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Abstract 

Master of Science      Meaghan Kilmartin       Bioresource Engineering 

The use of modelling tools to predict the daily soil water balance has become widespread in 

the development of irrigation management strategies. These predictions provide insights at the 

field scale and aid regional water resource management. This study is focused on the water needs 

of irrigators in Lanoraie, Quebec. In this region, there are competing water demands between the 

irrigated crops, primarily potato, other vegetables, and berries, and an ecologically-sensitive 

wetland complex. The growing season is expected to be increasingly warmer, drier, and more 

variable due to climate change. Thus, to balance the agricultural and ecological water needs of the 

region, it is necessary to optimize irrigation requirements to achieve highest crop yields. This study 

estimated the net irrigation requirements of the major irrigated crops and soil types in Lanoraie for 

the historical dry, average, and wet years using the AquaCrop model. AquaCrop was next used to 

predict the effect of climate change on irrigation requirements. Three irrigation treatments were 

investigated, comprising a management allowable depletion (MAD) of 20%, 35%, and 50% of 

plant available water (AW), for potato, squash, strawberry, and cranberry cultivated on sandy and 

sandy loam soils. The resulting crop water needs were used to present potential water supply 

scenarios. 

The AquaCrop models were calibrated to field measurements of soil moisture in 2022. The 

model simulated soil moisture under potato with the highest agreement to field sensor 

measurements (Wilmott index of 0.91). Lowest model efficiency and weaker agreement were 

observed for the simulation of soil water content in the strawberry field (Wilmott index of 0.65), 

attributed to atypical growth cycles due to the fact that production was not for the fresh berry 

market, but for plant distribution. Statistical analysis revealed that both the historical weather (wet, 

average, or dry growing season) and irrigation treatment (20%, 35%, or 50% depletion of AW) 

had a significant effect on net irrigation requirement. The MAD of 50% AW demonstrated 

significant water-saving potential, particularly in dry years where crop-water demand was 

significantly higher. Under the 50% MAD, the mean net irrigation requirement for potato, squash, 

strawberry, and cranberry crops in historical dry years were 265 mm, 151 mm, 285 mm, and 161 

mm, respectively. 
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Next, the models were used to predict the impact of climate change on irrigation requirements 

to the periods 2050 and 2080. The irrigation requirement for potato is predicted to significantly 

increase by the 2080s compared to the historical period (1997-2021), under the CMIP6 SSP5-8.5 

high emissions scenario. Projected irrigation requirements for the other crops remained fairly 

stable. Irrigation treatment significantly impacted the net irrigation requirement, with an MAD set 

at 50% AW significantly reducing irrigation requirements across all climate periods.  

Finally, the gross water needs of each crop were mapped over the respective field areas and 

combined into water supply units. The peak volumetric water demand for the month of July was 

determined in each of the five proposed irrigation sectors of the region.  An irrigation pipeline 

system was proposed to convey water to the five irrigation sectors. Assuming PVC pipe laid on a 

slope of 0.4%, potential diameters of 67 cm, 82 cm, 65 cm, 75 cm, and 84 cm were calculated for 

the St-Joseph, St-Thomas, St-Henri, Lavaltrie-Lanoraie, and St-Paul-Lavaltrie-L’Assomption 

irrigation sectors. A detailed engineering study, as well as a cost-benefit analysis are recommended 

to determine the optimum pipeline design.  
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Résumé 

Maîtrise en Science      Meaghan Kilmartin         Génie des bioressources 

L'utilisation d'outils de modélisation pour prévoir le bilan hydrique journalier du sol s'est 

généralisée dans le développement de stratégies de gestion de l'irrigation. Ces prévisions 

fournissent des informations à l'échelle du terrain et facilitent la gestion des ressources en eau au 

niveau régional. Cette étude se concentre sur les besoins en eau des irrigants de Lanoraie, au 

Québec. Dans cette région, il existe des demandes d'eau concurrentes entre les cultures irriguées, 

principalement la pomme de terre, d'autres légumes et les baies, et un complexe de zones humides 

écologiquement sensibles. La saison de croissance deviendra plus chaude, sèche et variable en 

raison du changement climatique. Ainsi, pour équilibrer les besoins en eau agricoles et écologiques 

de la région, il est nécessaire d'optimiser les besoins en irrigation afin d'obtenir les meilleurs 

rendements. Cette étude a estimé les besoins nets en irrigation des principales cultures irriguées et 

des principaux types de sol à Lanoraie pour les années historiques sèches, moyennes et humides à 

l'aide du modèle AquaCrop. AquaCrop a ensuite été utilisé pour prédire l'effet du changement 

climatique sur les besoins en irrigation. Trois traitements d'irrigation ont été étudiés, comprenant 

un épuisement admissible de 20 %, 35 % et 50 % de l'eau disponible pour les plantes, pour la 

pomme de terre, la courge, la fraise et la canneberge cultivées sur des sols sableux et de sable 

loameux. Les besoins en eau des cultures qui en résultent ont été utilisés pour présenter des 

scénarios potentiels d'approvisionnement en eau. 

Les modèles AquaCrop ont été calibrés sur des mesures de terrain de l'humidité du sol en 2022. 

Le modèle a simulé l'humidité du sol sous la pomme de terre avec la plus grande concordance avec 

les mesures des capteurs sur le terrain (indice de Wilmott de 0,91). L'efficacité la plus faible du 

modèle et une corrélation plus faible ont été observées pour la simulation de la teneur en eau du 

sol dans le champ de fraises (indice de Wilmott de 0,65), ce qui a été attribué à des cycles de 

croissance atypiques dus au fait que la production n'était pas destinée au marché des baies fraîches, 

mais à la distribution des plantes. L'analyse statistique a révélé que les conditions météorologiques 

historiques (saison de croissance humide, moyenne ou sèche) et le traitement d'irrigation 

(épuisement de 20 %, 35 % ou 50 % de la FE) ont eu un effet significatif sur les besoins nets en 

irrigation. L'épuisement de 50 % a démontré un potentiel d'économie d'eau significatif, en 

particulier au cours des années sèches où la demande en eau des cultures était significativement 
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plus élevée. Avec un traitement de 50 %, les besoins nets moyens en irrigation pour les pommes 

de terre, les courges, les fraises et les canneberges au cours des années sèches historiques étaient 

respectivement de 265 mm, 151 mm, 285 mm et 161 mm. 

Ensuite, les modèles ont été utilisés pour prévoir l'impact du changement climatique sur les 

besoins en irrigation pour les périodes 2050 et 2080. Les besoins en irrigation pour la pomme de 

terre devraient augmenter de manière significative d'ici les années 2080 par rapport à la période 

historique (1997-2021), dans le cadre du scénario CMIP6 SSP5-8.5 à fortes émissions. Les besoins 

d'irrigation prévus pour les autres cultures sont restés relativement stables. Le traitement de 

l'irrigation a eu un impact significatif sur le besoin net d'irrigation, avec un épuisement maximal 

fixé à 50 % réduisant de manière significative les besoins d'irrigation à travers toutes les périodes 

climatiques.  

Enfin, les besoins bruts en eau de chaque culture ont été cartographiés sur les superficies 

respectives des champs et combinés en unités d'approvisionnement en eau. La demande 

volumétrique maximale en eau pour le mois de juillet a été déterminée dans chacun des cinq 

secteurs d'irrigation proposés dans la région.  Un système de conduites d'irrigation a été proposé 

pour acheminer l'eau vers les cinq secteurs d'irrigation. En supposant que les tuyaux en PVC soient 

posés sur une pente de 0,4 %, des diamètres potentiels de 67 cm, 82 cm, 65 cm, 75 cm et 84 cm 

ont été calculés pour les secteurs d'irrigation de St-Joseph, St-Thomas, St-Henri, Lavaltrie-

Lanoraie et St-Paul-Lavaltrie-L'Assomption. Une étude technique détaillée ainsi qu'une analyse 

coûts-bénéfices sont recommandées afin de déterminer la conception optimale du pipeline.  
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1. Introduction 

In many dry regions of the world, water is the major factor limiting agricultural production. 

The changing weather and climate, increasing population, and groundwater depletion are all 

factors that exert pressure on limited water supplies (Kisekka et al., 2017). Since agricultural 

production is a major consumer of water, it is important to use water more efficiently to ensure 

sustainable crop production (FAO, 2021). Interest in the issue of water limiting agricultural 

production has been very high in areas with very limited rainfall in the arid and semi-arid zones of 

the world, where without irrigation, production is almost negligible (Salman, 2021). However, in 

today’s changing climate, optimizing crop water productivity is increasingly important to the 

world’s semi-humid and humid zones as well. There exists a growing uncertainty and variability 

of rainfall amount and distribution. This is augmenting concerns for farmers, experts, and 

governments regarding water allocation and the timing and quantities of supplemental irrigation 

(e.g. Anapalli et al., 2016; Danielescu et al., 2022; Paz et al., 2007). Meanwhile, maximizing the 

economic yield through optimizing irrigation practices is paramount to feeding a growing global 

population (Bhatia et al., 2008; Licker et al., 2010; van Ittersum and Cassman, 2013). Predicting 

crop-water requirements to improve water use efficiency is thus essential in all climatic regions.  

In addition to climate change, water resources are impacted by conflicts between different 

users, such as between the agricultural sector and wetland services (Mirzaei and Zibaei, 2021; Zou 

et al., 2018). Expanding irrigated areas or intensifying irrigation to increase crop production may 

increase the rate of environmental degradation (Kang et al., 2009). This study is focused on an 

agricultural region located in Lanoraie, Quebec, in which there are competing water demands 

between an ecologically sensitive wetland complex and the major irrigated crops. The major 

irrigated crops are potatoes, other vegetables, and small fruit, which compose a large portion of 

the total cropped area of Lanoraie. Water for irrigation is mainly sourced from excavated reservoirs 

and ponds adjacent to streams, as well as by 12 small dams operated by the municipalities. 

Irrigators are investing in more efficient and mechanized irrigation technologies. However, they 

are increasingly conscious of limited water resources and concerned about meeting future market 

demands. The irrigated region is near a peatland known as the Lanoraie peatland complex. 

Peatlands are valuable terrestrial wetland ecosystems that supply and filter water, contribute to 

biodiversity, mitigate flooding, recycle nutrients, store and sequester carbon, and provide habitat 
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to many endangered and threatened species (Mitsch and Gosselink, 2015). However, wetlands are 

vulnerable to anthropogenic disturbances, such as urban expansion, agriculture, and climate 

change (IUCN, 2017). Environmental degradation is prevalent in the Lanoraie peatland complex, 

evident from tree encroachment and water table lowering. Meanwhile, the growing season weather 

conditions are increasingly drier and more variable due to climate change, with 2021 being the 

driest and second-warmest growing season in the last 25 years. Therefore, irrigation water supply 

must not be at the detriment of the water levels and water quality of the wetlands. Balancing the 

agricultural and ecological water needs of the region, and reducing its vulnerability to future 

climate change, requires integrated and sustainable water resource management. 

There are a plethora of methods and devices to estimate crop water requirements and water 

stress, often integrating combined remote sensing and ground data into crop and soil water models 

(Cahn and Johnson, 2017; Corbari et al., 2019; Pereira et al., 2020; Tolomio and Casa, 2020). Crop 

models have a wide range of applications in agricultural water management, from on-farm 

irrigation scheduling to regional assessments and planning. AquaCrop is a water-driven model 

developed by the FAO based on crop yield response to water that is particularly suited for water-

limited conditions. It requires a relatively low number of input parameters and is well known for 

its balance of simplicity, robustness, and accuracy (Steduto et al., 2009; Vanuytrecht et al., 2014). 

AquaCrop can be also applied to a variety of crops (e.g. Battilani et al., 2014; Geerts et al., 2009; 

Stricevic et al., 2011), which has led to its widespread use around the world. Numerous studies 

have shown the many applications of the model, such as optimizing irrigation (Paware et al., 2017) 

and field management strategies (Abrha et al., 2012), and predicting the impacts of climate change 

on crop yield (Khordadi et el., 2019). Furthermore, recent studies have demonstrated the potential 

of upscaling crop modeling results using appropriate GIS tools (e.g. Alaya et al., 2019; Guo et al., 

2021; Han et al., 2020). This study considers the spatial heterogeneity of crop and soil type to 

assess the irrigation requirements of the Lanoraie study area, through the combined use of the 

AquaCrop V7.1 crop water productivity model and ArcMap V10.8 ArcGIS® software by Esri.  

1.1 Scelaneau project 

The research reported in this thesis was funded under the Mitacs Acceleration program and is 

part of the SCELANEAU project funded by the Ministère de l'Agriculture, des Pêcheries et de 

l'Alimentation du Québec (MAPAQ) in collaboration with L’UPA, IRDA, and UQAM. The 

SCELANEAU project aims to evaluate integrated and sustainable water resource management 
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scenarios in the Lanoraie peatland complex. The intent of the project is to develop irrigation water 

supply management scenarios to meet the agricultural demands in the region, without degrading 

the hydrological functions of the surrounding wetland complex.  

1.2 Research objectives 

The main objective of this study was to estimate the current and future irrigation water 

requirements for the agriculture-wetland complex of Lanoraie and propose a water supply 

scenario. 

The specific objectives were to: 

a) Evaluate the ability of AquaCrop to simulate soil moisture content for the major 

irrigated crops in Lanoraie for water resource management and planning. 

b) Estimate the net irrigation requirements for the historical dry, average, and wet years 

of the study area, for the major irrigated crops, soil types, and irrigation methods used. 

c) Predict the impact of climate change on the future irrigation requirements of the major 

irrigated crops. 

d) Map the gross irrigation requirements to propose possible pipeline diameters of an 

irrigation supply system. 

1.3 Scope 

The research area envelopes the Lanoraie peatland complex and surrounding agriculture. It 

spans seven municipalities, including Lanoraie, Lavaltrie, Saint-Thomas, and L’Assomption. It 

borders the Saint-Lawrence River, and five rivers flow through the complex. The extent of the 

study area comprises 5 main watersheds, 12 000 ha of cropland, and 7 600 ha of wetland, and 

covers a total area of 32 400 ha. This study is focused on the irrigated cropland of four major crop 

groups: potatoes; vegetables and gourds; cranberries; and other berries and small fruits. The field 

data collected is limited to four farms in the study area representing the primary crop groups and 

soil types of the Lanoraie region. The simulated results of the research are extrapolated to the entire 

study area to estimate the total irrigation requirements and support water resource management in 

the Lanoraie agricultural-peatland complex. 
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1.4 Thesis outline 

This thesis is organized into chapters to meet the above-mentioned objectives. The chapters 

are outlined as follows: 

 

Chapter 1  Introduction, Objectives, Scope 

 

Chapter 2 Literature review on the impacts of agriculture on wetlands, land use and 

irrigation in Quebec, crop water requirements, soil water content, crop 

characteristics, crop water modelling, and the impact of climate change on 

agriculture. 

 

Chapter 3 Detailed Methodology 

 

Chapter 4  Results and Discussion 

 

Chapter 5 Conclusion and Recommendations  
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2. Literature Review 

2.1 Impacts of agriculture on wetlands 

2.1.1. Peatland Ecosystems 

Peatlands are terrestrial wetland ecosystems characterized by a positive water balance and net 

peat accumulation (Mitsch and Gosselink, 2015). Peatlands perform valuable ecosystem functions 

and provide many benefits in the form of ecosystem services. They supply and filter water, 

contribute to biodiversity, mitigate flooding, recycle nutrients, and provide habitat to many 

endangered and threatened species (Brander et al., 2013; Hefting et al., 2013; Mitsch and 

Gosselink, 2015). Arguably, in the current climate crisis, the most notable ecosystem service 

provided by peatlands is their ability to store and sequester large quantities of carbon due to peat 

accumulation (Yu, 2012; Mitsch and Gosselink, 2015). Although peatlands only occupy 3% the 

global land area (Xu et al., 2018), they store approximately 600 Gt of carbon, equivalent to one 

third of the global soil carbon stocks (Post et al., 1982; Yu, 2012). However, if the peat deposits 

are disturbed, that carbon can be released and significantly contribute to atmospheric CO2 (Hemes 

et al., 2019; Mitsch and Gosselink, 2015).  

Peatlands are often degraded due to anthropogenic activities, such as agriculture. Over the last 

few hundred years, it is estimated that more than half of the world’s wetlands have been lost 

because of changes in land use (Davidson, 2014; Mitsch and Gosselink, 2015; Zedler and Kercher, 

2005). The use wetlands for agriculture is driven by economic and social incentives, to meet the 

demands for food, fiber, and fuel production (Nguyen et al., 2017; Wood and Halsema, 2008). 

Furthermore, the conversion of wetlands to agricultural land is often facilitated by government 

policies and subsidies and a lack of effective regulatory protections (Finlayson et al., 2005). 

Wetland drainage in Canada has been incited by private benefits occurring from tax incentives and 

subsidies; While these programs satisfy public and private policy over the short-term, it can be at 

the expense of both nature and the economy over the long-term (Finlayson et al., 2005). Many 

studies have highlighted the competition for water resources between agriculture and wetlands (Jia 

et al., 2013; Joy and Paranjape, 2007; Zou et al., 2018). There are growing concerns for wetland 

ecosystems and restoration, and increased awareness of the beneficial services they provide 

(Chimner et al., 2017; Finlayson et al., 2005; Zedler and Kercher, 2005). Research has shown that 

the economic valuation of natural wetlands is greater than the profits earned from the conversion 

or exploitation of wetlands (de Groot et al., 2012; ten Brink et al., 2013). 
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2.1.2. In situ/direct impacts of agriculture on peatlands 

The Millennium Ecosystem Assessment (Finlayson et al., 2005) reports with high certainty 

that conversion or drainage for agricultural development has been the main cause of global loss of 

inland wetlands. In the FAO’s report on agriculture wetland interactions, they define in situ 

interactions as those where there is a direct agricultural intervention in a wetland (Wood and 

Halsema, 2008). For peatlands, in situ or direct intervention of agriculture includes peat harvesting 

(Daigle and Gautreau-Daigle, 2001), as well as drainage and conversion for crop cultivation or 

pasture (Mitsch and Gosselink, 2015; Sica et al., 2016; Verhoeven et al., 2006). Organic matter 

production in peatlands coupled with low decomposition rates due to the waterlogged conditions, 

results in a net accumulation of peat and a carbon sink; However, the oxidation of peat, either from 

direct burning as fuel or drying of a peatland, releases important sources of carbon, contributing 

to atmospheric carbon dioxide (CO2) levels (Hemes et al., 2019; Mitsch and Gosselink, 2015). 

Disturbed peatlands are known to emit more than 10% of global CO2 emissions (Lunt et al., 2010). 

Efforts to restore degraded agricultural peat soils showed that it can take restored wetlands over a 

century to become net sinks from atmospheric greenhouse gases (Hemes et al., 2019). Thus, 

emphasizing the need to conserve existing peatlands. Furthermore, draining peatlands for 

agriculture degrades the soil and water resources they depend on, altering ecosystem functions and 

therefore the services they provide. It results in land subsidence, decreased biodiversity, habitat 

loss, conditions that favor invasive species, water quality degradation, and increased flood risk 

(Chimner et al., 2017; Millennium Ecosystem Assessment, 2005; Mitsch and Gosselink, 2015).  

2.1.3. Ex situ/indirect impacts of agriculture on peatland ecosystems 

Wetlands are also affected by surrounding or ex situ agricultural activities, which can alter 

ecosystem functions and structure (Wood and Halsema, 2008). They are vulnerable to the 

intensification of agriculture, which can be related to water withdrawals for irrigation, water 

diversion by dams, soil erosion and sedimentation, and runoff of excess nutrients or pesticides 

from cropland (Finlayson et al., 2005; Wood and Halsema, 2008). In turn, these interactions have 

environmental impacts, such as changes in water table levels and streamflow, as well as decreased 

water quality and biodiversity (Wood and Halsema, 2008). 

Drainage is one of the main indirect disturbances to peatlands in an agricultural landscape. 

Many articles report bog or fen drainage as a result of surrounding land use (Hurkuck et al., 2015; 

Pellerin et al., 2016; Favreau et al., 2019; Pinceloup et al., 2020). In addition, since water is the 
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main nutrient solvent and transport agent in wetlands, nutrient cycling in a wetland also depends 

on hydrology (Mitsch and Gosselink, 2015). Nitrogen inputs have shown to alter vegetation 

composition and growth, and significantly impact carbon loss in bogs due to higher rates of 

decomposition (Bubier et al., 2007; Currey et al., 2009; Bragazza et al., 2012).  

In disturbed peatlands, the combined stresses of altered hydrologic regime and nutrient inputs 

may impose vegetation changes (McClymont et al., 2008; Navrátilová et al., 2017). Several studies 

have shown severe and rapid species composition changes due to anthropogenic disturbances on 

water and nutrient availability (Pellerin and Lavoie, 2003; Kapfer et al., 2011; Talbot et al., 2014). 

As opposed to their natural flooded state that inhibits aerobic respiration, peat soils that are drained 

expose the organic-rich soils to oxidation, releasing large amounts of CO2 emissions (Hemes et 

al., 2019). Restoration studies show that maintenance of the high water table year round could 

significantly reduce carbon losses and potentially allow the return of native wetland species (Knox 

et al., 2015; Peacock et al., 2014). Therefore, monitoring and conservation techniques are 

increasingly important for retaining peat carbon stocks disturbed by agriculture.  

2.2 Land use and irrigation in Quebec 

Quebec is the largest province in Canada and holds 3% of the world’s renewable freshwater 

reserves (MELCCFP, 2023). A large proportion of this resource is in the North, while the majority 

of the population is concentrated in the south. The province’s land is largely covered by forests, 

wetlands, and water bodies, with the urban and agricultural lands located in south-western Quebec 

(AAFC, 2015). The south-western region has a humid continental climate, with a historical mean 

annual precipitation between 750 to 1000 mm of combined snow and rainfall and a reference 

evapotranspiration between 480 and 740 mm (Nand and Qi, 2023). 

Quebec's agricultural expanse covers 3.45 million hectares, with field crops occupying 54.5%, 

hay 40.5%, vegetables 2%, and fruit crops 2.1% (Statistics Canada, 2017). The majority of field 

crops, such as corn and soybean, depend on growing-season rainfall, while irrigation is primarily 

for vegetable and fruit crops (Elmi et al., 2010; Gallichand et al., 1991). Alterations in rainfall 

patterns and depth, and rising temperatures can limit rainfed crop production. In the past decade, 

suboptimal spatial and temporal distribution of growing-season rainfall negatively impacted field 

crop yields in the region (AAFC, 2020). Although the total precipitation over the growing season 

is sufficient for overall crop development, the region experiences frequent short drought events in 

May, June, July, and August. These periods are problematic for shallow root zone crops, notably 
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vegetables that are susceptible to soil moisture deficits, which can result in significant crop yield 

reductions (Gallichand et al., 1991). Consequently, irrigation is commonly employed for these 

crops to attain their potential yields and generate higher revenues. For instance, potatoes are 

shallow rooted and sensitive to droughts. Recently, enhanced marketable yields of potatoes, 

leading to increased net profits, have been realized through the implementation of supplementary 

irrigation during dry periods (Létourneau and Caron, 2019; Matteau, 2019). Consequently, farmers 

have embraced investments in center-pivot sprinkler irrigation, drip irrigation, and sub-irrigation 

systems specifically for potato cultivation, reaping desired advantages in response to the growing 

demand for marketable potatoes. Similar irrigation management is essential to achieve potential 

yield for drought-sensitive fruit crops, such as strawberry and cranberry (Létourneau and Caron, 

2019; Pelletier et al., 2015a). Between 2010 and 2020, the area of irrigated land has progressively 

risen from 14,340 to 20,790 hectares (Statistics Canada, 2023). The economic viability of irrigation 

in south-western Quebec is particularly evident for high value crops due to their greater returns 

(Nand and Qi, 2023). 

In numerous catchments with a concentration of irrigated agriculture, the increasing water 

demand across various sectors combined with diminished allocations to fulfill environmental flow 

requirements has led to less dependable and more costly irrigation allocations. This predicament 

is aggravated in instances where irrigated agriculture is identified as the predominant contributor 

to environmental harm and excessive water extraction, particularly during the summer months 

when river and groundwater levels reach their lowest, coinciding with peak irrigation demands 

(Hedley et al., 2014). 

In southern Quebec, particularly in the densely populated lowlands along the St. Lawrence 

River, there are conflicting interests between the preservation of natural environments and their 

conversion for other purposes (He et al., 2017). Urbanization, infrastructure expansion, and 

agricultural activities have contributed to land use changes and fragmentation (Paquette et al., 

2003; Jean and Létourneau 2011). However, this region also boasts the highest biodiversity and 

the fertile agricultural land in Quebec, creating tensions among various stakeholders. Over the past 

four decades, the St. Lawrence River Lowlands have lost 45% of their wetlands, with the remaining 

65% of the areas impacted by human activities (Joly et al., 2008). Despite these adverse effects, 

the conversion of wetlands into agricultural land persists in Quebec due to economic incentives 

and the absence of regulatory safeguards for wetlands. 
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2.2.1. Agricultural-wetland complex in Lanoraie, Quebec 

Drainage and vegetation changes in ombrotrophic peatlands isolated in agricultural landscapes 

have been thoroughly studied in eastern Canada. While bogs are typically described as resilient 

ecosystems that undergo important composition changes over centuries or millenia (Gunnarsson 

et al., 2002), several studies have shown severe and rapid species composition changes due to 

anthropogenic disturbances on water and nutrient availability (Pellerin and Lavoie, 2003; Kapfer 

et al., 2011; Talbot et al., 2014).  

In the Lanoraie wetland complex, which is part of a vast hydrosystem, the surface and 

groundwater are intensively used for irrigation and drinking water (Bourgault et al., 2014). 

