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ABSTRACT

Abstract

The goal of Speech Understanding Systems(SUS) is to extract meanings from a sequence

of hypothetical words generated by a speech recognizer. Recently SUSs tend to rely on

robllst matchers to perform this task. This thesis describes a llew method using classifi­

cation trees acting as a robust matcher for speech understanding. Classification trees are

used as a learning method to learn rules automatically from training data. This thesis in­

vestigates uses of classification trees in speech system and sorne general algorithms applied

on classification trees. The linguistic approach requires more human time becallse of the

overhead associated with handling a large number of rules, whereas the proposed approach

eliminates the neecl to handcode and debug the rules. Also, this approach is highly resistant

ta errors by the speaker or by the speech recognizer by dependjng on sorne semantically im­

portant words rather than entire word sequence. Furthermore, by re-training classification

trees on a ncw set of training data later, system improvement is done easily and automati­

cally. The thesis discusses a speech understanding system built at McGill University using

the DARPA-sponsored Air Travel Information System(ATIS) task as training corpus and

testbed.
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RÉSUMÉ

Résumé

L'objectif d'un système de compréhension de la parole (SCP) est d'extraire le sens d'une

séquence de mots hypothétiques générés par un système de reconnaissance de la parole.

Les sep actuels se fient à. un système de correspondance robuste pour la réalisation.

Cette thèse décrit une méthode nouvelle utilisant les arbres de classification (AC) comme

système de correspondance robuste pour le sep. Les AC sont utilisés comme une méthode

d'apprentissage des règles de façon automatique à partir des données d'entraînement. Cette

thèse examine l'utilisation des AC dans un SCP ainsi que quelques algorithmes généraux

s'appliquant aux ACs. L'approche linguistique coûte plus cher pour supporter un grand

nombre de règles tandis que cette approche élimine le besoin d'écrire manuellement et de

tracer les règles. Aussi, cette approche est moins sensible aux erreurs causées par le locuteur

ou par le système de reconnaissance parce qu'elle dépend plus de certains mots clés qu'à

une séquence de mots entiers. De plus, en appliquant AC à un nouveau groupe de données

d'entraînement plus tard, le système peut être amélioré facilement et automatiquement. La

thèse couvre le SCP construit à l'université McGill utilisant le «Air Travel Information

System (ATIS»> parrainé par l'agence DARPA comme une source d'entraînement et de

tests.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

1.1. Backgrounds and Problem Statement

A definition of 'Understanding' is stated in [37}.

To undcrstand something is to transform it From olle representation ioto

another, where ...

In the Human Understanding System(HUS), the IDost important factors might he one's

intellectual ability, psychological status, background, etc. However, in the Machine Un­

derstanding System(MUS), the factors listed above a.re unnecessary because the domain

in which the l'J1US works is predetermined. An example in [37} c1early demonstrate this

point. Consider a sentence "1 need ta go to New York as soon as possible". A MUS dealing

with the airline information domain would have "understood" if it finds the first available

flight to New York. A persan knowing that the speaker's family live in New York would

have "understood" that there may he a problem in the speaker's family. The purpose

of speech/natural language understanding is to extract semantics from written or spoken

sentences. By applying the definition of 'Understanding' stated abave, it translates ta

l
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transforming a sequence of words into a semantic representative farm. That is, the ability

of a MUS to uuderstand is limited to a particular domain, and the key point in a MUS is

how to make an understanding representation form.

The speech understanding system designed in this report works under the Air Travei In­

formation System(ATIS) domain. The development ofSpeech Understanding Systems(SUS)

under ATIS is currently driven by two main streams : the corpus based and the linguistic.

In the corpus based approach, a system is statistically modeled and the paranleters of a

statistical model are learned from an annotated corpus. In the linguistic based approach,

a system consists of hand-coded rules reflecting linguistic/syntactic/semantic knowledge

of its domain. Hybrid approach combines the two approaches. A hybrid system takes a

stochastic model and hand-coded rules as understanding tools. In [22] the two principles

of hybrid approach are discussed. The benefits of the bybrid approach are:

(i) Learn everything that can he learned from availahle data.

(ii) Rather than attempting to learn complex and rare linguistic cases, use simple ways

to incorporate established linguistic knowiedge into the system.

There are sorne hybrid speech understanding systems developed under the DARPA

ATIS task. For stochastic tools, semantic classification tree for CHANEL system [19, 18,

17, 25] is devised. A Hidden Markov Madel is based for the stochastic models in CHRONUS

system [36, 35, 22] and HUM system [41, 40].

The focus of this work is to train classification trees, that is to learn semantic rules

from annotated data, and to set up a set of Classification Trees(CTs) as a robust matcher

of SUS. In the linguistic approach, due to involvement of many experts extracting their

2
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own semantic rules, it requires a lot of time and effort in development of an SUS. On the

other hand, titis automatic learning of CTs dramatically reduces waste of time and effort.

It should be noted that in SUS, the mIes learned by classification trees are more robust to

errors of a spoken sentence containing ungrammatic and non-linguistic occurrences.

1.2. Application of Classification Trees in Speech Recog­

nition System

This thesis will present how classification trees can he used in a speech understanding

system as a way of learning semantic rules, based on annotated corpus.

However, in speech recognition processing, classification trees have already been used

successfully. The list of the applications of classification trees in its related domain is

presented below :

(i) Codebook1 Design

Vector quantization is a technique that maps a stream of high rate digital data iuto a

streaOl of relatively lower rate digital data. [7], which is applicd to the input of Hidden

Markov Models(HMMs) in speech recognition system. In the design of a codphnok:

two factors are crucial: time ta search codebook and data distortion. Full search on

a codebook can reduce data 10ss whereas it can have increased search-time. Thus,

the aim in codebook design is haw ta have well-designed codebook with the trade-off

between two facturs. As one way of codebook design, classification trees are used in

designing a codebaok ta speed up the coding of observation vector. Supposed tbat

1 Basically this is a set of vectors. In vector quantization, a. vector in the lIet is mapped a da.ta From K·space.

3
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there are M vectors in the codebook, it is obvious tbat the time finding a vector will

require 8(log2l\1J) time, if the codebook is designed with trees. Various methods in

obtaining codebooks using classification tree are found in [13, 15, 38, 46].

(ii) Language Modeling

The purpose of speech recognition system is to find w maximizing P(w)P(ylw),

where 'UJ is a sequence of words and y is an acoustic observation vcctor. The bigram

f(Wilwi-d or the trigram f(Wilwi-2,Wi-d language model can be used to estimate

P(w). In [20] researchers at mM proposed CT-based system with the trigram

model, which yields better result than either one of them. In a recent paper [21],

a language model integrating an acoustics model, using semantic classification trees

is described.

(Hi) Acoustic Modelin!}

In an acoustic model, due to the unfeasibility of a word modeling for large vocabulary

speech recognition, a sub-word modeling is userl. To construct a sub-word modeling,

several trials based on classification trees are made. In [8] the algorithm of triphones

clustering, based on classification trees is proposed. Phoneme modcling based on CT

was originally proposed in [24]. In [24], classification trees are employed ta represent

a phoneme as a function of the phone-context. In [34], Kuhn et al. extend the work

of [24] in four ways by (a) taking the Poisson criterian to find the M best questions,

(b) applying expansion-pruning instead of growing algorithm, (c) adding a "DüN'T

KNOW" subtree of each question, and (d) permitting an arbitrary feature schema

in question generation.

4
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1.3. Overview of The Thesis

This thesis facuses on the use of classification trees in speech understanding system.

We will examine how they can be trained and applied for our purpose of 'understanding a

sentence'.

• Chapter 2. Machine Learning with Classification Trees

Presents the theoretical background of classification trees a.ud algorithms for con­

structing classification trees. Reviews splitting/stopping/pruning methods used in

the construction of a classification tree, and compares splitting/pruning methods.

• Chapter 3. Machine Learning on Semantic Interpretation Rules

Describes the 8USs developed under ATIS domain. ~Iost of the chapter is devoted

ta describe the corpus-based SUSs.

• Chapter 4. Speech Understanding System at McGili

Describes the overall structure of SUS developed at McGill for this thesis, and the

structure and function of each module of the system. Descriptions of structures of

the trained classification trees and the semantic representation used in this system

are given.

• Chapter 5. Result and Improvements

Provides various analysis for the output of the SUS at McGill with ATI82 test data.

Suggests further work ta improve capacity of the system.

• Appendix

Provides list of output of this SUS with ATIS2 test data.

5
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CHAPTER 2

Machine Learning with Classification Trees

2.1. Basic Classification Tree Concepts

A tree is commonly defined as a eonnected, aeyc1ic, undireeted graph [2]. For the

purposes of the work described in this thesis, a tree is defined recursively as a finite set of

one or more nodes such that:

(i) there is a specially designated node called the foot;

(ii) the l'emaining nodcs are partitioned into n disjoint sets Tl"" ,~& where each Ti. is

called the subtree of the root 1 ~ i ~ n

(iii) each subtree ean reeursively he defined as a root and a partition iuto disjoint sets

In order to properly introduce classification trees, which will he discussed later, it is

important to eonsider binary trees. A binary tree [9] is recursively defined as a finite set of

nodes, each of which either :

• is empty or

6
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• consists of a root and two disjoint binary trees called the left subtree and the right

subtree.

Trees are frequently used in different applications, in such roles as set-representations,

decision-trees, game-frees, etc. As a set-representation, each tree represents a set. Set

fnnctions like 'union' or 'find' are simply implemented. For example, the union of two trees

is accomplished by making one of the trees a subtree of the other. There are interesting

applications of tl'ees in programming games including tic-tac-toc, go, chess, etc. In these

examples, the tree contains a11 of the possible sequences of board configurations and the

root node represents the initial board setup. Another application of trees is in dccision

making. In this application, each node of a tree represents a decision and a tree itself serves

as a set of decisions which lead ta an answer. Classification tree.fi fali into this category of

application.

A sinlple instance of a typical classification tree is shawn in figure 2.1. They are

binary trees in which aU nodes are divided inta two types represented as circular ones and

square ones. We caU the circular nodes "non-terminal" or "decision" ones and the square

nodes "terminal" or "class" ones. Each non-terminal node is associated with a question

(condition) and each terminal node is associated with a c1ass labcling. In figure 2.1, there

are four questions (x < a, y < c, y < d, x < b) inside non-terminal nodes and three classes

(1,2,3) inside terminal nodes. Ta classify a data item, the tree is traversed, starting from

the root, following the left branch if the condition on the current node is true and following

the right branch if not. By performing this simple procedure recursively, a terminal node

7
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•

FIGURE 2.1. Example of Classification Tree.
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FlGURE 2.2. Geometrie View of Classification Tree

is eventually reached, at which point the item based on which the questions were answered

is ascribed ta the class whose label is displayed in the terminal node.

