
Optimal Sampling Rate Assignment with
Dynamic Route Selection for Real-Time

Wireless Sensor Networks

Weihuan Shu

Master of Science

School of Computer Science

McGill University

Montréal, Québec

2008-07-01

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science

c© Weihuan Shu
All Rights Reserved, 2008

DEDICATION

To my parents Shen’an Guo and Zhouling Shu

for their love and tolerance

and

To my beloved Yueran

for her warmth and support

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Xue Liu for his guidance, support,

and encouragement over the last two years. With his enthusiasm, his inspiration, and his

great efforts to explain things clearly and simply, he guided me to the way of research

and showed me it is not boring but interesting. I would like to also extend my gratitude

to Professor Tim Merrett, who served as my advisor when I was new in this university.

He provided me many presentation opportunities to build my presentation skills as well

as self-confidence, and his critical comments and encouragements were very precious to

me. Finally, thank you to all the graduate students in School of Computer Science, McGill

University, with whom I enjoy my study and life in Montréal – a wonderful city.

This thesis includes some content from a to-be-published paper in Proceedings of the

28th IEEE Real-Time Systems Symposium (RTSS). I would to thank Professor Liu again

for introducing me to this promising yet interesting topic. I also want to thank the other two

co-authors for that paper, Professor Zonghua Gu and Professor Sathish Gopalakrishnan,

who gave me a lot of valuable advices during writing the paper.

iii

ABSTRACT

The allocation of computation and communication resources in a manner that opti-

mizes aggregate system performance is a crucial aspect of system management. Wireless

sensor network poses new challenges due to the resource constraints and real-time re-

quirements. Existing work has dealt with the real-time sampling rate assignment problem,

under single processor case and network case with static routing environment. For wireless

sensor networks, in order to achieve better overall network performance, routing should

be considered together with the rate assignments of individual flows. In this thesis, we ad-

dress the problem of optimizing sampling rates with dynamic route selection for wireless

sensor networks. We model the problem as a constrained optimization problem and solve

it under the Network Utility Maximization framework. Based on the primal-dual method

and dual decomposition technique, we design a distributed algorithm that achieves the op-

timal global network utility considering both dynamic route decision and rate assignment.

Extensive simulations have been conducted to demonstrate the efficiency and efficacy of

our proposed solutions.

iv

ABRÉGÉ

L’attribution de calcul et de la communication ressources d’une manière qui optimise

les performances du système global est un aspect crucial de la gestion du système. Réseau

de capteurs sans fil pose de nouveaux défis en raison de la pénurie de ressources et en temps

réel. Travaux existants a traite distribution temps-reel problème de taux d’échantillonnage,

dans un seul processeur cas et réseau cas de routage environment statique. Pour les réseaux

de capteurs sans fil, afin de parvenir à une meilleure performance globale du réseau, le

routage devrait tre examiné en même temps que la distribution de taux des flux individuels.

Dans cet article, nous abordons le problème de l’optimisation des taux d’échantillonnage

avec route sélection dynamique pour réseaux de capteurs sans fil. Nous modelisons le

probleme comme un problème d’optimisation et le résolvons dans le cadre de l’utilite

de reseau maximisation. Sur la base de la méthode primal-dual et la dual décomposition

technique, nous concevons un algorithme distribué qui atteint le meilleur l’utilite de reseau

globale au vu de route décision dynamique et le taux distribution. Des simulations ont été

réalisées pour démontrer l’efficience et l’efficacité de nos solutions proposées.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1 Introduction . 1

1.1 Wireless Sensor Network . 1
1.2 Real-Time System . 2
1.3 Real-Time Wireless Sensor Network 3
1.4 Organization of the Thesis . 3

2 Related Work . 5

2.1 Resource Allocation in Computer Networks 5
2.2 Resource Allocation in RTWSNs and Network Utility Maximization . 6
2.3 Our Contribution . 8

3 System Architecture . 10

3.1 RICH Architecture . 10
3.2 Schedulability Modeling . 15

4 Schedulability Analysis . 17

4.1 Preemptive EDF . 17
4.2 Non-preemptive EDF . 18
4.3 EDF Scheduler for Data Transmission 18

vi

5 Mathematical Formulation . 22

5.1 Network Utility Loss Index . 22
5.2 Single-path Routing . 23

5.2.1 Network Topology Matrix – H 26
5.2.2 Flow Fraction Matrix – W . 26
5.2.3 Routing Matrix – R . 27
5.2.4 Network Traffic Matrix – T 28

5.3 Constraints . 35
5.3.1 Maximum Device Limit . 35
5.3.2 Minimum Application Requirement 35
5.3.3 Schedulability Constraint . 35

6 Optimizing Sampling Rates with Dynamic Route Selection 36

6.1 Primal and Dual Problems . 36
6.2 The Centralized Algorithm . 39
6.3 The Distributed Algorithm . 40

6.3.1 Initialization . 41
6.3.2 Update Prices at Iteration t 41
6.3.3 Update Sampling Rates at Iteration t 41
6.3.4 Update Routing at Iteration t 42

6.4 Convergence Criteria . 42

7 Performance Evaluation . 44

7.1 Convergence . 44
7.2 Distributed Implementation . 48
7.3 Effect of Varied Packet Sizes . 52
7.4 Effect of Step Size γ . 53
7.5 Incremental Adjustment Property of the Distributed Algorithm 54
7.6 Scalability Analysis for the Distributed and Centralized Algorithms . . 57

7.6.1 Control Traffic Analysis for the Distributed Algorithm 59
7.6.2 Control Traffic Analysis for the Centralized Algorithm 59
7.6.3 Comparison between the Distributed and Centralized Algorithms 60

8 Conclusion and Future Work . 62

8.1 Conclusion . 62
8.2 Future Work . 62

vii

Appendix . 64

A. Proof of Theorem 1 . 64
B. Proof of Theorem 2 . 66

References . 69

viii

LIST OF TABLES
Table page

4–1 Parameters of the Example . 19

5–1 Parameters of the Data Sources of the Example 31

5–2 Parameters of the Nodes of the Example 31

5–3 Number of Packets after Packet Transformation 33

7–1 Convergence Times with Varied Convergence Thresholds 47

7–2 Parameters of the Data Sources for the Simulation 52

7–3 Parameters of the Nodes for the Simulation 52

7–4 New Parameters of the Data Sources after the 1500th Iteration 57

ix

LIST OF FIGURES
Figure page

1–1 Typical Multi-hop Wireless Sensor Network Architecture 2

3–1 The Mixed FDMA-TDMA Base Station Backbone Layout 11

3–2 The Internal Architecture of a RICH Base Station 13

3–3 The Mixed FDMA-CDMA Base Station Backbone Layout 14

5–1 The Network Deployment of the Example 25

5–2 The Selected Routes of the Example . 29

7–1 The Convergence of Network ULI . 45

7–2 The Convergence of Sampling Rates . 45

7–3 The Convergence of Routes . 46

7–4 The Leftover Bandwidths after Convergence 47

7–5 Convergence Times with Varied Convergence Thresholds 48

7–6 A Snapshot of the OMNeT++ Simulation 50

7–7 The Convergence of Sampling Rates from OMNeT++ Simulation 51

7–8 The Optimal Network ULI with Different Packet Lengths 53

7–9 The Network ULI Convergence with Different Step Sizes of Updating . . 55

7–10 The Sampling Rates Convergence with Different Step Sizes of Updating . 56

7–11 Network Utility Update with Respect to the Number of Iterations 58

7–12 Sampling Rates Update with Respect to the Number of Iterations 58

7–13 Node Traffic with Respect to the Number of Source-Destination Pairs . . . 61

x

CHAPTER 1
Introduction

1.1 Wireless Sensor Network

A Wireless Sensor Network (WSN) is a wireless network consisting of spatially dis-

tributed autonomous devices using sensors to cooperatively monitor physical or environ-

mental conditions, such as temperature, sound, vibration, pressure, motion or pollutants,

at different locations. Figure 1–1 shows a typical WSN architecture, where each sensor

nodes collects some information and send it to the terminal in a multi-hop way. The de-

velopment of WSNs was originally motivated by military applications such as battlefield

surveillance. However, WSNs are now used in many civilian application areas, including

environment and habitat monitoring, healthcare applications, home automation, and traffic

control. The WSNs are so versatile that they are expected to be the basic building blocks

of future pervasive computing environments.

In addition to one or more sensors, each node in a sensor network is typically equipped

with a radio transceiver or other wireless communication device, a small microcontroller,

and an energy source, usually a battery. The sizes of sensor nodes are usually limited by

applications, e.g., for healthcare applications, the sensor nodes should be small enough

to be carried easily. A typical WSN application involves from tens to thousands of sen-

sor nodes, therefore the cost is also an important concern. Size and cost constraints on

sensor nodes result in corresponding constraints on resources such as energy, memory,

computational speed and bandwidth.

1

Figure 1–1: Typical Multi-hop Wireless Sensor Network Architecture

1.2 Real-Time System

A Real-Time System is a computing system that must react within precise time con-

straints to events in the environment. As a consequence, the correct behavior of these

systems depends not only on the value of the computation but also on the time at which

the results are produced. A reaction that occurs too late could be useless or even dan-

gerous. Today, real-time computing plays a crucial role in our lives, since an increasing

number of complex systems rely, in part or completely, on computer control.

Real-time computing is sometimes misunderstood to be high-performance comput-

ing, but this is not always the case. For example, a massive supercomputer executing

a scientific simulation may offer impressive performance, yet it is not executing a real-

time computation. Conversely, a real-time system does not have to be a high-performance

computing system, e.g., once the hardware and software for an Anti-lock Braking System

(ABS) has been designed to meet its required deadlines, no further performance gains are

necessary.

2

1.3 Real-Time Wireless Sensor Network

A Real-Time Wireless Sensor Network (RTWSN) is a wireless sensor network that

can make real-time guarantees. RTWSNs are expected to carry out various applications

such as remote control or video/audio monitoring in ad hoc environments. In a RTWSN,

the sampling rate is a very important parameter, as it is closely related to the Quality of

Service (QoS) of applications. For example, in a RTWSN used for video surveillance,

the sampling rate refers to how many frames a video source captures and sends out to the

monitoring center per second. For most applications, the higher the sampling rate is, the

better the QoS becomes. However, typical WSNs usually face many practical constraints,

such as computation limit of the sensors, bandwidth of the routers and delay of the net-

work, which restrict the achievable sampling rates. How to allocate system resources in

a way to maximize the aggregate performance of the network subject to these constraints

is an important research topic for RTWSN. In this paper, we address the problem of real-

time sampling rate allocation and dynamic route selection, with the goal of optimizing the

global network performance while maintaining real-time schedulability in RTWSN.

