N Rt T ——,

[

'
A
11
i
s

A Galley and Page Formatter Based on Rel;timu
. by

Lok, Shien-Waj (Frank)

School of Computer Science
McGill University

© July 1985 .

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfiliment of the requirements for the degree of
’ Masters of Science (Computer Science)

B r e S e e - T 4 kb A R A 0 e I

"ABSTRACT @ -

.

4

- - This thesls deals with a means of r(fpresent,lng text based on a set of réla-
I B .
e !
tlons. A relatlonal formatter was develoxLed and Implemented. A subset of the

**Generallzed Markup Language™ (GML) was adapted for the purpose of destrib-

ing the text structure. The llne breaklng algorithm developednby Knuth and Plass

a was modifled to break pages as well as lines. The method of storing data In rela-

tlonal form In secondary storage lIs explalned and the malor requirements and

components of the formatter examlned.

The experimental formatter runs under the UNIX operating system on the

¢

CADMUS 9700 mlcro-computer and has been written In 'the programming

language “*C".
y

|

|

(

’i

|
-
.
|

|

i i

, Lo . - - o r}
. Résumé l

'

Ce mémolre a pour sujet une méthode de représentation de texte, basée sur
5 ¢ -

- . un ensemble de relations. Nous avons dévéfbppé un systeme relatlonnel de tralte-

ment de texte. Dans ce but, nous avons adapté un-sous-ensemble du “*General-

. 1zed Markup Language' (GI\i{L) p‘our décrire la structure du texte. Nous avons
modifié 'algorithme de bris de lgne, prox")osé par Knuth et Plass pour lnclt;re Ie\
brls de page. Nous expnquons' la méthode de mise en mémolre secondaire des
données sous forme relatlonnelle, et nous examinons les prérequls et les compo-‘,

santes les plus Importants de ce syst&ime, .- %

Nous avons Implanté ce systeme expérimental en C”, sur micro-ordinateur ‘ -

CADMUS 8700 sous le systzme d’exploltation UNIX.

P

4 gt STASE

e . ACKNOWLEDGEMENTS

\
I would ke to thank my advisor, Prof. T. H. Merrett, for his supervision

and valuable advice dyurlng the development of thls thesls. The flnancial support I

- ———————recelved through Prof. T. H. Merrett’'s NSERC and FCAC research grants was

} .
highly appreclated.

¢

- " Many thanks to Wendy Marston for her help In editing and proofreading. |
am Indebted to the rollov&*zlng persons for thelr ‘gld and mo;'al support: Jennifer
Jones, Ryan Hayward, Rori;er Cormler, Sylvie Sadones, Claudia Wagner, Charles
(- Snow, and my colleagues at McGlll. T wish to acknowledge the School of Com-
puter Sclence at McGll for the flnanclal ald which enabled me m complete my

studles.

{ -

: ,

; , i
.

H -

-

Table of Contents

1 INBroductioncooooiiiiiieiiiieriree et seetteree e aeeerare asem e e s rran e e m e bt ernnn
b U0 S 243 F:1 7 (e (T S o OSSP PO P S
1.2 Relational AIZEDTa ..ot it eriiiiiit o ieve cevent et ereeeteretee v ibieertan et e aeraas
1.3 Conyentional text representation

1.4 Text represented in relational form e e et e et ey e
1.5 Thesis Outhneooiiiien o eiinninann .

2 Survey of Existing Text Formatting Systems
2.1 Procedural Approach Systemscovoreimiinnnniniiiinenae. e evtreettre i aaeeaeteaans
ﬂ2.1.1 RUNOFF .../...... ..
2.1.2 FORMAT ./[........... b enetiee eeeseaieie saeeeiss teeemeecseesesbeenessastorisinnass
213 PUB ..fveeinnennne et e v e+ eeeee e eeeeine <eeeee sarenasannnee o e
P28 U SRS O 5 G OSSO
2.1.5 NROPF/TROFF ... oot teiiiiiiiiiics ceriie vt crrreae + coeenrnrenns seeeenssersssnenee
2.2 Declarative Approach SYSLeMS .. .o.oc. ion . iiiiiin ciirriirs e s i e e e
2.2.1 SCRIBE ..ccoooviiiiiiiiiies ceveeeeannieiinns coves s et e et eeeas e e e e s
2.2.2 GML i eriiitiie e eeee e et e as eeterenn e rabbieaans
2.2.3 JANUS L i it 4 erereeies te i eanees ceeetieees aveeaesenerhy eann
2.3 CONCIUSION cicieiiiiiie ittt et raes et aeectaiir e s aeemea et e aare saeieaneasanceeraannen

3 System Designccccooeeiiiminiiniin e, Prereseeerenaeraeseeesnna e eneaarrinn
3.1 Basic System RequUIrementsc.coiiiiiiiiiiiiiir et ce s rreeeees ceneraaecsennnes
3.2 Formatting LANZUALE oo i e
3.3 Logical Design of the Systemccooiiiit i e vrreaeeee ceen

3.3.1 Editor Based on Relationsc.ooimiiiiii e,
3.3.2 STRUC and COPY Relations c.ccoviiiiicts ieticininivcvereiieeeee e eriennan
3.3.3 Formatter Based on Relations : COPY and STRUCcccoiciinnnnnn .
3.3.3.1 User Interfaceocoviiiiiiiiiet it ciee o 4 civees parenenaa e,
3.3.3.2 Line/Page Break MoOAUIEooevniiiriiiiiiiiins et ecvieieieeeaeeeeeresasnnas
3.3.3.3 Generate Galley Modules : line-galley and page-galley
3.3.3.4 Display priver ..

iv

W N W

31
31
32
33
34
34
38
39
40

62

e

P o
ad 3

4 Details of Implementationc.ccocoooiiiiiiiiieie s esae e s eereane 83
4.1 HoOSt System CORfIZUTALION oot ce e errevne s srensoarerasnsan s senasses 63
4.2 Programming Language Usedccciiiiiiiiiiins tiiimiiiiecerirceneresrarenaerconneeninrenssioens 64
4.3 Implementation Goal et ttereeeetaeeeens o meieaeaetvoseseieennneanie e 84
4.4 OUIDUL DeVICE .. i it i sl ceiiei ees eeeer crereeeaeienn. reeeeaenierins 65
4.5 Simple Description of the Implementation cccoo ceeiieniiieeiere e, 66
4.5.1 Storage Structure of Relations 67
4.5.2 Pre-Processor for the Formatter 70
4.5.3 User-Interface Module U S 74

4.5.4 Line/Page Break Module i e 75
4.5.5 First Pass I’:/Iodule : galley formal;upg e e e 7
4.5.6 Second Pass Module : page formattingccoiee vomviviinmininninveennne o 81
4.5.7 Display Driver Module e, 82
0 v
5 Tutorial Introduction et et eeieiee e eeieeeeeaba e eareeseenannnrtbesean emnmnnren 87
5.1 How to Create Input Data File ccooooroimmvummmesmmermsmnssrcenmsessecnsieans S 87
5.2 How to use the Pre-Processor \ 90

5.3 User Interface with the FOrMAabtberooii o ciis cerireriieecieeieirersiaeannans a1

5.4 How to use the Display DriVer .. oot et e e re e rrcran e e nans 06
5.5 Formatting Commands oot e e reree e s ee s 97
w @

6 Conélusioncoooooetoiiiiiiiit e et e e, e e bt s e e eennee 103
6.1 Summary and Adv;mt.ages .. preeeeeeieerens e e 103
6.2 Limitations and Drawbacks . .coccooioioeieiiiiiiereieeiieeieese e eene v e eeambe e e e eeens 104
8.3 FUFCRET WOTK eoonieveeeese e eeoeeeeeeeeeeseeeaveseseseeesesaes wesesesseesemseeseseeeseeeseeeaneeeaeens 105

APPENAIX A ool e [T ORURO 11 7

y

Re"ﬁ;rences etereteeneber e st asians s en s aetraen , .. 113

s

—

F T —

a
-

o B e e e R e e e R R i B e e Y - - e

4 -

CHAPTER ONE,

algtroduction

-

In the fleld of text processing, the common practice has been to bulld a spe-

clal system to handle each speclal task. These tasks have ranged from stmple -

editing to complex lngulstic analysls. While this method works wel}, speclal sys

o

tems are usually costly and Inflexible as well as complicated. Also, the user must

.

‘tem could be developed to handle most of the work needed to be done on text,
the burden on the user would be alleviated. Moreover, processing and storing text

In secondary storage could be unlfied. £ =,
. ¥,

Over the past 15 years, the relatlonal algebra has become well established as

a successful mechanism for processing formatted data modelled as relatlons. |

Two aspects of the relatlonal algebra make It practical for use In computer

appllcémons. These aspects are “‘atomlcity’ and ‘‘closure’. Atomlelty refers to-

the fact that data objects are undecomposable; the Internal structures of these

objects are not Investigated. This aspect permits a sultable level of abstraction -

- while at the same time allowing implementatlons to make optimum use of the

3
?
~]

secondary storage. ' " .

spend an Inordlnate amount of time learning how to use’ these systems. If a sys- .

i o

T e

5. bt banh bt e b ety hr 5

o ——

—— e s

1 v ’ . 4 PR

ad

"Closure refers to the fact that algebralc systems are complete In themselves;

the result of an operation In relational algebra Is a relation. This aspect allows’

r_‘§
operands of a.ny given operation t,o be specified elther as slmple relatlon names or

as expressions that resolve Into relations. As a result of the closure propertles.

<

only one set of ,rules Is required for a given operation. There are no éxcept,lons
and each executlon of an operatlon Is carried out in the dame manner. This

greatly simpiifies the appncauon of relatlonal algebra.

[Merret.t. 849.] goes beyond com,non practlce In his lnvestlgat.lon of operat.lon\ﬁ '

on text data. These operar.lons (nclude‘ conco‘rdance bullding, dlctlonary search--

h -

Ing, clfypt.ography, llngqlst.lc analysis, editing and formatting. One of thc sim-

4

plest eximpl& shows” the advantage of using relatlonal algebra to bullda concor-

e

dance as follows: | :

< , . ’ I & C

% . e

/

s

by b e g v s oAt

~

¢ ‘ N \ - b\ ')
Assume we have the following two relations: A 7
\ E‘IG'LISH(EWORD‘ SEQ) S'I(]’(EWORD) .
, about 14 : , about - '
L ‘ ' hecause 8 ,because.)
, . being 12 ' being
‘ ’ Centre 7 iR : -
s * 7 code 16 “~ my et ’
.+« . ecomical 13 " " the
™~~~ ', coming 3 . to
" computer, 10 : . Was
. o Compnt. mg 6
: %t { 1 - ,
romy 15 X) ‘. §
‘ ' the 5 ' . * e
S P ' the 1 9 ’ ‘
SR TR T-3 4
! was 2 0 .
wa's - 11 o
s ta .
. . .

it vl ui

ey

=
Pttt
8
-

H]
¢

b

?&]
P

]

.
?-(.
AN
% .
)

E

,

i

?

