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Abstract 

Recent studies have demonstrated that multivariate machine learning algorithms can 

decode the orientation of grating stimuli from coarsely sampled (3×3×3 mm3) functional magnetic 

resonance imaging (fMRI) data.  Unraveling the mechanisms underlying decoding of information 

conveyed in the fine scale cortical organization of orientation preference will enable informed 

search for other fine scale organizations in relatively unknown areas such as the frontal cortex. We 

therefore aimed to analyze the mechanisms underlying decoding of information conveyed by 

orientation columns and maps. To this end, we have analyzed contributions from four out of the 

six hypothesized mechanisms as candidate contributors to the decoding of information encoded in 

fine-scale orientation maps: (I) random local irregularities in the functional organization, (II) very 

low spatial frequencies reflecting large-scale components of the organization, (III) orientation 

selective responses of macroscopic blood vessels, and (IV) complex spatiotemporal sampling of 

neuronal activity by fMRI voxels, that transforms high spatial frequency cortical responses to 

responses of macroscopic vessels.  

To evaluate mechanisms underlying decoding of oriented grating, we utilized an animal 

model, allowing for high-resolution contrast-agent based cerebral blood volume (CBV)-fMRI and 

invasive optical imaging. We first determined whether local irregularities and low-frequency 

components in cat area 17 contribute to decoding, by analyzing CBV-fMRI data that do not contain 

contributions from macroscopic blood vessels nor from complex spatio-temporal sampling. We 

then evaluated contributions from local irregularities and low spatial-frequency responses from 

gray matter (GM) and macroscopic vessels. To this end, we directly visualized responses in cat 

area 18 using wide-field optical imaging of intrinsic signals (OI-IS) and computing relative 

changes in deoxy- (HbR) and total- hemoglobin (HbT), that are analogous to blood-oxygen-level-

dependent (BOLD) and CBV-fMRI measurements, respectively. In addition, we tested whether 

decoding based on the spatiotemporal evolution of the hemodynamic response results in higher 

success rates than those obtained from the spatial response averaged over time. To make our 

findings from the cat visual cortex applicable to fMRI in human subjects, we defined voxels 

homologous in size to those used in fMRI-based decoding in humans, by comparing the main 

frequency of the orientation map in cat to that in human V1. Using the homologous voxel, low-

frequency organizations in cat area 17 contribute to decoding. In contrast, irregularities in the fine-
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scale organization do not contribute to the decoding of oriented gratings. Responses to oriented 

gratings in cat area 18 showed that the lower-end of the irregularities spread in the frequency 

domain can be captured by the homologous voxel; no clear contributions from low-frequency 

organizations were observed. Using the homologous voxel, macroscopic vessel responses showed 

decoding accuracies higher than chance level but lower than those obtained from GM regions, and 

redundant when combined with contributions from GM. Lastly, spatiotemporal time-series do not 

improve decoding accuracies compared to those obtained from the spatial response averaged over 

time. We therefore conclude that: 1) whether irregularities contribute to decoding of a fine scale 

organization depends on the features of the specific organization; 2) the contributions of 

macroscopic vessels and complex spatiotemporal filtering to decoding of information conveyed in 

fine scale organizations are insignificant.   

Furthermore, detailed knowledge on the spatial specificity of hemodynamic responses in 

GM and vessels can guide data acquisition, data analysis and interpretation of high-resolution 

fMRI and fMRI-based decoding studies. We therefore used OI-IS to quantify the functional 

selectivity and spatial specificity of HbR and HbT responses from blood vessels as a function of 

their diameters. In addition, we used concurrent OI-IS and extracellular electrophysiology (EP) to 

quantified the hemodynamic point spread function (PSF) relative to the underlying 

neurophysiological activities. HbR responses in veins with diameter smaller than or equal to 0.12 

mm showed orientation selectivity to noise ratio and decoding accuracy comparable to those 

obtained from GM regions. HbT responses in veins and arteries of all tested diameters showed 

decreased orientation selectivity measures relative to those obtained from GM regions. Lastly, the 

spatial spread of HbT responses is comparable to those shown by low-gamma and high-gamma 

neurophysiological responses. Thus, CBV responses reflect fine scale organization at high fidelity. 

Our findings predict that the PSF of fMRI response in humans is expected to be smaller than what 

has been reported thus far, consistent with the feasibility of fMRI at the resolution scale of cortical 

columns.  
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Résumé 

Des études récentes ont démontré que les algorithmes multivariés de classification 

automatique peuvent décoder l'orientation des mires de traits en utilisant des données d’imagerie 

par résonance magnétique fonctionnelles (IRMf) échantillonnées grossièrement (3×3×3 mm3). 

Démêler les mécanismes sous-jacents de décodage de l'information contenue dans l'organisation 

cérébrale fine des orientations préférées permettra de la recherche éclairé sur d'autres organisations 

fines dans des zones relativement inconnues telles que le cortex frontal. Nous avons donc analysé 

les mécanismes sous-jacents de décodage de l'information contenue dans les colonnes et les cartes 

d'orientation. À cette fin, nous avons analysé quatre des six mécanismes proposés dans la littérature 

scientifique pouvant contribuer au décodage de l’informations contenues dans les cartes 

d'orientation à fine échelle: (i) les irrégularités locales aléatoires dans l'organisation fonctionnelle, 

(II) les fréquences spatiales très basses reflétant les composantes à grande échelle de l'organisation, 

(III) l'orientation des réponses sélectives des vaisseaux sanguins macroscopiques, et (iv) 

l'échantillonnage spatio-temporelle complexe de l'activité neuronale par les voxels IRMf, qui 

transforme les réponses corticales haute fréquence spatiale à des réponses de vaisseaux 

macroscopiques. 

Pour évaluer les mécanismes de décodage de réseaux orientés, nous avons utilisé un 

modèle animal, permettant l’IRMf haute résolution du volume sanguin cérébral (VSC) par agent 

de contraste et d’imagerie optique invasive. Nous avons d'abord déterminé si des irrégularités 

locales et les composantes de fréquence très basse dans l’aire 17 de chat contribuent à décoder, en 

analysant les données IRMf-VSC qui ne contiennent pas de contribution des vaisseaux sanguins 

macroscopiques ni de l'échantillonnage spatio-temporelle complexe. Nous avons ensuite évalué 

les contributions des réponses d’irrégularités locales et de la fréquence spatiale basse dans la 

matière grise (GM) et les vaisseaux macroscopiques. À cette fin, nous avons visualisé directement 

les réponses dans l’aire 18 du chat en utilisant l’imagerie optique des signaux intrinsèques (IO-SI) 

et calculé les changements relatifs de l'hémoglobine-désoxygénée (HbR) et -totale (HBT), qui sont 

analogues aux mesures IRMf dépendant du niveau d'oxygène sanguin (BOLD) et VSC. En outre, 

nous avons testé si le décodage basé sur l'évolution spatio-temporelle de la réponse 

hémodynamique résulte avec un taux de réussite plus élevés que ceux obtenus à partir de la réponse 

spatiale moyennée dans le temps. Afin de rendre nos découvertes du cortex visuel du chat 
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applicable à IRMf chez les humains, nous avons défini notre mesure des voxels homologues à 

ceux utilisés dans le décodage IRMf chez l’humain, en comparant la fréquence principale de la 

carte d'orientation du chat à celle de V1 chez l’humain. Utilisant le voxel homologue, les 

organisations de fréquence basse dans l’aire 17 du chat contribuent au décodage. Par contre, les 

irrégularités dans l'organisation fine ne contribuent pas au décodage des mires de traits. Les 

réponses aux mires de traits dans l’aire 18 du chat ont montré que le bas d’échelle des irrégularités 

réparties dans le domaine fréquentiel peut être capturé par le voxel homologue; aucune 

contribution claire de la part des organisations de fréquence basse n’a été observée. Utilisant le 

voxel homologue, les réponses des vaisseaux macroscopiques ont montré un décodage plus précis 

que la chance, mais inférieur à ceux obtenus à partir des régions de GM, et redondantes lorsqu'elles 

sont combinées avec la contribution de GM. Enfin, l’évolution spatio-temporelle des séries 

temporelles n’améliore pas les précisions de décodage par rapport à celles obtenues à partir de la 

réponse spatiale moyennée dans le temps. Nous concluons donc que: 1) si les irrégularités 

contribuent au décodage d'une organisation fine ou ne dépend pas sur des caractéristiques de 

l'organisation spécifique; 2) les contributions des vaisseaux sanguins macroscopiques et 

l’échantillonnage spatio-temporelle complexe sont insignifiants pour le décodage de l'information 

contenus dans les organisations fines. 

En supplément, une connaissance approfondie de la spécificité spatiale des réponses 

hémodynamiques dans la GM et les vaisseaux peut guider l'acquisition des données, l'analyse des 

données et l'interprétation de l’IRMf à haute-résolution et des études de décodage basées sur 

l’IRMf. Nous avons donc utilisé IO-SI pour quantifier la sélectivité fonctionnelle et la spécificité 

spatiale des réponses d’HbR et d’HbT à partir de vaisseaux sanguins, en fonction de leur diamètre. 

De plus, nous avons simultanément utilisé IO-SI et l'électrophysiologie (EP) extracellulaire pour 

quantifier la fonction d’étalement du point (PSF) hémodynamique par rapport aux activités 

neurophysiologiques sous-jacents. Les réponses de HbR dans les veines d'un diamètre inférieur ou 

égal à 0,12 mm ont montré de la sélectivité d’orientation par rapport au bruit et la précision de 

décodage qui sont comparables à ceux obtenus à partir de régions de GM. Les réponses d’HbT de 

tous les diamètres testés en veines et artères ont montré une diminution des mesures de sélectivité 

d'orientation par rapport à celles obtenues à partir des régions de GM. Enfin, la propagation spatiale 

des réponses HbT est comparable à celle présenté par les réponses neurophysiologiques de bas-

gamma et de haut-gamma. Ainsi, les réponses VSC reflètent l’organisation fine avec une haute 
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précision. Nos résultats prédisent que la PSF de réponse IRMf chez les humains devrait être 

inférieure à ce qui a été rapporté à ce jour, en accord avec la faisabilité de l'IRMf à l'échelle de la 

résolution de colonnes corticales. 
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Chapter 1. Overview of the thesis 

The topics covered in this thesis consist of several aspects of functional and spatial 

specificity of hemodynamic signals commonly used for non-invasive brain imaging of human 

subjects and patients. Chapter 1 (this Chapter) presents the overview of my thesis, including a brief 

introduction and the rationale of the research. Chapter 2 includes a comprehensive review of the 

relevant literature. The first part of this Chapter reviews the basics, history, and advances of 

functional magnetic resonance imaging (fMRI). The second and third parts of Chapter 2 present a 

specific gap in knowledge that motivates three specific aims that follow. My findings obtained 

while addressing the first aim are presented in two manuscripts (Chapters 3 and 4), whereas my 

findings with regard to the second and third aims are presented by one manuscript per aim 

(Chapters 5 and 6). Chapter 7 is a discussion that connects and bridges findings from the four 

separate manuscripts.  
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1.1 Problem statement 

FMRI allows non-invasive dynamic measurements of brain activity. This method has been 

commonly used for linking subjective experience with the corresponding physical neural response, 

e.g. the response of the brain to visual stimuli. Also, fMRI is an indirect measure of neuronal 

activity, based on changes in blood oxygenation, cerebral blood flow and cerebral blood volume. 

Hence, it is expected that fMRI data is only a coarse representation of the underlying neuronal 

activities. However, recent studies have demonstrated that multivariate machine learning 

algorithms can decode visual stimuli from coarse fMRI data (Haxby et al., 2001; Haynes and Rees, 

2005; Kamitani and Tong, 2005). Using gradient-echo (GE) blood-oxygenation-level-dependent 

(BOLD) fMRI at 3T, these algorithms decoded information thought to be mediated by cortical 

columns. This result is surprising given the large size of the voxels (3×3×3 mm3) relative to the 

mean cycle length of columns (2 mm or less for ocular dominance columns (ODC) and orientation 

columns along the cortical manifold in humans; Fig. 1-1). This result is even more surprising 

considering the relatively wide PSF of GE BOLD-fMRI signals at 3T (~3.5 mm; Engel et al., 1997 

Parkes et al., 2005) and even that demonstrated at 7T (~2.3 mm; Shmuel et al., 2007). The 

mechanisms with which low-resolution imaging decodes information represented at a fine scale 

relative to the voxel size are unclear. Decoding analysis of signals potentially conveyed  at the fine 

scale of cortical columns drew substantial interest of the neuroimaging community (Boynton, 2005; 

Kriegeskorte et al., 2010; Mannion et al., 2010; Op de Beeck, 2010; Shmuel et al., 2010; Swisher 

et al., 2010; Chaimow et al., 2011; Freeman et al., 2011; Carlson, 2014). In sharp contrast to this 

growing interest, to date there has been only one study (Swisher et al., 2010) devoted to 

understanding the mechanisms underlying fMRI-based decoding of information thought to be 

conveyed by cortical columns in an animal model, in which the functional organization of the 

columns is well known.  

 

Figure 1-1. Pattern of preferred orientation sampled by fMRI. The 

color bars represent preference of neurons to specific orientation of the 

gratings. The black squares represent the size of coarse fMRI voxels, 

with the edge being longer than 1 cycle of orientation columns. Note 

that this image demonstrates the problem, but the relative scales are not 

precise (Image modified from Boynton, 2005).  
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1.2 Main hypothesis and specific aims 

The central theme of my thesis is the spatial specificity of hemodynamic responses in 

cortex, with emphasis on understanding of how hemodynamic responses underlie fMRI-based 

decoding of information conveyed in fine scale organizations. I will address this theme in three 

specific aims. 

1.2.1 Aim 1. To unravel the mechanisms underlying hemodynamic-response based 

decoding of oriented grating stimuli using coarse voxel sampling 

The majority of neurons in the primary visual area show orientation selectivity: they 

respond at a higher amplitude to gratings of a specific orientation than to others (Hubel and Wiesel, 

1959). These neurons are clustered together according to their preferred orientation, thus creating 

cortical columns of neurons with similar preference.  

Low-resolution functional imaging can decode information thought to be represented at a 

fine scale relative to the voxel size (Haynes and Rees, 2005; Kamitani and Tong, 2005). The 

mechanisms with which low-resolution imaging decodes information represented at a fine scale 

relative to the voxel size is not clear. Six alternative mechanisms have been hypothesized as 

candidates to contribute to decoding of information encoded in fine scale structures. The first 

suggested hypothesis posited that aliasing of high spatial-frequency components of the columnar 

organization by the large voxels gives rise to decoding rate higher than chance level (Boynton, 

2005). This hypothesized “aliasing” mechanism, also termed the “hyperacuity” mechanism 

involves components of the columnar organization with frequencies higher than the Nyquist 

frequency, which were thought to contribute to the sampled voxels. This hypothetical mechanism 

has been ruled out (Chaimow et al., 2011), based on the fact that fMRI samples data in the 

frequency space, with the highest frequency in the k-space being the highest frequency available 

to the sampling process. 

 Therefore, there are five remaining hypothetical mechanisms. (I) It was hypothesized that 

random, local variations and irregularities in the functional organization contribute to decoding 

(Kamitani and Tong, 2005; Haynes and Rees, 2006; Kriegeskorte and Bandettini, 2007; Swisher 

et al., 2010). The argument is that due to irregularities in columnar patterns, each voxel overlaps 

columns with different preferences unequally, resulting in biases towards specific preferences. (II) 

Very low spatial frequencies reflecting large-scale components of the organization with no 
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contributions from cortical columns were proposed to play a role (Op de Beeck, 2010; Freeman et 

al., 2011; Freeman et al., 2013; Wang et al., 2014).These include the oblique effect (Furmanski 

and Engel, 2000; Sun et al., 2013) and the radial bias effect (Sasaki et al., 2006; Clifford et al., 

2009; Mannion et al., 2010; Freeman et al., 2011; Sun et al., 2013) associated with the 

representation of orientation. For decoding the stimulated eye, a relevant large scale organization 

is formed by the higher amplitude response to stimulation of the contra-lateral eye (Tychsen and 

Burkhalter, 1997). (III) An alternative mechanism to the large-scale organization (item II above) 

has been recently proposed. Observations made by Carlson (2014) and Wardle et al. (2015) suggest 

that the edges of oriented grating stimuli elicit responses that are orientation specific. Similarly, 

Wang et al. (2014) identified a direction-selective response bias in human visual cortex that 

predicted motion-decoding accuracy; and depended on the shape of the stimulus aperture rather 

than the absolute direction of motion. The response amplitudes gradually decreased with distance 

from the stimulus aperture edge corresponding to motion origin in V1, V2, V3, thus explaining the 

higher motion-decoding accuracies reported previously in early visual cortex. Alternatively (IV), 

draining regions that cover cortical maps and columns non-homogeneously may cause selective 

responses of their corresponding draining veins (Kamitani and Tong, 2005; Gardner et al., 2006; 

Kamitani and Tong, 2006; Kriegeskorte and Bandettini, 2007; Gardner, 2010; Thompson et al., 

2011). In this scenario, selective signals from macroscopic blood vessels can be captured by large 

voxels; therefore, they can contribute to the decoding of stimuli encoded at the resolution of 

cortical columns. Evidence in support of this phenomenon was provided by (Gardner et al., 2006; 

Shmuel et al., 2010; Thompson et al., 2011). Lastly (V), Kriegeskorte et al. (2010) introduced a 

model in which fMRI voxels sample neuronal activity as complex spatiotemporal filters. These 

authors described how such a model can account for representation of high-frequency components 

of the cortical maps by the sampled voxels and for decoding of information conveyed by fine 

structures. 

We hypothesize that the successful decoding of information conveyed on the 

orientation of visual stimuli relies on a combination of the mechanisms (I)-(V) mentioned 

above. We further hypothesize that the contributions of each of these mechanisms depend on 

the features of the specific fine-scale organization.   

Although five hypothetical mechanisms are still considered, the contribution of each of 

these mechanisms and the possible redundancy of information across them have yet to be 
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determined. My first aim is to decipher the mechanisms underlying fMRI-based decoding of 

information thought to be conveyed by cortical columns. Specifically, I will determine which 

components of the hemodynamic response that carry information on the orientation of grating 

stimuli are preserved when sampled by coarse voxels. I will specifically evaluate contributions 

from irregularities in the fine scale organization of orientation preference, contributions of low-

frequency components of the organization, contributions from macroscopic blood vessels, and 

whether the evolution of the spatiotemporal hemodynamic responses is more informative of the 

presented orientation than the static pattern of the response averaged over time.   

1.2.2 Aim 2. To determine the functional and spatial specificity of deoxy- and total-

hemoglobin response in blood vessels as a function of vessel diameter 

Since one of the proposed mechanisms for successful decoding is defined as contributions 

from macroscopic blood vessels, it is important to further quantify the selectivity of blood vessels 

in response to the presented stimulus. The spatial specificity of draining veins relative to the site 

of increased neuronal activity is expected to vary as a function of their diameter. It is widely 

accepted that cortical capillaries provide the highest specificity of hemodynamic signals relative 

to the site of neuronal activation. However, capillaries show the lowest functional contrast to noise 

ratio (CNR) of all currently used fMRI signals. It is further expected that macroscopic veins show 

high CNR in fMRI, but since they drain blood, including deoxy-Hemoglobin, from relatively large 

regions, their response is not expected to carry information on fine scale organizations. Therefore, 

functional signals from blood vessels show a trade-off between spatial specificity and CNR. In 

order to image relatively fine functional organizations, one can optimize the spatial specificity and 

CNR by maximizing the relative contribution of vessels of certain diameters and suppressing 

contributions of veins with other diameters. This can be indirectly done during data acquisition, 

by determining the level of asymmetry in asymmetric spin-echo sequences (Boxerman et al., 1995; 

Brewer et al., 2009). An alternative, indirect means of selecting contributions from a certain range 

of vessels is by tuning the duration of the readout window around the top of the echo in spin-echo 

sequences (Goense and Logothetis, 2006). This can also be done during the data processing stage, 

by combining techniques for determining mean vessel diameter (for a review, see Tropres et al., 

2015) with fMRI. In other words, one can increase the CNR of the sampled voxel with no 

significant loss of spatial specificity by allowing contributions from capillaries and veins of certain 

sizes. The spatial specificity of medium size sub-voxel level blood vessels remains unknown. In 
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my second aim I will determine the functional and spatial specificity of deoxy- and total 

hemoglobin responses from vessels as a function of their diameters relative to that of aggregates 

of capillaries in gray matter. This will not only further our understanding of the potential 

contributions of vessels to decoding information conveyed by fine scale organizations, it will also 

guide the use of fMRI for high-resolution applications with balanced spatial specificity and 

contrast to noise. I will determine the spatial specificity of hemodynamic signals obtained from 

pial blood vessels with different diameters compared to the spatial specificity shown by the 

aggregates of cortical capillaries.  

1.2.3 Aim 3. To analyze the spatial specificity of the hemodynamic response from 

aggregates of capillaries within the gray matter relative to the site of increased 

neurophysiological responses.  

Another aspect that challenges successful decoding of orientation stimuli is the spatial 

spread of the hemodynamic response. This spread has been modeled as a hemodynamic point 

spread function (PSF) which is thought to represent the upper bound on how spatially precise fMRI 

response is to a point-like or a line-like increase in neuronal activity. There have been several 

studies that investigated the PSF using Optical Imaging of Intrinsic Signals (OI-IS) (Sheth et al., 

2004; Fukuda et al., 2006; Sirotin et al., 2009) or fMRI response (Engel et al., 1997; Olman et al., 

2003; Kim et al., 2004; Parkes et al., 2005; Shmuel et al., 2007). The estimated hemodynamic 

PSFs were in the order of 2-3.5mm. However, as has been shown by Chaimow et al. (2011), a PSF 

with full width at half max (FWHM) of 2 mm is inconsistent with successful decoding of 

orientation stimuli  and with imaging of ODCs, although reliable decoding (Kamitani and Tong, 

2005) and imaging of ODCs (Cheng et al., 2001a; Yacoub et al., 2007) have been achieved. 

Of note, the studies mentioned above that have quantified the PSF did not consider the 

neurophysiological spread. Thus the reported hemodynamic PSFs include the component of the 

spatial spread of neural activity, including the size of receptive fields, the spatial extent of the 

scatter of receptive-fields, integration by the dendritic fields and long range horizontal connection. 

My third aim is to determine the hemodynamic point spread function relative to that of the neuronal 

response. The findings from my third aim may reconcile the contradictory large PSF and the 

measurement of columnar level activities in the visual cortex. Importantly, they can be considered 

in modeling and planning of high-resolution fMRI and fMRI-based decoding of fine-scale 

organizations 
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1.3 General experimental procedure 

In order to realize the thesis aims, we based our research on experiments in early visual 

cortex of anesthetized cats. We focused on A18 of the cat visual cortex since it has well organized 

orientation map and columns. In addition, it is located at the dorsal surface of cortex, thus it is 

accessible for high-resolution, wide field optical imaging.  

In addition to probing A18, we have imaged responses of cat A17 in aim 1. We obtained 

data from both A17 and A18 in order to test whether the relative contributions of different 

mechanisms of fMRI based decoding depend on the features of the probed functional organization. 

1.4 Significance of my scientific contributions 

Unraveling the mechanism of fMRI-based decoding of information conveyed by a fine 

scale organization using coarse voxels will allow improved planning, optimization and 

interpretation of fMRI studies that employ decoding of fine scale organizations. Furthermore, it 

will facilitate the use of decoding for discovering currently unknown fine scale organizations in 

relatively unknown areas of the brain, such as the parietal and frontal cortices. Detailed knowledge 

of blood vessels’ spatial specificity as a function of vessel diameter will facilitate the optimization 

of fMRI data acquisition parameters and analysis for balanced spatial specificity and CNR. 

Determining the point spread function of hemodynamic responses sets refined expectations of the 

limits of high-resolution fMRI. My work will therefore provide guidance for future studies that 

will employ decoding paradigms for discovering unknown fine-scale representations in higher 

areas of the brain and/or high-resolution fMRI. 
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Chapter 2. Literature Review 

Functional MRI (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992) is the 

most commonly used non-invasive functional imaging method for probing normal brain function. 

With the emergence of resting-state functional connectivity (Biswal et al., 1995; Fox and Raichle, 

2007), functional MRI (fMRI) is expected to find its way to the clinic. Its popularity stems from 

advantages it proposes relative to other functional brain imaging methods: it does not involve 

radiation, and it has the best spatial resolution among all non-invasive functional imaging methods. 

In this chapter we will describe the emergence of Blood-Oxygen-Level-Dependent (BOLD) fMRI 

and analysis techniques applied in conjunction with fMRI. 
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2.1 Review of fMRI 

2.1.1 History of development of fMRI 

Understanding how the brain functions has been of great interest since the beginning of the 

19th century under the form of a pseudoscience termed phrenology, developed by Franz Joseph 

Gall (for review see Clarke and Jacyna, 1988). Gall’s studies were based on the concept that the 

brain is the organ of the mind and localized brain areas have specific functions. Despite the fact 

that it is now regarded as obsolete, this discipline has been greatly influential in psychiatry and 

modern neuroscience.  

Much effort was put into probing the function of the brain. In the late 19th century, it was 

already known (Roy and Sherrington, 1890) that changes in cerebral blood flow are closely linked 

to changes in the underlying neuronal activities. The production of energy for neurons is supported 

by glucose and by oxygen molecules. Oxygen is transported via the hemoglobin residing in the 

red blood cells (Sokoloff, 1981). When a neuron is active, i.e. once it releases neurotransmitters, 

it uses more energy than during its basal state. Local blood flow increases, by what currently is 

expected to be a feedforward mechanism involving neurotransmitters and neuromodulators which 

dilate the arterioles and arteries concurrently with increases in neuronal activity (Attwell et al., 

2010; Cauli and Hamel, 2010; Devor et al., 2012). This response, the hemodynamic response, also 

termed hyperemia, overcompensates the tissue with excess of oxygen (Figure 2-1). The fractional 

increase in CBF is approximately 2-3 fold relative to the increase in oxygen consumption (Fox and 

Raichle, 1986; Hoge et al., 1999; Buxton, 2009). 

 

 

 

Figure 2-1. Overcompensation of tissue 

with excess oxygen. (Image from FMRIB 

Centre, Department of Clinical Neurology, 

University of Oxford). Upon activation, more 

oxygen is consumed by the neurons. 

However, the total amount of oxygen within 

the same region increases. 
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However, only in the late 20th century did fMRI become possible. Earlier, MRI made a 

considerable impact by enabling non-invasive visualization of the structure of the brain.  In 1971, 

it was discovered that the hydrogen signal in cancerous tissue was different from that of healthy 

tissue using a nuclear magnetic resonance (NMR) machine (Damadian, 1971). In 1977, the first 

MR image of the whole body was produced (Damadian, 1977). In 1990, it was discovered that the 

difference in magnetic properties of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) can be 

used to localize the activated regions of the brain (Ogawa et al., 1990). Finally, in 1992, BOLD 

functional MRI was introduced (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992).  

2.1.2 Physics of fMRI 

Our body is composed of protons, electrically charged particles in the nuclei of hydrogen 

atoms that are abundant in water. In the presence of a magnetic field, hydrogen atoms align both 

with and against the field. However, at any given instant, aligned molecules slightly outnumber 

anti-aligned molecules. The difference in the numbers gives the net magnetization. An MRI 

scanner releases a short burst of radio waves which knocks the protons out of alignment. 

Application of a radio pulse can tip this net polarization vector sideways (90° pulse) or reverse it 

(180° pulse). After the radio burst has ended, the protons fall back gradually in line while three 

things happen simultaneously: 1) the absorbed radio-wave energy is retransmitted as a decaying 

sinusoidal signal termed FID; 2) the excited spins begin to return to the original orientation; this 

process is termed ‘T1 relaxation’, and 3) initially in phase, the excited protons begin to de-phase, 

a process termed ‘T2 relaxation’. In an ideal experiment, the signal decays approximately 

exponentially with a time constant T2. However in practical MRI, there are small differences in 

the static magnetic field at different spatial locations ("inhomogeneities"). This creates destructive 

interference, which shortens the signal decay. The time constant for the observed decay of the 

signal in the presence of inhomogeneities is called T2*; it is always shorter than T2. The presence 

of deoxy-Hemoglobin, a paramagnetic molecule, causes more distortions and shortens the T2* of 

the deoxygenated blood in the veins. BOLD-fMRI takes advantage of the difference in magnetic 

properties between oxy-Hemoglobin (longer T2*) and deoxy-Hemoglobin (shorter T2*) to capture 

the activated brain regions where local deoxy-Hemoglobin is washed out by the overcompensation 

of the cerebral arterial blood flow response during hyperemia. 
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2.1.3 Basic analysis of fMRI 

Several techniques for analyzing fMRI data voxel-by-voxel have been proposed. The 

simplest method tests for every voxel the null hypothesis that there was no change in blood-

oxygenation between the baseline state and following the presentation of a stimulus or a task. In 

case a t-test is used, high t-scores indicate large differences and possibly small standard deviations; 

and low t-scores indicate small differences with standard deviations that may be too large to reject 

the null hypothesis (Kwong et al., 1992). 

Correlation techniques improve the previously mentioned t-test method by taking into 

account the temporal evolution of BOLD responses from the stimulus paradigm (Bandettini et al., 

1993). One can expect smoother and delayed rising (and falling) of the hemodynamic responses 

subjected to a square-wave like on/off stimulation. The correlation coefficient is calculated 

between the response time-course and a model constituting the stimulus time-course convolved 

with the hypothetical average BOLD response. The justification for such analysis stems from the 

fact that the BOLD response to relatively long stimuli, such as those used in block paradigms, 

reflects a linear transformation of the stimulus duration (Boynton et al., 1996). 

The extension of the correlation method is the general linear model. It aims to explain the 

BOLD time course as a linear combination of different variables and an error term. It provides a 

general framework for modelling of the data, and can eliminate effects that may confound the 

analysis, such as drift or respiration, provided that they can be modelled (Friston et al., 1994; 

Friston et al., 1995). 

Finally, ANOVA (i.e., the analysis of variance) techniques do not assume the shape of 

activation (Clare et al., 1999). The analysis of variance measures the change in variance upon 

averaging. For example, take a BOLD time course where the same stimulus was presented 100 

times. In the region of purely random intensity variations, the ratio of variance of averaged time 

course to raw time course is 1/100. Activated regions, however, will have a significantly higher 

ratio than this, since the variance of both raw and averaged data is dominated by the stimulus 

triggered BOLD time course. 
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2.2 Advances in high-resolution fMRI  

Because fMRI proved to be a promising scientific tool, researchers have made substantial 

efforts in extending the physical limits of fMRI, as well as in better understanding of the obtained 

fMRI data. In this section I will summarize advances in fMRI and challenges that came with new 

discoveries in the 21st century. One of the main focuses of current fMRI developments is on 

functional imaging of cortical columns and layers. The uniformity of the mammalian cortex has 

led to the proposition that there exist elementary cortical units of operation, consisting of several 

hundred or thousand neurons that are repeated within and across cortical areas (Lorente de Nó, 

1938). Cortical columns and layers of neocortex are prominent examples of such structurally and 

functionally specialized units. Functional properties and connectivity are similar for neurons 

within a column but are known to vary between columns. It can therefore be argued, based on 

information-theory, that the optimal spatial scale for studying the relationship between brain 

function and behavior is that of cortical columns (and layers, for similar reasons). This explains 

the need for functional imaging of cortical columns and layers, and for reliable techniques for 

decoding information conveyed by these fine scale structures. 

2.2.1 Data mining and MVPA; mechanisms underlying orientation decoding 

In section 2.1.3 I briefly described the traditional univariate voxel-by-voxel analysis of the 

fMRI data. One limitation of the mass-univariate approach is the assumption that the covariance 

across neighboring voxels has no meaningful information, that it shows uncorrelated noise which 

can be reduced by spatial smoothing. The multivariate pattern analysis (MVPA) however, is a 

promising technique to overcome such limitations by extracting the subtle neuronal patterns while 

considering a volume of voxels as a whole. MVPA has become a popular analysis method among 

FMRI users.  

Interestingly, recent MVPA studies have indicated the feasibility of decoding of 

information conveyed by neuronal populations organized in structures thought to be smaller than 

a single voxel (Haxby et al., 2001; Haynes and Rees, 2005; Kamitani and Tong, 2005). That is to 

say, with a conventional fMRI voxel of size 3x3x3 mm in human studies, it was shown that one 

can decode the orientation of gratings presented to the subject out of a group of 2 orthogonally 

oriented or even 8 differently oriented gratings. It is an intriguing phenomenon since, just as in the 

cat visual cortex (Hubel and Wiesel, 1959; Swindale et al., 1987; Bonhoeffer and Grinvald, 1991; 
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Shmuel and Grinvald, 2000) neurons that are tuned to a specific orientation in the visual cortex 

are arranged in a semi-cyclic manner with an interval of 2 mm or even shorter (Yacoub et al., 

2008). Furthermore, the large hemodynamic PSF of ~3 mm (Engel et al., 1997; Parkes et al., 2005; 

Shmuel et al., 2007) should render the data impossible to decode orientations. Six mechanisms 

have been proposed in search of an answer to this intriguing phenomenon, including the exciting 

possibility that MVPA is capable of probing sub-voxel level information without the need for the 

difficult to achieve high-resolution fMRI. However, which mechanisms contribute to decoding 

orientation is still unclear, in part because of insufficient invasive studies for validation in animal 

models. 

One school explains fMRI-based decoding based on contributions from signals of certain 

cortical frequencies (Boynton, 2005; Kamitani and Tong, 2005; Op de Beeck, 2010; Swisher et al., 

2010; Chaimow et al., 2011; Freeman et al., 2011). Boynton (2005) argued that classifying such 

activity is only possible due to aliasing. Aliasing occurs when the sampling rate of a recording is 

relatively low, such that the high frequency components of signals are reflected in the lower 

frequencies, and produce a mixed lower frequency components. However,  Chaimow et al. (2011) 

showed that aliasing is not a possible mechanism, because fMRI is sampled in the frequency space, 

and the sampling is limited by the highest frequency available in the K-space. The same authors 

pursued a simulation of ocular dominance column fMRI, showing that the only information 

available locally is of a very low contrast to noise ratio, and that it arises from local irregularities 

that are associated with frequencies lower than the main frequency of the organization. 

 Experimental evidence that supports contributions of irregularities was shown by the only 

work (thus far) conducted in an animal model (Swisher et al., 2010). They used high-field, high-

resolution functional magnetic resonance imaging (fMRI) and multivariate pattern analysis to 

determine the spatial scales at which orientation-selective information can be found in the primary 

visual cortex (V1) of cats and humans. Cat visual cortex, imaged at 0.3125 mm resolution, showed 

a strong orientation signal at the scale of individual columns. Nonetheless, reliable orientation bias 

could still be found at spatial scales of several millimeters. In the human visual cortex, imaged at 

1 mm resolution, a majority of orientation information was found on scales of millimeters, with 

small contributions from global spatial biases exceeding approximately 1 cm. Swisher and 

colleagues concluded that there exists a reliable millimeters-scale orientation signal, likely 

emerging from irregular spatial arrangements of orientation columns and their supporting 
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vasculature. Thus, fMRI pattern analysis methods are likely to be sensitive to signals originating 

from other irregular columnar structures elsewhere in the brain.  

Several other studies suggested that fMRI-based decoding of orientation is made possible 

by large scale organizations rather than local random irregularities in the orientation map. Op de 

Beeck (2010) pursued spatial low-pass filtering, and showed that the filtering did not hurt 

classification accuracy. He therefore suggested that fMRI based decoding relies on large scale 

organizations that are associated with very low-frequencies. The same type of conclusion, that 

voxel averaging does not hurt decoding performance, was also observed for responses to visual 

stimuli and decoding of direction of motion (Beckett et al., 2012). These authors tested how 

classification accuracy varied across subsets of voxels for classification of motion-direction. They 

combined voxels with similar visual field preference as determined in separate retinotopy 

measurements in areas V1, V2 and V3. They observed that classification accuracy was preserved 

when averaging in this 'retinotopically restricted' way, compared to random averaging of voxels. 

They concluded that this insensitivity to averaging of voxels (with similar visual angle preference) 

across substantial distances in cortical space suggests that there are large-scale biases at the level 

of retinotopic maps underlying classification of direction of motion based on fMRI.   

However, Kamitani and Sawahata (2010) showed that spatial smoothing hurts localization 

but not information. They concluded that classification of spatially smoothed fMRI data is not an 

effective means to probe into information sources for multi-voxel decoding, since smoothing does 

not hurt the information contents of multi-voxel patterns. They further concluded that Op de 

Beeck’s results provide no evidence against the hypothesis of fMRI-based decoding of orientation 

based on irregularities in the organization. Of note, their work did not refute contributions from 

large scale organization: it showed that smoothing is not sufficient to rule out contributions from 

irregularities. 

Other studies suggested that specific large-scale organizations inherent to the functional 

architecture of V1 may underlie orientation decoding. The oblique effect is an example of a large 

scale organization: both in humans and non-human primates, vertical and horizontal orientations 

either show higher responses or occupy larger cortical territories than oblique orientations 

(Mansfield and Ronner, 1978; LeVay and Nelson, 1991; Furmanski and Engel, 2000). The radial 

effect is yet another example for a large scale organization: there is a global bias in the orientation 

map because the neurons are more sensitive to the orientation that is radially collinear with the 
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center of gaze (Sasaki et al., 2006; Clifford et al., 2009; Mannion et al., 2010; Freeman et al., 2011; 

Sun et al., 2013). Freeman et al. (2011) confirmed Sasaki’s observations of a topographic map of 

orientation preference in human V1 at a much coarser scale than that of orientation columns, in 

register with the angular-position component of the retinotopic map of V1. They suggested that 

this coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern 

analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging 

the widely held assumption that decoding results reflect sampling of spatial irregularities in the 

fine-scale columnar architecture. Sun et al. (2013) confirmed that there are more voxels preferring 

horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and 

that these over-representations of horizontal and vertical orientations are prevalent in the cortical 

regions near the horizontal- and vertical-meridian representations, a phenomenon related to the 

radial bias. A recent study by Freeman et al. (2013) measured fMRI responses in human V1 to 

both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, 

including a radial bias that was most pronounced in the peripheral representation. Responses to 

clockwise and counter-clockwise spirals also exhibited coarse-scale organization. The preference 

of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of 

that voxel for orientation and spatial position. Freeman et al. (2013) conclude that a bias exists for 

local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals 

and gratings), and suffices to explain decoding from fMRI responses in V1. 

However, recent studies challenged the hypothesis on contributions of large-scale 

organization, and suggested that irregularities underlie orientation decoding even after 

contributions from large scale organizations are filtered out (Alink et al., 2013; Misaki et al., 

2013b). Alink and colleagues used opposite-orientation gratings (balanced about the cardinal 

orientations) and spirals (balanced about the radial orientation), along with patch-swapped variants 

of these stimuli. They showed that all stimulus pairs are robustly decodable, demonstrating that 

fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, 

decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained 

components of the fMRI patterns reflect visual orientations. While they did observe evidence for 

global radial and vertical preference maps in V1, these were weak or absent for patch-swapped 

stimuli, suggesting that global preference maps depend on globally coherent orientations and might 

arise through recurrent or top-down processes related to the perception of global form. Misaki et 
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al. (2013b) tested the effect of smoothing in an fMRI experiment of decoding ocular dominance 

responses. Their results of across group statistics showed that large smoothing reduced decoding 

accuracies while the smoothing effect at the individual subject level were not the same for all 

subjects. Their results suggest that spatial smoothing can have a major effect on decoding 

performance, and that although the effect is variable across subjects, the informative pattern for 

columnar level decoding resides in higher frequencies. 

More recent studies challenge the previously suggested contributions from large-scale 

organizations, supporting mechanisms other than irregularities. Carlson (2014) and Wardle et al. 

(2015) propose that what was thought as contributions from the radial bias can be explained by 

orientation selective responses near the contour edges of oriented grating stimuli that are spatially 

limited in the visual space. Similarly, Wang et al. (2014) identified a direction-selective response 

bias in human visual cortex that predicted motion-decoding accuracy, and depended on the shape 

of the stimulus aperture rather than the absolute direction of motion.  

A second school supported contributions from cortical blood vessels to decoding (Gardner 

et al., 2006; Gardner, 2010; Kriegeskorte et al., 2010; Shmuel et al., 2010). One reason for 

justifying such an approach is the 3T BOLD-fMRI’s increased sensitivity to intra-vascular BOLD 

compared to signals from capillaries. Gardner (2010) suggested that cortical columns that share 

tuning for stimulus features like orientation may often be active together and thus require oxygen 

and metabolic nutrients together. He hypothesized that the cortical vasculature is built to serve 

these needs, tending to aggregate and amplify orientation specific signals, thus explaining why 

they are available in fMRI data at very low resolution. Thus, the ability of classifiers to work at 

very low spatial resolutions, may be a consequences of a well-structured vasculature aligned to the 

functional architecture of the cortex. Shmuel et al. (2010) showed that the arrangement of 

macroscopic blood vessels observable in fMRI voxels contributes to the segregation of the 

stimulated eye. This claim is further endorsed by the work of Thompson et al. (2011) which 

compared pattern classification between gradient echo and spin echo. It is also possible that a 

similar mechanism is in effect for orientation stimuli. Kriegeskorte et al. (2010) postulated that 

MVPA hyper-acuity can be made possible through a complex spatio-temporal filtering kernel 

model applied by fMRI voxels. It may be possible that the way one voxel samples the local 

hemodynamic response is not through a simple box-like kernel, as the CCD of a digital camera 

does, but rather through a space-time variant complex kernel. According to Kriegeskorte’s 



17 

 

hypothesis, such spatio-temporal information may allow high-cortical frequency information to be 

coded in lower frequencies, and thus remain robust to head motions during fMRI scans, and 

eventually contribute to decoding. This concept was further endorsed by subsequent findings in 

subtle onset variability of hemodynamic responses from sub-TR differences (Misaki et al., 2013a). 

Ten years after the first demonstration of the power of multivariate pattern analysis to 

decode functional imaging data, the debate on the involved mechanisms remains hot. It is not 

trivial to assess the contributions of each proposed mechanism relative to others. Feasibility of one 

does not disprove the validity of others. Moreover, the cortical responses obtained in fMRI are 

often the combined results of the intertwined mechanisms. Hence it is necessary to conduct high-

resolution imaging studies that will capture hemodynamic responses at spatial resolutions allowing 

for the direct functional imaging of responses from cortical columns. 

2.2.2 Pulse sequences and functional contrasts of fMRI; selectivity vs. data amplitude 

Two of the popular standard BOLD-fMRI sequences are gradient-echo (GE) and spin-echo 

(SE). GE is the simplest procedure that measures the T2* properties of different brain tissue 

(explained in Chapter 2.1.2). GE-BOLD-fMRI directly measures the changes in HbR content 

(Ogawa et al., 1990). It is sensitive to changes in HbR in draining veins. However, draining veins 

may carry changes in HbR content undiluted to regions remote from the site of increased neuronal 

activity (Kim et al., 1994; Turner, 2002). 

  Such phenomena cause uncertainties in localizing brain regions that responded to the 

stimulus or task. SE-BOLD-fMRI can partially overcome the influence of veins at the data 

acquisition stage. It applies a refocusing 2nd pulse, focusing the signal only onto the cortical 

microvessels (Ogawa et al., 1993; Kim and Ogawa, 2002; Lee et al., 2002). However, it is not 

always practical to apply this sequence due to its significantly low signal-to-noise ratio compared 

to the GE sequence (Uludag et al., 2009). Among the numerous studies conducted to date for 

improving the spatial resolution and specificity of the data acquisition, an asymmetric spin echo 

(ASE) sequence provides partial nullification of veins leading to a middle ground between spin 

echo and gradient echo sequence: the more asymmetrical acquisition of the pulse, the closer to GE 

the resultant signal is (Boxerman et al., 1995). It is therefore possible that one particular asymmetry 

parameter of ASE is optimal for managing the trade-off between the spatial specificity shown by 

SE sequences and the T2 contrast and the increased contrast to noise ratio inherent to GE sequences 

and T2* contrasts. In other words, it might be possible to increase the acquired signal strength 
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without losing its spatial specificity, by incorporating contributions from relatively small vessels. 

Also, a different way of reducing the non-spatially specific contributions of larger venules to the 

SE-BOLD functional signal is by shortening the duration of the readout window (Goense and 

Logothetis, 2006). Increasing the read out duration to include signals away from the peak increases 

T2* contributions that emerge from larger vessels, while increasing image SNR. 

Another means of capturing similar, yet more spatially specific hemodynamic changes than 

GE-BOLD-fMRI, is that of GE cerebral blood volume (CBV) fMRI. CBV fMRI has been applied 

to detect brain activation based on changes in the blood volume in active brain areas (Smirnakis et 

al., 2007). It was less widely used in human subjects, due to the need for an invasive contrast agent 

injection, such as gadolinium diethylene-triamine-penta-acetic acid (Gd-DTPA) or 

monocrystalline-iron-oxide-nanoparticles (MION) to amplify the detected signal (Belliveau et al., 

1991; Vanduffel et al., 2001). The emergence of a new technique called vascular space occupancy 

(VASO) fMRI (Lu and van Zijl, 2012) has made CBV-fMRI feasible in human subjects, since it 

does not require any injection of contrast agents. VASO-fMRI utilizes T1 differences between 

blood and tissue to distinguish between these two compartments within a voxel, and employs a 

blood-nulling inversion recovery sequence to yield an MR signal proportional to 1 - CBV. As such, 

vasodilatation will result in a VASO signal decrease, while vasoconstriction will have the reverse 

effect.  

