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ABSTRACT 

Determining the optimal long-term operating policy of a multi-

reservoir power system requires solution of a stochastlc non1inear 

programming problem. For small systems. the solution can be found by 

dynamic programming. but for large systems no direct solution method 

exists yet. 50 that one must resort to mathematical manipulations to 

solve the problem. This thesis presents a very efficient procedure for 

the case where high correlation exists b~tween the state variables. It 

consists in performing principal components analysis 011 the trajectories 

ta f ind a reduced model of the system. The reduced model i5 then 

substituted into the operating problem and the resulting prob1em i5 

solved by stochastic dynamic programming. The reservoir trajectories on 

which principal components analysis are performed can be obtained by 

solving the operating problem deterministically for a large number of 

equally likely flow sequences. The results of app1ying the manipulation 

to Québec's La Grande river, which has four reservoirs, are reported. A 

co:nparison with the classical dynamic programming, that 15 without any 

reduction. Is a1so studied and results are reported to show the 

efficiency of the principal components approach . 
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RESUME 

Déterminer la règle optimale 

hydroélectrique de grande taille 

de gestion à long-terme d'un réseau 

revient à résoudre un problème 

d'optimisation stochastique nonlinéaire. Pour des systèmes de petite 

taille. ce problème peut être facilement résolu par la programmation 

dynamique, ce qui n'est pas le cas pour des systèmes de grande taille. 

Dans cette thèse, une nouvelle approche est proposée pour les 

systèmes dont les états sont corrélés. Cette approche est basée sur 

l'analysp. en composantes principales sur les états du système dans le 

but d'établir un modèle réduit. Cette réduction rend le problème 

résolvable par la programmation dynamique stochastique. Les états 

auxquels cette technique est appliquée sont obtenus 

solution du problème déterministe appliqué à un 

à partir de 

grand nombre 

la 

de 

séquences équiprobables d'apports naturels. Les résultats de cette 

approche seront illustrés pour les installations de la rivière La Grande 

dans la province de Québec. Une comparaison des résultats obtenus avec 

cette approche avec ceux obtenus sans aucune réduction est aussi faite 

pour illustrer l'efficacité de la méthode propo~ée. 
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CLAIM OF ORIGINALITY 

To the best of the author's knowledge, the following contributions 

are original: 

1. The combination of the existing implicit and explicit stochastic 

methods. The implicit approach is used to solve deterministically the 

p:-oblem for a large number of flow sequences and the explicit approach 

to de termine the optimal operating policy. 

2. The application of principal components analysis and stochastic 

dynamic programming to long-term reservoir management. Principal compo­

nents analysis is used to reduce the number of state variables in the 

problem and stochastic dynamic programming to find the optimal solution 

of the reduced problem. 

3. The solution of large-scale problems taking into account the 

stochastic nature of river flows described by a discrete distribution. 

4. The determination of a global feedback solution contrary to the 

decomposition and projection methods, which means that global cons­

traints, such as satisfying the demand, will be met. 

5. The determination of optimal rules taking into account a11 local 

constraints on the discharge and content of the reservoirs, so that the 

solution obtained is generally feasible. 
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Principal Symbols 

C(He) production cost 

COV covariance 

de demand of electric energy 

E expected value 

h water head 

H(X,U) production of hydroelectric energy 

He production of thermal energy 

He capacity of the thermal plants 

min F minimum of function F 
1 

/ 

max F maximum of function F 

P eigenvectors matrix of the inflows 

Q eigenvectors matrix of the contents 

r(h,U) plant efficiency 

U discharge 

U capacity of the plants 

V amount of water spilled 

VAR variance 

W covariance matrix 

X content of the reservoir 

x, X Iower and upper bounds of the reservoirs 

y total natural inflow 

z penalty function 
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CHAPTER l 

INTRODUCTION 

1.1 General Reguirements 

Electricity plays an important raIe in aIl modern :oocieties. 

Over the years, power systems have been expanded to meet the growing 

demand for electrical energy. These systems rely on two important 

sources of energy: 

a) The potential energy of fuels such as oil and coal. These types 

of energy are converted into electrical energy by conventional thermal 

power stations. 

b) The potential energy of water, converted into electrical energy 

by hydro-electric plants. 

The generation of electricity is a complex problem due to the 

following facts. 

a) Electricity C4nnot be produced in advance and stored for future 

use. 

b) Electricity cannot be produced with de1ay. 

c) Under normal conditions, the demand must be satisfied. 

In other words, if during the period of time k, the demand is de(k), 

the production must be also, de(k). Generally, the natural inflows are 

very low when the dernand is very high as shawn in Figure 1.1. Thus te 
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( meet demand at the lowest production cast, it becomes necessary to 

accumulate the excess water during wet periods into natural or 

artificial reservoirs. This water can be released during dry periods to 

produce electricity. 

Usually, many reservoirs in series and/or in parallel form a hydro 

power system. They can be classified as reservoirs with daily. seasonal 

or yearly operation cycles. The reservoirs wjth daily cycles are used to 

store the water in off-peak periods during the night and used it in peak 

periods during the day. The seasonal reservoirs store the water surplus 

from spring for winter, and the reservoirs with ycarly operation cycles, 

like Manie V in Québec, are used to save the excess water of rainy years 

for use in dry years. 

The problem of determining the optimal operation of a multireservoir 

1 system is usually broken down into a deterministic short-term operating 

problem and a stochastic long-term ·.:>perating problem. The long-term 

problem is a stochastic pro cess since it is impossible to make exact 

prediction on the natural inflows. The stochasticity of the naturai 

inflows plays an important role in the scheduling problem. For example, 

if the stocks of hydro-electric energy are depleted and low inflow 

volumes occur, it may be necessary to use expensive thermal generation 

in the future. On the other hand, if the reservoir levels are kept very 

high through a more intensive use of thermal generation, while high 

inflow volumes occur, there may be spillage or wasce of energy in the 

system, which in turns increases operation costs. 

Although the present thesis is mainly concerned with the operation 

( 
of the stochastjc long-term multireservoir power this systems, 

introductory chapter will continue further by àescribing the thermal and 

, 
L 
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hydro power systems in Section 1.2 and then the power system 

optimization problems in Section 1.3. In Section 1.4 the solution 

methods for the stochastic long-term reservoir problem are describ2d, 

whereas in Section 1.5, the special approaches to the large-scalp. 

problem are dealt with. The scope and contributions of this work are 

considered in Sectio.l 1.6, and finally Section 1.7 contains the outline 

of this thesis. 

1.2 Hydrothermal Power System 

A mixed hydrothermal power system, as illustrated in Figure 1.2, 

involves the coordination of thermal and hydroelectric energy to meet 

all system loads over a given planning horizon. Naturally given the 

expenses involved in the operation of the system, a great deal of effort 

is devoted to ensure that each subsystem (thermal and hydraulic) is as 

efficient and reliable as possible. In recent years the increasing 

demand of energy has focused attention on the problam of ensuring that 

maximum benefit is derived from the resources and equipment available. 

For this reason, in the next two subsections, the resources and 

equipment of thermal and hydro subsystems are briefly described. 

1.2.1 Thermal Plants 

Thermal plants can be operated by Gas, coal or oil. Gas turbines 

have very low start up costs but, on the other hand, they have high 

operating ~osts. As a result, gas turbines are suitable for short period 

operations to meet the demand during the peak periods. The thermal 

- plants operated by coal or oil are known as "fossU fuel condensing - plants" [Habibollahzadeh, 1984]. These plants have three different kinds 
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of production cost: start up, fixed and variable operation costs. The 

cost of starting a fossil fuel plant is very high especially if the 

boiler has been cooling [Turgeon, 1977]. Once this type of plants is 

started, it will have a fixed operation cost corresponding to its 

minimum output power. The variable operation cost of the plant 

increases as the power production is increased from the minimum to the 

maximum output level. According to an internaI report of Hydra Québec 

[Report Hydra Québec, 1983], the various sources of thermal energy have 

also different operation costs, as shown in Table 1.1. In t~at table, 

the investment cost is also given. It can be seen that the investment 

cost increases as the operation cost decreases for different types of 

plants. 

Type Invel:otment Operation 
($/KW) ($/KWh) 

Gas Turbines 450 0.095 

Oil Plant 1000 0.050 

Coal Plant 1300 0.030 

Table 1.1 Investmant and operation costs 

for different thermal plants 

It should be mentioned that due to both scheduled and unscheduled 

maintenance (or maintenance outages), a thermal plant can only be used 

80% of the time at the Most [Report Hydro Québec 1983]. 

For the remainder of this thesis~ the thermal type will refer to 

plants operated by gas, ail, coal or any combination of these fuels. For 
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( the sake of presentation, coal will be considered the energy source for 

thermal plants. Throughout th~ thesis, we will consider only the 

operation or production costs of thermal plants and will also assume 

that all the thermal plants under consideration are already in place and 

there will be no further investment in thermal generation. 

1.2.2 Hydra Generation Plants 

The potential energy available from rivers is converted into 

electric energy by hydro electric plants. A hydroplant installed on a 

river, as shown in Figure 1.3, consists of a reservoir, a dam and a 

plant. In general, the hydroplants are divided into three groups [ EPRI 

EL-1659, 1981]: 

a) Plants with smaH or no water storage, also called "run-of-river" 

plants. 

b) Plants with moderate storage, usually used for short-term 

operation. 

c) Plants with large storage, usually used for long-term operation. 

For "run-of-river" plants, no reservoir exists, so that a11 the 

incoming water is used to produce elf" trical energy, whereas, for 

moderate and large storage plants, a reservoir is used to store water 

surplus to meet future requirements. As a matter of fact, when more 

water is stored in the reservoir the head increases, sa that production 

of electricity increases a1so. In other words, the hydroelectric energy 

( 
is a function of the gross head, that is the difference between the 

elevation of the surface of the reservoir and the elevation of the 
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(. afterbay, or downstream water level below the hydroelectric plant 

(Figure 1.4) [Wood and Wollenberg, 1984]. Therefore the potential energy 

of the water available for conversion into electrical energy i.. a 

function of both the turbined water and the gross head. In fact, the 

head at the turbine itself is slight1y 1ess than the gross head due to 

friction losses. That is why 'Ile define the net head which is equal to 

the gross he ad less the flow losses (measured in the sarne units as the 

gross head) [Wood and Wollenberg, 1984]. Figure 1.5 shows a typical 

curve where the hydraulic head is constant. This graph shows that the 

generation t5 a nonlinear function of the released water. Figure 1.6 

shows the sarne nonlinear characteristic but for variable head. This type 

of curve is obtained whenever the variation in the forebay and/or the 

afterbay elevation (Figure 1.3) is a fairly large percentage of the 

J overaU hydraulic head. 

Scheduling hydroelectric plants with variable characteristics is 

more difficult than scheduling hydroe1ectric plants with fixed heads. 

This is true not only because of the multiplicity of the characteristic 

curves that must be considered, but also because the maximum capability 

of the plant will also tend to vary with the hydraulic head [EI- Hawary 

and Christensen, 1979; Wood and Wollenberg, 1984]. Howevf'r head 

variation is not a major feature of the long-term reservoirs problem 

with which this thesis is concerned [Hanscom, 1976; Read, 1979]. 

For cascaded multireservoir systems, the hydroplants are coupled 

because the discharge from one t'eservoir constitutes part of the inflow 

to the next. Of course, these reset'voirs have to be operated according 

to certain rules. These t'ules def ine the amount of energy pt'oduced by 

each plant along the river. Figure 1.7 illustrates the characteristics 



-

-

Energy 
(MWH) 

10 

,------------------------------------------~. Release 

Figure 1.5 

Energy 
(MWH) 

Figure 1.6 

Hydro generation characteristic with 

constant head 

Hydro generation characteristic with 

variable head hi ( hl< h2 < h3 ) 

(m~'d:31 sec) 

Release 
l m~':-:(3/ sec) 



r 
! 

( 

1 

n .4;; : i i +ue ..... 

Energy 
A (MWH) 

Unit 1 

Figure 1. 7 Hydro generation for multireservoir 

system at a fixed head 

Fixed Head 

Release 
(r:t3/sec) 

11 



12 

of such system for a given head. The curve consists of three segments 

which correspond to 1, 2 or 3 units in operation. The best operation 

point (the best efficiency points) for 1, 2 or 3 units in operation are 

also shown on the graph by Ub1 , Ub2 and Ub3 respectively. 

1.3 Power System Optimization Problems 

The hydrothermal scheduling problem is usually decomposed into an 

energy problem and a power problem or into what Massé [1946] and Turgeon 

r1981b] calI 'strategie' and 'tactical' problems, respectively. The 

first is related to the management of the available water according to 

the forecast of the natural inflows. The second problem, on the other 

hand, involves the hour by hour control and coordination of all 

generation units to satisfy a given demand with known inflows. Then it 

can be seen that the energy or strategie problem is stochastic and 

concerns the long-term scheduling, while the power or tactical problem 

is deterministic and concerns the short-term scheduling. 

Although this thesis mainly deals with the energy or the long-term 

problem, a brief description of the nature of each problem is given in 

the next two subsections. 

1.3.1 The Long-Term Scheduling Problem 

In the long-term scheduling problem, the operating horizon spans 

from one to severai years and is divided into weekly or monthly 

intervals. The objective is to determine a generation schedule that 

minlmizes the expected cost during the planning horizon while meeting 

the demand at all times. In other words, the long-term problem consists 

in finGing the optimal balance between the production of v;.rious plants 
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for each of the intervals of the planning horizon. This problem is 

further complicated by the fact that the exact level of inflows in the 

future cannot be predicted. In this case, historie data and probability 

distribution can be considered due ta the small variation of inflows 

from year to year. Then after having incorporated this probability 

distribution into the aptimization model, the most successful solution 

technique has proven to be 'stochastic dynamic programming' [pronovost 

and Boulva, 1978; Sachdeva, 1982; Turgeon 1980). 

Since the time steps considered are weeks or months, the time delay 

between reservoirs can be neglected and sometimes reservoirs on the same 

stream can even be aggregated. 

The long-term scheduling optimization involves other stochastic 

variables such as load and unit availabilities (thermal and hydro 

units). However, dealing with the random nature of these variables is 

outside the scope of this thesis. On1y the natural water inflows will be 

considered as random. 

1.3.2 The Short-Term Scheduling problem 

The short-term scheduling problem distributes over the week or over 

the month the total dis charge selected by the long-term problem for that 

period. This distribution is performed so that the total system produc­

tion cost is minimized within the limits permitted by the hydraulic and 

thermal canstraints. In such a scheduling problem, the load, hydraulic 

inflows and unit availabilities are assumed to be known. A set of 

starting conditions (e.g. reservoir levels) is given, and parts of the 

hydraulic constraints may involve meeting "end-point" conditions at the 

end of the scheduling interval so as to conform with a long-term water 
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release schedule previously established as shown in Figure 1.8. 

Due to the time needed to start the thermal units, sorne difficulties 

may be introduced, creating therefore, a need for "spinning reserve" to 

caver possible break-downs. Also if several hydro plants are located on 

the same stream, the time taken by the water t 0 travel from one plant ta 

the next may be of great importanc.e. 

Note that the short-term problem must be re-optimized frequently ta 

take into accaunt the variations in the expected demand patterns, the 

natural inflows or the availability of the equipments. 

For a tharough survey of this subject, the reader is referred to 

Chapter VII of Wood and Wollenberg [1984]. 

1 .4 Solut ion Methods For the Stochastic Hydrothermal Scheduling 

Problem 

Different solution methods have been proposed to solve the 

stochastic hydrothermal scheduling problem, using mainly linear or 

dynamic programming. In this section. only a cursory description of 

these two techniques is given and their application ta a hydrothermal 

power system i8 presented. Then, in the next section, the approaches 

applied ta a large-scale stochastic hydrothermal problem are studied 

more thoroughly. 

Linear programming has been one of the most widely used techniques in 

water resources operations. It was designed for problems in which aIl 

relations among the var~ables are linear both in constraints and in the 

obj ecti ve function to be optimized. Loucks [1968] and Houck and Cohon 

[1978] applied the stochastic linear programming to reservoir operation 
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assuming a Markov process model for the inflows. This technique, as 

pointed out in Loucks' paper [1968] leads to very high dimensional 

problems in real situations, that is to a problem where the number of 

constraints can easily exceed several thousands. Stoehastie linear 

programming was aiso applied to reservoir operation by converting the 

probabilistic constraints into deterministic equivalences by using a 

cumulative probability distribution function of the random variable 

[Revelle et aL, 1969; Hogan et aL, 1981; Sobel 1975; Sniedovich, 1980; 

Houck et al., 1980; Houck and Datta, 19811. This technique, known as 

"Chance-constrained linear programming" is severely hampered if 

cross-correlations exist among the i~flows of a multireservoir system 

[Yeh, 19851. 

Dynamic programming was first suggested as a solution technique fo~ 

this type of problems by Little [19551. The basic idea is to deal with 

muitistage decision processes. As defined by Sellman [1957] multistage 

decision processing consists in separating a problem into a number of 

sequential steps, or stages which may be completed in one or more ways. 

The popularity and success of this technique in hydrothermal operation 

problems can be attributed to the fact that the nonlinear and stochastic 

features which charaeterize a large number of water resources systems 

can easily be incorporated into a dynamic programming proble~. A large 

number of authors applied stochastic dynamic programming to find the 

optimal operating poliey for hydro power systems. [Sehweig and Cole, 

1968; Gablinger and Loucks, 1970; Roefs and Bodin, 1970; Buteher. 1971; 

Askp-w, 1974a; 1974b; Su and Deiniger, 1974; Rossman, 1977; Turgeon, 

- 1981a; 1981b]. In a review of mathematical models developed for 

reservoir operation, Yakowitz [1982] pointed out that the largest-sized 
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stochastic dynamic programming problems found within or outside the 

water resources literature, involve no more than two or three state 

variables. Therefore, ta solve large-scalp. stochastic problems, it 

becomes necessary to develop methods enabling us to approximate the 

solution of the operating problem at a reasonable computational cost. 

The next section will describe briefly these methods. 

1.5 Review of Recent Approaches for Large-Scale Stochastic Reservoir 

Operation 

The long-term scheduling problem i5 usually modelled as a stochastic 

nonlinear problem of very high nlmension. The multiplicity of variables 

and constraints results from the large number of reservoirs and plants 

in the system. 

Over the past thirty years, the determination of the optimal 

operating policy for this problem has been the subject of numerous 

publications. Yet a completely satisfactory solution has not been found 

since the problem has always been simplified in order to make i t 

solvable. This is because the optimal feedback solution of large-scal.e 

stochastic optimization problems with bounds on the state and control 

variables is still unknown. Consequently, numerous approaches consist in 

transforming the large-scale problem into one or a series of small-scale 

problems. These approaches fall into four categories: 

1) Aggregation 

2) Decomposition 

3) Aggregation 1 Decomposition 

4) Projection 
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Aggregation methods reduce the number of state variables of a 

multireservoir system while conserving the stochasti~ nature of the 

problem. It consists in aggregating the whole system into one equivalent 

energy reservoir and ca1culating for that reservoir the optimal 

operation policy, as shown in Figure 1.9. Arvanitidis and Rosing [1970] 

were the first to propose this technique. They aggregated the whole 

Pacifie Northwest system into a single reservoir and used stochastic 

dynamic programming with Inonth1y Ume periods to solve the resulting one 

state variable problem. Many other papers, using this approach, have 

been published since. [Davis and Pronov,J~t, 1972; Duran et aL, 1985; 

Pereira and Pinto, 1984. Quintana and Chikhani, 1981; Sherkat et al., 

1985; Turgeon, 1980, 1981b). Turgeon [IREQ-229l. 1980] pointed out that 

the optimal operating rule obtained by using the aggregation method 

assumed simultaneous spil1ing from al1 the reservoirs or no spilling at 

all for a given period of time. Furthermore, it a1so assumed that all 

the reservoirs would become empty at the same time. Mathematically, if 

Uik represents the "opt imal" release from reservoir i in period k, Üi 

the capacity of the plant i, and Xik the content of reservoir i at the 

beginning of period k then the following relations can be assumed: 

-
Uik ~ Ui or Uik > Ui (1.1 ) 

and 

or Xik = a (1. 2) 

i=1,2, ..• ,n 

- where n represents the number of reservoirs. 

The decomposition approach consists in breaking down the huge 
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operating problem into several smaller problems [Colleter and Lederer, 

1981]. This technique has been applied t~ the French power system in 

order to form smaller problems. each corresponding to a particular 

valley. The link between the valleys and the entire generation system is 

established by using rules and relations based on the marginal 

production cost. More specifically, each valley is operated in order to 

maximize the expected amount of energy so1d at the marginal prOd\lction 

cost. 

The aggregation/decomposition approach proposed by Turgeon [1981b] 

and used by Duran et al. [1985] and Lederer et al. [1983] was developed 

for a power system consisting of n hydroelectric power plants 10cated in 

series on a river. The method consists in rewriting the stochastic 

optimization prob1em of n state variables as n-1 problems involving two 

state variables and using the stochastic dynamic programming formulation 

to obtain the solution. The release policy is then obtained for 

reservoir i as a function of the water content of that reservoir and the 

total amount of potential energy stored in the downstream reservoirs. 

Figure 1.10(a) i11ustrates the aggregation/decomposition of n reservoirs 

in series with content Xik' i=l, ... ,n during a period k. Then, Figure 

1.10(b) shows the reservoir 1 and reservoirs 2 to n combined with 

equivalent energy content S2k. The advantage of this method, as pointed 

out by Turgeon [1981b]. i5 that it is not iterative. In facto the 

processing time increases only linear1y with the number of reservoirs 

since only one additional dynamic programming problem of two state 

variables has to be solved for each new reservoir that is added to the 

system. 

The projection methods proposed by Davis [1972] and used by 
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Delebecque and Quadrat [1978], Pronovost and Boulva [1978]~ and Sherkat 

et al. [1985] transforms the problem of n state variables into a series 

of n problems each with one state variable. This technique combined with 

dynamic programming and known as "Dynamic Progranuning Successive 

Approximation" involves a "one-at-a-time" stochastic optimization of 

each reservoir, and the procedure is repeated over aIl the reservoirs 

until convergence is attained. Figure 1.11 shows how this technique 

works for only two state variables. 

The solution of the transformed problem obtained by applying one of 

the above manipulation techniques is never, unfortunately, the optimal 

global feedback solution sought. When aggregation is used, for instance, 

the solution may not ev en be feasible since the transformation cannat 

take into account aIl the local constraints on the reservoir content and 

the discharge of the power plants. Projection, on the other hand, al~ays 

yields a feasible solution, albeit of local-feedback type. Moreove~, as 

Turgeon [1980] has shawn, such a solution can be very far from the 

global optimum when the states of the reservoirs are appreciably 

different from those expected. The price-decomposition approach of 

Collecter and Lederer [19811 gives a local-feedback solution similar to 

that obtained with projection. However, since the marginal production 

cost is not computed as an explicit function of the production of each 

valley, the solution thus obtained is not a global feedback. 

The literature usually classifies aIl the methods mentioned above as 

"explicit", because they explicitly take into account the stochastic 

nat~re of the river flow. However, there are other methods that use 

synthetic flow sequences instead. The main features of those so-called 

"implic.it" methods [Croley, 1974; McKerchar, 1975; Roefs and Bodin, 



r " s 

1 

( 

f 

l 

.. 

YES 

START 

Set up feasible 
schedule for plant 2 

Using stochastic dynamic 
programming:find optimal 
schedule for plant 1 
using plant 2 schedule 

Using stochastic dynamic 
programming:find optimal 
schedule for plant 2 
using plant 1 schedule 

STOP 

Figure 1.11 Projection flowchart 

23 

NO 



24 

1970; Young, 1967] are streamflow synthesis, deterministic optimization 

and multivariate analysis. Streamflow synthesis is used to provide 

several equally likely future sequences of streamflows. For each 

streamf10w sequence, deterministic optimization finds the optimal amount 

of water to release from each reservoir for each time period. If there 

are n streâffiflow sequences, the deterministic optimization therefore 

provides n different trajectories for each reservoir. Subsequently, 

multivariate analysis is applied to these trajectories to de duce an 

operating policy, that is a set of mappings from the state space 

(storage levels) into the deeision space (reservoir releases). In other 

words. multivariate analysis is used to determine the functions 

Uik (X1k'X2k , .. ·Xnk) , i=1, ... ,n; k=l, .•. K. where Uik represents the 

"optimal" release for reservoir i during period k and Xik is the content 

of reservoir i at the beginning of period k. 

However, the use of the word 1I0ptimal" to describe the functions 

Uik (Xlk,X2k'" .Xnk) determined by this process may be misleading. 

Aetually, these funetions are optimal for the implicit approaeh but 

their relation to the true optimal operating poliey are not known and 

differ for each application. Unfortunately, determining the operating 

policy of a system by supposing the river flows to be perfectly known 

in advance rarely yields the same results as when explicit account is 

taken of the stochastic nature of the river flows. The difference 

between these two results can mainly be attributed to the limits on 

storage. Therefore, even if the deterministic prablem were solved for a 

thc."lsand different flow sequences to yield a thausand different 

trajectories for each reservoir. there is still no guarantee that the 

multiv~riate analysis of the results would yield the true optimal 
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solution or even one that is just close to it. 

The implicit stochastic approach was proposed principally because it 

is much easier to solve a series of deterministic large-scale 

optimization problems than only one stochastic large-scale problem. 

Roefs and Bodin [1970J reported that the growth in size of this approach 

is directly proportional to the number of reservoirs in the system 

rather th an exponentially proportional as in the "Explicit Stochastic 

Approach". As mentioned before, the stochastic large-scale problem must 

be manipulated, decomposed or simplified before it can be solved. The 

question can be raised, however, as to whether or not the implicit 

approach has just simply substituted one difficult problem by another. 

Indeed, the implicit approach discatded the stochastic optimization 

problem but, as a result, must solve a very difficult multivariate 

analysis problem to determine the functions Uik(X1k,X2k"" ,Xnk)' The 

major difficulty here is ta find the family of functians ta whieh 

linear funetion, as Young [1967] and McKerchar [1975] have done, is 

usually not acceptable in practice. 

1.6 Scope and Contribution 

The method praposed in this thesis to determine the optimal 

long-term operating policy of a multireservoir power system borrows from 

both the implicit and the explicit approaches explained in Section 1.5. 

As in the implicit approaeh, the problem is first solved 

deterministically for m different flow sequences. The results of those 

deterministic optimizations are th en subjected ta a principal component 

analysis (PCA) to find out whether the problem could have been modeled 

1 
L 
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with fewer state variables. When this is found to be possible, the 

problem is transformed into a new one with fewer state variables, and 

stochastic dynamic programming is applied to determine the optimal 

operating policy. In other words, the implicit approach is used to 

reduce the number of state variables ir. the problem. and the explicit 

approach to find the optimal solution of the reduced problem. 

Whether the number of state variables can be reduced or not depends 

on thei!" degree of interdependency. If they are independent, reduction 

is of course impossible and the proposed method cannot solve the 

problem. However, if sorne dependency exists. reduction may be possible. 

Obviously, the higher the interdependency, the greater and better the 

reduction will be. Thus, our goal will be to reduce the number of 

variables sufficiently to allow straightforward application of 

stochastic dynamic programming. 

The particular feature of the proposed approach is the search for 

linear dependencies among the variables which derives the required 

transformation for their reduction at the same time. It has many 

advantages over the explicit and implicit stochastic methods of the past 

[Saad and Turgeon. 1988a and 1988b]: 

i) It solves larger problems (higher number of state variables) 

taking into account the stochastic nature of river flows, described by a 

discrete distribution as in the explicit stochastic optimization 

technique which was 1imited to two or three stochastic state variables 

[Yakowitz, 1982; Yeh, 1985] . 

.. '\ 
1.~J' Unlike the aggregation methods [Arvantidis and Rosing 1970] it 

takes into account all local constraints on the discharge and content of 

the res~rvoirs, so that the solution obtained is genera11y feasible. 
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iii) Since linear combinations can easily be manipulated. the 

proposed technique decomposes the results to find the operating policy. 

In the previous works [Boggle and O'sullivan, 1979; Roefs and Bodin. 

1970j. the selection of the o~erating policy proved to be the most 

difficult problem to tackle. 

iv) It gives a global feedback ~olution. contrary to the 

decomposltion and projection methods. This means that global 

constraints, su ch as satisfying the demand, will be met. 

v) It is easy to apply. which is certainly not the case for the 

methods involving the determination of the family of fun~tions to which 

the discharge Ui k(Xlk'X2k •...• Xnk) belongs. 

The only major drawback is that the state variables must be 

interdependent in arder to apply the method. In general, however, 

interdependency does exist among reservoirs located on the same river or 

on nearby rivers with similar flow patterns. 

