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ABSTRACT 

Quantitative analysis of Drosophila melanogaster gap gene expression data re­

veals valuable information about the nature and strengths of interactions in the gap 

gene network. We first explore different models for fitting the spatiotemporal gene 

expression data of Drosophila gap gene system and validate our results by computa­

tional analysis and comparison with the existing literature. A fundamental problem 

in systems biology is to associate these results with the inherent cause of gene regula­

tion, namely the binding of the transcription factors (TF) to their respective binding 

sites. In arder to relate these expression-based estimates of gap gene regulation with 

the sequence-based information of TF binding site composition, we also explore two 

related problems of i) finding a set of regulatory weights that is proportional to the 

binding site occupancy matrix of the transcription factors in current literature and 

ii) finding a set of position weight matrices of the TFs that produce a new binding 

site occupancy matrix showing a greater level of proportionality with our regula­

tory weights. Our solution to the first problem yielded a regulatory weight matrix 

incapable of explaining the true causes of gene expression profile despite its rela­

tive numerical accuracy in predicting the gene expressions. On the other hand, the 

second optimization problem could be solved up to a reasonable level of accuracy, 

but further analysis on the result demonstrated that this optimization problem may 

be under-constrained. We devise a simple regularization strategy that helps us to 

reduce the under-constrained nature of the problem. 
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ABRÉGÉ 

L'analyse quantitative du niveau d'expression des gènes du système gap de 

Drosophila melanogaster révèle d'importantes informations quant 'a la nature et 

la force des interactions entre les membres du réseau. Nous explorons d'abord 

diffrents modèles pour l'ajustement de données d'expression spatiotemporelles du 

système gap de la drosophile et validons nos résultats grâce à une analyse bioin­

formatique et basée sur la littérature. Un problme fondamental de la biologie des 

systèmes est l'association de ces résultats à leurs causes inhérentes, soit la liaison 

de facteurs de transcription à leurs sites respectifs. De manière relier les niveaux 

d'expression observés des gènes du système gap à la composition de leur séquences 

régulatrices, nous explorons deux problmes: i) la recherche de poids de rgulation 

qui soient proportionels aux prédictions de sites de facteurs de transcription trouvés 

dans la littérature, et ii) la recherche de nouvelles matrices de poids de facteurs de 

transcription qui résultent en des prédictions de sites qui démontrent un haut niveau 

de proportionalité avec nos poids de régulation. Notre solution au premier problème 

donne une matrices de poids de régulation qui est incapable d'expliquer la cause réelle 

du profile d'expression observé, malgré une bonne précision des niveaux d'expression. 

Par ailleurs, le second problème d'optimization peut être résolu jusqu'à un niveau 

de précision acceptable, mais l'analyse des résultats démontre que le problème est 

sous-contraint. Nous avons créé un algorithme de régularisation qui aide à réduire 

la sous-détermination du problème. 
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1.1 Biological Overview 

CHAPTER 1 
Introduction 

1.1.1 Gene Regulation Mechanism 

The genome of a living organism carries the whole repertoire of information 

essential for controlling all the cellular processes. This information is encodecl in 

the genome DNA sequence. From a Computer Scientist's viewpoint, the genome of 

any organism can be thought of as a very long string whose characters are taken 

from an alphabet consisting of four characters A, C, G and T which represent the 

nucleotides Adenine, Cytosine, Guanine and Thymine respectively. This long DNA 

sequence can be broadly categorized into coding region and non-coding reg1:on. Both 

the coding and non-coding regions consist of shorter fragments of non-overlapping 

sequences. The coding region of a genome encodes numerous functional products, 

most commonly the necessary proteins for all the biological processes. The non-

coding region of the genome contains the essential condition and information requirecl 

to control the production of genomic products. A gene is a segment of DNA sequence 

that usually produce a single protein, although a single gene can producc multitude of 

proteins. The prokaryotic genes are continuons strings, but eukaryotic genes usually 

have coding exons separated by several non-coding introns. 

The number of genes in the genomic DNA sequence varies greatly across different 

species. Yeast has only 6000 genes, human or mouse genome has about 25,000 while 
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Poplar genome has about 300,000 genes. However, all the genes are not always 

transformed into the corresponding protein. When a gene is transformed into the 

gene product(protein) that it codes, it is said to be expressed and the corresponding 

process is called gene expression. The non-coding region of the genome encrypts the 

information about gene regulation, a process which determines which gene is to be 

expressed (or not expressed) un der the presence or absence of a certain biological 

condition, the timing and amount of the protein production. For a particular gene, 

the sequence of nucleotides that encodes its gene regulation information is called the 

regulatory region of that gene. The regulatory region is usually located at a close 

proximity of the target gene. 

The process of gene expression and regulation is a complex one, although a 

simpler high level view can be presented. In case of prokaryotes, the first step is 

transcription where the DNA sequence is transcribed into messenger-RNA (mRNA) 

with the help of an enzyme called RNA-polymerase which attaches itself to a short 

sequence in the promoter. This mRNA is then translated into protein sequence by the 

translation process. For eukaryotes, the transcription process results in pre-mRNA 

which are spliced to obtain mRNA such that only the exons contribute towards the 

final protein product and the intronic pre-mRNA are spliced out. The translation 

process then translates the mRNA into the final protein. Proteins are sequences 

of amino acids. There are 20 amino acids, therefore a protein can be viewed as a 

string whose characters are drawn from an alphabet of 20 characters. As translation 

involves a transformation from a 4 character alphabet to a 20 character alphabet, 

three consecutive nucleotides ( also known as a codon) code a single amino acid. 
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The gene regulation process starts when the RNA polymerase attaches itself to 

the promoter. The attachment of RNA polymerase to the regulatory region is affected 

by the presence of certain proteins that are produced by other genes. These proteins 

may attract the RNA polymerase and act as a catalyst for the regulation process 

or they may cause a hindrance in the process and act as a repressor. The proteins 

acting either as activator or repressor are called the transcription factors (TF) for the 

particular gene. A TF bind to a set of specifie sequences of nucleotides, usually 5-15 

base pair in length, present in the regulatory region of the genes. These sequences 

are called the transcription factor binding sites (TFBS). The set of TFBS attracting 

a specifie TF is often referred as a regulatory motif or binding site motif in the 

literature, as it has been observed that different sequences attracting a particular TF 

are al ways of the same length and the nucleotides at different position of the sequences 

often match. Therefore the gene regulation process depends on the presence (or 

absence) of the binding site motifs and the availability(or non-availability) of the 

transcription factors for the gene. 

In the case of most eukaryotic genes, the expression pattern of a particular gene 

is controlled by several cis-regulatory modules (CRMs), each of which consists of 

multiple TFBSs of usually more than one TFs [68]. Each CRM acts independently 

to drive the expression profile of its targets at a specifie position on the body of 

the organism. In our work we computationally analyze the Drosophila melanogaster 

gap gene regulatory network expression data and the genome sequence data of the 

Drosophila using several models and hypothesis and aim at ascertaining the precise 

relationship among the expression pattern of a given gene, the expression pattem 
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of all the other genes who act as TFs for the first gene and known binding site 

composition of the known CRMs. 

1.1.2 Drosophila Segmentation Gene System 

The segmentation gene network of Drosophila Melanogaster is a widely used 

paradigm for the analysis of gene expression and transcriptional control in eukary­

otic cells. The segmentation genes are the genes responsible for the formation of the 

segmented body pattern of Drosophila. (For a review please refer to [1, 28]). This 

body pattern is determined during the syncytial blastoderm stage, a stage character­

ized by the presence of multiple nuclei inside a single cell, of Drosophila embryo [57]. 

The segmentation genes are classified into several types. The dependency among dif­

ferent types of segmentation genes work in a well defined hierarchical manner which 

is described in the next paragraph. Figure 1-1 taken from Schroeder et al. [55] 

schematically represents the hierarchy of dependencies among several different gene 

types of the segmentation gene network. 

The Drosophila egg, once fertilized, forms the larva within 24 hours. During 

the earl y stage of the development(by 3 hr), the zygotic nuclei di vides rapidly but 

the cellular membranes are yet to be formed [60]. This state is called the syncytial 

blastoderm stage of the embryo. During this stage, most nuclei transport to the 

surface of the eggs and become active participator in the process of transcription. The 

maternal input factors, synthesized during oogenesis, act as morphogens (primary 

stimuli for expression pattern formation) in this state and gives rise to the early 

activation of gap gene expression. The maternal factors are spatially distributed as 

a slowly increasing/ decreasing gradient along the anterior posterior (ap axis). The 
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A 

Figure 1-1: The hierarchy of interactions in the Segmentation genes of Drosophila 
melanogaster [55]. 

zygotic gap genes are a set of segmentation genes which are expressed along one 

or more broad and overlapping domain. They affect several contiguous segments 

[53]. The maternal and gap genes together drives the expression of pair-rule genes 

that are expressed in seven complete alternative segments. The segment polarity 

genes, divided into 14 stripes, represent the final segments and are simultaneously 

controlled by gap genes and pair-rule genes. The homeotic genes are responsible for 

identification of the segments. 
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The Drosophila gap gene system is the particular system that we analyze in 

our study. The maternal morphogen Bicoid (Bcd), Caudal (Cad) and Hunchback 

(Hb) stimula te the zygotic expression of the gap gene Hunchback ( hb), Kruppel 

(kr), Giant(gt) and Knirps (kni). The protein product of the terminal gap gene 

Tailless (Tll) also acts as a TF for these gap genes. Moreover, gap genes regulate 

each other and most of these gap gene to gap gene interactions are repressive. There 

is evidence of auto-regulation among the gap genes [42, 29, 30, 53, 50]. Due to the 

active interaction between these TFs, the gap genes attain their precise set of spatial 

domain of expression along the ap axis during cleavage cycle 14A. 

At this stage, the cell membranes begin to form, but the nuclei are not yet com­

pletely surrounded by membrane. This is the cellular blastoderm stage, when the 

pair rule genes continues evolving into a well defined pattern of expression. However, 

the pair rule gene pattern does not culminate into its final pattern during the cellu­

lar blastoderm stage. During the gastrulation stage, the cell membranes completely 

surround the nuclei and the formation of the pair rule gene pattern continues. Dur­

ing the germ band extension stage, the pair rule gene products slowly deca.ys, but 

segment polarity genes are expressed which, together with pair-rule genes, regulate 

the homeotic gene expression. Thus the final segmented body pattern of Drosophila 

is established. 

In the next section we briefiy discuss sorne selected works on modelling gELp gene 

network and computational approaches towards detecting TFBS. 
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1.2 Previous Work 

1.2.1 Modelling the Gap Gene Regulatory Network 

The motivation behind modelling gene regulatory network is to build a thorough 

understanding of the gene regulatory mechanism governing an important biological 

process. The gap gene regulatory network plays a crucial role in the formation of 

the segmented body pattern of Drosophila. Moreover, the gap gene system is the 

first set of segmentation genes that directly responds to maternal morphogens and 

the pattern formation is almost entirely due to transcriptional regulation [42, 55]. 

Therefore, this network has been studied extensively in the last couple of decades. 

These studies can be broadly categorized as qualitative and quantitative analysis of 

the regulatory effects of various transcription factors on different target genes. Most 

of these studies concentrated on the transcriptional regulation for either the anterior­

posterior-axis ( ap-axis) and or the dorsal-ventral-axis ( dv- axis) pattern formation 

as these two systems are considered in dependent of each other. 

a Qualitative Approaches The early studies of the gap gene regulatory net­

work were principally qualitative. Qualitative modelling of the regulatory sys­

tem is much simpler than a quantitative modelling and so is its analysis and 

interpretation. Moreover, the dearth of exact quantitative experimental data 

of various gap gene expression under different condition motivated these qual­

itative studies. [50, 53]. Generally, the mode (activation/ repression) of the 

regulatory effect of a TF is assumed by 

analyzing the difference between mutant and wild-type expressiOn pat­

terns., and 
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ii analyzing the transcription factor binding site composition. 

For general GRNs, different qualitative approaches have been proposed and ap­

plied. The boolean network [64] , stochastic logical networks [67], generalized 

logical formalisms [50, 53] etc. are examples of such different models. In our 

study, we often compare our results with those of Rivera-Pomar et al. [50] and 

Sanchez Thieffry et al. [53]. In Rivera-Pomar et al., the authors descriptively 

explain the regulation of different genes by analyzing the mutant phenotypes 

of the embryo under different conditions and the DNA binding motifs present 

in the regulatory regions of those genes. Sanchez et al. [54, 53] is motivated 

by the work of Kauffman et al. [33] and Thomas et al. [64] which introcluced 

a boolean formalization of the general gene regulatory networks. It presented 

the gene expression profile using logical discrete random variables where differ­

ent thresholds of expression values represented different values for the discrete 

variable, i.e. 0 to represent no expression, 1 for low level of expression, 2 

for high level of expression etc. At first, the authors construct a interaction 

graph among different TFs and their targets by studying the results of differ­

ent mutant expression patterns. Then they formalize a system of generalizecl 

logical equations for the interaction graph. The embryo is divided into four 

non-overlapping regions A to D where region A corresponds to the anterior 

most portion and the region D refers to the posterior most portion. A state 

table can be constructed on the basis of these logical equations. This state 

table identifies all the stable states within the system and helps simulating the 

qualitative effect of loss-of-function and cis-regulatory mutations. 
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The qualitative studies mentioned above have been successful in iclentifying 

many interactions within the network with a relative degree of accuracy. How­

ever, they have often lead to ambiguity while predicting the interactions. This 

ambiguity is caused by the fact that the gap genes regulate each other, so 

the target genes are TFs themselves. Therefore, any observed effect can be 

explained by either a direct effect of a TF on the target or an indirect effect 

through a series of TF-target gene interactions. This ambiguity inspired re­

searchers to employ quantitative approaches to madel gene regulation with the 

required level of precision and determinism. The growing availability of the 

quantitative gene expression data bolstered their efforts. 

b Quantitative Approaches As the transcriptional regulation process in an 

eukaryote is substantially complex and involves many layers of interactions, it 

is not possible to abstract it perfectly into a model. The choice of a partic­

ular madel to represent a complex process depends largely upon the amount 

and nature of experimental data available and the objective of the assay [8]. 

GRNs have been modeled using stochastic equations [2, 19, 38, 49], Ordinary 1 

Piecewise Linear 1 Partial Differentia! Equations. However, the most common 

and successful madel used for gap GRN is Gene CiTcuit Madel [39, 48, 24, 23] 

where the transcription rate change of a given gene is modelled by a combina­

tian of production, decay and diffusion of the gene product.In these models, the 

effects of all the TFs on every target gene is represented by a regulatory weight 

matrix. The signs of the weights denote the nature of transcription regulation, 

i.e activation or repression, while the magnitudes of the weights represent the 
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strength of the regulatory influence. In our study, we look closely on the re­

sults of two such studies, one by Perkins et al. [42] and the other by Jaeger et 

al. [29, 30] . Both of these works analyze only the wild type expression profile 

(details in Chapter 2) and both of them uses differentia! equation models that 

deterministically represent the change in protein concentration as a combined 

result of production, decay and diffusion of the transcription factors. These pa­

rameters to define production, decay and diffusion are unknown, so the authors 

employ different optimization procedures for searching a suitable set of param­

eter values to fit the model. The aim of the optimization procedure is to find 

out a unique set of parameter values such that a simulated expression profile 

of the target gap genes matches as closely as possible to the observed profile of 

the genes, i.e. the sum of the squared error between the model prediction and 

actual observation is minimized. Jaeger et al. [29] uses Parallel Lam Simulated 

Annealing (PLSA). The algorithm is described in [48, 11] . Perkins et al. [42] 

concocts a three-step-strategy for the same purpose. The strategy aclopted in 

Perkins et al. requires much less time for optimizing the fits. Qualitatively 

speaking, both these models are mostly successful in capturiug the dominant 

interactions in the Drosophila gap gene network although the time required for 

fitting the model is a concern for Jaeger et al. models. However, the main 

drawback of such model is the use of phenomenological 'regulatory weights' 

with no connection to the underlying molecular process governing the binding 

of the TFs to the regulatory region sequence. In the subsequent chapter, we 
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discuss more about the results of Perkins et al. and Jaeger et al. when we corn-

pare their results with various results that we get. Table 1-1 compares some 

different features of sorne selected qualitative and quantitative approaches. 

Table 1-1: Comparison between different qualitative and quantitative mo dels 

Mo del Data used for anal- Considers Madel type 
y sis promoter 

(regu-
la tory 
region) 
sequence 

RPJ [50] Qualitative wild- Y es Logical-static 
type+ mutant exp res-
sion 

ST [53] Qualitative wild- No Logical-dynamical 
type+ mutant exp res-
Slün 

Jaeger et al. [29] Quantitative wild- No Nonlinear ODE/PDE 
type expression 

Perkins et al. [42] Quantitative wild- No Nonlinear ODE/PDE 
type expression 

1.2.2 Detection of TFBS 

Transcription factors recognize specifie regulatory motifs in the regulatory region 

of their targets. Scientists have identified many such TFBS sequences for various TF 

at the regulatory region of different target genes in the genome. These regulatory 

motifs are usually defined by means of Position Weight Matrix(PvVM) or Position 

Specifie Scoring Matrix (PSSM) [22] and consensus sequences. Position weight ma­

trices list the expected frequency of the occurence of different nucleotides at different 

positions of the binding site motif. There are different approachcs for finding the 
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regulatory motifs from the genome, such as greedy algorithms (CONSENSUS [18]), 

Expectation Maximization (MEME [3]) and Gibbs Sampling method (GibbsDNA 

[37]). However, significant difficulties arise while detecting such short and degen­

erate sequences from the long regulatory regions. There are indeed a lot of frits, 

but further analysis revealed that only a srrmll portion of them represent authentic 

binding sites. To circumvent these difficulties, many different approaches have been 

proposed and tested. Many of these methods attempt to use the expression data 

( [9, 56, 26, 66, 37, 16, 51, 46, 6, 5]). Sorne of these methods cluster the genes ac­

cording to their expression profile and then concentrate on finding the presence of 

shared sequence motifs in the regulatory region of the genes belonging to the same 

cluster. Sorne other methods calculate the correlation of the expression profile of a 

gene with the occurrence of different small sequences in its regulatory region and 

identifies the small sequences showing significant correlation with the expression as 

binding sites for the gene. There are sorne other efforts on analytically modelling the 

underlying chemical process of binding instead of attempting to find the individual 

binding sites. However for eukaryotic genomes, most recent approaches focus more 

on finding CRMs instead of individual TFs [13] . A CRM usually consists of multiple 

binding sites for different transcription factors clustered into relatively small length 

sequence(< 1000 bp). Searching for CRMs instead of individual binding sites reduces 

the likelihood of detecting false positive binding sites [55, 7]. 