1.4 Organization of the Thesis

The rest of this paper is organized as follows. In Chapter 2, we introduce the back-

ground and related work of the problem that we study. Chapter 3 introduces the multi-

hop RTWSN architecture employed in this paper. In Chapter 4, we give the real-time

schedulability analysis for the system, and show how to improve the utilization of routers

comparing to the data transmission scheme used in previous work. The improvement on

utilization of individual routers increases network throughput, and this in turn leads to

better network utility. In Chapter 5, we model the optimal sampling rate assignment with

3

dynamic route selection problem as a nonlinear optimization problem. The centralized

algorithm and the distributed algorithm are both presented in Chapter 6. In Chapter 7, we

conduct a bunch of simulations, show the results and analyze them: we first show that the

distributed algorithm is efficient by analyzing the simulation results on convergence, and

then prove that our proposed data transmission scheme is better by comparing it with the

original scheme in [25]; we also study how the step size of updating and the convergence

threshold affect the convergence, and compare the distributed and centralized algorithms in

terms of control traffic and scalability. Finally, Chapter 8 presents conclusions and future

work.

4

CHAPTER 2
Related Work

2.1 Resource Allocation in Computer Networks

Resource allocation has been an active research area for computing systems [22],

[34], [3]. Most of them do not take real-time requirements into consideration and hence

cannot be directly applied to real-time systems. Kelly and Low et al. first studied the prob-

lem of resource allocation for congestion control in computer networks [21], [20], [26].

These papers focused on the the optimization problem given link capacity constraints, and

they formed the foundation of Network Utility Maximization (NUM), but again the real-

time constraints were not considered. Later, researchers extended the work to resource

allocation in wireless networks in general [9], [7] and in WSNs in particular [13].

Finding the optimal task execution rates subject to the schedulability constraints was

first studied by Seto et al. and by Sha et al. for analog and digital controllers, respec-

tively [29], [31]. They presented offline optimization techniques based on the Kuhn-Tucker

conditions1 , but the schedulability constraint considered is only for single processor. Ra-

jkumar et al. developed QoS-based Resource Allocation Model (Q-RAM), which is ca-

pable of handling multiple quality dimensions [28], but the solution can only be used in

1 More details about Kuhn-Tucker conditions can be found in [2].

5

a single constraint case. Lee and Ghosh et al. studied the scenario under multiple con-

straints [23], [14], but the problem they addressed is an integer programming problem,

which is different from the problem discussed in this paper. In [23], the integer program-

ming problem proved to be NP-hard, and several sub-optimal algorithms were proposed.

According to [14], Hierarchical Q-RAM is the technique with the best scalability. How-

ever, that algorithm requires the division of multiple constraints into independent groups,

which is impractical for multi-hop RTWSN. Lately, the work by Chen et al. made it pos-

sible to achieve the maximum system utility [8], but it considered discrete task rates, and

the employed model as well as the focused problem are different from ours.

2.2 Resource Allocation in RTWSNs and Network Utility Maximization

RTWSN presents new challenges for real-time resource allocation. First, size and

cost constraints require an efficient and distributed algorithm that can globally optimize

the resource allocation. Second, since routes in a RTWSN may intersect with each other

at routers, sampling rate optimization for real-time flows must take into consideration

the traffic contention at each router. Liu et al. first transformed the real-time sampling

rate assignment problem in a WSN to a constrained optimization problem [25], which

explicitly captures the real-time requirements of the WSN as optimization constraints.

They also proposed a distributed algorithm based on the Internet pricing schemes [26].

However, this work assumed that packet routing decision is made independent of rate

selection, and routes stay unchanged during the process of sampling rate optimization. As

we will show later in Section 7.1, this assumption of static route selection may limit the

global network performance seriously, which is also referred to as network utility.

6

The resource allocation problem in RTWSNs is a complex problem, which involves

more than one layer in the network protocol stack. For example, to achieve the optimal

QoS or network utility in the network, multiple layers have to be taken into accounted:

how to set the sampling rates is a problem belonging to the physical layer; the Medium

Access Control (MAC) layer is responsible for efficiently dealing with the contention or

transmission failure; how to set up the routing in order provide the best service is a concern

of network layer (routing layer); etc. More importantly, to achieve a global optimum,

multiple layers have to be considered together. As an example, we will show later that, to

consider the physical layer and the routing layer separately is not enough to achieve the

optimal network utility.

Recently, based on the NUM framework, extensive research has been conducted to-

wards a systematic understanding of “layering” as “optimization decomposition”, where

the overall communication network is modeled by a generalized NUM problem: each layer

corresponds to a decomposed sub-problem, and the interfaces among layers are quantified

as functions of optimization variables coordinating the sub-problems [9]. For example, the

problem of joint optimization of congestion control and routing has been studied by Chen,

Lin, Wang and He et al. in [7], [24], [35], [16], the problem of joint optimization of con-

gestion control and scheduling has been studied by Eryilmaz, Andrews and Marbach et al.

in [12], [1], [27], and the problem of joint optimization of routing, scheduling and power

control has been studied by Cruz and Xi et al. in [11], [36]. Their approaches showed how

a joint optimization problem can be decoupled and separated into different network layers.

In the above mentioned works, Wang et al. interpreted TCP with Active Queue Man-

agement (TCP-AQM) as distributed primal-dual algorithms to maximize aggregate utility

7

over source rates [35]. The flow rates and routing are the optimization variables, where

the link capacity constraints are considered. Our work is inspired by this paper, and we

manage to introduce the real-time constraints to the original NUM problems, in order to

provide real-time services for wireless sensor networks.

2.3 Our Contribution

In this paper, we systematically study the problem of optimal sampling rate assign-

ment together with dynamic route selection for real-time wireless sensor networks. In

contrast to the work by Liu et al. [25] where static routing is assumed, we allow dynamic

routing. In our model, each sensor source has one or more paths leading to its correspond-

ing destination (data sink), but only one path at a time is selected for data transmission.

The set of candidate paths between a source and a destination can be chosen offline based

on existing routing algorithms for wireless sensor networks such as SPIN [18], GPSR [19],

GEAR [37], Rumor Routing [4], SPEED [17] or RPAR [10]. Instead of using the “opti-

mal” route determined by a specific routing algorithm, we keep all the feasible ones as

candidate routes according to application requirements and select route to maximize the

overall network utility.

We first show that the data transmission scheme employed in [25] is not efficient when

the data blocks to be transmitted are relatively large, then propose a new scheme that can

enhance the network utility. The new scheme also facilitates schedulability analysis for

each router, as well as the implementation of the distributed algorithm. The optimiza-

tion problem with dynamic route selection is then formulated and transformed into an

optimization problem with nonlinear objective function and linear constraints. Finally, a

distributed algorithm based on the primal-dual method and dual decomposition technique

8

will be given for the joint optimization problem. The algorithm is able to find the optimal

sampling rates and the optimal routing, while maintaining the real-time schedulability in

a dynamic routing environment.

9

CHAPTER 3
System Architecture

3.1 RICH Architecture

Caccamo et al. first provided real-time support for multi-hop RTWSN [6], where

a cellular base station layout is deployed as the backbone for the underlying RTWSN,

as shown in Figure 3–1. In this architecture, each base station functions as a router at

the center of each cell. The base stations use seven non-overlapping Radio Frequency

(RF) bands, and all RF broadcasts are within one-hop. The particular geographical layout

makes each base station and its six neighbors transmit with distinct RF bands, and any

two base stations sending with the same RF band are at least two cells apart. The inter-

cell communication in the wireless sensor network uses a globally synchronized TDMA

scheme, where a period is divided into six slots, each corresponding to the data transmis-

sion towards one of the six directions. Therefore, the inter-base-station communication is

a mixed FDMA-TDMA scheme.

More recently, based on the mixed FDMA-TDMA scheme, Giannecchini et al. pro-

vide an online suboptimal approximation algorithm (CoRAl) to dynamically reconfigure

sensing rates of RTWSN [15]. CoRAl runs fast but only applies to exponential perfor-

mance loss function.

Based on the cellular base station backbone layout in [6], Liu et al. proposed the Real-

time Independent CHannels (RICH) architecture [25]. RICH architecture employs the

10

Figure 3–1: The Mixed FDMA-TDMA Base Station Backbone Layout

11

mixed FDMA and Direct Sequence Spread Spectrum CDMA (DSSS-CDMA)1 scheme

instead of the mixed FDMA-TDMA scheme [6], in order to achieve better flexibility and

simpler schedulability analysis. Figure 3–2 shows the internal architecture of the RICH

base station. Each RICH base station has seven DSSS-CDMA modulation/demodulation

Co-Processing Units (CoPUs), each operates with a distinct DSSS-CDMA Pseudo Noise

(PN) sequence at a distinct FDMA RF band. Among which, six of the DSSS-CDMA

CoPUs are receivers, and the other one is the only transmitter of the base station.

Moreover, they deployed forty-nine DSSS-CDMA PN sequences and maintained a

seven RF band coloring of the cells, denoted as A1, . . . , A7, B1, . . . , B7,C1, . . . ,C7,

D1 . . . ,D7, E1, . . . , E7, F1, . . . , F7,G1, . . . ,G7 respectively. Figure 3–3 shows this de-

ployment. In a cell labeled XY , the RICH base station transmitter deploys the XYth PN

sequence for DSSS-CDMA modulation, and transmits at the Yth RF band. For example,

the base station in a cell labeled G7 transmits with the G7th DSSS-CDMA PN sequence

at the 7th RF band. The transmission range of every transmitter in our RICH RTWSN is

within one-hop. Each of the six receivers on a RICH base station listens to one of its one-

hop neighbors transmission. Take the RICH base station at a cell labeled A5 for example,

its six receivers listen to the 6, 7, 4, 1, 3, 2th RF band respectively, and demodulate with

DSSS-CDMA PN sequence A6, A7, A4,G1, F3, F2 respectively.

