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Abstract

Infrared spectra of microbial ceUs are highly specific, fingerprint-like signatures

which can be used to differentiate microbial species and strains from each other. In this

study, the potential applicability of Fourier transfonn infrared (FTIR) spectroscopy for

the classification of yeast strains in terms of their biological taxonomy, their use in the

production of wine. beer. and bread. and their sensitivity to 1011er yeast strains was

investigated. Sample preparation, spectral data preprocessing methods and spectral

classification techniques were also investigated. Ali yeast strains were grown on a single

growth medium. The FTIR spectra were baseline corrected and the second derivative

spectra were computed and employed in spectral analysis. The classification accuracy

was improved when the principal component spectra (calculated from the second

derivative spectra) were employed rather than the second derivative spectra or raw

spectra aJone. Anificial neural network (ANN) with 10 units in the input layer and 12

units in the hidden layer produced a robust prediction model for the identification of

yeasts. Cluster analysis was employed for the classification of yeast strains in terms of

their use in the production of wine. beer. and bread and in terms of their sensitivity to

1011er yeast strains. The optimum region for the classification in the former case was

found to be between 1300 and 800 cm· l in the infrared spectrum whereas the optimum

region for the classification of yeast strains in terms of their sensitivity was between 900

and 800 cm· l
. The results of this work demonstrated that FTIR spectroscopy could be

successfully employed for the classification and identification of yeast strains with

nùnimal sample preparation.
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Résumé

Les spectres infrarouges des cellules microbiennes sont fortement spécifiques,

des signatures comparables à des empreintes sont employés pour différencier les espèces

et les types microbiens. Dans cette étude, l'application potentielle de la spectroscopie

infrarouge par transfonnation Fourier (FTIR) pour la classification des types de levure

dans la limite de leur taxonomie biologique, leur utilisation dans la production du vin, de

la bière, et du pain et leur sensibilité aux types de levures destructrices a été étudiée. La

préparation des échantillons et les méthodes de prétraitement de classification spectrales

ont également été étudiées. Tous les types de levure ont été cultivées dans un milieu de

croissance simple. Les spectres FTIR à base corrigée ainsi que leur seconde dérivée ont

été utilisées dans l'analyse. La classification a été améliorée quand les spectres

principaux (calculés à partir de la seconde dérivée des spectres) ont été utilisés plutôt que

la seconde dérivée ou les spectres d'origine. Une classification a été réalisée par

('utilisation d'un réseau neurologique artificiel (ANN) avec une combinaison optimale de

10 unités de couches d'entrée et 12 unités de couches cachées. L'analyse multivariable a

été utilisée lors de la classification des types de levure par leur utilisation dans la

production du vin, de la bière, et du pain et par leur sensibilité aux levures destructrices.

La région optimale pour la première méthode de classification s'est avérée être entre 1300

et 800 cm-1 tandis que la région optimale pour la classification des types de levure par

leur sensibilité était entre 900 et 800 cm- l
. Les résultats de ce travail ont démontré que la

spectroscopie FTIR pourrait, avec succès, être utilisée pour différencier les types de

levure avec une préparation minimale des échantillons.
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Introduction

•

The characterization of microorganisms (including detection, differentiation,

identification, and susceptibility testing against antibiotics) is very important in a wide

variety of industries. For example, in the pharmaceutical manufacturing industry

microbes are either part of the manufacturing process or they interfere with or

contaminate the process. Numerous analyses are regularly perfonned in the Medical

research institutions dedicated to the regjstration and epidemiological control of

pathogens of both humans and animais and rigorous microbiological controls of raw

material are also needed. Therefore, proper and rapid characterization of microorganisms

is highly desirable. While morphological and biochemical techniques have been

traditionally employed, in recent years, new methods such as PCR, have been adopted by

the food industry. More recently, the application of GC/MS, pyrolysis for microorganism

characterization also has been under active investigation.

In this context, Fourier transform infrared (FTIR) spectroscopy has the potential

to become an important routine analytical tool as FTIR analysis can be perfonned rapidly

with minimum sample preparation and without the use of reagent. It has been reported in

the literature that FTIR spectroscopy can be employed in the classification and

differentiation ofmicroorganisms (Naumann et al., 1988; Helm et al., 1991; Goodacre et

al., 1996b), to detcct in situ intracellular compounds (Naumann, 1998a), to characterize

• growth dependent phenomena of microorganism (Reinstadler et al., 1997) and to monitor

1



• chemical changes taking place during fermentation (Fayolle P. et al., 1997; Qiu, J. et al.,

1999). Accordingly, a number of time-consuming morphological and biochemical tests

may be replaced by FTIR spectroscopy. However, widespread application of FTIR

spectroscopy for microorganism characterlzation will likely occur if the industry is

provided with evidence that such an approach is both reliable and accurate. This thesis

work addresses issues related to the development of a reliable and rapid method for the

characterization ofyeasts by FTIR spectroscopy.

•

•
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• Cbapterl

Literature Review

2.1 Biocbemical Composition of MicroorgaDisms

•

•

2.1.1 Biochemical composition ofbacteria cells

Most hacteria appear in variations of three different shapes: the rod (known as

bacillus), the sphere (coccus) and the spiral (virions, spirilla, and spirochetes). To achieve

motion, they utilize structures called flagella, which are composed of long, rigid strands

of a protein called flagellin. Bacteria also possess appendages called pili that appear as

short flagella. They are composed of proteins, which can anchor bacteria to surfaces or

transfer genetic material among bacteria. The capsule (composed of polysaccharides and

small proteins that adhere to the bacterial surface) serves as buffer between the cell and

its external environment. Because of its high water content, the capsule protects the cell

against dehydration while preventing nutrients from flowing away. The important

chemical constituent of the bacterial cell wall is peptidoglycan. It is a very large molecule

composed of alternating units of two amino-containing carbohydrates,

N-acetylglucosamine and N-acetylmuramic acid, joined by cross-bridges of amino acids.

Peptidoglycan occurs in multiple layers connected by side chains of four amino acids,

and the Many layers comprise one extremely large Molecule.

The cell walls of Gram-positive and Gram-negative bacteria differ considerably

(Figure 2.1). In Gram-positive bacteria, the peptidoglycan layer is about 25 Dm wide and

contains an additional polysaccharide called teichoic acid. About 60 to 90 percent of the

3



• cell wall is peptidoglycan, and the material is so abundant that Gram-positive bacteria are

able to retain the crystal violet-iodine complex in Gram staining. By contrast,

Gram-negative bacteria have a peptidoglycan layer only 3 Dm wide without any evidence

of teichoic acid. The cell wall in these bacteria contains various polysaccharides,

proteins, and lipids and so is much more complex than the cell wall of Gram-positive

hacteria. Also, the cell wall is surrounded by an outer membrane barely separated from

the cell wall by a so-called periplasmic space containing a gel-like material called

•
prolan

~ids

Figure2.1 Comparison of gram-positive and gram-negative bacterial cell wall structures
( adapted from Maier, Raina M. 2000 Environmental microbiology San Diego, Calif.

Academic Press)

periplasm (which is made of proteins. In this compartment there are sorne metabolic

activities - e.g. reactions dealing with toxic substances). On the inner side of the cell wall

• the periplasmic space is wider. Bacterial toxins and enzymes apparendy remain in this

4



• space and destroy antibacterial substances before they can affect the cell membrane9 and

other proteins.

•

•

The cell membrane (plasma membrane) is the boundary layer of the bacterial eell.

Approximately 60 percent of it is composed of protein, and about 40 percent of lipid,

mainly phospholipid. The phospholipid molecules are arranged in two parallel layers.

Inside the eeU membrane lies the cytoplasm, a gelatinous mass of proteins,

carbohydrates, nucleic acids, salts, and inorganic ions. Certain Gram-positive bacteria are

able to produce highly resistant structures called endospores or spores. Spores contain

little water9 however, they do have a large amount of dipicolinic acid which helps to

stabilize their proteins.

2.1.2 Biochemical composition ofyeast cells

Budding yeasts are true fungi of the phylum Ascomycetes, class

Hemiascomycetes. The truc yeasts belong to one main order Saccharomyceta/es, which

includes at least ten families. Yeasts are heterotrophic, lack chlorophyll, and have a wide

variety of natural habitats. Yeasts multiply as single ceUs that divide by budding or direct

division (fission), or they may grow as simple irregular filaments (mycelia). In sexual

reproduction most yeasts fonn asci, which contain up to eight haploid ascospores. These

ascospores May fuse with adjoining nuclei and multiply through vegetative division or, as

with certain yeasts, fuse with other ascospores (Kockova..Kratochvilov~ 1990).

5



• The chemical composition of yeasts such as brewer's, baker's, wine and fod4er

yeast differs widely (Table 2.1 and Table 2.2). These difTerences reflect differences in the

yeast species, cultivation conditions and nutrient media (Kockova-Kratochvilova, 1990).

•

Table 2.1

Table 2.2

The chemical composition ofbrewer's yeast biomass:

Composition Brewer's yesst biomass

carbon 44 to 50%

hydrogen 6 to 8%

nitrogen 8 to 120/0

oxygen 30 to 360/0

The main components ofBaker's yeast:

Components Baker's yeast

protein 45 to 60%

saeeharides 25 to 35%

lipids 4to 7%

ash 6 to 9%

The guanine and cytosine (G+C) content ofyeasts ranges from approximately 28

to 70 mol%. The G+C content of ascomyeetous yeasts is generally less than 50%,

whereas that of basidiomycetous yeasts is generally above 50% (K.urtzman et at., 1983).

• From the base composition, the taxonomie class of imperfect yeasts can be reliably

6
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•

•

inferred. The range in G+C content among species within a genus is often 100/0 or less,

with the exception of sorne obviously heterogenous genera. On a species level, the use of

G+C content is only exclusionary in that a difference of 2 mol% or greater indicates

strains belonging to different species (Price et al., 1978).

Polysaccharides in yeast cells fall topologjcally and functionally into two classes:

cell wall polysaccharides (e.g. glucans and mannans) and intracellular polysaccharides.

Glucan and mannan complexed with proteins represent about 80 to 90 % of the cell wall

dry weight in S. cerevisiae. The rest is made up by chitin, proteins and lipids. The

chemical structure of mannan (Figure 2.2) consists of mannose units bonded by al ~ 6,

al ~ 2 and al ~ 3 bonds. Isolated preparations of glucans from yeast cell walls are

extremely heterogeneous (Manners et al., 1974). The major part is formed by insoluble

~-1 ,3-glucan with a high relative molecular weight and a polymerization degree of about

1500, which contains 3 % of Jl- 1,6-glycosidic bonds inside the chain. A minor

component, about 15 % of total glucans, is a soluble P-l,6-glucan with a polymerization

degree of 130 to 140, containing about 14 % Jl- 1,3-glycosidic bonds inside the chain.

Intracellular saccharides, mostly glycogen and trehalose, serve as reserve substances.

Glycogen makes up 0.5 to 1.3 % of the yeast cell weight. Us properties are similar ta

those of the amylopectin starch fraction. It is composed of chains of glucose residues

with predominantly a 1 ~ 4 type, bonds of the a 1~6 type being only localized at the

chain branching points. Trehalose (a-D-glucopyranosyl-a-D-glucopyranoside, Figure

2.3) consists of two glucose umts. The activity of trehalose is affected by cyclic AMP.

Van Solingen and Van der Plaat (1975) found that the lag phase preceding the culture

7



• growth is governed by a system including the action of cAMP and trehalose. In yeast

celis cAMP acts as a regulator of protein-phosphorylating reactions. The activation of

trehalose is associated with phosphorylation of the protein, which is controlled by cAMP.

Yeast intracellular lipids ioclude neutral triacylglycerols and phospholipids (Table

2.3, Table 2.4). Yeast also produce lipid into the extemal medium or cultivation medium

(extracellular lipids). There are four types of extracellular lipids: a) esters ofpolyols and

carboxylic acids in which saturated and unsaturated hydroxycarboxylic acids are linked

with five- to six-carbon polyols by an ester bond; b) sophorosides ofhydroxycarboxylic

acids in which saturated and unsaturated hydroxycarboxylic acids are linked by a

glycosidic bond to the disaccharide sophorose; c) acetylated sphingosines in which

hydroxy groups and amino groups of C18-phytosphingosine and C18-dihydrosphingosine

• are acetylated; d) C22-acids in which tri- and dihydroxycarboxylic acid residues are

acetylated.

•
8



• Table.2.3: Composition ofyeast lipids (adapted from Kockova-Kratochvilova, 1990)

Carboxylic acid Content in lipids of C. utiUs
[%]

Lauric 0.5
Myristic 1.3
Palmitic 21.0

Palmitoleic 3.5
Stearic 2.9
Oleic 40.0

Linoleic 26.5
Linolenic 3.5

Table 2.4 Percent total phospholipid content in whole ceUs ofS.cerevis;ae
(Cartledge et al., 1977)

•
Phospholipid Per cent of total phospholipid content in

whole ceUs ofS. cerev;s;ae
Phosphatidylethanolamine 31.2

Phosphatidylinositol 29.7
Phosphatidylcholine 25.3
Phosphatidylserine 6.2

Cardiolipin 3.8
Phosphatidic acid 2.3

Yeast ceUs are multilayer systems in which membranes delineate separate

reaction spaces. Membranes are assumed to serve as diffusion baniers between individual

compartments. Yeast membranes include the dictyosomal membrane, nuclear membrane,

ER-membrane, vacuolar tonoplast, mitochondrial membrane, and microsomal membrane.

Yeast membranes contain a number of lipids and pigments that are not present in

prokaryotic ceUs. These include sterols, sphingolipids, ergosterins, rnelanins, and sorne

• glycolipids. Culture conditions have a marked influence on the total lipid content and

9



• lipid composition of yeasts. Factors controlling lipid content and composition are pH of

the medium, temPerature, and time of growth, and the ratio of N· and C-sources. Sterols

occur both in free form and as esters with long~hain fatty acids. Both forms are

interconvertible. Free sterols are associated with membrane functions, and sterol esters

may fulfil a storage or "pool" fonction. Common sterol molecules ofyeasts are ergosterol

(Figure 2.4), lanosterol, and episterol, zymosterol, and fecosterol (Nes et al., 1978).