L

i

;

ir

.

P

5

N

~ ¢ . s

. “ [

4 -
NEETIEXL VT

‘ v, . . A ' ' ;\ N
the command ‘* CONCORDANCE' <-- ENGLISH djoin STOR "
will produce the following relation: .
. .)
CONCORDANCE (EWORD SEQ) - T
B . coming 3 : S
‘ Compu t ing 8 . o
! Centre 7 . f.,-‘ ‘
, computer 10
comical 13 R
' ¢ code - 186 o

~ "
Y .

tlonal form then relational operations can be used to process 1t.

v - ¢ S

4,

P

‘

' +"As can be seen ‘from-the above example, If text data Is stored’in the rela-

. .." . - Although Merrett’s studles were theoretlcally lnnovauvé,_,t,wo fundamental |

[

text processlxig problems still existed.” An editor Wwas needed to adapt data. into

L] ~ °

. . - “
form. The p

on the:rel
ro [

.
'

onal model. . . ' ‘ e
‘1:‘.1 l'\‘.elatiops 1 <

' ~.
" representing data. The formal definitlon Jf a relation Is:
4

. ,‘», \
4
” ~ .

3
1 1 <

’ } . =
Glven a collection of sets D1, D2, ..., Dn (not nQdessarllmdfstl\g‘ct), W
- ! - v -

. . \

‘R Isa Pelatlon on those n sets If 1t Is a set of grdered n-tuples < di,
\ .

dz2, ..., dn> such that d1 belongs to D1, d2 belongs t,ci D2, ..., dn

N,

belongs to Dn. Sets D1, D2, ..., Dn are the domalns of R.\Tﬁe value

1

.

n is the degree of R. [Date 81) v

N

.

" IS + N ’ g A%
relational form; and a formatter was required that would accept data In relatlonal ,

rpose of thisthesls was to develop an experlmental formatter based .

. .
’-
ks
AN »
¥l

s

i
vie

P »%elatlon‘ls a term used-1n computer sclence to speclfy a partlcular'meth’od of A

o«

-

s

t]
4

‘A
a
k3
.

o
«

It 1s convenlent to represent a relation a5™a table with the table name as~tﬁe

relatilon name.- Each’ column of the table correspénds to an attrlbute and the

colufn name Is the attribute name. Each column takes values from one domaln

Ve

1

only, but more than one column can take values from the same domaln. -Eaclr }

row of the table represents one n-tuple or simply one tuple of the relation. The
number of tuples In a relation Is called. the cardinajity of the relation. For exam-
ple, If someone cls asked to prepare a class-list with the following Information:

student’s names, 1d numbers and phone numbers, the most stralghtforward way

—

would pe t.!ie following:

)

~

CLASS-85 .
nime id-number | phone-number
. G\IIIHIEL.? RICHARD 8304829 | - 876 - 8597
N QRBET URSULA 7804103 332 - 9772
| GERVIAN MARIK 8106567 392 - 5189
LICZNER RITA 7514040 848 - 8029

GERMAN MARIC 49710 392 - 5189 =

The method presented above Is a relation called “Class-85". I:t, contalns three

@

attributes: name, id-number and phone-number. Each column represents one

att.'rlbut,e and each row represebnt.s one 't,uple’pr the relation “Class-85"". T

-
- - «

A relational table has°the follZ)wlng propertles:

L] @

“« -

1.+ All rows (t:}ples) are distinct v
2. The row or er 1s Insignifi¢ant T

3. The colum:fmr 1s Inslgnificant ' .
41 Every value In a relation Is atomic (1.e. iondecomposable)

r ———

a8 o M e b R

b AATY

!
|
¢
i
H

e . AP O SR £ P BN 5t R b R

e B et o e

e e oy W Ao e e

TSI EUNUUIP IS s S SRS 4L L L

1.2 Relational Algebra

:) 4
The relational Algebra Is a set of operators on relatlon. In this section, a

o~

few baslc operators willl be described In order.to show rea&ers the characteristics

" of the relational algebra. .

a) Projection " - used to get a relation In which the attributes are a subset of
the Initlal set (vertlcal selectlon).” For example, If one Is only
interested In the students’ names and phone numbers in the
relation *‘Class-85"", the projection operator can be used to
get a new relation containing only these two attributes.

&

The projection command:
PHONEBOOK < -- name, phone-number in CLASS-85

will produce the following relation:

PHONEBOOK
A name pﬁong-number ”’
' CORBET' URSULA 332 - 9772
GAUTHIER RICHARD 876 - 85907
. GERVAN MARK 392 - 5180
. . | LICZNER RITA 848 - 80290
' \ .
b) Selection - used to get a relatlon In which the attributes will remaln the

: . same and the output will be a subset of the initlal set (hor-

" 1zontal selection). For example, If one Is Interested In the stu-
dent “GERMAN MARK'’, the selectlon operator can be used

* to get a relation combinlng the tuples with the value of the
name attribute equal to “GERMAN MARK".

The selectlon command:
* INFOFILE '<-- where name = "GERMAN MARK" in CLASS-85

e
by

feitani

~

e o AN R n SRR R KON A e e
—-

¢) Natural Joln

- wlil produce the following relation:

Ghep A ac—— o " o g a5

INFOFILE

 name id-number | phone-number
GERVMAN MARK | 8106567 392 - 5189
GERVAN MARK 40710 . 392 - 5189

ot ety ebmas 1S

- used . to get a relation combining the attributes and tuples of

_ two relatlons. The set of attributes Is the unlon of the attri-

butes of each relatlon. The tuples are selected according to -

the common attribute(s). For example, assume’ one has
another relation, "TESTMARK", contalning students’ names

and test marks:

TESTMARK
name mark
CORBET URSULA 73
LICZNER RITA 67
CORBET URSULA. B85
GERMAN MARK 84
GERVIAN MARK 95

The natural jJoln can be used to comblne the relations
“TESTMARK" and “CLASS-85" to form another relatlon

“STUDENTDATA™ with 4 attributes.

The natural Joln command:

STUDENTDATA <-- CLASS-85 {join TESTMARK

will produce the followlng relatlon:

STUDENIDATA
name idcnumber phone-number mark
‘CORBET URSULA 7804103 332 - 9772 73
"LICZNER RITA 7514040 848 - 8020 87
- OORBET URSULA 7804103 332 - 9772 65
GERMAN MARK 8106567 392 - 5189 84
- GERMAN MARK 8106567 392 51890 95
GERVAN MARK 49710 392 51890 84
GERMAN MARK 49710 392 51890 95
i

B

-

A s oy

v Y SR I

=y

o e e s e e

™

d) Difference Join - used to get the difference between two relatlons “A™ and
. “B’* (In that order). The result Is the set of all tuples belong-
Ing to “A’ and not to “B’. For example, assume we want

to find the phone number of the students who has no marks.

. The difference joln command can be used on the relatlons
" “PHONEBOOK" and “TESTMARK" to form another rela-

tlon “*ABSENTLIST" with 2 attributes, -
The difference Joln command:

ABSENTLIST <-- PHONEBOOK djoin TESTMARK

will prodﬁce the following relatlon
ABSENILIST

oo | name phone-number

e I A TN I

- - .- - ---"a-

b GAUTHIER RICHARD 876 - 8597

‘.

1.3 ' Conventional text representation

@ <

In a conventional system, text Is stored exactly as It has been typed Into the

computer. There are no restrictlons on text elements and text can be represented

as a sequence of characters wlthout reference to thelr loglcal- structure or meaning

(here, loglcal structure refers to the organlzation of the document elements.). In

other words, the system has only to preserve the order of the characters and the

contents of the text ltself.

e

4

p B e e e T B e et R —p

o *

= 1.4 Text represented in relational form

Unlike conventlonal systems, restrictlons are imposed on text elements that
are to be stored In relatlonal form. These restrictlons are the result of the pro-
perties of a relation, for example, all data s simple, no repetltion of tuples Is
allowed, etc. Making the user responslble for ad}ustments In the new Internal
data representation works agalnst the purposes of our system. As g result, the

-\system was deslgned to let the user enter the Input document as In the conven-
tional method; the syste;m takes care of all the necessary converslons. In tuhls way,
the process willl remaln simple for the user, who can neverthéless benefit from the

advantages of relatlonal representation.

Beéause of the propertles of a relation, text stored l; relational form s very
different from the conventlonal fashlon. In order to store text elements In terms
of relations there are three problems that must be resolved: (1) how to separate
the text elements Into tuples; (2) how to preserve the order of the text elements;
(38) how to deal with the repetition of text elements. There are varlous ways to
separate the text Into tuples. The text can be separated according to 1ts physical
size (l.e. n character(s) per tuple, n lne(s) per tuple, n page(s) per tuple; n > 0)
or according to the loglcal meaning-of the text elements (l.e. n word(s) per tuple,
n sentence(s) per tuple, n par':graph(s) per tuple, etc.; n > 0). It was declded to
separate text according to its logical meaning. Text itself doés not mcludle physl-
cal size constralnts. For example; llne length and page slze may vary between two
different printed verslons or according to different display medlums such as

screen, typewrlter, and phototypesetter. Representing text by line per tuple or

;

PR —,

1 P £ b AR

B e ey o

e

P

page per tuple adds Irrelevant physical constraints, such as llne length, which
have nqt.hlng to do with text 1tseif and which complicate processing. In keeplng
with the °“’loglcal meaning method” It was declded to use one word per tuple.
This allows a hligh amount of control and facllltates the manlpulation of the text
elements, while using less r\nemory space than a single character. In terms of
preserving the order of the text elements, and making each tuple unlque, at least
two attributes are needed. These attributes are **word” and ‘‘wordsequence‘’.
“Wordsequence' contalns real numbex? and serves as an ld-number to each word,
the value of which determines the order of the text element. For example, If
ascendlng order 1s used words with smaller values in the “wordsequénce" fleld
will precede words with larger values. The relatlon contalnlng “‘word’™ and
“*wordsequence” will be referred to In this thesls as “FIRST . An example of this

reiatlon 15 as {ollows:

FIRST
word wordsequence
\ —
' just 19
an 20
O
example 21

Thus, the relatlon “"FIRST"' preserves thé Information and supports all the func-
tlons (updating, vlewlng, storing, etc.) as the conventlonal method. Ultimately,
however, a more advanced method of storing text In the relatlonal model was

used, as will be described In chapter 3.

o e AY TR e Mhveem s s . U e

e e BELTTR TR RO 2 T

e T, e e ek W

[t L e et o e i T L SR et Pa— -
f o i et b mem i e e '

. L]

1.5 Thesis Outline '

"This chapter has been an explanation of the purpose of this thesls and a
brief Introduction to the concepts of relation and relatlonal algebra. Both the
conventional and relatlonal methods of storing, text In secondary storage were
described. Chapter Two contalns a suﬁey of some of the existing text formatting
systems. Formatter syst;er? requirements are exx;lamed, a formatting language
selected and a brlef dlscusslon about the system design 1s presemeq In Chapter
Three. Chapter Four ls an.explan'atlon of the conflguration of the host system
and programming language used to bulld the formatter. The lmplement,ai,lon of
the system 1s also discussed. Chapter Flve Is a user’s manual. It explalns the use
of the system without knowledge of the technical detalls of the lmplemexitat,lon.