Under such design, the broadcast of a base station is simultaneously received by its

six one-hop neighbors. Due to the employment of DSSS-CDMA technique, transmitting

1 Nowadays, the term CDMA usually refers to DSSS-CDMA. A brief tutorial of DSSS-
CDMA can be found in [25].

12

Figure 3–2: The Internal Architecture of a RICH Base Station

13

Figure 3–3: The Mixed FDMA-CDMA Base Station Backbone Layout

14

and receiving can be carried out independently, and there is no synchronization needed

between any pair of transmissions. Furthermore, the bandwidths of each DSSS-CDMA

CoPU can be distinct, and the scheduling can be independently adjusted to be specific to

each base station.

In this paper, we adopt the mixed FDMA-CDMA RICH architecture for RTWSN

deployment. Note that under the RICH architecture, there can be multiple wireless sensors

(slaves) deployed inside each cell. These sensors usually perform the actual sensing and

also communicate with the base station (head sensor) of the corresponding cell at different

RF bands that do not interfere with the inter-cell communications. This paper only focuses

on the inter-cell communication. Since intra-cell communication is local to the cell, it is

not the focus of this paper, and is therefore not addressed explicitly.

3.2 Schedulability Modeling

For a given RICH base station n, the available bandwidths to its six neighboring RICH

base stations are B1
n, B

2
n, . . . , B

6
n respectively, which may be different from each other due to

irregularity of the wireless medium [38]. We set the data transmission bandwidth of base

station n to be Bn = mini Bi
n, 1 ≤ i ≤ 6, hence the broadcast of n can be reliably received

by all its six neighbors. In the rest of this paper, we use node to refer to the base station

that acts as a router, source to refer to the base station that has data originated within the

corresponding cell, and destination to refer to the last router for data transmission of a

particular application. Note that a source is also a router, since it always forwards data

collected from the sensors within the cell. We also assume that the data are transmitted to

the application terminal by ways other than the mixed FDMA-CDMA inter-cell scheme.

15

Let S be the set of sources in the network, and let Sn be the set of sources for which

node n forwards data. Assume a source s ∈ Sn has a sampling/reporting rate of fs, and

each report packet has a length of ls. The corresponding transmission time for a packet

from source s on node n is therefore cs = ls/Bn. As the sampling/reporting rate is fixed,

the data transmission for Sn on node n can be viewed as a periodic task set, with the

transmission for an individual packet from s ∈ Sn as a job and all transmissions for s ∈ Sn

as the periodic task.

Existing scheduling algorithms can be used to determine the schedulability, such as

Rate Monotonic (RM) and Earliest Deadline First (EDF) scheduling algorithms. In this

paper, we choose non-preemptive EDF scheduling algorithm because EDF is simple for

analysis and packet transmission is usually non-preemptive. The detailed schedulability

analysis is given in the next chapter.

16

CHAPTER 4
Schedulability Analysis

In this chapter, we discuss the schedulability problem in real-time data transmission.

Non-preemptive EDF scheduler is employed to schedule the packets that are received and

to be transmitted at each router. The following sections first introduce the EDF scheduling

(preemptive and non-preemptive) shortly, and show how to model the non-preemptive

EDF schedulability problem for data transmission.

4.1 Preemptive EDF

EDF is a dynamic priority scheduling algorithm that always selects the task with the

shortest absolute deadline to execute, in other words, the task with the earliest deadline

has the highest priority. From the aspect of a single processor, if all tasks are periodic,

preemptive, and have deadlines equal to their periods, EDF is able to achieve 100% pro-

cessor utilization. Since f (f requency) × T (period) = 1, we can write the schedulability

condition as
∑

τ∈T
cτ fτ ≤ 1,

where τ is a periodic task in task set T , cτ is the computation time of task τ and fτ is the

frequency of task τ.

17

4.2 Non-preemptive EDF

Although preemptive EDF scheduling is optimal, data transmission is a task that can-

not be interrupted once it begins, so non-preemptive scheduling must be used for prac-

tical applications. A network data packet typically consists of a header section with the

sequence number, type and routing information, and a data section with the actual data

payload. It is well-known that transmission of a data packet should be atomic and not be

interrupted in the middle, since missing any bits from the header section will influence

data transmission and missing any bits from the data section will violate data integrity.

The schedulability condition for non-preemptive EDF [5] is

∑

τ∈T
cτ fτ + Ci fi ≤ 1, for each i ∈ T , (4.1)

where Ci = max{τ∈T and τ,i}{cτ} is the maximum blocking time for task i.

4.3 EDF Scheduler for Data Transmission

In data transmission scenario, the constraint (4.1) for node n can be transformed into

∑

s∈Sn

ls

Bn
fs +

Li

Bn
fi ≤ 1, for each i ∈ Sn,

where ls is the packet length for source s and Li = max{s∈Sn and s,i}{ls} is the maximum

packet length among all the packets that may block the data transmission for source i.

Then we have the following schedulability condition for data transmission:

∑

s∈Sn

ls fs + Li fi ≤ Bn , for each i ∈ Sn. (4.2)

By taking into account the header of each packet, we have ls (PacketLength) =

hs (HeaderLength)+ds (DataLength) for each source s. In [25], the data from each source

18

are directly encapsulated into packets with different sizes that are application-specific.

This scheme is appropriate for small packet sizes, but may adversely affect system per-

formance with large packet sizes due to the blocking time term in inequality (4.2), which

is related to the maximum length of packets from other sources. We give an example to

illustrate this issue.

Assume that node n with a total bandwidth of 1.92Mbps acts as a router for two

sources s1 and s2, whose parameters are given in Table 4–1.

Table 4–1: Parameters of the Example

f Hz l Mb
s1 5 0.2
s2 10 0.01

In real-time computing, utilization is the proportion of the system’s resources which

is used for computation. For a period task set, the utilization is defined as
∑
τ∈T cτ fτ.

We define achievable utilization of a node n to be the maximum utilization of a node

while satisfying the schedulability condition, i.e., the maximum value of
∑

s∈Sn
cs fs (or

∑
s∈Sn

ls fs/Bn) such that constraint (4.2) can be satisfied. We also define the leftover band-

width as the extra bandwidth capacity of node n to transmit more data:

min
i∈Sn

Bn −
(∑

s∈Sn

ls fs + Li fi

)
.

If node n only forwards packets for s1, then the schedulability condition (4.2) for

source s1 is 0.2 × 5 ≤ 1.92Mbps, which is satisfied. The leftover bandwidth of node n

is 1.92 − 0.2 × 5 = 0.92Mbps which seems to be sufficient to forward additional data

from source s2. However, it turns out that node n cannot forward data from both s1 and

s2 simultaneously due to blocking. If node n forwards packets for both s1 and s2, then the

19

schedulability condition (4.2) includes two inequalities, in which 0.2 × 5 + 0.01 × 10 +

0.2 × 10 ≤ 1.92Mbps does not hold. Although the packet size of s2 is very small, and

half of the bandwidth of node n has not been utilized, it is still impossible to meet the

schedulability condition. In fact, no matter how small the packet size of s2 is, the term due

to blocking time from packets of s1 is 0.2 × 10 = 2Mbps, which will make the condition

(4.2) false. We call this phenomenon utilization jump. It greatly limits the achievable

utilization of the nodes and therefore limits the overall network performance. This problem

is especially severe for video sensor networks, where nodes send high-resolution video

frames periodically at high sampling rates, but is less of a concern for other application,

where nodes send scalar measurement values such as temperature, pressure, humidity, etc.

In this paper, we propose a solution for this problem by dividing a large data block

from a given data source into multiple smaller fixed-size packets with the same deadline

as the original data block. Packets with the same deadline have the same priority, and are

processed in FIFO order. We call this new scheme packet transformation, in analogy with

the technique of period transformation in prioritized preemptive scheduling [30]. Since

the maximum packet length that can block a transmission task is l, the fixed packet length,

we can re-write inequality (4.2) as

∑

s∈Sn

l ks fs + l fi ≤ Bn , for each i ∈ Sn, (4.3)

or
∑

s∈Sn

ks fs + fi ≤ Bn

l
, for each i ∈ Sn, (4.4)

where ks = d ps
d e = d ps

l−he is the number of packets resulting from dividing the data

block of source s with size ps.

20

Compared to the scheme in [25], packet transformation increases the achievable uti-

lization by reducing the utilization jump, since the length of a blocking packet is bounded

in the new schedulability condition (4.3). However, it may increase system overhead due

to an increased number of packet headers. Therefore, we should choose packet sizes ju-

diciously to strike a balance between the utilization waste due to utilization jump and

overhead due to packet headers, as we will show in Section 7.3.

Based on current wireless transmission technology, the data rate of a wireless base

station can be high and will become even higher. The possibility of higher data rate raises

applications with larger data blocks. High data rate cannot alleviate the utilization jump

problem, but it greatly decreases the disadvantage brought by header overhead. Therefore,

as we will show later in the evaluation chapter (Section 7.3), packet transformation is able

to achieve better network utility by balancing the utilization waste due to utilization jump

and overhead due to packet headers.

21

CHAPTER 5
Mathematical Formulation

In this chapter, we present the formal problem formulation of the optimal joint sam-

pling rate assignment and dynamic route selection problem for real-time wireless sensor

networks. Our formulation models the problem as a nonlinear convex optimization prob-

lem with linear constraints as follows:

min
f ,R∈Rs

∑

s∈S
Us(fs) (5.1)

subject to

f ≤ f max (5.2)

f ≥ f min (5.3)

A f ≤ b. (5.4)

In the above formulation, f and R are the decision variables representing the flow

rates and routes to be decided. Us(fs) is a function measuring the utility loss of the real-

time flow originated from source s, and S represents the set of sources in the network. The

formulation is discussed in detail in the following sections.

5.1 Network Utility Loss Index

For most applications, performance (QoS) improves with increasing of sampling

rates. Ideally, the best performance is achieved with infinite sampling rate, i.e., contin-

uous sampling, which is obviously not achievable in reality. We use the Utility Loss Index

22

(ULI) to capture the performance loss using discrete sampling rates compared to the case

when using continuous sampling [29]. For control applications, Seto et al. showed that

the ULI is in the following general form:

Us(fs) = ωsαse−βs fs ,

where fs is the sampling rate of source s, and non-negative values ωs, αs and βs are

application-specific parameters, which can be determined through curve fitting using mea-

surement data. In this paper, we generalize the form of ULI function to strictly decreasing

differentiable convex function with regard to rate fs. The sum of ULI over all the sources

in the network is defined as network ULI, which is the objective function of our formulated

optimization problem. The network utility maximization can be achieved by minimizing

the network ULI.

