
INFORMATION TO USERS

This manuscript has been reproduced trom the microfilm master. UMI films

the text directly from the original or copy submitted. Thus. sbme thesis and

dissertation copies are in typewriter face. while others may be from any type of

computer printer.

The quailly of this reproduction is c1ependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs. print bleedthrough, substandard margins. and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and dlere are missing pages, these will be noted. Aise, if unauthorized

copyright material had te be removed, a note will indicate the deletion.

\

Oversize materials (e.g.. maps, drawings. charts) are reproduced by

sectioning the original. beginning at the upper left-hand comer and continuing

from left ta right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI direcUy ta arder.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

800-521-0600

\. 1

\.

Generating Configuration Confirming Sequence

with ObjectGeode Simulator

Zi Jun HU

School of Computer Science
McGill University, Montreal

Directed by

Prof. Alexandre Petrenko
Prof. Monroe Newbom

July, 1999

A thesis submitted to the Faulty of Graduate Studies and Research,
in partial fulîdlment of requirements for the degree of

Master of Science

Copyright © 1999 by Zi Jun HU

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services
395 Welinglon Str_.
Ottawa ON K1A 0N4
canada

Bibliothèque nationale
duC8nada

Acquisitions et
services bibliographiques

395. rue WellingtDn
oaawa ON K1A 0N4
canada

The author bas granted a non­
exclusive licence alloWÎDg the
National Library ofCanada to
reproduce, 10an, distnbute or sell
copies ofthis thesis in microfonn,
paper or electronic fonnats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-64373-5

Canadl

•

•

•

Abstract

Test cases are very useful in industry. They can he generated for various purposes. In tbis

thesis the test case is generated for configuration conformance in the Extended Finite

State Machine (EFSM) model. This kind of test case is called Configuration Confinning

Sequence (CeS).

Test case generation has been studied for years and froitful results have been produced

[1]. A number of approaches for automatic test case generation bave been studied~ one of

tbem is based on the reachability analysis in the form of formai specification of the

Extended Finite State Machine of the system under test. This thesis adopts sucb an

approacb for CCS generation, but with some extensions - after producing all separating

sequences for the configuration by reachability analysis, a selecting program is executed

to choose out proper separating sequences as cess.

Today formal description techniques (FDT), including Specification and Description

Language (SOL) are widely used in specification and analysis of the EFSM model. A

FDT system is a formai, unambiguous~ hierarchical description of a set of EFSM models.

Various FDT toolsets are now commercially available. Proper use of them can malee test

case generation simpler. In this thesis, ObjectGeode SDL is selected as a tool for system

design and reachability analysis.

In this study, the method of CCS generation from an SOL specification is presented first.

Then, to demonstrate the correctness of this method, a CCS generator for the Responder

process in INRES protocol is designed and implemented, and results of the experiments

are presented. A theoretical proof of correctness is aIso presented. We conclude by

painting out possible future work.

•

•

•

Résumé

La génération de cas d'épreuve (testcases) a été étudiée depuis plusieursannées et des

résultats fructueux ont été produits [1]. Les cas d'épreuve peuvent être produits pour les

plusieurs buts. Dans cette thèse, le cas dépreuve est produit pour la conformance de la

configuration dans le modèle de la Machine de l'État Finie Étendue (EFSM). Ce genre de

cas d'épreuve est défini comme Configuration qui Confmne la Séquence (CCS) dans [5].

Plusieurs approches pour générer automatiquement des cas d'épreuve ont été étudiées.

Une d'eUes est basés sur l'analyse de l'atteinte de la spécification formei~e du modèle

EFSM du système étudié. Cette thèse adopte une telle approche pour la génération de

CCS, mais avec quelques extensions - après avoir produit, par analise formelle, des

séquences de séparation pour la configuration, un progranune de sélection est exécuté

pour choisir les séquences de séparation adéquates (comme CCSs).

Aujourd'hui, les techniques de description formelles (FDT), y compris le Langage de

Description de Spécifications (SOL), sont utilisées dans la spécification et l'analyse du

modèle EFSM. Un système FDT est une description formelle, non équivoque,

hiérarchique d'un ensemble de modèles EFSM. De nombreuses librairies FDT sont

commercialement disponibles. L'usage adéquat de celles-ci permet la génération de cas

d'épreuve plus facilement. Dans cette thèse, ObjectGeode SDL a été choisie comme la

FDT pour le design et l'analyse du système.

Dans cette étude, la méthode de génération CCS utilisant la spécification SDL est

présentée en premier lieu. Ensuite, un générateur ces pour le 'Responder' du protocole

INRES est développé pour vérifier l'efficacité de cette méthode. Finalement, les résultats

des expériences sont présentés. Nous concluons en signalant des pistes de travaux futurs.

2

•

•

•

Acknowledgments

1would like to express my deep gratitude to Prof. Alexandre Petrenko who supervised me

in this research. Without bis academic advice my research would he impossible. His

numerous research papers lead me to the interesting field of automatic testing. He

influences me not ooly by bis knowledge but aIso gentle personaIity.

1 aIso thank Prof. Monroe Newbom as my second supervisor. His suggestions were very

helpful for me to finish the thesis.

My gratitude should also he given to Dr. Sergiy Boroday. The discussions with him help

me c1ear Many issues. His comments assist me to shape my thesis into its current form.

Tbanks to bis profound knowledge in formai methods, he is never failed by any

chaIlenging problem tisen from this thesis research.

FinaIly, a financiaI support of CRIM is greatly acknowledged.

3.

• Contents

Abstract

Résumé

Acknowledgements

i

ii

iv

•

•

1. Introduction 6

1.1. Motivation 6

1.2. Thesis Contributions 6

1.3. Thesis Layout 8

2. EFSM Model 9

2.1. Extended Finite State Machine 9

2.2. Configuration Confmning Sequence 12

3. SDL FDT 15

3.1. Introduction 15

3.2. Interpreting SDL 16

3.2.1. Static Concepts of SDL 16

3.2.2. SOL Communication 17

3.2.3. Oynamic Concepts of SDL 19

3.2.3.1. Introduction 19

3.2.3.2. SOL Transitions 19

3.2.3.3. Life Span of a Process 21

3.3. ObjectGeode SDL Semantics 22

3.3.1. Global States of the Model. 22

3.3.2. Possible Behavior of the ModeL 23

3.4. ObjectGeode Simulator 24

3.4.1. Simulation Mode 24

4

•

•

•

3.4.2. Simulation Concepts 25

3.4.2.1. Basic Concepts 25

3.4.2.2. Exhaustive Simulation in ObjectGeode 26

3.5. Summary 32

4. ces Generation with ObjectGeode Simulator 33

4.1. Relevant work 33

4.2. Method of Generating CCS 35

4.2.1. Minimal Separating Sequences 35

4.2.2. CCS Generation 35

4.2.2.1. Distinguishing System 35

4.2.2.2. Extension to Depth First Search 42

4.2.2.3. Select CCS from Minimal Separating Sequences 43

4.2.3. Correctness of CCS Generation 44

~. Gellelr.lltin~ces t:o..~S o~()I ~ti

5.1. Distinguisbing system of INRES Protocol. 46

5.2. Results (CCS) and Analysis 52

6. C()nclusion and Future Work 54

References 55

Appendix A. INRES Prot()C()1 RespClllder Process In SDL

Appendix B. Distinguishin~ System of INRES Protoc()1 Responder

....ocess In SDL

Appendîx C. Code t:()r Post-PrClCessillg I»ro~ram

Appendix D. Minimal Separating Sequences Found 8y Distinguishin~

System

s

•

•

•

Chapter 1

Introduction

1.1. Motivation

It is widely acknowledged that the model of Extended FSM (EFSM) is a very powerful

model for verification and test derivation. There exist a number of tools that support

developptent activities around specifications based on the EFSM model. In particular, the

commercial tools supporting SDL now offer test case generation facilities. Such tools

May resorts to reachability analysis to compute tests that cover transitions of the EFSM

and provide test preambles to reach specifie configurations of the EFSM enabling the

transitions to he tested. However, they currently do not check the tail state of transitions

or the configurations reached after a test. This casts doubt on the confidence that the tests

have really assessed the corresponding behavior of the tested machine (known as IUT or

Implementation Under Test), let alone that they would reach a significant coverage of the

faults in lail states and configurations [Part 1, 12].

This problem can he abstraeted as configuration distinguishability for the EFSM model

that has been studied in [5]. The authors of [5] introduce a new concept - Configuration

eonftrming Sequence, or ces. Generally speaking, CCS is an input sequence that cao

distinguish a state or confi8UI'ation from a set of other states or configurations. Given this

concept, the question on how to generate ces automatically hecomes an interesting

problem. In this thesis, a ces generator with ObjectGeode toolset is developed and

studied.

1.2. Thesis Contributions

The existence of ces is based on configuration distinguishability. The problem of

configuration distinguishability for the EFSM model has been investigated in [5]. Given

an EFSM model, a configuration and an arbitrary set of configurations, determine an

6

• input sequence such that the EFSM in the given configuration produces an output

sequence different from that of the configurations in the given set or at least in a maximal

proper subset. Such a sequence cao he used in a test case to confirm the destination

configuration [5].

Authors of [5] demonstrate that the problem of configuration distinguishability problem

could he reduced to the EFSM traversai problem, so that the existing methods and tools

developed in the field of model checking cao he applied to CCS generation. Based on this

result, the thesis presents a ces generating approach relying on exhaustive simulation

provided by protocol verification tool ObjectGeode.

•
This thesis investigates a general way to construct a ces generator with ObjectGeode.

Doring the study we find a feature of ObjectGeode simulator !hat binders correct

generation of ces, that is, the simulator nonnally explores just a single path, as a result

sorne cess will he lost. The solution is to introduce a post-processing program using

C++ to explore the paths that have not been explored in ObjectGeode. This results in a

hybrid system of ObjectGeode and C++. The structure of ecs generator is illustrated in

Figure 1.1.

:...~ -.... ~ \

: ---f:-
::'-5~

~ ..~'}

Post­
Processing
by using

c++
Program

J.:~
~------r::...:;;.:}... :j..,.

S imulating ~~::.~c}:::

Distinguishing '~{7'~
System::"~?'

with~{::';;j,.:

ObjectGeode ~~>~:~/
S im ulator ~'.."-

• Figure 1.1 ces Generator

7

•

•

•

In post·processing two tasks will he fuJfilled, one is generation of all minimal separating

sequences (for an EFSM model, a minimal separating sequence is an input sequence that

separates a configuration from another) from state graph dump file, another is selection of

proper minimal separating sequences as CCS.

In tbis thesis, we demonstrate that the CCS generated in the method described above is

correct and complete. Theoretical proof and positive resuIts of the experiment performed

with a benchmark protocol, called INRES, is also presented in the thesis.

1.3. Thesis Layout

The remainder of the thesis is organized in the following way.

Chapter 2 and Chapter 3 discuss the concepts of the EFSM model and protocol

verification tool ObjectGeode, especially the exhaustive simulation performed by

ObjectGeode simulator. Exhaustive simulation is tightly related to the reachability

analysis, which is a crucial part of CCS generation.

Chapter 4 explains how a ces cao he generated with ObjectGeode simulator. First, we

give a method to build an SDL model that is used in reachability analysis, this model is

called a distinguishing system. Then we discuss the design and implementation of the

post-processing program.

Chapter 5 demonstrates the applicability of the proposed approach to a communication

protocol called INRES.

Chapter 6 concludes thesis and presents possible directions for further study.

