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Abstract 

 

Experiments have shown that soft circular cylindrical shells supported at both ends and 

conveying airflow lose stability by so-called dynamic divergence. Dynamic divergence is an 

instability phenomenon starting as a divergence, with amplitude comparable to the shell radius, 

that largely constrains the flow. This results in pressure building up and reopening the shell, 

triggering a dynamic instability. The characteristics of dynamic divergence instability are studied 

in-depth for the first time to elucidate the nature and characteristics of this phenomenon. 

Experiments have been conducted on elastomer (silicone rubber) thin circular cylindrical shells 

clamped at both ends and subjected to internal airflow. Bifurcation diagrams have been obtained 

by varying the flow velocity as the control parameter, exhibiting strong subcritical behaviour and 

large hysteresis in the flow velocity for the onset and cessation of dynamic instability. The effect 

of flow velocity and geometric parameters of the shell, namely length-to-radius (L/R) and 

thickness-to-radius (h/R) ratios, is investigated experimentally on the onset of instability and post-

critical behavior; (i) thinner and longer shells lose stability at lower flow velocities, (ii) thinner 

shells have higher rms vibration velocity, (iii) by decreasing L/R, the subcritical behaviour is 

weakened for thin shells, while it is strengthened for thick shells. The possible existence of a 

chaotic component in the dynamic response following the initial divergence was firstly discerned 

by looking at high-resolution photos taken with a high-speed camera. Several qualitative and 

quantitative measures and criteria for chaos, such as phase plane plots, Poincaré maps, power 

spectra (PSD), the largest Lyapunov exponent, autocorrelation, and probability density function 

(PDF), have been used to confirm the existence of chaos in the oscillations, and to examine the 

effect of L/R and h/R ratios on chaotic behaviour of the system; (i) thinner and shorter (with some 

exceptions) shells generally exhibit more pronounced chaotic behavior, (ii) thin shells generally 

display more complex nonlinear dynamics at the upper half of the flow velocity range, while thick 

shells do the opposite. Finally, the effect of confinement (by a coaxial rigid outer tube) on the onset 

and post-critical behaviour of the system is explored; the unconfined configuration is shown to 

have (i) considerably higher critical and restabilization flow velocities, (ii) higher rms velocity of 

motion, and (iii) slightly stronger subcritical behaviour.  
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Résumé 

 

Des expériences ont montré que les coques cylindriques circulaires souples supportées aux 

deux extrémités et parcourues d'air perdent leur stabilité par ce que l'on appelle la divergence 

dynamique. La divergence dynamique est un phénomène d'instabilité commençant par une 

divergence, d'amplitude comparable au rayon de la coque, qui contraint fortement l'écoulement. Il 

en résulte une accumulation de pression et une réouverture de la coque, déclenchant une instabilité 

dynamique. Les caractéristiques de l'instabilité de divergence dynamique sont étudiées en 

profondeur pour la première fois pour élucider la nature et les caractéristiques de ce phénomène. 

Des expériences ont été menées sur des coques cylindriques circulaires minces en élastomère 

(caoutchouc de silicone) encastrées aux deux extrémités et soumises à un flux d'air interne. Les 

diagrammes de bifurcation ont été obtenus en faisant varier la vitesse d'écoulement comme 

paramètre de contrôle, présentant un fort comportement sous-critique et une grande hystérésis dans 

la vitesse d'écoulement au déclenchement et à la cessation de l'instabilité dynamique. L’influence 

de la vitesse d'écoulement et des paramètres géométriques de la coque, à savoir les ratios 

longueur/rayon (L/R) et épaisseur/rayon (h/R), sur l'apparition de l'instabilité et le comportement 

post-critique est étudiée expérimentalement; (i) les coques plus minces et plus longues perdent leur 

stabilité à des vitesses d'écoulement plus faibles, (ii) les coques plus minces ont de vitesses de 

vibration plus élevées, (iii) en diminuant L/R, le comportement sous-critique est affaibli pour les 

coques minces, alors qu'il est renforcé pour les coques épaisses. L'existence possible d'une 

composante chaotique dans la réponse dynamique suite à la divergence initiale a d'abord été 

discernée en examinant de photos d'haute résolution prises avec une caméra à grande vitesse. 

Plusieurs mesures et critères qualitatifs et quantitatifs du chaos, tels que les portraits de phase, les 

sections de Poincaré, les spectres de puissance (DSP), le plus grand exposant de Lyapunov, 

l'autocorrélation et la densité de probabilité, ont été utilisés pour confirmer l'existence du chaos 

dans les oscillations et pour examiner l'effet des ratios L/R et h/R sur le comportement chaotique 

du système ; (i) les coques plus minces et plus courtes (à quelques exceptions près) présentent 

généralement un comportement chaotique plus prononcé, (ii) les coques minces affichent 

généralement une dynamique non linéaire plus complexe dans la moitié supérieure de la plage de 

vitesse d'écoulement, tandis que les coques épaisses montrent le contraire. Enfin, l'effet du 

confinement (dû au tube externe coaxial rigide) sur l'apparition et le comportement post-critique 

du système a été exploré ; il est démontré que la configuration non confinée a (i) des vitesses 

d'écoulement critiques et de stabilisation considérablement plus élevées, (ii) de vitesses de 

vibration plus élevées et (iii) un comportement sous-critique légèrement plus marqué. 
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1 

 

1 Introduction 

1.1 General remarks 

Flow-induced vibration (FIV) problems are classified in several ways. Some classifications 

are phenomenological such as the one proposed by Blevins [1], according to which, vibrations 

induced by steady flows and unsteady flows are distinguished from each other. The former are 

then subdivided into ‘self-excited vibrations’ (referred to as instabilities) and ‘vortex-induced 

vibrations’, while the latter are subdivided into random (e.g. turbulence-related), sinusoidal (e.g. 

wave-related), and transient oscillations (e.g. water-hammer problems).  

Weaver [2] classified flow-induced vibrations based on the nature of the vibration in each 

case, as follows: (a) forced vibrations induced by turbulence; (b) self-controlled vibrations, in 

which flow has some periodicity, independent of structure motion; (c) self-excited vibrations. 

A very systematic classification, however, was introduced by Naudascher and Rockwell [3,4], 

in which the source of excitation is considered in the categorization; (i) extraneously-induced 

excitation (EIE), (ii) instability-induced excitation (IIE), and (iii) movement-induced excitation 

(MIE), also known as self-excited oscillations. Self-excited oscillations are oscillatory motions 

due to the movement of the structure, i.e., no external excitation exists in the absence of motion; 

the problem at hand belongs to this class of FIV. Self-excited oscillations often involve large 

deformations; hence, strong nonlinearities can come into play [5,6]. 

Many biological and engineering systems involve thin-walled cylindrical shells in contact 

with fluid; the shells may have various geometries (e.g., cylindrical or conical, open or closed), 

boundary conditions (e.g., clamped-clamped, simply-supported, cantilevered, mismatched 

(asymmetric)) and materials (aluminium, elastomer (silicone rubber), Polyethylene Terephthalate 

(PET) or living tissue), while the fluid may be compressible or incompressible, stagnant or 

flowing, internal or external. Urinary tracts, pulmonary passages and veins and are examples of 

shells in contact with flowing fluid in physiological systems; heat exchangers, jet pumps, thermal 

shields in nuclear reactors and heat shields in aircraft engines are examples of engineering 

applications of such systems (see Figure 1-1).  

Thin shells conveying fluid are subject to three types of instabilities, namely, buckling (static 

divergence), flutter and dynamic divergence (oscillatory instabilities); although all three types are 

undesirable, oscillatory instabilities can result in catastrophic structural failure due to fatigue. 

Dynamic divergence should not be misinterpreted as flutter, which typically displays a specific 

oscillation frequency at its onset. 

Most of the studies on the stability of cylindrical shells deal with external compressible and 

particularly supersonic flows, in which the structure loses stability by flutter. This indicates the 

enormous interest on the effects of high-speed flow on the outer-skin panels of aerospace vehicles 

such as aircraft and missiles [7,8]. 
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(a) (b) 

Figure 1-1. Cylindrical shells in contact with flowing fluid; (a) blood vessels of a human heart as 

physiological systems; (b) heat shield as an engineering application. 

1.2 Literature review 

The loss of stability of circular cylindrical shells and pipes supported at both ends is 

theoretically predicted to be via static divergence, while cantilever shells and pipes generally 

become unstable by flutter. For a long time, the dynamics of shells subjected to incompressible 

(subsonic) axial flow seemed uninteresting since they were thought to become unstable only by 

mild (small-amplitude) divergence. However, some experiments presented in [9,10] breathed new 

life to the subject by showing that, not only thin cantilevered, but also clamped-clamped shells 

containing subsonic axial flow do flutter. The first linear analytical model for clamped-clamped 

and cantilevered circular cylindrical shells containing inviscid incompressible flow was presented 

in [10]. Flügge’s shell theory was used for the equation of motion of the shell and the flow field 

was described by potential flow theory. Travelling wave solutions were assumed for the shell 

displacement components. The theory predicted that the system loses stability by single-mode 

flutter for the cantilevered shell, while by divergence and subsequently Païdoussis-type [11] 

coupled-mode flutter for the clamped-clamped shell. In the experiments, however, flutter was 

observed directly for clamped-clamped shells; this was at first presumed to be flutter entrained by 

divergence, but dynamic divergence was another hypothesis suggested later in [12]. In the 

experiments with clamped-clamped elastomer shells [10], a shell-type flutter in the second 

circumferential mode (n=2, where n is the circumferential wave number) was observed. In 

experiments with short cantilevered shells, only shell-mode oscillations with n=2 or 3 were 

observed, while being stable in beam-mode flexure. Weaver and Unny [13] presented a linear 

theoretical model for simply-supported circular cylindrical shells and obtained similar results as 

for clamped-clamped shells. The shell was predicted to lose stability by static divergence at first, 

and then by flutter at higher flow velocities.  
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Figure 1-2. Schematic of the clamped-clamped shell subjected to internal airflow. 

The theoretical study of the dynamics and stability of clamped-clamped coaxial circular 

cylindrical shells subjected to internal and/or annular incompressible or compressible flow was 

extended by Païdoussis et al. [14]. It was found that a shell in annular flow loses stability at a lower 

flow velocity in comparison with a shell containing internal flow. They also concluded that the 

critical flow velocity is lower when both shells are flexible. In addition, according to linear theory, 

the compressibility of the fluid was shown to have little effect on the stability of the system. El 

Chebair et al. [15] conducted some experiments on clamped-clamped and cantilevered shells 

subjected to annular flow. They observed that the system loses stability by flutter for a cantilevered 

shell and by divergence (not followed by flutter) in the case of a clamped-clamped shell. 

All of the aforementioned theoretical studies were based on linear models, which are only 

capable of predicting the first instability encountered by the system with increasing flow velocity, 

but not the post-instability static or dynamic behaviour. The reason is that geometrical 

nonlinearities associated with deformation amplitudes of the order of shell thickness start playing 

an important role in the dynamical behaviour of the system, thus necessitating the use of nonlinear 

theories. Most of the nonlinear work has been motivated by aerospace applications and hence is 

associated with supersonic external flow. For an excellent review of nonlinear vibrations of 

circular cylindrical shells, refer to the work of Amabili and associates [16,17,18,19,20,21,22]. 

Nonlinear dynamics and stability of simply-supported circular cylindrical shells containing  

inviscid incompressible fluid flow was revisited in [23] by means of Donnell’s nonlinear shallow-

shell theory and linearized potential flow theory. A seven degree-of-freedom solution allowing for 

travelling wave response of the shell and shell axisymmetric contraction (responsible for the 

softening nonlinear behaviour of the shell) was utilized. The results demonstrated that the system 

loses stability by strongly subcritical divergence.  

A refined model for the subcritical static divergence of circular cylindrical shells conveying 

incompressible fluid, taking into account also geometric imperfections, was introduced by Amabili 

et al. [24]. Numerical results for thin aluminium shells conveying water were found to be in 

particularly good agreement with experiments. Karagiozis et al. [25] extended the theoretical study 

of nonlinear stability of clamped-clamped shells conveying annular or internal flow, utilizing the 

same approach as in [23], with the difference that clamped-clamped beam eigenfunctions were 
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used as admissible functions to describe the shell longitudinal displacement. They also 

experimentally examined the stability of plastic or aluminium shells with internal water flow. The 

theoretical and experimental results were in good qualitative and satisfactory quantitative 

agreement, both showing loss of stability by divergence with a subcritical pitchfork bifurcation 

which was not followed by flutter, in contrast to linear theory predictions. This raised the question 

of why experiments with clamped-clamped plastic or aluminium shells subjected to internal water 

flow show a different type of instability from that of silicone rubber shells conveying airflow; 

system parameters should not alter the qualitative dynamics of the system from the theoretical 

point of view. To sum up, although the oscillatory instability observed in experiments with internal 

airflow was primarily reasoned to be flutter induced by divergence (based on linear theory), 

nonlinear theory predicted a static instability, i.e., divergence.  

Nonlinear vibrations of a fluid-filled, internally-pressurized, soft circular cylindrical shell 

made of Polyethylene terephthalate fabric were studied in [26]. Experiments on forced, large-

amplitude (geometrically nonlinear) vibrations of the shell established the nonlinear stiffness and 

nonlinear damping characteristics of the system. A reduced-order model was then introduced using 

a piecewise linear stiffness and viscous damping. The experimental and simulated results of the 

reduced-order model were in excellent agreement.    

Experiments and simulations on chaotic vibrations of  a water-filled simply-supported 

aluminium circular cylindrical shell subjected to radial harmonic excitation in the spectral 

neighborhood of the lowest resonances were performed by Amabili et al. [27]. They used the 

maximum Lyapunov exponent to classify the chaotic response of the system. Non-stationary 

vibrations in addition to a travelling wave response were observed in the experiments and they 

were numerically reproduced using a reduced-order model based on the Novozhilov nonlinear 

shell theory. Agreement between experimental and numerical results was particularly satisfactory. 

Although there have been some attempts to explain dynamic divergence by means of  a 

‘sloshing mechanism’ [28], the connection between the two instabilities is rather tenuous; dynamic 

divergence operates in a completely different regime, having large wall mass, as opposed to the 

sloshing mechanism in which fluid inertia dominates wall inertia. Besides, the sloshing mechanism 

requires an upstream boundary condition that allows dynamic variations of the inflow flux, while 

it is constant in the experiments on dynamic divergence.  

To sum up, dynamic divergence is an instability phenomenon starting as a divergence, with 

amplitude comparable to the shell radius, that largely constrains the flow. This results in pressure 

building up and reopening the shell, triggering a dynamic instability. Dynamic divergence is only 

observed in experiments with very flexible shells conveying airflow, whereas shells containing 

internal water flow or annular airflow lose stability by static divergence. The interested reader is 

referred to [12] for a more detailed discussion on this paradoxical phenomenon. 
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1.3 Thesis scope and objectives 

This research work is concerned with a soft elastomer (silastic) shell clamped at both ends 

and subjected to internal airflow, i.e., the system shown in Figure 1-2. Investigating the stability 

and post-critical behaviour of this system as the flow velocity is varied is the main objective of 

this study. New experimental observations are presented, aimed at conceptualizing the dynamic 

divergence phenomenon (i.e., why it basically occurs) and exploring its fundamental 

characteristics, that is the underlying mechanism. Moreover, the influence of geometric parameters 

of the shell on the stability and post-critical behaviour of the system is investigated.  

1.4 Thesis structure 

This is a manuscript-based thesis composed of four chapters. In this chapter (Chapter 1: 

Introduction), a brief introduction is presented on the background of the stability of thin shells 

conveying internal and/or annular flow.  

The apparatus and testing procedure are described in detail in Chapter 2. The photographs of 

oscillations, as well as relevant discussion about the mechanism of dynamic divergence are 

presented in this chapter. Then, the experimental results for a specific shell with given L/R and h/R 

ratios are analyzed, investigating the effect of flow velocity on the oscillations; some detailed data 

analysis, including Power Spectral Densities (PSDs), Poincaré maps, phase portrait plots, 

Probability Density Functions (PDFs) are presented. Additionally, experimental results for a shell 

pressurized externally are presented in this chapter. 

Chapter 3 presents a parametric study on the effects of varying the length and thickness of the 

shell on the dynamic divergence. The chaotic behaviour of shells with different lengths and 

thicknesses is explored in this section; the same detailed data analysis tools as in Chapter 3 are 

employed in this chapter. The effect of confinement, as a result of the presence of a coaxial rigid 

outer tube, on the dynamic divergence is also discussed in this chapter. 