5.2 Single-path Routing

We first introduce some notations used to model the network and routing. They will

be encapsulated in the constraints formulation.

Bn Broadcast bandwidth of node n.

b Broadcast bandwidth vector.

K s Number of acyclic paths from source s to its destination.

S The set of sources in the network.

S Number of sources in the network.

N The set of nodes in the network.

N Number of nodes in the network.

L The set of directional links in the network.

23

L Number of directional links in the network.

To help the readers understand our modeling better, we also give a practical example

in this section. Consider the wireless sensor network shown in Figure 5–1, where nodes

n1, n3, n4, n11 and n14 are sources (numbered s1, . . . , s5 respectively) that send data to their

corresponding destinations n15, n16, n1, n13 and n7 (numbered d1, . . . , d5 respectively).

We suppose the following candidate routes between the sources and the correspond-

ing destinations are obtained with an existing routing algorithm:

H1 =


n1 → n2 → n5 → n10 → n15

n1 → n2 → n5 → n11 → n15

H2 =



n3 → n5 → n11 → n16

n3 → n6 → n11 → n16

n3 → n6 → n12 → n16

H3 =

{
n4 → n3 → n2 → n1

H4 =



n11 → n10 → n9 → n13

n11 → n10 → n14 → n13

n11 → n15 → n14 → n13

24

Figure 5–1: The Network Deployment of the Example

H5 =



n14 → n10 → n5 → n6 → n7

n14 → n10 → n11 → n6 → n7

n14 → n10 → n11 → n12 → n7

n14 → n15 → n11 → n6 → n7

n14 → n15 → n11 → n12 → n7

n14 → n15 → n16 → n12 → n7

.

In the following subsections, we will show how to model the problem step by step.

After each step of modeling, we also show how to deal with the example correspondingly.

25

5.2.1 Network Topology Matrix – H

Suppose that there are K s acyclic paths from source s to its destination, represented

by an L × K s 0–1 matrix Hs where

H s
l j =


1, if path j of source s uses link l;

0, otherwise.

Let H s be the set of all columns of Hs that represents all the available paths to s.

Define the L × K matrix H as

H = [H1 . . .HS],

where K =
∑

s K s is the total number of paths existing in the network, and H defines the

physical topology of the network.

Given the network topology, it is very easy to generate the topology matrix, and

therefore we are not going to show it here.

5.2.2 Flow Fraction Matrix – W

Let ws be a K s × 1 vector where the jth entry represents the fraction of flow from s

on its jth path such that

ws
j ≥ 0 and 1T ws = 1,

where 1 is a vector of an appropriate dimension with the value 1 in every entry. We require

ws
j ∈ {0, 1} for single-path routing. Collecting the vectors ws for s = 1, . . . , S , we get a

K × S block-diagonal matrix W. LetWs be the set of all such matrices corresponding to

single-path routing defined as

Ws = {W |W = diag(w1, . . . ,wS) ∈ {0, 1}K×S , 1T ws = 1,∀s },

26

where diag constructs a matrix given the diagonal elements.1

For the given example, if every source s selects the first path in H s as its route, then

we have W = diag(w1, . . . ,w5) where

w1 = (1, 0)T

w2 = (1, 0, 0)T

w3 = (1)T

w4 = (1, 0, 0)T

w5 = (1, 0, 0, 0, 0, 0)T .

5.2.3 Routing Matrix – R

As mentioned above, H defines the set of acyclic paths available to each source, and

W defines how the sources load balance across these paths. Their product defines an L×S

routing matrix R = HW that specifies the fraction of the flow of s at each link l. The set

of all single-path routing matrices is

Rs = { R | R = HW, W ∈ Ws },

1 When the given elements are vectors, diag constructs block diagonal matrix from
input argument, which is equivalent to the blkdiag command in MatLab. For example, if
w1 = (1, 0)T and w2 = (1, 0, 0)T , then

diag(w1,w2) =



1 0
0 0
0 1
0 0
0 0


.

27

where

Rls =


1, if link l is in the path of source s;

0, otherwise.

The routing matrix R = HW of the example is very large and is therefore not shown

here, but we can write the corresponding routing set as follows:

R =



n1 → n2 → n5 → n10 → n15

n3 → n5 → n11 → n16

n4 → n3 → n2 → n1

n11 → n10 → n9 → n13

n14 → n10 → n5 → n6 → n7

.

To make it more clear, we draw the corresponding routes on the network, as shown by

Figure 5–2.

5.2.4 Network Traffic Matrix – T

We also define an N × S traffic matrix T to specify the relationship between routers

and sources, where

Tns =


1, if node n is a router for source s;

0, otherwise.

In other words, Tns = 1 indicates s ∈ Sn.

A node n is a router for source s if and only if n forwards the data for s. So we define

an N × L matrix Lout to be the out-link matrix which specifies whether a link l ∈ L is an

28

Figure 5–2: The Selected Routes of the Example

out-link of node n ∈ N , that is

Lout
nl =


1, if link l is an out-link of node n;

0, otherwise.

Therefore, the traffic matrix T can be calculated as

T = LoutR.

29

Continuing with the previous example, the corresponding traffic matrix is:

T = LoutR =



1 0 0 0 0

1 0 1 0 0

0 1 1 0 0

0 0 1 0 0

1 1 0 0 1

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

1 0 0 1 1

0 1 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0



.

The nth row in T shows which sources use node n as a router, and it is closely related

to the schedulability constraints of node n.

Consider node n5 as an example. The 5th row of traffic matrix T is (1, 1, 0, 0, 1), indi-

cating that node n5 forwards data for sources s1, s2 and s5. According to the schedulability

30

Table 5–1: Parameters of the Data Sources of the Example

s αs βs ωs ps f max
s f min

s
1 0.66 0.3 1 0.01 11 30
2 0.66 1.0 2 0.015 2.5 25
3 0.66 0.5 3 0.02 5 30
4 0.66 0.7 4 0.025 1 40
5 0.66 0.3 5 0.03 2 30

Table 5–2: Parameters of the Nodes of the Example

n 1 2 3 4 5 6 7 8
Bn 0.25 0.6 0.4 0.25 0.25 0.7 0.2 0.15
n 9 10 11 12 13 14 15 16

Bn 0.3 0.4 1 0.5 0.25 0.3 0.75 0.3

condition (4.4), we have three inequalities, one for each source:

(k1 f1 + k2 f2 + k5 f5) + f1 ≤ B5

l
(5.5)

(k1 f1 + k2 f2 + k5 f5) + f2 ≤ B5

l
(5.6)

(k1 f1 + k2 f2 + k5 f5) + f5 ≤ B5

l
(5.7)

Therefore, the complete schedulability constraints can be described by the inequal-

ity (5.4), with the parameters shown in (5.8).

The parameters of sources are defined in Table 5–1 and the parameters of nodes are

defined in Table 5–2. In this paper, the unit for sampling rate is Hz, the unit for data block

and packet size is Mb, and the unit for bandwidth is Mbps, if unspecified.

Assume the fixed packet length l is 1kb, and for simplicity, we assume there is no

overhead for the header in this example, i.e., h = 0. So, a data block of source s with size

31

ps will be divided into ks = d ps
l e packets. Table 5–3 shows the number of packets of each

source after packet transformation.



A =



k1 + 1 0 0 0 0

k1 + 1 0 k3 0 0

k1 0 k3 + 1 0 0

0 k2 + 1 k3 0 0

0 k2 k3 + 1 0 0

0 0 k3 + 1 0 0

k1 + 1 k2 0 0 k5

k1 k2 + 1 0 0 k5

k1 k2 0 0 k5 + 1

0 0 0 0 k5 + 1

0 0 0 k4 0

k1 + 1 0 0 k4 k5

k1 0 0 k4 + 1 k5

k1 0 0 k4 k5 + 1

0 k2 + 1 0 k4 0

0 k2 0 k4 + 1 0

0 0 0 0 k5 + 1



f = (f1, f2, f3, f4, f5)T

b = (B1
l ,

B2
l ,

B2
l ,

B3
l ,

B3
l ,

B4
l ,

B5
l ,

B5
l ,

B5
l ,

B6
l ,

B9
l ,

B10
l ,

B10
l ,

B10
l ,

B11
l ,

B11
l ,

B14
l)T

(5.8)

32

Table 5–3: Number of Packets after Packet Transformation

s 1 2 3 4 5
kn 10 15 20 25 30

Based on the parameters given above, the complete numerical values of constrains (5.2)–

(5.4) can be derived and shown in (5.9).

To facilitate distributed computation, we divide the schedulability constraints into

individual nodes. The local schedulability constraints at node n are An f ≤ bn, where An

and bn define the rows relevant to node n in A and b, respectively. Take node 5 for example

again, the schedulability constraints can be shown in the form of A5 f ≤ b5 with

A5 =



11 15 0 0 30

10 16 0 0 30

10 15 0 0 31


,

b5 = (25, 25, 25)T .

Therefore, each node only cares about the local constraints, and the distributed algo-

rithm acts in a way such that all nodes work collaboratively to find the optimal sampling

rates which satisfies the local constraints for each node n ∈ N .

33



A f =



11 0 0 0 0

11 0 20 0 0

10 0 21 0 0

0 16 20 0 0

0 15 21 0 0

0 0 21 0 0

11 15 0 0 30

10 16 0 0 30

10 15 0 0 31

0 0 0 0 31

0 0 0 26 0

11 0 0 25 30

10 0 0 26 30

10 0 0 25 31

0 16 0 25 0

0 15 0 26 0

0 0 0 0 31





f1

f2

f3

f4

f5



≤ b =



250

600

600

400

400

250

250

250

250

700

300

400

400

400

1000

1000

300



f ≤ f max = (30, 25, 30, 40, 30)T

f ≥ f min = (11, 2.5, 5, 1, 2)T

(5.9)

34

5.3 Constraints

5.3.1 Maximum Device Limit

Although in most cases, the network utility can be increased by raising the sampling

rate, unfortunately, the sampling rate is not possible to be raised infinitely. A sensor device

may impose a limit on sampling rate due to its physical limitations. We use f max to refer

to this limit:

f ≤ f max.

