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Abstract

Infrared spectra of microbial cells are highly specific, fingerprint-like signatures
which can be used to differentiate microbial species and strains from each other. In this
study, the potential applicability of Fourier transform infrared (FTIR) spectroscopy for
the classification of yeast strains in terms of their biological taxonomy, their use in the
production of wine, beer, and bread, and their sensitivity to killer yeast strains was
investigated. Sample preparation, spectral data preprocessing methods and spectral
classification techniques were also investigated. All yeast strains were grown on a single
growth medium. The FTIR spectra were baseline corrected and the second derivative
spectra were computed and employed in spectral analysis. The classification accuracy
was improved when the principal component spectra (calculated from the second
derivative spectra) were employed rather than the second derivative spectra or raw
spectra alone. Artificial neural network (ANN) with 10 units in the input layer and 12
units in the hidden layer produced a robust prediction model for the identification of
yeasts. Cluster analysis was employed for the classification of yeast strains in terms of
their use in the production of wine, beer. and bread and in terms of their sensitivity to
killer yeast strains. The optimum region for the classification in the former case was
found to be between 1300 and 800 cm™ in the infrared spectrum whereas the optimum
region for the classification of yeast strains in terms of their sensitivity was between 900
and 800 cm™. The results of this work demonstrated that FTIR spectroscopy could be

successfully employed for the classification and identification of yeast strains with

minimal sample preparation.



Résumé

Les spectres infrarouges des cellules microbiennes sont fortement spécifiques,
des signatures comparables a des empreintes sont employés pour différencier les espéces
et les types microbiens. Dans cette étude, I'application potentielle de la spectroscopie
infrarouge par transformation Fourier (FTIR) pour la classification des types de levure
dans la limite de leur taxonomie biologique, leur utilisation dans la production du vin, de
la biére, et du pain et leur sensibilité aux types de levures destructrices a été étudiée. La
préparation des échantillons et les méthodes de prétraitement de classification spectrales
ont également été étudi¢es. Tous les types de levure ont été cultivées dans un milieu de
croissance simple. Les spectres FTIR a base corrigée ainsi que leur seconde dérivée ont
été utilisées dans [’analyse. La classification a été ameéliorée quand les spectres
principaux (calculés a partir de la seconde dérivée des spectres) ont été utilisés plutot que
la seconde dérivée ou les spectres d’origine. Une classification a été réalisée par
I'utilisation d’un réseau neurologique artificiel (ANN) avec une combinaison optimale de
10 unités de couches d'entrée et 12 unités de couches cachées. L'analyse multivariable a
été utilisée lors de la classification des types de levure par leur utilisation dans la
production du vin, de la biére, et du pain et par leur sensibilité aux levures destructrices.
La région optimale pour la premiére méthode de classification s'est avérée étre entre 1300
et 800 cm™' tandis que la région optimale pour la classification des types de levure par
leur sensibilité était entre 900 et 800 cm™. Les résultats de ce travail ont démontré que la
spectroscopie FTIR pourrait, avec succes, étre utilisée pour différencier les types de

levure avec une préparation minimale des échantillons.
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Chapter 1

Introduction

The characterization of microorganisms (including detection, differentiation,
identification, and susceptibility testing against antibiotics) is very important in a wide
variety of industries. For example, in the pharmaceutical manufacturing industry
microbes are either part of the manufacturing process or they interfere with or
contaminate the process. Numerous analyses are regularly performed in the medical
research institutions dedicated to the registration and epidemiological control of
pathogens of both humans and animals and rigorous microbiological controls of raw
material are also needed. Therefore, proper and rapid characterization of microorganisms
is highly desirable. While morphological and biochemical techniques have been
traditionally employed, in recent years, new methods such as PCR, have been adopted by

the food industry. More recently, the application of GC/MS, pyrolysis for microorganism

characterization also has been under active investigation.

In this context, Fourier transform infrared (FTIR) spectroscopy has the potential
to become an important routine analytical tool as FTIR analysis can be performed rapidly
with minimum sample preparation and without the use of reagent. It has been reported in
the literature that FTIR spectroscopy can be employed in the classification and
differentiation of microorganisms (Naumann et al., 1988; Helm et al., 1991; Goodacre et
al., 1996b), to detect in situ intracellular compounds (Naumann, 1998a), to characterize

growth dependent phenomena of microorganism (Reinstadler et al., 1997) and to monitor



chemical changes taking place during fermentation (Fayolle P. et al., 1997; Qiu, J. et al,,
1999). Accordingly, a number of time-consuming morphological and biochemical tests
may be replaced by FTIR spectroscopy. However, widespread application of FTIR
spectroscopy for microorganism characterization will likely occur if the industry is
provided with evidence that such an approach is both reliable and accurate. This thesis
work addresses issues related to the development of a reliable and rapid method for the

characterization of yeasts by FTIR spectroscopy.



Chapter 2

Literature Review
2.1 Biochemical Composition of Microorganisms

2.1.1 Biochemical composition of bacteria cells

Most bacteria appear in variations of three different shapes: the rod (known as
bacillus), the sphere (coccus) and the spiral (virions, spirilla, and spirochetes). To achieve
motion, they utilize structures called flagella, which are composed of long, rigid strands
of a protein called flagellin. Bacteria also possess appendages called pili that appear as
short flagella. They are composed of proteins, which can anchor bacteria to surfaces or
transfer genetic material among bacteria. The capsule (composed of polysaccharides and
small proteins that adhere to the bacterial surface) serves as buffer between the cell and
its external environment. Because of its high water content, the capsule protects the cell
against dehydration while preventing nutrients from flowing away. The important
chemical constituent of the bacterial cell wall is peptidoglycan. It is a very large molecule
composed of altermating units of two amino-containing carbchydrates,
N-acetylglucosamine and N-acetylmuramic acid, joined by cross-bridges of amino acids.
Peptidoglycan occurs in muitiple layers connected by side chains of four amino acids,

and the many layers comprise one extremely large molecule.

The cell walls of Gram-positive and Gram-negative bacteria differ considerably
(Figure 2.1). In Gram-positive bacteria, the peptidoglycan layer is about 25 nm wide and

contains an additional polysaccharide called teichoic acid. About 60 to 90 percent of the



cell wall is peptidoglycan, and the material is so abundant that Gram-positive bacteria are
able to retain the crystal violet-iodine complex in Gram staining. By contrast,
Gram-negative bacteria have a peptidoglycan layer only 3 nm wide without any evidence
of teichoic acid. The cell wall in these bacteria contains various polysaccharides,
proteins, and lipids and so is much more complex than the cell wall of Gram-positive
bacteria. Also, the cell wall is surrounded by an outer membrane barely separated from

the cell wall by a so-called periplasmic space containing a gel-like material called

Lpolachow acd
Techoic acd

L b b 2 4

Figure2.1 Comparison of gram-positive and gram-negative bacterial cell wall structures
( adapted from Maier, Raina M. 2000 Environmental microbiology San Diego, Calif.
Academic Press)

periplasm (which is made of proteins. In this compartment there are some metabolic
activities - e.g. reactions dealing with toxic substances). On the inner side of the cell wall

the periplasmic space is wider. Bacterial toxins and enzymes apparently remain in this



space and destroy antibacterial substances before they can affect the cell membrane, and

other proteins.

The cell membrane (plasma membrane) is the boundary layer of the bacterial cell.
Approximately 60 percent of it is composed of protein, and about 40 percent of lipid,
mainly phospholipid. The phospholipid molecules are arranged in two parallel layers.
Inside the cell membrane lies the cytoplasm, a gelatinous mass of proteins,
carbohydrates, nucleic acids, salts, and inorganic ions. Certain Gram-positive bacteria are
able to produce highly resistant structures called endospores or spores. Spores contain

little water, however, they do have a large amount of dipicolinic acid which helps to

stabilize their proteins.

2.1.2  Biochemical composition of yeast cells

Budding yeasts are true fungi of the phylum Ascomycetes, class
Hemiascomycetes. The true yeasts belong to one main order Saccharomycetales, which
includes at least ten families. Yeasts are heterotrophic, lack chlorophyll, and have a wide
variety of natural habitats. Yeasts multiply as single cells that divide by budding or direct
division (fission), or they may grow as simple irregular filaments (mycelia). In sexual
reproduction most yeasts form asci, which contain up to eight haploid ascospores. These
ascospores may fuse with adjoining nuclei and multiply through vegetative division or, as

with certain yeasts, fuse with other ascospores (Kockova-Kratochvilova, 1990).



The chemical composition of yeasts such as brewer's, baker's, wine and fodder
yeast differs widely (Table 2.1 and Table 2.2). These differences reflect differences in the

yeast species, cultivation conditions and nutrient media (Kockova-Kratochvilova, 1990).

The chemical composition of brewer’s yeast biomass:

Table 2.1
Composition Brewer’s yeast biomass
carbon 44 to 50%
hydrogen 6to 8%
nitrogen 8t 12%
oxygen 30t0 36 %

Table 2.2 The main components of Baker's yeast:

Components Baker’s yeast
protein 45 to 60%
saccharides 2510 35%
lipids 40 7%
ash 6to 9%

The guanine and cytosine (G+C) content of yeasts ranges from approximately 28
to 70 mol%. The G+C content of ascomycetous yeasts is generally less than 50%,
whereas that of basidiomycetous yeasts is generally above 50% (Kurtzman et at., 1983).

From the base composition, the taxonomic class of imperfect yeasts can be reliably



inferred. The range in G+C content among species within a genus is often 10% or less,
with the exception of some obviously heterogenous genera. On a species level, the use of
G+C content is only exclusionary in that a difference of 2 mol% or greater indicates

strains belonging to different species (Price et al., 1978).

Polysaccharides in yeast cells fall topologically and functionally into two classes:
cell wall polysaccharides (e.g. glucans and mannans) and intracellular polysaccharides.
Glucan and mannan complexed with proteins represent about 80 to 90 % of the cell wall
dry weight in S. cerevisiae. The rest is made up by chitin, proteins and lipids. The
chemical structure of mannan (Figure 2.2) consists of mannose units bonded by al - 6,
al > 2 and al <> 3 bonds. Isolated preparations of glucans from yeast cell walls are
extremely heterogeneous (Manners et al., 1974). The major part is formed by insoluble
B-1,3-glucan with a high relative molecular weight and a polymerization degree of about
1500, which contains 3 % of B- 1,6-glycosidic bonds inside the chain. A minor
component, about 15 % of total glucans, is a soluble B-1,6-glucan with a polymerization
degree of 130 to 140, containing about 14 % B- 1,3-glycosidic bonds inside the chain.
Intracellular saccharides, mostly glycogen and trehalose, serve as reserve substances.
Glycogen makes up 0.5 to 1.3 % of the yeast cell weight. Its properties are similar to
those of the amylopectin starch fraction. It is composed of chains of glucose residues
with predominantly al < 4 type, bonds of the a1->6 type being only localized at the
chain branching points. Trehalose (a-D-glucopyranosyl-a-D-glucopyranoside, Figure
2.3) consists of two glucose units. The activity of trehalose is affected by cyclic AMP.

Van Solingen and Van der Plaat (1975) found that the lag phase preceding the culture



growth is governed by a system including the action of cAMP and trehalose. In yeast
cells cCAMP acts as a regulator of protein-phosphorylating reactions. The activation of

trehalose is associated with phosphorylation of the protein, which is controlled by cAMP.

Yeast intracellular lipids include neutral triacylglycerols and phospholipids (Table
2.3, Table 2.4). Yeast also produce lipid into the external medium or cultivation medium
(extracellular lipids). There are four types of extracellular lipids: a) esters of polyols and
carboxylic acids in which saturated and unsaturated hydroxycarboxylic acids are linked
with five- to six-carbon polyols by an ester bond; b) sophorosides of hydroxycarboxylic
acids in which saturated and unsaturated hydroxycarboxylic acids are linked by a
glycosidic bond to the disaccharide sophorose; ¢) acetylated sphingosines in which
hydroxy groups and amino groups of Cis-phytosphingosine and Cis-dihydrosphingosine
are acetylated; d) Cj;-acids in which tri- and dihydroxycarboxylic acid residues are

acetylated.



Table 2.3: Composition of yeast lipids (adapted from Kockova-Kratochvilova, 1990)

Carboxylic acid Content in lipids of C. utilis

[%e]

Lauric 0.5
Myristic 1.3
Palmitic 21.0
Palmitoleic 35
Stearic 29
Oleic 40.0
Linoleic 26.5
Linolenic 35

Table 2.4 Percent total phospholipid content in whole cells of S.cerevisiae
(Cartledge et al., 1977)

Phospholipid Per cent of total phospholipid content in
whole cells of S. cerevisiae

Phosphatidylethanolamine 31.2
Phosphatidylinositol 29.7
Phosphatidylcholine 253
Phosphatidylserine 6.2
Cardiolipin 3.8
Phosphatidic acid 2.3

Yeast cells are multilayer systems in which membranes delineate separate
reaction spaces. Membranes are assumed to serve as diffusion barriers between individual
compartments. Yeast membranes include the dictyosomal membrane, nuclear membrane,
ER-membrane, vacuolar tonoplast, mitochondrial membrane, and microsomal membrane.
Yeast membranes contain a number of lipids and pigments that are not present in
prokaryotic cells. These include sterols, sphingolipids, ergosterins, melanins, and some

glycolipids. Culture conditions have a marked influence on the total lipid content and




lipid composition of yeasts. Factors controlling lipid content and composition are pH of
the medium, temperature, and time of growth, and the ratio of N- and C-sources. Sterols

occur both in free form and as esters with long-chain fatty acids. Both forms are
interconvertible. Free sterols are associated with membrane functions, and sterol esters
may fulfil a storage or "pool" function. Common sterol molecules of yeasts are ergosterol
(Figure 2.4), lanosterol, and episterol, zymosterol, and fecosterol (Nes et al., 1978).
Major structures of sphingolipids found in yeasts are the sphingosines (Figure2.5),
cerebrins (cerarnides), sphingomyelines, and cerebrosides (Kockova-Kratochvilova,
1990). A typical membrane lipid in yeast is ergosterin (Kockova-Kratochvilova, 1990).
Its structure is similar to that of cholesterin and it belongs to the group of sterines. Further
compounds frequently found in the membranes of yeasts are melanins, which are black

pigments built up from tyrosine derivatives.

