INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Speech Understanding System using Classification
Trees

Kwan Yi
School of Computer Science
McGill University, Montreal

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of M.Sc. in Computer Science.

Copyright © Kwan Yi 1997.

Al

National Lib Bibliothéque nationale
of Canm:lal ey du Canada
isitions and isitions et
miuc;ggh?ca&wices :g\‘:i’tl:es bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ontawa ON K1A ON4
Canada Canada
Your e Voire reldrence
Our fie Notre réiérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-37180-8

Canad¥

ABSTRACT

Abstract

The goal of Speech Understanding Systems(SUS) is to extract meanings from a sequence
of hypothetical words generated by a speech recognizer. Recently SUSs tend to rely on
robust matchers to perform this task. This thesis describes a new method using classifi-
cation trees acting as a robust matcher for speech understanding. Classification trees are
used as a learning method to learn rules automatically from training data. This thesis in-
vestigates uses of classification trees in speech system and some general algorithms applied
on classification trees. The linguistic approach requires more human time because of the
overhead associated with handling a large number of rules, whereas the proposed approach
eliminates the need to handcode and debug the rules. Also, this approach is highly resistant
to errors by the speaker or by the speech recognizer by depending on some semantically im-
portant words rather than entire word sequence. Furthermore, by re-training classification
trees on a new set of training data later, system improvement is done easily and automati-
cally. The thesis discusses a speech understanding system built at McGill University using
the DARPA-sponsored Air Travel Information System(ATIS) task as training corpus and

testbed.

RESUME

Résumé

L’objectif d’un systéme de compréhension de la parole (SCP) est d’extraire le sens d’une
séquence de mots hypothétiques générés par un systéme de reconnaissance de la parole.
Les SCP actuels se fient 4 un systéme de correspondance robuste pour la réalisation.
Cette thése décrit une méthode nouvelle utilisant les arbres de classification (AC) comme
systéme de correspondance robuste pour le SCP. Les AC sont utilisés comme une méthode
d’apprentissage des régles de facon automatique a partir des données d’entrainement. Cette
thése examine 1'utilisation des AC dans un SCP ainsi que quelques algorithmes généraux
s'appliquant aux ACs. L'approche linguistique coite plus cher pour supporter un grand
nombre de régles tandis que cette approche élimine le besoin d’écrire manuellement et de
tracer les régles. Aussi, cette approche est moins sensible aux erreurs causées par le locuteur
ou par le systéme de reconnaissance parce qu’elle dépend plus de certains mots clés qu'a
une séquence de mots entiers. De plus, en appliquant AC & un nouveau groupe de données
d’entrainement plus tard, le systéme peut étre amélioré facilement et automatiquement. La
thése couvre le SCP construit & 'université McGill utilisant le <Air Travel Information
System (ATIS)> parrainé par I'agence DARPA comme une source d’entrainement et de

tests.

ii

ACKNOWLEDGEMENTS

Acknowledgements

My present status in life is a result of the efforts and sacrifices of my parents and family.

Renato De Mori, my thesis adviser, taught me a lot about professional attitude towards
work in addition to guiding me through my research. As a supervisor, he shows an exem-
plary concern for the well-being of his students to ensure that they have financial support.
Also, he is a man of great courtesy.

My co-supervisor, Roland Kuhn, is another great person with nice personality. He
helped mie a lot from miscellanous things to core work. He provided me a chance to work in
CRIM for the summer 96. [always got more than what I expected and wanted whenever I
spoke with him. [can’t thank him enough.

I am also thankful to all the members of the speech lab for their help and cooperation. I
have to explicitly express my gratitude to Charles Snow and Matteo Contolini for their help.
Especially, Charles for reading my thesis and providing miscellaneous invaluable advice.

As a graduate student in school of computer science at McGill University, [have been
very happy with our great secretaries in our department.

[am grateful to my friends in CS, Feng Li, Yi-Jen Huang, Bin Cao, Owen, and Winnie

for providing many happy distractions and constant encouragement. Emily read my thesis

iii

ACKNOWLEDGEMENTS
and corrected and provided her advice. Pung Chitra Hay wrote French-version abstract of
this thesis for me. Especially, I enjoyed a lot with Imran Ahmed although we don’t go for
movie yet.

My beloved wife Jeeyoun’s great patience, encouragement, love and guidance were
essential for my joining and smooth-sailing through my life. My daughter Judy; she gave
me a lot of happiness.

To my great parents and mother-in-law, My thanks and my love go to you most of all.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS

Abstract e e e e e e e e e e e e e e e e i
Abstract L L e e e e e e e e e e e e e e i
Résumeé e e e e e e e e e e i
Résumé 0 e e e e e e e e e e e e e e e i
Acknowledgements L e e e e e iii
Acknowledgements e e iii
Listof Figures e e viii
LIST OF FIGURES o e e e e e e e e e e e e e viii
List of Tables e e e e . ix
LIST OF TABLES e e e e e e e e e e e e e ix
CHAPTER 1. TIntroduction 0 i ittt it 1
1.1. Backgrounds and Problem Statement 1
1.2. Application of Classification Trees in Speech Recognition System 3
1.3. Overviewof The Thesis i i i i i i it i et i 5

CHAPTER 2. Machine Learning with Classification Trees

2.1. Basic Classification Tree Concepts
2.2. Research on Classification Trees 11
2.3. Methods for Classification Tree Construction 13
2.3.1. Preliminaries e e e e e e e 14
23.1.1. Definitions. e e e e 14

TABLE OF CONTENTS

2.3.1.2. Elements of Classification Tree Construction 16
2.3.1.3. Limitationsof DataSets 17

2.3.2. SplittingRules e, 19
2.3.2.1. Rules based on Informationor Entropy 19
2.3.2.2. Rules based on distance measures 21
2.3.2.3. Rules based on dependence measures 23

233. StoppingRules oo oo 23
234. PrumingRules 24
2.34.1. Cost Complexity Pruning 24
2.34.2. Reduced Error Pruning 26
2.34.3. PessimisticPruning 27

2.3.5. Class-SelectionRules 29
2.3.6. Comparisonof Methods 29
2.3.6.1. Comparison of SplittingRules. 29
2.3.6.2. Comparison of Pruning Rules 30
2.3.6.3. Correlation of Splitting and Pruning Rules 31
CHAPTER 3. Machine Learning of Semantic Interpretation rules 32
3.1. Introduction e e 32
3.2 The CHANEL System 0 ittt 34
3.2.1. System Overview e e e e 34
3.2.2. Descriptionof Components 36
3.22.1. The Local Chart Parser 36
3.2.2.2. The SCT-Based Robust Matcher 37

3.3. The CHRONUS System 38
3.3.1. System Overview L e e e 38
3.3.2. Description of Components, 41
3.3.2.1. Conceptual Decoding 41
3322 LexicalParser. 43
3.3.2.3. Template Generator and SQL Translator. 44

34. The HUM System i i et e e e e e e 45
3.4.1. System Overview e e e 45
3.4.2. Descriptionof Components 0. 46
3.4.2.1. Semantic Language Model 47

TABLE OF CONTENTS

3422, LexicalModel 47

3.4.2.3. Training and Understanding Components 48
CHAPTER 4. Speech Understanding System (SUS) at McGill 50
4.1. System Overview e e e e e e 50
4.2. The Local Parser Module 52
4.3. Building Classification Trees 57
4.4. The CT-based Robust Matcher Module. 59
4.4.1. Displayed Attributes Module 59
44.2. Constraints Module 62
4.4.2.1. Global Constraints 62

4.4.22. LocalConstraints 64

4.5. The Semantic Representation 66
4.6. Speech Understanding Systems at McGilland CRIM 67
CHAPTER 5. Resultsand Discussion 69
5.1. Experimentsand Analysis 69
5.1.1. Benchmark Results and Analysis 70
5.1.1.1. CTs for Displayed Attributes 70

5.1.1.2. CTs for Constraints, 72

52. Improvements e e e e e e e e e e e e e e 74
53. Conclusion e e e 77
Bibliography e e 79
REFERENCES e e e e e e e 79

vii

LIST OF FIGURES

LIST OF FIGURES

2.1
2.2

3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4

Example of Classification Tree. 8
Geometric View of Classification Tree 9
Overall structure of the CHANEL System [17] 34
The SCT-Based Robust Matcher [17] 37
Overall structure of the CHRONUS System [36] 38
Overall structure of HUM System [41] 45
Statistical Model of HUM System [41] 47
Overall structure of Speech Understanding System in McGill 51
Overall structure of Local Parser 54
Overall structure of Robust Matcher 60
CT for the local constraint destination of airport neme 65

viii

LIST OF TABLES

LIST OF TABLES

2.3.2.1
2.3.2.2

3.3.3.1
3.3.3.2
3.3.3.3

4.2.4.1
4.2.4.2
4.4.4.1
4.4.4.2
4.4.4.3
4.5.4.1
4.5.4.2

5.1.5.1
5.1.5.2
5.1.5.3
5.1.54
5.1.5.5

A small example of correct Data Set 17
A small example of an erroneous Data Set 17
Example of a Lattice Structure [22] 39
Example of a Conceptual Segmentation {22] 40
Example ofa Template [22] 40
Example of Intermediate Form 53
Exampleof Parsed Form 55

Parsed Form of Some Training Data for flight.departure_time Attribute 6l

Example of Training Data for ‘city:origin’ constraint 64
Example of Training Data for ‘city:destination’ constraint 64
Example 1 of A Semantic Representation 66
Example 2 of A Semantic Representation 67
ATIS2 Class A NL Test Result 1 on CTs of Displayed Attributes .. 70
ATIS2 Class A NL Test Result 2 on CTs of Displayed Attributes . . 72
ATIS2 Class A NL Test Result 1 on Constraint CTs 73
ATIS2 Class A NL Test Result 2 on Constraint CTs 73
Error Analysis for the Constraint CTs 74

CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

1.1. Backgrounds and Problem Statement

A definition of ‘Understanding’ is stated in [37].

To understand something is to transform it fromm one representation into

another, where . ..
In the Human Understanding System(HUS), the most important factors might be one’s
intellectual ability, psychological status, background, etc. However, in the Machine Un-
derstanding System(MUS), the factors listed above are unnecessary because the domain
in which the MUS works is predetermined. An example in [37] clearly demonstrate this
point. Consider a sentence “I need to go to New York as soon as possible”. A MUS dealing
with the airline information domain would have “understood” if it finds the first available
flight to New York. A person knowing that the speaker’s family live in New York would
have “understood” that there may be a problem in the speaker’s family. The purpose
of speech/natural language understanding is to extract semantics from written or spoken

sentences. By applying the definition of ‘Understanding’ stated above, it translates to

CHAPTER 1. INTRODUCTION
transforming a sequence of words into a semantic representative form. That is, the ability
of a MUS to understand is limited to a particular domain, and the key point in a MUS is
how to make an understanding representation form.

The speech understanding system designed in this report works under the Air Travel In-
formation System(ATIS) domain. The development of Speech Understanding Systems(SUS)
under ATIS is currently driven by two main streams : the corpus based and the linguistic.
In the corpus based approach, a system is statistically modeled and the parameters of a
statistical model are learned from an annotated corpus. In the linguistic based approach,
a system consists of hand-coded rules reflecting linguistic/syntactic/semantic knowledge
of its domain. Hybrid approach combines the two approaches. A hybrid system takes a
stochastic model and hand-coded rules as understanding tools. In [22] the two principles
of hybrid approach are discussed. The benefits of the hybrid approach are :

(i) Learn everything that can be learned from available data.

(i) Rather than attempting to learn complex and rare linguistic cases, use simple ways
to incorporate established linguistic knowledge into the system.

There are some hybrid speech understanding systems developed under the DARPA
ATIS task. For stochastic tools, semantic classification tree for CHANEL system [19, 18,
17, 25] is devised. A Hidden Markov Model is based for the stochastic models in CHRONUS
system {36, 35, 22] and HUM system [41, 40].

The focus of this work is to train classification trees, that is to learn semantic rules
from annotated data, and to set up a set of Classification Trees{(CTs) as a robust matcher

of SUS. In the linguistic approach, due to involvement of many experts extracting their

CHAPTER 1. INTRODUCTION
own semantic rules, it requires a lot of time and effort in development of an SUS. On the
other hand, this automatic learning of CTs dramatically reduces waste of time and effort.
It should be noted that in SUS, the rules learned by classification trees are more robust to

errors of a spoken sentence containing ungrammatic and non-linguistic occurrences.

1.2. Application of Classification Trees in Speech Recog-

nition System

This thesis will present how classification trees can be used in a speech understanding
system as a way of learning semantic rules, based on annotated corpus.