Flnally, In Chapter Six, comments on the accomplishments of the system are dls-

cussed and suggestlons for future work are proposed.

¢

10

o s DR A 3 i =

g o v A

BONR i St MEAMATE ST e T A) A S g e P b e o ke kMOt ERAOAYIS CANTAT & e s St | i EE S e e v v e v m e i e e e

R TR

CHAPTER TWO “

.) Survey of Existi?g Text Formatting Systems
|

A text formatting system 1s a coxinput,er program deslgned to deal with the

;jw_ﬁék_ngsl‘ca; layout of a décument on a séecmc medlum. Since the first appearance
of the text formatting systern RUNOFF In the early 1960°s, a conslderable

|
amount of research has been done In ’thls area. The advantages of using a text

formatting system are obvlous: 1t saves tlme, reduces production costs, 1s easler

J
for updatlng and costs less for reror;mat,tlng. Different formats can easlly be

(achleved, and output can be produced \on different devices. The Increasing cost of

4
t
manually produced documents versus rhe decreasing cost of computer hardware

and software further contributes to t.hei popularlty and deslrabllity of text format-

|
ting systems. j

w
——

4
In thils survey, we are Interested In the followlng Issues: ¢

1. the formatting power of the formatter,
2. the user Interface,

3. other features.related to the document, such as table of contents, Indlces,
footnotes and cross references.

1
i
o

Systems using the *‘procedural approach’ (low-level approach) will be com-

pared and contrasted to the ‘‘declaratlve approach” (high-level approach), and

the advantages and drawbacks of each system dlscussed.

i - N
- i

i’ -

v

-

B o ot i ey e e n o g

PR P

“ - e P « e - T R el L L P e P, - -
e e N B

2.1 Procedural Approach Systems

Systems usling t,he‘ procedural appmaéh to text formatting problems are
based on the assumpt,k;n that the user of the system will want to design the final
appearance of the document. The objectlve of the system Is therefore to provide
its user with a set of tools (commands) to manipulate the physleal layout of t,hé
document. In other words, the users of the system are fully responsible for the

formatted output, as long as the system provides all the necessary tools.

5

In the followlng sections we sﬁall discuss a few systems based on thls
approach. The systems are ordered by thelr date of appearance and thelr format-

ting capabillty.

2.1.1 RUNOFF .

RUNOFF was one of the ploneer text formatting systems. Appéarmg In 1964
on the’Compatible Time Sharing System (CTSS) at MIT [Furuta 82], It was
deslgned to deal with its Input and output on a typewrlter-like device. Since
RUNOFF was developed when computer technology was In its Infancy, its for-
matting capabllitles are llmlted by the output ,Aevlce. Also, slnce RUNOFF was
one of the first text formatters, 1t provides relatlvely few features compared to
text I‘orﬁnattilng systems commerclally avallable today. Essentlally, anything pro-
duced by RUNOFF can be produced simllarly by a typewrlter If sufficlent time Is

provided. However, RUNOFF proved that using a computer to perform tedlous

work results In a great reduct.l&or man hours.

e e:nd

-

S

Following are some of the RUNOFF commands:

"
"

a) .center - place the object 1n the center of a line

b) .space # - - skip # of llnes (used to produce a vertlcal spacing)

c) .Indent # - skip # of spaces (used to produce horlzontal spacing)

d) .undent # - unsklp # of spaces (used to reduce the horlzontal spacing)
e) .adjust - start left and right Justificatlon .
f) .noadjust - no Justificatlon

RUNOFT 1s obvlously easy to use. There are few commands, all command
names are seif explanabqry, and all deal with the simple problem of object place-

ment. However, RUNOFF's stmplicity results in several drawbacks. The small set

of commands llmits the formatting capablilities (thls problem s caused by the
llmitatlon of the output device). Command names are usually long, leading to a
greater chance of typlng errors, and costing more time for expe'rt users. Also,

since ali commands deal with the physlcal layout of the page, a small changeoln

thenput text may require the whole document to be re-organlzed.

2.1.2 FORMAT

FORMAT appeared In the late 1960's. It was developed by IBM for use on
IBM S/360 computers and was deslgned to accept lnput text from punched cards

and to produce lts output to a llne printer with both lower-case and upper-case

letters. -

Since FORMAT was developed a few years later than RUN(E)FF, it 1s no
surprise to find that its capabllitles exceed those of the earller system. In addl-
tlon, to s!mple object placgment, FORMAT allows input text to be alternated
with formatting commands. Also, a,gealp facllilty for the Indexing process 1s pro-

vided.

13

ST DO [RS T DTN A g = et MR BER R S ST ey o a e NAmaa o m N B R A NN kR Ay e i

B it

e

o e e SRR AR, e e

e sk v

K] LN
LN

There are three types of commaﬁd In FORMAT, namely: charact.e{-level
commands, phrase-level commands and paragraph—level commands. Character-
level commands are reserved characters that aﬂ;act omly the single letter Immedi-
ately following the command. For example, & Is a character-level command
[Bernes 69]. If “*&" precedes the character ‘a’, 1t will change ‘a’ h;to the character
‘A’. Phrase-level commands are single character and may be grouped together to
speclfy some partlcular formatting actions. They are Initlalized by the character
“)" and terminated by a blank. The effects of phrase-level commands are valld
untll the end of the line/sentence unless there 1s another phrase-level commafxd.
For example, **)M& °° Is a phrase-level command which specifies that the follow-
Ing Input text Is to be centered. and capltalized. Paragraph-levgl commands are
used to deflne the general formatting rules for the whole document. F‘on“ example,

paragraph-level commands deflne left margins, page length, meaning of ’Lhe spe-

clal characters. These commands are started with **)’* and termlnated by “GO™.

Format obvlously exceeds RUNOFF In terms of formatting capabllity, how-

5
ever, Format Is more difficult to use. Since each command conslsts of only one
character, much memorization 1s involved for the 1;ser. makling the system harder
to'lea.rn. Also, the Input method and the formatting comxlnands are designed In

such a way that 1t Is e?ctremely difficult to make correctlons and/or changes In

the Input descriptlion. ~

14

o 3 e Ry SVOI,

N —

e AR VP A MO

.z,}.a PUB

. a'

. \' ~e
Y —_— S
s ’ ‘ - .

~

PUB was developéd at the Standford Artificlal Intelligence Laboratory In

1971 and ‘'was deslgned to be used on the PDP-10 computer [Furuta 82].

Consldered In terms of the pm.(slcal layout of ¢ommands, PUB closely resem-
bles RUNOFF. Both use self-explanatory commands with a perlod In front to

Indlcate’ the command llne status. . .

u

However, PUB _Introduced several new ldeas Into the formatting fleld. First,

1t borrowed some of the programming language features spch as block struct}ges,

variables and If....then....else statements, so that its user could have both ilfbal’

e

ot

and local control of the document layout descriptions and condlitional complia-
tlons. Second, 1t provlded a racro faclllity, allowing the user to group the fre-
quently used formatting commands together thus avolding retyplng. Finally, and

probably most importantly, the designer of PUB 'made an effost to elimlnate

widow lines (I1solated single lines).

PUB exceeds both RUNOFF and FORMAT In terms of formatting capabll-

Ity. In additlon to providing most of the formattlng features of RUNOFF and -

‘FORMAT, 1t provides commands for multlple columns, footnotes, the automatic

numberling of sectlons and subsectlons, constructlon of a table of contents, and

creatlon of new characters (by over-striking). In terms of user Interface, PUB not

-

only has all the advantages of RUNOFF (excludling, of course, a small set of com-"

mands), but It also goes one step further by providing the macro facllity and

eliminating the undesirable breaking of paragraphs (bad breaks for the user).

Moreover, PUB's user Is able to redefine most of the formatting actlons specified

& Y P a3l) /
] -~ Q. O,quve—v-rdwh*-*r we sk gy come e T e s @I L s @ ¥ rrp ARt v e e e s
. 7 ’ :

s
-

S t vides more features than RUNOFP? and. FORMALT, It aiso requlres the user.to
. > . } hd R L *] \‘

- . #y
. - . "J N

,
I S .

{
N
!

spend more time learnlng1t, . % .

. .
) 3

s
. N) 03, . 1 P :' . s &’:) “w .. N
5 . L ki T e " K A < T
N ' . ‘o, . L . '+
2.1.4 TEX C T s
) N

I3

B ’ B One of the most, powerru! forméttlng~ systeﬁ's‘&véllable 4s TEX, developed by

-

»

] [-

A -

[

. . ‘ ot was dwlgned to deal with Le)tt. lnt.erSpersed wlt.h mathemat.lcal and tabular

o ‘ N .