Saccharomyces cerevisise
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Figure 2. 2 The chemical structure of mannans from Saccharomyces cerevisiae
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Figure2.3 Chemical structure of trehalose

Figure 2.4 Chemical structure of ergosterol
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Figure 2.5 Chemical structure of sphingosines
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2.2 Current techniques for microorganism characterization

Traditional microorganism identification procedures rely heavily upon the
morphology of vegetative cells and sexual reproduction, including ultrastructural studies
of cell walls, septaec, and spores. Standard identification procedures include several
physiological and biochemical tests to determine the ability of the isolate to ferment
sugars and assimilate aerobic growth on various carbon and nitrogen compounds. In
addition, conditions necessary for growth and demonstration of characteristics are
important in the identitication process. Standard physiological and biochemical tests are
primarily used to determine the species of isolates. The traditional microorganism
identification method is the only one acceptable for taxonomic purposes and requires
considerable experience and skill in the performance and evaluation of a large number of

specified and standardized tests (Bruno P. 2000).

Interest in the identification of clinically important microorganisms paved the way
for the development of commercial ready-to-use systems in various microwell formats
and provided a stimulus for further development of automated identification systems.
Several miniaturized kits and systems have been developed and marketed over the past
20 years, such as e APl 20A®, API 20C®, Minitek Anaerobe II, Rapid ID 32A, AN-Ident
RapID ANA II. VITEK ANI Card, MicroScan Rapid Anaerobe Panel, Uni-Yeast Tec®,
Abbott Quantum 11°. Vitek ATB32%, and AutoMicrobic®. Some are designed to be used
manually, while others are automated to various degrees (Table 2.5). Several systems
require additional tests and/or morphological investigations. Stager and Davis (1992)

provided an excellent overview and evaluations of commercial kits and automated

12



systems. Most commercially available systems provide accurate and reliable results,
giving 90% or more agreement with data obtained by traditional methods. The API 20C
system is probably the most widely used in yeast identification and has often been
considered as a reference method for evaluating other systems (Polacheck et al., 1987;
St.-Germain and Beauchesne, 1991). All of these commercially available identification
systems were designed to meet the needs of the clinical microbiological laboratory. For
this reason their databases are restricted to a limited number of species of clinical
importance. The most reliable commercial systems could be used for the identification of

large groups of microorganism if their databases were extended and certain additional

tests were performed.

Phenotypic characterization of closely related organisms is not always a reliable
method for microorganism differentiation. In the last two decades the application of
molecular techniques has had a major impact on the classification of yeasts. The nuclear
DNA relatedness has become the basis of species delineation. Molecular fingerprinting
methods such as analysis of restriction fragment length polymorphisms, random
amplified polymorphic DNA, PCR-amplified sequences and fragments, pulsed field gel
electrophoresis of chromosome DNA and others allow intraspecies differentiation and
typing. The most far-reaching method has been the sequencing of various parts of
ribosomal DNA that has made it possible for the first time to assess the phylogenetic
relationships among yeasts at different taxonomic levels. DNA fingerprinting techniques
describe those procedures that provide a unique profile of the DNA of a given organism.

Guanine + cytosine (G+C) ratios (rélative to adenine + thymine [A+T]) is a good method

13



for microorganism identification, as is the base sequence of the chromosome method.
Forbes and Hicks (1993) and Luk (1994) devised detection methods for Mycobacterium
tuberculosis and Salmonella typhi based on the G+C ratio, respectively. Since 16S rRNA
is derived from the DNA sequence, it can also be used for the differentiation of
microorganisms (Gutell et al. 1994). Techniques revealing restriction fragment length
polymorphism (RFLP) have proved useful in the taxonomic evaluation of yeast genera
and species and can also be used to identify strains within the same yeast species
(Pedersen, 1986). Degre et al. (1989) compared RFLP patterns with protein and fatty acid
profiles as well as with chromosome karyotyping and found that DNA fingerprinting
provided the most reliable method for characterizing wine yeast strains. Restriction
endonuclease treatment of mitochondrial DNA (mtDNA) has also been used in the
differentiation of yeast species (Vezinhet et al., 1990). The usefulness of DNA probes in
conjunction with restriction analysis of DNA and/or chromosome karyotyping may lie
not only in the possibility of identifying certain taxons (del Castillo Agudo et al., 1993 )
and detecting specific pathogenic biotypes (Scherer and Stevens, 1987) but also for
identifying specific industrial bacteria strains to assure quality control or protect
proprietary rights (Pretorius and van der Westhuizen, 1991). Upon developing the
polymerase chain reaction (PCR) technique (Foster et al., 1993), new opportunities for
the design of diagnostic procedures arose. The value of PCR in facilitating sequence
analysis has been applied to taxonomic and phylogenetic analysis of yeasts (Bams et al.,
1991; Molina et al., 1992). This technique also lends itself to species identification

(Deak, T. 1999; Tomani, S. 1999).
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Molecular probe technology is based on the binding of a molecule --the probe--
with a particular microorganism, virus, or an individual and unique component, and the
detection of the probe-target complex. Most commonly, probes are nucleic acid
molecules for the detection of either DNA or RNA, or are antibody molecules for the
detection of proteins, carbohydrates, polysaccharides, or lipids. Nucleic acid probes are
single-stranded DNA or RNA molecules. Detection is based on the formation of a
"hybrid," between the nucleic acid probe and single-stranded DNA or RNA recovered
from a microorganism or virus or a sample containing both (Macario and deMacario
1990). Antibodies are proteins produced by mammals that are capable of binding and
forming complexes with different molecules, called antigens. Antigens can be proteins,
polysaccharides, or lipids. Even molecules that are normally unable to elicit antibody
formation in mammals can be made antigenic by coupling with another molecule, called
a hapten. A variety of different antibodies, each able to bind and form a complex with a
specific antigen, can be produced by a mammal. Since these antibody-forming cells
cannot be propagated in a culture medium and a single reactive antibody molecule is
preferred as a probe, a specific type of antibody-forming cell, a hybridoma, is employed
for both the selection and production of the desired antigen-specific antibody probe

(Harlow and Lane 1988).

The use of chemical analysis of microbial components (i.e., lipids,
polysaccharides, proteins, and nucleic acids)--chemotaxonomy--has been increasingly
applied to bacterial taxonomy (Brondz and Olsen, 1986). Analytical methodologies

utilized included gel electrophoresis, orthogonal-field-gel electrophoresis,
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spectrophotometry, proton  magnetic  resonance, high-performance liquid
chromatography, gas chromatography, combined gas chromatography-mass spectrometry
and pyrolysis-mass spectrometry techniques. Merz et al. (1988) used
orthogonal-field-alternation gel electrophoresis to establish electrophoretic karyotypes for
strains of Candida albicatis. They detected much greater strain variation than revealed by
existing biotyping techniques, thus expanding the scope of epidemiological studies.
Timmins et al. (1998a) used pyrolysis-mass spectrometry to analyze a group of 29

clinical and reference Candida isolates.

The development of PFGE (pulsed field gel electrophoresis) techniques has led to
descriptions of electrophoretic karyotypes for several microorganism species (Boekhout
et al, 1993; Vaughan-Martini and Martini, 1993). PFGE data obtained by various
techniques have revealed that variability in chromosome size among strains of the same
species is common and that chromosome polymorphism can be used for differentiating
and/or identifying industrial microorganisms such as wine yeast (Yamamoto et al., 1991;
Vezinhet et al.,, 1992). To test polymorphism and evaluate electrophoretic karyotypes
more effectively, the PFGE technique is usually combined with DNA-DNA
hybridization. Electrophoretically separated bands are blotted onto membranes and
hybridized by labeled probes (Torok et al. (1992, 1993)). The main advantage of PFGE is
its discriminatory power and relatively simple banding patterns, but long and laborious
DNA isolation procedures and digestion of the samples mean that results may take from a

few days up to a week to obtain (Maslow et al., 1994; Matushek et al., 1996).
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Bruneau and Guinet (1989) applied electrophoretic protein patterns
(polyacrylamide gel electrophoresis (PAGE), with or without sodium dodecyl sulfate
(SDS) technique) for the identification of medically important yeasts and concluded that
the method allowed good species discrimination, but preparation of extracts was time-
consuming. However, Degre et al. (1989) indicated that the drawback of protein
electrophoresis is that it depends on growth conditions. Gas chromatography of cellular
volatile fatty acids requires relatively expensive instrumentation and lengthy preparatory
work. Under standardized cultivation and analytical conditions, however, volatile fatty

acid analysis (VFAA) can be a reliable method for characterization of microorganisms.

(Botha and Kock, 1993).

Flow cytometry measures physical and chemical characteristics of cells that are
suspended in a liquid and pass singly by one or more optical sensors. It is now in
common use for classifying normal and tumor cells, blood cells, and cells from the
reticuloendothelial system; it has been applied by researchers in a wide range of other
fields, including bacteriology, protozoology, microbial ecology, and pharmacology. Flow
cytometric techniques have become increasingly important in diagnostic procedures
(Kleine et al. 1990). Bassoe and Bjerknes (1985) and Bassoe et al. (1983) described the
use of flow cytometry in measurement of the phagocytosis of bacteria by leukocytes and
proposed that such measurements could prove useful in clinical studies for the assessment
of cell-mediated immune function of patients suffering from the effects of severe burns or
chronic infections. Flow cytometry was also investigated by Pinder et al. (1990) as a

rapid detection and counting method for bacteria in pure cultures.
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All the methods described above have certain advantages and drawbacks. Some
have high sensitivity (e.g., pulsed field gel electrophoresis and PCR) but are time-
consuming and expensive and require trained professionals. Other methods are simpler
but cannot differentiate between microorganisms down to the strain level. There is an
ongoing effort to develop new methods that are sensitive, reliable, rapid and cost-
effective. At present, a number of groups are working on spectroscopy-based methods

including infrared spectroscopy, which will be discussed in the next section.

Table 2.5 Characteristics of some commercially available yeast identification systems
(Adapted from TiBor Deak et al., “Handbook of Food Spoilage Yeasts”, CRC Press,

. 1996)

Principle System Method No. of No. of Time (h) Accuracy
tests species in required (%)
database for result

Growth API 20C° Manual 20 a2 72 99
based

ATB 32 ID® Manual/automated 32 63 48 91

AutoMicrobic® Automated 30 62 24 83

Microring YT® Manual 6 18 48 53

Minitek® Manual 12 28 72 97

Quantum I1° Automated 20 34 24 82

Uni-Yeast-Tek® Manual 15 42 48 40

Enzyme MicroScan®  Manual/automated 27 42 4 85
based

Yeastldent® Manual 20 42 4 55
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2.3 Basic principle and application of FTIR spectrometers

There are two basic types of infrared spectrophotometers, characterized by the
manner in which the infrared frequencies are handled. In the first type, infrared light is
separated into its individual frequencies by dispersion, using a grating monochromator,
whereas in the second type the infrared frequencies are modulated to produce an
interference pattern. A Fourier transform infrared spectrometer based on the latter
principle provides improved speed and sensitivity and unparalleled wavelength precision

and accuracy relative to a grating spectrometer (Borman, S. A. 1983).

The basic components of a FTIR spectrometer are a source, an interferometer, a
detector, and a laser. A computer is required for controlling optical components,
collecting and storing data, performing signal averaging, carrying out the Fourier
transformations and displaying spectra. The heated source gives off infrared radiation,
which is deflected off a mirror into the interferometer where the spectral encoding takes
place. The detector is the device which produces an electrical signal in response to the
encoded radiation striking it. The most commonly used detector material in the mid-
infrared is deuterated triglycine sulfate (DTGS). The DTGS detector is known as a
pyroelectric bolometer. The advantages of DTGS detectors are that they are simple,
inexpensive and robust. The vast majority of FTIR spectrometers employ DTGS
detectors. The major drawback of DTGS detectors is that they are less sensitive than
other detectors available. The more sensitive detectors cooled by liquid N2 are the
mercury cadmium telluride (HgCdTe) or "MCT" detectors. The MCT element consists of

an alloy of these three elements, and it is a semiconductor. The major advantage of MCT
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detectors is their sensitivity. They are up to 10-50 times more sensitive than DTGS
detectors. Unfortunately, there is a tradeoff between bandwidth and sensitivity with MCT
detectors. The most sensitive detectors are the narrow band ones, which are useful from
4000 to 700 cm’ . Wide band MCTs go down to 400 cm'l, but are 5-10 times noisier than
the narrow band MCT detector. In many applications, the wide band MCT represents
only a modest improvement in sensitivity over a conventional DTGS detector. Another
advantage of MCT detectors is that they are fast. As a result, one can scan many times
faster than with a DTGS detector, and obtain spectra with high signal-to-noise ratio
(SNR) faster. A drawback to MCT detectors is that they must be cooled. Without this

cooling, heat given off by the detector element itself is detected, giving rise to a large

noise signal.