1.3 Thesis Objective and Organization 

We focus our concentration on two related problems. The first problem is to 

computationally identify the regulatory interactions and the extent of their effects 
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in determining the key features of the gene expression profile. The second problem 

is to associate these regulatory interactions with the primary cause of gene regula­

tion, namely, the binding of the transcription factor to their respective bincling sites 

located in the regulatory region of the target gene. 

In Chapter 2, we provide a brief introduction to the data used for our analysis. 

We also provide an overview of the general methods that we use to solve the above 

mentioned problems. In Chapters 3 and 4, we address the first problem of iclentifying 

the regulatory relationships. Chapter 3 cleals with static models that analyzes only 

the final time point data. Chapter 4 discusses clynamic models that consider the 

expression data at all the time points. Chapter 5 describes our efforts to solve the 

second problem of associating the regulatory weights TF binding. Finally in Chapter 

6, we conclude our thesis and cliscuss about possible directions for future research on 

this subject. 
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2.1 Data 

CHAPTER 2 
Data & Methods 

2.1.1 Gene Expression Data 

The quantitative gene expression data that we have used is available online in 

the FlyEx database [43]. This database contains the fluorescence labelled images of 

the both wild-type and mutant Drosophila melanogaster embryo at cliflerent time and 

space in cellular resolution. We use the quantitative wild type expression profile of 

the protein products of several different genes in the early Drosophila embryo during 

the late syncytial blastoderm stage of its development. The expression profile data 

is acquired by means of processing of the blastoderm stage embryo images that are 

obtained by immunofluorescent staining and confocal microscopy procedure. Several 

steps of acquisition and processing are performed before reporting the expression 

profiles. The steps are briefly described below. 

Antibody Staining & Confocal Microscopy : The wild type Drosophila 

embryos are immunostained with different fluorescence-tagged antibodies for 

three different gene products at a time. After that, the embryo confocal images 

are taken using a laser confocal scanning microscope. Images are taken using 

four different channels of the confocal microscope, and for ea.ch channel, two 

raw images are ta.ken corresponding to two optica.l sections of the embryo. The 
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gain is adjusted such that for each gene product, the maximum intensity were 

at 255 on a 8 bit scale [35]. 

n Image Segmentation : The fluorescence intensity level of each nucleus is 

extracted by edge detection and the use of watershed operation for error cor­

rection [40]. 

m Background Removal : The quantitative data is then normalized such that 

the distortions caused by the background signal are minimizecl. The bacl<:­

ground is approximated using a two dimensional paraboloid which is fit to the 

data [32]. 

iv Temporal Classification : The data is classified based on the age of the 

embryo. The cleavage cycle 9 to 13 are short spanned. However, the cleavage 

cycle 14A is significantly longer. Therefore the cleavage cycle 14A is dividecl 

into 8 temporal equivalent classes where each class (a part from the first two) 

represents approximately 6 minutes [41]. 

v Registration : Registration is the process of transforming the coordinates 

of different embryo images such that the characteristics features of each gene 

products are superimposed. Two independent methods of registration are used, 

i) Quadratic splines and ii) Wavelet transform [32]. 

v1 A veraging : The variability of the data is mostly on the A-P axis. That 

is why the data can be represented as a 1D reference at cellular resolution. 

For each A-P axis position, the representative value of each gene expression is 

computed by averaging the expression profiles at the central 10% strip of the 

embryo along the D-V axis. 
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We have used the same dataset as used in [42, 29] .The data comprise of 

quantitative wild type concentration profile for the protein products of bcd, cad, hb, 

Kr, gt, kni and tll. Only the cleavage cycle 13 and 14A datais used, which covers a 

68 minute time span starting from the first detection of gap proteins until the onset 

of gastrulation [29]. Hunchback expression data for cleavage cycle 12 is used as 

the hb initial expression level (t = 0). The other gap genes are not expressed at all 

before cleavage cycle 13. We only consider the positions along the trunk region of 

the embryo (35% to 92% of the embryo length, total 58 position per gene per time 

point) as the expression values in this region vary along the anterior-posterior axis, 

but is fixed along the dorsal-ventral axis. Choosing the trunk region for our analysis 

has one further advantage that the key transcription factors acting in this region are 

well known. 

This time series data presents the expression levels of the ab ove mentioned seven 

gene products at different positions along the anterior-posterior axis. The data is 

thus a 3D matrix V where the element v~(t) is the expression level of gene a, position 

i and time t where a E {1, 2, ... , 7}, i E {1, 2, ... , 58} and t E {1, 2, ... , 10}. The 

mapping of our time points with the actual age of the embryo is providecl in Table 

2-1. 

Gene Sequence Data & PWM Data 

Scroeder et al. [55] reports 52 cis-regulatory-modules(CRM) within the genomic 

region of 29 genes of the Drosophila melanogaster genome. We selected 10 of them 

all of which reside in the regulatory region of the four gap target genes hb, Kr, gt 

and kni. We pick only those modules which drive expression at the trunk region, i.e. 
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Table 2-1: Mapping of the time points used in our study with the actual age of 
Drosophila 

1 Time Point 1 Age of embryo 
1 0 
2 11 
3 24 
4 30 
5 37 
6 43 
7 49 
8 55 
9 62 
10 68 

35% to 92% region of the A-P axis. The CRMs used in our study are listed in Table 

2-2. Figure 2-1, taken from Perkins et al. [42] provides some images of the Drosophila 

embryo at different stages of devlopment. It also shows (Figure 2-1 (I-L)) the gap 

gene expression at the final time point as a function of A-P position. 

The PWMs for the TFBSs of the seven genes mentioned above is taken from 

the study of Sinha et al. [58] . We have also used the same pseudo-count values as 

used in the same paper (0.2 for gt TFBS, 0.5 for others). 

2.1.2 TFBS Strength Values 

Schroeder et al. [55] provides the binding site composition of several novel and 

previously known cis-regulatory-modules (CRM) which were detected using an algo­

rithm called Ahab [45] . This CRM-wise binding site composition is presented as a 

matrix M of integrated profile values, i.e. the fractional occupancy of a site for a given 

factor, which can be interpreted as the relative binding site 'strengths' for different 

TFs. Ifthere aren transcription factors and k different CRMs. M(i,j) is the binding 
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Figure 2-1: Maternal and gap gene expression [42]. 
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(A -C ) Drosophila embryos at cleavage cycle 13 fluorescently stained for Bcd (A), 
Cad (B) and Hb(C) protein. Anterior is to the left and dosral is up. 
(D -H ) Drosophila embryos at late cleavage cycle 14A fluorescently stained for Tll 
(D), Hb(E), Kr(F), Kni (G) and Gt(H). 
(1 -L ) Mean relative gap gene expression as a function of A-P position (measured 
in percent embryo length) for Hb (I), Kr(J), Kni(K) and Gt(L). 

site strength of TF j in module i, where i E {1, 2, ... , k} and j E {1, 2, ... , n }. We 

compute a cumulative binding site strength ( CBSS) matrix B ( described below) that 

presents the total strength of binding sites for each TF-target pair from the given 

binding site composition matrix M. 

Each of these k modules resides in the regulatory region of its respective target. 

If there are m target genes, the total binding site strength for the TF a for a given 

target b can be computed by taking the summation of the binding site strengths of 

a in the CRMs that reside in the regulatory regionof target b. Mathematically, 
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Table 2-2: The list of CRMs used in our study . .6..gene denotes the distance to the 
gene's transcription start site where negative values indicate upstream location and 
positive indicate downstream. 

1 Target Gene 1 Module 1 Size 1 6gene 
hb hb_anterior _actv 721 3191 
hb hb_centr _&_post 1023 -3006 
Kr Kr_CD1 1159 -3174 
Kr Kr_CD2_AD1 1707 -1193 
gt gt_(-10) 1745 -8904 
gt gt_(-1) 1239 -163 
gt gt_berman 945 -1815 
gt gt_( -3) 1186 -1410 
kni kni_kd 877 -1177 
kni kni_( +1) 1479 1407 

B(a, b) = 2:.:7=1 M(i, a), P(i, b) where, 

{ 

1, CRM i is located in the regula tory (promoter) region of b 
P(i,b) = 

0, otherwise 

We have used both Schroeder et al. [55] data and Sinha et al. [58] for computing 

the transcription factor binding site strength. Schroeder et al. directly reports the 

M matrix in their paper, but Sinha et al. does not directly report such a matrix M. 

However, it provides an efficient algorithm called Stubb [59]. Using this algorithm, 

we can compute ]\1[ for all the transcription factors regulating all the tar·gets. We 

discuss this algorithm in details in the methods section. The CBSS values (the B 

matrix) derived from Schroeder et al. is given in Table 2-3. The Sinha et al. CBSS 

values is provided in Table 5-l. 
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Table 2-3: Cumulative binding site strength matrix of Schroeder et al. 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 6.6500 19.9700 18.4000 4.4900 
Cad 0 3.9300 13.3000 0 
Hb 13.4500 25.3300 14.2400 10.1100 
Kr 5.4700 5.5400 21.5000 6.6600 
Gt 3.6000 5.5600 0 0 
Kni 8.2100 13.2700 12.0300 1.8700 
Tll 17.2000 14.4300 44.1200 11.4700 

2.2 Methods 

In this section, we briefly describe the standard algorithms from the existing 

literature that we have used in our study. The algorithms that we have devised 

or customized for our requirements are described in the respective chapters. More 

specifically, we describe the algorithm devised by Sinha et al. [59, 58] that computes 

the number of PWM matches ( termed as w-score) in a given sequence and the stan­

dard simulated annealing algorithm which we have used for optimization of different 

objective functions. 

2.2.1 Finding w-scores 

Sinha et al. [58] defines the notion of w-score of a PWM for a given sequence 

as the number and strength of occurrences of the PWM in the sequence. They have 

assumed that the sequences of nucleotides in a cis-regulatory module is generated 

left to right by a stochastic process that successively plants the PWMs of different 

transcription factors and the background without any overlap. Sinha et al. have as-

sumed that the generation of these sequences follows a Hidden Markov Model(HMM) 

of arder zero that continually picks up and plants a PWM of a TF from the set of 
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PWMs of all the TFs and the background sequence and thus generates the final nu-

cleotide sequence of the CRM. The selection of HMM of order zero assumes that the 

choice of a PWM being planted in a given position does not depend on the previously 

chosen PWMs by the process. Figure 2-2 shows an order zero HMM for a process 

where there are only 3 states S0 , S 1 and S2 . The transition probabilities associated 

with these states are p0 , p 1 and p2 respectively. 

Po 

Figure 2-2: An order zero HMM involving 3 states S 0 , S 1 and S2 . Pi denotes the 
transition probability of state 'Ï ( 1 :::; i :::; 3). 

Given a set of PWMs W = { w0, w 1 , w2 , ... , wk}, where w 1 , w 2 , ... , wk represents 

PWMs for different TFs, and w 0 represents the background frequencies for different 

nucleotides, the process at any stage may choose any of these (k+ 1) P\iVMs to plant. 

The probability of choosing wi is Pi· Naturally, L~=oPi = 1. 

The Markov process, at any stage, can choose any of the given (k + 1) PWMs. 

The sequence of the PWMs chosen to construct a CRM is called a paTse. For example, 
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if Sa, SI and S2 has the length 1,2 and 2 respectively, a three nucleotide long CRM 

can be generated by the parses (Sa, SI), (Sa, S2), (SI, Sa), (S2, Sa) and (Sa, Sa, Sa). 

Note that (SI, S2) is invalid because it exceeds the sequence length of 3. 

For a given sequence S, we can easily compute the posterior probability of any 

valid parse T of a sequence if we know the HMM parameters () = {pa,PI,p2 , ... ,pk}. 

The w-score of a PWM Wm given the sequence S and the model paramaeters () is 

defined as a(wm, S, ()) = ~rXm(T)P(TIS, 8), where Xm(T) is the number of times 

Wm occurs in T. Therefore, w-score is the expected number of occurence of a TF 

PWM averaged over all possible configurations(parse) that may be used to generate 

a given sequence. It can be computed by using the Forward- Backward Algorithrn 

[15] in polynomial time. 

2.2.2 Simulated Annealing 

Simulated annealing (SA) [34] is a technique that was originally devised for 

combinatorial optimization problems. Nevertheless, SA has been widely usecl for 

all types of optimization problems, for optimization of bath discrete and contiuuous 

objective functions. It was motivated by an analogy to the statistical mechanics 

of annealing in solids. Although simulated annealing is not a panacea for every 

optimization problems on earth, it has been established as a successful method for 

solving many important classes of optimization problems. It is particularly useful 

when the problem has many complex constraints, a complex dependency structure 

among the parameters involved and/ or a complex cast function is to be optimized. 

To understand the underlying principle of SA, it is useful to look at the process 

of annealing in applied metallurgy for coercing a solid into a law energy crystalline 
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state. The basic idea is to heat the material to a higher temperature to permit the 

atoms to move freely about. Then, it is carefully and gradually cooled to a lower 

temperature, so that the atoms can rearrange themselves in such a manner that 

the material freezes into a perfect and stable crystal. The cooling should not be 

performed too quickly, otherwise the resulting crystal may not be perfect and stable. 

In simulated annealing algorithms in Computer Science, an analogous controllecl 

cooling scheme is utilized for optimization problems. Any optimization problem 

involves either maximization of an objective function J or minimization of a cost 

or error function E by changing the solution parameters . In SA, the iclea is to 

make small a ranclom perturbation of the parameters and observe the effect. If this 

perturbation helps in attaining the goal, i.e. increases J or decreases E, the changes 

are accepted. If not, the change can still be kept with a probability p such that 

0 < p < 1. With a pro bability ( 1 - p), the change is cliscarcled. The value of p is 

a function of the temperature parameter T. Usually, p = exp( -k~~) where !::,.E is 

the change in error function, i.e. !::,.E = Enew - Eald· k is the Boltzmann constant, 

which was usually set to a value of 1 in our experiments. It is apparent that for a 

fixecl value of !::,.E, p clecreases exponentially as we decrease T. Therefore at a higher 

temperature, a bad move (change) is allowecl with a greater probability than that 

at a lower temperature. The intuition here is that at initial stage, an apparently 

bad move may be able to leacl towarcls a good final solution, but at later stages of 

optimization, it is less likely to do that. The temperature parameter T is graclually 

decreasecl and the process continues until it converges to a solution which is good 

enough for the specifie purpose. 
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Ideally, we should expect SA to yield a globally optimal solution, but for most 

practical problems, we may have to satisfy ourselves with a reasonable local opti­

mum. The advantage of Simulated Annealing over greedy local search and gradient 

descent based algorithm is that it is less likely to stuck in a local optima, due to its 

allowance of bad intermediate moves and the stochastic nature of the algorithm. The 

disadvantage of SA is its long running time to solve the problem. However, the basic 

SA algorithm can be customized and hybridized to fit into a particular problem and 

various heuristic methods exists to make it converge faster. Some of the examples of 

such customization and hybridization approaches can be found at [61, 65, 27, 63, 44] 
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CHAPTER 3 
Static Models and Fits 

The static modelling of the gene expression data assumes that the final time 

point itself carries sufficient information for the discovery of the mode and strength 

of interactions in the gene regulatory network. Although for this particular dataset, 

this assumption is quite unrealistic (for example, it is not possible to model auto-

regulation using static mo dels), we still hoped that static modelling of the data 

would be a good starting point for our research. We also expected to identify the 

key regulatory interactions using the static models. 

3.1 Model Equation 

The general model equation of the static models can be represented as below: 

y; = f(Lb:b=Pa Wba · vb + c5a) for all values of a,b and i,where y~ is the predicted 

final time point expression level of gene a at position i, v; is the given final time point 

expression level of gene a at position i, Oa is the bias term of gene a such that f(c5a) 

represents the expression level of a given that no other TFs are present, 'Wbn is the 

regulatory effect of TF b on the target gene a. The function f can be any function. 

In our study we have chosen two different functions as f. The first one is a simple 

linear function f(x) = x which assumes that the expression level of a given gene is 

just a linear function of the expression levels of its TFs. Our second assumption is 

a more biologically credible one where we assume that f is a sigmoid function, i.e. 

f(x) = l+ex~(-x). We report the results for both the cases. 
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There is another notable feature in our formulation of the model. The decay 

and diffusion terms are not considered, so the gene expression is attributed only to 

the protein synthesis process. As we know the expression profile of the genes at the 

final time point, we can employ simple linear regression techniques to fit the model 

by minimizing the squared error between the predicted and given expression profile. 

Thus we find out the regulatory effects governing the expression profile of the gene 

network. 

3.2 Linear Regression 

We consider several different modelling and formulation on which we apply sim­

ple linear regression. 

I Simple Linear Regression(SLR) Using Expression Data Only: As the 

first step, we try to fit the data to a simple linear model using linear regression. 

The expression level of each of the gap genes hb, gt, Kr and kni is assumed to be 

a simple linear function of the expression of the rest of the genes. For example, 

the expression level of Hb is considered to be a linear function of the expression 

level of Bcd, Cad, Kr, Kni, Tll and Gt. Mathematically, the expression level 

of gene a can be modelled as, y~ = ~b:bi-a Wba · vt + 6a, where the symbols 

have the same meaning as defined at the beginning of this chapter. Fit ting 

the data using this model for each of the four gap genes yields seven weights; 

six corresponding to how the product of a gene, working as a TF, regula tes 

the expression level of other genes and the other weight corresponding to the 

baseline expression of the first gene. For example, after fitting a simple linear 

model for Hb, we get 7 weights, Wbcd,hb, Wcad,hb, WJ(r,hb, Wgt,hb, Wkni,hb, Wtll,hb 
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and 6hb, where 6hb is the baseline expression of Hb, Le. the expression level 

of Hb when no TF is present. Each Wg,hb, where g is an element of the set 

of TFs considered, represents how a TF g affects the expression level of Hb. 

If this weight is positive, we interpret that g acts as an activator for the Hb 

expression. If the weight is negative, g is identified as a repressor for Hb. 

