr (1,2) , '*' ) ;
plot (e_a(1, 1) ,e_a(1,2), '0');

plot (e_b(l, 1) ,e_b(1,2), '0');

plot (e_c(1, 1) ,e_c(1,2), '0');



• if (fail == 0)
if (ecel > l & eee2 > 1)

if (rI > 0)

plot (eloei (l, 1) , eloel (1,2), f. f ) ;

end
if (r2 > 0)

plot (eIoe2 (1,1), eloe2 (l, 2), f. f);

end
end

if (eeel <= 1 & eee2 > l)
plot (eloe3 ( l, l) , eloe3 ( l, 2), '. f ) ;

end

if (eee2 <= 1 & ecel > l)
plot (eloe4 ( l, 1) , eIce4 (1,2), f.');
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end

•
end

holdi
title('Paeemaker Loealization (0

estimate) ');
xlabel('ROW'); ylabel('COLUMN'};

initial positions, paeemkr

•

% figure showing interseeting eurves

figure(2); angle = (0:0.01:2 • pi);

% first get the angles right for plotting the Electrode positions in
polar eoordinates

if (eaxis(l,l) > 0 & eaxis(l,2} > O}
rotl = atan(eaxis(1,2)/eaxis(1,1»);

elseif (eaxis(l,l) < 0 & eaxis(1,2) > 0)
rotl = pi + atan(eaxis(1,2)/eaxis(1,1}};

elseif (eaxis(l,l) < 0 & eaxis(l,2} < O}
rot! = pi + atan(eaxis(1,2)/eaxis(1,1»;

elseif (eaxis(l,l) > 0 & eaxis(1,2) < 0)
rotl = atan(eaxis(1,2)/eaxis(l,1»);

elseif (eaxis(l,l) 0 & eaxis(1,2) > 0)
rotl = pi/2;

elseif (eaxis(l,l) 0 & eaxis(1,2) < 0)
rotl = 3 * pi/2;

elseif (eaxis (1,1) > 0 & eaxis (l, 2) O}

rotl = 0:
elseif (eaxis(l,l) < 0 & eaxis(1,2) 0)

rot! = pi:
end
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if (eoffaxis(l,l) > 0 & eoffaxis(1,2) > 0)
rot2 = atan(eoffaxis(1,2)/eoffaxis(1,1));

elseif (eoffaxis(l,l) < 0 & eoffaxis(I,2) > 0)
rot2 = pi + atan(eoffaxis(I,2)/eoffaxis(I,1»;

elseif (eoffaxis(l,l) < 0 & eoffaxis(1,2) < 0)
rot2 = pi + atan(eoffaxis(I,2)/eoffaxis(1,1»;

elseif (eoffaxis(l,l) > 0 & eoffaxis(I,2) < 0)
rot2 = atan{eoffaxis(1,2)/eoffaxis(I,1»;

elseif Ceoffaxis(l,l) 0 & eoffaxis(I,2) > C)
rot2 = pi/2;

elseif Ceoffaxis(l,l) 0 & eoffaxis(1,2) < 0)
rot2 = 3 * pi/2;

elseif (eoffaxisCl,l) > 0 & eoffaxis(I,2) 0)
rot2 = 0;

elseif Ceoffaxis(l,l) < 0 & eoffaxis(l,2) 0)
rot2 = pi;

end

% polar coordinate plot of hyperbolae

polar (rot2, 2*c2, '0') ;hold; ax = axis; axis (2. S*ax);
polar(rotl,2*cl, '0'); polar(O,O, '0'); plot(pmkr-e_a(l,l),pmkr­
e_a(1,2), '*');

• if (eccl > 1 & ecc2 > 1)
polar(angle + rotl,
polar(angle + rotl,

end

(cl A 2 - al A 2) ./(cl*ccsCangle) + al), 'r');
(c2 A 2 - a2 A 2) ./(c2*cosCangle-phi) +a2), 'g');

•

if (eccl <= 1 & ecc2 > 1)
polar«(pi + rotl) ... ones{1,lOOl), (0:0.1:100),'r');
polar(angle + rot!, (c2 A 2 - a2 .... 2)./(c2 ... cos(angle-phi) +a2),'g');

end

if (ecc2 <= 1 & eccl > 1)
polar«rot2 + pi) ... ones(l,1001), (0:0.1:100),'g');
polar(angle + rotl, (c1 A 2 - al A 2) ./(cl*cos(angle) + al), 'r');

end
hold;
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APPENDIXD

The following Matlab source code performs the localization by resetting procedure
from Chapter 6.