Drainage in the region, along with other anthropogenic disturbances, negatively impacted peatland 

species composition (Tousignant et al., 2010). For example, human-induced drainage, 

eutrophication and a drier climatic conditions have been shown to intensify shrub and tree 

encroachment, inhibit Shpagnum growth, and enable the establishment of introduced and 

generalist species (Pellerin and Lavoie, 2003; Pasquet et al., 2015) Two large peatlands (1115 ha) 

isolated in the agricultural landscape showed a 35% floristic dissimilarity, a 280 ha increase in 

forest, and a 5-15 times greater abundance of non-peatland species than specialist bog species 

(Pasquet et al., 2015). Pellerin et al. (2016) revealed that the recent tree encroachment of the 

Lanoraie peatland complex was triggered by drying of the peat surface. Furthermore, the water 

table drawdown coincided with the onset of encroachment and the peak of surrounding agricultural 

activities. More recently, a study investigated the effects of tree encroachment on plant richness 

and diversity of bogs isolated in an intensive agricultural landscape in southern Quebec, including 

in Lanoraie (Favreau et al., 2019). The authors found biotic differentiation within sites due to the 

introduction of non-peatland species and shade-tolerant vascular plants. Such compositional 

changes are expected to increase the similarity between bog and upland vegetation, resulting in 

decreased regional diversity (Favreau et al., 2019). A subsequent study conducted in different bogs 

in the same area, by Pinceloup et al (2020), highlights the potential of the introduced terrestrial 

species to decrease species diversity at the regional scale (Olden, 2008; Pinceloup et al., 2020). 

The observed changes are likely due to a combination of regional drainage, nutrient enrichment, 

and climate warming (Pinceloup et al., 2020). Overall, the studies show evidence of water table 

drawdown, altered species composition, rapid vegetation succession, and loss of diversity.  
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The maintenance of a wetland’s hydrological regime and its natural variability is essential to 

maintain its ecological characteristics, such as biodiversity, and the key regulatory and 

provisioning ecosystem services it provides to humans (Finlayson et al., 2005). Hydrological low 

flows are sensitive to increasing temperatures associated with various climate change scenarios 

(Marx et al., 2017). These impacts of climate change are also affected by other factors, such as 

land use. Thus, it is important to consider the combined effects of climate change and land use on 

water yield and flow characteristics for water resource management (Zhang et al., 2018). Assani 

et al. (2022) studied the spatio-temporal variability of seasonal daily minimum flows from 1930-

2019, due to the impacts of climate, agriculture, and wetlands, in 17 watersheds in the Saint-

Lawrence Lowlands of southern Quebec. They found that agricultural area was the main factor in 

the spatial variability of seasonal daily minimum flows. The increased runoff resulting from 

agricultural soils causes a significant decrease in the seasonal daily minimum flows in the spring, 

summer, and fall. (Assani et al., 2022). The loss and degradation of wetland ecosystems is expected 

to be exacerbated by climate change, which will in turn reduce their ability to mitigate impacts and 

provide ecosystem services (Finlayson et al., 2005).  

2.3 Crop water requirements 

While the essential role of water in crop production has been acknowledged since the inception 

of agricultural practices, the potential of greater yields through increased water application grew 

as new crops were introduced and farming became more market-oriented (Pereira and Allen, 

1999). The concept of crop water requirements emerged with evidence of the correlation between 

yields and water application and gained importance with the initiation of large-scale engineering 

projects to establish water supply for new irrigation areas, necessitating precise estimation of 

required water volumes. Doorenbos and Pruitt (1977) defined crop water requirement (CWR) as 

the depth of water (mm) needed to meet the water loss through evapotranspiration from a disease-

free crop, growing in large fields under non-restricting soil water and fertility, and achieving full 

production potential under the given growing environment. The CWR depends on the type of crop, 

the growing stage, and the climate (Battisti et al., 2018; Surendran et al., 2015). 

For irrigated crops, the concept of CWR is complemented by the net irrigation requirement 

(Inet), representing the net depth of water needed to fully meet a specific crop's water needs, by 

accounting for the portion of CWR not fulfilled by rainfall, soil-water storage, and groundwater. 

In practical terms, Inet is converted to gross irrigation requirements, considering the efficiency of 
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the irrigation systems in use (Pereira and Alves, 2005). Thus, CWR is the basis of irrigation 

planning, scheduling, water delivery, and resource management (Pereira and Allen, 1999). 

2.3.1. Climate 

Climate is the most critical and variable factor determining the planet’s distribution of primary 

ecosystem types (Zhou and Wang, 2000), and thus the crops that may be cultivated in each region. 

Climate can be considered as the overarching patterns of temperature, precipitation, humidity, 

wind, and radiation that characterize a region (Chen and Chen, 2013). However, many climate 

classification systems primarily rely on near-surface air temperature and precipitation as the key 

variables for characterizing energy and water balance, as exemplified by Thorthwaite (1948).  

The climate of any location on Earth is characterized by significant variability across different 

time scales. Various climatic parameters exhibit distinct magnitudes of variation; for instance, 

hourly solar radiation fluctuates widely within a day, while average radiation remains relatively 

stable from year to year. Rainfall, among all weather parameters, stands out as the most variable 

across temporal scales, profoundly impacting agriculture (Salman et al., 2021). The distribution of 

rainfall at any location varies significantly with the season. Annual precipitation alone is not an 

effective indicator of the amount of water available for plant growth, as factors like evaporation, 

seasonal distribution, and soil water-holding capacity vary based on geographical location 

(Huffman et al., 2013). The major climatic factors affecting daily evapotranspiration, besides 

rainfall and temperature, are sunshine, humidity, and wind speed. Sunny environments with low 

humidity and high windspeeds exhibit greater daily evapotranspiration rates. The ratio of rainfall 

to evapotranspiration provides a general classification of climates: desert; arid; semi-arid; dry; sub-

humid; humid; and cold (Spinoni et al., 2015). 

In many dry regions of the world, water is the major factor limiting agricultural production, 

leading to crop failure during extended dry spells. Droughts, both predictable and unpredictable, 

pose significant challenges to various human activities, particularly agriculture and food security, 

Interest in the issue of water limiting agricultural production has been very high in areas with very 

limited rainfall in the arid and semi-arid zones of the world, where without irrigation, production 

is almost negligible. The scarcity of water in drought-prone regions is how the notion of using it 

efficiently emerged in water-limited agriculture (Hillel, 1990; Salman, 2021). While irrigation 

expansion was initially concentrated in arid regions, it has extended to humid areas to enhance 

crop production (Huffman et al., 2013). The changing weather and climate, increasing population, 
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and groundwater depletion are all factors that exert pressure on limited water supplies (Kisekka et 

al., 2017). Since agricultural production is a major consumer of water, it is important to use water 

more efficiently to ensure sustainable crop production (FAO, 2021). In today’s climate crisis, 

optimizing crop water productivity is increasingly important to the world’s semi-humid and humid 

zones as well.  

2.3.2. Reference evapotranspiration 

Defined separately, evaporation is the physical conversion of a liquid into a gas and 

transpiration is the evaporation of liquid water within a plant, occurring through the stomata and 

plant surfaces into the air. Evapotranspiration (ET) is the amalgamation of these processes through 

which water is transferred from vegetation and soil to the atmosphere, through both transpiration 

from plants and evaporation from the soil, from dew and intercepted water on plant surfaces 

(Jensen and Allen, 2016).  

The rate of evapotranspiration of a reference crop (ETo) expresses the evaporative power of 

the atmosphere at a specific location and time (Allen et al., 1998) and therefore represents the 

climate-influenced component of the CWR. ETo is the rate at which water would be taken from 

the soil and plant surfaces if readily available. It is expressed as the rate of latent heat transfer per 

unit area or as the depth of water evaporated and transpired from a reference crop, such as grass 

(Jensen and Allen, 2016). Any efforts to enhance irrigation water use efficiency requires accurate 

estimates of ETo (Hanson, 1991).  

There are a multitude of methods for estimating ETo. Physically based, analytical methods, 

such as lysimeters, the Bowen ratio, eddy covariance systems, and scintillometers require 

instrument installation across catchment areas and are often not economically feasible 

(Wanniarachchi and Sarukkalige, 2022). Various equations, including pan evaporation-based, 

temperature-based, radiation-based, mass transfer-based, and combination-type, have been 

developed for estimating ETo, with varied performances across different environments (Gocic and 

Trajkovic 2010). The pan evaporation method relies on field measurements of evaporation 

multiplied by the respective pan coefficient (Doorenbos and Pruitt, 1977; Huffman et al., 2013). 

Caution is recommended in interpreting pan evaporation data, due the significant disparities in 

energy balance between pans and various environmental conditions (Jensen and Allen, 2016). 

Weather data can support the use of empirical and mechanistic ETo models. The Baier–Roberston, 

Blaney–Criddle, Priestley–Taylor, and Hargreaves–Samani models have shown to provide 
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acceptable estimations of ETo when detailed meteorological data are limited or unavailable 

(Droogers and Allen, 2002; Maulé et al., 2006; Priestley and Taylor, 1972; Tabari et al., 2013). 

However, the FAO-56 Penman–Monteith (PM) energy-based equation is acknowledged as the sole 

method for determining ETo (Allen et al., 1998; Allen et al., 2006), consistently providing reliable 

ETo estimates in comparison to other methods (Cai et al., 2007). It is globally recommended as a 

universal standard method to calculate ETo and calibrate other ETo models due to its accuracy 

under various climatic conditions (Gao et al., 2017; Djaman et al., 2018; Zhao et al., 2019). 

The FAO-56 PM equation for a daily time step is defined as follows for a grass reference crop 

(Allen et al., 1998; Pereira et al., 2005; Raes et al., 2009):  
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where Rn is the net radiation (MJ/m2/day); G is the soil heat flux (MJ/m2/day); T is the average 

daily temperature at 2 m height (°C); u2 is the wind speed at 2 m height (m/s); es is the saturation 

vapor pressure (kPa); ea is the actual vapor pressure (kPa); ∆ is the slope of the saturated vapor 

pressure curve (kPa °C-1); γ is the psychrometric constant (kPa °C-1). 

The accurate estimation of ETo is difficult if long-term historical climatic data are missing or 

recent data are incomplete. In situations of missing observed data, ETo can still be determined 

using estimated meteorological variables in the FAO-56 PM equation (Djaman et al., 2018; 

Sentelhas et al., 2010). In evaluating the sensitivity of key climatic variables for Penman-Monteith 

ETo, Koudahe et al. (2018) found that the sensitivity coefficient of solar radiation was very high 

in humid environments, while that of windspeed as well as maximum temperature were greatest 

in semi-arid environments. Thus, the authors recommend accurate measuring of these variables in 

estimating ETo using PM. When data are missing at a weather station of interest, it is common 

practice to supplement data from adjacent stations when estimating ETo (Lu et al., 2018; Shiri et 

al., 2019). This has led to development of various machine models trained with local or external 

data to improve ETo estimation, with various levels of performance in different climates (Feng et 

al., 2017; Lu et al., 2018; Mehdizadeh, 2018; Shiri et al., 2019). Yan et al. (2021) proposed a novel 

extreme gradient boosting model with the whale optimization algorithm to estimate daily ETo with 

local and external data. Their trained models that were tested locally outperformed their respective 
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FAO56-PM models. Like Koudahe et al. (2018), their sensitivity analysis revealed that sunshine 

duration and windspeed were the critical variables for daily ETo estimation in humid and arid 

regions respectively (Yan et al, 2021). It is also important to note that the selection of an ETo 

method is more critical when modeling short-term irrigation requirements, such as daily or weekly 

values for irrigation scheduling, as opposed to long-term irrigation requirements, such as seasonal 

or annual (Satti et al., 2004). 

2.3.3. Crop evapotranspiration 

Based on the crop type and estimated ETo, crop evapotranspiration (ETc) is then computed 

using the crop coefficient (Kc), which considers the crop variety, the crop growth stages, and the 

type of climate (Allen et al., 1998; Huffman et al., 2013; Pereira and Alves, 2005): 

 

ETc = Kc	ETo      (2) 

 

Crop coefficients vary based on crop type, climate, and soil evaporation. Kc is at its minimum 

at planting, progressively increases as plants develop, peaks mid-season when the canopy cover 

reaches its maximum and declines as plants senesce towards the end of the season. To simplify, 

the crop coefficient curve is segmented into four straight-line sections corresponding to different 

growth stages (initial, crop development, mid-season, and late season). These segments are defined 

by three coefficients—Kcini, Kcmid, and Kcend—along with the duration of each stage measured in 

days. As ETo serves as an indicator of climatic demand, Kc varies primarily with specific crop 

characteristics, and only slightly with climate (Allen et al., 1998). This allows for the transfer of 

standard Kc values across various locations and climates (Pereira and Alves, 2005). While local 

crop coefficients are preferred (Huffman et al., 2013), reference values for common crops are 

widely available. Pereira et al. (2021) recently revised the tabulated standard Kc values for 

vegetable and field crops, via a thorough analysis of the accuracy of the reviewed studies. Local 

observations of the duration of crop growth stages should be used to account for plant variety, 

climate and cultural practices (Pereira and Alves, 2005). 

In summary, for irrigated crops, Inet is defined as the net depth of water (mm) needed to fully 

satisfy the specific CWR, considering ETc, effective rainfall, soil-water storage, and groundwater 

contribution (Allen et al., 1998; Pereira et al., 2005). ETc is a critical parameter in determining 
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CWR, and thus crucial for irrigation scheduling and efficient agricultural water resource 

management (Koudahe et al., 2018; Wu and Fan, 2019).  

2.4 Soil water  

2.4.1. Soil water content 

Soil water content, or soil moisture, is a measure of the amount of water held in soil. It is an 

important factor in soil quality, as it affects the availability of water and nutrients to plants, as well 

as the physical, chemical, and biological properties of soil (Hillel, 2003). Soil moisture content 

plays a major role in plant growth and essentially dictates the timing and application of irrigation 

for optimal crop production (Pan, 2012; Susha Lekshmi et al., 2014). Soil moisture is typically 

expressed as a ratio or a percentage on a mass or volume basis of the soil, with dry soil having a 

low soil-water content and wet soil having a high soil-water content. Since water applied to a field 

as rainfall or irrigation is often reported as a depth of water, volumetric water content (VWC) can 

be converted to a depth (e.g., in mm or cm) of soil water content (SWC) by assuming a unit area. 

The amount of water that soil can hold depends on factors such as the soil texture, structure, and 

organic matter content, as well as the climate, weather, and vegetation type (Gardner, 1986). 

2.4.2. Plant available water 

For irrigation management and planning, the soil’s ability to retain water has significant 

implications for its role as soil water reservoir. The amount of water in the soil that is accessible 

for plant root uptake is the available water (AW) and is referred to as the soil water-holding 

capacity (Huffman et al., 2013; King et al., 2020; USDA, 2005).  The field capacity (FC) is defined 

as the residual amount of water held by the soil after the excess has drained following a saturating 

rainfall or irrigation event. It represents the upper limit of water available to plants. The bottom 

limit of plant available water is the permanent wilting point (PWP). Below PWP, plants cannot 

obtain sufficient water to allow plant growth and generally wilt beyond recovery (Huffman et al., 

2013; OFA, 2004). The AW depends on the soil type. It can be estimated as the difference between 

FC and PWP, multiplied by the effective root zone depth (Huffman et al, 2013):  

 

AW = (θ12 − θ343)z5    (3) 
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where, AW is the depth of water available to plants (mm); θFC is the volumetric water content 

at field capacity (cm3/cm3); θPWP is the volumetric water content at wilting point (cm3/cm3); and zr 

is the depth of the effective root zone (mm). As AW depletes, it becomes harder for the plant to 

uptake soil water, which may result in plant water stress before PWP is reached (Allen et al., 1998). 

Therefore, to account for the fraction of AW that is readily available to plants, a management 

allowed depletion (MAD) threshold is defined as the soil-water deficit at which irrigation is 

applied to minimize plant water stress that could affect yield and quality (USDA, 2005). These 

concepts are summarized in Figure 1 below. 

 
Figure 1. Plant available water and thresholds of the soil water reservoir (source: Sharma, 2019) 

2.4.3. Measuring soil moisture 

Soil moisture can be measured using direct measurement methods, such as gravimetric 

(ASTM, 2019; Hillel, 2003; Robinson et al., 2008), or indirect measurement methods, including 

resistivity (Sreedeep et al., 2004), neutron scattering (Fityus et al., 2011), and dielectric techniques 

(Mittelbach et al., 2012; Selig and Mansukhani, 1975). These methods help provide information 

on the total amount of water in the soil, as well as the distribution of water between the different 

soil layers and the availability of water to plants (Gardner, 1986; Hillel, 2003). 

The traditional approach to direct measurement of soil moisture is the gravimetric method. It 

involves collecting a soil sample, drying it to a constant weight in an oven, and weighing the 

sample to determine the moisture content. Approximately 100 g of soil is dried in an oven at a 

temperature of 105°C-110°C for at least 24 hours (ASTM D2216-19). Water content on a volume 
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basis can be determined by collecting the sample in a known volume, such as a metal soil core, 

and dividing the dry mass by the volume to obtain bulk density. While it is simple and inexpensive, 

this method is time-consuming, disruptive to the soil, and can be affected by factors such as soil 

compaction and bulk density (ASTM, 2019; Gardner, 1986; Hillel, 2003). 

An indirect method of measuring soil moisture is by using capacity resistance sensors, which 

can be placed at various depths of the soil. Capacitance sensors consist of an oscillating circuit and 

a pair of electrodes, which is embedded in the soil and forms a capacitor with the soil as the 

dielectric. Changes in soil moisture content are measured by the changes in the operating 

frequency, which depends on the dielectric permittivity of the soil (Robinson and Dean, 1993; 

Whalley et al., 1992). These sensors are reliable, cost-effective, user-friendly, and can provide 

accurate real-time measurements, but require soil-specific calibration (Cobos and Chambers, 2010; 

Kinzli et al., 2012; Susha Lekshmi et al., 2014). These sensors are popular due to their ability to 

measure soil moisture at various depths of the soil profile. However, volumetric water content 

measurements are sensitive to salinity and clay content (Mehata et al., 2023; Ojo et al., 2015; 

Parvin and Degré, 2016; Tedeschi et al., 2014). Mehata et al. (2023) found that among six 

manufacturer calibrations for capacitance probe sensors, the largest errors were associated with 

the default calibration. In addition, laboratory calibration can introduce errors associated to 

incorrect soil compaction (Souza et al., 2020) Field specific calibration is essential to reduce errors 

and bias (Rowlandson et al., 2013). The gravimetric method is a robust and widely accepted 

reference method for sensor calibration (Robinson et al., 2008; Songara and Patel, 2022). 

Time domain reflectometry (TDR) is a widely accepted technique that measures the dielectric 

constant, and empirically determines the volumetric water content (Robinson et al., 2008; Rohini 

and Singh, 2004; Susha Lekshmi et al., 2014; Topp et al., 2000). TDR measures the time delay of 

electromagnetic pulses, which is dependent on the volumetric soil water content of the soil (Selig 

and Mansukhani, 1975; Topp et al., 2000). Advantages of TDR are rapid data acquisition, high 

temporal resolution, and the repeatability of measurements. It is non-destructive, can be used for 

long-term in situ measurements, and is independent of the soil texture and temperature (Noborio, 

2001). However, TDR can have a high initial cost (Susha Lekshmi et al., 2014), and it is very time-

consuming to do repetitive measurements (Robinson et al., 2008). It can also be difficult to carry 

out with high accuracy in the field; Site-specific calibration is essential (Hillel, 2003; Kelleners et 

al., 2004; Mittelbach et al., 2012).  
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A more advanced method of measuring soil moisture is the neutron scattering technique. A 

neutron moisture meter consists of a cylindrical probe (that contains a source of fast neutrons and 

a detector of slow neutrons), and a rate meter to measure the amount of energy scattered by the 

water molecules in the soil (Hillel, 2003; Jayawardane et al., 1984) This method is has a fast 

response time, high accuracy and is non-destructive. It is also possible to scan multiple depths of 

soil to create a moisture distribution profile (Hillel, 2003; Susha Lekshmi et al., 2014) However, 

there is a high initial cost, low spatial resolution, and potential health hazards in terms of radiation 

exposure (Jarvis and Leeds-Harrison, 1987). The instrument can also be difficult to move from 

one site to another and insensitive in shallow soil depths (Hillel, 2003; Zazueta and Xin, 1994).  

In summary, soil moisture can be measured using a variety of methods, including gravimetric, 

dielectric, and neutron scattering techniques. Each method has its own strengths and limitations, 

and the appropriate method will depend on the specific goals and constraints of the measurement. 

2.4.4. Soil composition and texture 

The water-holding capacity of soils depends on the soil mineral particles, as well as the organic 

matter content, compaction, and soil salinity (Huffman et al., 2013; Saxton, 2005). The pore spaces 

between soil particles are filled with air, and water. The porosity is described as the ratio of the 

volume of the pore spaces to the total volume of the soil. The bulk density of an undisturbed soil 

sample is defined by (Eisenhauer et al., 2021):  

𝜌6 =
7+	-./

80
     (4) 

 

where rb is the soil bulk density (g/cm3); Ms is the mass of dry soil (g); and Vb is the volume 

of the bulk soil sample (cm3).  

Soil mineral particles are sized based on their diameter and classified according to a 

classification system, such as The Canadian System of Soil Classification (CSSC) (Soil 

Classification Working Group, 1998) Textural classifications define sand, silt, and clay particles, 

and sometimes subdivide these classes by fine, medium, and coarse fractions. They are often 

visually represented by a textural triangle (Yudina et al., 2018). The distribution of particle size 

determines the soil texture (eg. clay, silty loam, sandy, loam, etc.) as well as the soil-water 

characteristics of a soil (eg. water-holding capacity, aeration, hydraulic conductivity, etc.) 

(Kroetsch and Wang, 2008).  
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The method of determining the proportions of mineral particles in each size class is called 

particle size analysis and typically consists of two parts. First, the proportion of the larger particles, 

or coarse fractions, is determined by the sieve method. The soil is first grinded to break up soil 

aggregates, and then passed through a stack of sieves loaded in a mechanical shaker. What remains 

on each sieve is weighed and its proportion to the total sample mass is calculated. The fraction of 

gravel, as well as coarse, medium, and fine sand are separated in this way (ASTM C136-06).  

The silt and clay fractions cannot be separated by sieving. They are separated by sedimentation, 

which is based on Stoke’s Law. Stoke’s Law states that the amount that a particle sinks, depends 

on the density of the particle, ie., larger particles fall more quickly than smaller particles when 

suspended in a liquid. Common sedimentation methods, used to analyze the finer fraction of soil, 

are the pipette method and the hydrometer method (Gee and Or, 2002; Kroetsch and Wang, 2008). 

In the hydrometer method, the density of soil suspension is determined using the Bouyoucos 

hydrometer, with measurements executed at specific time intervals contingent on particle size. In 

the pipette method, clay particles are extracted with a pipette at a certain time, while sand particles 

are separated with a 270-mesh screen (53.3 µm), and both clay and sand are quantified through 

gravimetric analysis (Gee and Bauder, 1986). Depending on the goal of the study, a soil 

pretreatment may precede particle-size distribution analyses, including various chemical 

pretreatments, a combination of chemical and physical pretreatment, or only physical methods 

(Gee and Or, 2002). To classify soils through particle-size distribution data, a simple pretreatment 

method should be used to increase the efficiency of the analysis (Vaasma, 2008). 

New methods of the analysis of particle-size distribution and soil morphology have been 

developed in recent decades, such as, laser diffractometry, X-ray microtomography, scanning 

electron microscopy, and mass-spectrometry of secondary ions (Yudina et al., 2018). The most 

common way to present part size analysis data is with a cumulative particle size distribution curve 

(Gee and Or, 2002). The percentage of particles finer than a given size is plotted against the 

logarithm of the particle diameter.  

2.4.5. Soil matric potential 

Soil moisture can also be expressed as soil matric potential (SMP) or soil water tension. While 

VWC indicates the quantity of water in the soil, it does not directly relate how that water is 

available to plants. The SMP is the potential energy per unit quantity of water. It describes the 

relative availability of water to plants and the driving forces of water movement in the soil 
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(Campbell and Mulla, 1990; Irmak, 2019). It is often expressed as energy per unit volume 

(pressure) or energy per unit weight (hydraulic head), recorded in kilopascals (kPa) or cm of water, 

respectively (Hillel, 2003; Eisenhauer et al., 2021). Plants draw accessible water molecules 

initially, progressing to more tightly bound ones as soil moisture decreases. Consequently, SMP 

gradually rises with soil dryness, reaching a maximum of zero in saturated conditions. As soil 

moisture decreases further, SMP becomes increasingly negative (ie. more negative tension). The 

negative sign is typically disregarded in practical applications (Irmak, 2019). 

SMP can be assessed through various methods, with the tensiometer being one of the oldest 

and most widely used tools (Cambell and Mulla, 1990). The tensiometer comprises a water-filled 

tube, a porous cup at one end of the tube, and a vacuum gauge at the other. Installed in the field at 

the desired soil depth, the tensiometer's porous cup must be in direct contact with the surrounding 

soil. As the soil dries, water is drawn out of the tensiometer, creating a vacuum indicated by the 

gauge. This process continues until equilibrium is reached between the water in the tensiometer 

and the soil water, providing a direct measure of soil water tension (Eisenhauer et al., 2021). The 

VWC can be determined from SMP, and vice versa, through soil water characteristics curves 

developed for specific soil types (Campbell and Mulla, 1990; Irmak, 2019). 

2.4.6. Soil water characteristic curve 

The soil water characteristic curve (SWCC), also referred as the soil water retention curve, is 

the relationship between soil water content and soil matric potential, unique to each soil (King et 

al., 2020; Tarboton, 2003). These curves can either be determined experimentally through drainage 

experiments for a specific soil or derived from basic soil properties by using pedotransfer functions 

(Bittelli and Flury, 2009; Ghanbarian-Alavijeh and Liaghat, 2009). Although the experimental 

approach of using a pressure plate apparatus is reliable and precise, it can be quite costly, difficult, 

and time consuming (Pan et al., 2019). Bittelli and Flury (2009) found significant errors in SWCC 

derived from pressure plate experiments indicating an overestimation of soil water at wilting point, 

which would be problematic for CWR estimation.  

Pedotransfer functions (PTFs) serve as predictive tools for soil properties that are challenging 

to obtain through easily, routinely, or inexpensively measured parameters (Van Looy et al., 2017). 