1.7 Outline and Methodology 

The principal components approach, its theory, derivation, verifica­

tion and justification are the focus of this thesis. 

Firstly, in Chapter I, the hydrothermal power systems are outlined. 

A brief description of thermal and hydro generation plants is given. 

Then, the pow~r systems optimization problems are described. These 

problems are usually decomposed into a long-term and short-term 

problems. The nature of each problem is briefly given. Sorne approaches 

to solve the stochastic long-term hydrothermal scheduling problem and a 

review of recent publications are also outlined. 

The mathematical representation of the basic components of a power 
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system is given in Chapter II. The objective function and the different 

constraints related to thermal and hydro plants are then considered. The 

electric demand and the corresponding constraints are also discussed. 

The model is given in ils general deterministic form. as a nonlinear 

model, and a piecewise linearization is then proposed. 

Chapter III presents different solution techniques for the 

deterministic model of Chapter II. In that chapter, dynamic, nonlinear 

and linear programming are discussed. The last technique is adopted and 

a modified linear model is suggested to eliminate the bang-bang solution 

usually associated with linear programming. The solution of the model 

for a four reservoir system is found with IBM's MPSX/370 package. Sorne 

optimization results are given. 

Since the primary purpose of this work 1s to solve large-scale 

stochastic problems, a reduction of the number of state variables must 

be attempted. Chapter IV presents an efficient method to reduce a large-

scale problem into a small-scale problem by using principal components 

analysis. First, the theoretical development to transform the original 

variables into a set of new components is formulated. These components 

have the two characteristics of being uncorrelated and in decreasing 

or der of variance. An optimization problem built to obtain these 

characteristics shows that the new components are found by solving a 

simple eigenvalue problem. In this problem. Lhe components and the 

percentage of variance are obtained from the eigenvectors and the 

eigenvalues of the covariance matrix respectively. In fact, the 

prin~ipal components analysis transforms a problem with n state 

variables into another having the same number of state variables. 

Therefore, reduction criteria are needed. Although the criterion 
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( selected is based on the component's percentage of the total variance, 

other criteria are also presented, namely: Scree test of Cattell, 

Kaiser's ru le and Bartlett's rule. 

This theory is then applied to the four reservoirs system of Chapter 

III and some results are given. These results are of paramount 

importance because the y prove that the problen~ of eight state variables 

can be replaced by one of only four state variables. 

Chapter V presents the stochastic model which is a generalization of 

the problem described in Chapter II, with the objective of minimizing 

the expected cast of the thermal energy. 

The reduced problem is obtained by incorporating the principal 

components into the model, and is then solved by stochastic dynamic 

programming. 

) A comparison with the classical dynamic programming approach, that 

is without any reduction of the number of state variables, shows the 

efficiency of the proposed technique. The value of the objective 

function, the operating policies and the CPU time obtained from both 

methods confirm the advantage of the principal components approach when 

large-scale problems must be solved. 

Finally, Chapter VI presents a summary of the results along with the 

conclusion. Further research recommendation are also outlined in that 

chapter. 

( 
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PROBLEM FORMliLATION 

2.1 Introduction 

The long-term operation problem of multireservoir systems is 

modelled in this chapter as a nonlinear deterministic problem. A linea~ 

version of the model is presented at the end of this chapter. The 

stochastic generalization oi the problem is described in Chapter V. 

The basic components of a power system are thermal and hydro plants. 

The mathematical representation of these components is given in 

different parts of this chapter. Section 2.2 considers the thermal 

plants, their production costs and the constraints introduced in the 

model. Section 2.3 studies the hydro plants and reservoir d)~amics. The 

modelling of rivers is also discussed in that section and the 

constraints are explained there as welle The electric demand and the 

corresponding constraints are discussed in Section 2.4. Finally, in 

Section 2.5 a piecewise linearization of the model is proposed. 

2.2 Thermal Plants Formulation 

As mentioned in Chapter l, the most important economic consideration 

- is to produce electricity at the lowest operation cost. Consequently, a 

minimum use of thermal energy over the whole time horizon is desirable. 
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( For the remainder of this thesis, this horizon will be characterized by 

a finite, but possibly very large number of periods indexed by k=1, •.•• K 

(e.g. the periods may be months aud the horizon be one year). The cost 

functjon Ck(Hek) of thermal energy during period k is assumed to be 

convex as shown in Figure 2.1, which means that it can be written as 

(2.1) 

The electric production of a thermal plant is limited. For this 

reasont bounds are assumed on the thermal energy Hek and are expressed 

as 

k=l, •.. ,K (2.2) 

where He is the capacity of the thermal plants (upper bound). 

2.3 Hydro Plants Formulation 

The hydro models described in this section consider plants in series 

only or plants in series and parallel. !WO or more hydro plants on the 

same stream constitute a series arrangement as shown in Figure 2.2. A 

series and parallel arrangement is defined as two or more plants on 

different streams converging into another which may have several 

downstream plants as shown in Figure 2.3. In addition, it is assumed 

that a reservoir is associated with each plant. 

2.3.1 Water Continuity Equations 

Let Xk+l be the storage of the reservoir at the end of period k. 

f This storage is equal to the volume Xk at the beginning of that period 
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Figure 2.2 Hydro plants in series 
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Figure 2.3 Hydre plants in series and parallel 
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plus the difference bet·.iet'n the inflows Yk and the outflows during that 

period. The inflows (rainfall, snow and melted snow) form the only input 

to the model, whereas the (Iutflows consist of the discharge Uk from the 

reservoirs and the volume V~ discharged through the spillways. Reservoir 

levels vary throughout the year between their lower and upper bounds. 

Bounds also exirt on Uk and Vk' 

Taking aIl these considerations into account, the water continuity 

equations (or reservoir dynamics) can be represented by the following 

difference equations 

(2.3) 

and the bounds ar~ represented by 

X ~ Xk+1 ~ X ; k=l, .•. ,K (2.4) 

0 ~ Uk ~ li k=l, ••• ,K (2.5) 

Vk ~ 0 ; k=l, .•• ,K (2.6) 

where rl and r2 are matrices deppndant on the physical structure of the 

hydroelectric installation. 

Example 

Consider the four reservoir system shown in Figure 2.4. As assumed 

previously a reservoir is associated with each plant, therefore the 

water continuity equations become 

Xlk+1 = Xlk - Ulk - Vlk + Ylk 

X2k+1 .. X2k - U2k - V2k + Ulk + Vlk + Y2k 

(2.7) 

(2.8) 
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( X3k+l = X3k - U3k - V3k + Y3k 

X4k+l = X4k - U4k - V4k + U2k + V2k + U3k + V3k + Y4k 

where the subsripts l, ••• ,4 denote the reservoir numbers. 
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(2.9) 

(2.10) 

Equa t ions ( 2 . 7) to ( 2 . 10) can be rewr i t ten in condensed f orm as 

equation (2.3) with 

100 0 

-1 l 0 0 

o o 1 o 

o -1 -1 l 

2.3.2 Hydroelectric Generation 

The electrical energy that can be generated from the potential 

energy of the water stored in a reservoir is a function of both the 

released water volume Uik and the hydraulic head h ik of the reservoir i 

during the period k. The head h ik is not an independent variable but a 

function of Xik t the content cf the al1ied reservoir. It fol1ows that 

the production Hik(Xik , Uik) of plant i in period k is usually gi ven by 

the following equation 

(2.11) 

where a is a constant and ri (hik,Uik) denotes the plant efficiency. 

The total generation by n hydroplants is ther.: 

(2.12) 
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It is important to recall that for long-term hydro scheduling. the 

variation of the head with respect to the storage can be assumed 

constant [Hanscom, 1976; Read. 19791. 

2.4 The Electric Demand 

Figure 2.5 sho~s how the load (lhe demand) pattern May look. In this 

figure dp denotes the load in MW, and dek the energy demand for period k 

in GWh. Usually, it i5 neccssary ta divide the load pattern inta time 

intervals as shawn in Figui\.' 2.6 assuming of course that the load is 

constant during each interval. 

The need to meet the demand during each period ~ill result in the 

follo~ing energy balance constraints 

(2.l3) 

These constraints are the only coupling constraints bet~een the 

hydro and thermal systems. It can be seen that dek has to be satisfied 

in each period of time. In ather ~ordsJ if the hydroelectric ieneration 

is not sufficient the thermal source of energy should then be used in 

arder ta meet demand. 

Finally, it is assumed that the demand dek is known at the beginning 

of the operating horizon. 

2.5 Linear Model 

A complete linear model is obtained once the thermal production cost 

are 

linearized. As shawn in Figure 2.1, the cost Ck(Hek) is a convex 
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function. This function can be approximated by the piecewise linear 

curve illustrated in Figure 2.7. This linearization introduces the 

following additional equations 

k=l •... K (2.14 ) 

k=l, ...• K (2.15 ) 

k=l, ... ,K (2.16 ) 

where M is the number of line segments forming the grid of the piecewise 

linear cost function. aT =[ al •...• aM] and bT =[ bl •..•• ~] are the 

lengths of the resulting intervals on Ck(Hek) and Hek axis. respectively 

(Figure 2.7). Hgk = [ Hgl"" ,HgmJ T is a vector of special variables or 

grid variables defined as follows 

For Hek in interval m 

= Hgm-l.k = 1 

o ~ Hgmk ~ 1 

Hgm+ 1 • k = .•• = HgMk = 0 

Appendix A contains more details on the piecewise linearization. 

Assuming constant head for a11 reservoirs, the hydroelectric 

generation can be written as 

k=l, ... ,K (2.17) 

wherE pT = [ Pl""'Pn] is the vector of generation characteristics for 
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the hydro plants. This vector will be assumed constant over the 

operating time horizon. 

In compact form, the complete linear model can be written as: 

Subject ta: 

Xk+1 = Xk - rluk - r 2vk + Yk 

pTUk + Hek = dek 

Hek - bTHgk = 0 

X !S Xk+l ~ X 

0 !S Uk 5 U 

Vk ~ 0 

0 :s Hek 5 He 

0 !S Hgk ~ e 

(2.18) 

k=l, •.. ,K (2.19) 

k=l, •.• ,K (2.20 ) 

k=l, ... ,K (2.21) 

k=l, ... ,K (2.22) 

k=l, .•• ,K (2.23 ) 

k=l, .•. ,K (2.24 ) 

k=l, ... ,K (2.25 ) 

k=l, ... ,K (2.26) 

where C 15 the cast f)f each GWh produced from thermal plants, and eT 

::[1, ... ,1) is a 1 by n unit vector. 

2.6 Conclusion 

This chapter has presented the general model for the long-term 

multireservoir hydrothermal systems. The model variables are a11 

continuous, whereas the three kinds of constraints are either on the 

thermal or on the hydroplants with only one coupling constraint between 

th~ hydro and thermal generation. 

The model developed is nonlinear due to both the objective funct.ion 

(prod\'ction costs) and the hydroelectric generEltion constraints. For 

these constraints, it is assumed that the water head remains constant 

and that the hydro generation is only a function of the released water. 
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( Although this nonlinear model can be solved directly, a 

linearization was proposed to alleviate the computation of the solution. 

This technique will be discussed in the next chapter and sorne 

optimization results will be presented there. 

j 



CHAPTER III 

SOL1ITION TECHNIQUES FOR THE DETERMINISTIC PROBLEM 

3.1 Introduction 

The modeis developed in Chapter II can be solved using different 

methods. Nonlinear programming can be used for solving (2.1)-(2.13). The 

linear model of (2.18)-(2.26) can be solved by linear programming. 

Dynamic programming is applicable to both modeis. 

This chapter describes the application of these methods to the 

solution of the multireservoir long-term scheduling problem. Th~ dynamic 

programming formulation is discussed in Section 3.2. In Section 3.3. a 

nonlinear programming algorithm i5 presented. and a linea~ progr~lming 

method is covered in Section 3.4. The last technique is selected to 

solve the deterministic linear model. In Section 3.5, a modified linear 

model is proposed and, in Section 3.6, an application to a multireser-

voir system is presented. 

3.2 Dynamic ProgrruDming 

As discussed previously, dynamic programming i3 a powerful tool for 

so~ving water resources systems problems. It has the advantage of 

effectively decomposing highly complex problems with a large number of 

~. 

variables into a series of subproblems which are solved recursively. In 
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order ta illustrate how dynamic programming can be applied to 

hydrothermal scheduling problem, the following nonlinear model is 

considered: 

subject to 

Xk+1 = Xk - r1uk - r2vk + Yk 

X S Xk+1 S X 

k = 1, ... , K 

where Ck(dek - Hk(Xk,Uk» is the production cost for period k. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The model (3.1)-(3.5) is identical to the nonlinear one presented in 

Chapter II with the difference that the objective function Ck(Hek) is 

written in terms of the demand dek and hydroelectric production 

Hk(Xk,Uk) in period k. 

Let Jk(Xk' Uk) be the production cost for period k with the vector Xk 

representing the storages (states) at the beginning of period k and the 

vector Uk the releases during the same period. Then (3.1) can be written 

as [Nemhauser, 1966 ]: 

(3.6) 

where Fk+l (Xk+1) is the optimal production cost from period k to period 

K+l. At the end of the horizon. 

(3.7) 
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For the long-term model, the state Xu , i=l, ••• , n at the beginning 

of the Ume horizon i5 known. 

Even if the state Xik of reservoir i can take an infinite number of 

values between the lower and upper bounds, in practice the number of 

states ts fixed at a finite value in order to reduce the computation 

time. Therefore, it will be assumed that the state Xk can take one of 

the following values only: 

x == 0lk < 02k < 03k < ... < 0mk == X (3.8) 

Now, let us consider the case of a single reservoir. The state 

variable (storage) after being discretized into a number of feasible 

states is shown in Figure 3. 1. Moreover J i t is supposed that the inflow 

sequence is given and that the spilling term Vk 1s temporarily 

ignored, th en the cont inui ty equat ion (3.2) becomes 

(3.9) 

If XkH and Xk are known, Uk can be directly computed from the above 

continuity equation. The optimization can thus be made with the proper 

values of Uk' The problem of interpolation is a1so avoided s ince the 

Uk ' sare computed by fixing the states Xk+l and Xk' Solutions are then 

imbedded in the discretized states. Moreover, the infeasible transitions 

are automatically discarded in the solution process. The procedure for 

determining the optimal schedule and the minimum operation cost is shown 

in the flowchart of Figure 3.2. -, N~xt, when two reservoirs are in cascade, the recursive equation 
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Figure 3.2 Backward dynamic programming flowchart 
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(3.6) can be rewritten as: 

and in a similar way. for n cascaded reservoirs: 

Fk(X1k .···.Xnk) = minimum{Jk (X1k.···.Xnk. Ulk.···. Unk) + 

Fk+l (Xl, k+l' ... ,Xn,k+1»} 

49 

(3.11) 

Unfortunately, equation (3.11) cannot be solved directly for large 

values of n because computation time and storage requirements become 

excessive then. According ta Turgeen [IREQ-2291. 1980], problems should 

not have more than four state variables (four reservoirs) in order to be 

solvable by dynamic programming without difficulties. 

3.3 Nonlinear Programming 

Nonlinear programming has not gained as much popularity as dynamic 

programming in water resources system analys is. The solut ion of 

large-sca.e non1inear problems are not generally easy to find within 

reasonable computation time. However, the long-term nonlinear model 

(2.1)-(2.13) can be solved using the "conjugate gradient" method 

[Gagnen et al., 1974; Hicks et al., 1974], or the "reduced gradient" 

approach [Hanscom et al., 1976], or ev en the "dual variables" or 

"Lagrange multipliers" approach [Haimes, 1977]. 

Te illustrate how nonlinear programming can be applied to hydrother--

mal scheduling prob1ems, the nonlinear model is considered for the par-

ticular case of a single reservoir. The solution method proposed here 15 

the "dual variable" ap:>roach. For that purpose, the model can be written 
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as 

subject to 

Xk+l = Xk - Uk - Vk + Yk 

a.r(hk,Uk)·hk,Uk + Hek = dek 

X ~ Xk+1 ~ X 

o ~ Uk ~ U 

o ~ Hek ~ He 

Vk ~ 0 

k=l, ... ,K 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16 ) 

(3.17) 

(3.18) 
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As previously mentioned, the production cost Ck(Hek) and the 

hydroelectric generation a.r(hk,Uk).hk,Uk are nonlinear. 

In its general forro the nonlinear programming problem can be 

modeled as 

min f(X) 
X 

subject to 

g(X) ~ 0 

(3.19) 

(3.20) 

in which X is a vector of decision variables, and f(X) and g(X) are 

real-valued and vector-valued given functions, respectively. 

The dua] problem is solved in two steps. First, the Lagrangian 

associated with the constrained problem is defined as 

LOI,.~ À) = f(X) - Àg(X) (3.21 ) 
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where À (~O) i5 the vector Lagrange multiplier. 

Secondly, the dual function i5 defined by the equation 

(3.22) 

and the solution for the dual problem associated with the original 

(primal) problem (3.19)-(3.20) requires the maximization of the function 

f(À) over the set À ~ 0 ; that is: 

(3.23) 

The optimal solution is obtained when 

(3.24 ) 

) 
1\ /1. 

in which À and X are the optimal values sought [Lasdon, 1970; 

Luenberger. 1973]. The procedure to determine the optimal operation 

schedule is shown in Figure 3.3. 

Now by applying this formulation to the model of (3.12)-(3.18) the 

Lagrangian is found to be: 

- - -
-À3k(Xk+l-~)-À4k(X-Xk+l)-À5k(U-Uk)-À6k(He-Hek)} (3.25) 

fhe dual problem associated with this model is: 

( 

1 

L 



4: 
Fix an initial 
feasible point 

Xo 

max Z 
À>O 
s.t. 

Z ~ f(X)-À g(X) 
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X 
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N 

Figure 3.3 Dual variables flowchart 
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subject to 
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(3.26) 

(3.27) 

Finally, it should be pointed out that nonlinear programming 

methods have been criti~ized for inconsistent convergence to acceptable 

results in real situations and long computing time requirements [Yeh 

1985]. Furthermore, the mathematics involved in nonlinear models are 

usually very complex. 

3.4 Linear Programming 

In water resources applications, linear programming has been widely 

used for the optimization of complex reservoir systems with large number 

of variables and constraints. This approach is justified by the 

fo11owing facts: 

1- The optimization process is usually fast and does not require 

large computer memory and time. 

2- The dual formulation can be used to solve the problem if the 

number of constraints exceeds the number of decision 

variables. lndeed, it can be shown that every linear program 

has a dual formulation [Chvatal, 1983; Murtagh, 1981; 

Nazareth, 1987]. 

3- It is possible to solve a modified problem using the results 

obtained from the original problem. This property is very 

beneficial in solving the linear model of (2.18)- (2.26) for 

several inflow sequences. 
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( 4- Commercial computer programs, such as MPSX/370 by IBM, are 

wide1y avai1able. 

On the other hand, the 1inear model (2.18)-(2.26) has the following 

drawbacks: 

1- Approximating the nonlinear objective function (2.1) by the 

piecewise linear function (2.18) introduces sorne inaccuracy. 

There is no fixed rule for selecting either the optimum grid 

size or th~ optimum number of grids to improve this approxi-

mation. However using large grid sizes may produce too inac-

curate results. while specifYing a large nurnber of small grid 

points may prove to be unnecessary [MPSX, 1979]. 

2- The hydroelectric generation of plant i in period k is given 

by: 

(3.28) 

Since the production is no longer a function of the water 

head when (3.28) is used, the advantage of emptying aIl 

reservoirs silnultaneously in order ta keep the he ad high at 

each plant disappears. As a result. a bang-bang solution. 

shawn in Figure 3.4, in which a plant is run at maximum 

capacity in one period and shut down in the next is obtained. 

Such a solution is obviously unacceptable in practice. For 

this reason, a modi fied linear model is proposed in the next 

section. 
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3.5 Modified Linear Model 

As mentioned previously, the bang-bang solution cannot be imple-

mented in practice. Therefore, to eliminate this form of solution, 

penalty terms were added to the objective function in order to penalize 

any variûcion in the production of a plant from one period ta the next. 

Thus, the objective (2.18) can be stated as; 

(3.29) 

where a is a constant having a small value compared to the production 

cost C « 10iO 

The function (3.29) can a1so be rewritten in the 1inear programming 

standard forro as: 

K 
min ~ {C.aTHgk} 

k=1 

Where Zik is defined by: 

Ui k+1 - Uik -

Ui k+1 - Uik + 

zik ~ 0 

K-1 
+ a I: 

k=1 

zik ~ 0 

zik ~ 0 

n 
E z'k i=l 1 

k=1, •... ,K 

(3.30) 

(3.31) 

(3.32) 

(3.33 ) 

Letting eTzk = ~ zik' where eT=[1,1, ... ,1], then the complete linear 
i=1 

model used to determine the optimal schedule becomes: 

subject to 



( 
pTUk - bTHgk = dek 

Uk+1 - Uk - zk ~ 0 

Uk+1 - Uk + zk ~ 0 

~ ~ Xk +1 ~ X 

0 ~ Uk ~ U 

o ~ Hgk ~ e 

Vk 2: 0 

zk 2: 0 

k=1 .2 •.... ,K 
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(3.34) 

The next section illustrates the solution of this model with IBM's 

MPSX/370 package for a four reservoirs system. 

Reservoir Reservoir Plant Average 
Installation Capacity Lower bound Capacity Efficiency 

(hm3) (hm3) (m3/sec) ( KWh/m3) 

LG4 34000 8000 2581.9 0.2808 

LG3 25200 6000 3432.9 0.1864 

EOL 17500 10000 3560 0.1742 

LG2 19370 5000 5954 0.3249 

1 

Table J.1 Chara~teristics of the installations 

3.6 Sample Application 

The model of (3.34) is used to de termine the optimal solution of 

Hydro Québec's installations on La Grande river. These installations are 

schematized in Figure 3.5 and their main characteristics are given in 
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( 

Month Inflow 1 Inflow 2 Inflow 3 Inflow 4 Demand 
(m3/s) (m3/s) (m:/s) (m3/s) (GWh) 

May 1088 1095 2291 830 10275 

June 1221 919 1348 800 8705 

July 988 597 80S 599 8563 

August 993 686 1102 577 9316 

September 1093 746 1196 630 9316 

October 853 616 1005 560 11487 

November 728 480 758 469 12327 

December 553 368 513 323 16080 

January 380 236 325 216 17530 

February 289 179 242 162 14869 

March 225 142 190 123 14869 

April 164 119 209 89 11727 

Table 3.2 Inflow and demand sequences. 

f 
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..... Table 3.1. 

The planning horizon considered here i5 a year with monthly periods 

starting in May. The reservoir levels at the heginning of May are set at 

their lower hounds shown in Table 3.1. The inflow sequences and the 

demand are given in Table 3.2 and illustrated in Figure 3.6 and Figure 

3.7, respectively. 

The optimization rp.sults will obvio\lsly depend on the choice of the 

constant cr in the penalty terme There is no fixed ru le to choose cr but 

its value should remain small compared to the cost of the thermal 

energy. For this reason, different optimization results are shown for 

different values of a. Figures 3.8 and 3.9 illustrate the reservoir 

levels and the outflows when a is set equal to O. It is clear that this 

case corresponds to the linear model of (2.18) - (2.26) in :·,1 11 ch no --penalties are imposed. In this instance, big variatioas in storage 

levels and outflows can be observed from one period to the next. 

Nevertheless. these variations can he greatly reduced by choosing even 

just a small value for a. This is shown in Figures 3.10 and 3.11 where a 

= 0.02. In that case, the water is stored from May to October, and then 

released from November ta April. The situation is almost the saroe for a 

= 0.1 as shown in Figures 3.12 and 3.13. However, 1arger values of a 

increase the value of the objective function. Consequently, for a = 

0.02, the thermal energy needed is 41373 GWh. whereas for a = 0.1. it 

reaches 42318 GWh. 

Figures 3.11 and 3.13 show high outflows (released water) from 

October ta April. These periods correspond to the high energy demand, as 

- illustrated in Figure 3.7. However. a very large portion of the natural 

inflows is received between May and October. That is the reason for the 



r 
1 

( 

C> 
C> 
C\...J 
co 
C\...J 

o 
o 
M 

63 

Il 

a 
.L: 
0.. 

CD 

~ 
L. 
a 

-+oJ 
en 

co . 
CD 
L. 
:J en 

0) -­
:::1 LL 

ee 

- -------------------------------



64 

,. .... 

~ 0 . ..... 0 :e :a .... 
Il 

Cl 
..c 
D... 
-
Cl 
L 
0 
4-

~ 

~ ; ~ ~ S ~ ~ 0 

oaS/C~~ oes/c*~ 4-
-+-' 
::J 

0 

0) . 
('J 

Q) 
L 
::J 
(J) 

LL 

" ..... 2 u .... 

oeS/C1lO(W 09S/C)OOU 



65 

( 

-Q-*-<1 
/ 1/'" 1 L 

1 0... 1 
0 0'* cr: 

1 

11 1 
1 

C~· . C\J 
0 .. /' . 

.... 1 
/ 

0 

<r.' 
/ Il 

.... 0 .... 
~ 

0 _ ..... . 
..c .... 

..... .... / . 0... 
..... .... 

.0 .... . * :c:::] •• 0 
...... ..... 

/ ..... " . L .... ". U 0 .... 

*/ 
". ..... '. ru '+-...... " . 

0 .... .... -<ÇJ 
ID \ .' 

\ \ > g> 
\ 0 L 

\ 0 
0 * 0 <J' ~ , 

\ \ ..... ,'. Cf) , -t-J , U , a 
0 * () 

\1 
. 

" 

"" 
(") 

" 0... , ru ID , 
Cf) L 0 * ::1 , 

"'" 
v··· .. 

0) 

" 0) , 
::J !..L , cr: 0 * 0<1 

("') --1 \ 

\ b"'~ ~ (\J \ 

C!J (!) 0 CD \ :J 
....J -l W .-J \ 

0 * 0 <J " 
, 

·""i····~ * 0 " , c 
" :J 
" 0 ...... ~ 

..... 

~~'" .... ::J) .... 
' .. 0 ... ..... 

-* 
Cl c::::> 0 a c::::> c::::> c:::> 0 0 C) c::::> 
c::::> c::::> 0 a c::> c::::> c:::> 0 0 CJ c::::> 
Cl N ("") ~ L.O &S r- a;:) g? C) 
~ co 1.O N CJ.) C"J 0 LO 
C"") ~ N N N 

( a6o.J°l-S 



i j $ 

1 
66 

(\J 

~ QI 0 
..J 1 

:Il > ~ 0 
'W ~ 

Il 

0 ...c 
0.. 

-
0 
L 
a 
~ 

3 

~ ~ ~ ~ ~ ~ ~ ~ 
a 
~ 

oes/c~ oSS/C~O(UI -+-' 
:J 

0 

l- I.. 

1 

("") 

ru 
L 
~ 
Cl) 

~ al LL 

oes/c~ 



( 

( 

r-----------------------------------o--o--*~ 

Y/'" ~ 
O.<J * cr: 

.<1Ô~{ 
<1."/ 1 ~ 

X /// 
/

0 <J .... *'O 

/
. / .... / 
/' .. 

o * 0/ "':<J \ \/. ........ . 
o <JJ 

\ .' \\ 
o <J 0 * 
~ ......... \ \ 

o <J 0 * 
\"\. \ 

o C<l * 
'\..; ...... \ 
i\ . , 
00 <J * 
\~ ... ~\ 

o. 0 . * 

L 
o 
:L . 
..00 
Q) 

Il 
a 

C ..c o 0... 
a 

ID 

> ~ o L 
:z:.9 

en 
-rJ 

o ru o . 
0..("') 
Q) ID 

Cf) L a, 
CT.) 
:J LL 

cr: 

C 
::J 

" '\.. ...... \ ::J) 

", '" . 0 ~--~--~--~--~--~--~----~--~' --o--*~ 
CJ 
CJ 

~ 
N 

o CJ c:::> 
o CJ c:::> 
ex) CJ:) c:::> 
o r- Ln 

67 

-



il 5 

68 

-

. 
§ ~ 0 

ê ~ 1\ 

0 
..c 
0.. -
0 
L 
a 

\.t-

:3 a 

~ ~ la ~ e ~ ~ ~ 
0 \.t-

-rJ 
oeS/C)OOJJ oes/c~ ::J 

0 

M 
L.. . 

M 
Q) 
L 
::J 
0) 

LL 

~ al 
.... 
0 ... 

.... oes/c)OOlJ 

• 



( 

{ 

69 

accumulation of water in the reservoirs during these periods, as shown 

in Figures 3.10 and 3.12. 

It is not necessary to have the same a for aIl the reservoirs. 