However, in speech recognition processing, classification trees have already been used
successfully. The list of the applications of classification trees in its related domain is

presented below :

(i) Codebook! Design
Vector quantization is a technique that maps a stream of high rate digital data into a
stream of relatively lower rate digital data (7], which is applied to the input of Hidden
Markov Models(HMMs) in speech recognition system. In the design of a codebook,
two factors are crucial : time to search codebook and data distortion. Full search on
a codebook can reduce data loss whereas it can have increased search-time. Thus,
the aim in codebook design is how to have well-designed codebook with the trade-off
between two factors. As one way of codebook design, classification trees are used in

designing a codebook to speed up the coding of observation vector. Supposed that

I Basically this is a set of vectors. In vector quantization, a vector in the set is mapped a data from K-space.

3

(ii)

(iit)

CHAPTER 1. INTRODUCTION
there are M vectors in the codebook, it is obvious that the time finding a vector will
require O(log, M) time, if the codebook is designed with trees. Various methods in
obtaining codebooks using classification tree are found in [13, 15, 38, 46].
Language Modeling
The purpose of speech recognition system is to find w maximizing P(w)P(ylw),
where w is a sequence of words and y is an acoustic observation vector. The bigram
f(w;i|lw;—y) or the trigram f(w;|w;—2,w;-1) language model can be used to estimate
P(w). In [20] researchers at IBM proposed CT-based system with the trigram
model, which yields better result than either one of them. In a recent paper [27],
a language model integrating an acoustics model, using semantic classification trees
is described.

Acoustic Modeling

In an acoustic model, due to the unfeasibility of a word modeling for large vocabulary
speech recognition, a sub-word modeling is used. To construct a sub-word modeling,
several trials based on classification trees are made. In [8] the algorithm of triphones
clustering, based on classification trees is proposed. Phoneme modeling based on CT
was originally proposed in [24]. In [24], classification trees are employed to represent
a phoneme as a function of the phone-context. In [34], Kuhn et al. extend the work
of [24] in four ways by (a) taking the Poisson criterion to find the M best questions,
(b) applying expansion-pruning instead of growing algorithm, (c) adding a “DON’T
KNOW?" subtree of each question, and (d) permitting an arbitrary feature schema

in question generation.

CHAPTER 1. INTRODUCTION

1.3. Overview of The Thesis

This thesis focuses on the use of classification trees in speech understanding system.
We will examine how they can be trained and applied for our purpase of ‘understanding a

sentence’.

e Chapter 2. Machine Learning with Classification Trees
Presents the theoretical background of classification trees and algorithms for con-
structing classification trees. Reviews splitting/stopping/pruning methods used in
the construction of a classification tree, and compares splitting/pruning methods.

e Chapter 3. Machine Learning on Semantic Interpretation Rules
Describes the SUSs developed under ATIS domain. Most of the chapter is devoted
to describe the corpus-based SUSs.

e Chapter 4. Speech Understanding System at McGill
Describes the overall structure of SUS developed at McGill for this thesis, and the
structure and function of each module of the system. Descriptions of structures of
the trained classification trees and the semantic representation used in this system
are given.

e Chapter 5. Result and Improvements
Provides various analysis for the output of the SUS at McGill with ATIS2 test data.
Suggests further work to improve capacity of the system.

e Appendix

Provides list of output of this SUS with ATIS2 test data.

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

CHAPTER 2

Machine Learning with Classification Trees

2.1. Basic Classification Tree Concepts

A tree is commonly defined as a connected, acyclic, undirected graph [2]. For the
purposes of the work described in this thesis, a tree is defined recursively as a finite set of

one or more nodes such that:

(i) there is a specially designated node called the root;
(ii) the remaining nodes are partitioned into n disjoint sets T, ... ,T;, where each T; is
called the subtree of theroot 1 <i <n

(iii) each subtree can recursively be defined as a root and a partition into disjoint sets

In order to properly introduce classification trees, which will be discussed later, it is
important to consider binary trees. A binary tree [9] is recursively defined as a finite set of

nodes, each of which either :

¢ is empty or

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

o consists of a root and two disjoint binary trees called the left subtree and the right

subtree.

Trees are frequently used in different applications, in such roles as set-representations,
decision-trees, game-trees, etc. As a set-representation, each tree represents a set. Set
functions like union’ or ’find’ are simply implemented. For example, the union of two trees
is accomplished by making one of the trees a subtree of the other. There are interesting
applications of trees in programming games including tic-tac-toe, go, chess, etc. In these
examples, the tree contains all of the possible sequences of board configurations and the
root node represents the initial board setup. Another application of trees is in decision
making. In this application, each node of a tree represents a decision and a tree itself serves
as a set of decisions which lead to an answer. Classification trees fall into this category of
application.

A simple instance of a typical classification tree is shown in figure 2.1. They are
binary trees in which all nodes are divided into two types represented as circular ones and
square ones. We call the circular nodes “non-terminal” or “decision” ones and the square
nodes “terminal” or “class” ones. Each non-terminal node is associated with a question
(condition) and each terminal node is associated with a class labeling. In figure 2.1, there
are four questions (z < @,y < ¢,y < d,z < b) inside non-terminal nodes and three classes
(1,2,3) inside terminal nodes. To classify a data item, the tree is traversed, starting from
the root, following the left branch if the condition on the current node is true and following

the right branch if not. By performing this simple procedure recursively, a terminal node

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

Root Node
YES NO
YES NO YE/ NO
2 | . 2
v V\O
*
1 3

Ficure 2.1. Example of Classification Tree.

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

high value
A B
2
d
l C D
y-axis
| 3
c
E
2
low value a b high value
X-axis

FIGURE 2.2. Geometric View of Classification Tree

is eventually reached, at which point the item based on which the questions were answered
is ascribed to the class whose label is displayed in the terminal node.

Suppose we have a feature vector! (r,y), where £ > b > a and y < d in figure 2.2,
which has to be classified. Following the classification steps of the tree, we find that the
feature vector is classified as class 3. The path we have followed is marked by *s.

Classification trees may also be considered from a geometric viewpoint. In figure 2.2, a
2-dimensional picture corresponding to the classification tree of figure 2.1 is shown. Within

the conditions displayed in the non-terminal nodes in figure 2.1, z and y are variables and

LA feature vector indicates a measurement vector; the terminology “feature” is commonly used in pattern

recognition application.

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
a,b,c, and d are constants. Since there are two variables, we can consider the measurement
space to be 2-dimensional with axes z and y two axes, values of constants a, b, ¢, d are real-
valued points in the Cartesian plane that is partitioned into area A, B,C, D, E as indicated
in figure 2.1. From this viewpoint, each question given by a non-terminal node in the tree
serves as a constraint-function on the measurement space. So rather than choosing left or
right branches based on the conditions of tree-nodes, we examine the space in the graph
depending on the outcome of the function. For example, consider a measurement vector
X = (z,y) = (e, f), where x and y are variables and e and f are constants satisfying e < a
and f < ¢. The only area satisfying the two conditions is E, so we classify the vector as
class 2. Thus generally speaking, a function representing a question in a node recursively
separates the measurement space considered into two parts until we get to a segment of
space where we can’t split any more.

In order to arrive to a precise formulation, a notation used in this thesis is now intro-
duced. Let measurement space x be defined as the set of all measurement vectors in the
space of dimension q. C is the set of classes such that C = {1,...,J}. A function d(z) on
any vector x in the measurement space is defined such that any value of a function d(z)
is in the class set C. Aj is a subset of the measurement space satisfying d(z) = & for any
vector z in the measurement space. In addition, for any two different sets, A; and Aj, the
intersection of A; and A; is null; that is, A; N A4; = 0.

The role of a classification tree is to classify an input vector z of a measuretnent space
by leading it to Ag, if d(z) = k, and assigning class £ to the vector. The classification

tree represents a partition of a measurement space with a class labeling for each partition.

10

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
Class labeling is performed as described previously, by following tree branches depending
on node conditions.

The classification technique using trees has been widely and successfully applied. Later,
we will examine in detail some specific applications. The tree representation has several
advantages: The tree structure is easy to understand because of the simplicity of its concept.
It is also compact enough to be stored on a file. In terms of speed, classification is relatively

swift having a computational time complexity proportional to the height of the tree.

2.2. Research on Classification Trees

The construction of a classification tree from training data sets has been the object of
research in pattern recognition, decision theory, and statistics.
A taxonomy of machine learning involving classification trees has been proposed in [14]

along the following lines.

e Classification on the basis of the underlying learning strategies used

e Classification on the basis of the representation of knowledge or skill acquired by
the learner

e Classification in terms of the application domain of the performance system for

which knowledge is acquired.

With the advent of knowledge-based expert systems, the methods mentioned above
have been also used for knowledge representation. In expert systems, knowledge is collected
by an interaction between a knowledge engineer and a domain specialist. There may exist

limitations to this method of knowledge-collection in terms of knowledge completeness. In
11

CHAPTEK 2. MACHINE LEAKNING WITH CLASSIFICATION TREES
other words, is it possible for a domain specialist to express all that he/she knows about
the area? For example, when a computer scientist is asked a question such as "Could you
describe everything that you know about Data Structures?”, how completely could he/she
cover the subject? Could the scientist even be certain of covering the whole of his/her
knowledge? This is clearly a problem.

Concerning models and methods for knowledge representation and for knowledge ac-
quisition has been a major issue. Many different approaches have been suggested in the
form of structures [10], discrimination nets (8], production rules [4], semantic network (3]
cte,

For this purpose, Quinlan [31] proposed a new approach to knowledge representation
and acquisition consisting in using decision trees, trained from examples, for knowledge rep-
resentation and acquisition. The decision tree technique has the property of completeness
in that it classifies every element of a domain. Nevertheless, it might have an inherent error
rate in classifying this whereas other techniques may be more robust, but limited coverage
due to incomplete knowledge collected. Quinlan’s method of deriving a tree from data
to represent domain knowledge and dividing the domain into several classes was founded
on Hunt's previous work [10]. Breiman et al. [21] also provide an excellent theoretical
foundation for classification trees.

Classification trees have been used in diverse applications including speech recognition,
which we’ll explore in detail in the next chapter, pattern recognition, medical diagnosis and

prognosis, and remote sensing. In [28], application areas are discussed in more detail. Also,

12

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
various methods of designing classification trees to adjust to various problems have been

developed. These method will be reviewed in later sections of this chapter.

2.3. Methods for Classification Tree Construction

In [42], heuristic methods of constructing classification tree are categorized :

(i) Bottom-Up approaches?
(ii) Top-Down approaches®
(iii) Hybrid approaches [16]

(iv) Growing-Pruning

The Growing-Pruning approach is based on Top-Down approaches and it is simply an
extension of Top-Down approaches in that a pruning step is introduced to prevent over-
trained! or under-trained® trees. Our description will concentrate on Top-Down approaches
and the Growing-Pruning approach, with more focus on the latter.

The power of classification trees trained on data sets lies in the possibility to classify
data which are not used in the training process. The maximum predictive power can be
ubtained when a tree is obtained having the right size. Predictive power decreases with

over-trained or under-trained trees.

2In these approaches a classification tree is constructed from bottom to top. For example, using some distance

measure, the two nodes with smaller distance are merged to form a root node of the two nodes.
3These approaches keep expanding down the tree from the root using a splitting rule, and then the expansion

stops when a stopping rule is reached.
1An over-trained tree is a tree which is pruned late and/or is too big due to fitting the data on which it was

trained too well.

5A under-trained tree is a tree which is pruned earlier and/or is too small.

13

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

In an effort to obtain right-sized trees, top-down approaches expand down the tree

starting from the root node and keep splitting until some stopping rules are satisfied. In

the growing-pruning approach, a tree is trained while a combination of splitting, stopping
and pruning rules are applied.

We will discuss some of the methods devised and tested in constructing classification

trees to determine the best method for obtaining right-sized trees.

2.3.1. Preliminaries

Since it has been proved in [11] that the construction of optimal classification trees is an
NP-complete problem, the focus in construction of classification trees has naturally shifted
to the problem of how to obtain near-optimal solutions. Various heuristic methods for the
construction of classification trees have been proposed at various levels. Some effective

heuristic strategies are discussed in the following subsections.

2.3.1.1. Definitions

Some terminology for describing classification tree construction (see {21] for more de-

tails) is now introduced.

o Let (X,Y) be jointly distributed random variables with X in R? and Y in the
set S = {l,...,J}. X is a measurement, a feature or a pattern vector and Y is
associated with a class label in the set S.

¢ A measurement space x is defined as containing all possible measurements, feature

or pattern vectors.

14

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

¢ A learning sample is denoted by (:

C = {(Xlajl)':"' :(Xny.'in)}

where X, € x and j, € {1,... ,J},n=1,... N
e An attribute is an element of a feature vector.

¢ A classifier, a classification rule or a decision rule is a function d(X) mapping x in

RY into one of the numbers 1,...,J. Also, a classifier is a partition of x into .J
disjoint subsets , Ay,... ,Ay, x = U; A; such that for every x in A; the predicted
class is j.

e The true misclassification rate, R*(d), is the proportion of vectors misclassified by

classification rules, d.

R(d) = P(d(X) #Y)

e Let R(d) denote the estimated misclassification rate.

