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ABSTRACT

Determining the optimal long-term operating policy of a multi-
reservoir power system requires solution of a stochastic nonlinear
programming problem. For small systems, the solution can be found by
dynamic programming, but for large systems no direct solution method
exists yet, so that one must resort to mathematical manipulations to
solve the problem. This thesis presents a very efficient procedure for
the case where high correlation exists between the state variables. It
consists in performing principal components analysis on the trajectories
to find a reduced model of the system. The reduced model is then
substituted into the operating problem and the resulting problem is
solved by stochastic dynamic programming. The reservoir trajectories on
which principal components analysis are performed can be obtained by
solving the operating problem deterministically for a large number of
equally likely flow sequences. The results of applying the manipulation
to Québec's La Grande river, which has four reservoirs, are reported. A
comparison with the classical dynamic preogramming, that is without any
reduction, is also studied and results are reported to show the

efficiency of the principal components approach.
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RESUME

Déterminer la reégle optimale de gestion & long-terme d'un réseau
hydroélectrique de grande taille revient a résoudre un  probléme
d'optimisation stochastique nonlinéaire. Pour des systémes de petite
taille, ce probléme peut étre facilement résolu par la programmation
dynamique, ce qui n'est pas le cas pour des systémes de grande taille.

Dans cette thése, une nouvelle approche est proposée pour les
systémes dont les états sont corrélés, Cette approche est basée sur
l'analyse en composantes principales sur les états du systéme dans le
but d'établir un modéle reéduit. Cette réduction rend 1le probleme
résolvable par la programmation dynamique stochastique. Les états
auxquels cette technique est appliquée sont obtenus a partir de 1la
solution du probleme déterministe appliqué & un grand nombre de
séquences équiprobables d'apports naturels. Les résultats de cette
approche seront illustrés pour les installations de la riviére La Grande
dans la province de Québec. Une comparaison des résultats obtenus avec
cette approche avec ceux obtenus sans aucune réduction est aussi faite

pour illustrer l'efficacité de la méthode proposée.
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CLAIM OF ORIGINALITY

To the best of the author's knowledge, the following contributions

are original:

1. The combination of the existing implicit and explicit stochastic
methods. The implicit approach is used to solve deterministically the
problem for a iarge number of flow sequences and the explicit approach
to determine the optimal operating policy.

2. The application of principal components analysis and stochastic
dynamic programming to long-term reservoir management. Principal compo-
nents analysis is used to reduce the number of state variables in the
problem and stochastic dynamic programming to find the optimal soluticn
of the reduced problem.

3. The solution of large-scale problems taking into account the
stochastic nature of river flows described by a discrete distribution.

4. The determination of a global feedback solution contrary to the
decomposition and projection methods, which means that global cons-
traints, such as satisfying the demand, will be met.

5. The determination of optimal rules taking into account all local
constraints on the discharge and content of the reservoirs, so that the

solution obtained is generally feasible.
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CHAPTER I

INTRODUCTION

1.1 General Requirements

Electricity plays an important role in all modern societies.
Over the yeurs, power systems have been expanded to meet the growing
demand for electrical energy. These systems rely on two important
sources of energy:

a) The potential energy of fuels such as oil and coal. These types
of energy are converted into electrical energy by conventional thermal
power stations.

b) The potential energy of water, converted into electrical energy
by hydro-electric plants.

The generation of electricity is a complex problem due to the
following facts.

a) Electricity cannot be produced in advance and stored for future
use.

b) Electricity cannot be produced with delay.

c¢) Under normal conditions, the demand must be satisfied.

In other words, if during the period of time k, the demand is de(k),
the production must be also, de(k). Generally, the natural inflows are

very low when the demand is very high as shown in Figure 1.1. Thus to
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meet demand at the lowest production cost, it becomes necessary to
accumulate the excess water during wet periods into natural or
artificial reservoirs. This water can be released during dry periods to
produce electricity.

Usually, many reservoirs in series and/or in parallel form a hydro
power system. They can be classified as reservoirs with daily, seasonal
or yearly operation cycles. The reservoirs with daily cycles are used to
store the water in off-peak periods during the night and used it in peak
periods during the day. The seasonal reservoirs store the water surplus
from spring for winter, and the reservoirs with yearly operation cycles,
like Manic V in Québec, are used to save the excess water of rainy years
for use in dry years.

The problem of determining the optimal operation of a multireservoir
system is usually broken down into a deterministic short-term operating
problem and a stochastic 1long-term operating problem. The long-term
problem is a stochastic process since it is impossible to make exact
prediction on the natural inflows. The stochasticity of the natural
inflows plays an important role in the scheduling problem. For example,
if the stocks of hydro-electric energy are depleted and low inflow
volumes occur, it may be necessary to use expensive thermal generation
in the future. On the other hand, if the reservoir levels are kept very
high through a more intensive use of thermal generation, while high
inflow volumes occur, there may be spillage or wasce of energy in the
system, which in turns increases operation costs.

Although the present thesis is mainly concerned with the operation
of the stochastic long-term multireservoir power systems, this

introductory chapter will continue further by describing the thermal and
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hydro power systems in Section 1.2 and then the power system
optimization problems in Section 1.3. In Section 1.4 the solution
methods for the stochastic long-term reservoir problem are describzd,
whereas in Section 1.5, the special approaches to the large-scale
problem are dealt with. The scope and contributions of this work are
considered in Section 1.6, and finally Section 1.7 contains the outline

of this thesis.

1.2 Hydrothermal Power System

A mixed hydrothermal power system, as illustrated in Figure 1.2,
involves the coordination of thermal and hydroelectric energy to meet
all system loads over a given planning horizon. Naturally given the
expenses involved in the operation of the system, a great deal of effort
is devoted to ensure that each subsystem (thermal and hydraulic) is as
efficient and reliable as possible. In recent years the increasing
demand of energy has focused attention on the probiem of ensuring that
maximum benefit 1is derived from the resources and equipment available.
For this reason, in the next two subsections, the resources and

equipment of thermal and hydro subsystems are briefly described.

1.2.1 Thermal Plants

Thermal plants can be operated by Gas, coal or oil. Gas turbines
have very low start up costs but, on the other hand, they have high
operating costs. As a result, gas turbines are suitable for short period
operations tc meet the demand during the peak periods. The thermal
plants operated by coal or oil are known as ''fossil fuel condensing

plants" (Habibollahzadeh, 1984]. These plants have three different kinds
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of production cost: start up, fixed and variable operation costs. The
cost of starting a fossil fue. plant is very high especially if the
boiler has been cooling [Turgeon, 1977}. Once this type of plants is
started, it will have a fixed operation cost corresponding to its
minimum output power. The variable operation cost of the plant
increases as the power production is increased from the minimum to the
maximum output level. According to an internal report of Hydro Québec
[Report Hydro Québec, 1983}, the various sources of thermal energy have
also different operation costs, as shown in Table 1.1. In that table,
the investment cost is also given. It can be seen that the investment

cost increases as the operation cost decreases for different types of

plants.

Type Investment Operation
($/KW) ($/Kwh)
Gas Turbines 450 0.095
0il Plant 1000 0.050
Coal Plant 1300 0.030

Table 1.1 Investment and operation costs

for different thermal plants

It should be mentioned that due to both scheduled and unscheduled
maintenance (or maintenance outages), a thermal plant can only be used
807 of the time at the most [Report Hydro Québec 1983].

For the remainder of this thesis, the thermal type will refer to

plants operated by gas, oil, coal or any combination of these fuels. For
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the sake of presentation, coal will be considered the energy source for
thermal plants. Throughout the thesis, we will consider only the
operation or production costs of thermal plants and will also assume
that all the thermal plants under consideration are already in place and

there will be no further investment in thermal generation.

1.2.2 Hydro Generation Plants

The potential energy available from rivers is converted into
electric energy by hydro electric plants. A hydroplant installed on a
river, as shown in Figure 1.3, consists of a reservoir, a dam and a
plant. 1In general, the hydroplants are divided into three groups [ EPRI

EL-1659, 1981]:

a) Plants with small or no water storage, also called "run-of-river"
plants.

b) Plants with moderate storage, wusually used for short-term

operation.

c) Plants with large storage, usually used for long-term operation.

For "run-of-river" plants, no reservoir exists, so that all the
incoming water is used to produce elf trical energy, whereas, for
moderate and large storage plants, a reservoir is used to store water
surplus to meet future requirements. As a matter of fact, when more
water is stored in the reservoir the head increases, so that production
of electricity increases also. In other words, the hydroelectric energy
is a function of the gross head, that is the difference between the

elevation of the surface of the reservoir and the elevation of the
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afterbay, or downstream water level below the hydroelectric plant
(Figure 1.4) [Wood and Wollenberg, 1984]. Therefore the potential energy
of the water available for conversion into electrical energy is a
function of both the turbined water and the gross head. In fact, the
head at the turbine itself is slightly less than the gross head due to
friction losses. That is why we define the net head which is equal to
the gross head less the flow losses (measured in the same units as the
gross head) [Wood and Wollenberg, 1984]. Figure 1.5 shows a typical
curve where the hydraulic head is constant. This graph shows that the
generation is a nonlinear function of the released water. Figure 1.6
shows the same nonlinear characteristic but for variable head. This type
of curve is obtained whenever the variation in the forebay and/or the
afterbay elevation (Figure 1.3) is a fairly large percentage of the
overall hydraulic head.

Scheduling hydroelectric plants with variable characteristics is
more difficult than scheduling hydroelectric plants with fixed heads.
This is true not only because of the multiplicity of the characteristic
curves that must be considered, but also because the maximum capability
of the plant will also tend to vary with the hydraulic head {El- Hawary
and Christensen, 1979; Wood and Wollenberg, 1984]., However head
variation is not a major feature of the long-term reservoirs problem
with which this thesis is concerned [Hanscom, 19763 Read, 1979].

For cascaded multireservoir systems, the hydroplants are coupled
because the discharge from one reservoir constitutes part of the inflow
to the next. Of course, these reservoirs have to be operated according
to certain rules. These rules define the amount of energy produced by

each plant along the river. Figure 1.7 illustrates the characteristics
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of such system for a given head. The curve consists of three segments
which correspond to 1, 2 or 3 units in operation. The best operation
point (the best efficiency points) for 1, 2 or 3 units in operation are

also shown on the graph by Uy, Upz and Upj3 respectively.

1.3 Power System Optimization Problems

The hydrothermal scheduling problem is usually decomposed into an
energy problem and a power problem or into what Massé [1946] and Turgeon
[1981b] call 'strategic' and ‘'tactical' problems, respectively. The
first is related to the management of the available water according to
the forecast of the natural inflows. The second problem, on the other
hand, involves the hour by hour control and coordination of all
generation units to satisfy a given demand with known inflows. Then it
can be seen that the energy or strategic problem is stochastic and
concerns the long-term scheduling, while the power or tactical problem
is deterministic and concerns the short-term scheduling.

Although this thesis mainly deals with the energy or the long-term
problem, a brief description of the nature of each problem is given in

the next two subsections.

1.3.1 The Long-Term Scheduling Problem

In the long-term scheduling problem, the operating horizon spans
from one to several years and 1is divided into weekly or monthly
intervals. The objective is to determine a generation schedule that
minimizes the expected cost during the planning horizon while meeting
the demand at all times. In other words, the long-term problem consists

in fincing the optimal balance between the production of various plants
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for each of the intervals of the planning horizon. This problem is
further complicated by the fact that the exact level of inflows in the
future cannot be predicted. In this case, historic data and probability
distribution can be considered due to the small variation of inflows
from year to year. Then after having incorporated this probability
distribution into the optimization model, the most successful solution
technique has proven to be 'stochastic dynamic programming' [Pronovost
and Boulva, 1978; Sachdeva, 1982; Turgeon 1980].

Since the time steps considered are weeks or months, the time delay
between reservoirs can be neglected and sometimes reservoirs on the same
stream can even be aggregated.

The long-term scheduling optimization involves other stochastic
variables such as load and unit availabilities (thermal and hydro
units). However, dealing with the random nature of these variables is
outside the scope of this thesis. Only the natural water inflows will be

considered as random.

1.3.2 The Short-Term Scheduling problem

The short-term scheduling problem distributes over the week or over
the month the total discharge selected by the long-term problem for that
period. This distribution is performed so that the total system produc-
tion cost is minimized within the limits permitted by the hydraulic and
thermal constraints. In such a scheduling problem, the load, hydraulic
inflows and unit availabilities are assumed to be known. A set of
starting conditions (e.g. reservoir levels) is given, and parts of the
hydraulic constraints may involve meeting "“end-point" conditions at the

end of the scheduling interval so as to conform with a long-term water
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release schedule previously established as shown in Figure 1.8.

Due to the time needed to start the thermal units, some difficulties
may be introduced, creating therefore, a need for "spinning reserve" to
cover possible break-downs. Also if several hydro plants are located on
the same stream, the time taken by the water io travel from one plant to
the next may be of great importance.

Note that the short-term problem must be re-optimized frequently to
take into account the variations in the expected demand patterns, the
natural inflows or the availability of the equipments.

For a thorough survey of this subject, the reader is referred to

Chapter VII of Wood and Wollenberg [1984].

1.4 Solution Methods For the Stochastic Hydrothermal Scheduling

Problem

Different solution methods have been proposed to solve the
stochastic hydrothermal scheduling problem, using mainly linear or
dynamic programming. In this section, only a cursory description of
these two techniques is given and their application to a hydrothermal
power system is presented. Then, in the next section, the approaches
applied to a large-scale stochastic hydrothermal problem are studied
more thoroughly.

Linear programming has been one of the most widely used techniques in
water resources operations. It was designed for problems in which all
relations among the variables are linear both in constraints and in the
objective function to be optimized. Loucks (1968] and Houck and Cohon

{1978] applied the stochastic linear programming to reservoir operation
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assuming a Markov process model for the inflows. This technique, as
pointed cut in Loucks' paper [1968] leads to very high dimensional
problems in real situations, that is to a problem where the number of
constraints can easily exceed several thousands. Stochastic linear
programming was also applied to reservoir operation by converting the
probabilistic constraints into deterministic equivalences by using a
cumulative probability distribution function of the random variable
[Revelle et al., 1969; Hogan et al., 1981; Sobel 1975; Sniedovich, 1980;
Houck et al.,, 1980; Houck and Datta, 1981]. This technique, known as
"Chance-constrained 1linear programming"  is severely hampered if
cross-correlations exist among the inflows of a multireservoir system
{Yeh, 1985].

Dynamic programming was first suggested as a solution technique for
this type of problems by Little [1955]. The basic idea is to deal with
multistage decision processes. As defined by Bellman [1957] multistage
decision processing consists in separating a problem into a number of
sequential steps, or stages which may be completed in one or more ways.
The popularity and success of this technique in hydrothermal operation
problems can be attributed to the fact that the nonlinear and stochastic
features which characterize a large number of water resources systems
can easily be incorporated into a dynamic programming problemn. A large
number of authors applied stochastic dynamic programming to find the
optimal operating policy for hydro power systems. [Schweig and Cole,
1968; Gablinger and Loucks, 1970; Roefs and Bodin, 1970; Butcher, 1971;
Askew, 1974a; 1974b; Su and Deiniger, 1974; Rossman, 1977; Turgeon,
1981a; 1981b]. In a review of mathematical models developed for

reservoir operation, Yakowitz [1982] pointed out that the largest-sized
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stochastic dynamic programming problems found within or outside the
water resources literature, involve no more than two or three state
variables. Therefore, to solve large-scale stochastic problems, it
becomes necessary to develop methods enabling us to approximate the
solution of the operating problem at a reasonable computational cost.

The next section will describe briefly these methods.

1.5 Review of Recent Approaches for Large-Scale Stochastic Reservoir

Operation

The long-term scheduling problem is usually modelled as a stochastic
nonlinear problem of very high dimension. The multiplicity of variables
and constraints results from the large number of reservoirs and plants
in the system.

Over the past thirty years, the determination of the optimal
operating policy for this problem has been the subject of numerous
publications. Yet a completely satisfactory solution has not been found
since the problem has always been simplified in ovrder to make it
solvable. This is because the optimal feedback solution of large-scale
stochastic optimization problems with bounds on the state and control
variables is still unknown. Consequently, numerous approaches consist in
transforming the large-scale problem into one or a series of small-scale

problems. These approaches fall into four categories:

1) Aggregation
2) Decomposition
3) Aggregation / Decomposition

4) Projection
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Aggregation methods reduce the number of state variables of a
multireservoir system while conserving the stochastic nature of the
problem. It consists in aggregating the whole system into one equivalent
energy reservoir and calculating for that reservoir the optimal
operation policy, as shown in Figure 1.9. Arvanitidis and Rosing [1970]
were the first to propose this technique. They aggregated the whole
Pacific Northwest system into a single reservoir and used stochastic
dynamic programming with monthly time periods to solve the resulting one
state variable problem. Many other papers, using this approach, have
been published since. [Davis and Pronovust, 1972; Duran et al., 1985;
Pereira and Pinto, 1984; Quintana and Chikhani, 1981; Sherkat et al.,
1985; Turgeon, 1980, 1981b]. Turgeon [IREQ-2291, 1980] pointed out that
the optimal operating rule obtained by using the aggregation method
assumed simultaneous spilling from all the reservoirs or no spilling at
all for a given period of time. Furthermore, it also assumed that all
the reservoirs would become empty at the same time. Mathematically, if
Ujx represents the '"optimal" release from reservoir i in period k, ﬁi
the capacity of the plant i, and X;, the content of reservoir i at the
beginning of period k then the following relations can be assumed:

Ujp S Uy or Uy >0 (1.1)
and
Xig > 0 or Xz =0 (1.2)
i=1,2,...,n
where n represents the number of reservoirs.

The decomposition approach consists in breaking down the huge
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operating problem into several smaller problems [Colleter and Lederer,
1981]. This technique has been applied to the French power system in
order to form smaller problems, each corresponding to a particular
valley. The link between the valleys and the entire generation system is
established by using rules and relations based on the marginal
production cost. More specifically, each valley is operated in order to
maximize the expected amount of energy sold at the marginal production
cost.

The aggregation/decomposition approach proposed by Turgeon [1981b]
and used by Duran et al. [1985] and Lederer et al. [1983] was developed
for a power system consisting of n hydroelectric power plants located in
series on a river. The method consists in rewriting the stochastic
optimization problem of n state variables as n-1 problems involving two
state variables and using the stochastic dynamic programming formulation
to obtain the solution. The release policy is then obtained for
reservoir i as a function of the water content of that reservoir and the
total amount of potential energy stored in the downstream reservoirs.
Figure 1.10(a) illustrates the aggregation/decomposition of n reservoirs
in series with content X;y, i=l,...,n during a period k. Then, Figure
1.10(b) shows the reservoir 1 and reservoirs 2 to n combined with
equivalent energy content 5o . The advantage of this method, as pointed
out by Turgeon [1981b}, is that it is not iterative. In fact. the
processing time increases only linearly with the number of reservoirs
since only one additioral dynamic programming problem of two state
variables has to be solved for each new reservoir that is added to the
system.

The projection methods proposed by Davis [1972] and used by
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Delebecque and Quadrat [1978], Pronovost and Boulva [1978], and Sherkat
et al. [1985] transforms the problem of n state variables into a series
of n problems each with one state variable. This technique combined with
dynamic programming and known as ‘"Dynamic Programming Successive
Approximation' involves a ''one-at-a-time' stochastic optimization of
each reservoir, and the procedure is repeated over all the reservoirs
until convergence is attained. Figure 1.11 shows how this technique
works for only two state variables.

The solution of the transformed problem obtained by applying one of
the above manipulation techniques is never, unfortunately, the optimal
global feedback solution sought. When aggregation is used, for instance,
the solution may not even be feasible since the transformation cannot
take into account all the local constraints on the reservoir content and
the discharge of the power plants. Projection, on the other hand, always
yvields a feasible solution, albeit of local-feedback type. Moreover, as
Turgeon [1980] has shown, such a solution can be very far from the
global optimum when the states of the reservoirs are appreciably
different from those expected. The price-decomposition approach of
Coilecter and Lederer [1981] gives a local-feedback solution similar to
that obtained with projection. However, since the marginal production
cost is not computed as an explicit function of the production of each
valley, the solution thus obtained is not a global feedback.

The literature usually classifies all the methods mentioned above as
"explicit", because they explicitly take into account the stochastic
nature of the river flow. However, there are other methods that use
synthetic flow sequences instead. The main features of those so-called

"implicit" methods [Croley, 1974; McKerchar, 1975; Roefs and Bodin,
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1970; Young, 1967] are streamflow synthesis, deterministic optimization
and multivariate analysis. Streamflow synthesis is wused to provide
several equally 1likely future sequences of streamflows. For each
streamflow sequence, deterministic optimization finds the optimal amount
of water to release from each reservoir for each time period. If there
are n streamflow sequences, the deterministic optimization therefore
provides n different trajectories for each reservoir. Subsequently,
multivariate analysis is applied to these trajectories to deduce an
operating policy, that is a set of mappings from the state space
(storage levels) into the decision space (reservoir releases). In other
words, multivariate analysis is used to determine the functions
Ui (XqpoXops o« X )» i=1,...,n3  k=1,...K, where U, represents the
"optimal" release for reservoir i during period k and X ), is the content
of reservoir i at the beginning of period k.

However, the use of the word "optimal' to describe the functions
Uik(xlk'XZk""xnk) determined by this process may be misleading.
Actually, these functions are optimal for the implicit approach but
their relation to the true optimal operating policy are not known and
differ for each application. Unfortunately, determining the operating
policy of a system by supposing the river flows to be perfectly known
in advance rarely yields the same results as when explicit account is
taken of the stochastic nature of the river flows. The difference
between these two results can mainly be attributed to the limits on
storage. Therefore, even if the deterministic problem were solved for a
thousand different flow sequences to yield a thousand different

trajectories for each reservoir, there is still no guarantee that the

multivariate analysis of the results would yield the true optimal
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solution or even one that is just close to it.

The implicit stochastic approach was proposed principally because it
is much easier to solve a series of deterministic large-scale
optimization problems than only one stochastic large-scale problem.
Roefs and Bodin [1970] reported that the growth in size of this approach
is directly proportional to the number of reservoirs in the system
rather than exponentially proportional as in the "Explicit Stochastic
Approach". As mentioned before, the stochastic large-scale problem must
be manipulated, decomposed or simplified before it can be solved. The
question can be raised, however, as to whether or not the implicit
approach has just simply substituted one difficult problem by another.
Indeed, the implicit approach discaided the stochastic optimization
problem but, as a result, must solve a very difficult multivariate
analysis problem to determine the functions Uik(xlk’XZk" ..,X_nk). The
major difficulty here is to find the family of functions to which
Us e (X1 X2k -« -Xpi ) belongs. To assume that Ujp(Xy.Xpp,...,Xpx) is a
linear function, as Young (1967] and McKerchar (1975] have done, is

usually not acceptable in practice.

1.6 Scope and Contribution

The method proposed in this thesis to determine the optimal
long-term operating policy of a multireservoir power system borrows from
both the implicit and the explicit approaches explained in Section 1.5.
As in the implicit approach, the problem is first solved
deterministically for m different flow sequences. The results of those
deterministic optimizations are then subjected to a principal component

analysis (PCA) to find out whether the problem could have been modeled
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with fewer state variables. When this is found to be possible, the
problem is transformed into a new one with fewer state variables, and
stochastic dynamic programming is applied to determine the optimal
operating policy. In other words, the implicit approach 1is used to
reduce the number of state variables ir the problem, and the explicit
approach to find the optimal solution of the reduced problem.

Whether the number of state variables can be reduced or not depends
on their degree of interdependency. If they are independent, reduction
is of course impossible and the proposed method cannot solve the
problem. However, if some dependency exists, reduction may be possible.
Obviously, the higher the interdependency, the greater and better the
reduction will be. Thus, our goal will be to reduce the number of
variables sufficiently to allow straightforward application of
stochastic dynamic programming.

The particular feature of the proposed approach is the search for
linear dependencies among the variables which derives the required
transformation for their reduction at the same time. It has many
advantages over the explicit and implicit stochastic methods of the past
[Saad and Turgeon, 1988a and 1988b]:

i) It solves larger problems (higher number of state variables)
taking into account the stochastic nature of river flows, described by a
discrete distribution as in the explicit stochastic optimization
tochnique which was limited to two or three stochastic state variables
[Yakowitz, 1982; Yeh, 1985].

ii) Unlike the aggregation methods [Arvantidis and Rosing 1970] it
takes into account all local constraints on the discharge and content of

the resarvoirs, so that the solution obtained is generally feasible.
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iii) Since linear combinations can easily be manipulated, the
proposed technique decomposes the results to find the operating policy.
In the previous works [Boggle and O'sullivan, 1979; Roefs and Bodin,
1970j, the selection of the operating policy proved to be the most
difficult problem to tackle.

iv) It gives a global feedback solution, contrary to the
decomposition and projection methods, This means that global
constraints, such as satisfying the demand, will be met.

v) It is easy to apply, which is certainly not the case for the
methods involving the determination of the family of functions to which
the discharge U (X ,Xop,-..,Xpk) belongs.

The only major drawback is that the state variables must be
interdependent in order to apply the method. In general, however,
interdependency does exist among reservoirs located on the same river or

on nearby rivers with similar flow patterns.

1.7 Qutline and Methodologpy

The principal components approach, its theory, derivation, verifica-
tion and justification are the focus of this thesis.

Firstly, in Chapter I, the hydrothermal power systems are outlined.
A brief description of thermal and hydro generation plants is given.
Then, the power systems optimization problems are described. These
problems are wusually decomposed into a long-term and short-term
problems. The nature of each problem is briefly given. Some approaches
to solve the stochastic long-term hydrothermal scheduling problem and a
review of recent publications are also outlined.

The mathematical representation of the basic components of a power
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system is given in Chapter II. The objective function and the different
constraints related to thermal and hydro plants are then considered. The
electric demand and the corresponding constraints are also discussed.
The model 1is given in iis general deterministic form, as a nonlinear
model, and a piecewise linearization is then proposed.

Chapter III presents different solution techniques for the
deterministic model of Chapter II. In that chapter, dynamic, nonlinear
and linear programming are discussed. The last technique is adopted and
a modified linear model is suggested to eliminate the bang-bang solution
usually associated with linear programming. The solution of the model
for a four reservoir system is found with IBM's MPSX/370 package. Some
optimization results are given.