Major structures of sphingolipids found in yeasts are the sphingosines (Figure2.S),

cerebrins (ceramides), sphingomyelines, and cerebrosides (Kockova-Kratochvilova,

1990). A typical membrane lipid in yeast is ergosterin (Kockova-Kratochvilova, 1990).

115 structure is similar to that of cholesterin and it belongs to the group of sterines. Further

compounds frequently found in the membranes of yeasts are melanins, which are black

pigments built up from tyrosine derivatives.•

Figure 2. 2 The chemical structure ofmannans from Saccharomyces cerev;s;ae

•
10
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•

•
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Figure2.3 Chemical structure of trehalose

Figure 2.4 Chemical structure ofergosterol

R-C.==CM-CR-a.
1 1

RZ-CD-HN-C. a
1 Il

CH-a-p-O-H
Z b-

Figure 2.5 Chemical structure of sphingosines
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• 2.2 Current techniques for microorganism chancterizatioD

Traditional microorganism identification procedures rely heavily upon the

morphology of vegetative cells and sexual reproduetio~ including ultrastructural studies

of cell walls, septae, and spores. Standard identification procedures include several

physiological and biochemical tests to determine the ability of the isolate to ferment

sugars and assimilate aerobic growth on various carbon and nitrogen compounds. In

addition, conditions necessary for growth and demonstration of characteristics are

important in the identitication process. Standard physiological and biochemical tests are

primarily used to determine the species of isolates. The traditional microorganism

identification method is the ooly one acceptable for taxonomie purposes and requires

considerable experience and skill in the performance and evaluation of a large number of

specified and standardized tests (Bruno P. 2000).

•
Interest in the identification of c1inically important microorganisms paved the way

for the developmem of commercial ready-to-use systems in various microwell formats

and provided a stimulus for further development of automated identification systems.

Several miniaturized kits and systems have been developed and marketed over the past

20 years, such as e API 20A®, API 20C~, Minitek Anaerobe fi, Rapid ID 32~ AN-Ident

RapID ANA n. VITEK ANI Card, MicroScan Rapid Anaerobe Panel, Uni·Yeast Tec~.

Abbott Quantum nG
, Vitek ATB32(!!). and AutoMicrobic~. Sorne are designed to be used

manually. while others are automated to various degrees (Table 2.5). Several systems

require additional tests and/or morphological investigations. Stager and Davis (1992)

• provided an excellent overview and evaluations of commercial kits and automated
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systems. Most commercially available systems provide accurate and reHable results,

giving 90% or more agreement with data obtained by traditional methods. The API 20C

system is probably the most widely used in yeast identification and has often been

considered as a reference method for evaluating other systems (polacheck et al., 1987;

St.-Gennain and Beauchesne, 1991). Ali of these commercially available identification

systems were designed to meet the needs of the clinical microbiologjcallaboratory. For

this reason their databases are restricted to a limited number of species of clinical

importance. The most reliable commercial systems could be used for the identification of

large groups of microorganism if their databases were extended and certain additional

tests were performed.

Phenotypic characterization of closely related organisms is not always a reliable

method for microorganism differentiation. In the last two decades the application of

molecular techniques has had a major impact on the classification of yeasts. The nuclear

DNA relatedness has become the basis of species delineation. Molecular fingerprinting

methods such as analysis of restriction fragment length polymorphisms, random

amplified polymorphie DNA, PCR-amplified sequences and fragments, pulsed field gel

electrophoresis of chromosome DNA and others allow intraspecies differentiation and

typing. The most far-reaching method has been the sequencing of various parts of

ribosomal DNA that has made it possible for the tirst time to assess the phylogenetic

relationships among yeasts at ditTerent taxonomie levels. DNA fingerprinting techniques

describe those procedures that provide a unique profile of the DNA of a given organisme

Guanine + cytosine (G+C) ratios (relative to adenine + thymine [A+T]) is a good method
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for microorganism identification, as is the base sequence of the chromosome method.

Forbes and Hicks (1993) and Luk (1994) devised detection methods for Mycobacterium

tuberculosis and Salmonella typhi based on the G+C ratio, respectively. Since 16S rRNA

is derived from the DNA sequence, it can also be used for the differentiation of

microorganisms (Gutell et al. 1994). Techniques revealing restriction fragment length

polymorphism (RFLP) have proved usefui in the taxonomie evaluation of yeast genera

and species and can also be used to identify strains within the same yeast species

(Pedersen, 1986). Degre et al. (1989) compared RFLP patterns with protein and fatty acid

profiles as weil as with chromosome karyotyping and found that DNA fingerprinting

provided the most reliable method for characterizing wine yeast strains. Restriction

endonuclease treatment of mitochondrial DNA (mtDNA) bas also been used in the

differentiation of yeast species (Vezinhet et al., 1990). The usefulness of DNA probes in

conjonction with restriction analysis of DNA and/or chromosome karyotyping may lie

not only in the possibility of identifying certain taxons (deI Castillo Agudo et al., 1993 )

and detecting specifie pathogenic biotypes (Seherer and Stevens, 1987) but also for

identifying specifie industrial baeteria strains to assure quality control or protect

proprietary rights (Pretorius and van der Westhuizen, 1991). Upon developing the

polymerase cbain reaetion (PCR) technique (Foster et aL, 1993), new opportunities for

the design of diagnostic procedures arose. The value of peR in facilitating sequence

analysis bas been applied to taxonomie and phylogenetic analysis of yeasts (Barns et al.,

1991; Molina et aL, 1992). This technique also lends itself to species identification

(Deak, T. 1999; Torriani, S. 1999).
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Molecular probe technology is based on the binding of a molecule -the probe-­

with a particular microorganism, virus, or an individual and unique component, and the

detection of the probe-target complexe Most commonly, probes are nucleic acid

Molecules for the detection of either DNA or RNA, or are antibody Molecules for the

detection of proteins, carbohydrates, polysaccharides, or lipids. Nucleic acid probes are

single-stranded DNA or RNA Molecules. Detection is based on the formation of a

"hybrid," between the nucleic acid probe and single-stranded DNA or RNA recovered

from a microorganism or virus or a sample containing both (Macario and deMacario

1990). Antibodies are proteins produced by mammals that are capable of binding and

forming complexes with different molecules, called antigens. Antigens can be proteins,

polysaccharides, or lipids. Even molecules that are normally unable to elicit antibody

formation in mammals can be made antigenic by coupling with another molecule, called

a hapten. A variety of different antibodies, each able to bind and form a complex with a

specifie antigen, can be produced by a mammal. Since these antibody-forming cells

cannot be propagated in a culture medium and a single reactive antibody molecule is

preferred as a probe, a specific type of antibody-forming cell, a hybridoma, is employed

for both the selection and production of the desired antigen-specific antibody probe

(Harlow and Lane 1988).

The use of chemical analysis of microbial components (Le., lipids,

polysaccharides, proteins, and nucleic acids)--chemotaxonomy--has been increasingly

applied to bacterial taxonomy (Brondz and Olsen, 1986). Analytical Methodologies

utilized included gel electrophoresis, orthogonal-field-gel electrophoresis,
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• spectrophotometry, proton magnetic resonance, high-perfonnance Iiquid

chromatography, gas chromatography, combined gas chromatography-mass spectrometry

and pyrolysis-mass spectrometry techniques. Merz et al. (1988) used

orthogonal-field-altemation gel electrophoresis to establish electrophoretic karyotypes for

strains of Candida albicatis. They detected much greater strain variation than revealed by

existing biotyping techniques, thus expanding the scope of epidemiological studies.

Timmins et al. (1998a) used pyrolysis-mass spectrometry to analyze a group of 29

clinical and reference Candida isolates.

•

•

The development of PFGE (pulsed field gel electrophoresis) techniques has led to

descriptions of electrophoretic karyotypes for several microorganism species (Boekhout

et aL, 1993; Vaughan-Martini and Martini, 1993). PFGE data obtained by various

techniques have revealed that variability in chromosome size among strains of the same

speciesis common and that chromosome POlymorphism can be used for differentiating

and/or identifying industrial microorganisms such as wine yeast (Yamamoto et aL, 1991;

Vezinhet et aL, 1992). To test polymorphism and evaluate electrophoretic karyotypes

more effectively, the PFGE technique is usually combined with DNA-DNA

hybridization. Electrophoretically separated bands are blotted onto membranes and

hybridized by labeled probes (Torok et al. (1992, 1993». The main advantage ofPFGE is

its discriminatory power and relatively simple banding patterns, but long and laborious

DNA isolation procedures and digestion of the samples Mean that results may take from a

few days up to a week to obtain (Maslow et al., 1994; Matushek et al., 1996).
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• Bnmeau and Guinet (1989) applied electrophoretic protein patterns

(polyacrylamide gel electrophoresis (pAGE), with or without sodium dodecyl sulfate

(SDS) technique) for the identification of medically important yeasts and concluded that

the method allowed good species discrimination, but preparation of extracts was time­

consuming. However, Degre et al. (1989) indicated that the drawback of protein

electrophoresis is that it depends on growth conditions. Gas chromatography of cellular

volatile fatty acids requires relatively expensive instrumentation and lengthy preparatory

work. Under standardized cultivation and analytical conditions, however, volatile fatty

acid analysis (VFAA) can be a reliable method for characterization of microorganisms.

(Botha and Kock, 1993).

•

•

Flow cytometry measures physical and chemical characteristics of cells that are

suspended in a liquid and pass singly by one or more optical sensors. It is now in

common use for classifying nonnal and tumor cells, blood cells, and cells from the

reticuloendothelial system; it has been applied by researchers in a wide range of other

fields, including bacteriology, protozoology, microbial ecology, and phannacology. Flow

cytometric techniques have become increasingly important in diagnostic procedures

(Kleine et al. 1990). Bassae and Bjerknes (1985) and Bassoe et al. (1983) described the

use of flow cytometry in measurement of the phagocytosis of bacteria by leukocytes and

proposed that such measurements could prove useful in clinical studies for the assessment

ofcell-mediated immune function ofpatients suffering from the etTects of severe bums or

chronic infections. Flow cytometry was also investigated by Pinder et al. (1990) as a

rapid detection and counting method for bacteria in pure cultures.
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Ail the methods described above have certain advantages and drawbacks. Some

have high sensitivity (e.g., pulsed field gel electrophoresis and PCR) but are time-

consuming and expensive and require trained professionals. Other methods are simpler

but cannat differentiate between microorganisms down to the strain level. There is an

ongoing effort to develop new methods that are sensitive, reliable, rapid and cost-

effective. At present, a number of groups are working on spectroscopy-based methods

including infrared spectroscopy, which will be discussed in the next section.

Table 2.5 Characteristics of some commercially available yeast identification systems
(Adapted from TiBor Deak et aL, uHandbook of Food Spoilage Yeasts", CRC Press,
1996)

Principle System Method No. of No. of Time (h) Accuracy
tests species in required (%)

database for result
Growth API2OC@) Manual 20 42 72 99
based

ATB 32 ID~ Manual/automated 32 63 48 91
AutoMicrobicI!l Automated 30 62 24 83
Microring YTI!l Manual 6 18 48 53

Minitek~ Manual 12 28 72 97
Quantum II~ Automated 20 34 24 82

Uni-Yeast-Tek~ Manual IS 42 48 40
Enzyme MicroScanI!l Manual/automated 27 42 4 85

based
y eastIdent~ Manual 20 42 4 5S
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• 1.3 Basic priDciple and applicadon of FfIR spectrometen

There are two basic types of inftared spectrophotometers, characterlzed by the

manner in which the inftared frequencies are handled. In the tirst type, infrared light is

separated into its individual frequencies by dispersion, using a grating monochromator,

whereas in the second type the infrared frequencies are modulated to produce an

interference pattern. A Fourier transform infrared spectrometer based on the latter

principle provides improved speed and sensitivity and unparalleled wavelength precision

and accuracy relative to a grating spectrometer (Bonnan, S. A. 1983).

The basic components of a FTIR spectrometer are a source, an interferometer, a

detector, and a laser. A computer is required for controlling optical components,

collecting and storing data, performing signal averaging, carrying out the Fourier

• transformations and displaying spectra. The heated source gjves off infrared radiation,

which is deflected off a mirror into the interferometer where the spectral encoding takes

place. The detector is the device which produces an electrical signal in response to the

encoded radiation striking il. The most commonly used detector material in the mid­

infrared is deuterated triglycine sulfate (DTGS). The DTGS detector is known as a

pyroelectric bolometer. The advantages of DTGS detectors are that they are simple,

inexpensive and robuste The vast majority of FTIR spectrometers employ DTGS

detectors. The major drawback of DTGS detectors is that they are less sensitive than

other detectors available. The more sensitive detectors cooled by liquid N2 are the

Mercury cadmium telluride (HgCdTe) or "MCT" detectors. The MCT element consists of

• an alloy of these three elements, and it is a semiconductor. The major advantage of MCT
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• detectors is their sensitivity. They are up to 10-50 times more sensitive than DTGS

detectors. Unfortunately, there is a tradeotT between bandwidth and sensitivity with MeT

detectors. The most sensitive detectors are the narrow band ones, which are usefui from

4000 to 700 cm-l. Wide band MCTs go down to 400 cm-l, but are 5-10 times noisier than

the narrow band MCT detector. In many applications, the wide band MeT represents

ooly a modest improvement in sensitivity over a conventional DTGS detector. Another

advantage of MeT detectors is that they are fast. As a result, one can scan many times

faster than with a DTGS detector, and obtain spectra with high signal-to-noise ratio

(SNR) faster. A drawback to MeT detectors is that they must be cooled. Without this

cooling, heat given off by the detector element itself is detected, giving rise to a large

noise signal.

• The techniques used to acquire and analyze infrared spectra continue to grow.

Attenuated total reflectance (ATR) accessories, using single bounce and multiple

bounces, have been widely used in acquiring IR spectra of biological and chemical

samples (Banwell, 1983). ATR is now used extensively in the study of tissues, microbial

and human cells, and body fluids and in investigations of isolated components such as

proteins and peptides involved in pathologie disorders. ATR-based fiber optic probes

have also been developed and are useful for on-line monitoring of chemical reactions.

