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Abstract

Test cases are very useful in industry. They can be generated for various purposes. In this
thesis the test case is generated for configuration conformance in the Extended Finite

State Machine (EFSM) model. This kind of test case is called Configuration Confirming
Sequence (CCS).

Test case generation has been studied for years and fruitful results have been produced
[1]. A number of approaches for automatic test case generation have been studied, one of
them is based on the reachability analysis in the form of formal specification of the
Extended Finite State Machine of the system under test. This thesis adopts such an
approach for CCS generation, but with some extensions — after producing all separating
sequences for the configuration by reachability analysis, a selecting program is executed

to choose out proper separating sequences as CCSs.

Today formal description techniques (FDT), including Specification and Description
Language (SDL) are widely used in specification and analysis of the EFSM model. A
FDT system is a formal, unambiguous, hierarchical description of a set of EFSM models.
Various FDT toolsets are now commercially available. Proper use of them can make test

case generation simpler. In this thesis, ObjectGeode SDL is selected as a tool for system

design and reachability analysis.

In this study, the method of CCS generation from an SDL specification is presented first.
Then, to demonstrate the correctness of this method, a CCS generator for the Responder
process in INRES protocol is designed and implemented, and results of the experiments
are presented. A theoretical proof of correctness is also presented. We conclude by

pointing out possible future work.



Résumé

La génération de cas d'épreuve (testcases) a été étudi€e depuis plusieursannées et des
résultats fructueux ont été produits [1]. Les cas d"épreuve peuvent étre produits pour les
plusieurs buts. Dans cette thése, le cas dépreuve est produit pour la conformance de la
configuration dans le modéle de la Machine de I'Etat Finie Etendue (EFSM). Ce genre de
cas d'épreuve est défini comme Configuration qui Confirme la Séquence (CCS) dans [5].

Plusieurs approches pour générer automatiquement des cas d'épreuve ont été étudiées.
Une d'elles est basés sur I'analyse de I"atteinte de la spécification formei'e du modele
EFSM du systéeme étudié. Cette thése adopte une telle approche pour la génération de
CCS, mais avec quelques extensions — aprés avoir produit, par analise formelle, des
séquences de séparation pour la configuration, un programme de sélection est exécuté

pour choisir les séquences de séparation adéquates (comme CCSs).

Aujourd’hui, les techniques de description formelles (FDT), y compris le Langage de
Description de Spécifications (SDL), sont utilisées dans la spécification et 1'analyse du
modéle EFSM. Un systtme FDT est une description formelle, non équivoque,
hiérarchique d'un ensemble de modéles EFSM. De nombreuses librairies FDT sont
commercialement disponibles. L'usage adéquat de celles-ci permet la génération de cas
d'épreuve plus facilement. Dans cette thése, ObjectGeode SDL a été choisie comme la

FDT pour le design et 'analyse du systéme.

Dans cette étude, la méthode de génération CCS utilisant la spécification SDL est
présentée en premier lieu. Ensuite, un générateur CCS pour le 'Responder’ du protocole
INRES est développé pour vérifier l'efficacité de cette méthode. Finalement, les résultats

des expériences sont présentés. Nous concluons en signalant des pistes de travaux futurs.
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Chapter 1

Introduction

1.1. Motivation

It is widely acknowledged that the model of Extended FSM (EFSM) is a very powerful
model for verification and test derivation. There exist a number of tools that support
development activities around specifications based on the EFSM model. In particular, the
commercial tools supporting SDL now offer test case generation facilities. Such tools
may resorts to reachability analysis to compute tests that cover transitions of the EFSM
and provide test preambles to reach specific configurations of the EFSM enabling the
transitions to be tested. However, they currently do not check the tail state of transitions
or the configurations reached after a test. This casts doubt on the confidence that the tests
have really assessed the corresponding behavior of the tested machine (known as IUT or
Implementation Under Test), let alone that they would reach a significant coverage of the

faults in tail states and configurations [Part I, 12].

This problem can be abstracted as configuration distinguishability for the EFSM model
that has been studied in [5]. The authors of [5] introduce a new concept — Configuration
Confirming Sequence, or CCS. Generally speaking, CCS is an input sequence that can
distinguish a state or configuration from a set of other states or configurations. Given this
concept, the question oﬁ how to generate CCS automatically becomes an interesting
problem. In this thesis, a CCS generator with ObjectGeode toolset is developed and
studied.

1.2. Thesis Contributions

The existence of CCS is based on configuration distinguishability. The problem of
configuration distinguishability for the EFSM model has been investigated in [5]. Given
an EFSM model, a configuration and an arbitrary set of configurations, determine an



input sequence such that the EFSM in the given configuration produces an output
sequence different from that of the configurations in the given set or at least in a maximal

proper subset. Such a sequence can be used in a test case to confirm the destination

configuration [5].

Authors of [5] demonstrate that the problem of configuration distinguishability problem
could be reduced to the EFSM traversal problem, so that the existing methods and tools
developed in the field of model checking can be applied to CCS generation. Based on this
result, the thesis presents a CCS generating approach relying on exhaustive simulation

provided by protocol verification tool ObjectGeode.

This thesis investigates a general way to construct a CCS generator with ObjectGeode.
During the study we find a feature of ObjectGeode simulator that hinders correct
generation of CCS, that is, the simulator normally explores just a single path, as a result
some CCSs will be lost. The solution is to introduce a post-processing program using
C++ to explore the paths that have not been explored in ObjectGeode. This results in a
hybrid system of ObjectGeode and C++. The structure of CCS generator is illustrated in

Figure 1.1.
3
Distinguishing
System in SDL CCSs
Simulating Post- :
Distinguishing - State Processing
System : Graph file by using
with Dumped C++
ObjectGeode Program
Simulator

Figure 1.1 CCS Generator



In post-processing two tasks will be fulfilled, one is generation of all minimal separating
sequences (for an EFSM model, a minimal separating sequence is an input sequence that
separates a configuration from another) from state graph dump file, another is selection of

proper minimal separating sequences as CCS.

In this thesis, we demonstrate that the CCS generated in the method described above is
correct and complete. Theoretical proof and positive results of the experiment performed

with a benchmark protocol, called INRES, is also presented in the thesis.

1.3. Thesis Layout

The remainder of the thesis is organized in the following way.

Chapter 2 and Chapter 3 discuss the concepts of the EFSM model and protocol
verification tool ObjectGeode, especially the exhaustive simulation performed by
ObjectGeode simulator. Exhaustive simulation is tightly related to the reachability
analysis, which is a crucial part of CCS generation.

Chapter 4 explains how a CCS can be generated with ObjectGeode simulator. First, we
give a method to build an SDL model that is used in reachability analysis, this model is
called a distinguishing system. Then we discuss the design and implementation of the

post-processing program.

Chapter 5 demonstrates the applicability of the proposed approach to a communication
protocol called INRES.

Chapter 6 concludes thesis and presents possible directions for further study.



Chapter 2

EFSM Model

2.1. Extended Finite State Machine

The model of a Mealy (finite state) machine extended with input and output parameters,
context variables, operations and predicates defined over context variables and input
parameters, is what is understood by an extended FSM in this thesis. The definition of
EFSM model is given below:

Definition 2.1 [5]): An extended finite state machine (EFSM) M is a pair (S, T) of a set of
states S and a set of transitions 7 between states from S, such that each transition ¢ in the
set T is a tuple (s, x, P, op, y. up, s"), where

° s, s’ € S are the initial and final states of the transition, respectively;

o x € X is input, X is a set of inputs, and D, is the set of input vectors, each

component of an input vector inp, is an input parameter associated with x;

] y € Y is output, Y is a set of outputs, and D, is the set of output vectors, each

component of an output vector out, is an output parameter associated with y;

° P, op, and up are functions defined on input parameters and context variables V,
namely;

° P:D,, x Dy— (True, False} is a predicate, where Dy is the set of context vectors
v;

° op:D,, XDy — D, isan output parameter function;

U up: D, X Dy — Dy is a context update function.

To define the operation of an EFSM, we first introduce some additional definitions.



Definition 2.2 (5): Given input x and a (possibly empty) set of input vectors D, , a pair
of input x and input vector from D, is called a parameterized input. A sequence of

parameterized inputs is called a parameterized input sequence.

Similarly, we can define parameterized outputs and their sequences.

Definition 2.3 [5]: A context vector ve Dy is called a context of M. A configuration of

M is a pair of state s and context v.

Note that in case of an empty set of context variables, which is the case for a pure FSM, a
configuration coincides with a state. In this thesis configuration will be represented as a

tuple (S; p1, p2-..pn), where S is a state, and p,, pa...p. are context variables.

Definition 2.4 [5]: A transition is said to be enabled for a configuration and

parameterized input if the transition predicate evaluates to true.

The EFSM operates as follows. The machine receives input along with input parameters
(if any) and computes the predicate that is satisfied for the current configuration. The
predicate identifies enabled transitions. A single transition among those enabled is fired.
Executing the chosen transition, the machine produces output along with output
parameters, which, if they exist, are computed from the current context and input
parameters by the use of the output parameter function. The machine updates the current
context according to the context update function, and moves from the initial to the final
state of the transition. Transitions are atomic and cannot be interrupted. The machine
usually starts from a designated configuration, called the initial configuration. A pair of
an EFSM M and the initial configuration is called a strongly initialized EFSM [5].

To simplify the notations for transitions of EFSMs, we present a few conventions.