This corresponds to Constraint (5.2).

5.3.2 Minimum Application Requirement

Usually, if a specific application wants to guarantee certain quality of a service, it

has to be satisfied with certain level of sampling rate. In other words, an application may

impose a minimum sampling rate to maintain its minimum performance level:

f ≥ f min.

This corresponds to Constraint (5.3).

5.3.3 Schedulability Constraint

Based on the analysis in Section 4.3, we can derive the following constraint from the

schedulability condition (4.3):

A f ≤ b.

This corresponds to Constraint (5.4).

35

CHAPTER 6
Optimizing Sampling Rates with Dynamic Route Selection

In this chapter, we present solutions for the joint optimal sampling rates and route

selection problem.

Our solutions draw upon ideas from the recent research of Network Utility Maxi-

mization (NUM), which formulates network system design problem as maximization of

the aggregate utility of all the nodes subject to physical or economic constraints. Since

the publication of the seminal work [21] by Kelly et al. in 1998, the NUM framework has

enabled many applications in network research. Compared to the traditional linear net-

work flow problem, the NUM framework takes advantages of many advances in nonlinear

optimization theory and distributed algorithms. Specifically, the design of the distributed

solution algorithm in this paper is based on the primal-dual method and dual decomposi-

tion technique.

6.1 Primal and Dual Problems

The primal problem of the optimal sampling rate assignment with dynamic route

selection for real-time wireless sensor network problem is described by (5.1)–(5.4).

A centralized algorithm can be directly derived by solving the primal problem. How-

ever, a centralized algorithm requires collecting data from each node. This will generate

a lot of traffic and create traffic bottlenecks around the central computing nodes. Due to

this reason, a centralized algorithm is inefficient and therefore not suitable for real-life

application especially for wireless sensor network application. To avoid this problem, a

36

distributed algorithm is usually more desirable for solving the optimization problem in

sensor networks.

An alternative solution for the optimization problem is based on solving the La-

grangian dual problem corresponding to the primal problem (5.1)–(5.4):

min
λ≥0

∑

s

min
f min≤ f≤ f max

(
Us(fs) + fs min

Rs∈H s

∑

m

Amsλm

)
−

∑

m

bmλm, (6.1)

where λ can be interpreted as the prices (or schedulability prices) for the schedulability

constraints in (5.4). The dual problem (6.1) can be decomposed into several sub-problems,

which find the optimal sampling rates and routes in an iterative manner such that the

network ULI is minimized and the schedulability cost is minimized, as shown later in (6.3)

and in (6.4) respectively.

Let fs(t) be the updated sampling rate proposal for source s at iteration t. Let Rs(t)

be the updated routing vector for source s at iteration t. The dual problem can be solved

using dual decomposition, in a manner of gradually approaching:

λ(t) = arg min
λ≥0

∑

s

(
Us(fs) + fs

∑

m

Amsλm

)
−

∑

m

bmλm, (6.2)

fs(t) = arg min
f min≤ f≤ f max

Us(fs) + fs

∑

m

Amsλm, ∀s ∈ S, (6.3)

Rs(t) = arg min
Rs∈H s

∑

m

Amsλm, ∀s ∈ S. (6.4)

where (6.2) updates the schedulability prices, and (6.3) (6.4) update sampling rates and

routing respectively.

37

An iterative subgradient method can be used to update the prices λ, which is also

referred to as dual variables:

λm(t) =

[
λm(t − 1) + γ

(∑

s

fsAms − bm

)]+

, 1 ≤ m ≤ M (6.5)

where function [•]+ is defined as [x]+ = max{x, 0} , and M is the number of schedulability

constraints in constraint set (5.4). Therefore, Equation (6.2) can be replaced by Equa-

tion (6.5), and Equations (6.3)–(6.5) form a solution for the dual problem (6.1) by solving

the three decomposed sub-problems: price updating, sampling rate assignment and route

selection. The sub-problems are coordinated by the prices λ.

Define the Lagrangian

L(R, f , λ) =
∑

s

(
Us(fs) + fs

∑

m

Amsλm

)
−

∑

m

bmλm. (6.6)

The primal problem (5.1)–(5.4) and the dual problem (6.1) can be expressed respectively

as

Vsp = min
f ,R∈Rs

min
λ

L(R, f , λ),

Vsd = min
λ

min
f ,R∈Rs

L(R, f , λ).

Theorem 1

Vsp ≥ Vsd.

Proof Please refer to Appendix-A.

Definition 1 (Duality Gap) Duality Gap refers to the difference between the optimal value

of the primal problem Vsp and that of the corresponding dual problem Vsd.

38

The solution based on Lagrangian dual and dual decomposition works only if there is

no duality gap.

6.2 The Centralized Algorithm

A centralized solution can be obtained by solving the sampling rate optimization

problem with static routing as shown below for all possible route configurations:

min
f

∑

s∈S
Us(fs)

subject to

f ≤ f max

f ≥ f min

A f ≤ b.

Therefore, the optimal routing is the one that minimizes the network ULI, while the

solution gives the optimal sampling rates. This optimization problem can be solved with

many commercial optimization packages such as the MatLab Optimization Toolbox.1

1 The fconmin function from the MatLab Optimization Toolbox can be employed for
optimization problems with nonlinear objective function and linear constraints, and one
can select the specific solver from the several options coming with the library, including
Interior-Point Algorithm, Active Set Algorithm, and Line Search Algorithm. In addition,
if an algorithm is not specified manually, MatLab will automatically choose an optimal
one based on application characteristics. For our example, the Line Search Algorithm is
chosen automatically by MatLab.

39

6.3 The Distributed Algorithm

In this section, we present our design of the distributed algorithm for solving the op-

timal sampling rates with dynamic route selection problem. The algorithm is based on

the recent research of cross-layer optimization in TCP/IP networks [35], where each con-

straint in (5.4) is given a schedulability price, and each source tries to select the sampling

rate and route that minimize the network ULI and the schedulability cost.

The distributed algorithm has two main attributes:

• It converges to the optimal solution of the optimization problem.

• Each update computation is only based on local information of a node or a source.

First we list some notations that will be used in the distributed algorithm:

γ Step size of updating.

dout
n The worst-case out-degree of a node n, i.e., the data from how many sources are

possible to pass through node n, and use n as a router;

bi
n The right side of the ith schedulability constraint at node n, i.e., bi

n = Bn.

bn A dout
n × 1 vector with all the elements set to Bn.

λi
n The price for the ith constraint at node n.

λn The vector of schedulability prices at node n.

A A := A(R, l). That is, A depends on the routing and the pre-defined packet length l, as

shown in Section 5.2.

Ansλn Ansλn :=
∑

1≤i≤dout
n

Ai
nsλ

i
n.

To facilitate the distributed computation, we divide the M constraints in (5.4) into N

sets, each λn corresponding to a node n. That is, each node only keeps the dout
n schedula-

bility constraints and prices relevant to itself.

40

The distributed algorithm is made up of an initialization section and an iteration sec-

tion. In each iteration step, the prices, sampling rates and routes are updated based on the

latest information until convergence.

6.3.1 Initialization

a. Each node n sets all the dout
n relevant prices to 1.

b. Each source s sets the sampling rate fs to f min
s .

c. Each source s selects the first candidate route fromH s.

6.3.2 Update Prices at Iteration t

a. Each source sends out a RP (Rate Proposal) packet with the latest rate proposal to

its destination along the currently selected route.

b. Upon receiving the RP packets from all the relevant sources, each node n computes

new prices for the constraints with the following price updating equation:

λi
n(t) =

[
λi

n(t − 1) + γ
(∑

s

fsAi
ns − bi

n

)]+

, 1 ≤ i ≤ dout
n .

6.3.3 Update Sampling Rates at Iteration t

a. Each destination sends an SRU (Sampling Rate Update) packet with value 0 along

the reversed path of the current route to the source.

b. Upon receiving an SRU packet, each node adds Ansλn to the value in the packet, and

forwards it along the reversed path.

c. Upon receiving an SRU packet, each source s updates its rate proposal according to

local optimization as follows:

fs(t) = arg min
f min
s ≤ fs≤ f max

s

Us(fs) + fs

∑

n

Ansλn.

41

6.3.4 Update Routing at Iteration t

a. Each destination sends a RU (Routing Update) packet with value 0 along the re-

versed path of every possible route to the source.

b. Upon receiving a RU packet, each node adds Ansλn to the value in the packet as-

suming it is a router for current source s, and forwards the packet along the reversed

path.

c. Upon receiving all the RU packets from all possible routes for a source-destination

pair, each source s updates the routing according to local optimization

Rs(t) = arg min
Rs∈H s

∑

n

Ansλn.

6.4 Convergence Criteria

Definition 2 (Equilibrium) We say that (R̃, f̃ , λ̃) is an equilibrium if it is a fixed point of

the above algorithm. That is, starting from routing R̃, sampling rates f̃ and the associated

prices λ̃, the algorithm yields (R̃, f̃ , λ̃) for the next iteration.

Theorem 2 An equilibrium (R̃, f̃ , λ̃) exists if and only if there is no duality gap between

the primal problem (5.1)–(5.4) and the dual problem (6.1). In this case, the equilibrium

(R̃, f̃ , λ̃) is a solution for both the primal and dual problems.

Proof Please refer to Appendix-B.

According to Theorem 2, the distributed algorithm has an equilibrium exactly when

there is no duality gap in the network utility optimization, i.e., when Vsp = Vsd. In other

words, when the distributed algorithm converges, the equilibrium found is the solution of

the optimization problem (5.1)–(5.4).

42

In practical applications, the distributed algorithm terminates when an equilibrium is

found, which is characterized by the following convergence criteria:

||λ(t) − λ(t − 1)||n ≤ ελ, (6.7)

|| f (t) − f (t − 1)||n ≤ ε f , (6.8)

R(t) = R(t − 1), (6.9)

where ελ > 0 and ε f > 0 are sufficiently small real numbers. ||v||n denotes the nth-norm

of vector v = (v1, . . . , vk). That is, ||v||1 = maxi vi and ||v||n = (
∑k

i=1 vn
i)

1
n when n ∈ Z+ and

n , 1.