8

•

•

•

Chapter2

EFSMModel

2.1. Extended Finite State Machine

The model of a Mealy (finite smte) machine extended with input and output parameters,

context variables, operations and predicates defined over context variables and input

parameters, is what is understood by an extended FSM in this thesis. The definition of

EFSM model is given below:

Definition 2.1 [5]: An extendedfinite state machine (EFSM) Mis a pair (S, n of a set of

states S and a set of transitions T between states from S, such that each transition t in the

set T is a tuple (s. x, P, op. y. up, s'), where

• s, s' E S are the initial and final states of the transition, respectively;

• x E X is input, X is a set of inputs, and D inp, is the set of input vectors, each

component of an input vector inpx is an input parameter associated with X;

• y e Y is output, Y is a set of outputs, and D 0"' is the set of output vectors, each
y

component of an output vector outy is an output parameter associated with y;

• P, op, and up are functions defined on input parameters and context variables V,

namely;

• P: D ;"P, x Dv-+ (True, False} is a predicate, where Dv is the set ofcontext vectors

V',

• op: D ;"1'. X Dv~ D OVl
y

is an output parameter function;

• up: D ;"1'" X Dv -+ Dv is a context update function.

To define the operation of an EFSM, we first introduce sorne additional definitions.

9

•

•

•

DermitioD 2.2 [5]: Given input x and a (possibly empty) set of input vectors D irrp. ' a pair

of input x and input vector from D i"P. is called a parameterized input. A sequence of

parameterized inputs is called a parameterized input sequence.

Similarly, we cao define parameterized outputs and their sequences.

Dermition 2.3 [5]: A context vector ~ E Dv is called a context of M. A configuration of

-M is a pair of state s and context v.

Note that in case of ao empty set of context variables, which is the case for a pure FSM, a

configuration coincides with a state. In this thesis configuration will he represented as a

tuple (S; PI, P2...P,.), where S is a state, and PI, P2...Pn are context variables.

Dermition 2.4 [5]: A transition is said to he enabled for a configuration and

parameterized input if the transition predicate evaluates to true.

The EFSM operates as follows. The machine receives input along with input parameters

(if any) and computes the predicate that is satisfied for the current configuration. The

predicate identifies enabled transitions. A single transition among those enabled is fued.

Executing the chosen transition, the machine produces output along with output

parameters, which, if they exist, are computed from the current context and input

parameters by the use of the output parameter function. The machine updates the current

context according to the context update function, and moves from the initial to the final

state of the transition. Transitions are atomic and cannot he interrupted. The machine

usually starts from a designated configuration, called the initial configuration. A pair of

an EFSM M and the initial configuration is called a strongly initialized EFSM [5].

To simplify the notations for transitions of EFSMs, we present a few conventions.

Specifically, we nonnally use (s-x, P/op, y, up--+s') to denote a transition te T. If, in l,

P is a Troe constant, P cao he dropped from the transition. Similarly, when the transition

10

• does not change the context, the update function up cao he omitted. At the same time, the

output parameter fonction can only he absent when output y has no output parameters at

all. Notations (s-x, P/op, y, up~s'), (s-x / y, up~s'), (s-x / y~s') are examples of

notations used for such situations. If present a transition, the update and output parameter

fonctions cao take fonns of operations on separate variables, such as assignments. Figure

2.1 gives an example of a machine specified using these notations [Page17, 5].

It has four states and ten transitions that are labeled with two inputs a and h, three outputs

x, y and z, the latter bas a parameter, and four predicates.

a. w<4/x, w:=w+1

•
alx,u:=1

b,u>OIx, u:=O

a,w~4/y,w:=O

b,u=O/z(u)

bly

Figure 2.1 The EFSM Mode. M

alx
blz(u)

•

Restricted EFSM (REFSM) is a type of EFSMs which meets a number of requirements.

Definition 2.5 [5]:

An REFSM is an EFSM meeting following requirements:

• Consistent: if for each transition t, every element in D inp. X Dv evaluates exactly one

predicate to True amang ail predicates guarding transitions with the start state and the

11

• input of t. In other words, the predicates are mutually exclusive and their disjunction

evaluates to true.

• Completely specified: if for each pair of state and input (s, x) E S X X, there exists at

least one transition leaving state s with input x.

• Determin;stic: if any lwo transitions outgoing from the same state with the same input

have different predicates.

• Observable: if for each state and input, every outgoing transition with the same input

has a distinct output.

Considering Figure 2.1, the machine has two context variables, u and w. It is consistent,

completely specified, detenninistic, and observable.

•

•

In this thesis, we study only REFSMs.

2.2 Configuration Confinning Sequence

The problem we are dealing with can be informally stated as follows. We know the

configuration reached in the REFSM M in response to sorne parameterized input

sequence applied to the initial configuration (tbis is the tail configuration of the test up to

that point). Our goal is to determine a single parameterized input sequence that can

increase our confidence in the correctness of the configuration reached in any

implementation under test derived from M. To that end, we try to ensure tbat the correct

configuration has been reached in the implementation, or at least that no suspicious

configuration has been reached. Typically, we might allow an implementation to have

different values from those specified for non relevant context variables, but pay special

attention to crucial variables or the control state [5].

For a classical detenninistic FSM, mo sequence [4] is a solution to the problem.

Assuming that faults in any implementation under test neither increase the state number

nor mask each other. such a sequence cao ensure correctness of the tail state of any

transition once it is executed immediately after the transition. The problem of VIO

generation was studied in a number of works. In case of the EFSM model. we are dealing

12

•

•

•

with a more general problem, which we cali here a configuration confuming sequence

(CCS) generation. The key issue here is configuration distinguishability [5].

Finally, for practical reasons again based on experience in protocol testing (and on

acceptability by test experts), we should try to find confirming sequences that are not Utoo

long". Basically, it would not make sense to claim that a lOO-input-long sequence would

bring enough added confidence to justify appending it to test preambles of length 4 or 5,

aU the more so as a confmning sequence, to he fully trustable, has yet to he applied in all

the other configurations, since faults May mask each other. Therefore, an arbitrary limit 1

on the length of the sequence will he set up for CCS generation [5].

We defme distinguishing ability of configurations based on the following notion. Let M

and N he two EFSMs defmed over the same inputs and input parameters. We assume that

the output alphabets of the lwo machines intersect, but the sets of output parameters

associated with each common output in M and N are not necessarily identicaI.

DermitioD 2.6 [5]: Two parameterized outputs of M and N are said to he compatible if the

output symbols coincide and very common output parameter has the same value in bath

parameterized outputs. Two parameterized output sequences, YI .. .Yi of M and y' •...y 'A: of

N, are compatible if for ail i = 1.. .k, Yi and y'i are compatible.

Based on this notation, we DOW define distinguishability of configurations.

Definition 2.7 [5]: Given a parameterized input sequence x, configuration c and c' of M

are distinguishable by x if the parameterized output sequence that can he produced by (M,

c) in response to x, is not compatible with any parameterized output sequence tbat cao he

produced by (N, c') in response to x. x is said to he a separating sequence that separates c

from c'. Given the length 1=Ld, configurations c and c' are said to he I-distinguishable.

Indistinguishable configurations of REFSMs are aIso referred to as equivalent

configurations. Two REFSMs are equivalent if their initial configurations are equivalent.

13

•

e

e·

Note that in this study, we assume that the given REFSM M may have indistinguishable

(Le., equivalent) configurations.

One should note that if an input signal in an input sequence is not acceptable by (M, c)

but acceptable by (N, c'), then such an input sequence is a separating sequence. Because

the input signal that is not acceptable produces, in fact, a NULL output signal by (M, c)

which is different from all other outputs, the input sequence with this input signal is in

definitely is a separating sequence.

The definition of Configuration Confmning Sequence immediately follows the Definition

2.7.

Dermition 2.8 [5]: Given configuration c and a configuration set C of a REFSM M, a

parameterized input sequence x is said to confirm c in the set C if x separates c from every

c· E C distinguishable from c.

Dermition 2.9 [5]: Given configuration c and a configuration set C of a REFSM M, a

parameterized input sequence x is a Configuration Confinning Sequence (CCS) for

configuration c and configuration set C if x confrrm c in the set C, or called ces for

configuration c and configuration set C.

Example. Consider Figure 2.1, assume the requirement is to find a ces (if it exists) for

configuration c=(S; 1,0) and configuration set a, that contains configurations (S; 2,4), (T;

0,0), (U; 0,0) and (V; 1,0). Here S, T, U and V are states in M, and (2,4) means u=2 and

w=4.

Then the input sequence b is a CCS since different configurations gjve different outputs. .

(S; 1,0) outputs lei); (S; 2,4) outputs z(2); (T; 0,0) outputs z(O); (U; 0,0) outputs y; (V;

1,0) outputs x.

14

•

•

••

Chapter3

SDLFDT

3.1. Introduction
SDL (Specification and Description Language) is an FDT (FormaI Description

Technique) promoted by ITU Z.lOO (13]. Extended fmite state machine cao he specified

formally and unambiguously in SDL and a set of such descriptions of the EFSM models

is called an SDL system. The SDL system provides a solid base for automated analysis of

EFSM model.

ObjectGeode is an FDT toolset that provides design and analysis facilities. SDL is its

main description language. It provides a set of tools required at every step of system

modeling, simulation, targeting and testing, as listed below [4]:

• Modeling tools, for analysis and design: Object Editor, MSC Editor, State Chart

Editor, SDL Editor and SDL&MSC Checker.

• Simulation tools: SDL&MSC Interactive Simulator and SOL&MSC Exhaustive

Simulator.

• Targeting tools: OMT C++ Code generator, SOL C Code Generator, SOL C Runtime

Library.

• Testing tool: DesignTracer.

In this thesis, only SDL Editor, State Chart Editor and SDL Exhaustive Simulator are

used.

There are two forros in which an SDL system can he represented in graphie form and

textual forme A1though they are different in appearance, they are same in semantics.

IS

•

•

The following sections are a brief overview of SOL and ObjectGeode. For detail

information, the reader cao refer to [2][6].

3.2. Interpreting SDL

3.2.1. Static Concepts of SDL

Making a static description of a system amounts to defining ils architecture. SDL uses a

hierarchical structure for system specification. The description always begins with the

system object, which is the object of the highest hierarchical level in the description.

Creating a system entails creating a boundary between the system to he modeled and the

exterior of the system (environment) [9].

The aim of an SDL system is to model a consistent set of communicating extended finite

state machines grouPed as blocks. Blacks, or subsystems, are the main conceptual

comPOnents of the system. Blocks are arranged in a hierarchical structure. There is no

limit to the number of hierarchical levels for black [9] .

Only leaf black cao contain processes. A process is ao extended state machine describing

a unit of dYDamic system behavior [9].

Example: The following is an illustration of SDL system structure.

• Figure 3.1

System

Proccss. stalc
machinc insidc .

SOL System

16

•

•

•

3.2.2. SOL Communication

In SOL, communication means signais (discrete signal) sending and receiving through

media (channel or route) between peer objects (system and its environment, blocks,

processes), or signais (continuous signal) sending and receiving inside a process.

The system communicates with its environment by exchanging signais through chaonels.

Blocks cao communicate with each other by exchanging signais through channels.

Processes communicate with the environment of the black they are contained in by

exchanging signais through routes (route is the channel inside a black). Processes in the

same block communicate with each other by exchanging signais through route [9].

There are two kinds of signais:

Discrete Signal (which we often referred to as signal)

Discrete Signais are sent or received through channels and/or routes. The

reception of discrete signal can he followed immediately by a validation condition

(PROVIDED). If the validation condition is not hold (FALSE) then the signal will

he implicitly saved (Conditional Reception of Signal), otherwise signal input will

he consumed and rue a transition [9].

Continuous Signal

Continuous signais are local variables of a process instance. Continuous signais

are only evaluated if the queue is empty [9].