More recently, FTIR spectrometers based on photoacoustic measurements (Drapcho et

aL, 1997) have been developed for depth profiling of samples. The combination of

infrared spectrometers with optical microscopes is surely the most significant advance in

• the field of biomedical application of FTIR spectroscopy. Infrared microscopes using
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single detectors or array detectors operating in transmission or reflection are of great

value in the study of cell populations, for example in histological section, because they

allow the focus of the IR beam on specifie areas of interest. The advances of step-scan

instruments have allowed improvements in the time and spatial resolution capabilities of

infrared spectroscopy. For example, step-scanning FTIR photoacoustic spectroscopy has

been used to perform depth profiling studies on polymerie multilayers (Urban et aL,

1998; Jiang, 1998), single particles and fibers (Jiang, 1999), and organic reactions and

catalysts (Frei, 1998). The beam qualities associated with synchrotron light sources also

allow for improvements in spatial resolution beyond the current capabilities using

standard sources. It is the beam attributes of low thermal noise, brightness, low

divergence, and excellent signal-to-noise ratio that make these IR. sources unique. These

attributes malee it possible to perfonn experiments where small aperturing is important or

sample scattering nonnally precludes IR spectroscopy. Synchroton light sources have

been used in studies of inorganic-organic interaction at the bacterial-mineral interface

(Holman et aL, 1998). IR imaging techniques enable mapping of chemical functionality.

The combination of infrared microscopy instrumentation with confocal plane array

detectors produces wbat are known as infrared imaging systems. Spatial chemical

functionality information bas been available through mapping techniques using

motorized translation stages and infrared spectroscopy. The advent of focal-plane array

(FPA) MeT detectors dramatically reduced the analytical tinte. Marcott et al., (1997)

employed an FPAlFTIR imaging system to examine the cross section of a laminated

polymer film and human tissue. The major advantage of this new instrumentation is the

coupling of noninvasive infrared chemical analysis and visualization. The latter is
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• extended beyond the visualization of the infrared image when a CCD camera is added to

the system, allowing the simultaneous visualization of the physical image.

2.4 Inrrared Samplinl Tecbniques

In general, the acquisition of infrared spectra of biological samples can be

problematic. In order to obtain reproducible spectra, sampling conditions have to be

controlled and standardized rigidly. There is no simple and uoiversally applicable

technique to meet these requirements. However, depending on the nature of the sample,

these requirements can be fui filied by using traditional transmission, reflectance,

di ffusion or attenuated total reflection techniques.

•
Transmission Spectroscopy:

The transmission technique is the simplest sampling technique in optical

spectroscopy and is recommended for routine spectral measurements for ail kinds of

samples. In this technique the sample is placed in the light beam of a spectrometer and

the intensity of the incident beam is compared with the intensity transmitted by the

sample. For an incident beam ofintensity 10 the transmitted intensity [ is given by

[= 10 • 10·abc Eq.2.1

where a is the absorptivity, bis the sample thickness, and c is the concentration. Equation

2.1 assumes that there is no loss of intensity due to light scattering or reflection.

In all cases sample thickness must be adjusted. Liquid samples require short

• optical pathlengths (0.025-1 mm), because organic molecules have strong infrared
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absorption. Spacers are used to control the pathlength. Transmission spectral

measurements are more complex for soUd sampies than for Iiquids. A thin film or section

must be obtained from the sample before the spectrum can be acquired. A Brewster'5

angle accessory usually is used to reduce the energy losses due to reflection from the

sample surface and interference fringes. For powdered samples, difTerent particle size and

optical properties can cause the Christiansen effect. The KBr pellet method or minerai oil

(Nujol muIl) method can be good choices, but both of them have the disadvantage of

destroying the sample (Hanick Scientific Corporation ,1987 Optical Spectroscopy:

Sampling Techniques Manual).

internai Reflection Spectroscopy

InternaI reflection spectroscopy, also referred to as attenuated total reflectance

(ATR) or multiple internai reflectance (MIR), was developed in the 1960's (Hanick

Scientific Corporation, 1987 Optical Spectroscopy: Sampling Techniques Manual). ln an

ATR / MIR measurement, the IR beam from the spectrometer is directed onto a prism at

an angle which exceeds the critical angle. As the beam is directed into the crystal at an

angle that exceeds the critical angle, internai reflections take place. When a sample is

placed in optical contact with the prism at the point at which an internai reflection occurs,

the sample absorbs IR energy at wavelengths equivalent to those that would be noted in a

transmission experiment.

It has been proposed that the internai reflection generates an evanescent wave

• which extends beyond the surface of the crystal into a sample heId in contact with the
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• surface. The penetration depth of the electromagnetic wave into the rarer medium is

defined by the wavelength-dependent ratio mlnl of the refractive indices of the denser

(02) and the

Internal
Reflection
Element

Sample

Figure 2.6 Schematic of an Attenuated Total Reflectance accessory

rarer (m) media and by the angle of incidence a and is on the order of a few micrometers

(Figure 2.6). The penetration depth is calculated according the following equation (Eq.

• 2.2):

Eq.2.2

where À is the wavelength of the infrared radiation, nI is the refractive index of the IRE

material, 02 is the refractive index of the sample and a is the angle at which the infrared

radiation strikes the IRE interface (Smith, 1996). A property of this wave, which makes

ATR such a useful technique, is the exponential decay of the intensity of the wave with

the distance from the surface. This makes ATR measurements generally insensitive to

sample thickness. Hence, the technique is readily applied to the analysis of strongly

• absorbing samples.
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Solid samples must be mechanically pressed into contact with the crystal to

achieve optical contact. The intensity of the bands in the ATR spectrum are a function of

optical contact, and the highest degree of reproducibility is achieved when samples are in

intimate optical contact with the ATR crystal; that is, when the contact efficiency

approaches 100%. When liquids are analyzed by the ATR technique, intimate optical

contact is achieved readily. When solids and powders are analyzed, the spectral intensity

will be largely govemed by optical contact.

A comparison of an internai retlection spectrum and a transmission spectrum

reveals the intensities of the bands at high wavenumbers are lower than in an equivalent

transmission spectrum. Most spectrometers otIer an ATR correction, which increases the

intensity of the absorbance by a defined value. This makes it easier to compare the

speetrum with libraries of transmission data.

To date, ATR accessories have been successfully used to acquire the spectra of

many kinds of biologjcal samples: Borel et al., (1993) examined intact living bacterial

eells by ATRIFTIR spectroseopy. They found that typical samples, including both gram­

positive and gram-negative bacteria, can be classified and ditIerentiated by this

technique. Schmitt et al., (1998) studied different FTIR techniques as a means to

investigate microorganisms in biofilms. They reported that the ATR technique could be

used for the observation of biofilms fonning directly on the surface of a germanium ATR

crystal. These crystals can be coated to obtain a surface more relevant to the study of

interfacial processes. Spectra can be acquired nondestructively, in situ and in real time.
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• Suci et al. (1998) reviewed the capabilities of ATRIFTIR spectroscopy to provide

information on both transport of an antimicrobial agent to bacteria embedded in the

biofilm and interactions between an antimicrobial agent and biofilm components. Doak et

al. (1999) used a diamond ATR probe to study Escherichia coli fennentation in situ. The

probe showed excellent stability over a 6-month operating period and was unaffected by

either agitation or aeration.

•

•

2.5 IR bands assignments of cbemlcal constituents in mlcroorganlsms

FTIR spectroscopy provides infonnation not only on the chemical composition of

a given bacterial strain but also on the secondary and even tertiary structures of proteins.

Ali of the infonnation can be obtained from the number, relative intensities and band

contours of the bands in the IR spectra. Since 1926, many groups (Helm et al., 1991;

Naumann et al., 1991a,b, 1998a) have recorded the spectra of microorganisms and

published tentative band assignments. Sorne of the more important assignments are

summarized below.

1. The region between 3000 and 2800 cm-' is dominated by C-H stretching vibrations of

-CH3, >CH2, and ECH and, hence, by the fany acids of the various membrane

amphiphiles. Sorne complementary information can be deduced from the region

between 1500 and 1400 cm-" where the various defonnation modes of the same

functional groups are observed, and bands near 1740 cm-' can be assigned to >C=O

stretching of the ester functional groups.
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• 2. The region between 1700 and 1500 cm-1 is dominated by the so-caIled amide 1 and

amide II bands of proteins, which are the most intense bands in nearly aIl bacterial

spectra 50 far tested. Since the characteristic IR absorptions resulting from the

DNA-RNA base-ring structures are not as intense as the amide 1 and n bands, the

spectral features observed in this spectral domain are almost completely defined by the

protein absorption.

3. In the region between 1500 and 1200 cm-l, complex absorption profiles are observed

between 1300 and 1500 cm-
l

arising predominately from >CH2 and ->CH3 bending

modes of lipids and proteins. A characteristic, but weak feature is often observed near

1400 cm-l, which may be caused by the symmetric stretching vibration of -cao·

(functional groups of amino acid side chains or free fatty acids). Around 1230 cm·\

• superimposed bands typical of different >P=O double bond asymmetric stretching

vibrations of phosphodiester, free phosphate and monoester phosphate functional

groups are observed.

4. The region between 1200 and 1250 cm-
l

is "dominated" by ditTerent >P=O double

bond asymmetric stretching frequencies resulting from the various phosphodiester

functional groups. The band near 1220 cm-
l
is most probably due to the phosphodiester

functional groups of DNA/RNA polysaccharide backbone structures. Other >P=O

double-bond stretching frequencies are due to head group vibrations ofphospholipids or

phospho~ontaining carbohydrates such as "teichoic acids" and "lipoteichoic acids".

•
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• 5. The spectral region between 1200 and -900 cm-
I

is dominated by a complex sequence

of peaks essentially resulting from C-O-C and C-Q-P stretching vibrations of,

predominantly, oligo- and polysaccharidic nature. Selective assignrnents are not yet

available because of the extensive superpositions of the characteristic absorptions of

various polysaccharides. This region, in particular, turned out to be abundantly

endowed with discriminating spectral traits and, thus, represents one of the most

sensitive and selective spectral regions for differentiation of microorganisms down to

the strain and even serotype level.

6. The region between 900 and 600 cm-' exhibits a variety of weak but extremely

characteristic features superimposed on an underlyjng, rather broad contour. With the

exception of ooly a few peaks (e.g., a band near 720 cm-l, resulting from the >CH2

• rockiog modes of the fatty acid chains present in amphiphilic compounds), valid

assignments can hardly be achieved.

2.6 Cbemometric tecbniques employed ln aDalyziDg iDfrared spectra

Chemometrics is the discipline concemed with the application of statistical and

mathematical methods ta chemical data (Massart et aL, 1988; Martens, 1999). A variety

of powerful methods have been applied ta the "unsupervised" and "supervised" analysis

of multivariate data. Cluster analysis (CA), principal component analysis (pCA), factor

analysis (FA), discriminant analysis (DA), partial-least-squares regression (PLS) and

artificial neural networks (ANNs) are most widely used in infrared spectroscopy for

• quantitative analysis and sample identification.
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• Based on Fisher's method and incorporated two important validation stages: (1)

full leave-one-observation-out cross-validation and (2) randomized permutation

distribution testing. Jonathan et al. (1996) developed a computationally efficient approach

to perform two-group linear discriminant analysis. The resulting algorithm and software

are known as CREDIT (cross-validated random-permutation-tested efficient

discrimination based on an adjusted generalized inverse for the sample total covariance

matrix). Li et al. (1999) used a real genetic algorithm to develop a high-breakdown

method for tinear discriminant analysis (LDA). Their algorithm is capable of locating the

global optimal solution with high probability and acceptable computational burden.

Kemsley (1996) compared partial least squares (PLS) and principal component analysis

(PCA) in terms of their data compression ability. He found that PLS had considerably

• better class separation and discriminant ability. In general, few compressed dimensions

are required to give the same level of prediction successes as the full spectrum, and for

some data sets, PLS methods yield higher prediction success rates than those obtainable

using PCA scores. Wentzell et al. (1997) established a new PCA algorithm: maximum

likelihood principal component analysis (MLPCA). The theoretical foundations of

MLPCA were initially established using a regression mode1 and extended to the

framework of PCA and singular value decomposition (SVD). Generalization of the

algorithm allows its adaptation to cases of correlated errors provided that the error

covariance matrix is known. Models with intercept terms can also be accommodated.

• Several groups offered new PLS algorithms. Cummïns and Andrews (1995)

introduced iteratively reweighted PLS as a robust method for calibration and
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• demonstrated its resistance to the effects of outliers with a Monte Carlo study. Zhu and

Barnes (1995) reported an iterative version of PLS algorithm that was faster and less

memory intensive tban PLS implemented with the nonlinear iterative partial least squares

(NIPALS) algorithm. Gil and Romera (1998) reported the development of a robust and

more efficient PLS algorithm. He stabilized the covariance matrix using the well-known

Stahel-Donoho estimator. The prediction error in PLS can be minimized through

judicious wavelength selection. Heise and Bitter (1997) demonstrated that multiple linear

regression analysis could perform as weil as PLS when improved variable selection

procedures were used. Spiegelman et aL, (1998) developed a theoretical justification for

wavelength selection in PLS. Stork and Kowalski (1999) demonstrated the utility of

sample weighting for lowering prediction error. Schemes that employ leverage-based

criterion for selecting weights and new calibration samples have been described. Thus,

• fewer samples describing a new source of variation will be needed to update a model.

Achievement of a satisfactory calibration mode1 is usually not the final step in the

practical application of PLS or any other multivariate calibration method. Once a

calibration model is developed, it must be transferred to other instruments, so the

calibration can be used at the point of application. Hoffinann and Zanier-Szydlowski

(1999) used a Shenk-Westerhaus correction to take into account changes in sample

temperature and the field of view of the instrument for PLS models to predict various

properties of hydro-treated gas oils. Brown and Wentzell (1998) used a different

approach to standardize multivariate calibration models for Dear-IR FTIR spectrometers

equipped with tiber-optic probes. Calibration transfer across instruments and probes was

•
30



•

•

•

studied by employing calibration models built on one instrument to predict properties

from spectra measured on the other.