Finally, the conclusions and suggestions for future work are presented in Chapter 4. 
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2.1 Abstract 

Experimental studies have shown that circular cylindrical shells, supported at both ends, 

conveying internal fluid flow can lose stability by dynamic divergence when the shell is highly 

pliable. This is an instability phenomenon starting as a divergence, with amplitude comparable to 

the shell radius, that largely constrains the flow. This results in pressure building up and reopening 

the shell, triggering a dynamic instability. The characteristics of dynamic divergence instability 

are studied in-depth in this paper for the first time to elucidate the nature and characteristics of this 

phenomenon. Experiments have been conducted on an elastomer (silicone rubber) thin circular 

cylindrical shell clamped at both ends and subjected to internal airflow. Bifurcation diagrams have 

been obtained by varying the flow velocity as the control parameter, exhibiting strong subcritical 

behaviour and large hysteresis in the flow velocity for the onset and cessation of dynamic 

instability. The possible existence of a chaotic component in the oscillations was firstly discerned 

by looking at high-resolution photos taken with a high-speed camera. The existence of chaos in 

the dynamic response following the initial divergence was then confirmed by means of several 

qualitative and quantitative measures and criteria for chaos, such as phase plane plots, Poincaré 

maps, power spectra, the largest Lyapunov exponent, autocorrelation, and probability density 

function. All these measures have shown that the chaotic nature of dynamic divergence may be 

intensified or weakened depending on the flow velocity. The results demonstrate that generally at 

higher flow velocities the oscillations display more complex nonlinear dynamics.  

2.2 Introduction 

Self-excited oscillations are oscillatory motions due to movement-induced excitation (MIE), 

meaning that  there is no external excitation to the system; in the absence of motion, no oscillatory 

excitation exists [1,2]. Examples of self-excited oscillations are the flutter of aircraft wings [3,4] 
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and of a cantilevered pipe conveying fluid [5]. They are an important type of flow-induced 

vibrations in which strong nonlinearities can come into play. 

 The loss of stability of circular cylindrical shells and pipes supported at both ends is 

theoretically predicted to be via static divergence, while cantilever shells and pipes generally 

become unstable by flutter. For a long time, the dynamics of shells subjected to incompressible 

(subsonic) axial flow seemed uninteresting since they were thought to become unstable only by 

mild (small-amplitude) divergence. However, some experiments presented in [6,7] breathed new 

life to the subject by showing that, not only thin cantilevered, but also clamped-clamped shells 

containing subsonic axial flow do flutter. The first linear analytical model for clamped-clamped 

and cantilevered circular cylindrical shells containing inviscid incompressible flow was presented 

in [6]. Flügge’s shell theory was used for the equation of motion of the shell and the flow field was 

described by potential flow theory. Travelling wave solutions were assumed for the shell 

displacement components. The theory predicted that the system loses stability by single-mode 

flutter for the cantilevered shell, while by divergence and subsequently Païdoussis-type [8] 

coupled-mode flutter for the clamped-clamped shell. In the experiments, however, flutter was 

observed directly for clamped-clamped shells; this was at first presumed to be flutter entrained by 

divergence, but dynamic divergence was another hypothesis suggested later in [9]. In the 

experiments with clamped-clamped elastomer shells [6], a shell-type flutter in the second 

circumferential mode (n=2, where n is the number of circumferential waves) was observed. In 

experiments with short cantilevered shells, only shell-mode oscillations with n=2 or 3 were 

observed, while being stable in beam-mode flexure. Weaver and Unny [10] presented a linear 

theoretical model for simply-supported circular cylindrical shells and obtained similar results as 

for clamped-clamped shells. The shell was predicted to lose stability by static divergence at first, 

and then by flutter at higher flow velocities.  

The theoretical study of the dynamics and stability of clamped-clamped coaxial circular 

cylindrical shells subjected to internal and/or annular incompressible or compressible flow was 

extended by Païdoussis et al. [11]. It was found that a shell in annular flow loses stability at a lower 

flow velocity in comparison with the shell containing internal flow. They also concluded that the 

critical flow velocity is lower when both shells are flexible. In addition, according to linear theory, 

the compressibility of the fluid was shown to have little effect on the stability of the system. El 

Chebair et al. [12] conducted some experiments on clamped-clamped and cantilevered shells 

subjected to annular flow. They observed that the system loses stability by flutter for a cantilevered 

shell and by divergence (not followed by flutter) in the case of a clamped-clamped shell. 

All of the aforementioned theoretical studies were based on linear models, which are only 

capable of predicting the first instability encountered by the system with increasing flow velocity, 

but not the post-instability static or dynamic behaviour. The reason is that geometrical 

nonlinearities associated with deformation amplitudes of the order of shell thickness start playing 

an important role in the dynamical behaviour of the system, thus necessitating the use of nonlinear 

theories. Most of the nonlinear work has been motivated by aerospace applications and hence is 
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associated with supersonic external flow. For an excellent review of nonlinear vibrations of 

circular cylindrical shells, refer to the work of Amabili and associates [13,14,15,16,17,18 and 19]. 

Nonlinear dynamics and stability of simply-supported circular cylindrical shells containing  

inviscid incompressible fluid flow was revisited in [20] by means of Donnell’s nonlinear shallow-

shell theory and linearized potential flow theory. A seven degree-of-freedom solution allowing for 

travelling wave response of the shell and shell axisymmetric contraction (responsible for the 

softening nonlinear behaviour of the shell) was utilized. The results demonstrated that the system 

loses stability by strongly subcritical divergence.  

A refined model for the subcritical static divergence of circular cylindrical shells conveying 

incompressible fluid, taking into account also geometric imperfections, was introduced by Amabili 

et al. [21]. Numerical results for thin aluminium shells conveying water were found to be in 

particularly good agreement with experiments. Karagiozis et al. [22] extended the theoretical study 

of nonlinear stability of clamped-clamped shells conveying annular or internal flow utilizing the 

same approach as in [20], with the difference that clamped-clamped beam eigenfunctions were 

used as admissible functions to describe the shell longitudinal displacement. They also 

experimentally examined the stability of plastic or aluminium shells with internal water flow. The 

theoretical and experimental results were in good qualitative and satisfactory quantitative 

agreement, both showing loss of stability by divergence with a subcritical pitchfork bifurcation 

which was not followed by flutter, in contrast to linear theory predictions. This raised the question 

of why experiments with clamped-clamped plastic or aluminium shells subjected to internal water 

flow show a different type of instability from that of silicone rubber shells conveying airflow; 

system parameters should not alter the qualitative dynamics of the system from the theoretical 

point of view. To sum up, although the oscillatory instability observed in experiments with internal 

airflow was primarily reasoned to be flutter induced by divergence (based on linear theory), 

nonlinear theory predicted a static instability, i.e., divergence.  

Nonlinear vibrations of a fluid-filled, internally-pressurized, soft circular cylindrical shell 

made of Polyethylene terephthalate fabric were examined in [23]. Experiments on forced, large-

amplitude (geometrically nonlinear) vibrations of the shell established the nonlinear stiffness and 

nonlinear damping characteristics of the system. A reduced-order model was then introduced using 

a piecewise linear stiffness and viscous damping. The experimental and simulated results of the 

reduced-order model were in excellent agreement.    

To sum up, dynamic divergence is an instability phenomenon starting as a divergence, with 

amplitude comparable to the shell radius, that largely constrains the flow. This results in pressure 

building up and reopening the shell, triggering a dynamic instability. Dynamic divergence is only 

observed in experiments with very flexible shells conveying airflow, whereas shells containing 

internal water flow or annular airflow lose stability by static divergence. The interested reader is 

referred to [9] for a more detailed discussion on this paradoxical phenomenon. 
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In the present paper, the apparatus and testing procedure are described in Sections 2.3 and 2.4. 

The photographs of oscillations, as well as relevant discussion about the mechanism of dynamic 

divergence are presented in Section 2.5. Section 2.6 analyzes the experimental results considering 

the effect of flow velocity on the oscillations; some detailed data analysis including Power Spectral 

Densities (PSDs), Poincaré maps, phase portrait plots, Probability Density Functions (PDFs) are 

presented in this section. Experimental results for a shell pressurized from outside are given in 

Section 2.7. Finally, the conclusions are presented in Section 2.8. 

2.3 Apparatus and measuring devices 

A schematic of the experimental set-up is shown in Figure 2-1 while a photograph is displayed 

in Figure 2-2. Air is compressed by a bank of interconnected compressors to about 95 psi (655 

kPa), then stored in the tank. A ball valve is used to open or shut off the airflow from the tank 

towards the apparatus. A pressure control valve (pressure regulator) is utilized to regulate the 

pressure upstream of the test apparatus, also serving to diminish pressure perturbations from the 

supply. The flow rate is controlled using a diaphragm valve and a needle valve in parallel, the latter 

for fine-control. Two piezo-resistive pressure transducers (𝑃1 and 𝑃2 in Figure 2-1(a)) are used to 

measure the line pressure, one placed upstream of the control valve and the other before the 

wooden chamber. A bimetallic thermometer is utilized to read the fluid temperature, 𝑇2. A thermal 

flowmeter measures the mass flow rate, �̇�. A Polytec OFV-505 Helium Neon (HeNe) sensor head 

with a wavelength of 633 nm combined with a digital Polytec OFV-5000 vibrometer controller are 

used to measure the shell velocity at a target point on the shell. 

Under the horizontal surface named ‘Table’, there is a wooden chamber with contracting ends, 

inside which three screens and a honeycomb are mounted to break up large turbulent eddies and 

enhance mixing of the high-pressure air coming from the tank; this helps to obtain a uniform flow. 

On the top, the wooden chamber is connected to a convergent duct Figure 2-1(b)) whose inner 

diameter decreases gradually to that of the silicone rubber shell. This duct is quite long to make 

sure that flow is fully developed prior to entering the shell. 

The shell velocity is measured at a point at 
1

3
𝐿 from the bottom of the shell (marked as ‘higher 

measurement point’ in Figure 2-3), where L is the length of the shell. All experimental results are 

obtained from measurements at this point. The velocity of another point at 
1

5
𝐿 (called ‘lower 

measurement point’ in Figure 2-3) is also measured to be able to obtain displacement-triggered 

Poincaré maps. The signal from the vibrometer laser is fed into a data acquisition system (DAQ) 

and digitized before being stored in a computer. The DAQ has eight single-ended channels, each 

having a sampling rate of 5000 samples per second. In addition to the aforementioned instruments, 

a B&K stroboscope (Figure 2-2) is utilized to slow down or freeze high-frequency motions of the 

shell for visual inspection. A Photron FASTCAM MiniWX100 high-speed camera is used to take 

the photos of Section 2.5 with 2000 fps. 
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The experiments were conducted with a circular cylindrical shell made of silicone rubber 

(silastic E-RTV), which was cast in a special mould designed for this purpose. To cast the shell, 

liquid silicone rubber is mixed with a catalyst and then injected into the mould using a syringe; 

after 72 hours, the injected mixture hardens into an elastic solid and attains its full physical 

properties. Young’s modulus, E, of the shell was determined experimentally by means of a tensile 

test as described in Appendix A. The material density was obtained by measuring the buoyancy 

force exerted on a cube of silastic (of known weight) when submerged in water, as explained in 

Appendix 1. The material properties and geometry of the test shells are reported in Table 2-4. 

 
(a) 

 

 
                                                                                  (b) 

Figure 2-1.  (a) Experimental set-up. Pressure and temperature gauges are indicated by 𝑃0, 𝑇2, etc. (b) 

Schematic of the wooden chamber and duct supplying air flow to the test section where the shell is installed. 
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Figure 2-2.  Photograph of the experimental setup. 1- Tank, 2- Pressure gauges, 3- Ball valve, 4- Flowmeter, 

5- Pressure regulator, 6- Flow control valve, 7- Thermometer, 8- Pressure gauge indicator, 9- Laser head, 

10- Stroboscope, 11- Plexiglas annulus, 12- Silastic shell, 13- Balloon, 14- Computer, 15- Laser controller. 

 

Figure 2-3. Schematic of the test section with the shell. 

As seen in Figure 2-3, there are two 3 mm holes in the upper and lower clamps to make sure 

that the pressure in the annulus equals the average internal pressure, thus ensuring that dynamic 

divergence is not induced by the difference between internal and external pressure. The detailed 
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results presented in the following sections are based on experiments with this configuration. These 

two holes are relatively small to minimize any airflow in the annulus.  

2.4 Testing procedure 

 In all tests the following procedure was utilized.  

1. The tank was allowed to fill up the set-up with compressed air by gradually opening the 

ball valve. At this point, the airflow control valves were fully closed. Then, airflow was turned on 

and incremented in small steps by opening the airflow control valves. The desired flow rate was 

achieved by tweaking the diaphragm valve and, when necessary, the needle valve. At each flow, 

the quiescent air in the annulus was disturbed by deflating a balloon mounted on the plexiglas tube, 

making the shell unstable at a lower flow velocity than that occurring spontaneously; the reason 

why this was done is discussed in detail in Section 2.5. 

2. After the onset of instability, the shell velocity was recorded for 20 s, during which the flow 

velocity was kept constant. Then, the flow velocity was incremented to a slightly higher value 

without stopping the shell from oscillating. After a transient period of about 20 s and making sure 

that flow velocity remained constant, the shell velocity was again recorded for 20 s at the next flow 

velocity. This procedure was repeated for a few flow velocity increments, and then repeated for 

decreasing flow velocities up to the flow velocity when the shell stopped oscillating.  

2.5 Visualization of the dynamic divergence instability 

As mentioned in Section 2.4, fairly strong disturbances were given to the quiescent air in the 

annulus when incrementing the flow velocity from zero towards the critical one, 𝑉𝑐𝑟 = 24.9 m/s, 

where the shell becomes unstable. Without these disturbances, the shell remained stable for the 

maximum flow velocity achieved by the experimental setup. Besides, reaching instability at a 

lower flow velocity has the advantage that the shell oscillations were less violent, thus, allowing 

data recording without destroying the shell; the oscillations at high flow velocities are generally 

so violent that they can easily destroy the shell. 

As discussed in Section 2.4, by decreasing the flow velocity after the onset of instability, the 

shell stops oscillating at a flow velocity referred to as the ‘restabilization flow velocity’, 𝑉𝑟𝑒𝑠𝑡 =

15.6 m/s. The fact that 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡 are quite different shows that the shell displays a strong 

softening nonlinear behaviour.  

The photographs in Figures 2-4 and 2-5 are taken with the high-speed camera from above and 

front of the shell, respectively, at the disturbance-induced critical flow velocity, 𝑉 = 𝑉𝑐𝑟 = 24.9 

m/s. At the onset of instability, a divergence with the shape of n=2 circumferential waves and one 

longitudinal half-wave (m=1) is observed. This static instability restricts the flow passage, 

resulting in an increase of pressure that reopens the shell walls and triggers a dynamic instability 

(dynamic divergence). Based on the photographs, the following oscillations evolve in 3 phases 

through time. In phases 1 and 2, which totally last about 100 ms, the oscillations are regular and 
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well-ordered, starting with circumferential mode n=2 (phase 1, Figures 2-4(a) and 2-5(a)), 

changing to n=3 (phase 2, Figures 2-4(b) and 2-5(b)). Phase 1 consists of low-frequency, low-

amplitude oscillations about the buckled position. In the first 3-4 cycles of oscillation in phase 1, 

the shell does not collapse completely and the airflow is only partially obstructed. In the last cycle 

of Phase 1, however, the shell closes completely and the opposing walls touch each other very 

gently. This full closure drives the shell into phase 2.  

In phase 2, the amplitude and frequency of oscillations increase compared to phase 1. The 

shell fully closes and then reopens completely in each cycle. Although the shell fully obstructs the 

airflow in each cycle in phase 2, the walls touch each other gently similar to the last cycle of phase 

1.   

In phase 3, as seen in Figures 2-4(c) and 2-5(c), the oscillations are regular and well-ordered 

at the beginning with moderate impact of the opposing walls. However, more irregular cross-

sectional shapes, involving more wrinkles and rotations (twisting), appear in later times in phase 

3, as seen in Figures 2-4(d) and 2-5(d), and the oscillations appear to be chaotic with mode shapes 

changing intermittently from n=2 to higher, not well-defined, mode shapes. The opposing walls 

start to impact on each other violently and the impact becomes more severe with the passage of 

time. Furthermore, several wrinkles emerge when the mode shape changes to higher than n=2, 

with more irregular mode shapes, as seen in the photograph corresponding to t=1790.5 ms in 

Figure 2-4(d).  

The evolution of putative chaos in the system with time is of particular interest, because routes 

to chaos are usually associated with changing a control parameter of the system (e.g., the flow 

velocity), not with the passage of time. This is one of the most interesting characteristics of the 

dynamic divergence phenomenon observed in the present experiments. 

The lack of violent impact between opposing shell walls may be the reason why oscillations 

are much more regular in the first two phases, compared to phase 3. It is interesting to note that 

anti-phase mode shapes occur in consecutive cycles in phases 2 and 3, meaning that nodes of the 

oscillation are displaced (rotated) 𝜋/n radians in each cycle, compared to the previous one; for 

example, the photographs corresponding to t = 131 and 140.5 ms in Figure 2-4, display a 90 

degrees phase difference. It is noteworthy that the maximum radial displacement (collapse) occurs 

at the upper half of the shell, as observed in Figure 2-5, which shows the axial pattern of the 

motions. 