We have to use four separate input matrices for the four target gap genes. The 

gene expression profile is given for a total 58 positions along the A-P axis. 

Therefore the input matrix for a gene has 58 rows ( each row corresponds to a 

position along the A-P axis) and 6 columns (each column represents one TF 

of the target gene). The input matrix for Hb is given below: 

1 

1 

1 

The output vector of Hb will just be a 58 x 1 matrix, representing the expression 

level of Hb at the 58 different positions. 

II Single Matrix Regression(SMR) Using Expression Data Only: Our 

second model assumes that a TF influences all its target by the same strength 

(magnitude and mode). This assumption is unlikely to be correct, because 

although, by most models, an activator in the gap gene system usnally activates 

all its target and an repressor usually represses all its target if we do not consider 
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auto-regulation, there is hardly any evidence that the magnitude of this effects 

should be the same irrespective of the target gene involved. Nevertheless, 

this simplistic assumption helps us to reduce the number of parameters to 

describe the model. The model can be mathematically expressed as : y~ = 

I:b:bfa WbV~ + 6a. 

Instead of using four separate input and output matrices, we combine the input 

matrices together to obtain a single big input matrix. Before combining the 

input matrices, a column of zeros corresponding to the expression level of the 

gene itself is inserted into the matrices. Four new columns corresponding the 

bias terms for Hb, Kr, Ct and Kni were also added to the input matrix. The 

output matrix is similarly prepared by combining the observation of the four 

gap genes in the same order as the input matrix. The input matrix is given on 

the next page. 
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After this pre-processing step, the data is fit to a linear model using linear 

regression. This linear regression yields eleven weights in total. Seven of these 
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weights ( Wbcd , Wcad , Wkr , Wgt , Wkni , ww and whb) denote how a particular 

TF affects the expression of all other genes. The rest four weights ohb , OI<r , 

09t and Okni denote the baseline expression of Hb, Kr, Gt and Kni respectively. 

As the number of parameter is much less than the simple linear regression (11 

instead of 28), we expect that SMR madel to result in more error than the SLR 

mo dels. 

III Single Matrix Regression (SMR) Using Expression Data and Binding 

Site Information: The binding site information is taken into consideration 

in this step. We assume that the effect of the binding sites for a particular TF 

is independent of the relative position of the CRMs in wlüch they reside. We 

also assume that the cumulative binding site strength (CBSS), of a TF for a 

gene can be represented by the sum of the number of binding sites for that TF 

in all the modules associated to the gene. We have already defined the notion 

of CBSS in Chapter 2. Intuitively, CBSS should be a key factor driving the 

expression level of a gene. If TF a and b has the same magnitude of effect (i.e. 

same weight) on all the genes and the cumulative binding site strength of TF 

a is f times the cumulative binding site strength of b, we assume here that 

for the same concentration of TF a and b, the contribution of a should be f 

times to the contribution of b. The madel can be mathematically expressed as 

, y~ = L:b:b#a Wba · B(b, a) ·v~+ Oa. Here B(b, a)is the CBSS of TF b in the 

regulatory region of target gene a. 

At first, the CBSS values for all the genes are calculated from the binding site 

data. The matrix has already been reported in Table 2-3. After calculating 
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the CBSS, i.e. B(b, a) values, we construct the input and output matrix. The 

output matrix is the same as the output matrix for single matrix regression 

using expression data only. The input matrix is also constructed in the same 

manner as single matrix regression. The only difference is that instead of using 

the expression data directly, we multiply the expression level values of the 

original matrices with the corresponding cumulative binding site strengths. 

We expect that using binding site information should yield better result than 

the single matrix regression without binding site information if our underlying 

assumptions are correct. However, if otherwise, the performance of prediction 

using binding site information should not be good enough. 

IV Regression Without Baseline: If we assume that the regulation within the 

network is entirely transcriptional, then a gene will not be expressed ill absence 

of all the TF s. However, in all the three experiments ab ove, the presence of 

one or more bias term violates this assumption. To test this assumption, we 

repeat the entire set of experiment without having provision for any baseline/ 

bias terms. 

3.2.1 Performance Evaluation 

For linear regression, usually cross validation is used to evaluate the qnality 

of the fit. However, in this case, the data are not remotely i.i.d as each rows 

corresponds to a spatial position along the A-P axis of the embryo body and 

so strong correlation is evident between spatially adjacent samples. For this 

reason we could not use cross validation or test set error for evaluating the 

fit. We had to rely on training set error, visualizing the fit and prior biological 
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knowledge to evaluate different fits. The training set error is presented in tenus 

of root of the sum of squared error between observed and predicted expression 

values. For gene a, the root of the sum of squared error is y'~JIJ~ - v~) 2 . 

Table 3-5 lists the prediction errors for all the static fit experiments. 

3.2.2 Weights Obtained From Linear Regression 

The weights for different genes obtained by running different experiments have 

been listed in Table 3-1 and Table 3-2. There are clearly sorne trends visible in the 

weights. The signs of the weights are quite consistent except for Cad which has been 

termed as a repressor for Kr and kni using SLR and as an activa tor for the rest 

of the experiments. According to current literature [42, 50, 53, 29] Cad, however, 

should be acting as an activator for all gap genes. Bcd is always termed as a strong 

activator and Hb, Kr, Gt and Kni as repressors. However, while compming the 

relative strength of TFs, it should be remembered that the range of values for Bcd 

expression is from 0 to about 45 (in the trunk region) while the range of values for 

other gene expression is from 0 to 255. So Bcd weights should be scaled accordingly 

for comparison. Even after scaling (not shown), the Bcd weights remain pretty high. 

Another point to note is that the weights obtained after binding site consider­

ation are much lower than the other weights. This is expected because as we are 

multiplying CBSS values to the expression value, the weights need to be much lower 

to balance for the factor. An interesting result is that when we do not consider the 

binding site strength, Hb seems to be the strongest repressor. However, wh en we do 

consider the binding site strength, Gt emerges out as the strongest repressor. We 

may interpret that if Gt and Hb had the same number of binding sites for all the 
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genes, then Gt would have the strongest repressing effect. However, as the number 

of binding site for Hb is greater than that of Gt, Hb has more total contribution to 

the repression of the genes. 

The baseline values for different genes vary greatly for different experiments. 

Hb shows strong negative baseline for simple linear regression while strong positive 

baseline for the rest. For Gt, the single matrix regression yields a negative baseline 

while the others result in positive baseline. For Kni and Kr, the baselines reported 

are always positive although their magnitude vary a lot. 

Table 3-1: Weight matrix obtained from regressions with baseline (The 'X indicates 
not applicable for the experiment.) 

1 Hb SLR 1 Kr SLR 1 Gt SLR 1 Kni SLR 1 SMR 1 SMR with BS [ 
Bcd 8.1710 4.3403 7.3935 3.9102 4.7466 0.3651 
Cad 1.8972 -0.2568 1.2186 -0.1182 0.1432 0.0907 
Hb x -1.0898 -1.0639 -1.1405 -1.0747 -0.0607 
Kr -0.4390 x -0.7361 -0.7739 -0.7695 -0.0364 
Gt . -0.5599 -0.9618 x -0.8406 -0.8663 -0.1516 
Kni -0.4294 -0.7233 -0.6013 x -0.675 -0.0573 
Tll -0.2618 -0.7115 -0.6311 -0.7571 -0.6838 -0.0196 
Hb Baseline -115.0520 x x x 85.3533 74.2320 
Kr Baseline x 138.0452 x x 100.4638 74.2391 
Gt Baseline x x -15.2131 x 94.7049 -7.4818 
Kni Baseline x x x 133.1447 101.3379 62.3629 

3.2.3 Contributions Plot 

In each of the experiments, the prediction of the gene expression level is corn-

pared with the actual gene expression level. Moreover, the contribution of each TF 

is also shown to infer and validate biological results regarding transcription factors. 
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Table 3-2: Weight matrix obtained from regressions without baseline(The 'X indi­
cates not applicable for the experiment.) 

1 Hb SLR 1 Kr SLR 1 Gt SLR 1 Kni SLR 1 SMR 1 SMR with BS 1 

Bcd 5.7164 8.4521 7.0003 7.7971 6.9325 0.3501 
Cad 0.7967 1.2291 1.0636 1.3124 1.1164 0.0375 
Hb x -1.2825 -1.0516 -1.3214 -1.0586 -0.0391 
Kr -0.5406 x -0.7431 -0.7562 -0.7260 -0.0276 
Gt -0.6139 -1.0292 x -0.8933 -0.8613 -0.0587 
Kni -0.5246 -0.7124 -0.6076 x -0.6268 -0.0186 
Tll -0.3381 -0.7004 -0.6373 -0.7448 -0.7012 0.0021 

Such plots were made for each of the mentioned four gap genes. The results of these 

experiments for each target gene have been explained below. 

I Hunchback (Hb) The prediction of the hunchback gene expression according 

to simple linear regression is shown in the Fig 3-1(a). The prediction is found 

to be quite close to the actual Hb gene expression observed. The two maternal 

genes, Bicoid and Caudal act as activators, whereas all the gap genes i.e. Kr, 

Gt, Kni and Tll act as repressors. The baseline is negative which indicates that 

Hb will not be expressed if the activators are not present. 

The single matrix linear regression gave a very good prediction as well (Fig. 3-

1(b)). However, sorne very interesting differences were noted. The contribution 

of caudal as an activator is almost negligible. The repressors are much stronger 

than seen in the case of linear regression for Hb. Renee, the baseline is positive 

to balance the effect of the strong repression. 

The Fig. 3-1(c) shows the result of the single matrix regression when binding 

strength is used. The peaks seen in the predicted expression do not match with 

the actual expression level too well and it resulted in much greater training set 

34 



i "" 
/~~ 

_,.,./ 

20 40 ~0 

P~lb>alo"''A-PaM 

(a) Simple Linear Regres­
sion 

''",!--~--cc--=c­
PooiMnoloogA-Pn•,. 