Specifically, we normally use (s—x, P/op, y, up—s’) to denote a transitionr € 7. If, in ¢,
P is a True constant, P can be dropped from the transition. Similarly, when the transition

10



does not change the context, the update function up can be omitted. At the same time, the
output parameter function can only be absent when output y has no output parameters at
all. Notations (s—x, P/op, y, up—s’), (s—x/y, up—=s’), (s—x / y—>s’) are examples of
notations used for such situations. If present a transition, the update and output parameter
functions can take forms of operations on separate variables, such as assignments. Figure

2.1 gives an example of a machine specified using these notations [Pagel7, 5].

It has four states and ten transitions that are labeled with two inputs a and b, three outputs
x, y and z, the latter has a parameter, and four predicates.

a,w<d/x,w:=w+1

a,w24/y,w:=0
S T
alx,u:=1
b,u>0/x,u:=0 blz(u) alx
alx blz(u)
b,u=0/z(u)
v | 8]
bly

Figure 2.1 The EFSM Model M

Restricted EFSM (REFSM) is a type of EFSMs which meets a number of requirements.

Definition 2.5 [5]:
An REFSM is an EFSM meeting following requirements:

o Consistent: if for each transition #, every element in D, x Dy evaluates exactly one

predicate to True among all predicates guarding transitions with the start state and the



input of 7. In other words, the predicates are mutually exclusive and their disjuncﬁon
evaluates to true.

o Completely specified: if for each pair of state and input (s, x) € S X X, there exists at
least one transition leaving state s with input x.

e Deterministic: if any two transitions outgoing from the same state with the same input
have different predicates.

e Observable: if for each state and input, every outgoing transition with the same input

has a distinct output.

Considering Figure 2.1, the machine has two context variables, « and w. It is consistent,

completely specified, deterministic, and observable.

In this thesis, we study only REFSMs.

2.2 Configuration Confirming Sequence

The problem we are dealing with can be informally stated as follows. We know the
configuration reached in the REFSM M in response to some parameterized input
sequence applied to the initial configuration (this is the tail configuration of the test up to
that point). Our goal is to determine a single parameterized input sequence that can
increase our confidence in the correctness of the configuration reached in any
implementation under test derived from M. To that end, we try to ensure that the correct
configuration has been reached in the implementation, or at least that no suspicious
configuration has been reached. Typically, we might allow an implementation to have
different values from those specified for non relevant context variables, but pay special

attention to crucial variables or the control state [5].

For a classical deterministic FSM, UIO sequence [4] is a solution to the problem.
Assuming that faults in any implementation under test neither increase the state number
nor mask each other, such a sequence can ensure correctness of the tail state of any
transition once it is executed immediately after the transition. The problem of UIO
generation was studied in a number of works. In case of the EFSM model, we are dealing

12



with a more general problem, which we call here a configuration confirming sequence

(CCS) generation. The key issue here is configuration distinguishability [5].

Finally, for practical reasons again based on experience in protocol testing (and on
acceptability by test experts), we should try to find confirming sequences that are not “too
long”. Basically, it would not make sense to claim that a 100-input-long sequence would
bring enough added confidence to justify appending it to test preambles of length 4 or 5,
all the more so as a confirming sequence, to be fully trustable, has yet to be applied in all
the other configurations, since faults may mask each other. Therefore, an arbitrary limit /

on the length of the sequence will be set up for CCS generation [5].

We define distinguishing ability of configurations based on the following notion. Let M
and N be two EFSMs defined over the same inputs and input parameters. We assume that
the output alphabets of the two machines intersect, but the sets of output parameters

associated with each common output in M and N are not necessarily identical.

Definition 2.6 [S]: Two parameterized outputs of M and N are said to be compatible if the
output symbols coincide and very common output parameter has the same value in both
parameterized outputs. Two parameterized output sequences, y;...ysof M and y’;...y’s of

N, are compatible if for all i = 1.. .k, y; and y’; are compatible.
Based on this notation, we now define distinguishability of configurations.

Definition 2.7 [S]: Given a parameterized input sequence x, configuration ¢ and ¢’ of M
are distinguishable by x if the parameterized output sequence that can be produced by (M,
c) in response to x, is not compatible with any parameterized output sequence that can be
produced by (¥, c’) in response to x. x is said to be a separating sequence that separates c

from c’. Given the length ! = Ix, configurations c and ¢’ are said to be I-distinguishable.

Indistinguishable configurations of REFSMs are also referred to as equivalent

configurations. Two REFSMs are equivalent if their initial configurations are equivalent.

13



Note that in this study, we assume that the given REFSM M may have indistinguishable

(i.e., equivalent) configurations.

One should note that if an input signal in an input sequence is not acceptable by (M, ¢)
but acceptable by (N, c’), then such an input sequence is a separating sequence. Because
the input signal that is not acceptable produces, in fact, a NULL output signal by (M, ¢)
which is different from all other outputs, the input sequence with this input signal is in

definitely is a separating sequence.

The definition of Configuration Confirming Sequence immediately follows the Definition
2.7.

Definition 2.8 [5]: Given configuration ¢ and a configuration set C of a REFSM M, a

parameterized input sequence x is said to confirm c in the set C if x separates ¢ from every

¢ eC distinguishable from c.

Definition 2.9 [5]: Given configuration ¢ and a configuration set C of a REFSM M, a
parameterized input sequence x is a Configuration Confirming Sequence (CCS) for

configuration ¢ and configuration set C if x confirm c in the set C, or called CCS for

configuration c and configuration set C.

Example. Consider Figure 2.1, assume the requirement is to find a CCS (if it exists) for
configuration ¢=(S; 1,0) and configuration set a, that contains configurations (S; 2,4), (T;
0,0), (U; 0,0) and (V; 1,0). Here S, T, U and V are states in M, and (2,4) means «=2 and
w=4,

Then the input sequence b is a CCS since different configurations give different outputs.

(S; 1,0) outputs z(1); (S; 2,4) outputs z(2); (T; 0,0) outputs z(0); (U; 0,0) outputs y; (V;
1,0) outputs x.

14



Chapter 3

SDL FDT

3.1. Introduction

SDL (Specification and Description Language) is an FDT (Formal Description
Technique) promoted by ITU Z.100 [13]. Extended finite state machine can be specified
formally and unambiguously in SDL and a set of such descriptions of the EFSM models
is called an SDL system. The SDL system provides a solid base for automated analysis of

EFSM model.

ObjectGeode is an FDT toolset that provides design and analysis facilities. SDL is its

main description language. It provides a set of tools required at every step of system

modeling, simulation, targeting and testing, as listed below [4]:

e Modeling tools, for analysis and design: Object Editor, MSC Editor, State Chart
Editor, SDL Editor and SDL&MSC Checker.

¢ Simulation tools: SDL&MSC Interactive Simulator and SDL&MSC Exhaustive
Simulator.

e Targeting tools: OMT C++ Code generator, SDL C Code Generator, SDL C Runtime
Library.

¢ Testing tool: DesignTracer.

In this thesis, only SDL Editor, State Chart Editor and SDL Exhaustive Simulator are

used.

There are two forms in which an SDL system can be represented in graphic form and

textua! form. Although they are different in appearance, they are same in semantics.

15



The following sections are a brief overview of SDL and ObjectGeode. For detail

information, the reader can refer to [2][6].

3.2. Interpreting SDL
3.2.1. Static Concepts of SDL

Making a static description of a system amounts to defining its architecture. SDL uses a
hierarchical structure for system specification. The description always begins with the
system object, which is the object of the highest hierarchical level in the description.
Creating a system entails creating a boundary between the system to be modeled and the

exterior of the system (environment) [9].

The aim of an SDL system is to model a consistent set of communicating extended finite
state machines grouped as blocks. Blocks, or subsystems, are the main conceptual
components of the system. Blocks are arranged in a hierarchical structure. There is no

limit to the number of hierarchical levels for block [9].

Only leaf block can contain processes. A process is an extended state machine describing

a unit of dynamic system behavior [9].

Example: The following is an illustration of SDL system structure.

System
1 l |
BIl2 J L B2l | B22

]

—) )

Block

i)
1t

Process, state
machine inside.

Figure 3.1 SDL System

16



3.2.2. SDL. Communication
In SDL, communication means signals (discrete signal) sending and receiving through
media (channel or route) between peer objects (system and its environment, blocks,

processes), or signals (continuous signal) sending and receiving inside a process.

The system communicates with its environment by exchanging signals through channels.
Blocks can communicate with each other by exchanging signals through channels.
Processes communicate with the environment of the block they are contained in by
exchanging signals through routes (route is the channel inside a block). Processes in the

same block communicate with each other by exchanging signals through route [9].

There are two kinds of signals:

- Discrete Signal (which we often referred to as signal)
Discrete Signals are sent or received through channels and/or routes. The
reception of discrete signal can be followed immediately by a validation condition
(PROVIDED). If the validation condition is not hold (FALSE) then the signal will
be implicitly saved (Conditional Reception of Signal), otherwise signal input will
be consumed and fire a transition [9].

- Continuous Signal
Continuous signals are local variables of a process instance. Continuous signals

are only evaluated if the queue is empty [9].

Since the work in this thesis does not touch continuous signals, in the discussion that

follows we only deal with discrete signal.