Suppose we bave a feature vector1 (x, y), where x ;:: b > a and y < d in figure 2.2,

which has ta be c1assified. Following the classification steps of the tree, we find that the

feature vectar is classified as class 3. The path we have followed is marked by *s.

Classification trees may also be considered from a geometric viewpoint. In figure 2.2, a

2-dimensional pÎcture corresponding to the classification tree of figure 2.1 is shawn. Within

the conditions displayed in the non-terminal nodes in figure 2.1, x and y are variables and

lA feature vector indicate:l a measurement vector; the terminology "feature" is commonly used in pattern

recognition application.

9
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a, b, c, and d are constants. Since there are two variables, wc can consider the measurement

space to he 2-dimensional with axes x and y two axes, values of constants a, b, c, d are real­

valued points in the Cartesian plane that is partitioned into area A, B, C, D, E as indicated

in figure 2.1. From this viewpoint, each question given by a non-terminal node in the tree

serves as a constraint-function on the measurement space. So rather than choosing left or

right brauches based on the conditions of tree-nodes, we examine the space in the graph

depending on the outcome of the function. For example, consider a measurement vector

.X. = (x, y) = (e,I), where x and y are variables and e and f are constants satisfying e < a

and f < c. The only area satisfying the two conditions is E, sa we classify the vector as

class 2. Thus generally speaking, a function representing a question in anode recllrsively

separates the measurernent space considered into two parts until we get to a segInent of

space where we can't split any more.

ln arder ta arrive to a precise formulation, a notation used in this thesis is now illtro­

dllced. Let measurement space X he defined as the set of aH measllrement vectors in the

space of dimension q. C is the set of classes such that C = {l, ... , J}. A function d(x) on

any vector x in the measUl'ement space is defined such that any value of a function d(x)

is in the c1ass set C. Ak is a subset of the nleasurenlent space satisfying d(x) = k for any

vector x in the measurement space. In addition, for any two different sets, Ai and Ah the

intersection of Ai and Aj is null; that is, Ai n Aj =0.

The role of a classification tree is to classify an input vector x of a measurernent space

by leading it to Ab if d(x) = k, and assigning class k to the vector. The classification

tree represents a partition of a measurement space with a class labeling for each partition.

10
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Class labeling is performed as described previously, by following tree branches depending

on node conditions.

The classification technique using trees bas been widely and successfully applied. Later,

we will examine in detail sorne specific applications. The tree representation bas several

advantages: The tree structure is easy ta understand because of the simplicity of its concept.

It is also compact enough to be stored on a file. In terms of speed, classification is relatively

swift having a computational time complexity proportional ta the height of the tree.

2.2. Research on Classification Trees

The construction of a classification tree from training data sets has been the object of

research in pattern recognition, decision theory, and statistics.

A taxonorny of machine learning involving classification trees has been proposed in [14}

along the fol1owing Hnes.

• Classification on the basis of the underlying learning strategies used

• Classification on the basis of the representation of knowledge or skill acquired by

the learner

• Classification in terms of the application domain of the performance system for

which knowledge is acquired.

With the advent of knowledge-based expert systems, the methods mentioned above

have been also used for knowledge representation. In expert systems, knowledge is collected

by an interaction between a knowledge engineer and a domain specialiste There may exist

limitations to this method of knowledge-collection in terms of knowledge completeness. In

11
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other words, is it possible for a domain specialist to express all that he/she knows about

the area? For example, when a computer scientist is asked a question sucb as "Could you

describe everything that you know about Data Structures?", how completely could he/she

cover the subject? Could the scientist even be certain of covering the whole of his/her

knowledge? This is clearlya problem.

Concerning models and methods for knowledge representation and for knowledge ac­

quisition has been a major issue. Many different approaches have been suggested in the

fornl of structures [10], discrimination nets [6], production mIes [4], semantic network [3]

ctc.

For this purpose, Quinlan [31] proposed a new approach to kllowledge representation

and acquisition consisting in using decision trees, trained from examples, for knowledge rep­

resentation and acquisition. The decision tree technique has the property of completeness

in that it classifies every element of a domain. Nevertheless, it might have an ioherent error

rate in c1assifying this whereas other techniques may he more robust, but limited coverage

due ta incomplete knowledge collected. Quinlan's method of deriving a tree from data

ta represent domain knowledge and dividing the domain ioto several classes was founded

on Hunt's previous work [10]. Breiman et al. [21] also provide an excellent theoretical

foundation for classification trees.

Classification trees have been used in diverse applications including speech recognition,

which we'll explore in detail in the next chapter, pattern recognition, medical diagnosis and

prognosis, and remote sensing. In [28], application areas are discussed in more detai1. Also,

12
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various methods of designing classification trees to adjust to various problems have been

developed. These method will he reviewed in later sections of this chapter.

2.3. Methods for Classification Tree Construction

In [42], heuristic methods of constructing classification tree are categorized :

(i) Bottom-Up approaches2

(ii) Top-Down approaches3

(Hi) Hybrid approaches [16]

(iv) Growing-Pruning

The Crowing-Pruning approach is based on Top-Dawn approaches and it is simply an

extension of Top-Down approaches in that a pruning step is introduced to prevent over-

trained4 or under-trained5 trees. Our description will concentrate on Top-Down approaches

and the Growing-Pruning approach, with more focus on the latter.

The power of classification trees trained on data sets lies in the possibility ta c1assify

data which are Dot used in the training process. The maximum predictive power cau be

ubtaill~ù wheu a tree is uLtaiueù haviug the cigllt si~e. Preùidive puwer ùecreases witb

over-trained or under-trained trees.

:lIn thcse approaches a. classification tree is constructcd from bottom to top. For example, using some dilltance

measure, the two nodes with smaJler distance are merged to forrn a root Dode of the two nodes.
3These approaches keep expanding down the tree from the root using a splitting rule, and then the expansion

stopll when a stopping rule is reached.
.( An over-trained trce is a tree which is pruned late and/or is too big due ta fitting the data on which it WilS

trained too weil.

sA under·trained tree is a tree which is pruned earlier and/or is too small.

13
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In an effort ta obtain right-sized trees, top-down approaches expand clown the tree

starting from the root node and keep splitting until sorne stopping rules are satisfied. In

the growing-pruning approach, a tree is trained while a cornbillation of splitting, stopping

and pruning rules are applied.

We will discuss sorne of the methods devised and tested in cOllstructing classification

trees ta determine the best method for obtaining right-sized trees.

2.3.1. Preliminaries

Since it has been proved in [11] that the construction of optimal classification trees is an

NP-complete problem, the focus in construction of classification trees has naturally shifted

ta the problem of how ta obtain near-optimal solutions. Varions heuristic methods for the

construction of classification trees have been proposed at various levels. Sorne effective

heuristic strategies are discussed in the following subsections.

2.3.1.1. Definitions

Sorne terminology for describing classification tree construction (see [21] for more de­

tails) is now introduced.

• Let (X, Y) be jointIy distributed random variables with X in Rq and Y in the

set S = {i, ... ,J}. X is a measurement, a feature or a pattern vector and Y is

associated with a class label in the set S.

• A measurement space X is defined as containing ail possible measurements, feature

or pattern vectors.

14
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• A Iearning sample is denoted by ( :

where X n E X and in E {l, ... ,J},n = 1, ... ,N

• An attribl1te is an clement of a feature vector.

• A classifier, a classification rule or a decision rule is a function d(X) mapping X in

'Ru iuta one of the numbers l, ... ,J. Also, a classifier is a partition of X ioto ./

disjoint subsets , il., ... ,AJ, X = Ui Aj such that for every X in Ai the predicted

class is j.

• The true misc1assification rate, R* (d), is the proportion of vectors misclassified by

classification ruIes, d.

R*(d) = P(d(X) # Y)

• Let R(d) denote the estimated misc1assification rate.

R(d) = }v/IN

where NI is the number of samples in L such that d(Xn) # in (sec definition 3), and

N is the total number of samples in L.

• When the training sample is used to estimate R* (d), R(d) is called the re-substitution

estimate of R* (d) and when the test sample is used ta estimate R* (d), R(d) is called

a test sample estimate of R*(d).

15
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• An impurity function ~ is a function defined on the set of all J-tuples of numbers

(Pl, ... ,PJ) satisfying Pi ~ 0 (j = l, ... ,J) and Ej Pi = 1 with the fol1owing

properties :

- <I> is a maximum only at the point (}, ... , })

- <Il achieves its minimum only at the points (1,0, ... ,0), (0,1,0, ... ,0),

(0,0, ... ,0,1)

- <!J is a symmetric function of (Pl, ... ,PJ)

• Given an impurity function <!J, we define tne impurity measure i(t) of any node t as

i(t) = <l)(p(l/t),p(2/t), ... ,p(J/t)).

• A branch Tt of tree T with foot Dode t in T consists of Dode t and aU the descendants

oft in T.

• Pruning a branch Tt frOID a tl'ee T entails deleting from T aU descendants of t. Wc

denote the prllned tree as T - Tt.

• A branch Tt of T with root node t consists of the Dode t and aU descendants of t in

T.

2.3.1.2. Elements of Classification Tree Construction

In [21], Breiman et al. pointed out that tll1'ee elements are required for constructing a

classification tree based on growing-pruning algorithm:

(i) A set Q of questions

(H) A rule for selecting the best split at any Dode

(iii) A criterion for choosing the right-sized tree

16
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p

ATTRIBUTE CLASS

Outlook Temperature Humidity Windy

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild normal faIse P

rain cool normal false P

TABLE 2.3.2.1. A small exam le of correct Data Set

ATTRIBUTE CLASS

Outlook Temperature Humidity Windy

overcast hot high false N

sunny hot high true N

overcast hot high faIse P

rmn mild normal false P

rain mild normal false P

TAnLE 2.3.2.2. A small cxample of an crroneous Data Set

The set Q of questions depends entirely on the specifie application. The second and

third elements will be examined in sections 2.4.3 and 2.4.4 respectively.

2.3.1.3. Limitations of Data Sets

In the construction of a classification tree, it is assumed that the training set is rep-

•
resentative of the measurement vectors and the corresponding class labels are available.
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In reality, however, it might not be possible ta obtain a complete training data set that

covers the entire measurement space weil. Thus, we may be unable to avoid encountering

the situation in which our classification tree has been trained on contaminated data. Based

on this reality, then, the process of preparing the data might be as much as the choice

of technique because, even if we have adopted a state-of-the-art technique, it will still he

impossible to obtain a good tree due to the bias of the data set.

Wc give a simple example in tables 2.3.2.1 & 2.3.2.2 showing how easily data can be

corl'upted and what serious damage could be caused by a small amount of corruption.

Comparing the first and third rows in our example tables, wc notice a few facts. The

value of the outlook attribute has been corrupted ta 'overcast, from 'sunny'. As a result

of changing one value, the first and third rows have the same data but with differcnt c1ass

labels, which leads to a contradiction. This simple example shows that even one corrupted

value of a feature vector can rcnder the vector itself useless, as well as any other vector

which uses the same values but have different class labels. This corruption might very weil

lead to a different and more complex training tree to fit the corrupted data. Thus, ta reduce

the unwanted effects of biased data in constructing trees, we may need to use techniques of

data collection with verification!correction.