The techniques used to acquire and analyze infrared spectra continue to grow.
Attenuated total reflectance (ATR) accessories, using single bounce and multiple
bounces, have been widely used in acquiring IR spectra of biological and chemical
samples (Banwell, 1983). ATR is now used extensively in the study of tissues, microbial
and human cells, and body fluids and in investigations of isolated components such as
proteins and peptides involved in pathologic disorders. ATR-based fiber optic probes
have also been developed and are useful for on-line monitoring of chemical reactions.
More recently, FTIR spectrometers based on photoacoustic measurements (Drapcho et
al., 1997) have been developed for depth profiling of samples. The combination of
infrared spectrometers with optical microscopes is surely the most significant advance in

the field of biomedical application of FTIR spectroscopy. Infrared microscopes using
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single detectors or array detectors operating in transmission or reflection are of great
value in the study of cell populations, for example in histological section, because they
allow the focus of the IR beam on specific areas of interest. The advances of step-scan
instruments have allowed improvements in the time and spatial resolution capabilities of
infrared spectroscopy. For example, step-scanning FTIR photoacoustic spectroscopy has
been used to perform depth profiling studies on polymeric muitilayers (Urban et al.,
1998; Jiang, 1998), single particles and fibers (Jiang, 1999), and organic reactions and
catalysts (Frei, 1998). The beam qualities associated with synchrotron light sources also
allow for improvements in spatial resolution beyond the current capabilities using
standard sources. It is the beam attributes of low thermal noise, brightness, low
divergence, and excellent signal-to-noise ratio that make these IR sources unique. These
attributes make it possible to perform experiments where small aperturing is important or
sample scattering normally precludes IR spectroscopy. Synchroton light sources have
been used in studies of inorganic-organic interaction at the bacterial-mineral interface
(Holman et al., 1998). IR imaging techniques enable mapping of chemical functionality.
The combination of infrared microscopy instrumentation with confocal plane array
detectors produces what are known as infrared imaging systems. Spatial chemical
functionality information has been available through mapping techniques using
motorized translation stages and infrared spectroscopy. The advent of focal-plane array
(FPA) MCT detectors dramatically reduced the analytical time. Marcott et al., (1997)
employed an FPA/FTIR imaging system to examine the cross section of a laminated
polymer film and human tissue. The major advantage of this new instrumentation is the

coupling of noninvasive infrared chemical analysis and visualization. The latter is
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extended beyond the visualization of the infrared image when a CCD camera is added to

the system, allowing the simultaneous visualization of the physical image.

2.4 Infrared Sampling Techniques

In general, the acquisition of infrared spectra of biological samples can be
problematic. In order to obtain reproducible spectra, sampling conditions have to be
controlled and standardized ngidly. There is no simple and universally applicable
technique to meet these requirements. However, depending on the nature of the sample,

these requirements can be fulfilled by using traditional transmission, reflectance,

diffusion or attenuated total reflection techniques.

Transmission Spectroscopy:

The transmission technique is the simplest sampling technique in optical
spectroscopy and is recommended for routine spectral measurements for all kinds of
samples. In this technique the sample is placed in the light beam of a spectrometer and
the intensity of the incident beam is compared with the intensity transmitted by the
sample. For an incident beam of intensity Io the transmitted intensity I is given by

I=Io* 10" Eq. 2.1
where a is the absorptivity, b is the sample thickness, and c is the concentration. Equation

2.1 assumes that there is no loss of intensity due to light scattering or reflection.

In all cases sample thickness must be adjusted. Liquid samples require short

optical pathlengths (0.025-1 mm), because organic molecules have strong infrared
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absorption. Spacers are used to control the pathlength. Transmission spectral
measurements are more complex for solid samples than for liquids. A thin film or section
must be obtained from the sample before the spectrum can be acquired. A Brewster’s
angle accessory usually is used to reduce the energy losses due to reflection from the
sample surface and interference fringes. For powdered samples, different particle size and
optical properties can cause the Christiansen effect. The KBr pellet method or mineral oil
(Nujol mull) method can be good choices, but both of them have the disadvantage of

destroying the sample (Harrick Scientific Corporation ,1987 Optical Spectroscopy:

Sampling Techniques Manual).

Internal Reflection Spectroscopy

Internal reflection spectroscopy, also referred to as attenuated total reflectance
(ATR) or multiple internal reflectance (MIR), was developed in the 1960°’s (Harrick
Scientific Corporation, 1987 Optical Spectroscopy: Sampling Techniques Manual). In an
ATR / MIR measurement, the IR beam from the spectrometer is directed onto a prism at
an angle which exceeds the critical angle. As the beam is directed into the crystal at an
angle that exceeds the critical angle, internal reflections take place. When a sample is
placed in optical contact with the prism at the point at which an internal reflection occurs,

the sample absorbs IR energy at wavelengths equivalent to those that would be noted in a

transmission experiment.

It has been proposed that the internal reflection generates an evanescent wave

which extends beyond the surface of the crystal into a sample held in contact with the
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. surface. The penetration depth of the electromagnetic wave into the rarer medium is

defined by the wavelength-dependent ratio n2/n1 of the refractive indices of the denser

(n2) and the

Internal
Reflection
Element
R
Sample By, D 5

Figure 2.6 Schematic of an Attenuated Total Reflectance accessory

rarer (n1) media and by the angle of incidence a and is on the order of a few micrometers

(Figure 2.6). The penetration depth is calculated according the following equation (Eq.

. 2.2):

. 2 172
d, =21 msin*(@)—(n2/ny)"]
Eq. 2.2

where A is the wavelength of the infrared radiation, ni is the refractive index of the IRE
material, n2 is the refractive index of the sample and «a is the angle at which the infrared
radiation strikes the IRE interface (Smith, 1996). A property of this wave, which makes
ATR such a useful technique, is the exponential decay of the intensity of the wave with
the distance from the surface. This makes ATR measurements generally insensitive to
sample thickness. Hence, the technique is readily applied to the analysis of strongly

. absorbing samples.

24



Solid samples must be mechanically pressed into contact with the crystal to
achieve optical contact. The intensity of the bands in the ATR spectrum are a function of
optical contact, and the highest degree of reproducibility is achieved when samples are in
intimate optical contact with the ATR crystal; that is, when the contact efficiency
approaches 100%. When liquids are analyzed by the ATR technique, intimate optical

contact is achieved readily. When solids and powders are analyzed, the spectral intensity

will be largely governed by optical contact.

A comparison of an internal reflection spectrum and a transmission spectrum
reveals the intensities of the bands at high wavenumbers are lower than in an equivalent
transmission spectrum. Most spectrometers offer an ATR correction, which increases the
intensity of the absorbance by a defined value. This makes it easier to compare the

spectrum with libraries of transmission data.

To date, ATR accessories have been successfully used to acquire the spectra of
many kinds of biological samples: Borel et al., (1993) examined intact living bacterial
cells by ATR/FTIR spectroscopy. They found that typical samples, including both gram-
positive and gram-negative bacteria, can be classified and differentiated by this
technique. Schmitt et al.,, (1998) studied different FTIR techniques as a means to
investigate microorganisms in biofilms. They reported that the ATR technique could be
used for the observation of biofilms forming directly on the surface of a germanium ATR
crystal. These crystals can be coated to obtain a surface more relevant to the study of

interfacial processes. Spectra can be acquired nondestructively, in situ and in real time.
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Suci et al. (1998) reviewed the capabilities of ATR/FTIR spectroscopy to provide
information on both transport of an antimicrobial agent to bacteria embedded in the
biofilm and interactions between an antimicrobial agent and biofilm components. Doak et
al. (1999) used a diamond ATR probe to study Escherichia coli fermentation in situ. The

probe showed excellent stability over a 6-month operating period and was unaffected by

either agitation or aeration.

2.5 IR bands assignments of chemical constituents in microorganisms

FTIR spectroscopy provides information not only on the chemical composition of
a given bacterial strain but also on the secondary and even tertiary structures of proteins.
All of the information can be obtained from the number, relative intensities and band
contours of the bands in the IR spectra. Since 1926, many groups (Helm et al., 1991;
Naumann et al., 1991a,b, 1998a) have recorded the spectra of microorganisms and

published tentative band assignments. Some of the more important assignments are

summarized below,

1. The region between 3000 and 2800 cm’ is dominated by C-H stretching vibrations of
—CHs, >CH2, and =CH and, hence, by the fatty acids of the various membrane
amphiphiles. Some complementary information can be deduced from the region
between 1500 and 1400 cm’, where the various deformation modes of the same
functional groups are observed, and bands near 1740 cm” can be assigned to >C=0

stretching of the ester functional groups.
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. 2. The region between 1700 and 1500 cm™ is dominated by the so-called amide I and
amide II bands of proteins, which are the most intense bands in nearly all bacterial
spectra so far tested. Since the characteristic [R absorptions resulting from the
DNA-RNA base-ring structures are not as intense as the amide I and II bands, the

spectral features observed in this spectral domain are almost completely defined by the

protein absorption.

3. In the region between 1500 and 1200 cm'l, complex absorption profiles are observed
between 1300 and 1500 cm’ arising predominately from >CH: and ->CH3 bending
modes of lipids and proteins. A characteristic, but weak feature is often observed near
1400 ¢cm’, which may be caused by the symmetric stretching vibration of ~COO'
(functional groups of amino acid side chains or free fatty acids). Around 1230 em’

. superimposed bands typical of different >P=0 double bond asymmetric stretching

vibrations of phosphodiester, free phosphate and monoester phosphate functional

groups are observed.

4. The region between 1200 and 1250 cm’ is "dominated" by different >P=0 double
bond asymmetric stretching frequencies resulting from the various phosphodiester
functional groups. The band near 1220 cm’ is most probably due to the phosphodiester
functional groups of DNA/RNA polysaccharide backbone structures. Other >P=0
double-bond stretching frequencies are due to head group vibrations of phospholipids or

phosphorus—containing carbohydrates such as “teichoic acids” and “lipoteichoic acids™.
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5. The spectral region between 1200 and ~900 cm’” is dominated by a complex sequence
of peaks essentially resulting from C-O-C and C-O-P stretching vibrations of,
predominantly, oligo- and polysaccharidic nature. Selective assignments are not yet
available because of the extensive superpositions of the characteristic absorptions of
various polysaccharides. This region, in particular, turned out to be abundantly
endowed with discriminating spectral traits and, thus, represents one of the most

sensitive and selective spectral regions for differentiation of microorganisms down to

the strain and even serotype level.

6. The region between 900 and 600 cm’ exhibits a variety of weak but extremely
characteristic features superimposed on an underlying, rather broad contour. With the
exception of only a few peaks (e.g., a band near 720 cm'l, resulting from the >CH:

rocking modes of the fatty acid chains present in amphiphilic compounds), valid

assignments can hardly be achieved.

2.6 Chemometric techniques employed in analyzing infrared spectra

Chemometrics is the discipline concemed with the application of statistical and
mathematical methods to chemical data (Massart et al., 1988; Martens, 1999). A variety
of powerful methods have been applied to the “unsupervised” and “supervised” analysis
of multivariate data. Cluster analysis (CA), principal component analysis (PCA), factor
analysis (FA), discriminant analysis (DA), partial-least-squares regression (PLS) and
artificial neural networks (ANNs) are most widely used in infrared spectroscopy for

quantitative analysis and sample identification.
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Based on Fisher's method and incorporated two important validation stages: (1)
full leave-one-observation-out cross-validation and (2) randomized permutation
distribution testing. Jonathan et al. (1996) developed a computationally efficient approach
to perform two-group linear discriminant analysis. The resulting algorithm and software
are known as CREDIT (cross-validated random-permutation-tested efficient
discrimination based on an adjusted generalized inverse for the sample total covariance
matrix). Li et al. (1999) used a real genetic algorithm to develop a high-breakdown
method for linear discriminant analysis (LDA). Their algorithm is capable of locating the
global optimal solution with high probability and acceptable computational burden.
Kemsley (1996) compared partial least squares (PLS) and principal component analysis
(PCA) in terms of their data compression ability. He found that PLS had considerably
better class separation and discriminant ability. In general, few compressed dimensions
are required to give the same level of prediction successes as the full spectrum, and for
some data sets, PLS methods yield higher prediction success rates than those obtainable
using PCA scores. Wentzell et al. (1997) established a new PCA algorithm: maximum
likelihood principal component analysis (MLPCA). The theoretical foundations of
MLPCA were initially established using a regression model and extended to the
framework of PCA and singular value decomposition (SVD). Generalization of the
algorithm allows its adaptation to cases of correlated errors provided that the error

covariance matrix is known. Models with intercept terms can also be accommodated.

Several groups offered new PLS algorithms. Cummins and Andrews (1995)

introduced iteratively reweighted PLS as a robust method for calibration and
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demonstrated its resistance to the effects of outliers with a Monte Carlo study. Zhu and
Barnes (1995) reported an iterative version of PLS algorithm that was faster and less
memory intensive than PLS implemented with the nonlinear iterative partial least squares
(NIPALS) algorithm. Gil and Romera (1998) reported the development of a robust and
more efficient PLS algorithm. He stabilized the covariance matrix using the well-known
Stahel-Donoho estimator. The prediction error in PLS can be minimized through
judicious wavelength selection. Heise and Bitter (1997) demonstrated that multiple linear
regression analysis could perform as well as PLS when improved variable selection
procedures were used. Spiegelman et al., (1998) developed a theoretical justification for
wavelength selection in PLS. Stork and Kowalski (1999) demonstrated the utility of
sample weighting for lowering prediction error. Schemes that employ leverage-based
criterion for selecting weights and new calibration samples have been described. Thus,
fewer samples describing a new source of variation will be needed to update a model.
Achievement of a satisfactory calibration model is usually not the final step in the
practical application of PLS or any other multivariate calibration method. Once a
calibration model is developed, it must be transferred to other instruments, so the
calibration can be used at the point of application. Hoffmann and Zanier-Szydlowski
(1999) used a Shenk-Westerhaus correction to take into account changes in sample
temperature and the field of view of the instrument for PLS models to predict various
properties of hydro-treated gas oils. Brown and Wentzell (1998) used a different
approach to standardize muitivariate calibration models for near-IR FTIR spectrometers

equipped with fiber-optic probes. Calibration transfer across instruments and probes was
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studied by employing calibration models built on one instrument to predict properties

from spectra measured on the other.