Since the primary purpose of this work is to solve large-scale
stochastic problems, a reduction of the number of state variables must
be attempted. Chapter IV presents an efficient method to reduce a large-
scale problem intc a small-scale problem by using principal components
analysis., First, the theoretical development to transform the original
variables into a set of new components is formulated. These components
have the two characteristics of being uncorrelated and in decreasing
order of variance. An optimization problem built to obtain these
characteristics shows that the new components are found by solving a
simple eigenvalue problem. In this problem, the components and the
percentage of variance are obtained from the eigenvectors and the
eigenvalues of the covariance matrix respectively. In fact, the
priﬁcipal components analysis transforms a problem with n  state
variables into another having the same number of state variables.

Therefore, reduction criteria are needed. Although the criterion
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selected is based on the component's percentage of the total variance,
other criteria are also presented, namely: Scree test of C(Cattell,
Kaiser's rule and Bartlett's rule.

This theory is then applied to the four reservoirs system of Chapter
ITI and some results are given. These results are of paramount
importance because they prove that the problem of eight state variables
can be replaced by one of only four state variables.

Chapter V presents the stochastic model which is a generalization of
the problem described in Chapter II, with the objective of minimizing
the expected cost of the thermal energy.

The reduced problem is obtained by incorporating the principal
components into the model, and is then solved by stochastic dynamic
programming.

A comparison with the classical dynamic programming approach, that
is without any reduction of the number of state variables, shows the
efficiency of the proposed technique. The wvalue of the objective
function, the operating policies and the CPU time obtained from both
methods confirm the advantage of the principal components approach when
large-scale problems must be solved.

Finally, Chapter VI presents a summary of the results along with the

conclusion. Further research recommendation are also outlined in that

chapter.
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PROBLEM FORMULATION

2.1 Introduction

The long-term operation problem of multireservoir systems is
modelled in this chapter as a nonlinear deterministic problem. A linear
version of the model 1is presented at the end of this chapter. The
stochastic generalization ot the problem is described in Chapter V.

The basic components of a power system are thermal and hydro plants.
The mathematical representation of these components is given in
different parts of this chapter. Section 2.2 considers the thermal
plants, their production costs and the constraints introduced in the

' model. Section 2.3 studies the hydro plants and reservoir dynamics. The
modelling of rivers is also discussed in that section and the
constraints are explained there as well. The electric demand and the
corresponding constraints are discussed in Section 2.4. Finally, in

Section 2.5 a piecewise linearization of the model is proposed.

2.2 Thermal Plants Formulation

i As mentioned in Chapter I, the most important economic consideration |
- is to produce electricity at the lowest operation cost. Consequently, a

minimum use of thermal energy over the whole time horizon is desirable.
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For the remainder of this thesis, this horizon will be characterized by
a finite, but possibly very large number of periods indexed by k=1,...,K
(e.g. the periods may be months aud the horizon be one year). The cost
function Ck(Hek) of thermal energy during period k is assumed to be

convex as shown in Figure 2.1, which means that it can be written as

It s

F = Ck(Hek) (2.1)

k=1

The electric pfoduction of a thermal plant is limited. For this
reason, bounds are assumed on the thermal energy Hey and are expressed

as
0 < Hey < He 3 k=l,...,K (2.2)
where ﬁe is the capacity of the thermal plants (upper bound).

2.3 Hydro Plants Formulation

The hydro models described in this section consider plants in series
only or plants in series and parallel. Two or more hydro plants on the
same stream constitute a series arrangement as shown in Figure 2.2. A
series and parallel arrangement is defined as two or more plants on
different streams con#erging into another which may have several
downstream plants as shown in Figure 2.3. In addition, it is assumed

that a reservoir is associated with each plant.

2.3.1 Water Continuity Equations

Let Xp4; be the storage of the reservoir at the end of period k.

This storage is equal to the volume X, at the beginning of that period
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plus the difference between the inflows Yy and the outflows during that
period. The inflows (rainfall, snow and melted snow) form the only input
to the model, whereas the cutflows consist of the discharge Uy from the
reservoirs and the volume V, discharged through the spillways. Reservoir
levels vary throughout the year between their lower and upper bounds.
Bounds also exict on Uy and Vj.

Taking all these considerations into account, the water continuity

equations (or reservoir dynamics) can be represented by the following

difference equations

X1 =X - MU - TV + Y 5 k=1,...,K (2.3)

and the bounds ar= represented by

X € Xgep $X 3 k=l,.000K (2.4)
00U, <U 3 ksl,...,K (2.5)
Vg 20 ;5 k=l,...,K (2.6)

where T| and T, are matrices dependant on the physical structure of the

hydroelectric installation.

Example

Consider the four reservoir system shown in Figure 2.4. As assumed
previously a reservoir is associated with each plant, therefore the
water continuity equations become

Xier1 = Xix - Ugg - Vig *+ Yik (2.7)
Xon+l = Xo - Ugy - Vo + Upge + Vi + Yo (2.8)
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X3k+1 = X3k - Uz - Vg + Y3i (2.9)

o+l = Xake - Uske = Var + Uz + Vog + Usgpe + Vg + Yy (2.10)

where the subsripts 1,...,4 denote the reservoir numbers.
Equations (2.7) to (2.10) can be rewritten in condensed form as

equation (2.3) with

2.3.2 Hydroelectric Generation

The electrical energy that can be generated from the potential
energy of the water stored in a reservoir is a function of both the
released water volume U;, and the hydraulic head h;, of the reservoir i
during the period k. The head h;, is not an independent variable but a
function of X;y, the content cf the allied reservoir. It follows that
the production Hik(xik’uik) of plant i in period k is usually given by

the following equation
Hik =Qa . ri(hik,Uik) . hi.k . Uik H i=1,...,n; k=1,...K; (2.11)

where a is a constant and ri(hik’uik) denotes the plant efficiency.

The total generation by n hydroplants is then:

n
Hie (o Uge) = 2 Hype Xy, Usied 5 k=1,..0,K (2.12)
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It is important to recall that for long-term hydro scheduling, the
variation of the head with respect to the storage can be assumed

constant {Hanscom, 1976; Read, 1979].

2.4 The Electric Demand

Figure 2.5 shows how the load (the demand) pattern may look. In this

figure d, denotes the load in MW, and dey the energy demand for period k

P
in GWh. Usually, it is necessary to divide the load pattern into time
intervals as shown in Figuic 2.6 assuming of course that the load is
constant during each interval.

The need to meet the demand during each period will result in the

following energy balance constraints

He (X, Uy) + Hep = dey ;3 k=1,...K (2.13)

These constraints are the only coupling constraints between the
hydro and thermal systems. It can be seen that de, has to be satisfied
in each period of time. In other words, if the hydroelectric generation
is not sufficient the thermal source of energy should then be used in
order to meet demand.

Finally, it is assumed that the demand dej is known at the beginning

of the operating horizon.

2.5 Linear Model
A complete linear model is obtained once the thermal production cost
Cy(Hey}) and the hydroelectric generation function  Hp(Xy,Ug) are

linearized. As shown in Figure 2.1, the cost Ck(Hek) is a convex
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function. This function can be approximated by the piecewise linear
curve illustrated in Figure 2.7. This linearization introduces the

following additional equations

M
Cx(Hey) =m§1am.ﬂgmk = aTHg, ; k=1,...K  (2.14)
i T
Hep = L bp.Heme = bTHg s k=l,..., K (2.15)
0 < Hg <1 ; k=1,...,K  (2.16)

where M is the number of line segments forming the grid of the piecewise
linear cost function. al =[ aj,...,ay] and bl =[ by,...,by] are the
lengths of the resulting intervals on Ck(Hek) and Hey axis, respectively
(Figure 2.7). Hgy = [ Hgl,...,Hgm]T is a vector of special variables or

grid variables defined as follows

For Hek in interval m

Appendix A contains more details on the piecewise linearization.
Assuming constant head for all reservoirs, the hydroelectric

generation can be written as

n
B (X, V) = 03Ujc = oTUy s k=1,...,K  (2.17)

|
where pT = [ P1se- .,pn] is the vector of generation characteristics for |
|
|
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the hydro plants. This wvector will be assumed constant over the
operating time horizonm.

In compact form, the complete linear model can be written as:

min F =k§1{c al Hgy} (2.18)
Subject to:

X1 = K - Tl - ToVp + Y s k=1,...,K (2.19)
pTUy + Hey = dey s k=1,...,K (2.20)
Hey - blHgy =0 ; k=1,...,K (2.21)
X € Xy € X s k=1,...,K (2.22)
0sU <U 5 k=1,...,K (2.23)

Vg 20 ;3 k=1,...,K (2.24)
0 < Hey < He s k=1,...,K (2.25)
0<Hg <e ; k=1,...,K (2.26)

where C is the cost »f each GWh produced from thermal plants, and el

={1,...,1] is a l by n unit vector.

2.6 Conclusion

This chapter has presented the general model for the long-term
multireservoir hydrothermal systems. The model variables are all
continuous, whereas the three kinds of constraints are either on the
thermal or on the hydroplants with only one coupling constraint between
the hydro and thermal generation.

The model developed is nonlinear due to both the objective function
(prodvction costs) and the hydroelectric generation constraints. For
these constraints, it is assumed that the water head remains constant

and that the hydro generation is only a function of the released water.
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Although this nonlinear model <can be solved directly, a
linearization was proposed to alleviate the computation of the solution.
This technique will be discussed in the next chapter and some

optimization results will be presented there.
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CHAPTER III

SOLUTION TECHNIQUES FOR THE DETERMINISTIC PROBLEM

3.1 Introduction

The models developed in Chapter II can be solved using different
methods. Nonlinear programming can be used for solving (2.1)-(2.13). The
linear model of (2.18)-(2.26) can be solved by linear programming.
Dynamic programming is applicable to both models.

This chapter describes the application of these methods to the
solution of the multireservoir long-term scheduling problem. The dynamic
programming formulation is discussed in Section 3.2. In Section 3.3, a
nonlinear programming algorithm is presented, and a linea: programming
method is covered in Section 3.4, The last technique is selected to
solve the deterministic linear model. In Section 3.5, a modified linear
model is proposed and, in Section 3.6, an application to a multireser-

voir system is presented.

3.2 Dynamic Programming

As discussed previously, dynamic programming is a powerful tool for
solving water resources systems problems. It has the advantage of
effectively decomposing highly complex problems with a large number of

variables into a series of subproblems which are solved recursively. 1In
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order to illustrate how dynamic programming can be applied to

hydrothermal scheduling problem, the following nonlinear model is

considered:
K .
min F = L Cy(dey - Hy (X Uy ) (3.1)
subject to

Xee1 = X = Tl - TV + Yy (3.2)
X S Xpyp S X (3.3)
0<U, €U (3.4)

Vg 20 (3.5)

where Cy(dey - Hk(Xk,Uk)) is the production cost for period k.

The model (3.1)-(3.5) is identical to the nonlinear one presented in
Chapter II with the difference that the objective function Ck(Hek) is
written in terms of the demand dep and hydroelectric production
He(Xg,Uy) in period k.

Let Jy(Xy,Uy) be the production cost for period k with the vector Xy
representing the storages (states) at the beginning of period k and the
vector Uy the releases during the same period. Then (3.1) can be written
as [Nemhauser, 1966 ]:

Fr(Xg) = min [Je (X, Up) + Py (X)) (3.6)
Uk
where Fp,1(Xp4q1) is the optimal production cost from period k to period

K+1. At the end of the horizon,

Fg+1(Xg41) =0 (3.7)
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For the long-term model, the state Xji, i=l,...,n at the begiming
of the time horizon is known.

Even if the state X;, of reservoir i can take an infinite number of
values between the lower and upper bounds, in practice the number of
states s fixed at a finite value in order to reduce the computation
time. Therefore, it will be assumed that the state X, can take one of

the following values only:

¥=01k<02k<03k< ...<Omk=;{ (3.8)

Now, let wus consider the case of a single reservoir. The state
variable (storage) after being discretized into a number of feasible
states is shown in Figure 3.1. Moreover, it is supposed that the inflow
sequence is given and that the spilling term Vp is temporarily

ignored, then the continuity equation (3.2) becomes
xk+1 = Xk - Uk + Yk (3.9)

If Xy;,; and Xy are known, Up can be directly computed from the above
continuity equation. The optimization can thus be made with the proper
values of Uy. The problem of interpolation is also avoided since the
U 's are computed by fixing the states Xp4; and Xi. Solutions are then
imbedded in the discretized states. Moreover, the infeasible transitions
are automatically discarded in the solution process. The procedure for
determining the optimal schedule and the minimum operation cost is shown
in the flowchart of Figure 3.2.

Next, when two reservoirs are in cascade, the recursive equation
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=

{a} = All feasible states
in period K

Choose a feasible
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Figure 3.2 Backward dynamic programming flowchart
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(3.6) can be rewritten as:

Fk(xlk’XZk)?ini;‘“mUk(xlk’XZk'Ulk’UZk) + Fr41(Xq, k415¥0, k1)) (3.10)
1k U2k

and in a similar way, for n cascaded reservoirs:
Fk(Xlk, .o ’Xnk) = minimum{Jk(Xlk, cee ,Xnk,Ulk, e ’Unk) +

Fk+1(xl,k+1"“’xn,k+1))} (3.11)

Unfortunately, equation (3.11) cannot be solved directly for large
values of n because computation time and storage requirements become
excessive then. According to Turgeon [IREQ-2291, 1980], problems should
not have more than four state variables (four reservoirs) in order to be

solvable by dynamic programming without difficulties.

3.3 Nonlinear Programming

Nonlinear programming has not gained as much popularity as dynamic
programming in water resources system analysis. The solution of
large-sca.e nonlinear problems are not generally easy to find within
reasonable computation time. However, the long~term nonlinear model
(2.1)-(2.13) can be solved using the 'conjugate gradient" method
[Gagnon et al., 1974; Hicks et al., 1974], or the '"reduced gradient"
approach [Hanscom et al., 1976], or even the 'dual variables" or
"Lagrange multipliers"” approach [Haimes, 1977].

To illustrate how nonlinear programming can be applied to hydrother--
mal scheduling problems, the nonlinear model is considered for the par—
ticular case of a single reservoir. The solution method proposed here is

the '"dual variable'" aporoach. For that purpose, the model can be written
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as
min F = 12( Cy (Hey) (3.12)
k=1
subject to

Xe41 = Xk - Uk - Ve + Y (3.13)
a.r(hy,U) . hy .Uy + Hep = dey (3.14)

X € Xiqp € X (3.15)

0sU, <U (3.16)

0 < Hep < He (3.17)

Vi 20 (3.18)

As previously mentioned, the production cost Ck(Hek) and the
hydroelectric generation a.r(hk,Uk).hk.Uk are nonlinear.
In its general form the nonlinear programming problem can be

modeled as

m}i(n £(X) (3.19)

subject to

g(X) 20 (3.20)

in which X is a vector of decision variables, and f(X) and g(X) are
real-valued and vector-valued given functions, respectively.
The dual problem is solved in two steps. First, the Lagrangian

associated with the constrained problem is defined as

L(X A) = £(X) - Ag(X) (3.21)
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where A (20) is the vector Lagrange multiplier.

Secondly, the dual function is defined by the equation
£()= min L(X,2) (3.22)
and the solution for the dual problem associated with the original

(primal) problem (3.19)-(3.20) requires the maximization of the function

£(A) over the set A 2 0 ; that is:

max £()) (3.23) !
A20

The optimal solution is obtained when
A A
£(A)= £(X) (3.24)

A A
in which A and X are the optimal values sought [Lasdon, 1970;
Luenberger, 1973]. The procedure to determine the optimal operation

schedule is shown in Figure 3.3.

Now by applying this formulation to the model of (3.12)-(3.18) the

Lagrangian is found to be:

K
Ligl {Ck(Hek)-klk(Xkﬂ 'Xk+Uk+Vk"Yk) ")\Zk [u . r(Hk ’Uk) . Hk"Uk+Hek~dek]

-A3k(xk+1—¥)—xak(x—xk+l)-ASk(6~Uk)-A6k(He—Hek)} (3.25)

fhe dual problem associated with this model is:
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s.t.

Z < f(X)-x g(X)

to obtain
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min £(X)-A g(X)
X
to obtain

Optimal Solution
X and A

Figure 3.3 Dual variables flowchart
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( £(A)= max min L (3.26)
A
subject to

A20 (3.27)

Finally, it should be pointed out that nonlinear programming
methods have been criticized for inconsistent convergence to acceptable
results in real situations and long computing time requirements {Yeh
1985]. Furthermore, the mathematics involved in nonlinear models are

usually very complex.

3.4 Linear Programming

In water resources applications, linear programming has been widely
used for the optimization of complex reservoir systems with large number
of wvariables and constraints. This approach is justified by the

following facts:

1- The optimization process is usually fast and does not require
large computer memory and time.

2- The dual formulation can be used to solve the problem if the
number of constraints exceeds the number of decision
variables. Indeed, it can be shown that every linear program
has a dual formulation [Chvatal, 1983; Murtagh, 1981;
Nazareth, 1987].

3- It is possible to solve a modified problem using the results
obtained from the original problem. This property is very
beneficial in solving the linear model of (2.18)- (2.26) for

( several inflow sequences.
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4- Commercial computer programs, such as MPSX/370 by IBM, are

widely available.

On the other hand, the linear model (2.18)-(2.26) has the following
drawbacks:

1- Approximating the nonlinear objective function (2.1) by the
piecewise linear function (2.18) introduces some inaccuracy.
There is no fixed rule for selecting either the optimum grid
size or the optimum number of grids to improve this approxi—
mation. However using large grid sizes may produce too inac—
curate results, while specifying a large number of small grid
points may prove to be unnecessary [MPSX, 1979].

2- The hydroelectric generation of plant i in period k is given
by:

Hie(XioUgi) = PiUsx (3.28)

Since the production is no longer a function of the water
head when (3.28) is wused, the advantage of emptying all
reservoirs simuitaneously in order to keep the head high at
each plant disappears. As a result, a bang-bang solution,
shown in Figure 3.4, in which a plant is run at maximum
capacity in one period and shut down in the next is obtained.
Such a solution is obviously unacceptable in practice. For
this reason, a modi fied linear model is proposed in the next

section.
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3.5 Modified Linear Mcdel
As mentioned previously, the bang-bang solution cannot be imple—
mented in practice. Therefore, to eliminate this form of solution,
penalty terms were added to the objective function in order to penalize
any variacion in the production of a plant from one period to the next.

Thus, the objective (2.18) can be stated as:
K K-1 n
mink§1{0°aTH8k} + a kﬁl izlluik+1'Uik| (3.29)

where a 1is a constant having a small value compared to the production
cost C (< 10%7)
The function (3.29) can also be rewritten in the linear programming

standard form as:

in © (C.aTHg} + a L 3 (3.30)
min x: a Zs .
k=1 e k=1 i=1 %

Where z;) is defined by:

Usp+1 - Ysk - 25k $ O (3.31)
Uik+1 - Uik + Zik 20 (3.32)
zip 20 (3.33)

n
Letting eTzk = E ziy» where eT=[l,l,...,1], then the complete linear

i=1
model used to determine the optimal schedule becomes:

in F= ¥ {C.aTHgy) + a5 el
= . a e Z
i EE et d ek k=1° k
subject to

Keey = X = Tl - TV + Yy
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pTUk - bTHgk = dey

Uepr =~ Ug - 2 0
Uggp - Ug + 2 20
X € Ky € X
0sU, <U (3.34)
0 <Hgy < e

Ve 20

zp 20

k=1,2,....,K

The next section illustrates the solution of this model with IBM's

MPSX/370 package for a four reservoirs system.

Reservoir) Reservoir | Plant Average
Installation | Capacity |Lower bound} Capacity]| Efficiency
(hm3) () [(m3/sec) | ( KWh/m3)
LG4 34000 8000 2581.9 0.2808
LG3 25200 6000 3432.9 0.1864
EOL 37500 10000 3560 0.1742
LG2 19370 5000 5954 0.3249

Table 3.1 Characteristics of the installations

3.6 Sample Application

The model of (3.34) is used to determine the optimal solution of
Hydro Québec's installations on La Grande river. These installations are

schematized in Figure 3.5 and their main characteristics are given in
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Figure 3.5 La Grande river intallations
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Month Inflow 1l|Inflow 2|Inflow 3]Inflow 4 |Demand
(m3/s) | (m3/s) | (m/s) | (m¥/s) | (Gwn)
May 1088 1095 2291 830 10275
June 1221 919 1348 800 8705
July 988 597 805 599 8563
August 993 686 1102 577 9316
September| 1093 746 1196 630 9316
October 853 616 1005 560 11487
November 728 480 758 469 12327
December 553 368 513 323 16080
January 380 236 325 216 17530
February 289 179 242 162 14869
March 225 142 190 123 14869
April 164 119 209 89 11727
Table 3.2 Inflow and demand sequences.
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Table 3.1.

The planning horizon considered here is a year with monthly periods
starting in May. The reservoir levels at the beginning of May are set at
their lower bounds shown in Table 3.1. The inflow sequences and the
demand are given in Table 3.2 and illustrated in Figure 3.6 and Figure
3.7, respectively.

The optimization results will obviously depend on the choice of the
constant a in the penaity term. There is no fixed rule to choose a but
its value should remain small compared to the cost of the thermal
energy. For this reason, different optimization results are shown for
different values of a. Figures 3.8 and 3.9 illustrate the reservoir
levels and the outflows when a is set equal to 0. It is clear that this
case corresponds to the linear model of (2.18)-(2.26) in which no
penalties are imposed. In this instance, big variatioas in storage
levels and outflows can be observed from one period to the next.
Nevertheless, these variations can be greatly reduced by choosing even
just a small value for a. This is shown in Figures 3.10 and 3.11 where a
= 0.02. In that case, the water is stored from May to October, and then
released from November to April. The situation is almost the same for a
= 0.1 as shown in Figures 3.12 and 3.13. However, larger values of «
increase the value of the objective function. Consequently, for a =
0.02, the thermal energy needed is 41373 GWh, whereas for a = 0.1, it
reaches 42318 GWh.

Figures 3.11 and 3.13 show high outflows (released water) from
October to April, These periods correspond to the high energy demand, as
illustrated in Figure 3.7. However, a very large portion of the natural

inflows is received between May and October. That is the reason for the
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accumulation of water in the reservoirs during these periods, as shown
in Figures 3.10 and 3.12,

It 1is not necessary to have the same a for all the reservoirs.
Figure 3.14 illustrates a case where the a for reservoirs LG4, LG3, EOL
and LG2Z have been set equal to 0.001, 0.002, 0.001 and 0.003,
respectively. It can be seen that the outflows are very high during the
periods of peak demand, and 1low for the periods of high inflows. An
important feature of Figure 3.14 is the smooth transition in operation
characteristics between two successive periods, as compared to Figure
3.9 wvhere a was set equal to 0 (that is withcut penalty terms) for each

reservoir.

3.7 Conclusion

The solution methods for solving the deterministic reservoir
problem, namely dynamic, nonlinear and linear programming, were
explained in this chapter. The list technique was selected in order to
be able to solve the problem with IBM's MPSX/370 package. The optimiza-
tion process was found to be very fast. It took only 0.02 minutes of CPU
time and 203 iterations on an IBM-3081 to solve the problem with an
horizon of twelve periods.

A penalty factor a was introduced in the model to reduce the
variations in the outflows. This constant cannot be determined according
to fixed rules. For this reason, different optimization results for
different values of a were shown. These results indicated that a should
not exceed 107 of the cost of thermal energy, otherwise the objective

function will be very far from its actual value with a set equal to

Zero.
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Finally, once a 1is fixed, this solution technique can be used to
solve the problem for a large number of sequences of natural inflows and
then the principal components analysis can be performed. This subject

will be explained in the next chapter.
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CHAPTER IV

PRINCIPAL COMPONENTS ANALYSIS (PCA)

4,1 Introduction

As in the implicit approach, the deterministic model developed in
the previous chapter is solved for several inflow sequences. The results
of these deterministic optimizations are then subjected to a Principal
Components Analysis (PCA) to find out whether the problem could be
wodeled with a fewer number of variables.

Although n components are required to reproduce the total system
variability, very often most of this variabiiity can be accounted for by
a small number p (p<n) of the principa. components. In this case, the
last n-p components, having a very small variance, can be replaced by
their mean values without a significant effect on the solution of the
problem.

The analysis of the principal components is often an intermediate
step in much Jlarger investigations. For example, principal components
may be inputs to multiple regression [Johnson and Wichern, 1982; McCuen
and Snyder, 1986], or, as in our case, inputs to stochastic dynamic
programming.

This chapter presents the explanation and the application of the

principal components analysis. In Section 4.2 a theoretical development
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is formulated to transform the original n var ables into a set of n new
components. Section 4.3 describes the selection criteria for the number
of components. Then Section 4.4 proposes an application of this theory
to a four reservoir system. Finally, in Section 4.5, a discussion of the

results is presented.

4,2 Principal Components Analysis

Assume that the deterministic optimizations for m flow sequences
provide m values for the states xik yi=1,2,...,n, k=1,2,...,K. Since PCA
is applied to one period at a time, let us consider period k only, and
denote by Z; the optimal value of Xj..i=1,2,...,n. Naturally, Z; is a
random variable since it depends on past river flows, which are random
variables themselves.

Now 1let the random vector ZT=[Zl, Zs.++»Z,] have the expected
vector E(Z) = u and the covariance matrix E(Z-u)(Z-u)T = W. This matrix
is positive definite. Since principal components depend solely on the
covariance matrix (or the correlation matrix) of Z, we can set, without
loss of generality, E(Z) = u = 0.

The m values of Z; are similar to those in table 4.1. Given those
data, the goal of principal compcnents analysis, as explained by Caillez
[1984], Gnanadesikan [1977], Gendre [1976] and Kendall [1980]), is to
search for n linear combinations of the type:

El=b1TZ=b11Z1+b12Z2+ ..... + bann

i
o
N
!
N

Ez = b21 Zl + bzz Zz +oeenn + bzn Zn

(4.1)
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=
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or in a general form:

n

By = by 23 ¥ byp Zp +oo.¥ byp I = B by 2y = by TZ (4.2)
Variables
Zy Zyeeiinienn Z,
—
L} Zyy 29y Zn1
21 217 222 Zn2
m | Z1p Zop Znm

Table 4.1 Results of deterministic optimizations for period k.