Soil survey data, including field morphology, texture, structure, and pH, often provide readily 

available information (Wadoux et al., 2023). To fit discrete measured data and facilitate practical 

applications, various mathematical and empirical representations have been proposed and revised. 
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Many models, such as the Brooks and Corey (1966), Van Genuchten (1980), Clapp and 

Hornberger (1978), and Campbell models, have demonstrated their applicability across a range of 

soils (Ghanbarian-alavijeh et al., 2010; Nasta et al., 2013; Sommer and Stöckle, 2010). The van 

Genuchten Mualem model equation and parameters are described as follows (Mualem 1976; Van 

Genuchten, 1980): 

θ(h) = θ5 +
9)(91

[/+|<=|!]2
    (5) 

 

where: θ is the volumetric soil water content (cm3/cm3); h is the soil matric potential (kPa); θr 

is the residual water content; θs is the saturated water content; α is an empirical parameter (kPa-1); 

n is the van Genuchten parameter related to the pore-size distribution; and m is another van 

Genuchten parameter related to the slope of the curve (m = 1–1/n). 

Regrettably, the estimation of coefficients in various empirical models remains challenging 

and time-consuming. To address this, numerous studies have explored predicting coefficients 

through PTFs (Cosby et al., 1984; Rawls et al., 2001; Saxton et al., 1986). Schaap et al. (2001) 

developed the Rosetta computer program employing five PTFs for hierarchical estimation of soil 

water retention and hydraulic conductivity. The program, based on neural network analyses and 

the bootstrap method, offers uncertainty estimates for predicted hydraulic parameters (Schaap et 

al., 2001). Saxton and Rawls (2006) developed PTFs using the extensive USDA soil database to 

estimate soil water characteristics from readily available soil variables such as texture and organic 

matter. The equations were integrated with previously documented correlations for tensions and 

conductivities, along with considerations for density, gravel, and salinity, creating a 

comprehensive predictive framework for SWCC tailored for agricultural water management and 

hydrologic analyses. Validation was conducted using distinct datasets encompassing a broad 

spectrum of soil textures. The predictive system was implemented in a graphical computerized 

model, SPAW, for convenience and efficiency (Saxton and Rawls, 2006).  

2.5 General crop characteristics and production 

2.5.1. Potato 

Potatoes (Solanum tuberosum) are the fourth most important food crop worldwide, after maize, 

rice, and wheat (Montoya et al., 2016). The potato is a herbaceous annual that produces a starch-

rich tuber composed of 75% water (FAO, 2008). Recently, the cultivated area and yield of potato 
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have increased annually (FAO, 2022) due to its broad adaptability, nutritional richness, processing 

versatility, and potential for enhancing both production and income (Wang et al., 2023). Quebec 

is the fifth-largest producer of potatoes in Canada, standing out from other provinces by allocating 

a larger portion (over 50%) of its production to the fresh market, compared to other provinces 

turning towards the processed market (Déziel et al., 2019).  

Potato is a shallow-rooted crop, commonly grown on medium to coarse soils. It is one of the 

most sensitive crops to water stress, either as an excess or as a deficit in soil water (King et al., 

2020; Stark et al., 2020). The recommended SWC for potatoes varies but is typically optimal when 

kept between 60 and 85% of AW at different stages of the growth cycle (Allen et al., 1998; King 

et al., 2020). In Quebec, Dubé and Rochette (1985) suggest a minimum of 50% AW for all growth 

stages, a level also used by Boisvert et al. (1992) in Ottawa for irrigated potato production 

experiments. A recent Quebec study of potatoes grown on sandy soils, found that a SMP threshold 

of –24 kPa optimizes yield and water productivity, while decreasing irrigation water use (Matteau 

et al., 2022). Further, it was found that potato plants in sandy soils can recover their physiological 

activities if irrigation is applied after a 1-day stress period at –40 kPa SMP, whereas they cannot 

revive if irrigation applied after a 7-day stress period at −20 kPa SMP (Jacques et al., 2020).  

Tuber growth is inhibited at temperatures below 10°C and above 30°C, with optimum yields 

produced at a mean daily temperature of 18-20°C (FAO, 2008). In temperate climates and with 

good agricultural practices, a potato crop can produce 40 tonnes/ha of fresh tuber yield within four 

months of planting. Growth stages include sprout development, vegetative growth, tuber initiation, 

tuber bulking, and senescence and tuber maturation (Pavlista, 1995). From the updated FAO 

guidelines, the standardized mid-season basal crop coefficient and maximum rooting depth for 

potatoes are 1.10 and 0.4–0.6 m respectively (Pereira et al., 2021). The effective rooting depth is 

approximately 70% of a crop’s maximum rooting depth (Driessen and Konijn, 1992). Studying 

supplemental irrigation of major crops grown in southern Quebec, Gallichand et al. (1991) 

determined potato Kc values of 0.51, 1.05 and 0.70 at initial, mid-season, and end of maturity 

stages, respectively, and a maximum root depth of 0.4 m.  

2.5.2. Squash 

The common terms “pumpkin”, “squash”, “gourd”, etc. are frequently used interchangeably 

without distinction for various cultivated species within the genus Cucurbita L. (Cucurbitaceae): 

C. pepo L., C. maxima and C. moschata. Cucurbita species rank collectively among the 10 leading 
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vegetable crops globally (Ferriol and Picó, 2008). They are warm season crops that grow best 

during hot weather and cannot tolerate frost (OMAFRA, 2022). Quebec and Ontario are the two 

largest producers of fresh vegetables in Canada, accounting for 40% and 42% of Canadian 

acreages, respectively. Winter squash is one the most rapidly expanding fresh vegetables in the 

Quebec market (Déziel et al., 2017). In 2015, squash and zucchini in Quebec achieved an average 

yield of 14.4 ton/ha, representing a 20% increase from 2006 yields (Déziel et al., 2017). 

Squash is a shallow-rooted crop (Amer, 2011) best grown on fertile, well-drained soil 

containing organic matter (Amer, 2011; OMAFRA; 2022). Squash is sensitive to excess soil water 

from seeding to maturity. Given the relatively shallow depth of roots, in the top 40-50 cm of soil, 

it is crucial to maintain SWC above 50% of AW to prevent detrimental water deficits (Allen et al., 

1998; Hess et al., 1997). According to Ells et al., (1994), more than 60% of C. pepo roots are found 

in the top 15 cm of soil throughout the season. Rapid root development requires a well-managed 

irrigation schedule to avoid both excess and deficit soil water stress. This ensures proper fruit 

formation and mitigates the risk of root and stem rot diseases. (Hess et al., 1997; OMAFRA, 2022; 

Richard et al., 2002). 

Pumpkins and squashes grow best at temperatures of 23-29°C during the day and 15°C-21°C 

at night. Plant growth halts at temperatures below 10°C (OMAFRA, 2022). Crop coefficients for 

initial, mid-season, and end stages derived from field observations range between 0.2–0.6, 0.85–

1.0, and 0.56–0.74, respectively (Amer, 2011; Darouich et al., 2020; Yavuz et al., 2015). The 

updated standard value for winter squash is Kc = 0.91 (Pereira et al., 2021). Nyathi et al. (2019), 

reported a harvest index of 85% for pumpkin squash. 

2.5.3. Cranberry 

Cranberry (Vaccininium macrocarpon) is a perennial temperate wetland species native to 

North America that grows best on sandy and peat soils (Eck et al., 1976; Sandler and 

DeMoranville, 2008). Cranberries are predominantly grown in the USA and Canada (FAOSTAT, 

2022), with a high proportion of production concentrated in three regions: Wisconsin, Québec, and 

Massachusetts (Caron et al., 2017). The industry has grown rapidly: cultivated cranberry area in 

Quebec has increased by 440% in the last 20 years (APCQ, 2021). Ample research has been 

conducted on cranberry production in Quebec. 

Cranberries require a moist, well-oxygenated rootzone and crop yield is very sensitive 

variations in soil water. While their fine and fibrous roots span to maximum depths from 0.15 to 
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0.30 m, the bulk of cranberry roots is concentrated in the uppermost 0.1 to 0.15 m of the soil 

surface (Sandler and DeMoranville, 2008). For optimal cranberry yield without excessive water, 

irrigation should be implemented when the root zone SMP ranges between –7.5 and −4 kPa (Caron 

et al., 2016; Pelletier et al., 2015a) Values outside this range leading to wet anaerobic conditions 

or dry conditions limiting capillary rise (Caron et al., 2017). In their study on water requirements 

and sub-irrigation design for cranberry production, Elmi et al. (2010) concluded that a depletion 

level of 25-50%. AW could be used to determine irrigation requirements in Quebec conditions 

without compromising the yield. The period from mid-June to early September, particularly July 

(flowering) and August (fruit formation), is identified as the most critical for hydric stress 

sensitivity in cranberry crop growth (Pelletier et al., 2015a, 2015b; Jeranyama, 2017). 

Cranberry production requires an abundant supply of water for irrigation, frost protection, 

cooling, as well as harvest flooding (Eck, 1976; Elmi et al. ,2010). Although harvest flooding 

accounts for most water applied, that water is typically recycled field by field in a closed loop 

system, whereas irrigation water is mainly consumed by the plant (Caron et al., 2016). Research 

suggests that controlling the growing-season water table at a depth of 0.5–0.65 m below the soil 

surface optimizes cranberry yield in sandy soil fields while saving water and energy (Caron et al; 

2016; Pelletier et al., 2015b; Vanderleest et al., 2017). While a subsurface irrigation system would 

fulfill the irrigation needs, an overhead sprinkler system remains necessary for frost and heat 

protection, as well as for providing essential nutrients and pesticides (Elmi et al., 2010; Pelletier 

et al., 2016). To mitigate overheating, growers are known to briefly activate sprinkler irrigation 

when a critical temperature threshold is reached (Pelletier et al., 2015a). Furthermore, water use 

efficiency is optimized with the combined use of sub- and sprinkler irrigation (Sandler et al., 2004). 

A study assessed the actual ET of cranberries and compared it with the reference ET. They 

determined cranberry ETc accounted for 55% of the ETo, concluding that ETo can serve as a 

reliable indicator of ETc for cranberries when multiplied by the appropriate Kc (Hattendorf and 

Davenport, 1996). Similarly, Bigah et al (2019) use a crop coefficient of 0.5 to estimate cranberry 

ETc. Updated standard indicative mid-season Kc values for perennial berry bushes range between 

0.4 and 0.9 (Rallo et al. 2021).  

2.5.4. Strawberry 

The cultivated strawberry (Fragaria × ananassa) is one of the most valued berries in the world 

(Kumar and Dey, 2011). It is grown in all provinces of Canada, with Quebec having the greatest 
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acreage of strawberry production (AAFC, 2021). There are two main types of strawberry cultivars 

grown in Canada, June-bearing and day-neutral.  

Irrigation is an essential water management practice for strawberries in Quebec, since they are 

a shallow-rooted crop that cannot tolerate drought (AAFC, 2021; Nand and Qi, 2023). Strawberry 

roots grow in the top 15 cm of soil with 75% of roots are concentrated in the top 8 cm (Craig, 

1976). They require a well-drained soil and benefit from a moderate to high organic matter content. 

They can be grown in sandy soils if irrigation is well managed (AAFC, 2021). Irrigation is applied 

to maintain soil moisture above 50% AW for continued plant growth (Craig, 1976). Strawberry 

varieties differ in their sensitivity to water stress (Adak et al., 2017), and their winter hardiness. 

Over the winter, straw mulch is used to protect plants from low temperatures and alternating freeze 

thaw cycles (AAFC, 2021; Craig, 1976). Overhead sprinkler irrigation is used in Quebec to protect 

from frost in the spring (AAFC, 2021). Mulching and irrigation regime have shown to significantly 

impact strawberry yield, water consumption, root growth, and water use efficiency (Kumar and 

Dey, 2011). Strawberries are also well suited for drip irrigation and plastic mulching (Morillo et 

al., 2015; Saridas et al., 2021).  

For strawberry cultivation in Quebec, optimal yield and water savings occur at a SMP of –10 

kPa under drip irrigation on silty clay loam, sandy loam, or clay loam (Létourneau et al., 2015). 

Alternatively, employing drip irrigation and scheduling based on a range (−15 kPa ≥ SMP 

≥ −30 kPa), contingent on predicted ETc, can enhance water use efficiency by 8–44% while 

achieving optimal yield on clay loam soil (Cormier et al., 2020). Other investigations have also 

reported increased yield and water productivity with the use of pulse irrigation (Gendron et al., 

2018; Létourneau and Caron, 2019). 

Field studies have determined maximum Kc values of 0.8 (Amini et al., 2022), 0.8 (Clark et 

al., 1996), and 0.75 (Hanson and Bendixen, 2004), in Iran, Florida, and California, respectively. 

The updated standard single and basal crop coefficients are 0.8 and 0.75, respectively (Pereira et 

al., 2021).  

2.6 Crop-water modelling 

Crop-water modeling is a valuable tool for famers and decision makers. Recent technological 

progress has resulted in numerous approaches and tools for assessing crop water needs and stress, 

frequently incorporating both remote sensing and ground data into crop and soil water models 

(Cahn and Johnson, 2017; Corbari et al., 2019; Pereira et al., 2020; Tolomio and Casa, 2020). Crop 
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models have diverse applications in agricultural water management, ranging from on-farm 

irrigation scheduling to regional assessments and planning. Enhanced detection of crop water 

stress to improve irrigation scheduling helps optimize water use at the field scale, especially for 

high-value crops, such as vegetables (Ihuoma and Madramootoo, 2017). Crop models can be 

embedded in decision support systems for irrigation scheduling to provide real time, site-specific 

information for farmers and technicians (eg. Gallardo et al., 2020; Zhai et al., 2020), be used to 

assess the effects of deficit irrigation (Farahani et al., 2009; Montoya et al., 2017; Paredes et al., 

2014) or climate change (eg. Kang et al., 2009; Khordadi et al., 2019; Tatsumi, 2017) on crop 

water requirements and yields. They can also be upscaled using GIS tools to support local and 

regional decision making (eg. Alaya et al., 2019; Han et al., 2020; Li et al., 2021).  

2.6.1. Commonly used Crop Growth Models 

Commonly used crop models include DSSAT (Jones et al, 2003; Liu et al., 2011), CropSyst 

(Singh et al., 2008; Stockle et al., 1994), APSIM (Hammer et al., 2010; McCown et al., 1996), 

EPIC (Farina et al., 2011; Williams et al., 1989), STICS (Brisson et al., 2003; Jégo et al., 2012), 

and more recently AquaCrop (Li et al., 2020; Steduto et al., 2009; Vanuytrecht et al., 2014). Crop 

models can be divided into three main categories: radiation-driven models, carbon-driven models, 

and water-driven models (Steduto, 2009). These models employ diverse concepts and exhibit 

distinct structures, scales, and levels of complexity, leading to variations in precision and accuracy 

across crops and locations (Campbell et al., 2016; Challinor et al., 2014; Tubiello and Ewert, 

2002). In adhering to good modeling practices, it is generally recommended to maintain simplicity 

while incorporating sufficient details to capture the fundamental processes influencing the system's 

behavior (Adam et al. 2011).  

In recent years, the AquaCrop and DSSAT models have been widely use in simulating canopy 

development, crop evapotranspiration, nitrate leaching, yield production, and water use efficiency 

across various crops, such as wheat (Iqbal et al., 2014; Jin et al., 2018; Li et al., 2020; Liu et al., 

2011), maize (Feng et al., 2022; Malik et al., 2019; Sandhu and Irmak et al., 2019), cotton (Garibay 

et al., 2019; Tsakmakis et al., 2019), potato (Adekanmbi et al., 2023; Boozar et al., 2022; Casa et 

al., 2013; Danielescu et al., 2022), and tomato (Ge et al., 2023; Linker et al., 2016; Zhao et al., 

2018). These models are applied under diverse conditions such as different planting dates, nitrogen 

rates, plant densities, and irrigation methods or amounts. DSSAT (Decision Support Systems for 

Agrotechnology Transfer) combines various models, such as CERES, CROPGRO, SUBSTOR, 



 27 

and CROPSIM, capable of simulating crop growth, phenology, soil water content, carbon and 

nitrogen balance, and the effect of diverse factors on crop yield (Jones et al., 2003; Song et al., 

2015). AquaCrop is a water-driven model developed by the FAO based on crop yield response to 

water. It mainly focuses on the available water in the root zone and is particularly suited for water-

limited conditions (Raes et al., 2009; Steduto et al., 2009). Compared to other crop models, it 

requires a relatively low number of input parameters and is well known for its balance of 

simplicity, robustness, and accuracy (Steduto et al., 2009; Vanuytrecht et al., 2014). AquaCrop 

can be also applied to a variety of crops (e.g. Battilani et al., 2014; Feng et al, 2022; Geerts et al., 

2009; Stricevic et al., 2017), which has led to its widespread use. A recent study directly compared 

the performance of AquaCrop and DSSAT-SUBSTOR models in simulating potato growth, yield, 

water productivity, and soil water content, under various fertigation regimes; They found that the 

simulation accuracy of DSSAT-SUBSTOR potato was lower than that of AquaCrop (Wang et al., 

2023).  

2.6.2. Spatial upscaling: from field scale to regional scale 

Prior research has showcased the efficacy of crop simulation models in accurately estimating 

crop yields, improving irrigation efficiency, and evaluating the impact of diverse management 

strategies at field-specific scales (Bhatia et al., 2008; Farahani et al., 2009; Kim et al., 2020; Liu 

et al., 2011). However, in decision-making processes, stakeholders often require upscaled 

information encompassing larger spatial extents. In these cases, the reliability of crop model 

simulations may be compromised by spatial heterogeneity in crop types, soil distribution, climate 

patterns, and crop management (Guo et al., 2021; Hansen and Jones, 2000). Utilizing crop models 

at a regional scale requires the consideration of spatial variations in input data (Manevski et al., 

2019, Zhao et al., 2015), and the use of Geographic Information System (GIS) to store, manipulate, 

analyze, and visualize pertinent spatial data (Maguire, 1991; Hartkamp et al., 1999). 

Prior research has considered the spatial distribution of input data, including soil type and crop 

parameters, in regional simulations for irrigation scheduling (Han et al., 2019, Jiang et al., 2019, 

Yang et al., 2015). For example, Jiang et al. (2019) and Yang et al. (2015) considered spatio-

temporal heterogeneities of crop and soil to optimize regional allocations of irrigation water, while 

Manevski et al. (2019) and Li et al. (2021) considered spatial information on weather, soil, 

fertiliser, and crop to simulate and up-scale crop yield and nutrient leaching. PTFs were found to 

be an effective support for the regional application of field-scale models (Manevski et al., 2019). 
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Guo et al. (2021) developed a framework based on AquaCrop developed to optimize the irrigation 

schedule of winter wheat under dry, normal, and wet hydrologic scenarios over a large region in 

China, and to reallocate irrigation water amounts between regions. Their results serve as a useful 

guide for local producers and irrigation district managers to optimize crop yield, water use and 

economic benefit for the Fenwei Plain.  

It is important to note that upscaling a crop model is associated with increasing spatial 

variabilities of the inputs, which impacts the model’s accuracy (Alaya et al, 2019; Han et al., 2020; 

Hansen and Jones, 2000). Field to regional scale GIS-based crop simulation typically investigate 

the effects of soil, cultivar, and management practices on crop yield (Li et al., 2021). Crop rotation 

is often difficult to include, resulting in a tendency to focus on singular year and crop analyses (Jin 

et al., 2017; Resop et al., 2012) However, including crop rotation is associated with a more reliable 

prediction (Li et al., 2021). Therefore, the integration of GIS can expand the scope and applications 

of crop simulation if the spatial variability of relevant model parameters is taken into account.  

2.6.3. Crop modeling for climate change impact 

Agriculture must adapt to a changing climate to ensure sustainability and survival. Given the 

intricacies of both agricultural systems and climate change, crop models frequently play a crucial 

role in comprehending the influence of climate change on agriculture and the formulation of 

adaptation strategies. (Asseng et al., 2015). Amidst a changing climate and a growing population, 

the declining availability of future water resources is a major concern. This stresses the need for 

more efficient irrigation systems (Elliott et al., 2014; Taylor et al., 2013) and increased crop water 

productivity (Brauman et al., 2013). Various modeling studies have endeavored to evaluate 

potential impacts on agricultural water demands and identify potential actions in this context. 

Process-based models are well-suited to evaluate the effects of climate change due to their ability 

to simulate the impacts of increased CO2 concentration and various management practices on crop 

biomass, yield, and water usage (Ewert et al., 2015; Rötter et al., 2013). However, this remains a 

challenging task due to substantial uncertainties in future climate and socioeconomic scenarios 

(Elliott et al., 2014; Haddeland et al., 2014; Wada et al., 2013).  

Future meteorological variables are typically generated using global climate models, or general 

circulation models, (GCMs) for different scenarios (Asseng et al., 2015; Busschaert et al. ,2022). 

The most current global climate data (CMIP6) are from the latest phase of collaboration under the 

Coupled Model Intercomparison Project (CMIP), which provides the foundation for the 
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Intergovernmental Panel on Climate Change’s Sixth Assessment Reports (IPCC, 2021). These 

future climate data are separated into different scenarios based on shared socioeconomic pathways 

(SSPs). The IPCC's sixth assessment report (2021) relies on this scenario architecture, denoted as 

SSPx–y, where x represents the SSP, and y indicates the level of radiative forcing in 2100. Five 

scenarios are defined: SSP1–2.6 (Sustainability; low emissions), SSP2–4.5 (Middle of the Road; 

medium emissions), SSP3–7.0 (Regional Rivalry; high emissions), SSP4–6.0 (Inequality, high 

emissions), and SSP5–8.5 (Fossil fuel development, high emissions). Under SSP3–7.0 and SSP5–

8.5, global warming is likely to exceed 2∘C by mid-century (IPCC, 2021). 

It is crucial to acknowledge that climate change scenarios generated by GCMs have substantial 

uncertainties stemming from three main sources: the internal processes modeled within the GCMs, 

the initial conditions, and future greenhouse gas emissions (IPCC, 2021). Downscaling GCM 

scenarios to local scales for integration into crop simulation models introduces an additional layer 

of uncertainty (Wilby et al., 2004). The dependability of such downscaling is pivotal for 

determining crop impact outcomes (Asseng et al., 2015). Climate model outputs are commonly 

downscaled using two methods: dynamic and statistical downscaling (Madsen et al., 2012). 

Statistical downscaling has more advantages and ability than dynamic, particularly when cost-

effectiveness and rapid evaluation of climatic variables are priorities (Khordadi et al., 2019). 

Another method to address uncertainties is the use a range of possible climate change 

projections, known as a model ensemble (Tao and Zhang, 2013). Early climate change impact 

studies relied on the outputs of a single GCM (Guo et al., 2010; Jones and Thornton, 2003), but 

this is no longer an accepted methodology. It is recommended to use multi-model GCM ensembles 

to generate a range of possible futures and reduce the influence of errors in any one model (Lee et 

al., 2011; Medellín-Azuara et al., 2008; Weigel et al., 2010).  

While acknowledging the persistent challenge of uncertainty in climate change predictions and 

impact assessments, some consistent findings across various climate change scenarios, can offer 

valuable insights and practical guidance for decision-makers (IPCC, 2021; Zhang and Cai, 2013). 

Historical data analysis is particularly beneficial in recognizing past or ongoing changes in regional 

climates and their repercussions on agriculture, water, and other sectors (Rouge et al., 2013; Bates 

et al., 2008). Additionally, advancements in refining both GCMs, RCMs, and effective 

downscaling techniques, have been developed and tested to comprehensively address uncertainties 

(IPCC, 2021). 
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2.7 AquaCrop 

2.7.1. Model overview and use 

AquaCrop is a water-driven model based on the concepts of crop yield response to water 

(Doorenbos and Kassam, 1979) and water productivity (Steduto et al., 2009). AquaCrop (Raes et 

al., 2009; Steduto et al., 2009) is known for its balance of simplicity, accuracy, and robustness, 

using a small number of parameters compared to other crop models, while still maintaining output 

accuracy. It can be used for a large number of crops and focuses on four main types (fruit and grain 

crops, root and tuber crops, leafy vegetable crops, and forage crops). As opposed to a scientific-

type model, which seeks to improve our understanding of crop physiology and response to 

environmental changes, AquaCrop is an engineering-type model, which aims to provide sound 

management advice to farmers or predictions to policy makers (Vanuytrecht et al., 2014). Its main 

purpose is to help practitioners, such as those working for government and non-governmental 

associations, farmers associations, consulting engineers, and extension services, and is a useful 

tool in planning and scenario analysis for economists and policy specialists (Steduto et al., 2009).  

Numerous studies have evaluated the performance of AquaCrop for different crops through 

extensive sensitivity analyses, calibration, and validation, such as for quinoa (Geerts et al., 2009), 

wheat (Jin et al., 2018; Mkhabela and Bullock, 2012), maize (Mebane et al., 2013; Paredes et al., 

2014), cotton (Farahani et al., 2009), and potato (Linker et al., 2016; Montoya et al., 2016; 

Razzaghi et al., 2017; Wale et al., 2022; Wang et al., 2023). The growing community of AquaCrop 

users are continually developing new crop, such as cassava (Wellens et al., 2022) as well as forage 

crops like ryegrass (Stricevic et al., 2017; Terán-Chaves et al., 2022). 

Various studies have shown the many applications of the model, such as optimizing irrigation 

(Paware et al., 2017) and field management strategies (Abrha et al., 2012), and predicting the 

impacts of climate change on crop yield (Khordadi et el., 2019). Furthermore, recent studies have 

demonstrated the potential of upscaling crop modeling results using appropriate GIS tools (Alaya 

et al., 2019; Guo et al., 2021; Jiang et al., 2019). 

2.7.2. Model input requirements 

The input requirements that define the crop environment are stored in four input files: climate, 

crop, soil, and management (Raes et al., 2009; Steduto et al., 2009). The climate file includes daily 

weather, such as minimum and maximum temperature, rainfall, ETo. ETo is calculated by means 

of the FAO Penman–Monteith equation (Allen et al., 1998). Mean annual CO2 concentration is 
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provided from Mauna Loa Observatory data or a specified emissions scenario for climate change 

analysis. The model delineates conservative crop parameters and non-conservative crop 

parameters. Conservative crop parameters are specific to each crop and do not change significantly 

with time, management practices, geographical location, or climate. They are presumed to remain 

unchanged with different cultivars and are widely applicable without local calibration. Non-

conservative parameters, influenced by management and cultivar, are specified by the user. While 

conservative parameters are available for many calibrated crops, such as maize, potato, quinoa, 

and tomato (Vanuytrecht et al., 2014), AquaCrop also provides sample values for all required 

parameters as the starting point for unexplored crops when more specific information is lacking 

(e.g., Geerts et al., 2009). Soil data required are the saturated hydraulic conductivity (Ksat), VWC 

at saturation, field capacity, and permanent wilting point. These can be determined experimentally, 

derived from soil texture using PTFs, or assumed from indicative values provided by AquaCrop. 