Figure 3.14 illustrates a case where the a for reservoirs LG4, LG3, EOL 

and LG2. have been set equal to 0.001, 0.002, 0.001 and 0.003, 

respectively. It can be seen that the outflows aLe very high during the 

periods of peak demand, and low for the periods of high inflows. An 

important feature of Figur2 3.14 is the smooth transition in operation 

characteristics between two successive periods, as compared ta Figure 

3.9 where a was set equal to a (that is without penalty terms) for each 

reservoir. 

3.7 Conclus ion 

The solution rnethods for solving the deterrninistic reservoir 

problern, namely dynamic, nonlinear and linear programming, were 

explained in this chapter. The 11st technique was selected in order to 

be able to solve the prablern wi th IBM 1 s MPSX/370 package. The apt imiza­

tion process was found to be very fast. It took only 0.02 minutes of CPU 

time and 203 iterations on an IBM-3081 to solve the problem with an 

horizon of twelve periods. 

A penalty factor a was introduced in the model to reduce the 

variations in the outflows. This constant cannot be determined according 

to flxed rules. For this reason, different optimization results for 

different values of a were shawn. These results indicated that a should 

not exceed 10% of the cost of thermal energy, otherwise the objective 

function will be very far from its actual value with a set equal to 

zero. 
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Finally, once a is fixed, this solution technique can be used to 

solve the problem for a large number of sequences of natural inflows and 

then the principal components analysis can be performed. This subject 

will be explained in the next chapter. 



..... -
CHAPTER IV 

PRINCIPAL COMPONENTS ANALYSIS (PCA) 

4.1 Introduction 

As in the implicit approach, the deterministic model developed in 

the previous chapter is solved for several inflow sequences. The results 

of these deterministic optimizations are then subjected to a Principal 

Components Analysis (PCA) to find out whether the problem could be 

~,Iodeled with a fewer number of variables. 

Although n components are required to reproduce the total system 

variability, very often most of this variabjlity can be accounted for by 

a small number p (p<n) of the principa L components. In this case, the 

last n-p components, having a very small variance, can be replaced by 

their mean values without a significant effect on the solution of the 

problem. 

The analysis of the principal components is often an intermediate 

step in much larger investigations. For example, principRI components 

may be inputs to multiple regression [Johnson and Wichern, 1982; McCuen 

and Snyder, 1986], or, as in our case, inputs to stochastic dynamic 

progranuning. 

This chapter presents the explanation and the application of the 

principal components analysis. In Section 4.2 a theoretical development 

1H 
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is formulated to transform the original n var ables into a set of n new 

components. Section 4.3 describes the selection criteria for the number 

of components. Then Section 4.4 proposes an application of this theory 

to a four reservoir system. Fina11y, in Section 4.5, a discussion of the 

results is presented. 

4.2 Principal Components Analysis 

Assume that the deterministic optimizations for m flow sequences 

provide m values for the states Xik ,i=1,2, •.• ,n, k=l,2, ..• ,K. Since PCA 

is applied to one period at a time, let us consider period k only, and 

denote by Zi the optimal value of Xik • i=l. 2, ...• n. Naturally, Zi is a 

random variable since it depends on past river flows, which are random 

variables themselves. 

Now let the random vector ZT=[Z1' Z2"",Zn] have the expected 

vector E(Z) = ~ and the covariance matrix E(Z-~)(Z-~)T = W. This matrix 

is positive definite. Since principal components depend s01ely on the 

covariance matrix (or the correlation matrix) of Z, we can set, without 

loss of generality, E(Z) = ~ = O. 

The m values of Zi are similar to those in table 4.1. Given those 

data, the goal of principal components analysis, as explained by Caillez 

[1984], Gnanades ikan [1977 ], Gendre [1976] and Kendall [1980], is to 

search for n 1inear combinat ions of the type: 

~l = bIT Z ::: bIt Zl + bl2 Z2 + ..... + bln Zn 

~2 = b2T Z = b21 Zl + b22 Z2 + ..... + b2n Zn 

(4.1) 
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or in a general form: 

(4.2) 

Variables 

1 

2 

m 

Table 4.1 Results of deterministic optimizations for period k. 

These equations have the following characteristics: 

il ~l has the largest possible variance; 

ii) ~2 is orthogonal ta ~l (uncorrelated) and has the largest 

iH) ~3 is orthogonal to ~1 and ~2 and has the largest variance 

after ~1 and ~2; 

iv) and so forth for the components ~4'~5'···· '~n' 

In other words, the linear combinations presented above allow a set 

of variables: Zl,Z2'." ,Zn, to be transformed into an equivalent set of 

variables: ~1'~2" "'~n that have two interesting attributes: 
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i} They are uncorrelated, and 

ii) They are in decreasing order of variance. 

Letting VAR denote the variance, and COV the covariance, it follows 

from equation5 (4.2) that: 

VAR(~i) = VAR(b i
T Z) = E(bi

T ZZT bi) = biT W bi; i= l ..... n 

COV(~i'~j) = COV(bi
T Z.bj

T Z) = E(b i
T ZZT bj ) = biT W bj 

i = l, ... ,n 

j=l, ... ,n 

(4.3) 

(4.4) 

It is easy to show that the variances VAR(~i) are the diagonal 

elements of the covariance matrix. 

The first principal cornponent ~l is equal to the linear combinat ion 

with the maximum variance. That i5, it maxirnizes VAR (~l) = bIT W b l • It 

is clear that VAR can be increased by multiplying any b l by sorne 

constant. To eliminate this indeterminacy, it i8 convenient to restrict 

attention to coefficient vectors of unit length. Thus, we define 

i} First principal component = linear combinat ion bl T Z that 

rnaxirnizes VAR (bIT Z) subject to the constraint bl T bl = 1. 

ii) Second principal cornponent = linear combination b2T Z tbat 

maxirnizes VIJ{ (b2T Z) subject to bl b2 = land COV(blT Z, bZT Z) = O. 
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Hi) i th principal component = linear combination biT Z that maximizes 

VAR (biT Z) subject to biT b i = land COV (biT Z, b j
T Z) = 0 for j < 1. 

4.2.1 First Principal Component 

The mathematical model for this component is ebtained by 

choosing bl that maximizes 

Subject te 

Using the Lagrangian method, 

aL = 2 W bl - 2À1 bl = 0 
abl 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where Àl denote.s the Lagrange multiplier unknown for the moment. 

The solution te problem (4.5) - (4.6) is given by: 

(4.9) 

This last equation will no doubt be recognized as being the general 

form of an eigenvalue problem, in which bl is the eigenvector 

corresponding to the eigenvalue Àl of W. Since (4.6) must still be 

respected, (4.9) can be rewritten 

(4.10) 

Choosin~ F;l to maximize the variance means choosing the values of 
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bl l ' bl2' ••• t b1n compos ing the v~ctor bl t.hat corresponds to the 1argest 

eigenvalue À1 of W [Johnson and Wichern, 1982]. 

4.2.2 Second Principal Component 

The value of b2 will not be set equal to the value of the 

eigenvector corresponding to the second largest eigenvalue of W, because 

it is not known at thj s point whether the variable ~2 thus obtained will 

be independent of ~1' 1nstead, the following optimization problem must 

be solved. 

subject to 

b2
T b2 = 1 

b l T W b2 = 0 

(4.11) 

(4.12) 

(4.13) 

Constraint (4.12) is added simply to ensure that th!! solution 

obtained is unique. Constraint (4.13), on the other hand, is set to 

guarantee independence between E;l and F;2' It is important to note that 

means that b1 is orthogonal to b2 or, in an equivalent form 

(4.14) 

Once agai~ the Lagrangian method gives 

, 
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where À2 and IJ are the Lagrange multipliers. 

aL = 2W b2 - 2À2 b2 - 21! W b1 = 0 
ab2 

Multiplying (4.16) by b1T gives 

(4.16) 

(4.17) 

Since (4.13) and (4.14) must hold, (4.17) can be rewritten: 

(4.18) 

Since (4.10) must a1so remain true, (4.18) becomes 

IJ Àl = 0 (4.19) 

78 

Remembering that À1 is the 1argest eigenvalue of W and is greater 

than zero, we can infer that 

IJ = 0 (4.20) 

Thus (4.16) can be rewritten as 

(4.21) 

It can also be noted that (4.21) has the same form as (4.9), so that 
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the solution is 

(4.22) 

Therefore, b2 can be set equal to the value of the eigenvector 

corresponding to the second largest eigenvalue of W. 

It can be shown that b3 can be set equal to the third largest 

eigenvalue of W, and so forth until the nth component. 

Therefore the matrix B = [b1 ,b2' .•.. bn ] will have the eigenvectors 

as its columns. An interesting property of matrix B is that it is 

orthonormal, which means that if 

then (4.23) 

Z :.: B ~ 

Therefore, once the matrix B has been determined for every period k, 

the relations 

i = 1, ••• ,n k = 2, ... K (4.24) 

become known as well. The original problem with state variables Xik can 

therefore be transformed into a problem with state variables ~ik using 

(4.24). Naturally, not much will be gained by doing so since this will 

simply transform a problem of n variables into another problem of n 

variables. Therefore, reduction criteria are needed. However~ before 

establishing any of them, an important result should be emphasized. 
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4.2.3 ~ 

Suppose ZT = [Zl,Z2, ••. ,Zn] has W as covariance matrix with 

th~ eigenvalue-eigenvector pairs 

components. It follow5 that 

where 0ii' i~l, .•• ,n are the diagonal elements of the covariance 

matrix W. 

The reader i5 referred ta Appendix B for a demonstration of the lemma 

which states that 

total population variance = 011 +022 + .•• + 0nn = À1 + À2 + ••• + Àn (4.25) 

) 

and consequently, the proportion ~i of the total variance due to the i th 

principal component i5 

;i=l, ••. ,n (4.26 ) 

If Most (for instance, 80 ta 9070) of the total population variance, 

for large n, can be attributed ta the first p (p<n) components, then 

these p component5 can "replace" the original n variables wi thout an 

appreciable 105s of information. 

4.2.4 Examp1e 

Suppose the random variables Zi' Z2' and Z3 have the 

covariance matrix 

• 
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1 -2 o 

W = -2 5 o 

o o 2 

It may be verified that the eigenvalue-eigenvector matrices are 

5.83 o o 

li. = o 2.00 o 

o a 0.17 

0.383 0 0.924 

B = -0.924 o 0.383 

o 1 o 

Therefore the principal components become 

~1 = b1T Z = 0.383 Zl - 0.924 Z2 

~2 = b2T Z = Z3 

~3 = b3T Z = 0.924 Z1 + 0.383 Z2 

81 

The variable Z3 is one of the principal components because it is 

uncorre1ated with the other two variables 

Equation (4.10) can be demonstrated from 

VAR(~l) = VAR(0.383 Zl - 0.924 Z2) 

= (0.383)2 VAR(Zl)+(-0.924)2 VAR(Z2)+2(0.383)(-0.924) COV(Z1,Z2) 

=(0.147)(1) +(0.854)(5) - (0.708)(-2) = 5.83 = À1 



( 

/ 

f 

-

- - - -------- --~-----,------------------

82 

and the independence among the components can also be shawn by verifying 

that the covariance is equal to zero 

caV( F;l' F;3) = COv( 0.383 Zl-0. 92/, Z2' O. 924Zl + O. ~~3 Z:!) 

= (0.383) (0.924) C~V(Zl' Zl) + (0.383)2 COV~Zl' Z2) 

(0.924)2 COV(Zl' Z2) - (0.924) (0.383) COV(Z2' Z2) 

= (0.354) (1) + (0.147)(-2)- (0.853)(-2)- (0.354)(5) = 0 

Moreove~ it is readily apparent that 

011 + 022 + 033 = 1 + 5 + 2 = 1.1 + À2 + "3 = 5.83 + 2.000 + 0.17 

= 8 

Finally, it can also be seen that the fraction of the total variance 

related to the first principal component is 737. (given by À1/(À1+À2+À3) 

= 5.83/8 = 0.73). Furthermo~e, the first two principal components 

account for a 987. ( (5.83+2)/8 = 0.98 ) of the total variance. Since. in 

this case, the component ~3 has a very small variance, replacing it by 

its mean should not have a significant effect on the solution. 

4.3 Selection of the Components 

In the method proposed in this thesis, a criterion based on the 

component's percentage of the total variance is chosen, although other 

criteria were also proposed before. 

1- Scr2e test of Cattell [Gendre, 1976] 

This test starts by plotting the eigenvalues in descending order 

of ~agnitude, as shown in Figure 4.1. Then the components located to the 

le ft of the point where a significant change in slope occurs are 



Value 

-...... 

1 2 
Eigenvalue number 

3 

Figure 4.1 Seree test of Cattell 
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selected. In Figure 4.1, for instance, the first two components will be 

selected. 

2- Kaiser's ru le [Cooleyand Lohnes, 1971] 

Kaiser has stated a variety of compelling arguments for the 

selection of the p components corresponding to the larger than unit y 

eigenvalues of the correlation matrix. This rule seems to worlt well when 

the number of sequences m is small or moderate. However for very large 

samples it may be worthwhile to take a value of p larger than the one 

prescribed by Kaiser's rule. 

3- Bartlett's rule 

Bartlett' s rule provides a mean for verifying whether the 

determinant of the correlation matrix, after extraction of the p 

component, is zero or not. This, in turn, indicates when the factoring 

should stop. Then, after the companents correspanding to the raots À1' 

À2"'" Àp have been extracted, we have: 

2 
X O.5(n-p)(n-p-1) 

1 2 = -[(m-1)- 6 (2n+5)- 3 p] ln Xn-p (4.27) 

where 

Xn-p = IRI 
{~ 
J=1 

À.[(n - ~ À.)/(n-p)]n-p} 
J j=l J 

and IRI is the determinant of the correlation matrix 

n is the number of variables 

p is the number of components selected 

m is the total number of sequences (the samples of data). 

( 
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It shou1d be mentioned that this rule is the extension of Bart1ett's 

sphericity test. 

1 
X20.5(n2-n) = -[(m-l)- 6 (2n+S)] ln \R\ 

A nonsignificant chi-square x2 at sorne reasonable 0 S a ~l level 

indicates that the matrix should not be factored since the vector 

variable May already be tr~ated as a set of uncorrelated elements. 

Geometrically, the data can be plotted as a set of m points in a 

n-dimensional space. Moreover, if the covariances or the correlations 

are very lmportant, the data are then within an ellipsoid centered at 

the mean values E[X] of the n variables. Otherwise, they are within a 

sphere centered at E[X]. Figure 4.2(a) shows the case of a 2-dimensional 

space with hig~ correlation. In this case the eigenvalue Àl is greater 

than À2' Therefore the principal components are weIl determined. They 

lie along the axes of the ellipse in directions perpendicular to those 

of maximum variance. Figure 4.2(b) shows the case of weak correlation. 

Here the eigenvalues Àl and À2 have almost the same values. Therefore, 

the axes of the ellipse, or of the circle in this case, are not uniquely 

defined and can lie in any perpendicular directions, including the 

directions of the original coordinate axes. Thus the principal 

components can lie in any two perpendicular directions, including those 

of the original coordinate axes. When the eigenvalues of the correlation 

or covariance matrix are nearly equal, the variation is homogeneous in 

a11 directions. It is not possible then ta represent the data in fewer 

than n dimensions. 

To illustrate the criterion for the selection of the components, let 
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us assume that almost al1 the data are located within an ellipsoid. This 

means that the first few components of ~k account for a very large 

percentage of the variance of the observations, and that the number of 

variables can consequently be reduced. For example, suppose that ~1k' 

the first component of ~k' accounts for 857. of the total variance of the 

n variables, ~2k for 101.. and the remaining n-2 for 57. only. Then it can 

be inferred that each of the last n-2 components has a very small 

variance. Therefore replacing these components by their mean values 

should not have a significant effect on the solution. Thus equation 

(4.24) can be approximated as 

2 n 
Xik = E ~j ik F.jk + ~ bjik ~jk j=l j=3 

2 
(4.28) = E bjik ~jk + boik j=l 

where ~jk is the mean of ~jk and boik a constant equal to 

r. 
j~3 bjik ~jk· 

Finally, the problem of dimension n is reduced to a two-dimensional 

problem. 

4.4 Sample Application 

Principal components analysis will now be applied to determine 

the reduced number of state variables for the installations shown in 

Figure 3.5. The first step is to solve the deterministic model developed 

in Chapter III for m different flow sequences. Since the historical flow 

record consists of thirty years of monthly inflows at each site, 

streamflow synthesis is used to provide several equally likely future 
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sequences of streamflows (50 sequences). For each streamflow sequence, 

the problem is first solved deterministically to find the optimal 

operating policy. The results of these deterministic optimizations are 

then subjected to a principal component analysis to find out the number 

of components to retain. 

4.4.1 Streamflow Synthesis 

that: 

The statist:ical analysis of the historical flow rectJrd shows 

i) The inflow at site i during month k is correlated to that 

of month k -1 but not to those of the previous months; 

H) The inf10w at two different sit-es during month k are 

highly correlated. 

As a result, a Markovian 1inear synthetic inflow generator of the 

form 

(4.29) 

was used [Pronovost, 1974], where Yk represents a co1unm vector of 

random variables of inflovs for month k, Wk a column vector of white 

noise and Ak a column vector of constants; Btt and Ck are square 

matrices. The coefficients Ak» Bk and Ck are determined from the 

historical record of inflows. Then i t can be shown that (see Appendix 

B.2 for the demonstration) 

(4.30) 
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(4.31 ) 

(4.32 ) 

where Mk = E[Yk] repl:esents a column vector containing the mean values 

of Yk , Rk = E[ (Yk-Mk)(Yk-Mk)T] the correlation matrix for different 

sites for month k, and Pk = E[ (Yk-l-Mk-l)(Yk-Mk)T] the correlation 

matrix for the different sites, for months k-1 and k. 

Unfortunately equation (4.32) does not give the matrix Ck directly. 

However it is easy to show that (see appendix B.2) 

(4.33 ) 

where Lk is the matrix of eigenvectors for Ck CTk and Ak is the diagonal 

matrix of eigenvalues for Ck CTk . 

A flow ('hart of this process is shown in Figure 4.3 in which 

synthetir: ir.ilows are generated for one year on a monthly basis. The 

historie flow record used to determine the coefficients Ak' Bk and Ck 

spans from 1950 to 1979 (Table C.1 in Appendix C) whereas the synthetic 

inflow generated spans from year 1 to year 50 as shown in Table C.2 

Finally, it is important to note that the statistical characteristics 

of the synthetic inflows are very close to those of the historie. Thus, 

even if the sequences themselves show big differences, their mean values 

are preserved as illustrated in Figures (4.4)-(4.7). In addition, it 

will be shown later in this chapter that the correlation among the si tes 

is very high as e.cpected. 



( 

c 

- -- -- - - - --------- -----,------------------

NO 

Input historie 
record 

Compute 
Mk' Rk and Pk 

Bk = PkT Rk_l-1 

Ak = Mk - Bk Mk-l 

Ck Ck T = Rk - Bk Pk 

Compute eigenvalues hk 
and 

eigenvectors Lk of 
Ck CkT 

Figure 4.3 Flowchart of the synthesis generator 
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4.4.2 Deterministic Optimization for the 50 Inflow Sequences 

The synthetic inflow sequences generated are used as inputs 

for the IBMIs MPSX/370 package. The time horizon for the optimization 

process is one year on a monthly hasis. Finally, for the fifty 

deterministic optimizations, the initial storage levels are set at their 

lower bounds as shown in Table 4.2. 

Reservoir Initial 
Storage (hm3) 

LG4 8000 

LG3 6000 

EOL 10000 

LG2 5000 

Table 4.2 Initial storages 

The other characteristics (lower and upper storage levels, the 

efficiency of the plants and the demand) are shown in Tables 3.1 and 

3.2. The penalty constant a is set at 0.01 or 17. of the cost attributed 

to the thermal energy generated. The flowchart for this optimization 

process is shown in Figure 4.8 while the optimal storage levels are 

represented in Table C.3. Figures 4.9-4.12 illustrate the first four 

optimal storage sequences of Table C.3. On those figures, the variations 

in the storage levels due to the differences in the corresponding inflow 
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sequences can easily be seen. 

The number of iterations needed to obtain the optimal solution 

varies with the inflow sequences. For example, the optimal solution for 

sequence 1 is obtained after 205 iterations o~ 0.02 minutes, while for 

sequence 7. 249 iterations are needed with a cumulative time of 0.13 

minutes. Finally, for the fifty inflow sequences, a cumulative CPU time 

of 0.97 minutes is needed to perform the required iterations. 

4.4.3 Principal Components 

In chis example, principal components analysis was applied 

not only to the reservoir trajectories but also to the inflows since 

they are correlated in time. In other words, because of relation (4.29), 

the state variables for period k are Xlk"'" X4k and Y1k-1"'" Y4k-1' 

Hence, applying principal components analysis ta the X's only will not 

reduce the number of state variables sufficient.1y to permit 

straightforward application of dynamic programming. Principal components 

analysis was therefore app~ied to the Y's also, albeit separately from 

the X's. For instance, for the mon th of May, the percentage 

contributions of the four components to the total variance of the sample 

of inflows are: 

100.000 0.000 0.000 0.000 

and the corresponding vector of eigenvalues and matrix of eigenvectors 

are: 

À = [ 533351 0.096 0.078 0.062] 
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0.3773 -0.7371 0.0961 -0.5524 

0.3796 0.2869 -0.8373 -0.2693 
p = 

0.7943 0.3852 0.4573 0.1081 

0.2876 -0.4754 -0.2838 0.7814 

In other words. let Z1k' Z2k' Z3k and Z4k be the four new 

components. For the first of these components. Zlk' the percentage 

contribution to the total variance is 99.9988. Moreover, Zlk is related 

to the previous variables, Y1k""'Y4k' as follow 

Zlk = 0.3773 Y1k + 0.3796 V2k + 0.7943 Y3k + 0.2876 Y4k (4.34) 

In the same way, the percentage contributions of Z2k' Z3k and Z4k 

are, respectively, 0.000629, 0.000384 and 0.000187 and are related to 

the previous yls as follow 

Z2k = -0.7371 Y1k + 0.2869 Y2k + 0.3852 Y3k - 0.4754 Y4k (4.35) 

Z3k = 0.0961 V1k - 0.8373 Y2k + 0.4573 Y3k - 0.2838 Y4k (4.36) 

Z4k = -0.5524 Vlk - 0.2693 Y2k + 0.1081 Y3k + 0.7814 Y4k (4.37) 

In other form, (4.34) - (4.37) can be written as 

(4.38) 
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Then, if Yk ~ [865 870 1821 660] m3/sec 

Zk = [2292.9 -0.303 0.110 0.462] m3/sec 

It is important to note that, due to the orthonormal property cf P, 

Yk can easily be obtained when Zk is known from 

(4.39) 

Therefore, in our example, Zlk is equal to 2292.9 m3/sec with a 

variance of 533351 (the first ei~epvalue À1), ~2k is equal to -0.303 

m3/sec with a v~riance of 0.000 (the second eigenvalue À2) and so fortn 

for the remaining components. 

Similarly, for every period k, the eigenvalues and the corresponding 

ei~envectors are determined. The percentage contributions of the new 

components to the total variance can then be deduced. Table 4.3 shows 

the percentage contribution of the four components of the sample of 

inflows, whereas Table 4.4 shows the percentage contrib'ltions of the 

sample of storages. 

In Table 4.3, the 1ast three components obvious1y have a very small 

variance. Therefore, the inf10ws to the four sites can be expressed as a 

function of the first component on1y. For the storages shown in Table 

4.4, the percentage contributions of the first three components is at 

1east 967. of the total variance. Renee, these components can be kept as 

random variables. As a result, principal components ana1ysis has 

transformed the original problem of eight state variables into a problem 

of four state variables, thereby making it solvable by dynamic 
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Component 

1 2 3 4 

May 100.000 0.00000 0.00000 0.00000 

June 100.000 0.00000 0.00000 0.00000 

July 99.9999 0.00005 0.000037 0.000027 

August 99.9999 0.000044 0.000029 0.000026 

September 99.9999 0.000038 0.000032 0.000027 

October 99.9998 0.000065 0.000044 0.000042 

November 99.9998 0.00010 0.000093 0.000063 

December 99.9991 0.00043 0.00024 0.00018 

January 99.9972 0.0010 0.00096 0.0008 

February 99.9922 0.00358 0.00257 0.00168 

March 99.9838 0.00674 0.00488 0.00458 

April 99.9977 0.00099 0.0007/. 0.000569 

Table 4.3 Contributions of the four components to the 
total variance of the sample of inflows. 
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Component 
1 2 3 4 

May 64.225 32.173 2.513 1.090 

June 61.742 28.662 6.086 3.51 

July 59.272 27.07 9.777 3.878 

August 63.46 20.364 12.488 3.68!) 

September 64.40 18.079 13.503 4.01 

October 65.349 22.309 10.015 2.325 

November 84.033 11.173 3.940 0.854 

December 88.696 8.14 2.306 0.858 

January 88.363 8.190 3.027 0.419 

February 92.351 5.533 1. 749 0.366 

March 88.116 7.616 3.806 0.463 

April 25.00 25.00 25.00 25.00 

Table 4.4 Contributions of the four components to the 
total variance of the sample of storages 

lOS 
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programming. 

However, two important remarks must be made. First the criterion 

for the selection of the number of components is not fixed. It would 

consequently have been possible to select only two components for the 

storages and to solve a problem of three rather than four state 

variables. The second remark concerns the storages at the beginning and 

the end of the horizon. Since the storages at the beginning of May and 

the end of April are the lowest, principal components analysis is not 

necessary because the state variables are known for these periods. 

Finally, the computation process for this technique is very fast. 

The total CPU time required to find the principal components for the 

twelve period problem was less than one second on an IBM-30Bl. 

4.5 Discussion 

The sample of available data (number of sequences) is an important 

factor in principal components analysis. In other words, by using a 

population of data, the exact statistical characteristics can be 

extracted. Since it is impractical or uneconomical to observe a 

population as a whole, it is usually necessary to use a sample or a 

fraction of this population. Clearly, such a sample can be useful only 

if it is, in some way, "representative" of the population from which it 

has been d',; •. ::ived. For this requirement to be met, two conditions must be 

satisfied. First, a set of observations Zlj' Z2j' ..• ' Zmj ; j = l, .•• ,n 

constitutes a random sample of size m from a finite population of size 

M, only if each subset m of the population has the same probability of 

being selected. The second condition states that the results must be 

independent of the number of samples taken (20, 50 or even more). The 
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first condition is easily satisfied since the synthetic generation 

provides several equally likely future sequences of streamflows. 

3atisfying the second condition however is more difficult and requires 

l~e following. First, the sample size m must be greater than the number 

of variables n to avoid any degeneracy [Johnson and Wichern, 1982, p. 

108]. In far.t, it is easy to show that if the sample size m is less than 

the number of variables n, the determinant of the covariance matrix is 

zero. The second requirement will be stated, without loss of generality, 

for unidimensional systems. If a random sample of size m is taken from a 

population having the mean ~ and the v<:.riance a2 , then 

is the value of a random variable whose distribution has the mean ~, and 

the variance o2!m (infinite population). [Miller and Freund, 1977, p. 

165] • 

Although it is not very surprising that the mean of the theoretical 

sampling distribution of I-Iz equals the mean of the population, the fact 

that its variance equals o2/m, for random samples from infinite 

populations, is interesting and important. To point out the implications 

of this rule, let us apply Chebyshev' s theorem to the sampling 

distribution of I-Iz' We thus obtain 

La 
Pr <I~z - 1-11> < Jm ) ~ 1 (4.40) 

which states that the probability (Pr) of getting a value within L 

standard deviations {o/Jm} of the mean is at least 

1 -
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Letting L olJm = E, we get 

(4.41) 

Thus, for any given € > 0, the probability that ~z differs from ~ by 

less than c can be made arbitrarily close to 1 by choosing m 

sufficiently large. In less rigorous language, the larger the sample 

size, the closer will ~z be to the mean of the population. In this sense 

we can say that ~z becomes more and more reliable as an estimate of ~ as 

the sample size is increased. The reliability of ~z as an estimate of ~ 

is often measured by the expression o/~m, also called the standard error 

of the mean. Usually it does not pay to take excessively large samples 

since the extra labor and expense is not accompanied by a proportional 

gain in reliability. Table 4.5 illustrates the mean ~z and the standard 

deviation Oz of the inflows for different sample size~ m. Since it is 

impossible, in our example. to know exactly the standard deviation of 

the population. the reliability of ~z is measured by ozlJm. Then if m 

equals 50, the standard error for LG4 is 276/J50 = 39 m3/sec. For m = 

30 the standard error is 268/J30 = 48.9 m3/sec, and for m equals to 15, 

0z/~m rais es to 280/~15 = 72.29 m3/sec. Therefore, it is suggested to 

use a sample size greater than 30 for LG4. 