These equations have the following characteristics:

i) £y has the largest possible variance;
ii) E2 is orthogonal to &y (uncorrelated) and has the largest
variance after £1;
iii) £ 1is orthogonal to §£; and g9 and has the largest variance
after £1 and E9;

iv) and so forth for the components £4,E5,....,Eq-

In other words, the linear combinations presented above allow a set

~ of wvariables: 2;,29,...,Z,, to be transformed into an equivalent set of

variables: E£y,£9,...,6, that have two interesting attributes:
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i) They are uncorrelated, and

ii) They are in decreasing order of variance.

Letting VAR denote the variance, and COV the covariance, it follows

from equations (4.2) that:

VAR(E;) = VAR(b;T 2) = E(b;T 22T by) = 5,T W by; i= 1,...,n  (4.3)
COV(E;,£5) = COV(bsT Z,b;T 2) = B(byT 22T b3) = bsT Wb
i=1,...,n

j=1,...,n (4.4)

It is easy to show that the variances VAR(Ei) are the diagonal
elements of the covariance matrix.

The first principal component £; is equal to the linear combination
with the maximum variance. That is, it maximizes VAR (El) = blT Wby. It
is clear that VAR can be increased by multiplying any by by some
constant. To eliminate this indeterminacy, it is convenient to restrict

attention to coefficient vectors of unit length. Thus, we define

i) First principal component = linear combination blT Z that

maximizes VAR (blT Z) subject to the constraint blT by = 1.

ii) Second principal component = linear combination bZT Z that

maximizes VAR (sz Z) subject to sz by =1 and COV(blT Z, sz Z) = 0,
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i
i 1ii) ith principal component = linear combination biT Z that maximizes
VAR (b;T 2) subject to b;T by =1 and cov (b5T 2, b3T 2) = 0 for j <.
4,2.1 First Principal Component
The mathematical model for this component is obtained by
choosing by that maximizes
5T W by (4.5)
‘i Subject to
bl by =1 (4.6)
Using the Lagrangian method,
L(by) = by T W by - A (byT by-1) (4.7)
8L =2 Wb - 23 b =0 (4.8)
by
where Ay denotes the Lagrange multiplier unknown for the moment.
The solution to problem (4.5) - (4.6) is given by:
W bl = )\1 bl (409)

This last equation will no doubt be recognized as being the general
form of an eigenvalue problem, in which b; is the eigenvector
corresponding to the eigenvalue A; of W. Since (4.6) must still be
respected, (4.9) can be rewritten

Ay = b;T W by = VaR(byT Z)= VAR(E) (4.10)
- e

-

Choosing £ to maximize the variance means choosing the values of
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byysby2s+-.sby, composing the vector b; that corresponds to the largest

eigenvalue iy of W [Johnson and Wichern, 1982].

4,2,2 Second Principal Component

The value of b; will not be set equal to the value of the
eigenvector corresponding to the second largest eigenvalue of W, because
it is not known at this point whether the variable §{, thus obtained will
be independent of £;. Instead, the following optimization problem must

be solved.

max b,T W by (4.11)
subject to

byl by = 1 (4.12)

biTwby, =0 (4.13)

Constraint (4.12) is added simply to ensure that the solution
obtained is unique. Constraint (4.13), on the other hand, is set to
guarantee independence between E; and £5. It is important to note that

cov (b;T z, bT2) =0
means that b; is orthogonal to b2 or, in an equivalent form

b;T by =0 (4.14)

Once again the Lagrangian method gives

s e 3T
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L (bp) = byT Wby - Ay (bpT by - 1) - 20 by T Wby  (4.15)

where A and u are the Lagrange multipliers.

oL = 2W b2-2)\2 bz'qub1=0 (4.16)
3b2

Multiplying (4.16) by byT gives
BT Wby - A byTby -ubyTwny =0 (4.17)
Since (4.13) and (4.14) must hold, (4.17) can be rewritten:
ub T Wby =0 (4.18)
Since (4.10) must also remain true, (4.18) becomes
MAp =0 (4.19)

Remembering that A; is the largest eigenvalue of W and is greater

than zero, we can infer that
u=0 (4.20)
Thus (4.16) can be rewritten as
Wby = Ay by (4.21)

It can also be noted that (4.21) has the same form as (4.9), so that




A
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the solution is

Ay = bpT W by = VAR(byT 2) = VAR(E)) (4.22)

Therefore, b, can be set equal to the value of the eigenvector
corresponding to the second largest eigenvalue of W.
It can be shown that by can be set equal to the third largest

eigenvalue of W, and so forth until the nth

component.
Therefore the matrix B = [by,bg,....b,] will have the eigenvectors
as its columns. An interesting property of matrix B is that it is

orthonormal, which means that if

g =BT z

then (4.23)

]
]

B g

Therefore, once the matrix B has been determined for every period k,

the relations

n
Xik =j§1bjik E_]k H i=1]...,0n 3 k=2,...K (4.24)

become known as well. The original problem with state variables X;, can
therefore be transformed into a problem with state variables &4, using
(4.24). Naturally, not much will be gained by doing so since this will
simply transform a problem of n variables into another problem of n
variables. Therefore, reduction criteria are needed. However, before

establishing any of them, an important result should be emphasized.




80

4.2.3 Lemma
Suppose 7T = [Zl.Zz,...,Zn] has W as covariance matrix with

the eigenvalue-eigenvector pairs (Ay,b1),(A,b3),...,(A;,b,) where
A12Ap2...2A> 0. Let &) = byTZ, £5 = byTZ,...,6, = b,TZ be the principal

components. It follows that
n n
_ZIVAR(Zi) = o011 + 022 o000+ %n =.21VAR(Ei) = Al + A9 +oou..t An
1= 1= S

where o034, i=l,...,n are the diagonal elements of the covariance

matrix W.

The reader is referred to Appendix B for a demonstration of the lemma

which states that

total population variance = 011 +022 *...t oy = AL+ A +oot A (4.25)

and consequently, the proportion n; of the total variance due to the jth
principal compornent is
A
ng = si=1,...,n (4.26)
ApFAgt. Ay

If most (for instance, 80 to 907) of the total population variance,
for large n, can be attributed to the first p (p<n) components, then
these p components can ''replace" the original n variables without an

appreciable loss of information.

4.2.4 Example

Suppose the random variables Z;, Z;, and Z3 have the

covariance matrix
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1 -2 0
W= |-2 5 0
0 0 2

L J

It may be verified that the eigenvalue-eigenvector matrices are

[ 5.83 0 0 -
A= 0 2.00 0
0 0 0.17
- .
0.383 0 0.924-
B = -0.924 0 0.383
0 1 0 J

Therefore the principal components become

Ey = byl Z =0.383 Z; - 0.924 2,
Ex = byl 2= 24
E3 = byl Z = 0.924 2 + 0.383 2,

The variable Z4 is one of the principal components because it is
uncorrelated with the other two variables

Equation (4.10) can be demonstrated from

VAR(E;) = VAR(0.383 Z; - 0.924 Zj)
= (0.383)2 VAR(Z1)+(-0.924)2 VAR(Z;)+2(0.383)(-0.924) COV(Z;,Z5)

=(0.147)(1) +(0.854)(5) - (0.708)(-2) = 5.83 = A

-
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and the independence among the components can alsc be shown by verifying

that the covariance is equal to zero

COV(Ey ,E3) = COV(0.383 2;-0.924 Z5,0.924Z1+ 0.383 Z,)

(0.383) (0.924) COV(Zy, Z;) + (0.383)2 Cuv(Z,, Z,) -

(0.924)2 cov(zZy, 2,) - (0.924) (0.383) COV(Z,, Z,)

(0.354) (1) + (0.147)(-2)- (0.853)(-2)- (0.354)(5) = 0

Moreover it is readily apparent that

011+022+O33=1+5+2=)\1+A2+)\3 5.83 + 2.000 + 0.17

=8

Finally, it can also be seen that the fraction of the total variance
related to the first principal component is 737 (given by A{/(A{+Xy+)3)
= 5.83/8 = 0.73). Furthermore, the first two principal components
account for a 987 ( (5.83+2)/8 = 0.98 ) of the total variance. Since, in
this case, the component £ has a very small variance, replacing it by

its mean should not have a significant effect on the solution.

4.3 Selection of the Components

In the method proposed in this thesis, a criterion based on the
component's percentage of the total variance is chosen, although other
criteria were also proposed before.

1- Scree test of Cattell [Gendre, 1976]
This test starts by plotting the eigenvalues in descending order
of magnitude, as shown in Figure 4.1. Then the components located to the

left of the point where a significant change in slope occurs are
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selected. In Figure 4.1, for instance, the first two components will be
selected.
2- Kaiser's rule [Cooley and Lohnes, 1971]

Kaiser has stated a variety of compelling arguments for the
selection of the p components corresponding to the larger than unity
eigenvalues of the correlation matrix. This rule seems to work well when
the number of sequences m is small or moderate. However for very large
samples it may be worthwhile to take a value of p larger than the one
prescribed by Kaiser's rule.

3- Bartlett's rule

Bartlett's rule provides a mean for verifying whether the
determinant of the correlation matrix, after extraction of the p
component, is zero or not. This, in turn, indicates when the factoring

should stop. Then, after the components corresponding to the roots Ay,

Agseens Xp have been extracted, we have:
2 1 2
X“0.5(n-p) (n-p-1) = ~[(m-1)- : (2n+5) - 3 pl In Xy, (4.27)
where
Xn-p = R}
P
T

SARNI(C -jglxj)/(n-p)ln'r’}

and |R| is the determinant of the correlation matrix
n is the number of variables
p 1is the number of components selected

m is the total number of sequences (the samples of data).
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It should bz mentioned that this rule is the extension of Bartlett's

sphericity test.

1
x%0.5(n2-n) = “[(m=1)- = (2045)] 1n [R|

A nonsignificant chi-square xz at some reasonable 0 £ a £1 level
indicates that the matrix should not be factored since the vector
variable may already be trrated as a set of uncorrelated elements.

Geometrically, the data can be plotted as a set of m points in a
n-dimensional space. Moreover, if the covariances or the correlations
are very important, the data are then within an ellipsoid centered at
the mean values E[X] of the n variables. Otherwise, they are within a
sphere centered at E[X]. Figure 4.2(a) shows the case of a 2-dimensional
space with high correlation. In this case the eigenvalue A; is greater
than A,. Therefore the principal components are well determined. They
lie along the axes of the ellipse in directions perpendicular to those
of maximum variance. Figure 4.2(b) shows the case of weak correlation.
Here the eigenvalues A; and A9 have almost the same values. Therefore,
the axes of the ellipse, or of the circle in this case, are not uniquely
defined and can lie in any perpendicular directions, including the
directions of the original coordinate axes. Thus the principal
components can lie in any two perpendicular directions, including those
of the original coordinate axes. When the eigenvalues of the correlation
or covariance matrix are nearly equal, the variation is homogeneous in
all directions. It is not possible then to represent the data in fewer
than n dimensions.

To illustrate the criterion for the selection of the components, let




(a)

Figure 4.2 Principal component
(a) A > A
(b) AL = A
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us assume that almost all the data are located within an ellipsoid. This
means that the first few components of £, account for a very large
percentage of the variance of the observations, and that the number of
variables can consequently be reduced. For example, suppose that §&qy,
the first component of £y, accounts for 857 of the total variance of the
n variables, &9, for 107, and the remaining n-2 for 57 only. Then it can
be inferred that each of the last n-2 components has a very small
variance. Therefore replacing these components by their mean values
should not have a significant effect on the solution. Thus equation

(4.24) can be approximated as

2 n
ik =.E) Pjak Bjk *iE3 Piik Hik

2
=Z; itk gjk ¥ Poik (4.28)
where Hik is the mean of Ejk and byi, a constant equal to
b b
553 Pitk Mike

Finally, the problem of dimension n is reduced to a two-dimensional

problen.

4.4 Sample Application

Principal components analysis will now be applied to determine
the reduced number of state variables for the installations shown in
Figure 3.5. The first step is to solve the deterministic model developed
in Chapter III for m different flow sequences. Since the historical flow
record consists of thirty years of monthly inflows at each site,

streamflow synthesis is used to provide several equally likely future
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sequences of streamflows (50 sequences). For each streamflow sequence,
the problem is first solved deterministically to find the optimal
operating policy. The results of these deterministic optimizations are
then subjected to a principal component analysis to find out the number

of components to retain.

4.4.1 Streamflow Synthesis

The statistical analysis of the historical flow record shows
that:
i) The inflow at site i during month k is correlated to that
of month k-1 but not to those of the previous months;

ii) The inflow at two different si*es during month k are

highly correlated.

As a result, a Markovian linear synthetic inflow generator of the

form
Yk = Ak + Bk Yk-l + Ck wk (4.29)

was used ([Pronovost, 1974}, where Yy represents a column vector of
random variables of inflovs for month k, Wy a column vector of white
noise and Ay a column vector of constants; By and Cp are square
matrices. The coefficients Ay, By and Cp, are determined from the
historical record of inflows. Then it can be shown that (see Appendix

B.2 for the demonstration)

Ak = Mk - PkT Rk"l—l Mk-l (4.30)
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Bk = PkT Rk‘l—l (4.31)
Ci X = Ry ~ P T Ry 171 By (4.32)

where M, = E[Y} ] represents a column vector containing the mean values
of Yi, R = E[(Yk-Mk)(Yk-Mk)T] the correlation matrix for different
sites for month k, and P = E[(Yk-l'Mk-l)(Yk'Mk)T] the correlation
matrix for the different sites, for months k-1 and k.

Unfortunately equation (4.32) does not give the matrix Cp directly.

However it is easy to show that (see appendix B.2)
Ck = Lk Ak]‘/z (4.33)

where L, is the matrix of eigenvectors for Cy CTk and Ay is the diagonal
matrix of eigenvalues for Cy CTk.

A flow chart of this process is shown in Figure 4.3 in which
synthetin inflows are generated for one year on a monthly basis. The
historic flow record used to determine the coefficients Ay, By and Cy
spans from 1950 to 1979 (Table C.1 in Appendix C) whereas the synthetic
inflow generated spans from year 1 to year 50 as shown in Table C.2

Finally, it is im;;ortant to note that the statistical characteristics
of the synthetic inflows are very close to those of the historic. Thus,
even if the sequences themselves show big differences, their mean values
are preserved as illustrated in Figures (4.4)-(4.7). In addition, it
will be shown later in this chapter that the correlation among the sites

is very high as espected.
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4.4.2 Deterministic Optimization for the 50 Inflow Sequences

The synthetic inflow sequences generated are used as inputs
for the IBM's MPSX/370 package. The time horizon for the optimization
process is one year on a monthly basis. Finally, for the fifty
deterministic optimizations, the initial storage levels are set at their

lower bounds as shown in Table 4.2.

Reservoir Initial
Storage (hm3)

LG4 8000
LG3 6000
EOL 10000
LG2 5000

Table 4.2 Initial storages

The other characteristics (lower and upper storage levels, the
efficiency of the plants and the demand) are shown in Tables 3.1 and
3.2. The penalty constant a is set at 0.01 or 17 of the cost attributed
to the thermal energy generated. The flowchart for this optimization
process is shown in Figure 4.8 while the optimal storage levels are
represented in Table C.3. Figures 4.9-4.12 illustrate the first four
optimal storage sequences of Table C.3. On those figures, the variations

in the storage levels due to the differences in the corresponding inflow
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sequences can easily be seen.

The number of iterations needed to obtain the optimal solution
varies with the inflow sequences. For example, the optimal solution for
sequence 1 is obtained after 205 iterations ox 0.02 minutes, while for
sequence 7, 249 iterations are needed with a cumulative time of 0.13
minutes. Finally, for the fifty inflow sequences, a cumulative CPU time

of 0.97 minutes is needed to perform the required iterations.

4.4.3 Principal Components

In this example, principal components analysis was applied
not only to the reservoir trajectories but alsc to the inflows since
they are correlated in time. In other words, because of relation (4.29),
the state variables for period k are Xjiy,..., X4 and Yyp_15c005  Ygp-1-
Hence, applying principal components analysis to the X's only will not
reduce the number of state variables sufficiently to permit
straightforward application of dynamic programming. Principal components
analysis was therefore appiied to the Y's also, albeit separately from
the X's. For instance, for the month of May, the percentage
contributions of the four components to the total variance of the sample

of inflows are:

100.000 0.000 0.000 0.000

and the corresponding vector of eigenvalues and matrix of eigenvectors

are:

A= [ 533351 0.096 0.078 0.062]
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r-.0.3773 -0.7371 0.0961 -0.5524

0.3796 0.2869 -0.8373 -0.2693

0.7943 0.3852 0.4573 0.1081

0.2876 -0.4754 -0.2838 0.7814
L §

In other words, let Zjy, 2p,, Z3, and Z,, be the four new
components. For the first of these components, Z;y, the percentage
contribution to the total variance is 99.9988. Moreover, Z1k is related

to the previous variables, Yigs+++s¥4ks as follow

Zyg = 0.3773 Yy + 0.3796 Yop + 0.7943 Yq; + 0.2876 Y, (4.34)

In the same way, the percentage contributions of Zoys 2 and Zgy
are, respectively, 0.000629, 0.000384 and 0.000187 and are related to

the previous Y's as follow

Zog = -0.7371 Yy + 0.2869 Yoy + 0.3852 Y4, - 0.4754 Y (4.35)
Zag = 0.0961 Yq, - 0.8373 Yoy + 0.4573 Yqy - 0.2838 Y, (4.36)
Zyg = -0.5524 Yyj - 0.2693 Yo + 0.1081 Yqi + 0.7814 Y5 (4.37)

In other form, (4.34) - (4.37) can be written as

Z = PT v (4.38)
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Then, if Y, = [865 870 1821 660] m3/sec

Z, = [2292.9 -0.303  0.110 0.462] m3/sec

It is important to note that, due to the orthonormal property cf P,

Yy can easily be obtained when Z, is known from

Yy = P 2 (4.39)

Therefore, in our example, Zj, is equal to 2292.9 m3/sec with a
variance of 533351 (the first eigenvalue Al), 7ok is equal to -0.303
m3/sec with a variance of 0.000 (the second eigenvalue A;) and so forth
for the remaining components.

Similarly, for every pericd k, the eigenvalues and the corresponding
eigenvectors are determined. The percentage contributions of the new
components to the total variance can then be deduced. Table 4.3 shows
the percentage contribution of the four components of the sample of
inflows, whereas Table 4.4 shows the percentage contributions of the
sample of storages.

In Table 4.3, the last three components obviously have a very small
variance. Therefore, the inflows to the four sites can be expressed as a
function of the first component only. For the storages shown in Table
4.4, the percentage contributions of the first three components is at
least 967 of the total variance. Hence, these components can be kept as
random variables. As a result, principal components analysis has
transformed the original problem of eight state variables into a problem

of four state variables, thereby making it solvable by dynamic




Component
1 2 3 4

May 100.000 0.00000 0.00000 0.00000
June 100.000 0.00000 0.00000 0.00000
July 99,9999 0.00005 0.000037 0.000027
August 99.9999 0.000044 0.000029 0.000026
September | 99.9999 0.000038 0.000032 0.000027
October 99.9998 0.000065 0.000044 0.000042
November 99.9998 0.00010 0.000093 0.000063
December 99.9991 0.00043 0.00024 0.00018
January 99.9972 0.0010 0.00096 0.0008

February 99.9922 0.00358 0.00257 0.00168
March 99.6838 0.00674 0.00488 0.00458
April 99.9977 0.00099 0.00074 0.000569

Table 4.3 Contributions of the four components to the

total variance of the sample of inflows.
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Component

1 2 3 A
May 64.225 32.173 2.513 1.090
June 61.742 28.662 6.086 3.51
July 59.272 27.07 9.777 3.878
August 63.46 20.364 12.488 3.689
September | 64.40 18.079 13.503 4,01
October 65.349 22.309 10.015 2,325
November 84.033 11.173 3.940 0.854
December 88.696 8.14 2.306 0.858
January 88.363 8.190 3.027 0.419
February 92.351 5.533 1.749 0.366
March 88.116 7.616 3.806 0.463
April 25.00 25.00 25.00 25.00

Table 4.4 Contributions of the four components to the

total variance of the sample of storages

105




106

programming.

However, two important remarks must be made. First the criterion
for the selection of the number of components is not fixed. It would
consequently have been possible to select only two components for the
storages and to solve a problem of three rather than four state
variables. The second remark concerns the storages at the beginning and
the end of the horizon. Since the storages at the beginning of May and
the end of April are the lowest, principal components analysis is not
necessary because the state variables are known for these periods.

Finally, the computation process for this technique is very fast.
The total CPU time required to find the principal components for the

twelve period problem was less than one second on an 1BM-3081.

4.5 Discussion

The sample of available data (number of sequences) is an important
factor in principal components analysis. In other words, by using a
population of data, the exact statistical characteristics can be
extracted. Since it is impractical or uneconomical to observe a
population as a whole, it is usually necessary to use a sample or a
fraction of this population. Clearly, such a sample can be useful only
if it is, in some way, ''representative' of the population from which it
has been d-.:vived. For this requirement to be met, two conditions must be
satisfied. First, a set of observations le, sz,..., ij 3 J=1,...yn
constitutes a random sample of size m from a finite population of size
M, only if each subset m of the population has the same probability of
being selected. The second condition states that the results must be

independent of the number of samples taken (20, 50 or even more). The
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first condition is easily satisfied since the synthetic generation
provides several equally likely future sequences of streamflows.
Satisfying the second condition however is more difficult and requires
the following. First, the sample size m must be greater than the number
of variables n to avoid any degeneracy [Johnson and Wichern, 1982, p.
108]. In fact, it is easy to show that if the sample size m is less than
the number of variables n, the determinant of the covariance matrix is
zero. The second requirement will be stated, without loss of generality,
for unidimensional systems. If a random sample of size m is taken from a

population having the mean u and the variance 02, then
m
My = (I z;)/m
2 g=l 1

is the value of a random variable whose distribution has the mean u, and
the variance o%/m (infinite population). [Miller and Freund, 1977, p.
165].

Although it is not very surprising that the mean of the theoretical
sampling distribution of u, equals the mean of the population, the fact
that its wvariance equals 02/m, for random samples from infinite
populations, is interesting and important. To point out the implications
of this rule, let us apply Chebyshev's theorem to the sampling

distribution of M. We thus obtain

Lo 1
Pr (Ju, - u]) < T )21 L_2 (4.40)

which states that the probability (Pr) of getting a value within L

standard deviations (o/Jm) of the mean is at least

1 - —

L2
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Letting L o/Jym = ¢, we get
v
Pr (|u, - u| <€) 2 1- — (4.41)
ne

Thus, for any given ¢ > 0, the probability that u, differs from u by
less than € can be made arbitrarily close to 1 by choosing m
sufficiently large. In less rigorous language, the larger the sample
size, the closer will y, be to the mean of the population. In this sense
we can say that p, becomes more and more reliable as an estimate of y as
the sample size is increased. The reliability of u, as an estimate of
is often measured by the expression o/Jm, also called the standard error
of the mean. Usually it does not pay to take excessively large samples
since the extra labor and expense is not accompanied by a proportional
gain in reliability. Table 4.5 illustrates the mean p, and the standard
deviation o, of the inflows for different sample sizes m. Since it is
impossible, in our example, to know exactly the standard deviation of
the population, the reliability of M, is measured by cz/Jm. Then if m
equals 50, the standard error for LG4 is 276/J50 = 39 m3/sec. For m =
30 the standard error is 268/J30 = 48.9 m3/sec, and for m equals to 15,
0,/Jm raises to 280/4J15 = 72.29 m3/sec. Therefore, it is suggested to
use a sample size greater than 30 for LG4.

In addition to the sample size, another factor is of great
importance in principal components analysis. This factor concerns the
choice of the covariance matrix or the correlation matrix of the
observations for the analysis. As Kendall [1980] pointed out, it is not

an easy choice. For instance, in the case where some variables have a

much larger variance than others, then the principal components will be




m 50 40 30 15
Hz Oz Hz Oz Uy Oz Ha Oz
(m3/sec) | (m3/sec) | (m3/sec) [(m3/sec) | (m3/sec) | (m3/sec) | (m3/sec) (mq/sec)
LG4 865 276 894 266 911 268 937 280
LG} 870 277 899 268 916 270 943 281
EOL 1821 580 1882 561 1918 565 1973 588
LG2 660 210 682 203 695 205 715 213

Table 4.5 Sample size effect on the statistical mean
H, and standard deviation o, of the

inflows during May

¢

601
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mainly a function of these variables if the covariance matrix is used.
However, this will not happen if the correlation matrix is used since
the elements of this matrix are all restricted to the range [-1, 1]. The
covariance matrix was used in our approach becavse it is important to
distinguish between large and small reservoirs and avoid giving them all
the same weight, as the correlation matrix does,

To illustrate the difference between the covariance and the
correlation matrices, principal components analysis was performed on the
storages during the month of May. For the covariance matrix, the
percentage contributions of the four components to the total variance
are

64.22 32.17 2.51 1.09

and the eigenvectors matrix is:

0.1346 -0.3330 0.4993  -0.7885
0.2158 -0.2008 -0.8576  -0.4215
0.5012 -0.7368 0.0790 0.4468

-0.8270 -0.5532  -0.0946 0.0326

d

For the correlation matrix the percentage contribution are:
64.44 24.31 8.98 2.26

and the corresponding eigenvectors matrix is:

0.5144 -0.4562 -0.5026 0.5242
P= 0.5437 0.1441 0.7615 0.3220

0.5972 -0.1557 -0.0653 -0.7841

-0.2884 -0.8642 0.404 -0.0817
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If the covariance matrix is used , the first three components will
account for 98.9%7 of the sample variance, which is very close to the
result obtained with the correlation matrix (97.7%). However, the

eigenvectors are very different, and do not give the same components.