Data collection is a process for obtaining near-optimal data sets (optimal in the sense

that it tries to caver the entire measure space uniformly.) Data ve.rification/correction is a

process that attempts to correct for situations in which contamination of data is unavoid­

able.
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Ta cope with erroneous training sets the tree design algorithm must have the following

twa properties [31] :

(i) The algorithm must be able to work with partial data sets

(H) The algorithm must he able ta decide that testing furtber attributes will not improve

the predictive accuracy of the classification tree

Ta satisfy the first requirement, Quinlan suggests having more classes instead of only

one c1ass on the terminal node or a probabilistic class which is ratio c1ass rather than fixed

classa This tapic will be treated in detail in section 2.4.4. Ta satisfy the second property, the

use of the chi-square test for stochastic independence has been proposed. Such a method

has been round ta be effective in preventing the generation uf overly complex trees that

(Lttcmpt to incorporate erroneOllS data, without affecting performance for error-free data.

2.3.2. Splitting Rules

When expanding a tree, we must assign a question to each Dode, which aets as a

classifier. Among the set of candidate questions, the most sllitable question is selected

depending on the splitting rule adopted. Ben-Bassat [1] divides feature-evaluation rules

ioto the fol1owing three categories:

(i) Rules based on Information or Entropy

(ii) Rules based on Distance Measures

(iii) Rules based on Dependence Measures

2.3.2.1. Rules based on Information or Entropy

A. Information Gain
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The method of Information Gain is based on Shannon's entropy, defined as H =

- Li Pi log Pi where Pi is an a priori probability of class i. The basic idea of the information

heuristic implemented in the ACLS program [44, 45] and the ID3 program [30, 29] is to

select an attribute wbose information gain is maximal for anode.

The algorithm is as follows. Suppose a training data set has n abjects of class N and y

abjects of class Y. The information derivable From relative frequencies of class membership,

l(y, TL}, is expressed as:

y y n n
I(y,n) =(---)(log--)(---)(log--)

y+n y+n y+n y+n
(2.3.2.1)

Suppose an attribute A has v possible values (Ab ... 1 Av) and Yi and ni are the numbers

of abjects of class Y and N respectively, having the ith valuc Ai of A. The expected

information rcquircmcnt after testing attribute A and weighting each node by relative

frequencies of class rnembership based on the attribute E(A) cau be written as :

Finally, the information gained by a node on attribute A is :

gain(A) = l(y, 11) - E(A)

(2.3.2.2)

(2.3.2.3)

•

and the attribute with the highest information gain will be selected for the node under

consideration [33].

B. ITlformation Gain Ratio
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The experimental work of Kononenko et al. [12] shows that information gain favors

attributes with many values. To compensate for this fact, Quinlan [31] suggests the infor~

mation gain ratio method for selecting an attribute. The information of an attribute value

can be expressed as :

G(A) = - t Pi + ni log Pi +ni
i=1 p+n P +n

(2.3.2.4)

•

For the choice of an attribute, the ratio gain(Attribute)jG(Attribute) is llsed and the

attribute whose ratio is the largest is selected for the node under consideration.

2.3.2.2. Rules based on distance measures

The criteria in this category measure separability, divergence or discrimination between

classes [28}. The most populat· rule of this type is the Gini Index ruIe [21]. Also! Breiman et

al. suggested another method called the Twoing Criterion, which is usefui for cases in which

there is a relatively large uumber of classes. In the Twoing Rule, however, the amount of

computational timc is proportional ta the numbcr of classes, which is disadvantagcotls. As

in other distance-based measures, Bhattacharya [23], and Kolmogorov-Smirnoff distances

[39] are used.

A. Gini Criterion

The basic idea of the Gini CriterioD is that, when considering splitting criteria. at an

internai node, the Dode whose offspring nodes are the most "pure" is selected.

The Gini impurity function is as follows:
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i(t) = LP(i/t)p(jjt)
if:.i

(2.3.2.5)

where p(ilt) is the probability that the sample training set belongs to the class i, given

anode t.

The "goodness" of the split S is defined as

(2.3.2.6)

where PL and PR are the proportion in which data falls on the left-child and right-child

of node i, respectively.

Fillally, choose a split s· which gives the largest decrease in impurity :

~i(s·, t) = max(6i(s, t»
sES

B. Twoing Criterion

(2.3.2.7)

•

The Twoillg Criterion method was propased as a better way ta deal with the multi-class

prablem [21]. The Two Criterioll function 8(s, t) is defined as :

The best split for any node t and split s of t into t R and tL is a split which maximizes

the Twoing function 6(s, t).
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2.3.2.3. Rules based on dependence measures

The measures in this eategory refer ta the statistieal dependence between twa randam

variables [28).

2.3.3. Stopping Rnles

The stopping rule determines when ta stop splitting nodes. Stoppiog cules are based on

two tree design methods: top-down tree design, in whieh a tree grows without pruning and

growing-pruning trce design, in which the grawing and pruning processes alternate untH

the final tree is obtained.

A threshold is set to limit the splitting rule. For example, suppose our splitting rule is

the Gini Criterioll. The threshold 0 < /3 < 1 can he defined as :

max6i(s, t) < 13
sES

(3 acts as a degree of maximum impurity difference.

(2.3.2.8)

•

Also, as another simple wa.y of stopping rillc, a trcc is split until cach terminal Dode

has fewer than N items(N is close ta 1).

The threshold method daes not, however, lead ta a right-sized tree. Since the threshold

is applied equally ta all nodes, sorne narles of the tree abtained using this method are over-

trained and sorne nodes are under-trainecl. That is, sinee a terminal oode could have a child

node which can get higher value of ài, converting such anode to terminal Dode prevents

prospective child nades from being considered. Thus, the tree fails to have high predictive
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power on a data set which is not used for the training process even though it can fit ta the

training set weIl. Some experimental results using varions thresholds are reported in [21].

2.3.4. Pruning Rules

As an alternative to stopping rules for top-down tree design, pruning rules were added

as a step in the tree training process. The stopping rule for the growing-pruning process

uses either the threshold method mentioned above with {3 = 0 or the stopping condition of

reaching anode that has fewer than N items where N is close to 1. A pruning rule will be

applied to the over-trained tree ta abtain an intermediate right-sized tree.

2.3.4.1. Cost Complexity Proning

In [21], Breiman et al. implemented a pruning method in the CART (Classification

And Regression Tree) program. The proposed pruning method involves finding anode,

which is called the "weakest linkl1 in the tree grown, and turning it into a terminal Dode.

Here is haw ta find the weakest link in a tree T.

For each node n of tree T, the re-substitution estimate of node TL, R(n) is computed

(see definitions 5 and 6). Specifical1y, R(n) is the ratio of the number of misclassified data

items on anode n ta the total number of sample data items. R(T), the re-substitution

estimate of tree T is defined as the sum of the R(n)s nt ail ternlÎnal nodes of tree T as

follows:

R(T) = L R(n)
nET

where T is the set of terminal nodes of tree T.

(2.3.2.9)
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The re-substitution estimate of subtree Tn rooted at node n, R(~~), is defined similarly

to R(T):

R(Tn ) = L R(n)
nET,.

(2.3.2.10)

Finally, we define a function 9L(n), where n is an internaI node of tree T, by :

( )
_ R(n) - R(Tn )

YI n - 1 Tn 1 -1
(2.3.2.11)

Then a node Tt having the minimum value of the function over ail internai nodes of a

tree T is called the weakest link in tree T. That is, the weakest link can be represented by :

YLUi) = ming,(n)
nET

(2.3.2.12)

The rationale of weakest link is follows. The complexity cast, 0, is the cost of one extra

lca.f in the trce. The total cast of a subtree rooted at Dode n is :

•

The total cost of node TL is, if the sub-tree rooted at oode n is pruned :

R(n) + Ct

The two previous equations are equal when :

(2.3.2.13)

(2.3.2.14)
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This leads ta :

R(Tn ) +QI 'Ï'n 1= R(n) + Q

R(n) - R(Tn )a= _
1Tn -11

(2.3.2.15)

(2.3.2.16)

Suppose we have a list of complexity costs al ~ ... ~ as for a tree, where each

complexity cast ai af node i is such that it makes the cost of Dode i equivalent ta the cast

of its subtree. By the definition of weakest link, the node haviog the smallest camplexity

cost al is choseo as weakest link. Suppose only uode i has QI as cornplexity cost. Since al

is the smallest, in the internaI nodes except Dode i,

R(Tn } +a 1Tn 1< R(n) +0' (2.3.2.17)

•

where n # i and n is internai node of tree. In conclusion, if we tak~ a smallest

complexity cost and apply it ta aU internai nodes to compare the cast of node and cost of

its subtree, then when the smallest camplexity cast is unique, there exist ooly one internaI

Dode of tree which satisfying the cast of Dode is less than the cast of its subtree.

2.3.4.2. Reduced ETïor Pruning

This method is rather straightCorward and considers complexity cast and misclassifica-

tian rate as twa crucial factors in deciding prWÜDg. The reduced errar pruning method uses
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a test set rather than a training set ta obtain the misc1assification rate during the pruning

process.

For every non-terminal (non-leal) subtree S of T, the misclassified (error) rate over the

test set is examined using the same method as was lIsed in the cast complexity method.

If a subtree rooted at node 11 is replaced by a node D, and the new tree either keeps the

same misc1assification number or improves its misc1assification rate, then the Dew tree is

taken for improvement of the misc1assified rate or for smaller size of tree with the same

misc1assification number. This procedure continues until no further improvement in the

size of the tree or in the misc1assification rate has been achieved. As with cost complexity

pruning, the method generates a sequence of trees. In addition, the final tree is the smallest

subtree with the rnost accuracy of the original tree over the test set.

2.3.4.3. Pessimistic Pruning

As long as the training set is used to measure the misc1assification ratio of a tree which

was trained with it, sinee the generated tree has been tailored to the training set, the error

ratio does not provide a reHable estimate when unseen cases are classified.

Considcr a subtrcc T,.. rootcd at node n and define K as the number of data items falling

iuto node n and J as the number of data items misclassified on the terminal nodes under T'l •

For example, the ratio of misc1assification for the subtree Tn is considered as J~* instead

of 1<. In [32], Quinlan suggests a more pessimistic view of error rates of misclassification.

Suggesting that the rnisclassified error rate for unseen cases is J+%f'. Suppose E is the

number of data items misclassified frOID the training set. The pessimistic pruning method

prunes subtree Tn , rooted at node n, if E + ~ is within the range of standard error of
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J + l1f1. When we compare the two misclassified ratios of anode n and a subtree rooted at

node n, and take into consideration the standard error, we find that there are more chances

to replace a subtree by anode. Since Quinlan'5 method examines ail non-leaf subtrees once

and doesn't consider pruned subtrees, the pruning process is relatively fast.