Since the work in this thesis does not touch continuous signals, in the discussion that

follows we only deal with discrete signal.

To better understand ObjectGeode SDL communication, now we have a look on the

whole process of transmission and consumption of a signal as illusttated in Figure 3.2.

The events happen in following order:

The signal X sent by a sender process,

X is conveyed through routes or channels,

X is stored in the queue of the receiver process,

17

• Signais to he sent simultaneously along the same route are conveyed in random

order. And each process instance that cao communicate has a RFO queue to store

the signais received.

Signal X is consumed or saved by the receiver process.

For a signal to he consumed and processed by a process instance, the signal must

have been declared to he acceptable in this state, and the receiving process

instance must he waiting in the given state to consume or save it.

When the required signal arrived in the queue (before consumption), the transition

becomes enabled, or called fireable. The parameters canied by the input signal

cODsumed will he assigned to the variables corresponding to the INPUT.

•
Signais that are placed in the queue but are Dot declared in the state for

consomption or save will he 10st. Saved signais remain in the queue in the order in

which they arrive.

The following is an illustration of signal transmission:

3) X is sent from PI to P2 via route RI.

. .
. .._.

" . R3

[Y]

Signal Transmission in SDL

1) The instance of
PI and P2 contain
transitions,
respectively.

2) One of the actions
of the transition is to
send the signal X to
the P2.

5) P2 is waiting in
the state S3.

6) The input signal X
will be received and
consumed by 53.

".

Figure 3.2

[A(l)]

R2

•
18

•

•

•

3.2.3. Dynamic Concepts of a Model

3.2.3.1. Introduction

The dynamic description of a SOL system represents the system's operation., including

SOL transition and instantiation of process. The system is valid dynamically if it verifies

the rules of SDL. This validity verification is called Înterpretation of the system. A valid

system is a system that bas been correctly interpreted [9].

3.2.3.2. SDL Transitions

The operating principle supposes that the states inside a leaf process instance are

interconnected by transition. A transition is a series of actions executed by astate

machine, triggered after consumption of a given signal in an initial state. and possibly

leading to another state or to the death of the process instance [9].

There are two main kinds of transitions in SDL:

• Initial transitions,

• Transitions that define the processing Performed by the state machine.

A transition in ObjectGeode SOL process has three parts:

• Transition header. which is the description the transition fireable conditions.

• Transition action, which is the description of the actions performed by the transition.

• Transition terminator, which is the description of what happens when the transition

has been executed.

The following is a detail description of the transition header and transition action:

1) Transition Header

Initial State and lnitialization Transitions

When the system is initialized, allleaf processes are set to an initial state (START). When

a process is created, ooly the initial transition is fireable. Each initial transition is ooly

executed once, when the process instance is created [9]. The initial transition is ooly used

to:

initialize variables,

19

•

•

•

detennine the initial state of the process.

Initial transitions differ from other transitions in that they cao not consume signais.

Declaration of States

The transition definition must contain the declaration of at least one state characterizing

the operation of state machine [9], that is to say the transition must start from astate.

Signal Reception

ACter each state declaration, it is possible to specify [9]:

The reception of one or more signais, with or without validation conditions.

The reception of a mixture of signais (with or without validation conditions).

One or more continuous signais.

A save mechanism for the signais received.

A mixture of the above items.

2) Transition Actions

Actions are processed when a signal is consumed. The actions of the corresponding

transition are executed sequentially. There are no semantic rules governing the order in

which the actions of the transition are perfonned [9].

The following is a list of usually seen actions that cao he executed in a transition [9]:

Tasks: a task can he a variable operation action or comment text.

Process Instance Creation.

Signal Sending: OUTPUT action is used to send a signal.

Time Set and Reset: SET and RESET actions are used to set or reset timer.

3) Transition Terminator

Usually the end of a transition is specified by the following instructions [9]:

JOIN, indicating that a transition branch is completed, with transfer of interpretation

to a part of another transition brancb indicated by a LABEL IN CONNEcrOR.

20

•

•

NEXTSTATE, used to specify the state the process instance must he in after the

transition branch has been executed.

STOP, indicating that a transition branch is compfeted (the corresponding process

instance will he killed).

3.2.3.2. Life Span of a Process

We are now going to take a look al the life span of a process. The process is the main fink

object hetween the static part of the description of an SDL system and its dYQamic

behavior. It is the ooly structural object that cao he instantiated [9].

A state machine represented by a process reacts to stimuli, or signal inputs. A stimulus,

after consumption, nonnally will trigger a series of transition action [9].

A system handIes a large number of simultaneous signal transmissions and receptions. A

number of stimuli cao arrive over a very short period or simultaneously at the same

process [9]. To receive different signais simultaneously at the same process SDL provides

CREATE REQUEST action to dynamically creale a new process instance.

•
Figure 3.3

PI

Process Instances in One Process

21

• Instantiation a1so means the different processes can he activated in paraUel [9]y as shown

in Figure 3.4.

82

Pl P2

•

•

Figure 3.4 Process Instances in Different Processes

Process instance can he created statically when system is initialized, or dynamically in

ronning time. The parallel instantiation of a number of processes also means that a

number of transitions can be executed simultaneouslyy and they can react to the stimulus

simultaneously.

The life of a process instance begins from the instantiation, and death of a process

instance is the result of a STOP action at the end of a transition [9].

3.3. ObjectGeode SDL Semantics

3.3.1. Global States of the Model

This and next section present the elements used by ObjectGeode SDL simulator to

interpret SDL language, especially when this interpretation does Dot strictly follow the

Z.IOO standard.

Control States of a state machine are the objects declared by the user in STATE clauses.

The states defined in the EFSM model are control states [2].

Global states of a state machine are the resulting states of the model being executed, they

are composed of the current values of ail infonnation that varies dynamically [2J:

22

•

•

•

• The current control state.

• Current data values which can he decomposed into:

Variables,

Fonnal parameters,

Predefined Pid (process identifier),

Current timer values.

Actually a global state of an EFSM is a possible configuration of that machine.

Global states of a model are composed of [2]:

• The global states of all state machines (process instances and active procedures).

• The queue status of all processes.

AlI global states of a model can he explored by exhaustive simulation and can he shown

in astate graph like the one presented in the next section.

3.3.2. Possible Behaviors of the Model

State machines in a SDL mode1 are executed in parallel. In exhaustive simulation,

parallelism among state machines is simulated by interleaving the execution of their

transitions [2].

Let So he the initial global state, and transeS) he the set of fireable transitions for a global

state S. A global state S is said to he reachable from the initial state 50 if there is a list of

transitions (TI•••Til) such tbat, whatever i will he between 1 and n, T; helongs to trans(5;_I)

and T;(5;_I) =Si' The path represented by such a Iist of transition is a possible model

hehavior [2].

The set of possible behaviors of a model forms the model's state graph. The nodes are the

reachable states and the arcs are the fireable transitions. It is a graph and Dot a tree, as two

different behaviors cao lead to the same state [2].

23

•

•

•

3.4. ObjectGeode Simulator

3.4.1. Simulation Mode

For ObjectGeode simulator, random simulation and exhaustive simulation are two

automatic simulation modes as described below:

• Random simulation: this simulation mode automatically fires a series of transitions at

random. Random transition selected by the SOL simulator is a uniform choice in the

list of ail fueable transitions of all processes: ail the fueable transitions have the same

probability [2]. This simulation mode has a little relation with the thesis topic due to

its uncenainty and we do not give its detail here.

• Exhaustive simulation: During exhaustive simulation~ the simulator creates the state

graph of the SOL model according to fireable transitions. The simulator can

exhaustively traverse the state graph in breadth first mode~ depth first mode [2].

Exhaustive simulation, if it succeeds~ provides 100% state coverage of state graph, while

random simulation does note

During simulation~ ObjectGeode can find following errors in the system specification [2]:

• Deadlocks.

• Livelocks.

• Dead code: The parts of the model that are never executed (corresPOnding to behavior

types that can never be activated and that are useless or that are a result of a modeling

error).

• Signalloss: Unexpected sign.aI inputs resulting in signalloss.

• Queue overflow.

• Oynamic errors~ or '6exception~~: type overt1ows~ limits of an array exceeded~ illegal

output~ non-existent answers to a decision~ process stopping errors, assertions

violation, etc.

To detect these errors~ stop ~onditionor observer should he defined in the simulator.

24

•

•

An example of deadlock and livelock is given in Figure 3.5. Each circle represents a

global state reachable in the SDL mode!. Since no transition is fireable from S2, the

model is in a deadlock. This situation may correspond to a serious error or may have been

created on purpose by the designer. If the model bas reached state S3, it can no longer

leave the livelock containing states S3, S4 and SS. Such a behavior is difficult to detect

because the system continues to fonction (1ivelock may contain thousands of scenarios)

but in degraded mode (it can not retum to the heginning state). Livelock may he a serious

error or intentional.

Figure 3.5 Deadlock and Livelock

•

For an SDL system under simulation without stop condition and observer, the simulation

will end when all fireable transitions are îued and lead to deadlocks. Then the state graph

can he dumped out in a file, as shown in Figure 1.1, for further analysis. Exhaustive

simulation guarantees the generation of states for aIl possible scenarios.

3.4.2. Simulation Concepts

3.4.2.1. Basic Concepts

Simulation is done in simulation steps. A simulation step is started by actions that change

the state from one to another. These actions step are comPOsed of smaller execution steps.

2S

•

•

•

The smallest execution step handled by the SDL Simulator is the elementary transition,

Le. instruction sequences located hetween one declared or intennediate state and another

declared or intermediate state [2].

The following actions can modify the current state of the model:

• Fire executes a transition.

• Wait makes time progresse

• Let modifies a variable.

• Creste creates a process instance.

• Stop deletes a process instance.

• Output outputs a signal.

The execution of any of the commands above forms a simulation step. Other commands,

such as go, execute severa! simulation steps in sequence [2].

A simulation step is composed of the following operations [2]:

• Execution of the command that changes the current model state: if a dynamic error

occurs, the model is left in the exception state.

• Updating coverage tables.

• Updating SOL time and internai variables such as, step number (NOW and STEP).

• Log of events.

• Computing the list of fireable transitions.

• Taking filtering conditions into account, to reduce the transition liste

• Taking stop condition into account.

The simulator always knows the Iist of the simulation steps that led from the initial state

to the current state, it is the current scenario [2]. After each simulation step, deadlock

condition, exception, livelock, stop condition and/or observer etc., will he evaluated and

if satisfied, the current scenario will he saved in file corresponding to these conditions.

3.4.2.2. Exhaustive simulation in ObjectGeode

Different exploration modes are available in exhaustive simulation [2]:

26

••

•

• Breadth first exploration. If the state graph is explored in breadth flISt mode, then the

simulator fues ail the transitions al a given level before passing to the level below.

This simulation will produce a minimal length scenario.

• Depth first exploration. If the state graph is explored in depth first mode, the

simulator will fire ail the transitions at the uleftmost" path before passing to the path

in the right.

• Supertrace. This is a variant of depth fust mode in which exploration is usually not

exhaustive, but is less demanding on processing and memory.

• Liveness. This mode cao detect endless loops and can check Iiveness pr0Perties.

For state graph generation, both breadth fll'St mode and depth fll'St mode are applicable

since they make no difference in the state graph.

Example. This example illustrates the simulation of an SOL system, how the simulator

explores tbis system in an exhaustive way and what astate graph is.