To better understand ObjectGeode SDL communication, now we have a look on the
whole process of transmission and consumption of a signal as illustrated in Figure 3.2.
The events happen in following order:

- The signal X sent by a sender process,

- Xis conveyed through routes or channels,

- Xis stored in the queue of the receiver process,

17



Signals to be sent simultaneously along the same route are conveyed in random
order. And each process instance that can communicate has a FIFO queue to store
the signals received.

- Signal X is consumed or saved by the receiver process.
For a signal to be consumed and processed by a process instance, the signal must
have been declared to be acceptable in this state, and the receiving process

instance must be waiting in the given state to consume or save it.

When the required signal arrived in the queue (before consumption), the transition
becomes enabled, or called fireable. The parameters carried by the input signal
consumed will be assigned to the variables corresponding to the INPUT.

Signals that are placed in the queue but are not declared in the state for

consumption or save will be lost. Saved signals remain in the queue in the order in

which they arrive.

The following is an illustration of signal transmission:

4) X is stored in the

3) X is sent from P1 to P2 via route R1.
quecue of P2.

J 1) The instance of

/7 na 2 cone ,[ s3]
\ <

respectively

v .
A(d
(; ) < v 2) One of the actions /

of the transition is
X:=3 / send the signal X lo// Y:=2
the P2.
5) P2 is waiting in
_1_> the state S3. / , Y :
[ S2 J 6) The input signal X [ S4 ]

will be received and
consumed by S3.

Figure 3.2  Signal Transmission in SDL
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3.2.3. Dynamic Concepts of a Model
3.2.3.1. Introduction

The dynamic description of a SDL system represents the system’s operation, including
SDL transition and instantiation of process. The system is valid dynamically if it verifies
the rules of SDL. This validity verification is called interpretation of the system. A valid

system is a system that has been correctly interpreted [9].

3.2.3.2. SDL Transitions

The operating principle supposes that the states inside a leaf process instance are
interconnected by transition. A transition is a series of actions executed by a state
machine, triggered after consumption of a given signal in an initial state, and possibly

leading to another state or to the death of the process instance [9].

There are two main kinds of transitions in SDL:
e Initial transitions,

¢ Transitions that define the processing performed by the state machine.

A transition in ObjectGeode SDL process has three parts:

o Transition header, which is the description the transition fireable conditions.

e Transition action, which is the description of the actions performed by the transition.
e Transition terminator, which is the description of what happens when the transition

has been executed.

The following is a detail description of the transition header and transition action:

1) Transition Header

Initial State and Initialization Transitions

When the system is initialized, all leaf processes are set to an initial state (START). When
a process is created, only the initial transition is fireable. Each initial transition is only
executed once, when the process instance is created [9]. The initial transition is only used
to:

- initialize variables,
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- determine the initial state of the process.

Initial transitions differ from other transitions in that they can not consume signals.

Declaration of States

The transition definition must contain the declaration of at least one state characterizing

the operation of state machine [9], that is to say the transition must start from a state.

Signal Reception

After each state declaration, it is possible to specify [9]:

- The reception of one or more signals, with or without validation conditions.
- The reception of a mixture of signals (with or without validation conditions).
- One or more continuous signals.

- A save mechanism for the signals received.

- A mixture of the above items.

2) Transition Actions
Actions are processed when a signal is consumed. The actions of the corresponding
transition are executed sequentially. There are no semantic rules governing the order in

which the actions of the transition are performed [9].

The following is a list of usually seen actions that can be executed in a transition [9]:
- Tasks: a task can be a variable operation action or comment text.

- Process Instance Creation.

- Signal Sending: OUTPUT action is used to send a signal.

- Time Set and Reset: SET and RESET actions are used to set or reset timer.

3) Transition Terminator

Usually the end of a transition is specified by the following instructions [9]:

- JOIN, indicating that a transition branch is completed, with transfer of interpretation
to a part of another transition branch indicated by a LABEL IN CONNECTOR.
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- NEXTSTATE, used to specify the state the process instance must be in after the
transition branch has been executed.

- STOP, indicating that a transition branch is completed (the corresponding process
instance will be killed).

3.2.3.2. Life Span of a Process

We are now going to take a look at the life span of a process. The process is the main link
object between the static part of the description of an SDL system and its dynamic
behavior. It is the only structural object that can be instantiated [9].

A state machine represented by a process reacts to stimuli, or signal inputs. A stimulus,

after consumption, normally will trigger a series of transition action [9].

A system handles a large number of simultaneous signal transmissions and receptions. A
number of stimuli can arrive over a very short period or simultaneously at the same
process [9]. To receive different signals simultaneously at the same process SDL provides

CREATE REQUEST action to dynamically create a new process instance.

SYS_I

BI B2

-

Figure 3.3  Process Instances in One Process
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Instantiation also means the different processes can be activated in parallel [9], as shown

in Figure 3.4.

SYS_I

=) =

Figure 3.4 Process Instances in Different Processes

Process instance can be created statically when system is initialized, or dynamically in
running time. The parallel instantiation of a number of processes also means that a

number of transitions can be executed simultaneously, and they can react to the stimulus

simultaneously.

The life of a process instance begins from the instantiation, and death of a process

instance is the result of a STOP action at the end of a transition [9].

3.3. ObjectGeode SDL Semantics

3.3.1. Global States of the Model

This and next section present the elements used by ObjectGeode SDL simulator to
interpret SDL language, especially when this interpretation does not strictly follow the
Z.100 standard.

Control States of a state machine are the objects declared by the user in STATE clauses.

The states defined in the EFSM model are control states {2].

Global states of a state machine are the resulting states of the model being executed, they

are composed of the current values of all information that varies dynamically [2]:
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e The current control state.

¢ Current data values which can be decomposed into:
- Variables,

- Formal parameters,

- Predefined Pid (Process identifier),

- Current timer values.

Actually a global state of an EFSM is a possible configuration of that machine.

Global states of a model are composed of [2]:

e The global states of all state machines (process instances and active procedures).

e The queue status of all processes.

All global states of a model can be explored by exhaustive simulation and can be shown

in a state graph like the one presented in the next section.

3.3.2. Possible Behaviors of the Model
State machines in a SDL model are executed in parallel. In exhaustive simulation,
parallelism among state machines is simulated by interleaving the execution of their

transitions [2].

Let S, be the initial global state, and trans(S) be the set of fireable transitions for a global
state S. A global state S is said to be reachable from the initial state S if there is a list of
transitions (7'...7,) such that, whatever i will be between 1 and n, T; belongs to trans(Si.i)
and T(Si.1) = S The path represented by such a list of transition is a possible model

behavior [2].

The set of possible behaviors of a model forms the model’s state graph. The nodes are the
reachable states and the arcs are the fireable transitions. It is a graph and not a tree, as two

different behaviors can lead to the same state [2].
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3.4. ObjectGeode Simulator
3.4.1. Simulation Mode

For ObjectGeode simulator, random simulation and exhaustive simulation are two

automatic simulation modes as described below:

Random simulation: this simulation mode automatically fires a series of transitions at
random. Random transition selected by the SDL simulator is a uniform choice in the
list of all fireable transitions of all processes: all the fireable transitions have the same
probability [2]. This simulation mode has a little relation with the thesis topic due to

its uncertainty and we do not give its detail here.

Exhaustive simulation: During exhaustive simulation, the simulator creates the state
graph of the SDL model according to fireable transitions. The simulator can
exhaustively traverse the state graph in breadth first mode, depth first mode [2].

Exhaustive simulation, if it succeeds, provides 100% state coverage of state graph, while

random simulation does not.

During simulation, ObjectGeode can find following errors in the system specification [2]:

Deadlocks.

Livelocks.

Dead code: The parts of the model that are never executed (corresponding to behavior
types that can never be activated and that are useless or that are a result of a modeling
error).

Signal loss: Unexpected signal inputs resulting in signal loss.

Queue overflow.

Dynamic errors, or “exception”: type overflows, limits of an array exceeded, illegal
output, non-existent answers to a decision, process stopping errors, assertions

violation, etc.

To detect these errors, stop condition or observer should be defined in the simulator.
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An example of deadlock and livelock is given in Figure 3.5. Each circle represents a
global state reachable in the SDL model. Since no transition is fireable from S2, the
model is in a deadlock. This situation may correspond to a serious error or may have been
created on purpose by the designer. If the model has reached state S3, it can no longer
leave the livelock containing states S3, S4 and SS. Such a behavior is difficult to detect
because the system continues to function (livelock may contain thousands of scenarios)
but in degraded mode (it can not return to the beginning state). Livelock may be a serious

error or intentional.

Figure 3.5  Deadlock and Livelock

For an SDL system under simulation without stop condition and observer, the simulation
will end when all fireable transitions are fired and lead to deadlocks. Then the state graph
can be dumped out in a file, as shown in Figure 1.1, for further analysis. Exhaustive

simulation guarantees the generation of states for all possible scenarios.

3.4.2. Simulation Concepts
3.4.2.1. Basic Concepts

Simulation is done in simulation steps. A simulation step is started by actions that change

the state from one to another. These actions step are composed of smaller execution steps.
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The smallest execution step handled by the SDL Simulator is the elementary transition,
i.e. instruction sequences located between one declared or intermediate state and another
declared or intermediate state [2].

The following actions can modify the current state of the model:

¢ Fire executes a transition.

e  Wait makes time progress.

e Let modifies a variable.

e Create creates a process instance.

e Stop deletes a process instance.

e Output outputs a signal.
The execution of any of the commands above forms a simulation step. Other commands,

such as go, execute several simulation steps in sequence [2].