Gelfand et al. [43] proposed a simple, cheap pruning method. As the method proposed

by Breiman et al. 1 first of aIl, R(n) is calculated for each node n of tree T. However, the

values obtained for R(n) on the same tree with two pruning methods are totally different.

The reason is tha.t in CART's method, R(n) is calculated with the same data set as used

when tree-growing is done whereas in Gelfaud's pruning method, the different data set is

llsed when R(n) is calculated. The Gelfand et al. pruning algorithm is described as follows

1. For any node n of the tree, set R(n)

2. For each terminal uode n of tree, set S(n) =R(n)

3. For each internaI Hode n of tree,

a. set S(n) = S(Left(n» + S(right(n»

b. if R(n) $ S(n) then

prune the subtree consisting of descendants of Dode n

set Sen) = R(n).

The value of S(n) on anode n is to represent total number of data items misclassified

by a subtree rooted at a uade n. Thus, while scanning whole nodes of tree from bottom to

root, prune any subtree rooted at any node n when the ratio of misclassification based on
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a subtree rooted at node n is equal to or greater than the ratio of misclassification of node

n.

2.3.5. Class-Selection Rules

Assigning a class to each terminal node seems generally to he quite easy. In most cases,

a majority rule is used to decide a class from several candidates. In other words, to select

a class for a terminal Dode, select the class having the most cases. In case of tie with two

cases, we can apply tie-breakiog rule. The rule is ta choose the class of the parent if it's

one of the classes with the most items. Otherwise, break the tie arbitrarily.

2.3.6. Comparison of Methods

Because there are 50 many splitting/pruning rules and 50 many different applications

of them, there have been a large number of empirically comparative studies for determining

which method is the most effective in constructing 'good' trees. We review here sorne of

these studies.

2.3.6.1. Comparison of Splitting Rules

So far, most studies have shown that there is little difference between the splitting

rules. In [21], Breiman et al. conjectured that obtaining a good tree is Dot dependent on

the choice of splitting rule; rather, that the stopping/pruning rules are more crucial in tree

construction. In [26], Mingers aIso concIuded that the selection of a splitting rule is not

important to the quality of the tree; however, sorne studies have indicated that a specific

rule is superior to the others in certain applications. Fayyad [5] indicated that C-SEP

criterion does better than Gini criterion and information gain for sorne specifie application.
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Kononenko et al. [12] pointed out that information gain tends ta favor attributes with

a large number of possible values and tried to solve the problem by reqwring that all

tests have ouly two outcomes. Quinlan [31) suggested information gain ratio as a remedy.

The information gain criterion selects the attribute that maximizes the ratio from among

attributes with an average or better information gain.

For more details about snch comparisons, see [28] and [42].

2.3.6.2. Comparison of Pruning Rules

In [26] and [32], there are sorne comparisons of each pruning method. J. Mingers shows

sorne experimental retmlts with 5 pruning methods (Error~Complexity Pruning; Critical

Value Prllning; lVIinimum~Error Pruning; Reduced-Error Pruning; Pessimistic Errol' Prun­

ing) which were applied to six distinct domains. These tests showed that Error-Complexity

Pruning and Reduced-Error Pruning were the most accurate, while Minimum-Errol' Prun­

ing and Pessimistic Pruning were the least accurate.

In [32], howcver, Quinln.n arrh'cs ta a completely differcnt conclusion. Expcrimcnt­

ing with four different pl'uning rules (cost-complexity pruning, reduced-error pruning, pes·

simistic pruning, production rule form) that were applied to six distinct domains which were

not the same as those in [26], results show that the performance of pessimistic pruning is

marginally better than cost-complexity pruning averaged over all domains.

As sorne empirical comparisons show, there is no single method that is superior to the

other methods over aIl domains.
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2.3.6.3. Correlation of Splitting and Pruning Rules

In [26], Mingers attempts ta find a relationship between splitting and pruning rules.

To accomplish this, he selected 4 different split methods: G-statistic, G-statistic witl1 Mar­

shall's correction, x-square distribution, and gain-ratio; and five pruning rules: critical,

minimunl-error, error-complexity, pessimistic pruning, and reduced-error. He obtained eln­

pirical results on the rate of misc1assification by applying trees trained by using 4 different

split methods associated with each pruning method ta each of six domains. Final1y, he as­

serted that there is no evidence that the splitting method has relation to pruning method.
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CHAPTER 3

Machine Learning of Semantic Interpretation rules

3.1. Introduction

There are currently three main approaches for building the interpretation module for

speech understandillg systems. They are characterized by the way in which interpretation

knowledge is obtained. In a machine learning approach, knowledge is acquired automatically

by computers and used for building statistical models. Parameters of statistical models are

Icarned from an annotated corpus. In the linguistically-based approach, knowledge is made

of hand-coded rules. A hybrid approach is a combination that overcomes sorne weak points

of each approach, for example, adding sorne rules to the statistical model in order ta handle

events which seldam occur in a corpus.

Sorne of the most important Speech Understanding Systems(SUS) [17, 18, 22, 41,

25, 36, 35] developed and evaluated on the ATIS(Air Travel Information System) projects

are:
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• The CHANEL System of CRIM(Centre de Recherche Informatique de Montréal),

whieh is a hybrid system with a charted bottom-up parser and a SCTs(Semantic

Classification Trees)-based robust matcher.

• The CHRONUS System of AT&T, which is another hybrid system consisting of a

stochasticai conceptual modei whose parameters are alltomatically trained, and a

component witb manually written rules.

• The DELPHI Systenl of BBN, which is made up of a chart-based unification parser

and a fallback module with extended grammatic/pragmatic ruIes.

• The HUM System of BBN, which is a hybrid system with a conceptual Hidden

Ivlal'kov Models(HMM) and hand coded rules.

• The SRI(Stanford Research Institute) GEMINI System, which is a unification-based

parser of syntactic and semantic rules. The SRl ~Template Matcher' is a template­

based system with slats filled by a pattern-matching mechanism.

• The PHOENIX System of CMU(Carnegie Mellon University), which is a template­

based system like SRl's Template Matcher but with a slightly different scoring mech­

anism: to fi11 a 510t, the grammar related to the slot must be satisfied.

• The TINA System of IvIIT (Massachusetts Institute of Technology), which consists

of a global syntactic parser and a robust matcher. TINA's hand-coded rules are

part of a probabilistic context-free grammar.

CHANEL, CHRONUS, and HUM are corpus-based systems based on machine learn­

ing techniques, whereas the other systems are linguistically-based and entirely dependent
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Trnnsc:ript or N·Besl Hypothcsis
locatly Pnrsed Fonn

From Rec:ogniler

SHOW ME A..IGHTS Ta DENVER Local
Pnner- LEAVING BOSTON EARLY IN THE - show me nights 10 CIT lcaving

MORNING AND HOW MUCH THEY

J

CIT TIM and how much they cost
CaST

TlM = >--000 & <=800.

CITI=DDEN. CIn=BBOS

Possible -NO ANSWER-

J
-NO ANSWER- < KCT·Basc:d

1
Robusl MDlchcr

Semllntlc RcpmcnllllionSQLQuery

SELECT DISTINCT flightnighUd. DISPLAYED ATTRIBUTES =
fare.fanUd FROM .... - (nighI.Oightjd. fnrdarcjd 1
(rest of query isilic conslraints)

SQLModulc
CONSTRAINTS =

( tlighl.fmm_llirpon BOOS.
Oight.lO_llirport DDEN.
nighulcpanure_lime >=OOO&<=HOOI

\~

Tu Dlllllbasc

FIGURE 3.1. Overall structure of the CHANEL System [17]

on manually written rules [19]. Systems incorporating machine learning techniques are

discussed in detail below.

3.2. The CHANEL System

3.2.1. System Overview

CHANEL(CRIM Hybrid Analyzer for Natural Language) is a hybrid linguistic analyzer

for the ATIS domain. As shown in Fig. 3.1, the system is composed of two main modules:

the local parser and the SCT(Semantic Classification Tree)-based robust matcher l for the

recognition of the semantic content conveyed by a sentence.

lOr.R. Kuhn used 'KCT(Keyword Classification Tree)' in his Ph.O thesis [17); however, the 'SCT(Scmantic

Classification Tree)' is used here to follow his example in a recent paper [181.
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rvluch like él. conventional approach to understanding speech, the local bottom-up parser

preprocesses a string of words and labels semantic phrase components. The SCT-based ra­

bust matcher, which consists of a forest of SeTs, is the core of CHANEL. Each SeT in the

robust matching module is trained with methods described in Chapter 2. For more detail,

see also [18]. The advantages of using automatically constructed trees over hand-coded

rules are to enhance robustness in presence of non-linguistic phenomena, recognizer errors

or spontaneous speech phenomena like false starts, abrupt changes of subject, ungrammat­

icalities, etc.

An example of sentence processing through each module is shawn inside of each box in

Fig. 3.1. In the locally-parsed Corm (the output of the Local Parser), city names(DENVER,

BOSTON) aIld a. phrase(EARLY IN THE MORNING) representing a time are replaced

by ward-categories stlch as CIT and TIM. Although sorne phrases of a sentence have been

rcplaced by word-categories, the true value of each category is stored and passed to tbe

next process. The semantic representation emerging from SCT-Based Robust-lvlatcher is

very similar to its SQL Query. Each element listed in DISPLAYED ATTRlBUTES section

represents a table name and a column name of a database. The list of column narnes and

the corresponding values listed in the CONSTRAINTS section describes constraints applied

to corresponding colmnns in DISPLAYED ATTIRIBUTES.
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3.2.2. Description of Components

3.2.2.1. The Local Chart Parser

The parser component is based on the lexical grammar formalism and some DCG rules

for defining categories having a linear structure.

A lexical grammar has two companents: [25]

(i) A lexicon(word or ward categary) is linked ta its linguistic knowledge represented

by a structure describing its syntactic and semantic characteristics.

(ii) A set of combining rules describes the general mechanism for combining structures.

The parsing algarithm is applied in the following three steps:

(i) For cach ward or sequence of words in a sentence, aU possible interpretations are

considered by the predefined lexical grammars for a lexicoll. For instance, the

phrase 'before two in the afternoon' is interpreted bath as 'before(A) number(2)

time(afternoon)' and 'before(A) number(2) pm(A) '. Since the predefined rules of

twa lexical items, ti'me and pm, are satisfied with 'in the afternoon' at the same

time, two possible translations are considered, usually, time(afternoon) and pm(A).