System A

Black A

•

(Process 1)- Channel 1 (Process 2

-----[:.] [tf

Figure 2.6 System A

27

]

• Figure 2.6 is the SDL system used in tbis example. SDL processes are shown in Figure

3.7. The EFSM models of each process are given in Figure 3.8:

op
<Iru e >

sxw

(PTocess 1 in System A)

•

(PTocess 2 ill S,stem A)

Figure 3.7 Process 1 and Process 2 in System A

•
28

•

•

•

s It, n:=O

(State Graph ofEFSM ofProcess 1 ofSystem S)

z/x

z/s

t/w

(State Graph ofEFSM ofProcess 2 ofSystem S)

Figure 3.8 State Graphs of Process 1 and 2 of System A

29

• Every global state cao he represented as shawn in Figure 3.9. During exhaustive

simulation, the simulator creates the state graph as shawn in Figure 3.10.

VaIue of Variables in Process 1

Value of Variables in Process 2

Content of Incoming
Queue of Process 2

x

m=1

Name of State in Process 2

Content of Incoming Queue of Process 1

so

Name of State in Process 1

Number of Global States

k

•
Figure 3.9 Syntax of Global State

•
30

•

•

•

li n=O

Ir start slart

~ , l
li- sO n=O start ~r- start n=O s5

• J
lL si n=O 1- sO n=O s5slart

k

~,l

lL sI n=O sS
k

(lnitialization)--- ~--~--------------------~-~--------~--
~ , (Communication Stage)

--.j 7 si n=O s3;=.-

~ ,.
lt s2 n=O s3

1

, ,

lL s2 n=O s4
w

Ü'

l!!.. sI n=O s4
z

, ,

r si n=O s3 Tsi n=O s3
x s

31

• ~~

~ ,
l!!-. s2 n=1 s3

t

"l'

t~ s2 n=1 s4
w

".

~ si n=1 s3
x

ü

L~4- s2 n=1 s3
y

,,
LI~ sI n=1 s3

,
llJ- s2 n=1 s4

Z

•
s] n=1

s
s3

•

•

Figure 3.10 State Graph of S

Each global state in the state graph of the example is numbered. The number shows the

order in which the graph is explored. This state graph cao he obtained by exhaustive

simulation in breadth first mode or depth first mode.

Note that in Figure 3.10 states 5, 6, 8 and 12 are visited several times but only one copy

exists respectively. That is to say, next time simulator detects a same state that has

already been generated, il will not explore transitions that have already been explored.

3.5. Summary

In this chapter, we first gave an introduction to SOL, Specification and Description

Language. When the user specifies a system by using SOL, the system can he simulated

with SOL simulator. Simulator can run in different simulation modes. Among them, the

Most imponant is exhaustive simulation, simulating in exhaustive simulation mode

explores all the possible scenarios which cao occur in real execution of the model and cao

he saved in astate graph dump file.

32

•

•

•

Chapter4

ces Generation with ObjectGeode Simulator

4.1. Relevant Work

Configuration Confmning Sequence is first defined in [5] and [12]. Il is a single

parameterized input sequence tbat can distinguisb the expected tail configuration from a

set of suspicious configurations.

The existence of ces has been studied in [5] and [12]. This problem can be transfonned

into the problem of configuration distingujshability. For more detail reader cao refer to

[5] or (12].

Generation of ces can be done in several ways. In [5] authors present an approach based

on the concept of udistinguishing machine". The problem authors are dealing with in

[5][12] can be stated as following:

Problem 1 [12]. Given an EFSM E, an Uexpected" configuration, a set of k sets of

suspicious configurations, each of which is represenled as a pair of state and partial

context, and an integer l, we are required to find an input sequence of length al most 1that

confirms the expected configuration in a maximal number of sets of configuration sets

(among given k sets). The sequence is called CCS.

A solution to tbis problem in previous chapters in term s of EFSM model has been

presented in [Part l, 12]. The basic idea of tbis solution is lo construct an EFSM (a

distinguishing machine) such that a desired CCS is a transfer sequence taking the

machine from the initial stale to a stale which indicates that a maximal number of

configuration sets is separated from the given configuration. Such a transfer sequence can

he' detennined using existing reachability methods and tools. In this solution, the global

configuration space of the EFSM has not always to be constructed, at the same lime, the

33

•

•

•

solution still requires an explicit representation of the whole slale space, which is

exponential in the number of suspicious configuration sets. The question arises whether

one can solve Problem 1 without explicitly constnlcting a distinguishing machine, as its

size may he prohibitively huge. The solution is to build a system of k+2 communicating

processes. One process is a given EFSM M (SDL spec) initialized in the expected

configuration, each of the k processes represents an EFSM projection [5] initialized in a

suspicious configuration and slightly modified to support communications with other

processes. In addition. a monitor is required to ensure ail the communications between

processes and to terminate communications when it is necessary [12].

Problem 2 [12]: Given an EFSM E, an Uexpected" configuration, a set of k sets of

configurations, each of which is represented as a pair of state and partial context, and an

integer l, we are required to find an input sequence of length at most l that confmns the

expected configuration in a given number of configuration sets.

Once a method for solving the Problem 2 is available, the initial problem can also he

solved using a dicholomy method as follows.

Algorithm 2.1 [12]. Dichotomy searcb.

Input. The EFSM, an Uexpected" configuration, a set of k sets of ususpicious"

configurations, and an integer 1.

Output. An input sequence ces.
1. imin:=l, imax:=k.

2. i:= imax•

3. If there exists a sequence of at most 1 symbols that separates the expected

configuration from i configuration sets, then do

imin:=i, i:=imax-[(imax- inùn)/2] else imax:=i, i:= imin+[(imax- imin)l2]

4. If imin< imaJh then go to 2.

5. Stop.

34

•

•

•

Here [x] denotes the integral part of x. Step 3 caUs for a method for Problem 2 explained

above [12].

In what follows. we discuss the approach for solving Problem 1 different from that in

[12].

4.2. ces Generating with Protocol Verification Tool

4.2.1. Minimal Separating Sequence

Minimal separating sequence is a separating sequence with sorne restrictions.

Definition 4.1: Given an EFSM machine M. configuration a and configuration b for M.

Parameterized input sequence X=X.X2••.xn is a separating sequence. x is a minimum

separating sequence if 'Vi<o~ (X.X2••.xj is not a separating sequence) .

Minimal separating sequences will he generated from state graph dump file by a post­

processing C++ program as explained in Figure 1.1. Then they are used as candidates

from whom CCS is selected. In practice we are ooly ioterested in configurations that are

l-distinguishable, so there is an upper limit 1 (0<1<00) for the length of minimal separating

sequences.

4.2.2. ces Generation

4.2.2.1. Distinguishing System

The method used for CCS generation is derived directly from Definition 1.7, 1.8 and 4.1.

According to these definitions, given an EFSM machine E, a &6expected" configuration c

and a ususpicious" configuration set C, a CCS is a separating sequence that cao separate c

from each configuration in set C. Thus the first step of ces generation is to find ail

separating sequences for each suspicious configuration in C. In the second step, CCS will

he selected among the separating sequences.

3S

•

•

•

Ta find aU separating sequences, we first constnlct an SDL system D. In D, there are

three processes P, S and M, bath P and S are derived from E. The major difference

between P and S is that they have different initial configurations. P starts from the

configuration that we want to confirm and S starts from a suspicious configuration.

Then we simulate D by using ObjectGeode simulator. During the simulation P and S

compare their inputs and outputs. If a discrepancy is found, D goes to a deadlock state

and the simulation along this path will he terminated, and a sPecific signal

USequenceFoundu will he produced. Simulator will explore all the paths with a given

length 1 and then dump out state graph in a file. This state graph contains all the

information about separating sequences.

After that a C++ post-processing program will he executed to extract all separating

sequences from the state graph and select a separating sequence as ces.

The SDL system D is called a distinguishing system in this thesis. The key point of

constructing D is how to detect discrepancy of inputs and outputs of P and S. The idea is

to add a comparison mecbanism ioto P and S, as described below.

Assume D is constructed to confmn configuration c from a set of configurations C. Let P

is derived from the EFSM E, with following changes:

1) P starts from the configuration c.

2) For every output action in E, P makes the same output. Theo it waits for a resume or

invalid message.

3) For every input action in E, P fmt outputs a message that requests an input, then waits

for the input feedhack:

• If the input feedhack is resume, then:

If the output received is the same as the original input in E. it continues the

next action.

If the output received is oot the same as the original input io E. then it outputs

a message called Sequencefound and then deadIocks.

36

•

•

•

• If the input feedhack is invalid. then:

If the output is the same as the original input in E, then it outputs a

Sequencefound message and then deadlocks.

If the output is not the same as the original input in E, then it outputs a

message caUed TwolnvalidSignals and then deadlocks.

Let S he the same as the original EFSM E, except for the following changes:

1) S starts from a set of suspicious configurations C.

2) For every output action in E, input tbis message fmt. If the input message is the same

as the message to he output in E, output a signal called resume, then continue the next

action; else output a signal called invalid and deadlock.

3) For every input action in E, input a message. If the input message is one of the

original inputs of E, then output a resume signal and continue the next action. At the

same time input all other messages and output an invalid signal, and then continue

waiting for the correct input in the same state.

4) The timeout signal is processed the same way as ordinary input message.

Finally, let M he an EFSM machine communicating with P and S. M performs the

following actions:

1) Set a simulation depth counter. When simulation goes beyond the upPer limit 1, M will

he deadlocked, the simulation among tbis path will he stopped.

2) When an output from Pis received, M passes the message to Sand wait for a signal

(resume or invalid) from S. When it receives a message from S, M passes the message

to P.

3) After receiving a resume or invaUd from S, M send the same message to P.

4) Signal TwolnvalidSignals will he discarded.

The above modifications are represented in CSP (Communicating Sequential Processes

[10]) as shown in Table 4.1. The following is a brief explanation of some CSP operators

[10]:

37

•

•

•

• Process operator

Q!x- on channel Q output (value of) x.

Q?x - from channel Q input to x.

AIIB - process A in parallel with process B.

a~B - a then B.

(a~A 1b~B) - a then A choice b then Q (provided a ~ b).

P sat S-(process) P satisfies (specification) S.

• Logic operator

A =B- A equals ta B.

A::::>B - if A then B.

-,J'-not P (P is not true).
• Set operator

AuB-A union B.

AflB-A intersect B.

A-B- A minus B.

Assume E;nplIl is the set of all possible input messages in E., k(xi ..-xn) is a parameterized

signal., where k and Xlt.•• ., Xn are constants., resume., invalid and SequenceFound are all

constant signals., msg(PI ...Pn) are parameterized signal variable., then,

• Gis a channel connecting environment in E;

• Qp stands for the channel conn~ctingprocess M and P;

• Qs for the channel connecting S and M;

• K=G!k{XI ...xn); where k and Xl.,•••., Xn are constants.