-E•preoslon 
-Prod;ctton 

• BcdContnbuuon 
GaciCoolob<JIK:Iol 
HllConrn-on 
~rCO<!IOnJnon 

~r.Contr.~on 

Til Co .... ~"'"'" 
~~~ 

( c) Single Mat rix Regression 
with BS 

w ' 

" 
" 

1 
-loo j 

/ 
-=. 

( e) Single Matrix Regres­
sion without Baseline 

:1 
! 

1001 
i 

11 
w •1·~-.-·-·-· 

1 
-oo] 

1 
-•00! 

''"1 
-2000 

(b) Single Matrix Linear Re­
gression 

w . 
~ . 

( d) Simple Linear Regres­
sion Without Baseline 

Contrllmlion~ot~fHbiSingi&MatrhRell'e ... .onwr!hBrndl"!lS•te) 

( f) Single Mat rix Reg 
with BS Without Base­
line 

Figure 3-1: Hb Linear regression contributions plots. The thick blue line is the 
observed expression profile. The thick black line represents the model prediction. 
Thin lines denote the contributions for each of the TFs. 
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error. The curve also varies from the actual expression in the middle part of 

the trunk. These results show that there might be sorne discrepancies in the 

binding site strength data. 

Both Fig 3-l(d) and 3-l(e) show that the result of simple linear regression and 

single matrix linear regression are quite encouraging even withoù.t the baseline 

expression. An important point to note in these graphs is that Caudal (Cad) 

acts as a strong activator. This positive regulation of Cad is supported by 

Jaeger et al. [29], but not supported by Perkins et al. [42]. 

According to the Fig 3-l(f), the single matrix linear regression fails to explain 

the gene expression for Hb when both expression data and binding site strength 

are used and we do not take the baseline into consideration. 

II Krupp el (Kr): The first experiment for Kruppel using simple linear regres­

sion provided us with a good prediction as shown in the Fig. 3-2(a). The fit is 

not as good as seen for Hb. There are a few false peaks in the prediction. The 

interesting thing to note is that Caudal ( Cad) acts as a weak repressor here. 

Single matrix regression gives us similar results (Fig. 3-2(b). The only point of 

importance is yet again the behaviour of Caudal (Cad) that now acts as a weak 

activa tor. Ad ding the binding site strength for Krupp el (Kr) (Fig. 3-2( c)) do es 

not have a big impact on the prediction. In fact, the predic~ion is still quite 

good. Similar results are seen in the case of simple linear regression without 

baseline (Fig. 3-2( d)) and single matrix linear regression without baseline (Fig. 

3-2(e)). However, in all of these predictions the presence of two extra peaks 

make the prediction bad. The only factor that seems to change is the effect of 
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Caudal (Cad) gene that acts as a strong activator in the absence of a baseline. 

The last experiment with both expression data and binding site information 

(without baseline) did not demonstrate satisfactory prediction performance. 

III Giant (Gt): Fig. 3-3(a) confirms our idea that the simple linear regression 

should provide us with the best results in terms of training set error. The 

prediction is quite close to the gene expression. Both Bicoid and Caudal (Cad) 

act as strong activator while the gap genes are strong repressors. The single 

matrix regression also gives a close fit as in Fig. 3-3(b). The low activation 

strength of Caudal is the only difference seen that is compensated by a much 

higher baseline. 

The experiment for single matrix linear regression with the use of binding site 

information probably gives us the best result in case of Giant (Fig. 3-3( c)) 

and Kruppel (Kr) (Fig. 3-2(c)). The behaviour of Caudal (Cad) once again 

changes as it can now be seen as a strong activator. 

The simple linear regression without baseline (Fig. 3-3( d)) and the single 

mat rix linear regression without baseline (Fig. 3-3 ( e) gave us al most the same 

results . Caudal ( Cad) is a strong activator, which matches with the result 

of the single linear regression experiment (Fig. 3-3 (a)). However, the single 

matrix regression with baseline (Fig. 3-3(b)) and single matrix linear regression 

without baseline provide us with contradictory results in terms of the effect of 

Caudal (Cad) on the gene regulation. In fact, the Caudal (Cad) seems to act 

as a strong activator to balance the effect of the absence of the baseline. 
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Figure 3-3(f) solidifies our idea that the single matrix linear regression using 

binding site information fail to explain the gene regulation if the baseline is 

not present. 

IV Knirps (Kni): Simple linear regression gives the best results (Fig. 3-4(a)) 

also for Knirps. However, the prediction is not as good as seen in the case 

of other genes. There are two false peaks that are pretty evident. A similar 

prediction is seen when the expression data is used for the single matrix linear 

regression for kni (Fig. 3-4(b)). 

The single matrix linear regression when both the expression data and binding 

site information is used gives us quite unsatisfactory results. However, these 

drastic results can be explainecl by the fact that the binding site strength data 

for kni is not reliable as reported by the Schroeder et. al. [55]. 

The simple linear regression without the baseline (Fig. 3-4( d)) again gives 

us similar results as seen in simple linear regression with baseline. However, 

Caudal ( Cad) acts as a strong activa tor instead of a weak repressor to compen­

sate for the high baseline. Moreover, in this case, Bicoid (Bcd) also is a much 

stronger activator. 

Using single matrix gives similar results with or without the baseline (Fig. 

3-4( e)). Once a gain, the difference is the behaviour of Caudal ( Cad), which 

acts as a strong activator without the baseline. An important thing to note 

for Knirps is the change in the curve to show a better prediction of the gene 

expression in the extreme posterior trunk without the baseline. The last ex­

periment (Fig. 3-4( f)) further verifies the po or performance of single matrix 
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regression with binding site strength but without a baseline. The prediction is 

not significant at all. The results are the worse, perhaps due to the the effect 

of sorne missing TFs. 

3.2.4 Analysis of Linear Regression Results 

The results of the experiments clearly show that the simple linear regression 

(without binding site information) gives us minimum error predictions in most cases. 

However, the weights obtained from simple linear regression are sometimes non­

conforming to the current belief about the effect of the respective TFs. There is still 

a lot of room for improvement in the prediction. An interesting observation is that 

the single matrix linear regression also gives us almost the same prediction results. 

However, this is done using much fewer parameters. 

Another point to notice is that for simple linear regression and single matrix 

linear regression without baseline, the predictions of the gene expression for the gap 

genes are once again almost the same. The important feature is the behaviour of the 

maternai factor Cad which becomes a strong activator in the absence of the baseline. 

Seemingly, it just balances the effect of the absence of the baseline. 

The gene expression get much worse when the binding site strength is used for 

hb and kni. Thus, adding binding site strength does not improve the result on the 

single matrix linear regression. Renee, it seems quite probable that the binding site 

strength data is not reliable in all cases. Sorne of the calculated strengths are not 

accurate and sorne of the modules may be missing. Moreover, we have just used the 

sum of the binding site strengths for different modules for each gene, which may not 
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be true. The binding site strength of each TF might be a more complex function of 

the binding site strength of each module. 

Finally, using binding site data without baseline gives us very poor results in all 

cases. It shows that the linear models cannot incorporate binding site information 

without the aid of a bias term which vertically shifts the prediction just to adjust 

the error term without changing the shape of the final output. 

In sorne of the previous related studies [55, 50] , Hb has been termed as an 

activator in sorne specifie conditions. According to our experiments, we did not 

notice any such case. Hunchback was seen to be a strong repressor in most cases. 

3.3 Logistic Regression 

We consider several different modelling and formulation of logistic regression, 

similar to what we have considered for linear regression. 

I Simple Logistic Regression (SLR) Using Expression Data Only: 

Mathematically, the expression level of gene a can be modelled as, 

Y~ = g(~b:bf-a WbaV~ +ba) 

where gis a logistic function g(x) = l+ex~(-x). The other symbols have the same 

meaning and interpretation as defined previously in this chapter. A notable 

difference is that the output matrix is normalized between 0 and 1 by dividing 

each of its entries by the highest expression level seen at the column. 

We expect the simple logistic regression to work better than the simple linear 

regression case as the logistic function presents a more biologically realistic 

solution for modelling smooth threshold-based activation. 
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II Single Matrix Logistic Regression (SMR) Using Expression Data 

Only: This model assumes that a TF influences all its target by the same 

strength (magnitude and mode). The model can be mathematically expressed 

as : Y~ = g(~b:bola Wbvb + 6a) 

The input and output matrices are constructed the same way as in the single 

matrix linear regression case, the only difference is that the output matrices 

are normalized. 

Single matrix regression is expected to yield in more error than the simple 

logistic regression, due to the use of less parameters to define the model. 

III Single Matrix Logistic Regression (SMR) Using Expression Data and 

Binding Site Information: The model can be rnathematically expressed 

as: y~= g(~b:bola Wba · B(b, a)· vb + 6a)· 

The input and output matrices are constructed in the same way as in single 

matrix linear regression with binding sites. 

IV Regression Without Baseline: We repeat the entire set of logistic regres­

sion experiments without having provision for any baseline/ bias tenns. 

3.3.1 Performance Evaluation 

We use the training set error, visualization of the fits and prior biological knowl­

edge as the means to evaluate different fits. 

3.3.2 Weights Obtained From Logistic Regression 

The weights for different genes obtained by running different experiments have 

been listed in Table 3-3 and Table 3-4. The weights are obtained using standard 

matlab function fminsearch. The signs of the weights in general match with our 
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Table 3-3: Weight matrix obtained from logistic regressions with baseline (The 'X 
indicates not applicable for the experiment.) 

1 Hb SLR 1 Kr SLR 1 Gt SLR 1 Kni SLR 1 SMR 1 SMR with BS 1 

Bcd 0.1003 0.3370 0.0771 0.6079 0.2248 0.0178 
Cad 0.0117 -0.0690 -0.0498 -0.0319 0.0043 0.0047 
Hb x -0.0396 -0.0304 -0.1886 -0.0546 -0.0032 
Kr -0.0132 x -0.2803 -0.0512 -0.0326 -0.0029 
Gt -0.0153 -0.4504 x -0.0183 -0.0395 -0.0063 
Kni -0.4182 -0.0068 -0.0099 x -0.0267 -0.0024 
Tll -0.0238 0.0123 -0.0583 0.0114 -0.0207 -0.0008 
Hb Bias Term 0.1239 x x x -0.0039 -0.8258 
Kr Bias Term x 0.6882 x x 0.4243 -5.2904 
Gt Bias Term x x 4.4302 x -0.3131 -0.0694 
Kni Bias Term x x x -0.0287 0.6588 0.1679 

findings in linear regression. Bicoid is always termed as an activator and the gap 

genes always repress each other. Unlike the linear regression case, Tailless is termecl 

as an activator for sorne of the experiments. However, the current literature is 

divided upon this issue [42, 29]. Like the linear regression results, Hb seems to be 

the strongest repressor if we do not consider binding site strengths. But when we 

consider the binding site strength, Gt emerges to be the strongest repressor. The 

baseline values for different genes vary greatly for different experiments. 

3.3.3 Contributions/ Absence Plot 

In case of logistic regression, the contributions of the transcription factors on a 

target can be more clearly visualized by analyzing the effect of the absence of one 

TF at a time on the expression level of the target gene. We have calculated and 

plotted the result of the absence of a TF on the target and thus we determine how 

a TF influences the expression of a target gene. For each of the experiments, the 
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Table 3-4: Weight matrix obtained from logistic regressions without baseline(The 
'X indicates not applicable for the experiment.) 

1 Hb SLR 1 Kr SLR 1 Gt SLR 1 Kni SLR 1 SMR 1 SMR with BS 1 

Bcd 0.1033 0.3766 0.2059 0.6070 0.2302 0.0181 
Cad 0.0128 -0.0682 -0.0021 -0.0322 0.0035 -0.0002 
Hb x -0.0418 -0.0425 -0.1885 -0.0566 -0.0057 
Kr -0.0132 x -0.2083 -0.0512 -0.0311 -0.0028 
Gt -0.0154 -0.4712 x -0.0183 -0.0328 -0.0059 
Kni -0.4156 -0.0055 -0.0111 x -0.0266 -0.0026 
Tll -0.0236 0.0171 -0.0826 0.0113 -0.0191 0.0007 

predicted and the actual expression level is also shown. The results are presented 

and analyzed below: 

I Hunchback (Hb): The prediction of the hunchback gene expression accord­

ing to simple logistic regression is shown in the Fig 3-5(a). As expected, the 

prediction matches pretty closely to the actual Hb gene expression observed. 

Bicoid is the activator for the anterior domain and Caudal is the principal con-

tributor to the formation of the posterior domain. Knirps act as the strongest 

repressor which inhibits Hb expression in between these two domains. The root 

squared error for this experiment is less than any of those observed in case of 

linear regression (Table 3-5) which proves that the threshold based activation 

of the logistic function provides a better modelling approach in this case . 

The single matrix logistic regression gave slightly worse prediction although the 

error is less than any of the errors observed in linear regression (Fig. 3-5(b)). 

However, sorne very interesting differences were noted. All the repressors play 

an important role in this case. Moreover Caudal is now a less stronger activator 
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Figure 3-5: Hb Logistic regression absence plots. The thick lines denote the original 
and the predicted expression. The thin lines visualize the effect of the absence of 
each TF. 

47 



AœencePiotoiKr(SomplelcgiSircRege5sH>n) 

-·--····s.;;j····· 

'"' ··--····Hb 

" '"' '" =~:::.::::::" 

(a) Simple Logistic Regres­
sion 

( c) Single Matrix Regression 
with BS 

AbollfiCe Plolol Kr(Single I.Aalrix LoglslicRe!)f~uronwrthoul Ba~elrna) 

( e) Single Matrix Regression 
without Baseline 

(b) Single Matrix Logis tic 
Regression 

1 

AboancaP1ct<>IKr(S"npleLogostlcR"9reosloo•"'lhouiBnsel>nct 

"' '" ~" 

" K111 

'" -E•P<ft9"'on 
-Pr<'dlttiM 

( d) Simple Logis tic Regres­
sion Without Baseline 

At>oenCfiPiotoiKriSI!tglei.AWixLo(l<shcRogressroow•li•BSwllhoutl!~seloo) 

(f) Single Matrix Reg with 
BS Without Baseline 

Figure 3-6: Kr Logistic regression absence plots. The thick lines denote the original 
and the predicted expression. The thin lines visualize the effect of the absence of 
each TF. 
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Figure 3-7: Gt Logistic regression absence plots. The thick lines denote the original 
and the predicted expression. The thin lines visualize the effect of the absence of 
each TF. 
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Figure 3-8: Kni Logistic regression absence plots. The thick lines denote the original 
and the predicted expression. The thin lines visualize the effect of the absence of 
each TF. 
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Table 3-5: Prediction error chart for different experiments. The lowest error for each 
column is marked with bold and the second best with italie. 

1 Experiment 1 Hb 1 Kr 1 Gt 1 Kni 
SLR (Linear) 133.77 210.77 184.40 218.02 
SMR(Linear) 172.79 219.55 191.94 224.77 
SMR(Linear) with BS 253.03 251.72 208.37 334.45 
SLR(Linear) (no baseline) 140.95 217.11 184.48 223.69 
SMR (Linear) (no baseline) 185.05 238.82 185.66 245.48 
SMR (Linear) with BS(no baseline) 436.51 410.30 314.47 510.01 
SLR(Logistic) 73.83 59.53 53.18 29.26 
SMR(Logistic) 114.59 208.49 107.83 81.56 
SMR(Logistic) with BS 172.73 256.78 147.37 198.91 
SLR(Logistic) (no baseline) 74.16 60.38 54.43 29.29 
SMR(Logistic) (no baseline) 129.33 225.41 117.55 85.10 
SMR(Logistic) with BS(no baseline) 161.88 359.82 104.07 186.63 

and the posterior peak formation is attributed to principally Bicoid dependent 

activation. 

Fig. 3-5( c) shows the result of the single mat rix regression when binding 

strength is used. The error does not increase as much as its linear regression 

counterpart. Still the error is more than the other logistic regression results. 

Both Fig 3-5(a,d) and 3-5(b,e) show that the result of simple linear regres-

sion and single matrix linear regression are very close to what we obtain from 

regressions with baseline. According to the Fig 3-5(f), even when both expres­

sion data and binding site strength are used and we do not take the baseline 

into consideration, the prediction is still pretty good, which contrasts its linear 

regression counterpart result. 

II Krupp el (Kr): The first experiment for Kruppel using simple logistic regres­

sion provided us with a very good prediction as shown in the Fig. 3-6(a). Bicoid 
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is the only activator. Interestingly, Caudal has been identified as a strong re­

pressor that represses the expression of Kr in the posterior domain, which does 

not conform to the literature. Similar results are obtained for simple logistic 

regression without baseline. 

Single matrix regression gives a much greater error which is comparable to the 

linear regression result. A small false peak is predicted at the posterior end. 

All the gap genes are acting as strong repressor in this case. Similar results are 

seen in the case of single matrix linear regression without baseline (Fig. 3-6(e) 

for which the prediction error is greater than its equivalent linear regression 

counterpart. When the binding site information is used, the error increases. 

Especially when no baseline is used, the prediction error increases much and 

the predicted expression is shifted towards the posterior. 

III Giant (Gt): For the simple logistic regression (Fig. 3-7(a)), the prediction 

is pretty well. Bicoid (Bcd) activates the anterior while the posterior is mostly 

activated by the baseline expression. Kr is the strongest repressor which sup­

presses the mid-domain expression of gt. The single matrix regression (Fig 

3-7(b)) introduces a greater level of error. It marks Cad as an activator. The 

binding site information does not cause a remarkable increase to the error as 

in linear regression(Fig 3-7( c)). In fact when the re is no baseline, the corre­

sponding error after introducing binding site information is even less than the 

error observed when binding site information is not used, a phenomena which 

is unique in this case only. 
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IV Knirps (Kni): For Knirps, the simple logistic regression gives the best of 

all the results (Fig. 3-8(a)). However, caudal is once again termed as a strong 

repressor which violates the literature findings. Bicoid is the primary activator 

and all the gap genes act as repressors for knirps. Similar results are evident 

when the baseline is not used. 

The single mat rix logistic regression (Fig 3-8 (b)) shows two false peaks at the 

anterior and posterior. The prediction error is much greater than for the simple 

logistic case. The results do not change much when we remove the baselines 

(Fig 3-8( d,e)). But once we add the binding site information, the error increases 

greatly both with or without baseline (Fig 3-8(f) )perhaps due to the already 

unreliable binding site data for Knirps [55] coupled with the effect of some 

missing TFs. 

3.3.4 Analysis of Logistic Regression Results 

The results of the experiments clearly show that the simple logistic regression 

(without binding site information) with baseline gives us minimum error predictions 

in all the cases. However, the weights (and contributions) obtained from these re­

gression are sometimes non-conforming to the cmTent belief about the effect of the 

respective TFs. Single matrix regression increases the training error, although the 

results are often better than most linear regression results. Binding site data does 

not usually cause notable deterioration of prediction performance with the exception 

of the case of kni as target, for which the binding site information as provided in 

[55]lacks input from two transcription factors. 
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The performance of regression without baseline is usually very good, which 

suggests that the static data model using logistic function can successfully model 

the biological observations almost entirely by transcriptional regulation activities of 

the known transcription factors. The usual increase of error when BS information 

is introduced may be attributed to i) lack of reliability of the current BS data or ii) 

Failure of our assumption of a simple additive model while calculating the cumulative 

BS strength (CBSS) values. 

3.4 Summary of Static Fit Results 

Our deductions from the static fit results are: 

The static models, although not the most biologically sound one, perform pretty 

well in predicting the gene expression values. However, the annotation of ac­

tivators and repressors does not always conform with the current literature 

results. 

ii The bias term plays an important role in case of linear regression. If the bias 

is positive, usually the weight for Cad is predicted as zero or negative but if no 

bias is allowed, Cad is usually termed as an activator. When bias is negative, 

often one or more repressors are predicted to have weaker repressing effect. 

m Logistic (sigmoid) function models the data better than a simple linear func­

tion. 

iv Single matrix logistic regression performance suggests that the assumption of 