A simulation step is composed of the following operations [2]:

e Execution of the command that changes the current model state: if a dynamic error
occurs, the model is left in the exception state.

e Updating coverage tables.

e Updating SDL time and internal variables such as, step number (NOW and STEP).

e Logofevents.

e Computing the list of fireable transitions.

e Taking filtering conditions into account, to reduce the transition list.

e Taking stop condition into account.

The simulator always knows the list of the simulation steps that led from the initial state
to the current state, it is the current scenario [2]). After each simulation step, deadlock
condition, exception, livelock, stop condition and/or observer etc., will be evaluated and

if satisfied, the current scenario will be saved in file corresponding to these conditions.

3.4.2.2. Exhaustive simulation in ObjectGeode

Different exploration modes are available in exhaustive simulation [2]:
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® Breadth first exploration. If the state graph is explored in breadth first mode, then the
simulator fires all the transitions at a given level before passing to the level below.
This simulation will produce a minimal length scenario.

e Depth first exploration. If the state graph is explored in depth first mode, the
simulator will fire all the transitions at the “leftmost” path before passing to the path
in the right.

e Supertrace. This is a variant of depth first mode in which exploration is usually not
exhaustive, but is less demanding on procéssing and memory.

e Liveness. This mode can detect endless loops and can check liveness properties.

For state graph generation, both breadth first mode and depth first mode are applicable
since they make no difference in the state graph.

Example. This example illustrates the simulation of an SDL system, how the simulator

explores this system in an exhaustive way and what a state graph is.

System A

Block A

j Channel |
Process 1 J Process 2
sv
X,
w

~ Nwew
4 e .

Figure 2.6 System A
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Figure 2.6 is the SDL system used in this example. SDL processes are shown in Figure

3.7. The EFSM models of each process are given in Figure 3.8:

—= ;

> Lo CoLo0
i n;:l,m ,,;T-. (s1)
G2 G

(Process 1 in System A)

(D) G ()

= <

%
S
(= GO G CD

Figure 3.7 Process 1 and Process 2 in System A
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s/t, n:=0

(State Graph of EFSM of Process 1 of System S)

t/w

(State Graph of EFSM of Process 2 of System S)

Figure 3.8  State Graphs of Process 1 and 2 of System A
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Every global state can be represented as shown in Figure 3.9. During exhaustive

simulation, the simulator creates the state graph as shown in Figure 3.10.

Number of Global States

Name of State in Process 1
Value of Variables in Process 1
[ Name of State in Process 2

1 | gare 1700 so |"=1 — Value of Variables in Process 2
k X

Content of Incoming
Queue of Process 2

Content of Incoming Queue of Process 1

Figure 3.9 Syntax of Global State
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Figure 3.10 State Graphof §

Each global state in the state graph of the example is numbered. The number shows the
order in which the graph is explored. This state graph can be obtained by exhaustive
simulation in breadth first mode or depth first mode.

Note that in Figure 3.10 states 5, 6, 8 and 12 are visited several times but only one copy
exists respectively. That is to say, next time simulator detects a same state that has
already been generated, it will not explore transitions that have already been explored.

3.5. Summary

In this chapter, we first gave an introduction to SDL, Specification and Description
Language. When the user specifies a system by using SDL, the system can be simulated
with SDL simulator. Simulator can run in different simulation modes. Among them, the
most important is exhaustive simulation, simulating in exhaustive simulation mode
explores all the possible scenarios which can occur in real execution of the model and can

be saved in a state graph dump file.
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Chapter 4

CCS Generation with ObjectGeode Simulator

4.1. Relevant Work
Configuration Confirming Sequence is first defined in [5] and {12]. It is a single
parameterized input sequence that can distinguish the expected tail configuration from a

set of suspicious configurations.

The existence of CCS has been studied in [S] and [12]. This problem can be transformed

into the problem of configuration distinguishability. For more detail reader can refer to

[S]or{12].

Generation of CCS can be done in several ways. In [5] authors present an approach based
on the concept of “distinguishing machine”. The problem authors are dealing with in

[5]1[12] can be stated as following:

Problem 1 [12]). Given an EFSM E, an “expected” configuration, a set of k sets of
suspicious configurations, each of which is represented as a pair of state and partial
context, and an integer /, we are required to find an input sequence of length at most / that
confirms the expected configuration in a maximal number of sets of configuration sets

(among given k sets). The sequence is called CCS.

A solution to this problem in previous chapters in term s of EFSM model has been
presented in [Part I, 12]. The basic idea of this solution is to construct an EFSM (a
distinguishing machine) such that a desired CCS is a transfer sequence taking the
machine from the initial state to a state which indicates that a maximal number of
configuration sets is separated from the given configuration. Such a transfer sequence can
be determined using existing reachability methods and tools. In this solution, the global
configuration space of the EFSM has not always to be constructed, at the same time, the
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solution still requires an explicit representation of the whole state space, which is
exponential in the number of suspicious configuration sets. The question arises whether
one can solve Problem 1 without explicitly constructing a distinguishing machine, as its
size may be prohibitively huge. The solution is to build a system of k+2 communicating
processes. One process is a given EFSM M (SDL spec) initialized in the expected
configuration, each of the k processes represents an EFSM projection (5] initialized in a
suspicious configuration and slightly modified to support communications with other
processes. In addition, a monitor is required to ensure all the communications between

processes and to terminate communications when it is necessary [12].

Problem 2 [12]: Given an EFSM E, an “expected” configuration, a set of k sets of
configurations, each of which is represented as a pair of state and partial context, and an
integer /, we are required to find an input sequence of length at most / that confirms the

expected configuration in a given number of configuration sets.

Once a method for solving the Problem 2 is available, the initial problem can also be

solved using a dichotomy method as follows.

Algorithm 2.1 [12]. Dichotomy search.
Input. The EFSM, an “expected” configuration, a set of k sets of “suspicious”

configurations, and an integer /.

Output. An input sequence CCS.

1. imin:=1, imax:=k.

2. =gy

3. If there exists a sequence of at most ! symbols that separates the expected
configuration from ¢ configuration sets, then do
Imin:=i, I2=imax-[( Imax= imin}/2] €ls€ imax:=i, i:= imin+[( imax- imin)/2]

4. If imin< imax, then go to 2.

5. Stop.
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Here [x] denotes the integral part of x. Step 3 calls for a method for Problem 2 explained
above [12].

In what follows, we discuss the approach for solving Problem 1 different from that in

[12].

4.2. CCS Generating with Protocol Verification Tool
4.2.1. Minimal Separating Sequence

Minimal separating sequence is a separating sequence with some restrictions.

Definition 4.1: Given an EFSM machine M, configuration a and configuration b for M.
Parameterized input sequence x=x)x;..x, is a separating sequence. x is a minimum

separating sequence if Vi<n = {x|x;...x; is not a separating sequence}.

Minimal separating sequences will be generated from state graph dump file by a post-
processing C++ program as explained in Figure 1.1. Then they are used as candidates
from whom CCS is selected. In practice we are only interested in configurations that are
l-distinguishable, so there is an upper limit ! (O</<eo) for the length of minimal separating

sequences.

4.2.2. CCS Generation

4.2.2.1. Distinguishing System

The method used for CCS generation is derived directly from Definition 1.7, 1.8 and 4.1.
According to these definitions, given an EFSM machine E, a “expected” configuration ¢
and a “suspicious” configuration set C, a CCS is a separating sequence that can separate ¢
from each configuration in set C. Thus the first step of CCS generation is to find all
separating sequences for each suspicious configuration in C. In the second step, CCS will

be selected among the separating sequences.
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To find all separating sequences, we first construct an SDL system D. In D, there are
three processes P, S and M, both P and § are derived from E. The major difference
between P and S is that they have different initial configurations. P starts from the

configuration that we want to confirm and S starts from a suspicious configuration.

Then we simulate D by using ObjectGeode simulator. During the simulation P and S
compare their inputs and outputs. If a discrepancy is found, D goes to a deadlock state
and the simulation along this path will be terminated, and a specific signal
“SequenceFound” will be produced. Simulator will explore all the paths with a given
length ! and then dump out state graph in a file. This state graph contains all the

information about separating sequences.

After that a C++ post-processing program will be executed to extract all separating

sequences from the state graph and select a separating sequence as CCS.

The SDL system D is called a distinguishing system in this thesis. The key point of
constructing D is how to detect discrepancy of inputs and outputs of P and S. The idea is

to add a comparison mechanism into P and S, as described below.

Assume D is constructed to confirm configuration ¢ from a set of configurations C. Let P
is derived from the EFSM E, with following changes:
1) P starts from the configuration c.
2) For every output action in E, P makes the same output. Then it waits for a resume or
invalid message.
3) For every input action in E, P first outputs a message that requests an input, then waits
for the input feedback:
e [f the input feedback is resume, then:
If the output received is the same as the original input in E, it continues the
next action.
If the output received is not the same as the original input in E, then it outputs

a message called Sequencefound and then deadlocks.
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e If the input feedback is invalid, then:
If the output is the same as the original input in E, then it outputs a
Sequencefound message and then deadlocks.
If the output is not the same as the original input in E, then it outputs a

message called TwolnvalidSignals and then deadlocks.

Let S be the same as the original EFSM E, except for the following changes:

1) S starts from a set of suspicious configurations C.