4.6 Conclusion

The principal components analysis, outlined above, has been used
as an efficient tool to transform a large-scale problem into a smaller
one having a fewer number of random variables. It was shown that the
degree of the reduction is a function of the correlations among the
variables. If the correlations (interdependencies) are very high, the
data are within an ellipsoid and the reduction is significant.
Otherwise, they are within a sphere and it is not possible to represent
them adequately by fewer variables.

In addition, the sample size m is an important factor. It was shown
that the sample is '‘representative' for large m. However, for economical
considerations, a sample size greater than 30 can be considered as being
sufficiently large.

Finally, it 1is very easy to implement the principal components
analysis since it concerns only linear relations. Its combination with
the optimization model can give interesting results since the number of

random variables is reduced. This is the subject of Chapter V.




CHAPTER V

APPLICATION OF PRINCIPAL COMPONENTS

ANALYSIS TO THE STOCHASTIC MODEL

5.1 Introduction

The model discussed in Chapter II is obviously inadequate as a
representation of reality because it ignores the essential difficulity
any power system manager must face: his uncertainty about the future. In

general, there are three major areas of uncertainty:

1) The future natural inflows.
2) The future demand.

3) The future availability of plants.

The model described here is designed to cope with the first kind of
uncertainty which, in a predominantly hydro system, is the most
important. The model presented in Section 5.2 is, in fact, an extension
of the deterministic one developed in Chapter II. Since the goal of this
thesis is to solve large-scale stochastic systems, a reduction by
principal components analysis will be helpful. The reduced model
presented in Section 5.3 will therefore be solved by stochastic dynamic
programming. The formulation of the problem using this solution
technique is given in Section 5.4. Then, in Section 5.5, the approach is

applied to a four reservoir system. The results of the optimization
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process are also presented in that section. To evaluate the performances
of this technique, its results are compared to the ones obtained by
classical stochastic dynamic programming. In Section 5.6 the model wused
for the classical technique and some results are given. Finally, in
Section 5.7, a discussion and a comparison of the results obtained using

both methods are presented.

5.2 The Stochastic Model

The deterministic model (3.34) can easily be extended to the sto-
chastic case. The objective of the problem becomes to determine the
optimal monthly operating policy of n hydrcelectric powerplants with
mutually correlated inflows. The policy is feund by minimizing the
expected cost of the thermal energy over the complete time horizom, that

is

Minimize E{kglc.a Hgy + ak_z_le zy } (5.1)

under the following constraints

X1 = X - T Qe + Y (5.2)
mein(Qk,a) + bTHgk = dey (5.3)
min(Qy41,U) - min(Qy,U) - z, < O (5.4)
min(Qyp,U) - min(@,U) + 2y 2 O (5.5)
X £ Xy S X (5.6)
0<Hgy e (5.7)

Q 20 (5.8)
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In (5.1) the symbol E stands for the expected value, and in (5.2) T
replaces the matrices I'y and T'; in the model (3.34). Since it is assumed
that a hydroplant is associated to each reservoir, then I'y is equal to

Fa. In addition, @ replaces Uy + Vi with the following assumptions:

0 i Q S U (5.10)

Uk Qk and Vk

Ug =U and Vy = @ - Uy if @ > U (5.11)
in another form, the vector of the released water Uy can be written as
U = min(Q,U) (5.12)

This means that if the discharge Uiy from reservoir i in month k is
greater than the capacity of the allied plant 61, then Uy - ﬁi hem (hem
= 100 cubic meter) of water are discharged through the spillways.

The only random variable in equations (5.1) to (5.9) is the vector
of the natural inflows Yy = [Ylk’YZk"'°’Ynk]T since the demand dek and
the unit availabilities are assumed to be known in advance. It is also
assumed that a correlation exists between Y;, and ij for all

reservoirs 1 and j which results in an interdependency between the

optimal reservoir contents X;, and xjk'

5.3 The reduced Stochastic Model

As mentioned in Chapter IV, principal components analysis is applied
to the storages Xiy,Xgp,...,Xyg and to the inflows Yl,k—l’YZ,k-l""’
Yn,k-l' Recall that the X's were obtained from deterministic optlmiza-
tions for m different inflow sequences generated synthetically ( see
Section 4.4.1). Thus if, ® aad ¥ are the vectors of principal components
related to the inflows and to the storages respectively, then, according

to (4.23)
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Yk = Pk°k (5.13)

X = Qe¥k (5.14)

Now, assume thac p (psn) components of ®, and q (qsn) compcnents of ¥,

are selected. According to (4.28),

n
Yik =j§1Pjik°jk 3’=§+-Pjik“¢jk

Yik =j§1Pjik¢jk + POik s i=1,2,...,n (5.15)
and -

n
Xs = g PP 4 + 3 s .
ik j=1031k ik quﬂ%ikquk

A0

Tik =j>;1°jik‘ij + Qoik 5 i=1,2,...,n (5.16)

Furthermore, define i;k and 51: as being matrices of dimensions n¥*p
and n*q respectively and 5,( and ‘;k as being the vectors of the selected
components of dimensions p*l and q*1 respectively. Pgp and Qg will be
constant vectors of dimensions n*l. Consequently, equations (5.15) and

(5.16) can be written, for perioé k, as

Y = By + Py (5.17)
and
% = Q¥ + Qo (5.18)
Thtese last two equations are of paramount importance. They state

that once the principal components are selected, the reduced model can
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be easily found by substituting Y and Xj in the model described by
equations (5.1) tc (5.9) with the new variables ®, and Y. Therefore the
reduced stochastic problem is to minimize

K K-1
F=E{ZC.alllg, + a L el .19
{k=1 a'ligg +ale zy} (5.19)

under the following constraints

Qe+1¥ii = Q¥ - T % + Pyedy + Pog + Qok - Qo, k41 (5.20)
pTmin(Q,U) + bTHgy = dey (5.21)
min(Qsq,U) - min(y,U) - z € 0 (5.22)
min(QkH,l-J) - min(Qk,ﬁ) +2,20 (5.23)
X - Q,k+1 € Ur1¥ir1 € X - Q41 (5.24)
0 < Hg € e (5.23)

Q 20 (5.26)

One difficulty arises from this model. It concerns the determination
of the lower and upper bounds of ¥igs i=1,2,...,q. It is clear that the
bounds given by (5.24) are linear combinations of ¥;y%+ Therefore an
infinity of values can be found for each ¥;,. To eliminate uncertainty,
two methcds can be used. First, the mean value and the variance of the
components are already known. This information alone is sufficient to
fix the interval of possible values for V¥;j. Secondly, since the
original data (resersoir's storages) and the transformation matrix
(eigenvector matrix) are known for each month k, it is very easy to
compute all the ¥;j . Therefore, the lower and upper bounds can be chosen

to be the minimum and the maximum of these transformed datz. Obviocusly,
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these two methods, as well as relation (5.24), depend on the choice of
the original data sample. Since it is assumed that the sample of inflows
is sufficiently large and representative, either the first or the second
method can be wused, even though the second one has been chosen in our

case. Consequently, relation (5.24) will be replaced by

)
70

Yy € ¥ (5.28)

where ¥ and ¥ are the vectors of lower and upper bounds respectively. In
addition, since stochastic dynamic programming will be used to solve
model (5.19) to (5.27), the penalty term zj; can be found, contrary to

linear programming, from
2 = | min(Qk.,.l,l.J) - min(Qk,ﬁ)| (5.29)

Therefore relation (5.29) can replace the constraints (5.22), (5.23)

and (5.27). The reduced stochastic model becomes

F = E{ 5 C.aTHg, + a % elzy }
= . ¢ 4 e z
- L AL
under the following constraints
Quea1 P41 = Q¥ - T O + Py + Pog + Qo - Qo,k+1
oTnin(Qy,U) + bTHg, = de (5.30)

Zp - | min(9k+1,l—1) - min(ﬂk,U)l =0

‘I’S‘AI"k_,,lS‘I'
0 <Hgy < e
Qk 20

5.4 Stochastic Dynamic Programming Formulation

Stochastic dynamic programming differs from deterministic dynamic

programming in that the state at the end of period k is not completely
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determined by the state and the decision at the beginning of period k.
Instead, there is a probability distribution for the next state. The
resulting basic structure for stochastic dynamic programming is
described schematicelly in Figure 5.1. In that figure, ¢ denotes the
number of possible states at the end of period k, and (Pkl’sz"°"ka)
is the probability distribution of the inflows Yy, or of what the state
Xk+1 vill be, given X,. When Figure 5.1 is expanded to include all
possible states and decisions for all periods, it is sometimes referred
to as a "decision tree'" [Hiller and Lieberman, 1974]. For the sake of

presentation, let Y, takes the following values

Yy1 with the probability pyy
Yo with the probability py,

Y3 with the probability pyj

then the decision tree will give three different possibilities for state
Xgp1 at the end of period k. Consequently, for Y,; there exist an
optimal discharge (decision) Ugy and an optimal operating cost Cy; with
probability py;. For Yy,, there exist a Uy, and a Cyy with probability
Px2s and similarly for Yyq. Therefore, the optimal decision Uy is a
function of X, and Y and it can be written as Up(Xy,Yy). In addition,

the operating cost is

Fie = Cr1Pk1 * Cx2Pk2 + Ck3Pk3

3
=21 Oy

(5.31)

Using the backward recurrent equation [Bellman 1957], the operating
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Yeei,1 //

Pk+1,1

Px+1,2 Yk+1,2

Xy Xi+1

Figure 5.1 The basic structure for

Pk+1 ’\

Yi+1,¢

Xk+2

stochastic dynamic programming
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cost can be written as

3
Fie(e) =2, { minfChy + Fie (Xier1 )1 Ypcs

=E { min[Ck + Fk+1(xk+1)]} (5.32)
Y Uk

k
where Fk+1(xk+1) is the optimal operating cost from period k+l to period

K.

Thus, the recurrent equation of model (5.30) is
Fk(wk’¢k'l) = gkmén [C.aTHgk + a.eTzk + Fk+1(wk+1,¢k)} (5.33)
k

Three remarks should be made here. First, the minimization is
performed over the proper space of decisions. In this case the decisions
are the variables representing the total discharge from the reservoirs
and through the spillways (@, = Uy + Vj). Secondly, in (5.33), the
random variables are the principal components @, related to the natural
inflows Yy. Thus, the expected cost must be calculated for the
transformed inflows &,. The last remark concerns the penalty cost
a.eTzk. This cost is set equal to =zero for the last period K, and
computed according to (5.29) for k < K.

The complete procedure for the solution of the problem (5.30) using

stochastic dynamic programming is given by the following algorithm.

Stepl: Set k = K and the future cost Fk+1(§k+1’5k) = 0.
Set {8} = all the feasible set of states at the end of period k.
Set Py (¥, b 1) = =

Step2: Set {u} = all the feasible set of states at the beginning of

period k.
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Step3: Choose a scenario of inflows 5kj for period k
Step4: Choose a feasible state. Compute the discharge Q according to
R = T H(Qu¥ - Qeertier + Pl + Po + Qo = Q0, k1)
Step5: Find the thermal energy bTHgkj from
bTHgkj = dey - mein(Qk,U)
Step6: Find the penalty cost u.eTzk using
zp = | min(Qk+1,6) - min(Qk,6)|
Step7: Compute the cost function Ck(;k=5k-1) from
Ck(@k’ak-l) = [C.alHg + a.eTzy + Fk+1(&k+1’$k)] Pk
if Ck(gk'ék-l) is less than Fk(Qk,Qk_l) then
Fk(\;k’&;k-l) = Ck(qlk’;k°1)
otherwise GO TO step8.
Step8: If there is another feasible state, GO T step4.
Step9: If there is another possible scenario of inflows, GC TO step3;
otherwise set k = k - 1
Stepl0: If k is different than 1, set {8} = {u} and GO TO step2;
otherwise trace the optimal solution and STOP.

5.5 Sample Application

The four reservoir system, solved deterministically in Chapter III
and analyzed by principal components in Chapter IV, will now be solved
by stochastic dynamic programming. However, before doing so, it is
important to recall the main steps of the solution. First, the
deterministic solution for the 50 inflow sequences ;llowed us to perform
principal components analysis. The contents of the reserveirs and the

nataral inflows were therefore analyzed. The components selected (one

inflcw component and three storages components) constitute the states of
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the reduced model. Consequently, explicit stochastic dynamic programming
will be performed on a problem with 4 state variables instead of the 8
original ones. Moreover, the selection of the components was based on
their percentage contribution to the total variance of the sample of
data. So, to illustrate the effect of this selection, the solution cf
the same poproblem with only three state variables and with a variable
number of components from period to period, will be presented 1later in
this chapter.

In brief, in this application it is assumed that deterministic opti-
mizations were performed, and that the optimal storages were obtained.
It is also assumed that principal components analysis was performed on
the inflows and storages. Thus three steps are required to find the
optimal solution.

Stepl: Find the explicit distribution of the single inflow component
selected.
Step2: Solve the reduced model using stochastic dynamic programming.

Step3: Find the optimal solution for the original problem.

5.5.1 Distribution of the Inflows

The transformed data for the inflows are easily computed for each

period k from the relation:
T
P = PyYy (5.34)

Since only one component was selected, the inflows Yy into the four
reservoirs constitute a single random variable function. The 50
sequences for this random variable are illustrated in Table 5.1 for the

twelve period problem. To construct a frequency distribution of these
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Year May

2884.61
1843.23
2858.06
4008 .50
2439.54
3482.81
2086.29
1878.85
1864.13
2086.29
2020.60
2524.22
3079.85
3243.17
1369.97
2308.08
2335.80
2014.16
2290.22
2847.82
3662.82
2979.99
1992.08
2793.83
2542.07
967.00
2132.29
3087.46
2053.59
1161.86
1560.22
1538.56
3371.92
2638.53
3163.81
1790.41
2872.91
1620.27
1792.67
1976.86
2485.45
837.46
2903.26
1869.40
1942.70
2240.04
2904.44
1236.24
2592.54
859.54

June

2189.17
3276.21
2202.34
4102.16
2617.96
2800.87
2582.21
3814.21

946.57
1558.27
2373.62
3451.21
2047.76
1291.10
2325.48
3768.34
1393.26
2C86.64
3779.u4
3454.34
2370.48
3422.14
2567.50
3062.70
1563.36
2034.59
1674.53
3398.17
2389.31
2888.26
3245.55
2221.73
3418.03
2870.16
1280.08
2752.13
3381.25
2557.68
2786.52
3772.39
3068.9¢6
2766.05
4L083.89
3834.63
3521.73
3259.29
2608.33
2231.50
1835.79
3155.59

July

1529.58
2839.12
1488.04
2195.28
1542.57
1239.26
1585.30
2453.34

981.05
1470.73
1742.97
1791.01
1628.79
1464.08
1522.93
1803.78

995.76
1074.14
1934.49
1648.32
1131.03
1985.41
1484.53
1799.87
1659.51
1386.35
1532.18
2236.82
1632.95
2329.38
1561.34
1899.08
2288.38
1862.63
1238.45
2031.10
2217.18
1335.71
1991.78
2780.27
2109.87
1972.65
3000.70
1727.61
2346.84
2354.91
1711.72
2003.37
1961.06
1838.27

Aug

1733.18
2226.49
1448.75
2243.41
1719.56

589.954
1812.07
2120.67
1779.93
1178.28
2302.81
2099.64
2214,72
1214.97
1263.40
1148.38
1024.43
1382.27
1742.44
1798.06
1396.61
1311.43
1511.70
1845.11
1833.67
2215.05
1220.19
2671.79
2239.23
2339.00
1589.93
1994,78
24L29.27
1796.51
1160.79
1796.12
2241.47
1824.81
1811.04
2813.86
2752.86
2434.99
269%.17

771.05
2496,39
2384.85
1784.11
1841.97
2014.21
1709.39

Sept

1891.69
2132.21
1692.84
2111.58
1686.73
1217.19
1687.76
1339.48
2276.117
844 .48
2571.58
1559.36
2230.72
1555.18
2031.14
1132.97
1040.19
1011.02
2117.87
2023.24
1121.20
1513.91
1480.28
1962.87
2092.48
1877.35
1192.37
1804.96
21i54L.46
2127.71
1080.25
2592.22
2031.14
1486.97
1206.72
1162.87
1992.43
1922.80
1856.71
2305.67
2301.56
2171.55
2441 .34
768.56
2399.67
1594.92
1633.68
1844 .30
1932.97
1553.64

Oct

1558.98
1763.56
2742.85
1683.81
2062.09
2299.31
2102.05
1291.23
1700.75
1529.68
1278.47
1954.70
1875.64
1435.23
1269.61
2279.79
1320.02
1169.53
1801.47
2004 .46
2234.20
1732.03
1712.60
2288.10
1782.04
2007.60
1903.38
1147.51
2060.50
2204.32
2478.34
1625.83
2151.96
2255.82
2468.08
1454.11
1318.62
1684.85
1860.10
1667.92
2461.80
2206 .45
2805.43
1721.47
968.48
2333.,33
2020.00
1823.49
2264.53
2165.40

Nov

1246.94
1175.35
1887.69
1333.67
136%.96
1850.21
1791.35
1052.92
1231.65
1123.54
1079.01
2019.33
1250.08
1626.95
1443.72
1723.87
1373.86
1248.13
1098.44
1688.95
1377.01
1509.63
1291.09
1834.31
1479.64
1917.31
1314.04
1034.48
1354.67
1904.5¢€
1902.50
1077 .44
1397.02
1465.69
1744.26
117474
800.:4
1468.83
1212.22
1642.24
1559.84
1613.61
2074 .64
1253.23
906.36
1729.96
1611,6¢€
1673.05
1770.35
1606.56

Dec

899.29
982.15
1166.70
945.22
790.71
11462.74
1125.91
776.36
769.68
779.50
800.90
1211.86
916.53
1086.98
1020.42
1206.77
867.87
989.20
988.23
962.71
8u8. 42
1069.49
778.32
1076.18
922.64
1449.24
734.96
942.66
984.11
1227.19
1243.09
839.78
714.90
1076.18
1111.52
799.71
695.46
952.84L
971.71
1086.98
1005. 14
1052.562
1286.45
986.06
534.26
1164.13
922.03
975.26
1086.98
1000.98

Jan

593.63
631.55
691.10
621.38
556.63
692.68
697.22
443,78
453,59
483.62
529.52
75L.27
612.67
594.55
637.28
720.43
551.54
606.00
661.25
612.67
490.96
637.28
500.22
651.63
572.16
821.52
L76.61
538.78
659.30
755.21
702.95
565.89
478.20
641.18
672.06
552.73
480.78
564.20
653.18
664.39
639.78
631.55
720.43
629.60
346.86
665.94
594.18
551.54
700.36
616.57

Table 5.1 Transformed inflows for the twelve period horizon

Feb

447,64
454 .42
490,38
457.91
431.75
479.57
478.39
342.57
328.43
365.98
342,37
511.86
407.13
409.73
456.37
486,60
407.13
436.29
474.85
419.35
352.28
433.70
381.33
478.39
379.38
579.11
355.42
374.66
LE64L .04
511.86
496.51
433,70
360.50
461 .45
472.26
392.79
385.11
398.92
449.23
484,65
432.94
445,15
490.38
419.89
267.99
£39.43
402.05
376.25
489.20
442,96

March

349.30
341.98
391.40
364.65
347.07
393.34
370.14
290.62
303.03
279.82
287.45
393.99
309.16
328.59
353.20
373.27
330.13
318.78
3538.972
346.17
294.17
351.25
3156.83
3184.08
307.56
430.36
267.06
301.08
364L.65
414.47
366.59
365.60
207.94
379.00
375.41
287.14
331.18
347.07
332.37
373.27
338.50
344,57
397.53
333.12
251.12
351.25
331.18
311.75
371.32
351.25

April

304.40
317.48
345.24
518.70
384.18
682.06
437.41
335.30
350.97
267.38
260.96
433.88
550.68
407.73
410.33
499.89
416.98
313.27
428,40
469.97
457.83
505.62
309.45
581.04
376.14
379.96
183.49
509.83
515.95
476.63
230.06
499.89
397.25
451.71
421.20
332.17
445.73
300.19
522.91
367.18
461.65
225.85
684, 66
435.79
430.77
448.57
459.05
301.81
326.05
L54,30

¢
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data, the first step consists in deciding on the number of classes ( or
categories) and their limits. Generally, the number of classes depends
upon the number of observations. However, it is seldom profitable to use
fewer than 5 or more than 15 classes [Miller and Freund, 1977]. Among
other things, this decision is based on the range of the data, that is
the difference between the largest and the smallest observation. Then we
tally up the observations and, determine the class frequencies, namely,
the number of cbservations in each class. Once data are grouped, each
observation in a pgiven class loses its own identity in the sense that
its exact value 1is no longer known, but we get around this by
representing each obsarvation in a class by its midpoint, called the
class mark. The histogram is then constructed by representing the class
frequencies as a function of the successive class boundaries. The
probability Pj for each class is computed as the number of observations
£: in each class over the total number m of observations

J

pj = Q.j/m H j=l,2,...,J (5.35)

where J is the total number of classes.

For the sake of comparison with classical stochastic dynamic
programming, let us set J equal to 2. Later in this chapter, the case of
J = 5 will be considered.

A histogram of the random variable is illustrated in Figure 5.2 (a)
for the month of May, in Figure 5.2 (b) for the month of January, while

in Table 5.2 the different classes and the corresponding probabilities

are shown for the twelve period problem.
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Classl Probl Class2 Prob2
May 1629.72 0.580 3216.24 0.420
June 1734.97 0.380 3313.76 0.620
July 1485.46 0.700 2496.29 0.300
August 1145.42 0.300 2258.38 0.700
September 1223.97 0.400 2136.80 0.600
October 1426.72 0.520 2345.19 0.480
November 1118.49 0.480 1756.59 0.520
December 762.50 0.580 1220.99 G.420
January 465.02 0.360 703.35 0.640
February 345.27 0.420 501.83 0.580
March 295.43 0.440 386.05 0.560
April 340.05 0.680 570.46 0.320

Table 5.2 Distribution of the random variable

5.5.2 Stochastic Optimal Solution of the reduced Model

The algorithm developed in Section 5.4 1s used to obtain the
optimal solution. However, before presenting some results two remarks
should be made. First, the principal components related to the storages
were discretized into 5 states between the largest and the smallest
values of these components. The program that was develuvped also offers
the possibility to discretize these state variables accord .g to the
mean values and the standard deviations obtained from the principal
components analysis program. Secondly, since the new bounds are obtained
from the optimal solution of the deterministic problem, it is profitable
to restrict the variations between the maximum and minimum obtained in
each period. Consequently, the upper and lower bounds, contrary to the
classical dynamic programming approach, vary from month to month. This
point should be seen as an advantage because the number of discretiza-
tions is lower than the number needed in the classical dynamic

programming method. Therefore, the computation time can be significantly
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reduced.

A typical output of the stochastic problem is shown in Tables 5.3
and 5.4 for period 6 and period 1 respectively. These tables illu;trate
the period number, the demand, the inflow and their corresponding
probability. For example, for period 6 which corresponds to October, the
demand is 11487 GWh and the inflows are equal to 1426.72 m3/sec with a
probability of 0.52 and to 2345.19 m3/sec with a probability of 0.48. In
addition, Table 5.3 shows the first 15 states of period 6. The first
column indicates the state number while the second one shows the pointer
for each state, that is the optimum state during period k+l. For
example, the minimum cost for state 15 in period 6 1is obtained from
state 13 in period 7 with a probability of 0.52 and from state 33 with a
probability of 0.48. Columns 3 to 10 indicate the storage levels and the
outflows for each reserveir. Finally, column il shows the cumulative
cost from period k to period X. Table 5.4, on the other hand,
illustrates the single state at the beginning of period 1. The total
cost is easily found from that table. It simply consists in adding up
the «costs of ©period one for all possible irflow branches
(probabilities). In this case, the total cost is 24223.36 + 16098.54 =

40321.90. This cost, representing the valuve of the objective function of

the optimization problem, is also given in Table 5.4.

5.5.3 Optimal Solucion of the Original Problem

In this subsection, the optimal trajectories of the original model
are uought. In order to achieve this goal, one must explore every
branch, every trajectory of tha decision tree. Since this is a very huge

task for the problem dealt with, we will rather perform a simulation on




tate
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VoO~NOWnEWNH

Storagel
18374.61
16795.68
15712.23
15712.23
15712.23
19994.92
18416.00
16837.07
15712.23
i5712.23
21615.25
20036.22
18457.39
16878.46
15712.23

Storagel
13374.61
16795.68
15712.232
15712.23
15712.23
19994.93
18416.00
16837.07
15712.23
15712.23
21615.25
20036.32
18457.39
16878.46
15712.23

DEMAND :

INFLOW :

Outflowl
2128.81
1539.30
1134.79
1171.93

939,06
941 .89
352.39%
1359.03
939,06
193.94%
1351.12
761.61
172.11
895.08
743.33

INFLOW

Outflowl
839.43
533.60
512.76
412.76
962.15

1248.66
659.15
1382.12
262.15
217.03
1090.54
1264.11
1224.00
918.17
217.03

PERIOD

11487. GWH

1426.72 MCS

Storage2
12329.80
13138.27
13946.74
14755.20
15563.67
13378.23
14186.79
14995.17
15803.63
16612.10
14426.66
15235.13
16043 .59
16852.06
17660.53

2345.19 MCS

Storage2
12329.80
131138.27
13946.74
14755.20
15563.67
13378.23
14186.70
14995.17
15803.63
16612.12
14426.66
15235.13
16043.59
16852.06
17660.53

H 6

PROBAB.