the similar effect of every TF on all the targets is most likely to be incorrect. 

The single matrix linear regression performance, however, do es not invalidate 

the assumption. 
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v Using binding site data introduces much greater errors in linear regression. But 

in logistic regression, the binding site data performs much better. As logistic 

modelling seems to be the better of the two models, we can guess that the 

binding site data provided by [55] is not absolutely unrealistic, although there 

also seems to be sorne problems, especially for Knirps CRMs. 

In the next chapter, we present the results obtained from fit ting dynamical 

models to the data. 
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CHAPTER4 
Dynamical Models and Fits 

Development is a dynamical process, so it is natural to formulate and fit dy-

namical models, as opposed to the static models of the previous chapter. Dynamical 

modelling is, in fact, the most common modelling approach towards modelling of the 

gene regulatory network (GRN) of Drosophila melanogaster. The principal under-

lying assumption is that the expression level of a particular gap gene at a point of 

time is dependent on the instantaneous expression profile of all the TFs governing 

its expression at the immediately previous time point. Using dynamical models, it 

is possible to model auto regulation within the network. As we have discussed in 

Chapter 1, the usual approach in the literature is to use a variant of differentia! 

equation modelling for the data. However, one common problem is the computa-

tional overhead of finding a good fit of the data, principally due to the inherent 

complexity of the model itself. In our work, we employ a simpler discrete-time gene 

circuit model to fit the data. The discrete-time madel fits are more accurate and the 

identified regulatory interactions generally conform to the literature. From the static 

fit results, it became apparent that the sigmoid function based modelling provides 

a better representation of the biological process involved. Therefore our dynamical 

models consider only sigmoid based logistic functions for production rnodelling. 
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4.1 Discrete-Time Gene Circuit Mo del 

The discrete-time gene circuit model represents the expression profile of a gene 

at each discrete time point as a function of the expression level of all its TF at 

the immediately previous tirne point. The expression profile is thus assumed to be 

a discrete function over time as opposed to the differentiai equation model which 

assumes the expression profile as a continuous function over the time domain. There 

are two different variants of discrete time models, namely 

I Transition-based model, and 

II Trajectory-based models. 

In our project, we have explored both these models. 

4.1.1 Transition-Based Modelling 

The model equation can be presented as below: 

y~(t + 1) ~ R, · g ( ~ w,, · vî(t) + h.) + (1- .l..)v~(t) 
Where, 

y~(t)= Predicted expression level of gene a at position i and time t. 

v~(t)= Observed expression level of gene a at position i and time t. 

Ra =Maximum production rate of gene a. 

wba =Regulatory weight of TF b on target gene a. 

Àa = Decay rate of gene a.(O < Àa < 1) 

ha= Bias term for target gene a. 

g(u) = 1+!-u 
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Equation ( 4.1) models each transition of the gene expression profile, but it does 

not model the whole trajectory of expression, i.e. only the individual state transitions 

are modelled, but the predicted output is not used for determining the next time step 

prediction. Figure 4-1 schematically represents the transition-based models. The 

objective of the model fitting procedure is to minimize the prediction error term, 

E = VLva,i,t(YHt)- v~(t)) 2 . 
In Equation ( 4.1), there are actually two terms at the right hand si de. The 

first term is the production term and the second tenn is the left over from the 

previous time point expression of gene a after considering an exponential decay of 

the magnitude À a · v~ ( t). Note that we did not mo del diffusion in this case. The 

Wba parameters represent the inter-dependency between different genes in the G RN. 

The interpretation of these Wba parameters are the same in Chapter 3, i.e. if Wba is 

positive, it indicates that b is an activator of a and a negative value of Wba indicates 

that b represses a. The higher the magnitude of Wba, the greater is the strength of 

the regulatory effects for either activation or repression. We have fixed ha to -3.5 

for all the targets in accordance with [42, 29] . For the Drosophila gap gene data 

set, Bcd, Cad and tll are purely transcription factors for the gap genes hb, Kr,gt and 

kni. These four gap genes are acting as both TFs and targets. So the w matrix will 

have a dimension 7 by 4 as there are 7 TFs regulating 4 gap genes. 
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Figure 4-1: The inputs and outputs of the Transition-based mo dels. The filled lines 
denote outputs and the hollow lines denote inputs to the model. V1 , V2 , ... V9 are the 
observed expression profile matrices for time point 1 through 9. Y2 , Y3 , . .. Y10 are the 
predicted expression profile matrices for time point 2 through 10. 

4.1.2 Trajectory-based Modelling 

The model equation can be presented as below: 

where, 

y;(t)= Predicted expression level of gene a at position i and time t. 

v;(t)= Original expression level of gene a at position i and time t. 

Ra = Maximum production rate of gene a. 
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Wba =Regulatory weight of TF b on target gene a. 

Àa = Decay rate of gene a (0 < Àa < 1). 

ha= Bias ter rn for target gene a. 

g(u) = l+~-u D = Diffusion Operator 

Trajectory-based modelling models the whole trajectory of the gene expression 

profile, i.e. the predicted expression values at time t are used to predict the expres­

sion values at time (t + 1). Figure 4-2 schematically represents the transition-based 

models. The objective of the model fitting procedure is to minimize the prediction 

error term, E = J~'ifa,i,t(yHt)- vHt)) 2
. 
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Figure 4-2: The inputs and outputs of the Transition-based models. The filled 
lines denote outputs and the hollow lines denote inputs to the model. vl is the 
observed expression profile matrices for time point 1 . Y2 , Y3 , .•. Y10 are the predicted 
expression profile matrices for time point 2 through 10. 
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For our dataset, the first two time steps are significantly larger (almost double) 

than the other time steps. For this reason, we have added two fictitious time steps 

(which we call time step 1.5 and 2.5). Therefore the expression profile at time step 1 

is used for simulating the expression profile for time step 1.5 which is in turn used for 

simulating the expression profile for time step 2. The same procedure is followed for 

time step 2.5 as well. For the later time steps, predicted expression values at time t 

are used to predict the expression values at time (t + 1). Equation (4.2) models the 

expression of a gene using the contributions from production, decay and diffusion. 

The production term is contingent on the expression profiles of all the transcription 

factors and the wba parameters representing the inter dependency between different 

genes in the GRN. The ha values were fixed toto -3.5 for all the targets in accordance 

with [42, 29] . The w matrix has a dimension of 7*4 as there are 7 TFs regulating 

4 gap genes. 

The decay term, just as the transition-based optimization case, is dependent 

on the previous step expression level of the target gene itself. Diffusion is modelled 

by convoluting the predicted expression with a discretized gaussian blurring func­

tion. The blurring function has 9 components as it has been assumed that only four 

adjacent nuclei at both side of a nuclei contribute towards the diffusion process at 

that nuclei. The length of the blurring window and the blurring function vector is 

chosen empirically such that a rectangular box like expression profile, when convo­

luted with the particular vector, shows similar spatial slope to the mean slope of the 

original expression profile of the gap genes. The anterior AP axis border is assumed 

to be refiecting and te posterior AP axis border is assumed to be absorbing when 
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the convolution is applied. The blurring vector is reported below. 
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4.2 Transition-Based Modelling Results 

4.2.1 Model Fitting 

The parameters for this model were obtained by the process of simulated an­

nealing (SA). We have used SA instead of any gradient based optimization method 

because our empirical studies have shown that the gradient based methods (such 

as logistic regression) are much prone to getting stuck to a local minima for this 

particular data set for transition-based optimization. 

The magnitudes of the weights (w parameters) were initialized with small ran­

dom numbers. The sign of the weights were initialized with the signs obtained by the 

UNC GC fits of Perkins et al. [42]. The decay rate (>-a) and maximum production 

rate (Ra) parameters were also initialized to the normalized values obtained by [42] . 

To ensure that Àa parameters al ways remain within the the limit [0, 1], we introduced 
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a function B such that, Àa = l+ex~(-ea). On the lirnit, if Ba goes to oo Àa goes to 1. 

If Ba goes to -oo, Àa goes to O. In this way, we can use unconstrained optirnization 

and yet be able to constrain the Àa values within the allowable range. 

The objective of the rnodel fitting procedure is to rninirnize the prediction error 

terrn, E = J2:.va,i,t(Y~(t)- v~(t)) 2 . Starting from this initial guesses about the 

pararneters, SA algorithrn updates the pararneters with specified step size (10-3 for 

w, 5 x 10-3 for R, 10-4 for e pararneters), and check whether the update pro cess 

could reduce the error E. If yes, it kept the changes. Otherwise, the probability 

of keeping the change depended on the temperature of the optirnization procedure. 

The detailed description of SA procedure has already been given in Chapter 2. 

4.2.2 Obtained Parameter Values 

Table 4-1 lists the weights that rninirnizes the error function. The other pararn­

eters are listed in table 4-2. There are sorne significant differences in the weights 

from the weights obtained by the static fits. The key differences are: 

Due to the inherent properties of the static fits, it was not possible to rnodel 

autoregulation of the gap genes. However, in the case of dynarnical rnodels, 

autoregulation is rnodelled. Our rnodel finds autoactivation for all the gap genes 

although for Knirps, the magnitude of the auto-regulatory weight is small. 

ii Bicoid and Caudal are always termed as activators. In case of static fits, Caudal 

was sometimes identified as a repressor. 

iii Gap genes are sometimes identified as activators for other gap genes which 

was never in case of static fit results. However, in most cases such activating 

weights are small in magnitude. 
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Table 4-1: Weight matrix obtained from the transition-basecl fits 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.0782 0.2741 0.0442 0.5516 
Cac! 0.0043 0.0122 0.0133 0.0030 
Hb 0.0330 -0.1473 0.0024 -0.5222 
Kr -0.0086 0.2637 -0.0447 -0.0213 
Gt 0.0149 -0.0272 0.0223 -0.0249 
Kni -0.0678 -0.1948 0.0062 0.0054 
TU 0.0051 -0.8137 -0.0182 -0.1398 
Baseline -3.5 -3.5 -3.5 -3.5 

4.2.3 Contribution/ Absence Plots 

The absence plots are generated the same way they were generated in static fit 

experiments. Figure 4-3 to 4-7 present these plots. The blue thick line represents 

the original expression and the black thick line represents the expression levels as 

predicted by the moclels. The impact of the absence of a TF is visualized by the thin 

coloured lines. We analyze the plots for the four target genes. 
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Figure 4-3: Transition-based optimization contribution plots for Hb, The thick lines 
denote the original and the final expression profiles. The thin lines represent the 
effect of the absence of each TFs. 
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Figure 4-4: Transition-based optimization contribution plots for Kr. The thick lines 
denote the original and the final expression profiles. The thin lines represent the 
effect of the absence of each TFs. 
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Figure 4-5: Transition-based optimization contribution plots for Gt. The thiel< lines 
denote the original and the final expression profiles. The thin lines represent the 
effect of the absence of each TFs. 
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Figure 4-6: Transition-based optimization contribution plots for Kni. The thick 
lines denote the original and the final expression profiles. The thin lines represent 
the effect of the absence of each TFs. 

I H unchback (Hb): Figure 4-3 shows the absence plots for Hb as target for 

all the 9 step transitions. At time 2, the anterior Hb peak is formed due to 

autoactivation and Bcd activation. The posterior Hb is formed due to autoacti-

vation only. However, this is not a valid mechanism, which exposes a potential 

fiaw of this transition based modelling approach, i.e. the ability to explain the 
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formation of peaks by autoactivation only. Knirps plays a part in forming the 

anterior edge of the posterior peak. The quality of prediction is usually excel­

lent. The only feature that it misses is the final time point dip in the anterior 

hb domain, but this is a common problem with all the quantitative analysis 

studies in the literature. [42] 

II Krupp el (Kr): The predictions at the earlier time stages are not very good. 

At later time steps, it gets better. The anterior border is infiuenced by Hb 

repression and the posterior border is infiuenced by Kni repression. Bcd acts 

as the principal activator for Kr. 

III Giant (Gt): The predictions at the first two time steps are not very satis­

factory. Like Kr, the predictions get better for the later time steps. Activation 

from Bcd and repression from Kr plays the key role in the formation of the 

anterior peak. Cad activation plays an important role for posterior peak con­

struction. 

IV Knirps (Kni): Figure 4-6 shows the absence plots for kni as target.The 

prediction performance is good for all the time points. Anterior border is 

formed by Hb and Kr repression. Bcd is the main activator for Knirps. Auto­

activation also plays a role for the later time steps. 

4.2.4 RMS Error 

The overall RMS error is 10.46. The RMS errors for different target gene pre­

diction at each time step is listed in Table 4-3 and in Figure 4-7. From Table 4-3,it 

is observed that gt has the greatest average error (12.0329) followed by Kr(l1.1940), 

hb(9.4535) and kni (6.5446). The RMS error distribution for different time step is 

70 



r--
I 

reported in Figure 4-7. A common phenomena observed for all the targets is that 

the final time point prediction quality is always worse than the immediate past time 

point. The error for Hb increases quite dramatically at the final time step. gt and Kr 

shows variations of error at the earlier time steps while kni maintains quite uniform 

low error predictions. 

Error Distnbution Over lime (Transition Based Optim1z:ation) 

" 

16 

g . 
' 
1 . 
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TimeStep(Previous) 

Figure 4-7: Transition-based optimization error distribution of different target over 
ti me 

4.3 Trajectory-based Modelling Results 

4.3.1 Model Fitting 

We first attempted to fit the model exactly the same way we have done in 

Transition-based modelling. However we faced difficulties in finding a good fit using 

only simulated annealing due to the complexity of the model. We came np with a 
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Table 4-2: Other parameters obtained from the Transition-based fits 

1 () Value 1 R value 1 

Hb 0.2563 80.6788 
Kr 1.2327 44.3763 
Gt 0.1400 91.0843 
Kni 1.2316 122.2731 

Table 4-3: RMS errors for different target genes for all time steps(transition-based 
fits) 

1 Target Hb 1 Target Kr 1 Target Gt 1 Target Kni 
Time Step 2 6.1737 7.9110 11.4280 5.7227 
Time Step 3 10.3043 17.3890 17.4249 4.9515 
Time Step 4 9.3511 10.5095 6.2980 4.3836 
Time Step 5 8.2504 8.0968 10.1955 6.5633 
Time Step 6 10.8473 13.0002 15.0081 8.0679 
Time Step 7 5.5859 13.5464 14.8250 9.6027 
Time Step 8 6.3048 6.8413 12.0608 3.9558 
Time Step 9 10.3548 11.5444 9.4966 7.0607 
Time Step 10 17.9089 11.9076 11.5592 8.5934 
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hybrid optimization strategy that incorporates both SA and Randomized local search 

for finding out a good fit for the model. The steps are discussed in details. 

Initialization of parameters 

The w parameters are initialized with very small random numbers. The initial 

signs of the weights are set to be the same as the unconstrained optimization fit 

results of [42] . The À parameters are initialized to 0.5 and the R parameters are 

initialized to 105.0. 

Randomized Local Search (RLS) 

From the above initial estimates, we first numerically compute the gradient 
8
8

E 
w,J 

for each i and j by calculating the effect of a small perturbation on the Wij· A weight 

wij is then randomly chosen where the probability of choosing wij is proportional to 

the absolute value of 8~i. The chosen wij is then perturbed by taking a small step 

aij towards the direction opposite to the computed gradient a~~i in the hope that it 

would improve the prediction. At the same time, small random perturbation to the 

Àa and Ra parameters are performed. If the net effect of all the changes decreases 

E, we retain the changes. If not, we discard them. 

The aij parameters are updated at each step. For this purpose, for each Wij . 

parameter, we keep the direction of the 'last good change', i.e. the last change that 

reduced E. If the current step is a 'good' one resulting in a lower error, and the 

current direction of change of Wij is the same as the last good change of Wij, we 

increase Ctij by 1%. If the direction of the current good change for Wij is opposite to 

the last good change of Wij, aij is lowered by 1 %. The opposite procedure, which 

decreases aij if the two directions are the same and increases aij if otherwise, is 
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followed if the current step is a 'bad' one. However, if consecutively 100 updates are 

discarded, the Œij parameters are reset to their initial value. 

At each call to the randomized local search function, the initial estimates of 

the Œij are passed as parameters and in total 5000 updates take place. We call 

this function repeatedly and decrease the initial estimates of the Œij parameters if 

the number of successful updates (good changes) is less than 20. If the number 

of successful update is greater than 1000, we increase the initial estimates of aij . 

We repeatedly call this function 400 times which amounts to total 200,000 updates. 

After that we run the simulated annealing process. 

Simulated Annealing 

The output of the RLS algorithm serves as the input for the simulated annealing 

algorithm . We start with a higher temperature and gradually cool it until we get a 

reasonable solution and/ or the parameters converge to a stable configuration. 

4.3.2 Weights Obtained 

The weights obtained are listed in Table 4.3. The signs of the weights generally 

conforms with the sign of unconstrained (unc_gc) fits as reported in [42] except that 

the signs for Cad and Tll on hb are swapped and the weight for Kni on gt is toggled. 

The Cad and Tll weight on hb is however supported by the Jaeger et al. [29] model. 

The relative magnitude of the weights significantly differ with the unc_gc fits. The 

cases where the magnitudes differ significantly with the unc_gc fits are listed below: 

I Gad is now a strong activator for hb. 

II Reduced activation of Bcd on hb, reduced repression of Kr and Gt on hb. Tll 

has a very small weight for hb. The contribution plots experiments will show 

74 



Table 4-4: Weight matrix obtained from trajectory-based Fits 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.0137 0.2327 0.5858 0.1137 
Cad 0.0123 0.0129 0.0260 0.0199 
Hb 0.0370 -0.0855 -0.0896 -0.1111 
Kr -0.0052 0.0968 -0.2819 -0.0248 
Gt 0.0045 -0.0964 0.0106 -0.0621 
Kni -0.1066 -0.1019 -0.0173 0.0447 
Tll -0.0031 -0.0125 -0.0039 -0.1680 
Baseline -3.5 -3.5 -3.5 -3.5 

that these changes result in a different interpretation of the hb posterior peak 

formation. 

III Increased effect of gt on Kr, reduced weight for tll on Kr. 

IV Increased effect of Bcd, hb, Kr and kni on gt. 

V Reduced effect of gt on kni. 

4.3.3 Contribution Plots 

By analyzing the hb absence plots (Figure 4-8), we observe that Bcd and Cad 

activates the anterior peak, Kni represses it in the middle and Cad activates the 

posterior peak. We also notice that auto-activation plays an important role . 

For Kr, (Figure 4-9) the initial time step prediction is visually bad again.Bicoid 

activation is necessary for the formation of Kr peak. The precise positioning of the 

Table 4-5: Other parameters obtained from Trajectory-based Fits 

1 e Value 1 R value 1 

Hb -0.7310 131.3862 
Kr 0.6177 76.8147 
Gt -3.1147 211.3760 
Kni -0.0892 116.2671 
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anterior edge of the peak is determined principally by gt and hb repression while the 

posterior edge is determined by kni repression. 

For gt, the most dominant effect is of Kr repression. Bicoid and Caudal pro duce 

the anterior and the posterior peaks respectively. Hb and Kni repression is necessary 

for ensuring the right domain of expression for the posterior gt peak. (Figure 4-10) 

K ni (Figure 4-11) is strongly repressed by Hb and Til and activated by both 

Bcd and Cad which is conforming with the literature. 
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Figure 4-8: Trajectory-based optimization contribution plots for Hb. The thick lines 