In addition to the sample size, another factor is of great 

importance in principal components analysis. This factor concerns the 

choice of the covariance matrix or the co~relation matrix of the 

observations for the analysis. As Kendall [1980] pointed out, it is not 

an easy choice. For instance. in the case where some variables have a 

much larger variance than others. then the principal components will be 
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m 

LG4 
LG3 
EOL 
LG2 

50 

~z 
(m3!sec) 

Oz 
(m3!sec) 

865 276 
870 277 

1821 580 
660 210 

Table 4.5 

40 30 15 

Ilz 
(m3!sec) 

Oz 
(m3!sec) 

Il z 
(m3!sec) 

Oz 
(m3!sec) 

Il z 
(m3/sec) 

894 266 911 268 937 
899 268 916 270 943 

1882 561 1918 565 1973 
682 203 695 2Cl5 715 

Sample size effect on the statistical mean 
~z and standard deviation Oz of the 
inflows during May 

Oz 
(m3!sec) 

280 
281 
588 
213 

r',~ 

..... 
o 
\0 
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( mainly a function of these variables if the covariance matrix is used. 

However. this will not happen if the corre1atio~ matrix is used since 

the elements of this matrix are all restricted to the range [-1, 1]. The 

covariance matrix was used in our approach b~ca~se it is important to 

distinguish between large and small reservoirs and avoid giving them al1 

the sarne weight. as the correlation matrix does. 

To illustrate the difference between the covariance and the 

correlation matrices, principal components analysis was performed on the 

storages during the month of May. For the covariance matrix. the 

pet:centage contt:ibutions of the fout: components to the total variance 

are 

64.22 32.17 2.51 1.09 

and the eigenvectors matrix is: 

J 

0.1346 -0.3330 0.4993 -0.7885 

0.2158 -0.2008 -0.8576 -0.4215 
p = 

0.5012 -0.7368 0.0790 0.4468 

-0.8270 -0.5532 -0.0946 0.0326 

For the correlation matrix the percentage contribution are: 

64.44 24.31 8.98 2.26 

and the corresponding eigenvectors matrix is: 

0.5144 -0.4562 -0.5026 0.5242 

p = 0.5437 0.1441 0.7615 0.3220 

0.5972 -0.1557 -0.0653 -0.7841 

( 
-0.2884 -0.8642 0.404 -0.0817 

.. 
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If the covariance matrix is used , the first three components will 

account for 98.9% of the sample variance, which is very close to the 

result obtained with the correlation matrix (97.7%). However, the 

eigenvectors are very different, and do not give the same components. 

4.6 Concillsion 

The principal èomponents analysis, outlined above, has been used 

as an efficient tooi to transform a large-scale problem into a smaller 

one having a fewer number of random variables. It was shown that the 

degree of the reduction is a function of the correlations among the 

variables. If the correlations (interdependencies) are very high, the 

1 
data are within an ellipsoid and the reduction is significant. 

Otherwise, they are within a sphere and it is not possible te represent 

them adequately by fewer variables. 

In addition, the sample size m is an important factor. It was shown 

that the sample is "representative" for large m. However, for economical 

considerations, a sample size greater than 30 can be considered as being 

sufficiently large. 

Finally, it 1s very easy to implement the principal components 

analysis since it concerns only linear relations. Its combinat ion wi th 

the optimization model can give interesting results since the number of 

random variables is reduced. This is the subject of Chapter V. 

-...... 



c 

r 

5.1 Introduction 

~-~--------------------------------------------

CHAPTER V 

APPLICATION OF PRINCIPAL COMPONENTS 

~YSIS TO THE STOCHASTIC MODEL 

The model discussed in Chapter II is obviously inadequate as a 

l.'epl.'esentation of reality because it ignores the essential difficuJty 

any power system manager must face: his uncertainty about the future. In 

general, there are three major areas of uncertainty: 

1) The future natural inflows. 

2) The future demand. 

3) The future availability of plants. 

The model described here is designed to cope with the first kind of 

uncertainty which, in a predominantly hydro system, is the most 

important. The model presented in Section 5.2 is, in fact, an extension 

of the deterministic one developed in Chapter II. Since the goal of this 

thesis is ta solve large-scale stochastic systems, a reduction by 

principal components analysis will be helpful. The reduced model 

presented in Section 5.3 will therefore be solved by stochastic dynamic 

progranuning. The formulation of the problem using this solution 

technique is given in Section 5.4. Then, in Section 5.5, the approach is 

applied to a four reservoir system. The results of the optimization 
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process are also presented in that section. To evaluate the performances 

of this technique, its results are compared to the ones obtained by 

classical stochastic dynamic programming. In Section 5.6 the model used 

for the classical technique and soce results are given. Finally, in 

Section 5.7, a discussion and a com9arison of the results obtained using 

both methods are presented. 

5.2 The Stochast ic Model 

The deterministic moàel (3.34) can easily be extended to the sto-

chastic case. The objective of the problem becomes ta de termine the 

optimal monthly operating policy of n hydroelectrtc powerplants with 

mutually correlat cd inflows. The policy is fcund by minimizing the 

expected cost of the thermal energy over the complete time horizon, that 

is 

under the following constraints 

Xk+ 1 = Xk - r Olt + Y k 

pTmin(Ok'Ü) + bTHgk = dek 

- -
min(Ok+l'U) - min(Ok'U) - zk S 0 

- -
min(Ok+l'U) - mintOk'U) + :?'k ~ 0 

X ~ Xk+l S X 

o S Hgk S e 

Ok ~ 0 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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In (5.1) the symbol E stands for the expected value, and in (5.2) r 

replar,es the matrices rl and r2 in the mode1 (3.34). Sioce it is a3sumed 

that a hydrop1ant 15 associated to eech reservoir, then rI is equal to 

r2' In addition. Qk replaces Uk + Vk with the fo1lowing assumptions: 

(5.10) 

(5.11) 

in another form, the vector of the re1eased water Uk can be written as 

(5.12) 

This means that if the diseharge Uik from reservoir i in month k is 

greater than the capaeity of the a11ied plant Ui' then Uik - Ui hcm (hem 

= 106 cubie meter) of water are discharged through the spi1lways. 

The only random variable in equations (5.1) to (5.9) is the vector 

of the oatural inf10ws Yk "" [Ylk' YZk" •• , ynk]T sinee the demand dek and 

the unit availabilities are assumed to be known in advanee. It is a1so 

assumed that a correlation exists between Yik and Yjk for all 

reservoirs i and j whlch results in an interdependency between the 

optimal reservoir contents Xik and Xjk' 

5.3 The redueed Stochastic Model 

As mentioned in Chapter IV. principal components analysis is applied 

to the storages Xlk,X2k, .•. ,Xnk and to the inflows YI.k-l.Y2,k-l ••.• ' 

Yn,k-1' Recall that the X's were obtained from ùeterministic optlmiza­

tions for m different inflow sequences gencrated synthetically ( see 

Section 4.4.1). Th\1S if. ~ a.\d li' are the vectors of principal components 

related to the inflows and to the storages respectively, then. ~ccording 

to (4.23) 
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(5.13) 

(5.14) 

Now, assume thac p (pSn) components of ~ and q (qSn) components of 'Pk 

are se1ected. Accardtng ta (4.28), 

(5.15) 

and 

Xik = ~ Q, 'k'f'k + Q01'k i=1,2, ••• ,n (5.16) 
j=1 Jl. J 

Furthermarp., define Pk and ~ as being matrices of dimensions n*p 

-
and n*q respectively and ~ and 'Pk as being the vectars of the selected 

components of dimensions p*l and q*l respectively. POk and QOk will be 

constant vectors of dimens ior.s n* 1. Consequently, equations (5,15) and 

(5.16) can be written, for period k, as 

(S.17) 

and 

(5.18) 

Tl .. ese last two equations are of paramount importance. They state 

that once the principal components are selected, the reduced model can 
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be easily found by substituting Yk and Xk in the model described by 

eq\\;ations (5.1) te. (!'.9) with the new variables ~ and 'i'k' Therefore the 

reduced stochastic problem is to minimize 

under the following constraints 

pTmin(Ok' ü) + bTHSk = dek 
- -

min(Ok+l'U) - min(Gk'U) - zk ~ 0 
- .. 

min(Ok+l' U) - min(nk'U) + zk ~ 0 

~ - QO,k+l ~ Qk+l 'Pk+l ~ X - QO.k+l 

o S Hgk ~ e 

(5.19 ) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25 ) 

(5.26 ) 

(5.27) 

One difficulty arises from lhis model. It concerns the determination 

of the lower and upper bO\L"lds of 'i'ik' i=1,2, ... ,q. It is clear that the 

bounds gi ven by (5.2'.) are linear combinat ions of 'II ik' Therefore an 

infinity of values can be found for each 'i'ik' To eliminate uncertainty, 

two methcds can be used. First, the mean value and the variance of the 

components are already known. This information alone is sufficient ta 

fix the interval of possible values for 'II ik' Secondly, since the 

original data (resenoir 1 s storages) and the transformation matrix 

(eigenvector matri.x) are known for each month k, it il> very easy ta 

compute a11 the 'i'ik. Therefore, the lower and upper bounds can be chosen 

ta be t.he minimum and the maximum of these transrormed dat&. Obviously, 
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these two methods, as well as rl!lat~.on (5.24), depend on the choice of 

the original data sample. Since it is assumed that the sample of inflows 

is sufficiently large and representative, either the first or the second 

method can be used, even though the second one has been chosen in our 

case. Consequently, relation (5.24) will be replaced by 

(5.28) 

where 'II and 'V are the vectors of lower and upper bounds respectively. In 

addition, since stochastic dynamic programming will be used to solve 

model (5.19) to (5.27), the penalty term zk can be found, contrary to 

linear programming, from 

(5.29) 

Therefore relation (5.29) can replace the constraints (5.22), (5.23) 

and (5.27). The reduced stochastic model becomes 

K K-1 
F = E{ 1:: C.aTHgk + a 1:: eTzk} 

k=l k=l 

under the follo~inB r.onstraints 

Qk+l 'Vk+l = ~'i'k - r Ok + Pk~ + POk + QOk - QO,k+l 

pTmin(Ok'Ü) + bTHgk = dek 

- -
zk - 1 min(Ok+l'U) - min(Ok,U)1 = 0 

! ~ 'Vk+l S '1' 

o ~ Hgk S e 

5.4 ~chastic Dynamic Prograu.ming Formula~ 

(5.30 \ 

Stochastic dynamic programming differs from deterministic dynamic 

programming in that the state at the end of period k ls not completely 
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determined by the state and the decision at the beginning of period k. 

Instead, there is a probability distribution for the next state. The 

resulting basic structure for stochastic dynamie progr amming is 

deseribed sehematica11y in Figure 5.1. In that figure, ~ denotes the 

number of possible states at the end of period k. and (Pk1. Pk2.··· .Pk~) 

is the probability distribution of the inflows Y1tt or of what the state 

Xk+l will be, given Xk, When Figure 5.1 is expanded to inelude all 

possible states and dec.isions for a11 periods, it is sometimes referred 

ta as a "decision tree" [Hi.ller and Lieberman. 1974). For the sake of 

presentation, let Yk takes the fol1owing values 

Ykl with the probabi1ity Pkl 

Yk2 with the probability Pk2 

Yk3 with the probability Pk3 

then the decision tree will give three different possibilities for state 

Xk~l at the end of period k. Consequently, for Ykl there exist an 

optimal diseharge (decision) Ukl and an opUJIl.il operating cost Ckl with 

probabi1ity Pkl' For Yk2' there exist a Uk2 and a Ck2 with probability 

Pk2' and similarly for Yk3' Therefore, the optimal decision Uk is a 

funetion of Xk and Yk and it can be written as Uk(Xk'Yk)' In addition, 

the operating cost is 

3 
= I: C,- 'Pk' j=1 ... J J 

(5.31) 

Using the baekward reearrent equation [Bellman 1957]. the operating 
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Figure 5.1 The basic structure for stochastic dynamic programming 
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cost can be written as 

(5.32) 

where Fk+l(Xk+l) is the optimal operating cost fram period k+l ta periad 

K. 

T'hus, the recurrent equation of model (5.30) is 

Three remarks sho~ld be made here. First, the minimization is 

performed over the proper space of decisions. In this case the decisions 

are the variables representing the total discharge from the reservoirs 

and through the spillways (Ok = Uk + Vk). Secondly, in (5.33), the 

random variables are the principal components ~ related to the natural 

inflows Yk' Thus, the expected cost must be calculated for the 

transformed inflaws ~. The last remark concerns the penalty cast 

a.eTzk' This cost is set equal ta zero for the last period K, and 

computed according ta (5.29) for k < K. 

The complete procedure for the solution of the problem (5.30) using 

stochastic dynamic programming is given by the following algorithme 

- -
Stepl: Set k = K and the future cast Fk+1(~k+1'~) = O. 

Set {ô} = all the feasible set of states at the end of period k. 

- -
Set Fk(~k'~-1) = ~. 

Step2: Set {~} = all the feasible set of states at the beginning of 

period k. 
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Step3: Choose a scenario of inflows ~j for period k 

Step4: Choose a feasible state. Compute the discharge Ok ac~ording to 

1 - - - -
Ok = r- (Qk~k - Qk+l~k+l + Pk~j + POk + QOk - QO,k+1) 

Step5: Find the thermal energy bTHSkj from 

bTHgkj = dek - pTmin(Qk'U) 

Step6: Find the penalty cost a.eTzk using 
- -

zk = 1 min(Ok+l'U) - min(Ok,U)1 

- -
Step7: Compute the cost function Ck(~k'~-l) from 

- - .... -
Ck(~k'~-l) = LC.aTHgk + a.eTzk + Fk+1(~k+l'~)] Pkj 

- - - -
if Ck(~k'~-l) is less than Fk(~k'~-l) then 

- - - -
Fk(~k'~k-l) = Ck(~k'~-l) 

otherwise GO Ta step8. 

Step8: If there is another feasible state, GO T,' step4. 

Step9: If there is another possible scenario of inflows, GO TO step3; 

otherwise set k = k - 1 

St~plO: If k is differ~nt than 1, set {6} = {~} and GO Ta step2; 

otherwise trace the optimal solution and STOP. 

5.5 Sample Application 

The four reservoir system, solved deterministically in Chapter III 

and analyzed by principal components in Chapter IV, will now be solved 

by stochastic dynamic programming. However, before doing 50, it is 

important to recall the main steps of the solution. First, the 

deterministic solution for the 50 inflow sequences allowed us ta perform 

principal components analysis. The contents of the reservoirs and the 

natJral inflows were therefore analyzed. The components selected (one 

inflvw component and three storages components) constitute the states of 
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( the reduced model. Consequently, explicit stochastic dynamic programming 

will be performed on a problem with 4 state variables instead of the 8 

original ones. Moreover, the selection of the components was based on 

their percentage contribution to the total variance of the sarnple of 

data. So, to illustrate the effect of this selection, the solution cf 

the sarne problem with only three state variables and with a variable 

number of components from period to period, will be presented later in 

this chapter. 

In brief, in this application it is assumed that deterministic opti-

mizations were performed, and that the optimal storages were obtained. 

It is also assumed that principal components analysis was performed on 

the inflows and storages. Thus three steps are required to find the 

optimal solution. 

) Stepl: Find the explicit distribution of the single inflow component 

selected. 

Step2: Solve the reduced model using stochastic dynamic progrrumming. 

Step3: Find the optimal solution for the original problem. 

5.5.1 Distribution of the Inflows 

The transformed data for the inflows are easily computed for each 

period k from the relation: 

(5.34) 

Since only one component was selected, the inflows Yk into the four 

reservoirs constitute a single random variable function. The 50 

f sequences for this r~ndom variable are illustrated in Table 5.1 for the 

twelve period problem. To construct a frequency distribution of these 

• 
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Year Hay 

1 2884.61 
2 1843.23 
3 2858.06 
4 4008.50 
5. 2,,39.54 
6 3482.81 
7 2086.29 
8 1878.85 
9 1864.13 

10 2086.29 
11 2020.60 
12 2524.22 
13 3079.85 
14 3243.17 
15 1369.97 
16 2308.08 
17 2335.80 
18 2014.16 
19 2290.22 
20 2847.82 
21 3662.82 
22 2979.99 
23 1992.08 
24 2793.83 
25 2542.07 
26 967.00 
27 2132.29 
28 3081.46 
29 2053.59 
30 1161.86 
31 1560.22 
32 1538.56 
33 3371.92 
34 2638.53 
35 3163.81 
36 1790.41 
37 2872.91 
38 1620.27 
39 1792.67 
.. 0 1976.86 
41 2485.45 
42 837 .46 
43 2903.26 
44 1869.4Q 
45 1942.70 
46 2240.04 
47 2904.4~ 
48 1236.24 
49 2592.54 
50 859.54 

JW\e 

2189.17 
3276.21 
22.02.34 
4102.16 
2617.96 
2800.87 
2582.21 
3814.21 
946.57 

1558.27 
2373.62 
3451.21 
2041.76 
1291.10 
2325.4R 
3768.84 
1393.26 
2C86.64 
3779 ... 4 
3454.34 
2370. 1,8 
3422.14 
2567.~0 
3062.70 
1563.36 
2034.59 
1674.53 
3398.17 
2389.31 
2888.26 
3245.55 
2221. 78 
3418.03 
2870.16 
1380.08 
2152.73 
3381.25 
25:>7.68 
2786.52 
3772.39 
3068.96 
2766.05 
4083.89 
3fl34.63 
3521.73 
3259.29 
2608.33 
22a1.50 
1835.79 
3155.59 

July Aug Sept Oct Nov Dec Jan 

1529.58 1.733.18 1891.69 1558.98 1246.94 899.29 593.63 
2839.12 2226.49 2132.21 1763.56 1175.35 982.15 631. 55 
1488.04 1448.75 1692.84 2142.85 1887.6<l 1166.70 691.10 
2195.28 2243.41 2111.58 1683.81 1333.6' 945.22 621.38 
1942.57 1719.56 1686.73 2062.09 1369.96 790.71 556.63 
1299.26 589.94 1211.19 2299.31 1850.21 1142.74 692.68 
1585.30 1812.07 1687.76 2102.05 l791. 35 112:3,91. 697.22 
2453.34 2120.67 1339.48 1291. 'l3 1052.~2 776.36 443.78 
981.05 1779.93 2276.17 1700.75 1231.65 7613.68 453.59 

1470.73 1178.28 844.48 1529.68 1123.54 779.50 483.92 
1742.97 2302.81 2571. 58 121 8.47 1079,01 800.90 !l29.52 
1791.01 2099.64 1559.36 1954.70 2019.33 1211.86 751'.27 
1628.79 2214.12 2230.72 1875.64 1250.08 916.53 612.67 
1464.08 1314.97 1555.18 1435.23 1626.95 1086.98 594.55 
1522.93 1263.40 2031.14 1269.61 1443.72 1020.42 637.213 
1803.78 ll48.3e 1132.97 2279.79 1723.87 1206.77 720.43 
995.76 1024.43 1040.19 1320.02 1373.86 867.A7 551.54 

1074.14 1382.27 1011.02 1169.53 1248.13 989.20 606.00 
1934.49 J742.44 2117.87 1801.47 1098.44 986.23 661.25 
1648.32 1798.06 2023.24 2004.46 1688.95 962.71 612.67 
1131.03 1396.61 1121.20 2234.20 1371.01 848.42 490.96 
1985.41 1311.43 1513.91 1732.03 1509,63 1069.49 637.28 
1484.53 1511. 70 1480.28 1112.60 1291.09 778.32 500.22 
1799.87 1845.11 1962.87 2268.10 1834.31 1076.1B 651.63 
1659.51 1833.67 2092.48 1782.04 1479.64 922.64 572.16 
1386.35 2215.05 1877 .35 2e07.60 1917 .31 1449.2:' 821.52 
1532 .18 1220.19 1192.37 1903.38 1314.04 734.96 476.61 
2236.82 2671.79 1804.96 1147.51 1034.48 942.66 538.78 
1632 .95 2239.23 2154.46 2060.50 1354.67 984.11 659.30 
2329.38 2339.00 2127.71 2204.32 1904.56 1227.19 755.21 
1561. 34 1580.93 1080.25 24713.34 1902.50 1243.09 7<.'2.95 
1899.08 1994.78 2592.22 1625.83 1077 . ..4 839.78 56'"1.89 
2288.38 2429.27 2031.14 1151.96 1397.02 714.90 478.20 
1862.63 1796.51 1486.97 2:!55.82 1465.69 1076.18 641.18 
1238.45 1160.79 1206.72 2468.08 1744.26 1111. 52 672.06 
20n.l0 1196.12 1162.87 1454.11 1174.14 799.71 552.73 
2277 .18 2241.47 1992.43 1318.62 800.1,4 695.46 480.78 
1335.71 1824.81 1922.80 1684.85 1468.83 952.84 564.30 
1991.78 1811.04 ]856.71 1860.10 1212.22 971.71 653.18 
2780.27 2813.86 2305.67 1667.92 1642.24 1086.98 664.39 
2109.87 2752.86 2301. 56 2461.80 1559.8LI 1005.14 639.78 
1972.65 2434.99 2171.55 2206.45 1613.61 1052.62 631.55 
3000.70 2699.17 2441.34 2803.43 2074.64 12fl6.1.5 720.43 
1727.61 711.05 768.56 1721.47 1253.23 986.06 629.60 
2346.84 2496.39 2399.67 968.48 906.36 534.2b 346.86 
2354.91 2384.85 1594.92 2333.33 1729.96 1164.13 665.94 
1711. 7'l. 1184.11 1633.68 2020.00 1611.6é 922.03 594.18 
2003.37 1841.97 1844.30 1823.49 1673.05 975.26 551.54 
1961.06 2014.21 1932.97 2264.53 1710.35 1086.98 700.36 
1838.27 1709.39 1553.64 2165.40 1606.56 1000.98 616.57 

Table 5.1 Transformed inf10ws for the twelve period horizon 

~ ) 

Feb March April 

447.64 349.30 304.40 
454.42 341.98 317 .48 
490.38 391.40 345.24 
457.91 364.65 518.70 
431.75 347.07 384.18 
479.57 393.34 682.06 
478.39 370.14 437.41 
342.37 290.62 335.30 
328.43 303.03 350.97 
365.98 279.82 267.38 
342.37 287.49 260.96 
511.86 393.99 433.88 
407.13 309.16 5~0.68 
409.7'3 328.59 407.73 
456.37 353.20 410.33 
486,60 373.27 499.89 
401.13 330.13 416.98 
436.29 318.78 313.27 
474.85 3S8.97.. 428.44 
419.35 346.17 469.97 
352.28 294.17 457.83 
433.70 351. 25 505.62 
381.33 316.83 309.45 
478.39 384.08 581.04 
379.38 307.56 376.14 
579.11 430.36 379.96 
355.42 267.06 383.49 
374.66 3<:'1.08 509.83 
464.04 364.65 515.95 
511.86 414.47 476.63 
496.51 366.59 230.06 
433.70 365.60 499.89 
360.50 2°i.94 397.25 
46].45 'H9.00 451.71 
472.26 376.41 421. 20 
392.79 281.14 33<..17 
385.11 331.18 445.73 
398.92 347.07 300.19 
449.23 332.37 5l2.(H 
484.65 373.27 367.18 
432.94 338.50 461.65 
445.15 34L...57 225.85 
490.38 397.<;3 684.66 
419.89 333.12 435.79 
267.99 251.12 400.77 
439.43 351.25 448.57 
402.05 33J.18 459.05 
376.25 311. 75 301.81 
489.20 371.32 326.05 t-" 

N 
442.96 351.25 L..54.30 W 
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data, the first step consists in deciding on the number of classes ( or 

categories) and their limits. Generally, the number of classes depends 

upon the number of observations. However, it is seldom profitable ta use 

fewer than 5 or more than 15 classes [Miller and Freund. 1977]. Among 

other things, this decision is based on the range of the data, that is 

the difference between the largest and the smallest observation. Then "le 

tally up the observations and, determine the class frequencies, namely, 

the number of observations in each class. Once data are grouped, each 

observation in a given class loses its own identity in the sense that 

its exact value is no longer known, but we get around this by 

representing each observation in a class by its midpoint, called the 

class mark. The histogram is then constructed by representing the class 

frequencies as a function of the successive class boundaries. The 

probability Pj for each class is computed as the number of observations 

~j in each class over the total number m of observations 

P = ~J' lm j j=I,2, ... ,J 

where J is the total number of classes. 

(5.35) 

For the sake of comparison with classical stochastic dynamic 

programming. let us set J equal to 2. Later in this chapter. the case of 

J = 5 will be considered. 

A histogram of the random variable is illustrated in Figure 5.2 (a) 

for the mcnth of May, in Figure 5.2 (b) for the month of January, while 

in Table 5.2 the different classes and the corresponding probabilities 

are shown for the twelve period problem. 
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( 
Class1 Probl Class2 Prob2 

May 1629.72 0.580 3216.24 
1 

0.420 
June 1734.97 0.380 1313.76 0.620 
July 1485.46 0.700 2496.29 0.300 
August 1145.42 0.300 2258.38 0.700 
September 1223.97 0.400 2136.80 0.600 
October 1426.72 0.520 2345.19 0.480 
Noverr.ber 1118.49 0.480 1756.59 0.520 
December 762.50 0.580 1 1220.99 0.420 
January 465.02 0.360 703.35 0.640 
February 345.27 0.420 501. 83 0.580 
March 295.43 1 0.440 386.05 0.560 
April 340.05 0.680 570.L\6 0.320 

i 

Table 5.2 Distribution of the random variable 

5.5.2 Stochastic Optimal Solution of the reduced Model 

The algorithm developed in Sectiùn 5.4 is used to obtain the 

optimal solution. However, before presenting sorne results two remarks 
1 

should be made. First, the principal components related to the storages 

were discretized into 5 states between the largest and the smallest 

values of these components. The program that was developed also offers 

the possibility to discretize these state variables accord ,g to the 

mean values and the standard deviations obtained from the principal 

components analysis program. Sscondly, since the new bounds are obtained 

from the optimal solution of the d~terministic problem, it is profitable 

to restrict the variations bet",een the maximum and minimum obtained in 

each per1od. Consequently, the upper and lower bounds, contrary to the 

classical dynamic programming approach, vary from month to month. This 

point should be seen as an advantage because the number of discretiza-

tions is lower than the number needed in the classical dynamic 

programming method. Therefore, the computation time can be significantly 

--------
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reduced. 

A typica1 output of the stochastic prob1em is shawn in Tables 5.3 

and 5.4 for period 6 and period 1 respective1y. These tables illustrate 

the period number, the demand, the inf10w and their corresponding 

probability. For ex~p1e, for period 6 which corresponds to October, the 

demand is 11487 GWh and the inf10ws are equa1 ra 1426.72 m3/sec with a 

probability of 0.52 and to 2345.19 m3/sec with a probability of 0.48. In 

addition, Table 5.3 shows the first 15 states of period 6. The first 

co1umn 1ndicates the state number whi1e the second one shows the pointer 

for each state, that is the optimum state during period k+1. For 

examp1e, the minimum co~t for state 15 in period 6 18 obtained from 

state 13 in period 7 with a probability of 0.52 and from state 33 with a 

probability of 0.48. Columns 3 ta 10 indicate the storage levels and the 

outflows for each reservcir. Finally, colwm1 11 shows the cumulative 

cost from period k ta period K. Table 5.4, on the other hand, 

illustrates the single state. at the begl.nning of period 1. The total 

cast is easily found from thal table. It simply consists in adèing up 

the costs of poriod one for a11 possible inflow branches 

(probabilities). ln this case, the total cost is 24223.36 + 16098.54 ~ 

40321.90. This cost, representing the value of the objective function of 

the ,optirrdzation problem. is a1so given in Table 5.4. 

