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Abstract 

With technical advances in measuring human behaviors and psychological traits, research 

goals in psychology increasingly call for statistical methods for data with complex structure. 

Modeling such data is challenging because they typically contain a large number of 

redundant predictor dimensions and potentially heterogeneous subgroups of observations. 

Moreover, properly handling the covariance structure of repeated or clustered measures is 

critical when observations are correlated rather than independent. Assessment of model 

performance on independent unseen data is also important as it guides the choice of final 

model structure when researchers seek to develop models that can generalize beyond the 

current sample. 

 The present research proposes solutions to these specific challenges in the framework 

of extended redundancy analysis (ERA). ERA is a statistical tool that performs data reduction 

and regression analysis simultaneously. When investigating a complex social and behavioral 

phenomenon that involves multiple sets of numerous predictors, ERA can be useful as it 

provides a comprehensible description of predictor-response relationships by summarizing 

each set of predictors into its low-dimensional representation—a component. However, 

conventional ERA has no efficient mechanism to account for unknown but potential 

heterogeneity in data. Also, it is unable to support analysis of multiple correlated responses 

without assuming a multivariate normal distribution. Furthermore, all existing model 

evaluation metrics for ERA are “in-sample” metrics, which may limit the generalizability of 

the selected model. 

 To address these challenges, this dissertation presents two novel extensions of ERA 

and suggests an alternative perspective of model assessment. The first extension combines 

ERA with a recursive partitioning method to automatically identify heterogeneous subgroups 
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of observations differentiated by auxiliary covariates (e.g., gender, ethnicity, etc.). The 

second extension adopts generalized estimating equations in order to model correlated 

response variables with an unknown covariance structure. Both ERA extensions adopt 

various regularization techniques, such as pruning or L2 regularization, thus being able to 

avoid overfitting and determine the model complexity in a data-driven manner. The 

theoretical underpinnings of the two proposed methods are discussed in detail, along with an 

illustration of their empirical usefulness using data from the 2012 National Survey on Drug 

Use and Health in the US. Finally, this dissertation also demonstrates the benefit of using 

various resampling methods to advance the existing in-sample model assessment in ERA 

based on the analyses of simulated data. 
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Abrégé 

Avec les progrès techniques dans la mesure des comportements humains et des traits 

psychologiques, les objectifs de la recherche en psychologie exigent de plus en plus des 

méthodes statistiques pour les données à structure complexe. La modélisation de ces données 

est difficile car elles contiennent généralement un grand nombre de dimensions non 

pertinentes ou redondantes et des sous-groupes d'observations potentiellement hétérogènes. 

De plus, la gestion appropriée de la structure de covariance des mesures répétées ou groupées 

est essentielle lorsque les observations sont corrélées plutôt qu'indépendantes. L'évaluation 

des performances du modèle sur des données indépendantes invisibles est également 

importante car elle guide le choix de la structure finale du modèle lorsque les chercheurs 

cherchent à développer des modèles qui peuvent généraliser au-delà de l'échantillon actuel. 

La présente recherche propose des solutions à ces défis spécifiques dans le cadre de 

l'analyse de redondance étendue (extended redundancy analysis; ERA). L'ERA est un outil 

statistique qui effectue simultanément une réduction des données et une analyse de 

régression. Lorsque vous étudiez un phénomène social et comportemental complexe qui 

implique plusieurs ensembles de nombreux prédicteurs, l'ERA peut être utile car elle fournit 

une description compréhensible des relations prédicteur-réponse en résumant chaque 

ensemble de prédicteurs dans sa représentation de faible dimension - un composant. 

Cependant, l'ERA conventionnelle n'a pas de mécanisme efficace pour tenir compte de 

l'hétérogénéité inconnue mais potentielle des données. En outre, il n'est pas en mesure de 

soutenir l'analyse de réponses corrélées multiples sans supposer une distribution normale 

multivariée. En outre, toutes les mesures d'évaluation de modèle existantes pour l'ERA sont 

des mesures «dans l'échantillon», ce qui peut limiter la généralisabilité du modèle 

sélectionné. 
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Pour relever ces défis, cette thèse présente deux nouvelles extensions de l'ERA et 

suggère une perspective alternative de l'évaluation du modèle. La première extension 

combine l'ERA avec une méthode de partitionnement récursif pour identifier des sous-

groupes hétérogènes d'observations différenciées par des covariates auxiliaires (par exemple, 

le sexe, l'origine ethnique, etc.). La deuxième extension adopte des équations d'estimation 

généralisées afin de modéliser des variables de réponse corrélées avec une structure de 

covariance inconnue. Les deux extensions ERA adoptent diverses techniques de 

régularisation, telles que l'élagage ou la régularisation L2, permettant ainsi d'éviter le sur-

ajustement et de déterminer la complexité du modèle en fonction des données. Les 

fondements théoriques des deux méthodes proposées sont examinés en détail, ainsi qu'une 

illustration de leur utilité empirique à l'aide des données de l'enquête nationale de 2012 sur la 

consommation de drogues et la santé aux États-Unis. Enfin, cette thèse démontre également 

l'avantage d'utiliser diverses méthodes de rééchantillonnage pour faire progresser l'évaluation 

du modèle existant dans l'échantillon en ERA sur la base des analyses de données simulées. 
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Chapter 1. Introduction and Background 

 

1.1. Extended Redundancy Analysis 

Extended Redundancy Analysis (ERA; Takane & Hwang, 2005) is a statistical modeling 

framework that performs dimension reduction and regression analysis simultaneously to 

investigate the directional relationships between multiple sets of predictors and response 

variables. In ERA, each set of predictors is summarized into its low-dimensional 

representation—a component, which in turn predicts response variables. A set of predictors 

related to a component can be selected based on prior theories or domain-specific knowledge 

to facilitate the interpretability of the component. ERA has been extended to improve its data-

analytic flexibility, including generalized ERA for the analysis of a response variable that 

arises from an exponential-family distribution (Lee et al., 2016), multivariate ERA for 

response variables from a multivariate normal distribution (Lee, Kim, Choi, Hwang, & Park, 

2018), functional ERA for the analysis of smooth functions or curves (Hwang, Suk, Takane, 

Lee, & Lim, 2015; Tan, Choi, & Hwang, 2015), and Bayesian ERA (Choi, Kyung, Hwang, & 

Park, 2020). 

Linear regression, one of the most common statistical methods applied in various 

psychological studies to provide an interpretable description of how predictors affect 

response variable(s), assumes there are no strong correlations among any subsets of the 

predictors entered in a model, or no multicollinearity. Unfortunately, a regression model with 

a large pool of potential predictors rarely meets this stringent assumption of no 

multicollinearity (Cheung & Jak, 2016; Farrar & Glauber, 1967; Hastie, Tibshirani, & 

Friedman, 2009, Chapter 3; Moustafa et al., 2018; Smith & Sasaki, 1979). For example, 

studies on recreational psychoactive substance use among American adults have 
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demonstrated various predictors that are possibly highly correlated (Daza et al., 2006; Hu, 

Davies, & Kandel, 2006a; Kandel, Kiros, Schaffran, & Hu, 2004; Robinson et al., 2006). 

Such predictors include initiation age of specific substances (e.g., cigarette, alcohol, and/or 

marijuana), indicators of mental health or mental disorder, and variables concerning 

socioeconomic status (SES), to name a few. Regression analysis in this setting is not 

satisfactory because it can suffer from potential multicollinearity problems and, moreover, is 

incapable of providing a comprehensible description of directional relationships between 

many sets of predictors and response variables. Other widely noted examples of data with 

highly correlated predictors include those used in large-scale neuroimaging or genetic studies. 

Data collected in such studies typically include hundreds or thousands of brain voxel-level 

phenotypes (e.g., blood-oxygen-level-dependent or BOLD time series) or nucleotide-level 

variants (e.g., single nucleotide polymorphisms or SNPs). The brain phenotypes or genetic 

variants are grouped into particular brain or genomic locations, and for example, thousands of 

neighboring SNPs at a genomic location are often highly correlated (Day et al., 2015; Gusev 

et al., 2016; Kozberg, Chen, DeLeo, Bouchard, & Hillman, 2013; Spano et al., 2013). 

For such studies, there are both statistical and practical benefits of using ERA, 

compared to using conventional regression analysis. Statistically, ERA circumvents possible 

multicollinearity problems by replacing a large number of original predictors with a (much) 

smaller number of uncorrelated components for regression-based prediction. Such data 

reduction procedure in ERA ensures the predictability of the final model as well, because 

each component is extracted from each set of predictors in such a way that it accounts for the 

maximum variation of the responses. This is in fact a win-win strategy, statistically and 

practically, because ERA provides a parsimonious and interpretable solution to a regression 

problem that involves a rich set of psychological, physiological, and socio-demographic 
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predictors using the extracted components, whose number is much smaller than that of the 

original predictors. Using domain-specific knowledge of which predictors can be put together 

to form a component improves the interpretability of components. 

 

1.2. Model Specification and Statistical Inference 

In this section, the ERA model and its statistical inference are recapitulated to facilitate an 

understanding of the relevant methods and the new extensions that will be discussed in the 

following sections and chapters. 

Let yiq denote the ith value of the qth response variable (i = 1, ⋯, N; q = 1, ⋯, Q). 

Assume that there are K different sets of predictors, each of which consists of Pk predictors (k 

= 1, ⋯, K). Let xikp denote the ith value of the pth variable in the kth predictor set (p = 1, ⋯, 

Pk) and i′x = (xi11, ⋯, xikp) denote a 1 by P vector of predictors for the ith observation, where

1
K
k kP P== ∑ . Let wkp denote a component weight assigned to xikp and wk = 1( , , )

kk kPw w ′


denote a Pk by 1 vector of component weights in the kth predictor set. Let 1
kP

ik p ikp kpf x w== ∑  

denote the ith component score of the kth component, which is the sum of weighted 

predictors for the ith observation in the kth predictor set. Let bkq denote the regression 

coefficient relating the kth component to the qth response variable. Let eiq denote an error 

term for yiq. We assume that all the predictors are standardized with zero means and unit 

variances (Takane & Hwang, 2005). 
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The ERA model (Takane & Hwang, 2005) is then expressed as 

 
1 1

1

 

    ,

PK

iq ikp kp kq iq i q iq
k p

K

ik kq iq i q iq
k

k
y x w b e e

f b e e

= =

=

 
′= + = + 

 

= + = +

∑ ∑

∑

Wx b

f b

 (1.2.1) 

where 1diag( , , )K=W w w , 1( , , )i i iKf f′= f , and 1( , , )q q Kqb b ′= b . This can also be 

expressed in matrix notation as 

 ,
= +
= +

Y XWB E
FB E  (1.2.2) 

where Y is an N by Q matrix of response variables, X is an N by P matrix of predictors, W is 

a P by K matrix of weights, B is a K by Q matrix of regression coefficients, and E is an N by 

Q matrix of errors. For identification of F, a standardization constraint is imposed on F such 

that diag(F’F)=NI. As shown in (1.2.1), each set of predictors reduces to a single component, 

which in turn influences the qth response variable. The component weight wkp shows the 

contribution of each predictor to obtaining its component as in data reduction methods such 

as principal component analysis or canonical correlation analysis, whereas the regression 

coefficient bkq signifies the effect of each component on each response variable as in linear 

 

Figure 1.2.1. A prototypical ERA model 
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regression. In this regard, ERA carries out data reduction and linear regression 

simultaneously, as discussed earlier.  

Figure 1.2.1 displays an example of the ERA model, where each component is 

associated with two predictors (P1 = P2 = P3 = 2) and two response variables (Q = 2) are 

influenced by three components (K = 3). In the figure, squares indicate predictors and 

response variables, whereas circles represent components or error terms. For this example, 

the W and B matrices are given as  

11

12

21
1 2 3

22

31

32

0 0
0 0

0 0
= diag( , , )

0 0
0 0
0 0

w
w

w
w

w
w

 
 
 
 

=  
 
 
  
 

W w w w  and 
11 12

21 22

31 32

 
b b
b b
b b

 
 =  
 
 

B . 

The ERA model contains two sets of parameters to be estimated—component 

weights (W) and regression coefficients (B). These unknown parameters are estimated by 

minimizing the following least-squares objective function: 

 ( )SS ,φ = −Y XWΒ  (1.2.3) 

with respect to W and B, subject to the constraint diag(F’F)=NI, where SS(A)=trace(A’A). 

An alternating least-squares (ALS) algorithm (de Leeuw, Young, & Takane, 1976) was 

developed to minimize the objective function (Takane & Hwang, 2005). The ALS algorithm 

alternates two main steps until convergence: 

Step 1. Update W for fixed B. This is equivalent to minimizing the following  

criterion with respect to W, 

 
( ) ( )( )
( ) ( ) ( )( )

SS vec vec

SS vec vec ,

φ = −

′= − ⊗

Y XWΒ

Y Β X W
 (1.2.4) 
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where vec(A) indicates the vec operator that creates the column vector of a 

matrix A obtained by stacking the columns of A and ⊗  refers to the 

Kronecker product. Let *W denote a column vector formed by eliminating 

zero elements from vec(W), and Ω denote a matrix formed by eliminating 

the columns of ′⊗B X  corresponding to the zero elements in vec(W). The 

least-squares estimate of *W is then obtained by 

 ( ) ( )1*ˆ vec .−′ ′=W ΩΩ Ω Y  (1.2.5) 

Subsequently, the nonzero elements in W are replaced with the 

corresponding values in *Ŵ . Then, the updated W is multiplied by 

1( )N −′ ′W X XW to satisfy the constraint diag(F’F)=NI. 

Step 2. Update B for fixed W. This is equivalent to minimizing 

 

( ) ( )( )
( ) ( ) ( )( )
( )( )*

SS vec vec

SS vec vec

SS vec ,

φ = −

= − ⊗

= −

Y XWB

Y I F B

Y ΓB

 (1.2.6) 

where Γ is a matrix formed by removing the columns in ⊗I F  that 

correspond to zero elements in vec(B), and B* is a column vector formed by 

eliminating zero elements from vec(B). The least-squares solution for B* is 

then given by 

 ( ) ( )1*ˆ vec .−′ ′=B Γ Γ Γ Y  (1.2.7) 

Similarly, the updated B is reconstructed by *B̂ . 

To assess the performance of ERA models, an overall fit measure, called FIT 

(Takane & Hwang, 2005), can be calculated to evaluate how well a given ERA model 

explains the variance of the response variables: 
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 FIT 1
( )SS
φ

= −
Y

. (1.2.8) 

The values of FIT range from 0 to 1, and larger values indicate more explained variance of 

the variables1.  

To test the statistical significance of parameter estimates, ERA can use resampling 

methods, such as permutation tests for obtaining exact p-values (as described in Lee et al., 

2016, 2018) and bootstrapping (Efron & Tibshirani, 1986) for constructing confidence 

intervals. For example, a 95% bootstrapped confidence interval, i.e., the 2.5th and 97.5th 

percentiles of the bootstrap distribution of a parameter estimate based on 1,000 bootstrapped 

replications, are often used. Although there is no strict rule of thumb for the number of 

bootstrap replications, in general, 500 to 1,000 bootstrap replications may be sufficient. 

The ERA model described thus far is considered non-parametric because the 

distributions of response variables are unknown or not predetermined. More recent extensions 

of ERA can handle various types of response variables under some distributional 

assumptions. One advantage of having a distributional assumption is that standard errors, 

significance tests, or confidence intervals (CIs) are available without performing any 

resampling. For example, the constrained stochastic ERA model (DeSarbo, Hwang, Blank, & 

Kappe, 2015) is univariate (i.e., considers a single response variable), is linear in its ERA 

parameters, and has normally distributed residuals. The generalized ERA model proposed in 

Lee et al. (2016) assumes an exponential family distribution in order to accommodate 

phenotype data arising from a binomial distribution.2 Also, in Lee et al. (2018), a 

multivariate normal distribution is assumed for the analysis of multiple response variables. 

 
1 As will be discussed in Chapter 4, other measures of overall model fit for parametric ERA are based on 
penalized-likelihood criteria, such as AICERA and BICERA (DeSarbo, Hwang, Blank, & Kappe, 2015), which take 
model complexity into account. 
2 Refer to the methodology in Chapter 2 (Appendix B) for the detailed description on the statistical inference of 
the generalized ERA model. 
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1.3. Review of Relevant Methods 

Like ERA, principal components regression (PCR; Hotelling, 1957; Kendall, 1957) and 

partial least-squares regression (PLSR; de Jong, 1993; Wold, 1966) also incorporate data 

reduction into a regression problem. Thus, all three approaches are especially useful when 

regular regression produces unreliable coefficients with high standard errors or fails 

completely in the cases where predictors are highly collinear and/or the number of predictors 

is significantly larger than the number of observations. Technically, all three approaches aim 

to summarize the original predictors into a smaller set of uncorrelated components and 

perform least-squares regression on these components, where the components are defined as 

exact linear combinations of their associated predictors. In this view, they all attempt to 

capture most of information in X for predicting Y while reducing the dimensions of X. A 

major difference of the approaches arises from how components are constructed to explain 

response variables.  