denote the original and the predicted expression profile. The thin lines represent the 
effect of the absence of each TF. 
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Figure 4-9: Trajectory-based optimization contribution plots for Kr. The thick lines 
denote the original and the predicted expression profile. The thin lines represent the 
effect of the absence of each TF. 
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Figure 4-10: Trajectory-based optimization contribution plots for Gt. The thick lines 
denote the original and the predicted expression profile. The thin lines represent the 
effect of the absence of each TF. 
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Figure 4-11: Trajectory-based optimization contribution plots for Kni. The thick 
lines denote the original and the predicted expression profile. The thin lines represent 
the effect of the absence of each TF. 

4.3.4 Error Analysis 

The overall RMS error is 9.0726. From Table 4-6, it is observed that hb has the 

greatest average error (10.3944) followed by Kr(8.5054), gt(8.0771) and Kni (6.4538). 

Therms error distribution for different time step is reported in Figure 4-12 It shows 

that for gt, Kr and kni, the error distribution is more or less uniform. But for hb 

the error increases for the later time stage . A common phenomena observed again 
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for all the targets is that the final time point prediction qua.lity is always worse than 

the immediate past time point. 
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Figure 4-12: Trajectory-based optimization error distribution of different target over 
time 

4.4 Comparison of Discrete-Time Mo dels Results with Literature 

In terms of prediction performance, discrete time gene circuit models exhibit less 

RMS error than its differentiai equation based models counterparts. The RMS error 

is only about 10 while both Jaeger and Perkins madel yield more than 12. Despite 
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the difference in the set of weights and parameters obtained and RMS error, there 

are significant amount of agreement among these models. 

Table 4-7 compares how the different models attributes the key features to dif­

ferent TF activities. For anterior hb, Perkins et al. UNC GC fits attributes that to 

Bcd activation, Jaeger et al. to Bcd, Cad and autoactivation. Our trajectory-based 

madel agrees with Jaeger et al. results. Transition-based madel identifies Bcd and 

auto activation, but Cad activation is not a deciding factor for anterior hb forma­

tion. For posterior hb, both Jaeger et al. and trajectory Based madel explains its 

formation with Cad activation. Perkins et al. emphasizes on Tll activation, which 

none of our madel finds as a strong player for this case. The transition-based madel 

attributes it principally to autoactivation of Hb. 

For the kr anterior border, all the models find Hb repression as a reason. Besides, 

gt repression is also identified as a cause by the Jaeger madel and our trajectory­

based mo del. For the posterior Kr border, all the four mo dels find Kni repression as 

the strongest deciding factor. 

For Gt anterior peak, all the four models agree and attribute it to Bcd activation 

and kr repression. For the posterior peak, cad is identified as a key player by all the 

models. However, while Jaeger et al. and our transition-based result finds strong tll 

repression being one of the reasons, our trajectory-based madel finds simultaneous 

inputs from Kr and Hb repression to be acting as a key contributor. 

For Knirps, the anterior border formation is always attributed to Hb and Kr 

repression. The posterior border is attributed to gt. However, Jaeger madel finds a 

significant input from Tll as well which is not supported by any other models. 
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4.5 Summary of Dynamical Models & Fits 

Our deductions from the dynamic fit results are: 

Discrete-time models yield better predictive performance for the data set. 

Moreover the key factors for the formation of important features, as identi-

fied by these models, are generally in agreement with the existing literature. 

ii Transition-Based madel perform pretty well in terms of RMS error despite its 

simplicity. Their explanation of the formation of different features also agree 

to the literature and the trajectory-based models. The only exception is for 

posterior Hb madel, it does not find significant contribution from Ca.d or Tll, 

which does not conform to the findings of the other models. 

m The complementary gap gene pair hb-kni and Kr-gt are always strongly mutu­

ally repressive, which is supported by all the other models. [42, 17, 36, 10, 25, 

52, 12] 

IV The only major problem that these models face is their inability to explain the 

gap gene shift with the proper cause. According to Jaeger et al, a chain of 

repressive interactions hb --i gt --i kni --i kr causes the domain shifting of the gap 

genes, and their reverse interaction should not exist. However, the transition-

based madel does not find hb --i gt repression. The gt --i kni repression and 

kni --i Kr repression is found but also kni --i kr repression is detected. The 

trajectory-based mo del finds all these interactions, but it also detects kni --i gt 

and kr --i kni interactions which contradicts Jaeger et al results. 
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v For both the models, the expression of Knirps is the easiest one to fit. Also 

the final time point always exhibits more RMS error for all the target genes in 

both the models. 

VI Both the models have detected auto-repression of the gap genes. However, the 

transition-based model finds a very small weight for Kni auto-repression. 

In the next chapter, we attempt to relate the sequence-based data of bind­

ing site information with the expression-based regulatory weights obtained from our 

trajectory-based model. We have chosen the trajectory-based model for further in­

vestigation because from a biologist's viewpoint, this model is more realistic than 

the other models. Still, the model can account for the formation of the key features 

in the expression profile correctly enough and it also yields the greatest predictive 

performance in comparison with all the other models. 
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Table 4-6: RMS errors for different target genes for all time steps(Trajectory Based 
Fits) 

1 Target Hb 1 Target Kr 1 Target Gt 1 Target Kni 
Time Step 2 5.8559 12.8212 9.2034 12.5222 
Time Step 3 6.3998 8.7436 8.0882 3.6213 
Time Step 4 5.9442 5.6641 8.1713 2.9505 
Time Step 5 6.2973 5.4205 9.2622 6.3219 
Time Step 6 10.6584 8.9183 9.1612 6.6819 
Time Step 7 10.5868 8.5242 9.5042 6.9664 
Time Step 8 11.3645 8.1222 5.6913 6.8982 
Time Step 9 13.7384 6.1506 5.5225 3.9302 
Time Step 10 22.7046 12.1844 8.0893 8.1913 

Table 4-7: Comparison between models for the key contributors forming features. 
aa denotes auto-activation. 

Features Perkins et al. J aeger et al. Transition- Trajectory-
Based based 

A. Hb Peak Bcd act. aa+(Bcd aa+Bcd act aa+ 
+Cad)act. (Bcd.+Cad) 

act. 
P. Hb Peak Tll act Cad Act. aa. Cad act. 

Kr A. Border hb rep. (hb+gt )rep. hb rep (hb+gt) rep. 
Kr P. Border Kni rep. Kni rep. Kni rep. Kni rep. 
Gt A. Peak Bcd act.+kr rep. Bcd act.+kr rep. Bcd act.+kr rep. Bcd act.+kr rep. 
Gt P. Peak Cad act. Cad act.+tll rep Cad act.+tll rep Bcd +Cad 

act.,(Kr+ Hb) 
re p. 

Kni A. Border Hb +Kr rep. Hb +Kr rep. Hb +Kr rep. Hb +Kr rep. 
Kni P. Border Gt rep. tll/gt rep. Gt Rep Gt rep. 
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CHAPTER 5 
Associating the Binding Site Data with the Regulatory Weights 

In this chapter, our attempt is to relate two different factors (sets of data), 

the regulatory weights obtained in our models, and 

u the binding of the transcription factors with their respective biuding sites. 

Unfortunately, there is no perfect universal model for these factors. Different 

algorithms exist for counting the occupancy or strength of the binding sites present 

in the regulatory region of a target gene. We can obtain two totally different sets of 

cumulative binding site strength data by using two different algorithms. In the same 

manner, different models yielded different sets of data as reported in chapter 3,4 and 

the relevant previous works [42, 29, 50, 53]. None of the models for TFBS finding 

and regulatory weight determination can fully replicate all the underlying biological 

processes. Moreover, there is no convenient way of cross-validating the results. As 

a result,we cannot be sure if the values obtained by any of the models are actually 

representing the true values of the regulatory weights and the binding site strengths. 

However, from a high level viewpoint, the binding site strengths are the "causes" 

and the regulatory weights are the "effects" and the true numerical values of these 

two factors must be related through a function. The function that describes this 

relationship is unknown to us. As a starting point, we can assume a proportiona1 

relationship between them. In this chapter, our aim is to estimate the true value of 

these two important factors, i.e. we would like to find a set of regulatory weights 
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that can explain the dynamics of the expression and at the same time, can retain the 

relationship of proportionality with the corresponding CBSS matrix elements and 

vice versa. With this end in view, we analyze the effect of updating one set of data 

( either the expression-based or the sequence-based estima tes) at a ti me according to 

an assumption of proportionality between the two sets of data, keeping the other data 

set fixed. Before we move on to discuss the results of such updates, we report how 

our obtained weights from the trajectory-based optimization relate to the cumulative 

binding site strength data. 

5.1 Binding Site Analysis for Trajectory-based Optimization 

The binding site data that we have used in Chapter 3 were taken from Schroeder 

et al. [55] results. However, the binding site information of Schroeder et al. seems 

to have sorne missing values, especially for Knirps CRMs. Exceptionally high values 

of BS strengths were observed for Tailless as a TF. For this reason, we opted for 

using the algorithm Stubb [59, 58]. for binding site calculation instead. We ran 

the algorithm using the PWMs listed in Sinha et al. on the CRMs identified by the 

Schroeder paper. We also changed the prior probability parameter of stubb to 0.001 

instead of the standard value of 0.01 because we observed that the prior probability 

value of 0.01 tends to give many false positives when we randomly permute the 

nucleotides of the CRM sequence. Our studies had shown that the binding site 

strength output using a prior probability value of 0.001 approximately matches the 

binding site strengths obtained by using prior probability 0.01 with false positive 

subtraction. As false positive estimation requires randomization of the sequence, 
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Table 5-1: Cumulative binding site strength matrix output of Stubb 

1 Hb 1 Kni 
Bcd 2.7870 4.4184 5.4254 3.6769 
Cad 1.1289 2.4806 4.1644 1.8496 
Hb 2.7051 5.4949 5.0298 4.7593 
Kr 4.1529 2.5365 10.5966 4.1236 
Gt 0.5657 2.7116 1.6721 0.2670 
Kni 1.8683 2.1446 3.8105 2.4646 
Tll 2.0230 2.4204 6.1302 3.2852 

we avoided the use of such a time consuming procedure by directly using a prior 

probability value of 0.001. The CBSS matrix obtained is reported in Table 5-l. 

We have plotted the scatter plots of the binding site vs. regulatory weight 

magnitudes per TF (rows of the matrices) to visualize the relationship between these 

two factors. Note that only the magnitude (absolute value) of the regulatory weights 

are considered, not their signs. As TFBS occupancy, presented by the CBSS matrix, 

is the reason behind the regulatory effect of a TF on its targets, and the regulatory 

weight is a measure of the strength of that regulatory effect, we expect that the 

CBSS matrix and the regulatory weights should be correlated. If we assume that 

the relationship between them is linear, correlation may be a good measure of the 

dependency among these two sets of data. We measure the per TF correlation 

between these two matrices. Per TF implies a fixed TFBS potency assumption, i.e. 

per TF correlation of + 1 implies that if a new binding site for a given TF at the 

regulatory region of a target is occupied, it always increase the regulatory weight 

of that TF on the corresponding target by a fixed amount irrespective of the target 

gene in whose regulatory region the binding site is added. 
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Figure 5.l(a) shows that for Bcd as TF, the number of binding sites increases 

monotonically if the magnitude of weight increases. The correlation coefficient be­

tween the binding site strength data with the corresponding regulatory weight is 

0.96. For Cad, Hb and Kr as TF, the correlation coefficient is about 0.80. But for 

Gt as TF, the correlation coefficient drops to about 0.50. For Kni as TF, we get 

surprisingly strong negative correlation (about -0.9). For Tll as TF, the correlation 

coefficient is nearly zero. From the plots and the correlation coefficients, the trend is 

towards a strong positive correlation for Bcd, Cad, Hb and Kr as TFs, weak positive 

correlation for Gt, negative correlation for Kni as TF and no correlation for Tll as a 

TF. 

As the binding site data and regulatory weights were derived independently 

of each other, the majority trend towards a positive correlation may suggest that 

there exists a positively correlated relationship between the true value of binding 

site strengths and the true value of the regula tory weights. However, we also have to 

realize that correlation coefficient calculated from only 4 data points (one per target) 

may not be reliable enough a measure for the linear dependence. Besides, from a 

biological viewpoint, using correlation coefficient as a measure of linear dependence 

raises sorne serious concerns. In the next section, we describe the problem of using 

correlation coefficient in this case and then describe a suitable error criteria which 

measures not only linearity, but also proportionality between the two factors. 

5.2 Measure of linear dependence 

Although correlation coefficient is a widely employed metric as a measure of 

linear dependence between an independent and a dependent variable, it cannat be 
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used as a measure of proportionality between these variables. If x is the independent 

variable and y is a dependent variable, a correlation coefficient of + 1 implies that 

the rate of change of y w.r.t x is fixed, i.e. dy is proportional to dx, but that does 

not necessarily imply that y itself is proportional to x. 

Mathematically, if we assume that for each TF b, the absolute value of the 

corresponding weights lwbal and CBSS values B(b, a) for all targets a should show a 

strong positive correlation, then in the perfect case, Jwbal = cb · B(b, a) + cxb where 

cb is the slope and cxb is the y intersect of the line that goes through all the points 

when we make similar scatter plots as Fig 5-1 having w parameter on the y axis and 

B parameters on the x axis. If we plug the value for wba into the model equation of 

trajectory-based models, the model equation becomes, 

y~(t + 1) ~ D (Ra· g ( ~(œ, + c, · B(b, a)· sign(wba) · Yi(t) +ha) + (1- Àa) · y~(t)) 
which implies that if no binding site for TF b is present in the regulatory regionof 

target a (i.e. B(b, a) = 0), the production term still does not go to zero. Instead 

we get a term which is proportional to the expression profile of the TFs. This is 

contradictory to the fact that the attachment of TFs to their respective binding sites 

is the cause for transcription process initiation. Therefore it becomes clear that there 

should be no such cxb terms in this case. 

Following this line of thought, when we impose a proportionality constraint on 

the definition of correlation assuming lwbal = Cb · B(b, a) ,i.e. cxb = 0, then plugging 

the wba value into the model equation infers that if there is no binding site for a 
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particular TF, it should not contribute at all towards the production of the target 

gene. 

From the above discussion, it becomes apparent that the correlation coefficient 

is not a good metric for the measure of correlation in this particular case. What we 

actually need here is a measure of proportionality which will measure by what degree, 

the data satisfies the assumption that for each TF b, lwbal = cb · B(b, a)'lla. We devise 

an error term that is zero when this assumption is fully satisfied and which penalizes 

the data sets on the basis of their divergence from this proportionality assumption. 

We call this error term as Eprop where, 

Eprop = L mincb L(lwbal- cb * B(b, a)) 2 (5.1) 
b a 

For all targets a, if lwbal = cb * B(b, a), then Eprop is zero. The larger the 

difference between lwbal and cb * B(b, a) the larger the value for the inner sum. Let 

us term the inner sum resultas Çb, i.e. 6(cb) = l:a(lwbal- cb * B(b, a)) 2
. In arder to 

find the minima of Çb with respect to cb we equate the gradient of Çb to zero. 

açb = 0 acb 

=?- 2 · L(lwbal- cb · B(b, a))· B(b, a) = 0 
a 

Plugging in the calue in Equation 5.1, we get 

" (" (l:a' lwba'l · B(b, a') ) 
2

) 
Eprop = 7' ~ l:a,(B(b, a')) 2 · B(b, a) -lwbal 
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We use this definition of Eprop as an error metric for the lack of proportionality 

between lwbal and B(b, a) 1 in the subsequent sections. 

5.3 Optimizing the regulatory weights to match the binding site data 

In this section, we describe an optimization strategy for finding a regulatory 

weight matrix that can explain the regulatory dynamics of the system and is still 

able to retain high correlation (with a proportionality constraint) with the given 

CBSS values. We have used the negative of Eprop as in Equation 5.2 as a measure 

of correlation. The natural way to incorporate both these requirements is to aug-

ment the error function to be minimized by our fitting procedure to include both a 

prediction error component and a correlation component . 

5.3.1 Augmenting the Error Criteria 

We use the following augmented error function: 

where, 

Erms = 

E - {3 · Erms + Î · (1- /3) · Eprop 

Lv; a /YW)-vW)) 2 

N 

y~(t) =Model Predicted Expression Level of gene a at position i intime t. 

N= Total number of predicted samples. In this case, N= 58*4*9 as 9 time steps 

are predicted starting from the initial condition for 58 expression values each for 4 

target genes hb, Kr, gt and kni. 

Î = a multiplication factor for compensating for the difference of scale of Errns 

and Eprop· 
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The (3 E [0, 1] parameter is a knob to tune the relative emphasis of the two 

error components. If (3 = 0 then the augmented error function contains only the 

component with Eprop· When the proportionality constraint is perfectly satisfied, 

the line joining the points on the scatter plot goes through the origin and Eprop = O. 

For any other case, Eprop > 0, which will increase the augmented error. 

As (3 grows from 0 towards 1, more and more emphasis is given on the accuracy 

of the prediction by sacrificing the proportionality constraint. If (3 = 1 then the 

augmented error function contains only the Erms component. In this case, the madel 

fitting procedure will concentrate on an accurate prediction only, not caring about 

the proportionality at all. 

We use (3 values from 0.1 to 1.0 with step size 0.1 to get 10 different sets of 

optimal parameters. Note that the (3 = 1 case is the unconstrained optimization 

(trajectory-based) that minimizes theRMS error only. The value of Î is set to 2000. 

We used the same optimization procedure of running SA on the randomized 

local search result as we had done during the trajectory-based madel optimization. 

5.3.2 RMS and Correlation Values for Different Values of (3 

Table 5-2 lists the RMS error and Eprop values obtained from the different fits 

with varying (3. As expected, as we increase the value of (3, the RMS error decreases 

and (Eprop increases. From our analysis on the numerical values of Eprop' we found 

out when Eprop > 10-5 , the visual inspection of the scatter plots (per TF) reveals 

that the points on the many of the plots do not form a line going through the origin. 

From our results, we observe that only (3 = 0.1 case yields a Eprop value which is less 
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than 10-5
. In order to gain insight of the results, we choose this particular case for 

analysis in details. 

Table 5-2: RMS error and Eprop values for different values of (3 

1 Erms 1 Eprop 

0.1 23.62 6.19 x 10-5 

0.2 22.30 1.95 x 10-4 

0.3 21.36 3.61 x 10-4 

0.4 20.61 5.74 x 10-4 

0.5 19.92 8.88 x 10-4 

0.6 18.90 0.0015 
0.7 17.14 0.0031 
0.8 14.74 0.006 
0.9 13.17 0.011 
1.0 9.07 0.156 

5.3.3 Weights obtained when (3 = 0.1 

The weights obtained are listed in Table 5-3 and the other parameter values are 

reported in Table 5-4. We observe that the signs and the magnitude of the weights 

differ greatly with the weights obtained from the previous models. Bicoid has been 

identified as a repressor for Giant and Knirps, which is unprecedented in any of the 

models seen so far. Knirps is termed as an activator for Hunchback and Giant, while 

all the models identify Knirps as a strong repressor for Hb. The relative magnitude 

of many weights differ significantly with the other model results. 

5.3.4 Contribution Plots 

Although the RMS error is greater than 20, we have found that all the peaks 

were predicted by the mo del. However, the peaks are either shifted or have a grea ter 

width than the observed peak which was the reason behind for a greater RMS error. 
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Table 5-3: Weight matrix obtained when f3 = 0.1 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.0953 0.1525 -0.1866 -0.1268 
Cad -0.0098 0.0166 0.0263 0.0157 