2)

3)

4)

For every output action in E, input this message first. If the input message is the same
as the message to be output in E, output a signal called resume, then continue the next
action; else output a signal called invalid and deadlock.

For every input action in E, input a message. If the input message is one of the
original inputs of E, then output a resume signal and continue the next action. At the
same time input all other messages and output an invalid signal, and then continue
waiting for the correct input in the same state.

The timeout signal is processed the same way as ordinary input message.

Finally, let M be an EFSM machine communicating with P and S. M performs the

following actions:

1)

2)

3)
4)

Set a simulation depth counter. When simulation goes beyond the upper limit I, M will
be deadlocked, the simulation among this path will be stopped.

When an output from P is received, M passes the message to S and wait for a signal
(resume or invalid) from S. When it receives a message from S, M passes the message
to P.

After receiving a resume or invalid from S, M send the same message to P.

Signal TwolnvalidSignals will be discarded.

The above modifications are represented in CSP (Communicating Sequential Processes

[10]) as shown in Table 4.1. The following is a brief explanation of some CSP operators

[10]:

37



Process operator

Q'x— on channel Q output (value of) x.

Q?x— from channel Q input to x.

AllB — process A in parallel with process B.

a—B — a then B.

(a—A | b—>B) — a then A choice b then Q (provided a # b).
P sat S — (process) P satisfies (specification) S.

Logic operator

A=B— Aequalsto B.

A=B —if A then B.

—P —not P (P is not true).
Set operator
AUB— A union B.

ANB — A intersect B.
A—~B— A minus B.

Assume Ej,y; is the set of all possible input messages in E, k(x,...xy) is a parameterized

signal, where k and x,,..., x, are constants, resume, invalid and SequenceFound are all

constant signals, msg(p;...pn) are parameterized signal variable, then,

G is a channel connecting environment in E;
0, stands for the channel connecting process M and P;
QO; for the channel connecting S and M,
K=G'k(x,...x,); where k and x,,..., x, are constants.
L=G?msg(p\...pn);
P(K)=Qp'k(x)..x0)—Qp?x—>
if (x=invalid) then Q,!SequenceFound,
S(K)=Q;?msg(pi...pn)—
if(msg = k) then
(if (P1=x|A... ADr=x,) then (Q,'resume)
else (Q;linvalid))
else (Q;linvalid),
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M(K)=(Q,™msg(p1...pn)—>

if(msg = resume) then (Q,!resume)

else (if(msg = invalid) then (Q,'invalid)

else (Q;!msg(pi...pn)));
Let PA=(0,'k(x)..xn)(Qp?x)—>

if(x = invalid) then Q,!SequenceFound)

Let PB=(Q,'msg2(pi...pn)—(Qp"x)—>

if(x = resume) then Q,!SequenceFound);

Where msg2(pi...pn) € Einpur msg(pr...pn);
Then P(L)=PA |l PB;

S(L)=0,?’msg(pi...pn)—>

if(msg = k) then
(f (P1=x1 A... ADx=X,) then (Q,'resume)

else (Qylinvalid))

else (Q,'!invalid);

M(L)y=(Qp?msg(p\...pa)—>

if(msg = resume) then (Q,!resume)
else (if(msg = invalid) then (Q,'invalid)

else (Qs!msg(p1...pn)));

Original
Action in E Action in P Actionin S Action in M
Output | K=Gk(x)...xn) P(K) S(K) M(K)
Input | L=G?msg(p:...pn) = P(L) S(L) ML)
If(msg=k) then L’
Table 4.1 Modification of original actions in M using CSP description

Definition 4.2: An SDL system is called a distinguishing system of the EFSM model E if

it is derived from E by following the instructions described in Table 4.1.
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D will generate a SequenceFound signal if P generates some I/O sequences that cannot be
reproduced by S, and this makes the finding of separating sequence possible. The reason
for this statement is described informally as follows:

1) If S cannot generate the same output as P, it sends out the message invalid to P. If S
can generate the same output message as P, S will send the message resume back to P
and go to a next state. After M transfers this message from S to P, P will check the
input and decide what to do next. If it is the message invalid, then P will send out the
message Sequencefound and a minimal separating sequence is found. If the input
message is the message resume, then the message output by P is same as the message

input by S, P will continue execution.

2) If P and S are waiting for the different inputs, then there are two cases:

o If the message received is the one that is expected by P but not by S, then § will send
out the message invalid and then go blocked. P, after receiving the message invalid,
will send out the message Sequencefound indicating that a minimal separating
sequence is found.

e If the message received is the one that is expected by S but not by P, P will send this
message to S through M and then wait for the message resume to be sent back by S. P,
after receiving this message resume, will send out the message Sequencefound
indicating that a minimal separating sequence is found.

3) If S and P are waiting for the same input, then there are two cases:

e If the message input is the one expected by P and by S, § will send the resume signal
back to P. Upon receipt of this resume signal, P will continue execution of simulation.

e If the message input is the one expected by P and by §, S will send the invalid signal
back to P. Upon receiving this invalid signal, P will release a TwolnvalidSignals

message and continue execution trying to find a longer separating sequence.

The interaction among M, P and S is shown in Figure 4.2. Figure 4.2(a) illustrates the
case when E is waiting for some input other than msg. According to the action in Table
4.2, P sends out all possible inputs including msg. M passes msg to S. If msg is the signal

S wants, then S will send an resume back. M passes resume to P. Since receipt of the
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message resume indicates msg is been accepted by S, it sends out a message
SequenceFound. Figure 4.2(b) illustrates the case when E outputs msg. P sends a signal
msg to M, M passes it to S. If msg is not a message that S intends to output, S will send an
invalid back. M passes invalid to P. When the message invalid is received, P judges that
the signal is not wanted by S, so P sends out a SequenceFound. Figure 4.2(c) corresponds
to an input not acceptable in both states of E. Finally TwolnvalidSignals will be issued by
P.
P M S P M S P M S

msg msg msg

msg msg msg

y y y
%

LSequer:ice Fequenc e Invalid-

tFoun Found
Signals

(a) (b) (c)
Figure 4.2 MSC for CCS Generation

Finally we note that to find a CCS for the set C of suspicious configurations, we have to
construct, strictly speaking, IC1 = k distinguishing systems. These systems differ in the
initial configuration of the S module, therefore, in fact, we can always use just a single
system, and ObjectGeode will nondeterministically initialize the system in all possible

initial global states.
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4.2.2.2. Extension to Depth First Search

After a state graph has been generated, we will enhance a traditional depth first search, as
described, for example, in [11] to find all separating sequences. Compared to the Depth
First Searching Mode in ObjectGeode simulator, which does not explore the global states
that have been explored, the Depth First Search after enhancement will explore all global

states that have been visited. The algorithm for it is defined in pseudo-code as follows:

The dump state graph consists from the set of all nodes U, and the set of edges V, each

edge is a triple (u, «’, a), where u and «’ are nodes and a is a label (message).

Here we present an algorithm that finds all the paths in the graph that end with an edge
with the SequenceFound label.

Algorithm [4.1]:
Input: V; ! - the upper limit; E;,pur; 4o — start node.

Output: a set of minimal separating sequences.

Main()
EDFS(up,€)

EDFS(u, x)
ifixT Eipud < I then

Joreach (u,u’,a)e V
if (a = SequenceFound) then print x T E;npu
else EDFS(v’, xa)
endif
endfor
endif

£is an empty string, x T Einpu: is obtained from x by deleting symbols not from E;y,.r.
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The syntax of state graph dump file can be found in Chapter S of [2]. The code of
Algorithm 4.1 can be found in Appendix C, and here is a brief explanation of the code:

Class TREE: is the data structure stores the node of state graph.

Color: is an array used to mark the visited node in the state graph.
ConstructAdjList: is the function used to construct adjacent list.

EDFS: is the function used to explore the paths in dumped state graph.
GetMSS: is the function to find minimal separating sequences.

FindCCS: is the function to find CCS among minimal separating sequences.
PrintMSS: is the function to print out all minimal separating sequences.

In the PrintMSS, a filter has been set to filter out the output signals of P. Leave the

remainder to be pure input signal sequence, which is minimal separating sequences.

4.2.2.3. Selecting CCS from Minimal Separating Sequences

For configuration ¢ and the set C of all given suspicious configurations, if there is a
common separating sequence x for ¢ and every configuration pair(c, ¢’), where c’eC,
then x is a CCS. This thesis deals with only this case, the code for this selection is
function FindCCS in Appendix C. Otherwise, we may decide to find a minimum number
of separating sequences that take together separate the expected configuration from a
maximum number of suspicious configurations. To this end one can use algorithms for
solving the classical set cover problem. In this thesis, however, will simply indicate that

no CCS exists in this case.

4.2.3. Correctness of CCS Generation Algorithm

Here we prove correctness of the method for restricted class of plain SDL processes that
always have a necessary output on the transitions (branches). However, according the
SDL semantics and practice, inputs, that are not declared in a particular state defines
transitions without outputs. We assume that such “silent” outputs can be observed during

the testing.
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Here we use next notations, borrowed from [10]:

x! A is restriction to the alphabet A;

s]G is a sequence of events (trace) on communication channel G.

Now we show that all the separating sequences can be obtained by restriction on Ejupu; of

traces ended with signal SequenceFound.

For simplicity consider the case when C is a singleton, and the process M is eliminated

for the sake of simplicity.