• L=G?msg(PI···Pn);

• P(K)=Qp!k(XI ...xn)~Qp?x~

if (x=invalid) then Qp!SequenceFound;

• S(K)=Q.r?msg(PI···Pn)~

if(msg =k) then

(if (PI=XIA••• I\fJn=xn>then (Qs!resume)

else (Qs!invalid)

else (Qs!invalid);

38

•

•

• M(K)=(Qp?msg(PI···Pn)~

if{msg =resume) then (Qs!resume)

else (if{msg = invalid) tben (Qp !invalid)

else (Qs!msg(PI ...Pn»);

• Let PA=(Qp!k(XI ...xn)~(Qp?X)~

if(x =invaliti) then Qp!SequenceFound)

Let PB=(Qp !msg2(p' ...Pn)--+(Qp?x)~

if(x =resume) then Qp!SequenceFound);

Where msg2(p1 ...Pn} e Einpur msg(p' ...Pn);

Theo P(L}=PA Il PB;

• S(L)=Qs?msg(PI.··Pn)~

if(msg =k) then

(if (P,=XI 1\..• APn=Xn) then (Qs!resume)

else (Qs !invaliti)

else (Qs!invalid);

• M(L)=(Qp?msg{PI.'.Pn)~

if(msg = resume) then (Qs!resume)

else (if(msg =invalid) tben (Qp!invalid)

else (Qs!msg(p' ...Pn»);

Original

Action inE Action inP Action in S Action inM

Output K=G!k(XI ...xn) P(K) S(K) M(K)

Input L=G?msg(p'···Pn)~ P(L) Sel) M(L)

If(msg=k) tben L •

Dermition 4.2: An SDL system is called a distinguishing system ofthe EFSM model E if

il is derived from E by following the instructions described in Table 4.1.•
Table 4.1 Modification of original actions in M using CSP description

39

•

•

•

D will generate a 5equenceFound signal if P generates some 1/0 sequences thal cannot he

reproduced by 59 and this makes the finding of separating sequence possible. The reason

for this statement is described informally as follows:

1) If S cannat generate the same output as P 9 it sends out the message invalid to P. If 5

can generate the same output message as P, 5 will send the message resume back to P

and go to a next state. ACter M transfers tbis message from S ta P 9 P will check the

input and decide what to do next. If it is the message invalid9then P will send out the

message Sequencefound and a minimal separating sequence is found. If the input

message is the message resume9then the message output by Pis same as the message

input by S. P will continue execution.

2) If P and Sare waiting for the different inputs, then there are two cases:

• If the message received is the one that is expected by P but not by 59 then S will send

out the message invalid and then go blocked. P9after receiving the message invalid9

will send out the message 5equencefound indicating that a minimal separating

sequence is found.

• If the message received is the one that is expected by S but not by P, P will send this

message to 5 through M and then wait for the message resume to he sent back by S. P 9

after receiving this message resume, will send out the message Sequencefound

indicating thal a minimal separating sequence is found.

3) IfSand P are waiting for the same input9 then there are two cases:

• If the message input is the one expected by P and by 59 S will send the resume signal

back to P. Upon receipt of this resume signal9 P will continue execution of simulation.

• If the message input is the one expected by P and by S9 S will send the invalid signal

back to P. Upon receiving this invalid signal9 P will release a Twolnvalid5ignals

message and continue execution trying to find a longer separating sequence.

The interaction among M9 P and S is shown in Figure 4.2. Figure 4.2(a) illustrates the

case when E is waiting for sorne input other than msg. According to the action in Table

4.29P sends out ail possible inputs including msg. M passes msg to S. If msg is the signal

S wants9 then S will seod an resume back. M passes resume to P. Since receipt of the

40

• message resume indicates msg is been accepted by S, it sends out a message

SequenceFound. Figure 4.2(b) illustrates the case when E outputs msg. P sends a signal

msg to M, M passes il to S. If msg is not a message that S intends to output, S will send an

invalid back. M passes invalid to P. When the message invalid is received, P judges that

the signal is not wanted by S, so P sends out a SequenceFound. Figure 4.2(c) corresponds

to an input not acceptable in both states of E. Finally TwolnvalidSignals will he issued by

P.

PM S PM S PM S

•
(a>

Figure 4.2

(b)

MSC for ces Generation

Two·
In1'tllid­
Signais

(c)

•

Finally we note that to find a ces for the set C of suspicious configurations, we have to

construct, strictly speaking, ICl =k distinguishing systems. These systems differ in the

initial configuration of the S module, therefore, in fact, we cao always use just a single

system, and ObjectGeode will nondeterministically initialize the system in ail possible

initial global states.

41

•

•

•

4.2.2.2. Extension to Depth First Search

Mter astate graph has been generated, we will enhance a traditional depth flfSt search, as

described, for example, in [Il] to find all separating sequences. Compared to the Depth

First Searching Mode in ObjectGeode simulator, which does not explore the global states

that have been explored, the Depth Ficst Search after enhancement will explore ail global

states that have been visited. The algorithm for it is defined in pseudo-code as follows:

The dump state graph consists from the set of ail nodes U, and the set of edges V, each

edge is a triple (u, u', a), where u and u' are nodes and a is a label (message).

Here we present an algorithm that finds all the paths in the graph that end with an edge

with the SequenceFound label.

Aigoritbm [4.1]:

Input: V; 1 - the upper limit; Einp",; Uo - start node.

Output: a set of minimal separating sequences.

Main()

EDFS(uo.E)

EDFS(u. x)

if1x t E;np",1 ~ 1 then

foreach (u, u', a) E V

if (a = SequenceFound) then priat x t Einpll,

else EDFS(u', xa)

endif

endfor

endif

E is an empty string, x t E;npII' is obtained from x by deleting sYmbols not from E inpu,.

42

•

•

•

The syntax of state graph dump flle cao he found in Chapter 5 of [2]. The code of

Algorithm 4.1 can he found in Appendix C, and here is a brief explaoation of the code:

Class TREE: is the data structure stores the node of state graphe

C%r. is an array used to mark the visited node in the state graphe

ConstructAdjList: is the function used to construct adjacent Iist.

EDFS: is the function used to explore the paths in dumped state graphe

GetMSS: is the function to find minimal separating sequences.

FindCCS: is the function to find CCS among minimal separating sequences.

PrintMSS: is the function to print out all minimal separating sequences.

In the PrintMSS, a filter has been set to filter out the output signals of P. Leave the

remainder to be pure input signal sequence, which is minimal separating sequences.

4.2.2.3. Selecting CCS from Minimal Separating Sequences

For configuration e and the set C of all given suspicious configurations, if there is a

common separating sequence x for c and every configuration pair(c, c'), where e'e C,

then x is a ces. This thesis deals with only this case, the code for this selection is

function FindCCS in Appendix C. Otherwise, we may decide to find a minimum number

of separating sequences that take together separate the expected configuration from a

maximum number of suspicious configurations. To this end one cao use algorithms for

solving the classical set coyer problem. In this thesis, however, will simply indicate that

no ces exists in this case.

4.2.3. Correctness of ces Generation Aigorithm

Here we prove correctness of the method for restricted class of plain SDL processes that

always have a necessary output on the transitions (branches). However, according the

SDL semantics and practice, inputs, that are not declared in a particular state defines

transitions without outputs. We assume that such ··silent" outputs can he observed during

the testing.

43

•

•

•

Here we use next notations, borrowed from [10]:

.rIA is restriction to the alphabet A;

s!G is a sequence of events (trace) on communication channel G.

Now we show tbat all the separating sequences cao he obtained by restriction on Einpul of

traces ended with signal SequenceFound.

For simplicity consider the case when C is a singleton, and the process M is eliminated

for the sake of simplicity.

Proposition 4.1: A trace is corresponds to deadlock in PliS if and ooly if it ended with

SequenceFound.

Proposition 4.2: Let (Si, Vi) and (Sj, Vj) he two configurations, x is a minimal separating

sequence for (Si, Vi), (Sj, Vj) if and only if 3 trace E traces(P,{vi) Il Sj(vj».(trace[#trace] =

SequenceFound A trace t Einpul = x.

Proof: We prove this by induction.

1) Base of induction: for 1xl = 1 statement holds clearly from definition.

2) Step of induction. Let the proposition holds for all x of length r. We will show that

proposition holds for aIl the sequences of length r + 1.

Necessity: Let x = ax' is a minimal separating sequence, a E Einpul, x'E E;npu1r. a is not a

separating sequence. This means there exists trace lof (P Il S) such that trace 1rE;npul =a.

Let (s;', v;') is a-successor of the (S;, Vi) and that of (Sj, Vj) is (S/' vi), then byassumption

of the step of math induction, there is such trace2 E traces(P;'(v;') Il S/(v/» that the last

signal of trace2 is SequenceFound and trace2 r E;npIII =x'. (restriction on E;npul is equal to

x'). By definition of distinguishing system, there is such trace 1 of (P;'(v;') Il S/(v/» that

trace 1 r Einpul = a. Hence, trace1 A trace2 r Einplll = x and the last signal in trace1 A trace2

is the SequenceFound sumbol. Necessity is proven.

44

•

•

•

Sufticiency: Let trace E (P;'(v;') Il S/(v/» such that the lasl element is equal 10

SequenceFound and restriction of the trace on Einput is sequal to x E Einpllh Let x =ax',

where a E Einpllh x'E E;npllt is a-suceessor [7] of (Si, Vi) and x-successor of (Sj, Vj) is (S/'

v/). By definition of the distinguishing system, there is a trace!. trace2 such that trace 1 A

trace2 = trace, tracet t Einpul = a, tracet t EinpllI =x'. Hence, Irace2 E traces{P;'(v;') Il

S/(v/».

From the main assumption of the step of induction x' is a minimal separating sequence

for guarantee (s;', v;') and (s/' v/le Hence ax' is a separating sequence for (Si, Ci) and (Sb

Cj). From Proposition 4.1, it is a minimal separating sequence.

45

•

•

•

ChapterS

Generating ces for INRES protocol

S.I. Distinguishing System for INRES Protocol

The INRES protocol, Initiator-Responder protocol, is an ~bridged version of the

Abracadabra protocol used for academic studies and illustrative purposes. It is a

connection-oriented, asymmetrical communication protocol featuring Many OSI concepts

[6].

To demonstrate our approach, in this thesis a part of INRES protocol, Responder process,

has been transformed inta a distinguishing system D. Dis shown in Figures 5.1, 5.2, 5.3

and 5.4. This distinguishing system is built to confirm configuration c = (Connect;

number=un) from a set C of configurations (Slt S2, S3, S4), where SI = (Wait; number=un),

S2 = (Wait; number=zero), S3 = (Disconnected; number=zero) and S4 = (Connected;

number=zero). Figure 5.1 shows the original EFSM model for Process Responder (P') in

INRES. Figure 5.2 shows a part of primary EFSM P (transition between state

Disconnected to Wait) modified from the original machine P' with the configuration c.

Figure 5.3 shows a part of the secondary EFSM S (transition between state Disconnected

to Wait) modified from the original machine P' with the configuration set C. Monitor M

is presented in Figure 5.4.

In Figure 5.1, 5.2, 5.3 and 5.4, D stands for state Disconnected in original EFSM model

E, W stands for state Wait in E, C for Connected in E. Other states are new ones for the

distinguishing system.

46

• IDISreq 1 DR

CR IICONind

CR IICONind

DT(Num.d).
Num~succ{Number)/AK{Num)

DT{Num.d), Num=succ{Number) IIDATind(d);
AK{Num). Number:=succ{Number)

Fipre S.l EFSM Mode. of INRES

•

• Figure 5.2 Process P in Distinguishing System

41

•

•

•

Appendix B presents the SOL description of process P of the distinguishing system. Mere

we give its state transition graph in Figure 5.2, where D stands for state Disconnected in P

as shown in Appendix B, DO for state Disconnected_O, Dl for Disconnected_l, DOl for

Disconnected_O_I, C for Connected, CO for Connected_O, CI for Connected_l, C2 for

Connected_2, COI for Connected_O_l, C02 for Connected_O_2, COli for

Connected_O_l_l, C02l for Connected_O_2_1, C03 for Connected_O_3, CIl for

Connected_l_l, W for Wait, WO for Wait_O, Wl for Wait_l, W2 for Wait_2, WOI for

Wait_O_I, W02 for Wait_O_2. Here X stands for deadlock. There should he ooly one X in

Figure 5.2, we have several of them for convenience. Start node in Figure 5.2 stands for

the start state of process P.