R(d) = M/N

where M is the number of samples in L such that d(X,) # jn (see definition 3), and
N is the total number of samples in L.

e When the training sample is used to estimate R*(d), R(d) is called the re-substitution
estimate of R*(d) and when the test sample is used to estimate R*(d), R(d) is called

a test sample estimate of R*(d).
15

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
e An impurity function @ is a function defined on the set of all J-tuples of numbers
(p1,... ,pJy) satisfying p; 2 0 (5 = 1,...,J) and 3°;p; = 1 with the following
properties :
— @ is a maximum only at the point (Jl, ceey 31-)
— & achieves its minimum only at the points (1,0,...,0), (0,1,0,...,0), ...,
(0,0,...,0,1)
— & is a symmetric function of (p1,...,ps)

e Given an impurity function ®, we define the impurity measure #(t} of any node ¢ as

i(t) = ®(p(1/t),p(2/t), ... ,p(J/t)).

A branch T, of tree T with root node ¢t in T consists of node ¢ and all the descendants

oftinT.

Pruning a branch T; from a tree T entails deleting from T all descendants of t. We

denote the pruned tree as T — T;.

A branch T, of T with root node ¢ consists of the node ¢ and all descendants of ¢ in

T.

2.3.1.2. Elements of Classification Tree Conslruction

In [21], Breiman et al. pointed out that three elements are required for constructing a

classification tree based on growing-pruning algorithm:

(i) A set Q of questions
(ii) A rule for selecting the best split at any node

(iii) A criterion for choosing the right-sized tree
16

CHAPL'ER 2.

MACHINE LEARNING WITH CLASSIFICATION TREES

ATTRIBUTE CLASS

Outlook | Temperature | Humidity | Windy
sunny hot high false N
sunny hot high true N
overcast | hot high false P
rain mild normal false P
rain cool normal false p

TABLE 2.3.2.1. A small example of correct Data Set

ATTRIBUTE CLASS
Outlook | Temperature | Humidity | Windy
overcast | hot high false N
sunny | hot high true N
overcast | hot high false P
rain mild normal false P
rain mild normal false P

TABLE 2.3.2.2. A small cxample of an erroneous Data Set

The set Q of questions depends entirely on the specific application. The second and

third elements will be examined in sections 2.4.3 and 2.4.4 respectively.

2.3.1.3. Limitations of Data Sets

In the construction of a classification tree, it is assumed that the training set is rep-

resentative of the measurement vectors and the corresponding class labels are available.
17

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
In reality, however, it might not be possible to obtain a complete training data set that
covers the entire measurement space well. Thus, we may be unable to avoid encountering
the situation in which our classification tree has been trained on contaminated data. Based
on this reality, then, the process of preparing the data might be as much as the choice
of technique because, even if we have adopted a state-of-the-art technique, it will still be
impossible to obtain a good tree due to the bias of the data set.

We give a simple example in tables 2.3.2.1 & 2.3.2.2 showing how easily data can be
corrupted and what serious damage could be caused by a small amount of corruption.
Comparing the first and third rows in our example tables, we notice a few facts. The
value of the outlook attribute has been corrupted to ‘overcast’ from ‘sunny’. As a result
of changing one value, the first and third rows have the same data but with different class
labels, which leads to a contradiction. This simple example shows that even one corrupted
value of a feature vector can render the vector itself useless, as well as any other vector
which uses the same values but have different class labels. This corruption might very well
lead to a different and more complex training tree to fit the corrupted data. Thus, to reduce
the unwanted effects of biased data in constructing trees, we may need to use techniques of
data collection with verification/correction.

Duta collection is a process for obtaining near-optimal data sets (optimal in the sense
that it tries to cover the entire measure space uniformly.) Data verification/correction is a

process that attempts to correct for situations in which contamination of data is unavoid-

able.

18

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
To cope with erroneous training sets the tree design algorithm must have the following

two properties [31] :

(i) The algorithm must be able to work with partial data sets
(if) The algorithm must be able to decide that testing further attributes will not improve

the predictive accuracy of the classification tree

To satisfy the first requirement, Quinlan suggests having more classes instead of only
one class on the terminal node or a probabilistic class which is ratio class rather than fixed
class. This topic will be treated in detail in section 2.4.4. To satisfy the second property, the
use of the chi-square test for stochastic independence has been proposed. Such a method
has been found to be effective in preventing the generation of overly complex trees that

attempt to incorporate erroneous data, without affecting performance for error-free data.

2.3.2. Splitting Rules

When expanding a tree, we must assign a question to each node, which acts as a
classifier. Among the set of candidate questions, the most suitable question is selected
depending on the splitting rule adopted. Ben-Bassat [1] divides feature-evaluation rules

into the following three categories:

(i) Rules based on Information or Entropy
(ii) Rules based on Distance Measures

(iii) Rules based on Dependence Measures
2.3.2.1. Rules based on Information or Entropy

A. Information Gain
19

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

The method of Information Gain is based on Shannon's entropy, defined as H =

— ¥ pilog pi where p; is an a priori probability of class 7. The basic idea of the information

heuristic implemented in the ACLS program (44, 45] and the ID3 program (30, 29] is to
select an attribute whose information gain is maximal for a node.

The algorithm is as follows. Suppose a training data set has n objects of class N and y

objects of class Y. The information derivable from relative frequencies of class membership,

[(y,n), is expressed as:

Y y . n
I(y,n) = (y+n)(log—y+n)(y———+n)(logy+n

) (2.3.2.1)
Suppose an attribute A has v possible values (44, ... , Ay) and y; and n; are the numbers
of objects of class Y and N respectively, having the ith value A; of A. The expected

information requirement after testing attribute A and weighting each node by relative

frequencies of class membership based on the attribute £(A) can be written as :

v

. + .)

E(A) =3 y;—Jr—n,f)l (yi) (2.3.2.2)
=1

Finally, the information gained by a node on attribute A is :

gain(A) = I(y,n) — E(A) (2.3.2.3)

and the attribute with the highest information gain will be selected for the node under
consideration [33].

B. Information Guain Ratio
20

CHAPTER 2. MACHINE LEARNING WILH CLASSIFICATION TREES

The experimental work of Kononenko et al. [12] shows that information gain favors
attributes with many values. To compensate for this fact, Quinlan [31] suggests the infor-
mation gain ratio method for selecting an attribute. The information of an attribute value

can be expressed as :

v . . . -
G(A) = -5 Pt it (2.3.2.4)
- Pptn p+tmn

For the choice of an attribute, the ratio gain(Attribute)/G(Attribute) is used and the

attribute whose ratio is the largest is selected for the node under consideration.

2.3.2.2. Rules based on distance measures

The criteria in this category measure separability, divergence or discrimination between
classes [28]. The most popular rule of this type is the Gini Index rule [21]. Also, Breiman et
al. suggested another method called the Twoing Criterion, which is useful for cases in which
there is a relatively large number of classes. In the Twoing Rule, however, the amount of
computational time is proportional to the number of classes, which is disadvantageous. As
in other distance-based measures, Bhattacharya [23], and Kolmogorov-Smirnoff distances
(39] are used.

A. Gint Criterion

The basic idea of the Gini Criterion is that, when considering splitting criteria at an
internal node, the node whose offspring nodes are the most "pure” is selected.

The Gini impurity function is as follows:
21

i(t) =Y p(i/t)p(j/t) (2.3.2.5)

i#]
where p(i/t) is the probability that the sample training set belongs to the class i, given
a node ¢.

The “goodness” of the split S is defined as

Ai(S,t) =1i(t) —i(t)PL — i(tr)Pr (2.3.2.6)

where Pr, and Pr are the proportion in which data falls on the left-child and right-child
of node 1, respectively.

Finally, choose a split s* which gives the largest decrease in impurity :

Ai(s*,t) = r?eagc(Ai(s, t)) (2.3.2.7)

B. Twoing Criterion
The Twoing Criterion method was proposed as a better way to deal with the multi-class

problem [21]. The Two Criterion function ©(s,t) is defined as :

o(s,t) = L2 3| (L) -p(L)|
i

The best split for any node ¢ and split s of ¢ into tp and £, is a split which maximizes

the Twoing function A(s,t).
22

CHAPITER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

2.3.2.3. Rules based on dependence measures

The measures in this category refer to the statistical dependence between two random

variables [28].

2.3.3. Stopping Rules

The stopping rule determines when to stop splitting nodes. Stopping rules are based on
two tree design methods: top-down tree design, in which a tree grows without pruning and
growing-pruning tree design, in which the growing and pruning processes alternate until
the final tree is obtained.

A threshold is set to limit the splitting rule. For example, suppose our splitting rule is

the Gini Criterion. The threshold 0 < 8 < 1 can be defined as :

max Ai(s,t) < B (2.3.2.8)
3€S

(acts as a degree of maximum impurity difference.

Also, as another simple way of stopping rule, a tree is split until cach terminal node
has fewer than N items(N is close to 1).

The threshold method does not, however, lead to a right-sized tree. Since the threshold
is applied equally to all nodes, some nodes of the tree obtained using this method are over-
trained and some nodes are under-trained. That is, since a terminal node could have a chiid
node which can get higher value of Ai, converting such a node to terminal node prevents

prospective child nodes from being considered. Thus, the tree fails to have high predictive
23

CHAFPTER 2. MACHINE LEA ATION THREES
power on a data set which is not used for the training process even though it can fit to the

training set well. Some experimental results using various thresholds are reported in [21].

2.3.4. Pruning Rules

As an alternative to stopping rules for top-down tree design, pruning rules were added
as a step in the tree training process. The stopping rule for the growing-pruning process
uses either the threshold method mentioned above with § = 0 or the stopping condition of
reaching a node that has fewer than N items where NV is close to 1. A pruning rule will be

applied to the over-trained tree to obtain an intermediate right-sized tree.

2.3.4.1. Cost Complezity Pruning

In {21], Breiman et al. implemented a pruning method in the CART (Classification
And Regression Tree) program. The proposed pruning method involves finding a node,
which is called the “weakest link” in the tree grown, and turning it into a terminal node.
Here is how to find the weakest link in a tree T.

For each node n of tree T, the re-substitution estimate of node n, R(n) is computed
(see definitions 5 and 6). Specifically, R(n) is the ratio of the number of misclassified data
items on a node n to the total number of sample data items. R(T), the re-substitution
estimate of tree T is defined as the sum of the R(n)s at all terminal nodes of tree 7' as

follows:

R(T) =)_ R(n) (2.3.2.9)
neT

where T is the set of terminal nodes of tree 7.
24

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATIUN THEES

The re-substitution estimate of subtree T, rooted at node n, R(T;,), is defined similarly

to R(T):

R(T,) = Y_ R(n) (2.3.2.10)
HETvu

Finally, we define a function g;(n), where n is an internal node of tree T, by :

R(n) — R(T»)

o1 (2.3.2.11)
N

gi(n) =

Then a node n having the minimum value of the function over all internal nodes of a

tree T is called the weakest link in tree T. That is, the weakest link can be represented by :

q(n) = gleiqr,xyz(n) (2.3.2.12)

The rationale of weakest link is follows. The complexity cost, «, is the cost of one extra

leaf in the tree. The total cost of a subtree rooted at node n is :

R(T,) +a | T, | (2.3.2.13)

The total cost of node n is, if the sub-tree rooted at node n is pruned :

R(n) + a (2.3.2.14)

The two previous equations are equal when :
25

CHAPLER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

R(T,) +a|T,|= R(n) +a (2.3.2.15)

This leads to :

o= M (2.3.2.16)
| Tw — 1]
Suppose we have a list of complexity costs a; < --- < a4 for a tree, where each

complexity cost a; of node 7 is such that it makes the cost of node 7 equivalent to the cost
of its subtree. By the definition of weakest link, the node having the smallest complexity
cost a; is chosen as weakest link. Suppose only node i has «; as complexity cost. Since o

is the smallest, in the internal nodes except node ¢,

R(T,) +a| Ty |[< R(n) + (2.3.2.17)

where n # ¢ and n is internal node of tree. In conclusion, if we take a smallest
complexity cost and apply it to all internal nodes to compare the cost of node and cost of
its subtree, then when the smallest complexity cost is unique, there exist only one internal

node of tree which satisfying the cost of node is less than the cost of its subtree.

2.3.4.2. Reduced Ervor Pruning

This method is rather straightforward and considers complexity cost and misclassifica-

tion rate as two crucial factors in deciding pruning. The reduced error pruning method uses
26

CHAFPTER Z. MACHINE LEARNID
a test set rather than a training set to obtain the misclassification rate during the pruning
process.

For every non-terminal (non-leaf) subtree S of T', the misclassified (error) rate over the
test set is examined using the same method as was used in the cost complexity method.
If a subtree rooted at node n is replaced by a node n, and the new tree either keeps the
same misclassification number or improves its misclassification rate, then the new tree is
taken for improvement of the misclassified rate or for smaller size of tree with the same
misclassification number. This procedure continues until no further improvement in the
size of the tree or in the misclassification rate has been achieved. As with cost complexity
pruning, the method generates a sequence of trees. In addition, the final tree is the smallest

subtree with the most accuracy of the original tree over the test set.