(ii) The next step is a bottom-up combinatian process using the pre-described combining

rules. Obviously, 'before(A) number(2) pm(A)' is selected instead of 'before(A)

number(2) time(afternoon), to have 'before(1400)' because the numbers following

'before' should be interpreted as a time. Thus, the interpretation of 'number pm' is

correct semantically.
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Iflight,frol1LDirpon <- BOOS. flight.lo_llÏrpot1<- DDEN.
flight.dcpllnUl'e_timc<· 10:00 1

FIGURE 3.2. The SCT·Based Robust Matcher [17}

(iii) The last step is to find necessary semantic data in an entire sentence. For' flight..airl( 421 ~

UA)' as a result of second step, the semantic data('AIR=UA' and 'FNB=421') are

round.

3.2.2.2. The SCT-Based Robust klatcher

Figure 3.2 shows the structure of the robust matcher in the CHANEL System. It

is composed of a large number of trees, each of which carries an appropriate semantic

representation.
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SPEECH SPEECH CONCEPTUAL TEMPLATE- - - -
RECOGNIZER -- - DECODING - GENERATION

1\

TEMPLATE

WORD 'II

LAmeE
TEXT - LEXICAL SQL- PARSER TRANSLATOR

T.F.NA

--- SQLQUERY

- l,

·,REF CAS- ~ - ORACLE
FILES - COMPARATOR

FORMAlTER -
database

-
ANSWER -

FIGURE 3.3. Overall structure of the CHRONUS System [36]

The SeTs are divided into two groups: 'displayed attributes' and 'local constraints'.

The functiolls of the two types of trees are slightly different. A tree in the "displayed

attributes' group conveys semantic rules for a certain column of a database table. For

instance, if the result of a sentence on the 'aircraft.aircrafLcode' tree turns out to be

"YES', the sentence is considered to have an expression of 'aircraft code'.

A tree in the 'local constraints' group uses rules for a table column and its value. For

example, if the result of the CIT tree turns out to he 'origin', then the 'city name' phrase

is counted as the city name for 'departure'.

3.3. The CHRONUS System

3.3.1. System Overview
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0 1 1 14 15 PREFER(S)

1 2 WOULD 15 16 TO

2 3 LIKE(S) 16 17 FL(YIIES)

3 4 TO 17 18 ON

4 5 GO(ES) 18 20 [A]« aircrafLmake > BOEING)

5 6 FROM 18 23 [AH< aireraft > 74M)

6 7 NEW 19 20 « airerafLmake > BOElNG)

6 8 « city> NNYC) 19 23 « aireraft > 74M)

6 8 « state > NY) 20 21 « numbers > 7)

8 9 TO 20 22 « TLumbers > 740)

9 10 SAN 20 23 « numbers > 747)

9 Il « city> SSFO) 21 22 « numbers > 40)

Il 12 « day_name > SATURDAY) 21 23 « TLumbers > 47)

12 13 lvIORNING(S) 22 23 « numbers > 7)

13 14 1

TABLE 3.3.3.1. Example of a Lattice Structure [22]

Fig. 3.3 shows the structure of the CHRONUS system. The Speech Recognizer produces

a string of word hypotheses based on acoustic signaIs. The top hypothetic ward string

produced by the speech recognizer is not directIy connected to the Conceptual Decoding.

The Lexical Parser preprocesses numbers, acronyms, and compound words from the string

and generates a lattice structure containing interpretations of the string. For example, the

substring "B SEVEN FOUR SEVEN" could be interpreted as "B 74T' or "B747" or "B74
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wish: 1 waULD LIKE Ta GO

origin: FROM NEW YORK

destin: TO SAN FRANCISCO

day: SATURDAY

time: MORNING

aircraft: 1 PREFER Ta FLY ON A BOEING SEVEN FORTY SEVEN

TABLE 3.3.3.2. Example of a Conceptual Segmentation [221

AIRLINE: UA

ORIGIN_CITY: NNYC

DESTINATION_CITY: SSFO

WEEKDAY: SATURDAY

ORIGIN_TIME: O-{1200

AIRCRAFT: 74M

SUBJECT: FLIGHT

TAHLE 3.3.3.3. ExaIUlJl~ uf a T~U1lJlat~ [22]

7", etc by the Lexical Parser [36]. Table 3.3.3.1 shows the lattiee structure for the fol1owing

sentence:

1 WOULD LIKE TÛ GO FROM NEW YORK TO SAN FRANCISCO SATURDAY MORNING

PREFER TO FLY ON A BOEING SEVEN FORTY SEVEN
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The Conceptual Decoding produces a semantic representation, called a conceptual seg-

mentation, of the input strings using the Viterbi algorithme Table 3.3.3.2 shows an example

of conceptual segmentation for the lattice in table 3.3.3.1.

The Template Generation transforms a conceptual segmentation form into an SQL-like

forme Table 3.3.3.3 is the template for the conceptual segmentation of table 3.3.3.2.

The SQL Translator generates an SQL query and extracts relevant information from

OracIe database. Also, the comparator module compares an result of the system with il.

reference answer provided by a training set.

3.3.2. Description of Components

3.3.2.1. Conceptual Decoding

This module plays the main role in extracting semantic units from a sequence of words.

The task is accomplished hy giving a concept label to each phrase of a sentence using

statistical techniques, which we will describe next.

The ideal goal of this module is to find the sequence of words W and the concepts C

which will maximize the cOllditional prohahility of W and C given the acoustic signal A:

max P(W, GIA)
WxC

(3.3.3.1)

The right-hand side of Equation 3.3.3.1 can he rewritten using the Bayes rule as:

•
max: P(W GIA) = max P(AI~G)P(WIC)P(G)
wxc' WxC P(A)

(3.3.3.2)
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Based on the reasonable assumption that the acoustic model of a word is independent

of the concept of a word, Equation 3.3.3.2 is equivalent to :

max P(~ GIA) = max P(AIW)P(WIG)P(G)
wxc' WXC P(A)

(3.3.3.3)

Obviously, due to the fixed value of P(A), Equation 3.3.3.3 can be rewritten as :

max P(W, GIA) = max: P(AIW)P(~VIG)P(C)
Wxc Wxc

(3.3.3.4)

[n the CHRONUS System, P(AI~V) is implemented with HMMs(Hidden Markov Model)

of phonetic sub-word units. For the remaining terms,

~f ~f

P(WIC)P(G) =Il P(wilwi-l ...Wl, C)P(wdC) Il P(C;IC;-l ...q)P(cd
i=2 i=2

(3.3.3.5)

For approximation of Equation 3.3.3.5, AT&T assumes that :

a.nd

(3.3.3.6)

(3.3.3.7)

•

[n addition, a bigram language model is used to approximate Equations 3.3.3.6 and

3.3.3.7. Finally, Equation 3.3.3.4 can he rewritten as :
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• M M
max P(W,CIA) = max II P(wilwi-t,ci)· Il P(CiICi-d·
WxC WxC i=2 i=2

(3.3.3.8)

•

The implementation is made with HMMs whose states represent concept relations and

whose observation probabilities lie in the bigram form of words. For the training HMM,

a corpus of training sentences are hand·coded. The parameters of HMM are learned from

the corpus.

3.3.2.2. Lexical Parser

The Lexical Par.lier preprocesses the hypotheses produced by the Speech Recognizer,

and transforms them ioto a lattice structure. This module applies sorne morphologi·

cal/syntactic/semantic rules on the top hypotheses and reorganizes the lattice into a list

of word classes, each of which is a base form for possible morphological/syntactic/semantic

variants of a ward. There are Iules to transform each word as a form of word class [35]:

(i) Articles are generally associated with the word that fallows (e.g. 'THE FLIGHT' is

transformed into '[THE]FLICHT, etc.).

(H) Words with morphological variants are grouped together (e.g. 'GO', 'GOES', 'GO-

ING' are represented by a super-ward 'GO(ES)(ING)', etc.).

(iii) Sorne compound phrases are converted ioto hyphenated phrases (e.g. ONE WAY

becomes ONE-WAY, etc.).

(iv) Acronynls and numbers are dealt with by regular grammars (e.g. TWA, USAIR,

etc.).
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(v) semantically meaningful words are grouped tagether, like city names. (e.g. SAN

FRANCISCO, DALLAS FORT WORTH, etc.).

(vi) For a given concept, words cao be grouped together according ta their uses in

the phrases. For example, for the concept ORIGIN the words DEPART, LEAVE,

ARRlVE can he considered ta have the same concept in the circumstances of the

following sentences:

(a) THE FLIGHT THAT DEPART(S) FROM DALLAS

(b) THE FLIGHT THAT LEAVE(S) FROM DALLAS

(c) THE FLIGHT THAT ARRIVE(S) FROM DALLAS

As shown in Table 3.3.3.1, the lexical parser organizes multiple hypatheses inta a lattice

structure. It defers the decision of choosing the most possible hypotheses until the next

step, conceptual decoding.

3.3.2.3. Template Generator and SQL Translator

The Template Gcnerator consists of a set of hand-coded rules. It simply translates

cOIlceptual segmentations iuta pairs of key-words and values according ta the rules. A pair

made up of a key-ward and a value correspond ta a pair made up of an attribute and an

entity in the database.

The SQL Translator is composed of a set of hand-coded rules like the Template Gen­

erator. It produces an SQL database-query ta extract appropriate data reflecting template

information.
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FIGURE 3.4. Overall structure of HUM System [41]

3.4. The HUM System

3.4.1. System Overview

The overall structure of the HUM System is shown in Figure 3.4. A 'Training Program'

is used to estimate the parameters of tl1e statistical model of this system. The statistical

model trained by the 'Training Program' is used for extracting the meaning of expressions

in a sentence. The 'Understanding Program' finds the most likely meanings supposed by

a ward sequence by using the statistical model. The Hidden Understanding Madel, the
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statistical model of this system, was motivated, as the name implies, from HMM(Hidden

Markov Models) [41].

A representative tool, tree-structured meaning representations, was used to express

meaning. This tool is bw;ed on a tree structure in which each internai Dode is either an

individual concept or a component concept. A component concept is a sub-concept of its

parent node, which is an individual concept. Each terminal node is directly connected to a

word or a string of words.

3.4.2. Description of Components

Tlle HUM System recognizes the semantics hidden in a sentence W as a mea.ning M

such that P(MIW) is maximized. By Bayes Rule,

P(MIW) = P(WIM)P(M)
P(W)

(3.4.3.1)

Since P(W) is fixed, P(MIW) can be achieved by maximizing the product of P(WlkI)

and P(M).

P(MIW) = P(}iVIM)P(M) (3.4.3.2)

•

The statistical toodel of the HUM System, shawn in Figure 3.5, is made up of a semantic

language model and a lexical realization model. P(M) in Equation 3.4.3.2 is implemented

with the semantic language model, and P(WIM) by means of the lexical realization model.