% This M-file uses localization by resetti~g to compute and plot the
~ coordinates of an electrical source in a plane.

clear;

pmkr input C' input the PACEMP_~ER location "[row col]": '):
CL inputC'input the CYCLE LENGTH of the rhythm: ');
CI = inputC'input the latest COUPLING INTERVAL giving resetting: ');

% input Electrode positions

el input C' input coordinates of ELECTRODE el "[row col]": ' ) ;
eZ inputC'input coordinates of ELECTRODE eZ "[row col]": 1 ) ;

e3 input C' input coordinates of ELECTRODE e3 "[row col]": ' ) ;

% compute interelectrode distances

àlZ sqrtCCel(l,l)-eZ(1,l)) Z + (el(l,Z) - eZ(l,Z)) Z):
d13 sqrtC(el(1,1)-e3(1,1») Z + Cel(l,Z) - e3(1,Z)) Z):
àZ3 sqrt((e3(1,1)-eZ(1,1») Z + (e3(1,Z) eZ(l,Z)) Z)i

% input activation times and velocity estimate

tl input('input TIME of activation for el: ')i
t2 input('input TIME of activation for eZ: ');
t3 input('input TIME of activation for e3: ')i

v = input('input an estimate of the conduction VELOCITY: ');

% deterimine the Electrode arrangement:.
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ecc 12
ecc 13

dlZ/(v· abs(t1 - tZ):
d13/(v· abs(tl - t3);

if (ecc_12 > ecc_13)
e a el; t a t1i
e b = eZ: t b tZ;
e-c = e3; t-c t3i
d=ab = d1Z:-d_ac = d13; ct be

else
dZ3:

e a el: t a tli-
e b e3: t b t3i-• e c eZ; t c tZi-
d ab = d13: d ac = dlZ; ct bc dZ3;-



• end

% determine the distance to the pacemaker

rI = 0.5 • v • CL • (1 - CI/CL);

% determine the hyperbola pararneters

cl O.S·d_ab;
al O.S·v·(t_b -t_a);

% determine whether the angle is theta or 2 pi - theta

eaxis = (e_b - e_a)/sqrt(dot(e_b-e_a,e_b-e_a»;
eoffaxis = (e c - e_a)/sqrt(dot(e_c-e_a,e_c-e_a»;
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if (eaxis (l, 1) -= 0)
testperp = [-eaxis(1,2)/(eaxis(1,l) 1];
if (eaxis(l,l) > 0)

perpaxis testperp 1 sqrt(dot(tescperp,testperp»;

• else

end

else
perpaxis

end

if (eaxis (1, 2)
perpaxis

else
perpaxis

end

- testperp / sqrt(dot(testperp,testperp);

> 0)
[-1 0];

[1 0];

testvec = cross ( [eaxis (1,1) eaxis (1, 2) 0], [eoffaxis (1,1)
eoffaxis (1, 2) O});

if (testvec(1,3) > 0)
phi acos(dot(eaxis,eoffaxis»;

else
phi 2· pi - acos(dot(eaxis,eoffaxis»;

e:1d

ct thetal = sqrt(rl A 2 + d ac A 2 - 2*rl·d ac*cos(acos(costhl) - phi});
d=2pimthetal = sqrt(rl A 2-+ d_ac~2 - 2·rl*d_ac*cos(acos(costhl) +
phi»;
if (abs(v * (t c - t a) - (d thetal-rl» < abs(v • (t_C - t_a) ­
(d_2pimthetal-rl»)

thetal = acos(costhl);