2.3.4.3. Pessimislic Pruning

As long as the training set is used to measure the misclassification ratio of a tree which
was trained with it, since the generated tree has been tailored to the training set, the error
ratio does not provide a reliable estimate when unseen cases are classified.

Consider a subtree T), rooted at node nn and define K as the number of data items falling
into node n and .J as the number of data items misclassified on the terminal nodes under T},.
For example, the ratio of misclassification for the subtree T}, is considered as iyti instead
of TJ\’ In [32], Quinlan suggests a more pessimistic view of error rates of misclassification.
Suggesting that the misclassified error rate for unseen cases is J—*',;LE Suppose E is the

number of data items misclassified from the training set. The pessimistic pruning method

prunes subtree T}, rooted at node n, if E + % is within the range of standard error of
27

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
J+ Ezﬂ When we compare the two misclassified ratios of a node n and a subtree rooted at
node n, and take into consideration the standard error, we find that there are more chances
to replace a subtree by a node. Since Quinlan’s method examines all non-leaf subtrees once
and doesn’t consider pruned subtrees, the pruning process is relatively fast.

Gelfand et al. [43] proposed a simple, cheap pruning method. As the method proposed
by Breiman et al. , first of all, R(n) is calculated for each node n of tree T. However, the
values obtained for R(n) on the same tree with two pruning methods are totally different.
The reason is that in CART’s method, R(n) is calculated with the same data set as used
when tree-growing is done whereas in Gelfand's pruning method, the different data set is

used when R(n) is calculated. The Gelfand et al. pruning algorithm is described as follows

1. For any node n of the tree, set R(n)
2. For each terminal node n of tree, set S(n) = R(n)
3. For each internal node n of tree,
a. set S(n) = S(left(n)) + S(right(n))
b. if R(n) < S(n) then
prune the subtree consisting of descendants of node n

set S(n) = R(n).

The value of S(n) on a node n is to represent total number of data items misclassified
by a subtree rooted at a node n. Thus, while scanning whole nodes of tree from bottom to

root, prune any subtree rooted at any node n when the ratio of misclassification based on

28

CHAPTER 2. MACHINE LEARNING WITH CLASSIFICATION TREES

a subtree rooted at node n is equal to or greater than the ratio of misclassification of node

.

2.3.5. Class-Selection Rules

Assigning a class to each terminal node seems generally to be quite easy. In most cases,
a majority rule is used to decide a class from several candidates. In other words, to select
a class for a terminal node, select the class having the most cases. In case of tie with two
cases, we can apply tie-breaking rule. The rule is to choose the class of the parent if it’s

one of the classes with the most items. Otherwise, break the tie arbitrarily.

2.3.6. Comparison of Methods

Because there are so many splitting/pruning rules and so many different applications
of them, there have been a large number of empirically comparative studies for determining
which method is the most effective in constructing 'good’ trees. We review here some of

these studies.

2.3.6.1. Comparison of Splitting Rules

So far, most studies have shown that there is little difference between the splitting
rules. In [21], Breiman et al. conjectured that obtaining a good tree is not dependent on
the choice of splitting rule; rather, that the stopping/pruning rules are more crucial in tree
construction. In [26], Mingers also concluded that the selection of a splitting rule is not
important to the quality of the tree; however, some studies have indicated that a specific
rule is superior to the others in certain applications. Fayyad [5] indicated that C-SEP

criterion does better than Gini criterion and information gain for some specific application.
29

HAPTER 2. MACHINE LEAKNING WITH CLASSIFICATION TREES
Kononenko et al. [12] pointed out that information gain tends to favor attributes with
a large number of possible values and tried to solve the problem by requiring that all
tests have only two outcomes. Quinlan [31] suggested information gain ratio as a remedy.
The information gain criterion selects the attribute that maximizes the ratio from among
attributes with an average or better information gain.

For more details about such comparisons, see [28] and [42].

2.3.6.2. Comparison of Pruning Rules

In [26] and [32], there are some comparisons of each pruning method. J. Mingers shows
some experimental results with 5 pruning methods (Error-Complexity Pruning; Critical
Value Pruning; Minimum-Error Pruning; Reduced-Error Pruning; Pessimistic Error Prun-
ing) which were applied to six distinct domains. These tests showed that Error-Complexity
Pruning and Reduced-Error Pruning were the most accurate, while Minimum-Error Prun-
ing and Pessimistic Pruning were the least accurate.

In [32], however, Quinlan arrives to a completely different conclusion. Experiment-
ing with four different pruning rules (cost-complexity pruning, reduced-error pruning, pes-
simistic pruning, production rule form) that were applied to six distinct domains which were
not the same as those in [26], results show that the performance of pessimistic pruning is
marginally better than cost-complexity pruning averaged over all domains.

As some empirical comparisons show, there is no single method that is superior to the

other methods over all domains.
30

CHAPITER 2. MACHINE LEARNING WITH CLASSIFICATION TREES
2.3.6.3. Correlation of Splitting and Pruning Rules

[n [26], Mingers attempts to find a relationship between splitting and pruning rules.
To accomplish this, he selected 4 different split methods: G-statistic, G-statistic with Mar-
shall's correction, x-square distribution, and gain-ratio; and five pruning rules: critical,
minimum-error, error-complexity, pessimistic pruning, and reduced-error. He obtained em-
pirical results on the rate of misclassification by applying trees trained by using 4 different
split methods associated with each pruning method to each of six domains. Finally, he as-

serted that there is no evidence that the splitting method has relation to pruning method.

31

CHAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES

CHAPTER 3

Machine Learning of Semantic Interpretation rules

3.1. Introduction

There are currently three main approaches for building the interpretation module for
speech understanding systems. They are characterized by the way in which interpretation
knowledge is obtained. In a machine learning approach, knowledge is acquired automatically
by computers and used for building statistical models. Parameters of statistical models are
learned from an annotated corpus. In the linguistically-based approach, knowledge is made
of hand-coded rules. A hybrid approach is a combination that overcomes some weak points
of each approach, for example, adding some rules to the statistical model in order to handle
events which seldom occur in a corpus.

Some of the most important Speech Understanding Systems(SUS) [17, 18, 22, 41,
25, 36, 35] developed and evaluated on the ATIS(Air Travel Information System) projects

are :

32

CHAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES

¢ The CHANEL System of CRIM(Centre de Recherche Informatique de Montréal),

which is a hybrid system with a charted bottom-up parser and a SCTs(Semantic
Classification Trees)-based robust matcher.

o The CHRONUS System of AT&T, which is another hybrid system consisting of a
stochastical conceptual model whose parameters are automatically trained, and a
component with manually written rules.

¢ The DELPHI System of BBN, which is made up of a chart-based unification parser
and a fallback module with extended grammatic/pragmatic rules.

e The HUM System of BBN, which is a hybrid system with a conceptual Hidden
Markov Models(HMM) and hand coded rules.

e The SRI(Stanford Research Institute) GEMINI System, which is a unification-based
parser of syntactic and semantic rules. The SRI ‘Template Matcher’ is a template-
based system with slots filled by a pattern-matching mechanism.

¢ The PHOENIX System of CMU(Carnegie Mellon University), which is a template-
based system like SRI's Template Matcher but with a slightly different scoring mech-
anism: to fill a slot, the grammar related to the slot must be satisfied.

e The TINA System of MIT (Massachusetts Institute of Technology), which consists
of a global syntactic parser and a robust matcher. TINA’s hand-coded rules are

part of a probabilistic context-free grammar.

CHANEL, CHRONUS, and HUM are corpus-based systems based on machine learn-

ing techniques, whereas the other systems are linguistically-based and entirely dependent

33

CHAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES

Transcript or N-Best Hypothesis
N Locally Parsed Form
from Recognizer

SHOW ME FLIGHTS TO DENVER hbcnfr
= LEAVING BOSTON EARLY IN THE

MORNING AND HOW MUCH THEY

COsT

show me flights to CIT leaving
CIT TIM and how much they cost

TIM =>=000 & <=8X),
CIT1=DDEN, CIT2=BBOS

Possible "NO ANSWER"

“NO ANSWER® <& KCT-Based
Robust Maicher
SQL Query Semantic Representation
SELECT DISTINCT flight.flight_id, DISPLAYED ATTRIBUTES =
fare.fare_id FROM ..., m— (nlghlﬂlghl_ld. farc.fnrc_id]
(rest of query is the constraints) QL Module CONSTRAINTS =
{ ftight.from_airport BBOS,
flight.ta_airport DDEN,
flight.departure_time >=000&<=800|

To Database

FIGURE 3.1. Overall structure of the CHANEL System [17]

on manually written rules [19]. Systems incorporating machine learning techniques are

discussed in detail below.

3.2. The CHANEL System

3.2.1. System Overview

CHANEL(CRIM Hybrid Analyzer for Natural Language) is a hybrid linguistic analyzer
for the ATIS domain. As shown in Fig. 3.1, the system is composed of two main modules:
the local parser and the SCT(Semantic Classification Tree)-based robust matcher ! for the
recognition of the semantic content conveyed by a sentence.

1pr.R. Kuhn used 'KCT(Keyword Classification Tree)’ in his Ph.D thesis [17]; however, the ‘SCT(Semantic

Classification Tree)’ is used here to follow his example in a recent paper [18].

34

CHAPTER 3. MAUHINE LEAKNING OF SEMANTIC INTERPRETATION RULES
Much like a conventional approach to understanding speech, the local bottom-up parser
preprocesses a string of words and labels semantic phrase components. The SCT-based ro-
bust matcher, which consists of a forest of SCTs, is the core of CHANEL. Each SCT in the
robust matching module is trained with methods described in Chapter 2. For more detail,
see also [18]. The advantages of using automatically constructed trees over hand-coded
rules are to enhance robustness in presence of non-linguistic phenomena, recognizer errors
or spontaneous speech phenomena like false starts, abrupt changes of subject, ungrammat-
icalities, etc.
An example of sentence processing through each module is shown inside of each box in
Fig. 3.1. In the locally-parsed form (the output of the Local Parser), city names(DENVER,
BOSTON) and a phrase(EARLY IN THE MORNING) representing a time are replaced
by word-categories such as CIT and TIM. Although some phrases of a sentence have been
replaced by word-categories, the true value of each category is stored and passed to the
next process. The semantic representation emerging from SCT-Based Robust-Matcher is
very similar to its SQL Query. Each element listed in DISPLAYED ATTRIBUTES secction
represents a table name and a column name of a database. The list of column names and
the corresponding values listed in the CONSTRAINTS section describes constraints applied

to corresponding columns in DISPLAYED ATTIRIBUTES.

35

CHAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES
3.2.2. Description of Components

3.2.2.1. The Local Chart Parser

The parser component is based on the lexical grammar formalism and some DCG rules

for defining categories having a linear structure.

A lexical grammar has two components: [25)

(i) A lexicon(word or word category) is linked to its linguistic knowledge represented
by a structure describing its syntactic and semantic characteristics.

(i1) A set of combining rules describes the general mechanism for combining structures.

The parsing algorithm is applied in the following three steps:

(i) For each word or sequence of words in a sentence, all possible interpretations are
considered by the predefined lexical grammars for a lexicon. For instance, the
phrase ‘before two in the afternoon’ is interpreted both as ‘before(A) number(2)
time(afternoon)’ and ‘before(A) number(2) pm(A)’. Since the predefined rules of
two lexical items, time and pm, are satisfied with ‘in the afternoon’ at the same
time, two possible translations are considered, usually, time(afternoon) and pm(A).

(ii) The next step is a bottom-up combination process using the pre-described combining
rules. Obviously, ‘before(A) number(2) pm(A}' is selected instead of ‘before(A}
number(2) time(afternoon)’ to have ‘before(1400)’ because the numbers following
‘before’ should be interpreted as a time. Thus, the interpretation of ‘number pm’ is

correct semantically.

36

show me TIM Rights from CIT 1o CIT
and how much they cost

TIM = 10:00, CIT1=BBOS, CiT2=DDEN

KCT-Based Robust Matcher

Choose Displayed Attributes
Tree | Tree 44 Tree 106
aircrafaircraft_code? fare.fare_id? count({booking_class)?
YES or NO YES or NO YES or NO

DISPLAYED ATTRIBUTES = | flight.flight_id, fare.fare_id)
Resalve Constraint Ambiguities

CIT Tree TIM Tree Other Trees
For each CIT:onigin.est.,oc stop? For each TIM:arrival aor departure? (Far ather constraints)
CITl=origin, CIT2 = dest, TIM = arr.time Other constrains

CONSTRAINTS = { flight.from_airport<-BBOS, flight.o_airport<-DOEN, flight.depart_time<-10:00 }

!

DISPLAYED ATTRIBUTES = { flight.flight_id, fare.fare_id)

CONSTRAINTS =
{Night.from_airport <- BBOS, flight.to_airpori<- DDEN,
flight.departure_time<- 10:00)

FIGURE 3.2. The SCT-Based Robust Matcher [17]

(iii) The last step is to find necessary semantic data in an entire sentence. For ‘flight_airl(421,
UA)’ as a result of second step, the semantic data(‘AIR=UA’ and ‘FNB=421") are

found.