The CBV method can be applied in conjunction with GE/SE/ASE. GE BOLD vs. SE 

BOLD vs. GE CBV vs. SE CBV showed different spatial specificity of fMRI responses (Zhao et 

al., 2006). However, all studies mentioned above used coarse fMRI voxels and their conclusions 

were based on the amplitude of the response to a single stimulus per study. In addition, the concept 

that the larger a vessel is the less specific its metabolic (HbR) and hemodynamic (CBF or CBV) 

responses is to the site of increased neuronal activity is widely accepted (Turner, 2002).  However, 

all previous studies that demonstrated fMRI responses from draining veins remote from the site of 

increased neuronal responses have not quantified the spatial specificity of vessels as a function of 

their diameters.  Direct, high-resolution physiological investigations of the spatial specificity of 

blood vessels while using several stimuli have yet to be performed. The findings from such 

investigations will make it possible to take advantage of data acquisition (Boxerman et al., 1995; 

Goense and Logothetis, 2006) and data analysis methods capable of including and/or excluding 

contributions from specific voxels based on the dominant vessel size (Jochimsen and Moller, 2008). 
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2.2.3 High-resolution fMRI at high-magnetic field: on the spatial specificity of 

hemodynamic responses 

The ultimate goal for any functional imaging method is to achieve the spatial resolution 

and specificity which is limited only by the limits of the biological system it images.  In case of 

BOLD-fMRI, the objective is to obtain the limit of spatial resolution of hemodynamic based 

mapping. Over the past 10 years, there has been a growing interest in imaging the cortex at a high 

spatial resolution with high magnetic-field fMRI (Shmuel et al., 2007; Yacoub et al., 2007). The 

reason for this interest is that fMRI at high-field can potentially image the function of fine-scale 

anatomical constructs, i.e. cortical columns and layers.  

High resolution functional imaging enables more precise brain probing and more accurate 

data acquisition. However, the higher sampling resolution inherently lowers the signal-to-noise 

ratio of fMRI (Triantafyllou et al., 2005). The SNR of an fMRI voxel is linearly proportional to 

the magnetic field, and linearly proportional to the voxel’s volume. Simply reducing the size of a 

voxel from 3x3x3mm to 1x1x1mm while increasing the field strength from 3T to 7T decreases the 

voxel SNR by approximately 12-fold. In addition, a smaller voxel volume leads to attenuated 

partial volume effects and intra-voxel de-phasing, allowing draining veins to have a greater 

influence on the signal of downstream voxels (Nencka and Rowe, 2007). 

 Nevertheless, with advances in fMRI technologies and with improved SNR it was 

shown possible to image functional structures such as ocular dominance columns in humans 

(Cheng et al., 2001b; Goodyear and Menon, 2001; Yacoub et al., 2007). Interestingly, the 

possibility of imaging ODCs in humans challenges the previously reported hemodynamic PSF 

width. In general, it is expected that hemodynamic responses are a smoother version of neuronal 

responses. The width of the smoothing kernel of the PSF was reported as FWHM of 3-3.5 mm at 

3 Tesla and ~2 mm at 7 Tesla (Engel et al., 1997; Parkes et al., 2005; Shmuel et al., 2007). The 

ocular dominance arrangement in humans has a semi-cyclic structure with a cycle equal to or 

smaller than 2 mm. Simulations (Chaimow et al., 2015) show that imaging ODCs with a method 

whose PSF’s FWHM is 2 mm is impractical. In order to be able to model, plan and interpret high-

resolution fMRI, one needs to correctly quantify the hemodynamic PSF. In order to solve this 

problem, an important factor to be considered is the need for a technique that is not affected by the 

magnet field strength. 
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2.3 OI-IS and EP: methods for evaluating and validating 

mechanisms underlying fMRI 

Throughout Chapter 2.2, I mentioned that the lack of invasive animal studies utilizing 

means other than fMRI has left a gap in our understanding of the mechanisms of fMRI-based 

decoding of fine-scale organizations. In this section, I review the OI-IS and EP techniques that 

have been used in conjunction, and subsequently with, fMRI to study general mechanisms 

underlying fMRI, not necessarily for understanding decoding. 

2.3.1 Intrinsic Optical Imaging 

OI-IS has been extensively used to analyze the functional architecture of the visual cortex 

in several species (Swindale et al., 2003; Villeneuve and Casanova, 2003; Vanzetta et al., 2004; 

Gias et al., 2005). A typical set-up of an OI-IS experiment requires a high-definition camera, 

computer screen for visual stimuli (when imaging the visual cortex), illumination with 

monochromatic light or band-limited light, and a sealed chamber that is cemented onto the 

animal’s surgically exposed cortex (Ts'o et al., 1990; Grinvald et al., 1999). OI-IS takes advantage 

of hemoglobin absorption under visible light to assess hemodynamic responses. Because HbO and 

HbR have different absorption spectra, and one of the wavelengths where this difference is most 

prominent is 605 nm, using a wavelength of 605 nm can allow for capturing changes in blood 

oxygenation (Frostig et al., 1990). The important premise is that the absorption of HbO is relatively 

negligible between 600-630nm allowing the measurement to be dominated by changes in HbR. 

Light scattering due mainly to cell swelling dominates over blood oxygenation and blood volume 

signals for illumination wavelengths that are longer than 630nm (Frostig et al., 1990; Blasdel, 1997; 

Grinvald et al., 1999; Zhan et al., 2005). OI-IS with such long wavelengths shows functional 

selectivity (720 nm; Zhan et al., 2005) and possibly better spatial specificity relative to HbR or 

HbT responses (Frostig et al., 1990; Grinvald et al., 1999). Early OI-IS experiments studied well-

known structural elements such as ocular dominance columns or orientation columns (Bonhoeffer 

and Grinvald, 1991, 1993a; Das and Gilbert, 1995; Shmuel and Grinvald, 1996; Das and Gilbert, 

1997; Shmuel and Grinvald, 2000; Zhan et al., 2005).  

The concern that HbO is ‘negligible’ under 600-630nm has led to recent improvement in 

optical imaging using multi-wavelength illumination, and more flexible decomposition of HbR, 

HbO, and also total hemoglobin (HbT) from a combination of wavelengths (Devor et al., 2005; 
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Dunn et al., 2005; Hillman et al., 2007; Sirotin et al., 2009). Adapted from the functional near-

infrared spectroscopy community, this novel technique utilizes the Modified-Beer Lambert law to 

spectrally decompose two illumination wavelengths following changes in HbO and HbR, while 

taking into account the path-length of the photon. Given an estimate of baseline HbO/HbR 

concentration and brain tissue properties, one can simulate the appropriate path-length (Kohl et al., 

2000). 

In summary, an multi-wavelength illumination system (such as the one employed by 

Bouchard et al., 2009) allows for high-resolution imaging of the responses of hemoglobin species 

(HbR, HbO, and HbT). It is superior to fMRI in spatial and temporal resolution, signal to noise 

ratio and the possibility of detecting responses of Hemoglobin species. 

2.3.2 Electrophysiology 

Electrophysiology (EP) has been extensively used to probe neuronal activity by detecting 

the electrical changes associated with ion flow in biological tissues. EP is a very wide field ranging 

from intracellular recording (Hodgkin and Huxley, 1952) to extracellular recording. Either with 

intra- or extra-cellular recordings, one can measure single unit activity (Hubel and Wiesel, 1959). 

With extra-cellular recordings, one can measure, in addition, multiunit activity and local field 

potentials (LFP). The LFP is believed to be the result of synchronous synaptic potentials 

(Logothetis, 2002). LFP constitutes neuronal fluctuations that are reflected in different band-

limited components (the delta, theta, alpha, beta and gamma bands). Accumulating evidence 

suggests that oscillations in these different bands originate in different pathways and/or different 

cellular mechanisms. 

For my thesis, the LFP is of particular interest, because it shows the highest correlation to 

the BOLD signal (Logothetis et al., 2001). The hemodynamic response accompanies neuronal 

activation and therefore it is important to assess which measure or combination of measures of 

neuronal activity can be used for modeling the BOLD signal. Studies employing simultaneous 

measurements of fMRI and EP show that BOLD is better correlated with the LFP in the gamma 

band than with MUA (Logothetis et al., 2001; Magri et al., 2012).  

In conjunction with recent advance in high-resolution fMRI, the possibility of imaging 

cortical layers, and multichannel depth electrodes have been widely used to probe layer specific 

neuronal activity (Goense and Logothetis, 2006; Zhao et al., 2006; Smirnakis et al., 2007; Xing et 

al., 2009; Spaak et al., 2012). Precise localization of layers across depth is important in 
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understanding the layer specific neurovascular coupling. However, LFPs are vulnerable to volume-

conducted far-field effects. The second spatial derivative of LFPs, called the current source density 

(CSD), reduces this problem and has the ability of more precisely localizing transmembrane 

currents than LFPs (Sotero et al., 2015). 

2.3.3 Combined techniques 

OI-IS is physiologically equivalent to fMRI. Both measure hemodynamic signals, although 

they employ different principles of measurements. While fMRI is based on the magnetic properties 

of deoxy-Hemoglobin and oxy-Hemoglobin, OI-IS is based on the differences in light absorption 

of these two molecules. 

Because fMRI voxels are too coarse to probe specific cortical activities, invasive 

techniques such as optical imaging are used in conjunction with fMRI in animal models for in 

depth understanding of the BOLD response. In one case, OI-IS measured HbT responses correlated 

well with CBV-fMRI in the superficial layers of gray matter (Kennerley et al., 2005). Another 

study from the same group showed the feasibility of using OI-IS to study the mechanism of 

negative BOLD responses (Kennerley et al., 2012). OI-IS can be also used to validate the results 

obtained in high-resolution fMRI (Fukuda et al., 2006). 

  OI-IS and EP have been used for quantifying neurovascular coupling. Studies involving 

these combined measurements assessed the dependence of orientation tuning of single neurons on 

the structure of the orientation map in their local vicinity (Schummers et al., 2002, 2004; Nauhaus 

et al., 2008), measured the hemodynamic point spread (Vazquez et al., 2014), or looked at the 

temporal relationship between the two (Sirotin and Das, 2009; Sirotin et al., 2012). 

 

2.4 Summary 

The work presented in this thesis takes advantage of techniques alternative to conventional 

BOLD fMRI, including CBV-fMRI, OI-IS and EP, that offer higher resolution and SNR. They 

allow the exploration of the mechanisms of BOLD-fMRI based decoding of information conveyed 

by fine scale organizations. 
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Preface to Chapter 3 

Chapter 3 is the first of two chapters that address aim 1: ‘to unravel the mechanisms 

underlying hemodynamic-response based decoding of oriented gratings using coarse voxel 

sampling’. This chapter uses contrast-agent-based CBV-fMRI data that have minimal 

contributions from large blood vessels. In addition, the data were acquired while stimulating the 

cat continuously, using oriented grating stimuli with the orientation changing gradually and slowly. 

Therefore, the responses of the larger vessels were practically in steady state. Therefore, this data-

acquisition paradigm allows evaluating contributions from local irregularities and low-frequency 

components of the organization while contributions from macroscopic blood vessels and complex 

spatiotemporal filtering by fMRI voxels are eliminated. To analyze contributions from local 

irregularities and low-frequency components of the organization, spatial filtering and binning were 

performed on the cortical responses to different orientations. 
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Abstract 

Recent studies have demonstrated that multivariate machine learning algorithms can 

decode the orientation of grating stimuli from coarsely sampled (3×3×3 mm3) fMRI data. Six 

alternative mechanisms have been hypothesized as candidate contributors to the decoding of 

information encoded in fine-scale orientation maps: (I) aliasing of high spatial-frequency 

components of the columnar organization by large voxels, (II) random local irregularities in the 

functional organization, (III) very low spatial frequencies reflecting large-scale components of the 

organization, (IV) orientation selective responses near the retinotopic edge of the orientation 

stimuli, (V) selective responses of macroscopic blood vessels, and (VI) fMRI voxel complex 

spatiotemporal sampling transforming finely organized neuronal activity into more coarsely 

organized vessels. Unraveling the mechanisms underlying decoding of fine scale organizations 

will enable informed search for such organizations in relatively unknown areas such as the frontal 

cortex. Here we aimed to determine whether local irregularities and low-frequency components 

contribute to decoding. To this end, we eliminated contributions from macroscopic vessels, by 

employing monocrystalline iron oxide nanoparticle (MION)-based cerebral blood volume fMRI, 

and quantifying the responses in cat area 17 to continuously rotating drifting gratings. We defined 

voxels homologous in size to those used in fMRI-based decoding in humans, by comparing the 

main frequency of the orientation map in cat area 17 to that in human V1. Our results show that 

low-frequency organizations likely contribute to decoding. In contrast, irregularities in the fine-

scale organization do not contribute to the decoding of oriented gratings. Taking into account a 

BOLD point-spread function wider than that of cerebral blood volume responses, BOLD imaging 

is even less likely to reflect direct contributions of irregularities in the fine-scale organization to 

decoding. 
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Introduction 

Recent studies have demonstrated that multivariate machine learning algorithms can 

decode visual stimuli from fMRI data (Haynes and Rees, 2005; Kamitani and Tong, 2005). Using 

gradient-echo (GE) blood oxygenation level dependent (BOLD) functional MRI (fMRI) at 3 Tesla 

(T), these algorithms have decoded information thought to be encoded in fine-scale structures, i.e. 

orientation columns. This result is surprising given the large size of the voxels (3×3×3 mm3) 

relative to the expected mean cycle length of the orientation map in human area V1 (~2 mm; see 

Methods). This result is even more surprising considering the relatively wide point-spread function 

(PSF) of GE BOLD-fMRI signals at 3T (~3.5 mm, Engel et al., 1997; Parkes et al., 2005) and even 

that estimated at 7T (~2 mm, Shmuel et al., 2007). The mechanism by which low-resolution 

imaging decodes information represented at a fine scale relative to the voxel size is presently 

unclear. Here we aim to determine the mechanisms that could potentially contribute to the 

decoding of information conveyed by cortical columns, based solely on the functional architecture 

of orientation maps in cat area 17.  

Six alternative mechanisms have been hypothesized as candidate contributors to the 

decoding of information encoded in fine-scale structures. The first proposed that the aliasing of 

high spatial-frequency components of the columnar organization by large voxels gave rise to a 

higher than chance level decoding rate (Boynton, 2005). This “aliasing” mechanism, also termed 

the “hyperacuity” mechanism (Op de Beeck, 2010), involves components of the columnar 

organization with frequencies higher than the Nyquist frequency, which had been thought to 

contribute to the sampled voxels. However, we have since ruled out this proposed mechanism 

(Chaimow et al. 2011), based on the fact that fMRI samples data in the frequency space, with the 

highest frequency in the k-space being the highest frequency available to the sampling process.  

Therefore, there are five remaining possible mechanisms. (I) It was hypothesized that 

random local variations and irregularities in the functional organization contribute to decoding 

(Kamitani and Tong, 2005; Haynes and Rees, 2006; Kriegeskorte and Bandettini, 2007; Swisher 

et al., 2010). The argument is that due to irregularities in columnar patterns, each voxel overlaps 

columns with different preferences unequally, thereby resulting in biases towards specific 

preferences. (II) Very low spatial frequencies have also been proposed to play a role, reflecting 

large-scale components of the organization (Op de Beeck, 2010; Freeman et al., 2011; Freeman et 

al., 2013; Wang et al., 2014). These include the oblique effect (Furmanski and Engel, 2000; Sun 
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et al., 2013) and the radial bias effect (Sasaki et al., 2006; Clifford et al., 2009; Mannion et al., 

2010; Freeman et al., 2011; Freeman et al., 2013; Sun et al., 2013) associated with the 

representation of orientation (see also Carlson (2014) for an alternative mechanism associated with 

the radial-specific responses). For decoding the stimulated eye, a relevant large scale organization 

is formed by the higher amplitude response to stimulation of the contra-lateral eye (Tychsen and 

Burkhalter, 1997). (III) A mechanism alternative to the large-scale organization (item II above) 

has been recently proposed. Observations made by Carlson (2014) suggest that the edges of 

oriented grating stimuli elicit responses that are orientation specific. Similarly, Wang et al. (2014) 

identified a direction-selective response bias in human visual cortex that predicted motion-

decoding accuracy; and it depended on the shape of the stimulus aperture rather than the absolute 

direction of motion. The response amplitudes gradually decreased with distance from the stimulus 

aperture edge corresponding to motion origin in V1, V2, V3, thus explaining the higher motion-

decoding accuracies reported previously in early visual cortex. 

 Alternatively, (IV) draining regions that cover cortical maps and columns non-

homogeneously may cause selective responses of their corresponding blood vessels (Kamitani and 

Tong, 2005; Gardner et al., 2006; Kamitani and Tong, 2006; Kriegeskorte and Bandettini, 2007; 

Gardner, 2010; Shmuel et al., 2010; Thompson et al., 2011). In this scenario, selective signals from 

macroscopic blood vessels can be captured by large voxels; therefore, they can contribute to the 

decoding of stimuli encoded at the resolution of cortical columns. Evidence in support of this 

phenomenon has been provided by (Gardner et al., 2006; Shmuel et al., 2010; Thompson et al., 

2011). Lastly, (V) Kriegeskorte et al. (2010) introduced a model in which fMRI voxels sample 

neuronal activity as complex spatiotemporal filters. These authors described how such a model 

can account for representation of high-frequency components of the cortical maps by the sampled 

voxels and for the decoding of information conveyed by cortical columns.  

Unraveling the mechanisms underlying decoding of information conveyed by fine scale 

organizations is of high interest. It will allow informed search of fine scale organizations in 

relatively unknown cortical areas, such as the frontal cortex. Thus, it can greatly support the 

mapping of function in the human brain at a scale finer than that of cortical areas.  

In using BOLD-fMRI, it is not straightforward to assess the importance of contributions 

from each of these proposed mechanisms, because cortical fMRI responses likely encompass the 

combined contributions of these intertwined mechanisms. In the current study, we specifically aim 
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to determine whether the functional architecture of orientation maps supports contributions from 

irregularities and/or large-scale organizations to the successful decoding of oriented grating stimuli. 

Importantly, in order to focus on contributions from irregularities and/or large-scale organizations 

alone, we exclude contributions from all other proposed mechanisms, including draining veins and 

complex spatiotemporal filters. To this end, we analyzed monocrystalline iron oxide nanoparticle 

(MION)-based cerebral blood volume (CBV) fMRI responses in cat area 17 to continuously 

rotating drifting gratings. It has been shown that the fMRI-based cortical CBV response is more 

spatially-specific than the BOLD response and shows a higher SNR (Kennan et al., 1998; 

Mandeville et al., 1998; van Bruggen et al., 1998; Mandeville et al., 2001; Keilholz et al., 2006; 

Zhao et al., 2006; Smirnakis et al., 2007; Poplawsky and Kim, 2014). In addition, MION-based 

CBV-fMRI has no signal contributions from macroscopic blood vessels (Mandeville and Marota, 

1999; Zhao et al., 2006). Hence, by using MION-based CBV-fMRI, we can focus on cortical 

responses from micro-vessels while excluding the contributions of macroscopic blood vessels. Our 

results show that low-frequencies in the regime of large-scale organizations likely contribute to 

decoding. In contrast, irregularities in the fine-scale organization of orientation maps in cat area 

17 likely do not contribute to the decoding of oriented gratings. Our CBV MION measurements 

show no contributions of irregularities in the organization to decoding. Therefore, taking into 

account a non-zero, expected BOLD PSF, BOLD imaging is even less likely to reflect direct 

contributions of irregularities in the fine-scale organization to decoding. 

Methods  

A more detailed description of the animal preparation, anaesthesia, and data acquisition 

can be found in (Fukuda et al., 2006). All data analysis was carried using custom-made MATLAB 

code. 

Animal preparation 

All experiments were approved by the Institutional Animal Care and Use Committee of 

the University of Pittsburgh. Five cats (1.3–2.5 kg; 13.6–21.7 weeks of age) were used for the 

fMRI scans. Each cat was initially treated with atropine sulfate (0.05 mg/kg, i.m.). Anaesthesia 

was induced by a mixture of ketamine (10–20 mg/kg, i.m.) and xylazine (1 mg/kg, i.m.); the 

surgery was performed under a mixture of air and O2 (maintaining a 30–35% O2 level) with 2% 

isoflurane. The cat was placed in a cradle and secured in a normal postural position by a custom-
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designed head frame. The cranium was exposed for placement of a surface coil. The cat was 

paralyzed with pancuronium bromide (0.2 mg/kg/hr, i.v.). The eyes were focused on the 

stimulation screen using appropriate contact lenses. Data was acquired at a 0.8–1.2% isoflurane 

level.   

Visual stimulation 

Visual responses were elicited by binocularly presenting 100% contrast square-wave 

gratings, which were generated using either Cogent Graphics (John Romaya, Wellcome 

Department  of  Imaging  Neuroscience,  London,  UK;  http://www.vislab.ucl.ac.uk/Cogent/ 

index.html)  or  with a VSG2/5  (Cambridge  Research  Systems, Kent, UK). The spatial frequency 

of the gratings was 0.1 cycle/°. The gratings drifted at 2 cycles/s, with the direction of motion 

reversed every 0.5 s. Stimulation was synchronized with image acquisition in fMRI experiments. 

An 80 s cyclical continuous stimulation paradigm was used, during which eight orientations were 

presented [0° (horizontal) to 157.5°, 22.5° increments, 10 s each] with no gaps between stimuli. 

Ten repetitions of an 80-s long full stimulation cycle were performed, for a total presentation time 

of 800 s in one scan. 

MRI 

All MRI experiments were performed on a 9.4T horizontal magnet with a clear bore size 

of 31 cm (Varian, Palo Alto, CA), using a surface radio frequency coil with an inner diameter of 

25 mm placed over the primary visual cortex. The position of the functional imaging slice was 

determined based on flow-compensated, gradient-recalled, three-dimensional (3-D) venographic 

images [repetition time (TR), 50 ms; echo time (TE), 20 ms; data matrix, 512×256×256; field of 

view (FOV), approximately 4.0×2.0×2.0 cm; isotropic resolution, approx. 78 µm] (Park and Kim, 

2005). Based on the vascular patterns and gyral curvatures from the 3-D venogram, a 1-mm thick 

fMRI slice was positioned in the visual cortex such that the vessels were perpendicular to the slice. 

For a direct comparison of functional and anatomical data, a two-dimensional (2-D) gradient-

recalled anatomic image was also acquired (TR, 50 ms; TE, 15–20 ms; data matrix, 256×256; 

typical FOV, 2.0×2.0cm) with the same FOV, slice thickness, and position as those used for fMRI. 

For CBV-weighted fMRI, a bolus of dextran-coated MION contrast agent (typically 10 mg 

Fe/kg body weight; obtained from the laboratory of Dr. Ralph Weissleder, Massachusetts General 

Hospital, Boston, MA) was injected into either the femoral or cephalic vein. The intravascular 
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injection of MION contrast agent enhances the sensitivity of fMRI in microvessels and induces a 

high susceptibility effect in large vessels, which reduces large vessel contributions (Kennan et al., 

1998; Mandeville et al., 1998; van Bruggen et al., 1998). MION has a long intravascular half-life 

and distributes throughout the blood plasma in the cortical vessels; the fMRI signal with iron oxide 

is mainly weighted by changes in plasma CBV within microvessels (Kennan et al., 1998; 

Mandeville et al., 1998; van Bruggen et al., 1998). All functional images were obtained from the 

medial bank of the primary visual cortex, which allowed imaging a wide area of gray matter 

overlapping with the selected slice (see also ‘Delineation of ROI’ below). A GE four-shot echo 

planar imaging sequence was used, with typical imaging parameters as follows: FOV, 2.0×2.0 cm; 

data matrix, 128×128 (i.e., in-plane resolution of 156×156 µm/voxel), slice thickness, 1 mm; TR, 

2 s; TE, 10 ms for CBV-weighted fMRI. 

Delineation of the ROI  

We defined our ROI as the region where the cortical surface was approximately parallel to 

the anatomical MRI slice and overlapping it. To this end, the initial ROI was manually drawn, 

such that it approximately overlapped with area 17 and encompassed all circular point-like 

penetrating veins (white curve in Fig. 3-1A). It approximately traversed the regions where 

transitions from perpendicularly to obliquely penetrating veins were observed. The delineation of 

the final ROI was based on quantitative assessment of the density of veins that penetrated 

orthogonally to the slice, thus indicating that the slice was parallel to the gray matter. To this end, 

we convolved the anatomical image with a Gaussian kernel (σ = 5 voxels) and applied a threshold, 

in order to localize the circular penetrating vessels (red dots in Fig. 3-1B; appearing as circular 

drops in signal in Fig. 3-1A) across the anatomical image, within and outside the preliminary ROI 

(Figures 3-1A and 1B). We then computed the density map of the penetrating vessels by 

convolving the result with a Gaussian kernel (σ = 30 voxels; Fig. 3-1C). The penetrating vessel 

density map was then thresholded, in order to define the ROI with an approximately homogeneous 

density of penetrating veins (Fig. 3-1D), thus ensuring that the ROI was approximately parallel to 

the gray matter. This prevented the inclusion of regions where the cortex was curved relative to 

the slice, thus analyzing orientation columns that were not orthogonal to the slice (such as at the 

bottom of Fig. 3-2C, where the colored regions showing orientation preference are elongated 

because cortex in this region is not parallel to the slice). The final ROI was the conjunction of the 

initial ROI and the ROI processed for an approximately homogeneous density of penetrating veins. 
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To summarize, given the procedure we applied for delineating the ROI, we expect that the 

orientation columns we analyzed were approximately orthogonal to the slice. 

 

 

 

Figure 3-1. Delineation of the ROI 

from anatomical MRI. 

A) Anatomical MRI slice with the 

preliminary hand-drawn boundary 

delineating the region where blood 

vessels run perpendicularly to the slice. 

B) The vessels that were identified by 

thresholding a convolution of the T1 

image with a Gaussian kernel are 

marked in red. C) Contour plot of the 

density of the red-marked vessels in B. 

A cut-off of 0.01 was used to eliminate 

any region with density lower than the 

threshold. D) Final ROI. The 

conjunction of the preliminary ROI and 

the thresholded density cloud was taken 

as the final ROI for further analysis. A, 

Anterior; D, Dorsal. 

 

 

 

 

 

 

Response to oriented gratings 

One run of the phase-encoding fMRI consisted of a continuous recording of 820 s (TR = 2 

s, 410 volumes). To relate a specific volume to a specific orientation, the time-series was shifted 

backwards (the first 6 volumes following the onset of the stimulus were discarded). This accounted 

for the typical 13 seconds CBV delay relative to the stimulus in MION-based phase-encoding 

fMRI (Fukuda et al. 2006). To generate temporally encoded maps for evaluating the data quality, 

Fourier analysis was applied to signals continuously recorded over the following 400 volumes on 

a voxel-by-voxel basis (Engel et al. 1997; Kalatsky and Stryker 2003) (Figures 3-2A and 3-2B). 

Data were qualitatively checked by observing the Fourier spectrum (Fig. 3-2B, upper panel) and 

the raw time course (Fig. 3-2B, bottom panel) at representative voxels within the slice (Fig. 3-2A). 
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A polar map was computed, with the color and brightness representing the voxel’s preferred 

orientation and selective response, respectively (Fig. 3-2C).  

Within 1 stimulation cycle (TR = 2 s, 40 volumes), there were 8 different orientations 

presented. Hence, we computed the average of 3 consecutive volumes within every 5 consecutive 

volumes, yielding 8 volumes associated with the 8 different oriented gratings. Note that for our 

analysis we neither used the phase map nor the polar map. Instead, we averaged 3 consecutive 

volumes to represent the response to each orientation. A 4-dimentional data matrix of 128 by 128 

voxels by 10 trials by 8 orientations was obtained for each hemisphere. We normalized the data 

by dividing all 10 trials and 8 orientations values associated with a voxel by their mean value, 

thereby transforming the fMRI intensity into relative change. 

 

 

 

 

 

 

Figure 3-2. fMRI data: 

phase encoding in the 

orientation domain. 

A) Mean intensity image 

of MION-based CBV-

weighted fMRI computed 

over one session (slice 

thickness, 1 mm; TR, 2 s; 

TE, 10 ms; data 

acquisition over 800 s). B) 

Raw time course and 

Fourier spectrum using 

MATLAB’s FFT from the 

voxel corresponding to 

the crossing point of red 

lines in the mean fMRI 

image presented in B. The 

red sinusoidal wave and 

red arrow in the FFT 

represent the stimulus 

frequency. C) Polar map of preferred orientation obtained from the phase of the time course at the 

stimulus frequency. The color indicates the preferred orientation (phase of FFT) and the brightness 

indicates the orientation selective response (magnitude of FFT). The final ROI determined 

previously (see Fig. 1) is superimposed. 
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Fig. 3-3A presents a typical differential orientation map obtained within the ROI from 

responses to two orthogonal gratings. In addition to computing the differential contrast, we also 

computed the corresponding noise and contrast-to-noise ratio (CNR). We defined the voxel-by-

voxel differential contrast as the difference in cortical responses to orthogonal stimuli, of which 

we had 4 pairs from each dataset. We defined the noise as the standard deviation of differential 

contrast across trials. We defined the voxel-by-voxel CNR as the ratio of absolute differential 

contrast to noise. 

In order to determine the main cycle length of the differential orientation map, we 

computed the mean CNR as a function of spatial cortical frequency. We first computed the 2D fast 

Fourier transform (FFT) spectrum for each of the normalized differential response maps in the 4-

dimensional normalized data matrix (see previous section). The filtering was performed on the 

response maps limited within the delineated ROI and zero-padded to have a rectangular output of 

25×25 mm. We then masked the FFT for point-pass filtering (point-pass: 1 frequency passing 

band-pass) at cut-off frequencies from 0 to 2.40 cycle/mm, with a step size of 0.04 cycle/mm. The 

masked FFT was transformed back to image space. We then computed the differential contrast 

map, noise map, and CNR map for each pair of orthogonal orientation stimuli from each animal 

(Fig. 3-3B). Finally, a mean of absolute CNR was calculated spatially across the CNR map, as a 

function of center frequency. Next, in order to determine the peak frequency of the organization 

separately for each map, we fitted a Gaussian curve to the data points between 0.52 and 2.40 

cycles/mm (Fig. 3-3C). Finally, we determined the main frequency of the orientation map as the 

center of the Gaussian curve. We performed this process separately for each map obtained from a 

pair of orthogonal orientations for each animal. The average peak was at 0.99 ± 0.05 cycle/mm 

(Fig. 3-3D; n = 19; 4 differential contrast maps per animal, 5 animals, 1 outlier). 
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Figure 3-3. Main frequency of the orientation map.  

A) Differential orientation map, Noise map, and CNR map within the ROI.  B) Differential 

orientation map, Noise map, and CNR map obtained following point-pass filtering of the response 

maps with center frequency of 1 cycle/mm. Prior to filtering, zero-padding completed the image 

to a 25×25 mm region in order to have a square output. C) Two examples from 2 different animals 

of the CNR as a function of point-pass cut-off frequencies. A Gaussian curve was fitted to the 

segment between 0.52 and 2.40 cycle/mm to avoid the initial peak. D) The mean and standard 

error of the mean (SEM) of the raw CNR values. The average cycle length computed over all 4 

pairs of orthogonal orientations and 5 animals (N = 19, 1 outlier) was 0.99 ± 0.05 cycle/mm (red 

arrow). The green arrow points to the trough at 0.36 cycle/mm, which we define as the separating 

point between the irregularities and low-frequencies regimes. IR, irregularities. LF, low-

frequencies. E) Loci of homologous voxels that maximally overlapped with the ROI. The centers 

of voxels that defined the ROI used for further analysis are marked by a solid orange square. 
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Previous studies that decoded oriented gratings in humans (Haynes and Rees, 2005; 

Kamitani and Tong, 2005) used 3×3×3 mm3 voxels. In order to compare our findings to those 

obtained in human studies, we resampled the data with voxels of various sizes including the size 

homologous to that used in human studies. The average cycle of ocular dominance maps in human 

area V1 is ~2 mm (Cheng et al., 2001a; Adams et al., 2007; Yacoub et al., 2007). By analogy to 

the monkey visual cortex, we can expect that the average cycle length of orientation maps in human 

V1 is also approximately 2 mm. Therefore, the ratio between the voxel edge used by Kamitani and 

Tong (2005) and Haynes and Rees (2005) and the cycle of orientation is ~1.5. We defined the 

homologous voxel size as 1.5 times the average length of the orientation cycle, i.e. 1.5 × (1 ÷ 0.99 

cycle/mm) ≈ 1.50 mm. Since the standard deviation of the peak orientation cycle across animals 

was small (0.05 cycle/mm), we applied one standard homologous voxel of size 1.50 mm across all 

datasets. 

Lastly, we placed a rectangular ROI using a group of these large voxels, after determining 

their loci such that there was a maximal overlap between the homologous voxel matrix and the 

previously defined ROI (Fig. 3-3E). The orange dots within the homologous voxel matrix in Fig. 

3-3E highlight those voxels whose spatial overlap with the ROI was ≥ 75%. These voxels defined 

the area used for the analysis, including the input to the Support Vector Machine (SVM) decoding.  

Data pre-processing: filtering and binning 

Following the determination of the homologous voxel size (1.50 mm), we pre-processed 

the normalized data in two stages: filtering and binning. The first stage, spatial filtering, allows for 

the evaluation of the frequency components that contribute to decoding (Shmuel et al., 2010; 

Swisher et al., 2010). We zero-padded the ROI, transforming it into a square with each side equal 

to 12-homologous-voxel edges (12 × 1.50 mm = 18 mm). The lowest frequency obtainable, and 

the step size (frequency resolution in the FFT), was then: 1 ÷ 18 = 0.056 cycle/mm. We then 

filtered the data using an ideal spatial 2D FFT low-pass or point-pass filter with the following 

frequency cut-offs (Fig. 3-4A):  [0 (=mean response); 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 14; 16; 

18; 20; 24; 28; 32; 36; infinite (= no filtering)] ÷ 1.50 ÷ 12 cycles per mm.  

Thus, the highest frequency cut-off was 36 ÷ 1.50 ÷ 12 = 2.00 cycle/mm (cycle length = 

0.50 mm).  We selected the frequency cut-offs as the integer multiples of the lowest frequency 

obtained by FFT, in order to apply point-pass filtering effectively.  
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In the second stage of data pre-processing, we applied spatial binning: we simulated larger 

fMRI voxels of several sizes, including the size of the homologous voxel. MRI samples the data 

in the k-space frequency domain. Therefore, mimicking larger voxels acquired at a coarser 

resolution cannot be done by simply averaging neighbouring voxels in the image domain. One can 

simulate the coarser voxel sampling in two different ways: 1) by convolving the original voxels 

with a cardinal sinusoidal kernel (= sinc function) in the image space, followed by point sampling 

with an interval equal to twice the sinc function’s standard deviation; or 2) by first applying an 

ideal low-pass filter in the Fourier domain with a certain cut-off frequency, followed by point 

sampling in the image domain with an interval equal to half the length of the inverse of the low-

pass filter’s cut-off frequency. In this work, we applied the second approach with bin sizes that 

were fractional to the homologous voxel size (Fig. 3-4B):   [0 (= no binning); 1/6; 3/16; 1/4; 1/3; 

3/8; 1/2; 2/3; 3/4; 6/7; 1] × 1.50 mm. 

 

 

 

 

 

Figure 3-4. Spatial manipulation of 

orientation maps. 

A) Examples of 2D ideal FFT low-pass 

filtering at several cut-off frequencies. B) 

Examples of fMRI-like voxel sampling at 

various binning sizes, applied to non-

filtered fMRI data.  
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Data analysis: differential contrast and decoding measures 

Following the pre-processing, we evaluated the information conveyed by the response map 

about the orientation of the stimulus. To this end, we first computed the differential contrast, noise, 

and CNR as described above. We then summarized the CNR level across voxels within the ROI 

by computing the mean CNR across the entire map. Since the CNR determines success rate with 

linear decoders (Chaimow et al., 2011), the quantification of the CNR allows us to compare the 

information provided by maps obtained by the various filtering and voxel-sampling parameters 

towards decoding (Fig. 3-5). 

In addition, we used linear SVM for decoding analysis (Weston and Watkins, 1998; Misaki 

et al., 2010). Three SVM decoding analyses were pursued: using 4 pairs of 2 orientations, 2 groups 

of 4 orientations, and one 8 orientations decoding (Fig. 3-6). Because the number of voxels used 

as input can influence the overall accuracy (Chaimow et al., 2011), we randomly sampled 21 

voxels within the ROI, and used 21 of them as the input feature for the SVM decoding learning 

stage. This number was chosen because the minimal number of the largest (i.e. homologous) 

voxels available when considering all 5 datasets was 21 (Table 3-III). To evaluate orientation 

decoding performance, we performed leave-one-trial-out cross-validation. We used this procedure 

in order to avoid using the same samples for both training and testing (Kamitani and Tong, 2005). 

The general decoding procedure was as follows: 

1. Choose a binning size 

2. Randomly sample 21 voxels 

3. Choose a frequency cut-off 

4. Perform decoding with leave-one-trial-out cross-validation 

5. Obtain one mean decoding accuracy from all the 10 validation datasets 

6. Repeat steps 3-5 for each of the defined frequency cut-offs 

7. Repeat steps 2-6 ten times (i.e. randomly sample a different set of 21 voxels in each 

iteration) 

8. Do the whole process (steps 1-7) for each of the defined binning sizes 

The statistical significance of the overall decoding rate against chance level, and across 

spatial manipulations, was computed with a two-tailed Student’s t-test with false-discovery-rate 

(FDR) correction (Benjamini and Hochberg, 1995). The total number of samples was 50 (n = 5 

animals × 10 repetitions, where 10 repetitions was obtained from Step 7 above). 
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Results 

Main frequency of orientation maps 

To determine the main frequency of the organization, the CNR map, obtained by dividing the 

absolute mean of the differential contrast map within the ROI by its standard deviation (Figure 3-

3A), was subjected to a 2D FFT. The image was zero-padded to a size of 25 mm so that the 

frequency resolution was 0.04 cycle/mm in the FFT domain.  For each of the 20 CNR maps 

obtained from the 5 animals and 4 stimuli-pairs, we applied point-pass filtering at various center 

frequencies in the FFT domain. The filtered FFT was transformed back to the image domain and 

the CNR was obtained at each center frequency (Fig 3-3C shows two examples from 2 different 

animals). We then fitted a Gaussian distribution to the data within the 0.52 to 2.40 cycle/mm 

segment (Fig. 3-3C). The mean frequency computed over all peaks of the fitted Gaussians from 

19 differential maps was 0.99 ± 0.05 cycle/mm (Table 3-I; Fig. 3-3D, red arrow; n = 19; 4 

differential contrast maps per animal × 5 animals, 1 outlier; see Table 3-II for the mean FWHM of 

the fitted Gaussians). Hence, the voxel size homologous to that used in human studies of 

orientation decoding was 1.5 × 1 ÷ 0.99 cycle/mm = 1.50 mm. The highest frequency that can be 

captured by such a voxel is 0.333 cycle/mm (Fig 3-3D). 

 

Table 3-I. Center of the Gaussian fit on the CNR as a function of point-pass cutoff 

frequencies 

Center of fit (mm) Animal A Animal B Animal C Animal D Animal E 

Orientation-pair 1 0.973 1.027 1.035 0.970 0.964 

Orientation-pair 2 1.008 0.973 1.100 1.044 0.913 

Orientation-pair 3 0.923 0.946 0.986 0.958 0.806* 

Orientation-pair 4 1.006 0.952 1.095 0.951 1.027 

The average of the centers is 0.99(0.05) cycle/mm, n = 19, outlier (denoted by *) was not taken 

into account. 

 

Table 3-II. FWHM of the Gaussian fit on the CNR as a function of point-pass cutoff 

frequencies 

FWHM (mm) Animal A Animal B Animal C Animal D Animal E 

Orientation-pair 1 1.013* 0.448 0.848 0.369 -0.434* 

Orientation-pair 2 0.554 0.658 0.473 0.445 0.385 

Orientation-pair 3 0.667 0.623 0.780 0.561 1.340* 

Orientation-pair 4 0.709 0.469 0.658 0.541 0.486 

The average of the FWHM is 0.57(0.14) cycle/mm, n = 17, outlier (denoted by *) was not taken 

into account. 
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From the peak towards lower frequencies, the average CNR monotonously decreased until 

it reached a minimum at 0.36 cycle/mm (Fig. 3-3D, green arrow). From this minimum towards 

lower frequencies, the CNR increased. We here define “irregularities” as the band of frequencies 

such that 0.36 < irregularities < 1.0 cycle/mm (Fig. 3-3D, magenta rectangle). We will use the term 

“low-frequencies” to describe the band of frequencies such that low-frequencies < 0.36 cycle/mm 

(Fig. 3-3D, gray rectangle).  

CNR as a function of spatial filtering and binning 

Figure 3-5 presents the results of evaluating the CNR available for decoding orientation 

following low-pass or point-pass filtering and binning. The white dotted lines represent the main 

orientation cycle (0.99 cycle/mm) and the largest voxel size (0.50 mm) that, based on the sampling 

theorem, effectively captures such a frequency. The white dashed lines represent the homologous 

voxel size (1.50 mm) that is comparable to voxels used in human studies of orientation decoding, 

and the highest frequency that can be captured by this voxel size (0.333 cycle/mm).  

Following low-pass filtering, the CNR matrix showed a rectangular plateau region 

(between cut-off frequencies of 1.0-2.0 cycle/mm and bin size < 0.5 mm) of relatively high CNR 

values (Fig. 3-5 left; CNR > 0.44). We observed the highest CNR (0.48) along the 1.33 cycle/mm 

frequency cut-off, with no binning. Although the CNR at the homologous voxel size was relatively 

low, it was significantly higher than the CNR obtained using the mean response (CNR with cut-

off of 0.056, 0.111, 0.167, 0.222, 0.278, and 0.333 cycle/mm > CNR with cut-off of 0 cycle/mm; 

p < 0.001, two-tailed t-test).  Of note, the CNR obtained with the homologous voxel size and cut-

off frequencies higher than 0.36 cycle/mm (that is, the “irregularities” frequency regime) was not 

different from the CNR obtained with the same voxel size and cut-off frequency of 0.333 cycle/mm.  

Following point-pass filtering, a wide peak (cut-off 0.78 – 1.33 cycle/mm) was observed 

in the CNR, centered near the main frequency of the orientation map (Fig. 3-5 right; CNR > 0.55).  

This peak was present irrespective of the sampling bin size, as long as the bin size conformed to 

the sampling theorem relative to the point-pass frequency (regions not shaded in gray). The CNR 

at the homologous voxel size showed values similar to the CNR obtained using the mean response 

(CNR with point-pass frequency of 0.056, 0.111, 0.167, and 0.222 cycle/mm ~ CNR with cut-off 

of 0 cycle/mm p > 0.05, two-tailed t-test) and values lower than that of mean responses (0.278 and 

0.333 cycle/mm < CNR with cut-off of 0 cycle/mm; p < 0.05, two-tailed t-test). 
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Decoding analysis directly tests the predictability of the orientation stimuli from cortical 

responses. We used 20 randomly sampled voxels as the input features to the SVM decoder with 

leave-one-trial-out cross-validation. Statistical tests showed that for both the low-pass and point-

pass filtering, and for 2-orientations, 4-orientations, and 8-orientations decoding, only the mean 

response showed non-statistically significant decoding accuracy compared to chance level (p > 

0.05 for 0 cycle/mm cut-offs, two-tailed t-test, FDR corrected, n = 50; Fig. 3-6). All other 

combinations of filtering and binning showed higher decoding accuracy compared to chance level 

(p < 0.001, two-tailed t-test, FDR corrected, n = 50; entries corresponding to statistically 

significant decoding accuracy are colored; non-significance is presented in white).  

 

 

 

 

Figure 3-5. CNR as a function of spatial filtering and binning. 

A) Mean absolute CNR under low-pass filtering and point-pass filtering as a function of filter cut-

off frequency (vertical-axis), and voxel binning size (horizontal-axis; n = 5 animals × 4 orientation 

pairs). The white dotted lines represent the main orientation cycle (0.99 cycle/mm) and the largest 

voxel size that can effectively capture this frequency (0.50 mm). The white dashed lines represent 

the voxel size (1.50 mm) that is comparable to voxels used in human decoding studies (3 mm) and 

the highest frequency that can be captured by this voxel size (0.333 cycle/mm). The dark gray 

regions in the matrix showing CNR following point-pass filtering represent parameters for which 

no information is available because the filtering cut-off is higher than the frequencies that can be 

captured by the corresponding voxel size. n.b., no binning; n.f., no filtering. 
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SVM-based decoding following spatial filtering and binning 

Following low-pass filtering, the 2-orientations decoding rate was higher than chance level 

(50%) for all cut-off frequencies (except for mean response) and bin size combinations, including 

the homologous voxel size (Fig. 3-6 top left). The decoding rate obtained using the mean response 

only (low-pass with a cut-off of 0 cycle/mm) was in the range of 49-52% for all voxel sizes, and 

thus not significantly different from chance level (p > 0.05; two-tailed t-test; FDR corrected). 

There was a visible rectangular plateau of higher decoding accuracy, similar to that observed for 

the CNR. Peak decoding accuracy was obtained at a cut-off frequency of 1.33 cycles/mm, higher 

than the main frequency of the organization, using a voxel edge of 0.39 mm. The highest value of 

decoding accuracy within the region enclosed by the horizontal and vertical dotted lines was 78.6%. 