4 : , mat,erlafs. The mput. to TEX may be entered through any conventlonal CRT; the
- K Dy

. e) output, is produced on '}r photo-t.ypeset.ter type deviee. The TEX forma:tung com-

E | e | . I.na.nd system was deslgned to all(;w t.he user Tull com.pol of the out,put. device. In.,

- ract DE. Knuth used TEX to typwet the entire second volume of hls book'

&

o s, W

. et .
(' R & ““The Art or Computer Programmlng" [Knut,h 81] Hls t,est. was mtended to’

v

prove that TEX produges Lhé\ hlghest; posslble quality product, ror its user. Slnce

A

' . e

\ .] . , R s 2
* “ T

P
-

e . (e.g. line break) aré also 1mplememéd in the system.

s ® ° -

In TEX, each 6b}éct to be formﬂa.t,tg,d is called a boX. ‘A box 3a)x e a &harac-
H . ’ N 1 s) . ’ ’

;) " ter, 2 word, a table, & graph, or even conslst of a number of other boxes, The sys-

o . b *
“t . 5 - :

g v * tem'need only ‘éoncern itself with the informatlon carrled by a pa(‘tléhlar box:

. . L
2 . 4
. v :

2 s

. * such-as width or helght. The spaclngﬂ between boxes (l.e. between lines, between
. . . , ¢ '

B
. . , :
f < - €
- X3 (X

, - i+ words, etc.) Is called *‘glue””. Glue acts lke a spring: 1t can bp stretéhed,

1+ 5

o compressed or malntalned at Its normal wldiﬁ in order to fit the Justification

C} . ‘ requirements [Knuth 84). The box and glue concept turned eut to be & very

P a
) ' . N
K . . 4

. . . D B Knuth at Standford- Umverslny In t,he late 1970°’s [Furuta 82} 'I"he syst.em

Knuth empha§!zed hlgh quallty output most, of the commands In TEX deal wlth‘

B prpblems of physlcal layout. New -concepts (box; penalty, glue) and algorithms-

»

by 'cont}ol.characters. One of the drawbacks in PUB Is that since tlfé‘syst.em pro-. ’

]

]
.

-

”~

e e ORIy A BT S O O PN o e e,
.
.

U U

% i
ENURUDI S

———

: A
s * - . . i DR

- N I . a {
4 P A TN 4

useful tool. It simplified the for'matt.lng problem and allgwed for 't.ﬁe deve_lopmexit‘ C

T
P . .o SR s
of more efficlent algorithms. This concept has been adapted to other formatting .- .)

o b} M

4 " y}x Il,‘("l

systems such as ETUDE [Hammer et al 81], JANUS [{Chamberlin et al 81 and - - § . °

) . - w o -

. . s ! .
*. YALE'S PEN |[Allen 81]. e

One of the major factors which determines the physically attractive output

of the TEX system ls the routine which brea“ks each paragraph Into lines. In fact, - '_ ',

TEX's deslgners developed ‘one of the_- best alg%rlthm\s,;knownu In this area. pRi

.. . -
o Al -

sl

According to Knuth, this algorithm 1s sb powerful and sophisticaled, ;t. can do 2 \\’
1

better Job than a skilled type’é‘etter [Knuth and Plass 81]. '

" Briefly, the line breaking algorithm uses discrete dynamic programming tech-

7

-nlques to bulld a linked list network. Conslder the network as a d[réctefl graph
4 B .
with a relatlve undesirabll ’y value as arc value and each feaslble break polnt as -

(4] o . N ’ -
vertex. The questlon of the best way to break a pai*’lpc lar paragraph Is then - ..
! ° . N

Sl

® §

equivalent to the question of finding :the shortest pat,ti In the grai‘)n.'Tlfe

difference between the linked llst network and the graph Is that, In the network

inodel, each node (vertex In graph) remembers its parent and total undeslrabllity
o 4 '

from the beginning up to this node. The undesirabllity value Is assigned accord- ... :

' . . *

ing to the amount of adJustmeqts the glue has to make, l.e. the extent It. has td T

N -

- stretch or compress. If the glue has to adjufst a lot, then the undesl;gblllty value ° -

vu

~-wHl be large, since the undeslirability value zi?xd the amount of adjustments var&'

In the same direction. Another factor which affects the undeslirabllity value]'ls the -~ °

?

'penalty item [Knuth and Plass '81]. A penalty ltem’Is a value the user ¢an asslgn @ -

manually If a line break occurs at a partlcular polnt. For éxample, if- the ‘user

i - .
‘? N

LTS

Lo g

e i et e AT . NSOt 100 % g e e o e o o mn

4
H

wants a line break to occur at a certaln point, he can as}gn a value of negative

Infinity to the penalty value (1.e. forced break). Similarly, If he does not want a

s

et

break at that polnt, he can assign a positive Infinity as penalty value.' A penalty

value can also be asslgned by the system. For eigimple. 4 a lilne must end halif-

wan'r through the word, the system will Insert the hy’phena@loh.-Slnce the rule lé

»~

* \
to have as Iitfle hyphenation as possible, a penalty value wlll also be asslgned at

{

that bredk polnt by the system, For lnrcgr'ma(tlon or other factors which cause the

. $) -) ’
insertlon of penalty values, consult the detalls In the references [Knur._h and Plass

~

81).

N

One of the only apparent dré,wbacks to TEX 1s in the user interface. To

S~
.

learn how to wuse the system well Involves a considerable amount of time and

memorization (even though there are macro facliitles in TEX). The materials
{ o

€

TEX deals with Involve a lot of mathematical and tabular items. These two flelds

.
’ °

are usually difficult to represent by simple formatting conimands. As a result

there are more than 300 predefined control sequences and 6 operation modes In

4
©

TEX [Knu\t.h 84). Another reason fpr the enormous amount of control sequences

2

and operailon modes Is that the designers of TEX wanted to make the formatting

v

N . %

é%mma.nds as general as possible. Generallty Increases the complexity of designing
the commands. .
2.1.5 NROFF/TROFF .

v
[

_NROFF (“en-roff") and TROFF (“tee-roff’) are the baslc formatting Sys-

tems on the UNIX time-sharing system [Bell Laboratorles 83]. In order to under-

stand the UNIX docunfentgtion system better, the main ldeas behind the UNIX
-~ , N . , i . /

.

18

N P S U T P L

Tt

P

i e g o g Sty £ WIS

% .

‘

i K
+ same input language although NROFF ignores TROFF compands which 1t can-

BT VR VR VRSP SO

. N
o

-'t.lme-sharlngh system wlill be ?dlscused briefly. ‘The designers of the UNIX time-

Y

-sharlng began with the assumption that problem solving would be facllitated by

te

bréaking 2 major problem Into several supi)roblelps. ‘The pro¢éss of subdividing

).

= 'coul"d be repeated untll the r_esixl{,lhg °subproblems,,Were very simple and- straight~

A :

. forward. Since thése ‘more simyple problems were' baslc to,many problems, the

4 >

same methodé could ‘be. used to solve a numt;ér of l?.rger px\'c_)blems. Thus UNIX
' -2d * . [N >

. } . ; . ¢

évqgved the Important 1dei of bullding .programs on top of other programs. For

o

Yy e . . , 2 0
the ldea of problem solwving by rex;eated problein decomposition to be worth con-

4 Al
o

sldering, the UNIX t\l'me‘—sharlngesyst,em had to provide soine means for recon-

: ‘ .

sl;ri'lct';li:‘lg‘t,_he soldtlbns of the \many sﬁﬁjproblems In order t,o‘ produte the flnal

[N

solutlon. The mechanlsm that combines all the smaller solutlpns into one is called

o . !
- i .

the “pipe™ In UNIX.

LI

3 E

NROFF and TROFF are ﬁaslcally the same program and will accept the ..

same Input descrlpilon language. The reason for having m{vp systems is. tfhat, thelr
' # . ° ‘, " ¢ . ’ *) '
output devices are different. NROFF Is gleslgned for typewriter-like devices and

: : ¢, ‘

' TROFF s deslgned for phobo&ypeéetter-llkg devices. They a.céei)t most of the

™
¥ 1

e e O T

o v L < &)
e .

not honour (ei.g. change font slze). ‘\Tho‘\igh this discusslon s b’aseg an TROFF, K

)

o

most of the comments apply to NROFF as well.

: ’ S L { ° ‘ .
TROFF s the most dlfpcxilt.,. formatting la.‘hguz‘v.ge discussed thus far. It is a
: i : 4 B s T

very low-level language, ‘and somé of the layout‘ commands are so tedlous and .

£ >
L 7 s

hard to remember that they are not. intended for human use. Desplte the

thffculty and complexity, TRO_F'F“ Is stlll being used because 1t provides all the ’

I 9

k4) - N
-7 . . ? . -

4
3

K

s - v v

- o

Bl Sl

NGRS SRt S

o e e A A A TP M e 23 e 2

T

°,

o~

.

K
N

tools (rormattlhg commands) needed to format almost any kind of document.

Since TROFF Is dlmcult. to use, there’are several macro packages created to
,help the user. They are the “ms’, “mm"™ and °‘me” etc. macro packages. All

macro packages are Intended rgr user frlendliness. They allow the user;t,o describe

”

the ddcument in terms of 1ts loglcal part rather than In terms of Its physical lay-

i

out detalls. For example, using a macro package, a user can describe title, head-
ing, 'subheadlng, paragi'aph, author, etce., Instead of specifylng the spacmg3 font
type and font slz;a of the docu;nent. Moreover, the malin ldeas (solving the prob-
lem by small parts) of UNIX time-sharing system also apply whegx such problems
as formatting tables and. mathematical materla!s appear. Several Individual pro-

1 B

grams are created to handle different problems, for example “eqn’” for mathemat-
7

ical materlals and *‘tbl” for tables. The UNIX “plpe';/iheehanlsm Is used to com-

.+ blne-all the partlal solutions. We call this type of program ‘‘pre-processors” of.

TROFF. | S

¥

o In summary, the UNIX documentation system Is a very successful one. It Is

o

' also the most powerful formatting sﬁrstem known. The macro packages make 1t

user frlendly and 1ts “plpe” mechanlsm makes It flexible enough to change or

adJust to new demands (For Instance, new pre-processor can be created).
TROFF's nilaadr drawback Is that its users have to learn several formatting

languzig'es Instead of one. In ad&l’tlon, they also have to learn how to use the

UNIX time-sharlng system, wlilch 1s quite unfrlendly to new-comers. The mixing

_ of macro commands with TROFF cémmands also creates some potentlal format-

ting errors for 1ts users. If several pre-processors are Involved, formatting time

A

j\' ‘ 2

20 -

Rilaies At e Al 7 N

& +

- can be lengthly, since It means several passes of the Input documents.

2.2 Declgarative Approach Systems

Declaratlve approach systems are based on the assumption that most of

thelr users will have no tlme or Interest In speclfylng detalls of the formatting of

thelr documents. In addition, It Is assumed that users will be satlsfled as long as a
certain quality and formatting st,anda,rds are guaranteed. Norm;xl!y, a user of
' these kinds of systems wlll only pe requlred to deflne the type of document and
speclfy lcgstmcture (here, structure means the logleal meaning of the “'text,. e.g.
paragvraph, headling, roomof.e). The syste.m wlill then produce t.})e finished format-
ted product on a specified output device. In contrast to the procedural approach,

the system, rather than tlie user Is the designer of thé ultlmate appearance and

(' style of the formatted document. As a result, the system ls fully responslble for

TR R TR T W e L o e e

5 | the quality of the finished product.