The combination of the two models is equivalent ta finding the most likely meaning M

given a word sequence W.
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Semantic Lexical
Language - Realization -- -
Model Mode1

abstract word

meaning structures sequences

FleURE 3.5. Statistical Madel of HUM System [41j

3.4.2.1. Semantic Language Madel

In the semantic language model, a probabilistic state transition network is constructed

ta implement an abstract concept. AU sub-concepts of an abstract concept consist of states

of a network representing the abstract concept. Two more states, 'enter' and 'exit', are

added to indicate the entry and exit points. A network is a complete directed graph except

the two added states cause the addition of directed paths from the 'enter' state ta other sub-

concept states and from each sub-concept state ta the 'exit' state. Each arc in a network is

associated with a probability. For example, the arc from airline ta date on a flight network

has a probability P(datelairline,fight)~ which represents the probability of going into the

date state from the airline state on the flight network.

The semantic language model is a network of combination of all probabilistic state

transition networks, or a probabilistic recursive transition network.

3.4.2.2. Lexical lv/odet

From the point of view of structure, the Lexical Realization Model is the same as the

Semantic Language Madel except that the terminal Dode of the tree structure meaning
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representation is used as a state in the lexical mode!. There are two virtua.1 states to

indicate the first word and the last, '*begin*' and '*end*'. The value on an arc is estimated

with a probability for a transition from one word to another given a particular context.

Thus, P(pleasel*begin*, ,'ihow_indicator) is the probability that please is the first ward of a

show_indicator phrase, and P(*end*lme, show_indicator) is the probability that me is the

last word of a show_indicator phrase.

3.4.2.3. Training and Understanding Components

The main concern in the training procedure is how ta estimate the transition probabil-

ities of the semantic language model and the lexical realization model. In the HUM Systern

[41], the estimates of the prababilities are given by the following for the semantic langtlage

model:

A C(staten1statem, context}
P(statenlstatcm , context) = C( ) ,

statern , context

and the estirnate for the lexical realization model is given by the following:

PA ( ri 1 d ) C (wordn 1wordm , context)
wo~ n wo", m, context = C( ri )

waTi m, cantext

(3.4.3.3)

(3.4.3.4)

•

For more robust estimates, Equations 3.4.3.3 and 3.4.3.4 are smoothed with P{statenlcontext)

and P{wordn Icontext) [41].

The issue in understanding components is how to find the meaning of a given string of

words such tbat P(WIM)P(M) is maximized. As mentioned earlier, P{WIM)P(M) is the

probability of a path through the combined network of two probabilistic networks. If the
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whole network is searched ta find a maximized path, the algorithm would take exponential

time ta length of sentence. The search time is reduced by applying dynamic programming

and the Viterbi algorithm [41].
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CHAPTER 4

Speech Understanding System (SUS) at McGill

4.1. System Overview

The speech understanding system at McGill university is developed on Air Travel In­

formation System (ATIS) domain sponsored by DARPA. The main task of the speech

understanding system is to extract semantics from the output sentence of a speech recog­

nizer. As other hybrid systems like CHANEL, HUM, and CHRONUS, stated in the previous

chapter, this system is also a hybrid system incorporating linguistic-based approach at a

local level and corpus-based approar.h at a global level.

The structure of the Speech Understanding System is shown in Fig. 4.1. From the

structure point of view, it consists of two modules :

• RTN(RecursÎ1Je 1Tansition Network)-based parser for a local-Ievel lexical/ syntac­

ticall semantical/ analysis (local in the sense that adjacent consecutive words are

examined) .

• CT(Classification Tree)-based Robust Matcher for a global-Ievel semantic analysis

(global in the sense that whole sentence is examined).

50



CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT ~ICGILL

SUS System ~

- - - - -> Hypothesis from Recognizer or Transcript

~

NOANSWER

A
1

1

1

1

1

1

1

1

1

RTN-based Parser
1

1

Parsed Sentence

t
Classification Trees -
Based Robust Matcher

•

~----------------

Semantic Representation of Sentence

1 SQL Module 1

~
SQL Query

FlGURE 4.1. Overall structure of Speech Understanding System in lVlcGill
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In local-level analysis, the RTN-based top-down parser converts a string of words iuto a

hierarchical structure containing word categories that correspond to semantic constituents.

In global-Ievel analysis, a trained classification tree functions as a semantic extractor. A

classification tree is a data structure which learns semantic rules from annotated training

data. A trained classification tree represents semantic rules of a concept as a form of

question in each uode. This system generates output similar ta SQL query, which is called

intermediate codes. The intermediate codes are translated into a SQL query by SQL module

at the next step. Instead of intermediate codes, "NO ANSWER" output could be generated

if there is no semantics to be detected, due to either a failure of system or a sentence without

the meanings the system is looking for.

4.2. The Local Parser Module

The local parser is based on RTNs (Recursive Transition Network), each of which codes

a scrnantic structure such as FLIGHT-NUMBER, TIME, etc. Rules representing a semantic

concept are coded in a RTN. The parsing process proceeds in a way that if the final state

ur a RTN iti reacheù Ly do seutence, the part of sentence read through the RTN is replaced

with a symbol indicating the RTN.

A triple of data enclosed in parenthesis is used to represent the output of a local parser.

A triple data contains the ward, a symbol representing its category and its value. AlI tripled

data are stored in a queue and the local parser proceeds with the queue. Examples of this

representation are shawn on tables 4.2.4.1 and 4.2.4.2. Structure of local parsers is shown

on figure 4.2.
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( please UNDEF ?1?

( list SHOWJNDICATOR 1

( the UNDEF ?1?

( eastern AIRLINE-NAME EA

( flight UNDEF 11?

( two NUM 2

( ten NUM 10

( frotn UNDEF 11?

( d-f-w AIRPORT-NAME DFW)

( to UNDEF ???

( san-franCÎsco CITY-NAME SFO

( on UNDEF 1'l?

( the UNDEF ?1?

(june MONTH 6

( twenty NUM 20

( second ORD 2

( between UNDEF Tt?

( three NUM 3

( and UNDEF ?1?

( seven NUM 7

( p-m TIME-PERIOD 19

( NULL NULL NULL)
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Hypothesis from Recognizer or Transcript

Lexical Transformer

Intermediate form of sentence

!
Conceptual Transformer

Parsed form of sentence

FIGURE 4.2. Overall structure of Local Parser
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( please UNDEF ???

( list SHOWJ:NDICATOR 1

( the UNDEF 'n?

( AIRLINE-NAME EA eastern

( FLICHT-NUMBER 210 *

( from UNDEF '???

( AIRPüRT-NAME DFW d-f-w

( ta UNDEF Tt?

( CITY-NAME SFO san-francisco

( on UNDEF ???

( the UNDEF ???

{ DATE-MONTH 6 june

( DATE-DAY 22 *

( TIME * ~15:0&&~19:0

{ NULL NULL NULL

TABLE 4.2.4.2. Example of Parsed Form

Local parser module has two components: Lexical Transformer and Conceptual Trans-

former. The Lexical 1ransformer module concatenates pre-defined words to treat them as

one ward and looks up individual words from a sentence in the dictionary, and then extracts

its category and value from the dictionary. The Conceptual Transformer module precedes
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syntactic and semantic parsings with a large RTN combining aU RTNs. A RTN represents

selnantic ruIes for a semantic concept like FLIGHT-NUMBER, TIME. A sentence is read

through each RTN ta see if the final node of the RTN can he reached by the sentence, which

means that the sentence satisfies a RTN sa that it has the semantics coded in the RTN.

If a sentence turns out ta contain the semantics which a RTN supports, the conceptual

transformer module replaces the phrase of input string camprising the semantics with the

symbal representing the semantics.

For instance, consider a sentence "please list the eastern flight two ten from d f w

ta san francisco on the june twenty second between three and seven p m". The in­

tennediate form and the parsed fonn of the sentence are displayed on table 4.2.4.1 and

table 4.2.4.2, respectively. Following the Lexical Transformer step, it would be "please

SHOW-INDICATOR the AIRLINE-NAlVIE flight NUM NUM from AIRPORT-NAME ta

CITY-NAME on the MONTH NUM ORO between NUM and NUM TIlVIEJ>ERIOD".

It is labelled as fol1ows: "please SHOW-lNDICATOR(lîst) the AIRLINE-NAME(eastern)

flight NUM(two) NUM(ten) from AIRPORT-NAME(d-f-w) ta CITY-NAME(san-francisco)

on the MONTHUune) NUM(twenty) ORD(second) between NUM(three) and NUM(seven)

TIME2ERIOD(p-m)". According ta the Conceptual Transformer step, it would be "please

SHOW..INDICATOR the AIRLINE-NAME FLIGHT-NUMBER from AIRPORT-NAME

ta CITY-NAME on the DATE-MONTH DATE-DAY TIME". Thus, it is labelled as fol­

lows: ~~please SHOWJNDICATOR (l:list) the AIRLINE-NAME (EA:eastern) FLIGHT­

NUMBER (*:210) from AIRPORT-NAME (DFW:d~f-w) ta CITY-NAME (SFO:san-francisco)

on the DATE-MONTH (6:june) DATE-DAY (22:*) TIME (>=15:0&&<=19:0:*)". The
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string before ':' inside parenthesis is the value of a concept and the one after ':' is the

original string of a concept. However, if the original string consists of more than two words,

it is replaced with ''Il'.

In addition, the adoption of the symbol SHOW.lNDICATOR is not directly related

to the issue of semantics but related to the issue of handling training data. For instance,

after parsing procedure, two sentences "please show the eastern flight two ten frOID cl f w to

san francisco" and "please list the eastern flight two ten from d f w ta san francisco" have

the same parsed form, since each of two different words, ~show' and 'list', is changed to

the sarne symbol, SHOWJ:NDICATOR. If the two sentences of the exactly same semantic

and syntactic structures have the sanIe parsed forms, it could help the training mechanism

learn such a structure quickly. This point could be important in a situation where there is

a lack of training data.

4.3. Building Classification Trees

Recall that three elements in construction of classification tree, stated in Chapter 2,

a.re:

• A set Q of questions

• A rule for selecting the best split nt any node

• A criterion for choosing the right-sized tree

Getting the best split at anode is equivalent ta choosing the best question from a set of

questions for a node. The Gini criterion described in Chapter 2 ta select the best question
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for a Dode is used for this thesis. AIso, the iterative expansion-pruning algorithm described

in Chapter 2 to get a right-sized tree is adopted.

A set of questions now is closely related to the application of a speech understanding

system. The Dode structure for a question was origina.lly devised at CRIM. Two structures

are applied on each node : known structure and decision structure. Two structures are of

the same form. Each structure is a regular expression consisting of symbol and gaps. The

four regular expressions for each gap + in a Irnown structure are considered with a symbol

w:

• < w > : single symbol w.

• < +w > : sequence of length of at least two ending with symbol 'W.

• < w+ > : sequence of length of at least two beginning with symbol w.

• < +w+ > : sequence of length of at least three containing symbol w that is neither

the first nor the last.

The known structure for the root of a classification tree is defined as < + >. The

operation rules on a known structure are to apply each of four regular expressions to each

gap + in the known structure with a given symbol. If there are L symbols in the lexicon,

there are (4 x L) operations applicable ta each gap + in known structure.