43

CHAPTER 7
Performance Evaluation

Extensive simulation experiments have been conducted with MatLab and OMNeT++

to demonstrate the efficacy of our solutions. The results and some further analysis are

presented in this chapter.

7.1 Convergence

This simulation is based on the parameters of the example in Section 5.2.

First, we solved the optimization problem with the centralized algorithm described in

Section 6.2. The optimal network ULI is 0.1877, with f ∗ = (22.7273, 10.0000, 11.9048,

11.5385, 9.6775) and r∗ = (2, 2, 1, 1, 4) where the sth element in r∗ indicates the optimal

route for source s. For example, the 5th element of r∗ is 4, meaning that s5 should select

the 4th route from its candidate route setH5.

Another simulation experiment was conducted using the distributed algorithm pro-

posed in Section 6.3, with the step size γ set to 0.3. The convergence criteria are described

by conditions (6.7)–(6.9), with 2nd-norm, and with ελ and ε f both set to 1 × 10−5. The

algorithm converges within 894 iterations and the result is exactly the same as the one

obtained from the centralized solution. The convergence of the distributed algorithm is

shown in Figure 7–1 and Figure 7–2, where Figure 7–1 shows the convergence of the

global network ULI and Figure 7–2 shows the convergence of the sampling rate of each

source.

44

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

Iteration Steps

N
et

w
or

k
U

LI

Figure 7–1: The Convergence of Network ULI

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

Iteration Steps

S
am

pl
in

g
R

at
e

(H
z)

f
1

f
2

f
3

f
4

f
5

Figure 7–2: The Convergence of Sampling Rates

45

0 200 400 600 800 1000
0

1

2

3

4

5

6

Iteration Steps

S
el

ec
te

d
R

ou
te

s
(H

z)

r
1

r
2

r
3

r
4

r
5

Figure 7–3: The Convergence of Routes

Figure 7–4 shows the leftover bandwidth of each node after the convergence. Ac-

cording to the figure, it is non-negative for every node, indicating that all the nodes are

schedulable, since the schedulability condition (4.3) for data transmission model is satis-

fied.

To demonstrate the advantage of optimizing sampling rates with dynamic route selec-

tion, we enumerated all possible routings, solved each corresponding optimization prob-

lem with static routing, and then calculated the average network ULI. The average value

of network ULI for this experiment is 3.1866, and this shows the importance of dynamic

routing: the network utility obtained by optimizing sampling rates with static routing may

be very pessimistic for a given static routing, even if the routing is chosen by some exist-

ing good routing protocol, because usually a routing protocol is independent with real-time

constraints.

46

0 2 4 6 8 10 12 14 16 18
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Node Number

Le
fto

ve
r

B
an

dw
id

th
 (

M
bp

s)

Figure 7–4: The Leftover Bandwidths after Convergence

Table 7–1: Convergence Times with Varied Convergence Thresholds

ε 10−9 10−8 10−7 10−6 10−5 10−4

Convergence Iteration 1410 1281 1152 1023 894 766
10−3 10−2

638 501

Assume ελ = ε f = ε, we varied the value of the convergence threshold ε, the number

of the iterations needed to achieve the convergence will also be varied. Table 7–1 lists the

convergence speed with different value of ε. The data in Table 7–5 can be plotted on a

figure as shown in Figure 7–5. An interesting observation is that the number of iterations

needed for convergence decreases nearly linearly with the increasing of the convergence

threshold on the semi-log plot.

47

10
−10

10
−8

10
−6

10
−4

10
−2

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

ε

Ite
ra

tio
n

Figure 7–5: Convergence Times with Varied Convergence Thresholds

7.2 Distributed Implementation

Based on the practical parameters of the example, we carried out a simulation with

one of the popular network simulators, namely, OMNeT++ [32], [33]. To implement the

distributed algorithm, we devised a network protocol that matches the algorithm described

in Section 6.3, as follows:

Network Protocol for Distributed Algorithm

The protocol is carried out in iterations, where each iteration consists of 4 steps:

Step 1: Each source sends a Probe packet along the currently selected route, and

each route updates the constraints upon receiving the Probe packet. The Probe packet also

informs the destination which is the current route.

48

Step 2: Each source sends out a RP (Rate Proposal) packet with the latest rate proposal

to its destination along the current route, and each router updates the prices accordingly

upon receiving the RP packet.

Step 3: Each destination sends a SRU (Sampling Rate Update) packet along the re-

versed path of the current route with a double value set to 0. Upon receiving the packet,

each router updates the double value, so that the source is able to update the sampling rate

according to Equation (6.3) when receiving the packet.

Step 4: Each destination sends a RU (Routing Update) packet along the reversed

path of any possible route with a double value set to 0. Upon receiving the packet, each

router updates the double value, so that the source is able to decide the route according to

Equation (6.4) when receiving all the RU packets in this iteration.

A real distributed algorithm has been implemented for OMNeT++ simulation based

on the above protocol. We assume each control packet is of 16 bytes, where 4 bytes are

used to convey information such as rate proposal in Step 2 and the double value in Step 3

and Step 4. For the distributed algorithm, we also assume that all the involved routers of

the RTWSN are coarse-grain synchronization. This can be achieved, by synchronizing all

the nodes and start each step at time kTstep, where k ∈ Z and Tstep is the empirical upper

bound of end-to-end packet travel time based on the network parameters.

Figure 7–6 is a snapshot of the OMNeT++ simulation under graphic mode. The con-

vergence of sampling rates is shown by Figure 7–7. The obtained sampling rates are con-

sistent with those from MatLab simulation. According to the simulation, the distributed

algorithm is able to converge in a short time of no more than 16 seconds.

49

Figure 7–6: A Snapshot of the OMNeT++ Simulation

50

Figure 7–7: The Convergence of Sampling Rates from OMNeT++ Simulation

51

Table 7–2: Parameters of the Data Sources for the Simulation

s αs βs ωs ps f max
s f min

s
1 0.66 0.3 1 1 ∞ 0
2 0.66 1.0 2 1.5 ∞ 0
3 0.66 0.5 3 2 ∞ 0
4 0.66 0.7 4 2.5 ∞ 0
5 0.66 0.3 5 3 ∞ 0

Table 7–3: Parameters of the Nodes for the Simulation

n 1 2 3 4 5 6 7 8
Bn 16.0 30.0 24.0 16.0 16.0 42.0 12.0 10.0

9 10 11 12 13 14 15 16
20.0 24.0 54.0 28.0 16.0 20.0 48.0 14.0

7.3 Effect of Varied Packet Sizes

We also conducted simulation experiments to show how different packet sizes affect

the optimal network utility. Assume the header of a packet takes 12 bytes, which is a

reasonable value in real applications. Tables 7–2 and 7–3 show the simulation parameters.

The optimal network ULI is 0.8433 if data blocks are not divided into packets, even

if the optimization considers the dynamic routing. Based on our packet transformation

technique, we varied the packet size that the data blocks are divided into, and the result

is shown in Figure 7–8. The achievable optimal network ULI is around 0.5, which is

much better than the result of 0.8433 obtained without using the packet transformation

technique, i.e., the method in [25].

Another interesting observation from Figure 7–8 is that, the result forms a U-shape:

the minimum network ULI is achieved with a medium packet size that is neither too small

nor too large. The reason is that, there is a tradeoff between the overhead of transmitting

the header information and the utilization waste in schedulability analysis, caused by the

52

10
−4

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

Packet Size (Mb)

N
et

w
or

k
U

LI

Figure 7–8: The Optimal Network ULI with Different Packet Lengths

worst-case blocking time for sending a packet. A more detailed discussion about the

tradeoff can be found in Section 4.3.

7.4 Effect of Step Size γ

The step size of updating γ is an important parameter, which decides how much the

prices can be updated and thus affects the convergence speed. If the step size is too small,

it may take too much time for the prices to adjust to a certain level, while if it is too large,

the prices may not be adjusted slightly to achieve the convergence. Therefore step size

must be carefully chosen so that the distributed algorithm is able to converge and converge

efficiently.

Figure 7–9 and Figure 7–10 show how the network utility and the sampling rates

converge with different values of γ. Figure 7–9(b) shows the case when the step size γ is

53

properly chosen. Figure 7–9(a) shows the case when the step size is too small, while Fig-

ure 7–9(c) shows the case when the step size is too large. Compared to the case shown in

Figure 7–9(b) when γ = 0.3, it takes longer time for the distributed algorithm to converge

when γ = 0.1, while the distributed algorithm cannot converge to one point when γ = 0.5

due to fluctuation.

Figure 7–10 shows how individual sampling rates converge with respect to the it-

eration steps. Figure 7–10(c) indicates that the sampling rates of some sources cannot

converge, instead, their values sway within a certain interval. The reason is that, the step

size of updating is too coarse for all the sources to decide the optimal routing, therefore,

some of the sources will vibrate between two routes with similar schedulability cost. The

route selection affects the constraint parameters, which in turn affect the sampling rates

selection and cause the fluctuation of the sampling rates.

How to select the initial step size is not the focus of this paper. Interested readers can

refer to [25] for more information.