:10.520

Outflow2 Storage3

52C.28
232.62
129.95
146.84
5.10
310.18
22.52
212.81
9L4.69
286.47
578.03
290.37
2.71
7C¢.38
59.%3

16917.68
16941.07
18418.32
19895.57
21372.82
17232.21
18709.46
20186.71
21663.96
23141.21
19000.6C
20477.85
21955.10
23432.35
24909.61

PROBAB. :0.48C

Outflow2 Storage3

179.17
14.13
34.09

3353.94
19.31

447.02

15%.36

227.02

108.90

300.68

4L69.61

1155.75

249,62
84,58

692.11

16917.68
16941.07
18418.32
19895.57
21372.82
17232.21
18709.46
20186.71
21663.96
23141.21
19000.50
20477.85
21955.10
23432.35
24909.61

Outflowl

3.97

Outflewl

109
34
14
69

154

5
60

109

164
T4

106

126

210

190

140

Table 5.2 Output of the optimization program for period 6

6.28
8.51
3.5¢6
5.10
0.09
0.28
1.83
7.25
8.79
3.46
0.G9
2.07
7.06
2.10
3.79

Storagei
18169.86
18169.86
17914.97
16674.62
15434.27
18169 .86
18169.86
18169.86
17401.65
16161.30
18169.8¢
18169.86
18159.86
18128.68
16888.33

Storaged
18169.86
18169.86
17914 97
16674.62
15434.27
18169.86
18169.86
18169.86
17401.65
16161.30
18169.86
18169.86
18169.86
18128.68
16888.33

Outflows
22320.88
1951.95
2305.66
2262.42
1513.76
2165.44
2429.32
2299.98
2446.58
3505.11
2336.25
2600.13
2864.02
2718.61
2674.17

Outflows
2838.86
2651.60
3096.98
3487.28
1814.50
2466.86
2730.74
2600.72
2747.33
3714.87
2806.16
4387.38
3633.13
3247.76
5037.98

Cost
16636.67
16922.57
16845.89
14414.75
14087.22
13628.89
13664 .07
13773.65
13768.29
13444.10
12647 .43
12681.19
12716.37
12764 .43
12827.02

Cost
12364.52
12634.00
12564 .74
12321.89
12056.00
11693.51
11725.41
11765.56
11761.83
11513.56
10622.02
10854.17
10886.63
10928.96
10987.11

821




State Pt
1 66

State Pt
1 B4

PERIOD : 1
DEMAND 10275. GWH
INFLOW : 1629.72 MCS PROBAB.
Storagel Outflowl Storage? Outflow2
8000.00 384.32 6000.00 156.87
INFLOW : 3216.24 MCS PROBAE.
Storagel Outflowl  Storage2 Cutflow2
8000.00 70.26 6000.00 773.18
OBJECTTIVE: .40322E+05

Table 5.4 Output of the optimization program for period 1

10,580

Storage3
10000.00

:0.420

Storagel
10000.00

Outflow3
109 5.44

Outflowl
70 3.46

Storage4
5000.00

Storage4
5000.00

Outflowd
636.73

Outflows
1282.60

¢

]

Cost
24223.36

Cost
16098.54

621
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a certain number of the policies or trajectories obtained.

The simulaticn process starts by selecting a class of inflows. 1In
our case, the number of possible classes is 2. Thus, for each period k,
a class (1 or 2) will be selected and the optimal trajectory will be
built accordingly. For example, suppose that for period 1 the class
selected is 2, for period 2 it is equal to 1, for period 3 it is equal
to 1, etc. Then, the trajectory will correspond to the second class of
inflows for period 1, to the first class for period 2, to the first
class for period 3, and so on. Table 5.5 shows a sequence for the
twelve period problem. In addition, the corresponding trajeciories of
storages and outflows are given in the same table and illustrated in
Figures 5.3 and 5.4. In fact, we can have a large number of these
simulations (212 = 4096). Morecver, we can take a sample of these
trajectories and perform a Monte-Carlo simulation to see the probability
that this approach gives an optimal solutien outside the feasible
region. For a sample of a hundred simulations, all these storages
respect the wupper and lower limits previously set. Unfortunately, it
would be too unpractical and cumbersome to include all these results in
this thesis. Therefore, only two other simulations will be presented
here. Table 5.6 illustrates the optimal trajectory for the second
simulation shown in Figures 5.5 and 5.6 while Table 5.7 and Figures 5.7
and 5.8 demonstrate the results obtained from the third simulation. It
is important to remind that the outflows from the four reservoirs of
Tables 5.5, 5.6 and 5.7 represent the discharge Uy and the spilled water
Vg Therefore, if the outflows Q) are greater than the plant capacity U,
then Vi = Q - T m3/sec of water is discharged through the spillways.

For example, LG3, represented by outflow 2 in Table 5.7, has a capacity
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Month
May
Jun
Jul
Aug
Sep
Oct
Naov
Dec
Jan
Feb
Mar
Apr

Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb
Branch 1 1 2 2 1 2 1 1
SIMULATION {1
State Pt Storagel Outflowl Storage2 Outflow2
1 84 8000.000 70.262 6000.000 773.178
84 109 11061.715 195,516 7386.961 78.467
109 86 13062.910 287.750 9577.977 471.650
86 64  14862.645 217.419  10637.984 390.140
64 39 17745.547 767 .493 12571.008 440,147
39 38  139%6.496 642,129 15603.527 147.381
38 33 19327.867 923,137 18438.434 791.151
33 43 19593.641 1797.822  20532.402 3368.762
43 15 16787.883 2222.000 17664.074 3212.737
15 47 11633.527 859.140 15505.148 3005.531
47 6 10094.762 1030.511 10647.121 2922.605
6 1 8000.060 307.683 6000.000 530.274
Table 5.5

Mar Apr

2 2

Storage3
10000.000
14958.531
17365.234
19183.199
20822.180
2360€.129
23172.336
22561.285
16793.430
14473.043
105u45.187
10002.250

OQutflow3
703.458
139.962
102.900
823.644
276.925

1081.490

1303.671

2849.862

1121.111

1788.961
431.642
382.408

Optimal trajectory for the first simulation

Storage4
5000.000
7997.320
5584.320
7350.746
11231.500
14876.406
13206.691
9638.203
16192.414
14014,840
16307.090
10453.078

()

Outflow4
1282.601
1783.314
497,116
516.831
22.459
2364.516
4132.031
4210.777
5316.211
3971.796
5676.250
3193.557

Tel




132

| UDiID|NWIS 0J mmmEBw _QEE@ £°G E:m_u_
Jdy JDl g4 ubf 98 AON 190 dsg Bny N[ ungp mo_»ho

000€

% v \ v %oo%
O——o ¥
LN\ " | \MV 008

N SN - 7w
BN / ~7 7 5 |
Y A d
N T 10008
/m.\\o\\ o 1 00012
b 297 *
o 703 9 4 000r
€97 v
g0 100022
0000¢
h
-




133

¢

"

| UOI}D|NWIS 10) SMO|jIno |pwiydy ¢g ainbiyg

a1 @
Jdj Joy goy upf 390 Aoy 3 dog By ing unp 0

8
068 /Cx ¢

g

8

g

o @

a8y oy cpy uo oeq ron 120, des By ing ung Fou g

L]_[slrl

8

g 8
388/C%xKW

m @

Jdy JOW Qa4 uop 8 AoN 3op dasg By gng unp

e

¥ @

24y Joy gpj wor oeq oy 3G dos Gy |ng ung

B

8

§ B
088 /KXW

B
3es /0

B

8

g

§ 8

“»




Month
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr

Month
Branch

State
1
66
34
38
38
7
43
43
43
5
72
4

May Jun

1

1 2

SIMULATION {2

Pt
66
34
38
38
7
43
43
43
5
72
A
1

Storagel
8000.600
8617.270
10971.191
15231.258
177C0.707
18415.996
20087.5660
20031.1305
16787.883
12460.914
12708.320
8000.000

2 1

Outflowl
384.319
59.433
22.063
371.784
431.195
§59.150
1047 .416
1679.439
2065.572
222.056
2006.302
183.423

Table 5.6

2

2

Storage?
6006.000
8265.816
8190.414
9988.625
12613.230
14186.703
18007.082
20738.387
17664.074
15505.148
9211.973
6944.277

Jul Aug Sep Oct Nov Dec

1

Jan Feb
2 2

Outflow2
156.866
816.773
324,875
286.299
306.825
159.357
669.544

3139.579

3150.878

3024.444

3010.021
680.482

Mar

Apr
2 1

Storage3
10000.000
10533.406
13113.734
15942.316
19093.312
18709.457
21146.133
20007.234
16793.430
16387.520
10045.531
10055.219

Outflow3
1095.437
72.977
257.579
259.122
921.980
601.825
1507.316
1634.857
537.003
2892.365
206.274
254.714

Optimal trajectory for the second simulation

Storaged
5000.000
7904.266
10714.109
13270.211
14987.066
18169.859
15149.977
13518.793
16192.414
11281.691
16308.770
9544.270

Outflowd
636.727
439,650
606.334
656.375
408.504

2730.744

3466.654

4050.429

5777.484

4020.179

5878.238

2787.824

vel

o n
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Month

May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr

May Jun Jul Aug Sep Oct Nov Dec

Month
Braunch 2 1 1
SIMULATION {3
State Pt Storagel
1 84 8000.000
84 109 11061.715
109 86 13062.910
86 59 14862.645
59 33 16524.301
33 37 18915.1G5
37 46 18043.832
46 46 18749.207
46 7 14939.676
7 11 9947.648
11 6 8000.000
6 1 8000.000

1

2

Outflowl

70.
195.
287.

35.
312,

1106.
380.
.800

1890

2161.
1028.
248.
307.

Table 5.7

262
516
750
765
302
079
888

393
156
417
683

1

1

Storage2
6000.000
7386.961
9577.377
10637.984
11428.895
13746.637
17442.684
19352.957
15782.078
13486.246
10484.004
6000.000

1

Jan Feb
1 1

Outflow2
773.178
78.467
471.650
194.170
260.719
289.819
74.295
3536.337
3203.245
2407.440
2079.610
530.274

Mar Apr

2 2

Storage3
10000.000
14958.531
17365.234
19183.199
19288.910
20360.488
22082.414
17199.645
15695.812
16140.754
12461.801
10002.250

OQutflow3l
703.458
139.962
102.900
688.704
937.562
276.637

2563.809
996.427

88.656

1707.156

1128.182
392.408

Optimal trajectory for the third simulation

Storage4
5000.000
7997.320
5584.320
7350.746
10524.039
15389.727
12351.238
14699.930
18073.289
13401.785
13681.391
10453.078

-

Outflowhs
1282.601
1783.314
497,116

79.330

32.688
2213.142
2152.528
3547.504
5205.391
4123.844
4549 . 473
3193.557

LEY
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of 3433.5 m3/sec. In December, the total discharge given by stochastic
dynamic programming was 3536.337 m3/sec. Thus 102.83 m3/sec of water
must be discharged through the spillways during that period.

Finally, in addition to being easy to implement, this approach is
very fast to execute. Indeed, only 12 sec of CPU time on an IBM-3081
were required to solve the twelve period problem. Of course, to verify
the efficiency of our approach, we must solve the same four reservoir
system without any variable reduction by classical dynamic programming
to be able to establish a btasis of comparison between the two methods.

This is the subject of the next section.

5.6 Classical Stochastic Dynamic Programming

The procedure for solving problem (5.1)-(5.9) is that given in
Section 5.4. The only change that we made was to replace the selected
components by the original variables.

The first step of the sclution procedure is to determine the expli-
cit distribution of the inflows for each period k. This distribution is
found from the 50 sequences of inflows used to perform the principal
components analysis. In addition, only two classes (branches) will be
considered to obtain comparable results between the classical approach
and the technique proposed in this thesis. A histogram of the inflows is
iliustrated in Figures 5.9 and 5.10 for the month of May and the month
of January respectively, while in Table 5.8 the different classes and
the corresponding probabilities are shown for the twelve period problem.

The next step is to discretize the storage levels between the
maximum and minimum capacity of the reservoirs. A discretization into 8

states was chosen. The storage levels at the beginning of May were set
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¢ 73

Classl Class?2
Probl Prob2
LG4 LG3 EOL LG2 LG4 LG3 EO1 1G2
May 615.00 618.75 1294.75 469.00] 0.580} 1213.00 1220.25 2554.25 925.00) 0.420
Jun 968.00 728.25 1068.75 634.25] 0.380} 1848.00 1390.75 2040.25 1210.75] 0.6.0
Jul 960.00 580.00 781.75 582.00) 0.706} 1612.00 974.00 1313.25 078.00] 0.294
Aug 656.50 454.00 728.50 381.25) 0.300] 1293.50 894.00 1435.50 751.75] 0.700
Sep 707.50 482.75 774.25 407.75] 0.400] 1234.50 842.25 1350.75 711.25] 0.600
Oct 781.00 564.25 919.75 512.75] 0.520| 1283.00 926.75 1511.25 842.251 0.480
Nov 653.25 430.50 680.50 420.75] 0.480] 1025.75 675.50 1067.50 660.25] 0.520
Dec 468.50 312.75 435.50 274.25) 0.580 749.50 500.25 696.50 438.75) 0.420
Jan 298.00 185.00 255.00 169.25| 0.360 450.00 279.00 385.00 255.75| 0.640
Feb 223.25 138.25 187.00 125.00} 9.420 323.75 200.75 271.00 181.00] 0.580
Mar 190.75 120.25 160.50 104.75) 0.440 248.25 156.75 209.50 136.25] 0.560
Apr 183.75 132.75 233.75 99,751 0.680 307.25 222.25 391.25 167.25| 0.320

Table 5.8 Distribution of the inflows for the

four reservoir system

¢ 3

EvT
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at their lower bounds, and the penalty cost a was fixed to 0.01 as it
was the case in the reduced stochastic model.

Once again, a large number of optimal trajectories was obtained. For
this reason a simulation program was developed to study some of these
policies. The simulation process generates random numbers between ! and
the number of possible classes of inflows. In this case, we have also 2
classes. Thus, the decision tree has a total of 212 = 4096 trajecto-
ries. From a sample of hundred simulations, only two will he given in
this thesis. Table 5.9 illustrates the optimal trajectory of the first
simulation shown in Figure 5.11 for the optimal storages, and in Figure
5.12 for the optimal outflows. The results of the second simulation,
shown in Figures 5.13 and 5.14, are given in Table 5.10. The total
thermal energy needed will therefore be 40279 GWh. Finally, the CPU time

required to solve the problem is 44 minutes on an IBM-3081,

3.7 Discussion

From the results of the last 2 sections, the following 3 points will
be discussed. First, a comparison of the results obtained from the clas-
sical and the reduced approaches will be made. Secondly, since the
selection criteria is based on the percentage contribution of the
components, the level at which this percentage will be satisfactory will
be discussed. Finally, the explicit distributior of the principal
component of the inflows was studied in 2 classes, which is not
sufficient in practice. Therefore, as a third point, a discussion of the

CPU time and of the optimal policies when 5 classes are considered will

be presented.
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Month
Branch

May Jun Jul Aug Sep Oct Nov Dec

1

Month State Pt

May
Jun
Jul

Aug
Sep
Oct
Nov

Dec
Jan
Feb
Mar

Apr

1
67
133
710
839
904
976
976
846
262

132
2

€7
133
710
839
904
976
976
846
262
132
2

1

1 2

SIMULATION {1

Storagel
800G, 000
8000.000
800C.000
11714.285
11714.285
11714.285
11714.235
11714.285
11714.285
8000.000
8000.000
8000.006

2 1

Outflowl
615.000
968.000
225.245

1293.500
707.500

1283.000

1025.750
468.500

1836.755
323.750
248.250
183.759

2 1

Storage2
60690.000
8742.855
11485.711
14228.570
19714.281
22457 .141
25199.996
25199.996
19714.281
16971.426
11485.711
6000.000

Jan Feb Mar Apr

2

2

Outflow?2
209.685
638.050
175.179
136.370

132.048
1185.685

1701.250
2829.381
3139.820
2792.074
2453.130

316.590

2

1

Storage3
10060. 000
10000.000
10000.000
10000. 000
160C0.000
10000.000
13928.570
13928.570
13928.570
10000.000
100090.00G6
10000.600

Table 5.9 Optimal trajectory for the first simulation

Outflow3
1294.750
1068.750
1313.250
1435.500
774,250
44,490
1067.500
435.500
1851.760
271.000
206.500
233.750

Storageé
5000.000
9105.711
13211.426
15264.281
17317.141
19369.996
19369.996
19369.996
15264.281
15264,281
11158.570
7052.855

¢

Outflowé

440.539
757.055

1699.980
1560.171

522.052
2072.425
3429.000
5G72.027
5247.328
4941.207
4331.777
1441.997

Sl
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Month State

May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Azc

Month
Branch

1
140
725

1302
1366
1432
1496
1495
1364
779
643
66

1 1

Storage?2
6000.000
11485.711
14228.570
16971,426
19714.231
22457 .141
25199.996
25199.996
19714.281
16971.426
11485,
8742,

711
855

May Jun Jul Aug Sep Oct Nov Dec
2 2 2 1 2
SIMULATION {2
Pt Storagel Outflowl
140 8000.000 1213.000
725 8000.000 415.020
1302 11714.285 225.245
1366 15428.570 656.500
1432 15428.570 1234.500
1496 15428.570 781.000
1495 15428.570 653.250
1364 15428.570 468.500
779 15428.570 1684.755
643 11714.285 323.750
66 11714.285 1635.005
1 8000.000 307.250
Table 5.10

Jan Feb Mar Apr

1

2

Outflow2
385.120
747.568
175,180

86.435

1018.548
321.185

1083.750

2829.381

2893.820

2792.074

2815.820

1587.700

2

2

Storage3
10000.000
13928.570
17857.141
17857.141
17857.141
17857.141
17857.141
17857.141
17857.141
13928.570
10000.900
100G60.000

Optimal trajectory for the second simulation

Outflow3
1087.490
524,598
1313.250
728.500
1350.750
919.750
680.500
435.500
1721.760
1894.913
209.500
391.250

Storage4
5000.000
11158.570
13211.426
15264.281
15264.281
19369.996
19369.996
17317.141
11158.570
91C5.711
9105.711
705%.855

Outflow4

08.264
1690.919
1699.982
1196.185
1496.553
1753.685
2976.997
5838.477
5551.277
4867.984
3928.018
2938.197

0st
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5.7.1 Comparison of the results

A major advantage of the princip;l component based approach is
that the CPU time needed is small. The classical dynamic programming
method requires 44 minutes on an IBM-3081 to solve the four reservoir
system, whereas it takes only 12 seconds to solve the same problem on
the same computer with the proposed approach. However, this huge
difference in CPU time can be interesting only if the two methods give
comparable results. In the classical approach, 40279 GWh of thermal
energy are needed for the twelve period problem, whereas 40322 GWh are
required for the reduced problem (see Section 5.5). This corresponds to
a difference of 0.17 between the two solutions which is negligible,
especially when considering the stochastic nature of the problem.
Moreover, it should be mentioned that the discretization in more than 8
equally spaced values in the classical method may give a lower value for
the objective function. However, this will not greatly affect the
results and even a difference of 57 could be considered acceptable since
the CPU time is enormously reduced.

In addition, the outflows, and especially the downstream reservoirs
(LG3 and LG2) have similar patterns with both approaches (Figures 5.4
and 5.14). This is an important point because it means that the policies
nbtained in the reduced approach can be implemented as well as those
given uy the classical stochastic approach.

Finally, the proposed approach gives a global feedback just like the
classical technique does since all the constraints are respected

incluvding those on storage.
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5.7.2 Selection of Variable Number of Storage Components

The example given 1in Section 5.5 has four state variables: one
inflow component and 3 storage components. According to Table 4.3, the
first component of the inflows accounts for at least 99.987 of the total
variance. For the storages, the contributior of the components vary from
967 if 3 components are selected to 827 if only 2 are retained (Table
4.4). Solving a stochastic dynamic programming problem with fewer state
variables 1is always interesting. However, the degree of accuracy in
every period should be respected when reduction is made. To see the
difference with the case solved in Section 5.5, two additional
selections were made. The first consists in solving the problem with one
inflow and 2 storage componeunts, that is a reduction from 8 to 3 state
variables. The second consisis in selecting a different number of
variables in each period so as to respect a percentage of at least 887
of the total variance. In that case, and according to Tabies 4.3 and
4.4, the number of components selected will be similar to that shown in
Table 5.11.

The explicit distribution of the inflows is the same than the one
given in Table 5.1. Thus, when 3 state variables (1 inflow and 2 storage
components) are retained, the thermal production is 40916 GWh which is
very close to that (40322 GWh) when considering 4 state variables (1
inflow and 3 storage components). Therefore, there is & difference of
1.477 between these two results. To establish a basis for comparison
with the previous case, we will consider the first simulation. The
corresponding trajectories for the storages and outflows are given in
Table 5.12 and illustrated in Figure 5.15, for tlie optimal storages, and

in Figure 5.16 for the optimal outflows.
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Month

OBJECTIVE:

Branch

May Jun Jul

2

1 1

SIMULATION #1

Munth Stste Pt

May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr

1
17
13

8

8

8

9

7
14
15
10

2

17
3
8
8
8
9
7
14
15
10

2
1

Storagel
8000.000
11031.12¢%
13400.312
15082.262
17519.145
20284,934
19641 .836
19247.875
20044.324
15171.000
10319.871
8000.000

Table 5.12

-40916E+05

Jan Feb
2 2 1 2 z 1 1 2 2

Aug Sep Oct Nov Dec Mar Apr

Outflowl Storage2 Outflow2 Storage3 Outflow3 Storagei
81.681 6000.000 764.981 10000.000 705.265 5000.00¢
53.545 7439.504 283.415  14953.691 923.584 8003.121

331.726 8731.305 425.167  15329.2456 522.908 10034.281
383.943  10033.%98 288.123  16022.262 238.822  13225.727
167.632 12685.883 147.028 19227.629 141.250 14892.109
1020,888  14923.328 562.312  223A3.246 1515.236  15919.973
1177.665 17661.352 878.163  20767.707 511.989  14852.957
452.912 20189.520 3347.624 22208.695 3019.944 9463.320

2117.075 13775.602 3283.077  15985.293 2166.232  16727.977

2228.338  11147.246 2420.922 10865.652 297.680 19370.000

1114.557 11015.867 3064.741  10596.504 426.666  16159.027

307.683 6213.160 612.512 10015.895 397.672 10431.871

Optimal trajectory for the first simulation with three state variables

Outflows
1274 .044
1057.317

338.600

656.744

603.327
2988.171
4129.965
4094 .474
4632.246
4170.715%
5766.047
3272.877

£ST
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Period Inflows | Storages Total

May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr

[l el el e e i e
S e DWW WWEN N
NN PONNWNSSSDWW

Table 5.11 Number of Components

The optimal policies for this case are very close to those obtained
in Section 5.5. These policies can easily be compared in Figure 5.17 (a)
and (b) representing, for LG4 and LG3 respectively, the results for 4
and 3 state variables. Although the operating rules are quite similar,
the CPU time presents a big difference. With 3 state variables the
computing time is 1.2 sec whereas for 4 state variables, it jumps to
11.58 sec. We should recall that the cost showed a difference of 1.47%,
which is acceptable. However, it is still possible to minimize this
difference by considering a variable selection adapted to each period.
The computer program offers the npossibility to perform stochastic
dynamic programming with a variable number of states. Therefore, when
considering the number of components shown in Table 5.11, the total
thermal energy needed is 40747 GWh, a difference of almost 17 with the
case presented in Section 5.5. The optimal policies are also very close.

Table 5.13 summarizes the different storage levels and outflows shown in
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Month
Branch

OBJECTIVE:

May Jun Jul Aug Sep Oct Nov Dec

2

1 1

SIMULATION # : 1

Menth State Pt

May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr

1
17
13
38
38
38
43

7

3
3
2
1

17
13
38
38
38
43

7

3
3
2
1
1

Storagel
8000.000

11031.129
13400.312
15231.258
17700.707
20535.430
20087.660
19247.875
20104.301
15827.398
10396.840

8000.000

Table 5.13

2 2

Outflowl
81.681
53.545

276.097
371.784
141.037
947.961
1349.665
430.520

1894.396

2467.851

1143.294

307.683

1

.40747E4H05

2

Storage2
6000.000
7439 .504
8731.305
9988.625
12613.230
14795.062
18007.08%
20189.520
13413.801
10114.012
10065.059
6213.203

2

Jan Feb
1 1

Outflow2
764.981
283.415
386.329
286.299
141.889
312.416

1183.547

3460.312

3311.083

2626.364

2738.470
612.528

Mar Apr
2 2

Storage3
10000.000
14953.691
15329.246
15942.316
19093.312
22128.879
21146.133
22208.695
16836.609
12384.488
11792.902
10015.887

Outflow3
705.265
923.584
552.756
259.122
179.850

1286.445
657.987

2702.099

1917.009
430.963
873.353
397.669

Optimal trajectory with variable number of states

Storage4
5000.000
8003.121
10034.281
13270.211
14987.066
16116.754
15149.977
9463.320
15022.621
17789.914
13910.645
10432.555

ey

Outflows
1274.G44
1057.317

313.001

656.375

597.504
2472.059
4695.937
4526.023
4364.258
4785.684
5046.762
3273.154

8s1
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Figures 5.18 and 5.19, whereas Figure 5.20 shows a comparison of the

¢ )

outflows for LG2 with 4, 3 and variable number of states. The CPU time
required for this last case is 3.89 sec, which is 3 times faster than

the case with 4 state variables.

5.7.3 Explicit Distribution of 5 Classes

The distribution of the inflows was considered in 2 classes or
branches. This was helpful for the comparison with the classical
stochastic dynamic programming. However, the number of classes usually
used varies from 5 to 15 classes [Miller and Freund, 1977]. In this
section, the performance of the reduced stochastic dynamic programming
approach will be studied with a distribution of 5 classes. However,

before doing so, it is important to note that only 1 component of the

¢ 3

inflows is selected, and we can consider 2, 3 or variable number of
storage components as discussed in the Subsection 5.7.2. For the sake of
presentation, the same selection as the one chosen in Section 5.5 will
be considered: 1 inflow component and 3 storage components.