The depth of the groundwater table and water salinity are also specified. Finally, field and 

irrigation management practices, such as irrigation schedule, irrigation method, mulching, and 

weeding. (Hsiao et al., 2009; Raes et al., 2009; Steduto et al., 2009; Vanuytrecht et al., 2014) 

2.7.3. Soil water balance and calculation scheme in AquaCrop 

The AquaCrop model relates its soil-crop-atmosphere components through its soil water 

balance (Araya et al., 2010). The soil water balance revolves around the root zone functioning as 

a reservoir, with influxes and outfluxes of water determining water available to the crops. 

Irrigation, precipitation, and capillary rise of shallow groundwater level are the main inflow 

sources of soil water are irrigation. The outflow includes soil evaporation, crop transpiration, 

surface runoff, and deep percolation (Wang et al., 2023). To precisely assess the retention, uptake, 

and movement of water in the soil profile, AquaCrop segments the soil profile and time into 

smaller fractions, of 0.1 m depth and one day increments by default. The one-dimensional vertical 

flow and root water uptake are solved at each node within the soil profile using the finite difference 

technique, considering independent variables such as time and depth levels, along with the 

dependent variable, moisture content (Baer, 1972; Raes et al., 2009).  

The soil water balance is defined by algorithms for drainage, runoff and infiltration, soil 

evaporation, crop transpiration, canopy and root zone development, biomass production, and yield 

formation (Raes et al., 2009). The concepts and calculation procedures of AquaCrop model are 

discussed in Steduto et al. (2009) and are summarized in Figure 2. Processes influenced by water 
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stress (a to e) and temperature stress (f to g) are shown, and how they relate to green canopy cover 

(CC), rooting depth (Zr), ETo, normalized biomass water productivity (WP*), harvest index (HI), 

and growing degree days (GDD). Water stress impacts include impeding canopy expansion (a), 

hastening canopy senescence (b), potentially decreasing root deepening under severe stress. (c), 

diminishing stomatal opening and transpiration (d), and influencing harvest index (e). Cold 

temperature stress results in reduced biomass productivity (f), while hot or cold temperature stress 

hinders pollination and lowers the harvest index (g) (Vanuytrecht et al., 2014). 

 
Figure 2. Calculation scheme of AquaCrop indicating processes affected by water and temperature stress. 
(Source: Vanuytrecht et al., 2014) 

2.8 Impacts of climate change on agriculture 

Agriculture has been identified as an industry that is highly vulnerable to climate change 

(Wanniarachchi and Sarukkalige, 2022). Climate change is anticipated to impact both the water 

availability and crop water requirement significantly, due to changes in rainfall and temperatures 

at the local and regional levels (Cai et al., 2015; Schewe et al., 2014). As well as affecting long-

term trends and shifts in precipitation and temperature, climate change amplifies the frequency, 

intensity of extreme events, such as floods, droughts, heat waves, and hurricanes, which 

substantially impact agriculture around the world (IPCC, 2021; Turral et al., 2011). In rainfed 

dominant agricultural regions, variability in rainfall may force a gradual transition to irrigated 
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production to maintain crop yields, with precision irrigation playing an important role (Hedley et 

al., 2014).  

2.8.1. Water availability under climate change 

Changes in precipitation and temperature at the local and regional levels impact the availability 

of water for irrigation. (Schewe et al., 2014). Many large-scale irrigation systems rely on surface 

water resources in lakes, rivers, and reservoirs, which will be impacted by the variable local 

patterns of precipitation (Bates et al., 2008; IPCC, 2021). Also, glacier retreat due to climate 

change will severely impact irrigation systems in snow-dominated regions that depend on snow 

melt during the crop season (Cai et al., 2015). Although groundwater is often seen as a relatively 

reliable water source, climate change and variability impacts groundwater systems by affecting 

both groundwater recharge and the withdrawal of groundwater for human water supply (Taylor et 

al., 2013). Farmers also face the growing challenge of environmental protection and its effect on 

the supply and allocation water resources (Knox et al., 2010). 

2.8.2. Crop response to climate change 

Climate change impacts plant production and crop yields through shifts in atmospheric CO2 

concentration, rising temperatures, changes in precipitation and transpiration, increased frequency 

of extreme weather events, and the proliferation of pests and weeds (Tubiello et al., 2007). Crop 

yields can increase or decrease due to the combination of these effects, and the net impact will 

ultimately rely on the interactions between these factors (Asseng et al., 2015). For example, a study 

on the impacts of climate change on soybean production found that an increase of maximum 

temperature had a significantly positive effect on yield and biomass, except for yield under severe 

water stress conditions, in which precipitation had the greatest effect on final yield (Araji et al., 

2018). On the other hand, for all models and climate scenarios, Khordadi et al. (2019) simulated 

reduced future yields for wheat and maize compared to their baseline period. 

Elevated atmospheric CO2 concentrations increases photosynthesis rate, especially in C3 

species, and reduces stomatal conductance, resulting in decreased transpiration rate (Farquhar et 

al., 1978). Many experimental studies have demonstrated that elevated CO2 increases biomass 

production and yield (e.g., Drake et al., 1997; Tubiello et al., 2007), and this impact depends on 

water and nutrient availability (Kan et al., 2002). Temperature influences most of the underlying 

crop processes that determine production and yield, and its impact varies greatly between crop 
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species (Asseng et al., 2015) Higher temperatures can negatively impact production indirectly due 

to accelerated phenology and therefore less time for biomass accumulation (Menzel et al., 2006; 

Wang et al., 2013; Xiao et al., 2020). Several studies have proposed longer-maturing hybrids to 

mitigate the repercussions of accelerated phenology caused by warmer temperatures (Chapman et 

al., 2012; Khordadi et al., 2019; Olesen et al., 2012). While extreme temperatures can be 

detrimental, increased temperatures could benefit crops grown in cooler regions (Tian et al., 2012).  

Water plays a crucial role in the impact of climate change on crop yield; the combination of 

water and other factors results in diverse effects, both positive and negative, influenced by crop 

type, region, and water management practices (Cai et al., 2015). Changing precipitation levels may 

exert either favorable or adverse effects on agricultural productivity. In semi-arid regions, 

increased rainfall could enhance growth, whereas reduced rainfall might constrain plant 

production. Conversely, in high rainfall areas, excessive rainfall may lead to soil waterlogging or 

nutrient leaching, detrimentally impacting crop development (Araki et al., 2012; Robertson et al., 

2009). Furthermore, altered rainfall distribution and extreme events will impact crop growth and 

yield through effects on soil infiltration, water balance, soil mineralization, and crop water use 

efficiency (Asseng et al., 2015; Sadras et al., 2012; Wang et al., 2009). 

At a global scale, the predicted impacts of climate change on CWRs are inconsistent between 

studies (Elliott et al., 2014; Fischer et al., 2007; Zhang and Cai, 2013), owing to significant regional 

heterogeneity (Cai et al., 2015). The shifting timing of growing seasons for specific crops 

complicates irrigation requirement estimates under climate change (Minguez et al., 2007). Rising 

temperatures extend growth periods in northern zones by allowing for earlier planting and later 

harvesting, but reduce them elsewhere (Turral et al., 2011). Longer growth periods are likely to 

increase crop water needs. In addition, the changing climate may decrease the suitability of certain 

crops in particular regions. Adaptation measures, such as adjusted calendars, increased crop water 

use efficiency, and enhanced irrigation technologies, are crucial for managing CWRs (Cai et al., 

2015). Thus, it is essential to comprehend the climate change-induced effects at the local and 

regional levels for informed decision-making (Cai et al., 2015). 

2.8.3. Impacts of climate change on Quebec agriculture 

In Quebec, between 1948 and 2016, there was a 1.5°C rise in average temperature, 

accompanied by an increase in the occurrence of heavy rainfall events by 3–4 days (Vincent et al., 

2018). Historical summer weather analysis has revealed a significant increase in temperature at 
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the majority of weather stations in agricultural regions, and a significant decrease in rainfall at 4 

out of 25 stations (Assani et al., 2019; Yagouti et al., 2008). Further, an increase in the frequency 

of droughts in southern Quebec was observed between 2012 and 2021 (Nand and Qi, 2023).  

According to Ouranos (2015), summer precipitation in south-western Quebec is projected to 

show minimal increases in the periods 2041–2070 and 2071–2100. In the projected high emission 

scenario, average temperatures are expected to rise by approximately 2.5°C between 2041 and 

2070 and 4°C between 2071 and 2100, compared the baseline period (1981-2010). Notably, 

summer temperatures are foreseen to surge by 2.82 and 5.06°C during the corresponding future 

periods. Thus, a warming Quebec climate is expected to result in a substantial increase in growing 

degree days (GDD) (Ouranos, 2015). In colder regions, increased GDD has led to longer growing 

seasons (Jing et al., 2020; Vincent et al., 2018). However, depending on the crop, higher 

temperatures can accelerate crop stages and shorten the growth cycle (Menzel et al., 2006; Xiao et 

al., 2020). The fertilization effect of increased CO2 (especially for C3 crops) would be limited by 

the degree of warming. The number of days per year with temperatures surpassing 30 and 32°C is 

projected to rise by 15 and 6 days in 2041–2070, and 25 and 5 days in 2071–2100, respectively. 

Anticipated changes include an increase in heatwave events, marked by daily minimum and 

maximum temperatures exceeding 20°C and 33°C, respectively (Ouranos, 2015), which increase 

the potential for crop water stress.  

The combined effect of warmer temperatures and increased GDD is expected to expand arable 

land (King et al., 2018), which could create opportunities to expand agricultural production and 

cultivate new crops (Nand and Qi, 2023). While supplemental irrigation in Quebec has previously 

shown to increase the yield and economic return (Drouet, 1989; Madramootoo et al., 1995; 

Tichoux, 1999), agricultural expansion and increased irrigation would exert pressure on water 

resources. Therefore, effective and sustainable water management practices in Quebec necessitate 

an assessment of the impact of climate change on irrigation water demand and its subsequent 

implications for the local environment and water resources. 

2.9 Summary 

This literature review provided an overview of the interdependent issues between agriculture, 

the natural environment, water resources, and climate change. The focus was narrowed to the 

agricultural-peatland complex of the study area in Lanoraie, Quebec, where significant degradation 

has been observed in the wetlands. Commonly irrigated crops cultivated in the region were 
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explored, including their general characteristics and management practices. The underlying 

principles of climate, soil, and water that govern crop water requirements were discussed, as well 

as experimental approaches for measuring key parameters.  Crop water modelling was thoroughly 

researched and presented as a useful tool for estimating irrigation requirements for regional water 

resource management. Specifically, AquaCrop was reviewed, revealing its effectiveness in 

simulating the soil water balance and crop growth cycle for a variety of crops. The vulnerability 

of agriculture to climate change and the projected variability of Quebec growing season weather 

highlights the importance of evaluating the irrigation requirements and working towards 

developing a sustainable water resource management plan for Lanoraie.  
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3. Methodology 

The methodological approach to estimating the irrigation requirements of the Scelaneau study 

region comprised of field data collection, model calibration, simulation, and statistical analysis. 

Field data were collected from representative sites and used to calibrate four AquaCrop models. 

Model performance was evaluated based on soil water content. Next, the calibrated models were 

run to simulate historical and future net irrigation requirements and test the effects of irrigation 

treatment and climate. Finally, the gross irrigation requirements were upscaled to the regional level 

to investigate a potential water supply scenario. 

3.1 Study area description 

The study area is located between 45.82° and 46.09°N and 73.44° and 73.17°W, enveloping 

the Lanoraie peatland complex and surrounding agriculture (Figure 3). It spans seven 

municipalities: Lanoraie, Lavaltrie, Saint-Geneviève-de-Berthier, Saint-Paul, Saint-Sulpice, Saint- 

Thomas and L'Assomption, and includes five main watersheds: Bras-sud-ouest; Saint-Antoine; 

Saint-Jean; Saint-Joseph; and Point-du-jour. It borders the Saint-Lawrence river and five rivers 

flow through the study area. The extent of the study area covers a total of 32 400 ha, including 12 

000 ha of cropland and 7 600 ha of wetland. The average temperature and rainfall over the growing 

season, from May to September are 17.7 °C and 480 mm. The major irrigated crops are potatoes, 

other vegetables, and small fruit. Water for irrigation is mainly sourced from excavated reservoirs 

and ponds adjacent to streams, as well as by 12 small dams operated by the municipalities. 
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Figure 3. Extent of study area, showing municipal boundaries, waterways, cultivated fields, and Lanoraie 
peatland complex (Modified from UPA, 2022). 

3.2 Field site selection 

To estimate regional irrigation requirements for the study area, representative sites were 

selected at the field scale in the GIS-environment ArcMap (Version 10.8; ESRI, 2023). Upscaling 

to a regional scale can be done by identifying homogeneous simulation units, in terms of soil, crop, 

and hydraulic properties. The combinations of soil-crop-water and weather conditions can then be 

aggregated, and the output of the independent runs can be synthesized over the region (Wesseling 

and Feddes, 2006).  

The geospatial soils data of the study region were provided by IRDA (2022) from the Quebec 

soils map database. The crop type and related data for the agricultural fields of the region were 

provided by the UPA de Lanaudière (2022), modified from the Financière Agricole du Québec 
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(FADQ, 2020) representative of the 2021 crop rotations. The map layers of soil data and crop type 

were overlayed and processed to identify the most prominent irrigated crops and soil types. 

Therefore, only crops requiring supplemental irrigation were included in the analysis. In addition, 

lesser acreage crops were grouped into like categories to condense the scope. 

The major irrigated crop is potato, followed by vegetables and gourds, then cranberries, and 

finally, by other berries and small fruits (Figure 4a). These four categories represent 93% of the 

irrigated cropland and will form the basis of further analyses. Potatoes account for nearly two 

thirds of the net irrigated acreage. The cultivated soil type is largely homogeneous, with sandy 

textured soils covering 76% of irrigated cropland. The highest cultivated acreage is on the soil type 

Lanoraie fine sand.         Table 1 summarizes the primary crops and soil types by acreage.  

Field sites were selected to represent the primary irrigated crop groups and soil types in 

cooperation with local producers. Maps of the primary crop groups, and representative field sites 

are show in Figure 4 below. The sites were: L1) Potato grown on Lanoraie fine sand; L2) Squash 

grown on Saint-Thomas fine sand; L3) Strawberry grown on Lanoraie fine sand, and L4) 

Cranberry grown on Saint-Jude sand (Figure 4b). 

 
Figure 4. Study area showing a) the primary irrigated crop groups, and b) the selected field data sites. 
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        Table 1. Primary irrigated crops and soil types in the Lanoraie study area. 

Crop Category Soil Type Area of Irrigated Cropland (ha) 

Potato 

 Lanoraie fine sand 620 

1912  Saint-Thomas fine sand 318 

 Achigan sand 150 

Vegetables and gourds 

 Lanoraie fine sand 144 

778  Saint-Thomas fine sand 102 

 Chaloupe sandy loam 100 

Cranberry 

 Saint-Jude sand 57 

256  Saint-Thomas fine sand 53 

 Dunes 45 

Small fruits and berries 

 Lanoraie fine sand 52 

98  Dunes 17 

 Saint-Jude sand 12 

 

Field data were collected over the 2022 growing season to refine the AquaCrop models and 

are discussed further in sections 3.3 to 3.6 below. At each field site, Decagon capacitance soil 

moisture sensors (Decagon Devices Inc., Pullman, WA) were installed at two depths and 

monitored throughout the growing season. Soil samples were collected from each depth at the field 

sites over the growing season to calibrate the sensors and to conduct soil texture analyses. Weather 

data were collected from the nearest weather station, in L’Assomption, managed by Environment 

and Climate Change Canada (ECCC). For the 2022 growing season (May to September), the 

average temperature was 17.9°C and the total rainfall was 425 mm, above the historical 25-year 

average. Weather, groundwater level, and water quality were assumed to be consistent over the 

study area. Additionally, a questionnaire was distributed to each farmer to obtain crop, field, and 

irrigation management information. 

3.3 Crop, field, and irrigation management at field sites 

The agriculture of each field site is summarized in    Table 2. Cultivation techniques followed 

traditional farming practices for the area to maximize crop yield and quality as per the grower’s 

expertise.  
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   Table 2. Crop, soil type, and irrigation system of selected field data sites 2022 

Site Crop Soil Type Irrigation System 

L1 Potato Lanoraie fine sand 
Low-pressure center pivot, 

drop tube and rotator nozzle 

L2 Squash Saint-Thomas fine sand Solid-set sprinkler 

L3 Strawberry Lanoraie fine sand Solid-set sprinkler 

L4 Cranberry Saint-Jude sand Solid-set sprinkler 

 

At field site L1 (Figure 5a), potato tubers (cultivar Solanum tuberosum FL-2137) were sown 

on May 11th, 2022, and seedlings emerged June 5th. Observed in Figure 5b, flowering began on 

July 2nd and lasted 28 days. Plant senescence occurred on August 15th and the harvest was 

conducted on September 22nd, when tubers reached maturity. Potatoes were grown on a hill 

furrow design with a row spacing of 0.9 m and plant spacing of 0.3 m. The canopy cover reached 

a maximum of 90%. Weed management was very good, meaning weeds accounted for only 5% of 

the canopy cover over the season. Irrigation was applied via a center pivot system with an 

application pressure of 103 kPa. There were four irrigation events in 2022: July 8th (18 mm), July 

14th (18 mm), July 21st (22 mm), and August 1st (25 mm).  

Field site L2 can be observed in Figure 6. Winter squash seedlings (cucurbita maxima) were 

transplanted on June 13th, 2022, with a row spacing of 1.2 m and plant spacing of 0.45 m. 

Flowering began July 13th and lasted approximately 35 days. The field was nearly entirely covered 

at maximum canopy cover and senescence started August 20th. Squashes were clipped from their 

vines August 25th and left to cure in the field. Weed management was very good, i.e., 5% relative 

weed cover. A depth of 25 mm of water was applied to the field by sprinkler irrigation on three 

occasions during the growing season. 
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Figure 5. L1 field site of potato grown on Lanoraie fine sand, showing a) geographic location and nearby 
water intake locations; b) photo capture of flowering crop and center pivot on July 7th, 2022. 

 
Figure 6. L2 field site of squash grown on Saint-Thomas fine sand, showing a) geographic location and 
nearby water intake locations; b) photo capture of crop rows and sensor placement on July 7th, 2022. 

At the L3 field site (Figure 7), strawberry (Fragaria ananassa) seedlings were transplanted 

0.35 m apart on April 27th, in rows 1.3 m apart. Flowering began May 10th and lasted until June 

5th. Rather than a yield production of fresh berries, the producer was growing strawberry plants for 

wholesale distribution to other farms. Therefore, irrigation was more frequent to maintain surface 

soil moisture to promote the rooting of young runners and prevent yield formation. Soil moisture 
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sensors were installed in rows of a Quebec strawberry cultivar (Jewel). Sprinkler irrigation was 

initiated approximately every two to three days, when there was no rainfall greater than 5 mm. 

Weed management was perfect (i.e., 0% weed cover) and canopy cover reached a maximum of 

75%. 

 
Figure 7. L3 field site of strawberry grown on Lanoraie fine sand, showing a) geographic location and 
nearby water intake locations; b) photo capture of crop rows and sprinkler system on July 7th, 2022. 

The L4 field site is shown in Figure 8. Regrowth in the cranberry bog initiated mid-May and 

flowering began mid-June. Weed management was very good and the bog was near full crop 

coverage. Soil tension was actively monitored by the producers with tensiometers in the field. 

Water was applied by sprinklers for frost protection in early spring and for irrigation and heat 

protection as necessary in July, August, and September. Approximately 55 mm total was applied 

for irrigation. Harvest flooding occurred in the fall. Water is supplied from on-farm reservoirs and 

circulated in a closed-loop system. 
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Figure 8. L4 field site of cranberry grown on Saint-Jude sand, showing a) geographic location and nearby 
water intake locations; b) photo capture of ripening cranberries on August 25th, 2022. 

3.4 Meteorological data 

The AquaCrop model requires daily values of rainfall, minimum and maximum air 

temperature, reference crop evapotranspiration, and mean annual carbon dioxide concentration 

(CO2). The FAO ETo calculator was used to calculate daily ETo using the daily maximum and 

minimum temperature, wind speed at 2 m above ground surface, solar radiation, and minimum and 

maximum relative humidity (RH). 

3.4.1. Historical climate data 

For the historical analysis, the meteorological data, including precipitation (mm), air 

temperature (°C), relative humidity (%), and wind speed (m/s), were extracted from the 

L’Assomption weather station of ECCC on an hourly basis for the years 1997-2022 (ECCC 

L’Assomption, 2022). Missing data points were filled with measurements from the Montreal St-

Hubert weather station, 25 km away (ECCC Montreal St-Hubert, 2022). The hourly data were 

processed to calculate daily maximum and minimum values for temperature and relative humidity, 

as well as total daily precipitation and average wind speed. Net solar radiation was obtained from 

the National Aeronautics and Space Administration Langley Research Center Prediction of 

Worldwide Energy Resource Project (NASA POWER, 2022). Relative humidity, wind speed and 

solar radiation were used to calculate ETo, and thereafter determining the ETc of the main crops 
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for last 25 years. Mean annual atmospheric CO2 concentrations are provided in AquaCrop from 

the Mauna Loa Observatory. 

3.4.2. Future climate data 

To predict the impact of a changing climate, daily downscaled and bias-adjusted variable data 

were obtained from ClimateData.ca (2022). ClimateData.ca was created through a collaboration 

between the Pacific Climate Impacts Consortium, Ouranos Inc., the Prairie Climate Centre, ECCC, 

Centre de Recherche Informatique de Montréal, and Habitat7. The latest phase of the Coupled 

Model Intercomparison Project (CMIP6) ensemble was selected as it is the most current global 

climate model data available. The ensemble consists of projections from five climate change 

models: IPSL-CM6A-LR, CNRM-CM6-1, MIROC6, MIROC-ES2L, and CNRM-ESM2L, under 

SSP5-8.5 emission scenario. The SSP5-8.5 (high-emissions scenario) was chosen to maintain 

consistency between the work by the IRDA team for the SCELANEAU project.  

Each GCM was statistically downscaled to the study area using BCCAQv2 methodology. 

BCCAQv2 is a hybrid method combining results from Bias Corrected Constructed Analogs 

(BCCA; Maurer et al. 2010) and Quantile Delta Mapping (QDM; Cannon et al. 2015). BCCA 

employs spatial aggregation via a linear combination of historical analogues for daily large-scale 

fields. QDM uses a modified quantile mapping method that preserves relative changes in GCM 

quantiles to avoid inflationary effects. CMIP6 datasets have been downscaled to approximately 6 

x 10 m (0.0833° latitude x 0.0833° longitude). Mean annual CO2 concentrations corresponding the 

SSP5-8.5 scenario were selected in AquaCrop. 

Two future periods were defined for the projected simulation results to compare near and far 

effects on irrigation requirements to the baseline period (1997-2021). The 2050s represents a 30-

year average over 2036-2065, and the 2080s represents a 30-year average over 2066-2095. 

Consistent with the methods recommended by the World Meteorological Organization (Arguez 

and Vose, 2011), climate normal were first calculated for temperature and precipitation over the 

baseline and two future periods. A standard climate normal is the average of a climatic period over 

30 years (Govere et al., 2022): 

𝑇? =	
/
0!
∑ 𝑇@A(/
@B0!(A      (6) 
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Where, Tn is the 30-year climate normal for the parameter T, Ti is the mean of the variable T 

for the year I, and x is an integer between 1 and 29. The climate normal for the baseline period 

was compared with the normal for the 2050s and 2080s under the SSP5-8.5 scenario to investigate 

the projected changes in temperature and precipitation. For estimating future irrigation 

requirements, each year was run in the model using daily climate data. Simulated net irrigation 

was subsequently averaged over the 30-year periods to evaluate the effect of climate change. 

3.5 Soil texture analysis 

Two soil horizons were defined for analysis, consistent with the depths of the soil moisture 

sensors: 0-15 cm and 15-30 cm. At each of the field sites, soil samples were collected with an 

auger from three points at random to ensure representative soil characteristics (Bouyoucous, 1936). 

Prior to collection, the top vegetation layer was carefully removed to minimize organic matter 

contamination (Gee and Bauder, 1986). The samples were stored in airtight, labeled containers for 

transport to the laboratory. 

The coarse fraction was analyzed by the sieve method according to ASTM standard C136-06. 

The soil was oven-dried at 110°C for 48 hours. After drying, the samples were gently crushed and 

any visible roots, stones, or debris were removed (Gee and Or, 2002). Sieves selected according 

to the CSSC particle size limits were stacked and placed in a mechanical sieve shaker for 15 min. 

Particles passing the No. 200 sieve (<75μm) are considered the finer-grained portion of the sample. 

Particle size analysis of the fine fraction was conducted using the hydrometer method (ASTM 

D422-63) as described by Kroetsch and Wang (2008). Soil samples were soaked overnight in 

sodium hexametaphosphate dispersant and mixed with an electric mixer to ensure homogeneity. 

The suspension was transferred to a graduated cylinder, topped up with distilled water, and 

manually mixed with a plunger. A hydrometer calibrated to ASTM standards was used to measure 

the particle density of the soil suspension at specific time intervals (ASTM D422-63). From these 

measurements, the particle size distribution was calculated using Stoke's law. 

The particle size distribution data obtained from the sieve and hydrometer tests were analyzed 

to determine the percentages of sand, silt, and clay in each soil sample. The textural classification 

of the soil samples was done according to the CSSC soil textural classification system. Particle 

size distribution curves were plotted to compare soil grading between field sites. Soil hydraulic 

properties, such as field capacity, wilting point and saturated hydraulic conductivity, were 

estimated using the SWCC model’s pedo-transfer function developed by Saxton et al. (2006). 
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3.6 Soil moisture data 

Decagon capacitance sensors were installed in duplicate at two depths within the crop’s root 

zone to monitor soil moisture and were connected to EM50 data loggers (METER Group, Pullman, 

WA, USA). Two sensors measured soil moisture closer to the surface, at a 5 cm depth, while two 

others measured soil moisture deeper in the root zone at depths varying between 15 cm and 30 cm, 

depending on the crop. Due to availability of sensors and cooperation from local growers, the 

capacitance sensors were installed at the field sites L1, L2 and L3, while data from existing 

tensiometers were shared for the cranberry field at L4. The soil matric potential data collected at 

L4 underwent conversion to volumetric water content using the van Genuchten-Mualem model. 