7.5 Incremental Adjustment Property of the Distributed Algorithm

In real world, there are often occasions that ULI functions and constraint set change

dynamically. These changes transform the original optimization problem into a new opti-

mization problem with different constraint parameters, hence the optimal sampling rate f ∗

has to be re-calculated. When distributed algorithm is used, new iterations can be carried

out from the existing optimum (R∗, f ∗, λ∗), so as to reach the new optimum faster. We call

this incremental adjustment property. An example is given as follows:

Continue with the simulation example in Section 5.2. Suppose at the 1500th itera-

tion, the ULI coefficients switch from old value set (see Table 5–1) to the new value set

54

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

Iteration Steps

N
et

w
or

k
U

LI

(a) γ = 0.1

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

Iteration Steps
N

et
w

or
k

U
LI

(b) γ = 0.3

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

Iteration Steps

N
et

w
or

k
U

LI

(c) γ = 0.5

Figure 7–9: The Network ULI Convergence with Different Step Sizes of Updating

55

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

Iteration Steps

S
am

pl
in

g
R

at
e

(H
z)

f
1

f
2

f
3

f
4

f
5

(a) γ = 0.1

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

Iteration Steps
S

am
pl

in
g

R
at

e
(H

z)

f
1

f
2

f
3

f
4

f
5

(b) γ = 0.3

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

Iteration Steps

S
am

pl
in

g
R

at
e

(H
z)

f
1

f
2

f
3

f
4

f
5

(c) γ = 0.5

Figure 7–10: The Sampling Rates Convergence with Different Step Sizes of Updating

56

Table 7–4: New Parameters of the Data Sources after the 1500th Iteration

s αs βs ωs ps f max
s f min

s
1 0.33 0.3 4 0.01 11 30
2 0.22 0.2 3 0.015 2.5 25
3 1.32 0.5 2 0.02 5 30
4 1.98 0.7 1 0.025 1 40
5 0.66 0.3 6 0.03 2 30

depicted in Table 7–4. Figure 7–11 and Figure 7–12 show the comparison between in-

cremental and non-incremental adjustment schemes: the incremental adjustment scheme

starts with the up-to-date optimum (R∗, f ∗, λ∗); the non-incremental adjustment scheme

starts with the initial configuration of routing, sampling rates and prices, i.e., (R0, f 0, λ0),

where f 0 = f min, λ0 = 1, and R0 is the corresponding routing matrix for the route vector

r0 = (1, 1, 1, 1, 1)T . All other settings of this simulation are the same as those described

in Section 5.2. Under incremental adjustment scheme, in about 1000 iterations, the dis-

tributed algorithm converges again to the new optimum. In contrast, it takes about another

1500 iterations to converge starting from the initial setting.

7.6 Scalability Analysis for the Distributed and Centralized Algorithms

In this section, the control traffic for both distributed and centralized algorithms are

analyzed. The centralized algorithm is efficient when the network is small or intermediate.

However, when the network continues to scale up, the centralized algorithm would reach

its bottleneck. In contrast, under certain assumptions, the distributed algorithm provides

better scalability, though it may be inefficient for very small networks.

57

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

Iteration Steps

N
et

w
or

k
U

LI

(a) incremental adjustment scheme

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Iteration Steps

N
et

w
or

k
U

LI

(b) non-incremental adjustment scheme

Figure 7–11: Network Utility Update with Respect to the Number of Iterations

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

Iteration Steps

S
am

pl
in

g
R

at
e

(H
z)

f
1

f
2

f
3

f
4

f
5

(a) incremental adjustment scheme

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

Iteration Steps

S
am

pl
in

g
R

at
e

(H
z)

f
1

f
2

f
3

f
4

f
5

(b) non-incremental adjustment scheme

Figure 7–12: Sampling Rates Update with Respect to the Number of Iterations

58

7.6.1 Control Traffic Analysis for the Distributed Algorithm

Let φdis
n be the accumulated control traffic (in bytes) passing through base station n

under the distributed algorithm. Let Φdis be the maximum accumulated control traffic (in

bytes) passing through any of the base stations, i.e., Φdis = maxn∈N {φdis
n }.

Recall that dout
n is the worst-case out-degree of node n, i.e., the number of possible

routes passing through node n, and let Dout
n be the number of actual routes passing through

node n. Thus we have Dout
n ≤ dout

n ≤ P, where P the total number of source-destination

pairs in the RICH RTWSN.

During each iteration, in Step 1, Step 2 and Step 3, Dout
n control packets pass through

router n respectively. In Step 4, a total of dout
n packets pass through router n. Without loss

of generality, we assume all control packets are of 16 bytes, in which the header is of 12

bytes, and the payload is of 4 bytes. Therefore the total control traffic passing through

each router n during one iteration is 48Dout
n + 16dout

n .

Based on the simulations in the previous sections, the distributed algorithm usually

reaches good approximation in 1000 steps. Therefore φdis
n ≤ 1000 × (48Dout

n + 16dout
n).

Note that Dout
n ≤ dout

n ≤ P, we have Φdis ≤ 1000 × 64 × P, i.e., Φdis = O(P).

7.6.2 Control Traffic Analysis for the Centralized Algorithm

Let φcen
n be the accumulated control traffic (in bytes) passing through base station n

under the distributed algorithm. Let Φcen be the maximum accumulated control traffic (in

bytes) passing through any of the base stations, i.e., Φcen = maxn∈N {φcen
n }.

Let T be the total number possible routing configurations. T = R1 × R2 × . . . × RP,

where Ri is the number of candidate routes of source-destination pair i. Under centralized

algorithm, for each routing configuration, each source-destination pair needs to send at

59

least one constraint to the central node. Without loss of generality, we suppose each ULI

function is expressed by 3 floating point numbers (12 bytes). To be consistent, we still

assume the control packet header is of 12 bytes. Thus the accumulated control traffic

payload at the central node c is φcen
c ≥ 24PT , and Φcen = φcen

c = Ω(PT).

7.6.3 Comparison between the Distributed and Centralized Algorithms

In small-scale networks, the centralized algorithm is efficient, since the number of

source-destination pairs P and the number of possible routing configurations are small. In

contrast, the distributed algorithm has to go through hundreds of iterations, or even longer,

to converge.

However, in large scale networks, the number of possible routing configurations in-

crease rapidly, and this makes the centralized algorithm impractical. We give an example

below to compare the distributed and centralized algorithms.

Assume each source has 3 candidate routes for each destination. According to the dis-

cussion in Subsection 7.6.1 and 7.6.2, varying the number of source-destination pairs from

10 to 100, we have the comparison of node traffic between the distributed and centralized

algorithms shown in Figure 7–13 as below:

60

10 20 30 40 50 60 70 80 90 100
10

0

10
10

10
20

10
30

10
40

10
50

10
60

Number of Sources−Destination Pairs

N
od

e
T

ra
ffi

c

distributed
centralized

Figure 7–13: Node Traffic with Respect to the Number of Source-Destination Pairs

61

CHAPTER 8
Conclusion and Future Work

8.1 Conclusion

In this paper, we address the problem of optimizing sampling rate assignment with

dynamic route selection for real-time wireless sensor networks. We show that the packet

transformation scheme, which involves splitting large data block into smaller packets, can

achieve better network utility, especially for applications with large data block sizes. This

scheme facilitates schedulability analysis, as well as the implementation of the distributed

algorithm for real-time wireless sensor networks. Furthermore, we model the problem as

a holistic optimization problem with nonlinear objective function and linear constraints,

and present an efficient distributed algorithm based on the primal-dual method. Lever-

aging the dual decomposition technique, the holistic optimization problem is solved by

decomposing the original problem into three sub-problems, which can be solved sepa-

rately and iteratively. We also demonstrate the efficacy of the distributed algorithm, and

the superiority of dynamic routing compared to the static routing counterpart, via extensive

simulations.

8.2 Future Work

There are a number of future research directions. First, the convergence speed of the

distributed algorithm is dependent upon some design parameters, e.g., the initial prices λ

and the step size of updating γ, it will be interesting to study how to set these values to

maximize the convergence speed. Second, Fig.7–1 and Fig.7–2 show that the utility and

62

sampling rates take a long time to converge although they are already very close to the

equilibrium at a very early stage, and can we make the algorithm converge even faster?

Third, we only consider local schedulability for routers in this paper, but it might be desir-

able to consider end-to-end deadline constraints as well, in order to guarantee end-to-end

real-time service. Finally, we plan to implement our algorithm in real-life sensor network

testbed with video surveillance or real-time control applications.

63

Appendix

A. Proof of Theorem 1

In Section 5.2, we have discussed the network model for single-path routing. Multi-

path routing does not restrict that the data from a source can be transmitted through only

one path. Recall that ws is a K s × 1 vector where the jth entry represents the fraction of

flow from s on its jth path such that

ws
j ≥ 0 and 1T ws = 1.

For multi-path routing, we require ws
j ∈ [0, 1]. The corresponding setWn for multi-

path routing is

Wm = {W |W = diag(w1, . . . ,wS) ∈ [0, 1]K×S , 1T ws = 1,∀s }. (1)

The set of all multi-path routing matrices is

Rm = { R | R = HW, W ∈ Wm },

We define:

Vmp = min
f ,R∈Rm

min
λ

L(R, f , λ),

Vmd = min
λ

min
f ,R∈Rm

L(R, f , λ).

We will prove Vsp ≤ Vsd = Vmp = Vmd. Since Rs ⊆ Rm, Vsp ≤ Vmp. We now prove

Vsd = Vmd and Vmp = Vmd.

64

Recall that A depends on variables R and l, and R depends on W, we have

Vsd = min
λ

min
f ,R∈Rs

∑

s

(
Us(fs) + fs

∑

m

Amsλm

)
−

∑

m

bmλm

= min
λ

min
f

∑

s

(
Us(fs) + min

W∈Ws
fs

∑

m

Amsλm

)
−

∑

m

bmλm.

Similarly, for multi-path routing, we have

Vmd = min
λ

min
f

∑

s

(
Us(fs) + min

W∈Wm
fs

∑

m

Amsλm

)
−

∑

m

bmλm.

Define functions gs(f , λ) and gm(f , λ) as

gs(f , λ) := min
W∈Ws

fs

∑

m

Amsλm

gm(f , λ) := min
W∈Wm

fs

∑

m

Amsλm.

In order to show that Vsd = Vmd, we only need to show that gs(f , λ) = gm(f , λ). Clearly

gs(f , λ) ≥ gm(f , λ), sinceWs ⊆ Wm. From (1), noting that W = diag(wi), we have

gm(f , λ) = min
W

fs

∑

m

Amsλm

subject to

1T wi = 1, 0 ≤ wi
j ≤ 1.

Since this is a linear program for the given f and λ, at least one of the optimal points lies

on the boundary, i.e., wi
j = 0 or 1 for all i and j, and hence is inWs ⊆ Wm. Such a point

solves both gs(f , λ) and gm(f , λ), i.e., gs(f , λ) = gm(f , λ).

65

Vmp is equivalent to the problem

min
f min≤ f≤ f max,R∈Rm

∑

s∈S
Us(fs) (2)

subject to

A f ≤ b. (3)

Note that this is not a convex program since the feasible set specified by A f ≤ b is gener-

ally not convex.