Transitions of process P in the distinguishing system are defined as following:

I(Start~D), stands for the transition (Start~ D);

1(04DO), stands for the transition (0 -/CR ~ 00);

I(D~Dl)l, for the transition (O-IICONresp~ DI);

1(04Dl)2, for the transition (0 -IIDISreq ~ Dl);

1(0~Dl)3, for the transition (0 -IDT(Num,d), Num:=un, d:=FALSE ~ Dl);

1(04Dl)4, for the transition (O-IDT(Num,d), Num:=un, d:=TRUE 4 Dl);

1(0401)5, for the transition (O-IDT(Num,d), Num:=zero, d:=FALSE~ Dl);

1(0401)6, for the transition (O-IDT(Num,d), Num:=zero, d:=FALSE 4 Dl);

1(DO~DOI),for (DO-resumelICONind~ DOl);

1(D04DEADLOCK), for (DO - invalidiSequenceFound~ OEADLOCK);

I(DOl~W), for (DOI-resumelWait~ W);

t(DOl~DEADLOCK),for(DOl-invalidiSequenceFound ~ OEADLOCK);

1(01~D), for (D1- invalidlfwoInvalidSignais ~ D);

t(O 1~DEADLOCK), for (Dl - resumlSequenceFound 4 DEADLOCK);

t(C~CO)I, for (C-trueIDT(Num, d), Num:=un, d:=FALSE ~ CO);

I(C~CO)2, for (C - trueIDT(Num, d), Num:=un, d:=TRUE ~ CO);

I(C4CO)3, for (C - trueIDT(Num, d), Num:=zero, d:=FALSE ~ CO);

I(C~CO)4, for (C - trueIDT(Num, d), Num:=zero, d:=TRUE ~ CO);

t(C~CI), for (C-/CR~ Cl);

48

•

•

•

t(C-+C2)1
, for (C -nCONresp~ C2),

t(C-+C2)2, for (C -IIDISreq~ C2);

t(CO-+COl), for (C-resume, Num~ucc(Number)1~ COl);

t(CO-+C02) , for (C - resume, Num=succ(Number)1~ C02);

t(COl~COll), for (COI-/AK(Num) ~ COll);

t(CO-+DEADLOCK) , for (C - invalidlSequenceFound~ DEADLOCK);

t(C l-+C Il), for (C 1- resumelICONind ~C11);

t(Cl-+DEADLOCK), for (CI-invalidlSequenceFound ~DEADLOCK);

t(Cll-+C), for (Cll-resume/ ~C);

t(Cll-+Cll), for (CIl- invalidlSequenceFound -+CIl);

t(C2-+DEADLOCK), for (C2 - resumelSequenceFound -+ DEADLOCK);

t(C2-+C), for (C2 - invalidffwoInvaiidSignals ~ Cl;

t(COl-+COll), for (COI-/AK(Num) -+ COll);

t(C02-+C02l), for (C02 -IIDATind(d) ~ C021);

t(CIl-+C), for (Cll- resume/-+ Cl;

t(C Il~DEADLOCK),for (CIl - invalidlSequenceFound~ DEADLOCK);

t(COll-+C), for (COll - resume/-+ Cl;

t(COII~DEADLOCK), for (COII - invalidlSequenceFound -+ DEADLOCK);

t(C021~C03), for (C021-resumelAK(Num) -+ C03),

t(C021-+DEADLOCK), for (C021 - invalidlSequenceFound -+ DEADLOCK);

t(C03~C), for (C03 - resume/, Number:=succ(Number) -+ Cl,

t(C03-+DEADLOCK), for (C021 - invalidlSequenceFound -+ DEADLOCK);

t(W-+WO), for (W-ICONrespl~ WO);

t(W-+Wl), for (W-IDISreql~Wl);

t(W-+W2)1, for (W-IDT(Num,d), Num:=un, d:= FALSE -+ W2);

1(W-+W2l, for (W-IDT(Num,d), Num:=un, d:= TRUE -+ W2);

t(W-+W2)3, for (W-IDT(Num,d), Num:=zero, d:= FALSE -+ W2);

1(W-+W2)4, for (W -IDT(Num,d), Num:=zero, d:= TRUE -+ W2);

1(W-+W2)s, for (W -/CR -+ W2);

t(WO-+WOl), for (WO-resumelCC, Number:=zero -+ WOI);

49

•

•

•

t(WO~DEADLOCK)9 for (WO - invalidiSequenceFound ~ DEADLOCK);

t(WO I-+C), for (WO1- resumel -+ Cl;

t(WOI-+DEADLOCK), for (WOI-invalidiSequenceFound -+ DEAOLOCK);

t(WI~WII), for (WI-resume/CR -+ WIl);

t(W 1~DEADLOCK), for (W 1- invalidlSequenceFound~ DEADLOCK);

t(W 11-+0), for (Wll - resumel -+ D);

t(W II-+DEADLOCK}, for (WII - invalidlSequenceFound~ DEAOLOCK);

t(W2~W), for (W2 - resumelfwoInvaiidSignals ~ W),

t(W2~DEADLOCK)9for (W2 - invalidiSequenceFound ~ DEADLOCK);

Figure 5.3 EFSM S in Distinguishing System

Appendix B also provides the SDL description of process S, In Figure 5.3 is the state

graph of S, where aa stands for the state aa in Appendix B, D stands for Disconnected, W

for Wait, C for Connected9 DO for Connected_O, WII for Wait_I_I, WOI for Wait_O_I,

COI for Connected_O_I, C02 for Connected_O_2, CIO for Connected_I_O. X and Start

node in Figure 5.3 have the same meanings as those in Figure 5.2.

50

•

•

•

Transitions in S are as following:

I(Stan~aa), stands for the transition (Stan~ aa);

l(aa~D), for the transition (aa-/S3, Number:=zero -+ D);

t(aa~W)I, for (aa-/S2, Number:=zero~ W);

t(aa~W)2, for (aa-/Sl, Number:=un ~ W);

t(aa~C), for (aa-/S4, Number:=zero ~ Cl;

I(D~DO), for (0 - CR/resume -+ DO);

t(O~D)I, for (D-ICONresp/invalid~ D);

t(D~D)2, for (D-IDISreq/invalid~ D);

1(D~D)3, for (D-OT(Num,d)/invalid~ D);

I(DO~D), for (DO - ICONindlresume ~ D);

t(DO~DEADLOCK), for (DO - */invalid~ DEADLOCK);

I(C~COl),for (C - DT(Num,d), Num~ucc(Number)/resume,-+ COl),

I(C~C02), for (C - DT(Num,d), Num=succ(Number)/resume, -+ C02);

t(C-+CIO), for (C-CR/resume -+ CIO);

t(C-+C), for (C - IDISreq/invalid -+ Cl;

t(CO1~C), for (CO1- AK(Num)/resume ~ Cl;

t(COl~DEADLOCK),for (COI-*/invalid -+ DEADLOCK);

t(C02~C),for (C02 - AK(Num)/resume, Number:=succ(Number) -+ Cl;

I(C02~DEADLOCK),for (DO - */invalid~ DEADLOCK);

I(ClO~C), for (DO-ICONindlresume ~ D);

t(Cl~DEADLOCK), for (DO- ICONindlinvalid -+ DEADLOCK);

t(W~WO1), for (W - ICONresp/resume, Number:=zero -+ WO1);

t(W-+WII), for (W - IDISreq/resume ~W Il);

t(W~W)lt for {W-CRlinvalid -+ W);

t(W~W)2, for (W - DT(Num,d)/invalid~ W);

t(WO1~C)t for (WO1- CC/resume ~ Cl;

t(WO1~DEADLOCK), for (WO1- */invalid~ DEADLOCK);

t(W11~D)t for (WIl - DR/resume -+ D);

51

•

•

•

t(Wll~DEADLOCK), for (Wll- */invalid -+ DEADLOCK);

Figure 5.4 is the state graph of Process Monitor in the distinguishing system.

SequenceFound 1

Figure 5.4 EFSM M in Distinguisbing System

5.2. Results (CeS) and Analysis

The distinguishing system D is built to find cess which cao confirm the configuration c

in the set C ofconfigurations, where:

c =Connected(number =un)

C = { SI. Sl. SJ. S4}, in which,

SI =Wait(number = un)

Sl =Wait(number = zero)

SJ = Disconnected(number = zero)

S4 =Connected(number =zero)

52

•

•

•

From the distinguishing systems, where the process S has to he initialized in four different

configurations.

Exhaustive simulation of D in Breadth First Mode with an upper hound set to 4 by using

ObjectGeode simulator, the state graph will he generated and dumped ioto a file. Then we

ron post-processing program (set the upper hound of state number tbat will he searched

along a path to 1000, tbis cao he adjusted by the user) on the dump file and get all

minimum separating sequences (total 118 sequences). Finally, we find 4 cess, tbey are:

DT(un, true), DT(un,false), DT(zero, true) and DT(zero,false).

The specification of the distinguishing system D of the Responder process in INRES

protocol, post-processing program and minimal separating sequences found are given in

Appendix B, C and D, respectively.

S3

•

•

•

Chapter6

Conclusion and Future Work

In this thesis the ces generation problem has been analyzed and an approach to generate

ces for the configurations of a given SOL specification by using ObjectGeode simulator

is presented. The main point is the exhaustive simulation provided by this tool. The

correctness of the approach shown in Figure 2.1 is demonstrated on INRES protocol. The

advantage of this approach is that a commercial tool cao he used to solve the problem.

Future work is to automate the process of constructing a distinguishing system.

54

•

•

•

References

[1] C J. Wang, etc., "Protaco] Validation Tools as Test Case Generators", Ohio State

University, 1994

[2] Verilog Company, "ObjectGeode SDL Simulator Reference Manual, Version 3.2",

France, 1997

[3] Verilog Company, "ObjectGeode Tutorial", France, 1997

[4] D. Lee & M. Yannakakis, "Principles and Methods of Testing Finite State Machines­

A Survey", Bell Lab, 1996

[5] A. Petrenko, S. Boroday, R. Groz, "Confinnïng configurations in EFSM", CRIM,

1999

[6] K.J.Tumer, "Using Formai Description Techniques", John Wiley & Sons, 1993

[7] A. Gill, "Introduction to the Theory of Finite State Machine", McGraw-Hill, 1962

[8] G. J. Holzmano, "Design and Validation of Computer Protocols", Prentice Hall

Software Series, 1991

[9] Verilog Company, ObjectGeode On-Iioe Help Documents

[10] C.A.R.Hoare, "Communicating sequential Pracesses", Prentice-Hall, 1985

[Il] T.H.Corman, etc. "Introduction to a1gorithms", The MIT Press, 1997

[12] A. Petrenko, S. Boroday, "Final Report of the project VERA", CRIM, JuIy, 1999

[13] ITU, "Z.I00 Standard", 1992

[14] RJ.Linn, etc., Ïmprovements on mo Sequence Generation and Partial UIO

Sequence", IFIP 1992, Elsevier Science Publisher B.V., 1992

[15] O.Monkewich, "SDL-based Specification and Testing Strategy for Communication

Network Protocol", Elsevier Science B.V., 1999

[16] A.Kerbrat, etc., "Automated test generation from SDL specifications'\ Elsevier

Science B.V., 1999

[17] ETSI, "Use of SDL io European Telecommunications Standards - mIes for

testability and facilitating validation", ETS 300 414, 1995

[18] A.Cavalli, etc., "Test generation for the SSCOP-ATM networks protocol",

Proceeding of SDL forum'97, Elsevier Science, 1997

55

•

•

•

[19] ITU-T Recommendation Q.2110, ATM Adaption Layer-Service Speicific

Connection Oriented Protocol (SSCOP), 1994

[20] D.Tasak, ~~Specification and validation of Q.2931 ATM signaling protacol using

esteUe", Master thesis, 1997

[21] I.L.Peterson, UNet theory and the modeling of systems", Prentice-Haii inc., 1981