The capacitance sensors at L1, L2, and L3 were installed by auguring a vertical hole to a depth 

below the root zone of the respective crop, and horizontally inserting the sensors into the soil at 

the selected depths. The sensor cables were run along the soil surface to the data loggers. Sensor 

data were retrieved via the EC2H20 Utility 1.8 software (METER Group, Pullman, WA, USA). 

Volumetric water content (VWC, cm3 cm-3) was logged at 5-min intervals throughout the 

growing season. Field specific calibration of soil moisture sensors is an important step in ensuring 

the accuracy of the sensor readings (Robinson et al., 2008). Therefore, soil core samples of known 

volume were collected during eight field visits to the sites throughout the 2022 growing season. 

The gravimetric samples were collected in duplicate at each sensor depth and converted to 

volumetric water content using the measured bulk density. Like Wang et al. (2023), measured soil 

bulk density and gravimetric water content were used to correct the VWC recorded by the sensors.  

Consistent with the methods of Danielescu et al. (2022), the corrected VWC was averaged for 

the replicates at each depth to obtain a representative daily value. Next, daily VWC measurements 

(m3 m-3) were multiplied by the thickness of the root zone to achieve an equivalent depth of water 

column (mm) and allow comparison with simulated soil water content in the root zone. 

3.7 AquaCrop model 

The AquaCrop models for potato, squash, strawberry, and cranberry were calibrated with the 

2022 field data from each site. To facilitate the accurate assessment of irrigation requirements, the 

soil moisture measurements described in Section 3.6 served as the observed data for the model 

calibration. Each model was then initialized with parameters corresponding to the field conditions, 

encompassing climate, crop, soil, and management variables, described in Section 3.7.1 below. 
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3.7.1. Model parameters 

For all crop models, the climate variables for the 2022 growing season were obtained as 

described in Section 3.4.1. For the calculation of ETo, the geographic coordinates and elevation of 

each field were specified. ETo was calculated by the FAO-56 Penman-Monteith Equation. 

The crop parameters for each model are presented in Table 3 through Table 6. The conservative 

crop parameters, those that do not change significantly with time, location, and management, are 

provided by AquaCrop in the default potato crop file. These values remain be the same for any 

potato cultivar grown in any region of the world (Hsiao, 2012). For the crops not defined in 

AquaCrop, values were extracted from literature and calibrated to local conditions if they 

simulated a response in SWC. These conservative parameters include the crop coefficient for 

transpiration at full canopy, canopy decline coefficient, biomass water productivity, reference 

harvest index. Non-conservative parameters, that are management and cultivar specific, are also 

required. Planting method, plant density, and the dates of planting, emergence, start of senescence 

and maturity were specified by farmer observations. Planting dates mirrored the actual agricultural 

practices in the study area, ensuring that the model was aligned with the local agricultural calendar. 

If not specified by the farmer, parameters such as the dates of maximum canopy cover and the start 

of yield formation were adopted based on the recommended ranges provided by AquaCrop and 

subsequently calibrated. The crop response to soil salinity or soil fertility stress was not considered. 

Table 3. Potato crop parameters for model calibration 

Crop Parameter Value Method 

Planting method Sowing Observed 
Plant density 3.3 plants/m2 Observed 
Initial canopy cover, CCo Small canopy, 0.17% Calibrated 
Maximum canopy cover, CCmax Almost entirely covered, 92% Calibrated 
Canopy decline coefficient, CDC Very slow decline, 1.9%/day Default 
Maximum effective rooting depth 0.30 m Observed 
Shape factor for root zone expansion 1.5 Default 
Crop transpiration coefficient, Kc Tr 1.10 Default 
WPET normalized for climate and CO2 0.18 g/m2 Default 
Reference harvest index, HIo 75% Default 
Date of sowing May 11th, 2022 Observed 
             seedling emergence June 5th, 2022 Observed 
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             start of flowering July 2nd, 2022 Observed 
             start of yield formation July 6th, 2022 Calibrated 
             end of flowering July 30th, 2022 Observed 
             maximum canopy cover July 15th, 2022 Calibrated 
             start of canopy senescence August 15th, 2022 Observed 
             end of building up HI September 21st, 2022 Calibrated 
             maturity September 22nd, 2022 Observed 

       Table 4. Squash crop parameters for model calibration 

Crop Parameter Value Method 
Planting method Transplanting Observed 
Plant density 1.9 plants/m2 Observed 
Initial canopy cover, CCo 0.13% Calibrated 
Maximum canopy cover, CCmax Almost entirely covered, 95% Calibrated 
Canopy decline coefficient, CDC Slow decline, 8.4%/day Calibrated 
Maximum effective rooting depth 0.35 m Calibrated 
Shape factor for root zone expansion 1.7 Calibrated 
Crop transpiration coefficient, Kc Tr 0.9 Calibrated 
WPET normalized for climate and CO2 0.15 g/m2 Literature 
Reference harvest index, HIo 85% Literature 
Date of transplant June 14th, 2022 Observed 
             transplant recovery June 15th, 2022 Observed 
             start of flowering July 13th, 2022 Observed 
             end of flowering August 18th, 2022 Observed 
             maximum canopy cover July 27th, 2022 Calibrated 
             start of canopy senescence August 16th, 2022 Observed 
             length of building up HI August 12th, 2022 Calibrated 
             maturity August 24th, 2022 Observed 

       Table 5. Strawberry crop parameters for model calibration 

Crop Parameter Value Method 
Planting method Transplanting Observed 
Initial canopy cover, CCo 1.10% Calibrated 
Maximum canopy cover, CCmax Fairly covered, 75% Observed 
Plant density 2.2 plants/m2 Observed 
Canopy decline coefficient, CDC Very slow decline, 6.5%/day Calibrated 
Maximum effective rooting depth 0.20 m Calibrated 
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Shape factor for root zone expansion 1.3 Calibrated 
Crop transpiration coefficient, Kc Tr 0.75 Calibrated 
WPET normalized for climate and CO2 0.18 g/m2 Literature 
Reference harvest index, HIo 40% Literature 
Date of transplant April 26th, 2022 Observed 
             transplant recovery May 3rd, 2022 Observed 
             start of flowering May 10th, 2022 Observed 
             end of flowering June 8th, 2022 Observed 
             maximum canopy cover September 1st, 2022 Observed* 
             start of canopy senescence September 22nd, 2022 Observed* 
             length of building up HI June 30th, 2022 Observed* 
             maturity October 1st, 2022 Observed 
*Due to model restrictions of crop growth stages, dates provided by farmer observations 
were modified to allow the model to run, simulating flowering and yield formation. 

       Table 6. Cranberry crop parameters for model calibration 

Crop Parameter Value Method 
Planting method Regrowth Observed 
Initial canopy cover, CCo 74.5% Calibrated 
Maximum canopy cover, CCmax Almost entirely covered, 98% Observed 
Plant density 2.8 plants/m2 Observed 
Canopy decline coefficient, CDC Slow decline, 10.6%/day Calibrated 
Maximum effective rooting depth 0.30 m* Restricted* 
Crop transpiration coefficient, Kc Tr 0.6 Calibrated 
WPET normalized for climate and CO2 0.17 g/m2 Literature 
Reference harvest index, HIo 50% Literature 
Date of regrowth May 14th, 2022 Observed 
             start of flowering June 13th, 2022 Observed 
             end of flowering July 29th, 2022 Observed 
             maximum canopy cover May 28th, 2022 Calibrated 
             start of canopy senescence September 9th, 2022 Calibrated 
             length of building up HI September 1st, 2022 Calibrated 
             maturity September 30th, 2022 Observed 
*Root depth for perennial crop models is restricted to a minimum of 0.30 m, therefore default 
soil water extraction pattern was modified to represent a shorter rooting depth. 

 

The soil profile was defined in two soil horizons based on the particle size analysis. However, 

due to reduced sample size after sieving, the hydrometer method underestimated silt and clay 
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particles. Therefore, soil water attributes, such as FC and WP, were derived by applying the bulk 

density measurements and soil particle distribution from Quebec pedological soil survey data to 

the SWCC pedo-transfer function and are presented in section 4.2. The soil hydraulic parameters 

were then evaluated as sensitive parameters. L1, L2, and L3 soils were classified as sandy soil, 

while L4 was a loamy sand. The model automatically adjusted the Curve Number (CN) to 46 and 

the Readily Evaporable Water (REW) to 2 mm by default, according to the soil type. The CN was 

subsequently calibrated while remaining within the range for soil hydrological group A. The initial 

condition for soil moisture was assumed at FC on May 1st. Capillary rise was negligible since the 

groundwater table was below 2 m, except in the case of the cranberry bog, where the water table 

is controlled for irrigation management. In this case, the depth of the groundwater table was 

defined by target values highlighted in Quebec cranberry studies (Caron et al., 2017; Pelletier et 

al., 2015b; Vanderleest et al., 2017), and calibrated to the field conditions. 

Management parameters associated with irrigation and field practices, such as irrigation events 

and weed management, were defined as specified by the farmer questionnaire to mimic the 

irrigation practices employed in the region. This site-specific approach was pivotal in accounting 

for the conditions and practices of the study area. Each model was calibrated for the 2022 growing 

season with the above-mentioned data, comparing the simulated output with the field data. 

3.7.2. Sensitivity analysis and calibration 

An iterative parameter adjustment process was initiated to fine-tune the model. This calibration 

primarily focused on parameters associated with soil water infiltration, and crop growth. 

Additionally, a sensitivity analysis (SA) was carried out to identify the parameters that had the 

most significant influence on model predictions (Cao and Petzold, 2006), providing insights into 

the critical factors affecting soil moisture dynamics. The SA followed the methodology outlined 

by Geerts et al. (2009). The parameter inputs were changed one at a time while the others remained 

constant. The interval of variation of the inputs was chosen as -25 to +25% of the standard value. 

Model outputs under the changed inputs were compared to the basic output. Variables were 

assigned a sensitivity level of high, medium, low, if the model’s response to the changes was 

greater than 15%, between 2-15%, or less than 2% respectively (Geerts et al., 2009). The results 

of the SA helped narrow the calibration efforts. The aim was to minimize the disparity between 

the model's simulated soil moisture levels and the observed field measurements through a trial-

and-error approach. 



 52 

3.7.3. Statistical metrics for model evaluation 

To evaluate the calibrated AquaCrop model's performance, a comprehensive comparison was 

conducted between its simulated soil moisture values and the observed field data. Due to the 

individual strengths and weaknesses of statistical indicators, model performance evaluation 

requires the use of multiple metrics for a comprehensive assessment (Feng et al., 2022; Wilmott, 

1982). Consistent with recent AquaCrop model performance studies (e.g. Paredes et al., 2018; 

Razzaghi et al., 2017; Terán-Chaves et al., 2022; Wang et al., 2023), the goodness-of-fit of each 

crop model was evaluated using the following statistics: the Pearson correlation coefficient (r), the 

root mean square error (RMSE), the normalized root mean square error (NRMSE), the Nash-

Sutcliffe model efficiency coefficient (EF), and the Willmott index of agreement (d).The r, RMSE, 

NRMSE, EF, and d are described as follows (Moriasi et al., 2007; Nash and Sutcliffe, 1970; 

Wilmott, 1982):  

Pearson correlation coefficient, 𝐫 = 6 ∑(D3(DE)(F3(FG)
H∑(D3(DE)&∑(F3(FG)&

7    (7) 

Root Mean Square Error, 𝐑𝐌𝐒𝐄 = <∑(F3(D3)&

I
    (8) 

Normalized Root Mean Square Error, 𝐍𝐑𝐌𝐒𝐄 = /
DE
<∑(F3(D3)

&

I
∗ 100%   (9) 

Nash-Sutcliffe model efficiency coefficient, 𝐄𝐅 = 𝟏 − ∑F3(D3)&

∑(D3(DE)&
   (10) 

Willmott’s index of agreement 𝐝 = 𝟏 − ∑(F3(D3)&

∑(|F3(DE|+|D3(DE|)𝟐
    (11) 

where Oi and Si are the observed and simulated values respectively; 𝑂F and 𝑆̅ are their means; 

and n is the number of observations.  

The Pearson correlation coefficient ranges from -1 to 1, with values near 1 indicating strong 

agreement between observed and simulated values. According to FAO (2015) for r, values > 0.90 

indicate a very good agreement, while values of 0.70-0.90 and 0.5-0.7 are considered good and 

acceptable respectively. Values below 0.50 indicate poor agreement. Correlation quantifies 

dispersion only, so a model consistently overestimating or underestimating observations can still 

yield a high r value. It is also necessary to analyze the residual error (Si – Oi) (Willmott, 1982). 

The RMSE is a widely used statistical indicator for assessing model performance (Jacovides 

and Kontoyiannis, 1995), measuring the average magnitude of the difference between predictions 
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and observations. It ranges from 0 to positive infinity, with lower values indicating better model 

performance. Since the residual errors are calculated as squared values, the RMSE is sensitive to 

extreme values or outliers (Moriasi et al., 2007). RMSE quantifies the mean difference in the same 

units as the data, while the NRMSE is expressed as a percentage. It indicates the relative disparity 

between the simulated and observed data. A simulation can be considered excellent if the NRMSE 

is less than 10%, good if between 10 and 20%, fair if between 20 and 30%, and poor if greater 

than 30% (Jamieson et al., 1991).  

The Nash-Sutcliffe model efficiency coefficient (EF) determines the relative magnitude of the 

residual variance compared to the variance of the observations (Nash and Sutcliffe, 1970). It is 

very commonly used to assess the quality of the modelling approach, and thus has many reported 

values available in literature (Moriasi et al., 2007). The EF ranges from – ∞ to 1. EF approaches 1 

when the residual variance is much smaller than the observed data’s variance. An EF of 1 indicates 

a perfect fit, while EF of 0 implies the model is only as accurate as the observed mean, and EF < 0 

suggests the observed mean is a better estimator than the model (Legates and McCabe, 1999). An 

EF greater than 0.40 is considered acceptable for SWC in crop modeling studies (Geerts et al., 

2009; Paredes et al., 2014; Razzaghi et al., 2017). 

The index of agreement (d) represents the ratio of the mean square error to the “potential error”, 

which is the sum of squared absolute distances between predicted and observed values from their 

respective means. This index rectifies the insensitivity of r and EF to systematic over- or 

underestimations of the model. It ranges from 0, meaning complete disagreement, to 1, meaning 

predicted and observed data are identical (Legates and McCabe, 1999; Willmott, 1982).  

The simulation results were considered good when the majority of statistical indicators of the 

model evaluation were classified as good to very good (Terán-Chaves et al., 2022). 

It is common practice in hydrological modeling to reserve a separate dataset for model 

validation, distinct from the data used in the calibration process (Arsenault et al., 2018). However, 

due to the inaugural phase of the project and limited timeframe, only data from one growing season 

were collected. Therefore, it was not possible to validate the models. Furthermore, a split-sample 

approach is not always recommended. A recent study that tested 50 split-sample approaches in 

hydrological model calibration found that the conventional approach of calibrating hydrological 

models with older data and validating them with newer data results in inferior model performance. 
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The results showed that calibrating models with the full available historical data and omitting 

model validation altogether was the more robust choice (Shen et al., 2022). 

These AquaCrop models, calibrated against soil moisture field data, served as the foundation 

for subsequent irrigation simulations, forming an integral component of the study. 

3.8 Simulating irrigation requirements 

The AquaCrop model offers an updated approach for estimating crop productivity with respect 

to water supply and agronomic management based on current concepts of plant physiology and 

soil-water budgeting (Raes et al., 2009). The model's robustness and ability to depict the impacts 

of water stress at specific growth stages make it valuable for assessing irrigation strategies and 

studying factors like climate, soil type, field management techniques, and sowing dates on crop 

production and water use efficiency. In this study, AquaCrop was employed under different 

irrigation strategies for each of the four calibrated crop models to estimate the historical irrigation 

requirements for the last 25 years (1997-2021). Furthermore, the models were used to predict the 

impact of climate change on the near (2050s) and far (2080s) future irrigation requirements. 

3.8.1. Estimating historical irrigation requirements 

Each of the calibrated AquaCrop models was used to estimate the net irrigation requirements 

for the last 25 years (1997-2021) for three different irrigation treatments. The climate data, such 

as temperature, relative humidity, wind speed, and solar radiation, were obtained as described in 

section 3.4.1 and input as a climate file. Agronomic management practices, such as planting date 

and weed control, were kept consistent to the farmer specifications. The crop and soil parameters 

remained unchanged from their field calibrated values summarized in Table 3-6. The crop file was 

converted from calendar day format to growing degree days to account for the variability in the 

duration of the crop cycle due to temperature over the growing season. It was found that calendar 

day mode made the model inadequately simulate crop growth and water use under non-optimum 

temperature conditions or for predicted climate change scenarios (Tsakmakis et al., 2019). The 

planting (or sowing) date was kept constant. For cranberry simulations, the groundwater table file 

used in model calibration was removed, so that the CWRs would represent the sum of sprinkler 

and sub-irrigation.  

The irrigation file was set to determine the net irrigation requirements. Three irrigation 

treatments were investigated based on the maximum allowable depletion (MAD) of the available 
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water content (AW) of the soil. Irrigation was set to trigger when 20%, 35%, or 50% of the total 

available water in the soil had been depleted. In all cases, water was applied to bring the root zone 

soil moisture back up to field capacity.  

Five dry, five average, and five wet years were identified by comparing the total rainfall over 

the crop growth period from 1997-2021. The mean simulation results of five years were calculated 

to represent the historical dry, average, and wet growing season weather conditions.  

The simulated output was then compared statistically to evaluate the effects of irrigation 

treatment and weather on Inet, dry yield and water productivity. The statistical analysis was used 

to recommend the optimum irrigation strategy in dry, average, and wet growing season conditions. 

3.8.2. Assessing the impact of climate change on irrigation requirements 

Additionally, the models were used to predict the impact of climate change on the near (2050s) 

and far (2080s) future irrigation requirements. Each AquaCrop model was run for an ensemble of 

five GCMs under SSP5-8.5 scenario. The climate files were defined for each GCM and comprised 

the statistically downscaled climate data described in section 3.4.2. All other parameters remained 

consistent with the historical simulations. The three irrigation treatments were investigated, 

corresponding to an MAD of 20%, 35%, and 50% AW.  

The simulated net irrigation demand for near and far future climate periods were compared to 

the baseline period (1997-2021), similarly to Busschaert et al. (2022), to assess changes in the 

mean irrigation requirements. The simulated results for each model in the ensemble were averaged 

over 30 years, typical to climate change crop simulation studies (eg. Bird et. al., 2016; Govere et 

al., 2022). The 2050s represents a 30-year average over 2036-2065, and the 2080s represents a 30-

year average over 2066-2095.  

The objective was to estimate the mean Inet for near and far future climate periods and relate 

this to the historical baseline. The effect of irrigation treatment and climate on Inet was investigated 

with a statistical analysis.  

3.8.3. Statistical analysis of significance 

The statistical significance of the irrigation treatment and weather or climate were tested using 

a two-way ANOVA with factorial interaction, executed with the GLM procedure in SAS Studio 

version 3.81 (SAS Institute Inc., Cary, NC). The significant differences of the F-test were 

determined at p = 0.05. Additionally, the least squared means (LS-means) were computed for each 



 56 

main effect as well as their interaction, using the LSMEANS statement with a confidence level 

kept at p = 0.05. 

3.9 Mapping regional irrigation water requirements 

Next, the total irrigation requirements were mapped into water supply sectors to help propose 

an irrigation supply system. Mean monthly irrigation requirements were derived from the 

simulation results for the five historical dry years to represent the greatest demand of water. In 

addition to the simulated irrigation events, water requirements for frost and heat protection were 

considered for strawberry and cranberry crops, as well as water used for cranberry harvest 

flooding. The application efficiency was also taken into account for the main irrigation systems 

used. Gross depths of irrigation requirements were extrapolated over the irrigated cropland of the 

study area for each month of the growing season. 

3.9.1. Frost and heat protection 

Strawberry and cranberry growers in the studied region utilize their irrigation systems for frost 

protection in the spring. Therefore, by analyzing the hourly weather data over the five driest 

growing seasons, a depth of water was assumed for frost protection events according to respective 

threshold values for each crop. Strawberry critical thresholds and required rate of water depth were 

defined by the OMAFRA Factsheet: “Irrigation for frost protection of strawberries” (Shortt et al., 

2022). The rate of water applied for strawberry frost protection was determined by the number of 

hours at a specific air temperature and wind speed. The critical air temperature for starting 

irrigation was adjusted based on dew point temperature since the lower the dew point, the sooner 

irrigation should start (Shortt et al., 2022). Developing cranberry buds are equally sensitive to low 

temperatures and often require irrigation to shield them from spring frost damage (Workmaster 

and Palta, 2006). Critical temperature at which protection must begin depends on the growth stage 

and cultivar (DeMoranville, 2000). The temperature thresholds and rates of water application were 

estimated from the works of Caron et al. (2017), Sandler and DeMoranville (2008), and 

Workmaster and Palta (2006). 

Sprinkler irrigation for evaporative cooling of cranberry crops on very hot days was also 

considered. Activating sprinkler irrigation for a few minutes when a critical temperature threshold 

is reached is common cultural practice for cooling cranberry plants and preventing yield losses 

due to overheating. Research on photosynthetic light and temperature response curves of young 
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cranberry runners indicates that the peak leaf photosynthesis occurs when the leaf temperature 

reaches 30°C (Kumudini et al., 2004). Similarly, a recent study on cranberries in Quebec (Pelletier 

et al., 2016), found that the optimum temperature range for carbon dioxide assimilation was 

between 25 and 29°C. They determined that the critical temperature at which sprinkler irrigation 

should be turned on to avoid heat stress and maximize photosynthesis is 33°C, which corresponds 

to an air temperature of 28°C. When applying 1.5 mm of water via irrigation in the field, leaf 

temperature was reduced by 5–10°C (Pelletier et al., 2016). Therefore, for each day that the 

maximum temperature was greater than 28°C, it was assumed that 1.5 mm of water was applied 

for heat protection of cranberry crops, unless a simulated irrigation event was recorded that day. 

3.9.2. Harvest flooding 

Water harvesting takes advantage of cranberry fruit buoyancy to save labor costs and maximize 

berry collection (Sandler and DeMoranville, 2008). The local producer’s estimates of water depth 

applied for harvest flooding was provided by the UPA de Lanaudière (2022). The mean depth from 

this data was assumed for harvest flooding in the month of October. The water used for flooding 

is reused by transferring it from field to field at each farm, whereas irrigation is mainly consumed 

and therefore represents the bulk of water consumed (Caron et al., 2016). 

3.9.3. Irrigation system application efficiency 

Application efficiency gauges the performance of an irrigation system to deliver a specific 

amount of water. It is calculated as the fraction of the water depth applied that is stored in the root 

zone and available for crop use. The water depth applied is also known as gross irrigation, whereas 

the target water depth intended for crop use is the net irrigation requirement. (Eisenhauer et al., 

2021; Water Resources Program, 2023). Therefore, the gross, or applied irrigation depth can be 

calculated with: 

   	IJ5KLL =
MN
/!!%

∙ II.P     (12) 

 

where: Igross is the applied irrigation depth, AE is the average application efficiency of the 

irrigation system, and Inet is the net irrigation requirement. This calculation assumes uniform 

distribution over the field areas. 

Application efficiency values were assumed by consulting irrigation engineering resources, as 

well as a main irrigation system supplier in the study area. The potato growers of the study area 
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primarily irrigate with low pressure center pivot systems, which typically range between 75% and 

95% AE (Eisenhauer et al., 2021; Howell, 2004; Irmak et al., 2011; Lamm et al., 2019; Water 

Resources Program, 2023). An AE of 87% was assumed for potato considering that the center 

pivot systems are equipped with low-pressure rotator drop nozzles, which offer greater water 

efficiency (Harnois Irrigation, personal communication, 2021; OFA, 2004). The squash, cranberry, 

and strawberry producers at the field data sites irrigated with solid-set sprinkler systems. However, 

observations from the study area and communications with Harnois Irrigation (2021) highlighted 

a variety of systems used for vegetable and berry crops, ranging from drip irrigation to linear 

moving sprinkler systems, and the enthusiasm of producers moving towards more efficient 

systems. Therefore, remaining within the typical range of 70-85% for solid-set sprinkler systems 

(Eisenhauer et al., 2021; Howell, 2004; Irmak et al., 2011), an AE value of 80% was assumed for 

vegetable and berry fields to account for system diversity. 

3.9.4. GIS analysis 

Finally, the water requirements were upscaled from field estimates to the regional scale. To 

synthesize the irrigation requirements over the study area, the gross irrigation depths were 

extrapolated over the irrigated cropland in the GIS-environment ArcMap (Version 10.8; ESRI, 

2023). The monthly estimates of total irrigation water, in mm, were multiplied by the field area of 

each of the respective crop groups. The resulting volumes of water per field were aggregated by 

proximity to identify areas of high demand, for each month of the growing season.  

3.10 Water supply scenarios 

As a preliminary assessment of potential water supply scenarios, possible pipeline dimensions 

were proposed for five irrigation sectors in the study area. Irrigation sector boundaries and water 

sources were determined with the project stakeholders. System flow requirements were designed 

to peak water use. 

3.10.1. Volumetric flow rate 

The hydraulic flow rate is the volume of water flowing past a given point in the pipe or channel 

per unit time, expressed in cubic meters per second. The flow rate is expressed with the following 

equation (Eisenhauer et el., 2021): 

  Q = vQRJASL          (13) 
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where, Q is the volumetric flow rate (m3/s), vavg is the average flow velocity (m/s), and Acs is 

the cross-sectional area of the flow (m2). 

The peak monthly volumetric water demand was determined in each of the five sectors. From 

the simulated irrigation events of the main crops, this peak demand was assumed to be distributed 

over 15 days of irrigation. Potential flow rates were investigated for 12, 15, and 18 hours of 

pumping per day for each sector. Therefore, the peak flow rates corresponded to the peak monthly 

volume of water pumped for 12 hours per day over 15 days. 