A histogram of the distribution is iljustrated in Figure 5.21 for
the month of May, while the different classes and the corresponding
probabilities are shown for the twelve period problem in Table 5.14.
Thus, the optimal thermal energy produced will be 40654 GWh as given in
Table 5.15. The results of the first simulation are also given in the
same table. In this case, the program starts by selecting a class of
inflows. After that, the optimal trajectory is extracted for each month.
Figure 5.22 illustrates the optimal storages, whereas Figure 5.23 shows
v the optimal outflows. The CPU time is very small: only 27 seconds are

required to solve the 4 reservoir problem with 5 classes of inflows on
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Classl Probl| Class2 Prob2| Class3 Prob3| Class4 Frob4| Class5 Prob5
May 1153.76 0.120f 1788.37 0.360{ 2422.98 0.200} 3057.59 0.260]| 3692.20 0.060
Jun 1261.33 0,120} 1892.85 0.140| 2524.36 0.360] 3155.88 0.2807 3787.40 0.160
Jul 1182.21 0.140] 1586.54 0.340f 1990.87 0©.300] 2395.20 0.160 2799.53 0.060
Aug 8§11.53 G.060f 1256.72 0.200} 1701.90 0.340} 2147.08 0.240} 2592.27 0.160
Sep 950.13 0.120] 1315.26 0.160( 1680.39 0.240| 2045.52 0.320| 2410.85 0.160
Oct 1151.17 0.160f 1518.56 0.180}| 1885.95 0.320| 2253.34 0.240 2620.73 0.100
Hov 927.06 0.080| 1182.30 9.260| 1437.54 0.26C| 1692.72 0.240| 1948.02 0.160
Dec 624.96 0.0860 308.35 0.240 961.75 0.420] 1175.15 0.24C| 1358.54 0.040C
Jan 393.53 0.020 488.86 0.18) 584.19 0.380 679.52 0.360 774.85 0.060
Feb 298,30 0.040 360.93 0.220 423.55 0.380 486.17 0.340 548.80 0.020
Mar 268.24 0.060 304.49 0.249 340.74 0.340 376.99 0.300 413.24 0.060
Apr 270.63 0.180 363.09 0.280 455.25 0.360 547.42 07140 635.58 0.040

Table 5.14 Distribution ¢f the random variable
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Month
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr

OBJECTIVE:

Month
Branch

4 3

SIMULATION #1

State Pt
1 125
125 83
83 63
€3 58
538 32
32 43
43 38
38 49
49 50
50 69
69 5
5 1

Storagel
8000.000
9147.891
13193.871
16433.484
18120.293
20494.035
20087.660
19512.473
17604.301
14164.707
13435.262
8000.000

2 5

QCutflowl
6.628
199.074
76.605
86.405
481.000
1384.750
1243.637
1659.247
~558.026
534,727
2225.251
146.147

.40654E+05

May Jun Jul Aug Sep Oct Nov Dec

5

Storage2
6000.000
6000.000
8594.426
98%4.809
10786.270
12938.172
18007.082
20635.1395
19254.660
15505.148
9815.336
7315.863

Jan Feb
3 2

Outflow2
444,459
522.886
368.021
251.344
601.378
382.518
979.143

2731.096

3289.906

3031.222

3282.360
759.614

Mar Apr

2 1

Storage3
10060.000
10510.270
15523.375
16818.836
18100.859
18883.234
21146.123
21284.262
15813.758
11383.723
16688.859
10070.687

Dutflowl
726.020
G.402
563.978
320.261
1222.265
607.500
1131.006
2817.274
1974.104
482.097
396.264
213.244

Table 5.15 Optimal trajectory for the first simulation

Storage4
5000.000
5000.000
6386.949
10724.434
11363.992
16630.070
15149.677
11578.496
18038.980
18510.426
15028.254
9544.270

¢

!

Outflow4
1502.346
1150.344
92.712
751.123
594,770
2351.706
£4220.488
3625.025
5300.750
5083.187
5833.707
2805.200

c91
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an IBM-3081.

5.8 Ccnclusion

We have presented, in this chapter, an application of the principal
components approach to the determination of the monthly operating policy
of a power system of n reservoirs. This method consists in reducing the
number of variables in order to be able to use stochastic dynamic
programming.

In addition to being simple and easy to program, this tecinnique has
the advantage of being very fast. In fact, in the sample application of
four reservoir system, only 12 seconds of CPU time were required on an
IBM-3081 to solve the problem for 2 classes of inflows, and 27 seconds
for 5 classes. On the other hand, with the classical dynamic programming
approach, 44 minutes were required to solve the 2 class problem and 1
hour of CPU time was not sufficient to obtain the results for the 5
class case.

The program that was written to solve this problem offers the
possibility of se'ecting a different number of components in each
period. This characteristic, studied in Section 5.7, determines the
number of components according to a fixed percentage of the variance.
Thus, it is possibtle to select n components in a period and only 1
component in the next one.

Finally, this approach gives global feedback sclutions. In fact, the
results of Section 5.5 prove that all the constraints are respected. In

addition, the decisions obtained are functions of the explicit distribu-

tion of the inflows and consequently the explicit distribution of the

states.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary of Results

This work has presented a method for reducing the number of state
variables in the stochastic long-term multireservoir operating problem.
The approaches which have so far been proposed to deal with the problem
were based mainly on the applicition of dynamic programming. These
methods, briefly presented in Chapter I, have attempted to transform the
large-scale problem into one or a series of small-scale preblems using
the aggregation, decomposition or prcjection techniques. The main draw-
back of these methods is that they only give local feedback solutions.

Principal components analysis can be used to transform the large-
scale problem inco a small-scale one without neglecting the individual
constraints on each reservoir, especially the storage level constraints.
Thus, stochastic dynamic programming can be performed efficiently and
global feedback solutions can therefcre be found.

The proposed method was tested on a3 system of four reservoirs
representing Québec's La Grande river installations. The problem was to
minimize the experted cost of thermal energy.

The model developed was a nonlinear one. A piecewise linearization

was used and penalty functions to limit 'high wvariations of the
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discharged water were added. This model is presented in Chapter II.

An important step of the principal components approach consists in
the deterministic cptimizations for several inflow sequences. This task
was done in Chapter III with IBM's MPSX/370 package. The reduction
process using principal components analysis was then performed on the
optimal deterministic results as explained in Chapter 1IV. Firally, in
Chapter V the reduced problem was solved using stochastic dynamic
programming.

The performance of the propcsed approach was thereafter compared +to
the classical dynamic programming method, that is witnout any reduction.
Important results were obtained from that comparison. First, a great
reduction was observed in the CPU time required to solve the problem.
Secondly, the total cost and the operating rules were found to be
extremely close. In fact, the difference in the objective function was
just over 17 for the same four reservoir system, and the operating rules
found showed similar patterns. Both techniques have the characteristics
of giving low discharge in summer and very high discharge in winter,
especially for the downstream reservoirs (LG3 and LG2). This is only
logical because the demand gets very high in winter. Consequently, the
water is stored during summer for future use in winter. Many graphics
were also given in Chapter V to iliustrate the feature of the reduced
approach and to facilitate the comparison with the results obtained from
the classics]l technique.

Taking advantage of the fast computing time and of the satisfactory
operating rules, other cases were studied in Chapter V. For example, the
reduced problem was solved with different number of state wvariables in

each period, and then it was solved again bur with a realistic explicit
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distribution of inflows in 5 classes.

6.2 Conclusions

The method proposed for reducing the number of state variables in
the stochastic large scale problem can be applied wherever correlation
exists between the inflows to two reservoirs or between the reservoir
contents. Naturally, the higher the correlation, the greater and better
the reduction will be.

The correlation between the inflows can vary throughout the year. In
Québec, for instance, the correlation is very high in winter when
everything is frozen and low in the spring during the thaw. The
reduction of the state space will therefore be more important in winter
months than in spring, which is totally acceptable. Dynamic programming
does not requiie that the number of state variables be the same in every
period. In fact it 1is more important to have the same degree of
ptecision in every pericd than the same number of state variables. For
instance, if the new set of variables is to account for 95Z of the
sample variance, then the reduction in every period should be made in
order to respect that percentage.

Since linear programming was used to solve the deterministic model,
the reservoir contents may have weak correlation due to the bang-bang
solution, 1n which a plant is run at maximum capacity one month and shut
down the next. Therefore, introducing a penalty function on the
variation of the outflows from period to period can insure a better
correlation. However, a problem arises when determining that penalty
factor because it can not be found according to fixed rules. Moreover,

its value must not exceed 10% of the cost of the thermal energy.
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The deterministic optimizations allow us to find a set of reservoir
contents, for many inflow sequences. The size of the sample of inflows
is very important. As a matter of fact, the principal components can be
very different for two different samples of data. Nevertheless, it was
shown that the wsample size is ‘'representative" for large number of
sequences. However, for economical considerations, a sample size of 30
may be considered as being sufficiently large.

Principal components analysis does not have to be applied to all
installations at the same time. If two rivers with several installations
on each have different flow patterns, then principal components analysis
can be applied to each river separately so as to find a good reduced
model of each.

Principal components analysis is very easy to implement and
manipulate because it involves only linear relations. Its combination
with the optimization model gives interesting results especially when
compared with the existing classical technique which is limited to a
small number of state variables. The proposed technique can therefore be
applied without any problem to large-scale systems. The only condition
is that the state variables must be interdependent. In general,
interdependency does exist between reservoirs located on the same rivers
or on nearby rivers with similar flows patterns. In this perspective,

the proposed technique can be of great utility.




6.3 Further Research Recommendations

Further research work can proceed along several directions:

A
1-
2_
3-
La

Y4

The piecewise linearization introduces some inaccuracy because
there are no rules established for the selection of either the
optimum grid size or the optimum number of grids. In this case,
the possibility of considering nonlinear models can be investi-
gated knowing that dynamic programming can deal with linear as
well as nonlinear models. [n addition, the penalty functions are
then not necessary and can be neglected in nonlinear models.
Therefore, more accurate results can be obtained.

The only random variable in the present work is the natural
inflow in each period. However, there are other variables that
can be regarded as stochastic. For example, it can be interes-
ting to take into account the stochasticity of the demand and to
solve a stochastic model having both the natural inflows and the
demand as random variables.

Although the technique proposed in this thesis is applied to
long-term problems, it is also possible to apply the method to
short-term problems as well., In that case, the model should
take into account the water head variations. For long-term
operating problems water head can be considered constant whereas,
this assumption is of no value for short-term problems.

If short-term problems are considered, care should be taken while
using the covariance nr the correlation matrices to perform the
principal components analysis. That is because the correlation
matrix imposes the same weight for large and small reservoirs.

Therefore, this case should be discarded for long-term problems,
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while it can yield interesting results when compared with the
covariance matrix in short-term problems.

Principal components analysis is performed only in space. In
other words, the analysis is made only for reservoirs taken at a
given time. However, since correlation does exist from period to
period, it may be interesting to reduce the model in time 1in
order to find a shorter operating horizon.

The reduction in space and in time together may add another
dimension to the problem, and therefore can open an important
research dir ection in the future.

Finally, the method proposed in this thesis can be used for
reservoirs serving other purposes than the production of
eloctricity. This would be a fruitful direction for future

research.




APPENDIX A

PIECEWISE LINEARIZATION

A.]l General Description

The nonlinear function must be assumed to be convex in order to
reach a "global" optimum. Any nonconvex function may result in a "local"
optimum. For example, Figure A.1 depicts a two-dimensional model that
contains two linear constraints, one convex nonlinear constraint, and a
linear objective function to be maximized. The feasible region is
shaded, and the optimal solution is indicated by the position of the
objective function. Figure A.2 depicts a similar model except that the
nonlinear constraint is not convex. Because of the nonconvexity of the
nonlinear constraint, both solutions shown appear optimal to the
program, and either one may be reached first. Figure A.3 shows that a
nonlinear function can be approximated by a piecewise 1linear function,
known as a polygonal approximation. The function and two possible
polygonal approximations are shown in this figure. Each polygonal
approximation is represented by linear equations, together with certain
logical restrictions on the variables in the equations. The solution

reached is an approximation of the true solution.
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Figure A.1 Convex feasible region
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Figure A.2 Nonconvex feasible region
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Figure A.3 Nonlinear function and polygonal

approximation
Y
J. —
Dy3 T Te.-—
Dy2
Dyl
g
{ 1 l | i 4+ X
T T i 1 | i 1
Dy1 Dx2 Dx3 Dyr-1 Dyr
X=Xy X=X

Figure A.4 Polygonal approximation of a nunlinear

function
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A.2 Development of Approximating Equations

Figure A.4 1is a graph of a polygonal approximation of a nonlinear
function Y = F(X), defined in the interval | Xg, X.1.

The grid is defined by a set of r+l points on the X-axis. The leng-
ths of the resulting intervals on the X-axis are Dy1s Dgseves Dypy and
the lengths of the resulting intervals on the Y-axis are Dyl’ Dyz,. .oy

D The wvariable X can be developed as a function of "special" varia-

yr-
bles Xis X925 ooy X,s where X; defines the first interval of length Dy1s
Xy the second interval of length Dy,, and so on.

Any value of X between Xy and X, can be expressed in terms of the

equation

X=Xg +Dgp « Xy #+ Dyp o Xp + o0v + Dy« X, (A.1)

if the special variables are defined as follows:

Xl = Xz T osee = Xi'l =1 (A.Z)
0<X; €1 (A.3)
Xi+1 = Xi+2 S s = Xr (A.ll)

The value between 0 and 1 of X; is that fraction of the interval i
covered by the variable X. For example, if X has a value at the midpoint
of interval i, the special variable X; has the value 0.5. If X is at 3/4
of the length of interval i, the special variable X; has the value 0.75.
Equation (A.1) is referred to as the grid equation.

Similarly, the function Y can be expressed in terms of the same

special variables and the lengths of the resultant intervals along the
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Y-axis as follows:

Y=Y0+D .X1+Dy2.X2+...+D .Xr (A.5)

yl yr

Because of the linearity of the approximating functionz, the values
of X; to X, that satisfy the grid equation also satisfy equation (A.5),

known as the functional equation.

A.3 Example

The following example illustrates, for a specific nonlinear
function, the equations relating the variable, the nonlinear function Y
= F(X) and the special variables.

The problem definition data are :

a) Nonlinear function : Y = X2

0 to X=1

b) Range of X value cousidered : X
c) Defined set of special variables: X1, Xo, X3, X4 Xg

d) Defined interval lengths : 0.3, 0.1, 0.2, 0.3, 0.1

The information required to develop the equations for this problem

is contained in Table A.1.

Interval ki =X at }kyp =X at Dyi Yy = Yat |Yp =Y at Dyi
Beginning | End of |= kg - ky| Beginning End of =Yy, = Y
of Interval|lnterval of IntervallInterval
1 0 0.3 0.3 0.00 0.09 0.09
2 0.3 0.4 0.1 ¢.09 0.16 0.07
3 0.4 0.6 0.2 0.16 0.36 0.20
4 0.6 0.9 0.3 0.36 0.81 0.45
5 0.9 1.0 3.1 0.81 1.00 0.19

Table A.1 Problem information
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The general formulas for the grid and functional equations are:

>
It

X0+Dx1 . X1+Dx2 'x2+DX3' X3+Dx4 'X4+DX5' XS (A.ﬁ)

v
il

Y0+Dy1. X1+Dy2 .X2+Dy3. X3+Dy4 .X4+Dy5. XS (A.7)

The Dy, and Dy columns give the required coefficients for the

equations. We therefore have:

<
L]

0+0.3.X1+0.l.X2+0.2.X3+0.3.XA+0.1.X5 (A.8)

<
i

0+ 06.09. Xl + 0.07. XZ + 0.2 . X3 + 0.45. Xlo + 0.19, XS (A.9)




APPENDIX B

DEMONSTRATION

B.1 Lemma and Proof of Section 4.2 |Johnson and Wichern, 1982]

B.1.1 Lemma
Let 2T = (21529,...,2,] have covariance matrix W with
vigenvalue-eigenvector pairs (A, by),(Xp, by),...,(A,, b,) where Ay 2
Ay 2,...2 Ay > 0.
Let E;l=b1T21, £2=b2TZ, . eny E;n=bnTZ be the principal components.

Then
n n
iElv,m(zi) =011 + 099 *+...ot Opy =i§1VAR(Ei)=A1 + Xp oot A,
B.1.2 Proof
By definition the trace (tr) of a matrix is the sum of the

diagonal elements. Then

tr (W)

011 + 099 +...t 0opn (B.1)
and

tr (A)

AMoF A ot A (B.2)

where A is the diagonal matrix of eigenvalues.

We know from Section 4.2 that
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i=1,...,n (B.3)

or in another form,

Ww=28T AB (B.4)

vhere BT = [by, by,...,b,] and BT B = B BT

I (unity matrix).
Then from (B.4)

tr (W) =tr (BT A B) =tr (A BT B) =tr (A)

AL+ A ol (B.5)
Thus

n n
(B, VAR (Z;) = tr (W) = tr () =i§1VAR(F,i)

B.2 Synthetic Inflow Generator.

[ Pronovost, 1974]

The synthetic inflow generator used

in this thesis has the
following form

Yy = Ak + By Yk'l + Ck Wi (B.6)
where Yj represents a column vector of random variables of inflows for

period k, W, a column vector of white noise and Ay a column vector of

constants. B and Cy are square matrices.




183

From the historic data, the mean values vector My, the correlation
matrix Ry for different sites for period k and the correlation matrix Py

between periods k-1 and k are determined as follows.

Mk = E[Yk] (B.7)
Rk = E[(Yk‘Mk)(Yk'Mk)T] (8.8)
Py = E[(Yjoq-Me1) (M) T (B.9)

Replacing equation (B.6) in (B.7), the mean values vector My may

then be written as

Mk = E[Ak + Bk Yk‘l + Ck wk] 3

E[Ak] + Bk E [Yk‘ll + Ck E[wk]

Ak + Bk E[Yk"].]

Ak + Bk Mk"l (B.IO)

(B.10) can easily be obtained since Ay is a constant and W, is a

white noise with zero mean.
In the same way, by replacing equation (B.6) in (B.8) and (B.9)

respectively, the following relations are obtained

Rk = Bk Rk‘l BkT + Ck CkT (B.11)
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P = Rp.) By’ (B.12)

Then to find Ay, By and Cy, the system of three equations (B.10),

(B.11) and (B.12) has to be solved. From statement (B.12)

Bk = PkT Rk'l‘l (3.13)

Substituting (R.13) in (B.10), Ay can be written as

Ak = Mk - PkT R-lk-l Mk'l (B.llb)

and finally, by substituting statement (B.13) in (B.1l1), the following

expressinn is found

Cr CkT = Ry - (PkT Rk-l-l)(Rk-l)(Rk-l-l Pk)

R - PiT Reoq™l Py (B.15)

To find Cy, it can be seen that
Ck CiT = Ly Ay Lyt (B.16)
is the general form of an eigenvalue problem in which Ly is the matrix

of eigenvectors for Cy CkT and Ay is the diagonal matrix of eigenvalues

for Cy CTk. Ly has the property of being orthonormal, or
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Ly T (B.17)
Then by replacing (B.17) in (B.16), Cj CkT can be written as
Ce T = Ly A 1T = 1 4 1/2 0 172 1T
= (L A2y a1/ 2)T (B.18)

Therefore

Ck = Lk Akllz (P.lg)
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APPENDIX C

DATA AND RESULTS OF THE DETERMINISTIC

OPTIMIZATIONS OF CHAPTER IV




Year

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1560
1961
1962

1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

May

713,
479.
799.
484,
436.
555.
215.
501.
793.
1014.
555.
456.
527.
651.
1028.
462.
583.
521.
866.
462.
504.
481.
317.
1087.
46k,
549.
1056.
631.
629,
1410.

Jun

1965.
470.
954,
719.
824,
762.

1492.

1161.

1070.

1334,

1032,
694 .
951.

1036.

1090.

1430.

1504.

1133.
813.

1223.

1155.
565
886.

1104.

1283,

1422.

1334,

1467.

1107.

1583.

Jul

1555.
459.
634,
663.
555.
501.

1271.

1008.
759.

1031.
646.
572.
64L6.
64L0.
663.

1538.

1158.
719.
685.

1104.
926.
637.
779.
187.
827.
951.
654 .
903.

1053.
866.

Aug

1000.
289.
934,
586.
345.
292.

1359.
841.
549.

1019.
892.
394,
436.
507.
4i7.

1133.

1280.
719.
923.
773.
122.
637.
677.
572.
445,
917.
513.
728.

1235.
663.

Sep

354,
640,
742,
728.
530.
433,

1382.
946.
838.
680.
923,
391.
597.
L4s,
580.

1167.
951.
547.
847,
682.
960.
646.
813.
Suk.
4179.
646.
416,
725,

114,
728.

Oct

790.
617.
923.
674,
575.
592.
694 .
963.
782.
818.
864.
878.
S47.
631.
470.
813.
991.
889.
515.
816.
1014.
677.
886.
753.
711.
804,
453.
382.
631.
784.

Nov

640.
702.
682.
476.
467.
Su7.
575.
612.
713.
665.
838.
765.
430.
462,
433,
682.
705.
779.
54l.
6717.
906.
479,
711.
527,
£88.
631.
445,
323.
682.
620.

Table C.1 (a) Historic inflow sequences

Dec

LBT.
490.
515.
382.
160.
433,
382.
399,
493,
411.
595.
521.
413.
331.
L22.
479,
498,
549,
399,
442,
796.
377.
399,
297.
408.
399.
306.
272.
654.
538.

for LG4

Jan

354,
328.
343,
261.
229.
306.
246.
244,
326.
292.
343,
328.
283.
229.
266.
326.
289.
311.
227.
323.
£30.
229.
241.
198.
238.
255.
204,
221.
377.
343.

Feb

241.
218.
232.
181.
164.
207.
178.
184.
238.
210.
246.
238.
190.
161.
198.
249,
198.
221.
167.
232.
340.
153.
181.
164.
193.
193.
153.
184,
263.
229.

178.
176.
173.
142,
130.
167.
144,
14k,
176.
17G.
181.
176.
147.
136.
164.
190.
161.
173.
136.
173.
249,
116.
162,
142,
173.
153.
130.
156.
207.
184.

Apr

218.
249,
184.
176.
133.
150.
136.
125.
176.
201.
147,
164.
142,
142.
195.
144,
204,
14d.
201.
139,
193.
142,
105.
139.
139.
136.
142,
136.
167.
212.

(81



Yoar

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

May

731.
ILYR
997.
824.
719,
810.
467.
699.
807.
1022.
1184,
592.
722.
714,
1410.
716.
861.
583.
1192.
504,
767.
643,
487.
1470.
564.
932.
1455.
949,
866.

1297,

Jun

1617,

597.
1195.

697,
1042,

767.
1640.
1045.
1070.
1501.
1085.

620.

903.
1090.
1116.
1416.
1470.
1294.

663.
1280.
1195.

748,
1976.

971.
1665.
1266.
1065.
1379.
10136.
1410.

Jul

838.
439,
762.
484,
637.
507.
770.
7617.
592.
892.
595.
447,
535.
572.
496.
1158.
974.
620.
612.
1068.
714.
496.
691.
589.
677.
835.
456.
694.
366.
2.

Aug

566.
439,
779.
680.
479,
309.
903.
646.
7122.
1011.
708.
326.
481.
L6h .
408.
864.
1167.
861.
1141.
617.
889,
719.
569.
L16.
405.
827.
2717,
708.
1186.
578.

Sep

311.
L47.
640.
566.
513.
374.
1042.
122.
813.
654.
671.
300.
572.
348.
620.
889.
974.
518.
917.
682.
765.
654.
762.
578.
518.
583.
3s4.
977.
1062.
830.

Oct

674,
855.
1096.
578.
555.
631.
816.
830.
470.
668.
1104,
787,
473,
538.
377.
782.
9L6.
881.
Lu7,
750.
1042.
416,
816.
767.
779.
920.
473,
402,
620.
711.

Nov

501.
521.
487.
501.
456.
456.
535.
597.
600.
532.
816.
637.
Léh.
411.
337.
583.
612.
671.
547.
589.
7176.
374,
564.
L81.
688.
651.
L87.
323.
623.
586.

Table C.1 (b) Historic inflow sequences

Dec

362.
518.
4L79.
340,
343,
481.
501.
362.
4u5.
351.
402.
447,
360.
283.
365.
408.
377.
521.
408.
351.
575.
351.
331.
297.
360.
396.
300.
218.
515.
597.

for LG3

Jan

224,
323.
289.
218.
210.
297.
303.
215.
275.
232.
229.
280.
221.
176.
224.
244,
212.
255.
232.
238.
379.
201.
218.
198.
210.
238.
173.
159.
266.
300.

Feb

153.
221.
207.
150.
147,
204.
229.
159,
195.
167.
173.
193.
170.
127.
156.
173,
164.
173.
170.
184,
266.
139.
167.
147.
159.
164.
116.
130.
184.
193.

127.
173.
161.
125.
119.
164.
173.
125.
147.
2.
139.
147.
136.
108.
130.
133,
147.
130.
136.
150.
212.
113,
142,
116.
133,
125.

93.
113.
150.
150.

Apr

147.
278.
147.
245,
167.
184.
122.
161.
190.
127.
167.
159.
125.
116.
178.
108.
218.
116.
331.
133.
193.
164,
116.
125,
110.

88.
122.
116.
133.
147,

881



Year

1950
1951
1952
1953
1954
1955
1956
1957
1958
1955
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

May

1750.
1648.
1775.
1761.
1903.
1688.
1263.
1419.
1911.
1965.
2047.
1532.
1651.
1308.
27178.
1498.
1693.
1509.
2175.
1215.
1679.
1167.
1014.
2750.
1487.
2115.
2466.
2059.
1659.
2959.

Jun

2532.
668.
1606.
1019.
1286.
1172.
2019.
2005.
1801.
2118.
1249,
915.
1385.
1523.
1900.
1900.
2172.
2073.
907.
2404,
1798.
779.
1654.
1441 .
3336.
1569.
1455.
1693.
1.38.
1849.

Jul

765.
660.
915.
1034,
1085.
541.
827.
1640.
790.
1051.
677.
648.
541.
697.
711.
1351.
1300.
866.
1008.
1858.
646.
790.
796.
1031.
852.
1189.
535.
745.
1181.
940.

Table

Aug

742,
1218.
2387.

943.

966.

671.
1059.

988.

912.
1628.
1189.

626.

552.

765.

850.
1447,
1572.
1688.
1940.
1622.

895.
1422,

688.

682.

433,
1141.

682.

971.
1535.

886.

Sep

487.
900.
1532.
1019.
824.
847.
1107.
784,
1150.
1099.
1017.
637,
816.
496.
1218.
1172,
1249.
765.
1764,
1002,
951.
1390.
1107.
9S4,
748.
830.
739.
2104.
1371.
1424,

C.1 (c) Historic

Oct

1104,
711.
830.

1705.

1354,
821.
991.

1611.

1116.

1286.

1161.

1280.
790.
677.
578.

1305.

1283.