As illustrated in Figure 1.3.1, in PCR, principal component analysis (PCA) is first 

carried out to obtain principal components (PCs) of predictors, PC1, … , PCP, where P is the 

number of predictors. Often times, most of the variance in the original predictors can be 

captured by the first few principal components. Thus, the first k (for k < P) principal 

components, PC1, … , PCk, are then used to predict the response variable as in multiple 

regression (Hotelling, 1957; Jolliffe, 1982)3. When PCs are formed by spectral 

decomposition of the covariance matrix of predictors, they are extracted to maximize the 

variance of the predictors only, not considering how each predictor is related to the response 

variables. This implies that the selected PCs for regression may not be optimal in explaining 

 
3 Note that we get a reduced regression for P < k. Naturally, the problem of choosing an optimum subset of PCs 
remains. Typically, a scree plot that displays the eigenvalues of PCs (ordering the eigenvalues from largest to 
smallest) is used to determine the number of components to retain (k).  
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the variance of the response variables: e.g., the first PC, which accounts for the most variance 

in predictors, can be less explanatory for the response variable than the second or third PC 

(Maitra & Models, 2008, pp. 84-86). Some simulation studies show that even unselected PCs 

can explain a great deal of the variance in the response variable (e.g., Jolliffe, 1982; Smith & 

Campbell, 1980; Tian, Wilcox, & James, 2010). Moreover, when the covariance of X is 

characterized by only a few dominant eigenvalues and the number of non-zero eigenvalues is 

not negligible, PCR becomes less satisfactory because the PCs corresponding to small 

eigenvalues are all omitted (De Mol, Giannone, & Reichlin, 2008).  

An alternative approach to PCR is PLSR, which also constructs components as a set 

of linear combinations of predictors (often called latent vectors in the PLS literature). But, 

unlike PCR, it takes into account the covariances between components and response variable 

in order to aid the construction of components that are maximally explain the variation of the 

response variable (Alin, 2009; Geladi & Kowalski, 1986; Mehmood & Ahmed, 2016). More 

specifically, PLSR searches for a set of components that performs a simultaneous 

decomposition of both X and Y with the constraint that these components explain the 

covariance between (the decompositions of) X and Y as much as possible (Refer to Appendix 

 

Figure 1.3.1. The steps involved in performing PCR 
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A for details of these steps). To achieve this, PLSR uses an iterative algorithm, e.g., 

Nonlinear Iterative PArtial Least Squares (NIPALS; Wold, 1966) or Statistically Inspired 

Modification of the PLS method (SIMPLS; de Jong, 1993). Once the components are 

obtained, a regression step is followed to estimate the effects of the PLS components on 

response variables4. As such, the whole parameter estimation procedure of PLSR involves 

separate stages for estimating components and regression coefficients, optimizing multiple 

objective functions separately for each group of parameters. Such lack of a well-founded 

global optimization criterion makes it difficult to evaluate the overall goodness of fit of the 

specified model (Hwang & Takane, 2014; McDonald, 1996; Takane & Hwang, 2005). 

Conversely, ERA employs an alternating least-squares algorithm to minimize the 

global least-squares criterion in (1.2.3) for parameter estimation. As discussed previously, 

this contributes to calculating a measure of overall model fit. Moreover, ERA considers 

multiple sets of predictors and reduces each set into a separate component (Figure 1.2.1), 

whereas PCR and PLSR extract more than one component from all the predictors entered in 

the analysis (Figure 1.3.1). Often, this makes it difficult to describe or understand the 

substantive meaning of obtained components for explaining response variables (Enki, 

Trendafilov, & Jolliffe, 2013; Shmueli, 2010), which in turn has limited the use of PCR and 

PLSR in fields such as psychology or medicine, where interpretation of “regressors” in the 

final model is important. Components that lack adequate substantive or theoretical grounds 

may contribute to the lack of interpretability of the final regression model. In ERA, however, 

each set of predictors falls into a distinct non-overlapping component, where each component 

 
4 As in PCR, the problem of determining the optimum number of PLS components in the final model remains, 
and cross-validation (CV) is widely used. For example, root mean squared errors (RMSE) are calculated for 
PLS models with increasing number of components, then the optimal number of components is chosen as the 
one that minimizes the RMSE. Similarly, the variable importance in the projection (VIP) method (Gauchi & 
Chagnon, 2001) and the Q2 criterion (Stone, 1974) also utilize CV. 
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is well-defined on the basis of substantively meaningful specification of predictor group 

using priori domain-specific knowledge or assumptions about the data. 

Researchers may attempt to accommodate an ERA model in the framework of 

structural equation modeling (SEM; Jöreskog, 1970, 1973), which is another widely used 

multivariate statistical method that examines the relationships between observed and latent 

variables. Conventional structural equation models, often referred to as factor-based SEM or 

covariance structure analysis in the SEM literature, assume that latent variables are 

equivalent to common factors which explain the covariance of observed variables only 

(Bollen, 1989; Bollen & Bauldry, 2011; Edwards & Bagozzi, 2000). On the other hand, ERA 

aims to obtain components as linear functions of predictors, which in turn explains the 

maximum variance of response variables, rather than common factors. Consequently, there 

are several technical difficulties when accommodating ERA components in the framework of 

SEM. For instance, including ERA components leads to an identification problem, violating 

the so-called 2+ emitted path rule (Bollen & Davis, 2009; MacCallum & Browne, 1993). 

Moreover, SEM is prone to the occurrence of non-convergence when the number of variables 

is large while the number of observations is limited (Bentler & Chou, 1987; Deng, Yang, & 

Marcoulides, 2018; Jackson, 2001). However, high-dimension low-sample-size is common in 

many social and behavioral studies, e.g., in the data collection of neuroimaging or genetic 

studies due to the high costs associated with obtaining a sufficient number of observations. 

As discussed previously, ERA has been adopted as a useful tool for fitting such high-

dimensional data in various applications (e.g., DeSarbo et al., 2015; Hwang et al., 2015; Lee 

et al., 2016, 2018). 
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1.4. Dissertation Objectives and Overview 

This dissertation is a manuscript-based thesis and presents two ERA extensions that I have 

recently proposed to address issues of substantive importance in psychology and related 

fields. Specifically, both extensions deal with how to effectively explore the relationships 

between substance use and various associated socio-psychological variables using data from 

the National Survey on Drug Use and Health (NSDUH; United States Department of Health 

and Human Services. Substance Abuse and Mental Health Services Administration. Center 

for Behavioral Health Statistics and Quality, 2013). As discussed earlier, the use of 

recreational psychoactive substances is an example of a complex social phenomenon that 

involves multiple different sets of potentially correlated predictors, thus ERA is well suited 

for the analysis of NSDUH data.  

The literature on substance use, however, suggests that certain groups of US residents 

are dissimilar to others with respect to their socio-demographic characteristics, e.g., age, 

gender, ethnicity, etc. For example, many nicotine dependence studies show that the effects 

of occupation type, alcohol consumption pattern, or physical activity level on smoking 

initiation or cessation differ by ethnicity and race (Daza et al., 2006; Kandel et al., 2004; 

Robinson et al., 2006). Such patterns of heterogeneity depend on the specified statistical 

model, and moreover, it is difficult to know a priori which socio-demographic covariates to 

include. Unfortunately, ERA has no mechanism to account for such heterogeneity efficiently, 

thus being unable to examine whether the patterns of the relationships between variables vary 

across subgroups of observations differentiated by additional covariates. 

In addition, ERA needs a more flexible modeling framework when the assumption of 

independent observations is violated. For example, the vast majority of substance users in the 

US population use more than one substance either concurrently or sequentially: the NSDUH 
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data show a positive association between cigarette and alcohol use, as well as a correlation 

between degree of alcohol use and rate of marijuana use among US residents. Considering 

the interdependence in the use of multiple substances, how to simultaneously analyze 

multiple correlated (or clustered) responses is a critical research question to address in ERA 

because the violation of independent observation assumption can invalidate any statistical 

inferences. 

Thus, in this present research, two novel extensions of ERA are presented focusing on 

the theoretical underpinnings and empirical usefulness of the proposed extensions. The first 

extension, presented in Chapter 2, explores how to automatically identify heterogenous 

subgroups of respondents given a specified ERA model. To achieve this, ERA is combined 

with model-based recursive partitioning (MOB; Zeileis, Hothorn, & Hornik, 2008). A 

simulation study was conducted to evaluate the performance of the proposed method. From 

the application of the 2012 NSDUH data concerning nicotine dependence among US adults, 

the method could identify heterogeneous subgroups successfully based on a combination of 

sociodemographic covariates. This chapter was presented at the annual conference of the 

International Meeting of the Psychometric Society in July 2017, which was held in Zurich, 

Switzerland, and submitted to British Journal of Mathematical and Statistical Psychology in 

October 2019 and is currently the first round of revision. 

The second extension, presented in Chapter 3, discusses how ERA incorporates 

generalized estimating equations (GEE; Liang & Zeger, 1986) to examine the effects of sets 

of predictors on multiple (and possibly correlated) responses simultaneously while relaxing 

the assumptions of correct specification of the covariance structure of the responses. This 

method also focusses on how to make the best use of ridge-type regularization to address any 

potential overfitting when many predictors per component are considered or when many 
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components influence the response variables. This new ERA extension was successfully 

applied to the analysis of rare genetic variants that are associated with multiple metabolic 

syndrome measures (Lee et al., 2019), as well as to the study of co-occurring recreational 

substance use among US adults (Kim et al., in press). Chapter 3 presents the major findings 

obtained by applying the method to the 2012 NSDUH data. This study was presented at the 

annual conference of the International Meeting of the Psychometric Society in July 2019, 

which was held in Santiago, Chile, and was accepted for publication in Quantitative 

Psychology, IMPS 2019 (Kim et al., in press). The methodological details of this second ERA 

extension appear in Appendix C. Parameter Estimation in GEE-ERA, which was originally 

proposed in Lee et al. (2019). My contribution to this paper includes the development of the 

main algorithm, its implementation in a statistical package, and writing of the text. 

Additionally, Chapter 4 introduces several new model evaluation metrics for ERA 

based on resampling methods, each of which aims to assess the predictive performance of 

ERA models on so-called out-of-sample data that are not used for parameter estimation. 

Although considerable work has been done in statistics and machine learning on the use of 

various cross-validation (CV) and bootstrap methods for out-of-sample prediction, to date, no 

research has applied these general tools to the ERA setting. Thus, I carried out simulation 

studies to evaluate the relative performance of different out-of-sample prediction error 

estimators for ERA. Simulation results, graphically examined using boxplots and error bars, 

illustrate which error estimator is the best to find the true model when mis-specified (i.e., 

overfitted) models are considered. 

The final chapter summarizes the preceding chapters, highlighting the implications of 

new ERA extensions and discusses potential topics for future research. 
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Chapter 2. Model-Based Recursive Partitioning of Extended 

Redundancy Analysis 

 

Manuscript: Kim, S. & Hwang, H. Model-Based Recursive Partitioning of Extended 
Redundancy Analysis with an Application to Nicotine Dependence among US adults. 
Submitted to British Journal of Mathematical and Statistical Psychology (2019). 
 

Abstract 

Extended redundancy analysis (ERA) is used to reduce multiple sets of predictor variables to 

a smaller number of components and examine the effects of these components on a response 

variable. In various social and behavioral studies, auxiliary covariates (e.g., gender, ethnicity, 

etc.) can often lead to heterogeneous subgroups of observations, each of which involves 

distinctive relationships between predictor and response variables. ERA is currently unable to 

consider such covariate-dependent heterogeneity to examine whether the effects of predictor 

components on a response variable vary across subgroups differentiated by covariates. To 

address this issue, we propose to combine ERA with model-based recursive partitioning in a 

single framework. This method aims to partition observations into heterogeneous subgroups 

recursively based on a set of covariates and to apply ERA to each subgroup simultaneously. It 

can show how the impacts of components on a response variable differ across covariate-

dependent subgroups. Moreover, it produces a tree diagram that aids in visualizing a 

hierarchy of covariates, as well as interpreting their interactions. In the analysis of public data 

concerning nicotine dependence among US adults, the method uncovered heterogeneous 

subgroups characterized by several covariates, each of which yielded different effects of 

components on regression coefficients. 

 

Keywords: Extended redundancy analysis, model-based recursive partitioning, covariate-

dependent heterogeneity, decision tree, model visualization 
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2.1. Introduction 

Extended redundancy analysis (ERA; Takane & Hwang, 2005) is a statistical method that 

relates multiple sets of predictors to response variables. In ERA, a component is extracted 

from each set of predictors in such a way that it accounts for the maximum variation of a 

response variable. In this regard, ERA aims to perform data reduction and linear regression 

simultaneously, providing a simpler description of directional relationships among many sets 

of variables. ERA has been extended to improve its data-analytic flexibility, including 

generalized ERA for the analysis of a response variable that arises from an exponential-

family distribution (Lee et al., 2016), functional ERA for the analysis of smooth functions or 

curves (Hwang et al., 2015; Tan et al., 2015), and multivariate ERA for the analysis of 

multiple correlated responses (Lee et al., 2019, 2018). 

 In many social and behavioral studies, researchers often identify heterogeneous 

subgroups of observations based on auxiliary covariates, e.g., age, gender, ethnicity, etc., 

each of which involves different strengths/directions of relationships between variables of 

interest (Merkle & Zeileis, 2013; Raudenbush, 1997; Royston & Sauerbrei, 2004; Shadish, 

Cook, & Campbell, 2002). For example, many nicotine dependence studies show that the 

effects of occupation type, alcohol consumption pattern, or physical activity level on smoking 

initiation or cessation differ by ethnicity and race (Daza et al., 2006; Hu et al., 2006a; Kandel 

et al., 2004; Robinson et al., 2006). In psychological and educational testing, item bias or 

differential item functioning is often present between different gender or cultural groups 

(Cauffman & MacIntosh, 2006; Fleishman, Spector, & Altman, 2002; Smith & Reise, 1998; 

Strobl, Kopf, & Zeileis, 2015a). In pediatric obesity studies, the relationship between obesity 

and its predictors related to impaired health-related quality of life is shown to vary across sex, 

race, and/or nations (Maher, 2004; Wake, Salmon, Waters, Wright, & Hesketh, 2002; 



25 
 

Williams, Wake, Hesketh, Maher, & Waters, 2005; Zeller & Modi, 2006). Moreover, the 

growth rate of intelligence in early childhood appears to be divergent across parental 

socioeconomic status (SES) groups (Brandmaier, von Oertzen, McArdle, & Lindenberger, 

2013; McArdle & Epstein, 1987; Von Stumm & Plomin, 2015). Although such covariate-

dependent heterogeneity or observations is prevalent in practice, ERA has no mechanism to 

account for this heterogeneity efficiently, thus being unable to examine whether the 

relationships between components and a response variable vary across subgroups of 

observations differentiated by additional covariates. 

 To address this issue, we propose to combine ERA with model-based recursive 

partitioning (MOB; Zeileis, Hothorn, & Hornik, 2008) in a unified framework so as to 

investigate whether the effects of components on a response variable are different across 

covariate-dependent subgroups. Classical recursive partitioning methods, such as 

classification and regression trees (Breiman, Friedman, Stone, & Olshen, 1984; Loh, 2011), 

focus on identifying subgroups involving different values of a response variable only. On the 

other hand, MOB aims to fit a specified statistical model to each of heterogeneous subgroups 

identified successively based on an additional set of covariates. In this way, it can detect 

covariate-dependent subgroups that lead to different parameter estimates of the fitted 

statistical model (Seibold, Zeileis, & Hothorn, 2016a; Strobl et al., 2015a; Strobl, 

Wickelmaier, & Zeileis, 2011). 

The proposed method, called MOB-ERA hereinafter, begins by fitting an ERA model 

to entire observations, producing a single set of the ERA parameter estimates, and then 

successively inspects whether there are substantial changes in the effects of components on 

the response variable across covariate-dependent subgroups. This is achieved through the so-

called parameter instability test in MOB that uses the score for the log-likelihood function of 
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the ERA model, as will be discussed in detail in the Methods section. The proposed method 

provides a tree diagram that displays hierarchically a nested structure of all the covariates 

selected for partitioning. Each end node of the tree represents a non-overlapping subgroup 

that entails its own ERA parameter estimates. This tree can greatly aid in visualizing how the 

partitioning covariates interact with each other in a hierarchical manner and how each group 

can be characterized by combinations of these covariates. 

The paper is organized as follows. We begin to review ERA and present the proposed 

method, focusing on how MOB can be combined with ERA for finding covariate-dependent 

subgroups. We then conduct a simulation study to evaluate the performance of the proposed 

method. We then apply the method to data from the 2012 National Survey on Drug Use and 

Health (NSDUH) concerning nicotine dependence among US adults and their associated 

predictors. This application shows that the method may identify heterogeneous subgroups 

successfully based on a combination of sociodemographic covariates. We finally discuss the 

implications of the method and potential topics for future research. 