The goal of pattern recognition is classification. Developing a classifier from
spectral data may be desirable for any number of reasons, including strain identification,
presence or absence of disease in an animal or person from which the sample was taken,
and food quality testing. During the past several years, some new classification methods
were reported in the literature. Smit et al. (1993) noted that drift, which may cause neural
networks to misclassify objects when the class clusters lie relatively close to each other,
can be corrected using the amount of drift as an extra input variable in the neural
network. Radomski et al. (1994) showed that feed-forward neural networks could
unambiguously recognize spectra at a signal-to-noise ratio significantly below that
needed for by-eye interpretation. Meyer et al. (1993) showed that network architecture
could be minimized without a concomitant reduction in prediction performance when the
principal component scores of the training and prediction set spectra are input elements
for the network. Li and van Espen (1994) observed that neural nets performed better than
conventional methods for classification of spectra when network parameters are
optimized, e.g., scaling and learning mode, range of the initial weights, and transfer
function. Li et al., (1999) developed a robust linear discriminant analysis routine, which
has a high breakdown value for outliers. Lavine et al., (1998) developed a genetic
algorithm (GA) for pattern recognition analysis of spectroscopic data. The GA selects
features that optimize the separation of the classes in a plot of the two largest principal

components (PCs) of the data.
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2.6.1 Hierarchical Clustering

Hierarchical clustering is a widely used algorithm for classification. Its aim is the
fusion of N data points into groups. Given a set of N items to be clustered, and an N x N
distance (or similarity) matrix, the basic process of Johnson's (1967) hierarchical
clustering is: 1, Start by assigning each item to its own cluster, so that if you have N
items, you now have N clusters, each containing just one item. Let the distances
(similarities) between the clusters equal the distances (similarities) between the items
they contain. 2, Find the closest (most similar) pair of clusters and merge them into a
single cluster, so that now you have one less cluster. 3, Compute distances (similarities)
between the new cluster and each of the old clusters. 4, Repeat steps 2 and 3 until all
items are clustered into a single cluster of size N. As to the definition of the distance,

there are many methods available; in the definitions below, x;; is the value of vanable j

for object i.

Euclidean: The distance between objects i and k is defined as

dik = \fz,'[xij —xkilz

Eq. 2.3

Pearson: The distance between objects i and k is defined as

da =J2j[xif ‘xly']z /S,

Eq. 2.4

S; = the standard derivation of variable j
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2.6.2 Discriminant analysis

Another powerful clustering method is discriminant analysis. It is a parametric
method that models each class of samples by its centroid and covariance matrix and
assigns each object to the closest class. Different discriminant analysis methods are
available, such as nearest means classification (NMC), linear discriminant analysis
(LDA), which assumes the same covariance structure in each class, quadratic
discriminant analysis (QDA), and regularized discriminant analysis (RDA). The methods
differ in the technique that is used to calculate the object-class distances, i.e., under what
assumption the class covariance matrices are calculated. The Mahalanobis distance is a

measure of the distance of a sample from the mean of a set of standards, represented by

the following equation:

D(g, x) =(X-c)’S™ (X-cg) Eq.2.5

where S is an estimate of the common covariance matrix, cg is an estimate of the centroid

for class g, and X is an object.

2.6.3 Principal component analysis

Principal component analysis (PCA) is an extremely useful method for data
compression and information extraction. PCA finds combinations of variables, or factors,
that describe major trends in the data. Mathematically, PCA relies upon an eigenvector
decomposition of the covariance or correlation matrix of the process variables. For a

given data matrix X with m rows and n columns, with each variable being a column and
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each sample a row, the covariance matrix of X is defined as

XX
m-1

cov(X) =

Eq. 2.6

provided that the columns of X have been "mean centered,” i.e. adjusted to have a zero
mean by subtracting the original mean of each column. If the columns of X have been
autoscaled, i.e. adjusted to zero mean and unit variance by dividing each column by its
standard deviation, the equation above gives the correlation matrix of X. (Unless
otherwise noted, it is assumed that data is either mean centered or autoscaled prior to
analysis.) PCA decomposes the data matrix X as the sum of the outer product of vectors ti
and pi plus a residual matrix E:
X=tPT, + P73+ .. + Pk +E Eq. 2.7
Here k must be less than or equal to the smaller dimension of X, i.e. k<=5 min(m,n). The
ti vectors are known as score and contain information on how the samples relate to each
other. The p1 vectors eigenvectors of the covariance matrix, i.e. for each pi
cov(X)pi = Ai Pi Eq. 2.8
where Al is the eigenvalue associated with the eigenvector pi. In PCA the pt are known as
loadings and contain information on how the variables relate to each other. The ti form an
orthogonal set (tiT tj = O for i#j), while the pi are orthonormal (piT pi = 0 for i =i, Piij=I
for i =j ). Note that for X and any ti , pi pair
XPi =ti Eq. 2.9
i.e. the score vector ti is the linear combination of the original X data defined by pi.
(Another way to look at this is that the ti are the projections of X onto the pi.) The ti , pi

pairs are arranged in descending order according to the associated Ai The Ai are a measure
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of the amount of variance described by the ti , pi pair. In this context, we can think of
variance as information. Because the ti, pi pairs are in descending order of 4;, the first pair
captures the largest amount of information of any pair in the decomposition. In fact, it
can be shown that the ti, pi pair captures the greatest amount of variation in the data that it
is possible to capture with a linear factor, and each subsequent pair captures the greatest

possible amount of variance remaining after subtracting tipTi from X.

Generally, it is found (and it is usually the objective) that the data can be
adequately described using far fewer factors than original variables. Thus, the data
overload often experienced can be solved by observing fewer scores (weighted sums of
the original variables) than original variables, with no significant loss of information. It is
also often found that PCA turns up combinations of variables that are useful descriptions,
or even predictors, of particular events or phenomena. These combinations of variables
are often more robust indicators of laboratory sample or process conditions than

individual variables due to the signal averaging aspects of PCA.
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2.6.4 Artificial neural network

Inspired by the structure of the brain, a neural network consists of a set of highly

I-zv'x| Sunmation
Y = i{l) Transfer

TN
T W st g;.zué:

. v n

. Processing
R Benat

x n

Inows x Weighs v,

‘ Figure 2.7 A typical single unit in an Artificial Neural Network (ANN).

interconnected entities, called nodes or wunits. Each unit is designed to mimic its
biological counterpart, the neuron. Each accepts a weighted set of inputs and responds

with an output. Figure 2.7 presents a picture of one unit in a neural network.

Let X = (x1, x2, ..., Xn), where the xi (1< i < n) are real numbers, represent the set
of inputs presented to the unit U. Each input has an associated weight that represents the
strength of that particular connection. Let W = (w1,w2,..., wn), with wi (1< i < n) real,
represent the weight vector corresponding to the input vector X. Applied to U, these

weighted inputs produce a net sum at U given by
S = SUM(wi*xi) = W.V. Eq.2.10

36



Learning rules will allow the weights to be modified dynamically. The state of a unit U is
represented by a numerical value A, the activation value of U. An activation function f
determines the new activation value of a unit from the net sum to the unit and the current
activation value. In the simplest case, fis a function of only the net sum, so 4 = f(S). The
following are some other transfer functions that are often used. Figure 2.8 shows the plot

of function f=1/(1+Exp[-sum], it can be found that when sum=0, f{sum)=0.5:

logistic -- f(x)=1/(1+exp(-x)) Eq. 2.11
linear -- f(x)=x Eq. 2.12
tanh -- f(x)=tanh(x) Eq.2.13
tanhl1$5 -- tanh(1.5x) Eq. 2.14
sine -- sin(x) Eq. 2.15
symmetric_logistic -- 2/(1+exp(-x))-1 Eq. 2.16
Gaussian -- exp(-x"2) Eq. 2.17
Gaussian-complement -- 1 - exp(-x"2) Eq. 2.18
Output velue
1
0.8}

Transfer function =
1/(1+Exp(~-sum])

Input value

0.5

Figure 2.8 The plot of a typical transfer function ( /~1/(1+Exp[-sum] ) used in Artificial

Neural Network
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. A neural network is composed of such units and weighted unidirectional connections

)

between them. In some neural nets, the number of units may be in the thousands. The

Figure 2.9 An example of an artificial neural network architecture

output of one unit typically becomes an input for another. There may also be units with

. external inputs and/or outputs. Figure 2.9 shows one example of a possible neural

network structure.

Once a network has been structured for a particular application, that network is
ready to be trained. To start this process the initial weights are chosen randomly. Then,
the training, or learning, begins. There are two approaches to training - supervised and
unsupervised. Supervised training involves a mechanism of providing the network with
the desired output either by manually "grading" the network's performance or by
providing the desired outputs with the inputs. Unsupervised training is where the network

has to make sense of the inputs without outside help.
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In supervised training, both the inputs and the outputs are provided. The network
then processes the inputs and compares its resulting outputs against the desired outputs.
Errors are then propagated back through the system, causing the system to adjust the
weights which control the network. This process occurs over and over as the weights are
continually tweaked. The set of data which enables the training is called the "training

set.” During the training of a network, the same set of data is processed many times as the

connection weights are ever refined.

Another important part is the rules of training. There are many algorithms used to
implement the adaptive feedback required to adjust the weights during training. The most

common technique is backward-error propagation, more commonly known as back-

propagation.

When finally the system has been correctly trained, and no further leamning is

needed, the weights can be "frozen." This trained system is then tested with unknown

sample data.

2.7 Classification of microorganism by FTIR spectroscopy

The differences in the biochemical composition of microorganism account for
their diversity. Because infrared spectroscopy provides detailed information on
biochemical composition, it can potentially serve as a valuable tool for the classification
of microorganisms. The study of microorganism classification by infrared

spectrophotometry arose almost half a century ago (Thomas and Greenstreet, 1954). The
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constraints associated with the use of dispersive instruments and the unavailability of
computers caused interest in this approach to vanish by the mid-1960s. However, the
subsequent development of FTIR spectroscopy and of powerful classification algorithms

that can be performed on personal computers resulted in renewed interest in this research.

The advantages associated with FTIR spectroscopy have allowed detailed studies
of the potential of infrared spectroscopy as a means of microorganism classification.
Helm et al. (1988) discriminated enteropathogenic Escherichia coli isolates by applying
FTIR spectroscopy. This particular grouping was achieved by using IR bands in the
region between 900-1200 cm’ where the O-specific side chains of lipopolysaccharides
are the predominant spectral features. Hedrick et al. (1991) used diffuse reflectance
spectroscopy of lipid extracts to distinguish between eubacteria and archaebacteria, the
two main groups of bacteria. Within eubacteria, differentiation between gram-positive
and gram-negative strains was performed on the basis of whole-cell spectroscopy
(Naumann et al., 1988, 1991a). This differentiation is based on the fact that gram-
negative bacteria have an outer membrane, which leads to distinct spectral differences
between gram-negative and gram-positive bacteria in the spectral region between 2800
and 3000 cm’' (fatty acid region) and less significant differences between 1600 and 1700
em’’ (protein region). FTIR spectroscopic classification of bacteria agreed well with
conventional grouping schemes and gave some valuable complementary results. Good
classifications were obtained for different genera (e.g., Staphylococcus, Clostridium,
Streptococcus, and Legionella) (Helm et al., 1991). Classification studies on oral

streptococci also produced good results (Van der Mei et al., 1993).



There are many exciting developments in the mathematical discrimination
techniques employed for the classification of microorganisms. Lipkus and colleagues
(1990) investigated the reproducibility of the infrared spectra of microorganisms and its
implications for microorganism identification. They reported that in an attempt to use the
spectral information in the region 1190-980 cm’ to build an identification system based
on a spectral library search, successful identification was obtained for cells grown in one
batch. To obtain a quantitative basis for identification, classification, or differentiation,
Naumann (1991b) suggested the use of the spectral distance or “D” value as an index.
The spectral distance (D) can be considered as a measure of the difference between two
IR spectra. The D value is defined by the equation: D=(1-a)*1000, where « is Pearson’s
correlation coefficient. In order to obtain a classification that can be correlated with
conventional taxonomy, Helm et al. (1991) resorted to systematically varying the spectral
treatment parameters and selecting spectral windows prior to performing cluster analysis
with the measurements of correlation calculated between those treated spectra. The
results of classification of bacteria from their FTIR spectra showed that even when grown
on different media, a strain of bacteria could be classified in one cluster with a 96.8%
similarity level. Van der Mei and colleages (1993) classified 40 Streprococcal species by
cluster analysis employing the first derivative of the infrared spectra and selected regions.
Holt et al. (1995) were the first to use PCA to study microorganism classification; since
their work, the number of publications in this field has multiplied dramatically and they
are mostly focused on the development of mathematical techniques for the treatment of

the spectral information. Timmins et al. (1998b) applied PCA and discriminant function
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analysis to differentiate 22 brewing yeast strains. Goodacre et al. (1996b) and Timmins et
al. (1998a) reported that artificial neural networks have good discriminating capabilities.
Schmitt et al. (1998) evaluated six different neural network architectures with respect to
their capability to build spectral libraries for different bacteria and yeasts. After
developing these libraries, the networks were connected to a large library. These
"multilayered neural networks™ allowed for an optimal differentiation based on specific
strains. Alsberg et al. (1998) studied Eubacterium species by FTIR spectroscopy. To
identify important wavenumber regions for the classification of the bacterial isolates, they
investigated three rule induction methods and various spectral preprocessing regimes.
They found that the FURES (fuzzy multivariate rule-building expert system) method was
superior in terms of prediction, whereas the rules proposed by the univariate CART
method (Classification and Regression Trees) were easier to interpret in terms of which
wavenumbers in the IR spectra were important for bacterial class separation. Scaling and
normalization of FTIR spectra as preprocessing steps were necessary to obtain optimal
classification models. McNaughton et al., (1999) applied the multivariate statistical
techniques of PCA, soft independent modeling by class analogy (SIMCA), K-Nearest
Neighbors (KNN), and artificial neural networks (ANN) to IR spectra of several
cyanobacterial species and successfully classified the bacteria. Employing the first-

derivative IR spectra of bacteria as input resulted in reduction of baseline vanability and

minimized intra-class variation.