Phase 3 which consists of irregular and chaotic-looking oscillations is dominant in the results 

presented in Section 2.6, since the first two phases vanish very quickly, after nearly 100 ms from 

the start of oscillations, while 20 s of oscillations have been recorded at each flow velocity step 

analyzed. In conclusion, oscillations seem to be of a chaotic nature and, depending on the flow 

velocity, this chaotic behaviour can be strong or weak. The duration of the first two (primary) 

phases becomes shorter at higher flow velocities. 
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The dynamics, as illustrated in the photographs of Figures 2-4 and 2-5, is qualitativly similar 

to the behaviour of shells with other length-to-radius ratios, L/R, and thickness-to-radius ratios, 

h/R, elastomer shells, not presented in this paper. 

Based on calculations presented in Appendix 2, in the first cycle of oscillations when 

obstruction of airflow is minimum compared to other cycles (the photograph corresponding to 

𝑡=38.5 ms in Figure 2-4), the flow is indeed compressible and chocked at the throat. The high 

flexibility of the shell obstructs the airflow by 89% in the first cycle of oscillations, as discussed 

in Appendix B. The airflow is fully blocked in each cycle of oscillations in phases 2 and 3 of 

oscillations; hence, compressible. Thus, the incompressibility assumption in the theoretical studies 

of the stability of such a pliable shell would not be accurate and the compressibility of the flow 

and its effect on the fluid-related forces should be taken into account to determine the post-

buckling dynamics. This may shed light on the question why oscillatory response is only possible 

for flexible clamped-clamped shells subjected to internal airflow, but not for plastic or aluminium 

shells conveying water flow [22]. 
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t = 0 t = 26 ms t = 38.5 ms t = 58 ms t = 62.5 ms 

     
(a) 

t = 80.5 ms t = 87 ms t = 93 ms t = 99.5 ms t = 103.5 ms 

     

(b) 

t = 124.5 ms t = 131 ms t = 135 ms t = 140.5 ms t = 144.5 ms 

     
(c) 

t = 1782.5 ms t = 1785.5 ms t = 1788.5 ms t = 1790.5 ms t = 1791.5 ms 

     

(d) 

Figure 2-4. Cross-sectional patterns of motion, viewed from above the shell at 𝑉 = 𝑉𝑐𝑟 = 24.9 

m/s. (a) Phase 1 of the oscillations with 𝑛 = 2 (regular oscillations); (b) phase 2 of the oscillations 

with 𝑛 = 3 (regular oscillations); (c) phase 3 of the oscillations with 𝑛 = 2; (d) continuation of 

phase 3 with more irregular and distorted (chaotic-looking) oscillations.  

 

 

 



 

18 

 

t = 0 t = 27.5 ms t = 39 ms t = 45 ms t = 49.5 ms t = 54 ms  

      

 

(a) 

t = 96 ms t = 99.5 ms t = 103.5 ms t = 105.5 ms t = 112 ms t = 115.5 ms  

      

 

(b) 

t = 174.5 ms t = 177 ms t = 182 ms t = 184 ms t = 186.5 ms t = 189 ms t = 192.5 ms 

       
(c) 
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t = 1758 ms t = 1760 ms t = 1762.5 ms t = 1765 ms t = 1767.5 ms t = 1770 ms t = 1771.5 ms 

       

t = 1772.5 ms t = 1774.5 ms t = 1776.5 ms t = 1779 ms    

    

 

  

(d) 

Figure 2-5. Axial patterns of motion, viewed from the front of the shell at 𝑉 = 𝑉𝑐𝑟 = 24.9 m/s. (a) Phase 1 

of the oscillations with 𝑛 = 2 (regular oscillations); (b) phase 2 of the oscillations with 𝑛 = 3 (regular 

oscillations); (c) phase 3 of the oscillations with 𝑛 = 2; (d) continuation of phase 3 with more irregular and 

distorted (chaotic-looking) oscillations. 

After the primary period of regular oscillations (phases 1 and 2), the shell closes completely 

for about 4 ms in each cycle  in phase 3, thus fully blocking the airflow. This closure of the shell 

forms a ‘bubble’ at the bottom of the shell. Note that the duration of one oscillation is about 8 ms, 

meaning that, for half of the period of each cycle, the shell is completely closed.  As a result, the 

flow pressure upstream of the buckled cross-section increases, and this build-up in pressure tends 

to reopen the shell. Thus, the bubble at the bottom of the shell is pushed upward (see Figure 2-6). 

When this bubble has travelled through the lower half of the shell and is in the upper half, because 

of the forces leading to divergence and inertia, the reopened lower half of the shell does not regain 

its circular cross-sectional shape, but it buckles in an antiphase shape in the middle of the shell. 

This means that a new cycle begins to form while the previous one is still evolving and has not 

finished yet. When the bubble has completely travelled through the length of the shell, the wall 

collapse in the anti-phase mode reaches its maximum (full closure) and a new bubble reappears at 

the bottom of the shell, and the new cycle of oscillation starts.  The dynamic repetition of this 

sequence of buckled antiphase shapes gives rise to the dynamic divergence phenomenon which is 
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indistinguishable from flutter. Dynamic divergence, however, should not be misinterpreted as 

flutter, which typically presents a specific oscillation frequency at its onset.  

    

        (a)        (b)                 (c)              (d) 

Figure 2-6. Bubble traveling mechanism at 𝑉 = 𝑉𝑐𝑟 = 24.9 m/s. (a) Formation of a bubble at the bottom of 

the shell. (b) Movement of the bubble upwards. (c) Anti-phase buckling at the middle of the shell when the 

bubble is at the upper half of the shell. (d) Formation of a new bubble at the bottom of the shell as a new 

cycle starts. 

The Fourier transform may not be the best tool to analyze nonstationary signals whose 

frequency content changes over time. Here, wavelets come into play as a powerful tool which is 

localized in both time and frequency. A wavelet is a rapidly decaying wavelike oscillation that has 

zero mean and a finite duration.  Wavelets come in different sizes and shapes [24]. Figure 2-7 

shows the magnitude of the continuous wavelet transform (CWT) of the shell velocity signal in 

the frequency-time domain, using Morse wavelets. This is commonly called a wavelet scalogram 

[24]. Phases 2 and 3 of the oscillations are recognized in Figure 2-7. Phase 1 consists of only 4 

cycles with low amplitude and frequency; so, it does not appear in the wavelet scalogram. Phase 

2, however, extends from ~50 ms up to ~110 ms, corresponding to photographs in Figures 2-4(b) 

and 2-5(b). The frequency of oscillations increases as phase 2 evolves to phase 3. The increase of 

the frequency of oscillation from phase 2 to phase 3, is in agreement with the observations in 

Figures 2-4 and 2-5. As discussed already, the shell behaviour in phase 3 becomes irregular with 

more wrinkles and rotations (twisting) at intermittent periods of time. A cone of influence (COI) 

is defined in Figure 2-7, outside which the results are affected by edge-effect artifacts and are not 

reliable; edge effects are associated with the stretched wavelets extending beyond edges of the 

observation interval. Thus, outside the shaded region, one can make sure that the time-frequency 

representation of the signal is accurate.  
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Figure 2-7. Morse wavelet scalogram of shell velocity signal at 𝑉 = 𝑉𝑐𝑟 = 24.9 m/s, showing the increase 

of the frequency of oscillations from phase 2 to 3. 

The photographs of phase 3 of the oscillations at 𝑉 = 𝑉𝑟𝑒𝑠𝑡 = 15.6 m/s are seen in Figure 2-8. 

Note that Figures 2-4 and 2-5 correspond to the oscillation at the disturbance-induced critical flow 

velocity 𝑉 = 𝑉𝑐𝑟 = 24.9 m/s. The aim is to have a qualitative visual comparision between the 

oscillations at the critical (high) and restabilization (low) flow velocities. It is seen that the 

oscillations at the restabilization flow velocity, in Figure 2-8, are more regular and less chaotic-

looking than those in Figures 2-4 and 2-5. Fewer wrinkles and less irregular mode shapes are 

observed and the walls impact on each other less violently, compared to the oscillations at the 

critical flow velocity. The frequency of the oscillations is ~100 Hz which is lower than the 

frequency at the critical flow velocity, ~120 Hz. 
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t = 1774 ms t = 1775.5 ms t = 1779 ms t = 1784 ms t = 1789.5 ms 

     

(a) 

t = 1774 ms t = 1776.5 ms t = 1778.5 ms t = 1780.5 ms t = 1784 ms t = 1787.5 ms 

      
(b) 

Figure 2-8. Photographs of the oscillations at 𝑉 = 𝑉𝑟𝑒𝑠𝑡 = 15.6 m/s. (a) Cross-sectional patterns of motion, 

viewed from above the shell. (b) Axial patterns of motion, viewed from the front of the shell.  

2.6 Detailed experimental results and their analysis 

In this section, a detailed description of the dynamics of the shell is given, as the flow velocity 

is increased, up to the critical point of onset of oscillations, 𝑉𝑐𝑟 = 24.9 m/s, and then as the flow 

velocity is decreased to the point of cessation of oscillations, 𝑉𝑟𝑒𝑠𝑡 = 15.6 m/s 1. The results 

presented in this section prove that a weak or strong chaotic component exists in the motion, 

depending on the flow velocity. The existence of chaos in the system was first suggested by the 

photographs of the oscillations presented in Section 2.5, and it is confirmed by other measures of 

chaos in this section. Chaotic motions are unpredictable, nonperiodic, random-like motions which 

are very sensitive to the initial conditions, and correlation of present with past is lost rapidly with 

time. Chaotic vibrations occur when there are some strong sources of nonlinearity in the system. 

Possible sources of nonlinearity include material nonlinearity associated with a nonlinear stress-

strain relation (nonlinear elastic behaviour as seen in Figure 2-19), geometric nonlinearity due to 

large deformations, nonlinear damping, flow-induced forces, nonlinear boundary conditions (such 

 

1 The experimental results for shells with different length-to-radius (L/R) and thickness-to-radius (h/R) ratios are 

deferred to a future paper. 
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as deformation-dependent constraints) and many others [25]. Chaotic phenomena have been 

observed in many physical systems. Examples of chaotic motions in mechanical systems include 

vibrations of buckled elastic structures [26], aeroelastic problems [27] and, large-amplitude 

vibrations of structures such as beams, plates and shells [28, 29].  

It is always recommended not to count on only one indicator of chaos in dynamics 

experiments, but to use several techniques before pronouncing a system as chaotic. As an example, 

a broad spectrum of frequencies, particularly low frequencies, is often considered as an indication 

of chaos in the system. However, for systems with a large number of degrees of freedom, the power 

spectrum may not be a sufficient decider. Subharmonics in the frequency spectrum are usually 

thought to be a forerunner to chaotic vibrations. However, other routes to chaos are possible, such 

as through quasiperiodicity and intermittency [25].  

2.6.1 Dynamic behaviour with varying flow velocity 

The bifurcation diagram of the system is presented first. Then, two qualitative measures, 

namely the largest Lyapunov exponent and wavelet analysis, have been employed to investigate 

the chaotic behaviour of the system with varying flow velocity. These results are then confirmed 

by other measures presented in Section 2.6.2. 

The variation of the rms of the shell velocity is investigated as the flow velocity changes to 

obtain the bifurcation diagram of Figure 2-9. In this figure, a linear regression has been performed 

on the rms of shell velocity versus flow velocity. It demonstrates that by reducing the flow velocity 

below the critical value, the rms of shell velocity generally decreases. Nevertheless, at some 

specific ranges of low flow velocity, the rms increases, rather than decreases, with decreasing flow 

velocity (e.g., points C and E).  

One should be careful not to conclude from the bifurcation diagram that oscillations with 

smaller rms are necessarily less violent or chaotic than those with higher rms. Indeed, the largest 

Lyapunov exponent, Figure 2-10, along with other qualitative and quantitative measures presented 

in Section 2.6.2 should be considered to decide on the system behaviour at different flow velocities.  

As seen in the bifurcation diagram, Figure 2-9, the restabilization flow velocity, 𝑉𝑟𝑒𝑠𝑡, is much 

smaller than the critical flow velocity, 𝑉𝑐𝑟, indicating a strong softening nonlinear behaviour. A 

softening nonlinear behaviour is associated with a subcritical bifurcation at the critical value of the 

control parameter, in this case the flow velocity.  
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Figure 2-9. Bifurcation diagram of the rms velocity of the shell. The critical and restabilization flow 

velocities are denoted by 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡, respectively. 

In this study, the Wolf algorithm was employed to determine the largest Lyapunov exponent 

from the time series [30]. The largest Lyapunov exponent indicates the dependency of the system 

on initial conditions. For bounded physical systems, the divergence of chaotic orbits can only be 

locally exponential and the distance between two trajectories cannot go to infinity. Therefore, the 

exponential growth along the reference trajectory, called a ‘fiduciary’, is averaged at many points. 

When the distance between the two trajectories exceeds a limit called ‘maximum separation 

parameter’, the reference trajectory is kept and the other one is replaced by a new nearby trajectory. 

This replacement is done because Lyapunov exponents quantify the divergence of orbits, which, 

although they move away from each other rapidly, they always remain infinitesimally close to 

each other. More details on how to select delay, embedding dimension, maximum separation at 

replacement, and other parameters can be found in [30]. It is obvious that oscillations with a 

stronger chaotic component (points A, B, and D in Figure 2-10) have larger 𝜆1 in comparison to 

motions with a weaker chaotic component (points C and E).  

The Wolf algorithm estimates the dominant Lyapunov exponent (𝜆1) based on the average 

divergence of close-by orbits in the reconstructed (pseudo) phase space. It always calculates 

positive values for 𝜆1; however, if the estimated exponent is near zero (small), the system is 

exhibiting some sort of orbital stability, or periodicity, while when it is large, the system is showing 

a chaotic behaviour. Now, the question arises “when is an estimated exponent considered small or 

large?” To answer this question, one should consider the estimated exponent when the system is 

exhibiting periodicity according to other measures such as PSD, Poincaré map, phase portrait, 

PDF, autocorrelation, etc. To pronounce that the system undergoes a transition from periodicity to 

chaos, the estimated exponent should grow by orders of magnitude; for example, in Figure 2-10, 

the estimated exponent at point A is about 20 times its value at point E, where the system shows 

periodicity according to several measures, as displayed in Figure 2-16. Thus, it can be concluded 
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that the system undergoes a transition from periodicity to chaos by decreasing flow velocity from 

point A to point E in Figure 2-10. 

According to Figure 2-10, the largest Lyapunov exponent generally takes greater values at 

higher flow velocities (points A and B).  By decreasing the flow velocity from point B, the largest 

Lyapunov exponent sharply drops, indicating that motions are more predictable and less sensitive 

to uncertainties in initial conditions. However, by further decreasing flow velocity towards point 

D, oscillations restart to show increasing irregularity and 𝜆1 increases abruptly. Finally, 𝜆1 

decreases again by reducing the flow velocity from point D to E. The very small 𝜆1 associated 

with points C and E suggests that there is but a very weak chaotic component in the motion. The 

trend observed in the Lyapunov diagram, Figure 2-10, is in agreement with other qualitative and 

quantitative results in Figures 2-12 - 2-16.   

 

Figure 2-10. Largest Lyapunov exponents, 𝜆1, at different flow velocities. Hollow markers indicate the 

critical and restabilization flow velocities.  

The wavelet analysis of signals at various flow velocities using Morse wavelets is seen in 

Figure 2-11. A detailed discussion of the concept and usage of wavelets has been given in Section 

2.5.  Figure 2-11 has the same range of flow velocities as the bifurcation diagram, meaning that 

the first vertical strip in Figure 2-11 (denoted by 1 at the bottom of the strip) corresponds to the 

critical flow velocity (𝑉𝑐𝑟=24.9 m/s), and the last strip corresponds to the restabilization  flow 

velocity (𝑉𝑟𝑒𝑠𝑡 = 15.6 m/s), where the shell stops oscillating. It is obvious that the frequency 

ranges (bands) containing high-energy content (in dark blue) tend to be lower with decreasing flow 

velocity, with the exception of a jump upwards at V=19.0 m/s.  In addition, at flow velocities above 

19.0 m/s, the smallest frequency range is dominant.  

At most flow velocities, there are three frequency ranges. They are not distinct from each other 

at some flow velocities, making wide and broad frequency ranges (e.g., points A, B, and D). A 
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broad-band spectrum can be an indication of chaos in the system; because it shows a broad-band 

frequency content, rather than a number of specific frequency peaks. On the other hand, at some 

flow velocities (e.g., points C and E), the frequency bands are narrower and more well-defined; 

hence, one may expect the system to be less chaotic and have a dominant periodic component at 

these flow velocities. The prediction of chaos at different flow velocities discussed here, 

completely agrees with the results presented in Section 2.6.2. 

 

Figure 2-11. Morse wavelet scalogram at discontinuous flow velocities indicated by numbers at the bottom 

of the diagram (1-25); 20 s of oscillations at each flow velocity have been recorded and analyzed. The red 

boxes show the frequency bands at selected flow velocities.  The larger the total area of the boxes at a point 

(flow velocity) are the more chaotic behaviour that point shows. 