The decoding accuracy using the homologous voxel size was significantly higher than chance level 

(e.g. accuracy with cut-off of 0.167 cycle/mm = 68.2%, two-tailed t-test, FDR corrected, n = 50, 

p < 0.001, Table 3-III). It was also higher than the decoding accuracy obtained using the mean 

response (accuracy with a cut-off of 0 cycle/mm: 50.5%). However, the decoding accuracies 

obtained with the homologous voxel size and cut-off frequencies higher than 0.36 cycle/mm (the 

frequency regime that underlies irregularities in the organization) were not different from the 

accuracy obtained with the same voxel size and cut-off frequency of 0.333 cycle/mm. We therefore 

concluded that the low-frequency regime contributed to successful decoding when sampled with 

the homologous voxel size, whereas irregularities in the organization did not. 

Following point-pass filtering, the 2-orientations decoding showed elevated success rates 

(80 – 87%) with a peak centered on the main frequency of the orientation map (Fig. 3-6 top right). 

There was a pronounced decrease at the trough between 0.3-0.4 cycle/mm, where the CNR reaches 

a minimum (see also Fig. 3-3D). Hence, the inclusion of frequencies around the trough as an input 

for decoding produces reduced decoding accuracies. The decoding accuracies obtained with the 

homologous voxel size and point-pass frequencies of 0.333 cycle/mm or lower (except for the 

mean response) were higher than chance level (p < 0.01, two-tailed t-test; FDR; 54.3 – 67.6%, 

Table 3-IV).  

Similar results were obtained for the 4- and 8-orientations decoding, relative to chance 

levels of 25% and 12.5%, respectively (Fig. 3-6 middle and bottom rows).  
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Table 3-III. Number of voxels available as the input feature for the SVM decoding 

# of voxels Animal A Animal B Animal C Animal D Animal E 

0.38mm binning 384 352 368 336 336 

0.75mm binning 96 88 92 84 84 

1.50mm binning 24 22 23 21 21 

 

 

 

 

 

Table 3-IV. Decoding accuracy using homologous voxel following low-pass or point-pass 

filtering 

Filter cut-off frequency 0.000 0.056 0.111 0.167 0.222 0.278 0.333 

Filtering # stimuli        

Low-pass 

2-ori 51.8 64.1 65.3 67.8 68.2 67.6 67.3 

4-ori 25.0 36.5 36.5 40.4 44.5 43.2 42.3 

8-ori 12.1 21.4 20.1 23.4 26.0 24.9 23.7 

Point-pass 

2-ori 51.8 64.1 67.6 66.6 63.9 55.7 54.3 

4-ori 24.9 37.3 37.8 42.9 39.9 33.4 29.8 

8-ori 12.1 21.5 22.0 25.3 24.0 20.2 17.9 

Success rate of decoding (in %) using the homologous voxel following low-pass or point-pass 

filtering. Chance level is 50%, 25% and 12.5% for 2, 4, and 8 orientation gratings, respectively. 

 

 

 

Figure 3-6. Decoding as a function of spatial filtering and binning. (See next page for figure) 

We present here 2-, 4- and 8-orientations decoding accuracy under low-pass filtering, and under 

point-pass filtering. The white dotted lines represent the main orientation cycle (0.99 cycle/mm) 

and the largest voxel size that can effectively capture this frequency (0.50 mm). The white dashed 

lines represent the voxel size (1.50 mm) that is comparable to voxels used in human studies (3 mm) 

and the highest frequency that can be captured by this voxel size (0.333 cycle/mm). The dark gray 

regions in the matrix showing decoding accuracy following point-pass filtering represent 

parameters for which no information is available because the filtering cut-off is higher than the 

frequencies that can be captured by the corresponding voxel size. The 0 cycle/mm (mean response) 

level showed decoding success rates no different than chance level (presented in white; p > 0.05, 

two-tail t-test, FDR corrected, n = 50). 
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Figure 3-6. Decoding as a function of spatial filtering and binning. (See previous page for 

legend) 
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Voxels homologous to those used in human studies at a resolution higher than 3×3×3 mm3   

In the previous section we observed the general pattern of decoding performance as a 

function of binning size and filtering cut-off. In their prior studies, Kamitani and Tong (2005) and 

Haynes and Rees (2005) used 3×3×3 mm3 voxels. However, more recent decoding studies of 

human subjects sample voxels at a higher resolution (1.0×1.0×1.0 mm3, Swisher et al., 2010; 

1.5×1.5×1.5 mm3, Mannion et al., 2010; 2.0×2.0×2.0 mm3, Alink et al., 2013; Freeman et al., 

2013). To match our results to those presented by these studies, we need to reanalyze our data 

while considering new homologous voxel sizes.  

Figure 3-7 presents decoding success rate as a function of filtering cut-off while 

considering different sizes of homologous voxels. Similarly to previous results, within the 

frequency range that can be captured by a homologous voxel, the voxel’s size does not 

substantially influence the general shape of the curve for decoding rate as a function of filter cut-

off. This is true following both low-pass and point-pass filtering. Under low-pass, the decoding 

rate remains unchanged beyond a certain frequency that depends on the size of the homologous 

voxel. Under point-pass filtering, the voxels cannot capture frequencies higher than their Nyquist 

sampling frequency.  Homologous voxel sizes that can capture information from the irregularity 

regime include 0.25, 0.50, and 0.75 mm in cat area 17, corresponding to 0.5, 1.0, and 1.5 mm in 

human area V1.  
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Figure 3-7. Decoding using homologous voxel sizes different from that for 3×3×3 mm3. 

Decoding accuracy of 2-, 4-, and 8-orientations following low-pass filtering and point-pass 

filtering with different hypothetical homologous voxel sizes. The plotted curves are 1D 

presentations of data extracted from Fig. 3-6. The black curve here presents the data for the 

homologous voxel size considered throughout the previous sections and figure, also designated by 

the vertical dashed line in Fig. 3-6. The error bars, one per voxel size and indicated by the arrows 

in the middle-left panel, show the SEM (n = 50). Following low-pass, the decoding rate remains 

unchanged beyond a certain frequency that depends on the size of the voxel. Following point-pass, 

the voxels cannot capture frequencies higher than their Nyquist sampling frequency.  
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Discussion 

Summary of the results 

The main frequency of the organization in cat area 17 is 0.99 ± 0.05 cycle/mm (Table 3-I; 

Fig. 3-3D). The voxel size homologous to that used in human studies of orientation decoding is 

1.50 mm, making it possible to capture frequencies of 0.333 cycle/mm or lower. Two bands of 

cortical frequencies showed elevated selective response to oriented gratings, one around the main 

frequency of the organization, and the other at frequencies lower than 0.36 cycle/mm. Following 

low-pass filtering, the CNR (Fig. 3-5) and successful decoding rate (Fig. 3-6) obtained with the 

homologous voxels and cut-off frequencies higher than 0.36 cycle/mm were not different from 

those obtained with the same voxel size and cut-off frequency of 0.333 cycle/mm. Following point-

pass filtering, the decoding accuracies obtained with the homologous voxel size and point-pass 

frequencies of 0.333 cycle/mm or lower were higher than chance level (Fig. 3-6). Homologous 

voxel sizes that can capture information from the irregularity regime include 0.25, 0.50, and 0.75 

mm in cat area 17, corresponding to 0.5, 1.0, and 1.5 mm in human area V1. 

Decoding of orientation based on MION CBV with no contribution from large blood 

vessels 

One of the mechanisms proposed to underlie the decoding of information in fine structures 

by relatively large voxels is the contribution of macroscopic blood vessels. The idea is that draining 

regions that cover cortical maps and columns non-homogeneously may cause selective responses 

of their corresponding blood vessels (Kamitani and Tong, 2005; Gardner et al., 2006; Kamitani 

and Tong, 2006; Kriegeskorte and Bandettini, 2007; Gardner, 2010; Shmuel et al., 2010; 

Thompson et al., 2011). By employing MION-based CBV-fMRI, we can rule out any contribution 

of macroscopic vessels to our data. Macroscopic vessels contain a high density of MION, which 

causes much faster dephasing and a significantly shorter T2* than those in gray matter regions. If 

a voxel lies entirely within a blood vessel, it shows virtually no functional signal and therefore no 

signal change in response to stimuli. Our study was performed using high-resolution fMRI (in-

plane voxel size of ~156 μm), thus any large blood vessel appears as a drop in the MRI signal (Fig. 

3-2A) and shows no change in fMRI signal across stimuli. Because of these reasons, the results 

we demonstrate here arise from contributions other than those of macroscopic blood vessels. 
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Yet another mechanism proposed to account for the decoding of fine-scale organizations 

is vasculature-based complex spatiotemporal filtering of neuronal activity (Kriegeskorte et al., 

2010). In part, this concept proposes that information on fine-scale functional organizations 

transforms into signals in larger vessels that can be captured by large voxels. However, MION 

CBV reflects responses from tissue, arterioles, and venules, all belonging to fine-scale vasculature. 

In addition, the continuous, sequential presentation of grating stimuli with no control period in 

between effectively sets the blood volume in large vessels to a steady-state level, which likely 

eliminates any residual information on fine-scale organizations. Therefore, by similar reasoning 

that we ruled out contributions from macroscopic vessels, the possible contributions of complex 

spatiotemporal filtering of neuronal activity to our results can also be ruled out to a large extent. 

Possible mechanisms left to consider include irregularities in columnar organization and low-

frequency/large-scale organizations. 

Because MION CBV maps the fine-scale organization with high SNR and spatial 

specificity, it is optimal in terms of spatial specificity of the functional imaging response relative 

to the site of increased neurophysiological measures (Fukuda et al., 2006). Therefore, we consider 

that the functional maps that we analyze accurately reflect the underlying neurophysiological 

responses. In other words, factors such as the BOLD PSF do not play a significant role in shaping 

our results. Because of this, our present study is close to reflect the question of whether decoding 

based on voxels homologous to those used in human decoding studies can decode the fine-scale 

organization of neurophysiological activity, with no confounds of smoothing or contributions from 

macroscopic blood vessels. Because of the above-mentioned reasons, our study tests whether 

irregularities of the columnar organization or low spatial frequency responses in maps that reflect 

the organization of neuronal responses in a more precise manner than BOLD responses do 

contribute to the decoding of oriented gratings. Therefore, since the contribution of irregularities 

to decoding is negligible in our MION CBV data, irregularities are even less likely to contribute 

to decoding based on BOLD-fMRI responses measured with large voxels.    

Low spatial frequency responses contribute to decoding orientation using large voxels; 

local irregularities likely do not  

If irregularities in the map do not exist, then the cortical orientation preference map 

constitutes one single spatial frequency. Therefore, by definition of irregularities, if irregularities 

exist the columnar organization involves a distribution of frequencies, including frequencies lower 
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than the main frequency of the organization (Rojer and Schwartz, 1990; Chaimow et al., 2011). 

Indeed, in Fig. 3-3 we show that the CNR of differential orientation maps shows a peak at 

0.99±0.05 cycles/mm and a distribution of frequencies around the peak with an FWHM of 

0.56±0.14 cycles/mm. Therefore, with an appropriate voxel size, irregularities in the orientation 

map within cat area 17 may contribute to decoding.  Indeed, using voxels with 0.5 mm edges, 

Shmuel et al. (2010) demonstrated contributions to the decoding of the stimulated eye in human 

subjects from frequency components lower than the main frequency of the organization (~0.5 

cycle/mm). 

However, do irregularities in the organization contribute to orientation decoding using 

voxels that are 1.5 times larger than the average cycle length of the organization? The critical 

factor in addressing this question is the width of the distribution of frequencies around the main 

frequency of the organization. If this distribution is wide enough, low-frequencies that still belong 

to it can possibly be captured by voxels that are 1.5 times larger than the average cycle length of 

the organization. 

For orientation maps in cat area 17, the curve of mean CNR (Fig. 3-3D) shows a local 

maximum at 0.99 cycle/mm, which represents the main cycle of the orientation map. Based on 

considerations including the spatial frequency of human ocular dominance column (ODC) maps 

(~2 mm/cycle) and the similar cycle length of ODC and orientation maps in macaque V1 

(~0.8mm,Bartfeld and Grinvald, 1992), we expect that the main cycle length of human orientation 

maps is ~2 mm or even shorter (Yacoub et al., 2008). Therefore, the 3×3×3 mm3 voxels used by 

Kamitani and Tong (2005) and Haynes and Rees (2005) were 1.5 times larger than the main cycle 

of the orientation map in humans (3 mm voxels / 2 mm cycle = 1.5). We defined the size of the 

voxel homologous to that used by Kamitani and Tong (2005) and Haynes and Rees (2005) in 

human subjects to be 1.5 times larger than the main cycle of the orientation map in our cat area 17 

data (1.5×1 mm = 1.5 mm). The largest frequency that can be captured by such a voxel is 0.33 

cycle/mm, which is slightly lower than the frequency at the trough (0.36 cycle/mm).  

The curve of mean CNR (Fig. 3-3D) also shows a local minimum at 0.36 cycle/mm. It is 

reasonable to define this trough as the frequency that separates the distribution of frequencies that 

underlie local irregularities in the organization (frequencies higher than the trough frequency) and 

lower-frequencies. We consider this trough frequency or a frequency slightly higher to be the 

lowest frequency belonging to the distribution of frequencies that constitute the local irregularities. 
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The largest frequency that can be captured by the homologous voxel is 0.33 cycle/mm, which is 

lower than the frequency at the trough (0.36 cycle/mm). We therefore conclude that local 

irregularities in the organization do not contribute to the CNR and to successful decoding when 

sampled using a homologous voxel size. 

An argument can be made based on expected continuity of the organization in the 

frequency space, suggesting that the trough cannot represent an all-or-none change from the 

irregularity regime to the low-frequency regime. In other words, part of the power of frequencies 

lower than the trough frequency could belong to the irregularities. To evaluate whether the CNR 

curve possibly reflects superimposed contributions from local irregularities and from lower 

frequencies, we fitted the curve with two overlapping Gaussian curves. We show here the 

combined fit, including a baseline CNR of 0.3 (Fig. 3-8A) and the individual fit with the baseline 

removed (Fig. 3-8B). The trough of the combined CNR curve corresponds to the intersection 

between the two individual curves. Similarly, Figure 3-8C shows the combined fit to the average 

decoding accuracy, including a baseline accuracy of 53%, whereas Figure 3-8D presents the 

individual fit with the baseline removed. This analysis shows that even if one assumes a model 

where part of the power in frequencies below the trough frequency is considered as part of an 

extended irregularities regime, the contribution of the irregularities to low-frequencies is negligible. 

We have shown that the CNR curve shows two frequency regimes with elevated power: 

one associated with the main frequency of the organization and the other at low-frequencies. An 

argument can theoretically be made that the increased low-frequency power is possibly an artefact 

of the point-pass FFT filtering performed on the masked region zero-padded to a rectangular region. 

In other words, rather than observing true low-frequencies of the neuronal organization, 

introducing the ROI mask into the otherwise homogenous zero-padded rectangle may create these 

low-frequencies. In order to evaluate such an argument, we computed the autocorrelation 

involving voxels strictly within the masked ROI, effectively eliminating the concern of employing 

any zero-padded voxels. 
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Figure 8. Evaluating the possibility of overlapping regimes of irregularities and low-

frequencies. 

A)  The mean CNR as a function of frequency from Fig. 3-3D was fitted with two Gaussians, one 

centered on the local irregularity band (amplitude = 0.225, mean = 1.00, sigma = 0.37) and the 

other centered on the low-frequency regime (amplitude = 0.130, mean = 0.13, sigma = 0.20).  B) 

The two Gaussian curves plotted separately. The Gaussian associated with the local irregularities 

is plotted in red and the one centered on the low-frequency regime is plotted in black. C) and D) 

show the mean decoding accuracy for 2 orientations from Fig. 3-6 fitted with two Gaussians 

similarly to the fit presented in A) and B). The Gaussian centered on the local irregularity band 

has amplitude = 32%, mean = 1.00, and sigma = 0.43. The Gaussian centered on the low-frequency 

regime has amplitude = 14%, mean = 0.13, and sigma = 0.15. 
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The auto-correlation of the CNR maps was computed by multiplying the CNR from each 

pair of voxels within the ROI, and averaging the results in bins as a function of the cortical distance 

separating the two voxels. In this manner, the 2D autocorrelation collapses into 1D (Fig. 3-9A). 

We then resampled the 1D auto-correlation from 0 to 14 mm with a step-size of 0.01 mm. Finally, 

the spectral density was computed by taking the absolute of the Fourier transform of the resampled 

autocorrelation (Fig. 3-9B). We show here that the regimes of elevated power, one around the main 

frequency of the organization and the other at low-frequencies, and the trough between them can 

be observed even with the autocorrelation not involving any zero-padding voxels. We therefore 

conclude that the increased power at low-frequencies is inherent to the neuronal organization. 

Importantly, the low-frequencies could not take on an important role simply because of an 

artefact of point-pass FFT filtering performed on the masked region zero-padded to a rectangular 

region. The reason is that the masked region was applied in an identical manner to all orientation 

maps and conditions, including 2-, 4-, and 8- orientations decoding. All decoding performed on 

maps that exclusively contained frequencies lower than the trough frequency showed decoding 

success rates that were higher than chance level. This cannot be explained by the point-pass or the 

low-pass filtering of the maps masked by the ROI, since the mask was identical for all conditions.  

Therefore, the homologous voxel size, which can capture frequencies of 0.33 cycles/mm or 

lower, can capture frequencies in the low-frequency regime but it is too large to capture any 

frequency in the irregularities domain. This is indeed reflected in the CNR (Fig. 3-5) and in the 

successful decoding rate obtained by the homologous voxels (Fig. 3-6). Following point-pass 

filtering (that is, of information specific to the frequency), the successful decoding rate using the 

homologous voxel size showed values higher than chance level for the low-frequencies regime 

(0.333 cycle/mm or lower, except for the mean response). Following low-pass filtering, the 

decoding accuracy using the homologous voxel size was significantly higher than chance level for 

all frequency cut-offs, even for frequency cut-off within the low-frequency regime. These findings 

show that the low-frequency regime carries information about the stimulus orientation. 

Importantly, both the CNR and the decoding success rates obtained with the homologous voxel 

size and cut-off frequencies higher than 0.36 cycle/mm (the “irregularities” frequency regime) 

were not different from those obtained with the same voxel-size and cut-off frequency of 0.333 

cycle/mm. These results further support our conclusion that when sampling with the homologous 
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voxel size, the low-frequency regime contributes to successful decoding, whereas irregularities in 

the organization do not. 

 

 

 

 

Figure 3-9. Autocorrelation-

based spectrum analysis of 

the ROI. 

A)  1D autocorrelation of a 2D 

CNR map. The 1D 

autocorrelation of the CNR was 

computed by multiplying the 

CNR of each pair of voxels in 

the ROI, and averaging the 

results as a function of distance 

between the 2 voxels. In other 

words, the x-y voxel shift 

between each pair of voxels 

was projected into 1D by taking 

the absolute distance. B) 

Average of spectral density 

across 20 CNR maps (5 cats x 4 

orientation pairs). The spectral 

density was computed by 

averaging the absolute value of 

the Fourier transform of the 1D 

autocorrelation obtained from 

each of the CNR maps. It was 

smoothed with a moving 

average kernel of 3 points.  

 

 

 

 

 

As discussed above, our MION CBV-fMRI measurements reflect the neuronal orientation 

preference map better than BOLD measurements do (Mandeville et al., 2001; Keilholz et al., 2006; 

Zhao et al., 2006; Smirnakis et al., 2007; Poplawsky and Kim, 2014). Our MION CBV 

measurements show no contributions of irregularities in the organization to decoding. Therefore, 



53 

 

by taking into account the fact that BOLD response is expected to be less spatially specific than 

the MION BOLD-fMRI response, BOLD imaging is even less likely to reflect the direct 

contributions of irregularities in the fine-scale organization to decoding. 

Our conclusion, ruling out contributions from local irregularities in the columnar 

organization to decoding, is at odds with the conclusion made by Swisher et al. (2010). These 

authors used high-field, high-resolution (0.3125 mm) BOLD-fMRI and multivariate pattern 

analysis to determine the spatial scales at which orientation-selective information can be found in 

cat area 18. Similarly to our results, they used high-resolution data to show a strong orientation 

signal at the scale of individual columns and reliable orientation bias at spatial scales of several 

millimeters. They concluded that their results demonstrate a reliable millimeters-scale orientation 

signal, likely emerging from irregular spatial arrangements of orientation columns and their 

supporting vasculature. There are several possible reasons that could account for the discrepancy 

between our conclusions and those made by Swisher et al. (2010) with regard to contributions 

from local irregularities. Firstly, while we obtained our data from cat area 17, Swisher et al. (2010) 

obtained theirs from area 18. Area 18 possibly features a broader elevated frequency band around 

the main frequency of the organization, allowing for the capture of information from frequencies 

lower than the main frequency of the organization, but higher than the large-scale organization 

regime. In addition, although Swisher et al. (2010) applied low-pass and high-pass spatial filtering, 

they used small voxels that could capture the main frequency of the organization. In contrast, we 

base our conclusion on voxels homologous in size to those used in human decoding studies. In 

addition, we simulated fMRI k-space sampling, which eliminates contributions from frequencies 

higher than its Nyquist frequency (half of the inverse of the sampling interval). 

Voxels homologous to those used in human studies at a resolution higher than 3×3×3 mm3  

Recent decoding studies employ higher resolution (1.5×1.5×1.5 mm3, Mannion et al., 2010; 

1.0×1.0×1.0 mm3, Swisher et al., 2010; 2.0×2.0×2.0 mm3, Alink et al., 2013; Freeman et al., 2013) 

than the 3×3×3 mm3 previously applied by Kamitani and Tong (2005) and Haynes and Rees (2005). 

Considering the corresponding homologous voxels in our data, we expect that fMRI of human area 

V1 using voxels no larger than 1.5×1.5×1.5 mm3 and suppression of signals from macroscopic 

vessels as is in our data could theoretically capture information from the local irregularities of the 

orientation map. In practice, the capacity to capture such information also depends on the SNR, 

subject movement, and various other factors crucial to high-resolution fMRI.              
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Effect of spatial filtering 

Our findings show the effect of spatial filtering on the success rate of orientation decoding. 

Although low-frequencies indeed contribute to successful decoding, when using voxels small 

enough to capture the main frequency of the organization, the best performance can be obtained 

when one isolates the information around that same frequency. Under these conditions, the success 

rate obtained following point-pass filtering around the main frequency of the organization is higher 

than the success rate following any low-pass filtering. In addition, decoding following low-pass 

filtering performs best when the filtering cut-off is at the main cycle of organization, or slightly 

higher. 

Although our conclusions with regard to the contributions of irregularities differ from those 

made by Swisher et al. (2010), the observations we report here on the effect of spatial filtering are 

nevertheless consistent with their results. Swisher et al. (2010) used BOLD-fMRI at a sampling 

resolution sufficiently high for capturing orientation columns in cat area 18. These authors indicate 

that when using high-resolution imaging, the orientation-selective signal peaks at the frequency of 

the cortical columns, but includes a coarse-scale, broad-spectrum bias component extending to a 

millimeters-scale. Furthermore, our results are consistent with their observation that the 

information available on scales of several millimeters is largely redundant with that present at 

columnar levels. Hence, acquiring data at a resolution higher than the Nyquist sampling frequency 

associated with the main frequency of the organization allows for a quantum leap in the success 

rate of decoding information conveyed by fine-scale organizations. 

Conclusions 

We previously ruled out aliasing contributions to the decoding of fine-scale organization 

by large voxels (Chaimow et al., 2011). In addition, we estimated that the contributions from local 

irregularities in V1 are very small, i.e. insufficient to account for the classification performance 

reported at 3 T using 3×3×3 mm3 voxels (Chaimow et al., 2011). Here we rule out contributions 

from local irregularities in the cortical orientation map of cat area 17. Hypothesized mechanisms 

that may still contribute to successful decoding using BOLD-fMRI include low-frequency 

responses (Figures 3-3, 3-5, and 3-6), functionally biased responses of macroscopic blood vessels, 

and complex spatiotemporal filtering of neurophysiological activity.    
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Preface to Chapter 4 

Chapter 4 is the second of two chapters that address aim 1: ‘to unravel the mechanisms 

underlying hemodynamic response based decoding of oriented gratings using coarse voxel 

sampling’. In Chapter 3 we used contrast-agent-based CBV-fMRI data that were acquired with 

continuous stimulation, eliminating possible contributions from both macroscopic vessels and 

complex spatiotemporal filtering by fMRI voxels. Using this data acquisition paradigm, we 

demonstrated that in cat area 17, contributions from macroscopic vessels or from complex 

spatiotemporal filtering are not necessary for decoding orientation. In addition, we demonstrated 

that low-frequency components of the organization contribute to decoding and irregularities do 

not. Do these results generalize over functional organizations for preferred orientation? And do 

macroscopic vessels and complex spatiotemporal filtering contribute to decoding of orientation? 

In this chapter, we acquired optical imaging responses from cat area 18 to oriented gratings 

presented in an event related paradigm. We computed relative changes in deoxy- and total-

hemoglobin, which are analogous to BOLD- and CBV-fMRI, respectively. This data-acquisition 

paradigm allows for the evaluation of contributions of irregularities and low-frequency 

components of the organization, and for contributions from macroscopic blood-vessels. In addition, 

it allows the evaluation of overlap and redundancies in information obtained from these 

components. Lastly, it allows testing whether classification based on the spatiotemporal response 

yields better decoding accuracies than that based on the spatial pattern of the response averaged 

over time.  
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Abstract 

Multivariate machine learning algorithms can decode the orientation of grating stimuli 

from coarsely (3×3×3 mm3) sampled fMRI data. Six alternative mechanisms have been 

hypothesized as candidates to contribute to decoding of information encoded in fine scale 

structures: (I) aliasing of high spatial-frequency components of the columnar organization by the 

large voxels; (II) random local irregularities in the functional organization; (III) very low spatial 

frequencies reflecting large-scale components of the organization; (IV) orientation selective 

responses near the retinotopic edge of the orientation stimuli; (V) selective responses of 

macroscopic blood vessels, and (VI) fMRI voxel complex spatiotemporal sampling that transforms 

finely organized neuronal activity to more coarsely organized vessel responses. Here we aimed at 

evaluating contributions from local irregularities and low spatial-frequency responses from gray 

matter, from macroscopic vessels and from information conveyed by the spatiotemporal evolution 

of the hemodynamic response. To this end, we computed total- and deoxy-hemoglobin responses 

to oriented grating stimuli from optical imaging of cat area 18. We defined voxels homologous in 

size to those used in fMRI-based decoding in humans, by comparing the main frequency of the 

orientation map in cat area 18 to that in human V1.  

The main frequency of the organization in cat area 18 is 0.84 ± 0.05 cycles/mm. In the 

frequency domain, the responses around this main frequency of the organization decreased 

gradually towards lower or higher frequencies, creating a wide Gaussian-like distribution. The 

voxel size homologous to that used in human studies of orientation decoding is 1.80 mm, making 

it possible to capture frequencies of 0.278 cycles/mm (or lower), which was within the lower-

frequency end of the irregularities domain. Large vessel responses using the homologous voxel 

size showed decoding accuracies higher than chance level but lower compared to those from gray 

matter regions. The decoding accuracies using combined responses from large vessels and gray 

matter were comparable to those obtained exclusively from gray matter regions. The decoding 

accuracies obtained from total-hemoglobin responses were higher than those obtained from deoxy-

hemoglobin responses. Lastly, spatiotemporal time-series does not improve decoding accuracy 

compared to that obtained from the spatial response averaged over time. Our results show that 

whether irregularities contribute to decoding depends on features of the area-specific columnar 

organization. They further show that while responses from macroscopic vessels can be orientation 

selective, their contributions to decoding are redundant. 
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Introduction 

Functional MRI (fMRI) localizes sites showing increased neuronal activity by measuring 

metabolic and hemodynamic responses. Since fMRI relies on indirect measures of neuronal 

activity, with relatively poor specificity to the sites of increased neuronal activity, resolving 

cortical columns using current fMRI techniques is not trivial. However, several studies have shown 

that it is possible to probe orientation selective signals in human area V1 using blood-oxygenation 

level dependent (BOLD) fMRI. These studies employed multivariate analyzes, including the use 

of a supervised classifier to decode the presented stimuli. Indeed, recent studies have demonstrated 

that multivariate machine learning algorithms can decode visual stimuli from fMRI data (Haxby 

et al., 2001; Haynes and Rees, 2005; Kamitani and Tong, 2005). Using gradient-echo (GE) BOLD-

fMRI at 3 Tesla (T), these studies decoded information thought to be encoded only in fine-scale 

structures, i.e. orientation columns (Haynes and Rees, 2005; Kamitani and Tong, 2005). This result 

is surprising given the large size of the voxels (3×3×3 mm3) relative to the expected mean cycle 

length of the orientation map in human area V1 (~2 mm; see methods section). This result is even 

more surprising considering the relatively wide point-spread function (PSF) of GE BOLD-fMRI 

signals at 3T (~3.5 mm, Engel et al., 1997; Parkes et al., 2005) and even that estimated at 7T (~2 

mm, Shmuel et al., 2007). The mechanism by which low-resolution imaging decodes information 

represented at a fine scale relative to the voxel size is unclear. Here we aim to determine the 

mechanisms that can potentially contribute to decoding oriented grating stimuli based on invasive 

optical imaging of intrinsic signals in cat area 18.  

Six alternative mechanisms have been hypothesized as candidates to contribute to decoding 

of information encoded in fine scale structures. The first suggested hypothesis posited that aliasing 

of high spatial-frequency components of the columnar organization by the large voxels gives rise 

to a decoding rate higher than chance level (Boynton, 2005). This hypothesized “aliasing” 

mechanism, also termed the “hyperacuity” mechanism (Op de Beeck, 2010) involves components 

of the columnar organization with frequencies higher than the Nyquist frequency, which were 

thought to contribute to the sampled voxels. However, we have ruled out this hypothesized 

mechanism (Chaimow et al., 2011), based on the fact that fMRI samples data in the frequency 

space, with the highest frequency in the k-space being the highest frequency available to the 

sampling process. Therefore, there are five remaining hypothesized mechanisms. (I) It was 

hypothesized that random local variations and irregularities in the functional organization 
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contribute to decoding (Kamitani and Tong, 2005; Haynes and Rees, 2006; Kriegeskorte and 

Bandettini, 2007; Swisher et al., 2010) The argument is that due to irregularities in columnar 

patterns, each voxel overlaps columns with different preferences unequally, resulting in biases 

towards specific preferences. (II) Very low spatial frequencies reflecting large-scale components 

of the organization were proposed to play a role as well (Op de Beeck, 2010; Freeman et al., 2011; 

Freeman et al., 2013; Wang et al., 2014). These include the oblique effect (Furmanski and Engel, 

2000; Sun et al., 2013) and the radial bias effect (Sasaki et al., 2006; Clifford et al., 2009; Mannion 

et al., 2010; Freeman et al., 2011; Freeman et al., 2013; Sun et al., 2013) associated with the 

representation of orientation. For decoding the stimulated eye, a relevant large scale organization 

is formed by the higher amplitude response to stimulation of the contra-lateral eye (Tychsen and 

Burkhalter, 1997). (III) An alternative mechanism to the large-scale organization (item II above) 

has been recently proposed. Observations made by Carlson (2014) suggest that the edges of 

oriented grating stimuli elicit responses that are orientation specific. Similarly, Wang et al. (2014) 

identified a direction-selective response bias in human visual cortex that predicted motion-

decoding accuracy. This direction selective responses depended on the shape of the stimulus 

aperture rather than the absolute direction of motion. The response amplitudes gradually decreased 

with distance from the stimulus aperture edge corresponding to motion origin in V1, V2, V3, thus 

explaining the higher motion-decoding accuracies reported previously in early visual cortex. 

Alternatively (IV), veins draining regions that cover cortical maps and columns non-

homogeneously may cause selective responses of their corresponding blood vessels (Kamitani and 

Tong, 2005; Gardner et al., 2006; Kamitani and Tong, 2006; Kriegeskorte and Bandettini, 2007; 

Gardner, 2010; Shmuel et al., 2010; Thompson et al., 2011). In this scenario, selective signals from 

macroscopic blood vessels can be captured by large voxels; therefore, they can contribute to the 

decoding of stimuli encoded at the resolution of cortical columns. Evidence in support of this 

phenomenon was provided by (Gardner et al., 2006; Shmuel et al., 2010; Thompson et al., 2011). 

Lastly (V), Kriegeskorte et al. (2010) introduced a model in which fMRI voxels sample neuronal 

activity as complex spatiotemporal filters. Each voxel samples the neuronal activity pattern in its 

vicinity through a unique fine-grained structure of venous vessels that underlie its blood oxygen 

level-dependent signal. Temporal properties of the hemodynamics (e.g., the speed of the blood in 

the capillary bed) can shape spatial properties of a voxel's filter (e.g., how finely structured it is). 

A voxel, together with its signal-supplying vasculature, may best be thought of as a complex 
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spatiotemporal filter. Such a filter may have greater sensitivity to high spatial frequencies than the 

compact kernels, i.e. Gaussian or averaging-box kernels typically used to characterize voxel 

sampling (both of which would act like anti-aliasing filters that minimize such sensitivity). 

Kriegeskorte et al. (2010) described how such a model can account for representation of high-

frequency components of the cortical maps by the sampled voxels and for decoding of information 

conveyed by fine structures.  

In the current study, we aim to test whether contributions from mechanisms I, II and IV 

above, namely local irregularities in the organization, low frequencies and/or macroscopic blood 

vessels contribute to successful decoding. Using BOLD-fMRI, it is not trivial to assess 

contributions from these proposed mechanisms because cortical fMRI responses are likely the 

combined contributions of these intertwined mechanisms. Therefore, in order to be able to evaluate 

these 3 proposed mechanisms together, we imaged cat area 18 using optical imaging of intrinsic 

signals. This method allows for high-resolution imaging of orientation modules at high SNR 

(Bonhoeffer and Grinvald, 1993b; Shmuel and Grinvald, 2000). Moreover, it makes it possible to 

quantify spectrally decomposed deoxy-hemoglobin (HbR) and total-hemoglobin (HbT) responses, 

which physiologically correspond to BOLD- and cerebral-blood volume (CBV) fMRI, 

respectively.  

Although pial blood vessels do carry information about the presented stimuli, this 

information is small relative to that conveyed by the gray matter regions. In contrast to our previous 

results obtained from cat area 17, irregularities in the fine-scale organization of orientation maps 

in cat area 18 can potentially contribute to decoding of oriented gratings. We conclude that whether 

irregularities in the fine scale organization contribute to decoding depends on the area-specific 

features of the orientation map. 

Materials and Methods 

A detailed description of the animals, anesthesia, data acquisition, selection of frames for 

averaging the response over time, and spectral decomposition of absorption obtained from multiple 

wavelength into hemoglobin species can be found in (Chapter 5). Here we analyze the mechanisms 

underlying decoding the orientation of grating stimuli using HbT and HbR responses, that reflect 

CBV-fMRI and BOLD-fMRI, respectively. The analysis of HbT responses allows us to relate the 

current study to a previous study we pursued with MION-based fMRI of CBV (Chapter 3). 
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Data pre-processing 

We sought to determine whether contributions from local irregularities in the organization, 

low frequencies and/or macroscopic blood vessels contribute to successful decoding of orientation 

stimuli. To this end, we quantified decoding success rate with different subsets of inputs that 

represent different isolated contributions. The cortical response maps underwent spatial 

manipulations in order to isolate the intertwined contributions from gray matter regions and blood 

vessels. For each of these two compartments, we analyzed contributions as a function of cortical 

spatial frequency. 

Delineation of the ROI 

Fig. 4-1A shows the cortical image obtained under illumination wavelength of 530 nm from 

one hemisphere. We used two maps to delineate a cortical region in area 18 as the ROI for further 

analysis. These included the average HbT differential response to one pair of orthogonal 

orientation stimuli (Fig. 4-1B) and the pixels that responded significantly to at least one of the 8 

orientation stimuli (two-tail t-test, p < 0.05, n=30-40 trial). We then delineated the responding 

region manually, such that it encompassed the main spatial segments that responded to orientation 

stimuli (green dashed curve in Fig. 4-1C).   

Cortical map manipulation 

Within the defined ROI, we first split the cortical image into 3 components: pixels that 

corresponded to gray matter (GM), pixels that corresponded to large veins with diameter ≥0.15mm 

(LV), and pixels that belonged to the union of these two classes, i.e. pixels that corresponded to 

one of these regions (GM&LV). For HbR analysis, we excluded the visible small veins (with 

diameter smaller than 0.15 mm) from further analysis, in order to clearly differentiate between 

contributions from gray matter and macroscopic veins. We also excluded contributions from all 

arteries as they show minimal changes in HbR content and BOLD fMRI signal. For HbT analysis, 

we kept the same exclusions, in order to compare the 2 types of measurements, HbR and HbT, 

based on contributions from the exact same tissue. To this end, we first segmented the pial blood 

vessel regions and determined their respective diameters (Chapter 5). To allow for an artifact-free 

spatial filtering of only one modality, e.g. GM, we filled the masked regions by means of a 

smoothing algorithm (Garcia, 2010). We present the process for obtaining the filled in map for 

GM in Fig. 4-1 D to G. Panel D presents the segmented pial vessels, and panel E demonstrates the 
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classification of these vessels to arteries (red) and veins (blue). Panel F presents an overlay of 

classified blood vessels superimposed onto the differential orientation map presented in B. Finally, 

panel G presents the same map, following the masking out and the filling-in of all blood vessel 

regions by the smoothing algorithm. This effectively represents the GM filled-in map.  

Note that to obtain the filled in map for GM, we filled in the regions belonging to all vessels. 

To obtain the filled in map for LV, we filled in the regions belonging to GM, all arteries and small 

veins. To obtain the filled in map for GM&LV, we filled in the regions belonging to all arteries 

and small veins. Any singularities of the orientation map, such as the pinwheels and fractures were 

included in the analysis, since they contribute to the irregular organization. 

 

 
Figure 4-1. Filling in interpolated differential values in spaces occupied by pial blood vessels. 

A) Raw image acquired under illumination of the green LED (530 nm) and used for creating the 

blood vessel mask. B) Differential cortical response to two orthogonal orientation stimuli. C) 

Pixels on cortex that showed statistically significant response to at least one of the orientation 

stimuli, and the manually delineated ROI that encircled the responding region (green dashed line). 

D) Mask of edges of blood vessels obtained by applying the classification algorithm on the image 

acquired under green illumination, which is presented in the background (same image as in A).  E) 

The blood vessels were further separated into arteries (in red) and veins (in blue) based on their 

response under green (530 nm) and orange (617 nm) illumination. Under orange illumination, HbR 

is washed out of veins upon cortical activation (this is the hyper-oxygenated BOLD response); 

hence, veins appear brighter relative to baseline, whereas arteries remain dark. F) Differential 

orientation map, with the pial vessels masked out. G) The missing values in spaces occupied by 

vessels were filled in according to the algorithm suggested by (Garcia, 2010). 
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Spectrum of orientation maps, and voxels homologous to those used in human decoding 

studies 

To obtain the spectrum of orientation maps and the voxel size homologous to that used in 

previous decoding studies in humans, we employed methods similar to those described in (Chapter 

3). We computed the differential contrast to two orthogonal orientations, the corresponding noise 

and contrast-to-noise ratio, CNR (Fig. 4-2A). We defined the voxel-by-voxel differential contrast 

of one map as the difference in cortical responses to the two orthogonal stimuli. We defined the 

noise as the standard deviation of differential contrast across trials. We defined the voxel-by-voxel 

CNR for the map as the ratio of absolute differential contrast to noise. 

In order to determine the main cycle length of the orientation map, we computed the mean 

CNR of the GM filled-in map as a function of spatial cortical frequency. We first computed the 

2D fast Fourier transform (FFT) spectrum for each of the normalized response maps in the 4-

dimensional normalized data matrix (see previous Chapter). The filtering was performed on the 

response maps limited within the delineated ROI and zero-padded to have a rectangular output of 

20×20 mm. We then masked the FFT for point-pass filtering at center frequencies from 0.05 to 

2.40 cycles/mm, with a step size of 0.05 cycles/mm. The masked FFT was transformed back to 

image space. We then computed the differential contrast map, noise map, and CNR map for each 

pair of orthogonal orientation stimuli from each animal (Fig. 4-2B presents an example for point-

pass filtering with 0.833 cycles/mm). Finally, a mean of absolute CNR was calculated spatially 

across the CNR map, as a function of center frequency.  

Next, in order to determine the peak frequency of the organization separately for each map, 

we fitted a Gaussian curve to the data points between 0.50 and 2.40 cycles/mm. Fig. 4-2C presents 

two examples obtained from 2 different animals. Finally, we determined the main frequency of the 

orientation map as the center of the Gaussian curve. We performed this process separately for each 

map obtained from a pair of orthogonal orientations for each animal. The average peak was at 0.84 

± 0.06 cycles/mm (Fig. 4-2D; n = 18; 4 differential contrast maps per animal, 5 animals, 2 outliers). 

As explained in our previous work (Chapter 3), the ratio between the voxel edge used by Kamitani 

and Tong (2005) and Haynes and Rees (2005) and the cycle of orientation maps in human subjects 

is ~1.5. We defined the voxel size in cat area 18 which we consider homologous to those used in 

human decoding studies as 1.5 times the average length of the orientation cycle, i.e. 1.5 × (1 ÷ 0.84 

cycles/mm) ≈ 1.80 mm (rounded up from 1.7857 mm). Since the standard deviation of the peak 
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orientation cycle across animals was small (0.06 cycles/mm), we applied one standard homologous 

voxel of size of 1.80 mm across all datasets. 

 

 

 

Voxel positioning, filtering and binning 

Lastly, we placed a rectangular ROI using a group of these large homologous voxels, after 

determining their loci such that there was a maximal overlap between the homologous voxels 

matrix and the previously defined ROI (Fig. 4-1C). The orange dots within the homologous voxels 

matrix in Fig. 4-3A highlight those voxels whose spatial overlap with the ROI was ≥ 75%. These 

voxels defined the area used for the analysis, including the input to the Support Vector Machine 

(SVM) decoding. 

Following the determination of the homologous voxel size (1.80 mm), we pre-processed 

the normalized data in two stages: filtering and binning (Chapter 3). We zero-padded the ROI, 

transforming it into a square with each side equal to 6-homologous-voxel edges (6 × 1.80 mm = 

10.8 mm). The lowest frequency obtainable, and the step size (frequency resolution in the FFT), 

was then: 1 ÷ 10.8 = 0.093 cycles/mm. We then filtered the data using an ideal spatial 2D FFT 

low-pass or point-pass filter (point-pass: 1 frequency passing band-pass) with the following 

frequency cut-offs: 

[0 (=mean response); 1; 2; 3; 4; 6; 9; 12; 15; 18; 24; 30; 36; 48] ÷ 1.80 ÷ 6 cycle per mm. 

Note that here we define filtering with 0 frequency as the mean response over the ROI, which 

represents the global bias towards one orientation or the other.  

Fig. 4-3B presents an example of low-pass filtered differential map, with cut-off frequency 

0.833 cycles/mm. 

In the second stage of data pre-processing, we applied spatial binning: we simulated larger 

fMRI voxels of several sizes, including the size of the homologous voxel: 

[1/16; 1/12; 1/8; 1/6; 1/4; 1/3; 1/2; 1] × 1.80 mm. 

Fig. 4-3C presents an example of spatial binning with the side of each bin equal to half of 

the homologous bin size, following the filtering presented in Fig. 4-3B. 
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Figure 4-2. Main frequency of the orientation map. 

A) Differential orientation map, Noise map, and CNR map within the ROI.  B) Differential 

orientation map, Noise map, and CNR map obtained following point-pass filtering of the response 

maps with center frequency of 0.83 cycles/mm. Prior to filtering, zero-padding completed the 

image to a 20×20 mm region in order to have a square output. C) Two examples from 2 different 

animals of the CNR as a function of point-pass frequencies. A Gaussian curve was fitted to the 

segment between 0.5 and 2.40 cycles/mm. D) The mean and standard error of the mean (SEM) of 

the raw CNR values. The average cycle length computed over all 4 pairs of orthogonal orientations 

and 5 animals (N = 18, 2 outliers) was 0.84 ± 0.06 cycles/mm (red arrow). The black arrow 

indicates the frequency of 0.278 cycles/mm, which is the highest that can be captured by the 

homologous voxel. 
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Figure 4-3. Spatial manipulation of cortical maps. 

A) Loci of homologous voxels that maximally overlapped with the ROI. The centers of voxels that 

defined the ROI used for further analysis are marked by a filled orange square. A rectangular 

region was taken to allow for spatial manipulation (orange squares); however, only voxels whose 

overlap with the ROI was larger than 75% were taken as part of the input feature for SVM decoding 

(voxels with filled orange squares inside) B) Ideal spatial FFT2 filtering of various cut-offs were 

applied to the rectangular region determined in A. The example here shows low-pass filtering with 

cutoff frequency of 0.83 cycles/mm. C) Following the filtering, fMRI-like voxel sampling was 

applied at various binning sizes. To this end, the map was first convolved with a sinc function 

followed by point sampling with intervals equal to the standard deviation of the sinc function. 

Pixels that were part of the squares that overlapped with the ROI (green curve in A) with less than 

75% of their area were included in the spatial manipulations presented in B and C but were not 

included as part of the input to the multivariate classifiers. 