3.10.2. Pipeline diameter 

As water moves through an irrigation system, pressure losses, or friction losses, are affected 

by factors such as the flow velocity, the inside diameter of the pipe, and the roughness of the pipe. 

Estimating friction losses is an important part of pipe flow analysis and pipe size selection for 

specific applications. Many empirical relationships have been developed to describe pressure drop 

in hydraulic flow due to frictional resistance, such as Manning’s equation, the Darcy-Weisbach 

equation, and the Hazen-Williams formula (Satterfield, 2010; USDA, 2021). 

Manning’s equation applies to uniform flow in open channels and is commonly used for 

gravity pipe flow. It provides a relationship between the channel flow or velocity, and the flow 

area and channel slope (Bryant, 2017; Satterfield, 2010; USDA, 2021):  

 

Q = T
I
∙ 	AUV ∙ RWX/0	∙ S//X         (14) 

 

where, Q is the volumetric flow rate (m3/s); K is a constant that depends on the unit system (K 

= 1.0 for SI units); n is Manning’s roughness coefficient; Acs is the cross-sectional area of the flow 

(m2); Rh is the hydraulic radius (m); and S is the hydraulic gradient or slope. When applied to 

pipelines, the hydraulic radius is defined as the ratio of the pipe’s cross-sectional flow area Acs to 

the wetted perimeter P, and therefore simplifies to Rh = D/4. Thus, Equation 8 rearranged to solve 

for pipeline diameter (D) becomes:  

 

D = P#
5/(

Z
∙ Q	 ∙ n	 ∙ 	S(//XR

0/$
     (15) 
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The Hazen-Williams equation is the most commonly used formula for turbulent flow in pipes 

under pressure. The Hazen-Williams equation for circular pipes is (Eseinhauer et al., 2021; 

Satterfield, 2010; USDA, 2021):  

Q = K ∙ 	C[\ ∙ 	AUV ∙ RW!.]0	∙ S!.^/        (16) 

 

where, Q is the volumetric flow rate (m3/s); K is a constant that depends on the unit system (K 

= 0.849 for SI units); CHW is Hazen-William’s roughness coefficient; Acs is the cross-sectional area 

of the flow (m2); Rh is the hydraulic radius (m); and S is the slope. With Rh = D/4, rearranging to 

solve for pipeline diameter gives: 

 

D = P #7.9(	∙	a
Z	∙	T	∙	2:;	∙	F#.5<

R
//X.]0

     (17) 

 

Both Manning’s equation and the Hazen-Williams equation were used to calculate pipeline 

diameter from volumetric flow rate, while considering duration of pumping, pipe material, and 

slope of the pipe. The pipe materials investigated were polyvinyl chloride (PVC), high-density 

polyethylene (HDPE), and steel. Slopes varied from 0.2% to 0.8%.  
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4. Results and Discussion 

4.1 Meteorological data 

4.1.1. Historical weather and trends 

In this study, historical weather data (1997-2021) from the nearest weather station were 

explored, analyzed, and input into the AquaCrop models for the estimation of historical irrigation 

requirements. Weather data from 2022 were used in tandem with the field data collected for model 

calibration. Analyzing historical weather data for the growing season (May 1st to September 30th) 

revealed a 1-in-25 dry season in 2021, average season in 1998 and wet season in 2015, 

corresponding to 280 mm, 478 mm, and 602 mm of rainfall, respectively. Figure 9 illustrates 

substantial year-to-year fluctuations in total growing season rainfall, showing a decreasing trend 

from 2015 to 2021. Concurrently, there was a general upward trend in mean temperature. The 2021 

growing season was the driest and second warmest with a total of 280 mm of rainfall and an 

average temperature of 18.9°C. This aligns with producers' concerns about increased pressures on 

irrigation resources and the difficulties they faced during the dry spells of 2021. Interestingly, the 

growing season ETo shows less variation year to year, ranging between 525 mm and 612 mm, and 

appears uncorrelated to rainfall. Therefore, rainfall, as well as its distribution throughout the 

growing season, is expected to have an important influence on the soil water balance. The reference 

year in which field data were collected was 2022.  

 

Table 7 ranks the historical growing season weather data from least to greatest rainfall, 

highlighting the dry, average, and wet years in yellow, green, and blue respectively. The 2022 

reference year, crucial for model calibration, is highlighted in grey. Considering the preceding 25 

years, the 2022 growing season exhibited an above-average total rainfall (524 mm), a typical mean 

temperature (17.9°C), and standard ETo (553 mm). Figure 10 depicts daily data for rainfall, ETo, 

and maximum and minimum temperature during the 2022 growing season. Despite a 10-day dry 

spell in early May, rainfall events were distributed across the season. Air temperature reached a 

maximum of 33.1°C on August 7th and was accompanied by a rainfall event, which resulted in 

subsequently cooler temperatures. Compared to the historical dry year, an inferior need for 

irrigation was expected for 2022. 
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Figure 9. Historical weather data over the growing season from the L’Assomption weather station. 

 

Table 7. Total rainfall, mean temperature, and total reference evapotranspiration, for the May to September 
growing seasons from L’Assomption weather data (ECCC L’Assomption, 2022).  

Year 
Total 

Rainfall 
(mm) 

Mean  
Temp  
(°C) 

Total  
ETo  
(mm) 

 
Year 

Total 
Rainfall 

(mm) 

Mean  
Temp  
(°C) 

Total  
ETo  
(mm) 

2021 280 18.9 581  2012 509 18.6 600 
2020 328 18.1 604  2016 509 18.3 591 
2001 342 18.0 604  2002 516 17.1 575 
1997 369 16.4 566  2017 518 17.5 531 
2003 375 17.6 558  2022 524 17.949 552.9 
2008 400 17.1 532  2004 525 16.7 542 
1999 424 18.4 599  2013 534 17.5 536 
2009 445 16.6 508  2005 555 18.2 577 
2019 459 17.4 557  2000 561 15.9 525 
2007 466 17.5 603  2011 577 18.2 557 
1998 478 17.7 568  2006 579 17.8 531 
2010 502 18.1 559  2014 591 17.6 555 
2018 503 19.0 612  2015 602 18.4 568 
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Examining the historical dry years reveals fluctuating precipitation distribution across the 

months of the growing season. Figure 11 displays the total monthly rainfall depths for the five dry 

years: 1997, 2001, 2003, 2020, and 2021, as well as the maximum daily rainfall depth for each 

month. Notably, 2021 exhibited extended dry periods in late May, early June, and late July into 

August. The longest duration of consecutive days without rainfall occurred over a span of 16 days 

in August, during which the temperature exceeded 30°C on 8 days. While the cumulative 

precipitation in June reached 94 mm, a substantial proportion resulted from a single event om June 

26th, contributing 55 mm. The air temperature reached a maximum of 34.6°C on June 7th, aligning 

with the peak daily ETo of 7.9 mm. Similarly, in 2020, the peak growing season temperature 

(36.2°C) and ETo (7.7 mm) occurred in May, accompanied by significant dry periods in May, June, 

and September. All five years experienced dry spells lasting at least 13 consecutive days, often 

coinciding with the warmest temperatures. Consequently, the variability and dispersion of rainfall 

events, along with peak temperatures, emphasize the necessity of supplementary irrigation to 

support crop growth. CWRs are anticipated to be substantial during months characterized by 

limited and unevenly distributed rainfall. 

 

 
Figure 10. Daily rainfall, potential evapotranspiration, maximum temperature, and minimum temperature 
for the period of May 1st to September 30th, 2022. 

-15

-10

-5

0

5

10

15

20

25

30

35

0

10

20

30

40

50

60

70

2022-05-01 2022-06-01 2022-07-01 2022-08-01 2022-09-01

Te
m

pe
ra

tu
re

  (
°C

)

Ra
in

fa
ll 

an
d 

ET
o 

(m
m

)

Daily weather data over the 2022 growing season

Rainfall (mm) ETo (mm) Max Temperature (°C) Min Temperature (°C)



 64 

 
Figure 11. Rainfall distribution of historical dry years, showing total monthly rainfall (vertical bars), and 
maximum daily rainfall of respective months (horizontal marker). 

4.1.2. Projected climate and trends 

Climate variables predicted by the CMIP-6 model ensemble were imperative to examine the 

potential impact of climate change on irrigation demands in the study region. These variables were 

initially investigated before their integration into the crop-water model. The projected mean 

temperature and total precipitation over the growing season under SSP5-8.5 are illustrated in 

Figure 12 (Climatic data provided by PCIC, Ouranos Inc., PCC, ECCC, CRIM, and Habitat7). 

The mean temperature exhibits a discernible upward trajectory, with a simultaneous amplification 

in the variability among model predictions as the temporal scale extends further into the future. 

The precipitation during the growing season displays a rising variability from one year to another, 

alongside fluctuations within the ensemble. These short-term fluctuations and anomalies highlight 

the importance of averaging data over a 30-year period to provide a statistically stable 

representation of underlying climate patterns.  
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Figure 12. Projected mean temperature and total precipitation over the growing season for 5 GCMs (IPSL-
CM6A-LR, CNRM-CM6-1, MIROC6, MIROC-ES2L, and CNRM-ESM2L) under SSP5-8.5 emission 
scenario.  

The future changes in mean temperature and precipitation over the growing season compared 

to the historical baseline (1997-2021) are presented in Table 8, considering 30-year means. For all 

models of the ensemble, there is a systematic increase in mean temperature. From the ensemble 

median, an increase of 2.2°C and 6.7°C is predicted by 2050 and 2080, respectively. The higher 

increase is logically associated with the farther period given the pessimistic emission scenario. The 

growing season rainfall is projected to decrease by 6.5 mm by 2050 and by 15.4 mm by 2080 

compared to the baseline, considering the ensemble median. However, there are within-ensemble 

disagreements regarding the direction of change in precipitation. Additionally, this assessment 

omits the seasonal distribution of rainfall. This stresses the importance of simulating irrigation 

needs on an annual basis and thereafter evaluating the 30-year mean of net irrigation requirements. 
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Table 8. Projected change in mean temperature and total precipitation over the growing season for the 
projected 2050s and 2080s, for each climate model, compared to the historical baseline period. Calculated 
from 30-year means. 

Climate Model 
 2050s  2080s 

 ΔTmean (℃) ΔPtotal (mm)  ΔTmean (℃) ΔPtotal (mm) 

IPSL-CM6A-LR  2.9 -11.6  6.7 -35.5 

CNRM-CM6-1  2.5 -35.5  5.5 -56.7 

MIROC6  2.2 -0.9  4.2 10.3 

MIROC-ES2L  2.2 -6.5  4.3 -15.4 

CNRM-ESM2L  2.2 28.8  4.8 5.1 

 

4.2 Soil physical characteristics 

As discussed in Section 3.5, the soil texture of each field site was analyzed in laboratory for 

two soil horizons. Figure 13 provides a summary of the particle size analyses for soils at the field 

sites, revealing a predominantly sandy soil classification. The distinctions in particle size 

distribution between samples from the two soil horizons (0-15 cm and 15-30 cm) at the same field 

were relatively minor. The strawberry and cranberry fields displayed a balanced distribution of 

fine, medium, and coarse sand particles, while the squash field featured primarily coarse sand. 

Intermediate to these, the potato field samples were predominantly composed of coarse and 

medium sand.  

These analyses were intended to characterize soil water properties for the model's soil profile 

data requirements. However, challenges faced during experimentation, such as a low sample size, 

raised concerns about potential underestimation of silt and clay content in the experimental particle 

size analysis. A recent study aimed at improving the hydrometer method found that, compared to 

the more rigorous pipette method, measurements made using the hydrometer method consistently 

overestimated the sand fraction (Mwendwa, 2022). Also, due the high sand content, the coarse 

fraction analysis resulted in insufficient sample mass for the small fraction analysis. Therefore, in 

addition to field sampled bulk density, soil texture reported by IRDA Quebec pedological data 

were utilized to obtain the soil physical attributes with the SWCC model’s pedo-transfer function 

developed by Saxton et al. (2006). In an AquaCrop validation study for rainfed maize production 

in Pennsylvania, Mebane et al. (2013) also employed bulk density and soil survey particle size 

data to estimate hydraulic parameters. Furthermore, a large-scale field experiment found that crop 
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model inversion using surface soil moisture measurements is a powerful method for estimating 

available water content components, namely FC and WP (Krishnan Kutty et al., 2017). Thus, the 

FC and WP were subsequently calibrated to the field conditions, within a reasonable range for the 

soil class. 

 
Figure 13. Particle size distribution of potato (L1), squash (L2), strawberry (L3), and cranberry (L4) for 
surface (H1) and root zone (H2) soil horizons. 

The soil physical attributes derived from the SWCC are reported in Table 9. Wilting point 

varied between 3.5% and 6.5% volumetric water content, in agreement with typical values for sand 

(2-7%) and loamy sand (4-9%) soil texture classes (Allen et al., 1998; Eisenhauer et al., 2021; 

Hignett and Evett, 2008). Field capacity ranged between 9.6% and 13.7%, consistent with typical 

field capacity values for sand (8-16%) and loamy sand (13-20%). Similarly, the available water 

content of L1 (66 mm/m), L2 (51 mm/m), and L3 (61 mm/m) fell within the typical range of 50-

70 mm/m for sand, while the L4 available water content (72 mm/m) was within the range of 70-

90 mm/m for loamy sands (Allen et al., 1998; Eisenhauer et al., 2021; Hignett and Evett, 2008). 

The total available water content for the investigated soil depth is estimated in the last column of 

Table 9. TAW is used to simulate different irrigation regimes based on maximum allowable 

depletion. 
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Table 9. Soil physical characteristics of the 2022 field sites (computed by the SWCC pedo-transfer 
model by Saxton et al., 2006). 

Field 

Site 

Soil 

Class 

FC 

(vol%) 

WP 

(vol%) 

SAT 

(vol%) 

Ksat 

(mm/hr) 

AW 

(mm/m) 

Depth 

(m) 

TAW 

(mm) 

L1 Sand 10.1 3.5 53.0 193 66 0.3 20 

L2 Sand 9.6 4.5 48.7 157 51 0.33 15 

L3 Sand 11.9 5.8 47.6 141 61 0.2 12 

L4 Loamy Sand 13.7 6.5 49.5 99.7 72 0.3 19 

 

4.3 Soil moisture dynamics 

In this study, soil moisture levels were monitored at four field sites. At L1, L2 and L3, 

continuous capacitance sensor readings of volumetric water content (VWC) were calibrated with 

reference gravimetric measurements. Regression analyses were conducted for each capacitance 

sensor, employing various equations, such as polynomial, logarithmic, and linear models. The 

results indicate superior correlation performance with the linear regression model, as opposed to 

logarithmic and polynomial equations, where the latter demonstrated tendencies to over-fit the 

data. Sample calibration plots are provided in Figures A1 and A2. The highest correlation was 

observed at the L2 field site, characterized by a regression coefficient of 0.91. This is likely 

attributed to the wider range of soil water content values measured at the L2 site as opposed to the 

L1 and L3 sites, where soil moisture readings were relatively proximate at the time of the 

gravimetric assessments. The extent of the direct VWC measurements was constrained due to field 

visits predominantly occurring mid-day under dry conditions, limited access to the study area, and 

the inherent low water holding capacity of sandy soils. Unfortunately, capacitance sensors could 

not be installed at L4 due to limited access to the site and the sensitivity of the cranberry plants. 

SMP from tensiometers at L4 were converted to VWC for compatibility with the AquaCrop model.  

The soil moisture data for each field site are presented below. Although the soil water response 

aligned with weather patterns, irrigation application, and crop water uptake, enhanced accuracy 

and confidence could be achieved through the acquisition of additional soil moisture sensors. This 

would enable additional replicates and a more comprehensive distribution throughout the site and 

soil depths to represent field conditions. Furthermore, the conversion from matric potential to 
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volumetric water content for the cranberry site introduces possible sources of error from the soil 

characteristics used to estimate the van Genuchten parameters.  

4.3.1. L1 field site soil moisture 

Figure 14 illustrates the temporal dynamics of soil moisture at the potato field site, presenting 

continuous sensor readings and gravimetric measurements at two depths. Overall, volumetric 

water content at a 5 cm depth (depicted in green) shows a more pronounced response to rainfall 

events compared to the 30 cm depth (depicted in orange). The diminished impact of rainfall on 

soil moisture at greater depths can be attributed to the superficial root system of the potato crop. 

The maximum root density is concentrated in the upper 30 cm of soil (Djaman et al., 2022; King 

et al. 2020; Opena and Porter, 1999; Paredes et al., 2018), which is where the fastest water 

absorption occurs (Fulton, 1969). In a study on SWC monitoring for irrigated potatoes on sandy 

soils, Alva (2008) found that water uptake by the plants was primarily at the 0 to 30 cm depth soil, 

with the major portion of the water uptake being around the 10 cm soil depth. Thus, the observed 

disparity between the surface and deeper sensor readings reflects the plant water uptake. As a 

result, only the effects of large rainfall events are observed in VWC readings at 30 cm, during 

which the water infiltration rate surpassed the plant’s water absorption rate.  
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Figure 14. Temporal variation of volumetric water content at 5 cm and 30 cm depths during the 2022 
season at the L1 field site. Includes sensor observations, gravimetric measurements, hourly precipitation 
(ECCC), and critical soil moisture levels. 

The average daily VWC is presented in Figure 15, along with daily rainfall and irrigation 

depths. Over the period of data collection (June 23rd to August 24th, 2022), the VWC at 5 cm and 

30 cm was approximately 0.087 (mean) ±0.034 (standard deviation) cm3/cm3 and 0.067 ±0.015 

cm3/cm3, respectively. The minimum root zone VWC occurred in July and August. This coincides 

with the highest rate of absorption during the tuber initiation and bulking. During these critical 

stages, tubers grow rapidly and consist of 72-86% water (Curwen, 1994; Pavlista, 1995). VWC 

surpassed FC after notable rainfall and irrigation events. These peaks typically persisted for only 

short time periods (1-2 days), reflecting the low water holding capacity of the sandy soil. In 

agreement with field observations, soil moisture was well below the saturation point throughout 

the season and did not reach below the permanent wilting point. However, the low VWC observed 

at the start of July and middle of August, correlated to an absence of rainfall or irrigation, suggests 

that the crop experienced periods of soil water deficit. 
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Figure 15. Daily volumetric soil water content at 5 cm and 30 cm depths during the 2022 season at the L1 
field site. Includes averaged daily sensor observations, precipitation, irrigation, and key reference points.  

The distribution of soil moisture over soil depth observed at L1 was consistent with studies 

investigating soil moisture dynamics in potato fields (e.g., Kumar et al., 2020; Liao et al., 2016; 

Yost et al., 2019). For example, Alva (2008) observed sharp jagged VWC trends at shallow soil 

depths, correlating to rainfall and irrigation, while lower soil depths, such as 30 cm, experienced 

smoother, and often drier soil moisture conditions. In general, the temporal and depth-related soil 

moisture dynamics at the L1 site aligned with the observed rainfall patterns, irrigation practices, 

and the developmental stages of the potato crop. 

4.3.2. L2 field site soil moisture 

Figure 16 displays the temporal dynamics of soil moisture at the squash field site, presenting 

continuous sensor readings and gravimetric measurements at two depths. In general, volumetric 

water content at a 5 cm depth (depicted in green) and 20 cm depth (depicted in orange) follow a 

similar pattern throughout the growing season. The VWC in the root zone was typically greater 

than at the soil surface, especially after periods without rainfall. This is likely due to a combination 

of evaporation at the soil surface and higher absorption rates by plant roots near the surface. Soil 
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moisture peaks due to rainfall events are followed by a gradual decrease in VWC, pointing to 

higher water retention capabilities compared to the L1 field site. 

 
Figure 16. Temporal variation of volumetric water content at 5 cm and 20 cm depths during the 2022 
season at the L2 field site. Includes sensor observations, gravimetric measurements, hourly precipitation 
(ECCC), and critical soil moisture levels. 

The average daily VWC at L2 is displayed in Figure 17, including daily rainfall and irrigation 

applications. Throughout the growing season, from June 17th to August 24th, 2022, the mean VWC 

at 5 cm was 0.136 ±0.049 cm3/cm3, while at 20 cm it was 0.164 ±0.026 cm3/cm3. Peaks in VWC 

correlated with large rainfall events, excluding the 28 mm precipitation on July 12th. The relatively 

stable soil moisture on that day may indicate different weather conditions between the weather 

station location and the field site. This could also suggest increased water absorption by the 

developing roots. Additionally, the impact of the July 8th irrigation event on VWC was likely 

attenuated by increased water uptake during flowering and fruit formation.  
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Figure 17. Daily volumetric soil water content at 5 cm and 20 cm depths during the 2022 season at the L2 
field site. Includes averaged daily sensor observations, precipitation, irrigation, and key reference points. 

4.3.3. L3 field site soil moisture 

The continuous sensor readings and gravimetric measurements of volumetric soil water content 

at the strawberry field site are presented in Figure 18. The impact of rainfall and irrigation 

application on soil moisture is apparent. Similar to the L1 field site, a more pronounced response 

in volumetric water content near the surface (5 cm) compared to the root zone (15 cm) is observed. 

Between June 16th and September 29th, 2022, the mean VWC at a depth of 5 cm, was 0.186 ±0.027 

cm3/cm3. At 20 cm, the mean VWC was 0.171 ±0.014 cm3/cm3. This disparity is attributed to the 

shallow depth of strawberry root systems, typically concentrated in the upper 15 cm of soil (AAFC, 

2021; Morillo et al., 2015). The soil has good drainage, noticeable after rainfall events. 
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Figure 18. Temporal variation of volumetric water content at 5 cm and 15 cm depths during the 2022 
season at the L3 field site. Includes sensor observations, gravimetric measurements, hourly precipitation 
(ECCC), and critical soil moisture levels. 

Daily mean VWC, total precipitation and irrigation applied are presented in Figure 19. The 

temporal dynamics of soil moisture over the growing season mirror the regimented irrigation 

schedule provided by the agronomist. Given that this field's strawberry crop was dedicated to 

producing plants for distribution, meticulous monitoring of soil moisture occurred. To facilitate 

optimal root growth and inhibit premature flowering and fruit formation, the approach involved 

the application of small, frequent irrigation depths. Therefore, the irrigation schedule ensured that 

no soil water deficits occurred.  
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Figure 19. Daily volumetric soil water content at 5 cm and 15 cm depths during the 2022 season at the L3 
field site. Includes averaged daily sensor observations, precipitation, irrigation, and key reference points. 

4.3.4. L4 field site soil moisture 

The continuous tensiometer readings of SMP at a depth of 10 cm are presented in Figure 20. 

Soil water excess was observed in the spring and as a response to rainfall events.  While cranberry 

crop growth is sensitive to water stress during fruit development from mid-June to early September 

(Pelletier et al., 2015a, 2015b), July and August are the most critical months, corresponding to 

flowering and fruit formation (Jeranyama et al., 2017). During these months, the monitored soil 

water conditions conformed to the recommended range of root zone SMP, between −4 kPa and −8 

kPa, as suggested for optimal cranberry production (Caron et al., 2016, 2017; Jabet et al., 2016; 

Pelletier et al., 2015a). Temporary drier conditions were noted on July 28th and September 4th, 

potentially in anticipation of forecasted rainfall events. Specifically, 39 mm of precipitation 

occurred on July 28th, aligning with a substantial rise in SMP. Despite a comparable increase 

observed on September 4th, no recorded rainfall occurred on that day. This discrepancy could be 

attributed to variations between conditions at the weather station and those at the field site. 
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Figure 20. Temporal variation of soil matric potential at 10 cm depth during the 2022 season at the L4 field 
site. Includes tensiometer observations (Hortau) and hourly precipitation (ECCC). 

The soil matric potential data were converted to volumetric water content using the van 

Genuchten-Mualem model. The essential coefficients governing the relationship between soil 

matric potential and volumetric water content, known as the van Genuchten parameters, were 

determined based on the soil texture (ARDA) and measured bulk density. They are outlined in 

Table 10. The resulting daily mean volumetric water content (VWC) at a depth of 10 cm is 

depicted in Figure 21. 

  Table 10. Van Genuchten model parameters for sandy loam soil at the L4 field site. 

θr  
(cm3 cm-3) 

θs  

(cm3 cm-3) 

∝  

(cm-1) 
n m 

0.049 0.402 0.036 2.14 0.532 

 

Peaks observed in daily VWC correlate to rainfall and irrigation events (Figure 21). Over the 

period from May 1st to September 30th, 2022, the average VWC was 0.245 cm3/cm3 with a standard 

deviation of 0.052 cm3/cm3. The fine and fibrous roots of the cranberry plant typically extend to 
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depths of 7–15 cm below the soil surface (Sandler and DeMoranville 2008). Thus, the placement 

of the tensiometer at a depth of 10 cm suggests that it may be situated beneath the soil layer 

experiencing the most significant water uptake through the roots. Thus, as well as the ample 

rainfall during the growing season, the elevated moisture in the soil can be attributed to the 

influence of sub-irrigation practices in the cranberry bog. Optimal cranberry yield and reduced 

irrigation usage for cranberry production in Quebec were achieved when controlling water table 

at a depth of 60 cm (Pelletier et al., 2015b). Therefore, assuming ideal water table control at the 

field site, capillary rise significantly contributes to soil moisture content. 

 
Figure 21. Daily volumetric soil water content at 10 cm depth during the 2022 season at the L4 field site. 
Includes averaged daily VWC, precipitation, irrigation, and key reference points. 

4.4 Calibration of AquaCrop models 

To estimate irrigation requirements, the AquaCrop model simulates the soil water balance in 

daily time steps. In the soil water balance, the root zone can be regarded as a reservoir. By tracking 

the inflow and outflow of water at the boundary, the fluctuations of soil water content in the root 

zone can be monitored. In this study, the observed soil water content (SWC) in the root zone was 

compared to the SWC simulated by AquaCrop for each crop during the 2022 growing season. 
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Subsequent subsections detail the performance of individual crop models after model calibration. 

The calibration performance of all four models is summarized in Table 11 in Section 4.4.5. 

4.4.1. Potato grown in Lanoraie fine sand 

The sensitivity analysis, following the methodology outlined by Geerts et al. (2009) identified 

field capacity and wilting point as highly and moderately sensitive parameters, respectively. 