 

2.2. Methods 

2.2.1. Parametric ERA 

Assume that there are K different sets of predictors, each of which consists of Pk predictors (k 

= 1, ⋯, K). Let xikp denote the ith value of the pth variable in the kth predictor set (i = 1, ⋯, 

N; p = 1, ⋯, Pk) and i′x = (xi11, ⋯, xikp) denote a 1 by P vector of predictors for the ith 

observation, where 1
K
k kP P== ∑ . Let yi denote the ith value of the response variable. We 

assume that yi follows an exponential family distribution with a mean μi and variance ϕσi
2, 

where ϕ is a constant dispersion parameter. Let wkp denote a component weight assigned to 

xikp and wk = 1( , , )
kk kPw w ′

 denote a Pk by 1 vector of component weights in the kth predictor 
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set. Let 1
kP

ik p ikp kpf x w== ∑  denote the ith component score of the kth component, which is the 

sum of weighted predictors for the ith observation in the kth predictor set. Let bk denote the 

regression coefficient relating the kth component to the response variable. Let ηi and g(⋅) 

denote the ith linear predictor of yi and a known link function that describes how μi is related 

to ηi, respectively. We assume that all the predictors are standardized with zero means and 

unit variances (Takane & Hwang, 2005). 

The ERA model (Hwang et al., 2015; Lee et al., 2016) is then expressed as 

 1 1

1

( )

          

         ,

i i

PK

ikp kp k i
k p

K

ik k i
k

k

g

x w b

f b

µ η

= =

=

=

 
′= = 

 

= =

∑ ∑

∑

Wx b

f b

 
(2.2.1) 

where 1diag( , , )K=W w w , 1( , , )i i iKf f′= f , and 1( , , )Kb b ′= b . As shown in (2.2.1), 

each set of predictors reduces to a single component, which in turn influences the response 

variable. Each component weight wkp shows the contribution of each predictor variable to 

obtaining its component as in canonical correlation analysis, whereas the regression 

coefficient bk signifies the effect of each component on the response variable as in linear 

regression. In this regard, ERA carries out data reduction and linear regression 

simultaneously, as discussed earlier. Figure 2.2.1 displays an example of the ERA model, 

where a response variable is influenced by three components (K = 3), each of which is 

associated with two predictors (P1 = P2 = P3 = 2). For this example, the W and b are given as  
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In the present paper, we assume that yi is independently distributed with the mean μi 

and has the probability density (or mass) function of the form 

 
( )( ; , ) exp ( , ) ,

( )
i i i

i i i
yf y yθ β θθ φ γ φ

α φ
 −

= + 
 

  

for known functions α(∙), β(∙), and γ(∙), where θi is the natural (or canonical) parameter that 

can be expressed as some function of μi and ϕ is a constant dispersion parameter. If the 

dispersion parameter ϕ is known, the above equation belongs to the exponential family with 

the canonical parameter θi (McCullagh & Nelder, 1989, Chapter 2; Nelder & Wedderburn, 

1972). Many commonly used distributions, such as the normal, gamma, binomial, and 

Poisson, are in this family. The log-likelihood function for N observations from the 

exponential family is generally written as a function of 1( , , )Nθ θ ′=θ  , i.e., 

 1
1 1 1

( )( ; , , ) log ( ; , ) ( , )
( )

N N N
i i i

N i i i
i i i

yy y f y yθ β θθ φ γ φ
α φ= = =

−
= = +∑ ∑ ∑θ    

 

Figure 2.2.1. An exemplary parametric ERA model 
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in its “natural” form, where the function is parametrized by its natural (or canonical) 

parameters. We seek to maximize the 1( ; , , )Ny yθ   over θ, thus the log-likelihood can be 

written as 

 1( ; , , )Ny yθ  =
1

( )
N

i i i
i

yθ β θ
=

−∑ ,  

where the terms that do not depend on θ are discarded. Suppose we consider a canonical link 

function g(‧) that sets Wi i iη = =x b f b . Then, the log-likelihood function of the ERA model 

for N observations can be written as 

 ERA 1
1 1

( ; , , ) ( ) ( )
N N

N i i i i i i
i i

y y y yβ β
= =

′ ′= − = −∑ ∑θ W W f  x b x b f b b , (2.2.2) 

where θERA denotes a (P+K) by 1 vector that stacks kw ’s and b. The maximum-likelihood 

(ML) parameter estimates of a log-likelihood are typically obtained by iteratively reweighted 

least squares (IRLS) based on the Newton-Raphson optimization algorithm (McCullagh & 

Nelder, 1989, Chapter 2.5; Nelder & Wedderburn, 1972). For ERA, maximizing (2.2.2) via 

IRLS is equivalent to minimizing the following generalized least-squares criterion (Hwang et 

al., 2015; Lee et al., 2016) 

 ,

2 2
( ) 1

1 1 1 1
(  ) ( )

kp k

N K N K
P

w b i i ikp kp k i i ik kp
i k i k

kz x w b z f bϕ ω ω
=

= = = =

 = − = − ∑ ∑ ∑ ∑Σ , (2.2.3) 

with respect to wkp and bk, subject to 2
1

N
iki

f N
=

=∑ , where ωi = (∂μi/∂ηi)2/τi, τi is the variance 

function value evaluated at μi, and zi is the so-called adjusted response variable with elements 

zi = ηi + (yi - μi)/ωi (McCullagh & Nelder, 1989, Chapter 2). An iterative algorithm similar to 

the alternating least-squares algorithm was proposed to minimize (2.2.3) (Hwang et al., 2015; 

Lee et al., 2016). This algorithm yields the ML estimates of the ERA parameters and their 
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asymptotic standard errors. Refer to Appendix B. Estimation and Inference in Parametric 

ERA for a detailed description of the algorithm. 

2.2.2. Recursive Partitioning of ERA 

As discussed earlier, ERA is currently unable to capture covariate-dependent heterogeneity, 

ignoring potential subgroup-specific relationships between components and a response 

variable based on additional covariates. As in other MOB extensions, the term “covariate” 

refers to a variable that affects the direction and/or strength of the relation between predictor 

and response variables, which has been interchangeably used with the term “moderator” 

(Arah, 2008; Bollen & Bauldry, 2011; Seibold, Zeileis, & Hothorn, 2016b; Thomas, 

Bornkamp, & Seibold, 2018). 

 To identify heterogeneous subgroups based on a given set of covariates in ERA, we 

propose MOB-ERA that combines ERA with MOB in a unified manner. More specifically, 

the so-called parameter instability test in MOB (Seibold et al., 2016a; Zeileis et al., 2008) is 

used to split the data recursively into disjoint subgroups (also called nodes) Bs (s = 1, ⋯, S), 

each of which contains its own ERA parameters. This test focuses on whether there are 

statistically significant changes or instabilities in parameter estimates across subgroups 

derived from a partitioning covariate. 

 Let iψ  denote the score contribution of the ith observation or the gradient of the 

log-likelihood contribution of the ith observation with respect to the model parameters, i.e., 

 iψ = ( )ERA;( , )is yθ x = ERA

ERA

( ; ( , ) )iy∂
∂

θ
θ

 x
. (2.2.4) 

Then, the empirical score contribution of the ith individual is 

 iψ̂ = ( )ERA
ˆ ;( , )is yθ x =

ERA

ERA

ERA ˆ

( ; ( , ) )iy∂
∂ θ

θ
θ

 x , (2.2.5) 
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where ERAθ̂  denotes the ML parameter estimates at convergence. If only one set of 

parameters θERA holds for all N observations (i.e., no presence of covariate-dependent 

heterogeneity), then the empirical score contributions iψ̂ ’s would fluctuate randomly around 

their mean (i.e., zero), regardless of how the observations are divided or grouped by a 

covariate. For example, let us consider “age” a partitioning covariate. After obtaining a set of 

the ERA parameter estimates over all N observations, we can sort their empirical score 

contributions, iψ̂ , by age. If no age-dependent heterogeneity is present, the ordered score 

contributions will not show any structural fluctuations over the entire range of age. But, in the 

presence of age-dependent heterogeneity, a systematic deviation of the ordered contributions 

from zero over the range of age will be observed.  

 This way of investigating the individual empirical scores over the range of a 

covariate gives rise to several test statistics for the parameter instability test (see Merkle, Fan, 

& Zeileis, 2014; Zeileis & Hornik, 2007; Zeileis et al., 2008). All these statistics are based on 

the cumulative sum of the sorted empirical score contributions, the so-called empirical 

fluctuation process, and the exact form of the test statistic depends on whether the covariate is 

continuous (e.g., age), ordinal (e.g., education levels), or nominal (e.g., gender). For example, 

a test statistic for a continuous covariate is given by the maximum of the squared L2 norm of 

the empirical fluctuation process scaled by its variance. Details of the parameter instability 

tests are discussed in Zeileis and Hornik (2007). The parameter instability test is performed 

for each and every covariate considered, and the observations are divided into subgroups if at 

least one of the partitioning covariates yields a p-value below the pre-specified significance 

level of α. The covariate associated with the smallest p-value is used as the partitioning 

variable at the current stage of data partitioning. 
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After choosing a covariate most associated with parameter instability, MOB-ERA 

determines a certain cutoff value (or a cut-point) in the selected covariate that makes two 

resulting subgroups of observations, say B1 and B2, as different as possible with respect to the 

estimated ERA parameters ERAθ̂ . More specifically, for every conceivable value of the 

covariate, the sum of each subgroup’s log-likelihood is calculated based on the ERA 

parameters estimated for the two groups, i.e., 1(B )
ERA

ˆ( )θ + 2(B )
ERA

ˆ( )θ . The covariate value that 

maximizes the sum of the partitioned log-likelihoods is selected as the cut-point, leading to 

two subgroups of observations. Subsequently, within each of the subgroups, the same 

procedures of parameter instability test and cut-point selection are repeated until some 

stopping criteria met, as discussed in the next subsection. 

The procedures using the score contributions in (2.2.5) assume that both sets of the 

ERA parameters, i.e., component weights and regression coefficients, are to vary across 

subgroups. This is technically possible and might be of interest depending on research 

questions (e.g., does a predictor contribute differently to forming its component in two gender 

groups?). However, in the present paper, we estimate component weights once based on the 

entire observations and then consider them fixed for all subsequent subgroups, while 

estimating regression coefficients freely across the subgroups. This assures that components 

or regressors in an ERA model convey the same meanings across different subgroups of the 

resulting tree, so that the regression coefficients in one subgroup can be compared with those 

in another. That is, we first fit a specified ERA model to all observations and obtain the 

global component weight estimates Ŵ  and component scores ˆ
i i= Wf x . Then, we use the 

following score contributions, rather than using (2.2.5), for the data partitioning procedures 

described above. 
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 iψ̂ = ( )ˆ; ( , )is yb f =
ˆ

( ;( , ) )iy∂
∂



b

b f
b

. (2.2.6) 

Figure 2.2.2 displays an illustrative example of a MOB-ERA tree, where three 

subgroups (B1, B2, and B3) of different sizes (n1, n2, and n3) are identified based on two 

partitioning covariates (age and gender). Based on the ERA model in Figure 2.2.1, entire 

observations are first partitioned into males and females. The male group (Subgroup 3) 

involves no significant parameter instability by age, whereas the female group is further split 

by age, resulting in two more subgroups of women aged up to 30 (Subgroup 1) and over 30 

(Subgroup 2). Each identified subgroup will provide its own ERA parameter estimates that 

are generally displayed in the boxes. 

2.2.3. Pruning Strategy 

In a recursive partitioning method, pruning is generally used to remove nodes to avoid 

overfitting (Strobl, Malley, & Tutz, 2009). In MOB-ERA, the following pre-pruning 

strategies are available: the data partitioning procedures are repeated until (a) no more 

 

Figure 2.2.2. An illustrative example of MOB-ERA 
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covariate leads to statistically significant parameter instabilities, (b) a pre-specified threshold 

for the minimum number of observations left in a node is reached, or (c) all nodes are pure 

with respect to covariate values, where a pure node represents a subgroup that has 

observations belonging to the same covariate group. For large samples, however, these pre-

pruning strategies may be less ideal because even a small degree of parameter instability can 

turn out to be statistically significant (Seibold et al., 2016a; Zeileis et al., 2008).  

 MOB-ERA can also adopt the post-pruning strategy using information criteria, such 

as AIC or BIC, where pruning is started from the bottom of the tree upwards, removing one 

sub-node at a time. For example, we may compare the following two AIC values to decide 

whether to prune a node: 

 AIC(Parent node) = -2∙ (Parent node)
ERA

ˆ( )θ + 2∙h(Parent node) (2.2.7) 

and 

 AIC(Subsequent nodes: A and B) = -2∙( (Node A)
ERA

ˆ( )θ + (Node B)
ERA

ˆ( )θ ) + 2∙(h(Node A) + h(Node B)), (2.2.8) 

where ( )
ERA

ˆ( )⋅θ  denotes the log-likelihood of the ERA model evaluated at the estimated 

parameters, and h denotes the number of free parameters. The AIC in (2.2.7) represents the 

relative amount of information assuming a single set of parameter estimates (simpler model 

of homogeneity), where the AIC in (2.2.8) quantifies the information assuming different sets 

of parameter estimates (complex model of heterogeneity). For example, in Figure 2.2.2, 

assume that AIC(Node 2) > AIC(B1 and B2). Then, the split of Node 2 into the subgroups B1 and B2 

is kept in the final tree because this results in a smaller AIC value than the tree without these 

subgroups. By means of the pre- and/or post-pruning strategies, MOB-ERA can generate a 

hierarchy of selected covariates, which leads to heterogeneous subgroups of observations, in 

an automatic manner. 



35 
 

2.3. A Simulation Study 

We investigated a Type Ⅰ error rate, power, and classification accuracy of the proposed 

method. In the MOB framework, a Type Ⅰ error can be defined as the probability of having at 

least one split when none of the covariates are associated with parameter instabilities 

(Fokkema, Smits, Zeileis, Hothorn, & Kelderman, 2018; Seibold, Hothorn, & Zeileis, 2018; 

Wickelmaier & Zeileis, 2018). The Type I error performance of a new MOB extension has 

important practical implications because it is closely related to overfitting, where the tree 

partitions observations according to the noise rather than the true covariate-dependent 

structure. Thus, we examined whether the Type Ⅰ error rate was controlled across different 

simulation conditions under the proposed method. We also investigated how well and 

accurately the proposed method could detect parameter instability, thereby identifying the 

subgroups derived from pre-specified partitioning covariates correctly. 

2.3.1. Simulation Design and Data Generation 

We specified an ERA model that was composed of two components (K = 2) and a response 

variable. No correlation between the components was assumed. We fixed one regression 

coefficient b1 to .3 but allowed the other regression coefficient b2 to vary depending on how 

much of the variance in the response variable was accounted for by the two components (R2). 

We considered three levels for the variance explained (R2 = .2, .4, and .6), which in turn 

resulted in three different values of b2 (b2 = .33, .56, and .71). Each component was linked to 

four predictor variables (Pk = 4) with the pre-determined weight values, w1 = (.7, .6, .5, .4)’ 

and w2 = (.6, .5, .4, .3)’. The number of components and predictors remained the same over 

the different simulation conditions. 
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 We considered six different sample sizes: N = 90, 120, 180, 300, 600, and 900. As 

depicted in Figure 2.3.1, this total sample size N was then divided into three subgroups, 

whose sizes were denoted by n1, n2, and n3, with respect to two binary partitioning covariates, 

Z1 and Z2. Both covariates were randomly sampled from a binomial distribution, Z1 ~ B(N, 

p1+(1-p1)∙δ) and Z2 ~ B(N, p2+(1-p2)∙δ), where p1 = P(Z1 = 0) = n1/N, p2 = P(Z2 = 0|Z1 = 1) = 

n2/(n2+n3), and δ is the instability control parameter taking the value of either 1 or 0. In this 

study, we used δ to generate either a homogeneity case for evaluating the Type I error (δ = 1) 

or a heterogeneity case for evaluating power and accuracy (δ = 0), i.e., 

1 1 2 2

1 2

  ~ ( , ), ~ ( , )  if   = 0

  ~ ( , 1), ~ ( , 1)  if   = 1.

Z B N p Z B N p

Z B N Z B N

δ

δ





 

Note that when δ = 1, both success probabilities of Z1 and Z2 are equal to 1, thus generating 

one homogenous subgroup. We also included a noise covariate Z3 that was completely 

unrelated to the subgroups to examine whether the proposed method could accurately select 

the correct covariate when partitioning data. The noise covariate Z3 was sampled from a 

uniform distribution between 0 and 1. 

 
Figure 2.3.1. An example of simulated data when N = 300 and n1 = n2 = n3 



37 
 

 Under the heterogeneity case, the subgroups differed by the partitioning covariates 

had different signs (directions) of the two regression coefficients as follows: 

Group1 1 2 1

Group2 1 2 1 2

Group3 1 2 1 2

  ( , )  if   =0
 ( , )   if  ( =1)  ( =0)
 ( , )   if  ( =1)  ( =1).

b b Z
b b Z Z
b b Z Z

′ = − +


′= = + − ∧
 ′= + + ∧

b
b b

b
 

Note that the difference in the magnitude of regression coefficient b2 was affected by the 

value of R2. Finally, we varied the number of observations for each subgroup as follows: 

1 2 3

(1 3, 1 3, 1 3) ,  Balanced                           
(1 2 , 1 4 , 1 4) ,  Moderately unbalanced    
(2 3, 1 6 , 1 6) ,  unbalanceConsidera y d.bl

( , , )
N
N
N

n n n
⋅
⋅
⋅


= 


 

As shown above, in the balanced condition, the number of observations for each subgroup 

was all equal, whereas in the unbalanced conditions, one group size was larger than the 

others. 