 

 

 

 

 

 

Classifiers 

We performed decoding analysis with 3 classifiers. We used linear SVM as the main 

classifier. We used another linear classifier, linear discriminant analysis (LDA), as a control. Note 

that SVM and LDA outperformed other classifiers in a study that compared the performance of 

various classifiers applied to fMRI data (Misaki et al., 2010). In addition, we applied a sparse 

logistic regression classifier (SLR), since it has been shown to perform even better on fMRI data 

(Krishnapuram et al., 2005; Ryali et al., 2010; note that Misaki et al., 2010 did not include sparse 

logistic regression in their comparison). The inputs to the classifiers were binned pixels of the 

cortical response maps captured with the high- spatial-resolution optical imaging of intrinsic signal. 
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Support Vector Machine classifier (SVM)  

SVM (Misaki et al., 2010; Vapnik, 2013) uses the notion of largest margin between the 

separated classes from the decision boundary as its optimization criterion. The support vectors are 

the data points that are closest to the separating hyperplane; these points are on the boundary 

margin. Because it is computationally simpler to solve the dual quadratic problem (e.g., a square 

function always has an extremum), Lagrange multiplier α is applied to the constraints: 

 

Maximize 𝐿(𝛼) = ∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗𝑖,𝑗  

 

Subject to ∑ 𝛼𝑖𝑦𝑖𝑥𝑖𝑖 = 𝜔, ∑ 𝛼𝑖𝑦𝑖𝑖 = 0 

 

 

 

Linear Discriminant Analysis classifier (LDA)  

Fisher’s LDA (Misaki et al., 2010; Duda et al., 2012) projects the multi-dimensional data 

onto one warped dimension such that the ratio of the between-class variance and the within-class 

variance is maximized. The decision boundaries are then placed to discriminate classes. In a two-

class problem, one hyperplane exists along the optimal discriminatory dimension of LDA: 

 

𝝎 ∝ 𝚺−𝟏(𝝁𝑨 − 𝝁𝑩) 

 

Where ω is the hyperplane, µ are the mean vectors of each distribution, and Σ is the within-

class covariance matrix. This covariance matrix, often called the ‘scatter matrix’ in the context of 

LDA, is assumed to be equal between the two classes and is estimated from the training samples 

of both classes.  

Σ𝐴 = ∑ (𝑥 − 𝜇𝐴)(𝑥 − 𝜇𝐴)𝑇

𝑥∈𝜔𝐴

 

 

Σ𝐵 = ∑ (𝑥 − 𝜇𝐵)(𝑥 − 𝜇𝐵)𝑇

𝑥∈𝜔𝐵

 

 

(Σ𝐴 + Σ𝐵) ÷ 2 = Σ 
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Sparse Logistic Regression classifier (SLR) 

Logistic regression (Freedman, 2009) starts off by applying the logistic function, which 

results in values from zero to one: 

𝐹(𝑥) =
1

1 + 𝑒𝑥𝑝(−(𝜔0 + 𝜔𝑇𝑥))
 

 

Because the function F(x) can take any value from negative to positive infinity and the 

output is confined between 0 and 1, it therefore can be regarded as the probabilistic predictor of 

success based on the input variable ‘x’. Hence, one can classify a two-class problem by simply 

thresholding this probability to two outputs: Y = [A, B].    

For determining the coefficients, the linear regression form is expressed in terms of a log-

odds function: 

𝑔(𝐹(𝑥)) = ln
𝐹(𝑥)

1 − 𝐹(𝑥)
= 𝜔0 + 𝜔𝑇𝑥 

 

The coefficients are usually estimated using maximum likelihood estimation. Furthermore, 

by using L1-regularization the logistic regression forces certain coefficients to be zero, creating 

sparseness of regression coefficients, i.e. eliminating redundant coefficients. Unlike linear 

regression, it is not possible to find a closed-form. Hence a numerical iterative process such as 

Newton’s method is applied. 

Decoding Paradigm 

We performed 2-stimuli decoding across 4 different orthogonal pairs of orientation stimuli. 

The cross-validation method was used to avoid potential over-fitting of the classifiers (Kohavi, 

1995). We randomly split the available trials into 10 groups, and performed the training with 9 

groups and the testing with the remaining 1 group. We repeated this process 10 times, leaving each 

of the 10 groups out once. Although we varied the bin size, thus having more pixels available when 

smaller bins were employed, we used a fixed number of features (bins) for the input of the 

classifiers because the number of features influences the overall CNR and the decoding rate 

(Chaimow et al., 2011). Thus, we defined the lowest number of bins available across all the 5 data-

sets at the homologous binning size as our fixed number of bins used across all bin sizes. This 

fixed number was 8 bins. When using small bins, and thus having more than 8 bins available, we 

randomly sampled 8 bins for the analysis. We repeated this process 10 times for each of the 4 
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orthogonal orientation pairs to have an averaged accuracy across data-sets (n = 5 animals × 10 

repetitions) at various filtering and binning parameters. The general decoding procedure was as 

follows: 

9. Choose a binning size 

10. Randomly sample 8 voxels 

11. Choose a frequency cut-off 

12. Perform decoding with leave-one-trial-out cross-validation, with each of the 10 blocks 

left once out 

13. Obtain one mean decoding accuracy from the entire 10 validation datasets 

14. Do steps 3-5 for each of the defined frequency cut-offs 

15. Repeat steps 2-6 ten times (i.e. randomly sample a set of different 8 voxels in each 

iteration) 

16. Do the entire process (steps 1-7) for each of the defined binning sizes 

Once the averaged accuracy matrix is obtained, we statistically tested whether the accuracy 

in each entry (associated with specific filtering and binning parameters) was different than chance 

level (two-tailed t-test, n = 5 data-sets × 10 repetitions of random sampling; corrected for multiple 

comparisons by FDR (Chapter 3). 

Time-series analysis 

We tested whether the concept of complex spatio-temporal sampling could be an important 

factor in contributing to decoding of information conveyed by the fine scale organization of 

orientation selectivity. To this end, we focused on the time span for acquiring one volume of fMRI 

(i.e., 1 TR). In their pioneering decoding studies, Kamitani and Tong (2005) and Haynes and Rees 

(2005) used TRs of 2 s and 1.3 s, respectively. Haynes and Rees demonstrated a decoding rate of 

~80% using single fMRI volumes as the input to the classifier. Hence, if complex spatio-temporal 

filtering was a main contributor to decoding, then it must play a role in decoding of data obtained 

from one TR. Therefore, we used a 2 second long time-series from each of 10 acquired OI images 

as a 3D volume input to the classifier (2 dimensions in space and a third dimension in time). The 

input to the classifiers had 3 dimensions instead of the 2 dimensional cortical image.  

We selected 10 frames of HbR response that were acquired from 1 to 3 seconds following 

the onset of the stimulus. We performed the time-series analysis using bin sizes of 1.8 mm (the 

size of voxel homologous to that used in human decoding studies) or 0.6 mm (which was within 

the range of voxels that gave the highest decoding rates). In contrast to the methods we used for 

the rest of the study, all the binned pixels within the ROI were used as input features to the 
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decoding algorithm. The reason for this is that since we test here results that hypothetically can be 

attributed to spatio-temporal interactions we need to fully cover the space where these interactions 

may take place. We computed the evolution of decoding rate as a function of time. In addition, we 

compared decoding rates obtained from averaging all frames into one static image, 3 dimensional 

(2 dimensions in space, 1 in time) image frames in chronological order, 3 dimensional image 

frames with the order of frames randomly shuffled, and the averaged static image with additive 

Gaussian noise. The standard deviation of the Gaussian noise assigned to any pixel was equivalent 

to that pixel’s standard deviation across the 10 frame long measured response. 

We expect that, if the spatio-temporal information contributes to decoding using the coarse 

fMRI voxels, the classifier should pick up extra information from the 3 dimensional volume inputs 

compared to the 2 dimensional static image. In addition, the decoding rate should be higher for the 

3 dimensional volume inputs that has the measured frame order compared to the 3 dimensional 

input with the order of frames shuffled. 

Results 

Main cycle of organization 

To determine the main frequency of the organization, the differential contrast map, noise 

map, and CNR map (Fig. 4-2B) were obtained from the normalized data matrix that was subjected 

to 2D FFT point-pass filtering of different frequencies. For point-pass filtering, the normalized 

data matrix was zero-padded to a size of 20 mm × 20 mm so that the frequency resolution was 

0.05 cycles/mm in the FFT domain.  For each of the 20 CNR maps obtained from the 5 animals 

and 4 stimuli-pairs, we applied point-pass filtering at various frequencies in the FFT domain. The 

filtered FFT was transformed back to the image domain and the CNR was averaged over the image. 

This process resulted in an estimate of CNR for each frequency (Fig 4-2C shows two examples 

from 2 different animals). We then fitted a Gaussian distribution to the curve of CNR within the 

0.50 to 2.40 cycles/mm segment (Fig. 4-2C). The mean frequency computed over all peaks of the 

fitted Gaussians from 18 differential maps was 0.84 ± 0.06 cycles/mm (Table4- I; Fig. 4-2D; n = 

18; 4 differential contrast maps per animal × 5 animals, 2 outliers; see Table 4-II for the mean 

FWHM of the fitted Gaussians). Hence, the voxel size homologous to that used in human studies 

of orientation decoding was 1.5 × 1 ÷ 0.84 cycles/mm ≈ 1.80 mm (rounded from 1.7857 mm). The 

highest frequency that can be captured by such a voxel is 0.278 cycles/mm (Fig. 4-2D, black arrow). 



71 

 

Note the monotonous decrease in CNR from the main frequency of the organization towards lower 

frequencies including 0 frequency (= the mean response). In contrast to our findings from cat area 

17 (Chapter 3), here there was no trough observed in CNR anywhere between the main frequency 

of the organization and the lowest frequency analyzed (mean response).  

 

 

Table 4-I. Center of the Gaussian fit to the CNR as a function of point-pass center frequency. 

Center of fit (mm) Animal A Animal B Animal C Animal D Animal E 

Orientation-pair 1 0.816 0.560* 0.868 0.697 0.528* 

Orientation-pair 2 0.839 0.868 0.885 0.747 0.907 

Orientation-pair 3 0.816 0.836 0.940 0.949 0.797 

Orientation-pair 4 0.811 0.864 0.788 0.859 0.828 

The average of the centers is 0.84(0.06) cycle/mm, n = 18, 2 outliers (denoted by *, with values 

more than 2 standard deviations away from the mean of the distribution) was not taken into account. 

 

Table 4-II. FWHM of the Gaussian fit to the CNR as a function of point-pass center 

frequency. 

Center of fit (mm) Animal A Animal B Animal C Animal D Animal E 

Orientation-pair 1 0.629 1.227 0.577 0.886 1.239 

Orientation-pair 2 0.870 0.776 0.572 0.819 0.621 

Orientation-pair 3 0.923 1.158 0.671 0.571 0.688 

Orientation-pair 4 0.851 0.932 0.385* 0.645 0.625 

The average of the FWHM is 0.80(0.22) cycle/mm, n = 19, one outlier (denoted by *, with values 

more than 2 standard deviations away from the mean of the distribution,) was not taken into 

account. 

 

 

Decoding accuracy as a function of binning and filtering 

To evaluate the potential contributions of GM, LV and spatial frequency components to 

decoding, we sampled the responses following low-pass filtering, using an fMRI-like K-space 

sampling at different pixel sizes. Figures 4-4 and 4-5 present the results obtained from HbR and 

HbT responses, respectively. The white shaded parts of the accuracy matrices depict the 

combinations of filtering and binning in which the mean of the distribution was not statistically 

different than chancel level (50%, p > 0.05, two-tail t-test, FDR corrected, n = 50). The black 

dashed lines represent the homologous voxel binning size and the maximal frequency that can be 

captured by such binning size.  
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Using HbR responses (Fig. 4-4), the decoding accuracy obtained from GM, LV and GM&LV 

(upper 3 panels) was significantly higher than chance level for every combination of filtering and 

binning parameters, except for low-pass filtering with 0 cycles/mm, which represents the mean 

response (n = 50, 2-tailed t-test, corrected according to FDR, q < 0.05). The decoding accuracy of 

GM and GM&LV remained high (GM: range 66.3%-68.7%, mean±SD 68.0±0.5%; GM&LV: 

66.6-69.3%, 67.8±0.7%) in an L-shaped region consisting of low-pass filtering with cut-off 

frequencies from 0.83 to 1.67 cycles/mm and binning sizes from 0.45 to 0.90 mm. In addition, a 

small region of lower decoding accuracy (GM: range 65.4%-67.1%, mean±SD 66.6±0.5%; 

GM&LV: 65.2%-68.5%, 67.2±0.9%) was observed for cut-off frequencies 2.22 cycles/mm and 

higher and binning sizes of 0.30 mm and lower. A monotonous decrease in accuracy (from ~66.5% 

down to chance level, 50%) was observed with cut-off frequencies decreasing from 0.56 

cycles/mm towards 0. The decoding accuracy of LV was higher (LV: range 55.0%-64.5%, 

mean±SD 61.9±2.2%) than chance level through all combinations of filtering and binning, except 

for decoding using the mean response. Nevertheless, a monotonous decrease in accuracy was 

observed for LV responses too, for cut-off frequencies 0.56 cycles/mm and lower. There were no 

significant differences in decoding accuracies between GM and GM&LV (lower left panel). In 

contrast, for the majority of filtering and binning parameters, we did observe statistically 

significant different decoding rate between the LV and GM&LV (lower right panel).  

 

 

 

 

Figure 4-4. HbR Decoding accuracy using a fixed number of pixels, as a function of low-pass 

filter cutoff frequency and binning. (See next page for figure) 

Decoding accuracy using an SVM classifier. The 3 panels in the upper row present decoding using 

data from gray matter only, large veins (diameter > 0.15mm) only, and  GM&LV: gray matter and 

vessels together (all data are included), as denoted by the label GM, LV and GM&LV, respectively. 

The bottom-left panel presents the differences between decoding accuracies obtained from gray 

matter and large vessels data and that obtained using data from gray matter only. The bottom-right 

panel presents the differences between decoding accuracies obtained from gray matter and large 

vessels data and that obtained using data from large vessels only. The decoding rates are presented 

in matrices, as a function of low-pass filter cut-off frequency and bin size along the vertical and 

horizontal axis, respectively. The vertical and horizontal dashed lines represent the homologous 

voxel size and the highest frequency that can be captured by the homologous voxel, respectively. 

The pixels used as input to the classifier were limited to 8 randomly selected pixels. The color look 

up tables represent decoding accuracy in percent (corresponding to the upper 3 panels) and 
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decoding accuracy difference (corresponding to the bottom 2 panels). Statistical tests were applied 

to each of the matrices, in order to test whether the accuracies were significantly higher than chance 

level (50%, GM, LV, GM&LV) or showing difference (subtraction result different than 0%, 

GM&LV-GM, GM&LV-LV). Statistically significant results were plotted in color (2 tail t-test, 

FDR corrected, alpha 0.05, N = 5 data-sets x 10 repetitions). 

 

 

 

 
Figure 4-4. HbR Decoding accuracy using a fixed number of pixels, as a function of low-pass 

filter cutoff frequency and binning. (See previous page for legend) 
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HbT responses (Fig. 4-5), showed a similar accuracy pattern as a function of filtering and 

binning parameters to that observed for HbR responses. However, on average, the HbT decoding 

rate was higher than that of HbR (difference in GM: 12.7 ± 3.5%, LV: 7.5 ± 2.0%, GM&LV: 12.9 

± 3.2%; mean and SD computed over all entries in the matrix except for those showing results 

with filter cut-off of 0 cycles/mm). The decoding accuracy of GM and GM&LV combined 

remained high (GM: range 81.6%-86.1%, mean±SD 84.1%±1.5%; GM&LV: 81.6%-85.4%, 

83.8%±1.2%) for low-pass filtering with cut-off frequencies from 0.83 to 1.67 cycles/mm and for 

binning sizes from 0.45 to 0.90 mm. In addition, a region of lower decoding accuracy (GM: 78.9%-

81.1%, 80.2±0.8%; GM&LV: 78.2%-81.9%, 80.3%±0.9%) was observed for cut-off frequencies 

of 2.22 cycles/mm or higher and binning sizes equal to or smaller than 0.30 mm. A monotonous 

decrease in accuracy (from ~80.2% down to chance level, 50%) was observed with the cut-off 

frequency decreasing from 0.56 to 0 cycles/mm. The decoding accuracy of LV was higher (LV: 

58.1%-74.1%, 69.4±3.7%) than chance level for all combinations of filtering and binning (except 

for decoding using with the mean response). Nevertheless, a monotonous decrease in accuracy was 

observed for LV responses too, with cut-off frequencies decreasing from 0.56 to 0 cycles/mm. 

There were no significant differences in accuracies between GM and GM&LV (lower left panel). 

In contrast, for all filtering and binning parameters except for cutoff frequency of 0 cycles/mm, 

we did observe statistically significant different decoding rates between the LV and GM&LV 

(lower right panel).  

Our main findings prevail across 3 decoding algorithms 

The results of decoding performance as a function of filtering and binning were 

qualitatively similar across all three decoding algorithms, i.e. LDA, SLR and SVM (supplementary 

Figures 4-1 to 4-4). Thus our main findings do not depend on a specific decoding algorithm. 

However, in the majority of comparisons, LDA performed best and SLR performed worst, with 

SVM showing an intermediate level of success. For all 3 decoding methods, decoding based on 

GM was comparable to decoding based on GM&LV. Decoding accuracy based on LV was higher 

than chance level for all combinations of filtering (except for a cutoff frequency of 0 cycles/mm) 

and binning. However, consistently over the same range of combinations, it was significantly 

lower compared to the accuracy obtained from GM or GM&LV. We thus concluded that the 

findings we presented for decoding based on SVM in Figures 4-4 and 4-5 could be generalized to 

other decoding methods.  



75 

 

 

 

 
Figure 4-5. HbT Decoding accuracy using a fixed number of pixels, as a function of low-pass 

filter cutoff frequency and binning. 

The analysis and format of presentation are identical to those used for Figure 4-4.  
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Spatial frequency-dependent contributions to decoding using homologous voxels 

In order to better analyze contributions to decoding using the homologous voxels (1.8 mm), 

we applied SVM to HbR and HbT responses in GM, LV and GM&LV regions following point-

pass and low-pass filtering (Fig. 4-6). Here we focus on the response maps following filtering with 

4 frequency cut-offs that can be captured with the homologous voxel: 0 (mean response), 0.093, 

0.185, and 0.278 cycles/mm (Fig. 4-6; Table 4-III). Note that 0.278 cycles/mm is the highest 

frequency that can be captured with such large pixels.  

A statistically significant difference of 3% was observed between the GM&LV and the LV 

decoding accuracies to HbR data at the homologous binning size with point-pass and low-pass 

filtering at the cutoff of 0.278 cycles/mm (p < 0.05, two-tail t-test). Statistically significant 

differences of 3-7% were observed between the GM&LV and the LV decoding accuracies to HbT 

data at the homologous binning size with point-pass and low-pass filtering at cutoffs of 0.093, 

0.185, 0.278 cycles/mm (p < 0.05, two-tail t-test). No statistical differences were observed between 

GM&LV and GM decoding accuracies applied to HbR or HbT data for any filtering cutoffs at the 

homologous voxel binning size.  

We observed a monotonous increase in decoding accuracy as a function of increasing cut-

off frequencies from 0 to 0.278 cycles/mm across all our data. For example, the GM&LV decoding 

using HbR data with point-pass filtering showed 50.5 ± 4.5% at 0, 55 ± 5.1% at 0.093, 63.4 ± 9.3% 

at 0.185, and 67.4 ± 6.9% at 0.278 cycles/mm. This result is in contrast to our previous 

observations using MION CBV-fMRI in cat area 17 (Chapter 3), where a trough in decoding rate 

separated decoding based on point-pass with frequencies in the irregularities and low-frequencies 

regimes. In other words, in cat area 18, we observe no clear low-frequencies regime. This is 

corroborated by Figure 4-2D, where the CNR spectrum resembles a Gaussian function with 

monotonous decreases in CNR from the main frequency of the organization towards both low and 

high frequencies.   

Figure 4-7 compares decoding rate obtained from HbT and HbR responses. HbT decoding 

accuracy was higher than that obtained from HbR (difference averaged over all bin sizes and 

frequency cut-offs except for 0 cycles/mm in GM: 12.7 ± 3.5%, in LV: 7.5 ± 2.0%, GM&LV: in 

12.9 ± 3.2%). Moreover, consistently for each frequency cut-off and binning size, decoding based 

on HbT responses gave higher accuracy than that based on HbR response, in GM, LV and GM&LV 

regions (two-tailed t-test, p < 0.05, n=50, corrected for FDR).    
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Figure 4-6. Decoding accuracy using pixels homologous in size to those used in human 

decoding studies. 

The decoding accuracy of GM, LV and GM&LV using binning size of 1.8 mm, following low-

pass filtering with frequency cutoffs of 0 (mean response computed over the ROI), 0.093, 0.185, 

and 0.278 cycles/mm. The two panels to the left show results obtained from HbR responses; those 

to the right present results obtained using HbT responses. The upper and lower rows present results 

obtained after spatial point-pass and low-pass filtering, respectively. A statistically significant 

difference of 3% was observed between the GM&LV and the LV decoding accuracies using HbR 

data with point-pass and low-pass filtering at the cutoff of 0.278 cycles/mm (p < 0.05, two-tail t-

test). Statistically significant differences of 3-7% were observed between the GM&LV and the LV 

decoding accuracies using HbT data with point-pass and low-pass filtering at cutoffs of 0.093, 

0.185, 0.278 cycles/mm (p < 0.05, two-tail t-test). No statistical differences were observed between 

GM&LV and GM decoding accuracies using either HbR or HbT data for any filtering frequency 

cutoff at the homologous voxel binning size. Note the monotonous increase in decoding accuracy 

as a function of increasing cut-off frequencies from 0 to 0.278 cycles/mm across all our data. No 

change in decoding accuracies were observed following low-pass filtering with frequency cutoffs 

higher than 0.278 cycles/mm relative to the results obtained with that frequency cutoff. 
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Figure 4-7. Differences in decoding accuracy obtained from HbT and HbR data using a fixed 

number of pixels, as a function of low-pass filter cutoff frequency and binning. 

The analysis and format of presentation are identical to those used for Figures 4 and 5. We present 

the matrices of differences in mean decoding accuracy obtained from HbT and HbR responses. All 

colored entries showed results where the null hypothesis of no difference was rejected (two-tailed 

student t-test, n = 50; 5 animals × 10 groups of selected voxels). 

 

 

 

 
 

Time-series contributions to decoding 

We also tested whether subtle complex-spatiotemporal effects hypothesized by a modeling 

study (Kriegeskorte et al., 2010) improve the decoding accuracy. To this end, we used 10 frames 

of HbR responses acquired from 1 to 3 s following the onset of the stimulus. Figure 4-8A presents 

the average decoding accuracy (n = 5 experiments) obtained when using each of these frames 

separately. The decoding accuracy increased with increasing time relative to the onset of the 

stimulus. The decoding accuracies obtained from the frame corresponding to 1.8 second following 

the stimulus onset and each of the subsequent frames were significantly higher than that of the 

frame corresponding to the 1 second following the stimulus onset.   
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We then created 4 different inputs to the classifier, 3 of which had 2 dimension in space 

and 1 dimension in time: 1) normal frame order, 2) shuffled frame order for each trial, and 3) a 

time-series in which each of the 10 frames was the average over all 10 original frames plus a 

Gaussian noise equivalent to the standard deviation across frames. The fourth input was the 

response image averaged over the 10 frames (‘static’, Fig. 4-8B). All 3 dimensional spatiotemporal 

inputs yielded decoding performances that were not statistically different from one to another (p > 

0.05, two-tail t-test). In addition, none of these 3 inputs reached the decoding performance obtained 

from the static 2 dimensional averaged response image. The decoding rate obtained from the static 

pattern of the response was significantly higher than those obtained with each of the 3 the 

spatiotemporal inputs (p < 0.05, two-tail t-test, n = 5 animals). 

Discussion 

Summary of the results 

The main frequency of the organization in cat area 18 is 0.84 ± 0.05 cycles/mm (Table 4-

I; Fig. 4-2D). In the frequency domain, the responses around the main frequency of the 

organization decrease gradually towards lower or higher frequencies, creating a wide Gaussian-

like distribution. The voxel size homologous to that used in human studies of orientation decoding 

is 1.80 mm, making it possible to capture frequencies of 0.278 cycles/mm (or lower), which is 

within the lower frequency end of the irregularities domain. Following low-pass filtering, the 

successful decoding rate of HbR-based responses (Fig. 4-4) and of HbT-based responses (Fig. 4-

5) using the homologous voxels and cut-off frequencies higher than 0.370 cycles/mm are not 

different from those obtained with the same voxel size and cut-off frequency of 0.278 cycles/mm. 

Large vessel responses using the homologous voxel size shows decoding accuracies higher than 

chance level but lower compared to those from gray matter regions (Figures 4-4 to 4-6). The 

decoding accuracies using combined responses from large vessels and gray matter are comparable 

to those obtained exclusively from gray matter regions. The decoding accuracies obtained from 

total-hemoglobin responses are higher than those obtained from HbR responses (Fig. 4-7). Lastly, 

decoding based on spatiotemporal time-series does not improve accuracy compared to that 

obtained from the spatial response averaged over time (Fig. 4-8).   
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Figure 4-8. Decoding accuracy from spatio-temporal response compare to the spatial pattern 

of the response. 

The input to the classifier consisted of 3D data (2 dimensions in space and one in time) instead of 

2D (2 dimensions in space = cortical response image averaged over time). Voxel size of 0.6 mm 

(which was within the binning range that gave the highest decoding rate using HbR responses from 

GM&LV, Fig. 4) and 1.8 mm (the homologous voxel size) were selected for this analysis. All 

binned pixels in the ROI were used as input to the classifier instead of randomly chosen 8 pixels, 

as in other analyses of the study. A) The 10 frames of the HbR response that were acquired from 

1 s to 3 s following the stimulus onset were inserted individually into the classifier. The numbers 

next to the horizontal axis show the time from the onset of the stimulus in which data acquisition 

over 200 ms for the specific frame started. These 10 frames (2 seconds) also represent 1 volume 

of fMRI data with TR = 2 s (Kamitani and Tong, 2005). Error bars represent the standard deviation 

of the mean accuracy across animals (n = 5). The decoding accuracies obtained from each of the 

200 ms long frames starting with 1.8 s following the onset of the stimulus were significantly higher 

than that obtained from the frame obtained 1 s following this onset. B) The 3D volume data were 

modified to several types of inputs. ‘Static’: the spatial 2D response averaged over the 2 seconds 

in which the 10 original frames were acquired. ‘Normal’: the 3D spatio-temporal response as 

depicted by the 10 frames acquired during the same 2 seconds in normal chronological order. 

‘Shuffled’: a 3D data structure in which the original frame acquisition order was randomly shuffled 

separately for each trial. ‘+Noise’: noise equivalent to the standard deviation of the response time 

series was added to 10 copies of the averaged frame. Error bars are the standard deviation of the 

mean accuracy across animals (n = 5).  The decoding accuracy obtained from the static pattern of 

the response was significantly higher than that obtained from each of the 3 spatiotemporal response 

datasets. 
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Do irregularities in the functional organization contribute to decoding using large voxels? 

If irregularities in the map did not exist, then the cortical orientation preference map would 

constitute one single spatial frequency. Therefore, by definition of irregularities, if irregularities 

exist the columnar organization involves a distribution of frequencies, including frequencies lower 

than the main frequency of the organization (Rojer and Schwartz, 1990; Chaimow et al., 2011). 

Indeed, in Fig. 4-2D we show that the CNR of differential orientation maps shows a peak at 

0.84±0.06 cycles/mm and a wide Gaussian-like distribution of frequencies around the peak with a 

FWHM of 0.80±0.22 cycles/mm (Table 4-II). Therefore, irregularities do exist in orientation maps. 

However, do irregularities in the organization contribute to orientation decoding using 

voxels that are 1.5 times larger than the average cycle length of the organization? The critical 

factor in addressing this question is the width of the distribution of frequencies around the main 

frequency of the organization. If this Gaussian-like distribution is wide, low-frequencies that still 

belong to it can possibly be captured by voxels that are 1.5 times larger than the average cycle 

length of the organization. 

For orientation maps in cat area 18, the curve of mean CNR (Fig. 4-2D) shows a maximum 

at 0.84 cycles/mm, which represents the main cycle of the orientation map. The CNR curve decays 

slowly in both directions, towards higher and lower frequencies (Fig. 4-3D, red arrow).  We 

defined the size of the voxel homologous to that used by Kamitani and Tong (2005) and Haynes 

and Rees (2005) in human subjects to be 1.5 times larger than the main cycle of the orientation 

map in our cat area 18 data (1.5×1.2 mm = 1.8 mm; see Chapter 3 for details on the definition of 

the homologous voxel size). The largest frequency that can be captured by such a voxel is 0.278 

cycles/mm (black arrow in Fig. 4-2D). This frequency shows relatively low CNR, but is still within 

the lower end of the slow decay (Fig. 4-3D, black arrow) of the Gaussian of CNR values centred 

on the main frequency of the organization. Thus, this coarse voxel still captures the lower end tail 

of the elevated amplitude within the frequency regime caused by irregular organization of the 

orientation columns.  

This is in contrast to our previous results with data from cat area 17, where we observed 

two frequency regimes with elevated power: one associated with the main frequency of the 

organization, including the irregularities regime, and the other at low-frequencies. In area 17, a 

trough in amplitude separates the irregularities and the low frequencies regimes. The homologous 

voxel is too large for capturing frequencies higher than the trough. In contrast, in cat area 18 we 
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observe a wide band of frequencies with elevated amplitudes that well matches a Gaussian centered 

on the main frequency of the organization. The amplitudes fall monotonously towards both lower 

and higher frequencies relative to the main frequency of the organization, and the homologous 

voxel can capture low-frequencies within this Gaussian.  

In addition to these observations that are based on the spectrum of CNR, using the 

homologous voxel, in cat area 18 we observe a steady increase in decoding accuracy following 

point-pass filtering with frequencies from 0 to 0.28 cycles/mm (Fig. 4-7). This is in contrast to the 

trough in decoding accuracy we observed with data from cat area 17. Using the homologous voxel, 

the decoding accuracy increased monotonously with increasing cut-off frequency from 0 to 0.28 

cycle/mm, with no interfering trough or plateau. This indicates that the combined frequencies are 

not redundant. We therefore conclude that in contrast to their null-contribution in cat area 17, local 

irregularities in the organization of preferred orientation in cat area 18 make relatively small 

contribution to the CNR and to successful decoding when sampled using the homologous voxel 

size. 

There are several possible reasons that could account for the difference between our 

conclusions based on data from cat area 17 (Chapter 3) and area 18 (here) with regard to 

contributions from local irregularities. The main important difference is in the frequency range 

that can be captured by the homologous voxels in these two areas. As discussed above, the 

homologous voxel is determined by the main frequency of the organization. Importantly the 

Gaussian-like distribution of frequencies around the main frequency is wider in area 18 (FWHM, 

0.80 cycles/mm Table 4-II, Figure 4-2) than in area 17 (FWHM, 0.56 cycles/mm; Chapter 3, Table 

3-II, Figure 3-3). This allows the homologous voxel to capture contributions in area 18 from 

frequencies lower than the main frequency of the organization, but within the irregularities regime. 

We suggest that the differences we observe in the mechanisms underlying decoding based 

on data obtained from cat areas 17 and 18 cannot be primarily attributed to methodological 

differences. In our previous study (Chapter 3) we used MION-based cerebral blood volume (CBV) 

fMRI. The HbT signals we imaged here are comparable to MION-CBV responses, since both are 

measurements of cerebral blood volume. Here we added HbR measurements, but the HbT 

measurements bridge the different methodologies used in these two studies. Moreover, the 

orientation selectivity of neurons in layers 2/3, where the optical imaging responses originate, is 

not lower than that of neurons in layer 4 (Ringach et al., 1997), where fMRI sensitized to CBV 
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receives its main contributions from (Zhao et al., 2006). Hence, differences in results regarding 

the relative contributions from large scale organization or from local irregularities should be 

attributed to the visual areas involved rather than to methodology.  

Our conclusion, showing contributions from local irregularities in the columnar 

organization to decoding, are consistent with the conclusion made by Swisher et al. (2010). These 

authors used high-field, high-resolution (0.3125 mm) BOLD-fMRI and multivariate pattern 

analysis to determine the spatial scales at which orientation-selective information can be found in 

cat area 18. They concluded that their results demonstrate a reliable millimeters-scale orientation 

signal, likely emerging from irregular spatial arrangements of orientation columns and their 

supporting vasculature. However, although Swisher et al. (2010) applied low-pass and high-pass 

spatial filtering, they used small voxels that could capture the main frequency of the organization. 

In contrast, we base our conclusion on voxels homologous in size to those used in human decoding 

studies. In addition, we simulated fMRI k-space sampling, which eliminates contributions from 

frequencies higher than its Nyquist frequency (half of the inverse of the sampling interval). 

In our previous study, we used MION CBV-based fMRI which is accepted as optimal in 

terms of spatial specificity of the functional imaging response relative to the site of increased 

neurophysiological measures (Fukuda et al., 2006). Based on analysis of homologous voxels 

derived in a manner similar to our derivation here, we concluded that irregularities in the 

organization of area 17 do not contribute to decoding of oriented gratings. We also reported on 

elevated power in low frequencies of the organization, which were clearly lower than- and 

separated from the frequency regime of irregularities. Our current imaging data from cat area 18 

shows that irregularities in the organization can potentially contribute to decoding. Thus, whether 

irregularities contribute to decoding of a fine scale organization depends on the main frequency of 

the organization, and on the rate of decrease of amplitude from the main frequency of the 

organization towards lower frequencies.  

2.4.1 Selectivity of large vessels and their contributions to decoding 

One of the mechanisms proposed to underlie the decoding of information in fine structures 

by relatively large voxels is the contribution of macroscopic blood vessels. The idea is that draining 

regions that cover cortical maps and columns non-homogeneously may cause selective responses 

of their corresponding blood vessels (Kamitani and Tong, 2005; Gardner et al., 2006; Kamitani 

and Tong, 2006; Kriegeskorte and Bandettini, 2007; Gardner, 2010; Shmuel et al., 2010; 
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Thompson et al., 2011). However, in our previous work (Chapter 3) we used high-resolution 

contrast-agent based fMRI data with no contributions from macroscopic blood vessels, and showed 

that it is possible to achieve successful decoding with no contributions from LV. The OI data we 

use here at high spatial resolution (better than or equal to 0.016 mm per pixel) allow clear 

separation of responses from LV and GM. Using these data, we show that decoding accuracies 

obtained from LV responses following low-pass filtering with all tested parameters and using all 

pixel sizes are higher than chance level. Thus, LV responses can potentially contribute to decoding. 

However, LV responses have no incremental contributions (i.e., higher decoding accuracies) when 

they are combined with the data from the GM regions, relative to the decoding accuracy based on 

data obtained exclusively from GM regions. The contributions from LV are redundant when they 

are combined with information from GM (GM&LV decoding). Thus, our current data, where 

responses from LV are available, shows results consistent with- and complements the findings 

from- our previous study that analyzed data with no contributions from LV. 

In our current analysis, we used as input to the decoders equal numbers of voxels across 3 

tested modalities (GM, LV, GM&LV), in order to focus on their relative selectivity. Therefore, 

the analysis based on separate data from LV and GM does not account for the low abundance of 

LV relative to GM regions. However, the GM&LV data does represent the realistic situation, in 

which LV occupy less space, but their amplitudes are higher than those in GM regions. Data from 

this realistic scenario showed higher decoding accuracies relative to data from LV alone, and 

comparable decoding accuracies to those obtained from GM regions. Thus, the contributions to 

decoding from LV are redundant relative to those from GM regions. Therefore, LV responses may 

be relevant in situations where their amplitudes exceed those obtained from GM, such as when 

using GE-BOLD at 3 Tesla (and even at 7 Tesla). However, in the general case, the information 

available from LV is redundant.   

Previous fMRI studies suggested that LV carry information for decoding (Gardner et al., 

2006; Shmuel et al., 2010; Thompson et al., 2011). However, none of them excluded contributions 

to decoding from GM regions. Thus, our results are consistent with theirs. The quantitative 

differences between our current findings and those presented in previous fMRI studies of decoding 

may be caused by the spatial extent of the draining regions analyzed in each case. For example, it 

may well be that the veins that carry information on the stimulated eye (Shmuel et al., 2010) drain 

blood from a large region within V1, that shows higher response to stimulation of the contra- than 
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to the ipsi-lateral eye (Tychsen and Burkhalter, 1997). Similarly, it is possible that the selective 

responses in vessels to oriented visual stimuli reflect drainage of large scale organizations such as 

the oblique effect (Furmanski and Engel, 2000; Sun et al., 2013) and the radial bias effect (Sasaki 

et al., 2006; Clifford et al., 2009; Mannion et al., 2010; Freeman et al., 2011; Freeman et al., 2013; 

Sun et al., 2013). This interpretation is consistent with our current results, showing that the cortical 

frequencies that contributed to decoding based on signals from LV were lower than those of gray 

matter (Figures 4-4 and 4-5; Suppl. Figures 4-1 to 4-4). 

Comparing decoding rates obtained from HbR and HbT responses 

The maximal decoding accuracy obtained for HbT responses following point-pass filtering 

showed a peak at frequencies of 0.56-0.83 cycles/mm. Using HbR, point-pass filtering showed a 

maximum decoding accuracy at 0.56 cycles/mm. This local maximum was part of a wide band of 

frequencies showing elevated decoding rates ranging from 0.19 to 0.83 cycles/mm. (Suppl. Figures 

4-2 and 4-4). This observation supports the concept that HbT better reflects the approximately 

cyclic organization of the orientation columns, whereas HbR responses present a smoother version 

of the organization. Using BOLD-fMRI, which is based on HbR responses, Shmuel et al. (2010) 

demonstrated ocular dominance selective regions broader than conventional columns, showing a 

cortical frequency lower than the main frequency of the organization in humans. These regions 

carried information on the stimulated eye. Of note, it has been suggested that smoothing the pattern 

obtained in multiple voxels does not degrade multivariate pattern decoding (Kamitani and Tong, 

2005). The authors used this observation in order to refute claims against the contributions of 

irregularities to decoding of fine scale organizations (Op de Beeck, 2010). However, their 

observation may in fact explain why frequencies of the BOLD response that are lower than the 

main frequency of the organization but higher than those constituting large scale organizations 

carry information on the orientation or the stimulated eye (Shmuel et al., 2010; Swisher et al., 

2010). 
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Decoding accuracy obtained from spatiotemporal responses compared to the spatial 

pattern averaged over time 

One of the mechanisms that were proposed as potential contributors to decoding of fine 

scale organizations using large voxels is complex spatiotemporal filtering of neuronal activity 

(Kriegeskorte et al., 2010). In part, this concept is based on the notion that a voxel receives 

spatiotemporal blood flow with origin from its vicinity. It proposes that information on fine-scale 

functional organizations transforms into signals in larger vessels that can be captured by large 

voxels. In our previous study (Chapter 3), we used MION-based CBV-fMRI of responses to phase-

encoded oriented gratings. We could not detect any responses from macroscopic vessels due to the 

extreme dephasing conditions and no variation in blood volume during steady-state continuous 

stimulation. Thus, our measurements and paradigm combined to a scenario in which we could not 

expect any contributions to decoding from complex spatiotemporal filtering. In spite of this, we 

were still able to obtain decoding accuracies significantly higher than chance level under all 

conditions of spatial filtering and voxel sizes. The results we present here (Fig. 8) complement our 

previous findings. We demonstrate that decoding accuracy based on spatiotemporal responses are 

not higher than those obtained from appropriate control. Moreover, they are lower than the 

decoding accuracy obtained from the static pattern of response average over time.  

To the best of our knowledge, contributions conceptualized as complex spatiotemporal 

filtering of neuronal activity have not yet been demonstrated. If this mechanism indeed contributed 

significantly, we could expect that the spatiotemporal response should yield higher decoding rates 

than appropriate control data. Here we compare the decoding rates obtained from the 

spatiotemporal response to those obtained by randomly shuffling the order of imaged frames. A 

second control we use is the spatial pattern of the response averaged over time, contaminated by 

additive noise equivalent to the variability of the measured response over time. There is no 

statistically significant difference between decoding accuracies obtained with the measured- and 

time-shuffled spatiotemporal responses. Similarly, there is no statistically significant difference 

between decoding accuracies obtained with the measured response and the response pattern 

averaged over time and contaminated with noise. Importantly, the number of features available to 

the decoding algorithm and the overall variability of the data remain unchanged across these 3 

data-sets. We therefore conclude that the spatiotemporal evolution of the response does not 

increment the orientation decoding accuracy compared to appropriate controls. 



87 

 

We acknowledge that our sample was relatively small (5 data-sets). However, if complex 

spatiotemporal filtering was a major contributor to decoding, we would expect the measured order 

to show higher success rates than the 2 other tested conditions, even with n = 5 experiments. In 

addition, we tested whether the spatiotemporal response yields better decoding rates compared to 

those obtained with the spatial pattern of the response averaged over time. Even with our small 

sample, the decoding accuracy obtained from the static response pattern averaged over time was 

significantly higher than those obtained by each of the 3 spatiotemporal time series. These findings 

corroborate the notion that complex spatiotemporal filtering of neuronal activity by fMRI voxels 

does not play a major role in decoding of oriented gratings.  

We would like to emphasize that we do not refute the concept of complex spatiotemporal 

sampling. In fact, this concept is possibly a realistic model of fMRI sampling.  However, we show 

here that the spatial pattern of the response averaged over time has a better decoding rate than the 

spatiotemporal evolution of the response. It is important to note two advantages that the spatial 

pattern of the response has over the spatiotemporal evolution of the response. Firstly, the averaging 

over time reduces the noise. In addition, decoding based on the spatial response pattern 

incorporates a simpler classification based on 10 times fewer features than those used for the 

decoding based on the spatiotemporal response. Thus, it reduces the dimension and complexity of 

the input to the classifier. Our findings suggest that it is unlikely that the complex spatiotemporal 

sampling contributes significantly to the successful decoding of orientation under conventional 

coarse fMRI voxel sampling. 

Here we have analyzed the decoding accuracy obtained from the spatiotemporal response 

over a duration of two seconds. We chose this duration because it is commonly the TR in fMRI, 

constituting the sampling rate in conventional fMRI and that used by Kamitani and Tong (2005) 

decoding study. Thus, our conclusions hold for decoding based on one volume of fMRI response 

(as demonstrated by Haynes and Rees, 2005). To generalize it to all conditions possible for 

spatiotemporal responses, in a future study we will pursue similar analyses over various longer 

durations of the OI response to oriented grating. 

 

Decoding accuracy from cat area 18 relative to that obtained in human fMRI studies 

In order to study the mechanisms underlying decoding of orientation, we have compared 

the performance obtained from GM, LV and GM&LV using a fixed number of pixels (8). This 
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allows us to compare the decoding accuracy that can be obtained using various pixel sizes, while 

maintaining the number of pixels constant and equal to the maximal number of the (large) 

homologous voxels that overlap the orientation map (8). Using 8 voxels, Haynes and Rees (2005) 

obtained a decoding accuracy of ~73.8±5.8% (average over the data from 4 subjects, estimates 

from Haynes and Rees, 2005 Figure 1).  

The mean decoding accuracy using the homologous pixel size and HbT responses in our 

study (~75.4±8.1%; Fig. 4-6, Table 4-III) is comparable to that obtained by Haynes and Rees in 

human subjects. In contrast, the decoding accuracy we obtained from HbR responses (65.9±8.6%) 

that are homologous to BOLD-fMRI responses, is smaller than that demonstrated by Haynes and 

Rees. We attribute this difference to the fact that Haynes and Rees made a pre-selection of voxels 

included as input to their decoding procedure. They first selected the 100 voxels that showed the 

highest response, then sorted these voxels according to the orientation bias they showed for the 

pair of decoded orientation stimuli. Thus, Haynes and Rees optimally pre-selected the features 

they used, from a large pool of voxels in V1. In contrast, the number of homologous voxels 

available to us when using OI of cat area 18 is limited to 8, due to the small region of this area 

which occupies the lateral gyrus and can thus be imaged by OI. Therefore, we could not perform 

feature selection as Haynes and Rees did. Of note, when using the optimal filtering and voxel size 

and the data from the entire ROI (not limited to 8 pixels), the decoding accuracy reached 100%. 

Importantly, our aim is to investigate the mechanisms underlying decoding by comparing accuracy 

obtained from several potential contributing mechanisms, rather than reaching the exact decoding 

accuracy obtained in human studies. Therefore, although using the homologous voxel size we do 

not reach the decoding accuracy demonstrated by Haynes and Rees (2005), our data and findings 

are valid for studying the mechanisms underlying decoding of oriented grating stimuli. 

 

 

 

Table 4-III. Spatial frequency-dependent contributions to decoding using homologous voxels. 

Frequency (cycles/mm) 0.00 0.09 0.19 0.28 0.28+ 

HbR GM 50.8±2.3 54.7±4.5 60.3±8.4 65.2±9.8 65.2±9.8 

LV 51.8±2.9 56.1±4.8 60.2±8.3 63.0±8.7 63.0±8.7 

GM&LV 50.2±3.3 54.9±4.6 60.4±7.5 65.9±8.6 65.9±8.6 

HbT GM 50.5±4.8 61.8±3.8 69.2±7.9 73.9±8.4 73.9±8.4 

LV 51.3±3.6 59.0±4.6 66.7±7.0 70.4±6.6 70.4±6.6 

GM&LV 51.2±3.8 62.0±3.3 69.7±7.0 75.4±8.1 75.4±8.1 
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Comparing the performance of SVM, LDA and SLR in our study 

SVMs are meant to extract optimal boundaries in data sets where the dimension of the 

features exceeds the number of available samples (for example, when there are many more fMRI 

voxels compared to the number of volumes in an experimental session). Hence SVMs are often 

used in situations where LDA fails because of ill conditioned covariance matrix.  

However, in our current study, LDA showed slightly better performance than SVM (Suppl. 

Figures 4-1 to 4-4), because we deliberately limited the number of features in order to test the 

mechanisms underlying decoding with the same number of features/pixels independent of the pixel 

size.  