Conversely, the maximum canopy cover, saturated hydraulic conductivity, and curve number had 

low sensitivity. This highlights the need for precise field measurements and model calibration of 

the soil water retention parameters (FC and WP) to enhance the accuracy of simulating soil water 

content.  

Figure 22 presents the comparison between simulated and observed soil water content (SWC) 

in the effective root zone of the potato crop at the L1 field site. AquaCrop's simulated SWC aligned 

well with observed trends, responding effectively to precipitation and irrigation inputs. Overall, 

there was a strong agreement between observed and simulated SWC, indicated by a Pearson 

correlation (r) of 0.88 and Wilmott index of agreement (d) of 0.91. The model estimated SWC 

with satisfactory accuracy for the 2022 field conditions, with a Root Mean Square Error (RMSE) 

of 5.3 mm, Normalized RMSE (NRMSE) of 21.8%, and Nash-Sutcliffe Efficiency (EF) of 0.54. 

These results are similar to the findings of Montoya et al. (2016), Razzaghi et al. (2017), and Wang 

et al., (2023), who used AquaCrop to simulate soil water content in potato fields under various 

irrigation treatments. They found r values between simulated and observed SWC for different 

irrigation levels varying between 0.67 and 0.86, 0.58 and 0.96, and 0.63 and 0.95, respectively. 

Furthermore, for 8 calibration fields of quinoa, Geerts et al. (2009) simulated SWC in the 30 cm 

root zone with an average EF of 0.59. Although this study’s RMSE was lower than the range 

reported range by Wang et al. (6.1-11.5 mm), it is important to note that they simulated SWC 

across a greater soil depth (0-50cm), and therefore had a lower error when normalized. Minor 

discrepancies, with slight overestimations and underestimations, were observed at the extreme 

ranges of SWC (Figure 23). Similar trends were noted by Montoya et al. (2016) when SWC 

approached or exceeded Field Capacity (FC) or neared Wilting Point (WP). These variations in 

soil water dynamics could stem from the parametrization of soil water characteristics or from 

disparities in rainfall amounts at the field site compared to the weather data. Taking into account 

the results from these other studies, the calibrated potato model performed well at simulating SWC 

at the L1 field site and could be enhanced with field data from additional sites and growing seasons. 



 79 

 
Figure 22.  Simulated and observed soil water content (SWC) in the effective potato root zone (0-30 
cm) at L1 over the 2022 growing season, including wilting point (WP) and field capacity (FC).  

 
Figure 23. Simulated and observed soil water content from 0-30 cm depth at L1. 
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4.4.2. Squash grown in Saint-Thomas fine sand 

For the squash model, field capacity was also identified as a highly sensitive parameter in 

simulating SWC, while the crop transpiration coefficient (Kc Tr) showed moderate sensitivity. Due 

to the absence of a default crop file for squash in AquaCrop, it was initiated with a Kc Tr calibrated 

to 0.90. This value is within the reference range of winter squash values of 0.90 to 0.95 (Allen et 

al., 1998; Pereira et al., 2021) as well as calibrated values of 0.85 to 0.98 for zucchini squash 

(Darouich et al., 2020). Parameters such as initial and maximum canopy cover, canopy decline 

coefficient, shape factor for root zone expansion, wilting point, saturated hydraulic conductivity, 

and curve number exhibited low sensitivity. The sensitivity analysis of the squash model 

reinforced the dependence of the SWC calculation procedures on soil water retention parameters, 

such as FC. In addition, reference values of crop coefficients can serve as an essential starting 

point for calibrating conservative crop parameters that are not previously established in the 

model’s database. 

The simulated and observed soil water content (SWC) in the root zone of the squash crop at 

the L2 field site are presented in Figure 24. In general, the model estimated SWC for the 2022 field 

conditions with acceptable accuracy, with an r of 0.76, RMSE of 8.7 mm, NRMSE of 19.2%, EF 

of 0.35, and d of 0.84. AquaCrop’s simulated SWC matches the response of the observed SWC to 

rainfall and irrigation events, except in the case of the precipitation on July 12th, which was 

previously discussed in section 4.3.2. It is hypothesized that there were differences between the 

data from L’Assomption weather station and the actual conditions in the field. Furthermore, there 

is a slight tendency to underestimate SWC, particularly at the start of the crop period (Figure 25). 

Similar trends were observed by Mebane et al. (2013) who validated the AquaCrop model for 

maize production in Pennsylvania. They also used field bulk density and sand, silt, and clay 

proportions from soil survey data to derive soil water characteristics from pedo-transfer function 

model. Therefore, the model’s estimated soil hydraulic characteristics may differ from the actual 

values in the field, which could be responsible for disagreement of simulated and observed SWC. 

There could also be error associated with the estimated irrigation depths and schedule provided by 

the producer. However, for the planning and management of regional irrigation requirements, a 

bias toward underestimation of SWC is preferred to overestimation to ensure that sufficient water 

needs are met. Therefore, while the model’s performance is acceptable, it is limited to the accuracy 

of the data acquired for the L2 field site. 
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Figure 24. Simulated and observed soil water content (SWC) in the squash root zone (0-30 cm) at L2 
over the 2022 growing season, including wilting point (WP) and field capacity (FC). 

 
Figure 25. Simulated and observed soil water content from 0-30 cm depth at L2 
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4.4.3. Strawberry grown in Lanoraie fine sand 

Consistent with the squash model, the sensitivity analysis of the strawberry identified the field 

capacity and the crop transpiration coefficient as highly and moderately sensitive parameters, 

respectively. To define the conservative crop parameters for strawberry, Kc Tr was initiated and 

calibrated to 0.75, which is equal to the updated FAO standard (Pereira et al., 2021). The initial 

and maximum canopy cover, canopy decline coefficient, shape factor for root zone expansion, 

wilting point, saturated hydraulic conductivity, and curve number had low sensitivity.  

Figure 26 depicts the simulated and observed SWC in the strawberry root zone at the L3 field 

site over the 2022 growing season. For the strawberry model, the comparison of soil moisture 

content within the top 20 cm revealed a Pearson correlation (r) of 0.54 and a Willmott index of 

agreement was 0.65. The RMSE and NRMSE were 6.6 mm and 18.6%, respectively, and the 

model's EF was -1.76. While the RMSE and NRMSE indicate good model performance, the EF 

< 0 suggests that the observed mean is a better estimator than the model (Legates and McCabe, 

1999). This can be attributed to the small range of soil moisture measurements over the growing 

season, previously discussed in section 4.3.3. Positive EF values are typically the minimum 

acceptance criteria for simulating soil water content in crop models (Yang et al., 2014). However, 

the other statistical parameters indicate that AquaCrop was able to simulate SWC with fair 

accuracy in this study.  

It is crucial to highlight that the farm primarily produces strawberry plants, whereas AquaCrop 

is configured to simulate a complete crop cycle, including flowering and fruit formation. In this 

field, the flowering and fruit yield were intentionally suppressed to prioritize extended root and 

canopy growth. This disparity is evident in AquaCrop's lower water content during periods when 

the crop would typically demand more water for flowering and fruit formation. Nevertheless, 

notable agreement is observed around irrigation events, aligning with the farm's practice of tightly 

controlling irrigation around FC through small and frequent irrigation events. The model tends to 

overestimate the impact of significant rainfall events. Battilani et al. (2014) and Farahani et al., 

(2009), experienced similar overestimation of peak SWC values for tomato and cotton crop 

models, respectively. The disagreements in estimated and observed SWC can be attributed to the 

non-traditional crop growth cycle and potential differences in soil hydraulics. In summary, the 

strawberry model performance revealed inefficient in simulating SWC, but had low estimation 

errors.  
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Figure 26. Simulated and observed soil water content (SWC) in the strawberry root zone (0-20 cm) at L3 
over the 2022 growing season, including wilting point (WP) and field capacity (FC). 

 
Figure 27. Simulated and observed soil water content from 0-20 cm depth at L3. 
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4.4.4. Cranberry grown in Saint-Jude sand 

For the cranberry model, field capacity was also identified as a highly sensitive parameter in 

simulating SWC. The groundwater table depth and soil saturation point were moderately sensitive, 

while the crop transpiration coefficient (Kc Tr) showed low sensitivity. The target depth of the 

groundwater table of 0.6 m from Quebec cranberry studies (Caron et al., 2017; Pelletier et al., 

2015b; Vanderleest et al., 2017), was calibrated to the field conditions. A variable depth was 

specified in AquaCrop to represent a higher water table (0.5 m) in the spring, an optimal depth 

(0.6 m) during flowering and fruit formation, and a lower water table (0.8 m) in the fall. In the 

absence of a default crop file for cranberry in AquaCrop, Kc Tr was calibrated to 0.60. This value 

is consistent with the cranberry evapotranspiration study by Hattendorf and Davenport (1996) and 

between values of 0.5 (Bigah et al., 2019) and 0.83 (Vanderleest and Bland, 2017) found in the 

literature. 

Figure 28 presents the simulated and observed SWC in the root zone of the cranberry crop at 

the L4 field site. AquaCrop's simulated SWC aligned well with observed trends, responding to 

precipitation and irrigation inputs. Overall, there was an acceptable agreement between observed 

and simulated SWC, indicated by a Pearson correlation (r) of 0.68, Wilmott index of agreement 

(d) of 0.80, and Nash-Sutcliffe Efficiency (EF) of 0.54. The RMSE of 5.3 mm and NRMSE of 

11.8% show that the model simulated SWC with good accuracy to the 2022 field conditions. 

Although these results are closer to the lower ranges of model performance indicators in calibration 

and validation studies of well documented crop models, such as potato (Montoya et al., 2016; 

Razzaghi et al., 2017; Wang et al., 2023), they are in line with those of less commonly modeled 

crops. For example, in the calibration and validation of AquaCrop for perennial ryegrass (Terán-

Chaves et al., 2022), statistical indices for SWC simulation were considered reasonable despite 

variations between treatments (r = 0.83 – 0.86, d = 0.30 – 0.84, RMSE = 6.1 – 20.1 mm, NRMSE 

= 4.80 – 24.1%, and EF = -23.9 – 0.32). The results of a six-year calibration study of perennial 

saffron showed that AquaCrop simulated SWC well with an NRMSE of 14% (Mirsafi et al., 2016). 

Furthermore, the validation runs with AquaCrop for quinoa achieved good results for simulated 

SWC with comparable average r of 0.80 and average EF of 0.47 (Geerts et al., 2009).  

Underestimations of SWC in June, followed by overestimations in July may be attributed to 

the influence of water table control, as well as the limited data availability of crop parameters 

governing cranberry crop cycles. While the model performance is considered fair for the purpose 
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of estimating regional irrigation requirements in the inaugural scope of this study, the scarcity of 

existing studies in the context of cranberry crop-water modeling highlights a gap in the available 

data on crucial crop parameters. Further extensive data collection specific to cranberry cultivation 

could enhance the accuracy and reliability of model calibration.  

 
Figure 28. Simulated and observed soil water content (SWC) in the squash root zone (0-20 cm) at L4 over 
the 2022 growing season, including wilting point (WP) and field capacity (FC). 
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Figure 29. Simulated and observed soil water content from 0-20 cm depth at L4. 

4.4.5. Summary of model performance 

The evaluation of model performance, as summarized in Table 11 reveals varying degrees of 

agreement between simulated and observed soil moisture data across the four crop models. 

Overall, the potato and squash models had the greatest agreement between simulated and observed 

SWC, comparable to the results of other studies (e.g., Razzaghi et al., 2017; Wang et al., 2023). 

This aligned with expectations given the predominant representation of vegetables in crop 

modeling studies (e.g., Montoya et al., 2016; Battilani et al., 2014). Furthermore, these crops 

represent the highest prevalence of irrigated crops in the region and will therefore have the most 

significant impact on the total irrigation requirements of the study area.  

It is crucial to acknowledge certain limitations in the study. Calibration was exclusively 

performed for soil moisture content, omitting other relevant output parameters. Furthermore, the 

absence of model validation, attributed to a single year of available data, introduces a level of 

uncertainty. The distinctive growth cycle of strawberries at the L3 field site, focusing on plant 

production rather than fruit production, poses a challenge to accurate modeling and simulation. 

Additionally, the conversion of cranberry field data from matric potential to volumetric water 

content introduces a potential source of error in the results. These considerations underscore the 
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complexity and nuances inherent in crop modeling. The models in this study are a useful tool for 

estimating regional irrigation requirements. Future research can build on these findings and further 

refine the models with additional data.  

Table 11. Summary of AquaCrop model performance for the simulation of soil water content in the 
root zone at four field sites in 2022. 

Field Site and 
Crop Model 

Statistical Indices 
r RMSE (mm) NRMSE (%) EF d 

L1 Potato 0.88 5.3 21.8 0.54 0.91 
L2 Squash 0.76 8.7 19.2 0.35 0.84 
L3 Strawberry 0.54 6.6 18.6 -1.76 0.65 
L4 Cranberry 0.68 5.3 11.8 0.46 0.8 

 

4.5 Simulated historical irrigation requirements 

The simulated irrigation requirements for each crop model are presented below for historical 

weather conditions and the future climate change scenario. Crop production and water productivity 

outputs are included. While the model’s crop parameters were not calibrated to field data for yield 

and water productivity outputs, the default crop parameters from AquaCrop’s library provide ways 

to approximate incomplete information and have shown to accurately simulate production output 

(Raes et al., 2009). For example, Tsakmakis et al. (2019) found that cotton seed yield was only 

accurately simulated when the model’s default crop file was used.  

4.5.1. Simulated historical potato irrigation requirements 

The simulated net irrigation requirements (Inet), crop yield (Y), and ET water productivity 

(WPET) for potato are presented in  Table 12 for the historical dry, average, and wet years and three 

irrigation treatments. The growing season rainfall, ETo, and mean temperature are provided for 

reference. Each value represents the mean result of five years, representing the dry, average, and 

wet historical growing season weather conditions. The irrigation requirement decreases with 

increasing maximum allowable depletion from 20% to 50% of the available water content, since 

the lower depletion threshold requires smaller but more frequent irrigation applications. This is 

due to the shorter depletion time for 20% AW from the FC of the soil, compared to the other 

treatments. As the irrigation requirement decreases, the total dry yield remains constant, and results 

in a greater ET water productivity (Figure 30). These results are consistent with recommended 
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irrigation strategies for potatoes and the general agreement that to maximize yields, AW should 

not drop below 50-65% in the zone of maximum root activity (Allen et al., 1998; Singh, 1969; 

Shock et al., 2007; Wright and Stark, 1990). Beyond this threshold, crop water stress is predicted 

to impact yield production.  

Table 12. Historical simulation results for potato. Simulated net irrigation requirement, dry yield, and ET 
water productivity of potato for different irrigation treatments and historical weather conditions. 5-year 
means of growing season weather data and simulation results are shown. 

Historical 
Weather 
5 years* 

  
  

Irrigation 
Treatment 

Back up to FC 

  
  

Growing Season (May-Sept) 
  
  

Simulated Results 
Rain ETo Temp I net dry Y WPET 

(mm) (mm) (°C) (mm) (ton/ha) (kg/m3) 
Dry  MAD of 20%AW  339 582 17.8  365 11.0 2.16 

  MAD of 35%AW  339 582 17.8  305 10.9 2.30 
  MAD of 50%AW  339 582 17.8  265 10.9 2.42 
  Rainfed  339 582 17.8  0 4.7 1.89 
           

Average  MAD of 20%AW  500 586 18.4  337 10.6 2.08 
  MAD of 35%AW  500 586 18.4  279 10.5 2.23 
  MAD of 50%AW  500 586 18.4  249 10.4 2.32 
  Rainfed  500 586 18.4  0 5.5 1.90 
           

Wet  MAD of 20%AW  582 547 17.6  287 12.0 2.44 
  MAD of 35%AW  582 547 17.6  237 11.8 2.54 
  MAD of 50%AW  582 547 17.6  202 12.0 2.68 
  Rainfed  582 547 17.6  0 7.5 2.34 

Each value represents a mean of five years, representing a historical weather condition. 
*Five dry, average, and wet years were selected based on total growing season rainfall (May to September). 
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Figure 30. Simulated historical irrigation requirements and ET water productivity for potato under three 
irrigation treatments and rainfed conditions. Columns represent a 5-yr mean +/- the standard deviation. 

The statistical significance of the effects of weather and irrigation treatment obtained from the 

ANOVA are summarized in Table 13. In this summary, each value represents the mean of all 

simulation outputs for the respective treatment in the first column. The F-test revealed that, both 

weather and irrigation treatment had a significant impact on irrigation requirement (p <.0001), 

while the interaction effect did not. In terms of historical weather, as expected, only the wet 

growing season conditions had significantly lower net irrigation and higher yield than the dry and 

average years.  

 Regarding irrigation treatment, all values of Inet were significantly different from each 

other, showing a significant reduction in irrigation requirements with a MAD of 50% of AW.  

Danielescu et al., (2022) found that the total amount of supplemental irrigation for potato 

production in PEI also differed significantly between minimal, moderate, and extensive irrigation 

scenarios, following the same decreasing trend with increased depletion.  

On the other hand, irrigation treatment had no significant effect on yield, except in the case of 

rainfed conditions, confirming the importance of supplemental irrigation for potato production in 
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Lanoraie. As a result, the 50% depletion had significantly higher water productivity than each of 

the other irrigation treatments. 

In the dry-season scenario, the LS-Means test of the interaction effect revealed that the 

simulated Inet was statistically different under each irrigation treatment, whereas in the average and 

wet seasons, the MAD35% and MAD50% treatments resulted in similar net irrigation 

requirements. These results highlight the reduced irrigation water required during historical wet 

growing seasons, as well as the meaningful impact of a lower water depletion threshold in terms 

of increasing water productivity. Notably, in dry seasons of highest concern for water availability, 

the irrigation scheduling of the potato producers has the greatest impact on their net irrigation 

usage.  

Table 13. Statistical analysis of historical potato simulations. Effect of different irrigation treatments 
and historical weather on net irrigation requirement, dry yield, and ET water productivity of potato 
crops. Differences between means shown in columns with different letters (p<0.05). 

Irrigation Treatment 
I net Dry Y WPET 

(mm) (ton/ha) (kg/m3) 
MAD of 20%AW 330 a 11.2 a 2.23 a 
MAD of 35%AW 274 b 11.1 a 2.36 ab 
MAD of 50%AW 239 c 11.1 a 2.47 b 

Rainfed 0 d 5.9 b 2.04 ac 
Historical Weather    

Dry 234 a 9.4 a 2.19 a 
Average 216 a 9.3 a 2.13 a 

Wet 181 b 10.8 b 2.50 b 
Significance    

Irrigation Treatment *<.0001 *<.0001 *0.0008 
Historical Weather *<.0001 *0.0018 *0.0002 

Interaction ns ns ns 
*: significant; ns: non-significant 
significant differences between means (p <0.05), shown with different letters within columns. 

4.5.2. Simulated historical squash irrigation requirements 

The historical simulation results for the squash model are presented in Table 14, where each 

value is the 5-year mean corresponding to the historical weather condition. The simulated Inet for 

squash follows the same trends as the potato simulations, decreasing with augmenting depletion 

thresholds, as well as from dry to wet growing season conditions. Similarly, as the irrigation 
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requirement decreases, the yield remains constant, and the ET water productivity increases. Due 

to the low water holding capacity of the soil, allowing the soil moisture to deplete to the 

recommended 50% of available water (Maughan et al., 2015), reduces the frequency of irrigation 

events without permitting the crop to experience drought stress.   

Table 14. Historical simulation results for squash. Simulated net irrigation requirement, dry yield, and ET 
water productivity of squash for different irrigation treatments and historical weather conditions. 5-year 
means of growing season weather data and simulation results are shown. 

Historical 
Weather 
5 years* 

 Irrigation 
Treatment 

Back up to FC 
 

Growing Season 
 

Simulated Results 

Rain 
(mm) 

ETo 
(mm) 

Temp 
(°C) 

I net 
(mm) 

dry Y 
(ton/ha) 

WPET 

(kg/m3)  

Dry  MAD of 20%AW  339 582 17.8  222 7.1 2.10 
  MAD of 35%AW  339 582 17.8  176 7.1 2.25 
  MAD of 50%AW  339 582 17.8  151 7.1 2.36 
  Rainfed  339 582 17.8  0 1.7 0.78 
           

Average  MAD of 20%AW  500 586 18.4  208 6.6 2.00 
  MAD of 35%AW  500 586 18.4  155 6.5 2.09 
  MAD of 50%AW  500 586 18.4  135 6.5 2.18 
  Rainfed  500 586 18.4  0 4.9 2.13 
           

Wet  MAD of 20%AW  582 547 17.6  177 7.1 2.18 
  MAD of 35%AW  582 547 17.6  136 7.0 2.31 
  MAD of 50%AW  582 547 17.6  94 7.0 2.41 
  Rainfed  582 547 17.6  0 6.2 2.45 

Each value represents a mean of five years, representing a historical weather condition. 
*Five dry, average, and wet years were selected based on total growing season rainfall (May to September). 

 

The statistical significance of the effects of weather and irrigation treatment obtained from the 

ANOVA are summarized in Table 15. Again, each value represents the average value of all 

simulation outputs for the specified irrigation treatment or weather condition. The evaluated effects 

followed similar trends for the historical squash simulations as for potato. The growing season 

weather had a significant effect on Inet, yield and WPET, but only resulted in significantly different 

results in the wet years (lower Inet, higher yield, and higher WPET). 
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 The significant effect of irrigation treatment resulted in statistically different irrigation 

requirements with respect to each treatment. Meanwhile, squash yield and WPET decreased 

significantly in the case of rainfed conditions only. Overall, the MAD50% irrigation treatment 

significantly reduces the net irrigation requirement and increase the water productivity.  

Table 15. Statistical analysis of historical squash simulations. Effect of different irrigation treatments and 
historical weather on net irrigation requirement, dry yield, and ET water productivity of squash crops. 
Differences between means shown in columns with different letters (p<0.05). 

Irrigation Treatment 
I net Dry Y WPET 

(mm) (ton/ha) (kg/m3) 
MAD of 20%AW 202 a 6.9 a 2.09 a 
MAD of 35%AW 156 b 6.9 a 2.22 a 
MAD of 50%AW 127 c 6.9 a 2.32 a 

Rainfed 0 d 4.3 b 1.79 b 
Historical Weather    

Dry 137 a 5.7 a 1.87 a 
Average 124 a 6.1 a 2.10 a 

Wet 102 b 6.8 b 2.34 b 
Significance    

Irrigation Treatment *<.0001 *<.0001 *0.0017 
Historical Weather *0.0002 0.0037 *0.0011 

Interaction ns *<.0001 *<.0001 
*: significant; ns: non-significant 
significant differences between means (p <0.05), shown with different letters within columns 

 

4.5.3. Simulated historical strawberry irrigation requirements 

The simulated net irrigation, total aboveground biomass (B), and water productivity for 

strawberry are presented in Table 16 for the historical dry, average, and wet years and three 

irrigation treatments. Each value represents the mean result of five years, representing the dry, 

average, and wet historical growing season weather conditions. Aboveground biomass is presented 

as opposed to fruit yield, since the model was calibrated to the plant producing field site. The 

irrigation requirements are greater in dry years and decrease with increasing maximum allowable 

depletion from 20% to 50% of the available water content. The aboveground biomass remains 

constant despite varying depletion thresholds, except when no irrigation is applied. This results in 

a greater ET water productivity with a 50% maximum allowable depletion.  
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Table 16. Historical simulation results for strawberry. Simulated net irrigation requirement, ET water 
productivity, and total aboveground biomass for different irrigation treatments and historical weather 
conditions. 5-year means of growing season weather data and simulation results are shown. 

Historical 
Weather 
5 years* 

 Irrigation 
Treatment 

Back up to FC 
 

Growing Season 
 

Simulated Results 

Rain 
(mm) 

ETo 
(mm) 

Temp 
(°C) 

I net 
(mm) 

B 
(ton/ha) 

WPET 

(kg/m3)  

Dry  MAD of 20%AW  339 582 17.8   368 15.0 1.91 
  MAD of 35%AW  339 582 17.8  318 15.0 1.96 
  MAD of 50%AW  339 582 17.8  289 15.0 2.01 
  Rainfed  339 582 17.8  0 1.8 0.34 
           

Average  MAD of 20%AW  500 586 18.4  328 14.0 1.84 
  MAD of 35%AW  500 586 18.4  288 14.0 1.88 
  MAD of 50%AW  500 586 18.4  241 14.0 1.93 
  Rainfed  500 586 18.4  0 5.3 0.71 
           

Wet  MAD of 20%AW  582 547 17.6  288 14.5 2.01 
  MAD of 35%AW  582 547 17.6  256 14.5 2.04 
  MAD of 50%AW  582 547 17.6  218 14.5 2.09 
  Rainfed  582 547 17.6   0 11.7 1.29 

Each value represents a mean of five years, representing a historical weather condition. 
*Five dry, average, and wet years were selected based on total growing season rainfall (May to September). 

 

The statistical significance between the irrigation regimes and weather conditions obtained 

from the ANOVA is presented in Table 17. For the historical strawberry simulations, irrigation 

treatment had a significant effect on net irrigation requirement, with all treatments being 

significantly different from each other. The Inet also differed significantly between dry, average, 

and wet growing seasons. Irrespective of the irrigation treatment, there was no significant effect 

on total biomass or WPET, except under rainfed conditions. The interaction effect was not 

significant. Especially under dry conditions, the 50% MAD irrigation treatment can help berry 

producers in the region optimize irrigation water use.   

 



 94 

Table 17. Statistical analysis of historical strawberry simulations. Effect of different irrigation treatments 
and historical weather on net irrigation requirement, total biomass and ET water productivity of strawberry 
crops. Differences between means shown in columns with different letters (p<0.05). 