2.6.2 Analysis of the results 

In this section, detailed results for selected points, defined in Table 2-1, will be presented. 

Qualitative measures such as Poincaré maps, phase portraits, the pseudo-phase space, as well as 

quantitative ones, including the power spectra, probability density function (PDF) and 

autocorrelation, have been employed to assess the chaotic component of the motion.  

These results are based on the configuration with 2 holes, hence the average internal and the 

annulus pressure are the same. The signal is obtained from the higher measurement point on the 

shell (see Figure 2-3). Phase 3 of oscillations shown in Figures 2-4 and 2-5 is the dominant phase 
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in the results to be shown, since the first two phases consisting of regular oscillations last 0.5 s, 

while 20 s of oscillations have been recorded at each flow velocity step. 

Table 2-1. Selected points for presenting detailed results and corresponding flow velocities, V. 

Point A B C D E 

V (m/s) 25.6 21.6 19.4 17.4 16.4 

 

2.6.2.1 Power spectra 

Points C and E, as expected from their largest Lyapunov exponent in Figure 2-10, are 

associated with oscillations with a dominant periodic component. Thus, their PSDs, Figures 

2-14(b) and 2-16(b), display a finite number of well-pronounced commensurable peaks which are 

superharmonics of the fundamental frequency. A chaotic signal, however, has a wide frequency 

bandwidth with a nearly continuous distribution of frequencies as opposed to discrete sharp spikes 

in a PSD associated with a periodic motion. Therefore, the PSDs of points A and B, Figures 2-12(b) 

and 2-13(b), respectively, clearly signify a strong chaotic behaviour since they are not only broad-

band, but also have cone-like peaks instead of sharp spikes. One should note that the frequency 

range of the PSDs plotted is quite wide (0-500 Hz); hence, the cone-like peaks imply a frequency 

band, not a specific frequency value.  The PSD associated with Point D, Figure 2-15(b), shows a 

wide range of conspicuous sharp peaks, which are not necessarily superharmonics of the 

fundamental frequency. This suggests that the corresponding motion has a chaotic component 

stronger than for points C and E, but weaker than for points A and B. 

2.6.2.2 Phase portrait plots 

As seen in Figures 2-12(c), 2-13(c) and 2-15(c), trajectories tend to fill a certain subspace of 

the phase planes of points A, B and D, respectively. This suggests a chaotic component to the 

oscillation, whereas the phase portrait of points C and E (Figures 2-14(c) and 2-16(c), 

respectively), show cleaner orbits, which suggest a strong periodic component. 

2.6.2.3 Poincaré maps 

Here, we have employed displacement-triggered Poincaré maps which are obtained by 

sampling the data when another variable of the system reaches a peak value. This method is often 

used when a natural time clock such as the external periodic force does not exist. In this study, 

when the velocity of the lower measurement point crosses from negative to positive meaning that 

its displacement has a local maximum value, time is stored. Then, the velocity and displacement 

of the upper measurement point at the sampled instances are used to plot the Poincaré map. The 

Poincaré map of periodic motions has a finite number of points, whereas chaotic oscillations have 

a fractal-looking collection of points. 

In agreement with the largest Lyapunov exponent results of Figure 2-10, Poincaré maps of 

points A, B and D, in Figures 2-12(d), 2-13(d) and 2-15(d), respectively, display scattered clouds 
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of points, indicating a relatively strong chaotic behaviour. On the other hand, points C and E in 

Figures 2-14(d) and 2-16(d), respectively, have Poincaré maps consisting of a finite number of 

points with smooth basin boundaries.  

The oscillations at point E are clearly period-2 since (i) the PSD, Figure 2-16(b), shows a 

subharmonic, 
1

2
𝑓1=40 Hz, (ii) the Poincaré map, Figure 2-16(d), consists of two clean basin 

boundaries, and (iii) the phase portrait, Figure 2-16(c), consists of two intertwined sets of orbits. 

The oscillations at point C seem to be period-4, according to the Poincaré map, Figure 2-14(d), 

having 4 basins of attraction; however, taking into account the corresponding PSD and phase 

portrait, Figures 2-14(b) and 2-14(c), respectively, it can be concluded that the four basins are 

really two diffuse basins, thus suggesting period-2 oscillations with small, but not negligible, 

frequency content between 
1

2
𝑓1 and 𝑓1, compared to the PSD of point E, Figure 2-16(b). 

In periodic motions, the basin boundaries are a smooth, continuous line or surface, indicating 

that small uncertainties in the input parameters do not influence the response of the system when 

away from the basin boundaries. However, many nonlinear systems have fractal basin boundaries, 

meaning that the boundary is nonsmooth. The existence of fractal basin boundaries has a strong 

bond with the dynamics of the system [25]. In the present experimental results, it is obviously seen 

that basin boundaries are nonsmooth and fractal, meaning that a small change in the control 

parameter, i.e., flow velocity, changes the system behaviour. Thus, predictability in such a system 

is not always possible. For example, pay attention to the Poincaré maps of points C, D and E, 

Figures 2-14(d) - 2-16(d).  For point C, two diffuse basins exist. However, with a small decrease 

of flow velocity, the four basins merge into one fuzzy basin, as seen in the Poincaré map of point 

D (Figure 2-15(d)). With further decrease of the flow velocity, two clean basins appear in the 

Poincaré map associated with point E in Figure 2-16(d).  

2.6.2.4 Pseudo-phase spaces 

Pseudo-phase space, sometimes called delay-reconstructed phase space, has been constructed 

to (i) have an impression of the behaviour of orbits in phase space, (ii) calculate the largest 

Lyapunov exponent of chaotic time series. The maximum Lyapunov exponent was used in [31] to 

classify chaos near resonance for water-filled circular cylindrical shells. A periodic motion will 

have a closed orbit in both delay-reconstructed phase space and in the phase space constructed 

with more than one system variable. Chaotic time series, on the other hand, form fractal orbits with 

orbital segments, showing sensitive dependence on the initial conditions, in both delay-

reconstructed phase space and in the phase space constructed with more than one system variable.  

Here, the embedding dimension is chosen by the method of ‘educated guesses’ to ensure that 

the orbit is topologically reasonable in m dimensions and unnecessary self-intersection does not 

occur. The choice of delay is made by selecting values for d that expand the pseudo-orbit as much 

as possible with respect to the noise amplitude in the system, while maintaining a deterministic 

orbit structure [32]. Then, the consistency of results is examined by selected nearby values for the 
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delay. The results, however, show a weak dependence on the choice of delay. A detailed discussion 

about the selection of delay and embedding dimension is presented in [30].  

Pseudo-phase spaces associated with selected data points are presented in 2-12(d)- 2-16(d). It 

is clearly seen that the pseudo-phase spaces corresponding to points C and E are closed orbits 

indicating that the motion has a dominant periodic component. However, the pseudo-phase spaces 

of points A, B and D look like a cloud of points which shows the oscillations corresponding to 

these points are erratic, thus, suggesting a strong chaotic component. 

2.6.2.5 PDF 

It is impossible to predict the time history of a chaotic motion because a small change in the 

initial conditions will alter the response of the system. Thus, one may take advantage of the 

probability density function, PDF, to have a statistical measure of the dynamics of the system. The 

PDF of a periodic signal consists of two dominant peaks at the extremes of the displacement, where 

the probability of finding the oscillating system is high, because motion is slow. For example, look 

at the PDFs of points C and E in Figures 2-14(f) and 2-16(f), respectively, which signify that the 

oscillations at these two flow velocities have a strong periodic component. Deviation from this 

double-masted shape towards normal (Gaussian) distribution demonstrates irregularity of 

oscillation. According to Figures 2-12(f), 2-13(f) and 2-15(f), which represent the PDFs of points 

A, B and D, respectively, the oscillations at these flow velocities are erratic and chaotic since their 

PDFs show a departure from the double-masted shape and the space in between the two peaks is 

filled to some extent.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2-12. Detailed results for point A with V = 25.6 m/s: (a) time history of the velocity signal; (b) power 

spectral density (PSD); (c) phase portrait; (d) displacement-triggered Poincaré map; (e) reconstructed phase 

space; (f) probability density function (PDF). 
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

 

Figure 2-13. Detailed results for point B with V = 21.6 m/s: (a) time history of the velocity signal; (b) power 

spectral density (PSD); (c) phase portrait; (d) displacement-triggered Poincaré map; (e) reconstructed phase 

space; (f) probability density function (PDF). 
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

Figure 2-14. Detailed results for point C with V = 19.4 m/s: (a) time history of the velocity signal; (b) power 

spectral density (PSD); (c) phase portrait; (d) displacement-triggered Poincaré map; (e) reconstructed phase 

space; (f) probability density function (PDF). 
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

Figure 2-15. Detailed results for point D with V = 17.4 m/s: (a) time history of the velocity signal; (b) power 

spectral density (PSD); (c) phase portrait; (d) displacement-triggered Poincaré map; (e) reconstructed phase 

space; (f) probability density function (PDF). 
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

Figure 2-16. Detailed results for point E with V = 16.4 m/s: (a) time history of the velocity signal; (b) power 

spectral density (PSD); (c) phase portrait; (d) displacement-triggered Poincaré map; (e) reconstructed phase 

space; (f) probability density function (PDF). 
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2.6.2.6 Autocorrelation of points A and C 

The autocorrelation, by definition, is the correlation of a signal with a delayed copy of itself 

as a function of delay. The autocorrelation of a periodic signal is periodic with time, while a chaotic 

(aperiodic) signal has a damped response with time. In this section, the autocorrelation of 

oscillations corresponding to only points A and C are presented for the sake of brevity. In 

agreement with results presented in Figures 2-12 (point A) and 2-14 (point C), the autocorrelation 

associated with point A dies out very quickly, showing loss of memory after a few cycles of 

motion, while that of point C demonstrates a statistical similarity between delayed versions of 

oscillations (Figure 2-17). 

  

(a) (b) 

Figure 2-17. Autocorrelation of the signal corresponding to (a) point A; (b) point C. Flow velocities 

corresponding to points A and C are presented in Table 2-1. 

2.6.3 Summary 

To sum up, points C and E, as shown in Figures 2-14 and 2-16, respectively, display a weak 

chaotic behaviour, yet with a strong periodic component. This behaviour is referred to as ‘limited’ 

or ‘narrow-band’ chaos in the literature [28]. Narrow-band chaotic vibration has similar orbits in 

the phase space as those of periodic motion (closed curves). Besides, the power spectra 

demonstrate a set of narrow spikes (not a fully continuous spectrum) which are commensurable 

(subharmonics or superharmonics of the fundamental frequency).  Nevertheless, points A , B and 

D, as shown in Figures 2-12, 2-13 and 2-15, respectively, exhibit a stronger chaotic behaviour 

having broad-band spectra, scattered pseudo-phase spaces and Poincaré maps with nonsmooth 

fractal basin boundaries, and PDFs which do not look perfectly double-masted. This dynamical 

behaviour is often referred to as ‘large-scale’ or ‘broad-band’ chaos. The time traces corresponding 

to points C and E, Figures 2-14(a) and 2-16(a), respectively, show a clean repetitive pattern which 

looks like the superposition of sinusoids. However, the time histories of points A, B and D (Figures 

2-12(a), 2-13(a) and 2-15(a), respectively) exhibit irregularity with complex patterns which do not 

seem similar in different cycles.  
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The quantitative and qualitative measures associated with each of the data points, Figures 2-12 

- 2-16, are in agreement with the prediction of the largest Lyapunov exponent and wavelet analysis, 

Figures 2-10 and 2-11. A summary of the strength of the chaotic component at different flow 

velocities is presented in Table 2-2. 

Table 2-2. The strength of the chaotic component at different flow velocities, ***: strong chaotic 

component; **: moderate chaotic component, *: weak chaotic component. 

Point PSD Phase portrait Poincaré map Pseudo-phase space PDF 

A 

B 

C 

D 

E 

*** 

*** 

* 

** 

* 

*** 

*** 

* 

*** 

* 

*** 

*** 

* 

** 

* 

*** 

*** 

* 

** 

* 

*** 

** 

* 

** 

* 

 

2.7 Experiments on a shell pressurized from outside 

As mentioned earlier, the pressure in the annulus is equalized to the mean internal pressure by 

two small holes (𝐷ℎ= 3 mm), one at upstream and the other downstream of the tested shell (see 

Figure 2-3). The results presented in Sections 2.5 and 2.6 are based on these two holes being open. 

However, it was thought interesting to see what happens when the upper hole is blocked and thus 

having only one hole open at the bottom clamp. Interestingly, it was observed that oscillations 

ended in static buckling after about 5 s of oscillatory motions. The reason is that, in this case, there 

is an increase of the pressure in the annulus, which forces the shell to stop oscillating and to become 

subject to buckling by external pressure (combined to internal flow, which reduces the shell 

stiffness). As shown in Table 2-3, by increasing the flow velocity, the final annular pressure, 𝑃𝑎𝑛𝑛, 

increases. In addition, the photographs taken from the top of the shell show that the internal area 

at the buckled cross-section decreases with increasing flow velocity, as seen in Figure 2-18. It 

should be clarified that for the configuration with only 1 hole open, the critical flow velocity 

associated with disturbance-induced instability equals 15.6 m/s, which is much lower than that of 

configuration with the two holes open, namely 24.9 m/s. This is because the static pressure at the 

upstream (lower) clamp is higher than that at the downstream (upper) clamp. Thus, the annular 

pressure is also higher in this configuration, precipitating instability at lower flow velocities. 
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(a) (b) (c) 

Figure 2-18. Photos taken from the top of the shell for configuration with only 1 hole at the lower clamp 

when the shell has ended in static buckling after a transient period of oscillatory motions. The corresponding 

flow velocities are presented in Table 2-3.  

Table 2-3. Effect of flow velocity on internal area and annulus pressure for the configuration with only one 

hole open at the lower clamp. Internal areas are obtained by binarizing the photograph; then, calculating 

the ratio of black cells over the total number of cells.  

Corresponding photo in Figure 2-18 (a) (b) (c) 

V (m/s) 15.6 17.9 20.2 

𝑃𝑎𝑛𝑛(kPa) 17.9 20.6 22.0 

Flow area at the throat (mm2) 27.5 21.4 19.4 

 

2.8 Conclusions 

This study is an attempt to gain a more in-depth understanding of the dynamic divergence 

phenomenon in shells with supported ends conveying air flow. The mechanism of dynamic 

divergence was explored first by taking high-resolution photos using a high-speed camera. These 

photos showed that the dynamic divergence evolves in three phases through time. The first two 

phases, which last about 100 ms in total, are regular oscillations with well-defined mode shapes. 

With the passage of time, oscillations become complex in what has been named phase 3. In this 

phase, opposing walls start to impact on each other violently and close the shell for half of the 

period of each cycle, thus fully obstructing the airflow. This gives rise to a build-up in pressure 

upstream of the blocked cross-section (throat), leading to a ‘bubble-travelling’ mechanism. The 

photo of the first cycle of oscillation, taken from the top of the shell, shows that, due to the high 

flexibility of the shell, airflow is obstructed considerably, such that the flow is not only 

compressible, but also chocked at the throat, even in the first cycle of oscillations in which 

blockage is minimum, compared to subsequent cycles. More qualitative and quantitative 

characteristics of dynamic divergence were investigated by means of several measures such as 

PSDs, phase portraits, pseudo-phase space reconstructions, Poincaré maps, PDFs, wavelet 

transforms, the largest Lyapunov exponents and autocorrelations. All these techniques confirmed 

that the system behaviour is greatly dependent on flow velocity. Although the general trend 

suggests that the chaotic characteristics of the oscillations are attenuated by decreasing flow 
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velocity, the motions reexhibit strong irregularity and unpredictability for specific ranges of the 

decreasing flow velocity.  

The experimental observations and their subsequent analysis in this paper are for a specific 

shell with given length-to-radius ratio, L/R and thickness-to-radius ratio, h/R, and material 

properties. However, the dynamical behaviour of other shells with the same or different L/R and 

h/R ratios is broadly similar, yet with some interesting differences, discussion of which is beyond 

the scope of this paper. 
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2.10 Appendix A: Material properties of the shell 

The material properties and geometry of the silicone rubber shell used in the experiments are 

reported in Table 2-4, where 𝑅 is the internal radius of the shell, h its thickness, and L its length. 

Thus, L/𝑅 = 6 and h/𝑅 = 0.05. E is the Young’s modulus, and 𝜈 the Poisson’s ratio. 

Table 2-4. The material properties and geometry of the silicone rubber shell. 

L (mm) 𝑅 (mm) h (mm) E (MPa) 𝜌𝑠 (kg/m3) 𝜈 

149.02 24.84 1.38 1.53 1.05 × 103 0.49 

 

Silastic E-RTV is an elastomer (silicone rubber) material exhibiting viscoelastic 

characteristics such as time-dependent strain. A tensile test was performed on a long narrow strip 

of silastic (width=10.02 mm, thickness=1.38 mm, length=34.64 mm) with the strain rate of 

1.4 ×  10−2 s−1, cast from the same batch of the test shell, to obtain the stress-strain diagram, 

Figure 2-19. The Young’s modulus is identified as the tangent to the origin and is 1.53 MPa, as 

given in Table 2-4. 