When a regular expression at anode is selected according to the Gini criterion, the

decision structure of the node is determined by applying selected regtùar expression ta the

known structure of the node. For instance, for a Dode with known structure, < +w >, four

possibilities for the decision structure given a symbol, s, are < sw >, < s +w >, < +s'W >,

and < +s + w >. This is obtained by replacing the only gap + in < +w > with four gap
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operations, < s >, < s+ >, < +s >, and < +s+ >. The known structure of "YES chiId"

node is the decision structure of its parent node, while the known structure of "NO child"

is identical to the known structure of its parent.

4.4. The CT-based Robust Matcher Module

Figure 4.3 shows the structure of CT-based robust matcher. The parsed sentence

preparsed by local parser is submitted into the robust matcher. The rOb'llst matcher is

cornposed of two parts (Displayed Attributes }Vlodule and Constraint.'J Mod'lJle), which corre­

spond to two parts of semantic representation (Displayed Attributes and Constraints). The

1l1timate purpose of this system is to find out something satisfying SOULt; conditions. At-

tribute corresponds to something and constraint corresponds ta something with conditions.

The Di.'iplayed Attribu.tes Module generates 'list of attributes', while the Constraints Mod-

ILle prodllces 'list of constraints'. An attribute from 'list of attributes' is related to a narne

concatenating table(relation) and column(attribute) in ATIS database, while a constraints

from 'list of constraints' is composed of an attribute and its value. List of constraÎnts has

two types of constraints : Local Constraints and Global Constraints.

4.4.1. Displayed Attributes Module

The SQL translation of class A l sentence of the ATIS2 training data has the structure

of "SELECT DISTINCT List of attrubutes FROM ...". There are 74 different attributes in

SQL code of ATIS2. The flight.flighLid is the most common attribute appearing in 2308

lclass A sentence is semantically independent, while class 0 sentence is semantically dependent on previous

sentence.
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Parsed Sentence CD
~

Classification Trees for "Displayed Attributes"

Classification Trees for "Constraints"

NOANSWER 1
c:E:••••••••••••• - ••• - •• - ••••••••••••

Semantic Representation of Sentence

(0

DISPLAYED ATIRIBUTES ={fare.fare_id }
fare.one_directioo_cost <- %MIN
flight.to_city <- DEN
flight.from_city <- BOS

DISPLAYED ATTRIBUTES ={fare.fare_id }
Constraints =
[
fare.one_direction_cost <- %MIN
flight.to_city <- DEN
flight.from_city <- BOS
1

CD find the cheapest ROUTE(one-say) fare from CITY­
NAME(boston) to CITY-NAME(denver)

CD
CD

F1GURE 4.3. Overall structure of Robust ?vlatcher
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please show aU f1ights from CITY-NAME to AIRPORT-NAME DAY => 0

please show Bights arriving in CITY-NAME from CITY-NAME => 0

please show me again the CLASS-NAME fares from CITY-NAME to CITY-NAME => 0

piease tell me the times of the flights between CITY-NAME and CITY-NAME => l

show me the costs and times for flights from CITY-NAME to CITY-NAME => 1

TABLE 4.4.4.1. Parsed Form of Sorne Training Data for jfight.departure_time Attribute

out of3102 sentences of class A. Only 34 out of 74 attributes appear in at least 10 sentences

and 16 otber attributes appear ooly once. A function caU, MIN(flight.departure_time), is

found in one sentence.

Sorne different attributes are highly correlated and sorne always appear together in SQL

queries. In the latter case, the different attributes have identical classification tree. For ex-

ample, airport. airporLlocation, airport. country_name, airp01t. minimum_conneccLtime t air-

port..'Jtute_cOfle, and airport.time_zone_code attributes are displayed in only two sentences.

Sorne training data for jlight.departure_time attributc arc shown in table 4.4.4.1.

The number '0' or '1' shown at the end of a sentence indicates whether or nat the

SQL quer)' of the sentence contains the jlight.dcparture_limc attributc bctwccn 'SELECT

DISTINCT' and 'FROM'. Thus, the sentence labelled '1' hasflight.departure~timeattribute

in its SQL query and the one labelled '0' does not. Ali the labelled training data. are involved

in a training of a. classification tree. Thus, the training data for the attribute fiight.flighLid

has 2308 sentences labelled 'l'and 794 sentences labelled '0'. The iterative expansion-

pruning algorithm we adopt requires to maintain two training data sets. Each data set is

kept to have approximately equal numbers of lahelled sentences without duplication of data
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for each class. In the training data set for attributes having only one sentence labelled '1',

however, the same sentence labelled '1' appears in each data set.

4.4.2. Constraints Module

4.4.2.1. Global Constraints

Recall that a constraint in the semantic representation is composed of an attribute and

its value, or a range of possible values. Properties of a global constraint are spread out

over a sentence instead of being localized. Unlike local constraint, it does not l'equire to be

pre-processed by a local pal'ser.

In the current version of system, 13 global constraint classification trees were tl'ained :

• }.tIAX and MIN for an one-way Jare and a round-trip fare

A classification tree is trained for a global constraint. AlI sentences containing

'MIN ( fare.one_direction_cost )' in their SQL queries are collected for training data.

The 'cheapest', 'least expensive" 'lowest cost', 'lowest priee', or 'lowest fare' phrase

appcars on sentences satisfying the condition.

• AtIAX and MIN for the capacity of airerait

Gnly 2 sentences contains the phrase of maximum capacity of aircraft. 'largest

seating capacity' and 'greatest seating capacity' are the corresponding parts of the

sentences. 'sma1lest seating capacity', 'smallest plane', or ~smallest number of pas­

sengers' appears on the sentences for the minimum of aircraft capacity.

• MAX and MIN for departure time of flight
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For the maximum of departure time, the proper sentences contains 'last flight', 'lat­

est flight', etc. For the minimum, 'first flight', 'earliest flight', etc are the examples.

• MIN for arrival time of flight

Only 1 sentence, ~what flight from boston to atlanta arrives earliest in atlanta',

satisfies this criterion.

• nonstop of flight

'flight.stops = 0' coudition appears on the SQL queries of the training data for this

constraint. 'please list aU flights between boston and san francisco nonstop' and

'what nonstop Bights between boston and washington arrive after five o'dock p m'

are the exemples.

• flight with meal

The training data for this constraint include two types of sentences. In the first

type of sentence, a meal Dame is not specified, but the property of this constraint is

defined explicitly. That is, phrases like 'with a mea!' or 'serving a meal' are found in

the sentences. In the second type of sentence, a meal name is concretely specified,

such as 'breakfast served' or 'serve dinner'.

• 'direct' and 'connect' of flight connection

In SQL translations of the training data, 'flight.connections = 0' is round for direct

flight constraint, while 'flight.connections > 0' is found for indirect flight constraint.

• airline code and flight number of flight

A classification tree for this CODstraint does not exist, since the attribute and value

for this constraint are already found in local parser module.
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what flights are available from %CITY-NAME ta CITY-NAME => 1

what flights are available !rom CITY-NAME to %CITY-NAME => 0

TABLE 4.4.4.2. Example of Training Data for 'city:origin' constraint

what flights are available from %CITY-NAME ta CITY-NAME => 0

what flights are available from CITY-NAME ta %CITY-NAME => 1

TABLE 4.4.4.3. Example of Training Data for 'city:destination' constraint

4.4.2.2. Local Constraints

After a sentence is parsed by a local panIer, semantics of some parsed substrings are left

llnresolved. Meanings of such an ambiguous substring are identified by classification trees

trained for local constraints. Consider a sentence 'what flights are available from denver

ta baltimore'. The parsed form of the sentence is 'what flights are available from CITY-

NAME ta CITY-NAME' where the value of the first CITY-NAME is 'denver' and the value

of the second is 'baltimore'. As we can see, CITY-NAME after 'from' is the origin city and

CITY-NAME after 'ta' is the destination city. The semantics of llnidentified substrillgS are

revealeJ in local cOllstraints module.

In the training data for a local constraint, data duplication is unavoidable. As shawn

in table 4.4.4.2, the two almost same sentences appear with different labelling. In table

4.4.4.3, the two sentences appear again with the reversed labelling according to dealing

with the reversed raIe of constraint. We distinguish the same symbols being considered, by

adding '%' on the symbol. Thus, labelling of a sentence is decided by the raie of the symbol

preceded by '%'.
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~f1ights + %AIRPORT-NAM0

~
Gll-fl-jg-h-ts-+-t-o-%-A-IR-PO-R-T--N-A-M-E>-~-? 1\
~ d

ŒJ 0

~
~IME+CITY-NAME+~ /\

~ U
/\ EE+"'AIRPORT-NAM"0

U ~
ŒJ 0

nll:1I11S lhal ';6 AIRPORT·NAME in !he mllence is for dealinlllion

mcans IhaC ~ AIRPORT·NAME in the senlCnce is NOT (or destinalion

•

FIGURE 4.4. CT for the local constraint de.'iti1&ation of airyJort name

Here are the list of 12 local constraint CTs implemented in the current version of

system.

• for AIRPORT NAAfE

An airport name can be an origin, a destination, a stopover, a site served by an

airline, or a location for ground transportation.

• for CITY NAME

A city name can be an origin, a destination, a stopover, a site served by an airline,

or a location for ground transportation.

• for TIME

A time can he an arrivai time or a departure time.

Figure 4.4 shows a CT that decides if an airport name is for destination.
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Recognized Sentence => are there any flights from san francisco to boston leaving

in the afternoon and arriving between three and seven p m

DISPLAYED ATTRIBUTES = { flight.flightJd }

Constraints =

flight.to_city ~ BOSS

flight.from_city -E- SFOO

flight.arrivaLtime ~ >=15:0&&<=19:0

TABLE 4.5.4.1. Example 1 of A Sema.ntic Representation

4.5. The Semantic Representation

The semantic representation is the intermediate code that represents the information

carried by a sentence, which will be converted to a corresponding SQL query. The semantic

representation we adopt here is based on the one devised at CRIM and used for CHANEL

system, and is modified for our purpose.

The semantic representation has two parts, attributes and constraints. Attribute is of

the "relation.attribllte" form and constraint is of the "relation.attribllte +- value" farm.

'&&' and '!l'are logical operators indicating the AND and OR, respectively. '>=', "<=',

'<', and '>' are relation operators. "%ZERO', '%MIN\ and '%MAX' are special symbols.

For example, '%MIN' indicates a minimum value and '%MAX' is a maximum value.
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Recognized Sentence => i'm looking for a one way flight from boston to baltimore

washington what is the cheapest flight

DISPLAYED ATTRIBUTES = {flight.flightJd }

Constraints =

fare.one_direction_cost ~ %MIN

flight. to_city ~ WSH

flight.frOID_city f- BOS

TABLE 4.5.4.2. Example 2 of A Semantic Representation

Some examples of semantic representation are shown in tables 4.5.4.1 and 4.5.4.2. For

the interpretation of 'baltimore washington' in t3ble 4.5.4.2, we follow the principles of

interpretation provided by ATIS2 database.