Hb 0.0266 -0.0553 0.0534 -0.0488 
Kr -0.0189 0.0121 -0.0476 0.0135 
Gt -0.0074 -0.0345 0.0211 -0.0042 
Kni 0.0125 -0.0165 0.0258 0.0204 
Til 0.0282 -0.0340 -0.0853 -0.0462 
Baseline -3.5 -3.5 -3.5 -3.5 

By analyzing the hb absence plots (Figure 5-2), we observe that Bcd and auto 

activation activate the anterior peak, Kni represses it, Cad represses hb in the middle 

and Til activates the posterior peak. We also notice that the posterior peak is shifted. 

For Kr, (Figure 5-3) the initial time step prediction is visuaily bad again. Bicoid 

and Caudal activation is necessary for the formation of Kr anterior peak. The precise 

positioning of the anterior edge of the peak is determined principaily by Hb repression 

while the posterior edge is determined by Kni and Gt repression. The peak is wider 

at the posterior end. 

For gt, the most dominant effect is of Bcd repression. Caudal produces the 

anterior and the posterior peaks. Giant act as an activator for the posterior peak. 

Kr is the most significant repressor for the anterior peak (Figure 5-4). 

Table 5-4: Other parameters obtained when f3 = 0.1 

1 8 Value 1 R value 1 

Hb 0.2477 97.0420 
Kr 1.3470 67.7648 
Gt -1.1539 132.7759 
Kni -0.1449 177.4841 
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K ni (Figure 5-5) has a predicted domain much wider than the original exp res-

sion. Bicoid is identified as a repressor. The posterior edge has been formed due to 

Tll repression and joint activation effect from Kr and Cad. 

Figure 5-2: Contribution plots for Hb( {3 0.1) 

96 



1-\U:.tjlll:tl t"IUL,I'\1-- 111111::1.(! 1-\U:Sl::llll,;tl t"IUI.r\1-- llllltj,.l 1-\U::,t:tlll,;b' t"IUL.f\1-- 111111:1."+ 

120 150 150 

100 '"' ,, 

·~ -~ .§ 
100 100 

·~ 

~ 

=~ ! ! w 

20 
,, ••• -c••'""'''" ''-....;, 

0 
0 10 20 30 40 50 60 60 

Position Position Position 

Absence Plot:Kr-- Tlme:5 Absence P!ot:Kt-- Time:6 Absence Plot:Kr-- Time:7 
200 200 250 

150 
200 

§ § 150 
·~ 100 

·~ 

~ ! 100 w 

10 20 30 40 50 60 60 10 20 30 40 50 60 
Position Position Position 

Absence Plot:Kr-- Time:B Absence Plot: Kr-- Tlme:9 Absence Plot:Kr-- Time:10 
250 250 250 

200 200 

·M 150 .~ 150 

~ [ 
~ 100 .n 100 

50 60 50 60 40 50 60 
Position Position Position 

Figure 5-3: Contribution plots for Kr ((3 0.1) 

97 



~ r 

.§ 

j 

·~ 
! 

·~ 
.z 

140 

120 
...... 

100 

80 

10 

100 

100 

50 

0 
0 10 

Absence Plot:Gt-- Time:2 Absence Plot:Gt-- Tirne:3 Absence Plot:Gt-- Tlme:4 

20 30 60 60 
Position 

Absence Plot:Gt-- Time:5 

60 50 60 40 60 
Position Position Posit1on 

Absence Plof:Gt-- Time:S Absence Plot:Gt-- Tlme:9 Absence Plot:Gt-- Tlme:10 
250 250 

20 30 60 60 
Position Position Position 

Figure 5-4: Contribution plots for Gt(,8 0.1) 

98 



AbsencQ Plot:Kni-- Time:2 Absence Plot:Kni-- Time:3 Absence Plot:Knl-- Time:4 
60 120 140 

50 100 120 

40 80 
100 

80 
30 60 

60 

20 40 
40 

20 20 

0 0 
30 40 50 60 0 10 60 0 10 20 30 40 50 60 

Position Position --Original Position 

Bcd 

Absence Plot:Knl-- Tlme:5 Absence Plot:Knl-- Time: Cad Absence Plot:Kni-- Time:7 
200 --Hb 250 

150 K' 
G1 

200 
150 

100 .§ .§ 150 

~ 100 ~ 
.n ! 100 

50 
50 

50 

0 0 0 
0 10 60 0 10 60 0 10 60 

Position Position POSition 

Absence Plot:Kni-- Tirne:a Absence Plot:Kni-- Tlme:9 Absence Plot:Kni-- Time:lO 
250 250 250 

200 200 200 

150 .2 150 ·t 150 

~ 
100 ~ 100 ~ 100 

50 50 50 

0 0 0 
0 10 60 0 10 60 0 10 50 60 

Position Position Position 

Figure 5-5: Contribution plots for Kni( [3 = 0.1) 

5.3.5 Correlation after optimization 

Figure 5-6 presents the scatter plots after the optimization. We observe that 

the points on the scatter plot now form a line going through the origin for most of of 

the TFs. As [3 has a small value, more emphasis was given on maximizing the Eprop 

than the accuracy of prediction. As a result, the optimization result shows greater 

level of proportionality at the cost of a greater RMS error. 
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5.3.6 Error Analysis 

The overall RMS error is 23.624. If we calcula te the mean RMS error from Table 

5-5, we will see that the mean RMS error lies within 22-24 for all the target genes. 

So the mean error is quite uniform for all the targets. The RMS error distribution 

for different time step is reported in Table 5-5 and Figure 5-7. It shows that the 

prediction performance deteriorates for the later time steps. 

Error Distribution (b = 0.1 case) 
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Figure 5-7: Error distribution of different target over time ( (3 = 0.1) 

5.3.7 Comparison of (3 = 0.1 Results with Literature and Trajectory­
based Fits 

In terms of prediction performance, the RMS error obtained is much higher 

than any of the models. The weights obtained also differ significantly from the other 
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Table 5-5: RMS errors for different target genes for all time steps(,B = 0.1 Fits) 

1 Target Hb 1 Target Kr 1 Target Gt 1 Target Kni 
Time Step 2 15.3613 22.3930 11.8596 14.0780 
Time Step 3 14.8795 17.9808 26.0895 13.8069 
Time Step 4 9.5472 21.1865 27.0216 22.4129 
Time Step 5 16.3408 24.1049 24.9239 24.9498 
Time Step 6 24.6601 29.6334 18.8921 27.5756 
Time Step 7 25.3580 23.1281 24.1120 26.3955 
Time Step 8 28.4155 23.6231 19.6856 25.8742 
Time Step 9 33.0636 24.3659 23.1231 25.3487 
Time Step 10 37.9993 24.6129 28.2777 23.2063 

models. The most significant difference is the identification of Bcd as a repressor 

for Gt and Kni which made the madel weak. The gap genes have more often been 

termed as activators. Table 5-6 compares how the different models attributes the 

key features to different TF activities. The notable differences for this madel are: 

I Cad is a significant repressor for hb. The posterior hb is activated by Tll which 

agrees with Perkins et al. results. 

II Bcd is a significant repressor for Giant and Knirps. Knirps is an activator for 

Hunchback and Giant. 

III Tll repression plays an important role for the positioning of the posterior border 

of Knirps. 

IV The predicted expression domains are usually wider than the original domains. 

In brief, the optimization results differ significantly in its interpretation of the 

regulatory interactions and their effects. The prediction error is much larger. We 

still get all the peaks but their domain of expression does not precisely match with 

the original expression profile. This madel does not find gt --1 kni repression, an 
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interaction which was identified by Jaeger et al. as important for the gap gene 

domain shift. The opposite interactions of the domain shift hypothesis (the effect of 

Kr on kni, Kni on gt and Gt on hb ) are usually activating while according to Jaeger 

et al., these reverse interactions should be neutral, i.e. no effect. Perhaps this is the 

reason why we get a wider domain of expression profiles. 

To conclude, our attempts to optimize the weights to find a good correlation 

component with the binding site data fail to fit the data weiL The regulatory inter­

actions are also not identified properly. In the next section, we present the reverse 

optimization problem of optimizing the PWMs to change the binding site data such 

that the new binding site composition shows a higher level of correlation with the 

trajectory-based model weights. 

5.4 PWM Optimization to Match the Regulatory Weights 

The binding site strength data we have used in this chapter was obtained from 

the output of the Stubb algorithm [58] providing the position weight matrices given 

in [58] and the predicted CRMs of the Ahab Algorithm [55] as inputs. The PWMs 

were constructed from a set of known binding site motifs. However, for different TFs, 

the number of known binding site differs significantly. For example, Hb PWM was 

constructed from 43 known binding sites, while the Gt PWM was constructed from 

only 8 known binding sites [45, 55, 58] . Moreover, not all binding sites for all the 

TF has been identified, so usually a pseudo-count is used to avoid over fitting of the 

PWM to the known binding sites only [14, 37, 62]. Intuitively the more the number 

of known binding sites for a TF, the more reliable is the set of constructed PvVMs. 
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Table 5-6: Comparison between models for the key contributors forming features. 
aa denotes auto-activation. 

Features Perkins et al. J aeger et al. Trajectory- (3 = 0.1 Results 
based 

A. Hb Peak Bcd act. aa+(Bcd aa+ aa+Bcd act. + 
+Cad)act. (Bcd.+Cad) Cad rep. 

act. 
P. Hb Peak Tll act Cad Act. Cad act. Tll act + Cad 

Repression 
Kr A. Border hb rep. (hb+gt )rep. (hb+gt) rep. hb rep. 
Kr P. Border Kni rep. Kni rep. Kni rep. (Kni+Gt) rep. 
Gt A. Peak Bcd act.+kr rep. Bcd act.+kr rep. Bcd act.+kr rep. (Bcd +kr) rep.+ 

Cad act. 
Gt P. Peak Cad act. Cad act.+tll rep Bcd +Cad Cad act. + aa. 

act.,(Kr+ Hb) 
re p. 

Kni A. Border Hb +Kr rep. Hb +Kr rep. Hb +Kr rep. Bcd rep. 
Kni P. Border Gt rep. tll/gt rep. Gt Rep tll 

(Cad+Kr) 
act. 

In this section, we devise an optimization strategy that updates the PWMs such 

that the final cumulative binding site strength data yields a greater level of correlation 

with the weights obtained from our trajectory-based fits. The main assumption here 

is that the PWMs used to construct the binding site strength data were not perfect 

as there is always a possibility of the existence of sorne unknown binding sites for 

the TFs. It can be thought of as a method to avoid excessive reliance to the known 

binding site data while PWM construction. 

5.4.1 Error Criteria 

We use two error criteria for PWM optimization. 
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I Proportionality constraint only, 

II Proportionality constraint and regularization term. 

The first one, the proportionality constraint is the one that we have used in section 

5.3. The definition is provided in equation (5.1) and 5.2. The second one adds a 

regularization term to the definition of Eprop· The definition becomes, 

where, 

Ereg = Eprop + L c~ 
b 

"' ("' (l:a' lwba'l · B(b, a') ( ) 
2

) 
Eprop = L: ~ l:a,(B(b, a')) 2 • B b, a)- lwbal 

(5.3) 

As Cb is an estimate of the ratio between the Wba and B(b, a), its value increases 

when the occupancy of binding site decreases. Therefore, the regularization term 

penalizes any attempt to decrease the strength of the binding site found and awards 

if the number of binding site hits increases. The rationale behind adding such a 

regularization parameter is to impose more constraint to a problem which may be 

under constrained by definition. 

5.4.2 Optimization Procedure 

We employ a simple randomized local search algorithm for the optimization. 

The algorithm is described below: 

1. Starting from the initial PWMs, perturb a randomly chosen PWM by changing 

the probability associated with a randomly chosen nucleotide in a randomly 

chosen position of the PWM. 
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2. Run Stubb on the changed PWMs to calculate the new CBSS values. 

3. Calculate the numeric value of the error criteria. Let's call it Enew and the 

value of the error function at the previous step as Eprev· 

4. If Enew > Eprev revert the changes to get back to the previous version of the . . 
PWM. 

5. If Enew < Eprev then make the changes in PWM permanent. 

6. Continue this process until a predefined number of iterations complete. 

We have run this algorithm starting from both the Sinha et al. PWMs [58] 

and a set of random PWMs. The PWMs represents the probability of finding a 

nucleotide at a given position of the regula tory motif. To perturb a PWM, we choose 

a random nucleotide at a random position and add or subtract a random number to 

the corresponding probability value. However, as the sum of the probabilities of all 

the nucleotides for a given position must always be one, we had to re-normalize the 

probability values after perturbation. When we start from the given set of PWMs, 

the amount of change at each step, i.e. the step size parameter, is made inversely 

proportional to the number of known binding site, as we do not want to make a big 

change to a PWM which is supported by a large number of known binding sites. The 

number of iterations were fixed at 10000 for all our optimization runs. 

5.4.3 PWM Optimization without regularization 

We ran the optimization problem 10 times starting from the Sinha PWMs and 

6 times starting from random PWMs. The Sinha PWMs are plotted in Figure 5-8. 

The results of the optimization runs are decribed below: 
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have been shawn with different colours. 
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Optimization starting from the Sinha PWMs 

The error function values are reported in table 5-7. The least error prediction 

was provided by run no. 8 (5.8 x 10-7
) and the largest error prediction was observed 

for run no. 7 (7.01 x 10-5 ). 

Table 5-7: Error function value after optimization of PWMs starting from the Sinha 
PWMs 

1 Run No. 1 Error Function value 1 

1 2.83 x 10-6 

2 8.9 x 10-7 

3 1.09 x 10-6 

4 4.33 x 10-6 

5 1.65 x 10-6 

6 1.20 x 10-5 

7 7.01 x 10-5 

8 5.8 x 10-7 

9 1.11 x 10-6 

10 2.38 x 10-5 

Despite the fact that the numeric value of the error function varies for different 

runs, when we plot the points on a scatter plot as described in subsection 5.3.5, the 

visual inspection of the plots reveal that for all of the plots, the points approximately 

lies on a line going through the origin. The scatter plot for Run No. 8 is provided 

in Figure 5-9 and the scatter plot for Run No. 7 is presented in Figure 5-10. The 

binding site matrices are recorded in Table 5-8 and 5-9 respectively. The binding 

site matrices are similar in terms of the magnitudes of the binding site strengths. 

The one notable exception is that for the first row of the binding site mat rix (the 

weights of Bcd as a TF), the best result PWM(Run 8) yielded almost double hits per 

target than the worst result PWM (Run 7). The average number of binding sites per 
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target per TF are also approximately equal (Run 7: 2.93, Run 8: 3.10). However, 

the original CBSS matrix from Sinha et al. detected 3.38 BS per target per TF. So 

our optimization procedure is in general making the PWMs more restricted in order 

to reduce the error function. 

Table 5-8: Cumulative binding site strength obtained from the PWM output of Run 
8(The best fit PWM) when optimizing from the given matrices 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.2567 4.2564 10.6998 2.0771 
Cad 2.1090 2.2908 4.5378 3.4258 
Hb 2.5468 5.8926 6.2051 7.6545 
Kr 0.1755 3.1692 9.2245 0.8082 
Gt 0.1609 3.5362 0.3919 2.2782 
Kni 3.9349 3.7647 0.6365 1.6509 
Tll 0.0902 0.3444 0.1091 4.6127 

Table 5-9: Cumulative binding site strength obtained from the PWM output of Run 
7(The worst fit PWM) when optimizing from the given matrices 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.2026 3.2958 8.0011 1.5421 
Cad 2.7264 3.1095 6.2348 4.6279 
Hb 2.3400 5.4155 5.6529 7.0244 
Kr 0.2244 3.4603 10.0813 0.8677 
Gt 0.1539 3.2618 0.3641 2.1004 
Kni 3.0457 2.9145 0.5227 1.2856 
Tll 0.0574 0.2367 0.0861 3.1439 

We have also plotted the mean PWMs and the variance observed in Figure 5-11. 

The figure shows that the variance is the lowest for Hb, and highest for Gt. This 

is expected as we allow for a greater change in the Gt PWM as it is basecl on only 

109 



r\ 

Ab<olut..Weil!ht.sB"..:IIngSolel'lo!Coclo•TF 

[] . 
' 

0
o H 1 15 2 25 3 3.5 

t.lo.ootot>~tn1BS 

(a) Bcd Scatter Plot (b) Cad Scatter Plot ( c) Hb Scat ter Plot 

f0.15 

Ê 

fooG 

i 

AbooluleWeig.hlvoBindlngS<IePiol Kt a& TF 

( d) Kr Scat ter Plot 

AbsoluleWeoghlvsBindlngSolePiol KnlasTF 

2 2.5 
N<.onberoiBS 

(f) Kni Scatter Plot 

[] 
' '" 

[] ' 
' 

'· . 

AbooluteWoogl11vsBirldlngSUeP~:Qie$TF 

0 

[] ' 
' 
' 

0 0.5 2 2.5 3 35 
NurnbouoiBS 

( e) Gt Scat ter Plot 

Dl ' 
' 

J • .1 ~ 1 

4.5 5 
0 .......... ' ··•····· 

0 05 1 H 25 3 35 
Nllmbero1BS 

(g) Tll Scatter Plot 

[. 'J , . 
• Œ 

~ :_~~-
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8 known binding sites than the Hb PWM, which is supported by 44 known binding 

sites. 

Optimization starting from random PWMs 

We initialized the PWMs with random values and let our optimization procedure 

run for 10000 iterations. The error function values of the optimization results are 

reported in table TODO. The least error prediction was provided by Run no. 2 (1.01 

x 10-4
) and the largest error prediction was observed for Run no. 5 (9.4 x 10-:3). The 

error function values have much greater magnitude than the values obtained from 

PWM optimization from the Sinha PWMs. It infers that when we start from random 

PWMs, the problem of finding a set of PWM with a greater level of proportionality 

becomes harder to solve. However, it is not clear how to interpret the numeric values 

of the error function, we have made scatter plots for run 2 and run 5 to see how the 

error function value visually affect the relationship between the BS strengths and 

the regulatory weights. 

Table 5-10: Error function value after optirnization of PWMs starting from random 
PWMs 

1 Run No. 1 Error Function value 1 

1 2.40 x 10-3 

2 1.01 x 10 -4 

3 1.81 x 10-3 

4 1.24 x 10-3 

5 9.43 x 10 3 

6 9.18 x 10-4 

The scatter plot for Run No. 5 (the worst fit result) is provided in Figure 

5-13 and for Run No. 2 (the best fit results) in Figure 5-12. The binding site 
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(a) Mean Bcd PWM 
after optimization and 
the variance observed 

(b) Mean Cad PWM 
after optimization and 
the variance observed 

(c) Mean Hb PWM 
after optimization and 
the variance observed 

(d) Mean Kr PWM 
after optimization and 
the variance observed 

(f) Mean Kni PWM 
after optimization and 
the variance observed 

(e) Mean Gt PWM 
after optimization and 
the variance observed 
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(g) Mean Tll PWM 
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Figure 5-11: Mean PWMs and variance obtained from the optimization runs starting 
from the Sinha PWMs. Each bar represents the expected frequency of nucleotides at 
a certain position of the binding site motif. Different nucleotides have been shown 
with different colours. The variance observed at each position is shown by the error 
bars. 
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matrices are recorded in Table 5-12 and 5-11 respectively.The visual inspection of 

the scat ter plots reveal that for all of the plots for Run 2 (the best fit result) except 

Cad as a TF , the points approximately lie on a line going through the origin. For 

Cad, we observe that the number of BS detected in the Knirps regulatory region is 

inadequate to explain the weight of Cad on Kni. However, for Run no. 5, we see that 

only Hunchback and Knirps nicely satisfy the constraint of proportionality. For the 

rest of the TFs, there are always sorne points deviating from the ideal results. The 

binding site matrices are different from the matrices obtained when we start from 

the Sinha PWMs. The average number of binding site detected per matrix entry 

is only between 1.6-1.9 which is much smaller than the optimization results when 

starting from Sinha PWMs. 

Table 5-11: Cumulative binding site strength obtained from the PWM output of 
Run 2(The best fit PWM) when optimizing from the random matrices 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.0951 1.5661 3.9479 0.7672 
Cad 1.6633 2.2145 5.2626 1.6427 
Hb 1.6344 3.8336 4.0439 5.0650 
Kr 0.0629 1.0883 3.1607 0.2867 
Gt 0.1596 3.6732 0.4454 2.3868 
Kni 2.1658 2.0870 0.3416 0.8944 
Tll 0.0664 0.2463 0.0745 3.1783 

We have plotted the mean PWM and the variance observed in Figure 5-14. 

The figure shows that the output PWMs are more or less fiat (high entropy), i.e. 

not much variation is observed in the nucleotide frequencies over the positions. As 

the number of detected binding sites are usually much smaller than the Sinha et 

al. binding sites, we realize that the algorithm is solving the problem of imposing 
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Table 5-12: Cumulative binding site strength obtained from the PWM output of 
Run 5(The worst fit PWM) when optimizing from the given matrices 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.1241 1.3295 3.1581 0.6033 
Cad 1.1522 1.5003 1.8894 0.6643 
Hb 0.6096 1.5990 1.7511 1.9119 
Kr 0.4464 1.6410 4.4088 0.6508 
Gt 0.1438 2.6014 0.8469 1.4285 
Kni 2.4347 2.4659 0.3934 1.0700 
Tll 1.3182 2.4261 2.2545 5.0922 

the correlation constraint in a rather interesting way. As the algorithm starts with 

random PWMs which are fiat PWMs with not a strong binding affinity to any partie-

ular binding sites, when it starts making small changes to the PWMs, it founds out 

that the proportionality constraint can quite easily be satisfied by just introducing 

small increase or decrease of the nucleotide frequencies. In that case, the number of 

binding site hits would not be large, but as our optimization algorithm did not have 

any constraint on the number of binding site hits, the algorithm does not bother to 

search beyond this local minima for quest of a new set of PWMs resulting in a CBSS 

matrix showing a higher level of binding of the PWMs to the regulatory region. 

5.4.4 PWM Optimization with regularization 

The results from PWM optimization without regularization shows that when 

we start from the Sinha PWMs, we can find a set of PWMs of the TFs that yield 

a binding site matrix showing a high level of proportionality with the regulatory 

weights. However, the average number of binding site hits decreased from the starting 

point. When we start from random starting points, it is harder to get a good fit 

and the best of the fits, although visually satisfying the constraints, results in a 
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(a) Mean Bcd PWM 
after optimization and 
the variance observed 

(b) Mean Cad PWM 
after optimization and 
the variance observed 

(c) Mean Hb PWM 
after optimization and 
the variance observed 

( d) Mean Kr PWM af­
ter optimization and the 
variance observed 

( f) Mean Kni PWM after 
optimization and the vari­
ance observed 

(e) Mean Gt PWM after 
optimization and the vari­
ance observed 

i 
(g) Mean TU PWM after 