 Following the data generation approach of Becker, Rai, and Rigdon (2013), the 

variance-covariance matrix of the predictor and response variables, Σ, was obtained based on 

the ERA parameters described above. We generated 1,000 datasets from a multivariate 

normal distribution with zero means and Σ for each combination of variance explained (R2), 

sample size (N), parameter homogeneity or heterogeneity (δ), and number of observations 

across subgroups (balanced, moderately-, or considerably-unbalanced). We applied the 

proposed method to the datasets to compute its empirical Type Ⅰ error rate, power, and 

classification accuracy under each condition. All data generation and computations were 

carried out using the R system for statistical computing version 3.5.1. We wrote an R code to 

implement ERA, which is archived on GitHub at https://github.com/generalizedERA. We 

used the “lmtree” function of the R package “partykit” (version 1.2-5; Hothorn & Zeileis, 

2015) for the parameter instability test and cup-point selection. 
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2.3.2. Results 

In this study, an empirical Type Ⅰ error was calculated by counting how many of the samples 

were falsely partitioned under the homogeneity case (δ = 1). Table 2.3.1 presents the 

empirical Type Ⅰ error rates across the different sample sizes and the different values of R2. In 

all the conditions, the proposed method tended to produce somewhat conservative Type Ⅰ 

error rates, i.e., yielded smaller values than the nominal significance level of .05, and this 

pattern became more apparent in smaller samples (N < 300). This is consistent with previous 

MOB studies (e.g., Frick, Strobl, & Zeileis, 2014; Seibold et al., 2018), in which the 

parameter instability test in MOB with many partitioning covariates were often shown to be 

Table 2.3.1. Type I error, power, and Cramer’s V coefficients under different sample and 
subgroup sizes obtained from the proposed method 

   Total Sample Size (N) 
Measures # obs. for each subgroup R2 90 120 180 300 600 900 
Type I error (N/A) .2 .01 .03 .03 .04 .04 .04 
  .4 .02 .02 .03 .04 .04 .04 
  .6 .02 .03 .03 .04 .05 .05 
Power Balanced .2 .91 .91 .93 1.00 1.00 1.00 
  .4 .93 .96 1.00 1.00 1.00 1.00 
  .6 .94 .98 1.00 1.00 1.00 1.00 
 Moderately unbalanced .2 .79 .84 .91 1.00 1.00 1.00 
  .4 .80 .85 .99 1.00 1.00 1.00 
  .6 .80 .85 1.00 1.00 1.00 1.00 
 Considerably unbalanced .2 .11 .12 .90 1.00 1.00 1.00 
  .4 .10 .11 .96 1.00 1.00 1.00 
  .6 .11 .12 1.00 1.00 1.00 1.00 
Cramer’s V Balanced .2 .90 .90 .92 .97 .97 .99 
  .4 .91 .91 .95 1.00 .98 .99 
  .6 .92 .92 .99 .99 .99 .99 
 Moderately unbalanced .2 .80 .85 .90 .95 .94 .89 
  .4 .87 .81 .93 .95 .95 .90 
  .6 .86 .88 .95 .99 .99 .99 
 Considerably unbalanced .2 .81 .83 .84 .91 .93 .88 
  .4 .88 .87 .86 .96 .95 .89 
  .6 .85 .86 .95 .99 .99 .99 
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conservative, especially in small samples, because of the Bonferroni correction applied. In 

large samples (N ≥ 300), however, the proposed method seemed to control Type Ⅰ errors 

reasonably well regardless of the value of R2 and remain close to the nominal significance 

level of .05. To hold the nominal Type Ⅰ error rate, therefore, it may be important to ensure a 

sufficiently large number of observations relative to the number of partitioning covariates 

considered for the parameter instability test, e.g., at least 300 observations for three 

partitioning covariates in this study.  

 Table 2.3.1 also provides the empirical power of the proposed method over different 

sample sizes and R2 values under the heterogeneity case (δ = 0), i.e., when the null hypothesis 

of parameter stability was not true. For the calculation of the empirical power, we counted 

how many times the parameter instability test was turned out to be significant, so that a 

sample was correctly partitioned by Z1 and/or Z2 out of 1,000 random samples. As shown in 

the table, the empirical power estimates tended to increase when the sample size and/or R2 

increased. More specifically, the influence of the sample size or R2 on the power was strongly 

dependent on the number of observations for each subgroup: Under the balanced condition, 

the proposed method was able to detect instabilities beyond a power threshold of .9 across all 

the sample sizes and R2 values. Under the moderately and considerably unbalanced 

conditions, conversely, the power dropped quickly in small samples (N ≤ 120) even when the 

difference in the magnitude of regression coefficients between groups was large (e.g., R2 

= .6). To ensure an adequate level of power of the proposed method in small samples, 

therefore, the size of any subgroup should not be too dominant. Although not reported in 

Table 2.3.1, we found that the estimated probability that a sample was erroneously partitioned 

by the noise covariate Z3 was zero across all the conditions. 
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 Finally, the classification accuracy of subgroup memberships was measured using 

the Cramér’s V, which is a normalized χ2 statistics of true and predicted group memberships 

in a cross-table (Mirkin, 2001). It ranges between 0 and 1, where 1 means complete match 

between true and predicted subgroup memberships. Table 2.3.1 also displays the average 

Cramér’s V values for the different sample sizes and R2 values under the heterogeneity case 

(δ = 0). Under the balanced condition, on average, the Cramér’s V increased with the sample 

size and R2. Moreover, Cramér’s V were all around .9 even in small samples, which indicates 

a high level of accuracy in recovering the true subgroup memberships. Under the unbalanced 

conditions, Cramér’s V decreased when the sample size and R2 were small. This is expected 

because the row totals in a cross-table are extremely uneven when one group size is much 

larger than the others, leading to exaggerated V estimates (Mirkin, 2001). Conversely, the V 

estimates almost approached 1 when the sample increased (N > 180) and/or R2 became large. 

Interestingly, Cramér’s V decreased again when N = 900 because the proposed method ended 

up partitioning data into more than the pre-specified number of subgroups. This suggests that 

pruning might be necessary in large samples to avoid such overfitting. 

 

2.4. An Empirical Application 

We applied the proposed method to public data collected from the 2012 National Survey on 

Drug Use and Health (NSDUH) (United States Department of Health and Human Services, 

Substance Abuse and Mental Health Services Administration [SAMHSA], 2013). This survey 

was conducted from January through December 2012 and interviewed a number of residents 

aged 12 and older in American households. The respondents were asked to answer various 

questions concerning their use of substances (e.g., tobacco, alcohol, marijuana, etc.), mental 
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and physical health issues, and sociodemographic characteristics (e.g., age, gender, ethnicity, 

marital status, etc.). 

In this application, we attempted to examine sociodemographic differences in the 

effects of predictors related to early exposure to substances, mental health, and SES on 

nicotine dependence among US adults. The response variable, the degree of nicotine 

dependence, was the average score of the Nicotine Dependence Syndrome Scale (SAMHSA, 

2013). We identified a total of 11 predictors that were available in the 2012 NSDUH data 

based on previous studies concerning the predictors of nicotine dependence on samples of US 

adults (e.g., Bohadana, Nilsson, Martinet, & Rasmussen, 2003; Breslau, Fenn, & Peterson, 

1993; Breslau, Kilbey, & Andreski, 1994; Daeppen et al., 2000; Green, Jucha, & Luz, 1986; 

Hu et al., 2006; Jackson, Knight, & Rafferty, 2010; Kandel, Chen, Warner, Kessler, & Grant, 

1997; Kandel & Chen, 2000; Khuder, Dayal, & Mutgi, 1999; Schmitz, Kruse, & Kugler, 

2003). Then, the predictors were grouped into three categories, such as substance initiation 

age (F1), mental health status (F2), and SES (F3), which were represented as components in 

the ERA model. Table 2.4.1 presents a description of all the variables and their summary 

statistics. It also shows which component is associated with which predictors. Figure 2.4.1 

displays the specified ERA model, where three sets of predictors related to F1, F2, and F3 

were to influence the degree of nicotine dependence. The number of respondents was N = 

8,412 in our analysis. 
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Table 2.4.1. A description of variables and summary statistics for the 2012 NSDUH data 

 

Variable Names Measures (Range or Categories) Mean (Q1, Q3) a 
Response Variable   

Nicotine (cigarette) 
dependence 

Average score over 17 items of the Nicotine Dependence 
Syndrome Scale (1-5) 2.55 (2, 3) 

Predictors   
F1: Substance initiation age   

Cigarette (Cig) Age of first cigarette use 15.81 (14, 18) 
Alcohol (Alc) Age of first alcohol use 16.82 (15, 18) 
Marijuana (Mar) Age of first marijuana use 16.94 (15, 18) 

F2: Mental health status   
Distress level (Dis) Nonspecific psychological distress scale (K6) score 2.01 (0, 2) 
Impairment (Imp) Daily functional impairment due to problems with 

emotions, nerves, or mental health 1.09 (0, 3) 

Suicidal thought (Sui) Serious thoughts of suicide in the past year (Yes=1/No=0) %Yes: 9.58 
Depression (Dep) Major depressive episode in the past year (Y=1/N=0) %Yes: 12.5 

F3: Socioeconomic status   
Education (Edu) 5th grade or less (=5), 6th grade (=6), …, Freshman/13th 

year (=13), Sophomore/Junior (=14), Senior/Grad or more 
(=15) 

12.41 (12, 14) 

Insurance (Ins) Having any health insurance (Y/N) %Yes: 71.75 
Family income (Fam)  Less than $10,000 (=1), ~$19,999 (=2), ~$29,999 (=3), …, 

~$39,999 (=4), ~$49,999 (=5), …, ~$74,999 (=6), $75,000 
or more (=7) 

4 (2, 6) 

Employment Status (Emp) Employed (Y=1/N=0) %Yes: 67.02 
Partitioning Covariates   

Age b Groups of 18YearsOld, 19YO, 20YO, 21YO, 22/23YO, 
24/25YO, b/w26-29YO, b/w30-34YO, b/w35-49YO, 
b/w50-64YO, or 65YO-older 

27.38 (21, 32) 

Gender Male / Female %Male: 54.64 
Marital status (been married) Married (N=1,797), Widowed (=83), Divorced/Separated 

(=1,072), Single/never been married (=5,460) - 

Ethnicity Non-Hispanic-White, Hispanic, Non-Hispanic-All c %:68.93/11.73/19.34 
a For continuous variables, the first quartile (Q1), mean, and third quartile (Q3) are given. 
b In the original survey, the age of each respondent was encoded as an ordinal variable. The group of 22/23 years old is 
the most dominant one, 17.27%. The average % of the other age groups are 9.09%. 
c The category of “Non-Hispanic-All” includes non-Hispanic Native American/Alaskan Natives, non-Hispanic 
Hawaiians/other Pacific Islanders, non-Hispanic Asians, and people reporting more than one race (other than Hispanic). 



43 
 

The use of an independent hold-out dataset (often called a test or validation set) for 

model evaluation has been emphasized in many contexts, especially in the recursive 

partitioning literature (Bauer & Kohavi, 1999; Elith, Leathwick, & Hastie, 2008; Hastie et al., 

2009). Thus, we divided the dataset randomly into two disjoint sub-datasets—training (Ntrain 

= 4,206) and test (Ntest = 4,206) datasets. We used the test set to validate the generalizability 

of our MOB-ERA results obtained from the training set. 

Table 2.4.2 presents the estimated component weights, their standard errors, and p-

values for all the respondents. The first three columns of the table show the results obtained 

from the training set. As shown in the table, the component weight estimate for age of first 

cigarette use (w11) was positive and statistically significant, indicating that cigarette initiation 

contributed to forming F1, substance initiation age, in explaining the degree of nicotine 

dependence. Neither alcohol nor marijuana initiation age was statistically significant. The 

estimate for the level of functional impairment in daily life (w22) was positively and 

statistically significantly related to F2, mental health status, whereas the rest of the predictors 

for this component set was not. In the last predictor set, the weight estimates for three 

predictors, including education level (w31), insurance (w32), and job status (w34), were positive 

 

Figure 2.4.1. The ERA model for the 2012 NSDUH data (Variable names are consistent 
with those in Table 2.4.1) 
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and statistically significant, contributing to determining F3, SES. The family income was not 

statistically significantly related to F3. As shown in the last three columns of the table, similar 

results were obtained from the test set. 

Given the component weight estimates, the proposed method identified potentially 

heterogeneous subgroups, which might exhibit distinct effects of the three components on the 

degree of nicotine dependence. As partitioning covariates, we considered four 

sociodemographic variables: age, gender, marital status, and ethnicity. Refer to Table 2.4.1 

for their summary statistics. Many previous studies have reported several subgroups of 

nicotine dependence that could be differentiated by age, gender, or ethnicity (e.g., Bohadana 

et al., 2003; Breslau et al., 1993; Daeppen et al., 2000; Hu et al., 2006; Jackson et al., 2010; 

Kandel et al., 1997; Kandel & Chen, 2000; Khuder et al., 1999). In these studies, covariate-

dependent subgroups were pre-defined by researchers (e.g., females vs. males, Black vs. 

White smokers, etc.). However, in practice, it is often unclear how and which covariates may 

interact with each other, and difficult to determine such subgroups in advance, especially 

Table 2.4.2. The component weight estimates (Est.), and their standard errors (S.E.) and p-
values from MOB-ERA for the 2012 NSDUH data. 

  (a) Training set (b) Test set 
Components Predictors Est. S.E. p-val Est. S.E. p-val 
F1 Cigarette initiation (w11) .95 .11 .00 1.02 .10 .00 
 Alcohol initiation (w12) .18 .11 .12 -.25 .10 .12 
 Marijuana initiation (w13) -.08 .11 .45 .12 .10 .24 
F2 Distress level (w21) .30 .19 .14 .46 .15 .01 
 Impairment (w22) .64 .18 .00 .60 .14 .00 
 Suicidal thought (w23) .06 .15 .72 .00 .13 .98 
 Depression (w23) .18 .17 .30 .09 .13 .53 
F3 Education (w31) .77 .08 .00 .74 .10 .00 
 Insurance (w32) .36 .08 .00 .36 .09 .00 
 Family income (w33)  .04 .08 .66 .05 .10 .63 
 Employment Status (w34) .29 .08 .00 .30 .10 .01 
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when there are continuous covariates, categorical covariates with multiple levels, and/or a 

number of covariates at the same time (Strobl, Kopf, & Zeileis, 2015b; Su, Tsai, Wang, 

Nickerson, & Li, 2009; Zeileis et al., 2008). 

 

(a) Training set (Ntrain = 4,206) 
 
 

 

(b) Test set (Ntest = 4,206) 
 

Figure 2.4.2. The final MOB-ERA trees obtained from (a) the training set and (b) the test set. 
Node numbers are given at the top of every internal (circle) and terminal (grey box) node. 
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As stated earlier, the final MOB-ERA model can be decided by pre- and post-pruning 

to avoid potential overfitting. The following pruning procedures were the same for both 

training and test sets: When splitting the data, the tree size was determined by the parameter 

instability tests (i.e., data splitting is continued until no covariate was statistically significant 

at α = .05) and the minimal node size of 500 (pre-pruning). Considering the large number of 

respondents, we then pruned the tree afterwards using the AIC-based pruning function (post-

pruning). Figure 2.4.2 presents the final MOB-ERA solutions obtained from the training and 

test sets. In the figure, the internal nodes, represented by circles, show which and how 

covariates partition the data into subgroups in a hierarchical manner. Each circle shows the 

selected covariate and its p-value obtained from the parameter instability test, as will be 

further discussed shortly. Each grey box at the bottom denotes a leave or terminal node of the 

tree, representing a subgroup identified. It also displays the number of respondents and the 

estimated regression coefficients of each subgroup. Node number is given at the top of every 

circle and box. 

Table 2.4.3 summarizes the results of the parameter instability tests. Each node in the 

table shows the values of the test statistics and p-values for each of the four covariates. A 

node was partitioned into subgroups when at least one covariate was statistically significant 

at α = .05 (until the minimum node size of 500 was reached). The covariate with the smallest 

p-value is used as the partitioning variable at each node. In the training set, ethnicity was 

selected as the first partitioning covariate (Node 1), splitting them into two groups—Whites 

and all the other ethnicities (Hispanic and Non-Hispanic-All). For the group of Whites, two 

age groups (i.e., up to 24.5 and over 24.5) were found to be significantly different (Node 3), 

whereas for all other ethnicities, no further split was carried out. As shown in the table (and 

also displayed in Figure 2.4.2), the final hierarchy of the partitioning covariates was the same 
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for both training and test sets. This suggests that, using the pre- and post-pruning strategies, 

MOB-ERA could reliably identify heterogeneous subgroups of nicotine dependence based on 

the partitioning covariates. 

Table 2.4.4 shows the estimated regression coefficients and their standard errors per 

subgroup. The estimates are also displayed at each terminal node in Figure 2.4.2. Note that 

we can compare the relative magnitudes of the regression coefficient estimates because they 

are standardized ones in ERA. As shown in the table, earlier substance use (F1), worse mental 

health (F2), and lower SES (F3) were associated with a higher level of nicotine dependence in 

all identified subgroups. However, the magnitudes of their effects varied across the groups. 