 

Figure 2-19. Silastic E-RTV stress-strain diagram. 
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The mass density was measured by weighing a cube of silastic (from the same batch as the 

cast shell) in air and in water at room temperature. It is noted that silastic is denser than water and 

does not float. A digital scale with a resolution of 1/100 grams was employed. The weight in air, 

𝑊𝑠, was measured simply by weighing the cube. To measure the weight in water, a beaker 

containing some water was firstly put on the scale and the scale was set to zero. Then, the silastic 

cube was submerged in water using a very thin thread and the value indicated by the scale was 

recorded, which is equal to the buoyancy force, 𝐹𝑏, acting on the suspended cube,  

,b w sF gV=   (A.1) 

where 𝜌𝑤 is the mass density of water, 𝑔 is the gravitational constant and,  𝑉𝑠 is the volume of 

water displaced by the immersed cube, which is equal to the volume of the completely immersed 

silastic cube. Replacing 𝜌𝑤 by the ratio 𝐹𝑏/ 𝑔𝑉𝑠, obtained from Eq. (A.1), the specific gravity of 

silastic with respect to water, 𝑆𝐺, is calculated: 

.
/

s s s s s

w b s b b

gV W
SG

F gV F F

  


= = = =  

(A.2) 

Assuming the mass density of the water to be 1.000 g/cm3 at 20° C, and knowing the buoyancy 

force in water, 𝐹𝑏, one can obtain the mass density, 𝜌𝑠. The results of the mass density 

measurement are presented in Table 2-5. 

Table 2-5. The measurements of weight and buoyant force used to calculate density of silastic E-RTV. 

𝑊𝑠 (g) 𝐹𝑏 (g) 𝜌𝑠 (g/cm3) 

12.79 12.15 1.05 

 

2.11 Appendix B: Flow compressibility study 

The following calculations have been done for the first cycle of oscillations at V= 24.3 m/s to 

determine whether the flow is compressible at the shell throat or not. Flow obstruction in the first 

cycle of oscillations is minimum compared to that in subsequent cycles. The flow is assumed to 

be isentropic (constant stagnation pressure) because the Reynolds number is quite large (𝑅𝑒 =

7.71 × 104) and viscous effects are negligible. 

Firstly, the internal area of the shell at the lower clamp (upstream of the throat), 𝐴𝑢 in Figure 

2-3, equals 

2 248.5
1847.4

4 4
u

D
A

  
= = =  mm2. 

(B.1) 

By binarizing the photo of the first cycle of oscillations, Figure 2-20, the ratio of upstream 

(undeformed) internal area, 𝐴𝑢, over the throat area at the buckled cross-section, 𝐴𝑡 in Figure 2-3, 

is determined to be equal to 9.1. Thus, the throat area is 
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9.1 203.0u
t

t

A
A

A
= → =  mm2. 

(B.2) 

Air temperature, T, is assumed to be constant and equal to 293.15 K. Specific gas constant for dry 

air, R, is assumed equal to 287 J/kg K. The density of air, 𝜌𝑢, is obtained from the measurement 

of the static pressure upstream of the throat, which is equal to 104.4uP = kPa; thus, 

3104.4 10
1.2

287 293.15

u
u

P

RT



= = =



kg

m3
 . 

(B.3) 

The Mach number upstream of the throat (lower clamp) is obtained from the measured mass flow 

rate, �̇�, equal to 0.053 kg/s: 

6/ 0.053 / [1.2 (1847.4 10 )]
0.070

1.4 287 293
u

m A
M

RT





− 
= = =

 

Isentropicc flow table
→                

*
8.3,uA

A
=  (B.4) 

thus, one can calculate the chocked throat area, 𝐴∗, equal to 

*
8.3uA

A
=

𝐴𝑢=1847.4 mm
2

→           * 222.6A =  mm2, 
(B.5) 

where 𝐴∗ is the sonic area; the flow will become sonic when the throat is closed to that area. With 

further decrease in the flow area, the throat will remain sonic while the mass flow rate will decrease 

and eventually become zero when the throat is closed completely. The inflow Mach number will 

decrease in this case (eventually to zero) and the pressure will increase (eventually to the stagnation 

value). Now, by having 𝐴∗, the Mach number at throat, 𝑀𝑡, is 

*

203.0
0.9

222.6

tA

A
= =

Choked throat
→          1,tM =  

(B.6) 

which indicates that when the shell collapses inward in the first cycle of oscillations, the flow is 

not only compressible, but also choked at the throat.  

What happens downstream of the throat when the throat is choked depends on the difference 

between the upstream (inlet) stagnation pressure and the downstream (outlet) pressure (back 

pressure). The flow may become locally supersonic with a weak normal shock.  

What happens when the shell starts to reopen after the fully-closed stage, depends on the flow 

characteristic time which is the time needed for a disturbance to propagate through the entire length 

of the flow. If the reopening process is slow enough, then a steady flow with choked throat will be 

established soon enough and then everything will go in reverse manner (as compared to the closing 

stage). If the opening is very fast, then the initial flow will more resemble a shock-tube flow with 

a weak shock propagating to the right and an expansion wave to the left. The former is the case 

here, because the following calculations show that the flow can be considered as pseudo-steady 

(i.e., as a sequence of steady states). The flow characteristic time is: 
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149.02
0.43

343.1

L L
t

c RT
= = = =  s, 

(B.7) 

while it takes about 2 ms for the shell to become completely closed from the reopened stage 

(closing time). Thus, the flow characteristic time is about 5 times less than the closing time; hence, 

the flow will have enough time to adjust to the changing geometry and it is possible to employ 

pseudo-steady relations as an approximation. 

 
 

Figure 2-20. Photograph from the top of the shell showing the maximum deformation in the first cycle of 

oscillations at V=24.3 m/s (t = 38.5 ms in Figure 2-4). 

2.12 Link between Chapter 2 and 3 

The experimental observations and their subsequent analysis in Chapter 2 are for a specific 

shell with given length-to-radius ratio, L/R=6, and thickness-to-radius ratio, h/R=0.05, and 

material properties. The question naturally arises whether the observations described in Chapter 2 

are unique to that specific shell, or if they are more general, applying to longer or thicker shells, 

for example. Answering this question is the main objective of Chapter 3. It is shown that the 

dynamical behaviour of other shells with the same or different L/R and h/R ratios is broadly similar, 

yet with some interesting differences, discussion of which is presented in this chapter.  

Besides, the results presented in Chapter 2 have been obtained for the configuration with a 

rigid (plexiglas) outer tube and two small holes (𝐷ℎ= 3 mm), one upstream and the other 

downstream of the tested shell to equalize the pressure in the annulus to the mean internal pressure. 

However, it was thought interesting to investigate the influence of confinement, as a result of the 

presence of the plexiglas tube, on the dynamics of the system, by comparing the oscillations with 

and without confinement. This is examined in Chapter 3. 
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3 Parametric study on dynamic divergence 

 

Experimental parametric study on dynamic divergence instability and chaos of 

circular cylindrical shells conveying airflow 

 Iman Gholami, Marco Amabili, Michael P. Païdoussis*  

Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal Québec, 

Canada, H3A 0C3 

* Corresponding author.Michael.paidoussis@mcgill.ca (M. P. Païdoussis) 

3.1 Abstract 

Experiments have shown that soft circular cylindrical shells supported at both ends and conveying 

airflow lose stability by so-called dynamic divergence. The present study investigates 

experimentally the effect of geometric parameters of the silicone rubber shell, namely length-to-

radius (L/R) and thickness-to-radius (h/R) ratios, on the dynamic divergence instability. 

Bifurcation diagrams of the rms velocity of the shell vibration versus flow velocity are obtained 

for different shells, showing a strongly subcritical nonlinear behaviour. Then, the onset of 

instability and post-critical behaviour of the shells are compared: (i) thinner and longer shells lose 

stability at lower flow velocities, (ii) thinner shells have higher rms vibration velocity, and (iii) by 

decreasing L/R, the subcritical behaviour is weakened for thin shells, while it is strengthened for 

thick shells. The existence of chaos and the influence of geometric parameters on the chaotic 

behaviour of the system is deeply examined by means of several measures. 

3.2 Introduction 

Flow-induced vibrations can be classified in several ways [1]. A very systematic classification 

is presented by Naudascher and Rockwell [2,3], according to which, flow-induced vibrations are 

categorized into three groups, based on the source of excitation: (i) extraneously-induced 

excitation (EIE), (ii) instability-induced excitation (IIE), and (iii) movement-induced excitation 

(MIE), also known as self-excited oscillations, the latter of which applies to the system considered 

in this study. Self-excited oscillations are oscillatory motions due to the movement of the structure, 

meaning that there is no external excitation to the system; in other words, there is no oscillatory 

excitation in the absence of motion. The flutter of aircraft wings [4,5] and of a cantilevered pipe 

subjected to internal or external axial flow [6,7,8] , are examples of self-excited vibrations, to name 

just a few. 

In 1969, in a set of experiments with cantilevered and clamped-clamped elastomer shells 

conveying airflow, the shells developed vigorous flutter in the second or third circumferential 
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mode number (n=2 or 3) at rather low flow velocities [9,10]. This was unexpected at that time and 

stimulated further interest in research on this subject. 

The occurrence of flutter for the clamped-clamped shells (i.e., shells with both ends clamped) 

subjected to internal airflow was perplexing, as this is an inherently conservative system, and 

therefore ought to be immune to oscillatory instability.  In the linear analytical model of Païdoussis 

and Denise [10], the system loses stability by static divergence, as expected; but at a slightly higher 

flow velocity,  the Païdoussis-type [11] coupled-mode flutter appears. Similar results for simply-

supported circular cylindrical shells are predicted by linear theory [12]: loss of stability by static 

divergence first, and then flutter at higher flow velocities. At the time, because of the closeness of 

the critical flow velocities for the two phenomena, it was reasoned that the divergence entrained 

the observed flutter directly, so that the experimental divergence could not be observed on its own.  

Clamped-clamped coaxial circular cylindrical shells containing internal and/or annular fluid 

flow were studied theoretically in [13], by means of linear theory. Shells conveying internal flow 

were shown to lose stability at higher flow velocities compared to those with annular flow. The 

effect of compressibility of the flow was also examined, showing little influence on the stability 

of the system. Experiments with clamped-clamped and cantilevered shells subjected to annular 

flow were conducted in [14], showing loss of stability by flutter or static divergence for 

cantilevered and clamped-clamped shells, respectively. 

It was considerably later (in 2005) that, based on experiments with clamped-clamped 

Polyethylene Terephthalate (PET) and aluminium shells conveying water, it was concluded that 

the observed ‘flutter’ was in fact a manifestation of dynamic divergence [15,16]– the mechanism 

of which will be explained below. Dynamic divergence and some other paradoxical phenomena in 

fluid-structure interaction are briefly discussed in [17]. 

Amabili et al. [18] investigated theoretically the nonlinear dynamics and stability of simply-

supported circular cylindrical shells conveying inviscid incompressible fluid. Donnell’s nonlinear 

shallow-shell theory and linearized potential flow theory were utilized in the model. The numerical 

results indicated that the system loses stability by a strongly subcritical divergence. The nonlinear 

model was enhanced in [19] by taking into account geometric imperfections in order to study the 

subcritical static divergence of the shells. The results demonstrated excellent agreement with  

experimental results for thin aluminium shells conveying water. Karagiozis et al. [20] presented a 

model for clamped-clamped shells conveying internal or annular flow. Experiments with plastic 

or aluminium shells conveying water were also conducted for comparison with the numerical 

results of the model; both showed loss of stability by static divergence via a subcritical pitchfork 

bifurcation. The same nonlinear model as in [20] was utilized to study the effect of length-to-radius 

and thickness-to-radius ratios on the stability of clamped-clamped circular cylindrical shells 

conveying incompressible fluid [21]. Thinner and longer shells were shown to have lower natural 

frequencies and lose stability at lower flow velocities, compared to thicker and shorter ones, as 

expected. However, thicker shells could have larger post-divergence amplitudes of deformation. 
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Interestingly, the results for a Polyethylene Terephthalate (PET) shell with a length-to-radius ratio 

(L/R) equal to 3, indicated a supercritical bifurcation that changed to subcritical at higher flow 

velocities. 

The nonlinear stiffness and nonlinear damping characteristics of a fluid-filled, internally-

pressurized, soft PET circular cylindrical shell, were obtained experimentally in [22], by 

performing forced, large-amplitude (geometrically nonlinear) vibration tests. A reduced-order 

model was then constructed using a piecewise linear stiffness and viscous damping, showing 

satisfactory agreement between experimental and numerical results. The interested reader is 

referred to the theoretical work of Amabili and associates [23,24,25,26]. Comprehensive reviews 

of nonlinear vibrations of circular cylindrical shells are presented in [27,28,29].  

To sum up, experiments with clamped-clamped circular cylindrical shells conveying water or 

subjected to annular airflow, are in agreement with theoretical predictions, i.e., loss of stability by 

static divergence. However, there is a paradox between the nonlinear theory and the experimental 

observations for clamped-clamped circular cylindrical shells conveying airflow; they have been 

shown to lose stability by dynamic divergence in the experiments, whereas the nonlinear theory 

predicts loss of stability by static divergence.  

In an earlier paper [30], the dynamics of a soft (elastomer) shell with clamped ends subjected 

to internal airflow was studied, for a shell with L/R=6 and h/R=0.05, where L is the length, R the 

radius, and h the wall thickness of the shell. It was found that for sufficiently high flow velocities, 

the shell became subject to dynamic divergence. The shell becomes deformed (buckled) in the 

n=2, m=1 mode, where n is the circumferential and m the axial wave number, with amplitude large 

enough for the build-up of pressure behind the severely constricted flow area, roughly half-way 

along the shell, to force the shell to reopen, and thus collapse in the azimuthally opposite direction. 

This process is repeated continuously; hence the resulting oscillatory motion is referred to as a 

dynamic divergence. It was shown that severe flow obstruction due to the high flexibility of the 

shell, makes the flow locally compressible, and choked at the throat. [This is different from what 

was observed, for example in [19], for very thin aluminium shells, where the divergence amplitude 

was small compared to the shell radius, resulting in a static divergence.] 

Two important features of the observed phenomenon were the following. First, with the 

passage of time and while the flow velocity remained constant, the n=2, m=1 form of the oscillation 

evolved into more complex and distorted forms. Second, when the flow velocity was reduced, the 

amplitude of the oscillation decreased and eventually ceased at a flow velocity named 𝑉𝑟𝑒𝑠𝑡, 

considerably lower than that for the onset of the oscillation, 𝑉𝑐𝑟, indicating a highly subcritical 

behaviour. Furthermore, the reduction in amplitude with decreasing flow velocity was very 

irregular, rather than smooth. Although displaying a dominant frequency, the oscillation also 

contained a chaotic component, sometimes large and sometimes small, as analyzed in [30]. 
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The question naturally arises whether the observations described above are unique to the 

L/R=6 and h/R=0.05 shell studied before, or if they are more general, applying to longer or thicker 

pliable shells, for example. Answering this question is the main objective of this paper.  

In the present paper, the apparatus and testing procedure are described in Section 3.3. The 

photographs of oscillations, as well as relevant discussion about the mechanism of dynamic 

divergence are presented in Section 3.4. Section 3.5 investigates the dynamical behaviour of the 

system with varying flow velocity, for a typical shell. Section 3.6 presents a parametric study on 

the effect of varying the length and thickness of the shell on the dynamic divergence. The chaotic 

behaviour of the shells with different lengths and thicknesses is explored in Section 3.7; some 

detailed data analysis including Power Spectral Densities (PSDs), Poincaré maps, phase portrait 

plots, and Probability Density Functions (PDFs) are presented in this section. The effect of 

confinement of the shells on the dynamic divergence instability is discussed in Section 3.8. 

3.3 Apparatus and testing procedure 

Figure 3-1 shows a schematic of the experimental set-up and the test-section. Compressed air 

is generated by a bank of interconnected compressors to about 95 psi (655 kPa), stored in the tank, 

and then fed into the wooden chamber. The wooden chamber has three screens and a honeycomb 

inside, in order to break up large turbulent eddies and obtain a uniform flow, prior to passing 

through the shell. The flow rate is adjusted using a diaphragm valve and a needle valve. Three 

pressure and one temperature sensors, as well as a flowmeter are installed on the line to generate 

the corresponding measurements, thus determining the flow velocity. 

A Photron FASTCAM MiniWX100 high-speed camera is used to take the photos to be 

presented in Section 3.4 with 2000 fps. Two Polytec OFV-505 vibrometer lasers are utilized to 

measure the shell velocity at two target points on the shell; the ‘lower’ and the ‘upper’ 

measurement points are located at 
1

5
𝐿 and 

1

3
𝐿 from the bottom of the shell, respectively, where L 

is the length of the shell. The signal from the upper measurement point is used to obtain all the 

experimental results, except for the displacement-triggered Poincaré maps, for which two 

simultaneous measurements are needed (refer to Section 3.7.1). The signal from the vibrometer 

lasers are digitized by means of a data acquisition system (DAQ), with a sampling rate of 5000 

samples per second. Then, the digitized signal is stored in a computer. 