3.2.2.2. The SCT-Beased Robust Matcher

Figure 3.2 shows the structure of the robust matcher in the CHANEL System. It
is composed of a large number of trees, each of which carries an appropriate semantic

representation.
37

CHAPITER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES

SPEECH SPEECH CONCEPTUAL TEMPLATE
RECOGNIZER DECODING GENERATION
TEMPLATE
WORD
TEXT LEXICAL LATTICE S
QL
—)
PARSER TRANSLATOR
T,F.NA
SQL QUERY
FILES COMPARATOR fe=—
FORMATTER database
ANSWER

FIGURE 3.3. Overall structure of the CHRONUS System {36]

The SCTs are divided into two groups : ‘displayed attributes’ and ‘local constraints’.
The functions of the two types of trees are slightly different. A tree in the ‘displayed
attributes’ group conveys semantic rules for a certain column of a database table. For
instance, if the result of a sentence on the ‘aircraft.aircraft.code’ tree turns out to be
‘YES’, the sentence is considered to have an expression of ‘aircraft code’.

A tree in the ‘local constraints’ group uses rules for a table column and its value. For
example, if the result of the CIT tree turns out to be ‘origin’, then the ‘city name’ phrase

is counted as the city name for ‘departure’.

3.3. The CHRONUS System

3.3.1. System Overview

38

CHAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES

0 1
1 2
2 3
3 4
4 5
5 6
6 7
6 8
6 8
8 9
9 10
9 11
11 12
12 13
13 14

I

WOULD
LIKE(S)

TO

GO(ES)

FROM

NEW

(< city > NNYC)
(< state > NY)
TO

SAN

(< city > SSFO)
(< day_name > SATURDAY)
MORNING(S)

g

14

15

16

17

18

18

19

19

20

20

20

21

21

22

15

16

17

18

20

23

20

23

21

22

23

22

23

23

PREFER(S)

TO

FL(Y|IES)

ON

[A](< aircraft-make > BOEING)
[A)(< aircraft > 74M)

(< aircraft.make > BOEING)
(< aircraft > 74M)

(< numbers > 7)

(< numbers > 740)

(< numbers > 747)

(< numbers > 40)

(< numbers > 47)

(< numbers > 7)

TasLE 3.3.3.1. Example of a Lattice Structure [22]

Fig. 3.3 shows the structure of the CHRONUS system. The Speech Recognizer produces

a string of word hypotheses based on acoustic signals. The top hypothetic word string

produced by the speech recognizer is not directly connected to the Conceptual Decoding.

The Lezical Paerser preprocesses numbers, acronyms, and compound words from the string

and generates a lattice structure containing interpretations of the string. For example, the

substring “B SEVEN FOUR SEVEN” could be interpreted as “B 747" or “B7 47" or “B74

39

P o d I’ PR g v« e s ww .w -

CHAFPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRELTALTIUN RULES

wish: 1 WOULD LIKE TO GO
originn. FROM NEW YORK
destin: TO SAN FRANCISCO
day: SATURDAY
time: MORNING
aircraft: I PREFER TO FLY ON A BOEING SEVEN FORTY SEVEN

TABLE 3.3.3.2. Example of a Conceptual Segmentation {22

AIRLINE: UA
ORIGIN_CITY: NNYC

DESTINATION_CITY: SSFO

WEEKDAY: SATURDAY
ORIGIN.TIME: 0<1200
AIRCRAFT: 74M
SUBJECT: FLIGHT

TaBLE 3.3.3.3. Example of a Template [22]

7", etc by the Lezical Parser [36]. Table 3.3.3.1 shows the lattice structure for the following
sentence:
I WOULD LIKE TO GO FROM NEW YORK TO SAN FRANCISCO SATURDAY MORNING

PREFER TO FLY ON A BOEING SEVEN FORTY SEVEN

40

CHAFTER 3. B N ARINIIY AN INTORPR ATION RU
The Conceptual Decoding produces a semantic representation, called a conceptual seg-
mentation, of the input strings using the Viterbi algorithm. Table 3.3.3.2 shows an example
of conceptual segmentation for the lattice in table 3.3.3.1.
The Template Generation transforms a conceptual segmentation form into an SQL-like
form. Table 3.3.3.3 is the template for the conceptual segmentation of table 3.3.3.2.
The SQL Translator generates an SQL query and extracts relevant information from

Oracle database. Also, the comparator module compares an result of the system with a

reference answer provided by a training set.
3.3.2. Description of Components

3.3.2.1. Conceptual Decoding

This module plays the main role in extracting semantic units from a sequence of words.
The task is accomplished by giving a concept label to each phrase of a sentence using
statistical techniques, which we will describe next.

The ideal goal of this module is to find the sequence of words W and the concepts C

which will maximize the conditional probability of W and C given the acoustic signal A:

max P(W, C|4) (3.3.3.1)

The right-hand side of Equation 3.3.3.1 can be rewritten using the Bayes rule as:

max P(W, C|4) = max AW OPIWIC)P(C)

WxC WxC P(A) (3.3.32)

41

' HAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRELALIUN RULES
Based on the reasonable assumption that the acoustic model of a word is independent

of the concept of a word, Equation 3.3.3.2 is equivalent to :

P(AW)P(W|C)P(C)
P(A)

Imax, P(W,C|A) = max (3.3.3.3)

Obviously, due to the fixed value of P(4), Equation 3.3.3.3 can be rewritten as :

max P(W,C|4) = max P(A|W)P(W|C)P(C) (3.3.3.4)

[n the CHRONUS System, P(A|W) is implemented with HMMs(Hidden Markov Model)

of phonetic sub-word units. For the remaining terms,

M M
P(WIC)P(C) = [] Plwilwi-1...wi, C)P(wr|C) [] Pleileimi-..c) Pler)

=2 1=2
(3.3.3.5)
For approximation of Equation 3.3.3.5, AT&T assumes that :
Plwi|winy...wy, C) = P(w|wi—(...w)—n, &) (3.3.3.6)
and
P(cilci-y...c1) = P(cilci-1---C1em)- (3.3.3.7)

[n addition, a bigram language model is used to approximate Equations 3.3.3.6 and

3.3.3.7. Finally, Equation 3.3.3.4 can be rewritten as :
42

CHAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES

M M
Imax P(W,C|A) = vt}/l%i:rIzP(wdwi_l,cz) . gP(qlq_l). (3.3.3.8)
The implementation is made with HMMs whose states represent concept relations and
whose observation probabilities lie in the bigram form of words. For the training HMM,
a corpus of training sentences are hand-coded. The parameters of HMM are learned from

the corpus.

3.3.2.2. Lezical Parser

The Lezical Parser preprocesses the hypotheses produced by the Speech Recognizer,
and transforms them into a lattice structure. This module applies some morphologi-
cal/syntactic/semantic rules on the top hypotheses and reorganizes the lattice into a list
of word classes, each of which is a base form for possible morphological/syntactic/semantic

variants of a word. There are rules to transform each word as a form of word class [35):

(i) Articles are generally associated with the word that follows (e.g. ‘THE FLIGHT' is
transformed into ‘{THE]FLIGHT, ctc.).
(ii) Words with morphological variants are grouped together (e.g. ‘GO’, ‘GOES’, ‘GO-
ING’ are represented by a super-word ‘GO(ES)(ING)’, etc.).
(iii) Some compound phrases are converted into hyphenated phrases (e.g. ONE WAY
becomes ONE-WAY, etc.).
(iv) Acronyms and numbers are dealt with by regular grammars (e.g. TWA, USAIR,

etc.).
43

CHAPITER 3. MACHINE LEARNING Of SEMANTIC INTERPRETATION RULES

(v) semantically meaningful words are grouped together, like city names. (e.g. SAN
FRANCISCO, DALLAS FORT WORTH, etc.).

(vi) For a given concept, words can be grouped together according to their uses in
the phrases. For example, for the concept ORIGIN the words DEPART, LEAVE,
ARRIVE can be considered to have the same concept in the circumstances of the

following sentences:

(a) THE FLIGHT THAT DEPART(S) FROM DALLAS
(b) THE FLIGHT THAT LEAVE(S) FROM DALLAS

(c) THE FLIGHT THAT ARRIVE(S) FROM DALLAS

As shown in Table 3.3.3.1, the lezical parser organizes multiple hypotheses into a lattice
structure. It defers the decision of choosing the most possible hypotheses until the next

step, conceptual decoding.

3.3.2.3. Template Generator and SQL Translator

The Template Generator consists of a sct of hand-coded rules. It simply translates
conceptual segmentations into pairs of key-words and values according to the rules. A pair
made up of a key-word and a value correspond to a pair made up of an attribute and an
entity in the database.

The SQL Translator is composed of a set of hand-coded rules like the Template Gen-
erator. It produces an SQL database-query to extract appropriate data reflecting template

information.
44

sentences

—_————

sentences

—_—

Training Program

Statistical Model

Understanding
Program

meaning expressions

-—

meaning expressions

AE———

FIGURE 3.4. Overall structure of HUM System [41]

3.4. The HUM System

3.4.1. System Overview

The overall structure of the HUM System is shown in Figure 3.4. A ‘Training Program’

is used to estimate the parameters of the statistical model of this system. The statistical

model trained by the ‘Training Program’ is used for extracting the meaning of expressions

in a sentence. The ‘Understanding Program’ finds the most likely meanings supposed by

a word sequence by using the statistical model. The Hidden Understanding Model, the

45

HAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES
statistical model of this system, was motivated, as the name implies, from HMM(Hidden
Markov Models) [41].

A representative tool, tree-structured meaning representations, was used to express
meaning. This tool is based on a tree structure in which each internal node is either an
individual concept or a component concept. A component concept is a sub-concept of its
parent node, which is an individual concept. Each terminal node is directly connected to a

word or a string of words.

3.4.2. Description of Components

The HUM System recognizes the semantics hidden in a sentence W as a meaning M

such that P(M|W) is maximized. By Bayes Rule,

P(W|M)P(M)
P(wW)

P(M|W) = (3.4.3.1)

Since P(W) is fixed, P(M|W) can be achieved by maximizing the product of P(W|M)

and P(M).

P(M|W) = P(W|M)P(M) (3.4.3.2)

The statistical model of the HUM System, shown in Figure 3.5, is made up of a semantic
language model and a lezical realization model. P(M) in Equation 3.4.3.2 is implemented
with the semantic language model, and P(W|M) by means of the lezical realization model.
The combination of the two models is equivalent to finding the most likely meaning M

given a word sequence W.
46

CHAPIER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES

Semantic } \[Lexical 1
Language == Realization =
Model J { Model J

abstract word

meaning structures sequences

FIGURE 3.5. Statistical Model of HUM System [41]

3.4.2.1. Semantic Language Model

In the semantic language model, a probabilistic state transition network is constructed
to implement an abstract concept. All sub-concepts of an abstract concept consist of states
of a network representing the abstract concept. Two more states, ‘enter’ and ‘exit’, are
added to indicate the entry and exit points. A network is a complete directed graph except
the two added states cause the addition of directed paths from the ‘enter’ state to other sub-
concept states and from each sub-concept state to the ‘exit’ state. Each arc in a network is
associated with a probability. For example, the arc from airline to date on a flight network
has a probability P(date|airline, fight). which represents the probability of going into the
date state from the airline state on the flight network.

The semantic language model is a network of combination of all probabilistic state

transition networks, or a probabilistic recursive transition network.

3.4.2.2. Lezical Model

From the point of view of structure, the Lezical Realization Model is the same as the

Semantic Language Model except that the terminal node of the tree structure meaning
47

CHAPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRETATION RULES
representation is used as a state in the lexical model. There are two virtual states to
indicate the first word and the last, ‘*begin*’ and ‘*end*’. The value on an arc is estimated
with a probability for a transition from one word to another given a particular context.
Thus, P(please|*begin*, show_indicator) is the probability that please is the first word of a
show_indicator phrase, and P(*end*|me, show_indicator) is the probability that me is the

last word of a show_indicator phrase.
3.4.2.3. Training and Understanding Components

The main concern in the training procedure is how to estimate the transition probabil-
ities of the semantic language model and the lexical realization model. In the HUM System
(41], the estimates of the probabilities are given by the following for the semantic language

model:

C(statey|staten,, contezt)

P (state,|staten,, = , 4.3

P(state,|state,,, context) Clstatey,, conteal) (3.4.3.3)
and the estimate for the lexical realization model is given by the following:

. text

B (wordy |wordy,, contest) = CLuordnlwordm, contest) (3.4.3.4)

C(word,,, contexzt)
For more robust estimates, Equations 3.4.3.3 and 3.4.3.4 are smoothed with P(state,|contezt)
and P(word, |contest) [41].
The issue in understanding components is how to find the meaning of a given string of
words such that P(W|M)P(M) is maximized. As mentioned earlier, P(W|{M)P(M) is the

probability of a path through the combined network of two probabilistic networks. If the
48

CHAFPTER 3. MACHINE LEARNING OF SEMANTIC INTERPRELTATION RULES
whole network is searched to find a maximized path, the algorithm would take exponential
time to length of sentence. The search time is reduced by applying dynamic programming

and the Viterbi algorithm [41).