5.5.3 Optimal Solucion of the Original Problem 

In this subsection, the optimal trajectories of the original model 

are :;oughl. In arder ta achieve this goal, one must explore e'lery 

branch, every trajectory of the decision tree. Since this is a very huge 

task fOl" the problem dealt with, ·tOIe will rather perform a simulation on 
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PERlon 6 

DDWID 11487. GWH 

lNFLOW : 1426.72 MCS PROBAB. :0.520 

StatQ Pt. Storagel Outflolo/1 St':lrag&2 Outflo..,2 Storage3 Outflow3 Storage4 Outflow4 Cost 
1 21 18374.61 2128.81 123~9.80 520.28 16917 .68 76 3.91 18169.86 2230.88 16636.67 
2 21 16795.68 1539.30 13138.27 232.62 16941.07 17 2,70 18169.86 1951.95 16922.57 
3 21 15712.23 ll3/ •• 79 13946.74 129.95 18418.32 132 4.24 17914.97 2305.66 16845.89 
4 11 15ïl2.23 ll71.93 14755.20 146.84 19895.57 45 3.86 16674.62 2262.42 14414.75 
5 11 15712.23 939.06 15563.67 5.10 21372.32 135 4.98 ]5434.27 1513.76 14081.22 
6 47 19994.9~ 941.89 13378.23 310.18 17232.21 62 1.67 18169.86 2165.44 13628.89 
7 47 18416.00 352.3'1 14186.70 22.52 18709.46 111 3.21 18169.86 2429.32 13664.07 
8 17 16837.07 135'1.03 14995.17 212.81 20186.71 91 2.13 18169.86 2299.98 13173.05 
9 17 15712.23 93Q.06 15803.b3 94.69 21663.96 146 S.67 17401.65 2446.58 13768.29 

10 32 15712.23 193.9:' 16612.10 286.47 23141.21 55 8_34 11)161.30 3505.11 13444.10 
11 43 21615.25 1351.U 14426.66 578.03 19000.60 11 8.48 18169.86 2336.25 12647.43 
12 43 20036.32 761.61 15235.13 290.37 20477.85 67 0.02 18169.86 2600.13 12681.19 
13 1.3 18457.39 172.11 16043.59 2.71 21955.10 122 1.56 18169.86 2864.02 12716.37 
14 18 16878.46 895.08 16852.06 70.38 23432.35 171 6.98 18128.68 2118.61 12764.43 
15 13 15712.23 743.33 17660.53 59.43 24909.61 151 2.03 161:188.33 2674.17 12827.02 

lNFLOW : 234~.19 KCS PROBAB. :0.480 

State Pt Storage1 Outflow1 Storage2 Outflow2 Storage3 OutflcIo/3 Storage4 Outflow4 Cost 
1 47 18374.61 839.43 12329.80 119.17 16917.68 109 6.28 18169.86 2838.86 12364.52 
2 42 16795.68 533.60 13138.27 14.13 16941.07 34 8.51 18169.86 2651.60 12634.00 
3 37 15712.23 412.76 13946.74 34.09 18418.32 14 3.56 17914 97 3096.98 12564.74 
4 37 15712.23 412.76 14755.20 335.94 19895.57 69 5.10 16674.62 3487.28 12321.89 
5 18 15712.23 962.15 15563.67 19.31 21312.82 154 0.09 15434.27 1814.50 12056.00 
fi 43 19994.93 1248.66 13378.23 447.02 17232.21 5 0.28 18169.86 2466.86 11693.51 
7 43 18416.00 659.15 14186.70 159.36 187G9.46 60 1.63 18169.86 2730.14 11725.41 
8 18 16837.07 1382.12 14995.17 22ï.02 20186.71 109 7.25 16169.B6 2600.12 11765.56 
9 18 15712.2:1 962.15 15803.63 108.90 21663.96 164 8.79 17401.65 2747.33 11761.83 

10 33 15712.23 217.03 16612.1:> 300.68 23141.21 74 3.46 16161.30 3714.87 11513.56 
11 49 21615.25 1090.54 14426.66 469.61 19000.60 106 0.Q9 18169.86 ?S06.16 10&21 .• 02 
12 43 20036.32 1264.11 15235.13 1155.75 20477.85 126 2.07 18169.86 4387.38 10854.17 
13 24 18457.39 11.24.00 16043.59 249.62 21955.10 210 7.06 18169.86 3633.13 10886.93 
14 19 16878.46 918.17 16852.06 84.58 23432.35 190 2.10 18128.68 3247.76 10926.96 
lS 33 15712.23 217.03 17660.53 692.11 24909.61 1403.7fJ 16888.33 5037.98 10987.11 

.... 
Table 5.l Output of the optimization program for period 6 N 

00 
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State Pt 
1 66 

Storagel 
8000.00 

DEMAND 

INFLOW 

Outflowl 
384.'32 

INFLO\~ 

P E RIO D 

10275. GWH 

1629.72 MCS 

Storage2 
6000.00 

3216.24 MCS 

State Pt Storagel Outflowl Storage2 
1 84 8000.00 70.26 6000.00 

1 

PROBAB. : 0.580 

Outflow2 
156.87 

Storage3 
10000.00 

PROBAB. :0.420 

Outflow2 Storage3 
773.18 10000.00 

o B J E C T IVE .40322E+OS 

Outflow3 
109 5.44 

Storage4 
5000.00 

Outflow4 
636.73 

t- ~ 

Cost 
24223.36 

Outflow3 Storage4 Outflow4 Cost 
70 3.46 5000.00 1282.60 16098.54 

Table 5.4 Output of the optimization program for period 1 

..... 
N 
10 
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a certain number of the polieies or. trajectories obtained. 

The simulation proeess starts by selecting a class of inflows. In 

our case. the number of possible classes is 2. Thus. for each period k. 

a class (1 or 2) will be seleeted and the optimal trajectory will be 

built accordingly. For example. suppose that for period 1 the class 

selected is 2, Îor period 2 it is equal to 1. for period 3 it is equal 

to 1. etc. Then, the trajectory will correspond to the second class of 

inflows for period }, to the first class for period 2, ta the first 

class for period 3, and so on. Table 5.5 shows a sequence tor the 

twelve period problem. In addition. the corresponding trajeeLories of 

storages and outflows are given in the sanle table and illustratad in 

Figures 5.3 and 5.4. In faet. we can have a large number of these 

simulations (212 ~ 409b). Moreover, we can take a sample of these 

trajectories and per.form a Monte-Carlo simulation ta see the probability 

that this approach gives an optimal solut;on outside the feasible 

region. For a sample of a hundred Slmtllations. aIl these storages 

respect the upper and lower limits previously set. Unfortunately. it 

would be too unpractical and cumbersome to inelude all these results in 

this thesis. Therefore. only two other simulations will be presented 

here. ~able 5.6 illustrates the optimal trajectory for the second 

simulation shown in Figures 5.5 and 5.6 while Table ).7 and Figures 5.7 

and 5.8 demonstrate the results obtained from the third simulation. It 

i5 important to remind that the outflows from the four reservoirs of 

Tables 5.5, 5.6 and 5.7 represent the discharge Uk and the spilled water 

Vk' Therefore, if the oulflows Uk are greater th an the plant capacity U, 

then Vk = Ok - Ü m3f sec of water is discharged t.hrough the spillways. 

For example, LG3, represented by outflow 2 in Table 5.7, has a capacity 
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Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 
Branch 2 1 1 2 2 l 2 2 1 1 2. 2. 

SIMULATION III 

Month State Pt Storage1 Outflowl Storage2 Outflow2 Storage3 Outflow3 
May 1 84 8000.000 70.262 6000.000 773.178 10000.000 103.458 
Jun 84 109 11061. 715 195.516 7386.961 78.467 14958.531 139.962 
Jul 109 86 13062,910 287.750 9577.977 471.650 17365.234 102.900 
Aug 86 64 14862.645 217.419 10637.984 390.140 19183.199 823.644 
Sep 64 39 17745.547 767.493 12571. 008 440.147 20822.180 276.925 
Oct 39 38 18956.496 642.129 15603.527 147.381 23606.129 1081.490 
Nov 38 33 19327.867 923.137 1843B.434 791. 151 23172.336 1303.671 
Dec 33 43 19593.641 1797.822 20532.402 3368.762 22561.285 2849.862 
Jan 43 15 16787.883 2222.000 17664.074 3212.737 16793.430 1121.111 
Feb 15 47 1163].527 859.140 15505.148 3005.531 14473.04] 1788.961 
Mar 47 fi 10094.762 1030.511 10647.121 2922.605 105IJa.187 431.642 
Apr 6 1 8000.000 307.683 6000.000 530.274 10002.250 392.408 

Table 5.5 Optimal trajectory for the first simulation 

Storage4 
5000.000 
7997.320 
5584.320 
7350.746 

11231.500 
14876.406 
13206.691 
9638.203 

16192.414 
14014.840 
16307.090 
10453.078 

r,o 

Outflow4 
1282.601 
1783.314 
497.116 
516.831 

22.459 
2364.516 
4132.031 
4210.777 
5316.211 
3971. 796 
5676.250 
3193.557 

.... ...., .... 
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Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 
Branch 1 1 2 2 1 2 2 1 2 2 2 1 

SIMULATION li2 

Month State Pt Storagel Outflowl Storage2 Outflow2 Storage3 Outflow3 
May 1 66 8000.000 384.319 6000.000 156.866 10000.000 1095.437 
Jun 66 34 8617.270 59.433 8265.816 816.773 10533.406 72.977 
Jul 34 38 10971.191 22.063 8190.414 324.875 13113.734 257.579 
Aug 38 38 15231. 258 371.784 9988.625 286.299 15942.316 259.122 
Sep '38 7 177CO.707 431.195 12613.230 306.825 19093.312 921. 980 
Oct 7 43 18415.996 ~59.150 14186.703 159.357 18709.4,)7 601. 825 
Nov 43 43 20087.660 1047.416 18007.082 669.544 21146.133 1507.316 
Dec 1.3 Id 2003l. 105 1679.439 20738.387 3139.579 20007.234 1634.257 
Jan 43 5 167D7.883 2065.572 17664.074 3150.878 16793.430 537.003 
Feb 5 72 12460.914 222.056 15505.148 3024.444 16387.520 2892.365 
Mar 72 4 12708.320 2006.302 9211.973 3010.021 10045.531 206.274 
Apr 4 1 8000.000 183.423 6944.277 680.482 10055.219 254.714 

Table 5.6 Optimal trajectory for the second simuletion 

Storage4 
5000.000 
7904.266 

10714.109 
13270.211 
14987.066 
18169.859 
15149.977 
13518.793 
16192.414 
11281. 691 
16308.770 
9544.270 

,.. 

Outflow4 
636.727 
439.650 
606.334 
656.375 
408.504 

2730.744 
3466.654 
4050.429 
5777.484 
4020.179 
5878.238 
2787.824 

.... 
U) 
~ 
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Month May Jun Jul Aug Sep Oct Nov Dec Jan Feh Mar Apr 
F~al~h 2 1 1 1 2 1 1 1 1 1 2 2 

SIMULATION 113 

Month State Pt Storagel Outflowl Storage2 Outflow2 Storage3 Outflow3 
May 1 84 8000.000 70.262 6000.000 773.178 10000.000 703.458 
Jun 84 109 11061. 715 195.516 7386.961 78.467 14958.531 139.962 
Jul 109 86 13062.910 287.750 9577 .377 471.650 17365.234 102.900 
Aug 86 59 14862.645 35.765 10637.984 194.170 19183.199 688.704 
Sep 59 33 16524.301 312.302 11428.895 260.719 19288.910 937.562 
Oct 33 37 18915.105 1106.079 13746.637 289.819 20360.488 276.637 
Nov 37 46 18043.832 380.888 17442.684 74.295 22082.414 2563.809 
Dec 46 46 18749.207 1890.800 1935.L957 3536.337 17199.645 996.427 
Jan 46 7 14939.676 2161.393 15782.078 3203.245 15695.812 88.656 
Feb 7 11 9947.648 1028.156 13486.246 2407.440 16140.754 1707.156 
Mar 11 6 8000.000 248.417 10484.004 2079.610 12461.801 1128.182 
Apr 6 1 8000.000 307.683 6000.000 530.274 10002.250 392.408 

Table 5.7 Optimal trajectory for the third simulation 

Storage4 
5000.000 
7997.320 
5584.320 
7350.746 

10524.039 
15389.727 
12351. 238 
14699.930 
18073.289 
13401.785 
13681. 391 
10453.078 

c , 

Outflow4 
1282.601 
1783.314 
497.116 

79.330 
32.688 

2213.142 
2152.528 
3547.504 
5205.391 
4123.844 
4549.473 
3193.557 
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of j433.5 m3/sec. In Decembe!:, the total discharge given by stochastic 

dynamic programming was 3536.337 m3/sec. Thus 102.83 m3/sec of water 

must be discharged through the spillways during that period. 

Finally, in addition to being easy to imp1ement, this approach is 

very fast to execute. Indeed, only 12 sec of CPU time on an IBM-30Sl 

were required to solve the twelve {leriod problem. Of course, to verify 

the efficiency of our aflproach. we must solve the same four reservoir 

system without any variable reduction by classical dynamic programming 

to be able to establish a rasis of comparison between the two methods. 

This is the subject of the next section, 

5.6 Classical Stochastic Dynamic Progranunin.& 

The procedul."e for solving problem (5.1)-(5.9) is that given in 

Section 5.4. The only ch;:mge that we made was to replace the selected 

components by the original variables. 

The first step of the solution procedure is to determine the eKpli­

cit distribution of the inflow,:; for each period k. This distribution is 

found from lhe 50 sequences of inflows used to perform the principal 

components ana1ysi<.>. In addition, only two classes (branches) will be 

considerf'd ta obtain comparable results between the classical approach 

and the technique proposed in this thes:is. A histogram or the inflows is 

illuslrated in Figures 5.9 and 5.10 for the month of May and the month 

of January l'especti vely. whHe in Table 5.8 the different classes and 

the correspor.ding probabili ties are shown for the twelve period problem. 

The next st.ep is to discretize the storage levels between the 

maximum and minimum capacity of the reservoirs. A discretization into S 

states was chosen. The storage levels at the beginning of May were set 
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LG4 

May 615.00 
.Jun 968.00 
Jul 960.00 
Aug 656.50 
Sep 707.50 
Oct 781.00 
No'] 653.25 
Dec 468.50 
Jan 298.00 
Feb 223.25 
Mar 190.75 
Apr 183.75 

Class1 Class2 
Probl Prob2 

LG3 EOL LG2 LG4 LG3 EOl LG2 

618.75 1294.75 469.00 0.580 1213.00 1220.25 2554.25 925.00 0.4"l0 
728.25 1068.75 634.25 0.380 1848.00 1390.75 2040.25 1210.75 0.6 .... 0 
580.00 781. 75 582.00 0.706 1612.00 974.00 1313.25 978.00 0.294 
454.00 728.50 381. 25 0.300 1293.50 894.00 1435.50 751. 75 0.700 
482.75 771...25 1.07.75 0.400 1214.50 842.25 1350.75 711.25 0.600 
564.25 919.75 512.75 0.520 1283.00 926.75 1511.25 842.25 0.480 
430.50 680.50 420.75 0.480 1025.75 675.50 1067.50 660.25 0.520 
312.75 435.50 274.25 0.580 749.50 500.25 696.50 438.75 0.420 
185.00 255.00 169.25 0.360 450.00 279.00 385.00 255.75 0.640 
138.25 187.00 125.00 0.420 323.75 200.75 271.00 181.00 0.580 
120.25 160.50 104.75 0.440 2/.8.25 156.75 209.50 136 r 25 0.560 
132.75 233.75 99.75 0.680 307.25 222.25 391.25 167.25 0.320 

Table 5.8 Distribution of the inflows for the four reservoir system 
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at theit: lower bounds, and the penalty cost a was fixed to 0.01 as it 

was the case in the reduced stochastic model. 

Once again, a large number of optimal trajectories was obtained. For 

this reason a simulation program was developed to study sorne of these 

policies. The simulation process generates random numbers between 1 and 

the nwnber of possible classes of inflo\ls. In this case, we have also 2 

classes. Thus, the decision tree has a total of 212 = 4096 trajecto-

ries. From a sample of hundred simulations, only two will be given in 

this thesis. Table 5.9 illustrates the optimal trajectory of the first 

simulation shown in Figure 5.11 for the optimal storages, and in Figure 

5.12 for the optimal outflows. The results of the second simulation, 

shown in F1gures 5.13 and 5.14, are given in Table 5.10. The total 

thermal energy needed will therefore be 40279 GWh. Finally, the CPU time 

required to solve the problem is 44 minutes on an IBM-3081. 

5.7 Di.scussion 

From the results of the last 2 sections, the following 3 points will 

be discussed. First, a comparison of the results obtained from the clas­

sical and the reduced approaches will be made. Secondly, since the 

select10n criteria is based on the percentage contribution of the 

components, tbe level at -which this percentage will be satisfactory will 

be discussed. Finally, the explicit distributioll of the principal 

component of the inf10ws was studjed in 2 classes, which is not 

sufficient in practice. Therefore, as a third point~ a discussion of the 

CPU time and of the optimal policies when 5 classes are considered will 

be presented. 
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Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 
Branch 1 1 2 2 1 2 2 1 2 2 2 1 

SIMULATION 111 

Month State Pt Storage1 Outflowl Storage2 Outflow2 Storage3 
Hay 1 67 8000,000 615.000 6GnO.000 209.685 10000.000 
Jun 67 133 8000.000 968.000 8742.855 638.050 10000.000 
Jul 133 710 8000.000 225.245 11485.711 175.179 10000.000 
Aug 710 839 11714.285 1293.500 14228.570 139.370 10000.000 
Sep 839 904 11714.285 707.500 19714.281 132.048 10000.000 
Oct: 904 976 11714.285 1283.000 2245ï.141 1185.685 10000.000 
Nov 976 9i6 11714.235 1025.750 25199.996 1701. 250 13928.570 
Dec 976 846 11714.285 468.500 25199.996 2829.381 1.1928.570 
Jan 846 262 11714.285 1836.755 19714.281 31.39.820 13928.570 
Feb 2bL 132 8000.000 323.750 16971.426 2792.074 10000.000 
Mar 132 2 8000.000 248.250 11485.711 2453.130 10000.000 
Apr 2 1 8000.000 183.750 6000.000 316.500 10000.000 

Table 5.9 Optimal trajectory for the first simulation 

Outflow) Storage4 
1294.750 5000,000 
1068.750 9105.711 
1313.250 13211.426 
1435.500 15264.281 
774.250 17317.141 
44.490 19369.996 

1067.500 19369.996 
435.500 19369.996 

1851. 760 15264.281 
271.000 lS264.2~1 

209.500 11158.570 
233.750 7052.855 

t~""C$ 

Outflow4 
440.539 
757.055 

1699.980 
1560.171 

522.052 
2072.425 
3429.000 
5072.027 
5247.328 
4941.207 
4331. 777 
1441.997 
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Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 
Branch 2 2 2 1 2 1 1 1 1 2 2 2 

SIMULATION 112 

Honth State Pt Storage1 Outflow1 Storage2 Outflow2 Storage3 
May l 140 8000.000 1213.000 6000.000 385.120 10000.000 
Jun 140 725 8000.000 415.020 11485.711 747.568 13928 .~70 
Jul 725 1302 11714.285 225.245 14228.570 175.180 17857.141 
Aug 1302 1366 15428.570 656.500 16971.426 86.435 17857.141 
Sep 1366 1432 15428.570 1234.500 19714.281 1018.548 17857.141 
Oct 1432 1496 15428.570 781.000 22457.141 321.185 17857.141 
Nov 1496 1495 15428.570 653.250 25199.996 1083.750 17857.li.l 
Dec 1495 1364 15428.570 468.500 25199.996 2829.381 17857.141 
Jan 1364 779 15428.570 1684.755 19714.281 2893.820 17857.141 
Feb 779 643 11714.285 323.750 16971.426 2792.074 13928.570 
Mar 643 66 11714.285 1635.005 11485.711 2815.820 10000.000 
A;..: 66 1 8000.000 307.250 8742.855 1587.700 10000.000 

Table 5.10 Optimal trajectory for the second simulation 

~ 

Outflùw3 Storage4 
1087.490 5000.000 

524.598 11158.570 
1313.250 13211.426 

728.500 15264.281 
1350.750 15264.281 
919.750 19369.996 
680.500 19369.996 
435.500 17317.141 

1721. 760 1U.58.570 
1894.913 9105.711 

2.09.500 9105.711 
391.250 705~.855 

Outfl<1w4 
98.264 

1690.919 
1699.982 
1196.185 
1496.553 
1753.685 
2976.997 
5838.477 
5551. 277 
4867.984 
3928.018 
2938.197 
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- 5.7.1 Compa'dson of the results 
, 

A major advantage of ~~e principal compoqent based approach is 

that the CPU time needed is small. The classical dynamic programming 

method requlres 44 minutes on an IBM-3081 to solve the four reservoir 

system, whereas it takes only 12 seconds to solve th~ same problem on 

the same computer with the proposed approach. However, this huge 

difference in CPU time can be interesting only if the two methods give 

comparable results. ln the classical approach, 40279 GWh of thermal 

energy are needed for the twelve period problem, whereas 40322 GWh are 

required for the reduced problem (see Section 5.5). This corresponds to 

a difference of 0.1i. between the two solutions which is negligible, 

especially when considering the stochastic nature of the problem. 

Moreover, it should be mentioned that the discretization in more than 8 

equally spaced values in the classical method may give a lower value for 

the objective function. However, this will not greatly affect the 

results and even a difference of Si. could be considered acceptable since 

the CPU t ime is enormous ly reduced. 

In additlon, the oùtflows, and especially the downstream reservoirs 

(LG3 and LG2) have similar patterns with bath approaches (Figures 5.4 

and 5.14). This is an important point because it means that the pohcies 

obtained in the reduced approach can be implemented as well as those 

given ~y the classical stochastic approach. 

Finally, the proposed approach gives a global feedback just like the 

cla<Jsical technique does since all the constraints are respected 

incl~ding those on storage. 

-... 
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5.7.2 Selection of Variable Number of Storage Components 

The example given in Section 5.5 has four state v~riables: one 

inflow component and 3 storage components. According to Table 4.3. the 

fiest component of the inflows accounts for at least 99.987. of the total 

variance. For the storages, the contributior. of the components vary from 

967. if 3 components are selected to 827. if ûnly 2 are retained (Table 

4.4). Solving a stochastic dynamic programming problem with fewer state 

variables is always interesting. However, the degree of accuracy in 

every per10d should be respected when reduction is made. To see the 

difference with the case solved in Section 5.5. two additional 

selections were made. The first. consists in solving the problem with one 

inflow and 2 storage componeuts, that is a reduction :rom 8 to ) state 

variables. The second consists in selecting a different number of 

variables in each period so as to respect a percentage of at least 88% 

of the total variance. In that case, and according to Tables 4.3 and 

4.4, the number of components selected will be similar to that shown in 

Table 5.11. 

The explicit distribution of the inflows is the same than the one 

given in Table 5.1. Thus. when 3 stale variables (1 inflow and 2 storage 

components) are retained, the thermal production is LI0916 GWh which is 

very close to that (40322 GWh) when ~onsidering 4 state variables (1 

inflowand 3 storage components). Therefore, there is â difference of 

1.477. between these two resu!ts. To cstablish a basis for comparison 

with the previous case, we will consider the first simulation. The 

corresponding trajectories for the storages and outflows are given in 

Table 5.12 and illustrated in Figure 5.15, for the optimal storages, and 

in Figure 5.16 for the optimal outflnws. 
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o B J E C T IVE .40916E+05 

Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 
Branch 2 1 1 2 2 1 2 2 1 1 2 2 

SIMULATION 111 

Hl..mth Stôte Pt Storage1 Outflow1 Storage2 Outflow2 Storage3 Outflow3 Storage4 
May 1 17 8000.000 81. 681 6000.000 764.981 10000.000 705.265 5000.000 
Jun 17 1) 11031.129 53.545 7439.504 283.415 14953.691 923.584 8003.121 
Jul 13 8 13400.312 331. 726 8731.305 425.167 15329.246 522.908 10034.281 
Aug 8 8 15032.262 383.943 10033.598 288.123 16022.262 238.822 13225.727 
Sep 8 8 17519.145 167.632 12685.883 147.028 19227.629 141. 250 14892.109 
Oct 8 9 20284.934 1020.888 14923.328 562.312 223A3.246 1515.236 15919.973 
Nov 9 7 19641.836 1177.665 17661. 352 878.163 20767.707 511. 989 14852.957 
Dec 7 14 19247.875 452.912 20189.520 3347.624 22208.695 3019.944 9463.320 
Jan 14 15 20044.324 2117.075 13775.602 3283.077 15985.293 2166.232 16727.977 
Feb lS 10 15171. 000 2228.338 11147.246 2/120.922 10865.652 297.680 19370.000 
Mar 10 2 10319.871 1114.557 11015.867 3064.741 10596.504 426.666 16159.027 
Apr 2 1 8000.000 307.683 6213.160 612.512 10015.895 397.672 10431. 871 

Table 5.12 Optimal trajectory for the first simulation with three state variables 

( ~ 

Outflow4 
1274.044 
1057.317 
338.600 
656.744 
603.327 

2988.171 
4129.96~ 

4094.474 
4632.246 
4UO.715 
5766.047 
3272.877 
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~-

Period Inflows Storages Total 

May 1 2 3 
Jun 1 2 'l 

-> 

Jul 1 3 4 
Aug 1 3 4 
Sep 1 3 4 
Oct 1 3 L. 
Nov 1 2 3 
Dec 1 1 2 
Jan 1 1 2 
Feb 1 1 2 
Mar 1 l 2 
Apr 1 4 5 

Table 5.11 Number of Components 

The optimal policies for this case are very close to those obtain~d 

) 
in Section 5.5. These palicies can easily be compared in Figure 5.17 (a) 

and (b) representing. for LG4 and LG3 respectively. the results for 4 

and 3 state variables. Although the operating rules are quite similar. 

the CPU time presents a blg difference. With 3 state variables the 

computing time is 1.2 sec whereas for 4 state variables, it jumps to 

Il.58 sec. We should recall that the cast showed a difference af 1.477., 

which is acceptable. However. it i5 s~ill possible to minimize this 

difference by cansidering a variable selection adapted ta each period. 

The computer program offers the Dossibility to perform stochastic 

dynamic programming with a variable number of states. Therefore. when 

considering the number of components shown in Table 5.11, the total 

thermaJ energy needed 1S 40747 GWh. a difference of almost 17. with the 

case presen~ed in Section 5.5. The optimal policies are a1so very close. 

( Table 5.13 summarizes the different storage levels and outflows shown in 

.. 
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Mcnth 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 
Jan 
Feb 
Mar 
Apr 

--------~--------------------------...... _,,~~ 

o B J E C T IVE : .40747E+05 

Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 
Branch 2 1 1 "1 2 1 2 2 1 1 2 2 "-

SIMULATION Il : 1 

State Pt Storagel Outflowl Storage2 Outflow2 Storage3 Outflow3 
1 17 8000.000 81.681 6000.000 764.981 10000.000 705.265 

17 13 11031.129 53.545 7439.504 283.415 14953.691 923.584 
13 38 13400.312 276.097 8731. 305 386.329 15329.246 552.756 
38 33 15231. 258 371. 784 9988.625 286.299 15942.316 259.122 
38 38 17700.707 141.037 12613.230 141.889 19093.312 179.850 
38 43 20535.430 947.961 14795.062 312.416 22128.879 1286.445 
43 7 20087.660 1349.665 18007.082 1183.547 21146.133 657.987 

7 3 19247.875 430.520 20189.520 3460.312 22208.695 2702.099 
3 3 20104.301 1894.396 13413.801 3311. 083 16836.609 1917.009 
3 2 15827.398 2467.851 10114.012 2626.364 12384.488 430.963 
2 1 10396.840 1143.294 10065.059 2738.470 11792.902 873.353 
1 1 8000.000 307.683 6213.203 612.528 10015.887 397.669 

Table 5.13 Optimal trajectory with variable number of states 

Storage4 
5000.000 
8003.121 

10034.281 
13270.211 
14987.066 
16116.754 
15149.977 

9463.32Q 
15022.621 
17789.914 
13910.645 
10432.555 

~ 

Outflow4 
1274.044 
1057.317 

313.001 
656.375 
597.!l04 

2472.059 
4695.937 
4526.023 
4364.258 
4785.684 
5046.762 
3273.154 
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--- Figu~es S.18 and 5.19, whereas Figure 5.20 shows a comparison of the 

outflows for LG2 with 4, 3 and var.iable number of states. The CPU time 

required for this last case is 3.89 sec, which 1s 3 times faster than 

the case with 4 state variables. 

5.7.3 Explicit Distribution of 5 Classes 

The distribution of the inf10ws was considered in 2 classes or 

branches. This was helpful for the comparison with the classical 

stochastic dynamic programming. However, the number of classes usua11y 

used varies from 5 to 15 classes [Miller and Freund, 1977]. In this 

section, the performance of the reduced stochastic dynamic programming 

approach will be studied with a distribution of 5 classes. However, 

before doing so, it is important to note that only 1 component of the 

inf10ws 1s selected, and we can consider 2. 3 or variable number of 

storage components as discussed in the SubseLtion 5.7.2. For the sake of 

presentation. the same selection as the one chosen in Section 5.5 will 

be considered: 1 inflow component and 3 storage components. 

A histogram of the distribution is illustrated in Figure 5.21 for 

the month of May, while the different classes and the corresponding 

probabilities are shown for the twelve period problem in Table 5.14. 

l'hus, the optimal thermal energy produced will be 40654 GWh as given in 

Table 5.15. The results of the flrst simulation are a1so given in the 

same table. In thls case, the pro gram starts by selecting a class of 

inflows. After that, the optimal trajectory is extracted for each month. 