•
else

end

thetal 2 * pi - acos(costhl);



•

•
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~ r.ow find estimated cartesian coordinates

rvecl = ~l*[costhl sin(thetal)];

disp('the estimated ccordinates of intersecting hype~bolae a~e:');

elocl = e a + rvecl(l,l)·eaxis + rvecl(1,2)*perpaxis

% compute the distance to the pacemaker

disp('the distance to the pacemaker is: ');
distl = sqrt(dot(elocl-pmkr,elocl-pmkr))

pause(2);

% plot the relative electrode positions and pacemaker estimate

% figure indicating loci

figure(l) ;axis([O 80 0 80]); axis square; hold;

plot (pmkr (l, 1) , pmkr ( 1, 2) , , ... , ) ;
plot (e_a{l, 1) ,e_a(I,2), '0');

plot(e b(1,I),e b(1,2), '0');

plot (e=c (1, 1) , e=c ( 1(2) , 'o' l ;

plot. {elocl {l, II , elocl (1, 2), '.');

hold;
title('Pacemaker Localization (0
estimate) ');
xlabel{'ROW'); ylabel('COLUMN');

initial positions, pacemkr

•

% figure showing intersecting curves

figure(2); angle = (0:0.01:2 + pi);

% first get the angles right for plotting the electrode positions in
polar coordinates

if (eaxis(l,l) > a & eaxis(I,2) > 0)
rotl = atan(eaxis{I,2)/eaxis(l,l));

elseif (eaxis(l,l) < a & eaxis(1,2) > 0)
rotl = pi + atan(eaxis{1,2)/eaxis(1,1»);

elseif (eaxis(l,l) < a & eaxis(1,2) < 0)
rotl = pi + atan(eaxis(1,2)/eaxis(1,1));

elseif (eaxis(l,l) > a & eaxis(1,2) < 0)
rotl = atan(eaxis(1,2)/eaxis(1,1));

elseif (eaxis(l,l) 0 & eaxis(1,2) > 0)
rotl = pi/2;

elseif (eaxis(l,l) 0 & eaxis(l,2) < 0)
rotl = 3 ... pi/2;



• elseif (eaxis(l,l) > 0 & eaxis(1,2)
rotl = 0;

elseif (eaxis(l,l) < 0 & eaxis(l,2)
rotl = pi;

end

0)

0)
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•

•

if (eoffaxis(l,l) > 0 & eoffaxis(l,2) > 0)
rot2 = atan(eoffaxis(1,2)/eoffaxis(l,1»;

elseif (eoffaxis(l,l) < 0 & eoffaxis{1,2) > 0)
roc2 = pi T acan(eoffaxis(1,2)/eoffaxis{1,1»;

elseif (eoffaxis(l,l) < 0 & eoffaxis(1,2) < 0)
rot2 = pi + atan(eoffaxis(1,2)/eoffaxis(1,1);

elseif (eoffaxis{l,l) > 0 & eoffaxis(1,2) < 0)
rot2 = atan(eoffaxis(1,2)/eoffaxis{1,1»;

elseif (eoffaxis(l,l) a & eoffaxis(1,2) > 0)
rot2 = pi/2;

elseif (eoffaxis(l,l) a & eoffaxis(l,2} < 0)
rot2 = 3 * pi/2;

elseif (eoffaxis(l,l) > 0 & eoffaxis(1,2) 0)
rot2 = 0;

elseif (eoffaxis{l,l) < 0 & eoffaxis(1,2) 0)
roc2 = pi;

e:1d

% polar coordinate plot of hyperbola and circle

polar(rot2, d_ac, 'o');holà; ax = axis; axis(2*ax};
polar(rotl,d_ab, '0'); polar{O,O, '0'); plot{pmkr-e_a(l,l),pmkr­
e a(1,2), '+');

polar(angle + rotl, (cl~2 - al~2) ./(cl*cos(angle) + al), 'r');
polar (angle, rl*ones (1, 629) , 'b');
holà;