For example, earlier substance use had a larger effect on nicotine dependence in the group of 

Table 2.4.3. A summary of the parameter instability tests for the 2012 NSDUH data 
 

  Age Gender Marital Status Ethnicity 
 Node Statistic p-value Statistic p-value Statistic p-value Statistic p-value 
(a) Training set 1 36.38 .00 7.89 .18 21.57 .04 43.14 .00 
 3 42.53 .00 .73 .99 30.15 .00 0 a - 
(b) Test set 1 20.01 .01 4.98 .53 14.41 .37 36.14 .00 
 3 17.89 .01 3.02 .77 18.69 .08 0 a - 

  a Node 3 is ethnically homogeneous. 

Table 2.4.4. The regression coefficient estimates (Est.), and their standard errors (S.E.) and p-
values from MOB-ERA for the 2012 NSDUH data 
 

  F1: Substance initiation F2: Mental health status F3: Socioeconomic status 
 Node Est. S.E. p-val Est. S.E. p-val Est. S.E. p-val 

(a) Training set 2 (N=1,298) -.15 .03 .00 .10 .03 .00 -.07 .03 .01 

 4 (N=1,609) -.26 .03 .00 .06 .02 .01 -.31 .03 .00 

 5 (N=1,299) -.11 .02 .00 .18 .03 .00 -.19 .03 .00 

(b) Test set 2 (N=1,316) -.13 .03 .00 .15 .03 .00 -.06 .03 .01 

 4 (N=1,591) -.30 .03 .00 .11 .02 .00 -.22 .03 .00 

 5 (N=1,299) -.15 .02 .00 .14 .03 .00 -.19 .03 .00 
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young Whites aged up to 24.5 (Node 4), compared to the other groups. Moreover, SES had 

the smallest effect on the nicotine dependence in the non-White respondents (Node 2), 

whereas it had the largest effect in the group of older Whites aged over 24.5 (Node 5). This 

older Whites group also showed the largest effect of mental health status on nicotine 

dependence among the three groups. Again, similar findings were obtained from the test set. 

 

2.5. Concluding Remarks 

We combined ERA with MOB to identify potentially heterogeneous subgroups of 

observations based on a set of auxiliary covariates in the context of ERA. The proposed 

method successively repeats the procedures of probing parameter instabilities and finding a 

cut-point for covariates, given a specified ERA model. This results in a tree diagram that 

displays covariate-dependent characteristics of identified subgroups, facilitating an 

understanding of subgroup-specific effects of components on a response variable. The 

simulation study showed that the proposed method seemed to control for the Type Ⅰ error rate 

reasonably well over the whole range of regression coefficients considered. The relatively 

conservative level of Type Ⅰ error rates in small samples became close to the nominal level 

of .05 when the sample size became large. The proposed method also showed better 

performance in empirical power and classification accuracy, particularly when the number of 

observations was equal for all subgroups. 

We also demonstrated how the proposed method could identify covariate-dependent 

heterogeneous subgroups, using a well-known national survey dataset in the US. When 

partitioning the data based on a specified ERA model, we applied both pre- and post-pruning 

strategies to avoid overfitting and enhance the generalizability of the resulting MOB-ERA 

tree. The final hierarchy of partitioning covariates was automatically derived, without 
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needing to specify in advance which covariates should be included and how they interact with 

each other. The combination of the selected covariates in the final MOB-ERA tree resulted in 

socio-demographically diverse subgroups, each of which showed different strengths of 

component effects on the response variable. Moreover, the findings obtained from a random 

half of the dataset (a training set) were much the same as those from the other half (an 

independent validation set), suggesting that the proposed method was reliable in detecting 

heterogeneous subgroups. 

The present study proposed a new extension of ERA and demonstrated its empirical 

utility using the 2012 NSDUH data. As with many other recursive partitioning methods, 

however, a major limitation of MOB-ERA is that its single-tree solution can be highly 

variable, i.e., the hierarchy of partitioning structure can be changed entirely by a small change 

in training data (Garge, Bobashev, & Eggleston, 2013; Strobl et al., 2009). In our empirical 

application, similar solutions were obtained from both training and validation sets. 

Nevertheless, it would be worthwhile to apply the proposed method to a wide range of real 

data to investigate such variability of solutions more carefully. Moreover, it may be necessary 

to technically refine the method to alleviate this potential problem of a single MOB-ERA 

tree. For example, we may combine the proposed method into the frameworks of bagging 

(Breiman, 1996) or random forests (Breiman, 2001). These so-called ensemble methods build 

a large number of separate trees and average them to improve generalizability of a single tree 

estimator. Both bagging and random forests fit trees independently to random samples of the 

original training dataset, where the random sampling procedure is carried out either using 

bootstrapping (i.e., sampling with replacement of the same size) or subsampling (i.e., 

sampling without replacement of smaller size). Random forests also include random selection 

of predictors to prevent some predominant predictors from being repeatedly selected across 
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random trees. Adopting these ensemble methods to MOB-ERA may help enhance the 

generalizability and predictive performance of a single MOB-ERA tree, which warrants 

future research. 
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Chapter 3. Regularized Extended Redundancy Analysis via 

Generalized Estimating Equations 

 
Publication: Kim, S., Lee, S., Cardwell, R., Kim, Y., Park, T., & Hwang, H. (in press, May 
2020). An application of regularized extended redundancy analysis via generalized estimating 
equations to the study of co-occurring substance use among US adults. Quantitative 
Psychology. IMPS 2019. 
 

Abstract 

According to the National Survey on Drug Use and Health (NSDUH), the co-use of 

recreational substances is prevalent in the US population and engenders serious public health 

consequences. Additionally, substance use is an example of a complex social phenomenon 

that involves a large number of potentially correlated predictors. Considering the 

interdependence in the use of cigarettes, alcohol, and marijuana among US adults, the 

purpose of this study is to investigate simultaneously the effects of multiple sets of predictors 

(regarding substance initiation age, mental health status, and socioeconomic status) on the use 

of these three substances. For this, we applied a recently proposed extension of extended 

redundancy analysis (ERA), named GEE-ERA, to the 2012 NSDUH data. ERA performs 

data reduction and linear regression simultaneously, producing a simpler description of 

directional relationships between multiple sets of predictors and response variables. The new 

extension, GEE-ERA, combines ERA with generalized estimating equations (GEE) to enable 

fitting a regression on a set of correlated responses with unknown correlation structure. This 

method also adopts ridge-type regularization to address any potential overfitting, while the 

strength of the regularization is determined automatically through cross-validation. The major 

findings obtained by applying GEE-ERA to the 2012 NSDUH data are: (1) Earlier substance 

use was associated with greater current use of both cigarettes and alcohol; (2) worse mental 

health status influenced greater marijuana use, only; and (3) a lower level of SES was 

associated with higher levels of both cigarette and marijuana use. 

 

Keywords: Co-occurring substance use, substance initiation age, mental health, 

socioeconomic status, component-based dimension reduction, extended redundancy analysis, 

generalized estimating equations, regularization  
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3.1. Background 

The current substance use epidemic in the US leads to adverse public health consequences, 

such as drugged driving (National Institute on Drug Abuse, 2019) and smoking- or alcohol-

related cancers (U.S. Department of Health and Human Services, 2004). According to the 

2012 National Survey on Drug Use and Health (NSDUH), an estimated 62% of Americans 

aged 12 and older used at least one recreational psychoactive substance (i.e., tobacco, 

alcohol, or illicit drug) within the past year, including 9% who met the criteria for substance 

abuse disorder (United States Department of Health and Human Services. Substance Abuse 

and Mental Health Services Administration. Center for Behavioral Health Statistics and 

Quality, 2013). Moreover, the same 2012 NSDUH data show a positive association between 

cigarette and alcohol use, as well as a correlation between degree of alcohol use and rate of 

illicit drug use (of which marijuana use accounts for the vast majority) (United States 

Department of Health and Human Services. Substance Abuse and Mental Health Services 

Administration. Center for Behavioral Health Statistics and Quality, 2013). Considering that 

the vast majority of substance users (91% in 2012) use more than one substance, either 

concurrently or sequentially, a statistical model that simultaneously analyzes use of multiple 

substances would provide a more complete representation of the phenomenon of substance 

co-use among US adults. 

Further complicating the study of substance use among US adults is the large number 

of predictors that have been demonstrated in previous studies to explain the use of one or 

more substances (e.g., Daza et al., 2006; Hu, Davies, & Kandel, 2006b; Kandel et al., 2004; 

Robinson et al., 2006). Categories of such predictors include: (1) substance initiation age 

(i.e., age of first cigarette, alcohol, and/or marijuana use), (2) indicators of mental health 

(e.g., major depressive episode during past year, daily functional impairment level, etc.), and 
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(3) indicators of socioeconomic status (SES; education level, health insurance coverage, 

family income, employment status). Considering such a high-dimensional set of predictors, 

the major difficulty in investigating the effect of numerous predictors on the concurrent use 

of substances is the lack of statistical methods capable of providing a comprehensible 

description of directional relationships among many sets of variables, without suffering from 

potential multicollinearity issues. 

Thus, in the present work, we use regularized extended redundancy analysis (Takane 

& Hwang, 2005) combined with generalized estimating equations (Liang & Zeger, 1986) to 

investigate associations between the aforementioned predictor sets and correlated use of 

multiple substances. ERA is a statistical method that relates multiple sets of predictors to 

response variables. In ERA, a component is extracted from each set of predictor variables 

such that it accounts for the maximum variation of response variables. In this regard, ERA 

performs data reduction and linear regression simultaneously, producing a simpler 

description of directional relationships between multiple sets of predictors and response 

variables. Recently, a new extension of ERA was proposed for the analysis of clustered or 

correlated response variables (Lee et al., 2019). In this extension, GEE is combined with 

ERA to model response variables with an unknown correlation structure. This new method, 

called GEE-ERA hereinafter, can handle different types of response variables (e.g., 

continuous, binary, or count) that are assumed to follow an exponential family distribution. 

The method also incorporates ridge-type regularization to address potential overfitting when 

many predictors per component are considered or when many components influence the 

response variables. The regularization strength is determined automatically using cross-

validation (CV). 
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The remainder of the paper is organized as follows. We begin by briefly reviewing GEE-

ERA focusing especially on its advantages for the analysis of co-occurring substance use in 

the US. We then apply the method to data from the 2012 National Survey on Drug Use and 

Health (NSDUH), an annual survey that provides extensive statistical information on the use 

of recreational psychoactive substances and various associated sociopsychological variables. 

This application shows that GEE-ERA can identify meaningful predictors while taking into 

account the correlation structure of nicotine, alcohol, and marijuana use and preventing 

overfitting by the regularization strategy. We conclude by discussing the implications of the 

method and topics for future research. 

 

3.2. Method 

3.2.1. Model Specification 

In GEE-ERA (Lee et al., 2019), we assume that there are Q response variables and K 

different sets of predictors, each of which consists of Pk predictors (k =1, ⋯, K).  Let yiq 

denote the value of the qth response variable measured on the ith respondent (i = 1, ⋯, N; q = 

1, ⋯, Q). We assume that yiq follows an exponential family distribution with a mean μiq and 

variance ϕσiq
2, where ϕ is a dispersion parameter which may or may not be of substantive 

interest. Let wkp denote the component weight assigned to xikp. Let fik=∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖
𝑃𝑃𝑘𝑘
𝑖𝑖=1  denote 

the ith component score of the kth component, which is the sum of weighted predictor 

variables for the ith observation in the kth predictor set. Let 𝛽𝛽kq denote the regression 

coefficient relating the kth component to the qth response variable. Let ηiq and g(⋅) denote the 

ith linear predictors of the qth response and a link function, respectively. We assume that all 

the predictors and response variables are standardized with zero means and unit variances 

(Takane & Hwang, 2005). The GEE-ERA model is then expressed as: 
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∑ ∑ ∑  (3.2.1) 

where the marginal expectation of the responses μiq is related to a linear predictor through a 

known link function. Figure 3.2.1 displays an example of the GEE-ERA model, where three 

response variables are assumed to be affected by each of the two components. 

Let 1[ , , ]i i iQy y y ′=   be a Q by 1 vector of the responses of the ith respondent. Let 

Σi be the Q by Q within-respondent covariance matrix of iy . When respondents are measured 

on multiple response variables simultaneously, the assumption of independence of response 

variables in ordinary ERA can be violated. Moreover, the true covariance structure is often 

unknown in practice. To resolve these issues in ERA, the method of GEE (Liang & Zeger, 

1986) was applied to specify the unknown covariance structure using the so-called “working” 

correlation matrix. The working covariance matrix has the form 

 

Figure 3.2.1. An example of GEE-ERA model. Square boxes indicate observed predictor and 
response variables. Circles represent predictor components. Two regularization parameters, 
λW and λB, determine the strength of the regularization on component weights and regression 
coefficients, respectively 
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 1/2 1/2cov( ) ( ) ,i i i i iy A R Aφ= Σ = α  (3.2.2) 

where Ri(α) is a Q by Q working correlation matrix that is assumed to be fully specified by 

the vector of unknown nuisance parameters α, and Ai
1/2 is a Q by Q diagonal matrix of 

marginal variances with var(μiq) as the qth diagonal element (Liang & Zeger, 1986). Liang 

and Zeger (Liang & Zeger, 1986) suggested various choices for Ri(α) (see Section 3.3.2), 

which is constant across all respondents. In this way, we can treat the covariance structure as 

a nuisance instead of attempting to model it accurately when estimating ERA parameters. 

This method also can provide asymptotically unbiased parameter estimates and their robust 

standard errors regardless of the covariance structure specified (Lee et al., 2019). 

3.2.2. Parameter Estimation and Significance Testing 

GEE-ERA aims to estimate both ERA parameters (i.e., wkp and 𝛽𝛽kq) and nuisance correlation 

parameters (i.e., α and ϕ) in an iterative manner. Specifically, it seeks to minimize the 

following penalized least squares criterion for estimating parameters: 

 1
( , , )

1
[( ) ( )] trace( ) trace( )

N

i i i i i
i

z x z xαϕ λ λ−

=

′ ′ ′ ′ ′ ′ ′= − Σ − + +∑W B W BB W B W W W B B    (3.2.3) 

where iz  is a Q by 1 vector of the so-called adjusted response variable (McCullagh & 

Nelder, 1989, Chapter 2), B denotes a K by Q matrix of regression coefficients, W denotes a 

1
K
k kP P== ∑  by K matrix of component weights, ix  denotes a vector of predictors for the ith 

respondent, and λW and λB denote tuning parameters for component weights and regression 

coefficients, respectively. The tuning parameters control the influence of the ridge penalty 

terms, trace(W’W) and trace(B’B). We apply G-fold CV to determine the values of λW and λB 

automatically. To minimize (3.2.3), GEE-ERA uses a regularized alternating least squares 

algorithm, in which each of W, B, and Σi is updated, with the other two parameter sets held 
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constant, until convergence. Refer to Appendix C. Parameter Estimation in GEE-ERA for a 

detailed description of the algorithm. 

To test statistical significance of parameter estimates, GEE-ERA can use resampling 

methods, such as permutation tests for obtaining exact p-values (as described in Lee et al., 

2019) and bootstrapping (Efron & Tibshirani, 1986) for constructing confidence intervals. In 

the present analysis, we used bootstrap percentile confidence intervals, i.e., the 2.5th and 

97.5th percentiles of bootstrap distribution of parameter estimates based on 1,000 

bootstrapped replications of the data. 

 

3.3. An Empirical Application 

3.3.1. Data and Model Specification 

The data used here is a subset of the 2012 National Survey on Drug Use and Health 

(NSDUH) dataset (United States Department of Health and Human Services, Substance 

Abuse and Mental Health Services Administration [SAMHSA], 2015). NSDUH has been 

conducted every year in all 50 states and the District of Columbia since 1971. The objective 

of this survey is to serve as a major source of information on tobacco, alcohol, and drug use, 

and on mental health and other health-related issues in the United States. The 2012 NSDUH 

was conducted from January through December 2012 and interviewed US residents aged 12 

and older. Among 51 states, eight of them had a sample designed to yield 3,600 respondents 

per state, and the remaining 43 states had a sample designed to yield 900 respondents per 

state. The respondents were asked to answer various questions regarding their use of 

substances (e.g., tobacco, alcohol, illicit drugs, etc.), as well as mental and physical health 

issues. Each respondent’s socio-demographic characteristics (e.g., age, race, marital status, 

education, financial circumstances, etc.) were also measured. 
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In the present analysis, we examined the effects of predictors related to substance 

initiation age, mental health, and SES on cigarette, alcohol, and marijuana use. Table 3.3.1  

presents summary statistics of all variables included in the analysis using data from N = 881 

respondents. The three response variables, all referring to monthly use on average, are: the 

number of cigarettes smoked (Y1), the number of alcoholic beverages consumed (Y2), and the 

number of days of marijuana or hashish use (Y3). We identified a total of 11 predictors that 

were available in the 2012 NSDUH data based on previous studies concerning the predictors 

of substance use on samples of US adults. Then, the predictors were grouped into the three 

Table 3.3.1. A description of variables and summary statistics for the 2012 NSDUH data 

Variable Names Measures (Range or Categories) Mean (Q1, Q3) a 

Response Variables   

Y1: Cigarettes Number of cigarettes smoked per response in past 
month 200 (14, 315) 

Y2: Alcohol Number of alcohol beverage drank in past month 55 (12, 64) 

Y3: Marijuana On average, number of days used marijuana or hashish 
during the past 12 months 8.7 (2, 13) 

Predictors   

F1: Age of first use   

Cigarette onset Age of first use 15.81 (14, 18) 

Alcohol onset Age of first use 16.82 (15, 18) 

Marijuana onset Age of first use 16.94 (15, 18) 

F2: Mental health   

Distress level Nonspecific psychological distress scale (K6) score 2.01 (0, 2) 

Impairment Daily functional impairment due to problems with 
emotions, nerves, or mental health 1.09 (0, 3) 

Suicidal thought Serious thoughts of suicide in the past year 
(Yes=1/No=0) %Yes: 9.58 

Depression Major depressive episode in the past year (Y=1/N=0) %Yes: 12.5 

F3: SES   

Education 5th grade or less (=5), 6th grade (=6), …, 
Sophomore/Junior (=14), Senior/Grad or more (=15) 12.41 (12, 14) 

Insurance Having any health insurance (Y/N) %Yes: 71.75 

Family income Less than $10,000 (=1), ~$19,999 (=2), …, ~$74,999 
(=6), $75,000 or more (=7) 4 (2, 6) 

Employment Status Employed (Y=1/N=0) %Yes: 67.02 
a For continuous variables, the first quartile (Q1), mean, and third quartile (Q3) are given. 
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categories—substance initiation age (F1), mental health (F2), and SES (F3)—which were 

represented as components in the ERA model. Table 3.3.1 also shows which component is 

associated with which predictors. Figure 3.3.1 displays the specified GEE-ERA model, where 

three sets of predictors related to F1, F2, and F3 were to influence each of three response 

variables. 