Propeosition 4.1: A trace is corresponds to deadlock in P |l § if and only if it ended with

SequenceFound.

Proposition 4.2: Let (s;, vi) and (s;, v;) be two configurations, x is a minimal separating
sequence for (s;, v), (s, vj) if and only if 3 trace € traces(P(v;) ll S;(v))).(trace[#trace] =
SequenceFound " trace! Eippu = x.

Proof: We prove this by induction.
1) Base of induction: for | x | = 1 statement holds clearly from definition.

2) Step of induction. Let the proposition holds for all x of length r. We will show that

proposition holds for all the sequences of length r + 1.

Necessity: Let x = ax’ is a minimal separating sequence, @ € Eippur, X’€ Einpus”. a is not a

separating sequence. This means there exists tracelof (P I S) such that tracell E;ppy = a.

Let (s;’, v") is a-successor of the (s;, v;) and that of (s;, v;) is (s;’, v;’), then by assumption

of the step of math induction, there is such trace2 € traces(P;’(v:’) Il §;’(v;’)) that the last
signal of trace2 is SequenceFound and trace2 | Eippy = x’. (restriction on Ejqp., is equal to
x’). By definition of distinguishing system, there is such tracel of (P;'(v;’) Il S;’(v;’)) that
tracel | Ejpu = a. Hence, tracel " trace2 | Eipp., = x and the last signal in tracel " trace2

is the SequenceFound sumbol. Necessity is proven.



Sufficiency: Let trace € (P;(v/’) Il §i’(vy’)) such that the last element is equal to
SequenceFound and restriction of the trace on Ejnpu: is sequal t0 x € Ejypur, Let x = ax’,
where a € Einpur, X’€ Einpur is a—successor [7] of (s;, vi) and x-successor of (s;, v;) is (s;’,

v;"). By definition of the distinguishing system, there is a tracel, trace2 such that tracel *
trace2 = trace, tracel t Eipu = a, tracel | Ep,, = x’. Hence, trace2 € traces(P;’(vi’) |l

i’ (vi")).

From the main assumption of the step of induction x’ is a minimal separating sequence
for guarantee (s;’, v;’) and (s;’, v;’). Hence ax’ is a separating sequence for (s;, ¢;) and (s;,

c;). From Proposition 4.1, it is a minimal separating sequence.

45



Chapter 5

Generating CCS for INRES protocol

5.1. Distinguishing System for INRES Protocol

The INRES protocol, Initiator-Responder protocol, is an abridged version of the
Abracadabra protocol used for academic studies and illustrative purposes. It is a

connection-oriented, asymmetrical communication protocol featuring many OSI concepts

[6].

To demonstrate our approach, in this thesis a part of INRES protocol, Responder process,
has been transformed into a distinguishing system D. D is shown in Figures 5.1, 5.2, 5.3
and 5.4. This distinguishing system is built to confirm configuration ¢ = (Connect,
number=un) from a set C of configurations (s, 52, 53, 54}, where s, = (Wait; number=un),
s2 = (Wait, number=zero), s3 = (Disconnected, number=zero) and s; = (Connected,
number=zero). Figure 5.1 shows the original EFSM model for Process Responder (P’) in
INRES. Figure 5.2 shows a part of primary EFSM P (transition between state
Disconnected to Wait) modified from the original machine P’ with the configuration c.
Figure 5.3 shows a part of the secondary EFSM S (transition between state Disconnected
to Wair) modified from the original machine P’ with the configuration set C. Monitor M
is presented in Figure 5.4.

In Figure 5.1, 5.2, 5.3 and 5.4, D stands for state Disconnected in original EFSM model
E, W stands for state Wait in E, C for Connected in E. Other states are new ones for the

distinguishing system.
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IDISreq / DR

CR /ICONind

CR /ICONind

ICONresp /CC,
Number:=zero

DT(Num,d),
Num#zsucc(Number)/AK(Num)

DT(Num,d), Num=succ(Number) / IDATind(d);
AK(Num), Number:=succ(Number)

Figure 5.1 EFSM Model of INRES

>
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L 4< . <<'>
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X Co3,

Figure 5.2 Process P in Distinguishing System
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Appendix B presents the SDL description of process P of the distinguishing system. Here
we give its state transition graph in Figure 5.2, where D stands for state Disconnected in P
as shown in Appendix B, DO for state Disconnected_0, D1 for Disconnected_1, DO1 for
Disconnected_0_1, C for Connected, CO for Connected_0, C1 for Connected_1, C2 for
Connected_2, CO! for Connected_0_l1, C02 for Connected_0_2, COll for
Connected_0_1_1, C021 for Connected_0_2_1, C03 for Connected_0_3, Cl1 for
Connected_1_1, W for Wait, WO for Wait_0, W1 for Wait_1, W2 for Wait_2, W01l for
Wait_0_1, W02 for Wait_0_2. Here X stands for deadlock. There should be only one X in
Figure 5.2, we have several of them for convenience. Start node in Figure 5.2 stands for

the start state of process P.
Transitions of process P in the distinguishing system are defined as following:

1(Start—D), stands for the transition (Start — D);

t(D—D0), stands for the transition (D —/CR — D0);

t(D—D1)', for the transition (D — /ICONresp — D1);

1(D—D1)?, for the transition (D — /IDISreq — D1);

t(D—D1)’, for the transition (D — /DT(Num,d), Num:=un, d:=FALSE — D1);
y(D—-D1)*, for the transition (D — /DT(Num,d), Num:=un, d:=TRUE — D1);
t(D—)Dl)S, for the transition (D — /DT(Num,d), Num:=zero, d:=FALSE — DI);
t(D—)Dl)ﬁ, for the transition (D — /DT(Num,d), Num:=zero, d:=FALSE — D1),
1(D0—-DO1), for (DO — resume/ICONind — DO1);

(DO-DEADLOCK), for (DO — invalid/SequenceFound - DEADLOCK);
t(DO1-5W), for (D01 — resume/Wait — W);

1(D01-DEADLOCK), for (DO1 — invalid/SequenceFound — DEADLOCK);
t(D1-D), for (D1 — invalid/TwolnvalidSignals — D);

t(DI->DEADLOCK), for (D1 — resum/SequenceFound - DEADLOCK);
HC—C0)', for (C — true/DT(Num, d), Num:=un, d:=FALSE — CO0);

1(C—CO0)?, for (C — true/DT(Num, d), Num:=un, d:=TRUE — CO0);

#(C—CO0), for (C — true/DT(Num, d), Num:=zero, d:=FALSE — CO0);
#HC—CO0)?, for (C — true/DT(Num, d), Num:=zero, d:=TRUE — CO0);

t(C—C1l), for (C—/CR — C1);
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K(C—C2), for (C— /ICONresp — C2),

C—C2)?, for (C—/IDISreq — C2);

t(C0—-CO01), for (C — resume, Numstsucc(Number)/ — CO01);

H(C0—-C02) , for (C — resume, Num=succ(Number)/ — C02);

#(C01-CO011), for (COl —/AK(Num) — CO11);

#(CO->DEADLOCK) , for (C — invalid/SequenceFound — DEADLOCK);
(Ci1—>Cl11), for (C1 — resume/ICONind —Cl11);

t(C1->DEADLOCK), for (C1 — invalid/SequenceFound —-DEADLOCK);
(C11—-C), for (C11 — resume/ —5C);

t(C11-Cl11), for (C11 — invalid/SequenceFound —C11);
t(C2-DEADLOCK), for (C2 — resume/SequenceFound — DEADLOCK);
HC2--C), for (C2 —invalid/TwolnvalidSignals — C);

H(C01->CO011), for (CO1 — /AK(Num) — CO11);

(C02—-C021), for (C02 — /IDATind(d) — C021);

(C11-C), for (C11 — resume/ — C);

#(C11-DEADLOCK), for (C11 — invalid/SequenceFound - DEADLOCK);
t(C011-0C), for (CO11 — resume/ — C);

1(C011 - DEADLOCK), for (COl1 — invalid/SequenceFound - DEADLOCK);
1(C021—-C03), for (C021 — resume/AK(Num) — CO03),

1(C021 -DEADLOCK), for (C0O21 — invalid/SequenceFound — DEADLOCK);
1(C03—-C), for (CO3 — resume/, Number:=succ(Number) — C),
1(C03—-DEADLOCK), for (C021 — invalid/SequenceFound — DEADLOCK);
t(W->WO0), for (W — ICONTresp/ = W0);

W-W1), for (W —IDISreq/ — W1),

(W-W2)', for (W — /DT(Num,d), Num:=un, d:= FALSE — W2);
(W-W2)?, for (W — /DT(Num,d), Num:=un, d:= TRUE — W2);

(W —a'W2)3 , for (W — /DT(Num,d), Num:=zero, d:= FALSE — W2);
(W—W2)*, for (W — /DT(Num,d), Num:=zero, d:= TRUE — W2);
(W-W2)°, for (W —/CR — W2);

((W0-WO01), for (W0 — resume/CC, Number:=zero — WO01);
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t(W0—-DEADLOCK), for (W0 — invalid/SequenceFound = DEADLOCK);
t(W01-C), for (W01 —resume/ — C);

t(W01-DEADLOCK), for (W0l — invalid/SequenceFound —- DEADLOCK);
t(W1->W11), for (W1 —resume/CR - W11);

t(W1—-DEADLOCK), for (W1 —invalid/SequenceFound — DEADLOCK);
t(W11-D), for (W11 — resume/ — D);

t(W11->DEADLOCK), for (W!1 —invalid/SequenceFound — DEADLOCK);
t(W2-5W), for (W2 — resume/TwolnvalidSignals — W),
t(W2—-DEADLOCK), for (W2 — invalid/SequenceFound — DEADLOCK);