The goal of pattern recognition is classification. Developing a classifier trom

spectral data May be desirable for any number of reasons, including strain identification,

presence or absence of disease in an animal or persan from which the sample was taken,

and food quality testing. During the past several years, sorne new classification methods

were rePQrted in the Iiterature. Smit et al. (1993) notOO tbat drift, which may cause neural

networks to misclassify objects when the class clusters lie relatively close to each other,

cao be corrected using the amount of drift as an extra input variable in the neural

network. Radomski et al. (1994) showed that feOO-forward neural networks could

unambiguously recognize spectra at a signal-to-noise ratio significantly below that

needed for by-eye interpretation. Meyer et al. (1993) showed that network architecture

could be minimized without a concomitant reduction in prediction perfonnance wben the

principal component scores of the training and prediction set spectra are input elements

for the network. Li and van Espen (1994) observed that neural nets performed better than

conventional methods for classification of spectra when network parameters are

optimized, e.g., scaling and leaming mode, range of the initial weights, and transfer

function. Li et al., (1999) developed a robust linear discriminant analysis routine, whicb

bas a high breakdown value for outliers. Lavine et al., (1998) developed a genetic

algorithm (GA) for pattern recognition analysis of spectroscopie data. The GA selects

features that optimize the separation of the classes in a plot of the two largest principal

components (PCs) of the data.
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2.6.1 Hietarehical Clustering

Hierarchical clusterlng is a widely used algorithm for classification. Its aim is the

fusion ofN data points into groups. Given a set ofN items to be clustered, and an N x N

distance (or similarity) matrix, the basic process of Johnson's (1967) hierarchical

clustering is: 1, Start by assigning each item to its own cluster, 50 that if you have N

items, you now have N clusters, each containing just one item. Let the distances

(similarities) between the clusters equal the distances (similarities) between the items

they contain. 2, Find the closest (most similar) pair of clusters and merge them into a

single cluster, so that now you have one less cluster. 3, Compute distances (similarities)

between the new cluster and each of the old clusters. 4, Repeat steps 2 and 3 until ail

items are clustered into a single cluster of size N. As to the definition of the distance,

there are Many methods available; in the definitions below, Xij is the value of variable j

for object i.

Euclidean: The distance between objects i and k is defmed as

Eq.2.3

Pearson: The distance between objects i and k is defined as

Eq.2.4

Sj = the standard derivation of variable j
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• 2.6.2 Discriminant analysis

Another powerful clustering method is discriminant analysis. It is a parametric

method that models each class of samples by its centroid and covariance matrix and

assigns each object to the closest classa Different discriminant analysis methods are

available, such as nearest means classification (NMC), linear discriminant analysis

(LDA), which assumes the same covariance structure in each class, quadratic

discriminant analysis (QDA), and regularized discriminant analysis (RDA). The methods

differ in the technique that is used to calculate the object-class distances, i.e., under what

assumption the class covariance matrices are calculated. The Mahalanobis distance is a

measure of the distance of a sample from the Mean of a set of standards, represented by

the following equation:

• Eq.2.S

where S is an estimate of the common covariance matrix, Cg is an estimate of the centroid

for class g, and X is an objecta

2.6.3 Principal component analysis

Principal component analysis (PCA) is an extremely useful method for data

compression and infonnation extraction. PCA finds combinations of variables, or factors,

that describe major trends in the data. Mathematically, PCA relies upon an eigenvector

decomposition of the covariance or correlation matrix of the process variables. For a

• given data matrix X \vith m rows and n columns, with each variable being a column and
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• each sample a row, the covariance matrix ofX is defined as

xTx
cov(X)=-­

m-l
Eq.2.6

provided that the columns of X have been "mean centered," Le. adjusted to have a zero

mean by subtracting the original mean of each column. If the columns of X have been

autoscaled, i.e. adjusted to zero Mean and unit variance by dividing each column by its

standard deviation, the equation above gives the correlation matrix of X. (Unless

otherwise noted, it is assumed that data is either Mean centered or autoscaled prior to

analysis.) PCA decomposes the data matrix X as the sum of the outer product ofvectors ti

and pi plus a residual matrix E:

T T TX = t,P , + t]p 2 + ... + t1cP k + E Eq.2.7

• Here k must be less than or equal to the smaller dimension of X, i.e. k<=5 min(m,n). The

ti vectors are known as score and contain infonnation on how the samples relate to each

other. The pl vectors eigenvectors of the covariance matrix, i.e. for each pi

COV(X)pi = Âi Pi Eq.2.8

where AI is the eigenvalue associated with the eigenvector pi. In PCA the pl are known as

loadings and contain infonnation on how the variables relate to each other. The II fonn an

orthogonal set (ti
T

tj = 0 for i~j), while the pi are orthonormal (PiT pi = 0 for i ~i, PiTpj=I

for i =j). Note that for X and any ti , pi pair

XPi=ti Eq.2.9

•
i.e. the score vector ti is the linear combination of the original X data defined by pi.

(Another way to look at this is that the ti are the projections of X onto the pi.) The ti , pi

pairs are arranged in descending order according to the associated Ai The Ài are a measure

34



• of the amount of variance described by the li , pi pair. In this context, we can think of

variance as information. Because the li, pi pairs are in descending order of li. the tirst pair

captures the largest amount of information of any pair in the decomposition. In fact, it

can be shown that the ti, pi pair captures the greatest amount of variation in the data that it

is possible to capture with a linear factor, and each subsequent pair captures the greatest

possible amount ofvariance remaining after subtracting tipTi from X.

•

•

General1y, it is found (and it is usually the objective) that the data can be

adequately described using far fewer factors than original variables. Thus, the data

overload often experienced can be solved by observing fewer scores (weighted sums of

the original variables) than original variables, with no significant loss of infonnation. It is

also often found that PCA tums up combinations of variables that are useful descriptions,

or even predictors, of particular events or phenomena. These combinations of variables

are often more robust indicators of laboratory sample or process conditions than

individual variables due to the signal averaging aspects ofPCA.
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2.6.4 Artificial neural network

Inspired by the structure of the brain, a neural network consists of a set ofhighly

1• l 'fi 1 x 1 SlII'lmlllon

V • 1(1) Tl'lnaler

Processing
Benn

Figure 2.7 A typical single unit in an Artificial Neural Network (ANN).

interconnected entities, called nodes or units. Each unit is designed to mimic its

biological counterpan, the neurone Each accepts a weighted set of inputs and responds

with an output. Figure 2.7 presents a picture ofone unit in a neural network.

Let X = (Xl, Xl, ..., Xn), where the Xi (ls i Sn) are real numbers, represent the set

of inputs presented to the unit U. Each input has an associated weight that represents the

strength of that particular connection. Let W = (WI,W2,..., Wn), with Wi (IS i S n) real,

represent the weight vector corresponding to the input vector X. Arplied to U, these

• weighted inputs produce a net sum at U given by

S =SUM(Wi*Xi) =W.V. Eq.2.10
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• Learning rules will allow the weights to be modified dynamically. The state of a unit U is

represented by a numerical value A, the activation value of U. An activation function 1

determines the new activation value of a unit from the net sum to the unit and the curreot

activation value. In the simplest case,1 is a function ofonly the net sum, 50 A =I(S). The

following are sorne other transfer functions that are often used. Figure 2.8 shows the plot

offunction j=l/(l+Exp[-sum], it can be round that when sum=O, flsum)=O.5:

logistic -- f(x)=l/(l +exp(-x» Eq.2.11

linear -- f(x)=x Eq.2.12

tanh -- f(x)=tanh(x) Eq.2.13

tanh15 -- tanh(l.5x) Eq.2.14

sine -- sin(x) Eq.2.15

symmetric_logistic -- 2/(I+exp(-x»-1 Eq.2.16• Gaussian -- exp(-xI\2) Eq.2.17

Gaussian-complement -- 1 - exp(-xI\2) Eq.2.18

!raaster tUDCtion •
l/(l+Ezp(-.. J)

---..-::;,-~-----IDput yal._
-1 -0.5 0.5

Figure 2.8 The plot ofa typical transfer function (f=l/(I+Exp[-sum] ) used in Artificial

Neural Network

•
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• A neural networle is composed of such units and weighted unidirectional connections

between them. In some neural nets, the number of units May be in the thousands. The

Figure 2.9 An example of an artificial neural network architecture

output of one unit typically becomes an input for another. There May also be units with

• extemal inputs and/or outputs. Figure 2.9 shows one example of a possible neural

network structure.

Once a network has been structured for a particular application, that network is

ready to be trained. To start this process the initial weights are chosen randomly. Then,

the training, or leaming, begins. There are two approaches to training - supervised and

unsupervised. Supervised training involves a mechanism of providing the network with

the desired output either by manually "gradinglt the network's perfonnance or by

providing the desired outputs with the inputs. Unsupervised training is where the network

has to make sense of the inputs without outside help.

•
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• In supervised training, both the inputs and the outputs are provided. The network

then processes the inputs and compares its resulting outputs against the desired outputs.

Errors are then propagated back through the system, causing the system to adjust the

weights which control the network. This process occurs over and over as the weights are

continually tweaked. The set of data which enables the training is called the "training

set." During the training of a network, the same set ofdata is processed many times as the

connection weights are ever refined.

Another important part is the rules of training. There are many algorithms used to

implement the adaptive feedback required to adjust the weights during training. The most

common technique is backward-error propagation, more commonly known as back­

propagation.

•
When finally the system has been correctly trained, and no further learning is

needed, the weights can be "frozen." This trained system is then tested with unknown

sample data.

•

2.7 Classification of microorgaDism by FrIR spectroseopy

The differences in the biochemical composition of microorganism account for

their diversity. Because infrared spectroscopy provides detailed information on

biochemical composition, it can potentially serve as a valuable taol for the classification

of microorganisms. The study of microorganism classification by infrared

spectrophotometry arose almost half a century aga (Thomas and Greenstreet, 1954). The
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•

• constraints associated with the use of dispersive instruments and the unavailability of

computers caused interest in this approach to vanish by the mid-1960s. However, the

subsequent development of FTIR spectroscopy and of powerful classification algorithms

that can be performed on personal computers resulted in renewed interest in this research.

The advantages associated with FTIR spectroscopy have allowed detailed studies

of the potential of infrared spectroscopy as a means of microorganism classification.

HelIn et al. (1988) discriminated enteropathogenic Escherichia coli isolates by applyjng

FTIR spectroscopy. This particular grouping was achieved by using IR bands in the

region between 900-1200 cm-
1

where the O-specific side chains of Iipopolysaccharides

are the predominant spectral features. Hedrick et al. (1991) used diffuse reflectance

speCtrOScoPY of lipid eXtraets to distinguish between eubacteria and archaebacteria, the

two main groups of bacteria. Within eubacteria, ditTerentiation between gram-positive

and gram-negative strains was performed on the basis of whole-cell spectroscopy

(Naumann et aL, 1988, 1991a). This ditTerentiation is based on the faet that gram­

negative bacteria have an outer membrane, which leads to distinct spectral ditTerences

between gram-negative and gram-positive bacteria in the spectral region between 2800

and 3000 cm-
1

(fany acid region) and less significant ditTerences between 1600 and 1700

cm-
I

(protein region). FTIR spectroscopie classification of bacteria agreed weil with

conventional grouping schemes and gave sorne valuable complementary results. Good

classifications were obtained for different genera (e.g., Staphylococcus, Clostridium,

Streptococeus, and Legionella) (Helm et aL, 1991). Classification studies on oral

• streptococci also produced good results (Van der Mei et al., 1993).
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• There are Many exciting developments in the mathematical discrimination

techniques employed for the classification of microorganisms. Lipkus and colleagues

(1990) investigated the reproducibility of the infrared spectra of microorganisms and its

implications for microorganism identification. They reported that in an attempt to use the

spectral infonnation in the region 1190-980 cm-
1

to build an identification system based

on a spectral library searchy successful identification was obtained for cells grown in one

batch. To obtain a quantitative basis for identification, classification, or differentiationy

Naumann (1991b) suggested the use of the spectral distance or UD" value as an index.

The spectral distance (D) can be considered as a measure of the difference between two

IR spectra. The D value is defined by the equation: D=(1-«)*}000, where a is Pearson's

correlation coefficient. In order to obtain a classification that can be correlated with

conventional taxonomy, Helm et al. (1991) resorted to systematically varying the spectral

treatment parameters and selecting spectral windows prior to perfonning cluster analysis

with the measurements of correlation calculated between those treated spectra. The

results of classification ofbacteria from their FTIR. spectra showed that even when grown

on different medi~ a strain of bacteria could be classified in one cluster with a 96.8%

similarity level. Van der Mei and colleages (1993) classified 40 Slreptococca/ species by

cluster analysis employing the first derivative of the infrared spectra and selected regions.

Holt et al. (1995) were the first to use PCA to study microorganism classification; since

their work, the number of publications in this field has multiplied dramatically and they

are mostly focused on the development of mathematical techniques for the treatment of

• the spectral information. Tinunins et al. (1998b) applied PCA and discriminant function
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• analysis to ditTerentiate 22 brewing yeast strains. Goodacre et al. (1996b) and Timmins et

al. (1998a) reported that artificial neural networks have good discriminating capabilities.

Schmitt et al. (1998) evaluated six ditTerent neural network architectures with respect to

their capability to build spectral Iibraries for different bacteria and yeasts. After

developing these libraries, the networks were cOMected to a large library. These

"multilayered neural networks" allowed for an optimal differentiation based on specifie

strains. Alsberg et al. (1998) studied Eubacterium species by FTIR spectroscopy. To

identify important wavenumber regions for the classification of the bacterial isolates, they

investigated three role induction methods and various spectral preprocessing regimes.

They round that the FuRES (fuzzy multivariate mie-building expert system) method was

•

•

superior in tenns of prediction, whereas the mies proposed by the univariate CART

method (Classification and Regression Trees) were easier to interpret in tenns of which

wavenumbers in the IR spectra were important for baeterial dass separation. Scaling and

nonnalization of FTIR spectra as preprocessing steps were necessary to obtain optimal

classification models. McNaughton et al., (1999) applied the multivariate statistical

techniques of PCA, soft independent modeling by class analogy (SIMCA), K-Nearest

Neighbors (KNN), and artiflcial neural networks (ANN) to IR spectra of several

cyanobacterial species and suceessfully classified the bacteria. Employing the first­

derivative IR spectra of bacteria as input resulted in reduction of baseline variability and

minimized intra-class variation.