3.3.2. Working Correlation Structure of Substance Use Variables 

As noted above, previous studies suggested the co-occurrence of the three response variables. 

In the present data, there was a significant positive association between Y1 and Y2, r = .18, p 

< .01. Also, Y1 and Y3 were positively correlated, r = .16, p < .01, whereas Y2 and Y3 were 

not, r = -.02, p = .58. 

The top row of Table 3.3.2 illustrates the four different working correlation structures 

considered in GEE-ERA to model the relationships in their co-occurrence: independent (all 

pairwise correlations fixed to zero), exchangeable (all correlations assumed to be equivalent), 

autoregressive or AR-1 (all first-order correlations assumed to be equivalent and higher-order 

correlations a function of the first-order correlation parameter), and unstructured (all 

 

Figure 3.3.1. The specified ERA model for the 2012 NSDUH dataset. Black and bolded 
arrows represent statistically significant component weights and regression coefficients 
using bootstrap confidence intervals with λW =0.12 and λB=0. 
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correlations assumed to be different and not systematically related). Table 3.3.2 also 

summarizes the working correlation and dispersion parameter estimates for each type of 

correlation structure from the present analysis, as well as the value of QIC, a modified 

Akaike information criterion for GEE models (Pan, 2001). All results in the table were 

obtained without any regularization, i.e., λW = λB = 0. 

As shown in the table, the estimated correlation parameters changed in both sign and 

magnitude across the chosen correlation structures. However, the GEE-ERA parameter 

Table 3.3.2. The estimated working correlation and dispersion parameters across four 
different working correlation structures using the 2012 NSDUH data. 

 Independent Exchangeable AR-1 Unstructured 

Working correlation 
structures 

0 0
0 0
0 0

− 
 − 
 − 

 
ρ ρ

ρ ρ
ρ ρ

− 
 − 
 − 

 
2

2

ρ ρ
ρ ρ
ρ ρ

 −
 

− 
 − 

 
1 2

1 3

2 3

ρ ρ
ρ ρ
ρ ρ

− 
 − 
 − 

 

Working correlation 
estimates — ρ̂ =-.003 ρ̂ =-.005 

1ρ̂ =-.015, 
2ρ̂ =.001, 
3ρ̂ =.036 

φ̂  .002 .002 .002 .002 
QIC 2.853 2.853 2.860 2.869 

 
 

Table 3.3.3. The estimated component weights for the GEE-ERA model in Figure 3.3.1 with 
different working correlation structures using the 2012 NSDUH data. Bolded numbers 
indicate statistically significant estimates using bootstrap confidence intervals. 

  Working Correlation 
Components Predictors Independent Exchangeable AR-1 Unstructured 

F1: Age of first use Cigarette onset .90 .90 .90 .90 
 Alcohol onset .34 .34 .34 .33 
 Marijuana onset .02 .02 .02 -.01 
F2: Mental Health Distress level -.16 -.16 -.16 -.16 
 Impairment .92 .92 .92 .92 
 Suicidal thought .45 .45 .44 .44 
 Depression -.19 -.17 -.17 -.17 
F3: SES Education .94 .94 .94 .94 
 Insurance .28 .28 .27 .27 
 Family income -.09 -.09 -.08 -.08 
 Employment Status -.29 -.29 -.29 -.29 
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estimates in Table 3.3.3 and Table 3.3.4 were robust across different working correlation 

specifications. The final working correlation was chosen based on the value of QIC: Since 

independent and exchangeable structures resulted in equal QIC values, the more 

parsimonious of the two, i.e., independent, was chosen. 

3.3.3. Regularization and Empirical Results 

After choosing the final correlation structure, we applied regularization on both component 

weights and regression coefficients. As the values of the regularization strengths, i.e., λW and 

λB, are dependent on the data, they can be determined using data-driven methods, such as CV. 

We used 10-fold CV for different possible values of λW and λB. The optimum values were 

chosen by comparing the average mean-squared errors, where the values ranged from 0 to 10 

with a step size of .05. The lowest error was obtained with λW = .15 and λB = 0. The 

statistically significant estimates of component weights and regression coefficients with these 

final values are given in Figure 3.3.1. 

As depicted in the figure and Table 3.3.3, the component weight estimate for 

cigarette initiation age was positive and statistically significant, indicating that cigarette 

Table 3.3.4. The estimated regression coefficients for the GEE-ERA model in Figure 3.3.1 
with four different working correlation structures using the 2012 NSDUH data. Bolded 
numbers indicate statistically significant estimates using bootstrap confidence intervals. 

   Working Correlation 
Components  Responses Independent Exchangeable AR-1 Unstructured 

F1: Age of first use → Y1: Cigarettes -.26 -.26 -.26 -.26 
  Y2: Alcohol -.17 -.17 -.17 -.17 
  Y3: Marijuana -.09 -.09 -.08 -.08 
F2: Mental Health → Y1: Cigarettes .12 .12 .12 .12 
  Y2: Alcohol -.02 -.02 -.02 -.02 
  Y3: Marijuana .15 .15 .15 .15 
F3: SES → Y1: Cigarettes -.26 -.26 -.26 -.26 
  Y2: Alcohol -.05 -.05 -.05 -.05 
  Y3: Marijuana -.14 -.14 -.14 -.14 
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initiation age contributed to forming F1, initiation of substance use, in explaining substance 

uses. Neither alcohol nor marijuana initiation age were statistically significant. For F2, mental 

health status, only the level of daily functional impairment showed a statistically significant 

contribution. Finally, for F3, socioeconomic status, only education level made a significant 

contribution to explaining the use of the three substances. 

Figure 3.3.1 and Table 3.3.4 show the statistically significant regression coefficient 

estimates. First, the negative association between F1 and both Y1 and Y2 indicated that a 

younger age of substance initiation was associated with an increased number of cigarettes 

smoked and alcoholic beverages consumed, with the effect appearing larger for cigarette use. 

Additionally, worse mental health status was associated with more days of marijuana use 

among American adults. There was no influence of mental health status either on cigarette or 

on alcohol use. Finally, American adults with lower levels of SES were found to report 

greater levels of both cigarettes smoked and days of marijuana use, where cigarette use was 

more strongly associated with SES level than marijuana use. 

 

3.4. Conclusion 

The present analysis applied GEE–ERA, a recently proposed extension to ERA, to data from 

the 2012 NSDUH survey on substance use. Substance use, including use of multiple 

substances, is prevalent in the American population and the source of numerous public health 

concerns. Additionally, substance use is known to involve multiple categories of predictors, 

including the predictor sets considered in the present analysis—initiation of substance use, 

mental health status, and socioeconomic status. We investigated the relationship of these 

predictors with cigarette, alcohol, and marijuana use. GEE-ERA permits the simultaneous 

analysis of the numerous predictors and multiple, correlated response variables by 
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simultaneously conducting data reduction and multivariate multiple regression while also 

modeling the correlation structure of the response variables. This method also employs ridge-

type regularization to address potential overfitting, determining the strength of the 

regularization automatically through cross-validation, and conducts significance tests on ERA 

parameters (i.e., component weights and regression coefficients) using bootstrapping. The 

method thus protects against the common problems of multicollinearity among predictors, 

overfitting, and improper use of asymptotic statistical inference while producing easy-to-

interpret parameter estimates. 

The present analysis has demonstrated the utility of GEE–ERA while also providing 

insight on the phenomenon of substance use in the US. Nevertheless, there are several ways 

to expand upon the present analysis. First, given that the NSDUH is an annual survey, the 

present analysis should be replicated with data from subsequent years. Also, future studies 

should include additional predictors that have been found to significantly relate to substance 

use, such as personality characteristics (Hittner, Penmetsa, Bianculli, & Swickert, 2020) or 

sexual orientation discrimination (Evans-Polce, Veliz, Boyd, Hughes, & McCabe, 2019). 

Unfortunately, the NSDUH data did not include variables relevant to these factors. And 

finally, considering previous research that uncovered heterogeneous subgroups characterized 

by demographic covariates (e.g., gender or ethnicity), each of which yielded different effects 

of predictors on substance use, it will be worthwhile to further extend GEE-ERA to identify 

potentially heterogeneous subgroups of observations based on such covariates.  
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Chapter 4. Prediction-Oriented Model Selection Metrics for 

Extended Redundancy Analysis 

 

Abstract 

In many areas of psychology, it is important to develop a model in such a way that it can 

predict health or behavioral outcomes (e.g., relapse of drug taking, symptoms of mental 

disorders, responses to treatment in new patients) well. An inherent challenge in building a 

prediction model is how to adequately assess the performance of the selected model on 

unseen data. A conventional way is to evaluate a model’s performance in the sample used for 

model development, it is, however, well known that such apparent performance is an overly 

optimistic estimate of true prediction performance. As an alternative approach, in this 

chapter, I introduce several new metrics for evaluating the predictive ability of ERA models, 

focusing on their performance on so-called out-of-sample data that are not used for parameter 

estimation. Although considerable work has been done in statistics and machine learning in 

order to examine the utility of resampling methods (such as cross-validation and the 

bootstrap) for assessing such out-of-sample prediction, to date, no research has been carried 

out to apply these general tools to ERA. Thus, I conduct a simulation study to evaluate the 

relative performance of different out-of-sample prediction error estimators for ERA. This 

study may provide researchers with information on which error estimator is the best to find 

the true model when mis-specified (i.e., underfitted and overfitted) models are considered. 

  

 

Keywords: Extended redundancy analysis, model selection, underfitted or overfitted models, 

out-of-sample prediction error, k-fold cross-validation, leave-one-out cross-validation, out-of-

bag bootstrap, .632 bootstrap, .632+ bootstrap   
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4.1. Introduction 

The present chapter concerns the assessment of the performance of ERA models, which is 

critical for model selection or development. As discussed in the previous chapters, one 

existing method of choice is to calculate FIT in (1.2.8), an overall goodness of fit measure for 

ERA (Takane & Hwang, 2005). Other measures of overall model fit for parametric ERA are 

based on penalized-likelihood criteria, such as AICERA and BICERA, which take model 

complexity into account (DeSarbo et al., 2015). All these existing metrics represent “in-

sample” model evaluation metrics, in which the same dataset is used to develop the model 

and evaluate its performance. Naturally, this can lead to overly optimistic views of the 

model’s performance: the more closely we fit the model to the training sample—a set of data 

used to estimate parameters, the better it will perform when being evaluated on the same 

sample. This is a well-known statistical phenomenon called “optimism” (Efron, 1983; Efron 

& Tibshirani, 1997; Hastie et al., 2009, Chapter 7). 

When researchers are interested in predicting important health or behavioral 

outcomes to the benefit of the broader population, relying only on such “optimistic” in-

sample model assessment metrics is not ideal because it provides little information about the 

model’s performance on “out-of-sample”. For example, in studies on cognitive impairment in 

older adults (Na, 2019; Choi & Jin, 2018), patient responses to treatments for depression 

(Cuijpers et al., 2013), and user response patterns in online advertising (Zhang, Du, & Wang, 

2016), the goal of model development is to select a prediction model that can best assist 

practitioners with decision-making in unseen cases (e.g., treatment recommendation for new 

patients). To develop such models that can generalize beyond the current sample, researchers 

in the social and behavioral sciences would be better served by assessing the model based on 

out-of-sample performance metrics. 



78 
 

Thus, in this chapter, I introduce several new model evaluation metrics for ERA, 

each of which aims to quantify how well a model performs in out-of-sample data. But before 

discussing the out-of-sample metrics, the degree of optimism in existing in-sample model 

performance evaluation in ERA is briefly investigated. Hastie et al. (2009, Chapter 7) 

discussed, in general, the optimism of an in-sample model performance metric decreases 

linearly as the training sample size increases but increases with model complexity. Thus, a 

simulation study is carried out to examine the behavior of in-sample FIT and prediction error, 

focusing on how the degree of optimism is affected by varying training sample sizes and the 

number of predictors per component across different model specifications (e.g., over-

specified models with additional parameters). 

The next section will illustrate several strategies for assessing out-of-sample 

performance of ERA models to correct for the optimism of traditional in-sample metrics. One 

suggested (and commonly used) remedy for correcting the optimism is to approximate the 

model assessment step by sample-reuse or resampling, such as cross-validation (CV; 

(Geisser, 1975; Stone, 1974) and the bootstrap (Efron, 1979, 1983). The basic idea behind 

these methods is avoiding optimism by using non-overlapping data for the model 

development and evaluation. Although considerable work has been done in statistics and 

machine learning on the use of various CV and bootstrap methods for out-of-sample model 

assessment, to date, no research has applied these general tools to the ERA framework. Thus, 

I formulate multiple different out-of-sample prediction error estimators for ERA based on (1) 

k-fold CV (k = 3, 5, and 10), (2) leave-one-out CV (LOOCV), (3) out-of-bag (OOB) 

bootstrap, (4) .632 bootstrap, and (5) .632+ bootstrap, and carry out simulation studies to 

evaluate their relative behavior and predictive performance, and investigate which error 
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estimator is best for identifying the true model when mis-specified models are included as 

possible candidates under different simulation conditions. 

The rest of this chapter is organized as follows. Section 4.2 provides a formal 

formulation for in-sample and out-of-sample prediction error estimators. The use of the 

abovementioned resampling methods in ERA is also illustrated. Section 4.3 shows the result 

of a series of simulation studies to examine how sample size and model complexity effect the 

performance of in-sample and out-of-sample prediction error estimators. In all simulations, 

underfitted and overfitted models are considered to illustrate the behavior of each error 

estimator in mis-specified settings. The final section summarizes the findings, provides a 

guideline for practitioners on which resampling approach may be favored under which 

condition, and discusses the limitation of the study. 

 

4.2. Methods 

4.2.1. Assessment of Predictive Performance 

Consider a continuous response variable Y that is related to a predictor matrix X by a 

statistical model f: X → Y. Then, 
ˆ ( )f X

 
denotes the predicted responses estimated from the 

observed training set T = { 1 1( , )y′x , ⋯, ( , )i iy′x , ⋯, ( , )N Ny′x }, where yi is the ith value of Y 

and xi is a predictor vector for the ith observation. We assume that the observations in T are 

random samples from a distribution F. Let denote 
ˆ( , ( ))L Y f X  the loss function5 for 

measuring errors between Y and 
ˆ ( )f X . For example, in many regression-based models, a 

common choice for a continuous Y is the squared error loss, i.e., 
ˆ( , ( ))L Y f X 2ˆ( ( ))Y f= − X . 

 
5 The term loss in mathematical optimization is used to describe how much a model is losing compared to 
having made perfect predictions 
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As shown in (1.2.3) of Chapter 1, ERA also defines its objective function in terms of the 

mean squared error loss and seeks to minimize it over all possible parameter values. 

Conventional goodness of fit measures for ERA inform how well a model fits to the 

training set, thus being of little utility when assessing a model’s prediction capability. There 

are various loss functions to quantify the overall predictive performance, but root mean 

square error (RMSE), 

 2
1

1 ˆRMSE ( ( ))N
i ii

y f
N =

= −∑ x , (4.2.1) 

is a reasonable choice for ERA, considering that all ERA parameters are estimated to 

minimize the mean squared error loss, i.e., the sum of squared prediction errors, as discussed 

above.  