1555.
728.

1540.

1ilidy,

1073.

2149,

1246.

1198.

1495.
855.
810.
917.
963.

Nov

756.
861,
793.
770.
878.
694,
909.
841.
940.
833,
1175.
9177.
835.
521.
513.
767.
782.
1130.
968.
1002,
1113.
705.
1002.
799.
929.
909.
1124,
595.
957.
844,

Dec

L79.
705.
671.
453.
561.
592.
654,
430.
609.
428,
552.
654.
643.
348.
459,
442,
456.
801.
606.
515.
728.
530.
549.
456,
527.
629.
629.
374.
716.
578.

inflow sequences for EOL

Jan

300.
391.
416.
272.
328.
371.
354,
258.
354.
289.
328.
354,
365.
215.
278.
266.
292.
391.
354,
33l.
4L67.
317.
314,
328.
326.
436.
328.
255.
416.
292.

Feb

212.
249,
297.
215.
221.
275.
241,
187.
218.
212.
212.
244,
241.
16l.
198.
195.
210.
252.
241,
252.
334,
195.
229.
235,
232.
317.
224,
201.
283.
195.

161.
210.
300.
190.
181.
201.
156.
153.
142.
178.
161.
184.
181.
139.
164,
161.
210.
193,
204,
195.
246.
127.
i81.
184.
i81.
235,
184,
181.
212.
159.

Apr

283.
541.
283.
371.
127.
229.
261.
153.
176.
377.
309.
379.
164,
224.
294.
150.
515.
181.
742,
184.
221.
133.
156.
255.
161.
241,
501.
289.
178.
249,

681
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Year

1950
1951
1952
1953
1554
1955

" 1956

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

May

569.
510.
654,
547.
847.
433,
326.
504 .
603.
583.
637.
64L0.
595.
861.
949.
351.
651.
637.
725.
708.
422.
462.
402.
1371.
538.
719.
776.
816.
569.
1107.

Jun

1764.
L84,
954,
643,
699.
779.

1390.
960.

1223.

1155.
835.
470.
875.
881.
864.

1382.

1184.

1407.
705.

1119.
9717.
439,
892.

1028.

1144,

1079.

1048.

1034.
790.

1322.

Jul

762.
492,
719.
487.
580.
583.
824.
790.
688.
756.
527.
634.
484,
524.
462.
1206.
801.
682.
481.
915.
665.
654,
697.
g818.
623.
869.
595.
974.
626.
688.

Aug

535.
314.
515.
408.
513.
343,
949,
807.
S41.
617.
343.
269.
323.
Léb.
360.
830.
796.
564.
697.
547.
549,
883,
761.
igs.
323.
1062.
464,
668.
114,
467.

Sep

379.
459,
620.
524,
442.
479.
770.
515.
527.
405.
685.
297.
425.
351.
595.
920.
697.
419.
677.
578.
493.
733.
139.
433,
453,
640.
314.
623.
793.
617.

Oct

597.
600,
804.
711.
674,
552.
496,
711.
498,
595.
909.
660,
507.
473,
331.
835.
765.
833.
673,
892.
912.
510.
833.
722.
665.
651.
510.
320.
515.
705.

Nov

501.
524,
643.
527.
402.
419,
561.
475,
473.
564.
799.
620.
496.
L28.
337.
620.
541.
555.
504.
660.
756.
3s2.
612.
473.
702.
575.
631.
215.
555.
419.

Table C.1 (d) Historic inflow sequences

Dec

374,
317.
328.
289.
289.
340.
294,
314,
286.
402.
411,
453,
374,
340.
345,
391.
354,
394,
320.
360.
561.
258.
306.
292.

371.
399.
204,
L96.
269.

for LG2

Jan

229.
198.
283.
198.
170.
235.
187.
198.
170.
246,
238.
272.
224,
224,
212,
241.
210.
244,
193.
210.
354.
156.
178.
210.
256.
238.
229.
153.
244,
235.

Fedb

153.
142,
207.
lan,
127.
167.
136.
139.
127,
164.
164.
190.
147.
156.
147.
167.
1a4,
161.
142,
161.
229.
116.
136,
167.
193.
170.
153,
125.
153.
144,

122.
113.
153.
116.
102.
125.
116.
113.
99.
122.
133.
139.
119.
122.
122.
122.
110.
127.
110.
108.
156.
96.
110.
pLY N
147.
122.
119.
110.
113.
99.

Apr

113.
110.
113.
113.
144,
102.
113.
110,
133.
119.
125.
122.
108.
139.
127.

96.
153.
116.

88.
119.
125.
136.

91.
144,
116.

99.
110.
130.
119.
116.

¢

)
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Year May Jun
1 1088. 1221.
2 695, 1827.
3 1078. 1228.
4 1512, 2288.
5 768, 1460.
6 1314. 1562.
7 787, 1440.
8 709, 2127.
9 703. 528.
10 787. 869.
11 762, 1324,
12 952. 1925,
13 1162, 114z,
14 1223, 720.
15 517. 1297.
16 871. 2102.
17 881, 177.
18 760, 1164,
19 864, 2108.
20 1074, 1927.

21 1382, 1322.
22’ 1124, 1909.

23 752. 1632.
24 1054, 1708.
25 959, 872.
6 365, 1135.
27 804, 934,
28 1165. 1895.
29 775, 1333.
30 438. 1611.
31 589, 1810.
32 580. 1239.
33 1272. 1906.
k1% 995, 1601.
35 1193, 710.
36 675, 1535.
37 2084, 1886.
36 611. 1426.
39 676. 1554,
40 746, 2104,
41 938. 1712.
42 316. 1543.

43 1095, 2278.
L4 705, 2139.

45 133. 1964.
46 845, 1818.
47 1096. 1455,
48 L66. 1272.
L9 978. 1024.
50 324, 1760.

Jul

988.
1834,

961.
1418.
1255.

839.
1024,
1585.

634,

950.
1126.
1157.
1052.

oub.

984,
1165.

643.

694,
1282.
1065.

731.
17282.

959.
1163.
1072.

896,

990.
1445,
1055.
1505.
1009.
1227.
1478.
1203.

800.
1312.
1471.

863.
1287,
1796.
1363.
1274,
1938.
1116.
1516.
1521.
1106.
1294.
1267.
1188.

Tabie

Aug

9913,
1276.
830.
1285.
985,
33s.
1038.
1215.
1020.
675.
13319.
1203.
1269.
753.
724,
658.
587.
792.
998.
1030.
800.
751.
866.
1057.
1050.
1269.
699,
1531.
1283.
1340.
906.
1143,
1392.
1029.
665.
1029.
1284.
1045.
1038.
1612.
1577.
1395.
1546.
L2,
1430.
1366.
1022.
1055,
1154.
919.

C.2 (a)

Sep

1093.
1232.
978.
1220.
975.
703.
975.
774,
1315,
488,
1486.
901.
1289.
899,
1174.
655.
601.
584.
1224,
1169.
6L8.
875.
8s55.
1134.
1209.
1085.
689.
1043.
1245.
1230.
624,
1498.
1174,
859.
697.
672.
1151.
1111.
1073.
1332.
1330.
1255.
1411,
Lk,
1387.
S22.
ouL,
1066.
1117.
898.

Oct

853,
965.
15¢C1.
922.
1129,
1258.
1150.
707.
931.
837.
700.
1070.
1027.
786.
695.
1248.
722.
640,
986.
1097.
1223.
948.
937.
1252.
975.
1099.
1042.
628.
1128.
1206.
1356.
830.
1178.
1235.
1351.
796.
722.
922.
1018.
913.
1347.
1208.
1534,
942,
530.
1277.
1106.
998.
1239.
1185.

Nov

728.
686.
1102.
779.
800.
1080.
1046.
615.
719.
656.
630.
1179.
730.
950,
843.
1007.
802.
729.
641.
986.
804,
881.
754,
1071.
864.
1119.
7617.
604,
791.
1112.
1111.
629.
816.
856.
1019.
686.
467.
853.
708.
959.
911.
942.
1212.
7312.
529.
1010.
941.
971.
1034.
938.

Svnthetic inflow seauences

Dec

553.
604,
T17.
581.
486.
702.
691.
477.
473,
479,
492.
T45.
563.
668.
627.
T42.
5313.
608.
607.
592.
521.
657.
478.
661.
567.
890.
452.
579.
603.
754.
76k,
516.
439,
661.
683.
491.
427.
58n.
597.
658.
618.
647.
7190.
606.
328.
715.
566,
599.
668.
615.

for LG4

Jan

380.
404,
442,
398.
356.
443,
446.
284,
290.
310.
339.
483,
392,
380.
408.
L61.
353.
388.
423.
392.
3l4.
408.
320.
417.
366.
526.
305.
345.
422.
483.
450.
362.
306.
410.
430,
354,
308.
361

418.
425.
409.
404.
L61.
403,
222.
426.
380.
353.
LLB.
394,

Feb

289.
294,
317.
296.
279,
310.
309.
221.
212,
236.
221.
331.
263,
265.
295.
314.
263,
282.
307.
271.
228,
280.
24L6.
309.
245.
374,
230.
242,
300.
331.
321.
280.
233.
298.
305.
254.
249.
258,
290.
313.
280.
288.
317.
271.
173.
28hL.
260,
243,
316.
286.

225.
220.
252.
235,
223.
253.
238.
187.
195.
180.
185.
254,
199,
211.
227.
240,
232,
205.
231.
223,
189,
226.
204.
247.
198.
217.
172.
194,
235.
267.
236.
235.
192.
244,
2L2.
185.
213.
223.
214,
240.
218.
222.
256.
214,
162.
226.
713,
201.
239.
226.

5 s

Apr

164,
171.
186.
280.
207.
368.
236.
181.
189.
144,
141,
234,
297.
220.
22%.
270.
225.
169.
231.
253.
7,
273.
167.
313.
203,
205.
207.
275.
278.
257.
124,
270.
214,
244,
227.
179.
240,
162.
282,
198.
249,
122.
369.
235.
216.
242.
248,
163.
176.
245.

161




LAl

Year May
1 1095.
2 700.
3 1085.
L 1521.
s 4.
6 1322.
7 792.
8 713.
9 707.

10 792.
11 7617.
12 958.
13 1169.
14 1231,
15 520.
16 876.
17 887.
18 764,
19 869.
20 1081,
21 1390.
22 1131.
23 756.
24 1060.
25 965,
26 367,
27 809.
28 1172,
29 719.
30 L1,
31 592.
32 584,
33 1280.
34 1001.
35 1201.
36 680,
37 1090.
38 615.
39 680.
40 750.
41 943,
42 318.
43 1102.
Ly J09.
L5 137.
46 850.
L7 1102.
48 L69.
49 984,
50 326.

Jun

919.
1375.
925.
1722.
1C99.
1176.
1084.
1601.
397.
654.
996.
1449,
860.
542.
976.
1582.
585.
876.
1587.
1450.
995,
1437.
1078.
1286.
656.
854,
703,
1426.
1003.
1212,
1362,
933.
1435.
1205.
579.
1156.
1419.
1074,
1170.
1584,
1288.
1161.
1714,
1610.
1475,
1268.
1095.
958.
171.
1325.

Jul

597.
1108,
581.
857.
758.
507,
619.
957.
383.
574,
680.
699.
636.
571.
594,
104,
389.
419.
114,
643,
441,
775.
579,
702.
6LB.
541.
598.
873,
637.
909.
609.
741,
893.
7217.
483,
792,
889.
521.
777.
1085.
823.
710.
1171.
674,
916.
919.
668,
782.
765.
717.

Table

Aug

686,
882.
574.
889.
681.
234,
718.
840,
705.
L67.
9i2.
831.
877.
521.
500.
4,55,
4L06.
547.
690.
712.
553.
519.
599.
731.
726.
877.
483.
1058,
887.
926.
626.
790.
962.
712.
460.
711.
888.
723.
717.
1114.
1060.
964.
1069.
305.
989.
945.
707.
730.
798.
677,

Sep Oct
7L6. 616.
841, 697.
668. 1084,
833, 665.
665. 815.
480. 909.
666, 831.
8. 510.
898, 672.
3133. 605.
1014, 505.
615. 772.
880, T41.
613, 567.
801. 502.
LuL7, 901.
4L10. 522.
399, 462.
835, 712.
798. 792.
442, 883.
597. 685.
584, 677.
774, 904.
825. 704,
740, 793.
470. 752.
712, 453,
850. 814.
839, 871.
L26. 979.
1022, 642,
801. 850.
587. 891.
476, 975,
459, 575.
186. 521.
758. 666.
732. 735.
909, 659.
908. 973.
856. 872.
963, 1108.
303, 680.
946, 383,
629. 922.
644, 798.
727. 721,
762. 895.
613, 856.

Nov

480.
452.
726.
513.
527.
712,
689.
405.
474,
432.
415.
7177.
481.
626.
555.
663.
529.
480.
423,
650.
530.
581.
497,
706.
569.
738.
506.
398,
521.
733.
732.
415.
538.
564.
671,
452.
308.
565.
4L66.
632.
600.
621.
798.
482,
L9,
666.
62G.
[
681.
618.

Dec

368.
402.
478.
387.
324.
468,
460.
318.
315.
319.
128.
496,
375.
445,
418.
494,
356.
405.
405.
394,
348,
438.
319.
AN
378.
594,
301.
386.
403.
503.
509.
34,
293.
4Ll
455.
328.
285.
390.
398,
445.
412,
431.
527.
4Ok,
219.
471.
378.
400,
445,
410.

C.2 (h) Synthetic inflow sequences for LG3

Jan

236.
251.
274.
247,
221.
215,
277.
176.
180.
192.
210.
299,
243,
236.
253,
286.
219.
240.
263.
243,
195.
253.
199.
259,
227.
326.
189.
214.
262.
300.
279.
225.
190.
255.
267.
219.
191.
224,
259.
264
254,
251.
286.
250.
138.
264,
236.
219.
278.
245,

Feb

179.
182.
196.
183.
173.
192.
192.
137.
132.
147.
137.
205.
163.
164,
183.
195,
163.
175.
190.
168.
141.
174,
153.
192.
152.
232.
142.
150.
186.
205.
199.
174.
144,
185.
189.
157.
154,
160.
180.
194,
173.
178.
196.
168.
107.
176.
161.
151.
196.
178.

142,
139.
159.
148.
1ul.
160.
151.
118.
123.
114,
117.
160.
126.
134,
1u4,
152.
134,
130.
146.
141.
120.
143.
129.
156.
125.
175.
109.
122.
148.
169.
1L9.
149.
121.
154.
153.
117.
135.
141.
135.
152.
138.
140.
162.
136.
102.
143,
135.
127.
151.
143.

Apr

119.
124,
135.
202.
150.
266.
171.
131.
137.
104.
102.
169.
215.
159.
160.
195.
163.
122.
167.
183.
179,
197.
121.
227.
147,
148.
150.
199,
202.
186.

90.
195.
155.
176.
165.
130.
174,
117.
204.
143,
180.

88.
267.
170.
157.
175.
179.
118.
127.
177.

¢

?
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Year

OO NOON S WN

May

2291.
1464,
2270,
3184.
1620.
2766.
1657.
14692,
1481.
1657.
1605.
2005.
24L46.
2576.
1088.
1833,
1855.
1600.
1819,
2262,
2909,
2367.
1582.
2219.
2019.

768.
1694.
2452,
1631,

923,
1239,
1222,
2678.
2096.
2513,
1422,
2282.
1287.
1424,
1570.
1974,

665,
2306.
1485.
1543,
1779.
2307.

982.
2059.

683,

Jun

1348.
2018.
1356.
2526.
1612.
1725.
1590.
2349,

583.

960.
1462.
2125,
1261.

795.
1432,
2321.

858.
1285.
2327.
2127,
1460,
2107.
1581,
1886.

963.
1253.
1031.
2093,
1471,
1779.
1999.
1368.
2105.
1767.

850.
1695.
2082.
1575,
1716.
2323,
1890.
1703,
2515.
2361.
2169.
2007.
1606.
1405.
1130.
1943,

Jul

805.
1494,
783.
1155.
1022.
684,
834.
1291.
516.
774,
917.
942,
857.
7170.
801.
949,
524,
565.
1044,
867.
595.
1045,
781.
947,
873.
729.
806.
1177.
859,
1225.
821.
999,
1204,
980.
652.
1069.
1198.
703.
1048.
1463.
1110.
1038.
1579.
9C9.
1235.
1239,
900.
1654,
1032.
967.

Table

Aug

1102.
1615,

921.
1426.
1093.

375,
1152,
1348,
1131.

749,
1464,
1335.
1408.

836.

803.

730.

651.

879.
1108.
1143.

888.

834,

961.
1173.
1166.
1408,

776.
1698.
1423,
1487,
1005.
1268.
1544,
1142.

738.
1142,
1425.
116G.
1151.
1789.
1750.
1548,
1716.

490.
1587.
1516.
1134.
1171.
1280.
1087.

C.2 (c)

Sep

1196.
1348.
1070,
1335.
1066.
770.
1067,
847,
1439,
534.
1626.
986.
1410,
983,
1284,
716.
658,
639.
1339.
1279.
709.
957.
936.
1241,
1323.
1187.
754.
1141.
1362.
1345,
683,
1639.
1284,
940,
763,
735.
1260.
1216.
1174,
1458.
1455,
1373.
1543,
486.
1517.
1008.
1033.
1166.
1222.
982.

Oct

1005.
1137.
1768.
1085.
1329.
1482,
1355.
832,
1096.
986.
824.
1260.
1209,
g925.
818.
1469.
851.
754,
1161.
1292.
1440.
1116.
1104,
1475,
1149,
1294,
1227.
740.
1328.
1421.
1598.
1048,
1387.
1454,
15%91.
g937.
850.
1086.
1199.
1Q75.
1587.
1422.
1807.
1110.
624,
1504 .
1302.
1175.
1460.
1196.

Nov

758.
715.
1148.
811.
833.
1125.
1089.
640,
749,
683.
656.
1228.
760.
989.
878.
1048,
815.
759.
668.
1027.
837.
918.
785.
1115.
900.
1166.
799.
619.
824,
1158.
1157.
655.
849,
891.
1060.
714,
487 .
893.
737.
998,
948.
981.
1261.
762.
551.
1052.
980.
1017.
1076.
977.

Dec

513.
560.
665.
539,
451,
652.
641.
443,
439,
445,
457,
691.
523.
620.
582.
688.
495.
564.
Soh4.,
549,
L84,
610.
4hh,
614,
526.
827,
419,
538.
561.
700.
709.
479,
408.
614,
634,
456.
397.
dSuy.
554,
620.
573.
600.
134,
562.
305.
664,
526.
556.
620.
511,

Synthetic inflow sequences for EOL

Jan

325.
346.
3179,
240,
305.
380.
382.
243.
249,
265.
290.
413,
336.
326.
349,
395.
302,
332.
362.
136.
269.
349,
274,
3517.
314,
450,
261.
295,
361.
414,
385.
310.
262.
351.
368.
303.
263.
309.
358.
364.
351.
346.
395.
345,
190.
3165.
326.
302.
g4,
338.

-3
o
o

242,
245,
265.
247,
233.
25%.
258.
185.
177.
198.
185.
276.
220.
221.
246,
263.
220.
235.
256,
226.
190,
234,
206.
258.
205.
313.
192.
202.
250.
276.
268.
234,
195.
249,
255.
212.
208.
215.
243,
262,
234,
240.
265.
227.
145,
237,
217.
203.
264,
239.

190.
186.
213,
198.
189.
[AUN
201.
158,
165.
152.
156.
214,
168.
179.
192,
203,
180.
173.
195.
188,
160.
191.
172,
209.
167.
234,
145.
164,
198.
225.
199.
199.
162.
206.
205.
156.
180.
189,
181.
203.
184,
187.
216.
181.
136.
191.
180.
169.
202.
191.

'

289.

€61




-w

"
(]
]
L2}

W OONOWNEWN

May

830.
530.
822.
1153,
587.
1002.
600.
541.
536.
600.
581.
726.
886.
93"
394,
664,
672.
579.
659.
819.
1054.
857.
513.
804L.
731.
218.
613.
888.
591.
334.
LL9.,
443,
970.
759.
910.
515.
826.
466.
516.
569.
715.
241,
835.
538.
559.
645.
835.
356.
74L6.
247.

Jun

800.
1197.
805.
1499,
Y57,
10213.
PLYIN
1394.
346.
569.
867.
1261.
748.
W12,
850.
1377.
509.
762.
1381.
1262.
866.
1250.
938.
1119.
571.
743,
612.
1262,
873.
1055.
1186,
812.
1249,
1049,
504,
1006.
1236.
935.
1018.
1378.
1121.
1011.
1492.
1401.
1287.
1131.
953.
834,
671.
1153.

Jul Aug
5Q9, 577.
1112. 741.
583. 482,
860. 747,
761. 573.
509. 196.
621. 603,
961. 706.
384, 593.
576. 392.
683. 767.
702. 699,
638. 1317.
574, 438.
597. 421.
107. is2.
390. 341.
421. 460.
778. 580.
6L6. 599.
443, 465,
118. 437,
582, 503.
705. 614,
650. 611.
543, 738.
600. 406,
876. 890,
640. 746,
913, 719.
6i2. 526.
44, 6€4,
897. 809.
730. 598.
485. 386.
796. 598.
892. 746.
523. 608.
780. 603.
1089. 937.
827. 917.
773. 811.
1176. 899.
6717. 257.
919. 831.
923. 794,
671. 594,
785. 613,
768. 671.
720. 569.

Table C.2 (d)

Sep

630,
710.
564,
703,
562.
405,
562.
Liu6,
758.
281.
856.
519,
743,
518.
676.
377.
346,
337.
705.
674,
373,
504,
493,
654 .
697.
€25,
397.
601.
717.
708.
360.
863.
676.
495,
402.
387.
663.
64L0.
618,
768.
766.
723.
813.
256.
799.
531.
SLb,
614,
6LL
517.

Oct Nov
560. 469,
633. L42,
985. 710.
605, 501.
740, 515.
826, 696.
755. 674,
Léh, 396,
611, 4L63.
549, 423,
459, 4LO6.
702. 759.
b73. L70.
515. 612.
456, 543,
819. 648.
L7k, 517.
420. 4L69.
64L7. 413.
720. 635.
802. 518.
622, 568.
615. 485,
822. 690.
640. 556.
721. 721.
683. 491,
L12., 389.
740, 509.
792. 716.
890. 715.
584, 405.
7713, 525.
810. 551.
886. 656.
522. 442,
4L73. 301.
605, 552.
668. 456,
599. 618.
884, 587.
792. 607.

1007. 780.
618. 4L71.
348. 341,
8138. 650.
725. 606,
655. 629.
813, 666.
117. 604.

Dec

323.
353.
420,
340,
284,
411,
404,
279.
2177.
280.
288.
436,
330.
391.
367.
L3k,
312.
356.
355.
346,
305.
385.
280.
387.
332,
521.
264,
339,
354,
hayl,
447,
302.
257.
337.
400.
288.
250.
343,
350.
391.
361.
379.
463.
355.
192.
419.
332.
351.
391.
360.

Synthetic inflow sequences for LG2

Jan

216.
230.
252.
226.
203.
252.
254,
162.
165.
176.
193.
275.
223.
217.
232,
262.
201.
221.
241.
223.
179.
232.
182.
237.
208.
299.
174.
196.
240.
275.
256.
206.
174,
234,
245,
201.
175.
206.
238.
242.
233.
230.
262.
229.
126.
243.
216.
201.
255.
225.

Feb

162,
164,
177.
166.
156,
173,
173.
124,
119.
132.
124,
185.
147,
148.
165.
176.
147,
158,
172,
152.
127.
157.
118.
173.
137.
209.
128.
136.
168.
185,
179.
157.
130.
187.
171.
142,
139,
144,
162.
175,
156.
161.
177.
152.

97.
159.
145.
136.
177.
160.

Mar

123.
121.
138.
129.
123.
139.
131.
103.
107.

99.
102.
139.
109.
116.
125.
132.
117.
113.
127.
122.
104.
124,
112.
136.
109.
152.

9.
106.
129.
146.
130.
129.
105.
134,
133,
101.
117.
123.
117.
132.
119.
122.
140.
118.

89.
124.
117.
110.
131.
124.

Apr

89.

93.
101.
152.
112.
200.
128.

98.
103.

78.

76.
127.
161,
119.
120,
146,
122.

92.
126.
138,
134,
148,

91.
170,
110.
111.
112.
149,
151.
140.

67.
146.
116.
132.
123,

97.
131.

83.
153.
108.
135.

66.
201.
128.
117.
131.
134,

88.

9s5.
133.