Sockalingum et al. (1998) used the ATR sample-handling technique to obtain

FTIR spectra of bacteria and demonstrated that ATR/FTIR spectroscopy can
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discriminate and classify bacterial strains. The combination of infrared spectrometers and
optical microscopes is probably the most significant advance in the field of
microorganism classification. Naumann et al. (1998b) studied the use of FTIR
microscopy to characterize microorganisms. Dubois (1999) collected the spectra of
bacteria deposited on a polyethylene substrate and reported satisfactory results employing

cluster analysis and ANN algorithm for bacteria differentiation.

The fundamental work carried out to date on the potential application of infrared
spectroscopy has provided valuable information about the limitations and critical factors
that must be considered prior to the final elaboration of an automated identification
system based on FTIR spectroscopy. However, widespread application of FTIR
spectroscopy for the characterization of microorganisms will likely occur only if a
reliable, stable and automated method is available. The work described in this thesis will
focus on the potential utility of an automated sampling system in combination with
controlled growth condition and the use of numerical analysis for the classification of
yeast strains based on their FTIR spectra. The potential use of FTIR spectroscopy to

classify yeast in terms of their function and sensitivity will also be undertaken.

43



Chapter 3

Classification and Identification of Yeasts by Combined Use of

Infrared Spectroscopy and Chemometric Techniques

3.1 Introduction

Yeasts are heterotrophic, lack chlorophyll, and have a wide array of natural
habitats. They have not only provided us with fermented food products such as wine,
bread, and yogurt but are also responsible for food spoilage, and some species are of
health concern. Therefore, yeast identification is of practical importance. To fulfill this
task, many different methods have been developed. Conventional yeast differentiation
systems use morphological characteristics as well as patterns of assimilation and
fermentation of carbon sources. These methods are tedious and time-consuming, and
their capacity is limited since many species are distinguished from one another by a
single physiological reaction controlled by only one mutable marker. New techniques
such as fatty acid analysis, electrophoretic karyotyping, restriction fragment length poly-
morphism, DNA fingerprinting, restriction enzyme analysis of PCR-amplified rDNA,
randomly amplified polymorphic DNA, and nucleic acid hybridization with
oligonucleotide probes have also been used for this purpose (Olson, 1995). While some

of these techniques do provide satisfactory results, molecular methods in general are still



difficult to perform on a routine basis in laboratories of the food industry.

For routine purposes, the ideal method for yeast characterization would require
minimal sample preparation, would analyze samples directly (i.e. would not require
reagents), and would be rapid, automated and (at least relatively) inexpensive. With
recent developments in analytical instrumentation, these requirements are being fulfilled
by spectroscopic methods. One of the most commonly investigated methods is Fourier

transform infrared (FTIR) spectroscopy (Helm et al., 1991; Naumann et al., 1991a, b).

FTIR spectroscopy measures dominantly vibrations of functional groups and
highly polar bonds. Thus, IR 'fingerprints’ are made up of the vibrational features of all
the chemical compounds in the sample. For microbial samples, these will include
DNA/RNA, proteins, and membrane and cell-wall components. The interpretation of the
spectra of microorganisms has conventionally been done by the application of
'unsupervised' pattern recognition methods such as hierarchical cluster analysis (HCA).
With ‘unsupervised learning’ the algorithms seek ‘'clusters’ among the spectral data,
which allows the investigator to group objects on the basis of their perceived similarity.
More recently, more powerful supervised methods have been employed to analyze the

spectral data (Goodacre et al., 1996 a, b).
Within microbiology, FTIR spectroscopy has been shown to allow the

chemically-based discrimination of intact microbial cells, without their destruction, and

produces complex biochemical fingerprints which are reproducible and distinct for
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different bacteria. In particular Helm et al., (1991) and Naumann et al., (1991a,b) have
shown that FTIR spectroscopy (in the mid-IR range of 4000-400 cm ') provides a

powerful tool with sufficient resolving power to-distinguish microbes at the strain level.

The aims of this study are to differentiate 56 yeast strains based on their FTIR

spectra and investigate the differentiation performance of different chemometric

techniques.

3.2 Materials and Methods

Fifty-six yeast strains representing 20 species of 7 genera were obtained from
Lallemand Inc. (Montreal, Canada). All the strain codes and related information can be

found in Appendix 1. All strains were stored at -45°C.

3.2.1 Growth Conditions and Sample Preparation

To recover possible injured cells, strains were thawed on Universal Growth
Medium (Quelab Laboratories, Montreal) and incubated at 37+2°C for 24+1 hours twice
to ensure the acquisition of pure cultures. Subsequently, a sample of the culture was taken
with a platinum loop (3-mm-diameter platinum loop) and reinoculated on Universal
Growth Medium (Quelab Laboratories, Montreal). This time the Universal medium was
used to standardize the contribution of the growth medium to the yeast infrared spectra.
After incubation at 37+2°C for 24+1 hours, a sample of a confluent colony was carefully
taken with a calibrated sterile platinum loop (3mm-diameter platinum loop) in the third
quadrant of the growth media surface and deposited into 100 pl of distilled water. The

yeast suspension was centrifuged at 6000 RPM for 2 minutes, the supernatant was
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decanted and the pelleted yeast was resuspended in 100 pl of distilled water. This process
was repeated twice to remove any remaining metabolic by-products. A 30-pl aliquot of
the resuspended yeast cell was deposited onto a ZnSe window of an autosampler wheel
containing eight ZnSe windows, and the wheel was dried at 37+2°C for 2 hours to yield
transparent yeast films suitable for transmission FTIR measurements. The films were

kept in constant humidity prior to recording of the infrared spectra of the yeast films.

3.2.2 Spectral Acquisition

All the infrared spectra were recorded between 4000 and 400 cm” employing a
Michelson FTIR spectrometer (ABB Bomem, Inc.). The spectrometer was purged with
pure N,. Spectra were acquired by coadding 32 scans at a resolution of 4 cm™'. The
sample wheel was controlled by Bacteria [D1.0 software (running under Win98, obtained
from Quelab Inc., Montreal, Canada). All samples were run in triplicate. A typical yeast

FTIR spectrum is shown in Figure 3.1.

3.2.3 Preprocessing

To minimize problems arising from baseline shifts and differences in film
thickness and to enhance the resolution of superimposed bands, the following procedures
were performed: 1) all spectra were baseline corrected from 4000 to 400 cm™'; 2) all

spectra were then normalized so that the highest absorbance was set to 1; 3) second
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. derivatives of all the spectra were calculated; 4) the second derivative spectra were

smoothed with a 9-point smoothing function (Savitzky and Golay, 1964).
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Figure 3.1 A typical FTIR spectrum of a Saccharomyces italicus strain (strain 6074)
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3.3 Spectral Analysis by Chemometrics

The possibility of identifying yeasts based on their FTIR spectra was evaluated
using cluster analysis, principal component analysis (PCA), discriminant analysis and
artificial neural network methods. The hierarchical clustering employed centroid linkage
and measurement of the squared Eulidean distance between the points to provide an
unsupervised grouping, while the discriminant analysis employed Mahalanobis distance
for supervised classification. PCA was performed according to the nonlinear iterative
partial least squares (NIPALS) algorithm (Wold, 1966). All these three algorithms were

part of the SCAN software (Minitab Inc,. State College, PA).

The artificial neural network (ANN) analysis was carried out by NeuroShell
software (Ward Systems Inc., Frederick, MD). The ANN employed consists of three
layers. The first layer has two options: 1) the entire spectra and 2) the first 10 PC values.
The second layer is the hidden layer and the last layer is the binary-coded output layer
(for yeast classification, the output layer was encoded as follows: Saccharomyces
cerevisiae was coded as 1000, Saccharomyces chevalieri was coded as 0100,
Saccharomyces capensis was coded as 0010, Saccharomyces italicus was coded as 0001,
for classification of yeasts according to the type of fermentation process in which they are
employed, the output layer was encoded as follows: wine was coded as 100, beer was
coded as 010, bread was coded as 001; for yeast classification in terms of their sensitivity
killer yeast strains, the output layer was encoded as follows: sensitive was coded as 100,

possess was coded as 010, neutral was coded as 001.
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The optimization of the ANN employed the following procedures: 1)
Standardization of the input variables: standardizing the inputs can make training faster
and reduce the chances of getting stuck in local optima. Standardizing inputs removes the
problem of scale dependence on the initial weights. In particular, scaling the inputs to
[-1,1] will work better than [0,1], although any scaling that sets to zero the mean or
median or other measure of central tendency is likely to be as good (Iglewicz, 1983); 2)
in standard backpropagation, too low a leaming rate makes the network leam very
slowly. Too high a learning rate makes the weights and objective function diverge, so
there is no learning at all. Trying to train an ANN using a constant leaming rate is usually
a tedious process requiring too much trial and error. Here, batch training was selected
since it does not require a constant leaming rate. (Fahlman 1989; Riedmiller and Braun
1993); 3) Activation functions for the hidden units are needed to introduce nonlinearity
into the network. Neural networks can be made more powerful by adding the hidden units
than just plain perceptions (which do not have any hidden units, just input and output
units). Functions such as ranh that produce both positive and negative values tend to yield
faster training than functions that produce only positive values such as logistic, because
of better numerical conditioning (Jordan, 1995). The tanh function was chosen to be the

activation function for hidden units. For the output units, the binary (0/1) outputs were

selected (Jordan, 1995).

The network was presented with input and corresponding outputs and was trained
by adjusting the connections between input, hidden and output layers; training was

stopped after 40 generations without improvement greater than 0.5% in the external test
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set, which was randomly extracted from the input matrix. After training, the relationship

of all the yeast spectra was encoded in the weights.

Library search routines were employed to assess spectral reproducibility. Library
search routines compare the unknown sample spectrum with each reference spectrum in
the selected libraries and find the spectra that most closely match the unknown. Most
library search algorithms involve a point-by-point evaluation with an overall closeness of
match being determined by some form of similarity metric. The match value is between 0
and 100 and indicates how well the library spectrum matches the unknown. A match
value of 100 indicates a perfect match. The closer the value is to 100, the better is the
match. To evaluate the spectral reproducibility, one of the three preprocessed spectra for
each yeast strain was stored in a spectral library as a standard spectrum, and the other two

were compared to it by the application of spectral library search algorithms.

3.4 Results and Discussions

3.4.1 Spectral Reproducibility

A major issue in the differentiation or identification of yeasts by FTIR
spectroscopy is the spectral reproducibility; that is, differentiation and identification can
only be achieved if reproducible spectra can be recorded for each yeast strain. FTIR
spectra of yeasts are influenced by many factors, such as the composition of the growth
medium, growth temperature, incubation time, the washing method and drying method.
For a high level of reproducibility it was necessary to develop a standardized sample

preparation procedure as described above.

51



Since different kinds of yeast cells have relatively similar biochemical
composition, it is obvious that all the yeast spectra showed fairly similar patterns (Figure
3.2). Thus, it is very important that the spectral variability introduced by growth and
sample preparation conditions be minimized to allow the subtle inherent differences
between the spectra of different yeast strains to be detected. In this study a single growth
medium was employed to reduce the sources of spectral variability, and the temperature

and incubation time were kept constant for all strains. The sample preparation protocol

was also standardized.

The easiest way to check spectral reproducibility is to overlay replicate spectra
and check if they are completely superimposed (Figure 3.3). Kenner et al. (1958) reported
that changes in the region 1200-830 cm™ region (related to the polysaccharide content in
the microorganisms) were correlated to temperature variations. Naumann (1991b)
reported that the bands at 2960, 2922, 2873 and 2852 c¢m’ (corresponding to the
symmetric and asymmetric vibrations of methyl and methylene groups, in the membrane
phospholipids) exhibited variations with temperature owing to phase transitions. The
replicate spectra in Figure 3.3 exhibit some band shifts in these regions; however,
because they are less than 0.1 cm™, the differences due to temperature variations will not

significantly affect the discriminate ability of IR spectroscopy.

From the statistical point of view, the reproducibility of the FTIR spectra can be

evaluated by calculating their spectral average, standard deviation and range. The spectral
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software Omnic (Nicolet Inc., Madison, WI) was employed to calculate the arithmetic
mean of the absorbance values at each wavenumber, the standard deviation of the
absorbance values for each data point; and the range of absorbance for each data point
(the lowest absorbance value for a data point is subtracted from the highest absorbance
value for that point). Figures 3.4, 3.5, and 3.6 show the results of these caiculations for
strain 6071 (a strain from Saccharomyces italicus); in the region of 1800-800 cm’ the

variance is <0.004 and the range is < 0.008.

A library search algorithm was employed to investigate the reproducibility of
yeast spectra. Table 3.1 lists the average percent similarity for all the spectra recorded

from Sacharomyces cerevisiae employed. In the region of 1800-800 cm", the average

percent similarity is >95.

The Pearson correlation coefficient was also employed to evaluate the spectral
reproducibility. The value of the coefficient (Eq.3.1) typically ranges from -1, indicating
a perfect negative correlation, to +1, indicating a perfect positive correlation with a

coefficient of zero indicating absence of correlation between the variables.