49

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

CHAPTER 4

Speech Understanding System (SUS) at McGill

4.1. System Overview

The speech understanding system at McGill university is developed on Air Travel In-
formation System (ATIS) domain sponsored by DARPA. The main task of the speech
understanding system is to extract semantics from the output sentence of a speech recog-
nizer. As other hybrid systems like CHANEL, HUM, and CHRONUS, stated in the previous
chapter, this system is also a hybrid system incorporating linguistic-based approach at a
local level and corpus-based approach at a global level.

The structure of the Speech Understanding System is shown in Fig. 4.1. From the

structure point of view, it consists of two modules :

e RTN(Recursive Transition Network)-based parser for a local-level lexical/ syntac-
tical/ semantical/ analysis (local in the sense that adjacent consecutive words are
examined).

e CT(Classification Tree)-based Robust Matcher for a global-level semantic analysis

(global in the sense that whole sentence is examined).

50

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

SUS System \1,

————— > Hypothesis from Recognizer or Transcript

;

RTN-based Parser

Parsed Sentence

Classification Trees -
Based Robust Matcher

Semantic Representation of Sentence

¢

SQL Module

/

SQL Query

FIGURE 4.1. Overall structure of Speech Understanding System in McGill

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

In local-level analysis, the RTN-based top-down parser converts a string of words into a
hierarchical structure containing word categories that correspond to semantic constituents.
In global-level analysis, a trained classification tree functions as a semantic extractor. A
classification tree is a data structure which learns semantic rules from annotated training
data. A trained classification tree represents semantic rules of a concept as a form of
question in each node. This system generates output similar to SQL query, which is called
intermediate codes. The intermediate codes are translated into a SQL query by SQL module
at the next step. Instead of intermediate codes, “NO ANSWER” output could be generated
if there is no semantics to be detected, due to either a failure of system or a sentence without

the meanings the system is looking for.

4.2. The Local Parser Module

The local parser is based on RTNs (Recursive Transition Network), each of which codes
a semantic structure such as FLIGHT-NUMBER, TIME, etc. Rules representing a semantic
concept are coded in a RTN. The parsing process proceeds in a way that if the final state
of a RTN is reached by a seutence, the part of sentence read through the RTN is replaced
with a symbol indicating the RTN.

A triple of data enclosed in parenthesis is used to represent the output of a local parser.
A triple data contains the word, a symbol representing its category and its value. All tripled
data are stored in a queue and the local parser proceeds with the queue. Examples of this
representation are shown on tables 4.2.4.1 and 4.2.4.2. Structure of local parsers is shown

on figure 4.2.
52

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

(please
(list

(the

(eastern
(flight

(two

(ten

(from

(d-f-w
(to

(san-francisco
(on

(the

(june

(twenty
(second
(between
(three
(and

(seven

(p-m

(NULL

UNDEF

77)

SHOW_INDICATOR 1)

UNDEF
AIRLINE-NAME
UNDEF

NUM

NUM

UNDEF
AIRPORT-NAME
UNDEF
CITY-NAME
UNDEF

UNDEF

MONTH

NUM

ORD

UNDEF

NUM

UNDEF

NUM
TIME_PERIOD

NULL

77)
EA)
77)
2)
0)
77)
DFW)
77)
SFO)
77)
77)
6)
20)
2)
17)
3)
77)
7)
19)
NULL)

TABLE 4.2.4.1. Example of Intermediate Form

53

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

Hypothesis from Recognizer or Transcript

|

Lexical Transformer

|

Intermediate form of sentence

Conceptual Transformer

|

Parsed form of sentence

-

FIGURE 4.2. Overall structure of Local Parser

54

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

{ please

{ list

(the

{ AIRLINE-NAME
(FLIGHT-NUMBER
{ from

(AIRPORT-NAME
(to

(CITY-NAME

(on

(the

({ DATE-MONTH

(DATE-DAY

(TIME

(NULL

UNDEF

™7

SHOW_INDICATOR 1

UNDEF

EA

210

UNDEF

DFW

UNDEF

SFO

UNDEF

UNDEF

6

22

*

NULL

7?7

eastern

*

777

d-f-w

™
san-francisco
77

7?77

june

x

>15:0&8&<19:0

NULL

TABLE 4.2.4.2. Example of Parsed Form

)

Local parser module has two components : Lexical Transformer and Conceptual Trans-

former. The Lexical Transformer module concatenates pre-defined words to treat them as

one word and looks up individual words from a sentence in the dictionary, and then extracts

its category and value from the dictionary. The Conceptual Transformer module precedes

55

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL
syntactic and semantic parsings with a large RTN combining all RTNs. A RTN represents
semantic rules for a semantic concept like FLIGHT-NUMBER, TIME. A sentence is read
through each RTN to see if the final node of the RTN can be reached by the sentence, which
means that the sentence satisfies a RTN so that it has the semantics coded in the RTN.
If a sentence turns out to contain the semantics which a RTN supports, the conceptual
transformer module replaces the phrase of input string comprising the semantics with the
symbol representing the semantics.

For instance, consider a sentence “please list the eastern flight two ten from d f w
to san francisco on the june twenty second between three and seven p m”. The in-
termediate form and the parsed form of the sentence are displayed on table 4.2.4.1 and
table 4.2.4.2, respectively. Following the Lexical Transformer step, it would be “please
SHOW_NDICATOR the AIRLINE-NAME flight NUM NUM from AIRPORT-NAME to
CITY-NAME on the MONTH NUM ORD between NUM and NUM TIME_PERIOD”.
[t is labelled as follows: “please SHOW_INDICATOR(list) the AIRLINE-NAME(eastern)
flight NUM(two) NUM(ten) from AIRPORT-NAME(d-f-w) to CITY-NAME(san-francisco)
on the MONTH(june) NUM(twenty) ORD(second) between NUM(three) and NUM(seven)
TIME_PERIOD(p-m}”. According to the Conceptual Transformer step, it would be “please
SHOW_INDICATOR. the AIRLINE-NAME FLIGHT-NUMBER from AIRPORT-NAME
to CITY-NAME on the DATE-MONTH DATE-DAY TIME”. Thus, it is labelled as fol-
lows: “please SHOW_INDICATOR (1:list) the AIRLINE-NAME (EA:eastern) FLIGHT-
NUMBER (*:210) from AIRPORT-NAME (DFW:d-f-w) to CITY-NAME (SFO:san-francisco)

on the DATE-MONTH (6:june) DATE-DAY (22:*) TIME (>=15:0&8&<=19:0:*)". The

56

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL
string before ‘:’ inside parenthesis is the value of a concept and the one after ¢’ is the
original string of a concept. However, if the original string consists of more than two words,
it is replaced with **’,

In addition, the adoption of the symbol SHOW_INDICATOR is not directly related
to the issue of semantics but related to the issue of handling training data. For instance,
after parsing procedure, two sentences “please show the eastern flight two ten from d f w to
san francisco” and “please list the eastern flight two ten from d f w to san francisco” have
the same parsed form, since each of two different words, ‘show’ and ‘list’, is changed to
the same symbol, SHOW_INDICATOR. If the two sentences of the exactly same semantic
and syntactic structures have the same parsed forms, it could help the training mechanism

learn such a structure quickly. This point could be important in a situation where there is

a lack of training data.

4.3. Building Classification Trees

Recall that three elements in construction of classification tree, stated in Chapter 2,

o A set Q of questions
o A rule for selecting the best split at any node

e A criterion for choosing the right-sized tree

Getting the best split at a node is equivalent to choosing the best question from a set of

questions for a node. The Gini criterion described in Chapter 2 to select the best question
57

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL
for a node is used for this thesis. Also, the iterative expansion-pruning algorithm described
in Chapter 2 to get a right-sized tree is adopted.

A set of questions now is closely related to the application of a speech understanding
system. The node structure for a question was originally devised at CRIM. Two structures
are applied on each node : known structure and decision structure. Two structures are of
the same form. Each structure is a regular expression consisting of symbol and gaps. The
four regular expressions for each gap + in a known structure are considered with a symbol

w

< w > : single symbol w.
e < +w > : sequence of length of at least two ending with symbol w.

e < w+ > : sequence of length of at least two beginning with symbol w.

< +w+ > : sequence of length of at least three containing symbol w that is neither

the first nor the last.

The known structure for the root of a classification tree is defined as < + >. The
operation rules on a known structure are to apply each of four regular expressions to each
gap + in the known structure with a given symbol. If there are L symbols in the lexicon,
there are (4 x L) operations applicable to each gap + in known structure.

When a regular expression at a node is selected according to the Gini criterion, the
decision structure of the node is determined by applying selected regular expression to the
knouwn structure of the node. For instance, for a node with known structure, < +w >, four
possibilities for the decision structure given a symbol, s, are < sw >, < s+ w >, < +sw >,
and < 4s +w >. This is obtained by replacing the only gap + in < +w > with four gap

58

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL
operations, < 8 >, < s+ >, < +8 >, and < +38+ >. The known structure of “YES child”
node is the decision structure of its parent node, while the known structure of “NO child”

is identical to the known structure of its parent.

4.4. The CT-based Robust Matcher Module

Figure 4.3 shows the structure of CT-based robust matcher. The parsed sentence
preparsed by local parser is submitted into the robust matcher. The robust matcher is
composed of two parts (Displayed Attributes Module and Constraints Module), which corre-
spond to two parts of semantic representation (Displayed Attributes and Constraints). The
ultimate purpose of this system is to find out something satisfying some conditions. At-
tribute corresponds to something and constraint corresponds to something with conditions.
The Displayed Attributes Module generates ‘list of attributes’, while the Constraints Mod-
ule produces ‘list of constraints’. An attribute from ‘list of attributes’ is related to a name
concatenating table(relation) and column(attribute) in ATIS database, while a constraints
from ‘list of constraints’ is composed of an attribute and its value. List of constraints has

two types of constraints : Local Constraints and Global Constraints.

4.4.1. Displayed Attributes Module

The SQL translation of class A! sentence of the ATIS2 training data has the structure
of “SELECT DISTINCT list of attrubutes FROM ...”. There are 74 different attributes in

SQL code of ATIS2. The flight.flight_id is the most common attribute appearing in 2308

lelass A sentence is semantically independent, while class D sentence is semantically dependent on previous

sentence.

29

CHAPIER 4. SPEECH UNDERSTANDING SYSTEM (SUS) Al MCGILL

Parsed Sentence @

¢
¢

Classification Trees for "Displayed Attributes"”

NO ANSWER
o NOANSVER -
Classification Trees for "Constraints”
NO ANSWER
<o NOANSWER @

|

Semantic Representation of Sentence @

@ find the cheapest ROUTE(one-say) fare from CITY-
NAME(boston) to CITY-NAME(denver)

(2) DISPLAYED ATTRIBUTES = { fare.fare_id)

fare.one_direction_cost <- %2MIN
flight.to_city <- DEN
flight.from_city <- BOS

@ DISPLAYED ATTRIBUTES = { fare.fare_id }
Constraints =
[
fare.one_direction_cost <- %MIN
flight.to_city <- DEN
flight.from_city <- BOS
1

FIGURE 4.3. Overall structure of Robust Matcher

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

please show all flights from CITY-NAME to AIRPORT-NAME DAY = 0
please show flights arriving in CITY-NAME from CITY-NAME = 0
please show me again the CLASS-NAME fares from CITY-NAME to CITY-NAME = 0

please tell me the times of the flights between CITY-NAME and CITY-NAME = 1

show me the costs and times for flights from CITY-NAME to CITY-NAME = 1
TABLE 4.4.4.1. Parsed Form of Some Training Data for flight.departure_time Attribute

out of 3102 sentences of class A. Only 34 out of 74 attributes appear in at least 10 sentences
and 16 other attributes appear only once. A function call, MIN(flight.departure_time), is
found in one sentence.

Some different attributes are highly correlated and some always appear together in SQL
queries. In the latter case, the different attributes have identical classification tree. For ex-
ample, airport.airport_location, airport.country_name, airport.minimum.connecct_time, air-
port.state_code, and airport.time.zone.code attributes are displayed in only two sentences.

Some training data for flight.departure_time attribute are shown in table 4.4.4.1.

The number ‘0’ or ‘1’ shown at the end of a sentence indicates whether or not the
SQL query of the sentence contains the flight.departure_time attribute between ‘SELECT
DISTINCT' and ‘FROM’. Thus, the sentence labelled ‘1’ has flight.departure.time attribute
in its SQL query and the one labelled ‘0’ does not. All the labelled training data are involved
in a training of a classification tree. Thus, the training data for the attribute fight. flight_id
has 2308 sentences labelled ‘1’ and 794 sentences labelled ‘0°’. The iterative expansion-
pruning algorithm we adopt requires to maintain two training data sets. Each data set is

kept to have approximately equal numbers of labelled sentences without duplication of data
61

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) Al MCGILL
for each class. In the training data set for attributes having only one sentence labelled ‘1°,

however, the same sentence labelled ‘1’ appears in each data set.