To show Vmd = Vmp, we transform Vmp into a convex optimization with linear con-

straints, which hence has no duality gap. Interested readers can refer to [2] for the relevant

basics. Similar to the method shown in [35], by substituting the variables in the problem

(2)–(3), we can obtain an equivalent convex program with linear constraint problem as its

Lagrangian dual. This indicates Vmp = Vmd.

B. Proof of Theorem 2

Necessity

Let (R̃, f̃ , λ̃) be an equilibrium of the distributed algorithm, then we have

∑

m

Ãmsλ̃m = min
Rs∈H s

∑

m

Amsλ̃m , ∀s ∈ S, (4)

(f̃ , λ̃) = arg min
λ

min
f

∑

s

(
Us(fs) + fs

∑

m

Ãmsλm

)
−

∑

m

bmλm. (5)

We will show that (R̃, f̃ , λ̃) solves the dual problem (6.1). Then, since the dual prob-

lem lower bounds the primal problem (5.1)–(5.4) (Theorem 1), and R̃ ∈ Rs is a single-path

routing and hence primal feasible, (R̃, f̃ , λ̃) also solves the primal problem.

66

We assume (R∗, f ∗, λ∗) is the optimal solution for the dual problem (6.1). That is,

(R∗, f ∗, λ∗) (6)

= arg min
λ

min
f

∑

s

(
Us(fs) + fs min

Rs∈H s

∑

m

Amsλm

)
−

∑

m

bmλm.

Let

g1(λ) := min
f

∑

s

(
Us(fs) + fs

∑

m

Ãmsλm

)
−

∑

m

bmλm,

g2(λ) := min
f

∑

s

(
Us(fs) + fs min

Rs∈H s

∑

m

Amsλm

)
−

∑

m

bmλm.

Then (5) implies g1(λ̃) = minλ g1(λ), and (6) implies g2(λ∗) = minλ g2(λ). Since

R̃ ∈ Rs, we have

g1(λ) ≥ g2(λ), ∀λ

and hence

g1(λ̃) = min
λ

g1(λ) ≥ min
λ

g2(λ) = g2(λ∗).

On the other hand

g1(λ̃) = min
f

∑

s

(
Us(fs) + fs

∑

m

Ãmsλ̃m

)
−

∑

m

bmλ̃m

= min
f

∑

s

(
Us(fs) + fs min

Rs∈H s

∑

m

Amsλ̃m

)
−

∑

m

bmλ̃m

= g2(λ̃)

≤ g2(λ∗)

where the second equality follows from (4). Therefore g1(λ̃) = g2(λ∗) = g2(λ̃) and

L(R̃, f̃ , λ̃) = L(R∗, f ∗, λ∗). Moreover, (R̃, f̃ , λ̃) is an optimal solution of the dual prob-

lem.

67

Sufficiency

Assume that there is no duality gap and (R∗, f ∗, λ∗) is an optimal solution for both

the primal problem and the dual problem. We claim that it is also an equilibrium of the

distributed algorithm. That is, we need to show that

∑

m

A∗msλ
∗
m = min

Rs∈H s

∑

m

Amsλ
∗
m , ∀s ∈ S (7)

and

(f ∗, λ∗) = arg min
λ

min
f

L(R∗, f , λ)

= arg min
f

min
λ

L(R∗, f , λ) (8)

where the equality (8) follows from the assumption that there is no duality gap.

Since (R∗, f ∗, λ∗) solves the dual problem (6.1), the optimal routing matrix R∗ satisfies

(7) by the Saddle Point Theorem [2]. (R∗, f ∗, λ∗) also solves the primal problem (5.1)–

(5.4). In particular, (f ∗, λ∗) solves the utility optimization problem over sampling rates

and its Lagrangian dual, with R∗ as the routing matrix, i.e., (f ∗, λ∗) satisfies (8).

68

References

[1] M. Andrews. Joint optimization of scheduling and congestion control in communi-
cations networks. In Proceedings of the 40th Conference on Information Sciences
and Systems (CISS), 2006.

[2] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1 edition, 1995.

[3] J. Bolot, T. Turletti, and I. Wakeman. Scalable feedback control for multicast video
distribution in the internet. In Proceedings of ACM SIGCOMM, pages 58–67, 1994.

[4] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Pro-
ceedings of the 1st Workshop on Sensor Networks and Applications (WSNA), pages
22–31, 2002.

[5] G. C. Butazzo. Hard Real-Time Computing Systems. Springer, 2 edition, 2005.

[6] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo. An implicit prioritized access
protocol for wireless sensor networks. In Proceedings of the 23rd IEEE Real-Time
Systems Symposium (RTSS), pages 39–48, 2002.

[7] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Cross-layer congestion control,
routing and scheduling design in ad hoc wireless networks. In Proceedings of the
25th IEEE International Conference on Computer Communications (INFOCOM),
pages 1–13, 2006.

[8] Y. Chen, C. Lu, and X. Koutsoukos. Optimal discrete rate adaptation for distributed
real-time systems. In Proceedings of the 28th IEEE Real-Time Systems Symposium
(RTSS), pages 181–192, 2007.

[9] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimization
decomposition: A mathematical theory of network architectures. In Proceedings of
the IEEE, volume 95, pages 255–312, 2007.

[10] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, and T. Abdelza-
her. Real-time power-aware routing in sensor networks. In Proceedings of the 14th
IEEE International Workshop on Quality of Service (IWQoS), pages 83–92, 2006.

69

70

[11] R. L. Cruz and A. Santhanam. Optimal routing, link scheduling, and power con-
trol in multihop wireless networks. In Proceedings of the 22th IEEE International
Conference on Computer Communications (INFOCOM), 2003.

[12] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks using
queue-length-based scheduling and congestion control. In Proceedings of the 24th
IEEE International Conference on Computer Communications (INFOCOM), 2005.

[13] Q. Gao, J. Zhang, X. Shen, and B. Larish. A cross-layer optimization approach for
energy efficient wireless sensor networks: coalition-aided data aggregation, cooper-
ative communication, and energy balancing. Adv. MultiMedia, 2007(1), 2007.

[14] S. Ghosh, R. Rajkumar, J. Hansen, and J. Lehoczky. Scalable resource allocation for
multi-processor qos optimization. In Proceedings of the 23rd International Confer-
ence on Distributed Computing Systems (ICDCS), pages 174–183, 2003.

[15] S. Giannecchini, M. Caccamo, and C. Shih. Collaborative resource allocation in
wireless sensor networks. In Proceedings of 16th Euromicro Conference on Real-
Time Systems (ECRTS), pages 35–44, 30 June-2 July 2004.

[16] J. He, M. Chiang, and J. Rexford. TCP/IP interaction based on congestion price: Sta-
bility and optimality. In IEEE International Conference on Communications (ICC),
volume 3, pages 1032–1039, 2006.

[17] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher. SPEED: A stateless protocol for
real-time communication in sensor networks. In Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages 46–55, 2003.

[18] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for informa-
tion dissemination in wireless sensor networks. In Proceedings of the 5th Interna-
tional Conference on Mobile Computing and Networking (MobiCom), pages 174–
185, 1999.

[19] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proceedings of the 6th International Conference on Mobile Computing
and Networking (MobiCom), pages 243–254, 2000.

[20] F. Kelly. Charging and rate control for elastic traffic. European Transactions on
Telecommunications, 8:33–37, 1997.

71

[21] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: Shadow
prices, proportional fairness and stability. Journal of the Operational Research Soci-
ety, 49, 1998.

[22] J. F. Kurose and R. Simha. A microeconomic approach to optimal resource allocation
in distributed computer systems. IEEE Transactions on Computers, 38(5):705–717,
1989.

[23] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen. A scalable solu-
tion to the multi-resource qos problem. In Proceedings of the 20th IEEE Real-Time
Systems Symposium (RTSS), pages 315–326, 1999.

[24] X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-layer con-
gestion control in wireless networks. IEEE/ACM Transactions on Networking,
14(2):1804–1814, 2006.

[25] X. Liu, Q. Wang, W. He, M. Caccamo, and L. Sha. Optimal real-time sampling rate
assignment for wireless sensor networks. ACM Transactions on Sensor Networks,
2(2):263–295, 2006.

[26] S. H. Low and D. E. Lapsley. Optimization flow control — I: Basic algorithm and
convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, 1999.

[27] P. Marbach and Y. Lu. Active queue management and scheduling for wireless net-
works: The single cell case. In Proceedings of the 40th Conference on Information
Sciences and Systems (CISS), 2006.

[28] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model for
qos management. In Proceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS), pages 298–307, 1997.

[29] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in real-time
control system. In Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS), pages 13–21, 1996.

[30] L. Sha, J. Lehoczky, and R. Rajkumar. Solutions for some practical problems in
prioritized preemptive scheduling. In Proceedings of the 7th IEEE Real-Time Systems
Symposium (RTSS), 1986.

[31] L. Sha, X. Liu, M. Caccamo, and G. Buttazzo. Online control optimization using
load driven scheduling. In Proceedings of the 39th IEEE Conference on Decision
and Control (CDC), volume 5, pages 4877–4882, 2000.

72

[32] A. Varga. The omnet++ discrete event simulation system. In Proceedings of the
European Simulation Multiconference, pages 319–324, June 2001.

[33] A. Varga. OMNeT++. Column of ”Software Tools for Networking”, IEEE Network
Interactive, 16(4), July 2002.

[34] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-share
resource management. In Proceedings of the 1st USENIX Conference on Operating
Systems Design and Implementation (OSDI), pages 1–11, 1994.

[35] J. Wang, L. Li, S. H. Low, and J. C. Doyle. Cross-layer optimization in TCP/IP
networks. IEEE/ACM Transactions on Networking, 13(3):582–595, 2005.

[36] Y. Xi and E. Yeh. Node-based distributed optimal control of wireless networks. In
Proceedings of the 40th Conference on Information Sciences and Systems (CISS),
2006.

[37] Y. Xu, J. S. Heidemann, and D. Estrin. Geography-informed energy conservation
for ad hoc routing. In Proceedings of the 7th International Conference on Mobile
Computing and Networking (MobiCom), pages 70–84, 2001.

[38] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity
on wireless sensor networks. In Proceedings of the 2nd International Conference on
Mobile Systems, Applications, and Services (MobiSys), pages 125–138, 2004.