Figure 5.22 i11ustrates the optimal storages, whereas Figure 5.23 shows 

the optimal outflows. The CPU t i me is very small: on1 V 27 secCinds are 

required to solve the 4 reservoir prob1em with 5 classes of inflows on 
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Glass1 Prob1 Glass2 Prob2 Glass3 Prob3 Glass4 Prob4 

May 1153.76 0.120 1788.37 0.360 2422.98 0.200 3057.59 0.260 
Jun 1261. 33 0.120 1892.85 0.140 2524.36 0.300 3155.88 0.280 
Jul 1182.21 0.140 1586.54 0.340 1990.87 0.300 2395.20 0.160 
Aug 811.53 0.060 1256.72 0.200 1701.90 0.340 2147.08 0.240 
Sep 950.13 0.120 1315.26 0.160 1680.39 0.240 2045.52 0.320 
O::t 1151.17 0.160 1518.56 0.180 1885.95 0.320 2253.34 0.240 

1 Uov 927.06 0.080 11b2.30 0.260 1437.5b 0.260 1692.n 0.240 
Dec 624.96 0.060 808.35 0.240 991. 75 0.420 1175.15 0.240 
Jan 393.53 0.020 488.86 0.180 584.19 0.380 679.52 0.360 
Feb 298.30 0.040 360.93 0.220 423.55 0.380 486.17 0.340 
Mar 268.24 0.060 304.49 0.240 340.74 0.340 376.99 0.300 
Apr 270.93 0.180 363.09 0.280 455.25 0.360 547.42 O~140 

, . 
Table 5.14 Distribution cf the random variable 

Class5 

3692.20 
3737.40 
2799.53 
2592.27 
2410.65 
2620.73 
1948.02 
1358.54 
774.85 
548.80 
413.24 
639.58 

ProbS 

0.060 
0.160 
0.060 
0.160 
0.160 
0.100 
0.160 
0.040 
0.060 
0.020 
0.060 
0.040 

~ 

1-' 
0\ 
~ 
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Month May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 
Branch 1 4 3 2 5 4 5 5 3 2 2 1 

SIMULATION III 

Month State Pt Stocage1 Outflow1 Storage2 Outflow2 Storage3 Outflow3 
May 1 125 8000.000 6.628 6000.000 444.459 10000.000 726.020 
Jun 125 B3 9147.891 199.074 6000.000 522.886 10510.270 9.402 
Jul 83 63 13193.871 76.605 8594.426 368.021 15523.375 563.978 
Aug 63 58 16433.484 86.405 9894.809 251.344 168~8.836 320.261 
Sep sa 32 ) 8130.293 481.000 107B6.270 601.378 18100.859 1222.265 
Oct 32 43 20494.035 1384.750 12938.172 382.518 18883.234 607.500 
Nov 43 38 20087.660 1243.637 18007.082 979.143 21146.1:3 1131. 006 
Det. 38 49 1%12.473 1659.247 20635.395 2731.096 21284.262 2817.274 
Jan 49 50 17604.301 :j58.026 19254.660 3289.Q06 15B13.758 1974.104 
Feb 50 69 14164.707 534.727 15505.14B 3031.222 11383.723 482.097 
Mar 69 5 13435.262 2225.251 9815.336 3282.360 10688.859 396.264 
Apr 5 1 8000.000 146.147 7315.863 759.614 10070.687 213.244 

Table 5.15 Optimal trajectory for the first simulation 

Storage4 
5000.000 
5000.000 
6386.949 

10724.434 
11363.992 
16630.070 
15149.977 
11578.496 
18038.980 
18510.426 
15018.254 

9544.270 

~ ~ 

Outflow4 
1502.346 
1150.344 

92.712 
751.123 
594.770 

2351. 706 
4220.488 
3625.025 
5300.750 
5083.187 
5833.707 
2805.200 

.... 
0-
UI 
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an IBM-3081. 

5.8 Conclusion 

\ole have presented, in this chapter, an application of the principal 

components approach ta the determination of the monthly operating policy 

of a power system of n reserVOHS. This method consists in reducing the 

number of variables in order to be able to use stochastic dynamic 

programming. 

In addition to being simple and easy ta program, this tecnnique has 

the advantage of bping very fast. In fact, in Lhe sarnple application of 

four reservoir sy~tem, on.ly 12 seconds of CPU time were reGllired on an 

IBM-3081 to solve the problem for 2 classes of ir.flows, and 27 seconds 

for 5 classes. On the other hand, with the classical dynamic programming 

approach, 44 minutes were required ta solve the 2 class problem and 1 

hour of CPU time was not sufficient ta obtain the results for the 5 

class case. 

The program that was written to solve this 

possibility of se ·.ecting a different number 

problem offers the 

Qf components in each 

period. This character1stic, studied in Section 5.7, determines the 

number of components accordj ng to a fixed percentage of the variance. 

Thus, i t is poss ible ta select n components in a period and only 1 

component in the npxt one. 

Finally, this dpproach gives global feedbacit solutions. In fact, the 

results of Section 5.5 prove that all the constcaints are respected. In 

addition, the deClsions obtained are functions of the explicit distribu­

tion of the inflows and con.sequently the explicit distri but ion of the 

states. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary ot Results 

This work has presented a method for reducing the number of state 

variables in the stochastic long-term multireservoir operating problem. 

The approaches which have so far been proposed to deal wir.h the problem 

were based mainly on the applicltion of dynamic pl.'ogramITling. These 

methods, briefly presented in Chapter It have attemptcd to transform the 

large-scale problem into one or a series of ~mall-scale problems using 

the aggregatlon, decomposition or projectjon techniques. The main draw­

back of these methods is th~t they only give local feedback solutions. 

Principal components analysis can be used ta transform the large­

scale problem ineo a small-scale one without neglecting the individual 

constraints on p.ach reservoir, especially the storage level constraints. 

Thus, stochast ic dynanl1c programming c.an bE performed eff iciently and 

global feedback solutions can therefore be found, 

The proposed method was testcd on 3 system of four reservoirs 

representing Qupbec's La Grande river installations. The problèm was to 

mjnimize the expected cost of thermal energy. 

The model developed was a nonlinear one. A piecewise linearization 

was used and penally functions to Emit high variations of the 
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discharged water ~ere added. This model is presented in Chapter II. 

An important step of the principal components approach consists in 

the deterministic optimizations for several inflow sequen~es. This task 

was done in Chapter III with IBM's MPSX!370 package. The reduction 

process using principal components analysis was then performed on the 

optimal determlnistic results as ~xplained in Chapter IV. Fir.ally, in 

Chapter V the reduced problem was solved using stochastic dynamic 

programming. 

The performance of the proposed approach was thereafter compared Lo 

the elassical dynamic programming method, that is :.rit.10'.lt any reduction. 

Important results were obtained from that comparison. First, a great 

reduction was observed in the CPU time required to solve the problem. 

Secondly, the total cost and the operating rules were found to be 

extremely close. In fact, the difference in the objective funetion was 

just over 1% for the same four reservoir system, and the operating rules 

found showed similar patterns. Both techniques have the characteristics 

of giving 10w discharge in summer and very high discharge in winter, 

especially for the downstream reservoirs (LG3 and LG2). This is only 

logical because the demand gets very high in winter. Consequently, the 

water is stored durlng summer for future use in winter. Many graphies 

were also given in Chapter V to illûstrate the featu~e of the reduced 

approach and ta facllitate the comparison with the results obtained from 

the classical technique. 

Taking advmltage of the fast coroputing time and of the satisfactory 

operating rules. other cases were studied ln Chapter V. For example, the 

reduced problem was solved with different number of state variables in 

each peried, and then it was solved again bu~ with a realistic explicit 
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distribution of inflows in 5 classes. 

6.2 Conclus:ions 

The method proposed for reducing the number of state variables in 

the stochastic large scale problem can be applied wherever correlation 

exists between the inflows to two reservoirs or between the reservoir 

contents. Naturally, the higher the correlation, the greater and better 

the reduction will be. 

The correlation between the inflows can vary throughout the year. In 

Québec, for instance, the correlat~on is very high in winter when 

everything is frozen and low in the spring during the thaw. The 

reduction of the state space will therefore be more ~mportant in winter 

months than in spring, which is totally acceptable. Dynamic programming 

does not requile that the number of state variables be the same in every 

period. In fact it is mor~ important ta have the same degree of 

precision in every period than the same number of state variables. For 

instance, if the new set of variables is ta account for 95% of the 

sample variance, then the reduction in every period should be made in 

order ta respect that pe~centage. 

Since linear programming was üsed to solve the deterministic model, 

the reservoir contents may have weak correlation due to the bang-bang 

solution, ~n which a plant is run at maximum capacity one month and shut 

down the next. Therefore, introducing a penalty funC'tlon on the 

variation of the outflows from periad ta period cao in sure a better 

correlation. However, a problem anses when det(!rm~ning that penalty 

factor because it CAn not be found according ta f1.xed rule.s. Moreover, 

Hs value must not e:l':ceed 107. of the cost of the thermal energy. 



{ 

L 

... ~ ..................... ""'~ .. _\-.;.,. ....... '"_...-...... _____ A""" __________ _ 

172 

The deterministic optimizations allow us to find a set of reservoir 

contents, for many inflow sequences. The size of the sample of inflows 

is very important. As a matter of fact, the principal components can be 

very different for two different samples of data. Nevertheless, it was 

shown that the :"ample size is "representative" for large number of 

sequences. However, for economical considerations, a sarnple size of 30 

may be considered as being sufficiently large. 

Principal components analysis does not have to be applied to all 

installations at the same time. If two rivers with several installations 

on each have different flow patterns, then principal components analysis 

can b(~ applied ta each river separately so as to find a gaod reduced 

model of each. 

Principal components analysis is very easy to implement and 

manipulate because it involves only linear relations. Its combinat ion 

with the optimization model gives interesting results especially when 

compared with the existing clas.sical technique which is limited ta a 

small number of state variables. The praposed technique can thercfore be 

applied without any problem ta large-scale systems. The only condition 

is that the state variables must be interdependent. In general, 

interdependency does er..ist between reservoirs located on the same rivers 

or on nearby rivers with similar flows patterns. In r.his perspective, 

the proposed technique can be of great utility. 
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6.3 Furthel: Research Reconunendations 

Further research work can proceed along several directions: 

1- The piecewise linearization introduces sorne inaccuracy because 

there are no ru1es established for the sel~ction of either the 

optimum grid size or the optimum number of grids. In this case, 

the possibility of considering nonlinear models can be investi­

gated knowing that dynamic programming can deal with 1inear as 

weIl as nonlinear models. in addition, the penalty functions are 

then not necessary and can be neglected in nonlinear models. 

Therefore, more accurate results can be obtained. 

2- The only random variable in the present work i5 the natural 

inflow in each period. However, there are other variables that 

can be regarded as stochastic. For example, it can be interes­

ting ta take into account the stochastici ty of the demand and to 

solve a stochastic model having both the natural inflows and the 

demand as random variables. 

3- Although the technique proposcd ln this thesis is applied to 

long-t~rm problems, it is also possible to apply the method to 

short-term problems as weIl. In that case, the model should 

take into account the water head variations. For long-term 

operating problems water he ad can be considered constant whereas, 

this assumption is of no value for short-term problems. 

If s.hort-terrn problems are con:üdered, care should be taken while 

using the covariance ~r the correlation matrices to perform the 

principal components analysis. That is because the correlation 

matrix imposes the same weight for large and small reservoirs. 

Therefore. this case should be discarded for long-term problems, 
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while it can yield interesting results when compaTed with the 

covariance matrix in short-term problems. 

4- Principal components ana1ysis is performea only in space. In 

other words» the analysis is made only for reservoirs taken at a 

given time. However, since correlation does exist from period to 

period, it may be interesting to reduce the model in time in 

order to find a shorter operating horizon. 

The reduction in space and in time together may add another 

dimension to the problem, and therefore can open an important 

research dil ection in the future. 

5- Finally, the method proposed in this thesis can be used for 

reservoirs serving other purposes than the production of 

eV!ctricity. This would be a fruitful direction for future 

research. 
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APPENDIX A 

PIECEWISE LINEARlZATION 

A.l General Description 

The nonlinear function must be assumed to be convex in order to 

reach a "global" optimum. Any nonconvex function may result in a "local" 

optimum. For example, Figure A.l depicts a two-dimensional model that 

contains two linear constraints, one convex nonlinear constraint, and a 

linear objective function to be maximized. The feasible region is 

shaded, and the optimal solution is indicated by the position of the 

objective function. Figure A.2 depicts a similar model except that the 

nonlinear constraint is not convex. Because of the nonconvexity of the 

nonlinear constraint, both solutions shown appear optimal to the 

program, and either one may be reached first. Figure A.3 shows that a 

nonlinear function can be approximated by a piecewise linear function, 

known as a polygonal approximation. The function and two possible 

polygonal approximations are shown in this figure. Each polygonal 

approximation is represented by linear equations, together with certain 

logical restrictions on the variables in the equations. The solution 

reached is an approximation of the true solution. 
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Objective 

x 

Figure A.l Convex feasible region 

y 

x 

Figure A.2 Nonconvex feasible region 

-.... 
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y y y 

x x x 

y 

Figure A. 3 Nonlinear funct ion and polygonal 

approximation 

- -- ...... _-

Dxr-l Dxr 
X = X r 

Figure A.4 Polygonal approximation of a nonlinear 

function 

x 
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A.2 Development of Approximating Equations 

Figure A.4 is a graph of a polygonal approximation of a nonlinear 

function Y = F(X), defined in the interval [ Xo, Xr ]. 

The grid is defined by a set of r+l points on the X-axis. The leng­

ths of the resulting intervals on the X-axis are Dxl' Dx2"'" Dxr' and 

the lengths of the resulting intervals on the Y-axis are Dyl' Dy2"'" 

Dyr' The variable X can be developed as a f\.onction of "special" varia­

bles Xl' X2' ... , Xr , where Xl defines the first interval of length Dxl' 

X2 the second interval of length Dx2' anrl sa on. 

Any value of X between Xo and Xr can be expressed in terms of the 

equation 

if the special variables are defined as follows: 

Xl = X2 = ... = Xi-l = l 

0 ~ Xi ~ 1 

Xi +1 = Xi+2 = = Xr 

(A.t) 

(A.2) 

(A.3) 

(A.4) 

The value between 0 and l of Xi is that fraction of the interval i 

covered by the variable X. For example, if X has a value at the midpoint 

of interval i, the special variable Xi has the value 0.5. If X is at 3/4 

of the length of interval i, the special variable Xi has the value 0.75. 

Equation (A.I) is referred ta as the grid equation. 

Similarly, the function Y can be expressed in terms of the same 

special variables and the lengths of the resultant intervals along the 
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Y-axts as follows: 

(A.5) 

Because of the linearity of thl' approximat ing function.:. the values 

of Xl to Xr that satisfy the grid equation also satisfy equation (A. 5), 

known as the functional equation. 

A.3 Example 

The following example illustrates, for a specifie nonlinear 

function, the equations relating the variable, the nonlinear funclion Y 

= F(X) and the special variables. 

The problem definition data are 

J a) Nonlinear function y = X2 

b) Range of X value cOllsidered x = 0 to X = 1 

c) Defined set of special variables: Xl' X2' X3' X4' Xs 

d) Def ined interval lengths 0.3, 0.1, 0.2,0.3, 0.1 

The information required to develop the equations for this problem 

is contained in Table A. 1. 

Interval kt = X at k2 = X at Dxi Y1 = Y at Y2 = Y at Dyi 
Beginning End of = k2 - kl Beginning End of = YZ - Y1 

of Interval Interval of Interval Interval 

1 0 0.3 0.3 O. 00 0.09 0.09 
2 0.3 0.4 0.1 O. 09 0.16 0.07 
3 0.4 0.6 0.2 0.16 0.36 0.20 
4 0.6 0.9 0.3 0.36 a.81 0.45 
5 0.9 1.0 0.1 0.81 1.00 0.19 

Table A.l Problem information 
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The ~eneral formulas for the grid and functional equations are: 

x = Xo + Dx l • Xl + Dx 2 • X2 + Dx3 

y = Yo + Dy1 • Xl + Dy 2 • X2 + Dy3 

X3 + Dx 4 • X4 + DxS . Xs (A.6) 

X3 + Dy4 X4 + DyS • Xs (A. 7) 

The Dx and Dy columns give the required coefficients fat' the 

equations. We therefore have: 

X = 0 + 0.3 . Xl + 0.1 • X2 + 0.2 • X3 + 0.3 • X4 + 0.1 . Xs 

y = 0 + 0.09. Xl + 0.07. X2 + 0.2 . X3 + 0.45. X4 + 0.19. Xs 

(A. 8) 

(A.9) 
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APPENDIX B 

DEMONS TRATION 

B.1 Lemma and Proof of Section 4.2 lJohnson and Wichern, 1982) 

B. 1.1 Lemma --

Let ZT = [Zl,Z2""'Zn) have covariance matrix W with 

~igenvalue-eigenvector pairs (À1' b1),(À2' b2)"",(Àn, bn) where 1.1 ~ 

1.2 ~ p ••• ~ Àn > O. 

Let ~1=b1 TZ1, ~2=b2 TZ, ••. , ~n=bn TZ be the principal components. 

Then 

n n 
~ VAR(Z1') = 011 + 022 + .... + cr = E VAR(f;· )=1.1 + À2 + ... + Àn i=l nn i=l 1 

B.l. 2 Proof 

By definition the trace (tr) of a matrix i5 the sum of the 

diagonal elements. Then 

tr (W) = 011 + 022 + ••. + 0nn (B.1 ) 

and 

tr (A) = À1 + À2 + ... + Àn (B.2) 

where l\. is the diagonal matrix of eigenvalues. 

We know from Section b.. 2 that 
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i=1, ... ,n (B. 3) 

or in another form, 

W = BT A B (B.4) 

where BT = [bl' b2"'" bn] and BT B = B BT = l (unit y matrix). 

Then from (B.4) 

tr (W) = tr (BT A B) = tr (/\ BT B) = tr (/\) 

(B. 5) 

Thus 

B.2 Synthetic Inflow Generator. [Pronovost, 1974] 

The synthetic inflow generator used in this thesis has the 

following form 

(B.6) 

where Yk represents a column vector of random variables of inflows for 

perlod k, Wk a column vector of white noise and Ak a column vector of 

constants. Bk and Ck are square matr ices. 
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< From the historie data, the mean values vector Mk' the correlation 

matrix Rk for different sites for period k and the correlation matrix Pk 

between periods k-1 and k are determined as follows. 

(B.7) 

(B.S) 

(B.9) 

Replacing equation (B.6) in (B. 7), the mean values vector Mk may 

th en be written as 

( 

,. 

(B.lO) 

(B.lO) can easily be obtained since Ak is a constant and Wk is a 

white noise with zero mean. 

In the same way, by replacing equation (B.6) in (B.B) and (B.9) 

respectively, the following relations are obtained 

(B.U) 
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(B.l2) 

Then to find Ak' Bk and Ck' the system of three equations (B.10), 

(B. 11) and (B.12) has to be solved. From statement (B.12) 

(B.13) 

Substituting (E.l3) in (B.10), Ak can be written as 

(B.14) 

and finally, by substituting statement (B.13) in (B.ll), the following 

expressÏ'>n is found 

(B.1S) 

To End Ck' it can be seen that 

is the general form of an eigenvalue problem in which Lk is the matrix 

of eigenvectors for Ck Ck T and J\.k is the diagonal matrix of eigenvalues 

for Ck CTk. Lk has the property of being orthonormal. or 
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(B.17) 

Then by replacing (B.11) in (B.16), Ck CkT can be written as 

(B.IS) 

Therefore 

(F.19) 
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Year May Jun Jul Aug Sep Oct Nov Dee Jan Feb Mar Apr 

1950 773. 1965. 1555. 1000. 354. 790. 640. 487. 354. 24l. 178. 218. 
1951 479. 470. 459. 289. 640. 617. 702. 490. 328. 218. 176. 249. 
1952 799. 954. 634. 934. 742. 923. 682. 515. 343. 232. 173. 184. 
1953 484. 779. 663. 586. 128. 674. 476. 382. 261. 18l. 142. 176. 
1954 436. 824. 555. 345. 530. 575. 467. 360. 229. 164. 130. 133. 
1955 555. 762. 501. ~92. 433. 592. 547. 433. 306. 207. 167. 150. 
1956 275. 1492. 1271. 1359. 1382. 694. 575. 382. 246. 178. 144. 136. 
1957 SOL 1161. 1008. 84l. 946. 963. 612. 399. 244. 184. 144. 125. 
1958 793. 1070. 759. 549. 838. 782. 773. 493. 326. 238. 176. 176. 
1959 1014. 1334. 103l. 1019. 680. 818. 665. 411. 292. 210. 170. 201. 
1960 555. 103:. 646. 892. 923. 864. 838. 595. 343. 246. 181. 147. 
1961 456. 694. 572. 394. 391- 878. 765. 521. 328. 238. 176. 164. 
1962 527. 95l. 646. 436. 597. 547. 490. 413. 283. 190. 147. 142. , 
1963 65l. 1036. 640. 507. 445. 631- 462. 331. 229. 16l. 136. 142. 
1964 1028. 1090. 663. 447. 580. 470. 433. 422. 266. 198. 164. 195. 
1965 462. 1430. 1538. 1133. 1167. 813. 682. 479. 326. 249. 190. 144. 
1966 583. 1504. 1158. 1280. 951. 991. 705. 498. 289. 198. 161. 204. 
1967 521. 1133. 719. 719. 547. 889. 779. 549. 3l1. 221. 173. 144. 
1968 866. 813. 685. 923. 847. 515. 54l. 399. 227. 167. 136. 201. 
1969 462. l223. 1104. 773. 682. 8Hi. 677. 442. 323. 232. 173. 139. 
1970 504. 1155. 926. 722. 960. 1014. 906. 796. ~30. 340. 249. 193. 
1971 48l. 564. 637. 637. 646. 677. 479. 377. 229. 153. 116. 142. 
1972 317. 886. 779. 677. 813. 886. 711. 399. 241. 181. 142. 105. 
1973 1087. l104. 787. 512. 54.4. 753. 527. 297. 198. 164. 142. 139. 
1974 464. 1283. 827. 445. 479. 71l. /l88. 408. 238. 193. 173. 139. 
1975 549. 1422. 951. 917. 646. 804. 631. 399. 255. 193. 153. 136. 
1976 1056. 1334. 654. 513. 416. 453. 445. 306. 204.. 1~3. 130. 142. 
1977 631. 1467. 903. 128. 725. 382. 323. 272. 221. 18'4. 156. 136. 
1978 629. 1107. 1053. 1235. 1144. 631- 682. 654. 377. 263. 207. 167. 
1979 1410. 1583. 866. 663. 728. 784. 620. 538. 343. 229. 184. 212. 

.... 
Table C.l (a) Historie inflow sequences for LG4 00 ...... 
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Yoar 

1950 

1951 
1952 
1953 

1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 

1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1971 
1978 

1979 

Hay 

73l. 

742. 
997. 
824. 
719. 
810. 
467. 
699. 
801-

1022. 
1184. 

592. 
722. 
714. 

1410. 

716. 
861. 
583. 

1192. 
504. 
767. 
643. 
487. 

1470. 
564. 
932. 

1455. 
949. 
866. 

1297. 

Jun Jul 

1617. 838. 
597. 439. 

1195. 762. 
697. 484. 

1042. 637. 
767. 507. 

1640. 710. 
1045. 767. 
1070. 592. 
1501- 892. 
1085. 595. 

620. 447. 
903. 535. 

1090. 512. 
1116. 496. 

1416. 1158. 
1470. 974. 
1294. 620. 
663. 612. 

1280. 1068. 
1195. 714. 

748. 496. 
11)76. 691. 
971. 589. 

1665. 677. 
1266. 835. 
1065. 456. 
1379. 694. 
1036. 366. 
1410. 742. 

Table 

e-t 

Aug Sep Oct Nov Dec Jan Feb Mar Apr 

566. 311. 674. 501. 362. 224. 153. 127. 147. 
439. 447. 855. 52l. 518. 323. 221. 173. 278. 
779. 640. 1096. 487. 479. 289. 207. 161- 147. 
680. 566. 578. 501. 340. 218. 150. 125. 246. 
479. 513. 555. 456. 343. 210. 147. 119. 167. 
309. 374. 631. 456. 481. 297. 204. 164. 184. 
903. 1042. 816. 535. 501. 303. 229. 173. 122. 
646. 722. 830. 597. 362. 215. 159. 125. 161. 
722. 813. 410. 600. 445. 275. 195. 141. 190. 

1011. 654. 668. 532. 351. 232. 167. 142. 127. 
708. 671. 1104. 816. 402. 229. 173. 139. 167. 
326. 300. 787. 637. 447. 280. 193. 147. 159. 
48l. 572. 473. 464. 360. 221. 170. 136. 125. 
464. 348. 538. 411. 283. 176. 127. 108. 116. 
408. 620. 317. 337. 365. 224. 156. 130. 178. 
864. 889. 782. 583. 408. 244. 173. 133. 108. 

1167. 974. 946. 612. 377. 212. 164. 147. 218. 
861. 518. 881. 671. 521. 255. 173. 130. 116. 

1141. 917. 447. 547. 408. 232. 170. 136. 331. 
617. 68l. 750. 589. 351. 238. 184. 150. 133. 
889. 765. 1042. 776. 575. 379. 266. 212. 193. 
719. 654. 416. 374. 351. 20!. 139. 113. 164. 
569. 762. 816. 564. 331. 218. 161- 142. 116. 
416. 578. 767. 481.- 297. 198. 147. 116. 125. 
405. 518. 719. 688. 360. 210. 159. 133. 110. 
827. 583. 920. 651. 396. 138. 164. 125. 88. 
371. 354. 473. 487. 300. 173. 116. 93. 122. 
708. 977. 1 .. 02. 323. 218. 159. 130. 113. 116. 

1186. 1062. 620. 623. 515. 266. 184. 150. 133. 

578. 830. 71l. 586. 597. 300. 193. 150. 147. 
~ 
CIO 

C.1 (b) Historie inflow sequences for LG3 co 
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Year May J\U\ Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 

1950 1750. 2532. 765. 742. 487. 1104. 756. 479. 300. 212. 16l. 283. 
1951 1648. 668. 660. 1218. 900. 711. 861. 705. 391. 249, 210. 5,*1. 
1952 1775. 1606. 915. 2387. 1532. 830. 793. 671. 416. 297. 300. 283. 
1953 1761- 1.1l19. 1034. 943. 101.9. 1705. 770. 453. 272. 215. 190. 371. 
1954 1903. 1286. 1085. 966. 824. 1354. 878. 56I. 328. 22I. 18I. 127. 
1955 1688. 1172. 541. 671. 847. 821. 694. 592. 37l. 215. 201. 229. 
1956 1263. 2019. 827. 1059. 1107. 991. 909. 654. 354. 2101. 156. 261-
1957 1419. 2005. 1640. 988. 784. 1611. 84I. 430. 25ij. 187. 153. 153. 
1958 1911. IBOI. 790. 912. 1150. 1116. 940. 609. 354. 218. 142. 176. 
1959 1965. 2118. 1051. 1628. 1099. 1286. 833. 428. 289. 212. 178. 377. 
1960 2047. 1249. 677. 1189. 1017 • 1161. 1175. 552. 328. 212. 161. 309. 
1961 1532. 915. 648. 626. 637. 1280. 977. 654. 354. 244. 184. 379. 
1962 165l. 1385. 54l. 552. 816. 790. 835. 643. 365. 241. 18l. 164. 
1963 n08. 1523. 697. 765. 496. 677. 521. 348. 215. 161. 139. 224. 
1964 2778. 1900. 71l. 850. 1218. 578. 513. 459. 278. 198. 164. 294. 
1965 1498. 1900. 1351. 1447. 1172. 1305. 767. 442. 266. 195. 16l. 150. 
1966 1693. 2172. 1300. 1572. 1249. 1283. 782. 456. 292. 210. 210. 515. 
1967 1509. 2073. 866. 1688. 765. 1555. 1130. 801. 391. 252. 193. 18l. 
1968 2175. 997. 1008. 1940. 1764. 728. 966. 606. 354. 24l. 20'*. 742. 
1969 1215. 240'*. 1858. 1022. 1002. 1540. 1(\02. 515. 331. 252. 195. 184. 
1970 1679. 1798. 646. 895. 951. 1444. 1113. 728. 467. 334. 2'+6. 221. 
1971 ll67. 779. 790. 1'+22. 1390. 1073. 705. 530. 317. 195. 127. 133. 
1972 1014. 1654. 796. 688. 1107. 2149. 1002. 549. 314. 229. 18l. 156. 
1973 2750. 11041- 1031. 682. 95'+. 1246. 799. 4')6. 328. 235. 184. 255. 
1974 1487. 3336. 852. 433. 748. 1198. 929. 527. 326. 232. 181. 161. 
1975 2115. 1569. 1189. ll41. 850. 1495. 909. 629. 436. 317. 235. 241. 
1976 2466. 1455. 535. 682. 739. 855. 1124. 629. 328. 224. 184. 501. 
1977 2059. 1693. 745. 97l. 2104. 810. 595. 374. 255. 201. 18l. 289. 
1978 1659. 1438. 1181. 1535. 137l. 917. 957. 716. 416. 283. 212. 178. 
1979 2959. 1849. 940. 886. 1424. 963. 844. 578. 292. 195. 159. 249. 