T D MR ERE 101} 2 PR ) 3] PN

Eq. 3.1

In equation 3.1, xi; and x,; are variables, and x; bar and x; bar are the means for variable
xxi and x,; respectively. The correlation coefficients are calculated pairwise to evaluate
the similarities between two individual spectra. In the region of 1800-800 cm™, the

average correlation coefficient values for each strain are >0.92.
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Figure 3.2 Overlaid FTIR spectra from Saccharomyces chevalieri (strain 6254),
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Figure 3.3 Overlaid FTIR spectra from three different batches of a Saccharomyces
. cerevisiae strain (strain 6060)
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Figure 3.6 The average of spectra of strain 6071 recorded from three different batches

56



Table 3.1 The average percent similarity between the infrared spectrum of a yeast strain
from Saccharomyces cerevisiae compared to the infrared spectra of the same strain in a
spectral database recorded from different batches (spectral region: 1800-800 cm")

Strain number Average percent similarity
6050 99.05
6467 99.03
6400 97.38
6287 95.98
6649 99.02
6648 98.45
6348 95.80
6032 96.13
6014 97.53
6061 95.47
6562 97.80
6058 95.24
6060 98.57
6163 95.98
6412 95.80
6422 97.10
6101 96.24
6059 98.69
6301 96.01
6100 97.63
6652 98.01

3.4.2 Identification of Yeast Strains in Terms of Their Taxonomic Characteristics

by FTIR Spectroscopy

3.4.2.1 Unsupervised Analysis

As exemplified by the typical yeast infrared spectra shown in Figure 3.2, all the
infrared spectra of yeast strains showed complex and broad contours, and there was very
little qualitative difference between them that can be discerned easily. Accordingly, it
was appropriate to consider the use of multivariate analysis to extract the differences
between the IR spectra of different yeast strains. Multivariate pattern recognition methods

are divided into ‘unsupervised’ and ‘supervised’ categories. The former, such as
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Hierarchical Clustering or Fuzzy Clustering, classify spectra based upon the degree of
their overall similarity and require no training. The latter, such as the use of artificial
neural networks, train the classifier based on the obtained class identities and then use it
to predict the class identity of unknown samples (Helm et al., 1991; Naumann, 1998a, b;

Goodacre, 1998c).

Among modern yeast identification techniques, DNA fingerprinting is one of the
most important ones. It uses the unique profiles of the DNA of known yeast strains to
identify the unknown yeast strains. Accordingly, identification of yeasts by using regions
of their IR spectra in which absorptions due to DNA are observed was considered. The
most useful IR region employed in the study of DNA is the region between 1080 and
1240 cm”, in which bands arising from the stretching vibrations of phosphodiester
groups are observed. This region of the spectrum is very informative, as it is dominated
by absorptions from both polysaccharides and triacylglycerols, in addition to the
contribution of cellular DNA. The classification results for the 56 yeast strains from their
infrared spectra in the region between 1080 and 1240 cm’ are shown in Figure 3.7, while
the results of classification employing the broader region of 1800-800 cm’ are shown in
Figure 3.8. Although some improvement was achieved by employing the DNA spectral
region, the overall classification accuracy is not adequate. It is not surprising given the
fact that there are so many chemical components in the yeast cell, some composition
other than DNA or RNA may also contribute some absorption in the region of 1080-1240

cm'l, which makes the DNA or RNA signal weak, and lead to the misclassification.
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One way to solve this problem is to use weighting factors to amplify the
contribution of a weak signal to be used in the classification. Selected regions combined
with proper weighting factors may provide better classification results. These problems
have been highlighted in a number of studies, which have attempted to classify
microorganisms based on their infrared spectra (Heim et al., 1991; Naumann et al,,
1991b; Kummerle et al., 1998). Three regions (3030-2830 cm', 1350-1200 cm™, and
900-700 cm'l; all weighting factors were 1) were selected to carry out the classification
(Kummerle et al., 1998). In addition, three sets of spectral data were employed to
evaluate the utility of derivatization as a means of resolving overlapping bands: 1)
spectral data obtained after baseline correction and normalization of the selected spectral
region without derivatization, 2) spectral data obtained after baseline correction,
normalization, computation of the 1* derivative and smoothing of the selected spectral
region, 3) spectral data obtained after baseline correction, normalization, computation of

the 2™ derivative and smoothing of the selected spectral region.

A centroid linkage and squared Euclidean distance was employed in this
unsupervised cluster analysis. In centroid linkage each cluster is represented by its
centroid; the distance between two clusters is the distance between their centroids. This
method does not distort the cluster space. Figures 3.9, 3.10 and 3.11 show dendrograms
obtained with the three spectral preprocessing techniques described above. It can be
observed that better results were obtained after derivatization of the spectral data and that
the results from the 2" derivative spectral data were better than those from the 1°

derivative data. Because derivatization makes the absorption bands sharper, it increases
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the discriminate ability of the clustering algorithm, dramatically increases the difference
between spectra of different strains and gives more multidimensional space to find the
subtle differences between the spectra of different strains. Derivatization can also
partially reduce baseline variation. Overall, derivatization can improve the extraction of
the classification information inherent in the spectra of yeast. Compared to the 1%
derivative, the 2™ derivative has a more refined band contour and contains more bands,

and that is why it yields more promising results (Figure 3.12).

Principal component analysis (PCA) is a well-known technique for reducing the
dimensionality of multivariate data while preserving most of the variance. To reduce the
number of variables and to detect relationships between variables, principal component
analysis according to the NIPALS algorithm (Wold, 1966) was performed on the
preprocessed data (spectral data obtained after baseline correction, normalization and
computation of the 2" derivative in the 1800-800 cm’" region), Figure 3.13 shows a plot
of eigenvalues against principal component number. It is clear that most of the vanation
lies in the first principal component. The first 10 principal components, which account
for over 99% of the data variance, were selected and employed for cluster analysis. The
resuits shown in Figure 3.14 clearly demonstrated that PCA alone cannot be used to
cluster these yeast strains, because different strains from the same species do not fall into

the same cluster.

Since collinear variables cannot be employed in discriminant analysis,

discriminant analysis cannot be used to analyze the original spectra data directly. To



enhance the PCA performance and expand its discriminate ability, we combined the
PCA, discriminant analysis and cluster analysis together. The classification procedure is
as follows: first reduce the dimension of yeast IR spectra by PCA, then use discriminant
analysis to distinguish groups on the basis of the retained principal components (PCs) and
the priori knowledge of which spectra were replicates, and last, the square of the
Euclidean distance between priori group centres can be used to construct a similarity
measure and cluster analysis is then employed to construct the dendrogram. Figure 3.15
shows that while there was some improvement, the unsupervised learming methods

employed here cannot be used to discriminate between the yeast strains employed in this

study.
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Figure 3.7 A plot of a dendrogram generated from the cluster analysis of 56 different
yeast strains based on the changes in infrared spectral region between 1240-1080 cm’
after baseline correction and normalization of the FTIR spectra of the yeast strains

(please refer to Appendix 1 for the strain identity)
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Figure 3.8 A plot of a dendrogram generated from the cluster analysis of 56 diffg{ent
yeast strains based on the changes in infrared spectral region between 1800-800 cm ~ after
baseline correction and normalization of the FTIR spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Figure 3.9 A plot of a dendrogram generated from the cluster analysis of 56 different
yeast strains based onlthe changes in the infrared spectral region between 3030-2830
, 1350-1200 cm™ and 900-700 cm’ (all weighting factor were 1) after baseline
correction and normalization of the FTIR spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Figure 3.10 A plot of a dendrogram generated from the cluster analysis of 56
different_yeast strains basqg on the changes i_ll'l the infrared spectral region between 3030-
2830 cm , 1350-1200 cm  and 900-700 cm  (all weighting factor were 1) after baseline
correction, normalization and computation of the first derivative data with 9 point
smoothing of the FTIR spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Figure 3.11 A plot of a dendrogram generated from the cluster analysis of 56 different
yeast stralms based on the changes in the mﬁ'ared spectral region between
3030-2830 cm

, 1350-1200 cm " and 900-700 cm’ (al] weighting factor were 1) after
baseline correcuon normalization and computation of the second derivative data with 9

point smoothing of the FTIR spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Figure 3.12 Stacked FTIR spectra of the raw (top), first-derivative (middle) and second-

derivative (bottom) spectra of a Saccharomyces cerevisiae strain (strain 6060)
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Figure 3.13 The plot of the eigenvalues against the principal component number
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Figure 3.14 A plot of a dendrogram of 56 different yeast strains employing cluster
analysis on the first 10 principal components values t_'ll'om the infrared spectral region
between 1800-800 cm
(please refer to Appendix 1 for the strain identity)
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Figure 3.15 A plot of a dendrogram of 56 different yeast strains employing the
combination of PCA, discriminate analysis and cluster analysis
. (please refer to Appendix 1 for strain identity)
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3.4.2.2 Supervised analysis

The most important conclusion to be drawn from the above analysis is that the
‘unsupervised’ learning methods fail to classify the yeast strains correctly and therefore
cannot be used to identify them. Accordingly, the use of methods based on ‘supervised
leaming’ to identify yeasts from their infrared spectra was investigated. The approach
employed was to supervise the analysis using an artificial neural network (ANN)-based
expert system. ANNs have recently been successfully employed in the identification of

bacteria based on their infrared spectra (Goodacre et al., 1996a; Naumann et al., 1998a;

Schmitt et al., 1998).

ANN:Ss are based on a very complex algorithm. Before using this approach to carry
out the classification work, several questions had to be addressed. First, in order to
obtain the maximum structure and composition information and the minimum noise, how
should the spectral data be preprocessed? Four different preprocessed spectral data sets
were tested: 1) spectral data obtained after baseline correction, normalization without
derivatization or PCA calculation, 2) spectral data obtained after baseline correction,
normalization, and computation of the 2" derivative but without the use of PCA
calculation, 3) spectral data obtained after baseline correction, normalization without
derivatization but with PCA calculation performed, and 4) spectral data obtained after
baseline correction, normalization with computation of the 2" derivative and PCA
calculation performed. Second, how many input neural units should be used, and how
many hidden neural units should be used? If too few hidden units are used, the training

error and generalization error will be high due to underfitting and high statistical bias. If
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too many hidden units are used, the training error should be low but generalization error
will still be high due to overfitting and high variance. The simple and efficient way to
solve this problem is to try many networks with different numbers of hidden units,
estimate the generalization error for each network, and choose the network with

minimum generalization error.

The results obtained show that an ANN provides good classification accuracy
compared to classical cluster analysis methods (Table 3.2). This result indicates that

ANN may be a more appropriate method for the classification of complex biological

systems.

Figure 3.13 shows that the selection of 10 PCs as the input units is satisfactory.
When too few PCs are used (e.g. only one or two PCs), not enough information is
present, and when too many PCs are employed, the later PCs contribute only noise to the

model, thus increasing the probability of chance correlation between input and output

data.

The results in Table 3.2 show that training ANNs with all the spectral data
(preprocess method A) to develop a classifier does not work. That is because the
architecture of this model is too complex and may fit the noise. The best way to avoid
overfitting is to use a lot of training data. If at least 30 times as many training cases are
used as there are weights in the network, the ANN is unlikely to suffer from much

overfitting (Smith, 1996). This means that if all the spectral data points are employed to
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train the ANNS, we should have at least S00 (number of input units) x number of hidden
units x 4 (number of output units) x 30 training cases, which is quite unpractical. Another
way to improve the ANN is to train the network with jitter. Jitter is artificial noise
deliberately added to the inputs during training. Training with jitter works because the
functions that NNs learns are mostly smooth. NNs can learn functions with
discontinuities, but the functions must be piecewise continuous in a finite number of
regions if the network is restricted to a finite number of hidden units. In other words, if
we have two cases with similar inputs, the desired outputs will usually be similar. That
means we can take any training case and generate new training cases by adding small
amounts of jitter to the inputs. As long as the amount of jitter is sufficiently small, we can
assume that the desired output will not change enough to be of any consequence, so we
can just use the same target value (Koistinen and Holmstrom, 1992). Compared to these
two methods, PCA combined with ANN is definitely an efficient method to carry out the
classification work, because PCA can reduce the number of the input units and at the
same time separate the useful information and noise information, it also simplifies the
ANN architecture and reduces the number of samples or the need to add jitter. Combined
with derivative spectroscopy to reduce the baseline shift and resolve the absorption

bands, an increase in the discriminate ability of the classification method can be

achieved.

Table 3.2 shows that the spectral preprocessing method which combines
derivatization and PCA analysis is the best method for the classification of the yeast

spectral data set, with a predictive accuracy of 93.8%. Using the optimum preprocessing
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protocol, the optimization of the number of hidden units can be undertaken. Table 3.3
shows that with the increment of the number of hidden units, the predictive accuracy of
the neural network will be improved. However, above a certain value, the network’s
prediction ability will drop due to overfitting. Based on the results in Table 3.3, the
optimum number of hidden units was 12. Table 3.3 also shown that for a certain network
architecture, if one unit is deleted from its hidden layer, the prediction accuracy of the
network will not change too much; for example, the rate of correct prediction with 10
hidden units is the same as that with 11 units. This means that the neural network has a
certain fault tolerance, such that the damage of a certain unit will not result in abnormal
prediction of the whole network. The weight adjustment process of the network has a

kind of auto-repair function so that it can adjust for a certain amount of interruption.

This study clearly showed that FTIR spectroscopy could be used to obtain
reproducible biochemical fingerprints from yeast cells. Although classical cluster analysis
could not be used to characterize the taxonomic properties of yeasts, an artificial neural

network could be trained to identify these yeast strains successfully.
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Table 3.2 Effect of different spectral preprocessing techniques on the predictive accuracy
of artificial neural networks.

Preprocess A | Preprocess B | Preprocess C Preprocess D

Number of correct | 21 outof 32 | 22 out of 32 29 out of 32 30 out of 32
assignments

Percent accuracy | 65.6% 68.8% 90.6% 93.8%

Preprocess A: spectral data (between 1800-800 cm'l) obtained after baseline correction,
nommalization without derivatization or PCA calculalmon

Preprocess B: spectral data (between d1 800-800 cm ) obtained after baseline correction,
normalization, and computation of 2" derivative but without the use of PCA calculation.
Preprocess C: spectral data (between 1800-800 cm’ ) obtained after baseline correction,
normalization without derivatization but with PCA cl:alculatlon performed.