[22] S.I.Hong. UExistence Algorithms for SynchronizinglDistinguishing Sequences",

IEEE Transactions on Computer, Vol. C-30, No.3. March 1991

56

e·

e

e

AppendixA

INRES Protocol Responder Process In SDL

• • •
1Responder 1 l...s_at_JU_I_17_0_4:_0S_:3_7_19_9_9 _

PA Declaration

v Ihome/poirotlzjhulinreslinresprAnres.org.pr View: 21 Page: 2

•

•

•

AppendixB

Distinguishing System of INRES Protocol

Responder Process

InSDL

•
DistlngulshlngSystem

sySfem OfstinguishlngSyslem
newtype Sequencenuriibir
Iherals zero,un
operators
suce: Sequencenumber - > Sequencenumber
llioms
succ(un)==zero;
succ(zero)=un;
endnewtype Sequencenumber;

--a

•
Sfgnll
resume,
Invalld,
TwolnvalldSlgnals,
SequenceFound,
CC,
CA,
DA.
DT(Sequencenumber, Boolesn),
,AK(Sequencenumber),
ICONresp,
ICONlnd,
ICONlnd,
IDISreq,
IDATlnd(Boolean);

D

•
Sat Jul17 04:05:37 1999

newtype It"UUTyp
Iherals CR, CC; DR, DT, AK
endnewtype IPDUTyp;

newtype MSDUTyp
struet
Id IPDUTyp;
Num Sequencenumber;
Data BOOLEAN;
endnewtype MSDUTyp;

.
CC,
CR,

Il ,
DR, CC,
DT, CR,
AK, DR,
ICONind, DT,
/CONresp, AK,
IDISreq, ICONind,
/DATind, ICONresp,
Two/nvalidSigna/s, ID/Sreq,

~esmne~ s~enceFoUnd, [/llsume~ IDATind,
/nvalld Ch1 /C Nind /nva/Id Ch2 ./CONind•....

P
Monitor

..... .. S

~ Ihome/polrotlzjhulinresltestCCS.pr Vlew: 21 Page: 2

• • •
1p 1 1....88_t_JU_11_7_04_:0_5:3_7_19_9_9 _

.blOCkP

Iink1
~

-...- [,
p

~ CC resume
CR Inva/~ ...
DR
DT
AK

/CONind
/CONresp

IDISreq
IDATind

Twolnvalicls~nals
Sequence ound

10
ICONinc

v Ihome/polrotlzjhullnresitestCCS.pr Vlew: 21 Page: 2

• • •
Ip 1 II-S8_t_JU_11_7_04_:0_S._,37_1_99_9 _

IProcess
..Idë-.I--------b
dBOOLEAN,
Num, Number Sequencenumber;

Nurrber:=un

[DISCOnneded)

(T~UE) (T~UE)-~~U~) (T~UE) (T~UE) (T~UE) (T~UE)

d:=TRUE

Num:=zero

d:=FALSE

Num:=zero

d:=TRUE

Num:=unNum:=un

Dlsconnected_111 Dlsconnected_1 J1Dlsconnected_1J 1Dlsconnected_1

y Ihome/poirotlzjhulinresitestCCS.pr View: 21 Page: 2

• • •
1p 1 I~sa_t_JU_11_7_04_:0_S:_37_1_99_9 _

v IhomelpolrotlzjhulinresitestCCS.pr Vlew: 21 Page: 3

Dlsconnected_O_1

• • •
1p 1 1_88_tJ_U_11_7_04_:05_:3_7_19_99 _

(Wah)

(T~UE) (T~UE) (T~UE r(T~UE) (~UE) (~UE)f~UE)

,
Num:=un Num:=un Num:=zero Num:=zero CR

J
1 1 1 1 ..., ,

d:=FALSE d:=TRUE d:=FALSE d:=TRUE t WaIL2
\ J

1 1 1 1 ,
DT(Num.d) DT(Num.d) DT(Num.d) DT(Num.d

J... .L, , , , ' , , ,
t Wan_2) t Wan_2) t Wan_2 1t WaIL2)
\ \ . j \ J \ j

y lhome/polrotlzjhulinresltestCCS.pr Vlew: 21 Page: 5

• • •
Ip 1 I...S8_t_JU_11_7_04_:0_S:_37_1_99_9 _

v) Ihomelpolrotlzlhulinres/testCCS.pr Vlew: 21 Page: 6

• • •
Ip 1 I....S8_t_JU_11_7_04_:0_S_:37_1_9_99 --

(eonneeted)

(T~UE) (T~E) (T~E) rT~UE) (T~UE) (T~UE) (T~UE)

,
Num:=un Num:=un Num:=zero Num:=zero CR

J
1 1 1 1 . aL, ,

d:=FALSE d:=TRUE d:=FALSE d:=TRUE IConnected_. \ J

1 1 1 1 ,
DT(Num,d) DT(Num,d) DT(Num,d) DT(Num,d

J
aL aL aL aL, , , , l ,

connected_~ tConnected_~ 1Connected_~ IConnectedj
\ \ \ J \

~ Ihome/polrotlzjhu/lnresitestCCS.pr Vlew: 21 Page: 8

• • •
1P 1 I_S8_t_JU_'1_7_04_:0_S:_37_1_99_9 _

(T~UE) (T~E)

Connected_1_1

y) IhOmelpolrollzjhjresltestccs.pr Vlew: 21 pr: 9

• • •
1p 1 II.....~a_t_JU_11_7_04_:0_S:3_7_19_9_9 _

v

Connected_O_2_1

IhomelpolrotlzjhulinresltestCCS.pr

Connected_O_3

Number:=succ(Number)

View: 21 Page: 12

• • •
1Monttor 1 l....sa_t_JU_I_17_0_4:_0S_:3_7_19_99 _

Ch1

blOCk Monitor

Iink1 Iink2... .. Monitor ~
..

r"" r' cd - . .
('esum~ (,esumeJ cc

Inval' CR Inva# CR
DR DR
DT D~
AK AK

ICONind ICONind
ICONresp ICONresp

IDISreq ID/Sreq
IDATind /DATind

TwolnvalidS~nals ICONim
Sequence ound il •

ICONin(.. .

Ch2

v Ihome/polrotlzjhu/inresitestCCS.pr View: 21 Page: 2

• • •
IMonn~ 1 I....S8_t_JU_l1_7_04_:0_S_:37_1_9_99 _

process Monitor

Ide' Q
dBOOLEAN,
Num, Nurmer Sequencenumber,
p integer,
depth integer;

v Ihome/polrotlzjhulinresltestCCS.pr

p:::O,
depth:=4

View: 21 Page: 2

• • •
IMon~or 1 1 ISI1 Jul '7 04:05:371999 ~.. 1 _

(1 !)) I*E) (TRUE) (FAlSE)

8*
(TFiUE) (FALSE) (TÀUE) (FAlSE)

8*8*

r:, j

v lhomeJpolrollz"ulinresl1estCCS.pr VIew: 21 Page: 5 '? lhomelpolrotlzjhulinresnes1CCS.pr

• • •
18 1 I_S8_tJ_U_11_7_04_:0_S:3_7_19_9_9 _

IblockS

,
1Iink2 Sr _"1 ..

..
CCj '-

~ ,
J'esum~~ CR/nva/id

DR81
D782
AK83

ICONind54
ICONresp

l In~1 ID/Sreq
/DATind

L ICONin~

_J1

v Ihome/poirotlzjhulinresltestCCS.pr Vlew: 51 Page: 12

• • •
18 1 l...sa_t_JU_11_7_04_:0_S_:37_1_9_99 _

process

dBOOLEAN,
Num Sequencenumber,
Number Sequencenumber;

Dlsconnected_O

Disconnected

v Ihome/polrotlzjhu/lnresitestCCS.pr Vlew: 61 Page: 13

• • •
15 1 11.-5a_t_JU_11_7_04_:0_S:3_7_19_9_9 _

v) Ihomelpolrollzjhulinres/testCCS.pr Ta/page: 14

• • •
18 1 I_S8_t_JU_11_7_04_:0_S_:37_1_9_99 _

Nurrber:=zero

v Ihome/polrotJzjhulinresltestCCS.pr View: 61 Page: 15

• • •
18 1 I_Sa_t_JU_11_7_04_:0_5:_37_1_9~_9 _

Connected_O_Connected_O_1

Connected

Connected_O_

Number:=succ(Number)

~ Ihomelpolrotlzjhu/inres/testCCS.pr Vlew: 61 Page: 16

•

•

•

Appendix C

Code For

Post-Processing Program

CCS.cpp: find Configuration Confirming Sequence
1) First, find out Minimal Separating Sequences.
2) Second, select Configuration Confirming Sequence

from Minimal Separating Sequences .•
//
//
//
//
//
///1
#include "ctype .h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"

1//////////1///1
// Construction/Destruction
//
1/ TREE is the data structure to save adjacent list of state graph.
///1

class TREE
{
public:

long NodeNumber;
char Msg[lOO] ;
TREE *pSibling;
TREE *pSon;

int clr;

•
public:

};

TREE();
TREE (long) ;
TREE{long, char*);
virtual -TREE();

TREE * find(long x);
TREE * addnew(long x) ;
void appendson(long X, char* msg) ;

TREE: : TREE ()
{

}

NodeNumber = -1;
strepy (Msg, "");
clr = 0;
pSibling = NULL;
pSon = NULL;

}•

TREE: : TREE (long x)
{

NodeNumber = X;
strepy (Msg 1 Il ") ;

clr = Oi
pSibling = NOLL;
pSon = HULL;

TREE::TREE(long X, char *strMsg)
{

NodeNumber ~ x;
strepy (Msg , strMsg);

TRBE: : -TRBE ()
{

}

• }

c1r = Oi
pSibling = NULL;
pSon = NULL;

TRBE* TREE::find(long x)
{

TREE "'pNode;

for(pNode = thisi pNode != NULL; pNode = pNode->pSibling)
if(pNode->NodeNumber == x) return pNode;

return NULL;
}

TREE* TREE:: addnew (long x)
{

TREE *pNode;

• }

pNode = this;
for(pNode = this; pNode->pSibling != NULL;

pNode = pNode->pSibling) ;
pNode->pSibling = new TREE(x);

return pNode->pSibling;

void TREE::appendson(long X, char* msg)
{

TREE *pNade;

int ConstructAdjList(char *fileName)
{•

}

FILE
TREE
char
int
long
char
int

int
long
void
int

pNode = this;
for(pNode = this; pNode->pSon != NULL;

pNode = pNode->pSon);
pNode->pSon = new TREE(x , msg);

*f;
*pRoot;
MSSes [1000] [200] ;
MSSptr = 0;

MAXDEPTH = SOL;
CCScand[lOOO] [200] ;
CCSptr = 0;

getline();
getnumber();
getMSS(char*) ;
addMSS(char*);

int
long
char

c;
X, y;
*msg;

•
TREE *Tnode;

msg = (char *)malloc(100) ;
f=fopen(fileName,"r") ;
if (f==NULL)
{

printf (lI\nerror! \n lt
) ;

return -1;
}
Tnode = new TREE();

}

while (getline () >0)
{

x = getnumber() ;
Tnode = pRoot->find(x);
if(Tnode == NULL) Tnode = pRoot->addnew(x) ;

y = getnumber() ;
getMSS (msg) ;
Tnode->appendson(y, msg);
strcpy(msg, "");

•
fclose(f)i
free (msg) ;
return 0;