.... 
00 

Table C.1 (c) Historie inf10w sequences for EOL 10 
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Year May 

1950 569. 
1951 510. 

1952 654. 
1953 5,.7. 
195,. 847. 

1955 433. 

1956 326. 
1957 504. 
1958 603. 

1959 583. 
1960 637. 
1961 6,.0. 
1962 595. 

1963 86l. 
196,. 949. 
1965 35l. 

1966 65l. 
1967 637. 
1968 725. 

1969 708. 
1970 422. 
1971 ,.62. 

1972 402. 
1973 B1l. 
1974 538. 
1975 719. 
1976 776. 

1977 816. 
1918 569. 
1979 1107. 

JW'\ 

1764. 
484. 

954. 
643. 
699. 

779. 
1390. 
960. 

1223. 
1155. 
835. 
470. 
875. 

88l. 
864. 

1382. 

1184. 
1407. 
105. 

1119. 
977. 
439. 
892. 

1028. 

1144. 
1079. 

1048. 

1034. 
190. 

1322. 

Jill 

762. 
49~ .• 

719. 
481. 
580. 

583. 
824. 
790. 
688. 
756. 
527. 
634. 
484. 

524. 
462. 

1206. 

80l. 
682. 
48l. 
915. 
665. 
654. 
697. 
818. 
623. 
869. 
595. 

974. 
626. 
688. 

Aug 

535. 

314. 

515. 
408. 
513. 

343. 
949. 
807. 
54l. 

617. 
343. 
269. 
323. 

464. 
360. 
830. 

796. 
564. 

691. 
547, 
549. 
883. 
767. 
388. 
323. 

1062. 
464. 
668. 
71,.. 
467. 

Sep 

379. 
459. 

620. 
524. 
442. 

479. 
770. 
515. 

527. 

405. 
685. 
297. 
425. 

35l. 
595. 
920. 

697. 
419. 
611. 

578. 
493. 
733. 

739. 
,.33. 
453. 
640. 

314. 

623. 
193. 
617. 

Oct 

591. 

600. 

804. 
111. 
674. 

552. 
496. 
71l. 
498. 
595. 
909. 
660. 

507. 

413. 
331. 
835. 

765. 
833. 
473. 
892. 
912. 
510. 

833. 
122. 
665. 
651. 

510. 
320. 
515. 
705. 

Nov 

501. 

524. 

643. 
521. 
402. 

419. 
561. 
476. 

473. 
564. 
799. 
620. 

496. 

428. 
337. 
620. 

541. 
555. 
504. 
660. 
756. 
382. 
612. 
,.73. 

702. 
515. 
631. 

275. 
555. 
419. 

Dec 

374. 

317. 
328. 
289. 

289. 
340. 
294. 
314. 

286. 
402. 
41l. 
453. 

374. 
340. 
345. 
391. 

354. 
394. 
320. 

360. 
56l. 
258. 

306. 
292. 
445. 
371. 

399. 

204. 
,.96. 

269. 

Table C.1 (d) Historie inf10w sequences for LG2 

Jan 

229. 
198. 

283. 
198. 

170. 

235. 
187. 
198. 

170. 
246. 
238. 
272. 

224. 
224. 
212. 
241. 

210. 
244. 
193. 
210. 
354. 
156. 

178. 
210. 

256. 
238. 
229. 

153. 
244. 
235. 

Feb 

153. 

142. 

201. 

1"". 
121. 

167. 
136. 
139. 

127. 
164. 
164. 
190. 
147. 
156. 
147. 
167. 

144. 
16I. 
142. 

161. 
229. 
116. 

136. 
167. 
193. 
170. 
153. 

125. 
153. 
144. 

Mar 

122. 

113. 
153. 
116. 
102. 

125. 
116. 
113. 

99. 
122. 
133. 

139. 

119. 
122. 
122. 

122. 
110. 
127. 
110. 

108. 
156. 
96. 

110. 
144. 
147. 
122. 

119. 

110. 
113. 

99. 

Apr 

113. 
110. 
113. 
113. 

144. 
102. 
113. 
110. 

133. 
119. 
125. 

122. 

108. 
139. 
121. 
96. 

153. 
116. 
88. 

119. 
125. 
136. 

91. 
144. 
116. 
99. 

110. 

130. 
119. 

116. 

e ~ 

.... 
10 
o 
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Year May Jun Ju1 Aug Sep Oct Nov Dec Jan Feb Mar Apr 

1 10BB. 122I. 9BB. 993. 1093. 853. 728. 553. 380. 289. 225. 164. 
2 695. 1827. 1834. 1276. 1232. 965. 686. 604. 404. 294. 220. 171. 
3 1078. 1228. 96l. 830. 978. lS0I. 1102- 717. 442. 317. 252. 186. 
4 1512. 2288. 1418. 1285. 1220. 922. 779. 58l. 398. 296. 235. 280. 
S 769. 1460. 1255. 985. 915. 1129. 800. 486. 356. 279. 223. 20:1. 
6 1314. 1562. 839. 338. 703. 1158. 1080. 702. 443. 310. 253. 366. 
7 787. 1440. 1024. 1038. 975. 1150. 1046. 69l. 446. 309. 238. 236. 
8 709. 2127. 1585. 1215. 774. 707. 615. 471. 284. 22l. 187. 181. 
9 703. 528. 634. 1020. 1315. 93I. 719. 473. 290. 212. 195. 189. 

10 787. 869. 950. 675. 488. 837. 656. 479. 310. 236. 180. 144. 
11 762. 1324. 1120. 1319. 1486. 700. 630. 492. 339. 22I. 185. 141. 
12 952. 1925. 1157. 1203. 901. "!.070. 1179. 745. 483. 33l. 254. 234. 
13 1162. 1142- 1052. 1269. 1289. 1027. 730. 563. 392. 263. 199. 297. 
14 1223. 720. 946. 753. 899. 786. 950. 668. 380. 265. 211. 220. 
15 517. 1297. 984. 724. 1174. 695. 843. 627. 408. 295. 221. 221. 
16 871. 2102- 1165. 658. 655. 1248. 1007. 742. 461- 314. 240. 270. 
17 881. 111- 643. 581. 601. 122. 802. 533. 353. 263. 212. 225. 
18 760. 1164. 694. 792. 584. 640. 729. 608. 388. 282. 205. 169. 
19 864. 2108. 1282. 998. 1224. 986. 641. 607. 423. 307. 23l. 231. 
20 1074. 1921. 1065. 1030. 1169. 1097. 986. 592. 392. 21l. 223. 253. 
21 1382. 1322. 731. 800. 648. 1223. 804. 521. 314. 228. 1B9. 247. 
22' 1124. 1909. 17.82. 751. 875. 94B. 881. 657. 408. 280. 226. 273. 
23 752. 1432- 959. 866. 855. 937. 754. 478. 320. 246. 204. 167. 
24 1054. 1708. 1163. 1057. 1134. 1252. 1071. 66l. 417. 309. 241. 313. 
25 959. 872. 1072. 1050. 1209. 975. 864. 567. 366. 245. 198. 203. 
26 365. 1135. 896. 1169. 1085. lQ99. 1119. 890. 526. 374. 277. 205. 
27 804. 934. 990. 699. 689. 1042. 767. 452. 305. 230. 112. 207. 
28 1165. 1895. 1445. 1531. 1043. 628. 604. 579. 345. 242. 194. 275. 
29 715. 1333. 1055. 12tB. 1245. 1128. 79l. 605. 422. 300. 235. 278. 
30 438. 1611. 1505. 1340. 1230. 1206. l112. 754. 483. 331. 267. 257. 
31 589. 1810. 1009. 906. 624. 1356. 1111. 764. 450. 321. 236. 124. 
32 580. 1139. 1127. 1143. 1498. 890. 629. 516. 362. 280. 235. 270. 
33 1272. 1906. 1418. 1392. 1174. 1178. 816. 439. 306. 233. ln. 214. 
34 995. 1601. 1203. 1029. 859. 1235. 856. 661. 410. 298_ 244. 244. 
35 1193. no. 800. 665. 697. 135l. 1019. 683. 430. 305. 242. 227. 
36 615. 1535. 1312. 1029. 672. 796. 686. 49l. 354. 254. 185. 179. 
37 lO84. 1886. 147l. 1284. 115I. 722. 467. 427. 308. 249. 213. 240. 
3b 611. 1426. 863. 1045. 1111. 922. 853. 58:>. 361 258. 223. 162. 
39 676. 1554. 1281. 1038. 1073. 1018. 708. 597. 418. 290. 214. 282. 
40 746. 2104. 1196. 1612. 1332. 913. 959. 668. 425. 313. 240. 198. 
41 938. 1712. 1363. 1571. 1330. 1347. 911. 618. 409. 280. 218. 249. 
42 316. 1543. 1274. 1395. 1255. 1208. 942. 647. 404. l88. 222. 122. 
43 1095. 2278. 1938. 1546. 1411. 1534. 1212. 790. 46l. 317. 256. 369. 
44 705. 2139. 1l16. 442. 444. 942. 732. 606. 403. 271. 214. 235. 
45 133. 1964. 1516. 1430. 1387. 530. 529. 328. 222. 173. 162. 216. 
46 845. 1818. 1521. 1366. 922. 1271. 1010. 715. 426. 281 •. 226. 242. .-
47 1096. 1455. 1106. 1022. 944. 1106. 941. 566. 380. 260. 713. 248. \Q 

48 466. 1272. 1294. 1055. 1066. 998. 971. 599. 353. 243. 201. 163. .... 
49 978. 1014. 1267. 1154. llU. 1239. 1034. 668. 448. 316. 239. 176. 
50 324. 1760. 1188. 9/9. 898. 1185. 938. 615. 394. 286. 226. 245. 

Table C.l Ca) Svnthetic inflow seauences for LG4 
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Year May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 

1 1095. 919. 597. 686. 746. 616. 480. 368. 236. 179. 142. 119. 
Z 700. 1375. 110B. 88Z. 84l. 697. 451. 402. 25l. 182. 139. 124. 
3 1085. 925. 58l. 574. 668. 1084. 726. 478. 274. 196. 159. 135. 
4 152l. 1722. 857. 889. 833. 665. 513. 387. 247. 183. 148. 202. 
5 774. lC99. 758. 68l. 665. 815. 527. 324. 22lo 173. 14l. 150. 
6 1322. 1176. 507. 234. 480. 909. 71L 468. 275. 192. 160. 266. 
7 792. 1084. 619. 118. 666. 83l. 689. 460. 277. 192. 15l. 171. 
S 713. 160l. 957. 840. 528. 510. 405. 318. 116. 137. 118. 131. 
9 707. 397. 383. 705. 898. 672. 474. 315. 180. 132. 123. 137. 

10 792. 654. 574. 467. 313. 605. 432. 319. 192. 147. 114. 104. 
11 767. 996. 680. 912. 1014. 505. 415. :ns. 210. 131. 111. 102-
12 958. 1449. 699. 83I. 615. 772. 777. 496. 299. 205. 160. 169. 
13 1169. 860. 636. 877. 880. 74l. 48l. 375. 243. 163. 126. 215. 
14 1231- 542. 571. 521. 613. 567. 626. 445. 236. 164. 134. 159. 
15 520. 976. 594. 500. 80l. 502. 555. 418. 253. 183. 144. 160. 
16 816. 1582. 104. 455. 447. 901. 663. 494. 286. 195. 152. 195. 
17 8B7. 585. 389. 406. 410. 522. 529. 356. 219. 163. 134. 163. 
18 764. 876. 419. 547. 399. 462. 480. 405. 240. 175. 130. 122. 
19 869. 1587. 774. 690. 835. 717. 423. 405. 263. 190. 146. 167. 
20 1081. 1450. 643. 112. 798. 792. 650. 394. 243. 108. 141. 183. 
21 1390. 995. 44l. 553. 442. 883. 530. 348. 195. 14I. 120. 179. 
22 1131. 1437. 775. 519. 597. 685. 58l. 438. 253. 174. 143. 197. 
23 756. 1078. 579. 599. 584. 677. 497. 319. 199. 153. 129. 121. 
24 1060. 1286. 702. 73l. 774. 904. 706. 44I. 259. 192. 156. 227. 
25 965. 656. 648. 726. 825. 704. 569. 378. 227. 152. 125. 147. 
26 367. 854. 54l. 877. 740. 793. 738. 594. 326. 232. liS. 148. 
27 809. 703. 598. 483. 470. 752. 506. 30l. 189. 142. 109. 150. 
28 1172. 1426. S73. 1058. 712. 453. 398. 386. 214. 150. 122. 199. 
29 779. 1003. 637. 881. 850. 814. 521. 403. 262. 186. 148. 202. 
30 441. 1212. 909. 926. 839. 871. 733. 503. 300. 205. 169. 186. 
n 592. 1362. 609. 626. 426. 979. 732- 509. 279. 199. 149. 90. 
32 584. 9B. 741. 790. 1022. 642. 415. 344. 225. 174. 149. 195. 
33 1280. 1435. 893. 'J62. 801. 850. 538. 293. 190. 144. 121. 155. 
34 100l. 1105. 717. 112. 587. 89I. 564. 44l. 255. 185. 154. 176. 
35 120l. 579. 483. 460. 476. 975. 671. 455. 267. 189. 153. 165. 
36 680. 1156. 792. 11l. 459. 575. 452. 328. 219. 157. 117. 130. 
31 1090. 1419. 889. 888. 786. 521. 30B. 285. 19l. 154. 135. 114. 
38 615. 1074. 52I. 723. 753. 666. 565. 390. 224. 160. 141. 117. 
39 680. 1170. 777. 717. 732. 735. 466. 398. 259. 180. 135. 204. 
40 750. 1584. 1085. 1114. 909. 659. 632. 445. 264. 194. 152. 143. 
41 943. 1288. B23. 1090. 90B. 973. 600. 412. 254. 173. 138. 180. 
42 318. 1161. 170. 964. 856. 872. 621. 43l. 25l. 178. 140. 88. 
43 1102. 1714. 1171. 1069. 963. nos. 798. 527. 286. 196. 162. 267. 
44 :')9. 1610. 674. 305. 303. 680. 482. 404. 250. 168. 136. 170. 
45 737. 1473. 916. 989. 946. 383. 349. 219. 138. 107. 102. 151. 
46 850. B68. 919. 945. 629. 922. 666. 471. 264. 176. 143. 175. 

~ 

41 1102. 1095. 668. 107. 644. 798. 62e. 378. 236. 161. 135. 179. \0 

469. 9:'8. 782. 730. 727. 721. 644. 400. 219. 15I. 127. 118. N 
48 
49 984. 77I. 765. 798. 162. 895. 68!.. 445. 278. 196. 151. 127. 
50 326. 1325. 117. 671. 613. 856. 618. 410. 245. 178. 143. 177. 

Tilhle C.Z (h) Svnthetic jnflow sequences for LG3 
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Year May JWl Jul Aug f.ep Oct Nov Dec Jan reb Mar Apr 

1 2291. 1348. 805. 1102. 1196. 1005. 758. 513. 325. 242. 190. 209. 
2 1464. 2018. 1494. 1415. 1348. 1137. 715. 560. 346. 21.5. 186. 218. 
3 2270. 1356. 783. 921. 1070. 1768. 1148. 665. 379. 265. 213. 2n. 
4 3184. 2526. 1155. 1426. 1335. 1085. 811. 539. -,'.0. 247. 198. 356. 
5 1620. 1612. 1022. 1093. 1066. 1329. 833. 451. 30~. 233. 189. 264. 
6 2766. 1725. 684. 375. 770. 1482. 1125. 652. 380. 2')'1. 214. 466. 
7 1657. 1590. 834. 1152. 1067. 1355. 1089. 641. 382. 258. 201. 300. 
B 1492. 2349. 1291. 1348. 847. 832. 640. 443. 243. 185. 158. 230. 
9 1481. 583. 516. 1131. 1439. 1096. 7/.9. 439. 249. 177. 165. 24l. 

la 1657. 960. 774. 749. 534. 986. 683. 445. 265. 198. 152. 184. 
11 1605. 1462. 917. 1464. 1626. 824. 656. 457. 290. 185. 156. 179. 
12 2005. 2125. 942. 1335. 986. 1260. 1228. 69l. 413. 276. 214. 298. 
13 2446. 1261. 857. 1408. 1410. 1209. 760. 523. 336. 220. 168. 318. 
14 2576. 795. 770. 836. 983. 91.5. 989. 620. 326. 221. 179. 280. 
15 1088. 1432. 801. 803. 1284. 818. 878. 582. 349. 21.6. 192. 282. 
16 1833. 2321. 949. 730. 716. 1469. 1048. 688. 395. 263. 203. 343. 
17 1855. 858. 524. 65l. 658. 851. 835. 495. 302. 220. 180. 286. 
18 1600. 1285. 565. 879. 639. 754. 759. 564. 332. 235. 173. 215. 
19 1819. 2327. 1044. 1108. 1339. 116l. 668. 5b4. 362. 256. 195. 294. 
20 2262. 2127. 867. 1143. 1279. 1292. 1027. 549. 336. 216. 188. 323. 
21 2909. 1460. 595. 888. 709. 1440. 837. 484. 269. 190. 160. 314. 
22 2367. 2107. 1045. 834. 957. 1116. 918. 610. 349. 234. 19l. 347. 
23 1582. 1581. 781. 961. 936. 1104. 785. 444. 274. 206. 172. 212. 
24 2219. 1886. 947. 1173. 124l. 1475. 1115. 614. 357. 258. 209. 399. 
25 2019. 963. 873. 1166. 1323. 1149. 900. 526. 314. 205. 167. 258. 
26 768. 1253. 729. 1408. 1187. 1294. 1166. 827. 450. 313. 234. 2&l. 
27 1694. 103l. 806. 776. 754. 1227. 799. 419. 26l. 192. 145. 263. 
28 2452. 2093. 1177 • 1698. 1141. 740. 629. 538. 295. 202. 164. 350. 
29 1631. 147l. 859. 142~. 1362. 1328. 824. 561. 161. 250. 198. 354. 
30 923. 1779. 1225. 1487. 1345. 1421. 11"8. 700. 414. 276. 225. 327. 
31 1239. 1999. 821. 1005. 683. 1598. 1157. 709. 385. 268. 199. 158. 
32 1222. 1368. 999. 1268. 1639. 1048. 655. 479. 310. 234. 199. 343. 
33 2678. 2105. lZ04. 1544. 1284. 1387. 849. 408~ 262. 195. 162. 273. 
34 2096. 1767. 980. 1142. 940. 1454. 89l. 614. 351. 249. 206. 310. 
35 2513. 850. 652. 738. 763. 1591. 1060. 634. 368. 255. 205. 289. 
36 1422. 1695. D69. 1142. 735. 937. 714. 456. 303. 212. 156. 228. 
37 2282. 2082- 1198. 1425. 1260. 8')0. 48-: • 197. 263. 208. 180. 306. 
38 1287. 1575. 703. !l6G. 1216. 1086. 893. :> ..... 309. 215. 189. 206. 
39 1424. 1716. 1048. 115l. 1174. 1199. 737. 554. 358. 243. 18l. 359. 
40 1570. 2323. 1463. 1789. 1458. 1075. 998. 620. 364. 262. 203. 252. 
41 1974. 1890. 1110. 1750. 1455. 1587. 948. 573. 351. 234. 184. 317. 
42 665. 1703. 1038. 1548. 1373. 1422. 98l. 600. 346. 240. 187. 155. 
43 2306. 2515. 1579. 1716. 1543. 1807. 1261- 734. 395. 265. 216. 470. 
44 1485. 236l. ge9. 490. 486. 1110. 762. 562. 3/.5. 227. 18l. 299. 
45 1543. 2169. 1235. 1587. 1517. 624. 551. 305. 190. 11.5. 136. 275. 
46 1779. 2007. 1239. 1516. 1008. 1504. 1052. 664. 365. 237. 191. 308. 

~ 47 2307. 1606. 900. 1134. 1033. 1302. 980. 526. 326. 217. 180. 315. 10 
48 982. 1405. 1054. 1171. 1166. 1175. 1017 • 556. 302. 203. 169. 207. ~ 

49 2059. 1130. 1032. 1280. 1222. 1460. 1076. 620. 384. 264. 202. 224. 
50 683. 1943. 967. 1087. 982. 1396. 977. 571. 338. 239. 191. 312. 

Table C.2 (c) Synthetic il~low sequences for EOL 
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Year May JWl Ju1 Aug Sep Oct Nov Dec Jan Feb Mar Apr 

1 830. 800. 5Q? 5ï7. 630. 560. 469. 323. 216. 162. 123. 89. 
2 530. 1197. 1112. 741- 710. 633. 442. 353. 230. 164. 121. 93. 
3 822. 805. 583. 482. 564, 985. 710. 420. 252. 177. 138. lOI. 
4 1153. 1499. 860. 747. 703. 605. 501. 340. 226. 166. 129. 152. 
5 587. 95 7 • 761. 573. 562. 740. 515. 284. 203. 156. 123. 112. 
6 1002. 1023. 509. 196. 405. 826. 696. 411. 252. 173. 139. 200. 
7 60u. 944. 621. 603. 562. 755. 671 •• 404. 254. 173. 131. 128. 
8 54l. 1394. 961. 706. 446. 464. 396. 279. 162. 124. 103. 98. 
9 536. 346. 384. 593. 758. 611. 463. 277. 165. 119. 107. 103. 

10 600. 569. 576. 392. 281. 549. 423. 280. 176. 132. 99. 78. 
11 581. 867. 683. 767. 856. 459. 406. 288. 193. 124. 102. 76. 
12 726. 1261. 702. 699. 519. 702. 759. 436. 275. 185. 139. 127. 
13 886. 748. 638. 737. 743. b73. 470. 330. 213. 147. 109. 161. 
14 93" 472. 574. 438. 518. 515. 612. 391. 217. 148. 116. 119. 
15 394. 850. 597. 421. 676. 456. 543. 367. 232. 165. 125. 120. 
16 661.. • 1377 • 107. 382. 377. 819. 648. 1,34. 262. 176. 132. 146. 
17 672. 509. 390. 341. 346. 414. 517. 312. 201. 147. 117. 122. 
18 579. 162- 42lo 460. 337. 420. 469. 356. 22lo 158. 113. 92. 
19 659. 1381. 778. 580. 705. 647. 413. 355. 241. 172. 127. 126. 
20 819. 1262. 646. 599. 674. 720. 635. 346. 223. 152. 12L 138. 
21 1054. 866. 443. 465. 313. 802. 518. 305. 119. 127. 104. 134. 
22 851. 1250. 718. 437. 504. 622. 56B. 385. 232. 151. 124. 148. 
23 513. 938. 582. 503. 493. 615. 485. 280. 182. 138. 112. 91. 
24 804. 1119. 105. 614. 654. 822. 690. 387. 237. 173. 136. 110. 
25 731. 571. 650. 611. 697. 640. 556. 332. 208. 131. 109. 110. 
26 278. 743. 543. 738. 625. 721. 12l. 521. 299. 209. 152. Ill. 
27 613. 612. 600. 406. 397. 683. 494. 264. 174. 128. 94. 112. 
28 888. 1242. 876. 890. 601. 412. 389. 339. 196. 136. 106. 149. 
29 591. 873. 640. 746. 717. 740. 509. 354. 240. 168. 129. 151. 
30 334. 1055. 913, 779. 708. 792. 716. 441. 275. 185. 146. 140. 
3l 449. 1186. 612. 526. 360. 890. 715. 447. 256. 179. 130. 67. 
32 443. 812. 744. 664. 863. 584. 405. 302. 206. 157. 129. 146. 
J3 970. 1249. 897. 809. 676. 773. 525. 257. ]74. 130. 105. 116. 
34 759. 1049. 130. 598. 495. 810. 551. 337. 234. 167. 134. 132. 
35 910. 504. 485. 386. 402. 886. 656. 400. 245. 171. 133. 123. 
36 515. 1006. 796. 598. 387. 522. 442. 288. 201. 142. lOlo 97. 
37 826. 1236. 892. 746. 663. 473. 301. 250. 175. 139. 117. 131. 
38 466. 935. 523. 608. 640. 605. 552. 343. 206. 144. 123. 8a. 
39 516. 1018. 780. 603. 618. 668. 456. 350. 238. 162. 117. 153. 
40 569. 1378. 1089. 937. 768. 599. 618. 391. 242. 175. 132. 108. 
41 715. 1121. 827. 917. 766. 884. 587. 361. 233. 156. 119. 135. 
42 241. 1011. 773. 811. 723. 792. 607. 379. 230. 161. 122. 66. 
43 835. 1492. 1176. 899. 813. 1007. 780. 463. 262. 177. 140. 201. 
44 538. 1401. 677. 251. 256. 618. 471. 355. 229. 152. 118. 128. 
45 559. 1287. 919. 831. 799. 348. 341. 192. 126. 97. 89. 117. 
46 645. 1191. 923. 794. 531. 838. 650. 419. 243. 159. 114. 131. .... 
47 835. 953. 671. 594. 544. 725. 606. 332. 216. 145. 117. 134. '" 48 356. 834. 785. 613. 614. 655. 629. 35l. 201. 136. 110. 88. ~ 

49 746. 671. 768. 671. 644. 813. 66&. 391. 255. 177. 131. 95. 
50 247. 1153. 720. 569. 517. 777. 604. 360. 225. 1&0. 124. 133. 