Sockalingum et al. (1998) used the ATR sample-handling technique to obtain

FTIR spectra of bacteria and demonstrated that ATR/FTIR spectroscopy cao
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• discriminate and c1assify bacterial strains. The combination of infrared spectrometers and

optical microscopes is probably the most significant advance in the field of

microorganism classification. Naumann et al. (1998b) studied the use of FTIR

microscopy to characterize microorganisms. Dubois (1999) collected the spectra of

bacteria deposited on a polyethylene substrate and reported satisfactory results employing

cluster analysis and ANN algorithm for bacteria differentiation.

The fundamental work canied out to date on the potential application of infrared

spectroscopy has provided valuable infonnation about the limitations and critical factors

that must be considered prior to the final elaboration of an automated identification

system based on FTIR spectroscopy. However, widespread application of FTIR

spectroscopy for the characterization of microorganisms will likely occur only if a

• reliable, stable and automated method is available. The work described in this thesis will

focus on the potential utility of an automated sampling system in combination with

controlled growth condition and the use of numerical analysis for the classification of

yeast strains based on their FTIR spectra. The potential use of FTIR spectroscopy to

classify yeast in tenns oftheir function and sensitivity will also be undertaken.

•
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• Cbapter3

Classification and Identification ofYeasts by Combined Use of

Infrared Spectroscopy and Chemometric Techniques

•

•

3.1 Introduction

Yeasts are heterotrophic, lack chlorophyll, and have a wide array of natural

habitats. They have not only provided us with fennented food products such as wine,

bread, and yogurt but are also resPOnsible for food sPOilage, and some species are of

health concerne Therefore, yeast identification is of practical importance. To fulfill this

task, Many different methods have been developed. Conventional yeast differentiation

systems use morphological characteristics as weil as patterns of assimilation and

fermentation of carbon sources. These methods are tedious and time..consuming, and

their capacity is limited since Many spccies are distinguished from one another by a

single physiological reaction controlled by only one mutable Marker. New techniques

5uch as fatty acid analysi5, electrophoretic karyotyping, restriction fragment length poly..

morphism, DNA fingerprinting, restriction enzyme analysis of PCR..amplified rDNA,

randomly amplified polymorphic DNA, and nucleic acid hybridization with

oligonucleotide probes have also been used for this purpose (Oison, 1995). While sorne

of these techniques do provide satisfactory results, molecular methods in general are still
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• difficult to perform on a routine basis in laboratories of the food industry.

For routine purposes, the ideal method for yeast characterization would require

minimal sample preparation, wouId analyze samples directly (i.e. would not require

reagents), and would be rapid; automated and (at least relatively) inexpensive. With

recent developments in analytical instrumentation, these requirements are being fulfilled

by spectroscopie methods. One of the most commonly investigated methods is Fourier

transfonn infrared (FTIR) spectroscopy (BelIn et aL, 1991; Naumann et aL, 1991a, b).

•

•

FTIR spectroscopy measures dominantly vibrations of functional groups and

highly polar bonds. Thus, IR 'fingerprints' are made up of the vibrational features of all

the chemical compounds in the sample. For microbial samples, these will include

DNAlRNA, proteins, and membrane and cell-wall components. The interpretation of the

spectra of microorganisms has conventionally been done by the application of

'unsupervised' pattern recognition methods such as hierarchical cluster analysis (HeA).

With 'unsupervised leaming' the algorithms seek 'clusters' among the spectral data,

which allows the investigator to group objects on the basis of their perceived similarity.

More recently, more powerful supervised methods have been employed to analyze the

spectral data (Goodacre et al., 1996 a, b).

Within microbiology, FTIR spectroscopy has been shown to allow the

chemically-based discrimination of intact microbial cells, without their destruction, and

produces complex biochemical fingerprints which are reproducible and distinct for
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• difTerent bacteria. In particular Helm et al., (1991) and Naumann et al., (1991a,b) have

shown that FTIR spectroscopy (in the mid-IR. range of 4000-400 cm-I) provides a

powerful tool with sufficient resolving power to-distinguish microbes at the strain level.

The aims of this study are to difTerentiate S6 yeast strains based on their FTIR

spectra and investigate the difTerentiation perfonnance of difTerent chemometric

techniques.

•

•

3.2 Materials and Metbods

Fifty-six yeast strains representing 20 species of 7 genera were obtained from

Lallemand Inc. (Montreal, Canada). Ali the strain codes and related information cao he

found in Appendix 1. Ali strains were stored at -4SoC.

3.2.1 Growth Conditions and Sample Preparation

To recover possible injured ceUs, strains were thawed on Universai Growth

Medium (Quelab Laboratories, Montreal) and incubated al 37±2°C for 24±1 hours twice

to ensure the acquisition ofpure cultures. Subsequently, a sample of the culture was taken

with a platinum loop (3-mm-diameter platinum loop) and reinoculated on Universal

Growth Medium (Quelab Laboratories, Montreal). This time the Universal medium was

used to standardize the contribution of the growth mediUDl to the yeast infrared spectra.

After incubation at 37±2°C for 24±1 hours, a sample of a confluent colony was carefully

taken with a calibrated sterile platinum loop (3mm-diameter platinum loop) in the third

quadrant of the growth media surface and dePQsited into 100 JlI of distilled water. The

yeast suspension was centrifuged at 6000 RPM for 2 minutes, the supematant was
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• decanted and the pelleted yeast was resuspended in 100 JoLI of distilled water. This process

was repeated twice to remove any remaining metabolic by-products. A 30-JoLI aliquot of

the resuspended yeast ceU was deposited onto a ZnSe window of an autosampler wheel

containing eight ZnSe windows, and the wheel was dried at 37±2°C for 2 hours to yield

transparent yeast films suitable for transmission FTIR measurements. The films were

kept in constant humidity prior to recording of the infrared spectra of the yeast films.

3.2.2 Spectral Acquisition

•

•

AU the infrared spectra were recorded between 4000 and 400 cm-' employing a

Michelson FTIR spectrometer (ABB Bomem, Inc.). The spectrometer was purged with

pure N2. Spectra were acquired by coadding 32 scans at a resolution of 4 cm-1
• The

sample wheel was controlled by Bacteria ID1.0 software (runniDg under Win98, obtained

from Quelab Inc., Montreal, Canada). Ali samples were run in triplicate. A typical yeast

FTIR spectrum is shown in Figure 3.1.

3.2.3 Preprocessing

To minimize problems arising from baseline shifts and difTerences in film

thickness and to enhance the resolution of superimposed bands, the following procedures

were perfonned: 1) ail spectra were baseline corrected from 4000 to 400 cm-'; 2) all

spectra were then normalized so that the highest absorbance was set to 1; 3) second
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• derivatives of aU the spectra were calculated; 4) the second derivative spectra were

smoothed with a 9-point smoothing fonction (Savitzky and Golay, 1964).

•
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Figure 3.1 A typical FTIR spectrum of a Saccharomyces italicus strain (strain 6074)
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3.3 Spectral ADalysis by Cbemometrlcs

The possibility of identifying yeasts based on their FTIR spectra was evaluated

using cluster analysis, principal component analysis (PCA), discriminant analysis and

artificial neural network methods. The hierarchical clustering employed centroid linkage

and measurement of the squared Eulidean distance between the points to provide an

unsupervised grouping, while the discriminant analysis employed Mahalanobis distance

for supervised classification. PCA was performed according to the nonlinear iterative

partial least squares (NIPALS) algorithm (Wold, 1966). Ali these three algorithms were

part of the SCAN software (Minitab Inc,. State College, PA).

The artificial neural network (ANN) analysis was carried out by NeuroShell

software (Ward Systems Inc., Frederick, MD). The ANN employed consists of three

layers. The tirst layer has two options: 1) the entire spectra and 2) the first 10 PC values.

The second layer is the hidden layer and the last layer is the binary-coded output layer

(for yeast classification, the output layer was encoded as follows: Saccharomyces

cerevisiae was coded as 1000, Saccharomyces chevalieri was coded as 0100,

Saccharomyces capensis was coded as 0010, Saccharomyces italicus was coded as 0001;

for classification of yeasts according to the type of fermentation process in which they are

employed, the output layer was encoded as follows: wine was coded as 100, beer was

coded as 010, bread was coded as 001; for yeast classification in tenns of their sensitivity

kiUer yeast strains, the output layer was encoded as follows: sensitive was coded as 100,

possess was coded as 010, neutral was coded as 001.
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•

The optimization of the ANN employed the following procedures: 1)

Standardization of the input variables: standardizing the inputs can make training faster

and reduce the chances of getting stuck in local optima. Standardizing inputs removes the

problem of scale dependence on the initial weights. In particular, scaling the inputs to

[-1,1] will work better than [0,1], although any scaling that sets to zero the mean or

Median or other measure of central tendency is likely to be as good (Iglewicz, 1983); 2)

in standard backpropagation, too low a leaming rate makes the network leam very

slowly. Too high a leaming rate makes the weights and objective function diverge, 50

there is no leaming at aU. Trying to train an ANN using a constant leaming rate is usually

a tedious process requiring too much trial and error. Here, batch training was selected

since it does not requite a constant learning rate. (Fahlman 1989; Riedmiller and Braun

1993); 3) Activation functions for the hidden units are needed to introduce nonlinearity

into the network. Neural networks can be made more powerful by adding the hidden units

than just plain perceptions (which do not have any hidden units, just input and output

units). Functions such as tanh that produce both positive and negative values tend to yield

faster training than functions that produce only positive values such as logjstic, because

of better numerical conditioning (Jordan, 1995). The tanh function was chosen to be the

activation function for hidden units. For the output units, the binary (0/1) outputs were

selected (Jordan, 1995).

The network was presented with input and corresponding outputs and was trained

by adjusting the connections between input, hidden and output layers; training was

stopped after 40 generations without improvement greater than 0.5% in the external test

so



• set, which was randomly extracted from the input matrix. After training, the relationship

ofail the yeast spectra was encoded in the weights.

Library search routines were employed to assess spectral reproducibility. Library

search routines compare the unknown sample spectrum with each reference spectrum in

the selected libraries and find the spectra that most closely match the unknown. Most

library search algorithms involve a POint-by-point evaluation with an overall closeness of

match being determined by sorne form ofsimilarity metric. The match value is between 0

and 100 and indicates how well the Iibrary spectrum matches the unknown. A match

value of 100 indicates a perfect match. The closer the value is to 100, the better is the

match. To evaluate the spectral reproducibility, one of the three preprocessed spectra for

each yeast strain was stored in a spectral library as a standard spectrum, and the other two

• were compared to it by the application of spectral library search algorithms.

3.4 Results and Discussions

3.4.1 Spectral Reproducibility

A major issue in the differentiation or identification of yeasts by FTIR

spectroscopy is the spectral reproducibility; that is, difTerentiation and identification can

only be achieved if reproducible spectra can he recorded for each yeast strain. FTIR

spectra of yeasts are influenced by many factors, such as the composition of the growth

medium, growth temperature, incubation tinte, the washing method and drying method.

For a high level of reproducibility it was necessary to develop a standardized sample

• preparation procedure as described above.
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Sînce different kinds of yeast cells have relatively sunHar biochemical

composition, it is obvious that all the yeast spectra showed fairly similar patterns (Figure

3.2). Thus, it is very important that the spectral variability introduced by growth and

sample preparation conditions be minimized to allow the subtle inherent differences

between the spectra of different yeast strains to be detected. In this study a single growth

medium was employed to reduce the sources of spectral variability, and the temperature

and incubation time were kept constant for ail strains. The sample preparation protocol

was also standardized.

The easiest way to check spectral reproducibility is to overlay replicate spectra

and check ifthey are completely superimposed (Figure 3.3). Kenner et al. (1958) reported

that changes in the region 1200-830 cm-' region (related to the polysaccharide content in

the microorganisms) were correlated to temperature variations. Naumann (1991b)

reported that the bands at 2960, 2922, 2873 and 2852 cm-' (corresponding to the

symmetric and asymmetric vibrations of methyl and Methylene groups, in the membrane

phospholipids) exhibited variations with temperature owing to phase transitions. The

replicate spectra in Figure 3.3 exhibit sorne band shifts in these regions; however,

because they are less than 0.1 cm-', the ditTerences due to temperature variations will not

significantly affect the discriminate ability of IR spectroscopy.

From the statistical point of view, the reproducibility of the FTIR spectra cao be

evaluated by calculating their spectral average, standard deviation and range. The spectral
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• software Omnic (Nicolet Inc., Madison, WI) was employed ta calculate the arithmetic

mean of the absorbance values at each wavenumber, the standard deviation of the

absorbance values for each data point; and the range of absorbance for each data point

(the lowest absorbance value for a data point is subtracted from the highest absorbance

value for that point}. Figures 3.4, 3.5, and 3.6 show the results of these calculations for

strain 6071 (a strain from Saccharomyces italicus); in the region of 1800-800 cm-' the

variance is <0.004 and the range is < 0.008.

A library search algorithm was employed to investigate the reproducibility of

yeast spectra. Table 3.1 lists the average percent similarity for ail the spectra recorded

from Sacharomyces cerevisiae employed. In the region of 1800-800 cm-', the average

percent similarity is >95.

• The Pearson correlation coefficient was also employed to evaluate the spectral

reproducibility. The value of the coefficient (Eq.3.1) typically ranges from -1, indicating

a perfect negative correlation, to +1, indicating a perfeet positive correlation with a

coefficient ofzero indicating absence ofcorrelation between the variables.

Eq.3.1

•
In equation 3.1, Xki and xkj are variables, and Xi bar and Xj bar are the means for variable

Xki and xkj respectively. The correlation coefficients are calculated pairwise to evaluate

the similarities between two individual speetra. In the region of 1800-800 cm-l, the

average correlation coefficient values for each strain are >0.92.
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Figure 3.4 Absorbance variability in the FTIR spectra of strain 6071 recorded from three
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The variance of spectra of strain 6071 recorded from three different batches
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Figure 3.6 The average ofspectra ofstrain 6071 recorded from three different batches
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• Table 3.1 The average percent similarity between the inftared spectrum of a yeast strain

from Saccharomyces cerevisiae compared to the infrared spectra of the same strain in a

spectral database recorded from different batches (spectral region: 1800-800 cm-Il

•

Strain number Average percent similarity
6050 99.05
6467 99.03
6400 97.38
6287 95.98
6649 99.02
6648 98.45
6348 95.80
6032 96.13
6014 97.53
6061 95.47
6562 97.80
6058 95.24
6060 98.57
6163 95.98
6412 95.80
6422 97.10
6101 96.24
6059 98.69
6301 96.01
6100 97.63
6652 98.01

3.4.2 Identification ofYeast Strains in Tenns ofTheir Taxonomie Characteristics

by FTIR Spectroscopy

3.4.2.1 Unsupervised Analysis

As exemplitied by the typical yeast inftared spectra shown in Figure 3.2, a11 the

infrared spectra of yeast strains showed complex and broad contours, and there was very

little qualitative difference between them that can he discerned easily. Accordingly, it

was appropriate to consider the use of multivariate analysis to extract the differences

between the IR spectra ofditTerent yeast strains. Multivariate pattern recognition methods

• are divided ioto 'unsupervised' and 'supervised' categories. The fonner, such as
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• Hierarchical Clustering or Fuzzy Clustering, classify spectra based upon the degree of

their overaU similarity and require no training. The latter, such as the use of artificial

neural networks, train the classifier based on the obtained class identities and then use it

to predict the class identity of unknown samples (Helm et al., 1991; Naumann, 1998a, b;

Goodacre, 1998c).