Irrigation Treatment 
I net Biomass WPET 

(mm) (ton/ha) (kg/m3) 
MAD of 20%AW 328 a 14.5 a 1.92 a 
MAD of 35%AW 287 b 14.5 a 1.96 a 
MAD of 50%AW 249 c 14.5 a 2.01 a 

Rainfed 0 d 6.3 b 0.78 b 
Historical Weather       

Dry 244 a 11.7 1.56 
Average 214 b 11.8 1.59 

Wet 190 c 13.8 1.86 
Significance       

Irrigation Treatment *<.0001 *<.0001 *<.0001 
Historical Weather *<.0001 ns ns 

Interaction ns ns ns 
*: significant; ns: non-significant 
significant differences between means (p <0.05), shown with different letters within columns 

 

4.5.4. Simulated historical cranberry irrigation requirements 

The historical simulation results for the cranberry model are presented in Table 18. The 

simulated Inet decreases with increasing available soil water depletion thresholds. Larger amounts 

of irrigation are required in dry years to compensate for lack of rainfall. The total aboveground 

biomass and ET water productivity are consistent between all irrigation treatments and all growing 

season weather, except in the absence of irrigation. It should be noted that for simulation, the 

variable groundwater depth calibrated to the field conditions of the cranberry bog was omitted in 

order to characterize the CWRs met by both sub-irrigation and sprinkler irrigation, since they 

represent the same resource of water in the study area.  

Table 18. Historical simulation results for cranberry. Simulated net irrigation requirement, ET water 
productivity, and total aboveground biomass for different irrigation treatments and historical weather 
conditions. 5-year means of growing season weather data and simulation result are shown. 

Historical 
Weather 
5 years* 

 Irrigation 
Treatment 

Back up to FC 
 

Growing Season 
 

Simulated Results 

Rain 
(mm) 

ETo 
(mm) 

Temp 
(°C) 

I net 
(mm) 

B 
(ton/ha) 

WPET 

(kg/m3)  
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Dry  MAD of 20%AW  339 582 17.8   203 12.4 2.16 
  MAD of 35%AW  339 582 17.8  176 12.3 2.16 
  MAD of 50%AW  339 582 17.8  161 12.3 2.16 
  Rainfed  339 582 17.8  0 7.6 1.69 
           

Average  MAD of 20%AW  500 586 18.4  183 12.3 2.14 
  MAD of 35%AW  500 586 18.4  154 12.2 2.14 
  MAD of 50%AW  500 586 18.4  133 12.2 2.15 
  Rainfed  500 586 18.4  0 10.0 2.13 
           

Wet  MAD of 20%AW  582 547 17.6  147 12.5 2.33 
  MAD of 35%AW  582 547 17.6  131 12.5 2.34 
  MAD of 50%AW  582 547 17.6  93 12.5 2.34 
  Rainfed  582 547 17.6   0 11.2 2.37 

Each value represents a mean of five years, representing a historical weather condition. 
*Five dry, average, and wet years were selected based on total growing season rainfall (May to September). 

 

The statistical analysis summarized in. Table 19, reveals that for cranberries, irrigation 

requirements were significantly different between all irrigation treatments and all growing season 

conditions. Historical weather also influenced the total crop biomass, which significantly differed 

in each case. There was no significant effect on WPET, except under rainfed conditions. 

Table 19. Statistical analysis of historical strawberry simulations. Effect of different irrigation treatments 
and historical weather on net irrigation requirement, total biomass, and ET water productivity of strawberry 
crops. Differences between means shown in columns with different letters (p<0.05).  

Irrigation Treatment 
I net Biomass WPET 

(mm) (ton/ha) (kg/m3) 
MAD of 20%AW 177 a 12.4 a 2.21 a 
MAD of 35%AW 154 b 12.4 a  2.21 a 
MAD of 50%AW 129 c  12.4 a 2.22 a 

Rainfed 0 d 9.6 b 2.06 b 
Historical Weather       

Dry 135 a 11.2 a 2.04 a 
Average 117 b 11.7 b 2.14 a 

Wet 93 c 12.2 c 2.34 b 
Significance       
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Irrigation Treatment *<.0001 *<.0001 *0.0347 
Historical Weather *<.0001 *0.0002 *<.0001 

Interaction ns *<.0001 *0.0054 
*: significant; ns: non-significant 
significant differences between means (p <0.05), shown with different letters within columns 

 

In summary, the statistical analysis of historical simulations revealed that both historical weather 

(wet, average or dry growing season) and irrigation treatment (20%, 35%, or 50% depletion of 

AW) had a significant effect on the net irrigation requirement. The results highlighted the water 

saving potential of irrigating at a maximum allowable depletion of 50% available water, especially 

in dry years where crop-water demand was significantly higher. For all major crops in the study 

area, the historical AquaCrop simulations found that a 50% MAD significantly reduced net 

irrigation requirements and increased water productivity, without significantly reducing crop 

production. Furthermore, irrigation water management should center on the historical dry year 

requirements, which were significantly greater than for historically wet years.  

4.6 Impact of climate change on irrigation requirements 

Next, the models were used to predict the impact of climate change on the near (2050s) and 

far (2080s) future irrigation requirements, compared to the historical baseline (1997-2021). A 

sample of simulation results for CMIP6 ensemble model under SSP5-8.5 scenario for all years is 

available in the Figure A3. The 30-year means were calculated for each timeline (baseline, 2050s, 

and 2080s), model (in the ensemble), crop (potato, squash, strawberry, and cranberry), and 

irrigation treatment (20%, 30%, and 50%MAD of AW). The median and range of the resulting net 

irrigation requirements are presented in Figure 31, 32, 33, and 34, for potato, squash, strawberry, 

and cranberry, respectively.  

In Figure 31, the 30-year average simulation results, represented by the median model result 

with black bars indicating the range, highlight a significant increase in potato irrigation 

requirements by the projected 2080s period compared to historical baseline, under the selected 

high emissions scenario. These results support previous findings simulated with the AquaCrop 

model, evaluated for future irrigation requirements across different climate scenarios. For 

example, Busschaert et al. (2022) indicated a potential increase in net irrigation requirement of 

30% in far future periods (2071–2100) under a high-emission scenario (SSP3–7.0), particularly 

impacting agriculture in central and southern Europe.  
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In addition, the results showed an increase in tuber yield production. This aligns with findings 

in global studies on potato crop modeling in the context of climate change, such as those by 

Jennings et al. (2020), which suggest increased yields with adaptations. Simulating with 

AquaCrop, Govere et al. (2022) found a beneficial effect of climate change on wheat yield and 

water use in Zimbabwe under RCP4.5 and RCP8.5 for projected 2040s and 2080s. They attributed 

the simulated increase in yields and decrease in crop water use to the CO2 fertilization effects, 

which had a dominant effect over the projected higher temperatures. However, a specific modeling 

study on potato production in Prince Edward Island (Adekanmbi et al., 2023) demonstrated a 

potential decrease in yield due to climate change without adaptations from current agricultural 

practices. A recent study on the impact of climate change on fully irrigated, well-fertilized potato 

crop across the USA under the RCP 8.5 scenario of high emissions indicated that while increasing 

temperatures will likely reduce potato yields, this will be mostly compensated by elevated 

atmospheric CO2 (Zhao et al., 2022). Furthermore, yields may improve in most regions by planting 

potatoes earlier as adaptation to avoid hot summers. Despite higher temperatures, water use by the 

potato crop is predicted to decrease as a result of a shorter growing season and greater water use 

efficiency under elevated atmospheric CO2 (Zhaeo et al., 2022). Unlike the results of the RADEAU 

project (Charron et al., 2019), the simulations in this study projected a shortened crop cycle owing 

to the ability to run the model in GDD format.  

Notably, the statistical analysis demonstrates that irrigation treatment plays a significant role 

in influencing the net irrigation requirement, with a MAD set at 50% of AW showing a 

considerable reduction. Overall, ANOVA results underscore the substantial impact of both 

irrigation treatment and climate on net irrigation requirements, indicating an expected increase 

under the selected climate model scenario, mitigated by the MAD 50%AW treatment. In summary, 

the simulation results are in line with the anticipated greater water demand due to weather effects, 

counterbalanced by the potential for increased crop yield attributed to higher CO2 concentration. 
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Figure 31. Median and range of projected irrigation requirements under CMIP6 SSP5-8.5 for potato. 

For the squash model, the future simulations resulted in stable net irrigation requirements, as 

well as lower yields in the 2050s and 2080s, under the high emissions scenario. These results may 

be attributable to the observed reduction in the crop's growth cycle, associated with changes in 

climatic conditions. While the default values of the conservative AquaCrop parameters (Hsiao, 

2012; Raes et al., 2009) for the potato crop file are presumed applicable to a wide range of 

conditions, the conservative parameters for the squash model, such as upper and lower temperature 

thresholds for leaf growth, were obtained from the default general vegetable file. Future research 

and model parametrization could further investigate the effect of climate change on the crop cycle 

of winter squash. For the purpose of this study, the model is a simplified representation of irrigated 

vegetable in the Lanoraie study area and presents a possible effect of a high emissions future on 

vegetable production.  

Consistent with the potato simulations, the F-test indicated a significant effect of irrigation 

treatment on the net irrigation requirements for squash. The maximum depletion level of 50% AW 

significantly reduces the net irrigation requirements in all climate periods, emphasizing the role of 

the producer’s selected irrigation regime on irrigation water use.   
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Figure 32. Median and range of projected irrigation requirements under CMIP6 SSP5-8.5 for squash 

In the future simulations for strawberry crops, a decline in net irrigation requirements is 

observed (Figure 33), potentially associated with the shortened simulated crop cycle. Similar 

trends were observed in cranberry simulations, depicted in Figure 34. Although this aligns with 

findings from other crop modeling studies, indicating a potential reduction in the crop cycle 

duration due to climate change, additional data and model calibration are recommended to validate 

this effect. Furthermore, this presents an opportunity to adapt cultivars to climate change by 

studying various planting dates and heat tolerances of crops. In simulating climate change impacts 

on winter wheat and maize in Iran, Khordadi et al. (2019) found that varying the sowing date to 

optimize yield, as well as selecting cultivars according to varied projected GDD could be effective 

adaptation strategies to meet agricultural needs in the face of a changing climate. In terms of berry 

cultivation in temperate regions, Dale (2009) stresses that due to the increased climate variability, 

cultivars will need withstand fluctuating winter weather and increased heat stress, be able to grow 

with little chilling, and be able to initiate bud formation under diverse environmental conditions. 

To address these challenges, breeders should focus on developing everbearing cultivars that are 

winter-hardy, and adaptable to various environments and cropping systems, necessitating 

collaboration between breeders and crop physiologists to design effective breeding systems. (Dale, 

2009). These collaborative research initiatives are present in Quebec. For example, the AAC-
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Généreuse strawberry cultivar bred by Dr. Khanizadeh at Agriculture and Agri-Food Canada in 

Quebec, was commercially tested in Lavaltrie and displayed a high yield and hardiness compared 

to other mid-season varieties. Also, originally bred for Floridian agriculture, Florida-Brilliance 

was found to be a top-performing mid- late season variety between 2019 and 2021 in The Canadian 

Berry Trial Network lead by Crawford et al. (2022). Continuing these efforts will be crucial in face 

of a changing climate.  

The ANOVA showed that the substantial impact of irrigation treatment on net irrigation 

persists in the projected strawberry and cranberry simulations. This emphasizes the impact of 

irrigation management irrespective of the crop under cultivation.  

 
Figure 33. Median and range of projected irrigation requirements under CMIP6 SSP5-8.5 for strawberry 
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Figure 34. Median and range of projected irrigation requirements under CMIP6 SSP5-8.5 for cranberry 

In summary, the climate effect of the CMIP-6 high emissions scenario (SSP5-8.5) was 

investigated for the major crops in the study area with four AquaCrop models calibrated to local 

field conditions. The simulations showed that the irrigation requirement for potato will 

significantly increase by the projected 2080s period compared to the historical period. Projected 

irrigation requirements for the other crops remained fairly stable with a possible decrease in 

irrigation requirements predicted for berry crops. However further model calibration is suggested 

to investigate the effect of climate change on shortened crop growth cycles. Future research could 

explore the optimization of crop varieties and planting dates to adapt the agricultural region to 

climate change, as was shown in other studies (e.g. Khordadi et al., 2019; Sharma et al., 2021). 

For all crops, irrigation treatment significantly impacted the net irrigation requirement. An 

irrigation treatment of MAD 50% AW can significantly reduce future irrigation requirements. 

Further recommendations include incorporating additional socio-economic pathways. 

Studying the impact of climate change on maize in sub-Saharan Africa, Dale et al., (2017) found 

robust spatial trends of yield losses across the ensembles used, which corresponded to spatial 

patterns on aridity increases. They found that the spatial distribution of uncertainty in yield 

projections is mainly influenced by internal variability, a significant contributor to uncertainty in 

both within-model and between-model ensembles, emphasizing the importance of adaptive and 
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robust risk management strategies in the face of climate change uncertainties. Moreover, the 

AquaCrop model, evaluated for future irrigation requirements across different climate scenarios, 

indicated a potential increase in net irrigation requirement by 30% in far future periods (2071–

2100) under a high-emission scenario (SSP3–7.0), particularly impacting central and southern 

Europe (Busschaert et al., 2022). However, a high mitigation scenario (SSP1–2.6) suggested a 

stabilization of Inet increase at around 13 mm per month by the end of the century, accompanied 

by a smaller rise in interannual variability. These findings highlight substantial disparities in Inet 

projections across various GCMs. Therefore, future studies should explore a more comprehensive 

range of socio-economic pathways.  

4.7 Design of irrigation water supply scenario 

4.7.1. Irrigation sector water demand 

Finally, the gross irrigation requirements were mapped into water supply sectors to help 

propose an irrigation supply system. Mean monthly irrigation requirements were derived from the 

simulation results for the five historical dry years under the recommended 50%MAD irrigation 

strategy. In addition to the simulated irrigation events, water requirements for frost and heat 

protection were taken into account for strawberry and cranberry crops, as well as water used for 

cranberry harvest flooding. The application efficiency was also considered for the main irrigation 

systems used. Gross depths of irrigation requirements were extrapolated over the irrigated cropland 

of the study area for each month of the growing season. For the historical dry years, the regional 

volumes of water required for the major irrigated crops over the growing season were greatest in 

the months of July and August. This period of highest irrigation water demand coincides with the 

minimum flows in four streams tributary to the Lanoraie peat complex evaluated by IRDA: the 

Point-du-Jour; Saint-Jean; Saint-Joseph; and Bras-du-Sud-Ouest (Ricard et al., 2023). In also 

considering the flow restrictions imposed by the municipalities, it is apparent that these streams 

do not represent a sustainable source of irrigation water during July and August, especially in dry 

years. Furthermore, the research conducted by the UQAM team suggests that the excavated 

irrigation ponds may be intercepting water that would otherwise recharge the wetlands (Chéné and 

Larocque, 2023). Thus, to meet irrigation water demands without compromising the hydrology of 

the wetlands, an irrigation pipeline is explored.  
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As a preliminary assessment of potential water supply scenarios, possible pipeline dimensions 

are proposed for five irrigation sectors in the study area. Figure 35 outlines the boundaries of the 

irrigation sectors determined with the project stakeholders and highlights the irrigated cropland 

that was included in the regional estimate of irrigation requirements. System flow requirements 

were designed to peak water use. The peak volumetric water demand was determined in each of 

the five irrigation sectors of the region, occurring in the month of July. From the simulated 

irrigation events of the main crops, this peak demand was assumed to be distributed over 15 days 

of irrigation. 12, 15, and 18 hours of pumping per day were investigated. The peak flow rates, if 

water is pumped for 12 hours per day over 15 days, for each sector are listed in Table 20.  

 
Figure 35. Irrigated cropland considered in regional estimate of irrigation requirements for the 
proposed irrigation sectors. 
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Table 20. Peak pipeline flow rate for each irrigation sector in the month of peak volumetric water 
demand. Assumes 15 days of irrigation with 12 hours of pumping per day. 

Irrigation 
Sector 

Irrigated Area 
(ha) 

Peak Demand 
Vol (m3) 

Peak Flow rate 
Q (m3/s) 

St-Joseph 565 485927 0.75 

St-Thomas 830 832044 1.28 

St-Henri 487 454566 0.70 

Lavaltrie-Lanoraie 691 664524 1.03 

St-Paul-Lavaltrie-L'Ass. 942 903875 1.39 

 

Pipeline diameters were calculated from volumetric flow rate to meet peak demand of each 

irrigation sector, using Manning’s equation and the Hazen-Williams equation, and are presented 

in Sections 4.7.2 and 4.7.1, respectively.  

4.7.2. Manning’s derived pipeline diameter 

Using volumetric flow rate and Manning’s equation, pipeline diameters were calculated for a 

water supply system, considering duration of pumping, pipe material, and slope of the pipe. The 

assumptions are summarized in Table 21. The pipe materials investigated were polyvinyl chloride 

(PVC), high-density polyethylene (HDPE), and steel. Slopes varied from 0.2% to 0.8%. 

Table 21. List of investigated assumptions for Manning's equation pipeline calculations. 

Pumping Durations 
(hours/day) 

Pipe Materials and 
Roughness Coefficients 

Hydraulic Gradients 
(m/m) 

12 PVC (n = 0.009) 0.008 

15 HDPE (n = 0.009) 0.006 

18 Steel (n = 0.012) 0.004 
   0.002 

 

Pipeline diameters for PVC and steel materials can be observed in Figure 36 and Figure 37, 

under various hydraulic gradients. Assuming 15 hours of pumping on 12 days of irrigation for a 

PVC pipe with a slope of 0.4%, potential diameters would be 67 cm, 82 cm, 65 cm, 75 cm, and 84 

cm for the St-Joseph, St-Thomas, St-Henri, Lavaltrie-Lanoraie, and St-Paul-Lavaltrie-
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L’Assomption irrigation sectors. Exact pipeline slope will depend on surveys done in a future 

study outlining possible pipeline routes.  

 
Figure 36. Flow rate and pipeline diameter of PVC (or HDPE) pipeline for various hydraulic gradients 
under peak demand, derived from Manning’s equation. 
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Figure 37. Flow rate and pipeline diameter of steel pipeline for various hydraulic gradients under peak 
demand, derived from Manning’s equation. 

4.7.1. Hazen-Williams derived pipeline diameter 

Similarly, volumetric flow rate and the Hazen-Williams equation were also used to calculate 

pipeline diameter from volumetric flow rate, while considering duration of pumping, pipe material, 

and slope of the pipe. The assumptions considered in the calculations are summarized in.  

Table 22. List of investigated assumptions for Hazen-Williams pipeline calculations. 

Pumping Durations 
(hours/day) 

Pipe Materials and 
Roughness Coefficients 

Hydraulic Gradients 
(m/m) 

12 PVC (C = 150) 0.008 

15 HDPE (C = 140) 0.006 

18 Steel (C = 110) 0.004 
   0.002 

 

The diameters of pipelines constructed from PVC and steel materials, calculated using the 

Hazen-Williams equation, are depicted in Figure 38 and Figure 39, considering various hydraulic 

gradients. Using the same example, for a PVC pipe with a slope of 0.4%, assuming 15 hours of 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

Fl
ow

 R
at

e 
(m

3/
s)

Pipeline Diameter (m)

Flow Rate and Pipeline Diameter for Various Hydraulic Gradients
Manning's Equation - Steel Pipe (roughness coefficient n=0.012)

0.008 m/m 0.006 m/m 0.004 m/m 0.002 m/m
Pipe Slope



 107 

pumping on 12 days of irrigation, potential diameters are estimated to be 67 cm, 83 cm, 66 cm, 76 

cm, and 85 cm for the St-Joseph, St-Thomas, St-Henri, Lavaltrie-Lanoraie, and St-Paul-Lavaltrie-

L’Assomption irrigation sectors. Both the Manning’s and Hazen-Williams equations yielded 

pipeline diameters with a negligible difference ranging from 0 to 3%. This empirical analysis 

provides an initial estimate of the pipeline dimensions needed to meet the irrigation demand for 

the proposed sectors during peak periods in historically dry years. 

A comprehensive design of the conveyance system should consider key factors including 

elevation, distance, storage facilities, pumping systems, and energy requirements. Future project 

phases will require evaluating water quality, adhering to environmental and governmental 

regulations, and conducting a cost-benefit analysis for the irrigation water supply system. 

Additionally, community engagement will play a crucial role in the project planning process. 

 
Figure 38. Flow rate and pipeline diameter of PVC pipeline for various hydraulic gradients under peak 
demand, derived from the Hazen-Williams equation. 
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Figure 39. Flow rate and pipeline diameter of steel pipeline for various hydraulic gradients under peak 
demand, derived from the Hazen-Williams equation.  
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5. Conclusions and recommendations 

5.1 Conclusions 

This study aimed to assess the current and future irrigation water requirements for the 

agriculture-wetland complex of Lanoraie and propose a water supply scenario. Field data gathered 

from four representative field sites over the 2022 growing season were used to calibrate AquaCrop 

models to local conditions, refining their accuracy in simulating soil moisture. Subsequently, these 

refined models were used to estimate the irrigation requirements for historical dry, average, and 

wet years. Future irrigation needs were estimated by incorporating climatic data from the CMIP-6 

model ensemble, downscaled statistically to the study area, under the SSP5-8.5 scenario. Finally, 

gross irrigation quantities for the major irrigated crops in historical dry scenarios were extrapolated 

across the study area. This extension facilitated the identification of peak water demands, leading 

to a preliminary assessment of a water conveyance system designed for five irrigation districts. 

 

Based on the study objectives, the following conclusions are drawn: 

a) Overall, AquaCrop simulated soil moisture with satisfactory accuracy (r ranging from 0.54 

to 0.88) and served as a useful tool for estimating regional of irrigation requirements. The 

potato and squash models exhibited the strongest agreement between simulated and 

observed soil moisture, compared to the cranberry and strawberry models. Lower model 

efficiency was observed for the simulation of soil water content in the strawberry field. The 

observed discrepancies may be attributable to atypical growth cycles in the field, stemming 

from the cultivation of strawberry plants for distribution.  

b) Simulating historical irrigation for the predominate crops in the study area highlighted that 

the irrigation treatment employed by producers significantly influences the net seasonal 

requirements for each of the major irrigated crops. The prevailing weather condition of the 

growing season also had a significant impact on the net irrigation. Employing an irrigation 

management strategy with a MAD set at 50% of AW proved highly effective, significantly 

reducing the irrigation needs across all major crops. This approach demonstrated particular 

efficiency in historically dry years, mitigating the considerably increased water demand 

compared to wet years.  

c) Under the SSP5-8.5 high emissions scenario, the future irrigation requirements of each 

major crop had distinct responses to climate change, yet the significant impact of irrigation 
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treatment persisted for all crops. For potato, the future climate and irrigation strategy both 

played a significant role in influencing net irrigation requirements, projecting a significant 

increase by the 2080s. However, the implementation of the MAD 50%AW treatment 

helped mitigate this increase. Projections for the other key crops suggested either stable or 

decreasing seasonal water needs, potentially attributed to shortened crop growth cycles. 

Across all climate periods, maintaining a maximum depletion level of 50% AW emerged 

as a recommended practice, consistently reducing net irrigation requirements for all crops. 

This underscores the pivotal role of producers selected irrigation regime in influencing 

overall irrigation water use.  

d) Mapping the simulated irrigation requirements across the agricultural region of Lanoraie 

revealed peak water demands in the month of July, coinciding with periods of low stream 

flow. Considering the drawdown of the peatland complex’s water levels, an irrigation 

pipeline system was explored to convey water to five designated irrigation sectors. Various 

pipe materials, hydraulic gradients, and pumping durations were investigated. For instance, 

assuming 15 hours of pumping on 12 days of irrigation for a PVC pipe with a slope of 

0.4%, potential diameters of 67 cm, 82 cm, 65 cm, 75 cm, and 84 cm were identified to 

supply peak flow to the St-Joseph, St-Thomas, St-Henri, Lavaltrie-Lanoraie, and St-Paul-

Lavaltrie-L’Assomption irrigation sectors. 

5.2 Recommendations for future research 

Based on the results of this study, the following recommendations are given for future research 

and phases of the SCELANEAU project: 

a) Future research efforts could benefit from an extended period of data collection to enhance 

AquaCrop model calibration specific to Lanoraie's local conditions and validate model 

performance. This entails deploying a greater number of volumetric soil moisture sensors 

with a strategically distributed network across multiple fields. A thorough soil analysis of 

the field sites is advised to precisely determine soil water retention parameters, including 

field capacity, which was highly sensitive parameter in the simulation of soil water content. 

Additionally, the precise monitoring of crop growth and production variables, such as leaf 

area index, cumulative biomass, and final yield measurements, is recommended to refine 

the calibration of crop parameters to strengthen model predictions. 
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b) A comprehensive field study investigating the plant water stress response of the major 

irrigated crops to specific irrigation regimes would enhance the substantiation of an 

irrigation management strategy tailored to the individual needs of each crop. 

c) Conducting future model simulations with climate change data modeled under additional 

shared socio-economic pathways would provide a more expansive and comprehensive 

understanding of the potential effects of climate change on net irrigation requirements, 

considering the variability among climate projections. Studying the temperature thresholds 

and heat stress responses across multiple crop varieties could further explore the impact of 

climate change on crop cycle length and aid in the selection of cultivars better suited for 

future climates. 

d) Future phases of the project should focus on the detailed engineering design of the 

proposed irrigation pipeline system. This entails a thorough topographical analysis to 

determine the most efficient pipeline route, soil and groundwater assessments, material 

selection, pumping system evaluation, and energy requirement calculations. Water quality 

and environmental impact assessments will be required to ensure compliance with 

regulatory standards and to obtain necessary permits, while actively involving local 

communities for input and to address concerns.  

e) A comprehensive cost-benefit analysis, considering both initial construction costs and 

long-term operational expenses will help determine the feasibility and funding of the 

proposed irrigation supply system. 
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APPENDIX 

 
Figure A1. Calibration curve for EC5 sensor placed at a depth of 5 cm at L1. 

 
Figure A2. Calibration curve for EC5 sensor placed at a depth of 5 cm at L2. 

 

y = 0.91x + 0.0342
R² = 0.6665

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

M
ea

su
re

d 
VW

C 
(c

m
3/

cm
3)

Sensor VWC (cm3/cm3)

Calibration Curve for L1 - 5 cm - EC5 - Port 3
Soil Moisture Sensor

y = 1.9366x - 0.0965
R² = 0.9106

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

M
ea

su
re

d 
VW

C 
(c

m
3/

cm
3)

Sensor VWC (cm3/cm3)

Calibration Curve for L2 - 5 cm - EC5 - Port 3
Soil Moisture Sensor



 139 

 

 
Figure A3. Simulated net irrigation requirements of CNRM-CM6-1 model of the ensemble for potato under MAD set at 50% AW under SSP5-8.5.  
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