As seen in Figure 3-1(b), there are two 3 mm holes in the upper and lower clamps to make 

sure that the pressure in the annulus equals the average internal pressure, thus ensuring that a static 

divergence is not induced by the difference between internal and external pressure. These two 

holes are relatively small to minimize any airflow in the annulus. The gap between the shell and 

plexiglas tube is 38.5 mm. The results presented in Sections 3.5, 3.63.7 and 3.7 are based on 

experiments with this configuration. For a more detailed description of the experimental set-up 

refer to [30]. 
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In all tests the following procedure was utilized.  

1. The tank was allowed to fill up the set-up with compressed air by gradually opening the 

ball valve, while the airflow control valves were fully closed. Then, airflow was turned on and 

incremented in small steps by opening the airflow control valves. The desired flow rate was 

achieved by tweaking the diaphragm valve and, when necessary, the needle valve. At each flow, 

the quiescent air in the annulus was disturbed by deflating a balloon mounted on the plexiglas tube, 

Figure 3-1(b). As a result, the shell became unstable at a lower flow velocity than that occurring 

spontaneously; without these disturbances, the shell remained stable up to the maximum flow 

velocity attainable by the experimental set-up. Besides, the shell oscillations are less violent at 

lower flow velocities, thus allowing data recording without destroying the shell; the oscillations at 

high V are generally so violent that they can (and sometimes did) destroy the shell. This way, at 

least, data is obtained at low flow velocities before the probable shell rupture. This ‘disturbance-

induced critical flow velocity’ is referred to as the ‘critical flow velocity’, 𝑉𝑐𝑟. 

2. After the onset of instability, the flow velocity was decreased quickly to the point just before 

the shell stopped oscillating. This flow velocity is referred to as the ‘restabilization flow velocity’, 

𝑉𝑟𝑒𝑠𝑡. The reason why this was done is discussed in detail in Section 3.5. 

3. After waiting for ~20 s to make sure that the flow is steady, the shell velocity was recorded 

for 10 s, during which the flow velocity was kept constant.  

4. The flow velocity was incremented to a slightly higher value without stopping the shell 

from oscillating. After a period of about 20 s with the flow velocity constant, the shell velocity 

was again recorded for 10 s at the next flow velocity.  

5. This procedure was repeated for increasing flow velocities up to the critical flow velocity, 

𝑉𝑐𝑟. 
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(a) 

 
(b) 

Figure 3-1. Schematic of the (a) experimental set-up [30]; (b) test-section with the tested shell. Pressure 

and temperature gauges are indicated by 𝑃0, 𝑃1, 𝑃2 and 𝑇2. 

The experiments were conducted with circular cylindrical elastomer shells made of silicone 

rubber (silastic E-RTV). The material properties and geometry of the shells are listed in Table 3-1; 

R is the internal radius of the shell, h its thickness, and L its length. E is the Young’s modulus, 𝜈 

the Poisson ratio, and 𝜌𝑠 the density of the shells.   

Table 3-1. The material properties and geometry of the silicone rubber shells. 

E (MPa) 𝜌𝑠 (kg/m3) 𝜈 R (mm) L/R h/R 

1.53 1.05 × 103 0.49 24.84 2, 4.5, 5.5, 6 0.05, 0.09 
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Young’s modulus, E, of the shell was determined experimentally by means of a tensile test. 

The material density, 𝜌𝑠, was obtained by measuring the buoyancy force exerted on a cube of 

silastic (of known weight) when submerged in water. For a detailed description of how E and 𝜌𝑠  

were determined, refer to [30]. 

3.4 Mechanism of the dynamic divergence instability 

The photographs in Figures 3-2 and 3-3 are taken with the high-speed camera from above and 

the front of the shell, respectively, at the critical flow velocity, 𝑉𝑐𝑟. At the onset of instability, a 

divergence with longitudinal wave number m=1 and circumferential wave number n=2 or 3, 

depending on the length of the shell, was observed. This static instability restricts the flow passage, 

resulting in an increase of pressure upstream, which causes the shell to reopen. Once the flow is 

re-established, the shell collapses once more, and this sequence of opening and closing is what 

constitutes a dynamic divergence. Based on the photographs, the oscillations evolve in the 

following three phases through time.  

In Phase 1, the oscillations consist of regular, well-ordered, low-amplitude, low-frequency 

cycles about the buckled position with 𝑛=2 (for L/R=6) or n=3 (for L/R=4.5 and 2). Consecutive 

cycles have the same phase, meaning that nodes of the oscillation are not displaced. In this phase, 

the shell does not collapse completely and the walls do not contact each other, except in the last 

cycle, which fully closes the shell and drives the oscillations into Phase 2. Phase 1 usually lasts for 

less than 5 cycles, i.e., about 60 and 80 ms for the L/R=6 and 4.5 shells, respectively. Note that the 

photographs corresponding to phase 1 in Figures 3-2 and 3-3 are not for the last cycle of oscillation 

in this phase. 

In Phase 2, the circumferential wave number changes to n=3 and the oscillations become 

larger, yet regular and well-ordered. Although the shell fully obstructs the airflow in each cycle in 

phase 2, the walls touch each other gently, as in the last cycle of Phase 1. The impact between the 

walls drives the shell into an anti-phase mode in the next cycle, meaning that the nodes of the 

oscillation are displaced (rotated) by 𝜋/n radians in each cycle, compared to the previous one. Note 

that the shell with L/R=2 does not undergo Phase 2 oscillations; the system goes directly from 

Phase 1 to Phase 3. 
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Figure 3-2. Cross-sectional patterns of motion, viewed from above the shells with different lengths, at the 

corresponding critical flow velocity, 𝑉𝑐𝑟. Time t = 0 indicates the start of the oscillations. 
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Figure 3-3. Axial patterns of motion, viewed from the front of the shells with different lengths, at the 

corresponding critical flow velocity, 𝑉𝑐𝑟. In phase 2 and 3, consecutive cycles are shown, having anti-phase 

mode shape. 

Phase 3 of the oscillations consists of chaotic-looking cycles with irregular and distorted 

cross-sectional shapes; many wrinkles and twisting of the shell are observed. Severe impact 

between opposing walls occurs and the airflow is fully obstructed for a portion of a cycle, 

depending on the length of the shell; shorter shells are closed for a shorter part of each cycle 

compared to longer shells. For the L/R=6 and 4.5 shells, the circumferential wave number is 

approximately n=2, but not well-defined. The L/R=2 shell, however, switches intermittently 

between n=3 and 4, or higher; the wave numbers are not well-defined. In this phase, as in Phase 2, 

the oscillations are anti-phase, except for the L/R=2 shell, for which this is not necessarily the case.  

We call Phases 1 and 2 the primary phases; they vanish very quickly, lasting only 100 to 300 

ms (20 to 50 cycles) from the start of oscillations, depending on the flow velocity and the length 
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of shell; shorter shells (lower L/R) have a longer duration of primary phases at the same flow 

velocity; for example, the primary phases for the L/R=4.5 shell last three times longer than for the 

L/R=6 shell, both at V~27 m/s. Primary phases last longer at lower flow velocities. In the primary 

phases, the shell is closed for a shorter duration in each cycle compared to Phase 3. 

In Phase 3, the shell closes completely for nearly half of the duration (period) of each cycle 

(except for very short shells, L/R≤ 2), during which the airflow is fully obstructed. This full 

closure forms a ‘bubble’ at the bottom of the shell. The flow pressure upstream of the collapsed 

throat of the shell increases, thus pushing the bubble upward. When this bubble has travelled 

through the lower half of the shell and is in the upper half, because of the forces leading to 

divergence and inertia, the reopened lower half of the shell buckles in an antiphase shape in the 

middle of the shell; a new cycle starts to form while the previous one is still evolving.  The shell 

reaches its maximum collapse in the anti-phase mode, when the previous bubble has travelled 

through the length of the shell. Then, a new bubble reappears at the bottom of the shell in the new 

cycle of oscillation. This sequence of buckled antiphase shapes is repeated dynamically, giving 

rise to dynamic divergence. Although dynamic divergence is very similar to flutter, it should not 

be misinterpreted as flutter, which typically has a specific oscillation frequency at its onset. 

The comparison of irregularity (chaos), amplitude, frequency, etc., of the oscillations for 

shells with different lengths or thicknesses, is difficult to discuss based on the photographs taken 

with the high-speed camera. Instead, the signal obtained from the lasers should be analyzed to 

determine the effect of length and thickness of the shell on the nature of the motion, such as the 

chaotic behaviour of the system, as discussed in Section 3.6. 

3.5 The dynamics with varying flow velocity 

In this section, the L/R=6 and h/R=0.09 shell is chosen to discuss the dynamical behaviour 

with varying flow velocity. Note that for the results presented in Sections 3.5, 3.6 and 3.7, the 

oscillations from 0 to 1 s have been discarded; hence, Phase 3 is dominant. Figure 3-4 shows the 

time history and the power spectral density of the oscillations for this shell at V=𝑉𝑐𝑟=28.5 m/s. As 

expected, the upper measurement point (at 
1

3
𝐿) has greater velocity due to the larger amplitude of 

motion. The frequency content of the motion consists of some commensurable peaks which are 

superharmonics of the fundamental frequency.  

The bifurcation diagram of the rms of shell velocity is seen in Figure 3-5, showing how the 

rms of motion varies with varying flow velocity; refer to Section 3.3. The shell becomes unstable 

at the critical flow velocity, 𝑉𝑐𝑟, and remains unstable between 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡. Below 𝑉𝑟𝑒𝑠𝑡, the 

oscillations cease and the shell regains stability, i.e., the rms of motion goes to zero. As seen in 

Figure 3-5, the restabilization flow velocity, 𝑉𝑟𝑒𝑠𝑡, is much smaller than the critical flow velocity, 

𝑉𝑐𝑟, displaying a very strong subcritical bifurcation, implying a softening nonlinear behaviour.  
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Figure 3-5 indicates that, by increasing the flow velocity beyond the restabilization value, 

𝑉𝑟𝑒𝑠𝑡, the rms velocity of the shell generally increases. However, at a specific V (~22.5 m/s), the 

amplitude decreases with increasing V. Also, a sudden increase (jump) is seen at 𝑉~25 m/s.  

It should be mentioned that the chaotic component of the oscillation does not depend on the 

velocity amplitude. To investigate chaos and the complexity of the dynamics at different flow 

velocities, other measures, such as the largest Lyapunov exponent, should be employed, as in 

Section 3.7. 

 
  

(a) (b) 
Figure 3-4. (a) Time history of the velocity signal; (b) power spectral density (PSD), for the L/R=6 and 

h/R=0.09 shell at V=𝑉𝑐𝑟=28.5 m/s. The upper measurement point is at 
1

3
𝐿, while the lower one is at 

1

5
𝐿. 

 

Figure 3-5. Bifurcation diagram of the rms velocity of the L/R=6 and h/R=0.09 shell. The critical and 

restabilization flow velocities are denoted by 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡, respectively.  

3.6 Parametric study of the dynamic divergence 

The focus of this paper is on the effect of geometric parameters of the shell, namely the length 

and thickness ratios (L/R and h/R, respectively), on the dynamic divergence instability. Thus, shells 

with different lengths and thicknesses, as in Table 3-2, have been tested. Their material properties 
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and geometry are as in Table 1. In this section, a detailed description of the dynamics is given, as 

the flow velocity is increased, from the restabilization flow velocity, 𝑉𝑟𝑒𝑠𝑡, up to the critical one, 

𝑉𝑐𝑟. 

In Sections 3.6.13.6.2 and 3.6.2, the effect of L/R and h/R are discussed on the bifurcation of 

the rms velocity and the frequency content of the oscillations. Needless to mention that varying 

either the length or the thickness of the shell, not only affects the rms velocity of the oscillations, 

but also alters the critical and restabilization flow velocities.  

Table 3-2. The geometry of the silicone rubber shells. R is the internal radius of the shell (the same for all 

shells, equal to 24.84 mm), h its thickness, and L its length 

Shell # 𝐿/𝑅 ℎ/𝑅 

1 6 0.05 

2 5.5 0.05 

3 4.5 0.05 

4 2 0.05 

5 6 0.09 

6 4.5 0.09 

 

Note that data at the critical flow velocity for shell 6 is not available due to shell rupture during 

the experiment. For shell 4, the critical and restabilization flow velocities are equal (the data is 

available only at this flow velocity due to the limitation of the maximum flow velocity attainable 

in the experimental set-up). 

Figure 3-6 shows that thicker (higher h/R) and shorter (lower L/R) shells have higher critical 

and restabilization flow velocities compared to the thinner and longer ones. As mentioned earlier, 

𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡 are equal for shell 4. 

 

Figure 3-6. The critical and restabilization flow velocities of the shells, 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡, respectively. 
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As seen in Figure 3-6, 𝑉𝑟𝑒𝑠𝑡 is considerably smaller than 𝑉𝑐𝑟, displaying a strong softening 

nonlinear behaviour. Figure 3-7 introduces a nondimensional parameter, [𝑉𝑐𝑟 − 𝑉𝑟𝑒𝑠𝑡] / 𝑉𝑐𝑟, as an 

indicator of the strength of the subcritical behaviour. It is seen that for thin shells (h/R=0.05), the 

subcritical behaviour is weakened for smaller L/R, while it remains approximately constant for 

thicker shells (h/R=0.09) of different lengths. For shell 4, the difference between 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡 

approaches zero, meaning that it does not show a subcritical behaviour (not shown in Figure 3-7). 

 

Figure 3-7. Nondimensionalized difference between the critical and restabilization flow velocities, 

indicating the strength of the subcritical behaviour of the shells. 

3.6.1 The effect of varying the length of the shell 

According to Figure 3-8, the rms velocity of all shells, except shell 4, generally increases 

with increasing flow velocity. For shell 4, the rms velocity has nearly the same value at 𝑉𝑟𝑒𝑠𝑡 and 

𝑉𝑐𝑟. Interestingly, a sudden increase (jump) is seen in the rms velocity of shells 1, 2 and 5 in Figures 

3-8 and 3-10. For short shells, there might be such a jump at flow velocities higher than the 

available experimental data. 

Figure 3-8 shows that it is difficult to make a general decision on whether shorter/longer 

shells have higher/lower rms velocities.  Figure 3-8(a) demonstrates that by decreasing the length 

ratio (L/R) from 6 (shell 1) to 5.5 (shell 2), the rms velocity increases. However, further decrease 

of L/R from 5.5 to 4.5 (shell 3), and then from 4.5 to 2 (shell 4), reduces the rms velocity; shells 2 

and 4 have the lowest and the highest rms velocities, respectively.  

According to Figure 3-8(b) (thick shells), shell 6 (L/R=4.5) has lower rms velocity than shell 

5 (L/R=6), for V~27-29 m/s. Beyond V~32 m/s, however, shell 6 has higher rms velocity than 

shell 5. 
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(a) 

 
(b) 

Figure 3-8. Bifurcation diagram of the rms velocity of shells with (a) h/R=0.05 (thin shells); (b) h/R=0.09 

(thick shells). Hollow squares and hollow circles indicate the restabilization and critical flow velocities, 

respectively.  

The Fourier transform might not be the best tool to analyze nonstationary signals, because the 

frequency content of such signals changes over time; the Fourier transform is only localized in 

frequency, but not in time. Wavelets, on the other hand, are a powerful tool localized in both time 

and frequency; hence, Morse wavelets have been employed in this study to extract the frequency 

content of the oscillations over time at different flow velocities. For a detailed discussion of the 

concept and usage of wavelets refer to [31].  

Figure 3-9 shows the magnitude of the continuous wavelet transform (CWT) of the shell 

velocity signal in the frequency-time domain. Figure 3-9 has the same range of flow velocities as 

the bifurcation diagrams of the corresponding shells, Figure 3-8(b), meaning that the first vertical 

strip corresponds to 𝑉𝑟𝑒𝑠𝑡, and the last strip corresponds to 𝑉𝑐𝑟. At most flow velocities, more than 

one frequency range (band) exists. These frequency bands are often not distinct from one another 

presenting broad frequency ranges which might be associated with chaos in the system; chaotic 

oscillations often exhibit a broad-band frequency content, rather than a number of narrow and well-

defined frequency peaks expected for periodic motions. The prediction of chaos in the system at 

different flow velocities is discussed in detail in Section 3.7. 
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Figure 3-9 demonstrates that the frequency of oscillations of the thick shells, either long or 

short, increases with increasing flow velocity from 𝑉𝑟𝑒𝑠𝑡 towards 𝑉𝑐𝑟; all frequency bands, 

including the one containing high-energy content (in dark blue), have higher values at higher V. 