Among modern yeast identification techniques, DNA fingerprinting is one of the

most important ones. Il uses the unique profiles of the DNA of known yeast strains to

identify the unknown yeast strains. Accordingly, identification of yeasts by using regions

of their IR spectra in which absorptions due to DNA are observed was considered. The

most useful IR region employed in the study of DNA is the region between 1080 and

1240 cm-' , in which bands arising frorn the stretching vibrations of phosphodiester

• groups are observed. This region of the spectnun is very informative, as it is dominated

by absorptions from both polysaccharides and triacylglycerols, in addition to the

contribution of cellular DNA. The classification results for the 56 yeast strains from their

infrared spectra in the region between 1080 and 1240 cm-
t

are shown in Figure 3.7, while

the results of classification employing the broader region of 1800-800 cm·
1

are shown in

Figure 3.8. Although sorne improvement was achieved by employing the DNA spectral

region, the overall classification accuracy is not adequate. It is not surprising given the

fact that there are 50 rnany chemical components in the yeast cell, sorne composition

other than DNA or RNA May also contribute some absorption in the region of 1080-1240

-1
cm ,which makes the DNA or RNA signal weak, and lead to the misclassification.

•
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• One way to solve this problem is to use weighting factors to amplify the

contribution of a weak signal to he used in the classification. Selected regions combined

with proper weighting factors May provide better classification results. These problems

have been highlighted in a number of studies, which have attempted to classify

microorganisms based on their inftared spectra (Helm et al., 1991; Naumann et aL,

-1 -1
1991b; Kummerle et al., 1998). Three regions (3030-2830 cm , 1350-1200 cm , and

900-700 cm-I
; all weighting factors were 1) were selected to carry out the classification

(Kummerle et al., 1998). In addition, three sets of spectral data were employed to

evaluate the utility of derivatization as a means of resolving overlapping bands: 1)

spectral data obtained after baseline correction and normalization of the selected spectral

region without derivatization, 2) spectral data obtained after baseline correction,

nonnalization, computation of the 1st derivative and smoothing of the selected spectral

• region, 3) spectral data obtained after baseline correction, normalization, computation 0 f

the 2
nd

derivative and smoothing of the selected spectral region.

A centroid linkage and squared Euclidean distance was employed in this

unsupervised cluster analysis. In centroid linkage each cluster is represented by its

centroid; the distance between two clusters is the distance between their centroids. This

method does not distort the cluster space. Figures 3.9,3.10 and 3.11 show dendrograms

obtained with the three spectral preprocessing techniques described above. It can he

•
observed that better results were obtained after derivatization of the spectral data and that

the results from the 2
nd

derivative spectral data were better than those from the 1st

derivative data. Because derivatization makes the absorption bands sharper, it increases

S9



.• the discriminate ability of the clustering a1gorithm, dramatically increases the difference

between spectra of ditTerent strains and gives more multidimensional space to find the

subtle ditTerences between the spectra of different strains. Derivatization can also

partially reduce baseline variation. Overall, derivatization can improve the extraction of

the classification infonnation inherent in the spectra of yeast. Compared to the 1st

derivative, the 2
nd

derivative has a more refined band contour and contains more bands,

and that is why it yields more promising results (Figure 3.12).

Principal component analysis (PCA) is a well-known technique for reducing the

dimensionality of multivariate data while preserving most of the variance. To reduce the

number of variables and to detect relationships between variables, principal component

analysis according to the NIPALS algorithm (Wold, 1966) was performed on the

• preprocessed data (spectral data obtained after baseline correction, nonnalization and

computation of the 2
nd

derivative in the 1800-800 cm-· region), Figure 3.13 shows a plot

of eigenvalues against principal component number. Il is clear that most of the variation

lies in the tirst principal component. The tirst 10 principal components, which account

for over 99% of the data variance, were selected and employed for cluster analysis. The

results shown in Figure 3.14 clearly demonstrated that PCA alone cannat be used to

cluster these yeast strains, because ditTerent strains from the same species do not fall ioto

the same cluster.

Sïnce collinear variables cannot be employed in discriminant analysis,

• discriminant analysis cannot be used to analyze the original spectra data directly. Ta
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• enhance the PCA performance and expand its discriminate ability, we combined the

PCA, discriminant analysis and cluster analysis together. The classification procedure is

as follows: first reduce the dimension of yeast IR spectra by PCA, then use discriminant

analysis to distinguish groups on the basis of the retained principal components (PCs) and

the priori knowledge of which spectra were replicates, and last, the square of the

Euclidean distance between priori group centres cao he used to construct a similarity

measure and cluster analysis is then employed to construct the dendrogram. Figure 3.15

shows that while there was sorne improvement, the unsupervised leaming methods

employed here cannot be used to discriminate between the yeast strains employed in this

study.

•

•
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•

Strain Code
Figure 3.7 A plot of a dendrogram generated from the cluster analysis of 56 different
yeast strains based on the changes in infrared spectral region between 1240-1080 cm-

l

after baseline correction and nonnalization of the FTIR spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Figure 3.8 A plot of a dendrogram generated from the cluster analysis of 56 different
yeast strains based on the changes in infrared spectral region between 1800-800 cm·

1
after

baseline correction and normalization of the FTIR spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Strain Code

Figure 3.9 A plot of a dendrogram generated trom the cluster analysis of S6 different
yeast strains based on the changes in the infrared spectral region between 3030-2830
cm-l, 1350-1200 cm-

l
and 900-700 cm-

l
(aIl weighting factor were 1) after baseline

correction and normalization of the FTIR spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Strain Code
Figure 3.10 A plot of a dendrogram generated from the cluster analysis of 56

different reast strains based on the changes in the infrared spectral region between 3030­
2830 cm- , 1350-1200 cm·

l
and 900-700 cm·

l
(ail weighting factor were 1) after baseline

correction, nonnalization and computation of the tirst derivative data with 9 point
smoothing of the FTIR. spectra of the yeast strains
(please refer to Appendix 1 for the strain identity)
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Figure 3.11 A plot of a dendrogram generated from the cluster analysis of 56 different
yeast strains based on the changes in the infrared spectral regjon between

-1 ·1 -1.
3030-2830 cm , 1350-1200 cm and 900-700 cm (ail welghting factor were 1) after

baseline correction, nonnalization and computation of the second derivative data with 9
point smoothing of the FTIR spectra of the yeast strains

(please refer to Appendix 1 for the strain identity)
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Figure 3.12 Stacked FTIR spectra orthe raw (top), tirst-derivative (middle) and second-

derivative (bottom) spectra of a Saccharomyces cerevisiae strain (strain 6060)

0.2

•

•
~o

40

Q)

::::J
30Ci

~
11)

C)
20ilj

10

0

10 20 30 4)

Component Number

•
Figure 3.13 The plot orthe eigenvalues against the principal component number
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Figure 3.14 A plot ofa dendrogram of56 different yeast strains employing cluster
analysis on the first 10 principal components values trom the infrared spectral region

-l
between 1800-800 cm

(please refer to Appendix 1 for the strain identity)
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Figure 3.15 A plot of a dendrogram of S6 different yeast strains employing the

combination of PCA, discriminate analysis and cluster analysis
(please refer to Appendix 1 for strain identity)
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3.4.2.2 Supervised analysis

The most important conclusion to be drawn from the above analysis is that the

'unsupervised' learning methods fail to classify the yeast strains correctly and therefore

cannot be used to identify them. Accordingly, the use of methods based on 'supervised

leaming' to identify yeasts from their infrared spectra was investigated. The approach

employed was to supervise the analysis using an artificial neural network (ANN)-based

expert system. ANNs have recently been successfully employed in the identification of

bacteria based on their infrared spectra (Goodacre et aL, 1996a; Naumann et aL, 1998a;

Schmitt et aL, 1998).

ANNs are based on a very complex algorithm. Before using this approach to carry

out the classification work, several questions had to be addressed. First, in order to

obtain the maximum structure and composition infonnation and the minimum noise, how

should the spectral data be preprocessed? Four different preprocessed spectral data sets

were tested: 1) spectral data obtained after baseline correction, nonnalization without

derivatization or PCA calculation, 2) spectral data obtained after baseline correction,

nonnalization, and computation of the 2
nd

derivative but without the use of PCA

calculation, 3) spectral data obtained after baseline correction, nonnalization without

derivatization but with PCA calculation performed, and 4) spectral data obtained after

baseline correction, nonnalization with computation of the 2
nd

derivative and PCA

calculation perfonned. Second, how Many input neural units should be used, and how

Many hidden neural units should be used? If too few hidden units are used, the training

error and generalization error will be high due to underfitting and high statistical bias. If
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• too Many hidden units are used, the training error should be low but generalization error

will still be high due to overtitting and high variance. The simple and efficient way to

solve this problem is to try many networks with ditTerent numbers of hidden units,

estimate the generalization error for each network, and choose the network with

minimum generalization error.

The results obtained show that an ANN provides good classification accuracy

compared to classical cluster analysis methods (Table 3.2). This result indicates that

ANN may be a more appropriate method for the classification of complex biological

systems.

•

•

Figure 3.13 shows that the selection of 10 PCs as the input units is satisfactory.

When too few PCs are used (e.g. only one or two PCs), not enough infonnation is

present, and when too Many PCs are employed, the later PCs contribute only noise to the

model, thus increasing the probability of chance correlation between input and output

data.

The results in Table 3.2 show that training ANNs with ail the spectral data

(preprocess method A) to develop a classifier does not work. That is because the

architecture of this model is too complex and May fit the noise. The best way to avoid

overfitting is to use a lot of training data. If at least 30 rimes as Many training cases are

used as there are weights in the network, the ANN is unlikely to suffer from much

overfitting (Smith, 1996). This means that if ail the spectral data points are employed to

71



•

•

•

train the ANNs, we should have at least SOO (number of input units) x number ofhidden

units x 4 (number of output units) x 30 training cases, which is quite unpractical. Another

way to improve the ANN is to train the network with jitter. Jitter is artificial noise

deliberately added to the inputs during training. Training with jitter works because the

functions that NNs leams are mostly smooth. NNs cao leam functions with

discontinuities, but the functions must be piecewise continuous in a finite number of

regions if the network is restricted to a finite number of hidden units. In other words, if

we have two cases with similar inputs, the desired outputs will usually be similar. That

means we cao take any training case and generate new training cases by adding small

amounts ofjitter to the inputs. As long as the amount ofjitter is sufficiently small, we can

assume that the desired output will not change enough to be of any consequence, so we

can just use the same target value (Koistinen and Holmstrom, 1992). Compared to these

two methods, PCA combined with ANN is definitely an efficient method to carry out the

classification work, because PCA can reduce the number of the input units and at the

same time separate the useful infonnation and noise infonnation, it also simplifies the

ANN architecture and reduces the number of samples or the need to add jitter. Combined

with derivative spectroscopy to reduce the baseline shift and resolve the absorption

bands, an increase in the discriminate ability of the classification method can be

achieved.

Table 3.2 shows that the spectral preprocessing method which combines

derivatization and PCA analysis is the best method for the classification of the yeast

spectral data set, with a predictive accuracy of 93.8%. Using the optimum preprocessing
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• protocol, the optimization of the number of hidden units can he undertaken. Table 3.3

shows that with the increment of the number of hidden units, the predictive accuracy of

the neural network will be improved. However, above a certain value, the network's

prediction ability will drop due to overtitting. Based on the results in Table 3.3, the

optimum number ofhidden units was 12. Table 3.3 also shown that for a certain network

architecture, if one unit is deleted from its hidden layer, the prediction accuracy of the

network will not change too much; for example, the rate of correct prediction with 10

hidden units is the same as that with 11 units. This means that the neural network bas a

certain fault tolerance, such that the damage of a certain unit will not result in abnonnal

prediction of the wbole network. The weight adjustment process of the network bas a

kind of auto-repaîr function so that it can adjust for a certain amount of interruption.

• This study clearly showed that FTIR spectroscopy could be used to obtain

reproducible biochemical fingerprints from yeast cells. Although classical cluster analysis

could not be used to charaeterize the taxonomie properties of yeasts, an artificial neural

network eould be trained to identify these yeast strains successfully.

•
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Table 3.2 Effect ofdifferent spectral preprocessing techniques on the predictive accuracy
ofartificial neural networks.

Preprocess A Preprocess B Preprocess C Preprocess D

Number ofcorrect 21outof32 22 out of32 29 out of32 30 out of32
assignments

Percent accuracy 65.6% 68.8% 90.6% 93.80/0

Preprocess A: spectral data (between 1800-800 cm-
I
) obtained after baseline correction,

nonnalization without derivatization or PCA calculation.
Preprocess B: spectral data (between 1800-800 cm-

I
) obtained after baseline correction,

nonnalization, and computation of 2
nd

derivative but without the use of PCA calculation.
Preprocess C: spectral data (between 1800-800 cm·

l
) obtained after baseline correction,

nonnalization without derivatization but with PCA calculation perfonned.
Preprocess D: spectral data (between 1800-800 cm-I) obtained after baseHne correction,
nonnalization with computation of2"d derivation and PCA calculation perfonned.