optimization and the vari­
ance o bserved 

Figure 5-14: Mean PWMs obtained from the optimization runs starting from the 
random PWMs and the variance observed in various positions 
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fiat PWM with a little variation in nucleotide frequency. As a result, the average 

strength of sites detected decreases to almost half of the same for Sinha PWMs. 

This phenomena made us believe that the optimization problem itself may be under 

constrained because we are changing lots of PWM probability parameters to fit a 

error criteria which is a measure of proportionality between 2 matrices with only 

28 elements each. One obvious way to solve the problem is to add new constraints 

to the optimization criteria. We came up with an idea of adding a regularization 

parameter emphasizing the need for having stronger binding affinity of the detected 

binding sites. This may ensure that the average binding strength would increase. 

The details of this regularization parameter has already been discussed in subsection 

5.4.1. 

We have run five different optimization runs starting from the Sinha PWMs and 

five different optimization runs starting from random PWMs with the regularization 

parameter. The results of the optimization runs are described below: 

Optimization starting from the Sinha PWMs 

The Eprop values are reported in table 5-13. The least error prediction was 

provided by run no. 1 ( 4.81 x 10-5 ) and the largest error prediction was observed 

for run no. 5 (2.5 x 10-4 ). 

The scatter plots for Run No. 1 is provided in Figure 5-15 and for Run No. 5 

in Figure 5-16. The binding site matrices are recorded in table 5-14 and 5-16 respec­

tively. The binding site matrices are very much similar in terms of the magnitudes 

of the binding site strengths. The average number of binding sites per target per TF 

are also almost equal. (Run 1: 4.23, Run 5: 4.21). The original CBSS matrix from 
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Table 5-13: Eprop values after optimization with regularization of PWMs starting 
from the Sinha PWMs 

1 Run No. 1 Error Function value 1 

1 4.81 x 10 5 

2 1.36 x 10-4 

3 7.72 x 10-5 

4 1.173 x 10 4 

5 2.5 x 10-4 

Sinha et al. detected 3.38 BS per target per TF. So our optimization procedure is 

by and large increasing the binding site strengths per TF per target due to the new 

design of the error function. 

Table 5-14: Cumulative binding site strength obtained from the PWM output of Run 
1(The best fit PWM) when optimizing with regularization from the given matrices 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.3980 6.0903 15.4943 2.9753 
Cad 2.8074 2.1981 5.2175 4.1341 
Hb 3.0856 7.0083 7.4854 9.1889 
Kr 0.3091 4.8080 14.0419 1.4011 
Gt 0.3616 5.8924 0.6367 3.6839 
Kni 5.5675 5.3165 0.9513 2.3181 
Tll 0.0054 0.5601 0.2111 6.5634 

We have also plotted the mean PWM and the variance observed in Figure 5-

17. The PWMs underwent a greater degree of change from their initial estimates 

compared to the optimized PWMs without the use of a regularization parameter. 

The variance follows the same trend as in the case of simple optimization without 

regularization, i.e. Hb shows the smallest variance and Gt exhibits the greatest. 
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(a) Mean Bcd PWM 
after optimization and 
the variance o bserved 

(b) Mean Cad PWM 
after optimization and 
the variance observed 

(c) Mean Hb PWM 
after optimization and 
the variance observed 
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Figure 5-17: Mean PWMs obtained from the optimization with regulariza.tion runs 
starting from the Sinha PWMs and the variance observed at different positions 
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Table 5-15: Cumulative binding site strength obtained from the PWM output of Run 
5(The worst fit PWM) when optimizing with regularization from the given matrices 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.5148 6.0172 15.3503 2.9749 
Cad 2.8748 2.7895 5.7873 4.0185 
Hb 3.1996 7.3024 7.5818 9.3748 
Kr 0.6429 4.7261 13.9272 1.3735 
Gt 0.8439 4.9416 0.7336 3.0912 
Kni 4.8837 4.6174 0.8297 2.0148 
Tll 0.1946 0.5614 0.4410 6.2853 

Optimization starting from random PWMs 

Likewise the case of optimization without regularization, here we also initialized 

the PWMs with random values and let our optimization procedure run for 10000 

iterations. The error fun ct ion ( Eprop) values of the optimization results are reported 

in Table 5-16. The least error prediction was provided by run no. 4 (1.99 x 10-4 ) 

and the largest error prediction was observed for run no. 1 (1.06 x 10-3 ). The error 

function values, on average, have greater magnitude than the values obtained from 

PWM optimization from the Sinha PWMs.We have made scatter plots for Run 1 

and run 4 to see how the error function value visually affect the relationship between 

the BS strengths and the regulatory weights. 

Table 5-16: Error function value after optimization with regularization of PWMs 
starting from random PWMs 

1 Run No. 1 Error Function value 1 

1 1.0679 x 10-3 

2 1.635 x 10 4 

3 2.099 x 10 4 

4 1.998 x 10-4 

5 2.20 x 10 -4 
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The scat ter plot for Run No. 1 (the worst fit result) is provided in Figure 5-19 

and the same for Run No. 4 (the best fit results) in Figure 5-18. The binding site 

matrices are recorded in table 5-18 and 5-17 respectively.The visual inspection of 

the scatter plots reveal that for all of the plots for run 4 (the best fit result) except 

Cad as a TF , the points approximately lie on a line going through the origin. For 

Cad, we observe that the number of BS detected in the Knirps regulatory region is 

inadequate to exp lain the weight of Cad on Kni. However, for run no. 1 (the worst fit 

result ), we see that only Bcd and Kr nicely satisfy the constraint of proportionality. 

For the rest of the TFs, there are sorne points that show deviation from the ideal 

results. The binding site matrices are different. The average number of binding site 

detected per TF per target is only 2.89 for run 1. But for run 4, the average goes up 

to 3.40. 

Table 5-17: Cumulative binding site strength obtained from the PWM output of 
Run 2(The best fit PWM) when optimizing from the random matrices 

J Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.2651 4.8935 12.0124 2.2684 
Cad 1.8595 2.0818 3.8495 1.8584 
Hb 1.6827 3.7733 3.9388 4.8969 
Kr 0.3049 3.8089 11.5105 1.0896 
Gt 0.4087 7.1010 0.7963 4.5120 
Kni 4.3259 4.1678 0.7874 1.7970 
Tll 0.3918 0.7423 0.4790 7.8471 

We have also plotted the mean PWM and the variance observed in Figure 5-

20. The flatness of the PWMs decrease considerably when we compare them to the 

results of the corresponding case without regularization. Still, the entropy is higher 

than the results obtained when we start from the Sinha PWMs as opposed to random 
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Figure 5-19: Binding site strength (X axis) vs regulatory weights (Y axis) for PWM 
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Table 5-18: Cumulative binding site strength obtained from the PWM output of 
Run 5(The worst fit PWM) when optimizing from the given matrices 

1 Hb 1 Kr 1 Gt 1 Kni 
Bcd 0.3506 5.4789 13.7384 2.6432 
Cad 1.5987 2.3117 4.5341 1.8540 
Hb 1.0992 2.5011 3.0870 3.4943 
Kr 0.2973 3.1754 10.1516 1.0872 
Ct 0.3956 3.0358 1.2188 2.0795 
Kni 3.7412 3.7463 0.6424 1.5856 
Tll 0.1963 0.4456 0.2953 6.3023 

PWMs. The variance of the frequencies is also higher than the other experiments. 

The average number of binding site detected is also greater than the Sinha BS. But 

the number of binding site is less compared to the optimization results obtained 

when we start from the Sinha PWMs. 

5.4.5 Distance between different PWMs 

A PWM collection is the set of PWMs ( each corresponding a particular TF) 

obtained from a particular experiment setting. There are several possible way to 

calculate the distance between two PWM collections. We have used a very simple 

distance measure that takes into account shifted alignments and the reverse corn-

plement matches. Let 's assume P and Q are two different PWM collections, both 

of which include N PWMs P1...N and Ql...N , one for each TFs. Then the distance 

between P and Q is calculated using the following equation: 

(5.4) 
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Figure 5-20: Mean PWMs obtained from the optimization with regularization runs 
starting from the random PWMs and the variance observed in various positions 
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and, 

length(Pi) '\'4 )2 

D . t(P· Q·)- . L LA=l (Pijk- Qi(j-l)k 
~s ~' ~ - m~n-3<l<3 l h( ) -- engt R 

j=l ~ 

(5.5) 

where, Pijk and Qijk are the probability of observing nucleotide kat the position 

j of the regulatory motif belonging to TF i. Equation (5.5) represents the distance 

measure between two Sinha PWMs. The distance is just the sum of squared difference 

between the probability values in the two matrices at the corresponding positions. 

We consider a shift of up to three nucleotides at both si de (the l variable in Equation 

(5.5)) and take the minimum of all these distances. This is to ensure more fiexibility 

while comparing different PWMs. The distance between matrix Pi and the reverse 

complement of Qi, constructed by reversing the Qi and replacing nucleotides with 

their reverse complements (A with T, C with G and vice versa), is also measured. 

The final distance between P and Q is just the mean distance of a matrix in P with 

the corresponding matrix in Q or its reverse complement. 

This distance measure gives equal weight to all the TFs and it does not depend 

on the motif length (as we take the average by dividing the squared error by its 

length). Moreover, consideration of shifts and reverse complement augments the 

match criteria to make it more realistic measure of dissimilarity. Figure 5-21 includes 

an image plot of the mean distance between different PWM collections. 

Our analysis of the plot reveals: 

I The distance among the optimization runs without regularization starting from 

the Sinha PWMs are the smallest compared to other distances. These distances 

are less than the distances between the initial PWM and the optimized PWMs. 
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We can deduce that all the PWM collections after optimization without reg­

ularization from the Sinha PWMs are very similar and the optimization runs 

are essentially converging to a neighborhood of the search space which is not 

too far away from their starting point. 

II When we add the regularization parameter, the solution obtained are differ­

ent from the solution obtained without regularization. However, the distance 

from the initial PWMs are of the same order. Due to the introduction of the 

regularization parameter, now the optimization runs try to get as mu ch hits 

as possible. The distance results infer that the initial PWMs does not need to 

be changed too much to find such solutions. These solutions cover a slightly 

greater region in the search space. 

III The random PWM results are far away from the Sinha PWMs and the opti­

mization results from Sinha PWMs. Adding regularization parameters push 

them further away from each other as well as from the Sinha PWMs. The 

optimization results exhibit more inter-distance than the case of starting from 

good PWMs. It may imply that the problem may still be under constrained, 

i.e. there are many optimal or near optimal solutions which may be reached 

easily from most random starting points. 

IV The distance between the optimization results starting from random PWMs 

increases over the iterations. It shows that the optimization procedure, when 

starting from random PWMs, can find sorne reasonable solutions by taking 

almost any path from the random starting points. 
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5.5 Summary of our Findings 

We summarize the results of associating the binding site data with the regulatory 

weights below: 

Our attempt to optimize the weights to find a good proportionality component 

with the binding site data fails to fit the data well. The regulatory interactions 

are also not identified properly. 

n The reverse optimization problem of finding a new set of PWMs to generate 

a new cumulative binding site strength values showing a greater level of pro­

portionality with the binding site data can be solved with a reasonable level of 

accuracy. However, if no regularization parameter is used, the general tendency 

of such an optimization procedure is to eut down the binding strengths which 

is apparently making it easier to solve the problem. 

iii The introduction of the regularization parameter in the error criteria of the 

optimization procedure naturally increases the overall binding of the factors to 

the promo ter. 

rv When we start from random PWMs instead of the Sinha PWMs, the opti­

mization results in flat PWMs. Adding a regularization parameter contributes 

towards decreasing the flatness of the PWMs. Nevertheless, the PWMs still 

show greater level of entropy compared to the results of PWM optimization 

from the Sinha PWMs. 

v The analysis of the inter-distance of the optimization results reveals that the 

problem formation, even with regularization, may still be under-constrained. 
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vi Despite the under-constrained nature of the problem, the PWM optimization 

from the Sinha PWMs perform better than the random PWM optimization in 

terms of minimization of the error function. It may be an indication that the 

initial PWMs are by and large correct, and making small changes to them can 

lead us to a reasonable solution. This is a positive sign, because the known 

PWMs are derived from known binding sites of a factor and it is highly unlikely 

that the true PWM would be completely different from the known one. 
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Mean Distance between the PWMs obtained in different optimization runs 
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Figure 5-21: The Distance between different PWM Collections. 1-10 are the ten 
optimization without regularization results starting from the Sinha PWMs, 11 is the 
Sinha PWMs, 12-17 are six optimization without regularization results starting from 
random PWMs, 18-22 are five optimization with regularization results starting from 
the Sinha PWMs and 23-27 are five optimization with regularization results starting 
from random PWMs 
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CHAPTER 6 
Discussion and Conclusions 

In this thesis, we focus our studies on two related problems. The first problem is 

to model the gene regula tory network of the Drosophila melanogaster to infer the reg-

ulatory relationship governing the expression profile of the gap genes. This problem is 

widely addressed in the literature. We had started with a very simple static model in 

Chapter 3 which, despite its simplicity, had been able to correctly predict the modes 

(activation/ repression) of most of the important interactions. Then, in Chapter 4, 

we extended our model to include the time series expression profile which results in 

the dynamical models. Instead of the usual approach of modelling the dynamical 

data using differentiai equation model, we devised a discrete-time gene circuit model 

that was successful in reconstructing the expression profile with a greater degree of 

accuracy and was also able to capture the prominent interactions in the network. 

We tested two slightly different discrete time models, namely, transition-based mod-

els and trajectory-based models. Transition-based models,which could explain the 

formation of many important features in the expression of the genes, are the direct 

extension of the static models . The trajectory-based models are more biologically 

accurate models. These models also performed the best on the given data in terms 

of the reduction of error. All the models had difficulties to predict the expression 

profiles at the earlier time steps, but this problem is a common feature for all the 

gene circuit models in literature. In fact, a recent study [47] has shown that the early 
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activation of the gap genes cannot be fully determined by the known morphogens 

like Bcd and Hb alone. It proposes that sorne additional regulating factors affect the 

early Drosophila expression. 

The second problem that we address here is the fundamental problem of relating 

the expression profile with the inherent cause of gene regulation, namely, the binding 

of the transcription factors to their respective binding sites which are located in the 

target gene regulatory region. The cumulative binding site composition (CBSS) 

can be determined if the position weight matrices (PWM) for all the transcription 

factors are known correctly. The regulatory weights can be determined from the 

expression data using various techniques and modelling. Unfortunately neither the 

binding site data nor the regulatory weights data is fully reliable, because there is no 

universally agreed upon model to describe and determine the true values for these 

two factors. Therefore, in Chapter 5, we had designed two optimization problems 

each of which optimizes one dependent factor ( either regula tory weights or PWM/BS 

data) in accordance with an assumed relationship of proportionality with the other 

factor which is held fixed. We define the notion of proportionality which extends the 

idea of standard definition of correlation to impose a strict proportionality constraint 

between these two factors. However, when we try to optimize the weights by keeping 

the binding site data fixed, we get a regulatory weight matrix incapable of explaining 

the true causes of gene expression profile despite its success in reproducing all the 

principal domains of the expression profile. On the other hand, when we optimize the 

PWM data to find a binding site composition retaining a high level of proportionality, 

the optimization problem can be solved up to a reasonable level of accuracy. However, 
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further analysis on the result demonstrated that this optimization problem may 

be under-constrained and so, the optimized PWMs may be subject to overfitting 

problem. Using a regularization parameter imposed more restrictions on the problem 

definition, yet analysis revealed that although it made sorne progress towards solving 

the problem, it alone was not sufficient to get rid of the under-constrained nature of 

the problem. 

In our opinion, the future works on this subject should be directed towards 

combatting the under-constrained nature of the PWM optimization problem. There 

are several possible paths of doing so. The most obvious one is to change the way 

we calculated the binding site strengths from the Sinha PWMs and promoters. The 

Stubb algorithm used by Sinha et al. [59] considers the competitive binding that 

exists between different transcription factors, but it does not model the quenching 

effect [21, 20] , silencing effect [4], cooperativity and the thermodynamic kinetics 

of a ligand bound to a binding site. A more realistic model would take these fac­

tors into consideration while computing the CBSS values from the given sequence 

information. A recent study [31] proposes a data driven approach which consid­

ers these factors to predict the expression a stripe of even skipped (eve) gene from 

the sequence and the quantitative gene expression data. It also shows that a CRM 

driving a specifie pattern of expression is not necessarily a continuous sequence of 

nucleotides containing a compact arrangement of clustered binding site, it can be 

a diffuse CRM whose binding sites are distributed over a large DNA segment. To 

extend this model to cover all the gap genes simultaneously for all the time points 

would be an interesting task. Reconstructing the gap gene expression data directly 
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from the gene sequence information and initial expression profile of the morphogens 

using a single optimization procedure is certainly a more challenging problem. We 

believe a probabilistic model that includes details of the regulatory mechanism at a 

physiological level may be more appropriate for incorporating into our works. 

Another potential direction the future researcher may explore is imposing a more 

realistic assumption on the precise relationship between the binding site strengths 

and the regulatory weights. In this work, we have proposed a very simple linear 

model to represent this relationship. A soft threshold based model may be more 

biologically authentic. The missing morphogens determining the early time step 

expression profile, if identified, may improve the quality of prediction further and 

may result in a better regulatory weight matrix. 

The problem of optimizing the weights with the binding site data set fixed was 

based on the assumption of fixed TF potency. The other natural direction would be to 

assume that each target has a fixed sensitivity parameter. The most realistic model 

should consider both the TF potency and target sensitivity assumption. Further 

research can be conducted on this problem as well. 

Finally, we have used a very simple randomized local search technique for the 

PWM optimization problem. While it looks sufficient for our formulation of the 

problem, it might not be good enough for a newly designed problem imposing more 

constraints on the optimization criteria. Therefore, researchers must also devise a 

better optimization technique for solving these problems. While it is not possible 

to cross-validate the regulatory weight regression problem due to the lad: of i.i.d 
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samples, it is possible to cross-validate the PWM optimization procedure by con­

structing PWMs based on a subset of the known binding sites and then evaluating 

the capability of the optimized PWM to predict the left out binding sites. Cross 

validating the results can give the researcher a fair idea of the performance of the 

optimization runs. 
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