4.6. Speech Understanding Systems at McGill and

CRIM

SUS at McGill and CHANEL are hybrid systems consisting of two components, a

parser and a robust matcher, as the other SUSs developed under ATIS domain. Two 8USs

have many similarities in that the parsers are linguistic-based and the robust matchers

are corpus-based. Furthermore, both 8USs adopt Classification Trees to perform semantic

extraction. However, two systems take different parsers and similar robust matchers in

performing similar work. Differences of two 8USs are specified as follows.
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• The parser at McGill is based on Recursive Transition Networks (RTN) formalisln

which analyzes a sentence locally and finds its semantic values from important words,

whereas in CHANEL, the parser relies on lexical grammar fonnalism with DCG rules

ta detect semantic structures.

• Two systems have similar semantic representation language. McGill system adopts

the one used in CHANEL which bas been modified for our purpose.

• The robust matcher of SUS at McGill have 13 classification trees for global con­

straints. Sonle global constraints do Dot need to be implemented witb classification

trees because parser module collects enough information ta deternlÏne such con­

straints. Determination of baving sorne global constraints or not, is done during

parsing process.

• In McGill':; system, a classification tree represents only one semantic concept and

determines if a sentence has a semantic concept represented by the tree or not. That

is, one semantic concept is exactly corresponding to a classification tree. Therefore

each classification tree is independently trained/re-trained. In CHANEL, a classi­

fication tree is trained for one or more semantics. It cao save time in training and

reduce the number of trees.

• McGill's SUS is implemented with C++ for the parser and robust matcher and

PERL for the ioterconnection of two modules, whereas CHANEL is written in C for

robust matcher and Lisp for parser.
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CHAPTER 5

Results and Discussion

5.1. Experiments and Analysis

The single-symbol CTs for the SUS developed at McGill were trained on 3248 class A

ATIS2 NL sentences. The test results, which will he shown later, were from 399 class A

Feb92 ATIS2 NL sentences and 011 441 c1ass A Nov92 ATIS2 NL sentences.

The SU system developed at McGill consists of tlrree components : a parser, displayed

Attriblltes (DA), and constraints. The parser part was not tested here. The relnaining

parts were tested and the results are analyzed in this chapter. Also, since the SQL module

generating SQL codes from the semantic representation (the output of this SU system) is

not prepared yet, the test for the SQL module is not dealt with here. The test results were

obtained by comparing the semantic representations produced by this system and the SQL

codes provided by ATIS2.
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Feb92 Nov92 Total

Number of successes 317 367 684(81%)

Number of fails 65 54 119(14%)

Number of no answers 17 20 37(4%)

Total 399 441 840(100%)

TABLE 5.1.5.1. ATIS2 Class A NL Test Result Ion CTs of Dlsplayed Attributes

5.1.1. Benchmark Results and Analysis

5.1.1.1. CTs for Displayed Attributes

The February and November 1992 ATIS2 henchmark results are shown in tables 5.1.5.1

- 5.1.5.5.

Table 5.1.5.1 shows the results for CTs of Displayed Attributcs on ATIS2 Class A NL

sentences. On the test data, a 'Success' ocellrs when the set of the displayed attrihutes of

this system includes the answer prescribed by ATIS2. The other cases are considered ta he

'Fails'.

For the test sentence 'which airlines depart from boston', the SQL codes of ATIS2

reads 'select distinct airline.airline-eode from airline where ... '. The re~;ult of the system on

the sentence is the following :

DISPLAYED ATTRIBUTES = { airline.airline..code }

Constraints =

{

flight.froffi_city ~ BBOS
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}

With the sentence ~are there any united Bights from boston to san francisco stopping in

denver', the SQL codes are 'select distinct Bight.fligh.tJd from Bight where ... '. This system

generates the output as follows :

DISPLAYED ATTRIBUTES = { flight.flighLid }

DISPLAYED ATTRIBUTES = { flight.airline_code }

Constraints =

{

flight.airline_code t- UA

flight.stopover_city t- DDEN

flight.to_city ~ SSFO

flight.froIn_city f- BBOS

}

In the first example, two answers are matched exactly, whereas in the second case, the

system output includes the ATIS2 answer.

The 'Success' cases in table 5.1.5.1 are divided inta two case: exact match and inclusive

exact match1, shawn in table 5.1.5.2.

lThis is the case that an answer of the system includes ATI52 answer.
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TABLE

Feb92 Nov92 Total

Nurnber of successes 193 241 434(52%)

Number of inclusive successes 124 126 250(30%)

Number of fails 65 54 119(14%)

Nurnber of no answers 17 20 37(4%)

Total 399 441 840(100%)

5.1.5.2. ATIS2 Class A NL Test Result 2 on CTs of Displayed Attributes

•

5.1.1.2. CTs for Constraints

As stated earlier, at the time of the development of this system, an SQL module for

this system had not been prepared, 50 this system does not produce SQL code. Thus, the

results for constraint CTs was obtained by comparing the output of constraint CTs with

the corresponding SQL provided by ATIS, for each test sentence.

Tables 5.1.5.3 and 5.1.5.4 show two different results on CTs for constraints. Table

5.1.5.3 shows experimental results for entire test sentences, whereas the table 5.1.5.4 incli-

eates results of the test sentences for which constraints are implemented by means of CTs.

In particular, the test sentences containing constraints of which the corresponding CTs are

not trained, have been excluded frOID the results shown in table 5.1.5.4. Sorne examples that

are not considered for the test shawn in table 5.1.5.4 follow: (The sentence components in

italics indicate those which the constraint CTs of this system does not support.)

• list the first nonstop flight from boston to washington on june twenty fifth.

• how many t w a fiights have first class.
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TAB

TAB

Febg~ N01J9H Total

Number of successes 144 166 310(37%)

Nurnber of fails 238 255 493(59%)

Number of no answers 17 20 37(4%)

Total 399 441 840(100%)

LE 5.1.5.3. ATIS2 Class A NL Test Result 1 on Constraint

Febg~ N01J9~ Total

Number of successes 144 166 310(72%)

Number of fails 71 15 86(20%)

Number of no answers 17 20 37(9%)

Total 232 201 433(100%)

LE 5.1.5.4. ATIS2 Class A NL Test Result 2 on Constraint

CTs

CTs

•

• the cast of aIl flights from pittsburgh to boston on wednesday of next week.

• please give me flight information from denver to pittsburgh ta atlanta and return ta

denver.

From the point of view of SU system performance, the results shawn in table 5.1.5.3

are more interesting; however, in the viewpoint of how weil the CTs-based approach warks

for an SU system in terms of CTs performance, the results shawn in table 5.1.5.4 are more

significant. The improvements in the previous two approaches will be discussed later

An analysis of the errors in semantic extraction using constraint CTs is shawn in the

table 5.1.5.5. Note that in table 5.1.5.3, the number of Fails is 493, whereas the total
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Feb9:l Nov92 Total

Number of errors in global constraint CTs 47 27 74(11%)

Number of errors in local CODstraint CTs 65 108 173(26%)

Number of unimplemented errors 167 240 407(62%)

Total 279 375 654(100%)

TABLE 5.1.5.5. Error Anal 'sis for the Constraint CTs

number of errors in table 5.1.5.5 is 654 because more than one error may occur in one

sentence. 62% among total errors were occurred due to non-implementation of snch CTs.

5.2. Improvements

The improvements will be discussed from two perspectives : system performance and

CTs performance. For the sake of completeness, we will review general improvements to

CT-based SU from [17].

(i) System Perforrnance Point of View

Features which may Împrove system performance are listed below.

• Multiple Frames

The handling of multiple frames is not implemented in this system. Most cases

of multiple frame occurs in multiple departure cities(airports), multiple arrivaI

cities(airports), or multiple stopover cities(airports). In CRIM's system, this

feature was implemented but the results were unsatisfactory.

• Incompatibility between outputs of CTs
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A large number of errors in the semantic representations generated occurs

due to the ineompatibility between DA and constra.ints since in the eurrent

version of the system, the output of each CT is entirely independent of the

output of aIl other CTs. This, together with the fact that only single frames

are handled, means that two different cities could be classified with the same

semantics. Further research on the relationship between outputs of CTs is

neeessary.

• Unimplemented CTs in Global and Local Constraints (Class)

The results with Feb. and Nov. 1992 test sentences reveal that this system

needs more CTs to resolve certain constraints. These constraints and sorne

examples of the corresponding phrases are given below :

- DATE

"august fifth', "september fifth nineteen ninety one', 'week from wednes­

clay', "tonlorrow', 'today', "on wednesday of next week', 'next friday'.

- DAY

'on a wednesday'.

- CLASS

'first class', "business class'.

- NIEAL

'serve breakfast'.

- FARE

'coach fare', "economy fare', 'coach fare'.
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- RENT

'rent a car'.

- COST

'less than eight hundred and sixtYdoUars'.

In the CUITent version of the system, the semantic CT for meal service was

designed to indicate the existence of meal service, not to reCer ta a specifie

meal service.

(H) CTs Perfonnance Point of View

The largest number of errors occurred in the interpretation of TIME phrases asso­

ciated with other semantic components : when a TIME phrase appears in an inde­

pendent phrase, the TIME CTs captures the semantic correctly. However, when a

TIME phrase is integrated with other constituents, such as 'monday afterIloon~or

'wednesda.y night', the TIME CTs do Dot work properly.

General Improvcments ta CT-Based SU

• Uses a dialogue session for collecting training data

• Sets up meta-rules for dctcrmining that there is something wrong \Vith a se­

mantic representation

• Uses hierarchies of CTs

• Uses a CT-driven lexical search
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5.3. Conclusion

This thesis describes a method for learning classification rules from training data using

trees. The learning mechanism is based on the probabilistic approach. All patterns for a

node of a CT are tried and one of them is selected for the pattern of the node. AU selected

patterns on a tree consist of classification rules. We applied this method to semantic ex­

traction in speech understanding systems. Similar methods had been designed and applied

ta many application fields including speech recognition system, but this work is unique in

its treatment of question patterns which are used for question of each node.

Finally, 1 would like to stress sorne points for using this method.

• Training Data

Since this method is based on a probabilistic approach to training data, obtaining

training data covering aIl possible cases is essential for successful results. Sorne DAs

in training DA CTs have only a few sentence satisfying those DAs in ATIS. In this

case, the method using hand-coded rules works better.

• Training Process

Dllring training~ the process of selecting propel' sentences from a large amount of

training data takes a large portion of time. To speed up the development of the

system, ful'thel' research should he done to determine how ta redllce the time taken

by the training process (including the selection of the sentences that are needed).

• Process of Obtaining Training Data
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ACter a system has been developed, there should he a process to collect training

data. Once sorne training data have been acquired, the system may he re-set up

with the training data collected so far.
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