However, it is difficult to compare the frequency of oscillations of the two shells, which have 

different length ratios, based on Figure 3-9, because, as mentioned above, the frequency bands are 

wide and not distinct from one another at most flow velocities. Besides, the two wavelet 

scalograms do not have the same magnitude scale, making the discussion of the length effect on 

the frequency of oscillation difficult.  

For both shells 5 and 6, in Figure 3-9, higher magnitudes are displayed for increasing flow 

velocity, indicating that the signal strength (energy) is higher at higher flow velocities. This is in 

agreement with the trend of the bifurcation diagrams shown with red dashed lines; the rms velocity 

of both shells increases with increasing flow velocity. The abrupt increase of the signal strength of 

shell 5 at 𝑉=25.6 m/s, Figure 3-9(a), confirms the existence of the jump in its bifurcation diagram, 

Figure 3-8(b), at exactly the same flow velocity. The same accordance between the jump in the 

rms velocity of shells 1 and 2 and their corresponding wavelet scalograms has been observed.  

  

(a)  (b)  
Figure 3-9. Morse wavelet scalogram at discontinuous flow velocities indicated in m/s, at the bottom of the 

plots; 10 s of oscillations at each flow velocity have been recorded and analyzed. (a) Shell 5 (L/R=6, 

h/R=0.09); (b) shell 6 (L/R=4.5, h/R=0.09). Dashed red lines indicate the trend of rms velocity in the 

corresponding bifurcation (not to scale). 
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3.6.2 The effect of varying the thickness of the shell 

Figure 3-10 shows that, no matter whether the shell is long or short, thinner shells (lower h/R) 

generally have higher rms velocity.  

 
(a) 

 
(b) 

Figure 3-10. Bifurcation diagram of the rms velocity of shells with (a) L/R=6 (long shells); (b) L/R=4.5 

(short shells). Hollow squares and hollow circles indicate the restabilization and critical flow velocities, 

respectively.  

According to Figure 3-11, short shells (L/R=4.5), either thin or thick, have frequency bands 

with higher values at higher flow velocities. The dominant frequency range in dark blue which is 

associated with the signal strength (energy), exists at lower frequencies for the thin shell, Figure 

3-11(a), compared to the thick shell, Figure 3-11(b), at most flow velocities. For both shells, the 

trend of the signal strength versus flow velocity in Figure 3-11, is in complete agreement with the 

trend of the corresponding bifurcation diagrams shown with red dashed lines (the same as 

bifurcation diagrams in Figure 3-10(b)). 
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(a) (b)  

Figure 3-11. Morse wavelet scalogram at discontinuous flow velocities indicated in m/s, at the 

bottom of the plots; 10 s of oscillations at each flow velocity have been recorded and analyzed. (a) 

Shell 3 (L/R=4.5, h/R=0.05); (b) Shell 6 (L/R=4.5, h/R=0.09). Dashed red lines indicate the trend 

of rms velocity in the corresponding bifurcation (not to scale). 

3.7 The chaotic component of the oscillation 

According to the photographs taken with the high-speed camera, Figures 3-2 and 3-3, there 

appears to be a chaotic component in the oscillations. Besides, the wavelet scalograms, Figures 

3-9 and 3-10, exhibit wide frequency bands indistinct from one another, which could be an 

indicator of chaos in the system. Chaotic motions are unpredictable, nonperiodic, random-like 

motions which are very sensitive to initial conditions, and correlation of present with past is lost 

rapidly with time. The results presented in this section prove that a weak or strong chaotic 

component exists in the motion, depending on the parameters of the system such as the flow 

velocity, length and thickness of the shells. Weak chaotic motions, yet with a strong periodic 

component, are referred to as ‘limited’ or ‘narrow-band’ chaos in the literature [32]. Narrow-band 

chaotic oscillations display similar characteristics to periodic (regular) motions. On the other hand, 

a system is said to have ‘large-scale’ or ‘broad-band’ chaos, when a strong chaotic component 

exists in the motion. In this case, the system behaviour is totally different from a periodic motion. 

It is always recommended not to count on only one indicator of chaos in dynamics experiments, 

but to use several techniques before pronouncing a system as chaotic. In the present study, the 

putative existence of chaos in the system is confirmed by means of various quantitative or 

qualitative measures. First, we employed the Wolf algorithm to determine the largest Lyapunov 

exponent, 𝜆1, from the time series, which not only confirms the existence of a chaotic component 

by a positive 𝜆1, but also gives a quantitative measure of its relative strength at different values of 

V; refer to [33]. To confirm the results of the largest Lyapunov exponent, the oscillations of shells 

with different length or thickness ratios, but at nearly the same flow velocity, are analyzed and 

compared in pairs, as shown in Table 3-3, using tools such as Power Spectral Densities (PSDs), 

Poincaré maps, phase portrait plots, Probability Density Functions (PDFs) and autocorrelations. 
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Table 3-3. Selected points (flow velocities, V), identified in the figure indicated, to be analyzed in 

terms of strength of the chaotic component, and corresponding flow velocities, V. Each pair of 

points is to be compared in the corresponding section. 

Section Point Shell  V (m/s) 

3.7.1 

(Figure 3-12(b)) 

5𝐴 

6𝐴 

5 

6 

28.2 

28.0 

3.7.2 

(Figure 2-10(b)) 

3𝐴 

6𝐵 

3 

6 

31.8 

31.9 

3.7.3 

(Figure 3-18) 

2𝐴 

2𝐵 

2 

2 

18.4 

20.2 

 

3.7.1 Short versus long shell 

According to Figure 3-12(a), the largest Lyapunov exponent generally takes greater values at 

higher flow velocities, with some exceptions; more precisely, the following trends have been 

observed for the thin shells (shells 1, 2 and 3) while increasing the flow velocity from 𝑉𝑟𝑒𝑠𝑡 towards 

𝑉𝑐𝑟.  

1. The largest Lyapunov exponent generally increases as the flow velocity is increased from 

𝑉𝑟𝑒𝑠𝑡 up to V~17.5, 18.4 and 28.7 m/s for shells 1, 2 and 3, respectively.  

2. Beyond the aforementioned flow velocities, 𝜆1 sharply drops, indicating that motions 

become more predictable and less sensitive to uncertainties in initial conditions. The 

decreasing trend of 𝜆1 with the flow velocity continues up to V~19.4, 20.7 and 29.5 m/s 

for shells 1, 2 and 3, respectively. 

3. Beyond the aforementioned flow velocities, the oscillations restart to show increasing 

irregularity, and 𝜆1 increases abruptly up to V~23.6, 26.7 and 31.8 m/s for shells 1, 2 and 

3, respectively. 

4. Finally, for still higher flow velocities towards 𝑉𝑐𝑟, 𝜆1 decreases slightly for shells 1 and 2, 

but greatly for shell 3.  

As mentioned earlier, for shell 4, there is only one experimental data point available, at a single 

flow velocity, 𝑉=𝑉𝑟𝑒𝑠𝑡=𝑉𝑐𝑟=96.8 m/s, which is associated with a relatively high 𝜆1 (Figure 

3-12(a)). 

According to Figure 3-12(b), for thick shells (shells 5 and 6), the largest Lyapunov exponent 

is generally higher at the lower half of the flow velocity range, showing two peaks, yet with an 

irregular trend with several ups and downs when the flow velocity is increased from 𝑉𝑟𝑒𝑠𝑡 towards 

𝑉𝑐𝑟. 
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(a) 

 
(b) 

Figure 3-12. The largest Lyapunov exponents, 𝜆1, at different flow velocities for shells with (a) h/R=0.05 

(thin shells); (b) h/R=0.09 (thick shells). A zoomed-in view of the largest Lyapunov exponent for shell 5 is 

shown as an insert (in a box) in (b). Hollow squares and hollow circles indicate the restabilization and 

critical flow velocities, respectively.  

 

The largest Lyapunov exponent (𝜆1) for thin shells, Figure 3-12(a), demonstrates that by 

decreasing the length ratio (L/R) from 6 to 5.5, the oscillations become more regular and less 

erratic. However, for a smaller length ratio L/R=4.5, and also L/R=2, 𝜆1 often takes higher values, 

indicating a stronger chaotic behaviour compared to the longer shells. Similarly, Figure 3-12(b) 

shows that the thick shell with lower L/R (shell 6) has higher 𝜆1 over most of the flow velocity 

range, exhibiting more irregular and erratic oscillations.  

To sum up, one can conclude that, with some exceptions, shorter shells generally display 

more complex dynamics. To confirm the largest Lyapunov exponent results regarding the effect 

of length on chaotic behaviour, the oscillations of shells 5 and 6 (both having the same thickness 

ratio, h/R=0.09), at V~28.0 m/s (points 5𝐴 and 6𝐴 in Table 3-3), are analyzed in Figures 3-13 and 

3-14. [The term “point” in Table 3-3 should not be confused with the measurement point on the 

shell; for all shells, the signal is obtained from a point on the shell at 
1

3
𝐿 from the upstream (lower) 

clamp, the “higher measurement point”].  
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Figure 3-13(a) shows the velocity signal of the oscillations corresponding to points 5𝐴 and 6𝐴 

for 1-1.2 s. As mentioned in Section 3.3, 10 s of oscillations at each flow velocity step has been 

recorded to be analyzed. 

According to Figure 3-13(b), the PSD of point 5𝐴 displays a finite number of well-pronounced 

commensurable peaks which are superharmonics of the fundamental frequency. This is often 

associated with oscillations with a dominant periodic component, as expected from the low value 

of the Lyapunov exponent in Figure 3-12(b). Point 6𝐴, on the other hand, has a broad-band 

spectrum with cone-like peaks instead of sharp spikes. Note that the frequency range of the PSDs 

plotted is quite wide (0-500 Hz); hence, each cone-like peak includes a considerable range of 

frequencies, not one specific value. This implies a strong chaotic behaviour since chaotic signals 

display a wide frequency bandwidth with a nearly continuous distribution of frequencies.  

Figure 3-13(c) shows the Poincaré maps associated with points 5𝐴 and 6𝐴. Different methods 

exist to obtain Poincaré maps, as explained in [34]. However, when the system does not have a 

natural clock such as the external periodic excitation, displacement-triggered (or generally 

“position-triggered”) Poincaré maps are often used. In this case, maps are obtained by sampling 

the data when another variable of the system reaches a peak value. Here, when the velocity of the 

lower measurement point crosses from negative to positive, meaning that the displacement has a 

local maximum value, time is stored. Then, the velocity and displacement of the upper 

measurement point at the sampled instances are plotted. The Poincaré map of point 5𝐴 consists of 

two clean basins, signifying a period-2 motion with a dominant periodic component. The basin 

boundaries are smooth continuous lines, indicating that small uncertainties in the input parameters 

do not influence the response of the system when away from the basin boundaries. The Poincaré 

map of point 6𝐴, however, shows a fractal-looking collection of points, with nonsmooth basin 

boundaries, implying that the behaviour of the system is unpredictable. This suggests a chaotic 

component in the oscillations. 

According to Figure 3-13(d), the phase portrait of point 5𝐴 shows clean orbits which overlap, 

indicating a dominant periodic component. On the other hand, the phase portrait plot associated 

with point 6𝐴 tends to fill a certain subspace of the phase plane. This behaviour suggests the 

existence of a dominant chaotic component in the oscillations. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 3-13. Study the effect of length (comparison between points 5𝐴 and 6𝐴 in Figure 3-12). Plots on the 

left side correspond to 5𝐴 (longer thick shell), and on the right side to 6𝐴 (shorter thick shell). (a) Time 

histories; (b) PSDs; (c) Poincare maps; (d) phase portraits. 
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Pseudo-phase space (also called delay-reconstructed phase space) is often employed when 

only one system variable is available. Pseudo-phase space demonstrates the same behaviour in the 

phase space as the typical phase space constructed with more than one system variable. In the 

present study, the pseudo-phases are constructed not only to reveal the behaviour of orbits in phase 

space, but also to determine the largest Lyapunov exponent of chaotic time series. To construct a 

pseudo-phase space, two parameters, namely the embedding dimension, m, and delay, d, are 

needed. Here, the embedding dimension is chosen by the method of ‘educated guesses’ to ensure 

that the orbit is topologically reasonable in m dimensions and unnecessary self-intersections do 

not occur. The delay parameter should be selected so that the pseudo-orbit is expanded as much as 

possible, while maintaining a deterministic orbit structure [35]. The consistency of results is then 

assessed by choosing nearby values for the delay. The selection of m and d is discussed in detail 

in [33]. The results show a weak dependence on the choice of delay. According to Figure 3-14(a), 

the pseudo-phase space associated with point 5𝐴 forms a closed orbit which is an indication of a 

dominant periodic component, whereas the pseudo-phase space of point 6𝐴 shows fractal orbits 

looking like a scattered cloud of points, suggesting sensitive dependence on initial conditions.  

As mentioned before, a small change in the initial conditions of a chaotic system will alter its 

response, making it impossible to predict the time history. Here, the probability density function, 

PDF, comes into play as a statistical measure of the dynamics of the system. The PDF of 

oscillations with a dominant periodic component shows two dominant peaks at the extremes of the 

displacement; the motion is slow there, and the probability of finding the oscillating system there 

is high. As the chaotic component of the oscillation intensifies, its PDF tends to deviate from this 

double-masted shape and exhibits more of a normal (Gaussian) distribution. According to Figure 

3-14(b), the PDF associated with point 5𝐴 suggests a weak chaotic component in the oscillations, 

while that of point 6𝐴 shows a strong chaotic behaviour since the space in between the two peaks 

is filled. 

The autocorrelation, by definition, is the correlation of a signal with a delayed copy of itself 

as a function of delay. The autocorrelation of periodic oscillations is periodic with time, implying 

statistical similarity between delayed versions of oscillations. Chaotic signals, however, lose 

memory very rapidly and have an autocorrelation decaying with time. Although all the previous 

results show that points 5𝐴 and 6𝐴 indicate weak and strong chaotic behaviour, respectively, there 

is not a clear difference between the autocorrelation of the two points in Figure 3-14(c). 

To summarize, all the results presented in Figures 3-13 and 3-14 (except Figure 3-14(c)) 

confirm the predictions reached on the basis of the largest Lyapunov exponent in Figure 3-12, that 

longer shells undergo oscillations with a weaker chaotic component. 
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(a) 

 

 
 

(b) 

  
(c) 

Figure 3-14. Study of the effect of length (comparison between points 5𝐴 and 6𝐴 in Figure 3-12). Plots on 

the left side correspond to 5𝐴 (longer thick shell), and on the right side to 6𝐴 (shorter thick shell). (a) Pseudo-

phase spaces; (f) PDFs; (g) autocorrelations. 

3.7.2 Thin versus thick shell 

Figure 2-10 shows that thinner shells, no matter whether long or short, have a higher largest 

Lyapunov exponent, 𝜆1, than thicker shells over most of the flow velocity range; hence, displaying 

stronger chaotic behaviour. To confirm the largest Lyapunov exponent results regarding the effect 

of thickness of the shell on the chaotic behaviour, the oscillations of shells 3 and 6 (both with the 

same length ratio, L/R=4.5) at V~31.8 m/s (points 3𝐴 and 6𝐵 in Table 3-3), are analyzed in Figures 

3-16 and 3-17. 
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(a) 

 

 
(b) 

Figure 3-15. The largest Lyapunov exponents, 𝜆1, at different flow velocities for shells with (a) L/R=6 

(long shells); (b) L/R=4.5 (short shells). Hollow squares and hollow circles indicate the restabilization 

and critical flow velocities, respectively. 

 

Figure 3-16(a) shows the time traces associated with points 3𝐴 and 6𝐵. The time history of 

oscillations at point 3𝐴 shows complex patterns which do not seem similar in different cycles. On 

the other hand, the time trace of point 6𝐵 displays a clean repetitive pattern which looks like a 

superposition of sinusoids. The PSD of point 3𝐴 consists of continuous cone-like spikes, while that 

of point 6𝐵 demonstrates conspicuous sharp peaks, Figure 3-16(b). According to Figure 3-16(c), 

the Poincaré map of point 3𝐴 exhibits a fractal-looking cloud of scattered points. The Poincaré 

map of point 6𝐵, however, shows two clean basins (period-2 oscillations) with smooth boundaries. 

The phase portrait of oscillations at point 3𝐴 consists of orbits which tend to fill the phase plane, 

whereas that of point 6𝐵 demonstrates clean overlapping orbits which coalesce, Figure 3-16(d).  