Conclusions 

We previously ruled out aliasing contributions to the decoding of fine-scale organizations 

by large voxels (Chaimow et al., 2011). In addition, we estimated that the contributions from local 

irregularities in V1 are very small, i.e. insufficient in accounting for the classification performance 

reported at 3 T using 3×3×3 mm3 voxels (Chaimow et al., 2011); subsequently, we indeed ruled 

out contributions from local irregularities in the orientation map of cat area 17 (Chapter 3). Here 

we show that irregularities in the organization of cat area 18 can make relatively small 

contributions to decoding. Therefore, contributions from irregularities depend on the features of 

the organization, e.g. peak frequency and width of the frequencies band around it, and thus may 

change from one organization to another and across cortical areas. 

Here we point to a reduced role of contributions from macroscopic vessels and from 

complex spatio-temporal filtering. Hypothesized mechanisms that may still contribute to 

successful decoding using BOLD-fMRI include low-frequency organizations (Chapter 3), 

stimulus specific edge effects (Carlson, 2014; Wang et al., 2014) and irregularities, depending on 

the features of the organization.    



90 

 

Appendix 

Supplementary Figure 4-1. LDA, SLR and SVM decoding based on HbR following low-pass 

filtering. 

Decoding accuracy using 3 different linear classifiers: linear discriminant analysis classifier, 

sparse logistic regression classifier, and support vector machine. The decoding rates are presented 

in a matrix, as a function of low-pass filtering cut-off frequency along the vertical axis and bin size 

along the horizontal axis. The color look up table represents decoding accuracy in percent.  

 

Supplementary Figure 4-2. LDA, SLR and SVM decoding based on HbR following point-

pass filtering. 

The format of presentation is identical to that used for presenting Supplementary Figure 4-1. 

 

Supplementary Figure 4-3. LDA, SLR and SVM decoding based on HbT following low-pass 

filtering.  
The format of presentation is identical to that used for presenting Supplementary Figure 4-1. 

 

Supplementary Figure 4-4. LDA, SLR and SVM decoding based HbT following point-pass 

filtering. 
The format of presentation is identical to that used for presenting Supplementary Figure 4-1. 

 

 

See next four pages for figures 
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Supplementary Figure 4-1. LDA, SLR and SVM decoding based on HbR following low-pass 

filtering. 
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Supplementary Figure 4-2. LDA, SLR and SVM decoding based on HbR following point-

pass filtering. 
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Supplementary Figure 4-3. LDA, SLR and SVM decoding based on HbT following low-pass 

filtering.  
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Supplementary Figure 4-4. LDA, SLR and SVM decoding based HbT following point-pass 

filtering. 
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Preface to Chapter 5 

In Chapter 5, we address aim 2: ‘To determine the functional and spatial specificity of 

deoxy- and total-hemoglobin response in vessels as a function of blood vessel diameter’. In 

Chapter 4, we demonstrated that macroscopic veins with diameter of 150 micrometer or larger do 

carry information for decoding oriented gratings, either when total-hemoglobin or deoxy-

hemoglobin responses are considered. We arbitrarily selected the diameter of 150 micrometer as 

the limit for what can be described as ‘macroscopic vessels’, mentioned in the context of the 

mechanisms underlying the decoding of orientation. In Chapter 5, we investigate the 

functional/spatial specificity of deoxy-hemoglobin and total-hemoglobin responses from vessels 

with diameters in the range of 0.04 to 0.28 mm relative to responses from gray matter regions. The 

findings can be used for optimizing the data analysis, and to a lesser extent the data acquisition for 

fMRI-based decoding and high-resolution fMRI. 
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Abstract 

Functional MRI (fMRI) detects metabolic and haemodynamic changes that accompany 

changes in neuronal activity. Therefore, fMRI is an indirect measure of changes in neuronal 

activity. An accepted, but not yet quantified concept is that the smaller the vessel diameter is the 

more spatially specific responses it shows relative to the site of changes in neuronal activity. 

Therefore, fMRI techniques for imaging cortical columns or layers aim to suppress signal 

contributions from large vessels. This in turn reduces image signal to noise ratio (SNR) and 

response contrast to noise ratio (CNR), forming a trade-off between these measures and spatial 

specificity. Suppressing signals exclusively from vessels that reduce spatial specificity and 

including signals from other vessels, either at the data-acquisition or the data-analysis stage, can 

maintain the spatial specificity while increasing CNR. Here we compare and quantify the spatial 

specificity of blood oxygenation and blood volume responses in gray matter and blood vessels as 

a function of vessel diameter. To this end, we optically imaged responses to oriented gratings in 

cat area 18. Using the Beer-Lambert law and Monte-Carlo simulations of partial path-length in 

heterogeneous tissue we computed relative changes of deoxy-Hemoglobin (HbR) and total-

Hemoglobin (HbT) in gray matter and pial arteries and veins.  

HbR responses in veins with diameter smaller than or equal to 0.12 mm showed selectivity 

to noise ratio, contrast to noise ratio and decoding accuracy measures comparable to those obtained 

from gray matter regions. HbT responses in veins and arteries of all tested diameters showed 

decreased orientation-selectivity measures relative to those obtained from GM regions. These 

selectivity measures decreased with increasing vessel diameter. For all tested vein and artery 

diameters, HbR response selectivity measures were lower than their HbT counterparts. HbT 

responses in veins and arteries showed comparable selectivity measures. The cortical frequency of 

the orientation maps we imaged is higher than any frequency of maps we expect to exist in the 

human brain. Therefore, if SNR and CNR are insufficient in high-resolution BOLD-fMRI of 

human cortical columns, one can integrate contributions from vessels with diameter smaller than 

or equal to 0.12 mm with no significant decrease in spatial specificity. For high-resolution CBV-

fMRI, the smaller the diameter of contributing vessels, the higher the expected spatial specificity.  
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Introduction 

The majority of functional brain imaging studies in humans rely on functional MRI (fMRI), 

and on imaging the Blood Oxygenation Level Dependent (BOLD) signal (Ogawa et al., 1990; 

Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). The BOLD signal reflects the 

content of deoxy-Hemoglobin (HbR) in an inverse manner (Ogawa et al., 1990). Increases in 

neuronal activity induce an increase in the local cerebral blood flow which exceeds the increase in 

oxygen consumption (Fox and Raichle, 1986; Bandettini et al., 1992), resulting in lowered HbR 

content and increased BOLD signal (Hoge et al., 1999). Thus, fMRI is an indirect measure of 

changes in neuronal activity: it detects metabolic and haemodynamic changes in brain areas that 

respond to a given task or stimulus. Therefore, fMRI responses may not necessarily be spatially 

specific to the site of increased neuronal activity. For high-resolution fMRI, it is highly desired to 

acquire data which colocalizes well with the site of increased neuronal activity. The current paper 

compares the functional/spatial specificity of blood oxygenation and blood volume responses in 

blood vessels and gray matter regions relative to the site of increased neuronal activity.  

Gradient Echo (GE) Blood-oxygen-level-dependent (BOLD) contrast is the most widely 

used contrast of fMRI. Using GE BOLD-fMRI the oxygenation changes in cortical capillaries, 

which are expected to show spatially specific responses, generate the weakest response; while the 

oxygenation changes in draining veins, which are expected to be less spatially specific, give rise 

to the strongest signals. The draining veins’ strong signal contaminates the capillaries’ signals 

within the same voxel or in voxels downstream relative to the site of increased neuronal activity 

(Turner, 2002). Thus, for maintaining responses that represent the neuronal activity, researchers 

are often forced to discard the voxels that receive dominant signal contributions from large blood 

vessels prior to more in-depth analysis. 

Imaging fine spatial organizations of the brain, such as orientation maps in the visual cortex, 

has been of particular interest in the field of fMRI. Over the past 10 years, there has been a growing 

interest in the research community to image the cortex at high spatial resolution using high 

magnetic-field fMRI (Shmuel et al., 2007; Yacoub et al., 2007). High resolution imaging enables 

probing brain responses at the scale of cortical columns, which are considered by many as 

important building blocks for encoding and decoding sensory information. However, high-

resolution fMRI inherently suffers from low image signal to noise ratio (SNR), which in MRI is 

proportional to the volume of each voxel. Although the temporal SNR increases less rapidly with 



99 

 

increasing field strength relative to the image SNR, it still decreases with decreasing voxel volume 

too (Triantafyllou et al., 2005). Moreover, the commonly used Gradient-Echo BOLD fMRI 

response is dominated by contributions from large draining veins, independent of the field strength 

(Kim et al., 1994; Shmuel et al., 2007; Kim and Ogawa, 2012); therefore, it commonly shows 

responses downstream of the site of increased neuronal activity. 

Although alternative contrasts such as Spin Echo (SE) BOLD-fMRI can suppress 

contributions from large veins at the data acquisition stage (Ogawa et al., 1993; Kim and Ogawa, 

2002; Lee et al., 2002), it is not always practical to apply this sequence due to its significantly low 

signal-to-noise ratio compared to the GE sequence (Uludag et al., 2009). An alternative to SE 

BOLD-fMRI, which may allow capturing responses that are more spatially specific than those of 

GE BOLD-fMRI, is cerebral blood volume (CBV). The first CBV-fMRI studies used contrast 

agents injected into the blood circulation, e.g. gadolinium diethylene-triamine-penta-acetic acid 

(Gd-DTPA) in humans (Belliveau et al., 1991). More recently, monocrystalline-iron-oxide-

nanoparticles (MION) were injected to the circulation of animal models (Mandeville et al., 1998; 

Vandueffel et al., 2003). Recently, there have been several advances in CBV-based functional 

imaging that do not require the injection of a contrast agent (MOTIVE, Kim and Kim, 2005;VASO, 

Lu and van Zijl, 2012; VERVE, Stefanovic and Pike, 2005). Moreover, MION-CBV functional 

imaging measured with either GE or SE sequences shows higher relative responses in the capillary-

dense layer 4 of the cat visual cortex than BOLD-fMRI measured with the same sequences (Zhao 

et al., 2006). This finding supports the notion of CBV regulation at a sub-millimeter scale and 

emphasizes the potential of CBV imaging for high-resolution fMRI in human subjects. 

Therefore, by optimizing fMRI for increasing contributions from blood vessels that show 

spatially specific responses, one can optimize the trade-off between spatial specificity and SNR in 

high-resolution BOLD- and CBV-fMRI. The asymmetric spin echo (ASE) pulse sequence 

provides higher partial nullification of contributions from large veins relative to suppression of 

contributions from capillaries, leading to a middle ground between SE and GE sequences. A key 

simulation study showed that the more asymmetric the acquisition of the pulse, the closer to GE 

the resultant signal is (Boxerman et al., 1995). Therefore the asymmetry parameter of ASE controls 

a trade-off between spatially specific fMRI contrast of low SNR, and fMRI contrast of high SNR 

but poor spatial specificity. This trade-off can possibly be optimized by setting the level of SE 

asymmetry. A different way of reducing the non-spatially specific contributions of larger venules 
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to the SE-BOLD functional signal is by shortening the duration of the readout window (Goense 

and Logothetis, 2006). Increasing the read out duration to include signals away from the peak 

increases T2* contributions that emerge from larger vessels, while increasing image SNR. 

Optimizing the trade-off between long readout for higher SNR and short readout for spatial 

specificity, or by setting an optimal asymmetry parameter in asymmetric SE, can benefit from 

information on the spatial specificity of veins and venules of various diameters. 

Increasing specificity in functional magnetic resonance imaging can be done in an even 

more straightforward manner during the data analysis stage. This can be done by combining fMRI 

with techniques for estimating the vessel size based on changes in blood oxygenation (Jochimsen 

and Moller, 2008). Voxels that reflect contributions from a range of vessel diameters known to 

show non-spatially specific responses can be discarded. 

Therefore, a direct physiological investigation of the spatial specificity of blood vessels 

can inform the choice of fMRI data acquisition parameters and data analysis for optimizing the 

trade-off between spatial specificity and SNR. Based on the cortical surface area supplied or 

drained by arteries and veins of various diameters, it is a commonly accepted hypothesis that the 

larger the vessel, the less spatially specific responses it generates. However, to the best of our 

knowledge, the spatial specificity of cortical and pial draining veins has not been quantified. 

Here, we quantify the physiological spatial specificity of responses measured from pial 

arteries and veins relative to those obtained from gray matter regions. To this end, we applied 

Optical Imaging of Intrinsic Signals (OI-IS, Grinvald et al., 1999). We spectrally decomposed HbR 

and total-Hemoglobin (HbT) responses obtained from cortical capillaries, arteries and veins, using 

the Beer-Lambert law and Monte-Carlo simulations of partial path-length in heterogeneous tissue. 

Our findings can guide fMRI data-acquisition and data-analysis for optimizing spatially specific 

responses together with SNR.  

Materials and Methods 

The methods used for preparing the animals were similar to those used in previous OI-IS 

studies in anesthetized cats (Grinvald et al., 1999; Shmuel and Grinvald, 2000). These methods 

are outlined below, whereas differences and new methodological aspects are described in detail. 

The analysis was performed using code written in MatLab (The MathWorks, Natick, MA), while 

incorporating utility functions  from the MatLab R2013 platform. 

https://www.google.ca/search?client=firefox-a&hs=vyJ&rls=org.mozilla:en-US:official&channel=np&q=natick+massachusetts&stick=H4sIAAAAAAAAAGOovnz8BQMDgzMHnxCnfq6-gVGhZVmSEgeIWRJvWqCllZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKm7M-X_5mebcH6JppeIWOtv2Nm9SLAYAITtBt2AAAAA&sa=X&ei=vj9IUo20M5LiyAHd_IHQDQ&ved=0CKMBEJsTKAIwDA
https://www.google.ca/search?client=firefox-a&hs=vyJ&rls=org.mozilla:en-US:official&channel=np&q=massachusetts&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCnfq6-gVGhZVmSEphpmm1enKSllZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKubK7dzk_5zP0bB57pbLnY97En_ulQAAQC2S8GEAAAA&sa=X&ei=vj9IUo20M5LiyAHd_IHQDQ&ved=0CKQBEJsTKAMwDA
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Surgical procedures and animal preparation 

All procedures were performed according to the guidelines of the Canadian Council on 

Animal Care (CCAC) and were approved by the animal care committees of the Montreal 

Neurological Institute and McGill University. 

Data were obtained from 10 hemispheres of 8 adult cats, weighing 3.0-4.5 kg. The animals 

were premedicated with glycopyrrolate (Sandoz Canada, 0.01 mg/kg, I.M.), acepromazine maleate 

(Atravet®, Boehringer Ingelheim, 0.2 mg/kg, S.C.) and ketamine (20 mg/kg IM). Deep anesthesia 

was induced by inhalation of 5% of isoflurane (Baxter Medical) mixed with 100% O2. The level 

of isoflurane was gradually lowered and maintained at 2% for the duration of the surgery. Blood 

oxygen saturation and heart rate were monitored using pulse oximetry (Nonin Medical, Inc.; during 

surgery, the heart rate was kept between 150 and 180 beats/minute). The end tidal CO2 was 

monitored using a capnometer (Capnomac Ultima, Datex). Depth of anesthesia was determined by 

verifying lack of response to clamping the inter-digital web of the posterior paws and by 

monitoring the heart rate.  

Following endotracheal intubation and cephalic vein cannulation for intravenous 

administration of fluids, the animal was artificially ventilated with a mixture of medical air and O2 

(80%/20%) using a respiratory pump (Ugo Basile, 6025). Lidocaine 2% (Lidocaine Neat, Pfizer) 

was administered at all points of pressure and incision. The animal was placed in a stereotaxic 

frame (David Kopf instrument) modified for allowing visual stimulation. End-tidal CO2 was kept 

between 30 and 38 mm Hg by adjusting the rate and stroke volume of the respiratory pump. The 

core temperature was maintained at 38°C by a feedback-controlled heating pad (Homeothermic 

Blanket Systems, Harvard Apparatus). The animals were continuously infused intravenously with 

a solution consisting of 5% Dextrose in lactated Ringer’s injection solution (Abbott Laboratories) 

diluted with sterile water and mixed with a  muscle relaxant, gallamine triethiodide (Sigma-

Aldrich). The mixture was adjusted so that the solution had an osmolality of 310 mOsm with an 

injection rate of 6ml/kg/h of fluid and 10mg/kg/h of gallamine. 

The skull was opened above area 18 by drilling a circular hole with an approximate 18 mm 

diameter centered on Horsley–Clarke coordinates AP +4 and ML 0. A stainless steel circular 

chamber with inner diameter of 20 mm was implanted onto the skull. The dura mater was resected, 

and the chamber was filled with silicon oil and sealed with a round perspex cover. 
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At the end of the surgical procedures, gas anesthesia was switched from isoflurane to 

halothane (Sigma-Aldrich). Throughout the imaging sessions, the halothane level was kept at 0.7-

1.0% and the heart rate was maintained at 160-180 BPM. The animal was mechanically ventilated 

at a rate of 25-40 strokes per minute and a volume of 10-15 ml/kg, maintaining the end-tidal CO2 

within 32-38 mm Hg. The gas mixture was adjusted within the range of 100% medical air to 80% 

medical air / 20% O2, in order to keep the oxygen saturation level at ≥ 94%. Finally, the animal’s 

temperature was kept between 37.9 and 38.1 degrees.  

The pupils were dilated with local application of phenylephrine hydrochloride 2.5% 

(Mydfrin®, Aventix Animal Health). The eyes were protected using contact lenses with zero 

power; they were focused on a tangent screen at a distance of 30 cm using external lenses with 

power determined by retinoscopy. The retinal vessels, blind spot and area centralis of each eye 

were back projected onto the screen (Bishop et al., 1962). 

Optical imaging 

Cortical images were obtained using a differential data acquisition system (VDAQ Imager 

3001, Optical Imaging Ltd., Rehovot, Israel) equipped with a 12-bit depth Pantera 1M60 camera 

(Teledyne Dalsa, Waterloo, Ontario, Canada) and a macro lens (Nikon, AF Micro Nikkor, 60 mm, 

1:2.8 D). The camera was mounted above the optical chamber and was aimed such that its optical 

axis was perpendicular to the cortical surface. The camera was focused on the surface of the 

cortical region of interest (ROI), ensuring that the surface of the gray matter and the cortical pial 

blood vessel were in focus. The ROI was limited to area 18 in one hemisphere; we imaged this 

ROI with a matrix of approximately 1000-by-500 pixels, 70-80 pixels/mm and 50µm depth of 

field). The camera frame rate was set at 20Hz, binned every 2 frames to yield a data frame rate of 

10Hz. We imaged the cortex at this high frame rate, under illumination of 2 LEDs with centre 

wavelengths of 530 nm and 617 nm, respectively (Fig. 5-1A). The power to these 2 LEDs 

alternated at every other frame, based on the camera’s frame toggle signal. Hence, the frame rate 

obtained under the illumination of each of the 2 LEDs was 5Hz. Green and orange LEDs were 

then used to compute changes in content of HbR and HbT (see section on spectral decomposition 

below), where HbR and HbT are analogous to BOLD-fMRI and CBV-fMRI, respectively. At the 

end of each imaging session, a high-resolution image of a ruler was taken without changing the 

camera lens’ magnification. The ruler image served as a scaling reference, in order to compute the 

precise number of pixels/10 mm, and from this measure further extract the resolution in mm/pixel.  
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Visual stimuli 

The visual stimuli were generated using the Matlab R2010a platform (The MathWorks, 

Natick, MA) and Psychophysics toolbox 3.0.8 (Brainard, 1997), run on a Quad-CPU MacBook 

Pro 6.2 (Mac OS 10.6.7) with a NVIDIA GeForce GT 330M graphic card. The stimuli were 

presented on a 19 inch Dell 1908FPt monitor set at 60Hz refresh rate. The luminance was gamma 

corrected using Eye-one display II (X-rite, Grand Rapids, MI). The mean across all pixels of the 

maximum luminance of the monitor was set at 33 cd/m2. The monitor was positioned at a distance 

of 30 cm from the animal’s eyes, subtending 60° × 45° of the visual field. It was shifted 

contralateral to the imaged hemisphere by approximately 15°. 

 The animals were stimulated binocularly, using drifting high contrast rectangular-wave 

gratings with a spatial frequency of 0.15 cycles per degree, a duty cycle of 50%, and a temporal 

frequency of 4 Hz. The main set of stimuli included 17 conditions. In one control/baseline 

condition, the screen remained gray and no stimulus was presented. Each of the remaining 16 

conditions presented one of eight differently oriented gratings, drifting in a direction orthogonal 

to the orientation. The main set of stimuli spanned both direction and orientation spaces at a 

resolution of 22.5°. 

Stimulation paradigm 

From each of the hemispheres, we obtained 30-50 trials of data, where each trial consisted 

of acquiring 17 time-series, each of which associated with one of the 17 conditions. All 17 

conditions were presented once in each trial with a randomized order of presentation, in order to 

average out any systematic effects of stimulus presentation order. During each presentation, we 

acquired data over a period of 12 second: 2 seconds in which the gratings were static, 5 seconds 

of moving gratings, followed by 5 seconds of static gratings. To allow for the relaxation of activity-

dependent vascular changes, each 12 seconds period of data-acquisition was followed by 8-second 

inter-stimulus interval (ISI). The stimulus was switched to the static grating of the next condition 

at the beginning of the ISI. 

Data preprocessing 

(1) All data frames were inspected, in order to verify that there were no large discontinuities 

in image intensity due to failure of the illumination system. (2) The two image time-series obtained 

from stimuli of the same orientation but opposite directions of motion were averaged together, 



104 

 

obtaining the image series associated with orientation. This was done separately for images 

obtained under illumination at 530 nm and 617 nm. (3) In order to separate arteries from veins, we 

first computed the average over 5 trials of all frames acquired from 2 to 7 seconds following the 

stimulus onset. We divided the result by the average of the baseline frames acquired over the 2 sec 

before stimulus onset, thus obtaining the two average cortical activation maps obtained under 

illumination at 530 nm and 617 nm. (4) In order to compensate for the slight LED illumination 

decay over time, we then pursued the exact same procedure for the control baseline condition, and 

divided the two response maps described in (3) by the corresponding maps obtained under the 

control condition. (5) The two corrected response maps were averaged over all 8 orientations, and 

then inspected in order to make a preliminary differentiation of arteries and the veins (Fig. 5-1B). 

(6) We then designated 3 representative pixels in regions of an approximately 0.1 mm wide vein 

appearing as white under 617 nm, an artery with approximately the same diameter appearing as 

black under 617 nm, and gray matter. We computed the HbR and HbT activation time courses 

from these 3 pixels using spectral decomposition methods (see next section). (7) Next, taking into 

account that the HbT response in arteries is early relative to the HbR response in veins (Moon et 

al., 2013), we computed the average of the normalized relative to peak time courses of the HbT 

response from the artery and HbR response from the vein (Fig. 5-1C, purple-colored curve). We 

defined the response duration as the range of frames that showed a response higher than 50% peak 

response in this combined time course (Fig. 5-1C, black dotted lines). In order to compute the 

response maps in each of the HbR and HbT modalities, we integrated the response over the 

response duration. (8) The orientation response maps obtained under each of the two illumination 

conditions were separately concatenated in order to create a global data matrix for further analysis: 

[Y X O T], where Y and X denote the pixels in the ROI, O denotes the orientations and T represents 

the number of trials. (9) Finally, the data matrices were converted to HbR and HbT data matrices 

using the spectral decomposition method described below. 

Masks of segmented blood vessels 

From the raw images and from the averaged activation map, we created separate masks of 

arteries and veins with corresponding vessel diameter at each point (Fig. 5-3C). To this end, the 

raw image obtained under illumination at 530 nm image (Fig. 5-2A) was first convolved with 1- 

dimensional Difference of Gaussians (DOG) wavelets of 10 different scales ([3 5 7 9 13 19 27 39 

55 81] pixels) horizontally and vertically (Fig. 5-2B). The different wavelet scales capture blood 
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vessels of different diameters; i.e. a small blood vessel of diameter of 3 pixels would show high 

amplitude in an image convolved by a wavelet of 5 pixels but would show zero amplitude in an 

image convolved by a wavelet of 81 pixels. Each convolution created one additional parameter at 

each pixel; hence we added 20 coefficients to the one parameter of intensity value. Then a 

normalization was performed for each of the coefficient map so that the coefficient’s range in the 

parameter space is scaled between 0 and 1. The end result of this convolution stage were 21 images, 

each consisting of normalized values between 0 and 1. We then performed the segmentation of the 

image to pial vessels and gray matter in a pixel-wise manner, using a nearest-neighbour algorithm 

(Hong et al., 2012) with the 21 parameters as its feature space. The schematic representation of 

how this algorithm works in a 2-parameter situation is explained in Figure 5-2B (right panel). The 

user initially assigns a blood vessel class or gray matter class to each of 20 reference pixels from 

the raw image. In the schematic example, the squares represent reference gray matter pixels and 

the triangles represent reference blood vessel pixels. The algorithm then uses the Euclidian 

distance in the feature space (dashed lines) to classify the non-referenced pixels, according to the 

assigned class of the closest reference point. 

 

 

 

Figure 5-1. High resolution OI-IS of HbR and HbT. (See next page for figure) 

A) Raw images acquired under illumination using a green LED (530 nm) and orange LED (617 

nm). B) Activation map of cortex under illumination with the 2 wavelengths (average of 5 trials 

and all 8 orientations from one hemisphere). The frames from 2 to 7 seconds after the onset of 

stimulus were averaged and divided by the average of frames from 2 to 0 seconds before the onset 

of stimulus. The gray-level bar represents the change in photons captured by the camera sensor 

during the response relative to the pre-activation baseline state. C) Typical time courses of HbT 

and HbR responses relative to their respective baseline concentrations (Table 5-I). The time-

courses were sampled from a 3x3 pixels area within gray matter, small artery and small vein 

indicated by the gray, red and blue arrows in B, respectively. For computing these time courses, 

we averaged over responses of 5 trials and all 8 orientations. The panel to the right demonstrates 

the range of frames that were used for the computation of the main cortical response maps. This 

range was determined by averaging the normalized time-courses of change in HbR content in vein 

and change in HbT content in artery (thick purple curve in the panel to the right). Each of these 2 

time courses was first normalized by dividing it by its own peak. Then the two normalized time 

courses were averaged, and the response duration was determined as the range of frames for which 

the averaged time course showed amplitude higher than 50% of its own peak (black dashed line).  
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Figure 5-1. High resolution OI-IS of HbR and HbT responses. (See previous page for legend) 
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Figure 5-2. Segmentation of an image of the cortical surface to gray matter, pial veins and 

pial arteries. 

A) The raw image taken under green illumination used for creating the mask of veins and arteries. 

Based on this image, we assigned pixels to the blood vessels or gray matter classes using a nearest-

neighbor classification algorithm. B left) 1D Difference of Gaussians (DOG) wavelets of 10 

different scales (ranging from 3 pixels to 80 pixels, ≈ 0.045 to 1.2 mm for the overall DOG, 

including the positive center and negative peripheral  troughs) were convolved horizontally and 

vertically with the raw image. Each convolution created one parameter at each pixel. Hence we 

added 20 coefficients at each pixel to the original gray scale intensity value. B right) Schematic 

2D representation of nearest-neighbor algorithm using the resultant 21 parameters as its feature 

space. We first manually assigned 20-30 reference points (blood vessel pixels or gray matter pixels) 

from the raw image to one of the blood vessels or gray matter classes. In the schematic description, 

squares represent gray matter reference pixels and triangles represent blood vessel reference pixels. 

For the remaining, non-reference pixels, the algorithm used the Euclidian distance in the 21 

dimensions feature space to determine whether they were closest to a blood vessel reference pixel 

or to a gray matter reference pixel of those initially selected by the user. Based on the Euclidean 

distance, the algorithm assigned the pixel of interest accordingly. In this schematic example, the 

black dot represents a pixel which was classified as a gray matter (square) pixel, based on its 

shortest distance to the reference point (square) marked with orange arrow. C) Resultant blood 

vessel mask from the application of the classification algorithm on the image acquired under green 

illumination. D) The blood vessel mask is further separated into arteries and veins by first 

identifying large 

veins and arteries 

based on their 

respective 

responses under 

617 nm and the 

smoothness of the 

arteries. Smaller 

vessels were then 

classified by 

tracking the 

vessels connected 

to the identified 

seed large vessels 

(small arteries 

connected to the 

large arteries; 

small veins 

connected to the 

large veins) and 

verifying the 

classification 

based on their 

response under 

617 nm. 
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In the schematic example, the black circle represents a non-referenced pixel which will be 

classified as a gray matter pixel (square). We then obtained two separate masks for arteries and 

veins (Fig. 5-2D) by further segmenting the blood vessel mask (Fig. 5-2C). This separation was 

based on identifying large diameter veins and arteries (diameter ≈ 0.1 mm or wider), based on the 

smoothness of arteries (Hillman et al., 2007) and the different response of these large vessels under 

illumination of 617 nm (whitening in large veins, darkening in large arteries; Fig. 5-1B). We then 

classified smaller vessels as arteries or veins by tracking the vessels connected to the identified 

seed large vessels (small arteries connected to the large arteries; small veins connected to the large 

veins) and verifying the classification based on their response under 617 nm. 

Once the blood-vessel mask was created, the approximate local diameter of each blood 

vessel was computed using an algorithm we developed as follows. We first identified all pixels 

which were part of the skeleton of a vessel (Fig. 5-3A, red pixels; we employed Matlab’s function 

bwmorph). For each of these skeleton pixels, we then computed the shortest line segment of all 

lines that passed through the pixels’ coordinates at different angles and reached the edges of the 

blood vessel (Fig. 5-3A, thin blue lines). The thin line that passed through the skeleton pixel 

represented the diameter of the blood vessel at that location. The non-skeleton pixels that had one 

blue line crossing them took a value equivalent to the diameter of the corresponding skeleton pixel. 

The pixels that had multiple blue lines overlapping them took the average diameter of the 

corresponding skeleton pixels. The pixels that had no blue lines overlapping them were assigned 

with the average value computed over the neighboring pixels. Because the diameter tends to be 

overestimated near branching points, we set an upper threshold to the diameter of the pixels near 

the branching point (pixels within the dotted black circle, which is the smallest circle centered on 

the branching of the skeleton and reaching at least one edge; Fig. 5-3B). They were assigned with 

diameters no larger than the maximal diameter computed for pixels between the dotted circle and 

the solid circle (the solid circle was the smallest circle centered on the branching of the skeleton 

and reaching all 3 edges associated with the branching). We then obtained maps of artery diameter 

and vein diameter, based on our previous delineation to veins and arteries (Fig. 5-2D).  
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Finally, we chose 8 partially-overlapping masks as representative spatial distributions of 

the blood vessel segments with various diameters (Fig. 5-3D). Each image shows a mask of pial 

veins or arteries whose diameters fell within the range indicated on top of the image in micrometers. 

These 8 masks were used for calculating the blood vessel response selectivity as a function of 

vessel diameter (Figs. 5-5 to 5-8, green asterisks). 

 

 

 

 

Figure 5-3. Assigning diameter to the blood vessels. (See next page for figure) 

A) The diameter of the blood vessels at each pixel that belonged to a skeleton of a vessel was 

estimated by finding the minimal line segment that crossed the pixel and reached the edge of blood 

vessels (thin blue lines). The non-skeleton pixels that overlapped with one blue line took the value 

that was equivalent to the diameter of the corresponding skeleton pixel. The pixels that overlapped 

with multiple blue lines took the average diameter associated with the corresponding skeleton 

pixels. The pixels that did not overlap with blue lines were assigned the average diameter of their 

neighboring values. B) Because the diameter tends to be overestimated near branching points, we 

set an upper threshold of diameter assigned to the pixels near the branching point (pixels within 

the dotted black circle, which is the smallest circle centered on the branching of the skeleton and 

reaching at least one edge). They were assigned with diameters no larger than the maximal 

diameter computed for pixels between the dotted circle and the solid circle (the solid circle was 

the smallest circle centered on the branching of the skeleton and reaching all 3 edges associated 

with the branching. C) Resultant diameter maps of the veins and arteries. D) Eight partially-

overlapping masks that show representative spatial distributions of the blood vessel segments with 

various diameters. Each image shows a mask of pial blood vessels whose diameters fell within the 

range indicated on top of the image in microns. For example, the upper right mask represents pixels 

that lie within veins whose diameter was larger than 280 and smaller than 627 micrometers. These 

8 masks were used for calculating the blood vessel response selectivity as a function of vessel 

diameter (data points in Figures 5-5 to 5-8).  
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Figure 5-3. Assigning diameter to the blood vessels. (See previous page for legend) 
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Spectral decomposition and path-length correction 

Data obtained under an illumination of 530 nm and 617 nm were transformed into HbR 

and HbT time series using the modified Beer-Lambert law. The Beer-Lambert law describes the 

change in light absorption as the sum of changes in concentration of various chromophores with 

different absorptions at each wavelength. In equation 1-10 (Appendix) we separated the 

contributions of oxyHb and deoxyHb as a function of light absorption in order to transform the 

total change in light absorption into changes in concentrations of these chromophores. The 

Modified Beer-Lambert law also takes into account the dependence of path-length on illumination 

wavelength, denoted by 1/pλ in the equation, which affects the calculation when one’s interest is 

to measure the reflected light from the specimen (see Suppl. Fig. 5-1 and Appendix). Given the 

LED illumination we used at 530 nm and 617 nm, the respective path-length ratio in gray matter 

regions would be ~1:5 (Brieu et al., 2010; Dunn et al., 2005; Kohl et al., 2000). Table 5-I shows 

approximate baseline concentrations of total hemoglobin, hemoglobin saturation and path-lengths 

that we used for the decomposition. The oxygen saturation level is the average value we measured 

in our experiments over data-acquisition periods and hemispheres (95.0±3.6%), whereas the 

oxygen saturation in capillaries and veins was obtained from (Edwards and Mayall, 1998; Dunn 

et al., 2005; Baetge and Matthews, 2012). Note that the lower saturation in capillaries relative to 

vein was also demonstrated by Vovenko (1999). The baseline HbT value in GM was based on 

Dunn et al. (2005), while those in arteries and veins were estimated by Hines (2013). We estimated 

the path lengths by first computing absorbance based on the baseline concentrations of HbO and 

HbR and their respective absorption coefficients under illumination of 530 nm and 617 nm. We 

then mapped the absorbance to path length based on Fig. 1B in Kohl et al. (2000).   

 

 

 

Table 5-I. Baseline concentrations and Path lengths of Hb species.  
 Saturation 

[HbO]/[HbT] 

Baseline 

[HbT] 

Baseline 

[HbO] 

Baseline 

[HbR] 

Path length 

under 530nm 

Path length 

under 617nm 

Capillaries 60% 100 µM 60 µM 40 µM 0.534 mm 2.54 mm 

Artery 95.0% 2000 µM 1900 µM 100 µM 0.0775 mm 0.717 mm 

Vein 70% 2000 µM 1300 µM 700 µM 0.0778 mm 0.393 mm 
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According to Table 5-I, under illumination wavelength of 617 nm, photons that emerge out 

of veins with diameter larger than 0.197 mm (= 0.393/2) are expected in the majority of cases to 

have their origin within the vessel, while photons that emerge out of veins with diameter smaller 

than 0.197 mm are expected to have mixed origin: photons that pass within the vessel and also 

within the gray matter nearby and beneath, before passing within the vessel. Note that we refer 

here to 0.197 mm = 0.393 / 2, taking into account that a photon needs to first penetrate the tissue, 

then emerge out of it in order to be detected by the camera. These heterogeneous sources were 

corrected according to relative path-length travelled within and out of the vessel in order to 

estimate the HbR and HbO concentration changes separately within the vessel and the underlying 

gray matter (see Appendix 1).   

High-pass filtering of individual components within the ROI 

From each hemisphere, we computed a 4D response data matrix M = [I J O T] where I and 

J are 2D pixel indices, O is an orientation index, and T is a trial index. We then defined our region 

of interest as the region that showed the most prominent orientation modules (Fig. 5-4B; yellow 

dotted curve). We then applied a high-pass filter with cut-off threshold of 0.2 cycle/mm (signal 

associated with cycles longer than 5 mm were filtered out) separately for gray matter, veins, and 

arteries. This step was performed in order to remove any differences in the global cortical response 

to certain orientations, in order to focus our study on the fine scale structure of the orientation map. 

To this end, we separately selected regions corresponding to gray matter, veins or arteries, thus 

creating 3 rectangular ROI matrices of the same size.  We then filled in the missing values with a 

robust spline smoothing algorithm (Garcia, 2010), separately for each of the matrices 

corresponding to gray matter, veins and arteries. The 2D filling in was followed by the 2D spatial 

high-pass filtering. Lastly, we reapplied the masks of GM, arteries, and veins to the filtered 

response maps, which yielded separate response maps of GM, arteries and veins, now consisting 

of only high frequencies underlying the columnar organiaztion.  

Evaluation of functional/spatial specificity 

We computed quantitative measures of differential contrast of orientation, orientation 

selectivity, and decoding accuracy analyzes within the ROI. For the orientation selectivity analysis, 

we defined the Selectivity Index (SI) as the magnitude of the vectorial sum of responses across all 

orientations, normalized (divided) by the sum of absolute responses to all orientations. Because 
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the stimuli we used are mapped to cortex in a fine scale organization, this ratio represents how 

spatially specific the responses from blood vessels are relative to the underlying columnar 

arrangement of the orientation modules over the cortical surface. We defined the selectivity index 

map as the map of the pixel-wise SI averaged across trials. We defined the noise map as the pixel-

wise standard deviation of the trial-by-trial SI, and the SI to Noise (SINR) map as the SI map 

divided by noise map.  

𝑆𝐼𝑖,𝑗 =
∑ [

1

𝑇
∑ (𝑀𝑖,𝑗,𝑜,𝑡×𝑒

−𝑖
𝜋
4𝑜

)𝑇
𝑡=1 ]8

𝑜=1

∑ [
1

𝑇
∑ (𝑀𝑖,𝑗,𝑜,𝑡)𝑇

𝑡=1 ]8
𝑜=1

      (1) 

𝑆𝐼𝑁𝑜𝑖𝑠𝑒𝑖,𝑗 = 𝑠𝑡𝑑𝑒𝑣𝑡(𝑆𝐼𝑖,𝑗,𝑡)       (2) 

𝑆𝐼𝑁𝑅𝑖,𝑗 =
𝑆𝐼𝑖,𝑗

𝑆𝐼𝑁𝑜𝑖𝑠𝑒𝑖,𝑗
        (3) 

 

From the selectivity index map, we obtained the selectivity index range by computing the 

standard deviation across the map’s pixels. The same operations were performed for the selectivity 

index noise map and the SiNR map. 

𝑆𝐼𝑅𝑎𝑛𝑔𝑒 = 𝑠𝑡𝑑𝑒𝑣𝑖,𝑗(𝑆𝐼𝑖,𝑗)       (4) 

𝑆𝐼𝑁𝑜𝑖𝑠𝑒𝑅𝑎𝑛𝑔𝑒 = 𝑠𝑡𝑑𝑒𝑣𝑖,𝑗(𝑆𝐼𝑁𝑜𝑖𝑠𝑒𝑖,𝑗)     (5) 

𝑆𝐼𝑁𝑅𝑅𝑎𝑛𝑔𝑒 = 𝑠𝑡𝑑𝑒𝑣𝑖,𝑗(𝑆𝐼𝑁𝑅𝑖,𝑗)      (6) 

 

 

The differential contrast measures the difference in the amplitude of cortical responses to 

2 orthogonally oriented grating stimuli (Fig. 5-4A). We defined the contrast map for each pair of 

orthogonal orientations as the pixel-wise difference of cortical responses to orthogonally oriented 

gratings averaged across trials. We defined the noise map as the pixel-wise standard deviation of 

the trial-by-trial contrast. Finally we defined the contrast-to-noise ratio map as the absolute value 

of the contrast map divided by the noise map (Fig. 5-4B). We then separately obtained the contrast 

map, noise map, and contrast-to-noise map for each of the 4 pairs of orientations. 
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Figure 5-4. Differential analysis maps. 

A) Typical responses to 8 oriented gratings from one pixel. We defined the contrast as the averaged 

difference over 4 pairs of orthogonal orientations (here, 1 pair is shown as θ and θ+90°). B) 

Differential contrast: the mean difference between cortical response maps of 2 orthogonal stimuli 

computed across trials.  Noise: standard deviation of the difference across trials. CNR: absolute 

value of the mean difference divided by the noise. Top) Maps of the above defined values from 

HbR response. Bottom) Maps of above defined values from HbT response. The manually selected 

region enclosed by the dotted yellow line indicates the most responsive area with clear orientation 

modules, which was used for statistical evaluation of functional/spatial specificity in gray matter, 

vein, and artery. 
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𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖,𝑗,𝑜 =
1

𝑇
∑ (𝑀𝑖,𝑗,𝑜,𝑡 − 𝑀𝑖,𝑗,𝑜+4,𝑡)𝑇

𝑡=1      (7) 

𝐶𝑁𝑜𝑖𝑠𝑒𝑖,𝑗,𝑜 = 𝑠𝑡𝑑𝑒𝑣𝑡(𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖,𝑗,𝑜,𝑡)     (8) 

𝐶𝑁𝑅𝑖,𝑗,𝑜 =
|𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖,𝑗,𝑜|

𝐶𝑁𝑜𝑖𝑠𝑒𝑖,𝑗,𝑜
       (9) 

From the CNR map, we obtained the contrast range by computing the standard deviation 

across the map’s pixels and then averaging the standard deviation across the 4 orientation pairs.  

𝐶𝑁𝑅𝑅𝑎𝑛𝑔𝑒 =
1

4
∑ 𝑠𝑡𝑑𝑒𝑣𝑖,𝑗

4
𝑜=1 (𝐶𝑁𝑅𝑖,𝑗,𝑜)     (10) 

Lastly the decoding analysis evaluates the information about the orientation stimulus that 

can be extracted from the functional response. We used a linear support vector machine (SVM) 

classifier for pair-wise decoding of orthogonal orientation stimuli (Kamitani and Tong, 2005). 

During the training process, the classifier assigns weights at each pixel from the cortical response 

map that best separates one orientation condition from the other. Then a trained classifier will 

predict what were the presented stimuli associated with new inputs, such as the response map Mi,j 

below, that were not used during the training process. 

𝑖𝑓  ∑ ∑ 𝜔𝑖,𝑗𝑀𝑖,𝑗𝑗𝑖 + 𝜔0 =  {
≥ 0

 
< 0

  𝑡ℎ𝑒𝑛 
𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐴

 
𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐵

   (11) 

 

where ωi,j are the trained weights of pixel i,j and ω0 is the bias term computed during 

training. There is a sigmoidal relationship between the CNR and the decoding accuracy (Chaimow 

et al., 2011). Therefore, decoding accuracy is expected to monotonously (but not necessary linearly) 

increase with increasing CNR. 

To obtain a fair evaluation when comparing the different regions of gray matter and pial 

blood vessels, for the feature space of the SVM we randomly chose a fixed number of pixels from 

each of the compared modalities. We used a cross-validation method in order to avoid potential 

over-fitting of the classifier (Kohavi, 1995). We randomly picked half the trials for training the 

classifier and the remaining trials for testing/validating. The decoding accuracy was marked based 

on the validation dataset, by comparing the classifier’s output to the presented stimulus. 
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Statistical tests (Student t-test & FDR correction) 

The contrast maps (Fig. 5-4B) were multiplied point by point with the 8 blood vessels maps 

(Fig. 5-3D), yielding separate contrast maps from GM, artery and vein regions.  We computed the 

standard deviation of the differential contrast values across pixels within each of these partial maps. 

We term this standard deviation ‘contrast range’: it assigns a quantitative value of 

functional/spatial specificity. The rationale is that differential cortical responses to orthogonal 

stimuli are distributed approximately as a Gaussian distribution, and more selective responses are 

associated with a larger contrast range (Chaimow et al., 2011). We then linearly interpolated in-

between the measured values, in order to present the mean in the range of 40 µm to 280 µm at a 

resolution of 10 µm (Fig. 5-5 to 5-8; see the next paragraph for the rationale of limiting the range). 

In addition, we applied paired two-tailed Student-t statistical tests within this range to compare the 

functional specificity measures for each vessel diameter relative to a constant (unity) or to a 

distribution of values in GM (in the specific case of decoding accuracy). For clarity, we report 

within the text only 2 classes of p-values, smaller than 0.05 or smaller than 0.001. The detailed 

numerical values are summarized in Table 5-II. In addition to the paired t-tests, we applied non-

parametric rank-sum tests to the same comparisons, and obtained similar p-values (not shown).  

 The number of samples for each t-test was 10 hemispheres for gray matter and small to 

medium size blood vessels. For larger vessels, where the number of available samples decreased, 

we limited the t-test to vessels diameters smaller than or equal to 280 micrometers, for which we 

had data from 7 hemispheres. Thus, any reference we make to ‘all tested blood vessel diameters’ 

refers to vessels with diameter between 40 and 280 micrometers. In contrast, references we make 

to ‘all vein diameters in our sample’, refer to N = 73 measurements, each representing an average 

selectivity measure obtained for one diameter range (Fig. 5-3) from one hemisphere, pulled 

together from all 10 hemispheres and 8 diameter ranges (in some of the hemispheres, not all 

diameter ranges existed) . ‘All artery diameters in our sample’, refers to N = 68 measurements 

pulled together from 10 hemispheres and 8 diameter ranges.  

Because we deal with multiple t-tests with several points along the dimension of different 

diameters of the blood vessels, we applied the FDR correction to multiple comparisons, thus 

obtaining the Q-values from our P-value distribution (Benjamini and Hochberg, 1995).We then 

used a Q-threshold of 0.05 as our threshold of statistical significance. The same procedures were 

repeated for noise, CNR, selectivity index, SI noise, SiNR, and decoding accuracy maps.  
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Results 

Response time course 

We first compared the time-courses of cortical HbR and HbT content responses. We 

sampled the time-courses from 3 locations: an artery and a vein of approximately 0.1 mm diameter 

and a gray matter region (Fig. 5-1B arrows). The highest relative change in HbR occurred within 

the vein (1.5%); in contrast, the highest relative changes in HbT occurred within the gray matter 

(1.0%) (Fig. 5-1C). 