4.4.2. Constraints Module
4.4.2.1. Global Constraints

Recall that a constraint in the semantic representation is composed of an attribute and
its value, or a range of possible values. Properties of a global constraint are spread out
over a sentence instead of being localized. Unlike local constraint, it does not require to be
pre-processed by a local parser.

In the current version of system, 13 global constraint classification trees were trained :

o MAX and MIN for an one-way fare and a round-trip fare
A classification tree is trained for a global constraint. All sentences containing
*‘MIN (fare.one_direction_cost)’ in their SQL queries are collected for training data.
The ‘cheapest’, ‘least expensive’, ‘lowest cost’, ‘lowest price’, or ‘lowest fare’ phrase
appears on scntences satisfying the condition.

o MAX and MIN for the capacity of atrcraft
Only 2 sentences contains the phrase of maximum capacity of aircraft. ‘largest
seating capacity’ and ‘greatest seating capacity’ are the corresponding parts of the
sentences. ‘smallest seating capacity’, ‘smallest plane’, or ‘smallest number of pas-
sengers’ appears on the sentences for the minimum of aircraft capacity.

o MAX and MIN for departure time of flight
62

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL
For the maximum of departure time, the proper sentences contains ‘last flight’, ‘lat-
est flight’, etc. For the minimum, ‘first flight’, ‘earliest flight’, etc are the examples.
e MIN for arrival time of flight
Only 1 sentence, ‘what flight from boston to atlanta arrives earliest in atlanta’,
satisfies this criterion.
o nonstop of flight
‘light.stops = 0’ condition appears on the SQL queries of the training data for this
constraint. ‘please list all flights between boston and san francisco nonstop’ and
‘what nonstop flights between boston and washington arrive after five o’clock p m’
are the exemples.
o flight with meal
The training data for this constraint include two types of sentences. In the first
type of sentence, a meal name is not specified, but the property of this constraint is
defined explicitly. That is, phrases like ‘with a meal’ or ‘serving a meal’ are found in
the sentences. In the second type of sentence, a meal name is concretely specified,
such as ‘breakfast served’ or ’serve dinner’.
o ‘direct’ and ‘connect’ of flight connection
In SQL translations of the training data, ‘flight.connections = 0’ is found for direct
flight constraint, while ‘flight.connections > 0’ is found for indirect flight constraint.
¢ airline code and flight number of flight
A classification tree for this constraint does not exist, since the attribute and value

for this constraint are already found in local parser module.

63

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

what flights are available from %CITY-NAME to CITY-NAME = 1

what flights are available from CITY-NAME to %CITY-NAME = 0
TABLE 4.4.4.2. Example of Training Data for ‘city:origin’ constraint

what flights are available from %CITY-NAME to CITY-NAME = 0

what flights are available from CITY-NAME to %CITY-NAME = 1
TABLE 4.4.4.3. Example of Training Data for ‘city:destination’ constraint

4.4.2.2. Local Constraints

After a sentence is parsed by a local parser, semantics of some parsed substrings are left
unresolved. Meanings of such an ambiguous substring are identified by classification trees
trained for local constraints. Consider a sentence ‘what flights are available from denver
to baltimore’. The parsed form of the sentence is ‘what flights are available from CITY-
NAME to CITY-NAME’ where the value of the first CITY-NAME is ‘denver’ and the value
of the second is ‘baltimore’. As we can see, CITY-NAME after ‘from’ is the origin city and
CITY-NAME after ‘to’ is the destination city. The semantics of unidentified substrings are
revealed in local coustraints module.

In the training data for a local constraint, data duplication is unavoidable. As shown
in table 4.4.4.2, the two almost same sentences appear with different labelling. In table
4.4.4.3, the two sentences appear again with the reversed labelling according to dealing
with the reversed role of constraint. We distinguish the same symbols being considered, by
adding ‘%’ on the symbol. Thus, labelling of a sentence is decided by the role of the symbol

preceded by ‘%’.
64

<+ flights + ®AIRPORT-NAME>? >

T T

<<+ flights + to HAIRPORT-NAMES ?

T
s

m means that % AIRPORT-NAME in the sentence is for destination

[ZI means that % AIRPORT-NAME in the sentence is NOT for destination

FIGURE 4.4. CT for the local constraint destination of airport name

Here are the list of 12 local constraint CTs implemented in the current version of

systern.

¢ for AIRPORT NAME
An airport name can be an origin, 2 destination, a stopover, a site served by an
airline, or a location for ground transportation.

e for CITY NAME
A city name can be an origin, a destination, a stopover, a site served by an airline,
or a location for ground transportation.

e for TIME

A time can be an arrival time or a departure time.

Figure 4.4 shows a CT that decides if an airport name is for destination.
65

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) Al MCGILL

Recognized Sentence = are there any flights from san francisco to boston leaving
in the afternoon and arriving between three and seven p m

DISPLAYED ATTRIBUTES = { flight.flight_id }

Constraints =

[
flight.to_city + BOSS
flight.from_city < SFOO

flight.arrival_time « >=15:0&&<=19:0

)

TABLE 4.5.4.1. Example 1 of A Semantic Representation

4.5. The Semantic Representation

The semantic representation is the intermediate code that represents the information
carried by a sentence, which will be converted to a corresponding SQL query. The semantic
representation we adopt here is based on the one devised at CRIM and used for CHANEL
system, and is modified for our purpose.

The semantic representation has two parts, attributes and constraints. Attribute is of
the “relation.attribute” form and constraint is of the “relation.attribute « value” form.
‘8&’ and ‘||’ are logical operators indicating the AND and OR, respectively. ‘>=’, ‘<=,

‘<’, and ‘>’ are relation operators. ‘%ZERO’, ‘%MIN’, and ‘%BMAX’ are special symbols.

For example, ‘%MIN’ indicates a minimum value and ‘%MAX’ is a maximum value.
66

CHAPTER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

Recognized Sentence = i'm looking for a one way flight from boston to baltimore
washington what is the cheapest flight

DISPLAYED ATTRIBUTES = { flight.flight_id }

Constraints =

[
fare.one_direction_cost « %MIN
flight.to_city « WSH

flight.from_city + BOS

]

TABLE 4.5.4.2. Example 2 of A Semantic Representation

Some examples of semantic representation are shown in tables 4.5.4.1 and 4.5.4.2. For
the interpretation of ‘baltimore washington’ in table 4.5.4.2, we follow the principles of

interpretation provided by ATIS2 database.

4.6. Speech Understanding Systems at McGill and
CRIM

SUS at McGill and CHANEL are hybrid systems consisting of two components, a
parser and a robust matcher, as the other SUSs developed under ATIS domain. Two SUSs
have many similarities in that the parsers are linguistic-based and the robust matchers
are corpus-based. Furthermore, both SUSs adopt Classification Trees to perform semantic
extraction. However, two systems take different parsers and similar robust matchers in

performing similar work. Differences of two SUSs are specified as follows.
67

CHAPIER 4. SPEECH UNDERSTANDING SYSTEM (SUS) AT MCGILL

o The parser at McGill is based on Recursive Transition Networks (RTN) formalism
which analyzes a sentence locally and finds its semantic values from important words,
whereas in CHANEL, the parser relies on lexical grammar formalism with DCG rules
to detect semantic structures.

e Two systems have similar semantic representation language. McGill system adopts
the one used in CHANEL which has been modified for our purpose.

e The robust matcher of SUS at McGill have 13 classification trees for global con-
straints. Some global constraints do not need to be implemented with classification
trees because parser module collects enough information to determine such con-
straints. Determination of having some global constraints or not, is done during
parsing process.

e In McGill’s system, a classification tree represents only one semantic concept and
determines if a sentence has a semantic concept represented by the tree or not. That
is, one semantic concept is exactly corresponding to a classification tree. Therefore
each classification tree is independently trained/re-trained. In CHANEL, a classi-
fication tree is trained for one or more semantics. It can save time in training and
reduce the number of trees.

e McGill’s SUS is implemented with C++ for the parser and robust matcher and
PERL for the interconnection of two modules, whereas CHANEL is written in C for

robust matcher and Lisp for parser.

68

CHAPTER 5. RESULTS AND DISCUSSION

CHAPTER 5

Results and Discussion

5.1. Experiments and Analysis

The single-symbol CTs for the SUS developed at McGill were trained on 3248 class A
ATIS2 NL sentences. The test results, which will be shown later, were from 399 class A
Feb92 ATIS2 NL sentences and on 441 class A Nov92 ATIS2 NL sentences.

The SU system developed at McGill consists of three components : a parser, displayed
Attributes (DA), and constraints. The parser part was not tested here. The remaining
parts were tested and the results are analyzed in this chapter. Also, since the SQL module
generating SQL codes from the semantic representation (the output of this SU system) is
not prepared yet, the test for the SQL module is not dealt with here. The test results were
obtained by comparing the semantic representations produced by this system and the SQL

codes provided by ATIS2.

69

CHAPTER 5. RESULTS

Feb92 | Nov9?2 Total
Number of successes 317 367 | 684(81%)
Number of fails 65 54 | 119(14%)
Number of no answers 17 20 37(4%)
Total 399 441 | 840(100%)

TaBLE 5.1.5.1. ATIS2 Class A NL Test Result 1 on CTs of Displayed

5.1.1. Benchmark Results and Analysis

5.1.1.1. CTs for Displayed Attributes

AND DiSCUSSIUN

Attributes

The February and November 1992 ATIS2 benchmark results are shown in tables 5.1.5.1

- 5.1.5.5.

Table 5.1.5.1 shows the results for CTs of Displayed Attributes on ATIS2 Class A NL

sentences. On the test data, a ‘Success’ occurs when the set of the displayed attributes of

this system includes the answer prescribed by ATIS2. The other cases are considered to be

*Fails’.

For the test sentence ‘which airlines depart from boston’, the SQL codes of ATIS2

reads ‘select distinct airline.airline_code from airline where ...". The result of the system on

the sentence is the following :

DISPLAYED ATTRIBUTES = { airline.airline_code }

Constraints =

{

flight.from_city « BBOS

70

CHAPTER 5. RESULTS AND DISCUSSION

With the sentence ‘are there any united flights from boston to san francisco stopping in
denver’, the SQL codes are ‘select distinct flight.flight_id from flight where ...”. This system
generates the output as follows :

DISPLAYED ATTRIBUTES = { flight.flight_id }
DISPLAYED ATTRIBUTES = { flight.airline_code }
Constraints =

{

flight.airline.code « UA

flight.stopover_city +— DDEN

flight.to_city « SSFO

flight.from_city « BBOS

}

In the first example, two answers are matched exactly, whereas in the second case, the
system output includes the ATIS2 answer.
The ‘Success’ cases in table 5.1.5.1 are divided into two case : ecact match and inclusive

ezact match!, shown in table 5.1.5.2.

1This is the case that an answer of the system includes ATIS2 answer.

71

CHAPTER 5. RESULTS AND DISCUSSION

Feb92 | Nov92 Total

Number of successes 193 241 | 434(52%)

Number of inclusive successes 124 126 | 250(30%)

Number of fails 65 54 | 119(14%)
Number of no answers 17 20 37(4%)
Total 399 441 | 840(100%)

TABLE 5.1.5.2. ATIS2 Class A NL Test Result 2 on CTs of Displayed Attributes

5.1.1.2. CTs for Constraints

As stated earlier, at the time of the development of this system, an SQL module for
this system had not been prepared, so this system does not produce SQL code. Thus, the
results for constraint CTs was obtained by comparing the output of constraint CTs with
the corresponding SQL provided by ATIS, for each test sentence.

Tables 5.1.5.3 and 5.1.5.4 show two different results on CTs for constraints. Table
5.1.5.3 shows experimental results for entire test sentences, whereas the table 5.1.5.4 indi-
cates results of the test sentences for which constraints are implemented by means of CTs.
In particular, the test sentences containing constraints of which the corresponding CTs are
not trained, have been excluded from the results shown in table 5.1.5.4. Some examples that
are not considered for the test shown in table 5.1.5.4 follow : (The sentence components in

italics indicate those which the constraint CTs of this system does not support.)

o list the first nonstop flight from boston to washington on june twenty fifth.

¢ how many t w a flights have first class.
72

CHAFPLIER 5. RESULLS AND DISCUSSION

Feb92 | Nov92 Total
Number of successes 144 166 | 310(37%)
Number of fails 238 255 | 493(59%)

Number of no answers 17 20 37(4%)

Total 399 441 | 840(100%)
TABLE 5.1.5.3. ATIS2 Class A NL Test Result 1 on Constraint CTs

Feb92 | Nov92 Total
Number of successes 144 166 | 310(72%)
Number of fails 71 15 86(20%)
Number of no answers 17 20 37(9%)
Total 232 201 | 433(100%)

TABLE 3.1.5.4. ATIS2 Class A NL Test Result 2 on Constraint CTs

e the cost of all flights from pittsburgh to boston on wednesday of next week.
e please give me flight information from denver to pittsburgh to atlante and return to

denver.