Note: the default number of hidden units (9), which is set by the software, is used for this
test

Table 3.3 Errect ofvarying the number ofhidden units in the hidden layer on the
predictive accuracy of the ANN

Number ofhidden Number ofcorrect Prediction accuracy
units in the hidden assignments

layer
1 3 25 out of32 78.1%
2 4 25 out of32 78.1%
3 5 290utof32 90.6%
4 6 29 out of32 90.6%
S 7 290utof32 90.6%
6 8 29 out of32 90.6%
7 9 300utof32 93.8%
8 10 30 out of32 93.8%
9 Il 300utof32 93.8%
10 12 32outof32 100%
Il 13 320utof32 100%
12 14 320utof32 100%
13 IS 290utof32 90.6%
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• 3.4.3 Classification ofYeast Strains in Terms ofTheir Use in Food Production by FTIR

Spectroscopy

While the application of genetic engineering to the production of new yeast strains

(with desirable features such as the capacity to produce good flavor and aroma; the ability

to ferment wort rapidly until fructose, glucose, sucrose, maltose, and maltotriose have

been used; the propensity to grow in wort rapidly) bas been successful, there have been

few instances of induced hybridization to produce commercial brewing yeast strains.

Mutation and transfonnation bave also been suggested for producing brewing strains with

new properties. With all these new genetically modified yeast strains at band, the most

common question one encounters is: UHow cao we predict the result of the genetic

modification on tbe fonction of the microorganism?n The functions and activities of yeast

strains are detennined by their encoded biological and cbemical infonnation. FTIR

spectroscopy bas the capability to measure the fingerprint of all the biocbemical

compounds within a microbial cell, sucb as DNA, RNA, proteins, membrane and cell

wall components. Accordingly, it may be a usefui technique to predict the effeets of

genetic modifications on the fonction ofmicroorganisms.

3.4.3.1 Unsupervised Method

A total of 31 yeast strains used to produce wine, beer and bread were obtained

from Lallemand me. Their FTIR spectra were collected and preprocessed by the

procedure described in Section 3.2. Figure 3.6 shows that most of the spectral

information is in the region of 1800-800 cm-
l
. In order to find the region that can be used

• for yeast classification in tenns of their use in the production of wine, beer or bread, one
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• end of the target spectral region was held constant and the other end narrowed in a

stepwise fashion in 100 cm-
I

incrernents toward the constant end. This 'scan' action was

repeated each time the fixed end was narrowed in 100 cm-
I

increments in order to

identify the best spectral region. In this analysis a centroid linkage and the squared

Euclidean distance were employed to carry out the cluster analysis. In centroid linkage

each cluster is represented by its centroid; the distance between two clusters is the

distance between their centroids. This method does not distort the cluster space.

•

•

The results of the analysis of each spectral region are shown in Table 3.4. It is

clear that when the region of [x, 800] was used, where x was varied in IOO-cm-
l

increments between 1800 and 1700 cm-1, ail of the wine strains were identified correctly

except two, but they were not classified as a single group; instead, they were separated by

the beer group or the bread group into two isolated groups (Figure 3.17). The same

spectral region could also be employed to separate bread and beer yeasts from each other

with a small error. When the region of [x, 800] was employed, where x was varied in

IOO-cm-' increments between 1600 and 1400 cm-', the cluster analysis algorithm grouped

ail the wine strains correctly; it also grouped ail the beer strains correctly except three and

ail the bread strains correctly except one. When the region of [x, 800] was employed,

where x was varied in 100-cm-' incrernents between 1300 and 1100 cm-l, the algorithm

grouped ail the wine strains into one single group correctly; it grouped ail the beer strains

correctly except three; the algorithm also correctly grouped ail the bread strains (Figure

3.18). When the regjon of 1000-800 cm-
1

was employed, the algorithm correctly grouped

aU the wine strains, all the beer strains except three; and ail the bread strains except two.

76



\

• When the region of 900-800 cm-
I

was employed, the algorithm bad difficulties in

classifying ail the strains.

Based on the results from Table 3.4, the best region to group the wine strains

alone is [x, 800] wbere x is varied in loo·cm-
I

increments between 1300 and 1100 cm-
I
.

Absorptions in tbis region include the amide m band components of proteins (1310-1240

cm-Il, the P=O stretcbing vibration of >P02- in phosphordiesters (1250-1220 cm-I) and

phosphodiest~rs (1088·1084 cm-I), and the ring vibrations of carbohydrates (1200-900

cm-Il. The best region to identify beer strains aJone is (x, 800] and [x, 900] where x is

varied in 100·cm-
1

increments between 1800 and 1700 cm-
l

and between 1800 and 1600

cm-l, respectively. The best region to identify bread strains alone is [x, 800] where x is

varied in 100.cm-
1

increments between 1700 and 1600 cm-
l

and [x, 800] where x is

• varied in 100.cm-
1

increments between 1300 and 1100 cm-
l
. Finally, the best region to

separate these three kinds of yeast strains is [x, 800] where x is varied in lOO-cm-
l

increments between 1300 and 1100 cm-
l
; the classification results using cluster analysis

and the spectral data from this region are presented in Figure 3.18.

It can be concluded from this study that unsupervised analysis methods can be

used for classification of yeast strains in terms of the type of fennentation process in

which they are employed and that this method yield >90% correct classification.

•
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Figure 3.16 Comparison between the FTIR spectra ofa wine, a beer and a bread yeast
strains
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• Table 3.4 Effect of selection of the inftared spectral region between 1800 and 800 cm-Ion
the predictive accuracy ofyeast classification in tenns of their use in the production of

wine, beer, and bread by cluster analysis.

-note: the wme group 15 dlVlded anto IWo separate groups

Region (cm" ) number of incorrect wine number of incorrect beer number ilf incorrect bread
sain assignments strain assignments sain assignments

1800/1700-800 2* out of 16 1 out of 12 oout of3
1600/1400-800 0* out of 16 3 out of 12 1 out of 12
1300/1100-800 oout of 16 3 out of 12 oout of 12
1000 -800 0* out of 16 3 out of 12 2 out of 12
900 -800 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800/1600-900 0* out of 16 1 out of 12 2 out of 12
1500/1400-900 2* out of 16 3 out of 12 1 out of 12
1300/1100-900 2* out of 16 2 out of 12 2 out of 12
1000 ·900 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800/1700-1000 0* out of 16 2 out of 12 2 out of 12
1600 -1000 2* out of 16 2 out of 12 2 out of 12
1500/1300-1000 0* out of 16 3 out of 12 1 out of 12
1200/1100-1000 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800/1700-1100 0* out of 16 2 out of 12 2 out of 12
1600 -1100 2* out of 16 3 out of 12 2 out of 12
1500/1300-1100 1* out of 16 3 out of 12 2 out of 12
1200 -1100 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800/1600-1200 0* out of 16 3 out of 12 2 out of 12
1500/1400-1200 2* out of 16 2 out of 12 2 out of 12
1300 -1200 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800 -1300 2* out of 16 2 out of 12 2outof12
1700/1500-1300 2* out of 16 2 out of 12 2 out of 12
1400 -1300 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800/1600-1400 3* out of 16 3 out of 12 2 out of 12
1500 -1400 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800/1700-1500 3* out of 16 2 out of 12 2 out of 12
1600 -1500 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800 -1600 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1700 -1600 Inadequate discrimination Inadequate discrimination Inadequate discrimination
1800 -1700 Inadequate discrimination Inadequate discrimination Inadequate discrimination..

•
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Figure 3.17 A plot ofa dendrogram generated from the cluster analysis of31 different
yeast strains (employed in the production ofwine, beer and bread) based on the changes

in infrared spectral region between 1700-800 cm-
l

after baseline correction,
normalization and computation of the second derivative data and 9 point smoothing of

the FTIR spectra of the yeast strains
('w' refers to wine, ~be' refers to beer and 'br' refers to bread)
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Figure 3.18 A plot of a dendrogram generated from the cluster analysis of 31 different
yeast strains (employed in the production of wine, beer and bread) based on the changes
in infrared spectral region between 1300-800 cm·} after baseline correction,
normaiization and computation of the second derivative data and 9 point smoothing of
the FTIR spectra of the yeast strains. Cw' refers to wine, 'be' refers to beer and 'br'
refers to bread)
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3.4.3.2 Supervised Method

The discussion above shows that classical cluster analysis can work. However, the

process of searching for the best spectral region for yeast classification is tedious. The

possibility of utilizing supervised pattern recognition methods such as neural networks,

which mimic the human brain in its leaming process and further apply the knowledge to

solving problems, May simplify the analysis.

The fol1owing procedure was employed in the training of an ANN to classify

yeasts in tenns of their use in the production of wine, beer, or bread. Principal component

analysis (PCA) using the NIFALS algorithrn was carried out using SCAN (Minitab Inc.,

State College, PA, USA) on the preprocessed spectral data (spectral data obtained after

baseline correction, normalization, computation of 2"d derivative and 9-point smoothing

in the region of 1800-800 cm·
1
). The first 8 PCs were used as input to the network. The

ANN was built using Neuroshel1 2 (Ward System Group Ioc, Frederick, MD, USA). The

structure of the ANN used in this study consisted of three layers: one input layer

(containing 8 units), one output layer (containing 3 units) and one hidden layer

(containing 10 units). To train the ANN, each of the inputs was nonnalized and paired

with each of the desired outputs (the output layer was binary encoded such that wine is

represented by 100, beer by 010 and bread by 001). Before training commenced, the

connection weights were set to small random values. TurboProp algorithm was employed

to train the neural network TurboProp algorithm is a training method faster in the "batch"

mode than other backpropagation methods, and it is not sensitive to learning rate and

momentum, 50 learning rate and momentum are not required to be set during the training
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• procedure. In this algorithm, training proceeds through an entire epoch (one complete

calculation in the network is called an epoch) before the weights are updated. It adds ail

of the weight changes and at the end of an epoch modifies the weights. The TurboProp

method utilizes an independent weight update size for each different weight, rather than

the usual method of having a single learning rate and momentum that applies to ail

weights. Furthennore, the step sizes are adaptively adjusted as learning progresses.

Before training commences, the connection weights are set to small random values,

including the weights connecting the bias to the hidden and output layers. Next, the input

values are applied to the network, which is allowed to run until an output is produced at

each output unit. The differences between the actual output and that expected, taken over

the entire set of patterns, are fed back through the network in the reverse direction to

signal flow (hence backpropagation) modifying the weights as they go. This process is

• repeated until a suitable level of error is achieved. To prevent overfitting: 1) the test set

and production set were extracted from the original spectral data set by the software. The

test set is used with calibration, during training the network was interrogated with

patterns in the test set, the errors between the output seen and that expected were

calculated, thus allowing a learning curve for the test set to be drawn. Training is stopped

when the RMS error on the test set is lowest. The production set is used to test the

network's results with data the network bas never "seen" before. 2) the ANNs were

trained five times to detennine whether they converged reproducibly.

When training had ceased, the network was interrogated. As expected, the

• network's estimate of the identities of the yeasts in the calibration set were the same as
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• their known identities. The results of the network's final analysis of the unknown

production set is shown in Table 3.5; the difference between the ANN's estimates and the

output that was expected is also given. It cao be seen in Table 3.5 that ail the unknowns

were correctly identified.

This study clearly showed that FTIR spectroscopy could discriminate between

different yeast strains in terms of their use in the production of wine, beer, or bread.

Anificial neural networks were also successfully traîned to fulfill this objective. We

conclude that the combination of FTIR spectroscopy and ANNs provides a rapid and

aceurate discriminatory technique.

•

•
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• Table 3.5 Artificial neural network classification results for 31 yeast strains

Note: ail of the neural network output values gtven are the averages from tralnmg the
network five times; the bold values indicate the correct class.

Act 1 (1 S 1S3 ) refers to the expected output
Net 1(1S 1S3 ) refers to the actual output

Strain Act1 Act2 Ad3 Net Net Net Act- Act- Act-
Code 1 2 3 Net Net Net

1 2 3
Training Set Wine 6467 1 0 0 0.87 0.09 0.39 0.13 -0.1 -0.4

6074 1 0 0 0.98 0.02 0.20 0.02 0 -0.2
6400 1 0 0 0.77 0 0.09 0.23 0 -0.1
6287 1 0 0 0.99 0.01 0.05 0.01 0 -0.1
6071 1 0 0 0.83 0.43 0.11 0.17 -0.4 -0.1
6050 1 0 0 0.89 0.00 0.09 0.31 0 -0.1
6139 1 0 0 0.15 0 0.08 0.15 0 -0.1
6276 1 0 0 0.11 0 0.2 0.32 0 -0.2
6032 1 0 0 0.93 0 0.16 0.07 0 -0.2
6014 1 0 0 O•• 0 0.01 0.34 0
6283 1 0 0 0.99 0 0.22 0.01 0 -0.2
6290 1 0 0 0.59 0 0 0.41 0 0

Beer 6061 0 1 0 0.13 0.11 0.32 -0.1 0.02 -0.3
6493 0 1 0 0.17 0.&5 0.15 -0.2 0.35 -0.2
6101 0 1 0 0.12 0.15 0.27 -0.1 0.15 -0.3
6059 0 1 0 0.05 0.88 0.03 -0.1 0.14 0
6562 0 1 0 0.32 0.80 0.06 -0.3 0.2 -0.1
6422 0 1 0 0.21 0.11 0.05 -0.2 0.19 -0.1
6116 0 1 0 0.25 0.91 0.01 -0.3 0.04 0
6637 0 1 0 0.26 0.54 0.08 -0.3 0.46 -0.1

Bread 6370 0 0 1 0.22 0.05 0.&5 -0.2 -0.1 0.35
6583 0 0 1 0.07 0 0.75 -0.1 0 0.25

Test Set Wine 6221 1 0 0 0.55 0.28 0.07 0.45 -0.3 -0.1
6581 1 0 0 0.15 0.24 0.25 0.15 -0.2 -0.3

Beer 6147 0 1 0 0.21 0.97 0.27 -0.2 0.03 -0.3
6058 0 1 0 0.25 0.12 0.40 -0.3 0.38 -0.4

Bread 6584 0 0 1 0.36 0 0.89 -0.4 0 0.11
Production Wine 6560 1 0 0 0.&5 0.34 0.48 0.35 -0.3 -0.4
Set 6348 1 0 0 O." 0.35 0.05 0.06 -0.4 -0.1

Beer 6163 0 1 0 0.17 0.93 0.07 -0.2 0.07 -0.1
6301 0 1 0 0.01 0.71 0.18 0 0.22 -0.2..
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• 3.4.4 Classification ofYeast Straîns in Terms ofTheir Sensitivity to Killer Yeast Strains

by FTIR Spectroscopy

Killer yeast strains (phenotype K+R+) produce an extracellular toxin that kills

sensitive yeast strains (phenotype K-R-). There also exist neutral yeast strains (phenotype

K+R-) that are resistant to killer toxin but do not produce il. Exotoxins (generally

proteins or glycoproteins) that are able to kill susceptible cells belonging to the same or

congeneric species have been defined as killer toxins. Killer yeast strains are toxin­

producing fungi that are immune to the activity of their own killer toxins. The killer

phenomenon was discovered in yeast by Bevan and Mackower (1963). The most

thoroughly investigated yeast killer system is that ofS. cereviviae (Bussey, 1991; Tipper,

et aL, 1991;Wickner, 1992, 1996). Currently, the killer yeasts belonging to this species

• have been classified into three main groups (KI, K2, and K28) on the basis of the

molecular characteristics of the secreted toxins, their killing profiles, the lack of

cross-immunity, and the encoding genetic detenninants. They are constituted by strains

producing toxins encoded by dsRNA. Other killer yeasts producing toxins named KHR

and KHS, which are encoded on chromosomal DNA, have also been identified (Goto et

aL, 1990; 1991). The KI, K2, and K28 toxins are encoded by difTerent cytoplasmically

inherited satellite dsRNAs (M1, M2, and M28), encapsidated in virus-like particles

(VLPs) and dependent on another group ofhelper yeast viroses (L-A) for their replication

and encapsidation. The M dsRNAs are responsible for either kiUer activity or

self-immunity, a phenotype that is characteristic ofyeast killer toxin-producing strains.