Preprocess D: spectral data (between 1800-800 cm ') obtained after baseline correction,
normalization with computation of 2" derivation and PCA calculation performed.

Note: the default number of hidden units (9), which is set by the software, is used for this
test

Table 3.3 Effect of varying the number of hidden units in the hidden layer on the

predictive accuracy of the ANN
Number of hidden Number of correct | Prediction accuracy
units in the hidden assignments
layer

1 3 25 out of 32 78.1%
2 4 25 out of 32 78.1%
3 5 29 out of 32 90.6%
4 6 29 out of 32 90.6%
5 7 29 out of 32 90.6%
6 8 29 out of 32 90.6%
7 9 30 out of 32 93.8%
8 10 30 out of 32 93.8%
9 11 30 out of 32 93.8%
10 12 32 out of 32 100%
11 13 32 out of 32 100%
12 14 32 out of 32 100%
13 15 29 out of 32 90.6%
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3.4.3 Classification of Yeast Strains in Terms of Their Use in Food Production by FTIR

Spectroscopy

While the application of genetic engineering to the production of new yeast strains
(with desirable features such as the capacity to produce good flavor and aroma; the ability
to ferment wort rapidly until fructose, glucose, sucrose, maltose, and maltotriose have
been used; the propensity to grow in wort rapidly) has been successful, there have been
few instances of induced hybridization to produce commercial brewing yeast strains.
Mutation and transformation have also been suggested for producing brewing strains with
new properties. With all these new genetically modified yeast strains at hand, the most
common question one encounters is: “How can we predict the result of the genetic
modification on the function of the microorganism?” The functions and activities of yeast
strains are determined by their encoded biological and chemical information. FTIR
spectroscopy has the capability to measure the fingerprint of all the biochemical
compounds within a microbial cell, such as DNA, RNA, proteins, membrane and cell

wall components. Accordingly, it may be a useful technique to predict the effects of

genetic modifications on the function of microorganisms.

3.4.3.1 Unsupervised Method

A total of 31 yeast strains used to produce wine, beer and bread were obtained
from Lallemand Inc. Their FTIR spectra were collected and preprocessed by the
procedure described in Section 3.2. Figure 3.6 shows that most of the spectral
information is in the region of 1800-800 cm”. In order to find the region that can be used

for yeast classification in terms of their use in the production of wine, beer or bread, one
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end of the target spectral region was held constant and the other end narrowed in a
stepwise fashion in 100 cm’ increments toward the constant end. This ‘scan’ action was
repeated each time the fixed end was narrowed in 100 cm’ increments in order to
identify the best spectral region. In this analysis a centroid linkage and the squared
Euclidean distance were employed to carry out the cluster analysis. In centroid linkage
each cluster is represented by its centroid; the distance between two clusters is the

distance between their centroids. This method does not distort the cluster space.

The results of the analysis of each spectral region are shown in Table 3.4. It is
clear that when the region of [x, 800] was used, where x was varied in 100-cm”
increments between 1800 and 1700 cm", all of the wine strains were identified correctly
except two, but they were not classified as a single group; instead, they were separated by
the beer group or the bread group into two isolated groups (Figure 3.17). The same
spectral region could also be employed to separate bread and beer yeasts from each other
with a small error. When the region of [x, 800] was employed, where x was varied in
100-cm” increments between 1600 and 1400 cm”', the cluster analysis algorithm grouped
all the wine strains correctly; it also grouped all the beer strains correctly except three and
all the bread strains correctly except one. When the region of [x, 800] was employed,
where x was varied in 100-cm™ increments between 1300 and 1100 cm", the algorithm
grouped all the wine strains into one single group correctly; it grouped all the beer strains
correctly except three; the algorithm also correctly grouped all the bread strains (Figure
3.18). When the region of 1000-800 cm” was employed, the algonithm correctly grouped

all the wine strains, all the beer strains except three; and all the bread strains except two.
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When the region of 900-800 cm’ was employed, the algorithm had difficulties in

classifying all the strains.

Based on the results from Table 3.4, the best region to group the wine strains
alone is [x, 800] where x is varied in 100-cm™ increments between 1300 and 1100 cm’".
Absorptions in this region include the amide III band components of proteins (1310-1240
cm’), the P=O stretching vibration of >PO: in phosphordiesters (1250-1220 cm™) and
phosphodiesters (1088-1084 cm"), and the ring vibrations of carbohydrates (1200-900
cm’l). The best region to identify beer strains alone is [x, 800] and [x, 900] where x is
varied in 100-cm™ increments between 1800 and 1700 cm™ and between 1800 and 1600
cm'l, respectively. The best region to identify bread strains alone is [x, 800] where x is
varied in 100-cm” increments between 1700 and 1600 cm’ and [x, 800] where x is
varied in 100-cm” increments between 1300 and 1100 cm' . Finally, the best region to
separate these three kinds of yeast strains is [x, 800] where x is varied in 100-cm’
increments between 1300 and 1100 cm'l; the classification results using cluster analysis

and the spectral data from this region are presented in Figure 3.18.
It can be concluded from this study that unsupervised analysis methods can be

used for classification of yeast strains in terms of the type of fermentation process in

which they are employed and that this method yield >90% correct classification.
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Figure 3.16 Comparison between the FTIR spectra of a wine, a beer and a bread yeast
strains
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Table 3.4 Effect of selection of the infrared spectral region between 1800 and 800 cm” on
the predictive accuracy of yeast classification in terms of their use in the production of
wine, beer, and bread by cluster analysis.

Region (cm™) number of incorrect wine | number of incorrect beer number of incorrect bread
strain assignments strain assignments strain assignments

1800/1700-800 2* out of 16 1 outof 12 0 out of 3

1600/1400-800 0* out of 16 3outof 12 1 outof 12
1300/1100-800 Oout of 16 Joutof 12 O out of 12

1000 -800 0* outof 16 Joutof 12 2 outof 12

900 -800 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800/1600-900 0* out of 16 1 outof 12 2outof 12
1500/1400-900 2* outof 16 3 outof 12 1 outof 12
1300/1100-900 2* out of 16 2outof 12 2 outof 12

1000 -900 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800/1700-1000 0* out of 16 2 outof 12 2outof 12

1600 -1000 2* out of 16 2outof 12 2 outof 12
1500/1300-1000 0* outof 16 3 outof 12 1 outof 12
1200/1100-1000 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800/1700-1100 0* out of 16 2outof 12 2outof 12

1600 -1100 2* outof 16 3outof 12 2outof 12
1500/1300-1100 1* out of 16 3outof 12 2outof 12

1200 -1100 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800/1600-1200 0* out of 16 3outof 12 2outof 12
1500/1400-1200 2% outof 16 2 outof 12 2 outof 12

1300 -1200 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800 -1300 2® outof 16 2outof 12 2outof 12
1700/1500-1300 2* outof 16 2outof 12 2 outof 12

1400 -1300 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800/1600-1400 3*outof 16 3 outof 12 2outof 12

1500 -1400 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800/1700-1500 3* outof 16 2 out of 12 2outof 12

1600 -1500 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800 -1600 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1700 -1600 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination
1800 -1700 Inadequate discrimination | Inadequate discrimination | Inadequate discrimination

*note: the wine group is divided into two separate groups
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Figure 3.17 A plot of a dendrogram generated from the cluster analysis of 31 different
yeast strains (employed in the production of wine, beer a.nd bread) based on the changes
in infrared spectral region between 1700-800 cm’ " after baseline correction,
normalization and computation of the second derivative data and 9 point smoothing of
the FTIR spectra of the yeast strains
(‘w’ refers to wine, ‘be’ refers to beer and ‘br’ refers to bread)
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Figure 3.18 A plot of a dendrogram generated from the cluster analysis of 31 different
yeast strains (employed in the production of wine, beer anld bread) based on the changes
in infrared spectral region between 1300-800 cm after baseline correction,
normalization and computation of the second derivative data and 9 point smoothing of
the FTIR spectra of the yeast strains. (‘w’ refers to wine, ‘be’ refers to beer and ‘br’
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3.4.3.2 Supervised Method

The discussion above shows that classical cluster analysis can work. However, the
process of searching for the best spectral region for yeast classification is tedious. The
possibility of utilizing supervised pattern recognition methods such as neural networks,
which mimic the human brain in its learning process and further apply the knowledge to

solving problems, may simplify the analysis.

The following procedure was employed in the training of an ANN to classify
yeasts in terms of their use in the production of wine, beer, or bread. Principal component
analysis (PCA) using the NIPALS algorithm was carried out using SCAN (Minitab Inc.,
State College, PA, USA) on the preprocessed spectral data (spectral data obtained after
baseline correction, normalization, computation of 2" derivative and 9-point smoothing
in the region of 1800-800 cm'l). The first 8 PCs were used as input to the network. The
ANN was built using Neuroshell 2 (Ward System Group Inc, Frederick, MD, USA). The
structure of the ANN used in this study consisted of three layers: one input layer
(containing 8 units), one output layer (containing 3 units) and one hidden layer
(containing 10 units). To train the ANN, each of the inputs was normalized and paired
with each of the desired outputs (the output layer was binary encoded such that wine is
represented by 100, beer by 010 and bread by 001). Before training commenced, the
connection weights were set to small random values. TurboProp algorithm was employed
to train the neural network TurboProp algorithm is a training method faster in the "batch”
mode than other backpropagation methods, and it is not sensitive to learning rate and

momentum, so learning rate and momentum are not required to be set during the training
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procedure. In this algorithm, training proceeds through an entire epoch (one complete
calculation in the network is called an epoch) before the weights are updated. It adds all
of the weight changes and at the end of an epoch modifies the weights. The TurboProp
method utilizes an independent weight update size for each different weight, rather than
the usual method of having a single learning rate and momentum that applies to all
weights. Furthermore, the step sizes are adaptively adjusted as learning progresses.
Before training commences, the connection weights are set to small random values,
including the weights connecting the bias to the hidden and output layers. Next, the input
values are applied to the network, which is allowed to run until an output is produced at
each output unit. The differences between the actual output and that expected, taken over
the entire set of patterns, are fed back through the network in the reverse direction to
signal flow (hence backpropagation) modifying the weights as they go. This process is
repeated until a suitable level of error is achieved. To prevent overfitting: 1) the test set
and production set were extracted from the original spectral data set by the software. The
test set is used with calibration, during training the network was interrogated with
patterns in the test set, the errors between the output seen and that expected were
calculated, thus allowing a learning curve for the test set to be drawn. Training is stopped
when the RMS error on the test set is lowest. The production set is used to test the
network’s results with data the network has never "seen" before. 2) the ANNs were

trained five times to determine whether they converged reproducibly.

When training had ceased, the network was interrogated. As expected, the

network's estimate of the identities of the yeasts in the calibration set were the same as

83



their known identities. The results of the network's final analysis of the unknown
production set is shown in Table 3.5; the difference between the ANN’s estimates and the

output that was expected is also given. It can be seen in Table 3.5 that all the unknowns

were correctly identified.

This study clearly showed that FTIR spectroscopy could discriminate between
different yeast strains in terms of their use in the production of wine, beer, or bread.
Artificial neural networks were also successfully trained to fulfill this objective. We

conclude that the combination of FTIR spectroscopy and ANNs provides a rapid and

accurate discriminatory technique.
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Table 3.5 Artificial neural network classification results for 31 yeast strains

Strain | Act1 | Act2 | Act3 Net | Net | Net Act- | Act- | Act-
Code 1 2 3 Net | Net | Net
1 2 3
Training Set | Wine | 6467 1 0 0 0.87 [ 0.09 | 0.39 0.13]| 01| 04
6074 1 0 0 0.98 | 0.02 | 0.20 0.02 0] 02
6400 ] 0 0 0.77 0| 0.09 0.23 0| -0.1
6287 1 0 0 0.99 | 0.01 | 0.05 0.01 0 -01
6071 1 0 0 083 043 0.11 017 | -04 | 01
6050 1 0 0 0.69 | 0.00 | 0.09 0.31 0| -01
6139 1 0 0 0.85 0 0.08 0.15 0| -0.1
6276 1 0 0 0.68 0| 02 0.32 0 -0.2
6032 1 0 0 0.93 0| 0.16 0.07 0| -02
6014 1 0 0 0.66 0| 0.01 0.34 0
6283 1 0 0 0.99 0] 022 0.01 0| -02
6290 1 0 0 0.59 0 0 0.41 0 0
Beer | 6061 0 1 0 0.13 | 0.98 | 0.32 0.1 002 -0.3
6493 | 0 1 e 0.7 0.65] 0.15 02035 -0.2
6101 0 1 0 0.12 | 0.85 | 0.27 01(015] 03
6059 | 0 1 0 0.05 | 0.86 | 0.03 -0.1] 0.14 0
6562 0 1 0 0.327] 0.80 | 0.06 03| 02} -01
6422 0 1 0 0.21 | 0.81 | 0.05 02| 019 ] -01
6116 0 1 0 025 0.96 | 0.01 0.3 0.04 0
. 6637 0 1 0 0.26 | 0.54 | 0.08 -0.3 | 046 | -0.1
Bread | 6370 0 0 1 022 0.05] 0.65 02| 01035
6583 0 0 1 0.07 0 0.75 0.1 0] 025
Test Set Wine 6221 1 0 1] 055! 0.28 | 0.07 045 -0.3| -0.1
6581 1 0 0 0.85] 024 | 0.25 0.15| 02| -0.3
Beer | 6147 0 1 0 0.21 | 0.97 | 0.27 02003 -03
6058 0 1 0 0.25 | 0.62 | 0.40 03[ 038 -04
Bread | 6584 0 0 1 0.36 0 0.09 04 0] 0.11
Production Wine 6560 1 0 0 0.65 | 034 | 048 035 03| -04
Set 6348 1 0 0 0.94 | 0.35 | 0.05 006 | 04| 0.1
Beer | 6163 0 1 0 0.17 | 0.93 [ 0.07 02007 01
6301 0 1 0 001 0.78 ] 0.18 0] 022] 02

Note: all of the neural network output values given are the averages from training the
network five times; the bold values indicate the correct class.