Functional selectivity of responses in blood vessels relative to gray matter 

Selectivity Index, Noise and SiNR of HbR and HbT responses in veins and arteries 

Figure 5-5 compares the tuning curve’s response selectivity index obtained from blood 

vessels of various diameters relative to that obtained from gray matter. The detailed numerical 

values are summarized in Table 5-II. 

In veins, the SI obtained from HbR responses was on average smaller than that obtained 

from GM regions (the ratio averaged over all vein diameters was 0.78±0.13 mm, see green 

asterisks for specific tested diameters, two-tailed t-test, FDR corrected, q < 0.05). It decreased with 

increasing vessel diameter (slope = -0.39/mm, p < 0.05, F test). For all tested vein diameters, the 

SiNoise did not show significant differences relative to that in GM. However, the changes in 

SiNoise with increasing diameter were on average opposite to those in SI. Therefore, the SiNR 

showed steep decreases with increasing vein diameter (slope = -1.21/mm, p < 0.001). The SiNR 

obtained from veins with diameter ≥ 0.14 mm within the range of our tested diameters (0.04 ≤ d ≤ 

0.28 mm) was smaller than that obtained from GM. 

In arteries, the HbR-based selectivity index was approximately constant and significantly 

lower than that obtained in GM regions for all tested artery diameters (two-tailed t-test, FDR 

corrected, q < 0.05, ratio averaged over all artery diameters pulled together: 0.67±0.16, p < 0.001). 

The noise remained approximately constant and comparable to that obtained from GM. Thus, with 

increasing artery diameter, the SiNR across all tested diameters remained approximately constant 

and significantly lower than that obtained from GM.   

The HbT-based SI from both veins and arteries were lower than those obtained from GM 

throughout all tested vessel diameters (two-tailed t-test, FDR corrected, q < 0.05, the averaged 

ratios over all diameters pulled together were 0.63±0.15 mm for veins and 0.61±0.17 mm for 
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arteries. With increasing vein and artery diameter, the SI further decreased (slope = -1.37/mm and 

-1.51/mm, respectively, p < 0.001, F-test). In contrast, the noise remained approximately constant 

and comparable to that obtained from GM regions. Thus, for all tested vessel diameters, the SiNR 

was lower than that obtained from GM regions, and further decreased with increasing vein and 

artery diameter (slope = -1.36/mm and -1.63/mm, respectively, p < 0.001, F-test 

In summary, in both arteries and veins and for both HbR and HbT, the selectivity indices 

obtained from all tested blood vessel diameters were lower than those obtained from GM. The 

noise from all tested blood vessel diameters remained comparable to that obtained from GM. The 

HbR-based SiNR obtained from veins was not significantly different than that in GM for vein 

diameters smaller than or equal to 0.14 mm. The HbR-based SiNR in arteries was significantly 

lower than those in GM for all tested blood vessel diameters. The HbT-based SiNRs in veins and 

in arteries were significantly lower than those in GM for all tested blood vessel diameters, and 

decreased with increasing vessel diameter. 

 

 

 

 

 

 

Figure 5-5. Selectivity indices of veins and arteries relative to gray matter. (See next page for 

figure) 

Statistical testing of the null hypothesis that Selectivity Index, SiNoise, and SiNR in veins and 

arteries are not different than those in gray matter (‘GM’ on the horizontal axis). Each blue and 

red asterisk represents the mean of the selectivity measure for the corresponding vessel diameter. 

The dark curve within each panel represents the interpolated average selectivity measures with 

distance between two adjacent interpolated values equal 10 µm. To this end, we linearly 

interpolated between the measured values from the 8 different groups of vessel diameters, and the 

slightly different diameters obtained from different hemispheres due to slight sampling resolution 

differences. The dashed line represents a linear regression of the response as a function of the 

blood vessel diameter computed over the data points. The green asterisks indicate vessels 

diameters showing responses with statistically significant different selectivity than that observed 

in gray matter (2 tail t-test, FDR correction, q < 0.05). The average measure curve and the statistical 

tests were computed and plotted for vessel diameters in the range of 0.04-0.28 mm.   
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Figure 5-5. Selectivity indices of veins and arteries relative to gray matter. (See previous page 

for legend) 
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Contrast to noise ratio and Decoding accuracy of HbR and HbT responses in veins and 

arteries 

Figure 5-6 compares the difference in responses to orthogonal stimuli (CNR), and the 

information these responses convey (decoding accuracy), obtained from blood vessels relative to 

those obtained from gray matter. The detailed numerical values are summarized in Table II.  

In veins, the CNR of HbR responses averaged over the vein diameters pulled together 

across our sample was smaller than that obtained from GM region (0.91±0.12 mm, p < 0.001, two-

tailed t-test). Moreover, with increasing vein diameter, the CNR measure of functional specificity 

decreased (slope = -0.78/mm, p < 0.001, F-test). Statistically significant decreases in CNR were 

obtained for tested vein diameter of 0.16 mm or larger (green asterisks, two-tailed t-test, FDR 

corrected, q < 0.05). The mean decoding accuracy averaged across all vein diameters pulled 

together was 77±12% (p < 0.001, two-tailed t-test). Decoding accuracy decreased with increasing 

vessel diameter (slope -75%/mm (p < 0.001, F-test), respectively.  

In arteries, the CNR of HbR responses averaged over all artery diameters in our sample 

was smaller than that obtained from GM region (0.83±0.14, p < 0.001, two-tailed t-test). The HbR-

based CNR was lower than that obtained from GM and remained approximately unchanged across 

all tested blood vessel diameters (see green stars, q < 0.05, two-tailed t-test, FDR corrected). The 

mean decoding accuracy computed across all artery diameters in our sample was not different than 

chance level (51±6%) and significantly lower than that obtained from GM  (p < 0.001, two-tailed 

t-test). It decreased moderately with increasing artery diameter (slope -23%/mm, p < 0.01, F-test).  

In veins and arteries, the HbT-based CNR averaged across blood vessel diameters in our 

sample was lower than that obtained in GM (0.69±0.15 and 0.68±0.16, respectively, p < 0.001, 

two-tailed t-test). The CNR decreased with increasing vein and artery diameters (slopes of -

1.13/mm and -1.23/mm, respectively, p < 0.001, F-test). Statistically significant decreases in CNR 

were obtained for all tested vein and artery diameters (green asterisks, two-tailed t-test, FDR 

corrected, q < 0.05). The mean decoding accuracies averaged over all vein and artery diameters in 

our sample were 89±12% and 86±16%, respectively, lower than that obtained from GM (p < 0.001, 

two-tailed t-test). It decreased with increasing vein and artery diameters (-96%/mm and -132%/mm, 

respectively, p < 0.001, F-test). 
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In summary, the CNR obtained from HbR-based responses in veins and arteries was 

significantly lower than that obtained from GM for vein diameter of 0.16 mm and larger and across 

all tested artery diameters. Although the decoding accuracy was higher than chance level, it was 

lower than that obtained in GM regions for vein diameters larger or equal to 0.13 mm. The 

decoding accuracy in arteries with each of the diameters within the range we tested was lower than 

that obtained in GM.   The CNR and decoding accuracy obtained from HbT responses across all 

tested vein and artery diameters were lower than the corresponding measures obtained in GM. The 

CNR and decoding accuracy of HbT 

responses in veins and arteries 

decreased with increasing vessel 

diameter. 

 

 

 

 

 

 

 

 

 

 

Figure 5-6. CNR and Decoding 

accuracy obtained from veins and 

arteries relative to gray matter. 

Statistical testing of the null 

hypothesis suggesting that CNR and 

Decoding accuracy in veins and 

arteries are not different than those 

in gray matter (‘GM’ on the 

horizontal axis). The format of 

presentation is similar to that used 

for Fig. 5-5. 
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Table 5-II. Comparison of response selectivities in blood vessels relative to gray matter. 

 µ σ p_µ α β p_ α min max 

Ve-HbR-SI 0.78 0.13 E-20 -0.39 0.83 0.03 0.04- 0.28+ 

Ve-HbR-SiN 1.03 0.13 0.11 -0.05 1.03 0.79   

Ve-HbR-SiNR 0.85 0.17 E-9 -1.21 1.01 E-8 0.14 0.28+ 

Ve-HbR-CNR 0.91 0.12 E-7 -0.78 1.02 E-6 0.16 0.28+ 

Ve-HbR-Acc 77 12 E-57 -75 86 E-6 0.13 0.28+ 

Ar-HbR-SI 0.67 0.16 E-26 -0.37 0.72 0.10 0.04- 0.28+ 

Ar-HbR-SiN 1.05 0.18 0.02 0.04 1.05 0.87   

Ar-HbR-SiNR 0.68 0.15 E-26 -0.21 0.71 0.33 0.04- 0.28+ 

Ar-HbR-CNR 0.83 0.14 E-14 0.05 0.82 0.80 0.04- 0.28+ 

Ar-HbR-Acc 51 6 E-62 -23 54 0.01 0.04- 0.28+ 

GM-HbR-Acc 92 5       

Ve-HbT-SI 0.63 0.15 E-30 -1.37 0.81 E-15 0.04- 0.28+ 

Ve-HbT-SiN 1.02 0.12 0.14 0.38 0.97 0.03   

Ve-HbT-SiNR 0.59 0.15 E-32 -1.36 0.76 E-13 0.04- 0.28+ 

Ve-HbT-CNR 0.69 0.15 E-25 -1.13 0.84 E-8 0.04- 0.28+ 

Ve-HbT-Acc 89 12 E-61 -96 101 E-10 0.04- 0.28+ 

Ar-HbT-SI 0.61 0.17 E-28 -1.51 0.80 E-13 0.04- 0.28+ 

Ar-HbT-SiN 0.98 0.11 0.24 -0.21 1.01 0.19   

Ar-HbT-SiNR 0.58 0.17 E-29 -1.63 0.79 E-15 0.04- 0.28+ 

Ar-HbT-CNR 0.68 0.16 E-25 -1.23 0.84 E-9 0.04- 0.28+ 

Ar-HbT-Acc 86 16 E-51 -132 102 E-11 0.04- 0.28+ 

GM-HbT-Acc 99 1       

 
µ:  mean computed over all pulled measured data points 

σ: standard deviation computed over all pulled measured data points 

p_µ: p-value associated with the statistical significance of difference of the mean relative to 

unity, or, for decoding accuracy, relative to the mean obtained from GM regions 

α: slope of the regression line 

β: intercept of the regression line 

p_α: p-value associated with the statistical significance of the regression 

 

min/max: smallest/largest BV diameter (within the tested range, 0.04-0.28 mm) that showed 

mean value significantly different than 1, or, for decoding accuracy, different than the mean 

obtained from GM regions  

 

Note that the smallest and largest vessel diameters we tested were 0.04 and 0.28 mm, respectively; 

the entries mention ‘0.04-‘ or ‘0.28+’, since the min diameter is likely to be narrower and the max 

diameter is likely to be wider in a more complete and larger data-set.  
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Functional selectivity of HbR compared to HbT 

Selectivity Index, Noise and SiNR of HbR and HbT responses in veins and arteries 

Figure 5-7 (top half) compares the tuning curve response selectivity index obtained from 

HbR vs. HbT responses, in blood vessels of various diameters and gray matter. The detailed 

numerical values are summarized in the Table 5-III. 

In veins, the SI obtained from HbR was lower than that obtained from HbT responses 

across all tested diameters (green asterisks, q < 0.05, two-tailed t-test, FDR corrected; average ratio 

across diameters pulled together 0.62±0.16, p < 0.001, two-tailed t-test). The SI obtained from 

HbR relative to HbT increased with increasing vein diameter (slope = 1.05/mm; p < 0.001, F-test). 

Across all tested diameters, the SiNoise from venous HbR and HbT responses showed no 

significant differences. The SiNR obtained from HbR relative to HbT responses showed a profile 

similar to that observed for SI.   

In arteries, the SI obtained from HbR was lower than that obtained from HbT responses 

across all tested diameters (green asterisks, q < 0.05, two-tailed t-test, FDR corrected; average ratio 

across all diameters pulled together 0.55±0.15, p < 0.001, two-tailed t-test). The SI obtained from 

HbR relative to HbT increased with increasing vein diameter (slope = 0.98/mm; p < 0.001, F-test). 

The SiNoise from HbR and HbT responses showed no significant differences, but their ratio 

(Hbr/HbT) increased with increasing artery diameter (slope = 0.50, p < 0.05). The SiNR obtained 

from HbR relative to HbT responses showed a profile similar to that observed for SI.   

 

 

Figure 5-7. Relative selectivity indices obtained from HbR and HbT responses in veins and 

arteries. (See next page for figure) 

Top half: statistical testing of the null hypothesis that the ratios of Selectivity Index, SiNoise, and 

SiNR of HbR responses relative to HbT responses in veins and arteries (cyan and purple asterisks, 

respectively) are not different than unity. Bottom half: statistical testing of the null hypothesis 

that Selectivity Index, SiNoise, and SiNR of HbR and HbT responses (blue and amber asterisks, 

respectively) in veins relative to arteries are not different than unity. The dark curve within each 

panel represents the interpolated average ratio of the selectivity measures. The dashed line 

represents a linear regression of the ratio as a function of blood vessel diameter computed over the 

data points. The green asterisks indicate vessels diameters showing ratio significantly different 

than unity (2 tail t-test, FDR correction, q < 0.05). The average ratio curve and the statistical tests 

were computed and plotted for vessel diameters in the range of 0.04-0.28 mm. Each colored 

asterisk represents the mean ratio measured (not interpolated) for the corresponding vessel 

diameter. The format of presentation is similar to that used for Fig. 5-5. 
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Figure 5-7. Relative selectivity indices obtained from HbR and HbT responses in veins and 

arteries. (See previous page for legend) 
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Contrast to noise ratio and Decoding accuracy of HbR and HbT responses in veins and 

arteries 

Figure 5-8 (top half) compares the difference in responses to- and information conveyed 

on each of 2 stimuli with orthogonal orientations obtained from HbR vs. HbT responses, veins, 

arteries and GM. The detailed numerical values are summarized in Table III. 

In veins, the CNR obtained from HbR was lower than that obtained from HbT responses 

across all tested diameters (green asterisks, q < 0.05, two-tailed t-test, FDR corrected; average ratio 

across all diameters pulled together 0.73±0.16, p < 0.001, two-tailed t-test). The CNR obtained 

from HbR relative to HbT increased with increasing vein diameter (slope = 0.48/mm; p < 0.05, F-

test). In veins, the decoding accuracy obtained from HbR responses was lower than that obtained 

from HbT responses across all tested diameters (green asterisks, q < 0.05, two-tailed t-test, FDR 

corrected; average ratio computed over all diameters pulled together 0.86±0.08, p < 0.001, two-

tailed t-test). The ratio of decoding accuracy obtained from HbR relative to HbT did not change 

significantly with increasing vein diameter. 

In arteries, the CNR obtained from HbR was lower than that obtained from HbT responses 

across all tested diameters (green asterisks, q < 0.05, two-tailed t-test, FDR corrected; average ratio 

across all diameters pulled together 0.67±0.16, p < 0.001, two-tailed t-test). The CNR obtained 

from HbR relative to HbT increased with increasing artery diameter (slope = 1.05/mm; p < 0.001, 

F-test). In arteries, the decoding accuracy obtained from HbR responses was lower than that 

obtained from HbT responses across all tested diameters (green asterisks, q < 0.05, two-tailed t-

test, FDR corrected; average ratio across diameters pulled together 0.61±0.09, p < 0.001, two-

tailed t-test). The ratio of decoding accuracy obtained from HbR relative to HbT increased with 

increasing vessel diameter (slope 0.79, p < 0.001). 

Functional selectivity in veins compared to arteries 

Selectivity Index, Noise and SiNR of HbR and HbT responses in veins and arteries 

Figure 5-7 (bottom half) compares the tuning curve response selectivities obtained from 

veins and arteries of various diameters. The detailed numerical values are summarized in the Table 

5-IV.  

HbR responses in veins showed higher SI than those obtained in arteries for all diameters 

equal to or smaller than 0.2 mm (green asterisks, two-tailed t-test, FDR corrected, q < 0.05; the 
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ratio averaged over all diameters pulled together was 1.21±0.23, p < 0.001, two-tailed t-test). The 

SiNoise obtained for HbR responses was approximately equal in veins and arteries; the ratio did 

not change significantly with vessel diameter. The SiNR of HbR responses in veins was 

significantly higher than that in arteries for vessel diameters equal to or smaller than 0.18 mm (the 

ratio averaged over all vessel diameters pulled together was  1.29±0.27). The ratio decreased with 

increasing vessel diameter (slope = -0.97/mm; p < 0.01, F-test).  

HbT responses in veins showed SIs that were not significantly different than those obtained 

from arteries across all tested diameters. The SiNoise obtained for HbT responses in veins was not 

significantly different than that in arteries for each our tested diameters; however the average ratio 

over all diameters pulled together showed higher noise in veins relative to arteries (average 

1.04±0.12, p < 0.05, two-tailed t-test). The ratio of HbT-based SiNoise in veins relative to arteries 

increased with increasing vein diameter (slope = 0.69/mm, p < 0.001, F-test). For each of the 

diameters we tested, the SiNR of HbT responses in veins was not significantly different than that 

in arteries; however, their ratio did increase with increasing vessel diameter (slope = 0.85/mm; p 

< 0.05, F-test).  

Contrast to noise ratio and decoding accuracy of HbR and HbT responses in veins and 

arteries 

Figure 5-8 (bottom half) compares the difference in responses to- and information 

conveyed about each of 2 stimuli with orthogonal orientations obtained from veins vs. arteries. 

The detailed numerical values are summarized in Table 5-IV.  

The CNR obtained from HbR responses in veins was higher than that obtained from arteries 

for vessels diameters equal to or smaller than 0.09 mm (green asterisks, q < 0.05, two-tailed t-test, 

FDR corrected; average ratio across all diameters pulled together 1.14±0.22, p < 0.001, two-tailed 

t-test). The ratio of CNRs obtained from HbR responses in veins relative to arteries decreased with 

increasing vessel diameters (slope = -0.73/mm; p < 0.05, F-test). The decoding accuracy obtained 

from HbR responses in veins was higher than that obtained in arteries across all tested diameters 

(green asterisks, two-tailed t-test, FDR corrected, q < 0.05; average ratio across all diameters 

pulled together 1.52±0.14, p < 0.001, two-tailed t-test). The ratio of decoding accuracy obtained 

from HbR responses in veins relative to arteries decreased with increasing vessel diameter (slope 

= -0.72, p < 0.001, F-test). 
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Figure 5-8. Relative CNR and Decoding accuracy obtained from HbR and HbT responses in 

veins and arteries. 

Top half: statistical testing of the null hypothesis suggesting that the ratios of CNR and decoding 

accuracy of HbR response relative to HbT response in veins and arteries (cyan and purple asterisks, 

respectively) are not different than unity. Bottom half: statistical testing of the null hypothesis 

suggesting that the ratios of CNR and decoding accuracy of HbR and HbT responses (blue and 

amber asterisks, respectively) in veins relative to arteries are not different than unity. The format 

of presentation is similar to that used for Fig. 5-5 
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For each of the tested diameters, the CNR obtained from HbT responses in veins was not 

different than that obtained from arteries. The decoding accuracy obtained from HbT responses in 

veins was not significantly different than that obtained from arteries for any of the tested diameters; 

however, the data pulled over all diameters showed higher decoding rate in veins than in arteries 

(ratio 1.06±0.13, p < 0.001, two-tailed t-test). The ratio increased with increasing vessel diameter 

(slope = 0.77/mm; p < 0.001, F-test).  

 

 

 

Table 5-III.  Comparison of response selectivities obtained from HbR relative to HbT. 

 µ σ p_µ α β p_ α min Max 

Ve-SI 0.62 0.16 E-29 1.05 0.48 E-6 0.04 0.28+ 

Ve-SiNoise 0.97 0.15 0.06 -0.16 0.99 0.45   

Ve-SiNR 0.61 0.16 E-31 0.54 0.54 0.01 0.04 0.28+ 

Ve-CNR 0.73 0.16 E-21 0.48 0.67 0.03 0.04 0.28+ 

Ve-Acc 0.86 0.08 E-22 0.10 0.85 0.38 0.04 0.28+ 

Ar-SI 0.55 0.15 E-35 0.98 0.42 E-5 0.04 0.28+ 

Ar-SiNoise 1.02 0.16 0.25 0.50 0.96 0.03   

Ar-SiNR 0.50 0.16 E-36 1.21 0.35 E-8 0.04 0.28+ 

Ar-CNR 0.67 0.16 E-25 1.05 0.54 E-6 0.04 0.28+ 

Ar-Acc 0.61 0.09 E-46 0.79 0.50 E-13 0.04 0.28+ 

 

See Table 5-II for the definition of notations. 

 

 

Table 5-IV.  Comparison of response selectivities in veins relative to arteries. 

 µ σ p_µ α β p_ α min Max 

HbR-SI 1.21 0.23 E-9 0.49 1.15 0.14 0.04 0.20 

HbR-SiNoise 0.99 0.15 0.66 0.07 0.98 0.74   

HbR-SiNR 1.29 0.27 E-12 -0.97 1.41 0.01 0.04 0.18 

HbR-CNR 1.14 0.22 E-5 -0.73 1.23 0.02 0.04 0.09 

HbR-Acc 1.52 0.14 E-41 -0.72 1.61 E-3 0.04 0.28+ 

HbT-SI 1.07 0.25 0.02 0.58 1.00 0.11   

HbT-SiNoise 1.04 0.12 E-02 0.69 0.96 E-4   

HbT-SiNR 1.06 0.28 0.10 0.85 0.95 0.03   

HbT-CNR 1.03 0.18 0.21 0.20 1.00 0.44   

HbT-Acc 1.06 0.13 E-3 0.77 0.96 E-4   

 

See Table 5-II for the definition of notations. 
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Discussion 

Summary of results 

We have quantitatively characterized the functional and spatial specificity of HbR and HbT 

responses in pial veins and arteries relative to GM and relative to each other. HbR responses in 

veins showed decreased SiNR, CNR and decoding accuracy for vein diameters of 0.13-0.16 mm 

relative to those obtained in GM regions (Figs. 5-5 and 5-6). These selectivity measures further 

decreased with increasing vein diameter. HbT responses in veins and arteries of all tested diameters 

showed decreased SiNR, CNR and decoding accuracy relative to those obtained from GM regions 

(Figs. 5-5 and 5-6). Moreover, these selectivity measures decreased with increasing vessel 

diameter. For all tested vein and artery diameters, HbR response selectivity measures were lower 

than their HbT counterparts (Figs. 5-7 and 5-8). HbT responses in veins and arteries showed 

comparable selectivity measures (Figs. 5-7 and 5-8).   

As expected, consistently over all selectivity measures and all tested artery diameters, HbR 

responses in arteries are significantly less selective than those in GM regions (Figs. 5-5 and 5-6). 

The decoding accuracy obtained from these responses is at or very close to chance level (Fig. 5-

6). Thus, although oxygen transfer seems to take place in arteries (Vovenko, 1999), the response 

is of low SNR and functional/spatial selectivity. Therefore, the larger part of the discussion is on 

HbR responses in GM and veins (but not in arteries), and HbT responses in arteries, GM and veins. 

Spatial specificity of HbT and HbR responses as a function of vessel diameter 

Although it is an accepted assumption that the larger the diameter of an artery/vein the less 

spatially specific the response it registers, to the best of our knowledge, the functional and spatial 

specificity of BOLD, HbR CBV and HbT responses have not been quantified as a function of 

vessel diameter. This is certainly true for vessels within a cortical map organized in multiple 

cortical columns, such as ocular dominance or orientation columns. Our results show a clear and 

sharp decrease in the spatial specificity of HbT response relative to that obtained in gray matter 

even for the smallest vessel diameters in the range we tested. Moreover, the spatial specificity of 

HbT responses decreases as a function of pial vessel diameter (Figs. 5-5 and 5-6). This is consistent 

with previous anatomical studies that demonstrated that the wider the diameter of a pial vein, the 

larger the overall cortical region that its ramifications drain (Duvernoy et al., 1981, Fig. 26). In 

contrast, HbR spatial specificity in veins of diameter smaller than or equal to 0.12 mm was not 
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significantly different than that in gray matter regions. We attribute this phenomenon to the lower 

selectivity of HbR response relative to HbT response, already at the gray matter itself (Fig. 5-7, 

first row). This poor selectivity in gray matter propagates to the veins. Therefore, the increase in 

selectivity of HbR relative to HbT with increasing vein diameter (Fig. 5-7, first row) can be 

attributed to the decrease in selectivity of HbT responses with increasing vein diameter (Fig. 5-5, 

third row) rather than to increase in HbR selectivity (note that HbR selectivity decreases with vein 

diameter too, Fig. 5-5, first row). In addition, we attribute this phenomenon to the gradual dilution 

of changes in HbR and HbO in veins with increasing distance from the site of increased neuronal 

response (Turner, 2002). In contrast, hypercapnia studies showed that the diameters of small 

arteries and venules increases relatively more than those of large vessels (Lee et al., 2001), 

suggesting that small vessels can accommodate a larger increase in CBV.  

Selectivity of vessels with diameters not within the range we tested 

While in principle, no conclusion can be made with no measurements, we believe that it is 

safe to assume that the selectivity measures of veins with diameter smaller than 0.04 mm should 

not be different than those in GM regions. We limited our analysis to the range of diameters of 

0.04-0.28 mm, in order to have sufficient data for statistical testing. However, it is an accepted 

assumption that the draining region area of veins (and similarly, the region supplied by an artery) 

increases with increasing vein diameter. This implies that the wider a vein is, the more cortical 

columns, with more diverse preferred orientations it drains. Our measurements showed that the 

selectivity measures obtained from veins with diameters of 0.04-0.14 mm (SiNR), 0.04-0.16 mm 

(CNR) and 0.04-0.13 mm (decoding accuracy) were not significantly different than those in GM 

regions. Therefore, we can safely conclude that the veins with diameter smaller than 0.04 mm 

would follow and have selectivity at least as high as that shown by veins with diameter of 0.04 

mm and not different than that in GM. 

In addition, the HbR responses in veins (and arteries) and those of HbT in veins and arteries 

with diameters between 0.16-0.28 mm were significantly lower than those in GM. Furthermore, 

they decreased with increasing vessel diameter. Therefore, for similar reasons, we can safely 

assume that the functional selectivity measures of HbR responses in veins (and arteries) and those 

of HbT in veins and arteries with diameters larger than 0.28 mm (which were not in the diameter 

range we tested) are less selective than those in GM regions.  
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Increasing spatial specificity of fMRI during data-acquisition and by informed selection of 

voxels according to vessel diameter 

Our results show that the functional/spatial specificity of HbR responses in veins and HbT 

responses in veins and arteries decreases with increasing vessel diameter. Certain data-acquisition 

parameters, such as the readout duration in SE fMRI and the level of asymmetry in ASE fMRI can 

limit the signal contribution to vessels along draining propagation. ASE-fMRI provides higher 

partial nullification of contributions from large veins relative to suppression of contributions from 

capillaries. The more asymmetric the refocusing pulse is, the closer to GE the resultant signal 

(Boxerman et al., 1995).  Thus, ASE-FMRI enables a continuum of contrasts between the two 

extremes, T2 and T2* contrasts. In SE-BOLD fMRI, controlling the T2* contributions can be done 

by varying the duration of the readout window (Goense and Logothetis, 2006). The signal acquired 

at the peak of the echo reflects mainly T2 contributions. Increasing the read out duration to include 

signal away from the peak increases T2* contributions that emerge from larger vessels, while 

increasing image SNR. In the study by Goense and Logothetis, varying the duration of the readout 

window in SE resulted in different response profiles across layers. The longer the readout, the 

closer was the SE functional response across layers to that of GE sequence; i.e. more signals 

originating from superficial layers. Optimizing the trade-off between long readout for higher SNR 

and short readout for spatial specificity can benefit from information on the spatial specificity of 

veins and venules of various diameters. Thus, indirectly, ASE-fMRI and SE-fMRI can weigh 

contributions from vessels of certain diameters more than those of others, in order to increase the 

spatial specificity of responses to the sites of increased neuronal activity. 

Whereas limiting the data-acquisition to contributions from vessels within a certain range 

of diameters may not be straightforward, MRI methods exist for estimating the average vessel 

radius in a voxel. Thus, contributions from voxels containing vessels with large diameters can be 

excluded during the analysis stage. Typically, the mean vessel size, or vessel caliber index (VCI), 

is calculated from the ratio of the change in R2* and R2 following the injection of a contrast agent 

(Tropres et al., 2001; Kiselev et al., 2005; Germuska et al., 2013) However, the majority of these 

methods require injection of either gadolinium diethylenetriaminepenta-acetic acid (Gd-DTPA) or 

superparamagnetic iron oxide particles as the contrast agent. An alternative method which does 

not require injection of a contrast agent, relies on the blood oxygenation level-dependent (BOLD) 

effect that can be used as the source of this contrast (Prinster et al., 1997; Jochimsen et al., 2010; 
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Shen et al., 2013). The blood oxygenation is modulated with either hypoxic, hyperoxic, or 

hypercapnic gas challenges, probing the venous vasculature. However, these gas challenges may 

similarly be inconvenient for use in conjunction with fMRI. Likely, the most convenient method 

for use in the context of improving the spatial specificity of the fMRI response, is the one proposed 

by Jochimsen and Moller (2008). The method derives the mean vessel diameter in a voxel from 

the change in transverse relaxation rates upon activation which can be measured by multi-gradient-

echo sampling of the spin echo sequence (Jochimsen and Moller, 2008). Thus, our findings can be 

combined with fMRI-based estimation of the average vessel diameter (Jochimsen and Moller, 

2008) to exclude contributions from vessels with low spatial specificity. 

Our study is different than that by Jochimsen and Moller (2008) in several ways. First, 

rather than estimating the mean vessel size within a voxel, we measure, in a more direct manner, 

the diameters of all vessels. In addition, Jochimsen and Moller (2008) provide a method for 

estimating the mean vessel size within a voxel, and the amplitude or significance of the BOLD 

response as a function of the mean vessel diameter, but no information on which vessel size 

contributes spatially specific responses. In contrast, our study quantifies the functional/spatial 

specificity of vessels according to their respective diameters: we measure the specificity of blood 

vessels at a scale that cannot be achieved with MRI or fMRI. Therefore, our study complements 

the one by Jochimsen and Moller (2008), and the results of the two studies together can be 

combined for improving the spatial specificity of the BOLD response.    

Conclusions about spatial specificity based on functional selectivity 

In this work, we measured the blood vessel and gray matter response selectivity to a group 

of stimuli. Hence the selectivity measures can be classified as “functional”, as they quantify the 

differences between the functional responses to these stimuli. However, the specific group of 

stimuli we used is that of oriented gratings that span the orientation space. Orientation selective 

neurons in cat area 18 are clustered together, forming orientation selective columns orthogonal to 

cortical surface and an orientation preference map parallel to the surface (Bonhoeffer and Grinvald, 

1993b; Hubel, 1995; Shmuel and Grinvald, 2000). This organization is not arranged in a purely 

cyclic manner involving one single frequency (Chapter 4). However, the cortical spatial 

frequencies showing significant amplitudes are organized in an approximate Gaussian shape, 

including a Gaussian center and peak of ~0.84 cycles per mm and local irregularities (Chapter 3, 
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4). Hence, the functional selectivity is mapped to space, and therefore, in our current study it is 

justified to use the term functional specificity interchangeably with spatial specificity.   

Another way to view it, is via the well accepted concept that the larger the diameter of a 

vein the larger cortical area it drains. Since orientation columns are organized as a mosaic with a 

main cortical spatial frequency, the larger the vein diameter, the larger number of columns with a 

variety of orientation preferences it drains. Therefore, although we measured functional selectivity, 

our conclusion can be directly extended to terms of spatial specificity. 

Several studies have demonstrated that across the cortical surface, the orientation 

preference can also vary in cortical spatial frequencies substantially lower that the main frequency 

of the columnar organization (Furmanski and Engel, 2000; Sasaki et al., 2006; Clifford et al., 2009; 

Mannion et al., 2010; Freeman et al., 2011; Freeman et al., 2013; Sun et al., 2013; Wang et al., 

2014). This could in principle have a confounding effect on our measurements that are aimed to 

quantify the spatial specificity of vessels for high-resolution functional imaging of cortical 

columns. In particular, the radial bias is retinotopically organized, and includes components other 

than a global constant change in response. Therefore, in order to avoid this confound, we spatially 

high-pass filtered our data in the pre-processing stage with a cut-off frequency of 0.2 cycles/mm. 

This filtering leaves only frequencies associated with the main frequency and the irregularities of 

the organization (Yao et al., Chapter 4). Importantly, we performed this high-pass separately for 

arteries, veins and gray matter regions, in order to avoid cross-interference due to abrupt changes 

in response between modalities. 

Implications of our conclusions for high-resolution fMRI in humans 

We have made our measurements in the cat visual cortex. However, our findings and 

conclusions can be extended to high-resolution fMRI of human cortex.  As discussed above, the 

functional selectivity of blood vessels measured in our work can be regarded as spatial specificity. 

Importantly, the vascular architecture is essentially similar across mammalian species at the 

capillary level. The mean capillary diameter changes only slightly with brain volume (~4.6 µm  in 

rat, Laursen and Diemer, 1977; ~4.8 µm in cat, Auen et al., 1979; ~6.5 µm in human, Lauwers et 

al., 2008). The capillary volume fraction (ratio of total capillaries volume to brain volume) and the 

capillary length per neuron are invariant across mammalian species, including mouse, rat, rabbit, 

pig, cat, dog, primate and humans (Karbowski, 2011). This could be expected, since single neurons 

or small volumes within brains need to be maintained by supply of oxygen and glucose, 
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independent of the size of brains they belong to. For this reason, we can expect that the vascular 

statistics of arterioles, small arteries, venules and small veins with diameter smaller than or equal 

to 0.12 mm is essentially similar across species. In other words, the functionality of vessels of 

similar diameter is invariant across mammalian brains. The vascular network structure and 

diameter does vary with the brain’s volume only in the infrastructure of large vessels (Gillilan, 

1976), which is irrelevant in the context of high-resolution functional imaging. 

Hence, in absolute terms, the vessel diameter limit we report here is applicable to any 

cortical functional organization arranged around a peak frequency of 0.84 cycles/mm or lower 

frequency. The cortical maps with the highest spatial frequency known in the macaque cortex are 

those of ocular dominance columns (~1.25 cycles/mm, Ts'o et al., 1990) and orientation columns 

(~1.25 cycles/mm, Bartfeld and Grinvald, 1992) in V1. All anatomical and functional studies in 

humans have demonstrated that the organization of the human visual cortex is similar to that of 

the macaque monkey. We can therefore assume that the cortical maps with the highest spatial 

frequency in humans are those of ocular dominance (~0.5 cycles/mm, Adams et al., 2007; Yacoub 

et al., 2007) and orientation (~0.56 cycles/mm,Yacoub et al., 2008). These 2 organizations in 

humans have main frequencies that are lower than that in cat area 18, where we obtained our 

measurements from. We can therefore safely conclude that the vessels with diameter smaller or 

equal to the limit we report here can contribute to fMRI of human cortical columns if the signal to 

noise ratio (SNR) justifies inclusions of contributions other than those from capillaries. 

The periodicity of this organization constitutes higher cortical frequencies than any of the 

cortical maps that can be expected to exist in the human cerebral cortex. In addition, as discussed 

above, the functionality of vessels of similar diameter is invariant across mammalian brains. 

Therefore, all vessels with diameter smaller than or equal to the limit we propose can be included 

in data-acquisition and not excluded in data analysis for increasing CNR of high-resolution fMRI.  

Extension of our conclusions to intra-cortical vessels 

The physiological phenomenon measured by OI-IS of HbR and HbT is the same 

physiological phenomenon measured by BOLD-fMRI and CBV-fMRI, respectively. What differs 

between the two methods is the principle of measurement, i.e. changes in local absorption of light 

in the case of OI-IS and of relative magnetism in the case of fMRI. Therefore, an fMRI slice 

aligned to the cortical surface should in principle, barring issues such as extra-vascular BOLD in 

GE fMRI, come up with findings similar to those we present here with OI-IS. However, unlike 
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fMRI, OI-IS acquires signals limited to the superficial layers of cortex. We have imaged the OI-

IS response in gray matter and pial blood vessels. Therefore we cannot extend our conclusions in 

a straight-forward manner to intra-cortical vessels. However, pial vessels drain cortex, and the 

vessels in cortex have diameters that are smaller than that of the pial vessel they connect to, or, in 

the minority of cases, equal to that diameter (Duvernoy et al., 1981, Fig. 25-26). The largest 

diameters of vessels in cortex are 0.12-0.125 mm, associated with veins of class 5 (Duvernoy et 

al., 1981). These veins have a vertical path, draining venous blood from all cortical layers, starting 

with layer 6. All venous branches that connect to veins of class 5 have diameters smaller than 0.12 

mm. The branches that drain blood to class 5 veins from relatively distant sites are those in layer 

6 and below it. However, the laminar profile of the BOLD response shows significantly lower 

amplitude in layer 6 than in superficial layers (Koopmans et al., 2010). Thus, the spatially non-

specific contributions of these veins has lower amplitude than those from the veins in superficial 

layers, with smaller draining regions. We conclude that our measurements of spatial specificity 

demonstrated by pial veins is consistent with what one can expect based on draining regions within 

cortex. If the CNR obtained from BOLD responses does not limit the measurement, it is clear from 

the significant regression slope of SiNR obtained from HbR responses that veins of all diameters 

should be excluded, and data acquisition and/or analysis should be based exclusively on BOLD 

responses from the gray matter. However, since high-resolution BOLD fMRI has low CNR in the 

majority of cases, veins with diameter up to 0.12 mm can contribute with non-significantly 

degraded spatial specificity. 

We have based our findings on functional imaging of cortical columns. Thus, our findings 

and recommendations apply to high-resolution functional imaging of cortical columns that by 

definition show similar neurophysiological preference to the feature they map (e.g., ocular 

dominance and orientation in visual cortex, frequency in the auditory cortex, specific finger and 

phalanx in the somatosensory cortex) across all cortical depths. Our findings do not apply to high 

resolution functional imaging of cortical layers. The relatively large intra-cortical arteries and 

veins are oriented orthogonally to the cortical manifold. Therefore, any consideration of vessel 

sizes for optimizing laminar specific functional imaging is going to be different than our 

consideration here, and is likely to end up in exclusion of all vessels except for capillaries.          
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Conclusion 

We conclude that if SNR and CNR are insufficient in high-resolution BOLD-fMRI of 

human cortical columns, one can integrate contributions from vessels with diameter smaller than 

or equal to 0.12 mm with no significant decrease in spatial specificity. For high-resolution CBV-

fMRI, the smaller the diameter of contributing vessels, the higher the expected spatial specificity.  
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Appendix 

Monte-Carlo simulations 

In the first part, we used Monte-Carlo simulations with heterogeneous media in order to 

estimate the distribution of path lengths of all photons emerging from one location at the top of a 

pial vessel (Suppl. Fig. 5-1A). Specifically, we estiamted  the path lengths of each photon within 

the blood vessel and gray matter . Intuitively, if the vessel’s diameter is large, the only photons 

that will emerge from its top are those whose entire path length was within the vessel. In contrast, 

if the diameter is small, a large proportion of photns that emerge from its top have part of their 

path length in the surrounding gray matter. 

 We first applied our Monte Carlo simulations to a homegeneous gray matter tissue and 

separately, a homegenous volume of blood. Monte Carlo simulations uses the medium properties 

such as the absortion coefficient and the scattering coefficient as the input parameters, and outputs 

the disitribution of the photon path-lengths. The simulation itself does not depend on the incident 

light’s wavelength; however, the absorption and scttering coefficients of a biological tissue do 

depend on the light’s wavleength. Hence we need to consider the tissue’s absorption and scaterring 

coefficients as a function of wavelength when using either monocrome light or light with a certain 

band of wavelengths. 

For the simulation associated with gray matter, we calculated the medium’s absorption 

based on the HbR and HbO contents within the gray matter and their extinction coefficients at 530 

nm and 617 nm. For each medium’s absorption parameter used as input, the software computed a 

distribution of path lengths obtained from millions of photons. We confirmed that the estimated 

mean path lengths in gray matter for illumination of 530 nm and 617 nm agreed with the previously 

reported values (approximately 0.5 mm and 2.5 mm, respectively, Dunn et al. (2005), with 

extrapolation from Kohl et al. (2000)). Then, we estimated the vessel absorptions for 530 nm and 

617 nm based on the typical HbR and HbO contents reported in animals (Table 5-I in the main 

text). These allowed us to estimate the mean path lengths obtained for a blood vessel with infinite 

diameter (namely homogeneous blood volume) via the simulation (Suppl. Table 5-I).  

The estimated path lengths in infinite blood vessels and gray matter were obtained by first 

computing absorbance based on the baseline concentrations of HbO and HbR and their respective 

absorption coefficients under illumination of 530 nm and 617 nm. 
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Supplementary Figure 5-1. Estimation of path-lengths of photons emerging from blood 

vessels as a function of blood vessel diameter.  

When a blood vessel has diameter of 0 mm, 

the entire photon trajectory is within the gray 

matter. However, a photon may travel 

partially in the gray matter and partially in 

the blood vessel. A) A scheme of a trajectory 

of a photon that goes through gray matter, 

then through a blood vessel in the generated 

mesh.  B) Mean photon path-length for 

photons emerging from blood vessels as a 

function of blood vessel diameter.  In this 

particular simulation, the mean photon path-

length in homogenous gray matter medium 

was 7.3 mm and that in homogeneous blood 

vessel medium was 3 mm. The vessel curve 

(red) was cut at 3 mm (the mean photon path-

length in homogeneous blood vessel 

medium) and normalized in both the x and y 

axes to [0 1].  The cut-off of 3 mm on the x-

axis was chosen because, as expected, that’s 

where the curve plateaued. Similarly, the 

cortex curve (pink) was cut according to the 

blood vessel cut-off (3 mm), inversed 

vertically and normalized along both the x 

and y axes to [0 1]. We simulated this 

process for 2 additional simulation 

parameter sets. For these simulations, the x-

axis cut-off was similarly chosen to be the 

mean photon path-length in a homogeneous 

medium with blood vessel tissue parameters. 

C) The mean and SEM of the 6 normalized 

function curves obtained from the 3 

simulation parameter sets. We found that 

 1 − (1 − 𝑥)4.1  fitted the data well (n = 3 

simulations x 2 curves, R2 > 0.98). Then this 

equation, which describes the ratio of the 

partial path length in GM or vessel relative 

to their pathlengths in their respective 

homogeneous tissue as a function of blood 

vessel diameter, was used to approximate 

and separate photon partial path-lengths in a 

heterogeneous media in the following 

section and Suppl. Fig. 5-2, steps 4 and 6. 
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For example, the baseline concentrations of HbO and HbR in the gray matter are 60 µM 

and 40 µM, respectively (Table 5-I in the main text). The absorption (extinction) coefficients of 

HbO and HbR under illumination of 600 nm are 320/mm∙M and 1470/mm∙M, respectively. Then 

the total gray matter absorption is 2.303×(3.2E2 ×6E-5 + 1.47E3×4E-5) = 0.18 (note that 2.303 is 

a normalization factor based on the Beer-Lambert law). The absorbance of 0.18/mm on the 

horizontal axis of Fig. 1B in Kohl et al. (2000) yields a mean path length of 1.52 mm on the vertical 

axis of the same figure. This simple calculation also matches with the simulated results in Fig. 1C 

of Dunn et al. (2005) under illumination of 600 nm on the horizontal axis. We performed similar 

calculations as described above for homogeneous gray matter tissue under illumination of 600 nm, 

to our current interest in gray matter, arteries, and veins (assuming infinite vessel volume) under 

illumination wavelengths of 530 nm and 617 nm. 

Then, to estimate path length in the heterogenous setting we inserted a cylindrical mesh 

buried half-way into the cortical surface to represent the pial blood vessel (Suppl. Fig. 5-1A). We 

estimated the distribution of path lengths as a function of the pial blood vessel’s diameter. Using 

realistic blood vessel radii required the generation of high-resolution cylindrical meshes that were 

too fine for our custom written simulation software. Specifically, the meshes that our system could 

manage were too coarse, thus we could not depict vessels them as cylinders. Because of this 

limitation in precision, we simulated heterogeneous media with large vessels and gray matter 

thicker than in reality. To this end, we adjusted the absorption properties of the gray matter and 

blood vessels to values smaller than realistic values, so that we could simulate heterogeneous tissue 

of gray matter and veseels with relatively large vessels. For this, we carried out 3 simulations, each 

with different combinations of absorption parameters.(Suppl. Table 5-I).  

 

 

Supplemantary Table 5-I: absorption coefficients used for gray matter and blood vessels in 

our 3 simulations. 

 Gray matter absorption Blood vessel absorption 

Simulation A 0.017 mm-1 0.062 mm-1 

Simulation B 0.049 mm-1 0.180 mm-1 

Simulation C 0.017 mm-1 0.180 mm-1 

When used in a simulation with homogeneous tissue, the absorption coefficients we used [0.017 

0.049 0.062 0.180] mm-1  yield mean path lengths of [7.0 3.5 3.0 1.5] mm, respectively (Kohl 

2000). We selected these values, for simulating the condition of path-lengths of 7 mm in cortex 

and 3 mm in blood vessel.  
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For the simulation presented in Suppl. Fig. 5-1B, the absorption properties of gray matter 

and blood vessels were set with apriori knowledge from Kohl et al. (2000) so that the mean photon 

path length within their respective homogenous media were  approximately 7.0 mm and 3.0 mm. 