(o
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Year May

10914.10
9861.48
10887.31
11990.68
10059 .09
11519.41
10107.89
9898.98
9602.61
10 10107.89
11 10040.94
12 10549.83
13 11112.30
14 11275.68
15 8919.99
16 10332.88
17 10359.67
18 9935.04
19 10314.13
20 10876.60
21 11701.55
22 11010.52
23 10014.15
24 10794.45
25 10568.58
26 8977.61
27 9553.11
28 11120.33
29 10075.75
30 B8671.64
31 9577.57
32 9553.47
33 11406.92
34 10665.00
35 11195.32
36 9807.92
37 10903.38
38 9636.50
39 9810.60
40 9893.75
41 10512.33
L2 8704.36
43 8617.27
L4 9888.27
45 9963.26
46 10263.25
47 10935.52
48 9248.13
49 10619.47
50 8867.80

VRNV E WM =

Jun

14078.93
14597.06
14070.29
17864.01
13844.00
15568.11
13840.38
15412.16
10971.19
12360.34
13472.74
15539.43
14072.36
13141.92
12281.81
15781.26
12373.65
12952.13
15778.07
15871.38
15128.17
15958.64
13725.89
15193.91
12828.80
11919.53
11393.09
16032.16
13530.89
12362.04
14269.09
12764.595
16347.27
14814.79
13191.16
13786.63
15791.89
13332.69
13838.56
15245.34
14949.83
12566.38
12280.96
15432.55
15053.95
14975.50
14705.88
12545.15
13273.68
13429.72

Jul

16725.18
19509.25
16644.23
21602.92
17205.39
17815.29
16583.05
19657 .43
12669.29
14904 .82
16LBB.62
18633.34
16890.04
15675.68
14917.36
18901.59
14095.86
14310.93
19211.78
18723.87
17086.08
19392.35
16294 .48
18280.30
15700.05
14319.38
13444 .39
19902.45
16356.60
15891.54
16971.59
16051.35
20305.94
18036.91
15333.88
17300.70
19731.81
15644 .15
17285.66
19952.40
18600.49
15836.65
15156.12
18421.64
19114.40
19049.34
17669.19
16011.00
16667.21
16611.66

Aug

19384 .84
22926.89
18867.30
24985.60
19843.62
18720.59
19363.23
22911.68
14632.04
15943.52
20021.43
21860.45
20288.92
17692.52
16856.52
20663.98
14898.86
16163.00
21884.82
21482.62
19228.80
21403.83
18613.97
21082.79
18512.37
17718.27
14716.28
24L003.08
19792.99
18975.11
19398.22
19112.76
2L034.27
20792.98
17115.02
20056.77
23170.88
18443.07
20065.84
24165.6L4
22824.32
19431.00
16801.67
19605.50
22944.51
22708.04
20406.51
18836.71
19758.08
19233.81

Sep

22217.89
26120.23
21402.27
28090.68
d2370.82
20542.77
21890.43
24917.89
17296.10
16L64.00
23873.14
24195.84
23630.01
20022.72
19899.52
22361.74
15712.23
16932.32
25057.43
Z4512.67
20908.41
23671.83
20830.13
23994.45
2164L6.09
20530.58
15921.22
26706.54
23020.03
21681.96
21015.63
22995.57
27077.28
23019.50
18921.64
21798.59
26154.27
21322.79
22847.05
27517.22
26271.68
22546.53
18044,21
20756.35
26539.61
25097.86
22853.36
21599.79
22653.34
21561.42

Oct

24502.56
28704L.88
25422.55
30501.11
25394.73
23912.19
24970.59
26811.5%
18669.86
15678.28
25748.02
27061.73
26380.72
22127.95
21761.01
25704.38
14664.58
15472.07
27698.32
27450.88
24184.G9
26210.95
23339.79
27319.22
24257.53
23474.14
18111.80
28388.57
26041.26
24410.62
2464L7.54
25379.35
30232.43
26327.33
22540.16
23930.59
28088.07
23792,27
25573.66
29858,26
29879.48
25640.03
19657.62
23279.40
27959.16
28518.18
25815.67
24272.82
25971.88
24735.32

Nov

26389.54
30483.00
28278.93
32463.12
27468.33
26711.55
27681.82
28405.59
19449 .80
14448.76
27380.98
30117.70
28272.88
24590.34
23946.07
28314.52
13858.09
14289.63
29359.80
30006.59
26268.06
28494,50
25294,16
30067.59
26L97.02
26374.,59
19518.91
29954.14
28091.53
26807.61
27527.25
27009.71
32347.50
28546.08
25181.41
25708.71
29298.54
26016.20
27408.80
32243,02
32240.80
27944 .26
20384.36
25176.74
29330.33
31136.09
28254.74
26805.21
28652.01
27166.62

Dec

26515.30
2B169.13
26977.30
27103.91
26550.95
24386.05
26436.85
27918.80
14943.80
12704.17
27241 .48
26689 .47
25884.23
25022.51
22110.73
25961,52
12304.22
12743,67
26756.34
26686.50
26344 .05
26148.52
24822.85
25729.48
26634.04
25966.69
14969.75
26555.43
25893.95
26911.66
27510.92
25611.84
28156.43
26438.94
25724.91
25436.72
26952.57
26119.62
25938.32
27116.83
27526.25
28366.04
18775.36
25375.57
28100.21
27403.89
26638.38
26861.31
27121.49
25979.46

Jan

21013.91
22626.34
22236.95
21254.55
20994, 45
20046.53
21802.14
22411.87
9947.65
10506.94
21528.40
21623.99
2127¢ 33
19519.51
16288.16
21312.51
1u268.24
10608.47
21895.13
21710.48
20765.62
21454.06
18764.58
20737.84
21068.92
21116.93
10026.87
21615.88
21290.28
21370.12
22109.76
20137.32
22460.46
21717.09
20427.01
19634.01
22005.86
20459.29
21154.22
21339.79
21787.74
22973.19
16285.16
19786.90
22710.43
21838.99
21880.94
21094.75
22382.71
20497.35

Table C.3 (a) Optimal storage levels for LG4

Feb

17075.50
18187 .45
17919.51
17166.55
17012.20
16257.34
17579.25
17952.16
8000.00
8343,32
17367.85
17501.38
17127.08
15977.59
12435.20
17241.14
8211.56
8423.47
17649.64
17468.24
16766.84
17272.54
T4a43 .11
16797.71
17031.20
17209.80
8093.74
17360.10
17181.78
17278.06
18314.24
16381.49
17961.14
17691.13
16634.08
15883.47
17637.19
16647.29
17086.38
17316.82
17527.55
18453.50
13687.59
16172.10
18056.63
17568.27
17563.29
17090.07
18036.86
16649.59

Mar

12543.71
13074.77
12965.38
12448.86
12453.31
11909.50
12713.74
12502.41
8000.00
8000.00
12665.10
12699.15
12359.64
11911.55
10189.15
12505.30
8000.00
8000.00
12745.73
12616.99
12235.16
12498.35
11217.48
12239.80
12434.99
12624.25
8000.00
12496.63
12458.99
12576.15
13220.11
12075.94
12869.95
12667.1717
12266.03
11885.02
12704.04L
12333.12
12379.14
12637.37
12644 .84
13272.79
10648.33
11991.40
12874.75
12684.63
12657.15
12520.58
13019.15
12228.87

3

Apr

8000.00
8000.00
8000.00
80060.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00C
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
8000.00
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Year May

O OSSNV EWN -

6939.29
6L4L0.75
7793.30
7836.46
7213.22
9531.98
7142.96
7096.89
6000.00
8121.29
6107.29
6883.36
8062.57
6000.00
6000.00
7091.23
8375.74
6000.00
7002.15
7407.86
7893.13
7832.9¢C
€300.00
7142.92
6342.57
6103.48
6000.00
7717.51
7034.91
6000.00
6740.4L2
6000.00
7613.33
7498.95
6562.01
6000.06
7821.57
6000.00
6948.27
6000.00
6502.27
6000.00
8877.47
6000.00
7151.44
6465.43
7954.32
6000.00
7511.43
6000.00

Jun

8881.14
8616.89
9114.02
10134.66
9244 .64
10603.85
9005.92
10460.10
7029.02
9816.45
8174.79
9010.90
9257.68
7404.86
8529.79
8977.22
9892.05
8270.59
9833.03
9726.76
10050.91
10399.84
8794.17
8834.77
7660.96
7465.93
8403.12
10037.98
8617.04
7998.43
9452.80
7736.42
9576.38
9478.31
7825.13
8996.35
10437.15
8624.36
9136.04
8161.72
7882.57
8185.05
13248.42
10068.68
10186.41
8258.51
9827.45
8047.90
8422.00
8589.41

Jul

10025.28
10150.43
9557.41
10192.67
10430.43
10952.94
9685.52
12210.52
8054.85
11353.86
9464.82
9200.55
9892.67
8934.23
10120.76
10607.177
10933.95
9392.84
10580.73
9961.48
10796.78
11279.23
10344.96
9018.82
9001.87
8035.46
10605.12
10954.65
9271.63
9251.93
10238.77
9016.46
10153.17
10243.38
8873.22
11117.64
11720.37
9855.04
10344.13
9058.99
8063.44
9395.69
16310.70
11766.01
11817.30
8908.76
10619.35
9692.67
9346.86
9636.66

Aug

11407.80
11078.65

9982.04
10336.38
11410.00
10570.82
10630.29
13647.57
10712.34
13373.89
11376.25

974L3.76
11173.16
10329.67
11459.96
10571.41
12790.61
11627.15
11103.45
10381.02
11842.63
11472.96
11949.33

9280.55
10551.70

9504.93
12499.10
12366.82
10595.80
10550.95
11G70.26
10427.75
10914.,77
10968.27

9859.71
13021.98
13000.91
11626.76
11391.51
10033.93

8959.43
11125.94
19279.46
12475.01
13643.70

9628.64L
11515.70
11198.17
10360.11
10576.178

Table C.

Sep

12901.24
11870.66
10636.6f
10330.30
12316.49
10838.67
11409.79
1422%.57
13784.,37
14981.44
13490.41

9709.57
12420.11
11918.57
13536.15
10515.48
14597.74
13405.77
11985.15
11009.94
12567.03
11862.62
13463.05

9645.30
12308.13
10571.90
14298.29
12836.61
11781.36
11582.57
11356.54
12394.86
11234.49
11345.78
10855.86
14211.71
13975.75
13432.05
12443.98
10446.06

9354.78
12520.43
21877.71
13155.96
15299.73

9506.23
12219.84
12647.32
11247.36
11320.69

Oct

14096.27
12303.38
12427.25

9874.05
13654.95
12264.47
12657.22
14782.75
16704.09
19629.41
14311.72
10094.75
13336.33
13437.22
14880.70
11673.68
18577.32
17817.61
12566.79
11643.74
14496.75
12500.96
15276.33
210370.39
13799.04
11816.39
16912.76
12628.35
12910.02
12734.28
13133.50
13409.75
11696.11
12550.11
13221.73
15751.79
14273.32
15051.11
13539.57
10202.33

8937.40
14004.27
24950.93
14869.36
15503.02
10164.52
13359.93
14128.71
12520.41
12668.07

Nov

14800.24
12087.10
13232.17
5038.53
14203.75
13133.66
13496.34
15045.93
19016.40
23679.03
14873.27
10480.46
13549.07
15059.81
16319.27
12177.62
23233.77
22133.78
12380.59
11889.04
15449.25
12849.14
16564.55
10558.88
14891.92
12818.16
18805.26
12284.25
13242.81
13491.14
14212.93
13803.51
11334.13
12868.00
14723.31
16923.37
14009.19
16356.14
13902.57
9896.47
9534 .41
14789.64
24270.32
16014.27
15611.63
10138.01
14001.86
15362.73
13197.70
13355.09

T D e TR e TR ) T

Dec

8045.00
7899.15
8538.20
7794.14
8094.35
9396.61
8627.86
8465.76
16436.70
18975.66
8012.77
8036.30
9253.78
8412.42
11757.24
8641 .84
18507.63
17196.66
8498.30
8653.74
8504.51
8931.68
3974.25
8652.30
8089.70
8064.52
16174.96
5071.32
83943.93
1557.56
8442.57
8308.52
8289.51
8730.45
8031.53
10192.68
9065.89
9667.88
8841.77
8807.44
7811.42
8058.89
20210.48
9364.33
9110.55
7866.58
8950.34
8786.06
8512.99
8091.33

Jan

6000.00
6000.00
6000.00
6174.79
6000.00
6462.93
6002.76
6008.46
13495.40
13932.14
6000.00
6000.00
6364.17
6369.02
10153.95
6098.32
13414.54
11817.61
6000.60
6134.26
6249.95
6200.27
8226.33
6258.25
6046.83
6000.00
13244.69
6311.82
6183.34
6000.00
6000.00
6158.917
6117.68
6037.15
6000.00
8333.83
6152.84
7698.78
6242.87
7233.61
6129.43
6009.80
15505.15
7465.71
6268.27
6083.29
6161.39
6888.38
6000.00
6088. 64

3 (b) Optimal storage levels for LG3

faioaie 4 o

Feb

6080.10
6083.53
6080.92
6144.63
6045.72
6283.91
6053.57
6034.82
10994.65
11254.75
6045.39
6079.41
6238.38
6282.28
9915.68
6115.17
10977.69
10158.86
6056.25
6112.49
6158.02
6144.63
8606.90
6190.16
6058.92
6116.53
10893.43
6206.23
6144.63
6045.83
6131.02
6123.20
6091.06
6058.92
6049.91
7889.36
6104.46
7215.41
6184.81
6933.97
6112.49
6112.13
11037.45
7039.87
6147.31
6085.71
6117.85
6664.96
6094.18
6091.06

Mar

6069.69
6060.84
6071.41
6000.00
6010.63
6000.00
6000.00
6000.00
6000.00
6000.00
6042.08
6027.20
6000.00
6105.89
7345.57
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
7292.62
6000.00
6000.00
6092.88
6000.00
6000.00
6300.00
6000.14
6142.15
6000.00
6000.00
6000.00
6008.73
6912.07
6000.00
6629.35
6000.00
6471.18
6000.00
6123.64
6000.00
6L66.63
6000.00
£000.00
6000.00
6338.89
6077.93
6000.00

Apr

6000.00
6000.00
6000.00
6000.00
6000 .00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.G0
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.60
6000.00
6060.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00
6000.00

¢

!
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Year May

15236.99
11973.18
14697.62
15191 .94
13410.48
16376.00
13390.92
13025.58
10000.00
10 14438.11
11 13456.09
12 13318.12
13 15432.77
14 14735.29
15 10000.00
16 13606.40
17 14968.43
18 10000.00
19 13429.41
20 14370.05
21 16828.84
22 15077.32
23 10772.87
24 14020.09
25 14549.38
26 11088.48
* 27 11993.37
28 15079.67
29 13338.47
30 10.60.48
31 12282.49
32 12379.34
33 14796.30
34 14356.46
35 15877.10
36 10030.66
37 14945.58
38 10527.80
39 12931.70
40 11128.58
41 12612.86
42 10368.57
43 13120.35
44 10599.51
45 13140.13
L6 12416.59
L7 15052.31
48 10212.96
49 14181.74

50 10623.46

VONOWVE WN

Jun

17860.79
15318.66
16874.61
18510.86
16690.22
19848.05
16498.80
18174.91
11511.13
16926.42
16430.04
16840.25
17618.78
16460.45
1357G.46
18361.37
17192.36
13330.72
18064 .94
18249.23
19681.59
19316.93
14708.61
17047.37
16214.85
13398.68
14665.72
19047.24
16154.54
12731.31
16461.28
15179.70
17952.68
17719.62
17254.12
14169.13
19213.22
14109.31
16525.70
14172.54
14923.70
13415.75
16681.77
16414.66
17801.54
15346.21
18124.65
13281.91
15820.62
14953.70

Jul

19117.69
17372.20
17589.45
18268.33
18499.02
20647.63
17685.40
20662.13
12893.19
18999.50
18043.39
17311.23
18795.57
18176.15
15569.88
19600.07
18595.84
14844 .01
19418.59
18882.92
20312.61
20853.41
16632.83
17669.54
17694.78
14383.01
16824.51
20702.96
17425.29
13800.68
17624.20
17085.07
18801.02
19086.99
18146.71
16768.88
21255.41
15474 .64
18450.32
15014.53
15222.42
14783.36
17854.92
18534.61
20116.72
16316.47
19408.45
15513.04
17251.65
16814.16

Aug

21170.07
19214.13
18673.91
18751.65
20498.00
20619.59
19723.73
23302.03
15922.46
21005.63
21121.82
18834.83
21448.17
20068.63
17574 .64
20252.20
20339.48
17198.32
20943.67
20255.86
21728.41
21824.74
19039.16
18879.02
19959.49
17185.68
18902.95
23754.12
20206.66
15571.78
19279.96
19710.93
20560.03
20888.27
19269.65
19564.15
23905.61
18064 .00
20650.83
16729.68
17235.31
17516.96
19395.01
19532.32
23374.70
18028.65
21319.00
18057.55
19346.92
18996.03

Sep

23399.89
20822.98
20109.60
18983.50
22362.50
21616.29
21475.99
24558.17
19652. 34
22389.75
24520.86
19404.68
24020.38
22281.09
20721.44
20847.01
22045.02
18854.61
23018.30
21937.01
22634.56
23083.56
21303.06
20234 .46
22558.08
19325.10
20857.32
25263.11
22740.20
16917.68
20047.67
23213.72
21588.37
22107.85
20421.17
21214.30
26042.63
20714.99
22839.96
17531.56
18418.64
19708.78
20437.01
20487 .47
26346.13
18368.86
22906.13
20507.01
21224.27
20835.36

Oct

25192.46
21920.32
23462.66
18553.49
24993.57
24553.23
24058.04
25816.01
22587.87
25030.65
25885.12
20727.39
26139.98
24411.95
22725.00
23478.48
24324.34
20874.13
24685.33
23709.02
25528.84
24810.20
24092.40
22261.82
24777.25
21822.43
24143.71
25748.36
25267.12
18512.01
23291.71
25250.34
22526.86
2L744.78
23828.78
23460.50
27152.74
23106.15
25169.03
17334.34
19994.96
22104.90
22220.83
23145.79
27024.81
20048.90
25266.65
23062.23
23801.65
23844 .86

Nov

21022.02
18497.57
20166.15
17427 .24
20989.11
21258.11
20602.26
21270.58
20092.54
22909.18
21504.95
18493.10
21762.30
21375.10
19554, 60
20146.04
22587.13
19038.88
20371.16
20447.,75
21501.80
20972.14
20700.07
19632.91
21014 .47
18888.71
21257.37
21257.73
21141.08
16915.49
20022.99
20937.60
19767.91
20789.21
20485.19
19791.38
22021.06
19655.03
20960.42
1586h.04
17766.30
19045.01
19835.97
19551.46
22227.34
17869.18
21451.33
19860.54
20303.76
20406.19

Dec

16056.35
14545.57
15466.08
14312.84
15828.02
16586.28
15831.37
16045.99
16683.72
20079.53
16445.76
14746.03
16603.93
17248.70
15253.41
15738.30
19881.36
16620.18
15634.64
15797.48
16395.05
16181.20
15849.61
15574.48
16124.55
14949.23
17257.03
16373.68
16173.09
14039.04
15445.40
16009.71
15322.48
15959.C28
15889.15
15308.93
16477.26
15154.11
16121.38
13332.28
14458.96
14862.66
15960.10
15301.64L
16611.07
14577.57
16292.84
15317.38
15467.93
15765.47

Jan

10587.14
10020.39
10000.00
10665.54
10275.87
11185.92
10366.77
10285.72
12766.01
16767.717
10939.28
10254.36
10944.70
12334.85
10328.14
10545.79
16658.66
13580.09
10357.09
10576.72
10712.45
10691.20
10543.83
10827.71
10666.80
10000.00
12833.50
10838.77
10669.43
10396.57
10000.00
10629.16
10486.00
10426.12
10580.66
10416.68
10574.56
10023.76
10757.38
10084.41
10557.02
10000.00
11176.25
10470.62
10686.79
10485.13
10598.66
10093.91
10000.00
10500.69

Table C.3 (c) Optimal storage levels for EOL
(s

Feb

104673.15
10085.71
10066.65
10423.18
10200.88
10680.31
10265.16
10192.84
11468.58
13614.42
10673.11
10224.98
10562.46
11587.57
10241.05
10374.97
13549.46
11959.87
10265.16
10361.58
10412.47
10417.83
10396.50
10508.89
10445.82
10108.97
11548.53
10498.18
10417.83
10273.20
10147.84
10385.69
10297.30
10278.55
10412.38
10332.28
10337.48
10045.53
10476.75
10131.24
10356.23
10113.97
10680.31
10316.05
10372.30
10313.37
10361.58
10101.78
10084.86
10324.09

Mar

10207.67
10001,00
16C > .16
100v0.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10300.74
10000.00
10000.00
10647.73
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10142.30
10000.00
10099.39
10018.03
10000.00
10000.00
10000.00
10000.00
10126.71
10000.00
10000.00
10000.00
10092.16
10068.57
10000.00
10000.00
10000.00
10000.00
10000.00
10098.20
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10012.75
10000.00

Apr

10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.06
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.0C
10000.00
10000.00
10000¢.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00
10000.00

=
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Year May

OO N E WM

8125.31
5000.00
5627.60
6547.22
5735.28
6L0L . T4
5367.93
5602.64
12576.25
6607.04
7298.42
5000 00
5858.65
12396.04
10240.34
5144.33
6799.88
12983.07
5000.00
5154.78
8565.02
5626.41
11426.80
5070.18
8188.42
5000.00
11806.84
5316.08
5211-68
5000.00
5199.09
6404 .49
5536.27
5370.14
9310.25
11432.95
5613.59
9708.55
5494.9C
5000.00
5105.90
5000.00
7342.29
11002.14
5581.40
5000.00
5856.87
8027.23
5395.74
5271.64

Jun

5582.
6728.
6130.
8941.
7390.
7818.
6615.
8396.
13473.
8081.
8893,
6386.
6331.
13408.
12017.
7132.
8119.
14958.
6871.
6452.
10178.
7251.
13442,
5954,
S9071.
6205.
13251.
6539.
6147,
6868.
7302.
7768.
6778.
6480.
10097.
13767.
72170.
11721.
7275.
7096.
6260.
6995.
11311.
14349.
8031.
6415.
6991.
9648.
5584,
T421.

99
86
90
38
95
60
63
83
08
88
91
72
91
88
18
10
21
17
42
82
20
28
41
57
48
28
86
54
48
83
07
98
40
04
64
31
11
99
02
93
73
84
96
89
03
23
96
92
32
91

Jul

10550.90
8287.69
£178.37
9703.83
8576.85
7902.89
7039.80

10124.41

14501.59
9624 .64

10049.77
6322.44
6526.33

14728.66

13175.63
73%1.60
9163.79

16085.78
7190.16
6144.24

10712.19
7666.11

14571.71
5759.59

10195.57
6915.05

14712.91
6823.49
6490.40
8419.63
7937.74
8996.8f
7119.14
6772.51

10860.40

15617.02
8060.47

12696.04
8477.02
8489.70
6666.62
8420.75

14567.59

15870.06
9576.65
7159.83
7409.57

11193.43
6038.99
8L84.10

Aug

11459.88
8852.83
5895.32

10163.63
9259.20
7148.85
7415.77

11168.99

16089.83

10674.57

11430.60
6250.13
6985.91

15684.20

13862.66
6780.63

10¢77.12

17317.84
6978.56
5709.78

11305.10
7167.60

15489.41
5320.88

11215.20
8147.12

15654.36
7144.93
7117.23
9611.52
8343.07

10010.40
7224.19
6711.44

11358.00

16936.41
8459.79

13903.76
9204.95
9475.35
7313.55
9947 .4l

17081.29

16265.31

10886.58
7558.91
7620.95

12277.25
6233.86
9141.86

Sep

12476.92
9319.39
5833.95

10494.55
9891.04
6960.86
7673.33

11505.96

18033.13

11381.45

12997.58
5713.58
T446.21

16816.26

15228.55
6176.40

10952.4L7

18169.86
7097.80
5483.73

11640.42
6858.83

16351.59
5000.00

12424.86
5046.54

16520.63
6706.91
7648.68

10580.93
8305.06

11507.09
6981.11
6385.36

11881.01

17666.32
8631.10

15152.56
9948.27
9991.16
7548.23

11196.79

16788.91

16645.21

12071.31
7263.42
7695.91

13328.70
6352.46
9643.61

Oct

8727.07
8917.35
5000.00
10574.02
7281.41
5000.00
5496.89
8171.95
13290.51
8121.56
9010.71
5649.30
5301.71
11381.20
2390.77
5000.00
7451.88
14691.41
5785.70
5000.00
8605.36
5000.00
10909.32
5118.39
8731.74
6502.64
11521.83
5000.00
5520.91
11807.64
6263.55
8016.66
6989.73
5000.00
8605.05
12122.20
6070.83
10480.42
7119.86
10071.51
8106.79
9827.74
17006.40
11606.77
8475.80
7780.35
5591.18
9353.14
5000.00
6986.21

Nov

10127.29
10419.13
8237.19
10381.35
9437.79
7948.93
8445.77
10034.25
12309.99
7795.84
10280.04
8568.04
7965.29
11637.73
9231.64
7950.17
73L6.19
14470.69
8228.90
8077.55
10197.05
7912.54
10570.48
8102.75
10204.99
8927.43
10986.88
7643.30
8128.11
.3776.09
9099.34
94139.85
9415.04
7919.80
10103.53
11814.40
8412.43
11086.51
9098.22
11275.38
9975.33
11707.02
15988.79
11614.70
10243.16
9827.88
8510.97
10703.37
8163.09
9231.16

Dec

14891.94
16126.91
15092.36
17259.83
14889.57
15533.32
15158.98
15144.27
18073.29

9929.77
14952.24
16011.84
15282.18
15736.89
15243.53
15454.96

9462.59
17193.07
15420.90
15635.87
14979.84
15350.98
151041.48
16168.74
14953.55
15179.30
17530.45
15534.61
15305.25
16900.81
15017.65
15181.53
16238.77
15241.88
1494434
15708.71
15236.99
15411.72
15390.81
17731.83
16874.97
15738.05
17348.57
15661.09
15451.58
16608.64
15185.21
15237.56
15048.38
15112.63

Jan

19370.00
19370.00
19370.00
19370.00
19370.00
13370.00
19370.00
19370.00
19370.00
11785.15
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
112481.69
18438.08
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00
19370.00

Table C.3 (d) Optimal storage levels for LG2

Feb

14941.49
14943.23
14943.94
14901.52
14912.79
14855.73
14921.19
14895.34
14988.89
11367.62
14906.78
14946.11
14869.70
14899.71
15265.62
14321.06
10495.28
14692.86
14924.53
14894.80
14862.77
14884.25
14909. 34
14892.97
14894.71
14977.05
14920.86
14871.83
14895.82
14918.66
14981.72
14890.96
14881.58
14905.45
14920.26
14928.75
14874.16
14912.46
14894.36
14950.33
14897.40
14959.43
16308.77
14906.32
14839.53
14901.43
14881.66
14918.20
14954.73
14901.45

Mar

9934.04
9927.00
9939.20
9839.30
9889.63
9766.73
9883.22
9873.14
10106.24
10816.96
9906.43
9907.34
9785.45
9864.76
10614.35
9860.77
9544 .27
10425.84
9882.23
9845.21
9811.02
9829.49
9901.11
9820.61
9864.93
9960.75
9903.95
9798.36
9837.82
9885.93
9992.03
9842.01
9845.30
9874.16
$891.99
9888.26
9837.70
9921.08
9818.66
9925.22
9846.50
997%1.84
12820.46
9858.79
9802.23
9860.33
9837 .44
9906.79
9943.19
9857.71

Apr

5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000,00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
5000.00
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