All these measures indicate that the oscillations associated with point 3𝐴 have a dominant 

chaotic component (broad-band chaos), while point 6𝐵 consists of much more regular (less erratic) 

oscillations with a very weak chaotic component (narrow-band chaos).  
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(a) 

 

 

(b) 

  

(c) 

  
(d) 

Figure 3-16. Thickness study (comparison between points 3𝐴 and 6𝐵 in Figure 2-10). Plots on the left side 

correspond to 3𝐴  (thinner short shell), and on the right side to 6𝐵  (thicker short shell). (a) Time histories; 

(b) PSDs; (c) Poincare maps; (d) phase portraits. 
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According to Figure 3-17, the oscillations at point 3𝐴 correspond to a scattered pseudo-phase 

space. On the other hand, the pseudo-phase space of point 6𝐵 has similar orbits in the phase space 

as those of periodic motion (closed curves). The PDF of oscillations at point 3𝐴 exhibits a Gaussian 

distribution (a bell-shaped curve), while that of point 6𝐵 shows two peaks at the extremes of the 

displacement, with a slight departure from the double-masted shape.  Lastly, the autocorrelation 

of oscillations at point 3𝐴 dies out rapidly with time, whereas point 6𝐵 demonstrates a statistical 

similarity between delayed versions of oscillations. In conclusion, the oscillations associated with 

point 6𝐵 display a weak chaotic behaviour, yet with a strong periodic component. The results for 

point 3𝐴, however, show a dominant chaotic behaviour. More details about the above-mentioned 

measures can be found in Section 3.7.1. 

To sum up, the detailed results of Figures 3-16 and 3-17 confirm the prediction of the largest 

Lyapunov exponent in Figure 2-10, that the oscillations of thicker shells are generally less chaotic 

than those of thinner ones.  
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(a) 

  
(b) 

  
(c) 

Figure 3-17. Thickness study (comparison between points 3𝐴 and 6𝐵 in Figure 2-10). Plots on the left side 

correspond to 3𝐴  (thinner short shell), and on the right side to 6𝐵  (thicker short shell). (a) Pseudo-phase 

spaces; (b) PDFs; (c) autocorrelations. 

3.7.3 The effect of jump in rms velocity on chaotic behaviour 

This section presents further study on the effect of the jumps observed in the bifurcation 

diagrams of long shells (shells 1, 2 and 5), Figure 3-8, yielding some exciting results. Table 3-4 

lists the approximate flow velocities at which the jump in the rms velocity of the long shells occurs, 

𝑉𝑗𝑢𝑚𝑝.  
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According to Figure 3-18, the jump in the rms velocity weakens the chaotic behaviour; in fact, 

the data point just beyond the jump has the minimum 𝜆1(therefore, the least irregularity) for the 

entire flow velocity range, for all the three long shells. For flow velocities beyond the jump, the 

chaotic component restarts to intensify. 

Table 3-4. Long shells showing a jump in their bifurcation diagrams (Figure 3-8) and the corresponding 

flow velocities at which the jump occurs, 𝑉𝑗𝑢𝑚𝑝.  

Shell 𝑉𝑗𝑢𝑚𝑝 (m/s) 

1 

2 

5 

19.0 

19.3 

25.2 

 

 

Figure 3-18. The largest Lyapunov exponents, 𝜆1, at different flow velocities for long shells (shells 1, 2 

and 5). A zoomed-in view of the largest Lyapunov exponent for shell 5 is shown in the box on the right. 

Hollow squares and hollow circles indicate the restabilization and critical flow velocities, respectively. The 

dotted boxes show the data point just beyond the jump in the rms velocity of the corresponding shell.  

 

To confirm the largest Lyapunov exponent results regarding the effect of the jump on chaotic 

content of the oscillations, the oscillations of shell 2 (L/R=5.5, h/R=0.05) at V=18.4 (just before 

the jump) and 20.2 m/s (just beyond the jump), respectively points 2𝐴 and 2𝐵 in Table 3-3, are 

analyzed in Figures 3-19 and 3-20. The sudden increase of the signal strength (wavelet magnitude) 

of shell 2 at 𝑉=19.3 m/s, Figure 3-19, confirms the existence of the jump in its bifurcation diagram, 

Figure 3-8(a), which occurs exactly at the same flow velocity. Similar accordance between the 

jump in the bifurcation of other long shells (shells 1 and 5) and their wavelet scalograms has been 

observed. According to Figure 3-20(a), the oscillations at point 2𝐴 correspond to a scattered 

Poincaré map with nonsmooth fractal basin boundaries. On the other hand, the Poincaré map of 

point 2𝐵 demonstrates four clean basins with smooth boundaries (period-4 oscillations). The PDF 

of oscillations at point 2𝐴 exhibits a severe departure from the perfect double-masted shape, while 
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that of point 2𝐵 shows two peaks at the extremes of the displacement, Figure 3-20(b). Finally, 

Figure 3-20(c) demonstrates that the autocorrelation of oscillations at point 2𝐴 vanishes rapidly 

with time, whereas point 2𝐵 maintains a statistical similarity between delayed versions of 

oscillations.  

In conclusion, the oscillations associated with point 2𝐵 display a weak chaotic behaviour, yet 

with a strong periodic component, while point 2𝐴 shows a dominant chaotic component in the 

oscillations. This is in agreement with the largest Lyapunov exponent estimation, Figure 3-18, 

having its minimum value (the weakest chaotic behaviour) just beyond the jump, over the entire 

range of flow velocities. 

 

Figure 3-19. Morse wavelet scalogram for shell 2 (L/R=5.5, h/R=0.05) at discontinuous flow velocities 

indicated in m/s, at the bottom of the plots; 10 s of oscillations at each flow velocity have been recorded 

and analyzed.  Dashed red lines indicate the trend of rms velocity of corresponding bifurcation (not to 

scale). 
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(a) 

  

(b) 

  

(c) 

Figure 3-20. Jump study for shell 2 (comparison between points 2𝐴 and 2𝐵 in Figure 3-12). Plots on the 

left side correspond to 2𝐴 (below the jump), and on the right side to 2𝐵  (beyond the jump). (a) Poincare 

maps; (b) PDFs; (c) autocorrelations.  

3.8 Study on confinement effect 

The results presented in Sections 3.5, 3.6 and 3.7 have been obtained with the experimental 

set-up as in Figure 3-1(b), with a rigid (plexiglas) outer tube and two small holes (𝐷ℎ= 3 mm), one 

upstream and the other downstream of the tested shell to equalize the pressure in the annulus to 
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the mean internal pressure. However, it was thought interesting to investigate the influence of 

confinement, as a result of the presence of the plexiglas tube, on the dynamics of the system, by 

comparing the oscillations of shell 3 (L/R=4.5, h/R=0.05), with and without confinement.  To do 

this, the apparatus was modified and the rigid (plexiglas) tube was removed, and the small holes 

at the upper and lower clamps were blocked. 

Figure 3-21 shows the bifurcation diagrams for the two configurations (with or without the 

rigid outer tube), according to which the rms velocity of the oscillations are higher for the 

unconfined configuration.  

 

Figure 3-21. Bifurcation diagram of the rms velocity of shell 3 (L/R=4.5, h/R=0.05), with (confined) or 

without (unconfined) the rigid outer tube. Hollow squares and hollow circles indicate the restabilization 

and critical flow velocities, respectively.  

The largest Lyapunov exponent diagram, Figure 3-22, demonstrates that the two 

configurations have nearly the same 𝜆1 at 𝑉𝑐𝑟, while the unconfined configuration shows a slightly 

weaker chaotic component at 𝑉𝑟𝑒𝑠𝑡. For both configurations, when the flow velocity is increased 

from 𝑉𝑟𝑒𝑠𝑡 to close to 𝑉𝑐𝑟, the chaotic component is strengthened, but then 𝜆1 drops at 𝑉𝑐𝑟, 

indicating an increase of the regularity of motion.  
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Figure 3-22. The largest Lyapunov exponents, 𝜆1, versus flow velocity for shell 3 (L/R=4.5, h/R=0.05), 

with (confined) or without (unconfined) the rigid outer tube. Hollow squares and hollow circles indicate 

the restabilization and critical flow velocities, respectively. 

According to Table 3-5, both 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡 are higher for the unconfined configuration 

compared to the confined one. Besides, the unconfined shell exhibits a slightly stronger subcritical 

behaviour, having a higher value of the nondimensional difference between 𝑉𝑐𝑟 and 𝑉𝑟𝑒𝑠𝑡.  

Table 3-5. The restabilization and critical flow velocities, 𝑉𝑟𝑒𝑠𝑡 and 𝑉𝑐𝑟, respectively, as well as their 

nondimensional difference (an indicator of subcritical behaviour), for shell 3 (L/R=4.5, h/R=0.05), with 

(confined) or without (unconfined) the rigid outer tube.  

Configuration 𝑉𝑟𝑒𝑠𝑡 (m/s) 𝑉𝑐𝑟 (m/s) (𝑉𝑐𝑟 − 𝑉𝑟𝑒𝑠𝑡)/𝑉𝑐𝑟 (%) 

Confined 

Unconfined 

26.6 

39.4 

32.2 

50.5 

17.4 

22.0 

 

3.9 Conclusions 

The present paper presents an in-depth analysis of the dynamic divergence phenomenon for 

soft shells conveying fluid. Although it was observed for the first time long ago, there have not 

been sufficient experimental studies yet, because of the fact that dynamic divergence manifests 

itself as a very violent, relatively high-frequency (of the order of 100 Hz) oscillations, easily 

capable of destroying the shell. That having been said, soft (low Young’s modulus) shells should 

be utilized to be able to observe dynamic divergence. Thinner and stiffer aluminium shells, are 

subject to divergence of much smaller amplitude compared to the shell radius; therefore, static 

divergence is observed because the flow is not constrained enough by the buckled shell for a 

dynamic divergence to occur.  

The experimental results on dynamic divergence by Gholami et al. [30] were for a specific 

shell with a given L/R and h/R. However, the question arose on how the dynamical behaviour of 

shells with different L/R and h/R ratios would be. This has been addressed in this paper. According 
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to photographs taken with a high-speed camera, at the onset of instability, a divergence with 

circumferential wave number n=2 or 3 (depending on the L/R ratio) and one longitudinal half-

wave (m=1), occurs. This static instability restricts the flow passage considerably such that the 

throat becomes choked. This results in an increase of pressure upstream of the throat which reopens 

the shell and triggers a dynamic instability (dynamic divergence). The oscillations evolve in three 

phases through time. In the first two phases, the oscillations are gentle and shell walls do not impact 

on each other violently. After about 100-300 ms, depending on the flow velocity and L/R ratio, the 

oscillations progress to the third phase in which the oscillations are chaotic-looking, with violent 

impact of shell walls. In this phase, the dynamic divergence occurs through a ‘bubble travelling’ 

mechanism; because of the full closure at the throat, a bubble with high-pressure forms at the 

bottom of the shell which travels upwards and pushes the throat downstream. When the bubble has 

travelled completely through the shell, the shell buckles in an anti-phase circumferential mode 

shape and a new bubble forms at the bottom of the shell, et seq.  

Bifurcation diagrams of the rms velocity of shells with different L/R and h/R ratios, were 

obtained with varying flow velocity. The results show that thinner and longer shells undergo 

instability at lower flow velocities, as expected. Also, thinner shells are subject to higher rms 

velocities than thicker ones. Increasing L/R ratio (longer shells) enhances the subcritical behaviour 

for thick shells, while it does opposite for thin shells.  

The effect of L/R and h/R ratios on the chaotic component of the oscillations was also 

examined. It was found that thinner and shorter shells, in comparison with thicker and longer ones, 

exhibit more irregularity (chaos) in the motion, having higher values of the largest Lyapunov 

exponent (𝜆1), scattered Poincaré maps and pseudo-phase spaces, broad power spectra, etc. The 

only exception is the L/R=5.5 shell which has lower values of 𝜆1 than the L/R=6 shell. 

Finally, the effect of confinement (the coaxial rigid outer tube) on the onset and post-critical 

behaviour of the system was explored; the unconfined configuration has been shown to have (i) 

considerably higher critical and restabilization flow velocities, (ii) higher rms velocity of motion, 

and (iii) slightly stronger subcritical behaviour.  
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4 Conclusions and suggested future work 

4.1 Summary of findings 

The present study presents an in-depth analysis of the dynamic divergence phenomenon for 

soft shells conveying fluid. Although it was observed for the first time long ago, there have not 

been sufficient experimental studies yet, because of the fact that dynamic divergence manifests 

itself as a very violent, relatively high-frequency (of the order of 100 Hz) oscillations, easily 

capable of destroying the shell. That having been said, soft (low Young’s modulus) shells should 

be utilized to be able to observe dynamic divergence. Thinner and stiffer aluminium shells, are 

subject to divergence of much smaller amplitude compared to the shell radius; therefore, static 

divergence is observed because the flow is not constrained enough by the buckled shell for a 

dynamic divergence to occur.  

According to photographs taken with a high-speed camera, at the onset of instability, a 

divergence with circumferential wave number n=2 or 3 (depending on the L/R ratio) and one 

longitudinal half-wave (m=1), occurs. This static instability restricts the flow passage considerably 

such that the throat becomes choked. This results in an increase of pressure upstream of the throat 

which reopens the shell and triggers a dynamic instability (dynamic divergence).  

The oscillations evolve into more complex and distorted forms in three phases through time. 

In the first two phases, the oscillations are gentle and shell walls do not impact on each other 

violently. After about 100-300 ms s (20 to 50 cycles), depending on the flow velocity and L/R 

ratio, the oscillations progress to the third phase in which the oscillations are chaotic-looking, with 

violent impact of shell walls. In this phase, the dynamic divergence occurs through a ‘bubble 

travelling’ mechanism; because of the full closure at the throat, a high-pressure bubble forms at 

the bottom of the shell, which travels upwards and pushes the throat downstream. When the bubble 

has travelled completely through the shell, the shell buckles in an anti-phase circumferential mode 

shape and a new bubble forms at the bottom of the shell, et seq.  

Bifurcation diagrams of the rms velocity of shells with different L/R and h/R ratios, were 

obtained with varying flow velocity. When the flow velocity was reduced, the amplitude of the 

oscillation decreased with a very irregular, rather than smooth trend, and eventually ceased at a 

flow velocity named 𝑉𝑟𝑒𝑠𝑡, considerably lower than that for the onset of the oscillation, 𝑉𝑐𝑟, 

indicating a highly subcritical behaviour. The results show that thinner and longer shells undergo 

instability at lower flow velocities, as expected. Also, thinner shells are subject to higher rms 

velocities than thicker ones. Increasing the L/R ratio (longer shells) enhances the subcritical 

behaviour for thick shells, while it does the opposite for thin shells.  

Although displaying a dominant frequency, the oscillations also contained a chaotic 

component, sometimes large and sometimes small. The effect of L/R and h/R ratios on the chaotic 

component of the oscillations was also examined. It was found that thinner and shorter shells, in 

comparison with thicker and longer ones, exhibit more irregularity (chaos) in the motion, having 
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higher values of the largest Lyapunov exponent (𝜆1), scattered Poincaré maps and pseudo-phase 

spaces, broad power spectra, etc. The only exception is the L/R=5.5 shell which has lower values 

of 𝜆1 than the L/R=6 shell. In addition, thin shells show a more pronounced chaotic behaviour at 

the upper half of the flow velocity range, while thick shells do opposite.  

The stability of a shell (L/R=6 and h/R=0.05) pressurized from outside, as a result of a small 

open hole (𝐷ℎ=3 mm) at the bottom clamp, was also investigated. Interestingly, it was observed 

that oscillations ended in static buckling after about 5 s (~ 400 cycles) of oscillatory motion. The 

reason is that, in this case, there is an increase of the pressure in the annulus, which forces the shell 

to stop oscillating and to become subject to buckling by external pressure (combined to internal 

flow, which reduces the effective shell stiffness). 

In the end, the effect of confinement (the coaxial plexiglas outer tube) on the onset and post-

critical behaviour of the system was examined; removing this outer rigid tube was shown to  (i) 

increase considerably the critical and restabilization flow velocities, (ii) increase the rms velocity 

of motion, and (iii) slightly strengthen the subcritical behaviour.  

4.2 Future work 

Although dynamic divergence was observed for the first time long ago, the work presented in 

this thesis is believed to be the first research exploring characteristics of the phenomenon such as 

its mechanism and chaotic behaviour. This research can be expanded in different directions. Most 

importantly, a refined model capable of predicting the dynamic instability (dynamic divergence) 

following the initial buckling should be developed; in this regard, utilization of an appropriate 

outflow model in nonlinear theoretical modelling is essential to predict the correct response of a 

soft shell clamped at both ends and conveying airflow.  

As shown in this study, the airflow can be fully blocked in each cycle of oscillations; hence, 

it is compressible. Thus, the incompressibility assumption in the theoretical studies of the stability 

of such soft shells is not valid and new theoretical models should take into account the 

compressibility of the flow and its effect on the fluid-related forces to predict the correct post-

buckling dynamics. This may shed light on the question why the oscillatory response following 

the initial buckling is not predicted by the existing theoretical models for clamped-clamped shells. 

The instabilities discussed in this thesis were induced by disturbing the air in the annulus 

(disturbance-induced instability), so that the shells became unstable at lower flow velocities 

compared to those arising spontaneously (self-excited instability); due to the limitations in the 

supply of compressed air, the onset of self-excited instability could not be reached. It would be of 

interest to utilize a shell with smaller thickness and/or diameter, in order to (i) reach the self-excited 

instability, and (ii) see if new instabilities exist at flow velocities well beyond the first instability. 

In addition, new experiments could be conducted using coaxial shells with simultaneous internal 

and annular airflow with the same or opposite directions. 