We then obtained the distribution of partial photon path lengths within the gray matter and the 

blood vessel as a function of increasing blood vessel diameter from 0.0 mm to 9.0 mm. With 

increasing blood vessel diameter, the path-length of photons within the blood vessel increased 

monotonously up to approximately 3.0 mm. As expected, for photons emerging at the top of the 

vessel, the average partial path lenth in gray matter decreased with increasing blood vessel 

diameter. 

We then normalized each of the 2 resultant curves of partial path length as a function of 

blood vessel diameter, by limiting it to radii equal to or smaller than 3 mm (where the partial 

pathlength within the blood vessel plateaued), and dividing both the x and y values by their max 

value. Thus, the curve of the partial path length in the vessel (red) was cut at 3 mm and normalized 

along both the x and y axes to [0 1].  The cut-off of 3 mm on the x-axis was chosen here because 

that’s where the curve plateaued. Similarly, the curve describing the partial path length in gray 

matter as a function of vessel diameter (pink) was also cut at 3 mm, inverted vertically (flipped 

around the horizontal axis) and normalized along both the x and y axes to [0 1].  

We repeated this process for 3 combinations of hypothetical absorption properties of gray 

matter and blood vessel (Suppl. Fig. 5-1C). For each simulation, the x-axis cut-off was chosen to 

be the diameter in which the average partial path length in blood vessel reached 99.5% of the mean 

photon path length in a homogeneous blood vessel medium. The 99.5% cutoff on the x-axis 

corresponded to the diameter of blood vessel that matched the mean photon path length in a 

homogeneous blood volume. An inverse power function, 1 − (1 − 𝑥)𝑎, was fitted to the curve 

averaged over the 6 normalized simulated curves (3 simulations x [BV GM] curves, fitting was 

done using Matlab’s ‘fit’ function). Based on the similarity of the normalized curves, we concluded 

that the function with α = 4.1 (1 − (1 − 𝑥)4.1 , R2 > 0.98) fits well the normalized curves within 

the range of absorption spectra we used (Suppl. Fig. 5-1C). We assumed that we can extrapolate 

and use the same function also for gray matter and vessels with realistic thickness and diamaters, 

respectively, and with realistic absorption parameters under 530 nm and 617 nm (Table 5-I in the 

main text). We therefore applied this equation, which describes the path length as a function of 
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blood vessel diameter, to approximate and separate photon path-lengths of heterogeneous media 

in the following section.  

Correction of path length in heterogeneous media 

Next, we corrected the absorption change associated with a pial blood vessel region 

according to the absorption change in its surrounding gray matter regions (Suppl. Fig. 5-2).  

To this end, we first masked out all blood vessels, and filled in their regions by interpolating 

the response values from the surrounding gray matter regions, separately under illumination with 

530 nm and 617 nm (Suppl. Fig. 5-2, step 2). Then, we computed the change in HbR, HbO and 

HbT for each pixel in the imaged region, including the gray matter (GM) and the filled in (GM’) 

blood vessel regions. For this, we applied a standard procedure for decomposing LED illumination 

absorption changes to the underlying hemoglobin content changes (Suppl. Fig. 5-2, step 3): 

Δ𝐴 = 𝑃∆𝜇 = 𝑃(∆𝑐𝐻𝑏𝑂
. 𝛼𝐻𝑏𝑂

. + ∆𝑐𝐻𝑏𝑅
. 𝛼𝐻𝑏𝑅

. )     (1) 
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∆𝑐𝐻𝑏𝑇
𝜆1,𝜆2 = ∆𝑐𝐻𝑏𝑅

𝜆1,𝜆2 + ∆𝑐𝐻𝑏𝑂
𝜆1,𝜆2

       (4) 

Where: 

λ1 = 530 nm wavelength illumination (green) 

λ2 = 617 nm wavelength illumination (orange) 

Ρλ1,2 = mean pathlength of photons at 530/617 nm  

ΔAλ1,2 = change in absorption of the gray matter relative to the baseline under 530/617 nm 

αλ1,2HbO = absorption coefficient of HbO in gray matter under illumination at 530/617 nm 

αλ1,2HbR = absorption coefficient of HbR in gray matter under illumination at 530/617 nm 

ΔcHbO = change in oxy-hemoglobin concentration  

ΔcHbR = change in deoxy-hemoglobin concentration  

ΔcHbT = change in total-hemoglobin concentration  
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Supplementary Figure 5-2. Path-length correction of pixels depicting blood vessel regions. 

1. The original cortical map contains both blood vessel and gray matter pixels. 2. The blood vessel 

pixels were first masked out from the cortical response map. The missing values were filled using 

a robust smoothing algorithm (Garcia, 2010), by interpolation of the values from adjacent GM 

regions. 3. Spectral decomposition was performed on the filled-in region using the path-length of 

homogeneous gray matter medium. The obtained values correspond to the gray matter hemoglobin 

molar concentration changes hidden underneath the blood vessels. 4. The obtained molar 

concentration changes were converted back to photon absorption; however, with the shorter (= 

partial) path-length in GM which was a fraction of the path length in the homogeneous GM 

medium  and depended on the diameter of vessel above the corresponding gray matter tissue. 5. 

The partial absorbance computed for the GM underneath the vessel was subtracted from the 

original response map. 6. The final spectral decomposition is carried out with adjusted path-length 

that accounts for the part traveled through the blood vessel part only. 
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Because the light emitted from LEDs have a certain spectral diameter (it is not composed 

of a single wavelength) and, in adition, the camera sensor has different sensitivity over the 

spectrum, we employed an effective path-length model that takes into account the integrals over 

the distribution of the light and camera sensitivity spectra (Brieu et al., 2010). 

Once the spectral decomposition was performed for all pixels in the imaged region, 

including the filled in BV regions,  we performed adjusted spectral decomposition for the pixels 

within the vessel regions. The measured absorption in blood vessel regions is the combination of 

partial blood vessel and gray matter absorption changes. Therefore, for all blood vessel pixels, we 

need to separate the partial blood vessel absorption change from the overall absorption change 

which we measured. The decomposed gray matter molar concentration changes (∆𝑐𝐻𝑏𝑅
𝜆1,𝜆2

 and 

∆𝑐𝐻𝑏𝑂
𝜆1,𝜆2

) in the blood vessel regions were converted back to absorption changes with partial path 

lengths (Suppl. Fig. 5-2, step 4).  

Δ𝐴 =Δ𝐴𝑏𝑣 +Δ𝐴𝑔𝑚 = 𝑃𝑣𝑏∆𝜇𝑣𝑏 + 𝑃𝑔𝑚∆𝜇𝑔𝑚    (5) 

𝑃𝑣𝑏∆𝜇𝑣𝑏 =Δ𝐴 − 𝑃𝑔𝑚∆𝜇𝑔𝑚       (6) 

Where: 

ΔA = change in total absorbance constituting ΔAgm and ΔAvb. i.e. the partial absobances of GM and BV, 

respectiviely 

ΔAgm =change in partial absorbance of the underlying gray matter  

ΔAvb = change in partial absorbance of the overlying pial blood vessel 

Δμgm = change in absorption coefficient of the gray matter underneath the blood vessel 

Δμbv = change in absorption coefficient of the blood vessel 

Ρvb = mean partial pathlength of photons travelled within blood vessel 

Ρgm = mean partial pathlength of photons travelled within cortex 

 

The partial path lengths of the blood vessels regions varied according to the radii of the 

overlying vessels (Suppl. Fig. 5-1). Since we established that the normalized curves are well 

represented by the inverse power function, 1 − (1 − 𝑥)4.1, we can de-normalize it  (i.e., multiply 

the values along the x-axis by the path length within the homogeneous medium of the considered 

blood vessel (vein or artery) for 617 nm or 530 nm  illuminations. Following the de-normalization, 

we computed the ratio of the partial path length relative to the path length of the homogeneous 

blood volume for every diameter range of blood vessels.  
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For example, looking at a vein under illumination of 617 nm, the path length in a 

homogeneous vein volume is 0.393 mm (Table 5-I in the main text); this is the factor with which 

we de-normalize the horizontal axis. Then, if the vein of interest has a diameter of 0.393 mm or 

wider, we check for the value along the vertical axis that the function yields at the maximal value 

(1, de-normalized to 0.393 mm) along the horizontal axis. The result is 1, the maximal value along 

the normalized vertical axis. The meaning of this, is that the mean combined path length for a vein 

with diameter 0.393 mm under illumination of 617 nm is composed of photons that travelled 

exclusively (100%, 0.393 mm) through the vessel and none (0%) through the gray matter. On the 

other hand, if the vein of interest has a diameter of 0.197 mm (half of the path length under 617 

nm in a homogeneous vein volume), the mean combined path length is composed of partial path 

length in vein which is 85% (0.334 mm) of the mean path length in homogeneous vein volume 

(0.393 mm) and of partial path length in gray matter which is 15% (0.381 mm) of the mean path 

length in homogenous gray matter medium (2.54 mm) under 617nm. 

The final decomposition was obtained from changes of chromophores within blood vessel 

only (Suppl. Figures 4-2, steps 5 and 6). First, the molar concentration change of HbR and HbO in 

gray matter, calculated previously, was multiplied by the gray matter partial path length to yield 

the partial gray matter absorption changes. Then the partial blood vessel absorption changes were 

separated from the mixed absorption changes by subtracting the partial gray matter absorption 

changes from the total absorption under the wavelength we consider. 

∆𝐴𝑏𝑣𝜆1 = ∆𝐴𝜆1 − 𝑃𝑔𝑚𝜆1(𝛼𝐻𝑏𝑂
𝜆1 ∆𝑐𝑔𝑚𝐻𝑏𝑂 + 𝛼𝐻𝑏𝑅

𝜆1 ∆𝑐𝑔𝑚𝐻𝑏𝑅)   (7) 

∆𝐴𝑏𝑣𝜆2 = ∆𝐴𝜆2 − 𝑃𝑔𝑚𝜆2(𝛼𝐻𝑏𝑂
𝜆2 ∆𝑐𝑔𝑚𝐻𝑏𝑂 + 𝛼𝐻𝑏𝑅

𝜆2 ∆𝑐𝑔𝑚𝐻𝑏𝑅)   (8) 

Where Pgmλ = partial path length of gray matter underneath the pial blood vessel 

Finally, the isolated hemoglobin content changes in blood vessels were obtained from the 

partial blood vessel absorption changes and from the partial blood vessel path lengths (Suppl. Fig. 

5-1)  
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The symbols are similar to those used in the previously defined equations. 
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Preface to Chapter 6 

In Chapter 6, we address aim 3: ‘to quantify the spatial specificity of aggregates of 

capillaries within the gray matter relative to that of neurophysiological responses’. An important 

aspect that challenges successful decoding of orientation stimuli is the spatial spread of the 

hemodynamic response. This spread has been modeled as a hemodynamic point spread function 

(PSF) which is thought to represent the upper bound on how spatially precise fMRI response is to 

a point-like or a line-like increase in neuronal activity. However, except for one study that applied 

stimulation to a single cortical site in mouse area S1 (Vazquez et al., 2014), all previous studies 

that estimated the spatial specificity of the hemodynamic response did not consider the spread of 

the neurophysiological response. Thus the reported hemodynamic PSFs include the component of 

the spatial spread of neural activity, including the size of receptive fields, the spatial extent of the 

scatter of receptive-fields and integration by the dendritic fields. In this chapter we use optical 

imaging simultaneously with neurophysiological recordings to demonstrate that the PSF of the 

hemodynamic response relative to the spread of neurophysiological responses to retinotopic 

stimuli is smaller than the absolute PSF. Our findings predict that the PSF of BOLD responses in 

humans are expected to be smaller than what has been reported thus far, consistent with the 

feasibility of fMRI at the resolution scale of cortical columns. 
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Abstract 

The spatial spread of functional MRI (fMRI) responses relative to the site of increased 

neurophysiological activity is an important measure for correctly planning and interpreting high-

resolution fMRI and fMRI-based decoding of fine-scale organizations. Previous studies that 

quantified the point spread function (PSF) of the blood oxygenation level dependent (BOLD) 

response implicitly assumed that the neurophysiological response is point-like, with no spread. 

However, neurophysiological responses to stimulation of part of the visual field, commonly used 

for estimating the spread of the BOLD response, are expected to show spatial spread too. Here we 

used optical imaging of hemodynamic signals: changes in content of oxy- (HbO) deoxy- (HbR) 

and total (HbT) hemoglobin, simultaneously with neurophysiological recordings to measure the 

response of cat area 18 to visual stimulation of parts of the visual field, with edges at various 

eccentricities. We modeled the hemodynamic and neurophysiological spreads as Gaussians. The 

mean absolute full-width-at-half-max (FWHM) of HbO and HbT responses in cat area 18 were 

3.26 and 2.83 mm, respectively. The mean absolute FWHM of the HbR responses was larger than 

that of HbT responses. The mean absolute FWHMs of PSFs of low-gamma, high-gamma and 

spiking responses in cat area 18 were 3.73, 3.25 and 2.07, respectively. The PSF of HbT and HbO 

responses relative to spiking activities were 2.52 mm and 1.93 mm, respectively, using a 

convolution model and 1.19 mm and 0.76 mm using an additive model. We conclude that the 

spatial spreads of low-gamma and high-gamma neurophysiological responses are comparable to 

that of HbT responses. Thus, Cerebral Blood Volume (CBV) responses reflect fine scale 

organization at high fidelity. Our findings predict that the PSF of BOLD responses in humans are 

expected to be smaller than what has been reported thus far, consistent with the feasibility of fMRI 

at the resolution scale of cortical columns.  
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Introduction 

Functional magnetic resonance imaging (fMRI) is the most commonly used non-invasive 

method for investigating brain activity. fMRI can measure changes in blood-oxygenation-level-

dependent (BOLD) contrast (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992), and 

in cerebral-blood-volume (CBV) (Belliveau et al., 1991; Kim and Kim, 2005; Stefanovic and Pike, 

2005; Lu and van Zijl, 2012). fMRI infers the brain’s neurophysiological activity indirectly by 

measuring hemodynamic responses coupled closely with neural activity (Mathiesen et al., 1998; 

Logothetis et al., 2001; Shmuel et al., 2006; Shmuel and Leopold, 2008). In order to infer the 

neurophysiological responses from fMRI, one needs to quantify the transformation between the 

evoked neuronal activities and the subsequent hemodynamic responses. Progress has been made 

towards quantifying the temporal relationship between the two responses, revealing of a linear 

relationship with long stimulus durations, and nonlinear features that appear when comparing 

responses to short and long stimuli (Boynton et al., 1996; Vazquez and Noll, 1998).  

Several investigations have been also made towards quantifying the spatial specificity of 

fMRI responses relative to the area where increased neurophysiological activity was expected. The 

first study that quantified the spatial specificity of hemodynamic response showed that the BOLD-

fMRI at 1.5T can be modeled as a Gaussian with full-width-at-half-max (FWHM) of 3.5mm 

(Engel et al., 1997). Subsequent fMRI studies estimated FWHM of 3.9 mm for gradient echo 

BOLD at 3 Tesla, 3.4 mm for spin echo BOLD at 3 Tesla, and ~2 mm for gradient echo BOLD at 

7 Tesla (Parkes et al., 2005; Shmuel et al., 2007). Using optical imaging of intrinsic signal (OI-IS) 

Sirotin and Das estimated a FWHM of 3.06 mm and 2.74 mm for measurements equivalent to 

BOLD- and CBV-fMRI, respectively (Sirotin et al., 2009).  

The studies mentioned above, that quantitatively estimated the spatial specificity of the 

fMRI response, did not account for the spread of the neurophysiological response. In other words, 

they implicitly assumed that the neurophysiological response in V1 to stimulation of part of the 

visual field ends in a sharp transition, with no spread between the retinotopically stimulated and 

non-stimulated regions. Here we aimed to demonstrate that the spatial spread of the hemodynamic 

response relative to the neurophysiological response is smaller than the absolute spread estimated 

for the hemodynamic response. To this end, we applied optical imaging of intrinsic signals 

measured simultaneously with neurophysiological recordings in cat area 18. We presented a group 

of stimuli that covered parts of the visual field, with horizontal boundaries that were positioned 
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along the vertical meridian. We estimated the spatial spread of the neurophysiological as well as 

the hemodynamic responses. Our results show that when accounting for the spatial spread of 

neurophysiological responses, the relative point spread function (PSF) of hemodynamic responses 

is smaller than the absolute, measured hemodynamic spread. 

Materials and Methods 

Experiments 

10 data sets were obtained from 5 hemispheres of 4 animals, weighting 3.2 to 3.5kg. All 

procedures were pursued according to the guidelines of the Canadian Council on Animal Care 

(CCAC) and were approved by the animal care committees of the Montreal Neurological Institute 

and McGill University. The methods used for preparing and maintaining the animals were similar 

to those used in previous OI-IS studies using anesthetized cats (Shmuel and Grinvald, 1996, 2000). 

The methods are outlined below, whereas differences and new methodological aspects are 

described in detail. Data analysis was performed using code written in MATLAB (MATLAB 2013; 

The MathWorks, Natick, MA). 

Visual stimuli 

The stimuli were generated using Psychophysics toolbox (Brainard, 1997) running on the 

Matlab platform (the MathWorks, Natick, MA). They were displayed on an LCD monitor 

operating at 60 Hz refresh rate. The monitor was positioned at a distance of 30cm from the animal’s 

eyes, subtending 60º × 45º of the visual field. It was shifted laterally by 1/3 of the monitor width, 

contralateral to the imaged hemisphere. The animals were stimulated monocularly through the eye 

contra-lateral to the exposed cortical hemisphere, using high-contrast black and white checker-

patterns with a spatial frequency of 0.15 cycles per degree and a duty cycle of 50%. The stimulus 

drifted with a speed of 4 cycles per seconds, changing its shifting direction to a randomly selected 

new direction every 1 second. The main set of stimuli included 27 conditions. In one 

control/baseline condition, the screen remained gray and no stimulus was presented. The 

remaining 26 conditions formed 13 pairs of stimuli. Each pair included two stimuli that abutted 

along a horizontal line in the visual space. Each of the horizontal lines that corresponded to the 13 

pairs was located at a position defined by a scalar (from the vector [-4 -3 -2 -1.5 -1 -0.5 0 0.5 1 1.5 

2 3 4]) multiplied by the width of receptive fields near the electrode insertion site. The electrode 

https://www.google.ca/search?client=firefox-a&hs=vyJ&rls=org.mozilla:en-US:official&channel=np&q=natick+massachusetts&stick=H4sIAAAAAAAAAGOovnz8BQMDgzMHnxCnfq6-gVGhZVmSEgeIWRJvWqCllZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKm7M-X_5mebcH6JppeIWOtv2Nm9SLAYAITtBt2AAAAA&sa=X&ei=vj9IUo20M5LiyAHd_IHQDQ&ved=0CKMBEJsTKAIwDA
https://www.google.ca/search?client=firefox-a&hs=vyJ&rls=org.mozilla:en-US:official&channel=np&q=massachusetts&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCnfq6-gVGhZVmSEphpmm1enKSllZ1spZ9flJ6Yl1mVWJKZn4fCscpITUwpLE0sKkktKubK7dzk_5zP0bB57pbLnY97En_ulQAAQC2S8GEAAAA&sa=X&ei=vj9IUo20M5LiyAHd_IHQDQ&ved=0CKQBEJsTKAMwDA
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insertion site, in the middle of the exposed part of area 18, corresponded to a typical receptive field 

size of 2.4 degrees (Tusa et al., 1979) Each pair of stimuli included a stimulus that stimulated the 

visual space from the corresponding horizontal line and up, and a stimulus covering the visual 

space from the horizontal line and below. Thus, the upper or bottom part of the stimulation monitor 

showed moving checker-patterns (Fig. 6-1). The height of the monitor was adjusted so that the 

horizontal line corresponding to 0 degrees approximately overlapped with the aggregate receptive 

fields of neurons close to the recording probe. In the point spread function analysis, the top and 

bottom sets of stimuli were treated as 2 different groups of stimuli.  

 

 

 
Figure 6-1. Visual stimuli. 

A) Pattern of stimulus 1 of a pair of stimuli: moving high-contrast checkers stimulated the upper 

part of the visual field. B) Pattern of stimulus 2 of a pair of stimuli: moving checkers stimulated 

the lower part of the visual field. Note that stimuli 1 and 2 abutted along a horizontal line in the 

visual field. C) The complete set of 13 horizontal lines, each of which was associated with one of 

13 pairs of stimuli. The two stimuli belonging to each pair abutted along the horizontal line 

corresponding to the pair. The vertical distances between the horizontal lines were defined 

according to visual angles that corresponded to the size of receptive fields at the electrode insertion 

site.  
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Data acquisition 

From each of the hemispheres, we obtained 30-40 trials of data, where each trial consisted 

of acquiring 27 time-series, each of which associated with one of the 27 conditions. All 27 

conditions were presented in each trial, with a randomized order of presentation. During each 

presentation, we acquired data over a period of 12 seconds: 2 seconds in which the stimulus pattern 

was static, 5 seconds during which the pattern moved, followed by 5 seconds with a static stimulus 

pattern. To allow for the relaxation of activity-dependent vascular changes, each 12 second period 

of data-acquisition was followed by an 8-second inter-stimulus interval. The stimulus was 

switched to the static checkers of the next condition during this interval.  

Surgical procedures 

The animal was first intubated and anesthetized with isoflurane in 100% O2. During the 

surgery, the level of isoflurane was adjusted within 1-3%, and the animal’s temperature and heart 

rate were kept between 36-37 degrees Celsius and 130-160 beats per minute, respectively. 

Cannulas were inserted into the cephalic veins, for intravenous administration of fluids (Villeneuve 

and Casanova, 2003). The animal was then placed in a stereotaxic frame. The skull of the cat was 

opened above area 18 by drilling a circular hole with an approximate 18 mm diameter centered at 

Horsley–Clark coordinate A4. The imaged area extended from the midline to the lateral sulcus. 

The dura was removed from above area 18 in one hemisphere. A stainless steel chamber was 

cemented onto the skull. The chamber was filled with silicone oil and sealed with a round perspex 

cover. We then projected the retinal blood vessels, including the regions of the blind spot and the 

area centralis, onto a screen positioned 30 cm from the animal’s eyes, in order to appropriately 

position the stimulation monitor. The nictitating membranes were retracted with local application 

of Mydfrin and the eyes were protected using contact lenses with zero power. The eyes were 

focused on a screen at a distance of 30 cm using appropriate external lenses, as determined by 

retinoscopy. External lens with appropriate power was placed in front of the stimulated eye. The 

height of the stimulating screen was adjusted so that the pair of stimuli with the edge at the middle 

of the screen would also activate hemodynamic responses that show a boundary in the middle of 

the exposed cortex. Once the height of the screen was determined, the perspex cover was removed 

and an electrode was inserted. 1% agar was poured to fill the chamber and to reduce the 

physiological movement artifact. Finally, simultaneous recordings of OI-IS and extracellular EP 

were then pursed for 8 – 10 hours (see following sections). 
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Animal monitoring 

Following the surgery, gas anesthesia was reduced and kept at 0.8-1.0%, and the heart rate 

was maintained at 160-180 BPM. A paralytic agent (gallamine, 10mg/kg/h) was infused via the 

I.V. line, dissolved in a sterile lactated Ringer solution. The animal was mechanically ventilated 

at a rate of 25-40 strokes per minute and a volume of 10-15 ml/kg, in order to keep the end-tidal 

CO2 at 32-38 mm Hg. The gas mixture was adjusted within the range of 100% medical air to 70% 

medical air / 30% O2, in order to keep the oxygen saturation level at 93-98%. Finally, the animal’s 

temperature was kept at 37.9-38.1 degrees.  

Optical imaging 

Cortical images were obtained using a 12-bit differential data acquisition system (Imager 

3001, Optical Imaging Ltd., Rehovot, Israel) with a Pantera 1M60 camera (Teledyne Dalsa, 

Waterloo, Ontario, Canada) and a 60 mm lens. The camera was mounted above the optical chamber 

such that its optical axis was approximately perpendicular to the cortical surface. The camera was 

focused on the surface of the cortical region of interest (ROI), ensuring that the surface of the gray 

matter and the cortical pial blood vessels were in focus. The ROI was limited to area 18 in one 

hemisphere; we imaged this ROI with a matrix of approximately 800 by 300 pixels, at a sampling 

resolution of 40-55 pixels/mm). The camera frame rate was set at 10Hz. We imaged the cortex at 

this high frame rate, under illumination of 2 light emitting diodes (LEDs) with center wavelengths 

of 530 nm and 617 nm, respectively. The power to these 2 LEDs alternated at each data frame, 

based on the camera’s frame toggle signal. Hence, the frame rate obtained considering the 

illumination of each of the 2 LEDs was 5Hz. Green and orange LEDs were used to compute 

changes in content of oxy- (HbO) deoxy- (HbR) and total (HbT) hemoglobin (Chapter 5), where 

HbR and HbT are analogous to BOLD-fMRI and CBV-fMRI, respectively.  

Neurophysiological recordings 

Neurophysiological recordings were performed using recording probes with 32 electrode 

contacts (A32, intervals between adjacent contacts 100 µm, impedance 1-2 MΩ, contact surface 

area of 177 or 413 µm2 (NeuroNexus Technologies). We used a multi-channel neurophysiology 

recording system (RZ2, Tucker-Davis Technologies). The probes were inserted perpendicularly to 

the surface of the cortex, approximately at the center of the exposed part of area 18 (Fig. 6-2A). 

The data were acquired at a sampling rate of 24,414 Hz.  
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Optical imaging data preprocessing 

The preprocessing of the data, including the integration of response and definition of 

response time relative to the onset of the stimulus, was carried out similarly to our previously 

published work (Chapter 5). Data acquired under 530 nm and 617 nm were subject to artifact 

removal (Chapter 5). They were transformed into changes in HbR and HbT, followed by masking 

out of blood vessel regions and filling in the space occupied by pial vessels with nearby GM values 

(Chapter 5). The average values within each of nine 0.7 × 0.7 mm squares arranged in a 3 × 3 array 

centered on the electrode were taken for further analysis (Figures 6-2B and 6-2C). The averaging 

ensured stability of data. 

Estimation of retinotopic boundaries 

The estimation of the boundaries between representations of abutting stimuli on cortex was 

important, as it served to transform the edges of stimuli from visual space to distance along the 

cortical surface. We determined the boundaries by first fitting the differential maps of each pair of 

abutting stimuli with sigmoid functions, one along each vertical line (Fig. 6-3A). All differential 

maps across all edges were then summed together to create the overall gradient map (Fig. 6-3B). 

Similar procedure was performed on the fitted differential maps as well (Fig. 6-3C). Partial 

derivatives along the X and Y directions were computed to create a 2D gradient vector map. Then 

from the electrode insertion point, a gradient vector curve was created, extending to the positive 

maximum with gradient ascent and to the negative minimum with gradient descent (Figures 6-3B 

and 6-3C, white curve). The gradient ascent is superior to just drawing a line, because it is capable 

of capturing nonlinear mapping features (such as the log-polar) of the retinotopic mapping. Finally, 

the points of intersection between the gradient vector curve and the edge boundaries were marked 

(Fig. 6-3D). The total distances along the curve from the electrode to the intersections were used 

as the reference for fitting of Gauss error functions (erf; see Fitting section below).  

Neurophysiology Data preprocessing 

Data recorded extracellularly was first split into 3 categories: 1) peristimulus time 

histogram (PSTH) of spike counts using custom made spike detection algorithm binned in 10ms 

long bins, 2) band limited power (BLP) of low gamma (30-50 Hz) and high gamma (50-100 Hz). 

The BLP was computed based on Fourier Transform of 100 ms long time segment rolling at a step 

size of 10ms. Then, the average of the spike count or of the BLP value was averaged over the 
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period of 1 to 5 seconds following the onset of the stimulus (sustained response). This measure of 

the response was divided by the average of the baseline activity acquired over the 2 seconds before 

the beginning of the stimulus, in order to determine the response in each trial for each condition 

(Fig. 6-4A). We determined the contacts that overlapped with layer 4 based on the CSD profile 

(Fig. 6-4B, black dashed line). The neurophysiological response was averaged over the 7 contacts 

from the 4th contact above to the 2nd contact below the center of layer 4 (Fig. 6-4C white dashed 

line). These average responses were used for further analysis  

 

 

 

 
Figure 6-2. Optical Imaging. 

A) Image of light reflected under 530 nm illumination. The electrode, marked by an orange arrow, 

was inserted perpendicularly to the cortical surface and approximately in the middle of the part of 

area 18 residing on the cortical surface. B) Differential cortical map of the two responses elicited 

by the pair of stimuli sharing their boundary at the middle of the screen (this is the boundary 

marked as ‘Size RF’ 0 in Figure 1C. The orange dotted curve depicts the electrode. The gray level 

colorbar presents the change in HbT in units of micro-mole. C) The pixels in B that correspond to 

blood vessels or to the electrode were masked out and filled in with values interpolated based on 

responses from nearby gray matter pixels. The yellow squares mark a 3x3 array of 0.7 x 0.7mm 

squares centered on the insertion point of the probe. The optical imaging responses to each of the 

27 conditions were averaged over all pixels in each square in preparation for further analysis.  
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Figure 6-3. Retinotopic boundaries.  

A) Differential cortical response maps obtained from each of the pairs of stimuli were fitted with 

a sigmoidal function along each vertical column. The 5 images present the sigmoid fitted maps 

obtained from 5 pairs. The boundary associated with each pair was then defined as the curve 

formed by the group of zero values (green curve). The site where the electrode penetrated cortex 

is marked by the red line. B) The differential images were summed together to create an overall 

differential map. C) The fitted sigmoidal images were summed together to create an overall 

sigmoid fitted differential map. From the electrode insertion point (circle), a gradient vector curve 

was extended to both the positive and negative extrema. D) Zoomed view of the intersections of 

the vector curve and the retinotopic boundaries (marked as circles). Each circle depicts the 

mapping of a point on the corresponding stimuli pair’s horizontal boundary from the visual space 

to the cortical surface space. The actual size of this map of retinotopic boundaries and intersections 

relative to the overall differential map can be seen in panel C. 
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Figure 6-4. Electrophysiology. 

A) Temporal dynamics of electrophysiological responses. The time-courses first show a transient 

response followed by a gradually decreasing response and a sustained response for the stimulus 

duration of 5 seconds. The average activity from 1 to 5 seconds from the onset of the stimulus 

(pink shade) was divided by the activity averaged over the baseline period from -2 to -0.5 seconds 

(green shade). Time-courses of spiking activity and RMS of high gamma are presented. B) 

Estimation of depth. The panel to the left presents the average LFP response to 33 millisecond 

long full-field 33 white flash stimuli. Standard CSD analysis was applied to the LFP in order to 

determine the contacts showing the main sink response (in red) expected in layer 4. C) Cortical 

depth-wise responses as a function of the different stimuli sorted according to the part of visual 

field they covered. The vertical axis represents the electrode contacts according to their order and 

depth. Four contacts above and 2 contacts below the center of the layer 4 (white dotted line) were 

considered for further analysis. 
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Fitting Gauss error functions (erf) to the data 

The processed OI-IS and EP data were subjected to an outlier removal process. First, for 

each stimulus condition, the cortical response of a single trial that exceeded 3 standard deviations 

from the mean response to the corresponding stimulus was removed. Then the ensemble data of 

all trials and all stimulus conditions was scaled so that the mean of cortical responses to blank 

stimulus (gray screen) was 0 and the mean of cortical responses to the stimulus that elicited the 

highest response was 1. We then manually removed trials that showed weak or no response 

compared to the mean response over trials. We re-scaled the data so that the mean of blank and 

mean of the strongest responses are again 0 and 1; and re-performed outlier removal, with any 

single trial with response that exceeded 3 standard deviations away from the mean of all trials was 

removed. Finally, we removed average responses to any stimulus lower than -2 or higher than 3. 

These responses were considered outliers relative to the expected normalized responses in the 

range of 0 to 1. 

A Gaussian distribution function can be formulated as follows. An important parameter is 

the standard deviation, σ, which denotes how wide the function is. 

𝑓𝑔𝑎𝑢𝑠𝑠(𝑥) = 𝐴𝑒𝑥𝑝 (−
1

2
(

𝑥 − 𝐵

𝜎
)

2

) + 𝐶 

Previous studies that quantified the spatial specificity of BOLD-fMRI used the FWHM of 

a Gaussian as their specificity measure. The standard deviation of a Gaussian function can be 

related to the FWHM using the following relationship. 

𝐹𝑊𝐻𝑀 = 2√2 ln 2 𝜎 ≈ 2.355𝜎 

Since we used a step-like edge stimulus, if the hemodynamic or neuronal responses were 

not smoothed versions of the cortical representation of the stimulus we could expect a step-like 

response. Since we did expect smoothed responses, we fitted the responses with a step function 

convolved with a Gaussian, i.e. a Gauss error function. The error function is the cumulative density 

of the Gaussian function and is also equal to a step function smoothed with a Gaussian kernel. In 

Figure 6-5, we demonstrate that linearly arranged aggregate receptive fields, modeled as Gaussians 

respond as a smoothed version of the edge stimulus. This response is identical to a Gauss error 

function, also known as cumulative Gaussian distribution. 

𝑓𝑒𝑟𝑟𝑜𝑟(𝑥) = 𝐴𝑒𝑟𝑓 {
𝑥 − 𝐵

√2𝜎
} + 𝐶 
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In this work, we measured the FWHM of absolute EP PSF (electrophysiological responses 

relative to unsmoothed stimulus representation), of absolute OI-IS PSF (hemodynamic responses 

relative to the unsmoothed stimulus representation), and of the relative PSF (hemodynamic 

responses relative to electrophysiological responses). The relative PSF FWHM was obtained based 

on two different methods, the Gaussian identity and direct subtraction. The Gaussian identity 

methods is based on the observation that convolution of two Gaussian functions is also a Gaussian 

function with resultant standard deviation which is the quadratic sum of the standard deviations of 

the convolved Gaussians;  

𝜎𝑁
2 + 𝜎𝐻𝑟𝑁

2 = 𝜎𝐻
2 

𝑓𝑔𝑎𝑢𝑠𝑠(𝑥, 𝜎𝑁) ∗ 𝑓𝑔𝑎𝑢𝑠𝑠(𝑥, 𝜎𝐻𝑟𝑁) = 𝑓𝑔𝑎𝑢𝑠𝑠(𝑥, 𝜎𝐻) = 𝑓𝑔𝑎𝑢𝑠𝑠 (𝑥, √𝜎𝑁
2 + 𝜎𝐻𝑟𝑁

2 ) 

where the subscripts refer to: 

N = neuronal responses 

H = hemodynamic responses 

HrN = hemodynamic relative to neuronal responses 

 

 Using this relationship, we can estimate the hemodynamic PSF relative to neuronal 

responses by subtracting the squared neuronal PSF from the squared absolute hemodynamic 

response, and taking the square root of the result. This method (Gaussian convolution model) for 

obtaining relative PSF is commonly used (Xing et al., 2009). 

𝜎𝐻𝑟𝑁 = √𝜎𝐻
2 − 𝜎𝑁

2 

In addition, we have considered the subtraction method (additive model for PSF of 

neurophysiology and hemodynamic responses) for quantifying the hemodynamic PSF relative to 

the neuronal PSF, so that we can compare our results to those presented by Vazquez et al. (2014).  

𝜎𝐻𝑟𝑁 = 𝜎𝐻 − 𝜎𝑁 
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Statistics 

We computed the statistical significance of testing whether the mean FWHMs of OI-IS and 

EP modalities were different using 2-tail paired t-test with n ≤ 11. Part of the data sets did not 

include FWHMs of all the measured modalities (HbR, HbO, HbT, spikes count, power of low- and 

high-gamma), since the confidence interval obtained during the fitting was too wide (95% 

confidence interval of FWHM is > 2 mm). These data-sets were excluded from the corresponding 

comparisons, leaving only data-sets that had measures of FWHM of the two compared modalities, 

thus allowing paired statistical testing. 

 

 
Figure 6-5. Gauss error function as a model for the visual cortex response to edge-like 

stimulus. 

Top) Gaussian-like aggregate receptive fields with a FWHM of 1 unit. Middle) Schematic 

representation of edge stimulus stimulating part of the visual field and part of the aggregate 

receptive fields. Bottom) Summed response of all neurons in response to the presented edge 

stimulus. The transition from maximal to minimal responses extends approximately over 2 units 

of FWHM. 
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Results 

Fitting with Gauss error functions 

In this work, we found an approximate linear relationship between the presented edges’ 

eccentricity in the visual field and the actual loci found on the cortical surface (Fig. 6-6). The 

expected non-linear relationship based on previous retinotopic mappings (Tusa et al., 1979) was 

not found in our study (see Discussion). We then used this approximate linear mapping of the 

edges (mm/◦) as a function of space in area 18 to serve as a spatial grid for fitting the measured 

hemodynamic and neurophysiological responses to our stimuli. In other words, determining the 

mapping of the edges of stimuli, allowed us to estimate the spreads of neurophysiological and 

hemodynamic responses as a function of cortical distance (mm) instead of visual eccentricity in 

degrees.   

 

 

 

 Figure 6-6. Regression of boundaries in 

visual space to cortical surface. 

The loci on the cortical surface along the 

gradient vector curve (circle in Figure 3D) 

were plotted as a function of the pair-wise 

boundary between visual stimuli in the 

visual space. The insertion of the electrode 

is assigned 0 degrees on the x-axis (orange 

horizontal line) and 0 distance on the y-axis. 

The distance from the electrode’s 

penetration to the corresponding boundary 

point on the cortical surface is presented on 

the y-axis (vertical dotted lines). The 

example shown here shows a linear 

regression with R2 = 0.994. The slope 

parameter was used to transform the loci of 

the boundaries in the visual space 

expressed in degrees to their corresponding 

cortical surface loci in millimeters.  
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The responses were fitted using the Gauss error function. We first performed individual 

error function fitting across the 9 binned pixels (3x3 squares) on the OI-IS map and 7 channels 

(from -2 to +4 channels of the center of layer IV) in EP recording (not shown). We then averaged, 

for each hemisphere, raw data of ROIs or Channels that showed reliable fitting. Finally we refitted 

the error function for the averaged ROIs and Channels. Outliers with FWHM higher than 10mm 

or lower than 0.1mm were removed from the statistics. Here we show an example of cleaned 

hemodynamic responses and EP responses across stimuli averaged across trials and the 

corresponding fitted curve (Fig. 6-7). 

Absolute PSF 

We report the summary of absolute FWHMs from 10 datasets (Table. 6-I). The average 

FWHM of HbT and HbO responses were 2.83 mm and 3.26 mm, respectively. The FWHM values 

computed from HbR responses had confidence intervals wider than 2 mm in 3 of the 10 data sets, 

due to low-quality fits compared to HbT/HbO and hence part of the HbR PSF data could not be 

estimated. However, the average pair-wise ratio of HbR/HbO/HbT from those data sets where the 

HbR PSF fit was acceptable was 1.17/1.06/1.00 respectively. The EP FWHM for spiking activity 

was 2.07 mm. The FWHM widened with decreasing frequency content (3.25 mm for high gamma 

and 3.73 mm for low gamma). 

 

We compared whether these values were significantly different from each other. Paired 

two-tailed t-test showed that the FWHM of the spiking response was statistically different from 

that of the low gamma band and the HbO responses (p < 0.05, Table 6-II). In addition, the FWHM 

measures of HbR and HbT responses were statistically different (p < 0.05, Table 6-II). 

Relative PSF 

 We computed the relative FWHM using two methods: 1) Gaussian identity and 2) 

simple subtraction (Table 6-III). Using the Gaussian convolution model, the relative PSFs of HbO 

and HbT responses in reference to spike activity responses were 2.52 mm and 1.93 mm, 

respectively. Using the additive model, the relative PSFs of HbO and HbT in reference to spiking 

activity response were 1.19 mm and 0.76 mm, respectively. The gamma bands were not considered 

for this part of the analysis because the FWHM of low gamma’s absolute PSF was larger than that 

of HbO and HbT; and similarly the FWHM of high gamma was larger than that of HbT. 
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Figure 6-7. Fitting of Gauss error function. 

An example of OI-IS responses (HbT) and EP responses (Spike count; high-gamma) across stimuli 

and across trials. The ensemble data in each row and each matrix was normalized such that the 

average (over trials) response to blank (gray screen) condition is 0 and the average response to the 

stimulus with the largest area of moving checkers is 1. An error function was then fitted to the 

ensemble responses (the average responses to stimuli across trials are plotted as black dots). In this 

particular example, the FWHM of the error function were 3.30, 3.40 and 3.18 for HbT, Spike count 

and high-gamma, respectively. 
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Table 6-I. Point spread function of physiological responses to the checker-pattern stimuli 

  HbR HbO HbT L.gam H.gam Spk 

Top hemi. A 3.44 3.21 3.30  3.11 3.40 

  hemi. B  4.85 4.47 2.63 1.79 1.58 

  hemi. C  3.30 1.15 4.33  0.71 

  hemi. D 2.88 2.43 2.41 2.67  1.22 

  hemi. E 1.22 1.21 0.84 3.12 2.69 2.23 

Bottom hemi. A 3.01 3.02 3.10 4.20 3.28 3.36 

  hemi. B  5.78 5.08 6.66 5.28 2.64 

  hemi. C 2.51 2.61 1.61   0.87 

  hemi. D 2.85 2.60 2.65 2.92 3.05 1.24 

  hemi. E 4.61 3.60 3.69 3.33 3.58 3.48 

Mean - - - 3.26 2.83 3.73 3.25 2.07 

St-Dev - - - 1.28 1.39 1.35 1.06 1.09 

p-value (µ = 0) - - - 1E-5 5E-5 5E-5 1E-4 1E-4 

The FWHMs of the fitted error function are presented here for each of the reliable OI-IS and EP 

measures from the 5 hemispheres and 2 stimulus groups. FWHM values in empty entries had 95% 

confidence interval > 2.0 mm and were therefore excluded from further analysis. The global mean 

of the HbR was not computed due to too many missing values. The bottom row shows the p-value 

for testing the hypothesis that the mean is not wider than 0 (one-tailed t-test).  

 

Table 6-II. Paired t-test for comparing the FWHM of OI-IS and EP responses   

 HbO HbT L. Gamma H. Gamma Spike 

HbR 0.12 0.03 0.58 0.79 0.16 

HbO  0.09 0.41 0.70 0.04 

HbT   0.19 0.92 0.09 

L. Gamma    0.10 0.01 

H. Gamma     0.15 

Results of testing differences between the means of FWHM associated with the different 

modalities (paired two-tailed t-test). The matrix of p-values shows the comparisons for all possible 

pairs of measured modalities, including the comparisons of each of the neurophysiology measures 

against each of the OI-IS measures. All tests were done using pairs of available FWHMs from the 

same animal and set of stimuli (top or bottom stimuli). 

 

Table 6-III. Point spread function of hemodynamic responses relative to neurophysiological 

response (using Gaussian convolution and additive models) 

FWHM (mm) 
Gaussian Additive 

HbO HbT HbO HbT 

Spike 2.52 1.93 1.19 0.76 

The root-subtraction-square and subtraction were computed from the averaged FWHM of 

HbO/HbT and FWHM of spiking activities to yield the PSF of the hemodynamic responses relative 

to neurophysiological responses. 



164 

 

Discussion 

Summary of the results 

In this work, Gauss error functions are fitted to the cortical responses to retinotopic stimuli 

with edges at various eccentricities in the visual field (Figures 6-3 and 6-7). The FWHM of each 

of the measured responses is based on this fitting. The mean absolute FWHMs of HbO and HbT 

responses in cat area 18 are 3.26 and 2.83 mm, respectively. The FWHM of the average HbO is 

1.15 times wider than that of HbT responses (Table 6-I). The mean FWHM of HbR responses is 

significantly larger than that of HbT responses. The mean absolute FWHMs of PSFs of low-

gamma, high-gamma and spiking responses in cat area 18 are 3.73, 3.25 and 2.07, respectively 

(Table 6-I). The FWHM of HbO and low gamma responses are significantly larger than that of 

spiking responses (Table 6-II). Lastly, the PSF of HbO and HbT responses relative to spiking 

activities are 2.52 mm and 1.93 mm, respectively, using the Gaussian convolution model; and 1.19 

mm and 0.76 mm using the additive model (Table 6-III). 

Wide absolute FWHM of hemodynamic and neurophysiological responses in cat area 18 

In this work, we modeled the spatially mapped hemodynamic and neurophysiological 

responses as error functions. This corresponds to stimulation of part of the visual space and cortex 

with a sharp edge between the stimulated and non-stimulated regions, combined with a 

convolution of this edge-like retinotopic representation with a Gaussian PSF (Figure 6-5).  