Figure 53 EFSM S in Distinguishing System

Appendix B also provides the SDL description of process S, In Figure 5.3 is the state
graph of S, where aa stands for the state aa in Appendix B, D stands for Disconnected, W
for Wait, C for Connected, DO for Connected_0, W11 for Wait_1_1, WOI for Wait_0_1,
CO01 for Connected_0_1, C02 for Connected_0_2, C10 for Connected_1_0. X and Start

node in Figure 5.3 have the same meanings as those in Figure 5.2.
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Transitions in S are as following:

t(Start—aa), stands for the transition (Start — aa);

t(aa—D), for the transition (aa — /S3, Number:=zero — D);

1(aa—W)', for (aa—/S2, Number:=zero — W);

t(aa—W)?, for (aa—/S1, Number:=un — W);

t(aa—C), for (aa —/S4, Number:=zero — C);

t(D—-D0), for (D — CR/resume — DO0);

(D-D)', for (D — ICONTresp/invalid — D);

1(D—-D)?, for (D — IDISreg/invalid — D);

y(D-D)’, for (D — DT(Num,d)/invalid — D);

t(D0—D), for (DO — ICONind/resume — D);

t(DO—-DEADLOCK), for (DO — */invalid - DEADLOCK);

1(C—>CO01), for (C — DT(Num,d), Num#succ(Number)/resume, — CO1),
1(C—>C02), for (C — DT(Num,d), Num=succ(Number)/resume, — C02);
t(C—-CI10), for (C— CR/resume — C10);

t(C—C), for (C — IDISreq/invalid — C);

t(CO1-5C), for (CO1 — AK(Num)/resume — C);

(CO1-DEADLOCK), for (CO1 — */invalid - DEADLOCK);
1(C02-5C), for (C02 — AK(Num)/resume, Number:=succ(Number) — C);
{(C02-DEADLOCK), for (DO — */invalid - DEADLOCK);
1(C10-0C), for (DO — ICONind/resume — D);

(C10-DEADLOCK), for (DO — ICONind/invalid - DEADLOCK);
t(W-—->WO01), for (W — ICONresp/resume, Number:=zero — WO01);
t(W-W11), for (W — IDISreq/resume — W11);

{(W—W)!, for (W — CR/invalid — W);

t(W—-W), for (W — DT(Num,d)/invalid — W);

t(W01-5C), for (W01 — CC/resume — C);

t(W01--DEADLOCK), for (W01 — */invalid - DEADLOCK);
t(W11-D), for (W11 — DR/resume — D),
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t(W11-DEADLOCK), for (W11 — */invalid ~» DEADLOCK);

Figure 5.4 is the state graph of Process Monitor in the distinguishing system.

ICONresp / ICONresp &Mdnmﬁd

ICONind / ICONind

IDISreq / IDISreq
DT(Num,d) / DT(Num,d)

Figure 5.4 EFSM M in Distinguishing System

5.2. Results (CCS) and Analysis

The distinguishing system D is built to find CCSs which can confirm the configuration ¢
in the set C of configurations, where:
¢ = Connected(number = un)
C = { 54, 52, 53, 54}, in which,
s; = Wait(number = un)
52 = Wait(number = zero)
s3 = Disconnected(number = zero)

54 = Connected(number = zero)
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From the distinguishing systems, where the process S has to be initialized in four different

configurations.

Exhaustive simulation of D in Breadth First Mode with an upper bound set to 4 by using
ObjectGeode simulator, the state graph will be generated and dumped into a file. Then we
run post-processing program (set the upper bound of state number that will be searched
along a path to 1000, this can be adjusted by the user) on the dump file and get all
minimum separating sequences (total 118 sequences). Finally, we find 4 CCSs, they are:

DT(un, true), DT(un, false), DT(zero, true) and DT(zero, false).
The specification of the distinguishing system D of the Responder process in INRES

protocol, post-processing program and minimal separating sequences found are given in

Appendix B, C and D, respectively.
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Chapter 6

Conclusion and Future Work

In this thesis the CCS generation problem has been analyzed and an approach to generate
CCS for the configurations of a given SDL specification by using ObjectGeode simulator
is presented. The main point is the exhaustive simulation provided by this tool. The
correctness of the approach shown in Figure 2.1 is demonstrated on INRES protocol. The

advantage of this approach is that a commercial tool can be used to solve the problem.

Future work is to automate the process of constructing a distinguishing system.
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Appendix C

Code For

Post-Processing Program



// CCS.cpp: find Configuration Confirming Sequence

// 1) First, find out Minimal Separating Sequences.

// 2) Second, select Configuration Confirming Segquence
// from Minimal Separating Sequences.

//
[ITETTT7107777777777777777077771777777777777777177777777/77777777777,
#include "ctype.h"

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

LITITTT77707077770 07777777777 77707777077777777777777777177777717777.

/ Construction/Destruction

!/
// TREE is the data structure to save adjacent list of state graph.

////////////////////////////////////////////////////////////////////

class TREE

public:
long NodeNumber ;
char Msg [(100] ;
TREE *pSibling;
TREE *pSon;
int clr;
public:
TREE() ;
TREE (long) ;
TREE(long, charv);
virtual “TREE();
TREE * find(long x);
TREE * addnew(long x) ;
} void appendson(long x, char* msg) ;
fREE::TREE()
NodeNumber = -1;
strcpy (Msg, "");
clr = 0;

pSibling = NULL;
pSon = NULL;

}

TREE: : TREE(long x)

{
NodeNumber = x;

strcpy(Msg, "");

clr = 0;
pPSibling = NULL;
pSon = NULL;

}
?REE::TREE(long x, char *strMsg)

NodeNumber = x;
strcpy (Msg, strMsg);



clr = 0Q;
pSibling = NULL;
psSon = NULL;

}
TREE: : "TREE()

}

TREE* TREE: :find(long x)

{
TREE *pNode ;

for(pNode = this; pNode != NULL; pNode = pNode->pSibling)
if (pNode->NodeNumber == x) return pNode;

return NULL;

}

TREE* TREE: :addnew(long x)

{
TREE *pNode ;

pNode = this;

for(pNode = this; pNode->pSibling != NULL;
pNode = pNode->pSibling) ;

pNode->pSibling = new TREE (x) ;

return pNode->pSibling;

void TREE: :appendson(long x, char* msg)

{
TREE *pNode ;
pNode = this;
for(pNode = this; pNode->pSon != NULL;
pNode = pNode->pSon) ;
} pNode->pSon = new TREE(x, msg); - *
FILE +*f;

TREE *pRoot;

char MSSes(1000] [200] ;
int MSSptr = 0;

long MAXDEPTH = 50L;
char CCScand([1000] [200];
int CCSptr = 0;

int getline() ;
long getnumber() ;
void getMSS (char*) ;
int addMsSs (charr) ;

int ConstructAdjList (char *fileName)
int c;

long x, y;
char *msg;



TREE *Tnode;

msg = (char *)malloc(100);
f=fopen(fileName, "r") ;
if (£==NULL)

printf ("\nerror!\n");
return -1; - .

}
Tnode = new TREE() ;

while(getline() >0)

x = getnumber() ;
Tnode = pRoot->find(x);
if (Tnode == NULL) Tnode = pRoot->addnew (X) ;

y = getnumber() ;

getMsSs (msg) ;
Tnode->appendson(y, msg);
strcpy (msg, "");

}

fclose(f) ;
free (msg) ;
return 0;

}

int getline()

int c;

while (1)
if ((c=getc(f)) == EOF) { c=0; break; }
if(ec!='$") continue;
else { c=1; break; }

}

return c; -«

}
}ong getnumber ()

int ¢, 1;
char num[10] ;

c=getc(f) ;
for(i=0; isdigit(c); i++)

num(i] = c; c=getc(f);
num(i]}='\0"';

//printf ("\ngetnum: %s", num);
return atol (num) ;

}

void getMSS (char *msg)



int ¢, 1i;

char *opdl, *opd2, *opd3, *opd4;
char ropd21, *opd22, *opd23;
char *outpar;

long fLoc=0L;

opdl = (char*)malloc(50*sizeof (char));
opd2 = (char*)malloc(SO¥sizeof (char));
opd3 = (char*)malloc(S50*sizeof (char));
opd4 = (char*)malloc(50*sizeof (char));
opd21 (char*)malloc (50*sizeof (char)) ;

opd22 - (char*)malloc(50*sizeof (char)) ;
opd23 = (char*)malloc(50*sizeof (char));
outpar = (char*)malloc(100*sizeof (char));

while(1)
c=getc(f);

if (c==EOF) { fseek(f, -1, SEEK_CUR); break; ;
if(c=='$") fseek(f, -1, SEEK_CUR); break;

if(c=='0"'}

fscanf (£, "utput %s¥s%s", opd2, opd3, opd4);
if (stremp(opd4, "responder(l)")==0)