Table C.2 (d) Synthetic 1nflow sequences for LG2 
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Year Hay JW\ Ju1 Aug Sep Oct Nov Dec Jan Feb Mar Apr 

1 10914.10 14078.93 16725.18 19384.84 22217.89 24502.56 26389.54 26515.30 21013.91 17075.50 12543.71 8000.00 
2 9861.48 14597.06 19509.25 22916.89 16120.23 28704.88 10481.00 28169.13 22626.34 18187.45 13074.77 8000.00 
3 10887.31 14070.29 16644.23 18867.30 21402.27 25422.55 28278.93 26977.10 22236.95 11919.51 12965.38 8000.00 
4 11990.68 17864.01 21602.92 24985.60 28090.68 30501.11 32463.12 27103.91 21254.55 17166.55 12448.86 8000.00 
5 10059,b9 13844.00 17205.39 19843.62 d2370.82 25394.73 27468.33 26550.95 20994.45 17012.20 12453.31 8000.00 
6 11519.41 15568.11 17815.29 18720.59 2054~.77 23912.19 26711.55 24386.05 20046.53 16257.34 11909.50 8000.00 
7 10107.89 13840.38 16583.05 19363.23 21890.43 24970.5Q 27681.82 26436.85 21802.14 17579.25 12713.74 8000.00 
8 9898.96 15412.16 19657.43 22911.68 24917.89 26811.5~ 28405.59 27918.80 22411.87 17952.16 12902.41 8000.00 
9 9602.61 10971.19 12669.29 14632.04 17296.10 18669.86 19449.80 14943.80 9947.65 8000.00 8000.00 8000.00 

10 10107.89 12360.34 14904.82 15943.52 16464.00 15678.28 14448.76 12704.17 10506.94 8343.32 8000.00 8000.00 
Il 10040.94 13472.74 16488.62 20021.43 23873.14 25748.02 27380.98 27241.48 21528.40 17367.85 12665.10 8000.00 
12 10549.83 15539.43 18638.34 21860.45 24195.84 27061.73 30117.70 26689.47 21623.99 17501.38 12699.15 8000.00 
13 11112.30 14072.36 16890.04 20288.92 23630.01 26380.72 28272.88 25884.23 2127c 33 17127.0B 12359.64 8000.00 
14 11275.68 13141.92 15675.68 17692.52 20022.72 22127.95 24590.34 25022.51 19519.51 15977.59 11911.55 8000.00 
15 8919.99 12281.81 14917.36 16856.52 19899.52 21761.01 23946.07 22110.73 1é~88.16 12435.20 10189.15 8000.00 
16 10332.88 15781.26 18901.59 20663.98 22361.74 25704.38 28314.52 25961.52 21312.51 17241.14 12505.30 8000.00 
17 10359.67 12373.65 14095.86 14898.86 15712.23 14664.58 13858.09 12304.22 lu268.24 8211.56 8000.00 8000.00 
18 9935.04 12952.13 14810.93 16163.00 16932.32 15472.07 14289.63 12743.67 10608.47 8423.4. 8000.00 8000.00 
19 10314.13 15778.01 19211.78 21884.82 25057.43 27698.32 29359.80 26756.34 21895.13 17649.64 12745.73 8000.00 
20 10B76.60 15871.38 1~723.87 21482.62 24512.67 27450.88 30006.59 26686.50 21110.48 17468.24 12616.99 8000.00 
21 11701.55 15128.17 17086.08 19228.80 20908.41 24184.09 26268.06 26344.05 20765.62 16766.84 12235.16 8000.00 
22 11010.52 15958.64 19392.35 21403.83 23611.83 26210.95 28494.50 26148.52 21454.06 17212.54 12498.35 8000.00 
23 10014.15 13725.89 16294.48 18613.97 20830.13 23339.79 25294.16 24822.85 18764.58 :4443.11 11217.48 8000.00 
24 10794.45 15193.91 18280.30 21082.79 23994.45 27319.22 30067.59 25729.48 20737.84 167?7.71 12239.80 8000.00 
25 10566.56 12828.80 15700.05 18512.37 21646.09 24257.53 26497.02 26634.04 21068.92 17031.20 12434.99 8000.00 
26 8971.61 11919.53 14319.38 17718.27 20530.58 23414.14 26374.59 25966.69 21116.93 17209.80 1262q.25 8000.00 
27 9553.11 11393.09 13444.39 14716.28 15921.22 18111.80 19518.91 14969.75 10026.87 8093.74 8000.00 8000.00 
28 11120.33 16032.16 19902.45 24003.08 26106.54 28388.57 29954.14 26555.43 21615.88 17360.10 12496.63 8000.00 
29 10075.75 13530.89 16356.60 19792.99 23020.03 26041.26 28091.53 25893.95 21290.28 17181.78 12458.99 8000.00 
30 8671.64 12362.04 15891.54 18979.11 21681.96 24410.62 26807.61 26911.66 21370.12 17278.06 12576.15 8000.00 
31 9517.51 14269.09 16971.59 19398.22 21015.63 24641.54 27521.25 27510.92 22709.16 18314.24 13220.11 8000.00 
32 9553.47 12764.95 16051.35 19112.76 22995.57 25379.35 27009.71 25611.84 20137.32 16381.49 12075.94 8000.00 
33 11406.92 16347.27 20305.94 24034.27 27077.28 30232.~3 32347.50 28156.43 22/.60.46 17961.14 12869.95 8000.00 
34 10665.00 14814.79 18036.91 20792.98 23019.50 26327.33 28546.08 26438.94 21717.09 11491.13 12667.17 8000.00 
35 11195.32 13191.16 15333.88 17115.02 !8921.64 22540.16 25181.41 25724.91 20427.01 16634.08 12266.03 8000.00 
36 9807.~2 13786.63 17300.70 20056.77 21798.59 23930.59 25708.71 25436.72 19634.01 15883.47 11885.02 8000.00 
37 10903.38 15791.89 19731.81 23110.88 26154.27 28088.07 29298.54 26952.57 22005.86 17637.19 12704.04 8000.00 
38 9636.50 13332.69 15644.15 18443.07 21322.79 23792,27 26016.20 26119.62 20459.1 Q 16647.29 12333.12 8000.00 
39 9810.60 13838.56 17285.66 20065.84 22847.05 25573.66 27408.80 25938.32 21154.22 17086.38 12379.14 8000.00 
40 9893.75 15246.34 19952.40 24165.64 27517.22 29858.26 32243.02 27116.83 21339.79 17316.82 12637.37 8000.00 
41 10512.33 14949.83 18600.49 22824.32 26271.68 29B79.48 32240.80 27526.25 21787.74 ]7527.55 12644.84 8000.00 
42 8704.36 12566.38 15836.65 19431.00 22546.53 25640.03 27944.26 28366.04 22973.19 18453.50 13272.79 8000.00 
43 8617.27 12280.96 15156.12 16801.67 18044.21 19651.62 20384.36 18775.36 16285.16 13687.59 10648.33 8000.00 
44 9888.27 15432.55 18421.64 19605.50 20756.35 23279.40 25176.74 253~~.57 ~9786.90 16172.10 11991.40 8000.00 
45 9963.26 15053.95 19114.40 22944.51 26539.61 27959.16 29330.33 28100.21 22710.43 18056.63 12874.75 8000.00 
46 10263.25 14975.50 19049.34 22708.04 25097.86 28518.18 31136.09 27403.89 21838.99 17568.27 12684.63 8000.00 
47 10935.52 1470~.88 17669.19 20406.51 22853.36 25815.67 28254.74 26638.38 21880.94 17563.29 12657.15 8000.00 
48 9248.13 12545.15 16011.00 18836.11 21599.79 24272.82 26805.21 26861.31 21094.15 17090.07 12520.58 8000.00 
49 10619.47 13273.68 16667.21 19758.08 22653.34 25971.88 28652.01 27121.49 22382.71 18036.86 13019.15 8000.00 
50 8867.80 13429.72 16611.66 19233.81 21561.42 24735.32 27166.62 25979.46 20497.35 16649.59 12228.87 8000.ÛO 

Table C.3 (a) Optuna1 storage levels for LG4 
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Year Hay JWl Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 

1 6939.29 8881.14 10025.28 11407.80 12901.24 14096.27 14900.24 8045.00 6000.00 6080.10 6069.69 6000.00 
2 6440.75 B616.B9 10150.43 11078.65 11870.66 12303.38 12087.10 7899.15 6000.00 6083.53 6060.84 6000.00 
3 7793.30 9114.02 9557.41 9982.04 10636.6f 12427.25 13232.17 8538.20 6000.00 6080.92 6071.41 6000.00 
4 7836.46 10134.66 10192.67 10336.38 10330.30 9874.05 9038.53 7794.14 6174.79 6144.63 6000.00 6000.00 
5 7213.2ï. 9244.64 10430.43 11410.00 12)16.49 13654.95 14203.75 8094.35 6000.00 60/.5.72 6010.63 6000,00 
6 9531.98 10603.85 10952.94 10570.82 10838.67 12264.47 13133.66 9396.61 6462.93 6283.91 6000.00 6000.00 
7 7142.96 9005.92 9685.52 10630.29 11409.79 12657.22 13496.34 8627.86 6002.76 6053.57 6000.00 6000.00 
8 7096.89 10460.10 12210.52 13647.57 14229.57 14782.75 15045.93 8465.76 6008.46 6034.82 6000.00 6000.00 
9 6000.00 7029.02 8054.85 10712.34 13784.37 16704.09 19016.40 16436.70 13495.40 10994.65 6000.00 6000.00 

10 8121.29 9816.45 11353.86 13373.89 14981.44 19629.41 23679.03 18975.66 13932.14 11254.75 6000.00 6000.00 
11 6107. 29 8174.79 9464.82 11376.25 13490.41 14311.72 14873.27 8012.77 6000.00 6045.39 6042.C8 6000.00 
12 6883.36 9010.90 9200.55 9743.76 9709.57 10094.75 10480.46 8036.30 6000.00 6079.41 6027.20 6000.00 
13 8062.57 9257.68 9892.67 11173.16 12420.11 13336.33 13549.07 9253.78 6364.17 6238.38 6000.00 6000.00 
14 6000.00 7404.86 8934.23 10329.67 11918.57 13437.22 15059.81 8412.42 6369.02 62B2. 28 6105.B9 6000.00 
15 6000.00 B529.79 10120.76 11459.96 13536.15 14880.70 16319.27 11757.24 10153.95 9915.68 7345.57 6000.00 
16 7091. 23 9977.22 10607.77 10571.41 10515.4B 11673.68 12177.62 8644.84 6098.32 6115.17 6000.00 6000.00 
17 8375.74 9892.05 10933.95 12790.61 14597.74 18977.32 23233.77 18507.63 13414.54 10977.69 6000.00 6000.00 
18 6000.00 8270.59 9392.84 11627.15 13405.77 17817.61 22133.78 17196.66 11817.61 10158.86 6000.00 6000.00 
19 7002.15 9B33.03 10580.73 11103.45 11985.15 12566.79 12380.59 8498.30 6000.60 6056.25 6000.00 6000.00 
2e 7407.86 9726.76 9961.48 10381.02 11009.94 11643.74 11889.04 3653.74 6134.26 6112.49 6000.00 6000.00 
21 7893.13 10050.91 10796.78 11842.63 12567.03 14496.75 15449.25 8504.51 6249.95 6158.02 6000.00 6000.00 
22 7832.90 10399.84 11279.23 11472.96 11862.62 12500.96 12849.14 8931.68 6200.27 6144.63 6000.00 6000.00 
23 000.00 8194.17 10344.96 11949.33 13463.05 15276.33 16564.55 :.1974.25 8226.33 8606.90 7292.62 6000.00 
24 7142.92 8834.77 9018.82 9280.55 9645.30 10370.39 10558.88 8652.30 6258.25 6190.16 6000.00 6000.00 
25 6342. 57 7660.96 9001.87 10551.70 12308.13 13799.04 14891.92 8089.70 6046.83 6058.92 6000.00 6000.00 
26 6103.48 7465.93 8035.46 9504.93 10571.90 11816.39 12878.16 8064.52 6000.00 6116.53 6092.B8 6000.00 
27 6000.00 8403.12 10605.12 121.99.10 14298.29 16912.76 18805.26 16174.96 13244.69 10893.43 6000.00 6000.00 
28 7717.51 10037.98 10954.65 12366.82 12836.61 12628.35 12284.25 9071.32 6311.82 6206.23 6000.00 6000.00 
29 7034.91 8617.04 9271.63 10595.80 11781.36 12910.02 13242.81 8943.93 6183.34 6144.63 6000.00 6000.00 
30 6000.00 7998.43 9251.93 10550.95 11582.57 12734.28 13491.14 7557.56 6000.00 6045.83 6000.14 6000.00 
31 6740.42 9452.80 10238.77 11070.26 11356.54 13133.50 14212.93 8/.42.57 6000.UO 6131.02 6142.15 6000.00 
32 6000.00 7736.42 9016.46 10427.75 12394.86 13409.75 13803.51 8308.52 6158.97 6123.20 6000.00 6000.00 
33 7613.33 9576.38 10153.17 10914.77 11234.49 11696.11 11334.13 8289.51 6117.68 6091.06 6000.00 6000.00 
34 7498.95 9478.31 10243.38 10968.27 11345.78 12550.11 12868.00 8730.45 6037 .15 6058.92 6000.00 6000.00 
35 6562.01 7825.13 8873.22 9859.71 10855.86 13221.73 14723.31 8031. 53 6000.00 6049.91 6008.73 6000.00 
36 6000.00 8996.35 11117.64 13021.98 14211.71 15751.79 16923.37 10192.68 8333.83 7889.36 6912.07 6000.00 
37 7821.57 10437.15 11720.37 13000.91 13975.75 14273.32 14009.19 9065.89 6152.84 6104.46 6000.00 6000.00 
38 6000.00 8624.36 9855.04 11626.76 13432.05 15051.11 16356.14 9667.88 7698.78 7215.41 6629.35 6000.00 
39 6948.27 9136.04 10344.13 11391.51 12443.98 13539.57 13902.57 8841. 77 6242.87 6184.81 6000.00 6000.00 
40 6000.00 8161. 72 9058.99 10033.93 10446.06 10202.33 9896.47 8807.44 7233.61 6933.97 6471.18 6000.00 
41 6502.27 7882.57 8063.44 8959.43 9354.78 9937.40 9534.41 7811.42 6129.43 6112.49 6000.00 6000.00 
42 6000.00 8185.05 9395.69 11125.94 12520.43 14004.27 14789.64 8058.89 6009.80 6112.13 6123.64 6000.00 
43 8877.47 13248.42 16310.70 19279.46 21877.71 24950.93 24270.32 20210.48 15505.15 11037.45 6000.00 6000.00 
44 6000.00 10068.68 11166.01 12475.01 13155.96 14869.36 16014.27 9364.33 7465.71 7039.81 6466.63 6000.00 
45 7151.44 10186.41 11817.30 13643.70 15~99.73 15503.02 15611.63 9110.55 6268.27 6147.31 6000.00 6000.00 
46 6465.43 8::_58.51 8908.76 9628.64 9506.23 10164.52 10138.01 7866.58 6083.29 6085.71 6000.00 6000.00 ..... 
47 7954.32 9827.45 10619.35 11515.70 12219.84 13359.93 14001.86 8950.34 6161.39 6117.85 6000.,00 6000.00 \0 

48 6000.00 8047.90 9692.67 11198.17 12647.32 14128.71 15362.73 8786.06 6888.38 6664.96 6338.89 6000.00 0\ 

49 7511.43 8422.00 9346.86 10360.11 11247.36 12520.41 13197.70 8512.99 6000.00 6094.18 6077 .93 6000.00 
50 6000.00 8589.41 9636.66 10576.78 11320.69 12668.07 13355.09 8091. 33 6088.64 6091.06 6000.00 6000.00 

Table C.3 (b) Optimal storage leve1s for LG3 
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Year Hay JWl JuI Aug Sep Oct Nov Dec Jan Feb Har Apr 

1 15236.99 17860.79 19117.69 21170.07 23399.89 25192.46 21022.02 16056.35 10587.14 10473.15 10207.67 10000.00 
2 11973.18 15318.66 17371.20 19214.13 20822.98 21920.32 18497.57 14545.57 10020.39 10085.71 1000~.00 10000.00 
3 14697.62 16874.61 17589.45 18673.91 20109.60 23462.66 20166.15 15466.08 10000.00 10066.65 IGC' .16 10000.00 
4 15191.94 18510.86 18268.33 18751.65 18983.50 18553.49 17427.~4 14312.84 10665.54 10423.18 100uO.OO 10000.00 
5 13410.48 16690.22 18499.02 20498.00 22362.50 24993.57 20989.11 15828.02 10275.87 10200.88 10000.00 10000.00 
6 16376.00 19848.05 20647.63 20619.59 21616.29 24553.23 21258.11 16586.2B 11185.92 10680.31 10000.00 10000.00 
7 13390.92 16498.80 17685.40 197Z3.73 21475.99 24058.04 20602.26 15831.37 10366.77 10265.16 10000.00 10000.00 
8 13025.58 18174.91 20662.13 23302.03 24558.17 25816.01 21270.58 16045.99 10285.72 10192.84 10000.00 10000.00 
9 10000.00 11511.13 12893.19 15922.46 19652.34 22587.87 20092.54 16683.72 12766.01 11468.58 10000.00 10000.00 

10 14438.11 16926.42 18999.50 21005.63 22389.75 25030.65 22909.18 20079.53 16767.77 13614.42 10000.00 10000.00 
Il 13456.09 16430.04 18043.39 21121.82 24520.86 25B85.12 21504.95 16445.76 10939.28 10673.11 10300.74 10000.00 
12 13318.12 16840.25 17311.23 18834.83 19404.68 20727.39 18493.10 14746.03 10254.36 10224.98 10000.00 10000.00 
13 15432.77 17618.78 18795.57 21448.17 24020.38 26139.98 21762.30 16603.93 10944.70 10562.46 10000.00 10000.00 
14 147~5.29 16460.45 18176.15 20068.63 22281.09 24411.95 21375.10 17248.70 12334.85 11587.57 10647.13 10000.00 
15 10000.00 1357~.46 15569.88 17574.64 20721.44 22725.00 19554.60 15253.41 10328.14 10241.05 10000.00 10000.00 
16 13606.40 18361.37 19600.07 20252.20 20847.01 23478.48 20146.04 15738.30 10545.79 10374.97 10000.00 10000.00 
17 14968.43 17192.36 18595.84 20339.48 22045.02 24324.34 22587.13 19881.36 16658.66 13549.46 10000.00 10000.00 
18 10000.00 13330.72 14844.01 17196.32 18854.61 20874.13 19038.88 16620.18 13580.09 11959.87 10000.00 10000.00 
19 13429.41 18064.94 19418.59 20943.67 23018.30 24685.33 20371.16 15634.64 10357.09 10265.16 10000.00 10000.00 
20 14370.05 18249.23 18882.92 20255.86 21937.01 23709.02 20447.75 15791.48 10576.72 10361.58 10000.00 10000.00 
21 16828.84 19681.59 20312.61 21728.41 22634.56 25528.84 21501.80 16395.05 10712.45 10412.47 10000.00 10000.00 
22 15077.32 19316.93 20853.41 21824.74 23083.56 24810.20 20972.14 ]6181.20 10691.20 10417.83 10000.00 10000.00 
23 10772.87 14708.61 16632.83 19039.16 21303.06 24092.40 20100.07 15849.61 10543.83 10396.50 10142.30 10000.00 
24 14020.09 17047.37 17660.54 18879.02 20234.46 22261.82 19632.91 15574.48 10827.71 10508.89 10000.00 10000.00 
25 14549.38 16214.85 17694.78 19959.49 22558.08 24777.25 21014.47 16124.55 10666.80 10445.82 10099.39 10000.00 
26 11088.48 13398.98 14383.01 17185.68 19325.10 21822.43 18888.71 14949.23 10000.00 10108.97 10018.03 10000.00 
27 11993.31 14665.72 16824.51 18902.95 20857.32 24143.71 21257.37 17257.03 12833.50 11548.53 10000.00 10000.00 
28 15070.67 19047.24 20702.96 23154.12 25263.11 25748.36 21257.73 16373.68 10838.77 10498.18 10000.00 10000.00 
29 13338.47 16154.54 17425.29 20206.66 22740.20 25267.12 21141.08 16173.09 10669.43 10417.83 10000.00 10000.00 
30 10l60.48 12731.31 13800.68 15571.78 16917.68 18512.01 16915.49 14039.04 10396.57 10273.20 10000.00 10000.00 
31 12282.49 16461.28 17624.20 19279.96 20047.67 23291.71 20022.99 15445.40 10000.00 10147.84 10126.71 10000.00 
32 12379.34 15179.70 17085.07 19710.93 23213.72 25250.34 20937.60 16009.71 10629.16 10385.69 10000.00 10000.00 
33 14796.30 17952.68 18801.02 20560.03 21588.37 22926.86 19161.91 15322.48 10486.00 10297.30 10000.00 10000.00 
34 14356.46 17719.62 19086.99 20888.27 22107.85 24744.78 20789.21 15959.~9 10426.12 10278.55 10000.00 10000.00 
35 15877.10 17254.12 18146.71 19269.65 20421.17 23828.78 20485.19 15889.15 10580.66 10412.3B 10092.16 10000.00 
36 10030.66 14169.13 16768.88 19564.15 21214.30 23460.50 19791.38 15308.93 10416.68 10332.28 10068.57 10000.00 
37 14945.58 19213.22 21255.41 23905.61 26042.63 27152.74 22021.06 16/.77.26 10574.56 10337.48 10000.00 10000.00 
38 10527.80 14109.31 15474.64 18064.00 20714.99 23106.15 19655.03 15154.11 10023.76 10045.53 10000.00 10000.00 
39 12931.70 16525.70 18450.32 20650.83 22839.96 25169.03 20960.42 16121.38 10757.38 10476.75 10000.00 10000.00 
40 11128.58 14172.54 15014.53 i6729.68 17531.56 17334.34 1586h.04 1333Z.28 10084.41 10131.24 10000.00 10000.00 
41 12612.86 14923.70 15222.l.2 17235.31 18418.64 19994.96 17766.30 14458.96 10557.02 10356.23 10000.00 10000.00 
42 10368.57 13415.75 14783.36 17516.96 19708.78 22104.90 19045.01 14862.66 10000.00 10113.97 10098.20 10000.00 
43 13120.35 16681.77 17854.92 19395.01 20q37.01 22220.83 19835.97 15960.10 11176.25 10680.31 iOOOO.OO 10000.00 
44 10599.51 16414.66 18534.61 19532.32 20487.47 23145.79 19551.46 15301.64 10410.62 10316.05 10000.00 10000.00 
45 13140.13 17801.54 20116.72 23374.70 26346.13 27024.81 22227.34 16611.07 10686.79 10372.30 10000.00 10000.00 
46 12416.59 15346.21 16316.47 18028.65 18368.86 20048.90 17869.18 14577.57 10485.13 10313.37 10000.00 10000.00 
47 15052.31 18124.65 19408.45 21319.00 22906.13 25266.65 21451.33 16292.84 10598.66 10361.58 10000.00 10000.00 
48 10212.96 13281.91 15513.04 18057.55 20507.01 23062.23 19860.54 15317.38 10093.91 10101.78 10000.00 10000.00 
49 14181.74 15820.62 17251.65 19346.92 21224.27 23801.65 20303.76 15467.93 10000.00 10084.86 10012.75 10000.00 
50 10623.46 14953.70 16814.16 18996.03 20835.36 23844.86 20406.19 15765.47 10500.69 10324.09 10000.00 10000.00 

Table C.3 (c) OptLffial storage levels for EOL 
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Year May JW\ Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 

1 8125.31 9582.99 10550.90 11459.88 12476.92 8727.07 10127.29 14891.94 19370.00 14941.49 9934.04 5000.00 
1- 5000.00 6728.86 8287.69 8852.83 9319.39 8917.35 10419.13 16126.91 19370.00 14943.23 9927.00 5000.00 
3 5627.60 6E10.90 6178.37 5895.32 5833.95 5000.00 8237.19 15092.36 19370.00 14943.94 9939.20 5000.00 
4 6547.22 8941.38 9703.83 10163.63 10494.55 10574.02 10381.35 17259.83 19370.00 14901.52 9839.30 5000.00 
5 5735.28 7390.95 8570.85 9259.20 9891.04 7281.41 9437.79 14889.57 19370.00 14912.79 9889.63 5000.00 
6 6404.74 7818.60 7902.89 7148.85 6900.86 5000.00 7948.93 15533.32 1~370.00 14855.73 ~766.73 5000.00 
7 5367.93 6615.63 7039.80 7!.15.77 7673.33 5496.89 8445.77 15158.98 19370.00 14921.19 9883.22 5000.00 
8 5602.64 8396.83 10124.41 ~1168.99 11505.96 8171.95 10034.25 15144.27 19370.00 14895.34 9873.14 5000.00 
9 12576.25 13473.08 14501.59 16089.88 ~8033.13 13290.51 12309.99 18073.29 19370.00 14988.89 10106.24 5000.00 

10 6607.04 8081.88 9624.64 10674.57 11381.45 8121. 56 7795.84 9929.77 11785.15 11367.62 10816.96 5000.00 
11 7298.42 8893.91 10049.77 11430.60 12997.58 9010.71 10280.04 14952.24 19370.00 14906.78 9906.43 5000.00 
12 5000 00 6386.72 6322.44 6250.13 5713.58 5649.30 8568.04 16011.84 19370.00 14946.11 9907.34 5000.00 
13 5858.65 6331.91 6526.33 6985.91 7446.21 5301. 71 7965.29 15282.18 19370.00 14869.70 9785.45 5000.00 
14 12396.04 13408.88 14728.66 15684.20 16816.26 11381.20 11637.73 15736.89 19370.00 14899.71 9864.76 5000.00 
15 10240.34 12017.18 13175.63 13862.66 15228.55 9390.77 9231.64 15243.53 19370.00 15265.62 10614.35 5000.00 
16 5144.33 7132.10 7391.60 6780.63 6176.40 5000.00 7950.17 15454.96 19370.00 14~21.06 9860.77 5000.00 
17 6799.88 8119.21 9163.79 10077.12 10952.47 7451.88 7346.19 9462.59 112d1.69 10495.28 9544.27 5000.00 
18 12983.07 14958.17 16085.78 17317.84 18169.86 14691.41 14470.69 17193.07 18438.08 14692.86 10425.84 5000.00 
19 5000.00 6871.42 7190.16 6978.56 7097.80 5785.70 8228.90 15420.90 19370.00 14924.53 9882.23 5000.00 
20 5154.78 6452.82 6144.14 5709.7B 54B'\.13 5000.00 B071.55 15635.B7 19370.00 14894.80 9845.21 5000.00 
21 8565.02 10178.20 10712.19 11305.10 11640.42 8605.36 10197.05 14979.84 19370.00 14862.77 9811.02 5000.00 
22 5626.41 7251.28 7666.11 7167.60 6858.83 5000.00 7912.54 15350.98 19370.00 14884.25 9829.49 5000.00 
23 11426.80 13442.41 14511.71 15489.41 16351.59 10909.32 10570.48 15101.48 19370.00 14909.34 9901.11 5000.00 
24 5070.18 5954.57 5759.59 5320.88 5000.00 5118.39 8102.75 16168.74 19370.00 14892.97 9820.61 5000.00 
15 8188.42 9071.48 10195.57 11215.20 12424.86 8131.74 10204.99 14953.55 19370.00 14894.71 9864.93 5000.00 
26 5000.00 6205.28 6915.05 8147.12 9046.54 6502.64 8927.43 15179.30 19370.00 14977.05 9960.75 5000.00 
27 11806.84 13251.86 14112.91 15654.36 16520.63 11521.83 10986.88 11530.45 19370.00 14920.86 9903.95 5000.00 
28 5316.08 6539.54 6823.49 7144.93 6706.91 5000.00 7643.30 15534.61 19370.00 14871.83 9798.36 5000.00 
29 5211-68 6147.48 6490.40 7117.23 764B.68 5520.91 8128.11 15305.15 19310.00 14895.81 9837.81 5000.00 
30 5000.00 6868.83 8419.63 9611.52 10580.93 11807.64 :3776.09 16900.81 19370.00 14918.66 9885.93 5000.00 
31 5199.09 7302.07 7937.74 8343.07 8305.06 6263.55 9099.34 15017.65 19370.00 14981.72 9Y92.03 5000.00 
32 6404.49 7768.98 8996.8f 10010.40 11501.09 81)16.66 9439.85 15181.53 19310.00 14890.96 9842.01 5000.00 
33 5536.27 617a.40 7119.14 7224.19 6981.11 6989.73 9415.04 16238.77 19370.00 14881.58 98lt5.30 5000.00 
34 5370.14 6480.04 6772.51 6711.44 6385.36 5000.00 7919.80 15241.88 19370.00 14905.45 9874.16 5000.00 
35 9310.25 10097.64 10860.40 11358.00 11881.01 8605.05 10103.53 14944.34 193ïO.00 14920.26 9891.99 5000.00 
36 11432.95 13767.31 15617.02 16936.41 17666.32 11122.20 11814.40 15708.71 19370.00 14928.75 9888.26 5000.00 
37 5613.59 7270.11 8060.47 8459.79 8031.10 6070.83 8412.43 15236.99 19370.00 14874.16 9837.70 5000.00 
38 9708.55 11721.99 12699.04 13903.76 15152.56 10480.42 11086.51 15411.72 19370.00 14912.46 9921.08 5000.00 
39 5494.90 7275.02 8471.02 9204.95 9948.27 7119.86 9098.22 15390.81 19370.00 14894.36 9818.66 5000.00 
40 5000.00 7096.93 8489.70 9475.35 9991.16 10011.51 11278.38 17731.83 19370.00 14950.33 9925.22 5000.00 
41 5105.90 6260.73 6666.62 7313.55 7548.23 8106.79 9975.33 16874.97 19370.00 14897.40 q8 1,6.50 5000.00 
42 5000.00 6995.81. 8420.75 9947.44 11196.79 9827.74 11707.02 15738.05 19370.00 14959.43 9971.84 5000.00 
43 7342.29 11311.96 14567.59 17081.29 16788.91 17006.40 15988.79 17J48.57 19370.00 16308.77 12820.46 5000.00 
44 11002.14 14349.89 15870.06 16265.31 16645.21 11606.77 11614.70 15661.09 19370.00 14906.32 9858.79 5000.00 
45 5581.40 8031.03 9576.65 10886.58 12071.31 8475.80 10243.16 15451.58 19370.00 14839.53 9802.23 5000.00 

46 5000.00 6415.23 7159.83 7558.91 7263.41 1780.35 9827.88 16608.64 19370.00 14901.43 9860.33 5000.00 ..... 
47 5856.87 6991.96 7409.57 7620.95 7695.91 5591.18 8510.97 15185.21 19370.00 14881.66 9837.44 5000.00 \0 

48 8027.23 9648.92 11193.43 12277.25 13328.70 9353.14 10703.37 15237.56 19370.00 14918.20 9906.79 5000.00 co 

4Ç 5395.74 5584.32 6038.99 6233.86 63~2.46 5000.00 8163.09 15048.38 19370.00 14954.73 9943.19 5000.00 

50 5271.64 7421.91 8484.10 9141.86 9643.61 6986.21 9231.16 15112.63 19370.00 14901.45 9857.71 5000.00 

Table C.3 (d) OptiID31 storage 1eve1s for LG2 
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