Act [ (11 £3) refers to the expected output
Net I (1< 1 <3 ) refers to the actual output
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3.4.4 Classification of Yeast Strains in Terms of Their Sensitivity to Killer Yeast Strains

by FTIR Spectroscopy

Killer yeast strains (phenotype K+R+) produce an extracellular toxin that kills
sensitive yeast strains (phenotype K-R-). There also exist neutral yeast strains (phenotype
K+R-) that are resistant to killer toxin but do not produce it. Exotoxins (generally
proteins or glycoproteins) that are able to kill susceptible cells belonging to the same or
congeneric species have been defined as killer toxins. Killer yeast strains are toxin-
producing fungi that are immune to the activity of their own killer toxins. The killer
phenomenon was discovered in yeast by Bevan and Mackower (1963). The most
thoroughly investigated yeast killer system is that of S. cereviviae (Bussey, 1991; Tipper,
et al., 1991;Wickner, 1992, 1996). Currently, the killer yeasts belonging to this species
have been classified into three main groups (K1, K2, and K28) on the basis of the
molecular characteristics of the secreted toxins, their killing profiles, the lack of
cross-immunity, and the encoding genetic determinants. They are constituted by strains
producing toxins encoded by dsRNA. Other Kkiller yeasts producing toxins named KHR
and KHS, which are encoded on chromosomal DNA, have also been identified (Goto et
al., 1990; 1991). The K1, K2, and K28 toxins are encoded by different cytoplasmically
inherited satellite dsRNAs (M1, M2, and M28), encapsidated in virus-like particles
(VLPs) and dependent on another group of helper yeast viruses (L-A) for their replication
and encapsidation. The M dsRNAs are responsible for either killer activity or

self-immunity, a phenotype that is characteristic of yeast killer toxin-producing strains.
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The study of killer yeast strains is very important and useful. For example, the
yeast killer system has been proved to be fruitful not only in the differentiation of
important slowly growing pathogenic bacteria, such as the mycobacteria, but also in the
differentiation of faster-growing gram-positive and gram-negative bacteria (Wickner,
1992). When used to investigate the serotypes of bacterial isolates, the yeast killer system
was able to differentiate isolates of Neisseria meningitidis group C (Morace et al., 1989).
The yeast killer system, when properly used, has been proved to be of great value in the
identification of the species and varieties of heterogeneous microorganisms (Morace et
al., 1988). Stuck wine fermentation is one of the most important problems in the wine
industry (Lafon-Lafourcade et al., 1984; Kunkee, 1991). Several causes of stuck and
sluggish wine fermentation have been described (Ribereau-Gayon et al., 1975; Rosini,

1983). As expected, killer toxins can inhibit wine fermentation by sensitive yeasts (Van

and Wingfield, 1986).

In this study, we investigated the use of FTIR spectroscopy for the classification
of yeasts in terms of their sensitivity to killer yeast strains. Due to the limited number of
strains, here we tried to classify all the available yeast strains into two groups: sensitive

strains and non-sensitive strains (which include possess and neutral strains).

All the 25 yeast strains (19 sensitive strains and 6 non-sensitive strains) were
obtained from Lallemand Inc. Their infrared spectra were collected and preprocessed by
procedures described in Section 3.2. Figure 3.19 shows that most of the spectral

information is in the region between 1800 and 800 cm™ . In order to find a region that can
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be used for the yeast classification in terms of their sensitivity to the killer yeast strains,

various spectral regions were tried as described in the previous section.

The results of the analysis of each spectral region are shown in Table 3.6. When a
spectral region of [x, 800], where x is varied in 100-cm” increments between 1800 and
1700 cm'l, was employed, the cluster analysis algorithm divided the 25 strains into two
groups: one a sensitive group, and the other a non-sensitive group. Within the sensitive
group, there are 21 strains in total; 19 strains indeed belong to sensitive group and 2
strains do not. The sensitive group is divided into two separate groups by the non-
sensitive group. In the non-sensitive group there are 4 strains in total, all of which are
non-sensitive strains. When the region of 1600-800 cm’ was employed, the algorithm
classified 18 sensitive strains and 2 non-sensitive strains in the sensitive group, and 4
non-sensitive strains and 1 sensitive strain in the non-sensitive group. When the region of
[x, 800], where x is varied in 100-cm™ increments between 1500 and 1000 cm", was
employed, the algorithm classified 19 sensitive strains and 2 non-sensitive strains in the
sensitive group and 4 non-sensitive strains in the non-sensitive group. When the region of
900-800 cm”' was employed, the algorithm classified 18 sensitive strains in the sensitive
group and 6 non-sensitive strains and one sensitive strain in the non-sensitive group.

Other details can be found in Table 3.6.
Based on the results from Table 3.6, the optimum region to classify yeast strains

in terms of their sensitivity to killer yeast strains is 900-800cm ™. The dendrogram

produced by cluster analysis using the spectral data from this region is shown in Figure
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3.20. This spectral region is dominated by C-O-C, C-O and ring vibrations of

carbohydrates and C-H rocking of >CH2 methylene groups.

It can be concluded from this study that unsupervised analysis methods can be
used as an approach of classification of yeast strains in terms of their sensitivity to killer

yeast strains and this method yields > 90% correct classification.
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Table 3.6 Effect of selection of infrared spectral regions between 1800 and 800 cm™ on

the predictive accuracy of yeast classification in terms of their sensitivity by cluster

analysis.
Sensitivity Non-sensitivity

1800/1700-800 cm-1 19+2-* 4+

1600 -800 cm-1 18+2- 4+1-

1500/1000-800 cm-1 19+2-* 4+

900 -800 cm-1 18+ 6+1-

1800/1500-900 cm-1 18+2- 4+1-

'1400/1100-900 cm-1 19+2.* 4+

1000 -900 cm-1 19+2- * 4+

1800/1600-1000 cm-1 17+ 6+2-

1500 -1000 ¢m-1 17+1- 5+2-

1400 -1000 cm-1 19+2. 4+

1300/1200-1000 cm-1 18+2- 4+1-

1100 -1000 cm-1 18+2- ¢ 4+]-

1800/1700-1100 cm-1 18+1- 5+1-

1600 -1100 cm-1 17+ 6+2-

1500 -1100 cm-1 17+1- 5+2-

1400 -1100 cm-1 18+1- 5+1-

1300  -1100 cm-1 17+1- 5+2-

1200 -1100 cm-1 17+1-* 5+2-

1800/1700-1200 cm-1 17+1- 5+2-

1600 -1200 cm-1 16+ 6+2-

1500 -1200 cm-1 17+1- S5+2-

1400 -1200 c¢m-1 15+ 6+4-

1300 -1200 cm-1 17+2- 4+2-

1800/1700-1300 cm-1 17+1- 5+2-

1600 -1300 cm-1 17+ 6+2-

1500 -1300 cm-1 14+ 6+5-

1400 -1300 cm-1 Inadequate discriminant Inadequate discriminant

1800/1600-1400 cm-1 17+ 6+2-

1500 -1400 cm-1 15+ 6+4-

1800/1700-1500 cm-1 Inadequate discriminant Inadequate discriminant

1600 -1500 cm-1 Inadequate discriminant Inadequate discriminant

1800 -1600 cm-1 Inadequate discriminant Inadequate discriminant
1700 -1600 cm-1 Inadequate discriminant Inadequate discriminant

1800 -1700 cm-1 Inadequate discriminant Inadequate discriminant

Note * means the whole group was divided into two separated groups

+ means the correct assignments
- means the incorrect assignments
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Chapter 4 Conclusion
The objective of the research presented in this thesis was to investigate the

feasibility of employing FTIR spectroscopy for the classification of yeast in terms of

taxonomy, use in production of wine, beer, and bread, and sensitivity to killer strains.

In order to obtain reproducible spectra of yeasts, a strict control of growth
conditions, isolation protocol, and sampling methodology was required. The spectral
reproducibility was then evaluated by a spectral library search approach and the use of
Pearson’s correlation coefficient. All the results showed that the methodology of spectral

acquisition and sampling protocol developed in this work produced highly reproducible

spectra from different batches of the same strain.

Different classical classification approaches based on hierarchical clustering
(including region selection, region selection combined with weighting factor, PCA
combined with hierarchical clustering, PCA and discriminate analysis combined with
hierarchical clustering) were evaluated. It was found that these unsupervised
classification approaches had difficulties in assigning all the spectra of the yeast strains to
the correct groups. This may be attributed to the similarity of the strains in terms of their
biochemical composition. Supervised learning methods employing an artificial neural
network (ANN) were then evaluated in combination with different spectral preprocessing
techniques. It was found that baseline correction compensated for some of the light
scattering from yeast samples deposited as films on a ZnSe window, while spectral

normalization compensated for some of the variability in film thickness. The use of
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second-derivative spectra also reduced the effect of baseline variation and resolved the
absorption peaks. Because of the large amount of spectral information, the use of
principal component spectra in place of the raw spectral data results in the reduction of
the dimensionality of the information. Thus, the combined advantages of spectral data

processing have been found to improve the performance of the ANN models.

Classification of yeasts in terms of the type of fermentation process in which they
serve is a new approach in the application of FTIR spectroscopy to microbiology. In this
study, both cluster analysis and ANN were equally effective in the classification of yeast
strains. Cluster analysis was effective when the spectral region was narrowed between

1300 and 800 cm’. An ANN successfully predicted 100% of the test set.

Classification of yeasts in terms of their sensitivity to killer yeast strains has
economic implications in relation to the efficacy of the production process. Because of
the limited amount of strains available, only the cluster analysis algorithm was employed.
The separation of the yeast trains into two distinct groups, sensitive and non-sensitive,

was accomplished by employing the spectral information between 800 and 900 cm’.

It can be concluded from the results obtained from this work that FTIR
spectroscopy in combination with suitable chemometric techniques can be of potential
utility for the rapid identification and classification of yeast strains. Future work should

be directed toward increasing the size of the spectral database and carrying out extensive
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validation studies of production samples, with emphasis placed on employing supervised

training for spectral analysis.
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Appendix 1 Reference number of yeast strains

Succharomyces cerevisiae

Wine Beer Bread | Distillers | Probiotics Animal Other
! nutrition
1 Sensitive 6050 (3) 6061 (8) 6100 (44) ]
6467 (30) 6362 (36) 6632 (55)
6400 (26) 6058 (3) ‘
6287 (20) 6060 (7)
6649 (42) 6163 (14)
6648 (41) 6412 (27)
6348 (49) 6422 (29)
6101 (10)
6039 (6)
‘ 6301 (22)
Possess { 6032 (2)
6014 (1)
Neutral
Saccharomyces chevalieri
Wine Beer Bread | Distillers | Probiotics Animal Other
] ’ nutrition
Sensitive 6254 (48) 6196 (46) |
(Chocolate) |
6165 (13)
(Lab strain)
Possess { 6581 (37)
6139 (13)
Neutral | 6542(54)
1 6360(33)
Saccharomyces capensis
Wine Beer Bread | Distillers | Probiotics Animal Other
nutrition
Sensitive 6276 (18)
6290 (21)
Possess
Neutral 6221 (16) 6375 (23)

(Unknown)




Saccharomyces italicus

Wine Beer | Bread ! Distillers | Probiotics { Animal Other
nutrition
Sensitive 6071 (9)
6074 (43)
Possess 6302 (23) ,
Neutral '
Succharomyces diastaticus
Wine Beer | Bread | Distillers { Probiotics { Animal Other
nutrition
Sensitive
Possess
Neutral 6123 (12) 1 6637 (40)
Saccharomyces delbrueckii
Wine Beer Bread Distillers | Probiotics | Animal Other
nutrition |
Sensitive | 6116 (1) :
6056
6493(31)
Possess
Neutral 6147 (45) |
Saccharomyces bavanus
Wine Beer Bread | Distillers | Probiotics { Animal Other
nutrition
Sensitive 66353 (56)
Possess
Neutral 52 (Unknown)
Succharomyces rosei
Wine Beer Bread Distillers | Probiotics { Animal Other
nutrition
Sensitive
Possess
;. Neutral 6242 (47)




Schizosaccharomyces pombe

Wine Beer { Bread | Distillers | Probiotics ]| Animal Other
nutrition
Sensitive 6262
Possess
Neutral | 6265 (17) 5
515
Saccharomyces cerevisiae / Schizosaccharomyces pombe
Wine Beer Bread | Distillers | Probiotics | Animal Other
‘ nutrition
Sensitive
Possess 6527
6528 (32)
Neutral 6578 6329 (33)
Kluyveromyces marxianus
Wine Beer Bread | Distillers | Probiotics § Animal Other
j i nutrition
Sensitive |
Pussess
Neutral
6425 (52)
(Lactoserum)
6349 (50)
(Lactose)
Hunsenula valbvensis
Wine Beer Bread Distillers | Probiotics { Animal Other
| nutrition .
Sensitive
Possess
Neutral | 6333 (34)
Candida utilis
Wine Beer Bread | Distillers | Probiotics | Animal Other
nutrition
Sensitive
Possess
Neutral | 6283 (19) 63504 (33)
(Wood

fermentation)




Zvgosaccharomyces cidrii

Wine Beer Bread | Distillers | Probiotics { Animal Other
nutrition
Sensitive
Possess
Neutral 6414 (28)
(Bioingredients)
Unknown
Wine Beer Bread Distillers | Probiotics Animal Other
nutrition
Sensitive 63583 (39)
6384 (39)
Possess
Neutral 6370 (24)

Note : The four digits reference number is the reference number from Lallemand Inc.
The number in the bracket is the corresponding reference number we used