Modeling the spread of the BOLD response as Gaussian has been previously used in the 

fMRI literature (Engel et al., 1997; Parkes et al., 2005; Shmuel et al., 2007). The RFs of single 

neurons in cat areas 17 and 18 were previously mapped subjectively as rectangles (or, taking into 

account the response magnitude, as boxes; Hubel and Wiesel, 1959, 1962, 1965) or cylinders (Tusa 

et al., 1979). Similarly, the RFs in macaque V1 were previously mapped as rectangles/boxes 

(Hubel and Wiesel, 1974). However, in that same area (macaque V1), the spread of aggregate 

receptive fields of multi-unit activity (MUA), that accounts for both the receptive fields and their 

scatter (Hubel and Wiesel, 1974)  fits well a Gaussian model (Xing et al., 2009). Consistent with 

the results demonstrated by Xing et al. (2009), the spread measured through population 

neurophysiological action potential responses to edge-like stimuli fits well Gauss error functions 

in our data too (Fig. 6-5). Similarly, a Gaussian model fits well the spread of the LFP in macaque 

area V1 (Xing et al., 2009) and in our own data (Fig.  6-7). 
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Here, we have obtained absolute FWHMs of 3.73, 3.25 and 2.07 mm for low-gamma, high-

gamma and spike responses, that are large relative to those reported by Xing et al. (2009). These 

authors reported σ values of .622 mm and .573 mm that correspond to FWHM of 1.46 mm for the 

LFP and 1.35 mm for MUA. However, we believe that the difference in MUA spread can be 

explained by differences in the size of RFs and magnification factor in monkey V1 and cat area 

18. The mean width of receptive fields of neurons in the region where we inserted the electrode is 

approximately 2.4° of visual field (RFs modeled with cylindrical response; Tusa et al., 1979). In 

the same region, the cortical magnification factor is approximately 4 mm per 10° of visual field 

(Tusa et al., 1979). Indeed, our regression curve on the representative hemisphere shows a slope 

of 0.393 mm/degree of visual eccentricity (Fig. 6-6). The mean slope of the regression computed 

over data-sets is 0.434 ± 0.060 mm/degree, n = 5 hemispheres. We can infer that the average 

cylindrical-like receptive field of single neurons in the part of area 18 we recorded from is 

approximately mapped to 2.4º×0.434 mm/° = 1.04 mm. In macaque V1 at an eccentricity of 5°, 

where Xing et al. (2009) obtained their results, the mean size of RFs is approximately 0.4º, and the 

magnification factor is approximately 2°/mm (Hubel and Wiesel, 1974). We can infer that the 

average cylindrical-like receptive field of single neurons’ diameter is mapped to 0.8 mm. The ratio 

between this measure in monkey V1 and the one in the cat brains’ region we recorded from is then 

0.8/1.04 = 0.77. Therefore, to directly compare our results to Xing et al.’s, we need to multiply the 

FWHM we obtained by 0.77: 2.07*0.77 = 1.59 mm. This value is comparable to the FWHM 

reported by Xing et al. (2009) (1.35 mm for MUA). Our result, showing substantially wider 

FWHM for the gamma-band responses compared to that of spiking activity is at odds with the 

report by Xing et al. (2009). However it is in agreement to those reported in several previous 

studies (Mitzdorf, 1987; Kruse and Eckhorn, 1996; Kreiman et al., 2006; Liu and Newsome, 2006; 

Berens et al., 2008; Nauhaus et al., 2009; Kajikawa and Schroeder, 2011).   

Here, we have obtained large absolute FWHM of 2.83 and 3.26 mm for HbT and HbO 

responses, respectively, in comparison to the FWHM observed in fMRI of the human visual cortex 

at 7 Tesla (~2.34 mm; Shmuel et al., 2007). All post-mortem anatomical studies and fMRI studies 

in humans indicate that the human visual cortex is highly similar to that of the macaque. Therefore, 

we expect that the difference between the PSF of fMRI response at 7 Tesla (2.34 mm, Shmuel et 

al., 2007) and the one we report here can be accounted for, in part, by the likely smaller RFs and 

spread of neurophysiological responses in humans than in cats.   
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A confounding factor that increases the absolute FWHM we estimate for HbT responses 

can possibly be the light scattering effect. The PSF as measured by OI-IS includes a contribution 

of light scattering, which does not affect the PSF measured by BOLD-fMRI. The additional PSF 

component due to light scattering was measured in the order of 250 µm (234 µm, Orbach and 

Cohen, 1983; 280 µm, Polimeni et al., 2005). This additional PSF from light scattering is part of 

the absolute OI-IS PSFs we estimate here. It adds up to the relatively wide PSF of EP responses 

as factors determining the wide PSF of HbT responses. 

In principle, it is possible that the wide point spreads we measured are caused in part by 

drifts or fluctuations in gaze in spite of our use of a paralytic agent (Forte et al., 2002). However, 

we measured the center of the Gauss error function across trials, and we did not observe any 

systematic drift in the gaze of the paralyzed animal (Fig. 6-8A). The fit of the Gauss error functions 

as a function of time was based on data from only two consecutive trials, and was therefore noisy 

(Fig. 6-8). However, no obvious systematic drift could be observed.  

 

 

 

 

 

 

 

 

 

Figure 6-8. Center of cortical responses as a 

function of trial number. 

Center of error function as a function of trial number. 

An error function was fitted to EP responses on trial-

by-trial basis. For each trial, the center parameter was 

computed. The figure presents an example of spiking, 

low- and high-gamma responses to the top and bottom 

screen checker stimuli from one hemisphere.  
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Spatial specificity of Hemoglobin species 

Based on several fMRI studies that compared CBV and BOLD responses, the CBV 

response is more spatially specific compared to BOLD and better reflects the spatial pattern of 

neuronal responses (Kim and Kim, 2005; Zhao et al., 2006; Smirnakis et al., 2007; Kim et al., 

2013; Poplawsky and Kim, 2014). The hypothesized mechanism constitutes only gradual dilution 

of increased HbR in draining veins. Therefore, since in regions non-overlapping with the site of 

increased neurophysiological activity undiluted HbR can still be observed, it must be accompanied 

with decreases in HbO, since the HbT does not change. In these regions, although the absolute 

change in HbO is equivalent to that of HbR, the relative change of HbO should be smaller than 

that of HbR because the concentration of HbR is inherently smaller in cortical blood vessels, 

including veins, compared to HbO (Chapter 5; Vovenko, 1999). Thus the overall hemodynamic 

specificity should follow the following ranking: HbT > HbO > HbR. Our findings are consistent 

with this expectation, i.e. HbT is more specific than HbO, which in turn is more specific than HbR.  

Spatial specificity of neurophysiological responses 

In this work, we show that the absolute FWHM of neurophysiological responses decreases 

as we go higher in LFP frequency bands: from low gamma (30-50 Hz), to high gamma (50-100 

Hz), and spiking response. This finding agrees with the concept that cortex acts as a low-pass filter, 

which can be described as capacitive filter, allowing lower frequencies to travel further than higher 

frequency signals (Bedard et al., 2006). These authors proposed a possible biophysical mechanism 

for the low-pass filtering properties of LFPs. They suggested that passive cellular membranes 

around current sources, such as those of glial cells, may polarize under the influence of the electric 

source field. Because of the finite velocity of ionic charge movements, this polarization will not 

be instantaneous. Consequently, the induced electric field will be frequency-dependent, and much 

reduced for high frequencies. 

Calculation of relative FWHM 

The FWHMs we computed relative to neurophysiological activity are larger than the values 

reported by (Vazquez et al., 2014). However, the way we calculate the relative PSF is different. 

Simple subtraction (additive model) of the EP FWHM from the OI-IS FWHM, similar to that used 

by Vazquez and colleagues, yields results more similar to those reported by them (Table III). 

However, we believe that the method we use here (Gaussian convolution model) fits the problem 
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better. It allows for the extraction of FWHMs of two signals from their convolution. Convolution 

fits the modeling of neurophysiological and hemodynamic spread, because the hemodynamic 

spread is influenced by more than neuronal responses in one site.  

The model used by Vazquez et al. (2014) suggests that the FWHM of the HbT PSF relative 

to the neurophysiological response in mouse area S1, including LFP and MUA, ranges between 

103 and 175 μm with an upper bound of 525 μm. However, their stimulus duration was very short 

(up to 30 ms), not allowing the full development of the CBV response, which explains the 

difference in spatial extent of the HbT response measured by their study and ours. 

Spatial specificity of hemodynamic relative to neurophysiological responses: implications 

for fMRI-based decoding  

Our findings reemphasize that the neurophysiological response to point like stimulation is 

not point-like: it is scattered (Hubel and Wiesel, 1974). We show that stimulation of part of the 

visual field elicits a neurophysiological response with a spread near the edge of the stimulated 

region. Therefore previous studies that have quantified the PSF of the fMRI response (Engel et al., 

1997; Parkes et al., 2005; Shmuel et al., 2007) in fact reported on the spatial specificity of the 

BOLD response convolved with the spread of neurophysiological activity. Therefore, the PSF of 

BOLD responses in humans are expected to be smaller than what has been reported thus far, 

consistent with the feasibility of fMRI at the resolution scale of cortical columns (Cheng et al., 

2001a; Goodyear and Menon, 2001; Yacoub et al., 2007; Shmuel et al., 2010).  

Linear relationship of the retinotopic map 

We found in our data a linear relationship between the projected stimulus in degrees of 

visual field and the corresponding area of response on the exposed brain (Fig. 6-6). This is 

unexpected since retinotopic mapping of the visual field in cat area 18 is non-linear with 

eccentricity in the visual space (Tusa et al., 1979). However, the part of cortex we image is small 

(~1cm anterior to posterior) and the eccentricity range of stimuli we employed is only within 20 

degrees of visual field. The anatomical distance from -10 to -20 degrees of visual eccentricity is 5 

mm and that from -20 to -30 degrees is 4mm (Tusa et al., 1979). With such small difference in 

non-linearity it is very reasonable that a linear fit works very well (Fig. 6-6).  
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Conclusion 

We have modeled the spatial spread of neurophysiological and hemodynamic responses to 

stimulation of part of the visual field as Gaussians. The spatial spread of HbR responses is larger 

than that of HbT responses. The spatial spreads of low-gamma and high-gamma 

neurophysiological responses are comparable to that of HbT responses. The spatial spread of low-

gamma responses is larger than that of spiking responses. Our findings predict that the PSF of 

BOLD responses in humans are expected to be smaller than what has been reported thus far, 

consistent with the feasibility of fMRI at the resolution scale of cortical columns.  
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Chapter 7. General Discussion 

This Chapter summarizes the findings and discussions of individual chapters into one 

coherent message. It first explains why OI-IS is a valid method for studying mechanism of fMRI. 

The second part of the general discussion revolves around the assessment of the mechanisms 

underlying decoding of orientation stimuli using coarse fMRI voxels. The third part focuses on the 

mechanisms and limits of high-resolution fMRI, as reflected by my thesis’ evaluation of the 

functional/spatial specificity of blood vessels and the spatial specificity of the hemodynamic 

response relative to neurophysiological activity. 
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7.1 OI-IS as a 2D model for studying the mechanisms underlying 

fMRI-based decoding 

In Chapters 4-6 we have employed OI-IS in order to study the mechanisms underlying 

fMRI-based decoding and high-resolution fMRI. Here we advocate the use of OI-IS for studying 

such mechanisms. 

Both OI-IS and fMRI capture the same physiological phenomena, i.e. the hemodynamic 

and metabolic responses. The main difference between the HbR and HbT OI-IS and BOLD- and 

CBV-fMRI, respectively is in the principles of measurement.  OI-IS is based on differences in 

absorption spectra of deoxy- and oxy-hemoglobin as a function of illumination wavelength. In 

contrast, BOLD-fMRI is based on the magnetic properties of deoxy-hemoglobin, and MION- 

CBV-fMRI is based on the magnetic properties of the MION contrast agent.  

Indeed, it is common to use OI-IS to investigate HbR and HbT changes, which are 

homologous to BOLD and CBV respectively, in order to validate fMRI-based phenomena. OI-IS 

has been commonly used as surrogate to fMRI, making it possible to study hemodynamic 

responses that may improve high-resolution fMRI (Malonek and Grinvald, 1996) and the   

neurophysiological mechanisms underlying fMRI in the lab environment (Devor et al., 2003). 

Examples of validating fMRI by using OI-IS include the phenomena of the initial dip (Grinvald et 

al., 2000; Sirotin et al., 2009) and negative BOLD responses (Kennerley et al., 2012). 

OI-IS has been also used for validating high-resolution fMRI of cortical columns. The 

visual cortex constitutes arrangements of neurons organized in cortical columns. For example, the 

neurons’ preferred orientation changes gradually across the cortical surface but is approximately 

unchanged as a function of cortical depth (Hubel and Wiesel, 1962; Shmuel and Grinvald, 1996). 

It can therefore be assumed that the responses of the aggregates of neurons to the presented 

oriented grating stimuli do not change across cortical depth. Hence, it is common to align high-

resolution fMRI’s slices (or, a single slice) parallel to the surface of the ROI and use one slice for 

analysis of the underlying columnar structure (Fukuda et al., 2006; Shmuel et al., 2007; Yacoub et 

al., 2007; Shmuel et al., 2010). This procedure speaks to the applicability of data obtained from 

OI-IS experiments as analogous to high-resolution fMRI of cortical columns. The origin of cortical 

responses measured by OI-IS is mainly from layers 1-2/3 and pial blood vessels. However, since 

the preferred orientation does not change with increasing cortical depth, the pattern observed by 
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OI-IS reflects the preferred orientation measured by high-resolution fMRI. Indeed, studies that 

performed both high-resolution fMRI and OI-IS showed that the HbT OI-IS orientation selective 

response pattern is similar to changes measured in MION-based CBV-fMRI (Fukuda et al., 2006) 

and BOLD-fMRI (Moon et al., 2007).  

For these reasons, OI-IS can be used for investigating the mechanisms of fMRI-based 

decoding of information conveyed by fine-scale organizations. It can be regarded as analogous 

and complementary to fMRI, adding high-resolution, high SNR directly visualized responses from 

gray matter and pial vessels, not available to fMRI.  

 

 

7.2 Mechanism of fMRI-based decoding of information conveyed by 

fine-scale organizations 

In Chapters 3 and 4 we analyzed the mechanisms underlying decoding of orientation 

stimuli. FMRI reflects the neuronal activations through indirect measurements of changes in 

hemodynamic responses (Ogawa et al., 1993; Logothetis et al., 2001). Hence it is expected that 

fMRI cannot easily differentiate responses in two cortical loci separated by only a few hundreds 

of micrometers (Shmuel et al., 2007; Chaimow et al., 2011), such as the difference in neuronal 

response due to drifting gratings of orthogonal orientations. However, several studies have shown 

that it is possible to demonstrate orientation selectivity from BOLD-fMRI responses in human V1 

using multivariate analysis that employs supervised learning. The mechanisms underlying such 

decoding have been under continuous and fierce debate. The input to the multivariate algorithms 

is based on conventional coarse voxels of 3×3×3 mm. The edge of each voxel is more than 1.5 

times longer than the projected cycle of orientation columns. It has been hypothesized that the 

mechanisms include contributions from aliasing of fine scale organization by the coarse fMRI 

voxels (Boynton, 2005), local irregularities in the orientation maps (Kamitani and Tong, 2005; 

Haynes and Rees, 2006; Kriegeskorte and Bandettini, 2007; Swisher et al., 2010), large-scale 

organizations (Furmanski and Engel, 2000; Sasaki et al., 2006; Clifford et al., 2009; Mannion et 

al., 2010; Op de Beeck, 2010; Freeman et al., 2011; Freeman et al., 2013; Sun et al., 2013), 

orientation or direction selective responses near the edge of the stimuli (Carlson, 2014; Wang et 

al., 2014; Wardle et al., 2015), macroscopic draining vessels (Gardner et al., 2006; Gardner, 2010; 
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Shmuel et al., 2010), and complex spatiotemporal filtering of neuronal activity by fMRI voxels’ 

sampling (Kriegeskorte et al., 2010). 

Of these six hypothesized mechanisms, we did not evaluate contributions due to aliasing 

and contributions due to orientation selective responses near the edges of the visual stimuli. 

Chaimow et al. (2011) previously ruled out contributions to decoding due to aliasing effect, based 

on the fact that fMRI samples data in the frequency domain, discarding any contributions beyond 

the highest frequency of sampling. The possible contributions from edge effects have been 

introduced by Carlson (2014), Wang et al. (2014) and Wardle et al. (2015) after we completed data 

acquisition for this thesis. Future experiments employing CBV-fMRI and optical imaging will be 

able to evaluate such contributions in our cat model. 

 

7.2.1 Do macroscopic blood vessels contribute to decoding information conveyed by fine-

scale organizations? 

In Chapter 3, we employed MION-based CBV-fMRI data and a phase encoding paradigm, 

with continuous stimulation with gradually changing orientations. By employing MION-based 

CBV-fMRI, we can rule out any contribution of macroscopic vessels to our data. MION-CBV 

reflects responses from tissue, and to a lesser extent from arterioles and venules, all belonging to 

fine scale vasculature. The decoding rate using a voxel size (1.5 mm) homologous to that used in 

human studies (3.0 mm) was higher than chance level. Therefore, we provide evidence showing 

that MION-based CBV-fMRI enables orientation decoding with no contributions from large blood 

vessels. 

In Chapter 4, our OI-IS data allows us to directly evaluate contributions from all 4 possible 

mechanisms (aliasing and edge effects excluded), including contributions from macroscopic blood 

vessels. We demonstrate that contributions from gray matter regions exceed those from 

macroscopic blood vessels (Figures 4-4, 4-5, and 4-6). We find that decoding based on responses 

from macroscopic blood vessels results in accuracy higher than chance level. However, the 

decoding accuracy based on data from large blood vessels was lower than that obtained from gray 

matter regions. Importantly, we find that decoding accuracy based on combined blood vessel and 

gray matter contributions is not higher than that obtained from gray matter contributions alone 

(Figures 4-4 to 4-6). In other words, although contributions from macroscopic vessels can be used 
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for decoding with success rate higher than chance level, they are redundant when the data from the 

gray matter is used for decoding. 

We therefore conclude that the contributions of macroscopic blood vessels are unimportant 

for decoding information conveyed in fine scale organizations. 

 

7.2.2 Does complex spatiotemporal filtering of neuronal activity by fMRI voxels contribute 

to decoding information conveyed by fine scale organizations? 

In Chapter 3, we employed MION-based CBV-fMRI data and a phase encoding paradigm, 

with continuous stimulation with gradually changing orientations. Similarly to our explanation 

regarding contribution of macroscopic blood vessels, by employing MION-based CBV-fMRI, we 

can rule out any contribution of macroscopic vessels to our data. In addition, the steady-state 

response to the continuous stimulation can be expected to keep the CBV in large arteries and large 

draining veins constant throughout each scan. This, in practice eliminates any contributions of 

spatiotemporal responses. The decoding rate using a voxel size (1.5 mm) homologous to that used 

in human studies (3.0 mm) was higher than chance level. Therefore, we provide evidence showing 

that MION-based CBV-fMRI enables orientation decoding with no contributions from complex 

spatiotemporal filtering of neuronal activity by fMRI voxels. 

Using OI-IS in cat area 18 (Chapter 4), the spatiotemporal response yields lower decoding 

accuracy compared to the decoding accuracy obtained from the spatial pattern of the response 

averaged over time (Fig. 4-8). For analyzing decoding accuracy based on the spatiotemporal 

response, we made sure to also evaluate success rate with control inputs that constituted the exact 

same number of features available for decoding while manipulating the normal order of the 

measured spatiotemporal response. Our results show that considering the spatiotemporal evolution 

of the hemodynamic response results in lower decoding accuracy compared to that obtained by the 

spatial pattern of the response averaged over time. 

Over all, our evaluations show redundancy of contributions from macroscopic vessels and 

lower decoding accuracy obtained by spatiotemporal responses compared to that obtained by the 

spatial response patterns averaged over time. Our finding show that the hypothesized complex 

spatiotemporal filtering mechanism is unlikely to contribute to decoding of information conveyed 

by fine scale organizations.  
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7.2.3 Do local irregularities in the arrangement of cortical columns contribute to decoding 

of oriented gratings? 

Our findings of small and redundant information conveyed by macroscopic blood vessels 

and complex spatiotemporal filtering, leaves only contributions from gray matter regions as viable 

candidates to underlie decoding information conveyed by fine-scale organizations. Contributions 

of responses from gray matter can be classified according to the cortical frequencies. 

  It has been hypothesized that irregularities in the fine-scale organization of orientation 

preference underlie decoding of oriented grating stimuli (Kamitani and Tong, 2005).  By definition, 

if irregularities exist, the columnar organization involves a distribution of frequencies, including 

frequencies lower than the main frequency of the organization (Rojer and Schwartz, 1990; 

Chaimow et al., 2011). In Figure 3-3 we show that the CNR of differential orientation maps in cat 

area 17 shows a peak at 0.99±0.05 cycles/mm and a distribution of frequencies around the peak 

with FWHM of 0.56±0.14 cycles/mm. Therefore, irregularities of the organization do exist in cat 

area 17.  With an appropriate voxel size, irregularities in the orientation map in cat area 17 may 

contribute to decoding. Indeed, using voxels with 0.5 mm edges, Shmuel et al. (2010) 

demonstrated contributions to decoding of the stimulated eye in human subjects from frequency 

components lower than the main frequency of the organization (~0.5 cycle/mm). 

However, in order to address the question whether irregularities in the organization 

contribute to decoding, one needs to use voxel size homologous to 3×3×3 mm previously used in 

human studies. Based on the main frequency projected for the organization in humans, the 

homologous voxel size is 1.5 times the cycle length associated with the main frequency of the 

organization. For orientation maps in cat area 17, the curve of mean CNR (Fig. 3-3D) shows a 

local maximum at 0.99 cycle/mm that represents the main cycle of orientation map. We define the 

size of the voxel homologous to that used by Kamitani and Tong (2005) and Haynes and Rees 

(2005) in human subjects to be 1.5 times larger than the main cycle of the orientation map in our 

cat area 17 data (1.5×1 mm = 1.5 mm). The largest frequency that can be captured by such a voxel 

is 0.33 cycle/mm. 

  Then, the determining factors of whether irregularities contribute to decoding is the 

highest frequency that can be captured by such voxels (0.33 cycle/mm), and the width of the power 

spectra around the main frequency of the organization. If the distribution of power around the main 

frequency of the organization is sufficiently wide, low frequencies that still belong to the 
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irregularities regime can possibly be captured by voxels that are 1.5 times larger than the average 

cycle length of the organization.  

The power spectrum of CNR in cat area 17 showed a local minimum at 0.36 cycle/mm. It 

is reasonable to define this trough as the frequency that separates the distribution of frequencies 

that underlie local irregularities in the organization (frequencies higher than the trough frequency) 

and lower-frequencies. We consider this trough frequency or a frequency slightly higher to be the 

lowest frequency belonging to the distribution of frequencies that constitute the local irregularities. 

However, in cat area 17, the homologous voxel captures frequencies of 0.33 cycle/mm or lower, 

all lower than the frequency at the trough (0.36 cycle/mm). We therefore conclude that the local 

irregularities in the organization do not contribute to the CNR and to successful decoding when 

sampled with the homologous voxel size. Indeed, our computation of CNR and decoding accuracy 

as a function of point pass and low-pass filtering shows no contributions of frequencies within the 

irregularities domain when using the homologous voxel (Figures 3-5, 3-6, and-3-7). Both the CNR 

and the decoding success rates obtained with the homologous voxel size and cut-off frequencies 

higher than 0.36 cycle/mm (the “irregularities” frequency regime) are not different than those 

obtained with the same voxel-size and cut-off frequency 0.333 cycle/mm. These results further 

support our conclusion that when sampling with the homologous voxel size the low-frequency 

regime contributes to successful decoding, whereas irregularities in the organization do not. 

As discussed in Chapter 3, our MION CBV-fMRI measurements reflect the neuronal 

orientation preference map better than BOLD measurements do (Mandeville et al., 2001; Keilholz 

et al., 2006; Zhao et al., 2006; Smirnakis et al., 2007; Kim and Kim, 2011; Poplawsky and Kim, 

2014). Our CBV MION measurements show no contributions of irregularities in the organization 

to decoding. Therefore, taking into account that the BOLD response is expected to be less spatially 

specific than the MION CBV-fMRI response, BOLD imaging is even less likely to reflect direct 

contributions of irregularities in the fine-scale organization to decoding. 

For data confined to responses from the gray matter in cat area 18, we provide evidence 

that irregularities that reflect frequencies lower than main frequency of the organization contribute 

to decoding when using voxels smaller than the homologous voxel (Figures 4-4 and 4-5). In 

contrast to our findings from cat are 17, when using homologous voxels the data from the 

irregularities domain showed decoding accuracy higher than chance level (Fig. 4-6). In cat area 

18, we found that the decoding accuracy following either point-pass or low-pass filtering gradually 
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increases when moving from very low frequencies (starting with the mean response over space) to 

the highest frequency that can still be captured by the homologous voxel. This path also parallels 

the path taken from low frequencies to getting closer and closer to- and within the irregularities 

regime. Similarly, the power spectra of the response CNR (Fig. 4-2) showed neither distinct 

increase in power in very low frequencies, nor a trough between the irregularities regime and the 

low frequency regime similar to those shown in our data from cat area 17 (Fig. 3-3). In other words, 

our data does not show distinct low-frequency components of the organization in cat area 18 

similar to those we observed in cat area 17.    

Therefore, our results presented in Chapter 4 show apparent inconsistency with our own 

results presented in Chapter 3. The discrepancy between our conclusions based on Chapters 3 and 

4 is that in area 17 we find the very low frequency components of the organization to be the main 

contributor to orientation decoding; whereas in cat area 18 we find no distinct, high-amplitude 

low-frequency components of the organization. Instead, the low frequency end within the local 

irregularities domain is the main contributor to orientation decoding. As discussed above, it is 

unlikely that the use of HbT-based OI-IS (Chapter 4) or MION-based CBV-FMRI (Chapter 3) 

causes the difference. The reason is that HbT-based OI-IS captures the same physiological 

hemodynamic responses as MION-based CBV-fMRI does.   

Our results, demonstrating contributions from irregularities in cat area 18 (Chapter 4) are 

consistent with those demonstrated by Swisher et al. (2010) with data from the same area. These 

authors used high-field, high-resolution (0.3125 mm) BOLD-fMRI and multivariate pattern 

analysis to determine the spatial scales at which orientation-selective information can be found in 

cat area 18. Similarly to our results, using small voxels they showed orientation selective signal at 

the scale of irregularities and reliable orientation bias at spatial scales of several millimeters. They 

concluded that their results demonstrate a reliable millimeters-scale orientation signal, likely 

emerging from irregular spatial arrangements of orientation columns and their supporting 

vasculature. Our own study of responses in cat area 18 adds to the findings demonstrated by 

Swisher and colleagues, by showing only minor contributions from low-frequencies, redundant 

information conveyed by macroscopic blood vessels, and no improved decoding accuracy when 

the spatiotemporal response is considered rather than the spatial response. 

Therefore, we show no contributions from irregularities in cat area 17 using the 

homologous voxel size. In contrast, using the homologous voxel size, irregularities contribute to 
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decoding of oriented grating based on responses in cat area 18. As explained above, this difference 

cannot be attributed to differences in methodology. We conclude that whether irregularities 

contribute to decoding depends on the features of the specific organization being probed. 

Specifically, it depends on the main frequency of the organization, and the width of elevated power 

of frequencies around the main frequency of the organization. It also depends on the voxel size 

used for functional imaging. 

 

7.2.4 Do low-frequency components of the organization contribute to decoding of oriented 

gratings? 

Our findings of small and redundant information conveyed by macroscopic blood vessels 

and complex spatiotemporal filtering, leaves only contributions from gray matter regions as viable 

candidates to underlie decoding information conveyed by fine-scale organizations. Contributions 

of responses from gray matter can be classified according to the cortical frequencies. 

  It has been hypothesized that large scale organizations of orientation preference underlie 

decoding of oriented grating stimuli (Furmanski and Engel, 2000; Sasaki et al., 2006; Clifford et 

al., 2009; Mannion et al., 2010; Op de Beeck, 2010; Freeman et al., 2011; Freeman et al., 2013; 

Sun et al., 2013).  In Fig. 3-3 we show that the power spectrum of CNR in cat area 17 shows a 

local minimum at 0.36 cycle/mm. There is a significant increase in power in frequencies lower 

than 0.36 cycle/mm. It is reasonable to define this trough as the frequency that separates the 

distribution of frequencies that underlie local irregularities in the organization (frequencies higher 

than the trough frequency) and lower-frequencies. We consider this trough frequency or a 

frequency slightly higher to be the lowest frequency belonging to the distribution of frequencies 

that constitute the local irregularities. In cat area 17, the homologous voxel captures frequencies 

of 0.33 cycle/mm or lower, all lower than the frequency at the trough (0.36 cycle/mm). Indeed, 

our computation of CNR and decoding accuracy as a function of point pass and low-pass filtering 

when using the homologous voxel size shows contributions of frequencies lower than the trough 

(Figures 3-5, 3-6, and 3-7). Both the CNR and the decoding success rates obtained with the 

homologous voxel size and cut-off frequencies higher than 0.36 cycle/mm (the “irregularities” 

frequency regime) are not different than those obtained with the same voxel-size and cut-off 

frequency 0.333 cycle/mm. These results support our conclusion that when sampling with the 
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homologous voxel size the low-frequency regime contributes to successful decoding, whereas 

irregularities in the organization do not. 

For data confined to responses from the gray matter in cat area 18, the decoding accuracy 

following either point-pass or low-pass filtering gradually increases when moving from very low 

frequencies (starting with the mean response over space) to the highest frequency that can still be 

captured by the homologous voxel. Similarly, the power spectra of the response CNR (Fig. 4-2) 

shows neither distinct increase in power in very low frequencies, nor a trough between the 

irregularities regime and the low frequency regime similar to those shown in our data from cat area 

17 (Fig. 3-3). In other words, our data does not show distinct low-frequency components of the 

organization in cat area 18 similar to those we observed in cat area 17.    

Therefore, our results presented in Chapter 4 show apparent inconsistency with our own 

results presented in Chapter 3. In area 17 we find the very low frequency components of the 

organization to be the main contributor to orientation decoding; whereas in cat area 18 we find no 

distinct, high-amplitude low-frequency components of the organization. We conclude that whether 

low-frequency components contribute to decoding depends on the features of the specific 

organization being probed.  

We acknowledge that we have analyzed here contributions from low-frequency 

components without identifying the specific organization involved. In other words, we have not 

determined whether these low-frequencies are the results of the oblique effect (Furmanski and 

Engel, 2000; Sun et al., 2013) or the radial bias effect (Sasaki et al., 2006; Clifford et al., 2009; 

Mannion et al., 2010; Freeman et al., 2011; Freeman et al., 2013; Sun et al., 2013). This could be 

the subject of a future study, which should involve fMRI of retinotopy and orientation selective 

responses in cat area 17 using more than just one fMRI slice, not necessarily at high resolution.      

While our work focused on deciphering the mechanism of decoding via CBV-fMRI and 

OI-IS, other studies have developed stimuli that are less sensitive to large-scale bias. The majority 

of these studies agree that large-scale biases contribute to decoding of orientation stimuli (Sasaki 

et al., 2006; Clifford et al., 2009; Mannion et al., 2010; Freeman et al., 2011; Freeman et al., 2013) 

in human V1, the area homologous to cat area 17. To remove the confounding effect of radial-bias, 

several studies have used spiral gratings as stimuli (Mannion et al., 2010; Seymour et al., 2010; 

Alink et al., 2013; Freeman et al., 2013). Nevertheless, the elimination of one mechanism does not 
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guarantee or express the relative contribution of the other mechanism. Here, based on functional 

imaging of cat area 17 and 18, we addressed four of the proposed mechanisms. 

 

7.2.5 Conclusions: mechanisms underlying decoding the orientation of grating stimuli 

Previously in Chapter 3, we find orientation decoding to be possible without contribution 

from macroscopic blood vessels or complex-spatiotemporal kernel. In Chapter 4, contributions 

from macroscopic blood vessels or from the spatiotemporal responses are redundant if gray matter 

responses are considered. Thus, based on our findings from both Chapters 3 and 4, we can conclude 

that successful decoding relies primarily on the functional organization of neurons according to 

their orientation preference, i.e. on the local irregularities or large scale organizations. However, 

the relative contributions of irregularities and low-frequency components of the organization 

depend on the probed orientation map: we found these relative contributions to be different 

between areas 17 and 18. 

One may argue that the optical imaging results from A18 show smaller contributions from 

the low frequency regime compared to A17 due to the restricted craniotomy opening for the optical 

imaging ROI as opposed to the large tangential slice in the fMRI. However, in our work, a typical 

optical imaging ROI was approximately 9 mm in length whereas a typical fMRI ROI was 

approximately 13.5 mm in length. This difference cannot account for the trough observed in A17 

at 0.36 cycles / mm, which translates to a cycle length of 2.8 mm. In addition, all probed 

frequencies lower than 0.36 cycles / mm in area 17 showed elevated power, which cannot be 

explained by the relatively small difference in ROI lengths. 

One may also argue that differences in the retinotopic eccentricity of the ROIs in A17 and 

A18 cause the differences in contributions of local irregularities and large scale organizations in 

these areas. In other words, if the ROI in A17 was more off-centered from the fovea, then the low 

frequencies could be expected to contribute more due to increased radial bias effects. However, 

the ROI we used for the data from A18 (-5˚ relative to the vertical meridian, -5˚ to -15˚ relative to 

the horizontal meridian) was more off-centered from the fovea compared to the ROI used for A17 

(near the vertical and horizontal meridians). Therefore, such argument would only strengthen our 

conclusion that A18 shows higher contributions of fine-scale irregularities and lower contributions 

of low frequencies than A17. 
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We conclude that the mechanism that accounts for successful decoding of orientation 

columns depends on the specific functional organization of the underlying neurons in the 

frequency domain. Thus, it may vary across visual areas. Moreover, the relative contributions of 

different frequency components depends on the relative size of the voxel as well.   

 

 

7.3 Functional and spatial specificity of blood vessels as a function of 

vessel diameter 

In Chapter 3 we conclude that the large blood vessels contributions were not necessary for 

successful decoding of orientation. In Chapter 4 we show that although decoding accuracy based 

on responses from macroscopic vessels is higher than chance level, the contributions of vessels to 

decoding is redundant if data from gray matter responses are available. This is true for both 

decoding based on HbR (homologous to BOLD-fMRI) and HbT (homologous to CBV-fMRI 

decoding) responses. However, the contribution to decoding from different sizes of fine blood 

vessels were not analyzed. In Chapter 5 we assessed the selectivity of HbR and HbT responses in 

fine arteries and veins relative to that of cortical gray matter. 

ASE pulse sequence provides partial nullification of contributions from veins, leading to a 

middle ground of spatial specificity and SNR between SE and GE sequences. A key simulation 

study showed that with increasing asymmetry of the refocusing pulse, the more similar the SE 

signal is to GE signal (Boxerman et al., 1995). Therefore, the asymmetry parameter of ASE 

controls a trade-off between spatially specific fMRI contrast of low SNR, and fMRI contrast of 

high SNR but poor spatial specificity. This trade-off can possibly be optimized by setting the level 

of SE asymmetry.  

In Chapter 5, we measured the spatial specificity of blood vessels using OI-IS. Based on 

the statistical results we provide evidence that for CBV-fMRI, cortical regions show more spatially 

specific responses than the smallest vessels we tested. In contrast, owing to reduced spatial 

specificity and CNR of blood oxygenation responses, the optimal targets for BOLD-fMRI studies 

are blood vessels of size up to 0.12 mm for mapping an organization with a main frequency of 

0.83 cycle/mm, i.e. the orientation modules in A18. Thus, ASE-BOLD-fMRI may alleviate the 

low SNR of SE-BOLD-fMRI while maintain the spatial specificity. There exists a set of data-
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acquisition parameters in fMRI experiments that optimally balances the signal strength relative to 

noise and the signal selectivity, both of which are important for high-resolution fMRI.  

Whereas limiting the data-acquisition to contributions from vessels within a certain range 

of diameters may not be straightforward, MRI methods exist for estimating the average vessel 

radius in a voxel (Prinster et al., 1997; Jochimsen et al., 2010; Shen et al., 2013). Likely, the most 

convenient method for use in the context of improving the spatial specificity of the fMRI response, 

is the one proposed by Jochimsen and Moller (2008). This method derives the mean vessel 

diameter in a voxel from the change in transverse relaxation rates upon activation which can be 

measured by multi-gradient-echo sampling of spin echo sequence. Thus, our findings can be 

combined with fMRI-based estimation of the average vessels diameter to exclude contributions 

from vessels with low spatial specificity. 

Here we have measured the spatial specificity of HbR and HbT responses by applying OI-

IS for imaging a cortical map with peak frequency of 0.83 cycle/mm. Since the periodicity of this 

organization constitutes higher cortical frequencies than any of the cortical maps that can be 

expected to exist in the human cerebral cortex, all vessels with diameter smaller than or equal to 

the limit we propose can be included in data-acquisition and not excluded in data analysis for the 

purpose of increasing CNR of high-resolution fMRI. However, the diameter of pial blood vessels 

whose spatial specificity is significantly different from gray matter is likely to be proportional to 

the underlying columnar cycle. Finding the exact relationship between the columnar organization 

and the critical blood vessel diameter at which the contributed signals degrades significantly will 

allow us to obtain precise optimization parameters to studies conducted in human. 

To conclude, the information presented in Chapter 5 is especially useful for future studies 

that employ high-resolution 7T BOLD-fMRI. These can improve the voxel SNR by relaxing the 

SE to integrating more blood vessels without over-integrating and thus degrading the spatial 

selectivity. Moreover, we have assessed here the profile of blood vessels of width smaller than 

conventional size of fMRI voxels in the interest of suggesting the optimal parameters for extracting 

the highest spatial specificity of the hemodynamic response.  Multivariate pattern analysis studies 

rely on the global pattern across different voxels in order to mine data that are otherwise too subtle 

for conventional mass-univariate analyzes. Despite its advantage, this technique, like any other, 

will always benefit by high-quality, spatially specific responses. Hence, the findings we show here 
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are not only beneficial for high-resolution fMRI, but also for multivariate fMRI analysis aimed at 

decoding information conveyed by fine-scale organizations.  

 

7.4 Spatial specificity of hemodynamic response relative to neuronal 

activities 

In Chapters 3 - 5, we assessed the selectivity of gray matter and blood vessels based on 

CBV-fMRI and OI-IS signals that can represent CBV-fMRI  (Belliveau et al., 1991) or BOLD-

fMRI (Ogawa et al., 1993). However, fMRI infers the brain activities indirectly through 

hemodynamic responses, which are believed to be coupled closely with certain components of 

neural activity (Logothetis et al., 2001). Therefore, it is also of important interest to quantify the 

extent of coupling between the evoked neuronal activities and the subsequent hemodynamic 

responses (Boynton et al., 1996; Vazquez and Noll, 1998). Knowing quantitatively the coupling 

between the neuronal activities and the hemodynamic responses enables in-depth understanding 

of the hemodynamic limitations and better planning of the sequences related to higher-magnetic-

field (e.g. 7.0-9.4 Tesla) super-resolution fMRIs.   

In Chapter 6, we measure the extent of hemodynamic specificity relative to the underlying 

neuronal activity using controlled retinotopic stimuli. Previous fMRI studies that measured the 

FWHM of a hemodynamic PSF implicitly assumed that the neuronal response is point-like (Engel 

et al., 1997; Parkes et al., 2005; Shmuel et al., 2007; Sirotin et al., 2009). Other studies measured 

optical imaging with electrophysiology but with no controlled visual stimuli (Malonek and 

Grinvald, 1996; Berwick et al., 2008; Vazquez et al., 2014).  

In Chapter 6, Gauss error functions are fitted to the cortical responses to retinotopic stimuli 

with edges at various eccentricities of the visual field (Figures 6-3 and 6-7). The PSF of HbT and 

HbO responses relative to spiking activities are 1.93 and 2.52 mm, respectively, using the Gaussian 

convolution model, smaller than the mean absolute FWHMs of HbT and HbO responses (2.83 and  

3.26 mm, respectively).  

Our findings reemphasize that the neurophysiological response to point like stimulation is 

not point-like: it is scattered (Hubel and Wiesel, 1974). We show that stimulation of part of the 

visual field elicits a neurophysiological response with a spread near the edge of the stimulated 

region. Therefore previous studies that have quantified the PSF of the fMRI response (Engel et al., 
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1997; Parkes et al., 2005; Shmuel et al., 2007) in fact reported on the spatial specificity of the 

BOLD response convolved with the spread of neurophysiological activity. Therefore, the PSF of 

BOLD responses in humans are expected to be smaller than what has been reported thus far, 

consistent with the feasibility of fMRI at the resolution scale of cortical columns (Cheng et al., 

2001a; Goodyear and Menon, 2001; Yacoub et al., 2007; Shmuel et al., 2010).  

 

 

7.5 HbT responses are more spatially specific than HbR responses 

A common finding across Chapters 4-6 is that HbT-based responses are more spatially 

specific than HbR-based responses. In Chapter 4, the decoding rate of HbT-based responses are 

higher than those from HbR-based responses. In Chapter 5, the relative selectivity of gray matter 

and blood vessels across different diameters is higher for HbT compared to that of HbR. Finally 

in Chapter 6, the pair-wise ratio of HbR-based FWHM to that of HbT is significantly higher than 

one. These results clearly demonstrate that the spatial specificity of CBV-fMRI relative to the site 

of increased neurophysiological activity is higher that of BOLD-fMRI. Although developing fMRI 

pulse sequences that estimate CBV dynamically is a challenge, the clear advantage of CBV-fMRI 

should motivate such developments. 

   

 

7.6 Validity of experiments in anesthetized animals 

The work presented in this thesis provides results obtained from anesthetized animals in 

which both of the neuronal and hemodynamic responses are expected to be altered due to the 

anesthesia effects. However, our work deals with fundamental, mechanistic features of the 

neuronal system (e.g., orientation columns, point-spread functions) and the vascular system (e.g., 

spatial specificity of blood oxygenation and blood volume responses). Moreover, we obtained our 

data in lower visual areas, where neurophysiological responses are influenced by anesthesia to a 

lesser extent than responses in higher visual areas. In addition, the conclusions made in the thesis 

rely on comparisons of measures, such as the spatial specificity of hemodynamic responses in gray 

matter compared to that of blood vessels, or the spatial spread of hemodynamic responses 

compared to that of neuronal responses. Lastly, our observations are not confounded by attention 
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effects that can be expected in the alert state. Hence, we believe that our results of mechanistic 

nature hold qualitatively for the alert state. 

 

7.7 Closing remarks and future development 

The work presented in this thesis assessed mechanisms of decoding of orientation stimuli, 

as well as the biological limitation of hemodynamic responses using CBV-fMRI, intrinsic optical 

imaging and multichannel extracellular potential recording. Our novel OI-IS and EP approach 

provided high resolution data that allow in-depth analysis of fMRI-based decoding and 

mechanisms of high-resolution fMRI.  

Although we have added insight into the ongoing debate on mechanisms underlying 

decoding of orientation stimuli based on our invasive studies, the debate has progressed onto 

another level. We did not address the concept of orientation selective edge effects (Carlson, 2014; 

Wardle et al., 2015) because this has been suggested as a possible mechanism only after we 

completed data acquisition. The use of spiral stimuli (Mannion et al., 2009; Seymour et al., 2010; 

Alink et al., 2013; Freeman et al., 2013) is beyond the scope of this thesis. Future studies can 

incorporate or extend the results presented here to including these two new developments. 

In addition, the concept of spatiotemporal filtering was discussed in great detail in Chapter 

4. Here we took a “top-down” approach in which we assumed that the spatiotemporal sampling 

should increase decoding accuracy compared to the static image averaged over time. Since we did 

not observe such an effect, we concluded that the spatiotemporal response does not add 

information for decoding of orientation stimuli. Our study does not refute the concept of complex 

spatiotemporal filtering. However, our results do show that this concept is unlikely to add 

significant contributions to decoding of information conveyed by fine scale organizations. We note 

that we did not analyze these contributions in a “bottom-up” approach to fully explore the function 

of individual elements (such as a model of blood vessels irrigation of orientation columns) that 

would constitute the complex spatiotemporal filtering of neuronal activity by fMRI voxels. 

 

7.8 Significance of our work 

We have implemented novel approaches for studying the mechanisms underlying fMRI-

based decoding of information conveyed by fine-scale organizations. These include (1) MION-
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based CBV-fMRI, with no contributions from macroscopic blood vessels and complex 

spatiotemporal filtering of neuronal activity by fMRI voxels, and (2) direct visualization of gray 

matter and vessel responses using OI-IS of HbR and HbT responses. The latter allows for 

investigating the contributions of all suggested mechanisms. We have introduced the concept of a 

voxel size homologous to that used in human studies, based on the ratio of the main frequencies 

of the fine-scale organization in humans and an animal model.  

Since the MION contrast agent-based fMRI shows better spatial specificity than BOLD-

fMRI does, and since it excludes contributions from blood vessels, our study is the first to test 

whether the functional anatomy of orientation selective columns with no blood vessel 

contributions enables decoding of oriented grating stimuli. Our findings from this work clearly 

rule out, for the first time, any contributions from irregularities in the organization of orientation 

preference to decoding in a primary visual area (Chapter 3). 

Our work is also the first to demonstrate that contributions from macroscopic vessels to 

decoding orientation are lower than those from gray matter regions, and redundant when 

contributions from gray matter regions are considered (Chapter 4). It is the first work that shows 

that whether irregularities contribute to the decoding of the fine scale organization for orientation 

depends on the features of the organization, including the main frequency of the organization and 

the width of elevated amplitudes in the frequency domain around the main frequency (Chapters 3 

and 4). 

Our work is the first to measure the functional (and, indirectly spatial) specificity of 

metabolic (deoxy-hemoglobin) and hemodynamic (total hemoglobin) responses in arteries and 

veins as a function of blood vessel’ diameter (Chapter 5). To date, the functional/spatial 

specificities of responses of veins or arteries relative to the site of increased neurophysiological 

responses have not been quantified. This study will allow for informed data-acquisition and data-

analysis of high-resolution fMRI and fMRI-based decoding for improving the SNR while not 

degrading the spatial specificity. 

Lastly, our work is the first to measure the spatial specificity of hemodynamic responses 

relative to the neuronal responses using well controlled retinotopic stimuli (Chapter 6). Our 

findings indicate that the spatial specificity of high-resolution fMRI in humans should be better 

than has been reported, consistent with the functional imaging of cortical columns in human 

subjects.  
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