}

int getline ()
{

int c;

while(l)
{

}

if({c=getc(f» == EOP) { c=O; break; }
ifCc!='$') continue;
else { C=1; break; }

return c;
}

long getnumber C)
{

int c, i;
char num[10] ;

c=getc(f) ;
for(i=O; isdigit(c); i++)
{

num[i] = c; c=getc(f);
}
num [i) = ' \ 0 ' ;

//printf(n\ngetnum: ts", num);
return atol(num);

}•
void getMSS(char *msg)
{

•
int c, i;
char *opd1, *opd2, *opd3, *opd4;
char *opd2l, *opd22, *opd23;
char *outpar;
long fLoc=OL;

opdl = (char*)malloc(SO*sizeof(char»;
opd2 = (char*)malloc(SOtsLzeof(char»;
opd3 = (char*)malloc(SO*sizeof(char»;
opd4 = (char*)malloc(SO*sizeof(char»;
opd2l = (char*)malloc(SO*sizeof(char)};
opd22 = (char*)malloc(SO*sizeof(char)};
opd23 = (char*)malloc(SO*sizeof(char)};
outpar = (char*)malloc(lOO*sizeof(char});

while{l)
{

c=gete(f};
if (c==EOF) {
if (c== ' $ ') {

if (c==' 0')
(

fseek(f,
fseek(f,

-1,
-1,

BEEK COR); break; }
BEBK COR); break; }

}

11 record MSS
sprintf(msg, "tsts", opd2, outpar);

•

•

fscanf(f, "utput \ststs", opd2, opd3, opd4);

if (strcmp{opd4, " responder (1) ")==0)
{

Il read output parameters
strepy {outpar, "(");
for (i=O; ; i++)
{

for(c=gete(f); c!='S' &&
c!='\n' && c!=EOF; c=getc{f»;

if(c=='S' Il c==EOF)
{ fseek(f, -1, BEEK_CUR); break; }

fLoc = ftell(f);
fscanf(f, "\ststs", opd2l, opd22, opd23);
if (*opd21=='p' && strcmp(opd22, "=")==0)

{
strcat(outpar, opd23);
strcat(outpar, ",");

}
else

{
if (fseek(f, fLoc, SEEK SET) <0)

printf ("error seek\n");

break;

}
if(i>O) * (outpar+strlen(outpar)-l) = ') ';
else *(outpar+strlen(outpar)-l) = '\0';

}
else if (*opd2=-== '·s' && isdigit (* (opd2+1))

&& strcmp(opd4, "responderminus{l) ")==0)
strcpy(msg, opd2);

•
}

break;
}

else
for(c=getc(f); c!='\n'; c=getc(f»i

}

free (opdl) ;
free (opd2) ;
free (opd3) ;
free (opd4) ;
free(opd21);
free(opd22) ;
free (opd23) ;
free (outpar) ;

•

void EDFS(TREE *pNode, char *pS, char *pM, int depth)
{

TREE "'pTemp;
char pSTemp[200], pMTemp[400];

if(depth > MAXDEPTH) returni
pNode->clr = 1;

while(l)
{

pNode = pNode->pSon;
if (pNode==NULL) break;

strcpy(pSTemp, pS); //erase old string of state-nm
sprintf(pSTemp, "ts %d", pSTemp, pNode->NodeNumber)
strepy {pMTemp, pM);
if (strlen(pNode->Msg) != 0)

sprintf(pMTemp, "ts ts", pMTemp, pNode->Msg);

pTemp = pRoot->find(pNode->NodeNumber);. .
if (pTemp ! = NULL)

EDFS (pTemp, pSTemp, pMTemp, depth+l);
else
{

int addMSS(ehar ... strMSS)
{

int i;

}

•
}

}
}

if(addMSS(pMTemp»
{

strcpy(MSSes[MSSptr], pMTemp);
MSSptr++;

for(i=Oi icMSSptr; i++)
if(strcmp(MSSes[i], strMSS) ==0) return 0;.

•
if (strstr{strMSS, "sequencefound") !=NULL) return 1;

return 0;
}

void findCCS ()
{

int i, j, k, iScnt, c, isFounQ;

/IRight Trim
for(i=O; i<CCSptr; i++)
{

for(j=str1en(CCScand[i); j>O; j--)
if (CCScand[i] [j-l]==' 1) CCScand[i) [j]='\OI;
else break;

}

for(i=O; i<CCSptr; i++}
{

iScnt=Oi
for(j=i+l; j<CCSptr; j++)
{

isFound=l;
if (strcmp (CCScand[i] +4, CCScand[j] +4) !=O) isFound=O;

if (isFound==l) iScnt++;

• }

}
}

if (iScnt>=3) {printf(" ts (td)\n", CCScand[i) +4, iScnt)i
break; }

void Dump()
{

TREE
char

*pTemp, "'pNode;
pSTemp[200*sizeof(char)] ;

}
}

for(pNode = pRoot; pNode != HULL; pNode = pNode->pSibling)
{

for(pTemp = pNade; pTemp != NULL; pTemp = pTemp->pSon)
printf (" td<\s>", pTemp->NodeNumber, pTemp->Msg);

•

void printMSS ()
{

Il PRINT OUT MINIMUM SEPERATING SEQUENCES
int c, i, k;
char . *strMSS, *strTemp;

strremp = (char*)malloc{200*sizeof(char»;

for(c=Oi c<MSSptr; c++)
{

CCSptr=c;
k.O;
strMSS = MSSes[c)i
whileC"'strMSS==1 ') strMSS++;

•
Il filter out unnecessary outputs
strTemp = strtok(strMSS, " ");
if(*strTemp != 's') continue;
for(i=1; icstrlen(strTemp); i++)

if(!isdigit(*(strTemp+i») break;
if(i<strlen(strTemp» continue;

strMSS += strlen(strXemp)+1i
strcpy(CCScand[CCSptr], strTemp)i
k=strlen(strTemp) ;
CCScand[CCSptr] [k]=' ';
CCScand[CCSptr] [k+1]=' ';
CCScand[CCSptr] [k+2]='\O'; k+=2;

for (i=O; ; i++)
{

if(i==(i/2)*2)
while(*strMSS != ' , && *strMSS != '\0')
{

printf ("tc", *strMSS);
CCScand[CCSptr] [k]=*strMSSi
strMSS++i
k++;

if(*strMSS == '\0') { CCScand[CCSptr] [k]='\O'i brea
else
{•

}
else

while(*strMSS .- ,.- , && *strMSS != '\0') strMSS++

while(*strMSS==' ') strMSS++;
printf(" ");
CCScand[CCSptr] [k]=' ';
k++;

}

if (strcmp(strMSS, "sequencefound") ==0) break;
}
printf (" \0") ;

}
}

*pTNodei
*pStr, *pMStr;

maintint argc, char *argv[])
{

TREE
char

.'
MSSptr = 0;
pRoot = new TREE();
pStr = (char*)malloc(100*sizeof(char»i
pMStr = (char*)malloc(200*sizeof(char»i

if(ConstructAdjList(argv[l]» return -li
if(argc >= 3) MAXDEPTH = atol(argv[2]);
pTNode = pRoot->pSiblingi
llDump () i

while(1)
{

for (; ;)
{

• }

if (pTNode == NULL) break;
if(pTNode->clr == 0) break;
pTNode = pTNode->pSib1ingi

}

if(pTNode == NULL) b~eak;

sprintf(pStr, "td", pTNode->NodeNumber);
strcpy(pMStr, "");
EDFS(pTNode, pStr, pMStr, 1);

•

•

}

printf (" \n\n\nMinimal Separating Sequences: \n") ;
printMSS{) ;
printf("\n\n\nCCSes: \n") i
findCCS()i
free (pStr) ;
free(pMStr) ;

•

•

•

AppendixD

Minimal Separating Sequences Found

Dy Distinguishing System

•

•

•

Minimal Separating Sequences:
dt(un,false)
dt(un,true)
dt(zero,false)
dt (zero,true)
cr dt(un,false)
cr dt(un,true)
cr dt(zero,false)
cr dt(zero,true)
cr cr dt(un,false)
cr cr dt(un,true)
cr cr dt(zero,false)
cr cr dt(zero,true)
cr iconresp dt {un, false)
cr iconresp dt (un,true)
cr iconresp dt(zero,false)
cr iconresp dt (zero, true)
cr idisreq dt(un,false)
cr idisreq dt {un, true)
cr idisreq dt(zero,false)
cr idisreq dt(zero,true)
iconresp dt (un,false)
iconresp dt (un,true)
iconresp dt (zero,false)
iconresp dt (zero,true)
iconresp cr dt(un,false)
iconresp cr dt(un,true)
iconresp cr dt(zero,false)
iconresp cr dt (zero, true)
iconresp iconresp dt(un,false)
iconresp iconresp dt(un,true)
iconresp iconresp dt (zero, false)
iconresp iconresp dt (zero, true)
iconresp idisreq dt(un,false)
iconresp idisreq dt (un,true)
iconresp idisreq dt(zero,false)
iconresp idisreq dt (zero, true)
idisreq dt (un, false)
idisreq dt (un,true)
idisreq dt(zero,false)
idisreq dt (zero,true)
idisreq cr dt(un,false)
idisreq cr dt (un,true)
idisreq cr dt(zero,false)
idisreq cr dt(zero,true)
idisreq iconresp dt(un,false)
idisreq iconresp dt(un,true)
idisreq iconresp dt(zero,false)
idisreq iconresp dt (zero, true)
idisreq idisreq dt(un,false)
idisreq idisreq dt (un,true)
idisreq idisreq dt(zero,false)
idisreq idisreq dt(zero,true)
dt(un,false)
dt(un,true)
dt (zero, false)
dt (zero,true)

•

•

•

cr
iconresp
idisreq
dt (un, false)
dt (un, true)
dt(zero,false)
dt(zero,true)
cr
iconresp
idisreq
dt(un,false)
dt (un,true)
dt(zero,false)
dt(zero,true)
cr dt(un,false)
cr dt(un,true)
cr dt(zero,false)
cr dt (zero,true)
cr cr dt (un, false)
cr cr dt (un,true)
cr cr dt (zero,false)
cr cr dt (zero,true)
cr iconresp dt(un,false)
cr iconresp dt{un,true)
cr iconresp dt{zero,false)
cr iconresp dt(zero,true)
cr idisreq dt(un,false)
cr idisreq dt{un,true)
cr idisreq dt{zero,false)
cr idisreq dt{zero,true)
iconresp dt(un,false)
iconresp dt(un,true)
iconresp dt(zero,false)
iconresp dt(zero,true)
iconresp cr dt(un,false)
iconresp cr dt (un,true)
iconresp cr dt(zero,false)
iconresp cr dt(zero,true)
iconresp iconresp dt (un, false}
iconresp iconresp dt (un, true)
iconresp iconresp dt(zero,false)
iconresp iconresp dt(zero,true)
iconresp idisreq dt(un,false)
iconresp idisreq dt (un,true)
iconresp idisreq dt(zero,false)
iconresp idisreq dt (zero, true)
idisreq dt(un,false)
idisreq dt (un,true)
idisreq dt(zero,false)
idisreq dt(zero,true)
idisreq cr dt(un,false)
idisreq cr dt(un,true)
idisreq cr dt(zero,false)
idisreq cr dt(zero,true)
idisreq iconresp dt (un, false)
idisreq iconresp dt (un,true)
idisreq iconresp dt(zero,false)
idisreq iconresp dt (zero, true)
idisreq idisreq dt(un,false)
idisreq idisreq dt (un, true)

•
idisreq
idisreq

idisreq
idisreq

dt (zero,false)
dt (zero, true)

•

•

CCSes:
dt (un, false)
dt (un, true)
dt (zero,false)

" dt (zero, true)

1

il

'-