In predictive modeling, we wish to obtain a model that not only performs well on the 

training data, but also on independent unseen data. Thus, understanding how to estimate the 

error rate of a model when it is used to predict the future responses is important as it guides 

the choice of final model. Let 0 0( , )y′x  is a new independent test sample randomly drawn 

from F. The true test error or generalization error (Efron, 1983; Efron & Tibshirani, 1997; 

Hastie et al., 2009, Chapter 7), is the prediction error for 0 0( , )y′x , 

 
0 0( , ) 0 0

ˆErr [ ( , ( )) | ]T yE L y f Τ′= x x . (4.2.2) 

Note that, in (4.2.2), only 0 0( , )y′x  is random with T being fixed, meaning that the true test 

error refers to the conditional error for the particular training set T. In practice, it is more 

amenable to estimate a model’s prediction error as the expectation of ErrΤ (Efron, 1983; 

Efron & Tibshirani, 1997; Hastie et al., 2009, Chapter 7),  

 ˆErr [Err ] [ ( , ( ))]TE E L Y f= = X , (4.2.3) 



81 
 

where everything random is averaged over. In many machine learning applications, where a 

large independent test set is available, the goal of model selection is to find a model that gives 

minimum expected test error in (4.2.3). 

In the absence of a large independent test set, the simplest way to estimate ErrT is to 

use the training error or apparent error, defined by the average loss over the training data, 

 Train 1

1 ˆErr ( , ( ))N
i ii

L y f
N =

= ∑ x . (4.2.4) 

As discussed previously, ErrTrain is typically smaller than ErrT, i.e., ErrTrain tends to be biased 

downward as an estimate of ErrT because the same observations are used twice, both for 

fitting 
ˆ ( )f X  and for evaluating the prediction error of 

ˆ ( )f X (Efron & Tibshirani, 1997). To 

alleviate this inherent optimism in ErrTrain, various resampling methods can be employed. 

4.2.2. Resampling Methods for Out-of-Sample Model Assessment 

All prediction error estimators introduced in this section aim to estimate ErrΤ  more 

accurately than the apparent error by adopting different resampling methods. Key references 

on the use of different variants of CV and the bootstrap for prediction error estimation are 

Breiman and Spector (1992), Efron (1983), and Efron and Tibshirani (1997). 

A straightforward approach for correcting the optimism in ErrTrain is to randomly split 

the observed data T in two parts: one for developing the model (training or learning set) and 

the other for measuring its predictive performance (validation set). With this split-sample 

approach, model performance is determined on independent data not used for model 

development. However, there are two criticisms of this procedure. First, it is inefficient, 

especially when the size of T is small, owing to its reduction of the size of both learning and 

validation sets. Second, high variability in the estimated predictive performance can be 

introduced because of its reliance on a single split of T. Thus, k-fold CV, which can be 
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considered an extension of the split-sample approach, is preferred. This method randomly 

assigns N observations to one of k partitions such that the partitions are of nearly equal size. 

Subsequently, the learning set contains all but one of the partitions which is labeled the 

validation set. We fit the model to the learning set, and calculate the prediction error (e.g., 

RMSE) of the fitted model to the validation set. After repeating this for all k folds, the k 

prediction error estimates are averaged, resulting in the k-fold CV estimate of prediction 

error, (cv, )Err k . LOOCV is the most extreme case of k-fold CV, where the number of folds 

equals the number of observations (i.e., k = N) and each observation is individually assigned 

to the validation set.  

Efron (1983) proposed and compared a number of bootstrap resampling variants for 

the assessment of a model’s predictive performance, which are generally referred to as out-of-

bag (OOB) estimators in the statistics and machine learning literature. Calculating the OOB 

prediction error begins with bootstrap sampling. Let B be the number of bootstrap 

replications. For each draw, a bootstrap sample contains only 63.2% of the original data on 

average (referred to as in-bag sample) due to the sampling with replacement. The prediction 

error is assessed on the remaining 37% of the data (out-of-bag data) for each bootstrap draw 

and subsequently averaged over the B iterations, resulting in the OOB estimate of prediction 

error, (OOB)Err . There are two more variations of the OOB estimator: the .632 estimator, 

(.632)Err , and the .632+ estimators, (.632+)Err . Both aim to correct the underestimated ErrTrain as 

a weighted combination of ErrTrain and (OOB)Err : ω·ErrTrain + (1-ω)· (OOB)Err . The value of ω 
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is fixed as .632 for the .632 estimator, whereas ω is determined based on the so-called “no-

information error rate” for the .632+ estimator (Efron and Tibshirani, 1997)6. 

 

4.3. Simulation Study 

In this study, the following experimental factors were considered: (1) sample size for training 

data (T), N = 50, 100, 200, 500, and 1,000, and (2) the number of predictors per component, 

Np = 2, 4, 6, and 8. Using the data generation procedure described in Section 2.3.1, simulation 

data were generated for 20 different scenarios (5 different sample sizes x 4 different numbers 

of indicators). For each scenario, different mis-specified ERA models were considered to see 

whether the true model was chosen based on different model assessment metrics. More 

specifically, four model specifications were considered: (1) under-specified model, f0:

1 1i i iy b f e= + , (2) correctly-specified model (i.e., data generating model), f1:

1 1 2 2i i i iy b f b f e= + + , (3) over-specified model with a component interaction term, f2:

1 1 2 2 3 1 2( )i i i i i iy b f b f b f f e= + + ⋅ + , and (4) over-specified model with interaction and quadratic 

terms, f3: 2 2
1 1 2 2 3 1 2 4 1 5 2( ) ( ) ( )i i i i i i i iy b f b f b f f b f b f e= + + ⋅ + + + . In all conditions, the total 

number of repetitions was 1,000. 

 

4.3.1. Optimism in In-Sample Measures 

Figure 4.3.1 shows the apparent performance of FIT (i.e., the in-sample performance of FIT) 

for four different ERA models (f0, …, f3) in relation to sample size (N) and the number of 

 
6 In brief, the weight is dependent on the relative amount of overfitting coefficient R: ω = .632/(1-.368·R). The 
relative overfitting R is large when the difference between ErrTrain and (OOB)Err  is relatively large. In this case, R 
and ω approach 1, indicating that the estimated prediction error is largely based on (OOB)Err . When the 
overfitting is small, R approaches 0 and ω .632, resulting in similarity between the .632 and .632+ estimators. 
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indicators per component (Np). Boxplots were constructed to show the distribution of 

estimated FIT values over 1,000 repetitions. Each dotted line indicates the Err estimate in 

(4.2.3) which was estimated over 1,000 simulated independent test sets of size N each. As the 

boxplots show, with large sample size and smaller number of predictors, the median apparent 

performance of FIT (boxplot centers) approached the test performance (dotted lines). We also 

note a reduction in the variability of the model performance estimates (the length of boxplots) 

in such conditions. For all simulation conditions, however, the true model (f1) was never 

selected. In addition, the median apparent performance was always above the dotted line, 

indicating the optimism of conventional FIT as an estimate of true predictive performance. 

For the overfitted models, f2 and f3, the apparent performance of FIT tended to reach its 

maximum value (i.e., 1) rapidly in small samples and many predictors, showing that the 

optimism in the apparent FIT measure can be problematic when overfitting may be an issue 

in model selection. 

In Figure 4.3.2, boxplots show the apparent error measured based on RMSE. The 

differences between Figure 4.3.1 and Figure 4.3.2 are minimal in terms of the optimism of in-

sample model assessment. But, by looking at the variability of the estimates across different 

model specifications (f0, …, f3), we can see that RMSE is less affected by model mis-

specification. For example, in Figure 4.3.2, the difference in variabilities of apparent RMSE 

for f0, f1, f2, and f3 became very minimal when the sample size increased (e.g., N ≥ 100), 

while the variability of apparent FIT for the true model (f1) in Figure 4.3.1 was always the 

largest for all simulation condition compared to that of each mis-specified model. 
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Figure 4.3.1. Behavior of in-sample FIT values as the training set sample size (N=50,…,1000) 
and model complexity (Np=2,…,8) are varied for correctly- and incorrectly-specified ERA 
models (f0, f1, f2, and f3). 
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Figure 4.3.2. Behavior of apparent RMSE as the training set sample size (N) and model 
complexity (Np) are varied for correctly- and incorrectly-specified ERA models (f0, f1, f2, 
and f3). 
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Figure 4.3.3. Behavior of different out-of-sample prediction error estimators based on 
various resampling methods, as the model complexity (Np = 2 and 4) are varied for 
correctly- and incorrectly-specified ERA models (f0, f1, f2, and f3). The training set sample 
size is N = 100. 

 

4.3.2. Behavior of Out-of-Sample Estimators 

In this section, all results are discussed but only a limited number of figures are displayed 

because the differences in the error estimators across the resampling methods were minimal 

as the sample size increases, N > 100. The full compilation of simulation results archived on 

the author’s GitHub at https://github.com/QuantMM. 

Figure 4.3.3 displays the behavior of different prediction error estimators based on 

various resampling methods for correctly- and incorrectly-specified ERA models (f0, f1, f2, 

and f3), when N = 100 and Np = 2 and 4. The error is calculated based on RMSE for the 

apparent error (denoted by (1)App in the figure), k-fold CV estimators (for k = 3, 5, and 10; 

(2)CV3, (3)CV5, and (4)CV10, respectively), LOOCV estimator ((5)LOOCV), the regular 



88 
 

OOB bootstrap estimators (OOB)Err  with B = 20 and 50 ((6)Boot20 and (7)Boot50), the .632 

estimator with B = 20 and 50 ((8).632.20 and (9).632.50). Due to space limitations, the results 

of .632+ estimator are not included in the figure as there was no noticeable difference 

between the .632 and .632+ estimators in all simulation conditions. Also, the results obtained 

from (OOB)Err  and the .632 estimators with B = 100 are not displayed because there was 

minimal improvement over those with B = 50. In the figure, each error bar represents one 

standard deviation of the expected value of the estimated errors over 1,000 repetitions. Each 

dotted line indicates the Err estimate in (4.2.3) which is estimated over 1,000 simulated 

independent test sets of size N each.  

Most noticeably, all resampling estimators resulted in the smallest error for f1, thus 

the true ERA model was always selected across all simulation conditions. In this true model 

condition, all estimators (except the LOOCV estimator) successfully corrected the 

underestimated prediction error in the apparent error estimator and exhibited similar 

variabilities (the length of error bars). The LOOCV estimator had the lowest variability but 

showed noticeable downward bias. Additionally, the 5-fold CV estimator had the smallest 

bias, followed by the .632 and .632+ bootstrap methods with B = 20. 

The behavior of error bars in the mis-specified conditions, i.e., f0, f2 and f3, clearly 

shows that the bias and variance of each error estimator depends on the apparent performance 

of a model. When a model was underspecified, thus showing poor apparent performance, all 

error estimators overly overestimated the true prediction error but always had low variability. 

When overfitting occurred (f2 and f3), the k-fold CV estimators highly overestimated 

prediction error with high variability, which tended to be worse for a smaller value of k. The 

LOOCV estimator corrected such overly upward biased prediction error and had the smallest 

variability. This indicates that, when there is little bias in the k-fold CV estimators (as in the 
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true model condition, f1), downward bias can occur with the LOOCV estimator. This is 

possible because each learning set in the LOOCV procedure is very similar to the full 

observed data T. Similarly, the OOB bootstrap estimators showed large biases for overfitted 

models, where the upward bias was substantially reduced by the .632 and .632+ estimators. 

However, the advantage of increasing B from 20 to 50 was minimal.  

 

4.4. Discussion and Recommendations 

To build a model that generalizes the result beyond the current sample, especially when 

overfitting may be an issue, the use of out-of-sample model assessment metrics is crucial in 

model selection. There has been no discussion in the ERA literature as to out-of-sample error 

estimation for model selection, and no comparison of widely-used resampling methods has 

been performed to date. Thus, this chapter discussed several resampling strategies to estimate 

prediction error in the absence of independent future data, as alternatives to the conventional 

in-sample goodness of fit measures. 

Simulation results demonstrated that the optimism of conventional in-sample model 

evaluation metrics was negligible in large samples (e.g., N ≥ 500), but never disappeared. 

This implies that comparing two or more candidate models relying only on conventional FIT 

or in-sample RMSE is not recommended because these model evaluation metrics always 

favor more complex models (with a larger number of predictors per component and/or 

overfitted model), thereby being unable to select model resulting in a reproducible conclusion 

for future data. 

The simulation study also highlighted the advantage of adopting CV and bootstrap 

methods to avoid overly optimistic assessment of a model’s predictive performance. Some 

general conclusions may be summarized as follows. Firstly, the differences among the 
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resampling methods (in terms of both bias and variance of estimators) decrease as the sample 

size increases, e.g., N ≥ 200, even for mis-specified models. Secondly, when highly complex 

models are considered, the k-fold CV with smaller number of folds and the regular OOB 

bootstrap methods may perform poorly compared to other resampling methods. Thirdly, for 

largely over-specified models, the LOOCV estimator was a reasonable choice as it resulted in 

the lowest bias and variability. Fourthly, B = 20 bootstrap replications would be sufficient for 

the regular OOB bootstrap estimator and its variants. The advantage of increasing B from 20 

to 100 was minimal in terms of the variability of estimators. Lastly, overall, the .632 

and .632+ estimators outperformed other estimators, but the 10-fold CV prediction error 

estimate approximated those of .632 and .632+ in almost all settings. Thus, for 

computationally burdensome analyses, 10-fold CV may be preferable over the OOB 

bootstrap estimators. 

This chapter discussed the assessment of prediction performance in terms of RMSE 

error. Thus, the simulation results can be widely applicable for other ERA models for 

continuous responses fit by expected squared error loss. However, when response variables 

are discrete—which is often termed classification problems in statistics and machine 

learning, the best choices of resampling methods may differ substantially. Simulation studies 

on prediction error estimation in classification problems (e.g., Efron, 1997; Hastie et al., 

2009, Chapter 7.3) demonstrate that the bias and variance of expected test error in (4.2.3) 

behave considerably differently for classification loss functions (e.g., 0-1 loss, the negative 

binomial log-likelihood known as deviance or cross-entropy) than they do for squared-error 

loss. Thus, future work is needed to explore the behavior of the resampling methods for 

estimating the expected test error in classification problems, especially focusing on the 
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effects of different loss functions and number of classification classes in each response 

variable. 

In addition, further studies are necessary to examine the utility of prediction error 

assessment based on resampling methods in a wide range of real data applications. For 

example, the empirical application examples discussed in the previous chapters used public 

data collected from the 2012 National Survey on Drug Use and Health (NSDUH). The 

empirical applications were conducted somewhat in an exploratory fashion, i.e., there were 

many “researcher degrees of freedom” (Simmons, Nelson, & Simonsohn, 2011) to decide 

what predictors to include or exclude and which component sets to use. For investigation of 

generalizability of the results, possible candidate models with different levels of model 

complexity can be constructed and compared based on the model selection metrics discussed 

in this chapter. Further replication analyses using a few more NSDUH surveys from 2013 to 

2018 to validate the findings from 2012 may help to reveal the utility of out-of-sample 

prediction error estimators, and at the same time, offer the promise of reducing overly 

optimistic assessment of model performance. 
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Chapter 5. Conclusion 

 

5.1. Summary of Results and Contributions 

Psychologists are making serious effort to capture the complexities of human behavior and 

health issues, which naturally encourages greater use of a large number of predictors. For 

example, substance use is associated with a number of different categories of predictors, 

including an individual’s mental health, mental disorders, physical health, quality of life, 

social conditions, and SES, to name a few. This easily gives rise to several tens of variables. 

ERA is especially efficient in such settings as it provides a simpler interpretation of predictor-

response relationships by summarizing multiple sets of predictors into a new set of lower-

dimensional components. Using domain-specific knowledge concerning which predictors are 

to be put together within a researcher-defined component facilitates the interpretability of 

components. The final model ensures predictability as well because ERA searches for 

components that maximize predictive accuracy, without having to eliminate any predictors of 

interest to avoid multicollinearity. On the top of that, the potential and practical usefulness of 

ERA lies in its predictive nature; as discussed in previous chapters, ERA has been well 

blended with many statistical techniques for regression problems, including generalized 

linear model, generalized estimating equations, regularization techniques, and various 

supervised machine learning algorithms. 

The present research makes methodological contributions to expanding conventional 

ERA for the analysis of: (1) potential heterogenous subgroups of observations characterized 

by combinations of auxiliary covariates and (2) multiple correlated response variables when 

the assumption of independent observations is violated. A large public dataset concerning 

drug use among US residents was used to illustrate the empirical usefulness of these novel 
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extensions. In addition, the present research proposes new prediction-oriented model 

selection strategies for ERA based on out-of-sample model evaluation metrics. Each of the 

novel approaches to ERA presented in this dissertation adopts machine learning algorithms 

(such as recursive partitioning and various regularization techniques), commonly used 

statistical modeling frameworks (such as generalized estimating equations and resampling 

methods), or a combination of both. By doing so, all the proposed ERA extensions attempt to 

provide a better ERA solution—one which allows the amount of model flexibility necessary 

for adequate data fit while providing interpretable results that can be easily understood by 

domain experts and not only by quantitative researchers. 

As noted earlier, numerous health studies based on US nationwide survey datasets 

suggest that certain groups of US residents are dissimilar to others with respect to socio-

demographic and health characteristics. A standard way to explore such patterns of 

heterogeneity is to compare a group of observations with a particular covariate characteristic 

to another group with a different characteristic (e.g., a covariate, gender; females vs. males). 