N Declarative approaches are belng used In text formatting systems sp,ch as

-
z s

SCRIBE, éML. ETUDE, JANUS, XEROX's BRAVO and ANDRA. In ;,l;e follow--
lng sections SCRIBE, GML and JANUS wlll be briefly discussed. SCRIBE and
GML were selected slnce they are the only two systems completed and currently
In use (at the time of thils survey). The others are stlll under development.
JANUS 1s worth mentloning because 1t Is g system which Is belng bullt on top of

4 GML.

E

b S g iy

o o

2.2.1 SCRIBE

’

e

~— SCRIBE was developed by Brian K.Reld at Carnegle-Mellon Unlversity lrL

el

the late 1970's [Reld 80]. In SCRIBE, the formatting actlons are lnvoked by

declaring the formatting environment. For example, If a word Is to be printed In
ftalic font, the current environment 1s changed to an Italle environment through
formatting command “"@I"* [Reld 81]. (The symbol “@"" 1Is used to Indlcate a com-

mand to the formatter)

.Ideally, users of the SCRIBE system only have to specify the type and the
logical structure of the document, and the system will do the layout by following
predeflned énvlronment commands In the SCRIBE database. This lets the gystem
do the-tedlous layout work. If the users are not satlsfled with the result, SCRIBE
allows them to create new environment commands (new ways to f;)rmat. the
object) and to change the formatting action of existing environment commands
(modify some of the formatting actlons). The created environment commaﬂd Is
denoted as ‘‘@deflne..... ", and the command to modlfy the exlsting environment

I1s denoted as “‘@modify....."”". Moreover, the changes can apply to a local reglon of

'

text by using “@begin’ and **@end’’ to mark the boundarles of the reglon for

0

which the commands are valid.

Generally speaking, the number of different types of documents that can be
0st,ored in the SCRIBE database is qulte llmited and the style of formatting a par-
tlcular text type Is based on common practlce. Formatting In low-level layout
commands Is more difficult than formatting in high-level commands. However, I -

¢

a document type Is not In the SCRIBE database, users wlll be In a situation siml-

2

22

~

C

]

lar to l?w-level language formatting. They will be requlred to deflne a new
—envlronmenp and then use the environment attributes to make 1t work. If they
are not satisfled with the style of any existing text type, the degree of dificulty
mvoh{ed in alteration will depend on the amount of changes requlired to convert
from one style to another. Sometimes procedural systems are even more compli-
cated to use than low-level systems. Another drawback of SCRIBE In particular
1s that 1t can onl;' handle slmple text type materlals. Features such as mathemat-
ilcal and table formattlng are not avallable. Desplite all it.he disadvantages,
SCRIBE’s mechanlsm Is easy to use. It also provldes flex1bllity when the environ-

ment or style has to be changed or created. The simple formattlng mechanlsm

provides machine Independence (porbabalﬁﬁy) and a unlform formatting style..

Last but not least, the wrlter's workbench features in SCRIBE, such as table of
contents, Indexling, sectlon numberlng, cross references, bibllography management

facllity, are very helpru'l for Its users. -
’ In summary, SCRIBE Is a very successful text formatting system. It provides

an alternative to users who do not want to spend much time for detalling physl-

cal layout.

2.2.2 GML (Generalized Markup Language) a

GML was developed by C.F. Goldfarb In the late 1970's [Goldfarb 81]. It 1s
part of the IBM document compositlon facllity [Goldfarb 80]. Llke SCRIBE,
GML 1s a text formatting system using the declarative approach. It 1s based on
IBM's SCRIPT formatter (SCRIPT 1s a RUNOFF-like formatter developed in the

late 1960’s). Llke SCRIBE, GML has some pre-defined document types. Unlike

v

- . 23

v e

B I

LI & I T R TR

e

T L e T T E RN,

e o A N R e e 1 oo

T e - e

‘GDOC (General Document)

Py par By -
B e e . PR Bakad d - ~

1
1
|
.
l
!

SCRIBE, however, GML's major concern Is to provld? methods ir,o deal with sim-
pleo (pure text) document types. The way GML deals with a general document is
qulte appeallng. It classifies all possible document elements l‘nto different
categorles, empty categories to be disregarded In any particular document. Fig-

ure 2.1a and 2.1b [Goldfarb 80| shows the document categorles QGML lncludes In

1ts language.

> :FRONTM (front matter)
-~ TITLEP (title page)

> TTTLE (document title
single text line
j=—> D OCNUM (document number)
{ single text line
—-—> :DATE (document date i
single text line
==> :AUTHOR (author’s name)
single text line
===> :ADDRESS (address of author/publisher)

=>> :ALINE (sddress line) 5
|
|
i
i

|
|
|
|
|
|

{ slngle text line }

e~—-->> (ABSTRACT (abstract)
< Basi¢c Document Elements >
=== :HZ2 (level 2 heading segrent)
R < Basl¢ Document Element >
== .H3 (level 3 heading segment)
<_Basle Document Element >

===73> [H4 (level 3 heading segment)
< Basic Document ElenJent. >
== :Hb flevel 3 heading segment

< Basic Document Element >
|==-—> HO (level 3 hesdlng segment
< Basie Document Elements >
-—--> PREFACE (preface) 1 -
{ same as :ABSTRACT }

~ p—==> TOC (table of contents)
~ * p——> FIGLIST (st of Nlustrations) *
—> BODY (maln body) ‘

== :HO ‘(put heading)

-

< Basic Document Elements >
=2> :H1 (chapter ““‘““3
{ same as :ABSTRACT)

|-——-> :APPENDIX (appendix section)

== :HI1 (first-level hcwlng segme Ls)
satne as ’s

}—=> ‘BACKM (back matter)

=> H1 (Arst-level headlng segments)
same as : 'S

> INDEX (index)

a

Flgure 2.1a Overal]l structure or‘a General Document

RS S

T L e e I T

I

)
-

*

< Basic Document Elements > i

== > (ADDRESS (address)

=== ALINE (address line)

single text line }
=== DL (definition list) -
=== DT (delinition term)
single text line l
-——-> DD (definition description)
~—-—2>> < Implled paragraph >