•
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• The study of killer yeast strains is very important and usefuI. For example, the

yeast killer system .bas been proved to be fruitful not ooly in the difTerentiation of

important slowly growing pathogenic bacteria, such as the mycobacteria, but also in the

differentiation of faster-growing gram-positive and gram-negative bacteria (Wickner,

1992). When used to investigate the serotypes ofbacterial isolates, the yeast killer system

was able to differentiate isolates of Neisseria meningitidis group C (Morace et al., 1989).

The yeast killer system, when properly used, bas been proved to be of great value in the

identification of the species and varieties of heterogeneous microorganisms (Morace et

al., 1988). Stuck wine fermentation is one of the most important problems in the wine

industry (Lafon-Lafourcade et al., 1984; Kunkee, 1991). Several causes of stuck and

sluggish wine fennentation have been described (Ribereau-Gayon et al., 1975; Rosini,

1983). As expected, killer toxins can inhibit wine fermentation by sensitive yeasts (Van

and Wingfield, 1986).

ln this study, we investigated the use of FTIR spectroscopy for the classification

of yeasts in terms of their sensitivity to killer yeast strains. Due to the limited number of

strains, here we tried to classify ail the available yeast strains into two groups: sensitive

strains and non-sensitive strains (which include possess and neutral strains).

Ali the 25 yeast strains (19 sensitive strains and 6 non-sensitive strains) were

obtained from Lallemand mc. Their infrared spectra were collected and preprocessed by

procedures described in Section 3.2. Figure 3.19 shows that most of the spectral

• infonnation is in the region between 1800 and 800 cm-
l
. In order to find a region that can
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• be used for the yeast classification in tenns of their sensitivity to the 1011er yeast strains,

various spectral regions were tried as described in the previous section.

•

The results of the analysis of each spectral region are shown in Table 3.6. When a

spectral region of [x, 800], where x is varied in l00-cm-
1

increments between 1800 and

1700 cm-}, was employed, the cluster analysis a1gorithm divided the 25 strains into two

groups: one a sensitive group, and the other a non-sensitive group. Within the sensitive

group, there are 21 strains in total; 19 strains indeed belong ta sensitive group and 2

strains do not. The sensitive group is divided into two separate groups by the non­

sensitive group. In the non-sensitive group there are 4 strains in total, ail of which are

non-sensitive strains. When the region of 1600-800 cm-
I

was employed, the algorithm

classified 18 sensitive strains and 2 non-sensitive strains in the sensitive group, and 4

non-sensitive strains and 1 sensitive strain in the non-sensitive group. When the region of

[x, SOO], where x is varied in l00-cm-
1

increments between 1500 and 1000 cm-t, was

employed, the algorithm classified 19 sensitive strains and 2 non-sensitive strains in the

sensitive group and 4 non-sensitive strains in the non-sensitive group. When the region of

900-800 cm-
I

was employed, the algorithm classified 18 sensitive strains in the sensitive

group and 6 non-sensitive strains and one sensitive strain in the non-sensitive group.

Other details can be found in Table 3.6.

Sased on the results from Table 3.6, the optimum region to classify yeast strains

in terms of their sensitivity to 1011er yeast strains is 900-S00cm-
t
• The dendrogram

• produced by cluster analysis using the spectral data from this region is shown in Figure
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• 3.20. This spectral region is dominated by C-O-C, C-Q and ring vibrations of

carbohydrates and C-H rocking of>CH2 methylene groups.

It can be concluded from this study that unsupervised analysis methods can he

used as an approach of classification of yeast strains in tenns of their sensitivity to killer

yeast strains and this method yields > 90% correct classification.

•
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Figure 3.19 Comparison between the FTIR spectra of a sensitive yeast strain, a possess

yeast strain and a neutral yeast strain
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Table 3.6 Effect ofselection ofinftared spectral regions between 1800 and 800 cm-
l

on
the predictive accuracy ofyeast classification in terms of their sensitivity by cluster

analysis.

Sensitivity Non-sensitivity
1800/1700.800 cm-l 19+2- • 4+
1600 -800 cm-l 18+2- 4+1-
1500/1000-800 cm-l 19+2- • 4+
900 -800 cm-l 18+ 6+1-
1800/1500-900 cm-l 18+2- 4+1-
1400/II 00-900 cm-l 19+2- • 4+
1000 -900 cm-l 19+2- • 4+
1800/1600-1000 cm-l 17+ 6+2-
1500 -1000 cm-l 17+1- 5+2-
1400 -1000 cm-l 19+2- 4+
1300/1200-1000 cm-l 18+2- 4+1-
1100 -1000 cm-l 18+2- • 4+1-
1800/1700-1100 cm-l 18+1- 5+1-
1600 -1100 cm-l 17+ 6+2-
1500 -1100 cm-l 17+1- 5+2-
1400 -1100 cm-l 18+1- 5+1-
1300 -1100 cm-l 17+1- 5+2-
1200 -1100 cm-l 17+1- • 5+2-
1800/1700-1200 cm-l 17+1- 5+2-
1600 -1200 cm-l 16+ 6+2-
1500 -1200 cm-l 17+1- 5+2-
1400 -1200 cm-l 15+ 6+4-
1300 -1200 cm-l 17+2- 4+2-
1800/1700-1300 cm-l 17+1- 5+2-
1600 -1300 cm-l 17+ 6+2-
1500 -1300 cm-l 14+ 6+5-
1400 -1300 cm-l Inadequate discriminant Inadequate discriminant
1800/1600-1400 cm-l 17+ 6+2-
1500 -1400 cm-l 15+ 6+4-
1800/1700-1500 cm-l Inadequate discriminant Inadequate discriminant
1600 -1500 cm-} Inadequate discriminant Inadequate discriminant
1800 -1600 cm-l Inadequate discriminant Inadequate discriminant
1700 -1600 cm-l Inadequate discriminant Inadequate discriminant
1800 -1700 cm-l Inadequate discriminant Inadequate discriminant

Note • means the whole group was divided into two scparated groups
+ means the correct assignments

means the incorrect assignments
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Figure 3.20 A plot of a dendrogram showing the results of the cluster analysis
classification of2S yeast strains in tenns of their sensitivity to killer yeast strains
employing infrared spectra ofthe yeast strains in the region between 900-800 cm··

('N' refers to non-sensitive and 'S' refers to sensitive)
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• Chapter 4 CODclusioD

The objective of the research presented in this thesis was to investigate the

feasibility of employing FTIR spectroscopy for the classification of yeast in tenns of

taxonomy, use in production ofwine9 beer, and bread9 and sensitivity to kiUer strains.

In order to obtain reproducible spectra of yeasts, a strict control of growth

conditions, isolation protocol, and sampling methodology was required. The spectral

reproducibility was then evaluated by a spectral library search approach and the use of

Pearson's correlation coefficient. Ali the results showed that the methodology of spectral

acquisition and sampling protocol developed in this work produced highly reproducible

spectra from different batches of the same strain.

• Different classical classification approaches based on hierarchical clustering

(inc1uding region selection, region selection combined with weighting factor, PCA

combined with hierarchical clustering, PCA and discriminate analysis combined with

hierarchical c1ustering) were evaluated. It was found that these unsupervised

classification approaches had difficulties in assigning ail the spectra of the yeast strains to

the correct groups. This may be attributed to the similarity of the strains in tenns of their

biochemical composition. Supervised leaming methods employing an artificial neural

network (ANN) were then evaluated in combination with different spectral preprocessing

techniques. It was found that baseline correction compensated for some of the light

scattering from yeast samples deposited as films on a ZnSe window, while spectral

• normalization compensated for sorne of the variability in film thickness. The use of
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• second-derivative spectra also reduced the effect of baseline variation and resolved the

absorption peaks. Because of the large amount of spectral infonnation, the use of

principal component spectra in place of the raw spectral data results in the reduction of

the dimensionality of the information. Thus, the combined advantages of spectral data

processing have been found to improve the performance of the ANN models.

Classification of yeasts in terms of the type of fermentation process in which they

serve is a new approach in the application ofFTIR spectroscopy to microbiology. In this

study, both cluster analysis and ANN were equally effective in the classification of yeast

strains. Cluster analysis was effective when the spectral regjon was narrowed between

1300 and 800 cm-
l
. An ANN successfully predicted 100% of the test set.

• Classification of yeasts in tenns of their sensitivity to killer yeast strains has

economic implications in relation to the efficacy of the production process. Because of

the limited amount of strains available, ooly the cluster analysis algorithm was employed.

The separation of the yeast trains into two distinct groups, sensitive and non-sensitive,

was accomplished by employing the spectral information between 800 and 900 cm-
l
.

Il can be concluded from the results obtained from this work that FTIR

spectroscopy in combination with suitable chemometric techniques can be of potential

utility for the rapid identification and classification of yeast strains. Future work should

be directed toward increasing the size of the spectral database and carrying out extensive

•
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• validation studies of production samples, with emphasis placed on ernploying supervised

training for spectral analysis.

•
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Appendix 1 Reference Bumber of yeast strains

Saccharomyces cerevisiae

Wine Beer Bread DistiIlers Probiotics Animal Other
nutrition

Sensitive 6050 (3) 6061 (8) 6100 (~~)

6467 (30) 6562 (36) 6652 (55)
6400 (26) 6058 (5)
6287 (20) 6060 (7)
6649 (~2) 6163 (14)
6648(41) 6412 (27)
6348 (49) 6422 (29)

:
6101 (10)

6059 (6)
6301 (22) ;

Possess 6032 (2)

1
~ 6014 (l) i

Neutral ~

Saccharomyces chevalieri

Wine Beer Bread Distillers Probiotics
1

Animal Other
nutrition

Sensitive 6254 (48) 6196 (46)
(Chocolate)

: 6165 (15)
(Lab strain)

Possess 6581 (37)
6139 (13)

Neutral 1 6542(54)
, 6560(35)

Saccharomyces capensis

\Vine Beer 1 Bread Distillers Probiotics Animal Other
nutrition

Sensiti"e 6276 (18)
6290 (21)

Possess
Neutral 6221 (16) 6375 (25)

(Unknown)
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•

S'lccharomyces italiclls

Wine Beer Bread Distillers Probiotics Animal Other
nutrition

Sensitive 6071 (9)
6074 (43) 1

1

Possess 6302(23)
Neutral 1

Saccharomyces diclSWticliS

1 Wine Beer Bread Distillers Probiotics Animal Otber
nutrition

Sensitive
Possess
Neutral 6123 (11) 6637 (40)

Saccharomyces delbrueckii

\Vine Beer Bread Distillers Probiotics Animal Other
nutrition

Sensiti"oe 6116(11)
6056

6493(31 )
Possess
Neutral 6147(45)

Saccharomyces bayanus

Wine Beer Bread : Distillers Probiotics ' Animal Otber
nutrition

Sensitive 6653 (56)
Possess

1

1

Neutral 1 6352 (Unknown)

S'lccharomyces rosei

Wine Beer Bread Distillers Probiotics Animal Other
nutrition

Sensitive
P05Se5S

: Neutral 6242 (47)
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Schi:osaccharomyces pombe

Wine Beer Bread Distillers Probiotics Animal Other
nutrition

Sensitive 6262
Possess
Neutral 6265 (17) 651~

6515

Saccharomyces cerevisiae i Schi:osaccharomyces pombe

Wine Beer Bread Distillers Probiotics Animal Other
nutrition

Sensitive 1

Possess 65::!7
6528 (32) :

Neutral 6578 6529 (33) .

Kluyverol11.vces marXiall11S

Wine Beer Bread Distillers Probiotics 1 Animal Other
nutrition

Sensitive 1

i

Pussess
Neutral

6~25 (52)
(Lactoserum)

6349 (50)
(Lactose)

Hansenlila \'alb.vensis

\Vine Beer Bread Distillers ' Probiotics . Animal Other
: nutrition

Sensiti,,·e
Possess
Neutral 6533 (34)

Candida lltilis

Wine Beer Bread Distillers Probiotics Animal Other
nutrition

Sensiti"'e
Possess
Neutra) 6283 (19) 6504 (53)

(\Vood
fennentation)



•

•

•

Zygosaccharomyces cidrii

Wine Beer Bread Distillers Probiotics Animal Otber
nutrition

Sensitive
Possess 1

Neutral
1

641~ (28)
1

(Bioin1!redients)

Unknown

Wine Beer Bread Distillers Probiotics Animal Other
nutrition

Sensithre 6583 (38)
658~ (39)

Possess
Neutral 6370(2~)

Note: The four digits reference number is the reference number from Lallemand rnc.
The number in the bracket is the corresponding reference number \ve used