However, it is difficult to know which covariates should be used and how those covariates 

interact with each other. There will also be increased complexity in both analysis and 

interpretation, particularly when a number of continuous and/or categorical covariates are of 

interest. Unlike this standard way of group comparisons, the adaptation of a recursive 

partitioning method in MOB-ERA allows an automatic detection of a meaningful 

combination of covariates for a specified ERA model, thereby being able to capture unknown 

but important covariate-dependent heterogeneity in a data-driven manner. The proposed 

method is not overly computationally burdensome (compared to conventional ERA) because 

a series of parameter instability tests for each partitioning covariate is performed based on the 

empirical score contributions that are already obtained when estimating parameters. In 
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addition, the resulting flowchart-like tree diagram facilitates an understanding of 

hierarchically nested covariate structures selected during data partitioning, displaying how 

the whole dataset is split into heterogeneous subgroups 

The second extension of ERA discussed in Chapter 3 concerns data analytic issues 

stemming from correlated responses, such as clustered data or time-dependent repeated 

measures. The proposed method, ERA-GEE, combines ERA with penalized GEE to 

simultaneously analyze multiple correlated response variables that are affected by a common 

set of predictors, relaxing the assumptions of correct specification of the covariance structure 

of the responses. ERA-GEE offers two additional practical advantages of employing GEE: 

(1) the model can handle various types of responses, such as scale, binary, counts, events-in-

trials, or any combinations of these and (2) does not require balanced design or equally 

spaced measurements for responses. The proposed method also entails the advantages of 

multivariate analysis, including the ability to provide more statistical power compared to 

conducting a series of univariate analyses, as well as the capability to glean a more holistic 

picture than looking at a single response at a time. The proposed method was successfully 

applied to the analysis of rare genetic variants that are associated with multiple metabolic 

syndrome measures (Lee et al., 2019), as well as to the study of co-occurring recreational 

substance use among US adults (Kim et al., in press). 

In many psychology studies, it is often assumed that a sample at hand (i.e., a training 

set of data) is a good reflection of what will be encountered in future data; thus, the final 

model is selected as the one optimized in the training data. Comparing two or more candidate 

models based on such goodness-of-fit (GOF) assessment is not ideal because GOF model 

evaluation metrics always favor more complex models (which fit the training data too 

tightly), thereby limiting the generalizability of the selected model. But estimating model 
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performance in future samples relying only on information contained in the current sample is 

also a hard problem. To respond to this, the last section of this thesis discussed the use of 

computer-intensive resampling methods, including variants of cross-validation (CV) and the 

bootstrap, in order to provide new ways of assessing generalizability of ERA models. In fact, 

owing to improvements in statistical computing over the past years, it has become 

substantially easier to execute various resampling methods on modern laptops without much 

computational burden. A series of simulation studies illustrated that, over a wide range of 

different model complexities and sample sizes in correctly- and incorrectly-specified model 

conditions, all of the out-of-sample prediction error estimators favored the true model with 

the highest frequency. The estimators based on 10-fold CV, .632, and .632+ methods 

outperformed other resampling strategies, but the difference between error estimators became 

unnoticeable in large samples. As the first initiative in investigating out-of-sample model 

performance of ERA, the broader goal of this study is to bring this discussion into the field of 

psychology so that such predictive model assessment metrics can be effectively utilized for 

investigation of reproducibility and generalizability of psychological and behavioral data 

science.  

 

5.2. Future Research Directions 

This thesis presents three important contributions to the advancement of ERA. The 

limitations and future research directions are discussed in detail in each chapter, but they can 

be summarized as follows: 

• (Chapter 2. MOB-ERA) It is well known that the obtained results from any types of 

recursive partitioning methods are likely to be inflexible when it comes to new 

samples even after applying various regularization techniques. In order to deal with 
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such high variability problem, I plan on advancing MOB-ERA from a “single tree” to 

a “forest” by applying bootstrap aggregating or bootstrap smoothing (also known as 

bagging; Breiman, 1996). A MOB-ERA-forest will provide a more stable and less 

overfitted result, where each MOB-ERA-tree is built upon a random bootstrap sample 

of the original data. 

• (Chapter 3. GEE-ERA) Missing data are a common problem in many studies dealing 

with multiple grouped responses, especially in longitudinal studies. To obtain 

unbiased GEE estimates, the assumption on the pattern of missingness is missing 

completely at random (MCAR). A more refined GEE-ERA should be further studied 

to handle a specific pattern of missingness such as monotone dropout (i.e., when study 

subjects are fully observed up to a certain point but have no measurements at 

subsequent points) or non-monotone (intermittent) dropout. For this, various multiple 

imputation (MI) methods, e.g., an MI approach assuming a multivariate normal 

distribution or an adaptation of the fully conditional specification (FCS) with the use 

of Gibbs sampling, can be considered. 

• (Chapter 4. Predictive Performance Assessment in ERA) Optimistic estimation of 

model performance in classification problems should be further examined. A variety 

of loss functions for prediction error can be considered, such as 0-1 loss and deviance. 

Especially, understanding the effect of the number of events per variable (EPV), 

instead of simple sample sizes, is important when binary or multinomial response 

variables are considered. 

Moving forward, future work should consider how to capture important between-person 

differences in ERA or individual-specific effects, such as random regression coefficients 

(e.g., pattern of changes in health or behavioral outcomes varying across individuals) and 
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random intercepts (e.g., baselines of such outcomes across individuals). Within the GEE 

framework discussed in GEE-ERA, the interest was in controlling for some degree of 

dependence from correlated responses when estimating the marginal effects of multiple 

predictors over all observations. In this circumstance, the dependence among the responses is 

treated as a nuisance parameter that is not of direct interest. Moreover, the dependency 

structure is assumed to be the same for all observations. Thus, I plan to extend ERA into the 

multilevel modeling framework to investigate individual-specific effects while controlling for 

potential predictor effects. The motivation of this proposal stems from the analysis of the 

University of Michigan Health and Retirement Study (HRS) data, which is a national 

longitudinal study for investigating the socio-psychological characteristics and physiological 

states of older Americans in relation to their cognitive decline over time. The respondents 

who participated in the HRS survey were not all measured at the same initial ages, meaning 

that there is not a one-to-one correspondence between time points and age at time of 

measurement. Moreover, the age-related declines in cognitive functioning randomly vary 

across respondents. This in turn indicates that ERA needs to adopt a more flexible framework 

to properly capture the differences in baselines of age-related changes, and at the same time, 

to investigate whether age-related declines in cognitive functioning randomly vary across 

respondents. 
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Appendix A. Parameter Estimation in PLSR 

As discussed earlier, NIPALS and SIMPLS algorithms are the most commonly used 

algorithms for PLSR. For simplicity, the NIPALS algorithm is presented here. 

 

1. Background 

The main idea behind PLSR is to calculate the principal components of the X and the Y 

matrix separately (external correlation) and to develop a regression model between the scores 

of the principal components (inner correlation). That is, PLSR aims to obtain the 

decompositions of both X and Y, i.e., X = TP’ and Y = UQ’, as in PCA, and then 

subsequently perform regression between T and U (U = TB), where P is the principal 

components of X (T = XP) and Q is the principal components of Y (U = YQ). Note that P is 

the k×k orthogonal matrix obtained as T = XP such that the columns of T, t1, … tk, are 

uncorrelated and arranged in order of decreasing variance. P is often called the loading 

matrix and T is called the score matrix in the PLS literature. 

If we do the above decompositions of X and Y separately using the NIPALS 

algorithm, each update rule is: 

Decomposition of X  Decomposition of Y 

X: column centered and normalized 

t: initialized with random values 

Loop 

  p = X’t / ||X’t|| 

  t = Xp 

Until t stop changing 

 Y: column centered and normalized 

u: initialized with random values 

Loop 

  q = Y’u / ||Y’u|| 

  u = Yq 

Until u stop changing 

This results in the first principal components p and q, as well as their corresponding score 

vectors t and u. To find the subsequent components and score vectors, repeat the same steps 
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after partialing out the effect of t and u from X and Y: i.e., X = X - tp’ and Y = Y - uq’. After 

l such steps, we obtain two N×l matrices T and U for l < k, i.e., the matrices in a reduced 

dimension, subsequently P and Q. 

 

2. PLSR Algorithm 

As noted earlier, PLSR seeks to find the decompositions or the linear combinations of both X 

and Y in such a way that the covariance between the obtained linear combinations, i.e., t’u, is 

maximum. One intuitive way to achieve this is to exchange t and u in the update rules for p 

and q described above and combined the two update rules in a single loop. This results in the 

following procedure: 

• Initially, X and Y are column-centered and normalized. 

• Before starting the iteration process, u is initialized with random values. 

• Loop 

  p = X’u / ||X’u|| 

  t = Xp 

  q = Y’t / ||Y’t|| 

  u = Yq 

Until t stop changing 

(The vectors t, u, p, and q are then stored in the corresponding matrices) 

• This finds the first set of PLS components and loadings. For subsequent components 

and vectors, set X = X - tp’ and Y = Y - uq’, then repeat the same steps. 

• After l such steps, we obtain T, U, P, and Q. 

Then, to get a regression model relating Y and X, we first fit B for U = TB, i.e., B = T’U, 

subsequently, Y = UQ’ = TBQ’ = XPBQ’.  
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Appendix B. Estimation and Inference in Parametric ERA 

We express (2.2.3) in matrix notation as 

 ( ) ( ) ( ) ( )XW Ω XW F Ω Fϕ ′ ′= − − = − −z b z b z b z b  (B1) 

with respect to W and b, subject to diag(F′F) = NI, where z  is an N by 1 vector of adjusted 

response variable values zi, X is an N by P matrix of predictors, W is a P by K matrix of 

component weights, b is a K by 1 vector of regression coefficients, Ω is an N by N diagonal 

matrix of the ith diagonal element ωi, and F is an N by K matrix of component scores. 

To estimate ERA parameters, we aim to minimize (B1) by an iterative method in 

which each iteration involves the following steps: 

Step1. Update W for fixed b, z, and Ω. This is equivalent to minimizing the following 

criterion with respect to W, 

 

( )

* *

( ) ( )

       [vec( )] [vec( )]

       [ ( )vec( )] [ ( )vec( )]

       ( ) ( )

ϕ ′= − −

′= − −

′ ′ ′= − ⊗ − ⊗

′= − −

W XW Ω XW

XW Ω XW

X W Ω X W

U Ω U

z b z b

z b z b

z b z b

z w z w

 (B2) 

where⊗ indicates the Kronecker product, vec(W) indicates the vec operator that creates the 

column vector of W obtained by stacking the columns of W, U denotes an N by P matrix 

formed by eliminating the columns of X′⊗b  corresponding to the nonzero elements in 

vec(W), and w* denotes the P by 1 vector of the nonzero elements in vec(W). Then, the 

estimates of w* are obtained by 

 1*ˆ ( )U ΩU U Ω−′ ′=w z . (B3) 

Subsequently, the nonzero elements in W are replaced with the corresponding values in w*. 

Step2. Update b for fixed W, z, and Ω. This is equivalent to minimizing 
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 ( ) ( ) ( )
      ( ) ( )
ϕ ′= − −

′= − −
b XW Ω XW

F Ω F
z b z b
z b z b

 (B4) 

with respect to b, subject to diag(F′F) = NI. The least-squares estimate of b is given by  

 1ˆ ( )−′ ′= F ΩF F Ωb z . (B5) 

Step3. Update z and Ω for fixed W and b. As discussed in the Methods section, z is updated 

based on zi = ηi + (yi - μi)/ωi. The calculation of Ω varies depending on which member of the 

exponential family is assumed for the response variable (refer to McCullagh & Nelder, 1989). 

For example, in the case of the normal distribution, 2ˆ ˆ 1i iω µ−= =  yielding Ω = IN. 

We repeat the above steps until the changes in W and b between previous and current 

iterations are below a pre-determined threshold, e.g., 10-5. 

 Let ERAθ̂ = [ *ŵ ; b̂ ] denotes the ML parameter estimates at convergence that stacks 

*ŵ  and b̂ . The asymptotic covariance matrix of ERAθ̂  can be obtained by computing 

negative Hessian matrix evaluated at ERAθ̂  and inverting it (Hwang et al., 2015b; Yee & 

Hastie, 2003). Let ERA
ˆ ˆθ θ= for simplicity. The negative Hessian matrix or the second 

derivative of the log-likelihood is given as 

 

2 2

2

2 2
* * *

*

( ) ( )
( )H( )

( ) ( )

θ θ
θθ

θ θ θ θ
'

'

 ∂ ∂
 ∂ ′∂ ∂ ∂ ∂ − = − = −

′∂ ∂  ∂ ∂
 ′∂ ∂ ∂ ∂ 

 



 

w w w b

b w b b

. (B6) 

The diagonal terms in (B6) can be obtained by fixing *w  and b, respectively: 

 
2

* *

( )θ
'

∂
−
∂ ∂


w w
U ΩU′= −  (B7) 

and 
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2 ( )θ∂

−
′∂ ∂



b b
F ΩF′= − . (B8) 

The off-diagonal terms in (B6) can be obtained using the profile likelihoods (Richards, 1961) 

 
2 2*

* * *

( ) ( )'
' '

 ∂ ∂ ∂
− = − − ∂ ∂ ∂ ∂ ∂ 

θ θ w
b w b w w

. (B9) 

To compute *'∂
−

∂
w
b

 in (B9), let jδ  denote a K by 1 vector of 0 except having 1 in the jth 

element (j = 1, …, K) and Λ  denote a matrix formed by eliminating the columns of j′ ⊗δ X  

corresponding to the fixed elements in vec(W). Then, *'∂
−

∂
w
b

 is calculated by 

 ( )1 1* ( ) - ( )' − −∂  ′ ′ ′ ′ ′− = Λ Λ ∂
U ΩU Ω ΩU U ΩU U Ωw z z

b
 (j = 1, …, K). (B10) 
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Appendix C. Parameter Estimation in GEE-ERA 

As mentioned in Chapter 1.4, the parameter estimation algorithm for GEE-ERA was 

proposed and briefly described in Lee et al. (2019). This section reiterates the algorithm in 

full details, using the notation of Method 3.2 for consistency. 

 To minimize (3.2.3), GEE-ERA uses an iterative algorithm that repeats the following 

steps until the changes in the estimated parameter values between previous and current 

iterations are below a pre-determined threshold, e.g., 10-5 : 

Step 1. Update B for fixed W and Ri(α). This is equivalent to minimizing the following 

criterion with respect to B, 

 
( )

1
( )

1

1

1

1

1

1

[( ) ( )] tr( )

      tr [( ) ( )] tr( )

      tr [( ) ( )] tr( )

      tr [( ) ( )]

N

i i i i i
i

N

i i i i i
i

N

i i i i i
i

i i i i i

z f z f

z f z f

z f z f

z f z f

ϕ λ

λ

λ

−

=

−

=

−

=

−

′ ′ ′ ′= − Σ − +

 ′ ′ ′ ′= − Σ − + 
 

′ ′ ′ ′= − Σ − +

′ ′ ′= − Σ − ⋅

∑

∑

∑

B B

B

B

B B B B

B B B B

B B B B

B B

 

 

 

 

 

 

 

 ( )
1

1

1

1

1

tr( )

      vec( ) ( ) vec( ) tr( )

      vec( )   vec( ) tr( ) , 

N

i
N

i i i i i
i
N

i i i i i
i

z f z f

z f z f

λ

λ

λ

=

−

=

−

=

′+

′ ′ ′ ′= − ⋅ ⊗Σ ⋅ − +

′ ′ ′ ′= − Σ − +

∑

∑

∑

B

B

B

I B B

B I B B B

B B B B

 

 

 

 

 (C1) 

where if  is a K by 1 vector of the component scores of the ith respondent, I is the identity 

matrix, tr(A) indicates the trace of a square matrix A, ⊗   indicates the Kronecker product, 

vec(A) indicates the vec operator that creates the column vector of A obtained by stacking the 

columns of A. Let vec(B’) = b, then 
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∑

∑

∑

B B

B

B
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Q Q

 

 

 

 

 

b b b b

b b b b 

 (C2) 

where Qi = ( )if ′ ⊗ I . Then, the estimates of b are obtained by 

 
1

1 1

1 1

ˆ  +  
N N

i i i i i i
i i

zλ
−

− −

= =

   ′ ′Σ ⋅ Σ      
∑ ∑BQ Q I Q b = , (C3) 

and subsequently, the nonzero elements in B are replaced with the corresponding values in b̂ . 

Step 2. Update W for fixed B and Ri(α). This is equivalent to minimizing the following 

criterion with respect to W, 
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where vec(W’) = w and Mi = ( )ix ′ ′⊗B . The estimates of w are obtained by 
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∑ ∑WM M I M w , (C5) 

and the nonzero elements in W are replaced with the corresponding values in ŵ . 

Step3. Update Ri(α) for fixed B and W. More specifically, the correlation parameters in α are 

estimated from the current Pearson residuals defined by 
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 1/2ˆ ˆ ˆ( ) / var( )iq iq iq iqr y µ µ= − , (C6) 

where ˆiqµ  depends on the current values for B and W. As mentioned in the Method section, 

the estimator for α depends upon the choice of Ri(α). See Liang & Zeger (1986, pp. 17–18) 

for the specific estimators. Finally, the scale parameter ϕ is estimated by 

 2

1 1

ˆ ˆ / ( ( ))
QN

iq
i q

r NQ K Pφ
= =

= − +∑∑ . (C7) 
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