From the point of view of SU system performance, the results shown in table 5.1.5.3
are more interesting; however, in the viewpoint of how well the CTs-based approach works
for an SU system in terms of CTs performance, the results shown in table 5.1.5.4 are more
significant. The improvements in the previous two approaches will be discussed later

An analysis of the errors in semantic extraction using constraint CTs is shown in the

table 5.1.5.5. Note that in table 5.1.5.3, the number of Fuils is 493, whereas the total
73

CHAPTER 5. RESULTS AND DISCUSSION

Feb92 | Nov92 Total
Number of errors in global constraint CTs 47 27 74(11%)
Number of errors in local constraint CTs 65 108 | 173(26%)
Number of unimplemented errors 167 240 | 407(62%)
Total 279 375 | 654(100%)

TABLE 5.1.5.5. Error Analysis for the Constraint CTs

number of errors in table 5.1.5.5 is 654 because more than one error may occur in one

sentence. 62% among total errors were occurred due to non-implementation of such CTs.

5.2. Improvements

The improvements will be discussed from two perspectives : system performance and
CTs performance. For the sake of completeness, we will review general improvements to

CT-based SU from [17].

(i) System Performance Point of View

Features which may improve system performance are listed below.

e Multiple Frames
The handling of multiple frames is not implemented in this system. Most cases
of multiple frame occurs in multiple departure cities(airports), multiple arrival
cities(airports), or multiple stopover cities(airports). In CRIM’s system, this
feature was implemented but the results were unsatisfactory.

e Incompatibility between outputs of CTs
74

CHAPTER 5. RESULTS AND DISCUSSION
A large number of errors in the semantic representations generated occurs
due to the incompatibility between DA and constraints since in the current
version of the system, the output of each CT is entirely independent of the
output of all other CTs. This, together with the fact that only single frames
are handled, means that two different cities could be classified with the same
semantics. Further research on the relationship between outputs of CTs is
necessary.
Unimplemented CTs in Global and Local Constraints (Class)
The results with Feb. and Nov. 1992 test sentences reveal that this system
needs more CTs to resolve certain constraints. These constraints and some

examples of the corresponding phrases are given below :

- DATE
‘august fifth', ‘september fifth nineteen ninety one’, ‘week from wednes-
day’, ‘tomorrow’, ‘today’, ‘on wednesday of next week’, ‘next friday’.
- DAY
‘on a wednesday’.
- CLASS
‘first class’, ‘business class’.
- MEAL
‘serve breakfast’.
- FARE

‘coach fare’, ‘economy fare’, ‘coach fare’.

75

CHAPTER 5. RESULTS AND DISCUSSION

- RENT
‘rent a car’.
- COST

‘less than eight hundred and sixty dollars’.

In the current version of the system, the semantic CT for meal service was
designed to indicate the existence of meal service, not to refer to a specific

meal service.

(ii) CTs Performance Point of View
The largest number of errors occurred in the interpretation of TIME phrases asso-
ciated with other semantic components : when a TIME phrase appears in an inde-
pendent phrase, the TIME CTs captures the semantic correctly. However, when a
TIME phrase is integrated with other constituents, such as ‘monday afternoon’or
‘wednesday night’, the TIME CTs do not work properly.

General Improvements to CT-Based SU

¢ Uses a dialogue session for collecting training data

o Scts up meta-rules for determining that there is something wrong with a se-
mantic representation

¢ Uses hierarchies of CTs

o Uses a CT-driven lexical search

76

CHAPTER 5. RESULTS AND DISCUSSION
5.3. Conclusion

This thesis describes a method for learning classification rules from training data using
trees. The learning mechanism is based on the probabilistic approach. All patterns for a
node of a CT are tried and one of them is selected for the pattern of the node. All selected
patterns on a tree consist of classification rules. We applied this method to semantic ex-
traction in speech understanding systems. Similar methods had been designed and applied
to many application fields including speech recognition system, but this work is unique in
its treatment of question patterns which are used for question of each node.

Finally, I would like to stress some points for using this method.

o Training Data
Since this method is based on a probabilistic approach to training data, obtaining
training data covering all possible cases is essential for successful results. Some DAs
in training DA CTs have only a few sentence satisfying those DAs in ATIS. In this
case, the method using hand-coded rules works better.

e Training Process
During training, the process of selecting proper sentences from a large amount of
training data takes a large portion of time. To speed up the development of the
system, further research should be done to determine how to reduce the time taken
by the training process (including the selection of the sentences that are needed).

o Process of Obtaining Training Data

7

CHAPLER 5. HESULLS AND DISCUSSION
After a system has been developed, there should be a process to collect training
data. Once some training data have been acquired, the system may be re-set up

with the training data collected so far.

78

REFERBENCES

REFERENCES

(1]

(2]

3]

[4]

(5}

[6]

[7]

(8]

M. Ben-Bassat. Use of distance measures, information measures and error bounds
on feature evaluation. In P. R. Krishnaiah and L. N. Kanal, editors, Classification,
Pattern Recognition and Reduction of Dimensionality, volume 2 of Handbook of Sta-

tistics. Springer-Verlag, Berlin, 1979.

J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. MacMillan Press,
1976.

R.J. Brachman. On the epistemological status of semantic networks. In N.V. Findler,

editor, Associative Networks. Academic Press, 1979.

B.G. Buchanan and T.M. Mitchell. Model-directed learning of production rules. In

Pattern Directed Inference Systems. Academic Press, 1978.

U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous valued at-
tributes for classification learning. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, pages 1022-1027. IJCAI, Morgan Kaufmann Inc.,
1993.

E.A. Feigenbaum and H.A. Simon. Performance of a reading task by an elementary
receiving and memorizing program. In Behavioral Science, volume 8. University of
Michigan Press, 1963.

R. Gray. Vector quantization. In A. Waibel and K.-F. Lee, editors, Readings in
Speech Recognition. Morgan Kaufmann Inc., 1990.

H.-W. Hon and K.-F. Lee. Recent progress in robust vocabulary-independent speech
recognition. In Proceedings of the DARPA Speech and Natural Language Workshop,
pages 258-263. DARPA, Morgan Kaufmann Inc., February 1991.

79

(9}

[10]
[11]

12

[13]

[14]

[15]

(19]

[20]

(21]

HEFERENCED

E. Horowitz and S. Sahni. Fundamentals of Data Structures in Pascal. Computer
Science Press, 1987.

E.B. Hunt. Concept Learning:An Information Processing Problem. Wiley Co., 1962.

L. Hyafil and R.L. Rivest. Constructing optimal binary decision tree is NP-complete.
Information Processing Letters, 5(1):15-17, 1976.

[. Kononenko, I. Bratko, and E. Roskar. Experiments in automatic learning of med-
ical diagnostic rules. Technical report, Jozef Stefan Institute, Ljubljana, Yugoslavia,
1984.

J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding. Proc.
IEEE, 73:1551-1588, 1986.

J.G. Carbonell, R.S. Michalski, and T.M. Mitchell. An overview of machine learn-
ing. In Machine Learning:An Artificial Intelligence Approach. Tiago Publishing Co.,
1983.

K. QOehler, E. Riskin, and R. Gray. Unbalanced tree-growing algorithms for practical
image compression. In Proceedings of the International Conference on Acoustics,
Speech and Signal Proceesing, pages 2293-2296. IEEE, 1991.

B. Kim and D.A. Landgrebe. Hierarchical decision tree classifiers in high-dimensional
and large class data. Technical Report TR-EE-90-47, Purdue University, 1990.

R. Kuhn. Keyword Classification Trees for Speech Understanding Systerns. PhD the-
sis, McGill University, 1993.

R. Kuhn and R. De Mori. The application of semantic classification trees to nat-
ural language understanding. IEEE Transactions on pallern analysis and machine
intelligence, 17(4), 1995.

R. Kuhn and R. De Mori. Sentence interpretation. In Spoken Dialogues with Com-
puters. Academic Press, 1997.

L. Bahl, P. Brown, et al. A tree-based statistical language model for natural lan-
guage speech recognition. In A. Waibel and K.-F. Lee, editors, Readings in Speech
Recognition. Morgan Kaufmann Inc., 1990.

L.B. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Re-
gression Trees. Wadsworth and Brooks, 1984.
80

[22]

[23]

[24]

[25]

(26]

(27]

(28)

[29]

(30]

[31]
(32]

[33]

[34]

(35}

REFERENCES

E. Levin and R. Pieraccini. Concept-based spontaneous speech understanding sys-
tem. Proceedings EUROSPEECH, pages 555-558, 1995.

Y.K. Lin and K.-S. Fu. Automatic classification of cervical cells using a binary tree
classifier. Pattern Recognition, 16(1):69-80, 1983.

L.R. Bahl, P.V. De Souza, et al. Decision trees for phonological rules in continuous
speech. In Proceedings of the International Conference on Acoustics, Speech and
Signal Proceesing, pages 185-188. IEEE, 1991.

E. Millien and R. Kuhn. A robust analyzer for spoken language understanding.
Proceedings EUROSPEECH, pages 1331-1334, 1993.

J. Mingers. An empirical comparison of pruning methods for decision tree induction.
Machine Learning, 4:227-243, 1989.

R. De Mori, J. Fischer, et al. An integrated model of acoustics and language us-
ing semantic classification trees. In Proceedings of the International Conference on

Acoustics, Speech and Signal Proceesing, volume 1, pages 419-422. IEEE, 1996.

K.V.S. Murthy. On Growing Better Decision Trees from Data. PhD thesis, Johns
Hopkins University, 1996.

J.R. Quinlan. Learning efficient classification procedures. In Machine Learning:An

Artificial Intelligence Approach, volume 3. Tiago Publishing Co., 1983.

J.R. Quinlan. Learning from noisy data. In Proceedings of the Second International

Woarkshop on Machine Learning Workshop. Morgan Kaufmann Inc., 1983.
J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

J.R. Quinlan. Simplifying decision trees. International Journal of Man-Machine
Studies, 27:221-234, 1987.

J.R. Quinlan. Decision trees and multi-valued attributes. In J.E. Hayes, D. Michie,
and J. Richards, editors, Machine Intelligence, 11. Oxford University Press, 1988.

R. Kuhn, A. Lazarides, et al. Improved decision trees for phonetic modeling. In Pro-
ceedings of the International Conference on Acoustics, Speech and Signal Proceesing,
pages 552-555. IEEE, 1995.

R. Pieraccini, E. Tzoukermann, et al. A speech understanding system based on
statistical representation of semantics. In Proceedings of the International Conference
on Acoustics, Speech and Signal Proceesing, pages 193-196. IEEE, 1992.

81

[36)

[37]
[38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

REFERENCES
R. Pieraccini, E. Tzoukermann, et al. Progress report on the CHRONUS system:
ATIS benchmark results. In Proceedings of the DARPA Speech and Natural Language
Workshop, pages 67-71. DARPA, February 1992.

E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, Inc, 1993.

E. Riskin and R. Gray. Lookahead in growing tree-structured vector quantizers. In
Proceedings of the International Conference on Acoustics, Speech and Signal Pro-
ceesing, pages 2289-2292. IEEE, 1991.

E. Rounds. A combined non-parametric approach to feature selection and binary
decision tree design. Pattern Recaognilion, 12:313-317, 1980.

S. Miller, M. Bates, et al. Recent progress in hidden understanding models. Proceed-
ings of the Spoken Language Technology Workshop, pages 22-25, 1995.

S. Miller, R. Bobrow, R. Schwartz, and R. Ingria. Statistical language processing
using hidden understanding models. Proceedings of the Spoken Language Technology
Workshop, pages 48~52, 1994.

S.R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology.
[EEE Transactions on Systems, Man, and Cybernetics, 21(3), 1991.

S.B. Gelfand, C.S. Ravishankar, and E.J. Delp. An iterative growing and pruning
algorithm for classification tree design. /[EEE Transactions on Pattern Analysis and
Machine Intelligence, 13(2), 1991.

A. Shapiro. The role of inductive learning in ezpert systems. PhD thesis, University
of Edinburgh, 1983.

B.A. Shepherd. An appraisal of a decision tree approach to image classification. [n
Proceedings of the International Joint Conference on Artificial Intelligence, 8. IICAI,
1983.

S.Z. Kiang, G. Sullivan, et al. Recursive optimal pruning of tree-structured vector
quantizers. In Proceedings of the International Conference on Acoustics, Speech and
Signal Proceesing, pages 2285-2288. IEEE, 1991.

82

1.6
S

14

 ——

150mm

125

APPLIED £ IMAGE. Inc
1653 East Main Street
< Rochester, NY 14609 USA
© 1993, Applied Image, Inc., All Rights Resesrved

KEN
N\
2

o,