- > < Baslc Document Elements >

== LP (lJst part)

~~~~~~ > <« impllied paragraph >

- > « Bastc Document Elements >
==> XMP (example)
eeen > << Basle Document Elements >

-—-e->> < line elements >
normal text }

]
I
v

< extended paragraph>

Srah e s i e o T ST K ST S Ky i 4l ot sop b bt Pt i o i vrom Sk

> < P (para;

]
i
'

:FIG {figure)
e > < g

P

( -~->> FIGCAP (figure captloil)

-~—> FIGD

==> 0L, UL, :SL (orde

=== LP (iist part)

aph) or Implled paragraph >
normal text

2> < Basl¢ Document Elements >

==2> :PC (paragraph continua

fon)
normal text hd -

ure body >
oeeees > < Baslec Document Elements >
> << ling elements >

{ normal text }
L;lngle text line
SSC (figure description)
e 2> < Implied paragraph >
---—— > << Basic Document Elements >

red, unordered and simple lists)

====>> _LI (list item)

> < lmplied paragraph >
---—->> < Basle Document Elements >

~aeee > < Implled paragraph >

=w==> NOTE Snor.e)
<

==> :P (paragraph)

==>.Q (a
== :HPQ
==2> :HP1
== :HP2

===> HP3

> (LQ (It;ng quote)

------ > << Basic Document Elements >

mplied paragraph > .

{ normat text }

ote)

normal text .
highlight type 1)
normal text

highlight type 2)
normal text

highlight type 3) .
normal text &,
highlight type 4)

normal texts

< Bastc Document Elements >

(“, Flgure 2.1b Baslc Document Elements

25

.




Te i B IR
¢

RO P e s e awe

“3 e At e S B T B L L T T

In the above flgures, some tags Indlcate structure rather than text. For
Instapce, GDOC (general document) Indlcates the baslc structure of the entire
document, beglinning with front matter and concluding with back matter. Only
tags contalnlng ‘‘single text Ilne”, *‘normal text’*, or “Implied paragraph'’ may

/

contaln text (here *‘text’” means a sequence of words). The tags In figure 2.1a are
ordered according to a gen\%ral document format. For example, *‘title page”
always appears before the ab\.%;t,ract., the abstract before the preface, and so on.
The user must enter tags according to document sequence and all tags can b;e
speélﬂed only after the parent tag lIs specm?d. eg., document type “‘FRONTM”
can only be specified after tag “"GDOC” iIs speclfied. No ordering 1s Imposed on
basic document elements (figure 2.1b), slnce paragraphs, quotes, etc., may appear
a number of times within a document and In any order. A single arrow (--->)
Indicates those tags which can only be specifled once. For Instance, *Appendlx”
can only appear once in a document. A double arrow (===>) Implles that the
' ,
t,aa can be repeated, eg: within the appendlx strupture, H1 (first level heading)

»

can appear any number of times.

26

PO




AT

O

PR - e e .

v g )

FTT

Following, are two examples (taken from [Goldfarb 80]) used to lilustrate how the

. . GML: tags work:
‘ \
‘ Ezample A
:lq
:p. Four score and seven years
ago our fathers brought forth on

this continent a new nation ...
elq

formatted output will be following:

Four score and seven.years ago our
P fathers brought forth on thls con-
’ ' tlnent a néw natlon ...

{ FEzxample B

! :q.The observation :q.The
coldest winter I ever

' experlenced was one summer
in San Franclso:eq. Is widely
attributed to Sam Clemens:eq..

formatted output will be following:

“*The observatilon ‘The coldest win-
ter I ever experlenced was one sum-
mer In San Franclsco™ I1s widely
attributed to Sam Clemens."”

Another goal of GML Is to ensure that any kind of document need only be
marked up once. In other words, the document Is no longer Mmited to a single

applicatlion, formatting style or processing system. If a user has already

27




-

-

- - e A B T e T iy

identified the document elements properly, there 1s no reason for him to repeat
the markup processes in order to achleve a different effect. GML, made this possl-
ble by the use of proflles prepared by APFs (applicatlon processing functions). A
proflle 1s a mapping mechanism such that the same markup tag can hz;ve

different group of low-level layout commands (SCRIPT commands).

Generally speaking, GML Is less compllcated than SCRIBBE but has all the

advantages of the latter system. For example, 1t 1s easy t0 use and has a power-

ful writer's workh bench. On the other hand, GML also has the same baslc dlsa;d-

vantage as SCRIBE, In that It can only handle simple forms of text documents.

It cannot handle mathematical materlals and simple llne drawings. .

2.2.3 JANUS ‘ ."

JANUS Is an lntei'act.lve formatter under development at the IBM research

laboratory In San Jose [Nlevergelt 82]. While based on GML's concepts, the sys- /

tem has some other Interesting features. JANUS dlsplays formatting results and

corresponding Input text on two. different screens. The formatted output 18

displayed one page at a time. 1r users are not satisfled they ean use ‘the Joystick
to rearrange the objects In the formatted output. Once satisfled, they can then
get the hardcopy from the phototypesetter device. The Interactlve aspect of
JANUS greatly.slmpnﬂes the reror"mat,f.lng process for the users. All batch for-

matters mentioned earller require users to fix the original 1nput text and reformat

1

1t. .

O
Another of JANUS"® Interesting features Is Its internal representation of docu~ .

-

ments, Documents are speclfled as a collectlon of galleys. A galley member can be

28




a table, 3 Justified line, a plcture or any other element ready to be put onto the

;o page. The only restriction on galley members Is that me& be‘indi¥vislble and have
¢ ‘
an ordered sequence In relation to other galley members. The 1dea of gallleys

slmpllﬁeg the formatting process, because It breaks the formatting pr,oblém iInto
. two smaller problems: a horizontal and a vertical problem. The horlzontal prob-

[y

lemn deals with the page wldth. Its maln concern 1s with dlvldlng texts Into galley

members to fit the page width. The vertlcal problem deals with the page helght.

- §

Its maln concern 1s with arranging the line galley members Into pages. ARother

/

advantage of the galley concept 1s that d'lt, Is easy to-mlx tables and figures,
/ PSS

because the system can treat them llke any ordinary galley member with different’

A

2 N

helghts and widths.

(ﬂ .

: i through the use of the jJoystick. The baslc questlon.ls whgther the systern must

.
‘ 2

Questions remaln as to hovy JANUS wlll deal with the cﬁanges eflected

! ' change-the”orlginal Input document file or- create a new document file. While

- M

JANUS has a processing power equal to GML, It has many adira.ntages over the

. s 4
B latter In terms of user friendliness. " )
[ /’ 4 . - 1 d v
, N\
; / _ \
H ! - B
{ / ‘ } ; ‘ :
! ;
: / :
| / : \ '
: /
! ,’\__ 4
' J - -
i ) ) A
g / , = .
; CL
f / <L L |
H y
A ‘ - |
/ , : “

= B g + e

b




ek el RPN A TR R S P S S b e h

1F PR

-

i o

-~

A it . -

TR S Sl i
.

B

* '2.3 Conclusion’ - N .
A L 4. . e »

Througlf the evolution'.stages of text formatting systerfis, there has been an

. ~ ~~ P " . &

. 6bvl<_>us switch - from low-level (procedural) approach systjems to. high-level .

R - . b

" (deelarative) approach systeins. High-level s§stern"§ are easler to learn and use:

syntax éfrors are less likely: to occur, thus reduclng both cost and time 1 produc-
. FL I N i it 9 R N .

Ing the document. In terms of 'up'dat,lng, high-level: systems are less costly, since

i y »
. tg{{ey are easier to reformat than low-level systems. Diffefent formatting styles can

A . .
easily be achleved in high-level approach systems by slmply changing the mﬂarkdp

/

tag deﬂnluopywmle in low-level approach systems, users have to redo- the- }ﬁhole

Tho - . . s . . N
‘document. Since high-level systems havé so mapy advantages over low-level sys-
& £ yo . . Tt oy ' o :

- oy .‘ i . ) N ¢ - ‘
tems, 1t'is expected that In the near future more sophisticated high-level

' A
o~

approach systems will be developed to satisfy the needs of users' - ' -
’ ’ . ' a ’ ’ Lo ' .
JANUS _l’s the prototypé of the next generation of formatting systems.

¢

Althoygh the 1dea -of Interactive text \format.nlng Is fascinating, the problems dis-

™

_cusséd above remaih open. o : 5.

LY
N
’

Flnally, there are stlll problems as how to enable sopﬁlétlcat;e_d high-level

-

approach systems such as TROFF or TEX, to deal with,tables )an'd maphemétlcal

’
2

" materlals without losing thelr declarativé characterlstics.

’
’

/&t.er having ew_ra.l'uat.ed the ‘above three épprbaches‘ 1t -was declided that a

]

3

high-level approach would be used for tlie qxberlmental‘ formatting system. As

<

i has been discussed, the high-level system Is more user friendly than a low-level

~
- v

S system, but does n'qt. have the “ad hoc‘: problems experienced In mt;éracuve for-

. . - *’ R -

. uiatt.lng. H N ) ) .,

+A N 3




e e g —— ot AR

O ) approach also makes It more appeallng than the procedural method.

CHAPTER THREE o

_ A

f B v B *
« - . . , . L}
. ® .

This chapter will discuss t;he requirements set' for the experlmental 'si(stém.

3,

“w ignf

short discusslon of the baslc design of the system. . oo

- 2 Rt
- 5
/7“

3.1 Basic System quairements o . PO
35 . - . ' .,

I
~ -'“ -

v
!

. " “The major goal of the experlmental formatting system was to. evaluate -
C, v - \ . ~ R .

whether a text formatting system based on a relational model ’was'ﬁexlble or not.

The prime requlrement, of the system was to be able to deal wlth relatlonal mes

- \&'}

- N

o wlthout vlolanmg the closure propert;les [Merrett. 84a] of algebralc syst,ems. The . -

A
N

user should be able to use It not, only to rormat tex§ b«utr*alsd r.o t&ke advantage N

: .t Lo TS 5'.

of the relax.!onal model uslng relaclonal algebra to solve *some otl'rer text process-~

-

x rd
. Ing problems sudh as Indexing, spelling' correction, and word frequgﬂcy count.

4

°

After assessing the procedural and declarative methods, it was found.that
. ' . . 1 i e
, the declaratlve approach was more stltable to the experimental system. Format-

.

++  ting declaratlve commands Is less complex and more systematlc than formatting
: . " . " , . o

i 5 .o o .
procedural commands. This makes implementation of a relatlonal based format~

Fl D

ting system easler. Finally, the flexibility and user filendilness of the declarative

£

LA J

o 4 -
- B e t.

31 | .

-'285 well as t,he I‘ormat,tmg Ianguage used In the system. Foliowling 'f;his wlll be"a »

L4 t

- ‘System Design .~




]

! -
- ' .
\ ” -

*3.2 Formatting Language = : / : .

-~

Due to tlme constralnts, and since the major concern was not how 4o design
_u a declarative formatting language, 1t was declded to adopt a subset of GML's

general docul}lent definltlon. GML's formatting language was chosen because 1t Is

o

well deflned anq Is easy f;o ex;;end to the complete set In the future. The subset of -

GML:’s general document language was adopted Into the experimental system as

-

o Y

shown In figure 3.1: . ' - AN

~