// read output parameters

strcpy (outpar, "(");

for(i=0; ; i++)

for(c=getc(f); c!='$' &&
c!='\n' && c!=EOF; c=getc(f));

if(c=='$' || c==EOF)
{ £seek(f, -1, SEEK_CUR); break; }

fLoc = ftell(f);
fscanf (£, "ts¥s¥s", opd2l, opd22, opd23);
if (*opd21=='p' && strcmp(opd22, "=")==0)

strcat (outpar, opd23);
strcat (outpar, ",");

else

if (fseek(f, fLoc, SEEK_SET) <0}
printf ("error seek\n");

break;
if(i>0) =* (outpar+strlen(outpar)-1) = ')';
else *(outpar+strlen(outpar)-1) = '\0';

// record MSS
sprintf (msg, "%¥s%s", opd2, outpar);

}
else if (*opd2=='s' && isdigit (* (opd2+1))



&& strcmp(opd4, "responderminus(l)")==0)
strcpy (msg, opdz2);

break;

else
for(c=getc(f); c!='\n'; c=getc(f));

free (opdl) ;
free (opd2) ;
free(opd3l) ;
free (opd4) ;
free(opd21) ;
free (opd22) ;
free (opd23) ;
free (outpar) ;

}

void EDFS(TREE *pNode, char *pS, char *pM, int depth)

TREE *pTemp;
char pSTemp [200] , pMTemp [400] ;

if (depth > MAXDEPTH) return;
pNode->clr = 1;

Yhile(l)

pNode = pNode->pSon;
if (pNode==NULL) break;

strcpy (pSTemp, pS); //erase old string of state-nu
sprintf (pSTemp, "%s %¥d", pSTemp, pNode->NodeNumber)

strcpy (pMTemp, pM) ;
if (strlen(pNode->Msg) != 0)
sprintf (pMTemp, "%s %s", pMTemp, pNode->Msg) ;

pTemp = pRoot->find (pNode->NodeNumber) ;

if (pTemp != NULL)

EDFS (pTemp, pSTemp, pMTemp, depth+l);
else

%f(addMSS(pMTemp))

strcpy (MSSes [MSSptrl, pMTemp) ;
MSSptr++;

}

int addMSS(char * strMSS)
int i;

for(i=0; i<MSSptr; i++)
if (strcmp (MSSes[i], strMSS)==0) return 0;



if (strstr(strMSS, "sequencefound") !=NULL) return 1;

return 0;

void £indCCSs ()
int i, j, k, iScnt, c, isFound;

//Right Trim
for(i=0; i<CCSptr; i++)

for (j=strlen(CCScand([il); 3>0; j--)
if (CCScand[i] [j-1]==* ') CCScand(i] [j]1='\0"';
else break;
for (i=0; i<CCSptr; i++)

iScnt=0;
for(j=i+1; j<CCSptr; j++)

isFound=1;
if (strcmp (CCScand([i] +4, CCScand([j] +4) !=0) isFound=0;

if(isFound==1) iScnt++;

if(iscnt>=3) { printf(" %s (%¥d)\n", CCScand[i]+4, iScnt);

break;
}
}
}
Yoid Dump ()
TREE *pTemp, *pNode;
char pSTemp (200*sizeof (char)];

for (pNode = pRoot; pNode != NULL; pNode = pNode->pSibling)

for (pTemp = pNode; pTemp != NULL; pTemp = pTemp->pSon)
printf(" %d<%s>", pTemp->NodeNumber, pTemp->Msg) ;

}
¥oid printMss ()

// PRINT OUT MINIMUM SEPERATING SEQUENCES
int c, i, k;
char . *sStrMSS, *strTemp;

strTemp = (char*)malloc(200*sizeof (char));
for(c=0; c<MSSptr; c++)

CCSptr=c;

k=0;

SstrMSS = MSSes [c];
while (*strMSS==' ') sStrMSS++;



// filter out unnecessary outputs

strTemp = strtok(strMss, " ");

if(*strTemp != 's') continue;

for(i=1; i<strlen(strTemp); i++)
if(!isdigit(* (strTemp+1i))) break;

if (i<strlen(strTemp)) continue;

strMSS += strlen(strTemp) +1;
strcpy (CCScand [CCSptr], strTemp) ;
k=strlen(strTemp) ;

CCScand [CCSptr] [k]=' *;

CCScand (CCSptr] [k+1]="' *;

CCScand [CCSptr] [k+2]='\0"'; k+=2;

for(i=0; ; i++)

if (i==(1/2)*2)
while (*strMSS != ' ' && *sStrMSS != *'\0')

printf("$c", *strMsSSs);
CCScand [CCSptr] [k] =*strMSS;
StrMSS++;

k++;

}

else
while (*strMSS != ' ' && *StrMSS != '\0') strMSS++

if (*strMSS == '\0') { CCScand[CCSptr] [kl='\0'; brea
else

while (*strMSS==' ') sStrMSS++;
printf (" ");
CCScand[CCSptr] [k]=' ';

k++;

}

if (strcmp (strMSS, "sequencefound")==0) break;
printf ("\n"); -
}
main (int argc, char *argvl[])

TREE *pTNode;

char *pStr, *pMStr;

MSSptr = 0;

PRoot = new TREE();

pStr = (char*)malloc(100*sizeof (char));

pPMStr = (char*)malloc(200*sizeof (char));

if (ConstructAdjList (argv[l])) return -1;
if (argc >= 3) MAXDEPTH = atol(argvi[2]);
pTNode = pRoot->pSibling;

//Dump () ;

while (1)



}

for(;;)

if (pTNode == NULL) break;
if (pTNode->clr == 0) break;
pTNode = pTNode->pSibling;

if (pTNode == NULL) break;

sprintf (pStr, "$d", pTNode->NodeNumber) ;
strcpy (pMStr, ") ;

EDFS (pTNode, pStr, pMstr, 1);

printf ("\n\n\nMinimal Separating Sequences:\n");
printMss () ;

printf ("\n\n\nCCSes: \n");

£indCCS () ;

free(pStr) ;

free (pMStr) ;



Appendix D

Minimal Separating Sequences Found

By Distinguishing System



Minimal Separating Sequences:
dt (un, false)
dt (un, true)

dt (zero, false)
dt (zero, true)

cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
cxr
cr

dt (un, false)

dt (un, true)

dt (zero, false)

dt (zero, true)

cr dt(un, false)
cr dt(un, true)

cr dt(zero, false)
cr dt(zero, true)

iconresp
iconresp
iconresp
iconresp

dt (un, false)
dt (un, true)
dt (zero, false)
dt (zero, true)

cr
cr
cr
cr
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq

idisreq dt(un,false)
idisreq dt (un,true)
idisreq dt(zero, false)
idisreq dt(zero, true)

dt (un, false)

dt (un, true)

dt (zero, false)

dt (zero, true)

cr dt(un, false)

cr dt(un, true)

cr dt(zero, false)

cr dt(zero, true)
iconresp dt(un, false)
iconresp dt (un, true)
iconresp dt(zero, false)
iconresp dt (zero, true)
idisreq dt(un, false)
idisreq dt (un, true)
idisreq dt(zero, false)
idisreq dt(zero, true)
dt (un, false)
dt (un, true)
dt (zero, false)
dt (zero, true)
cr dt(un, false)

cr dt(un,true)

cr dt(zero, false)

cr dt(zero, true)
iconresp dt(un,false)
iconresp dt (un, true)
iconresp dt(zero, false)
iconresp dt(zero, true)
idisreq dt(un,false)
idisreq dt(un,true)
idisreq dt(zero, false)
idisreq dt(zero, true)

dt (un, false)
dt (un, true)
dt (zero, false)
dt (zerxo, true)



cr
iconresp
idisreq

dt (un, false)
dt (un, true)

dt (zero, false)
dt (zero, true)

cr
iconresp
idisreq

dct (un, false)
dt (un, true)
dt (zero, £alse)
dt (zero, true)

cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
cr
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
iconresp
idisreq
idisreq
idisreg
idisreq
idisreq
idisreq
idisreq
idisreqg
idisreq
idisreq
idisreq
idisreq
idisreq
idisreq

cr

cr

dt (un, false)

dt (un, true)

dt (zero, false)

dt (zero, true)

dt (un, false)

cr dt (un, true)

dt (zero, false)

cr dt(zero, true)
iconresp dt(un, false)
iconresp dt (un, true)
iconresp dt(zero, false)
iconresp dt(zero, true)
idisreq dt(un, false)
idisreq dt (un, true)
idisreq dt(zero, false)
idisreq dt(zero, true)

dt (un, false)

dt (un, true)

dc (zero, false)

dt (zero, true)

cr dt(un, false)

cr dt (un, true)

cr dt(zero, false)

cr dt{(zero,true)
iconresp dt (un,false)
iconresp dt (un, true)
iconresp dt(zero, false)
iconresp dt (zero, true)

idisreq dt (un,false)
idisreq dt (un,true)
idisreq dt (zero, false)
idisreq dt(zero,true)

dt (un, false)

dt (un, true)

dt (zero, false)

dt (zero, true)

cr dt(un, false)

cr dt (un, true)

cr dt(zero, false)

cr dt(zero, true)
iconresp dt(un, false)
iconresp dt (un, true)
iconresp dt (zero, false)
iconresp dt (zero, true)
idisreq dt(un, false)
idisreq dt (un, true)



idisreq idisreq dt (zero,false)
idisreq idisreq dt(zero,true)

CCSes:
dt (un, false)
dt (un, true)
dt (zero, false)
+ dt (zero, true)

*