:gdoc (General Document) .

-+—> :fgom.m {front matter)

oj——-> :titlep (title page)
|=-—->3 :title (docupent title)
. { single text line }
. {-———-> :docnum (document number) 4
{ single text line } ’
- we—ms-> :date (document date)
single text line }
===> :author (author's name)
{ single text ling }
===>> :address (address of author/publisher)

v

===> :aline (address line)
© { single text line }

*

’

~--->> :abstract (abstract) '
< Basic Document Elements >
====> :h2 (level 2 heading segment)
< Baslc Document Element >
> :h3 (level 3 heading segment)’
< Basic Document Element >
o

", =——> :toc (table of contents)

o

{-——-> :body (maln body)

====>> :hO (part heading)
< Basic Document Elements >
====>> :hl (chapter heading) -
{ same as :ABSTRACT }

=

o
> :appefidix (appendix section)

—=> :h1 (first-level heading segments)
{ same as :ABSTRACT }

4 % -

G Eac B T J



o

St

RPN

At v e

o e

R ——— T S A AP gy e S x  w e

Wos i

< Basic Document Elements > S ’ co

-

r

|====3> :address (address) b ,‘

’ ‘ ====>> :aline (address line) e i . e
;o .+ { singlé text line } Ty
=="> :p (paragraph) _ : ) ‘ ;
. { normal text } 5.
=> :q (quote) . . .
normal text }. !

|m==1>> :hpo (hlghllght type 1)
{ normal text }
==2> :hpl (highlight type 2) -

normal text } ,
J==> :hp2 (highlight type 3) »
normal text } .
’ =3 :hp3 (highlight type 4) | o
' normal text } | .
=> :q (long quote) v - '

. < Basic Documbnc Elements >

t
\

Figure 3.1 Subset of GML Formatting Deflnltlon -

\ .
‘
] . - a
U 4 ¥ . . »

\#

note: the same rules apply as in the dlscussloh of the GML syst,em in sect.lon
©2.2.2

. ' 4
< 0

3.3 Logical Design of the System . .

The exixerlmenf,al relatlonal text rqymat'g‘,ing system Is divided into thiee

-

major components. These are: editor, formatter, aid-display driver, as Shown In

figure 3.2. .+ ° ) s R )
N 3. : o ‘
D LeXL . emmeoe-ooek L gext. LRI C L formtted, *--vac--
entered relatiotial stored fommat er text dlspluy concrete
by --- editor |--=> in --->]. bas ~--> stored --->|driver. |---> output

user R + relational Jonzy to el

“ © fom ﬁrelat.lon relational ' 3

' #eccce-ces ,  form . , &

\ Figure 3.2 Relattonal, 31‘9xt. Formatting System




[ —

P s e SR

ot ai R

»

B ] v - SISV U SRS SO SUR RV S U

3.3.1 Editor Based on Relations

4
° * A

The relatlonal editor Is somewhat different from the normal editor. Besides

¢

providing normal editing runcbions. It also pro\'ldes a mapping function betwee-n
relatlons and normal text flles (a string of characters). The mapping function Is
essentlal, since the editor act}alfy stores the Input :e:;b In two relatlons
(*STRUC™ and “"COPY"). Another distingulshing character.of this editor Is that

1t 1s syntax-directed. The syntax of the formatting commands of high-level sys-

)

. tems ls slmple“a.nd systematlic and ellminates unnecessary formatting errors. This

4

editor can also use “template” technlques [Teltelbaum 81aj, The “template”
method elimlnates typlné errors and s more user-friendly than other methods,

since the user has slmply to jump Into the right place-hole and start typing

¢

without actually t,yplﬂg the formatting commands. The edltor also monltors the

whole editing process and thus minimizes the amount of work for the user. ‘Since

N -
1t 1s not the major concern’of this thesls, readers who are Interested In the rela-

f

\

tional editor should refer to [Fayerman 84].

3.3.2 STRUC and COPY Relations

I

As explalned In chapter ong, Sectlon 1.4, a relatlon ‘FIRST' composed of two

attributes: ‘word’ ':md ‘wordseq’ (word sequence), woulci be able to. j)reserve the
Information_and support all the functions (updating, viewlng, storing etc.) as the
conventional method. However, reiatlon ‘FﬁST' .ls not the optimum WAy.‘ to
store text In the relational form. ‘FIRST" does not take advantage of the possibll-

ity of storing text aceorﬁlng to its logical structure. If one ‘more atmpui‘e. ‘type’

1

(text type) Is added, the type of text elements can also be stored. -

-




"

WIS € SR T atresn

e.g.° SPOOND ( type , wordseq , word )

~

»

12.0 This ‘ ' !

2 p ~
D 13.0 is
p 14.0 an
p 15.0 example.
:\

v

(note : In section 3.2 it was mentioned that GML formatting language was used
as the formatting language for the experimental system. Therefore in the exam-
ples GML text element tag will be used as the text type (l.e. p —-> paragraph).)

Since the majlor goal of the system Is formatting text, relatlon ‘SECONIS‘,
while an Improvement on relatlon ‘FIRST", Is stlil not good enough. Problems
such as distinguishing one paragraph from ;mot.her, or kno%vlng that a paragraph
belongs to one part of a long quote, are solved by adding three mor;: avtributes,
namely: ‘ptag’ (parent text type), ‘p_ld" (parent text type 1d) and.‘c_id’ (child
text type id). Slnce the GML tags are be}ng used In the example; ‘ptag’ or ‘ctag’
are used as the names of the text type attributes. The relatlon proposed would

look llke the following example:

THIRD ( ptag-, p_id , ctag , c_id , wordseq , word )

1q 6 P 10 0 - This
- - 1q 6 p 10 1 is
iq 6 p 10 2 an
lq 8 )} 10 3 example.
'.’&\\ '

»

°

D ’—‘P_ i
Relation “THIRD' contalns all the Information needed. However, repetition of the

same data value (In ptag, p_id, ctag and.c_id) caused it to be rather
. |

35



‘
‘.
4 et 0 e £ e s AR
WINPT ” S e sk - ~ s

e

cumbersome. It was declded tq break relatlon ‘THIRD’ into two relations:

\ .
. ( ‘STRUC' and ‘COPY", which are the Input relatlons (relations we mefitloned In

section 3.3.1) of the experimenting formatter. The STRUC relation, as the name

indicates, Is used to store the logleal structure Information of the Input docu-

!

) ment,

{ The STRUC relation has the following attributes:

) a) pt.ag-l parent GML-tag

_ "

g . . b) pseq- parent tag-1d
¢) ctag - child GML tag R B
. ] ’ 5 .
- - ~d) cseq-~ chlld tag-1d - .
( s ‘ i The tag-1d Is an unlque value In ascendlng order, which serves two purposes:

1). 1t Is used to distinguish the document elements with the same GML tag and

Lot > e e 4 O T

I1). 1t 1s used to preserve the natural ordering of the document elements; e.g. the

\
element with smaller tag-1d shouid be placed before the element with blgger tag-

——n o~

.

£

36




4 A 1 A s 8w B v EE

S e v e s
v

T YT e TR TR N ARSI g TN % EOOVTNOE D et e Mt a1 O gl VB RIEELIEE £ TS OB BTt n v v s o w4

Lt

[

5

The copy relatlon 13 used to store the actual document. It has the followlng attrl-

butes:

a) ctag

b) cseq -
c) wordseq -

d) word

1

The HNnkage of STRUC and COPY 1s*made by the attribute CSEQ. For

example, the beginning of this section wiil be stored as the following relation seg-

ments:

STRUC (PTAG, PSHQ, CIAG, CSHR)

GML tag

tag-id

word-id

actual word

h1
h2

10
18

h2 18
P 19

(;IW’(Cnﬁa'CSEQ,VCRDSEQ,VCRD )

h2
h2
‘h2
h2
h2
p
D
D

18
18
18
18
18
19
10
19

Logical
Design

of

the

System

The
experimental
relational

N~ O W=~

note :- sequence number was chosen arbltrarlly

37

Ot P )




TN e e

AT

FE ATk sstarp ety S R EAVAR MRS i 3 € e

Ao o v

P R R R Vv

U R e

3.3.3 Formatter Based on the Relations : COPY and STRUC

The relational formatter s further broken down into the following

major

-

parts as shown in Figure 3.3 L
SIRC and APY
¢ relai.lons
LR T r T o e e e ee e *
Bomewmana -o————
. +----> | line / page | <---—
break
) L R *
font width font height
information inl‘omzlnion
.o \'
. * Mommmm e eam * line galley ---w-eu-oo * | page galley
user user v galley stored page stored
{nput —~->| interface}----- >{formatving|---> in ---->|fomtting|-+--> in
R * et * relational  #-----ca-ao * relational .
form form
L T e, e c— e e emmeammerccr e mm e ———— *
Figure 3.3 MaJor Components of the Formatter
A
“‘\ h
(
- ', {
4 ’ ~ 38

S




T T oo

o reA e et e, A

F S i S L I

ke

3.3.3.1 User Interface g

. The user Interface part was designed to allow the user to modify-the format-

ting optilons and Is the only communlcation bridge between the user and the for-
matter. The optlons the-user may change are: page size, mm? size, formatting
rules, document type, formatting style, and output devlce. In order to satisfy
different needs and to make the system-as flexlble as possible, a "swltcﬁ board™
was used. Each GML formatting command has a4set, of formatting rule:s. The user
has the cholce of using the default option or selecting the one he/she' needs. The
default optlon is declded according to the document type specified by the user.
Tl‘le Interface routlne ls deslgned with the novice user In mind and many optlons
are involved. It was declded to use the ‘'template” method instead of the corf-
ventional line-orlented method or menu driven type technlque. Ideally, the \;ser
has a full page of optlons with the default setting. Optlons are ordered according
’
to thelr natural dependence. For example, since document type will declde the
default cholce of the switch board, the option of document b)krpe should go before
the optlon of switch board. The Interface mechanlsm works in the following
fashion: If the user ls‘ satisfled with the default settings, Iie/she can jump to the
next page of optlons by simply hitting the return key. Otherwlse, he/she can

Jump to the place-hole and make changes. This method makes the ’ixser Interface

part extremely fast and user friendly.

39

e e o sn v o A e T I % e e e
P e a5 o vy e

———r =




e s i

P e

O
T Rt e AN R AT AL R Yy W kg g o s

[

/

-

t

T i TR R o]

o
e ¥

3.3.3.2 Line/Page Break Module

One of the major tasks of text formatting Is to break down paragraphs into
lines and then Into a *‘rigid area™ with left and right marglns belng aligned. This
**breaking process’ Is essentlal for any text longer than the avallable line width.

The effectiveness of thls process has a tremendous Impact on the appearance and

quality of the flnlshed document. Since a poorly broken document wili distract

”

the attentlon of the reader from the document, It Is clear that the breaklng rou-

tine 1s vital for the development of a document preparatlon system. The posslible

solutlons to this problem are the following :

1). line-by-line approach ‘ ( o

~ -

‘The conveitlonal way to solve the line breakling problem ls by asslgning one

word at a time to the current line. The word 1s accepted If the additional word

~

wldth does not exceed the preassigned line wildth. Otherwise, thls word 1s

removed from the current llne and placed at the beginning of the next following

llne. The whole process keeps on untll the last word of the paragraph. To sum-

-

marize the llne by line appsoach we present the followlng algorithm.

-

' "

2
e e e T e L = RULE APUSUUTRTRNPIVSURNURIUR Y § B kit ui e a P e e J R e




TN AR

e

T A, e

»
R e e T R e e T ]
‘

LINE BY LINE ALGORITHM

Input ‘~\
n = total number of words In the paragraph.
size = desired llne width.
word == array used to store each word width.

output
I'ne = array used to store the break polnts.
Iine[0] == total number of lines generated.

time complexity
O(n)

Step 1 /% Inltlallze x/
1 := 1; ine[0] := 1; width := word|[1};

Step 2 /* calculate line width x/
while ((width < slize) and (1 <= n)) do
begin
1 =1+ 1;
width := width + word[l] + ¥
end;
If (width > slze)
( . then goto 3
else If 1 > n)
then
: begin
llne[0] :=1- 1;
terminate;
end
else .
begin
1i=1+4+1;
goto 3;
end;
! Step 3 /x need a new line */
line{linef0]] :==1 - 1;
width := word|l];
line[0] := linel0] + 1;
- / goto 2;

o

11




*i

. Ezample 1 , 0

The paragraph below Is for demonstration purposes only:

**The conventlonal way to solvel the line breaking problem is by '
assigning one word at a time to the current line.” .-

The above paragraph lIs translated Into an array *“‘word™™ which Is the Input

to the line by line algorithm. Array *‘word’ contalns the width of each word In

the paragraph.

Input to the algorithm are :- -

H b

word = 3,12,3,2,5,3,4.8,7,2,:2,9,3,4,2,1,4,2,3,7,5

The algorithm performs the following calculation.

i = 1, 2, 3, 4, §, 86, 7, 8, 6,10,11,12,13,14,15,16,17,18,19,20,21
word = 3,12, 3, 2, 5, 3, 4, 8, 7, 2, 2, 90, 3, 4, 2,1, 4, 2, 3, 7, 5
width= 3,16,20,23,29,33,38
4,13,21,24,27,37
9,13,18,21,23,28,31,35
7.13
The output array ‘line’ has the followlng values.
BEVIANY line[0] = 4 /* total number of lines %/
line[l1] =6 R T P T T Y Y
line[2] =11 /* last word of x/
line{3] =19 /* each line «/
line (4] =21 e T T T T T T V4 *

42




—— N

e —————— Y A s <

Now the production of the formatted output 1s trivial. ’Another routine can be

used which 'r,slkw the contents of array ‘}fne' as 1ts Input and produces the follow-

by
M . 4

Ing output with left and right Justification and distrlbutes the extra.spaces In a -

random manper:

The conventlonal way to solve the
‘llne , breaklng problem 1Is by

_ asslgning one word at a t.lme to the
o current line. ~

4 .
v, » . .

2). dynamic programming approach .

The next possible cholce for the Iine breaking problem Is to use the so-c’al;ed

]

dynamlc programming approach [Sedgewick 83]. When a sequerice of words has

A\l

’

to be ,broken Into two or more lines, the 'dynamlc programming approach can
help to break the lines in such a- way that they are equa.lly used up or very nearly

so. The concept Is simple : all ,possible permut.at,lons and comblnatlons or endlng

“

words for every line are calcqlated and the results sbored In a table (cost matrix).

.
\

Once all poslble soluclons are found 1t Is simple bo determlne the best,' way to

2
Pl ‘?

break the llnes (according to the lowest values In the cost mhbrlx). The cost

*

value for each possible ending word 1Is strictly a matter of personal cholce. For

< w o

example, If the user disllkes hyphenation he/she can assign a'la,rge cost value rér,

1t. The following algorithm summarizes the dynamic programming approach:

L
+ .
» ~ A v ¥
. . § v

H 4 . +

-

¥

F



o g W 0 b

o v . ; Wt Al
- ‘ voa . ¢
‘ * ' i - ’ - ' m o ‘ R
) - 3 y ‘ R N Y ‘ . ’ N LI
- : ‘. “ ) .') § ‘ ‘ , X :\ ¢ hd .
‘ . o DYNAMIC PROGRAMMING ALGORITHM *“ R 5‘ f )
(.\ input r e LT ,
‘ . n’ = total number of words In t.hp paragraph. ™ - v
by . slze = deslred nne width. - « RS
| ’ word = array used to store.each word wldth.‘ .
’ + ¢, output - v . ts ": T SO B , i
end_word == array used to store the.optimal break polnts.’, - S
L = time complexity’ ‘ ) T )
N L &t :’Fhe time complexn’.y involved In step: 1 1s »% However, the rest of .
’ a Ve the a.lgomhm requlres a t.lme complexity of order n. & ) . 5 .
: . T on L e N * :‘ . ,\ d, i', ] ‘“ \‘ ‘ toe ¢
o s, - + , . . P, v s o7 ot
Step 1 «./* lnlg,lallze xf . ' ce . L S ;
L cqst.[l,j] = 1=)=01,..n, : ) o |
;g » i l = 1: J o— 1. L v\ . LY ; .
. BT t.op = 0; : . - T ! s
P '} prewldth := size;’ o . . : ; R
g o | preeost':= 0; i . o » : ) .
"¢ width = word[l]; 2 Co IR
N : , P v oo :
) ‘ Step 2 /* test finish all tlie words or not */ X .

: L. fy=n . B we e y
( g then * o R . ) ‘ “
P : ) *° begin’ e E o,

] : ‘ © 1 costfly] > precost. : .- .
) C s, " thet cost[L}] 1= precost; . ¥ IR :
. ' lf not empcystack . R S . .
Lt then . ' ,
o . . : *beg[n ) : . N
. G - Width := word[stackftop]d); ** * - - ... -2 .
: : : \ , 1= stack|top].}; v
- o o ;. 3 =1 . . ) t
: o . ¥, ... Drewldeh, = §tack[toprldth'
: s oy Ta precost = scack[t.op] costi’ Teooe v o
o - top :=top - 1;. . '
, ’ Lo ’ , .goto 3 L ) ' :
: . . end . . ;
‘ ‘ else goto 6 [ . ‘ -
‘i :* " -end ' ' C o . -
: : " else goto 3; N
: i ; .
o - o N
: ¥ « : * . ‘
| ! ‘; o . . - ’ . S d
. . . AR L .
. ﬁ ‘ ’ o ‘. 44 ‘ BRI . L0 .
- . coa " o ] ‘ ‘ e . -
e ettt mim i s g s o RN

3
“2



T

Al

" ks

Step 3 /% calculat,e current line width % / .
=141 . .
width === width + 1 + word[J] ce .

If slze < width -
_then goto 4’ '
‘else If (size - width) <== (size / 5) S a
then goto 5 ’ .
else goto 2; ’ .

Step 4 /* calculate cost value * /

If costfl,}-1] =

. then " . R
begin . .
) width := wldth - 1 - word[}]; ’
cost[l,J-1] = (size —width )* + precost -+ dbs (width—prewidth )|
top := top + 1; .
. stack[top].l :== J; . .
/ I .. . stack[top].cost := cost; . » .
o _ stack|[top]. wldt.h = width; . )
G t end :
) width : wordjsback[t‘,op] l] .
. 1: stack[top] I; N ?
T Ji=1; : N ’
( prewtdth := stack[top] width; ) L s ° -
. precost := stack[top].cost; - \ - )
- top :==top - 1; ‘ : .
géto 2;° o ¢ -
& - .
© Step s . /* new llne %/ SR
) cost. i== (size ~width )’ + precost. + abs (width —-preundth )a 1 -
R ¢ cost < cost]L,j] . :
then . .
begin > b . .
cost[l,]] :== cost;- Lo
top := top + 1; 1
.- _ . stackftop].l:= ] + 1; -
o stack[top).cost := cost; : .
. statk{top].width := width; .
end . ‘ . A
goto 2; . R
‘; *Step'8 /x find best sequence of break polnts */ .
S <use the cost matrix to find the optimal break potnt>; _
= _terminate, . . :
B 7 * a
o ~
~ - ' :
3
¢

1




e . NP e g R PR

TSI R
>

ES

. ' In the above algorithm the *“‘cost’’ Is derived from a function which lt.seir 1s
o s

o e Y
¢ 1

deflned as:

’

o

AR )
d1 = difference between deslted line width and actual llne width

- y €

- -

\ _ . d2 = diflerence between current line width and previous Jline wildth
¢

O v g

i ~ 1
7

w——

. cost= (d1® + d2%) &

o . [(zample 2

»

W1ith the same Input as In example 1, step 1 through step 5 of-the algorithm

will produce a two dimenslonal matrix that is glven below (note : blanks in the

| | cost matrix represent Infinity and.only the smallest cost values will be stored):

e i\ilt .. 5 6 19 11 1718 19 .. 21
\ 1 432 16
. 1S -
/ 6 | » © 776 .504
( © ? 744 ] .
11 : ’ 867 993 ,
12| : . 874 568 568 -
18 . : 867 ‘
19] . 568
20 ~ 568 /
o 21 . - .

i = starting word of the current line
} == ending vyord of the current line

] -

j | > '

O | { ‘\ g y Cost Matriz : °

o

e




PR T R e T

* Sor g e Ve s e
Bty = I - y

Lar A At by i A  ha e ST et -

-

In order to produce the above matrix, thé algorithm will do the following

° ' .

calculations. ] P .
i =1,23, 4,5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21
word=3,12, 3, 2, 5, 3, 4,8, 7,2, 2,9, 3, 4, 2,1, 4,2, 3,7, 5 ;
s precost .
- width= 3,16,20,23,29,33,38 prewidth = 35 . o
‘ ’ 4,13,21,24,27,37 - 16
r 9,13,18,21,23, 28,31, 35,43 74%
. T 7,13 1256
- . 3,11,17 872 '
: 2, 6,14,20 _ 1088
3. 8,17,25,28,31 ,41 A 432
9,13,18,21,23,28,31,35,43 - 504
7,13 568
3,11,17 568
;. 2, 6,14,20 874 '
2,12,16,21,24,26,31,34,38 776
’ 3,11,17 903
2, 6.14,20 867

Stack used in the calculation.
r .

19 | 993 34 13 12 . -
i8 867 31 12 13 |- . °
20 | 568 ¢ 35 ni s ‘

. “ 19 | 568 31 10 9

e st i b e o i

o

18 | 874 | 28 9 | 10 I . ,
.12 | 504 31 8 7 | . L i
11 | 776 | 28 | 7 | 11 :
20 (1256 | 35.( 6 3 §
19 872 | 31 5 B !
18 {1088 28 T4 S5 - ?
12 | 744 27 3 2|, ‘
‘ 7 16 33" 2 1 . ‘
' 6 | 432 | 29 ] 1 8 4
i cost width push pop
° LS

\ 47 ¢




o ety B

R ]

* 3). The Heuristic Approach [Knuth and Plass 8l]

5 ’ . L}

- Each row of the matrix indicates the startlng word number of a particular
. - 4 -

line, whereas the column indicates the ending word number of that line. Since the

total number of words ‘'n” In the paragraph 1s known, the minlmum’ cost 1s

]

found from the n* colugm. The corresponding row Indicates the starting word

nymber of ‘the last line. The preceding line's ending word number Is equal to the

v

current row's starting word number - 1. The same process Is then repeated until
' AN

the first line is rea.chedr-:-\ .

. N ’ /

v

A routine accepting the “cost’” matrix as lnput can be used to pro‘duée the

following formatted output:
e

The conventional way to solve
the line breaking problem 1s by
asslgning one word at a tlme to
theJ current line.

By comparing this with the output from the flrst algorithm,-it 1s clear that
3

the dyna;nlc f)rogrammlng has produce&_a better réult.

-

~s

\

The line breaking algorlthm‘developed by Knuth and Plass 1s also bag.ed on
the dynamlc programming approach. The basic }dea of the algqut.hm Is the same

as the dynamic programming approach : calculate the cost value of each feasible

ending word (break point); store the cost, values; when all the feasible ending

v

words are calculated, plck the best sequence of the ending words according to the

pre-stored cost values. However, the algorithm developed by Knuth and Plass Is

48

S

i 8 wr CSeane ATV s & o garr RN AP i g 4 a8 e o e s | s e e



value for undesirable break polnts.

somewhat more complex than the dynamic progrgnimlng approach. Thelr a‘lgo-
rithm ellminates the most unlikely combinations, such as éxtremely loose or tight
lines. It also discourages “wldow lines” (lines with only one word). Rather than
using a ma;;rlx to store the cost value, the system uses a network structure, which
avolds the unnecessary wa.ste ?r memory space. Finally, thelr syst.ein glves the
user more control by allowing him/her to add additlonal information (control fac-

tors) based on personal cholce. For example, the user can assign a larger penalty

L 4

Tﬁe following example wil] tllustrate how the llne breaking algorithm works. For
slmpllglty's sake the example wlll assume the following conditions:

1) n.o‘ automatic hyphenation lnvélved
2) gll ch#ra.cl;er widths are equal to 1
3) maximum blanké allowed (between words) are four.
4) desired line length 1s 25 |

with the following Input paragraph ) . :
. ‘ p LY
, .
g |
*“I was coming to the Computer Centre because tw
belng comlcal about my code.” - // .

°

e e i e

N

P

R e A v

 aat




. ey

" # HDRERPTMOIREEAG I R 1 e e

N e s IRt e

- meg

9/\.

I was coming to the Computing Centre because the computer was being comical about my code.

11 1 2 3 4 4 5°6 8 7 8 8 9
1 5 .25 9 B 6 48 . 7 17 3 1 4 o
\ :
\\\\~\ .

AN AN

NN

AN

\'\J .""J\

L 4 L J [ ]

<

figure 3.4a: All possible choices made by the algorithm. A dotted line (....;\) indicates

the infeasible. The first number along the line indicates the actual line

\ width, and the second indicates the maximum width after the maximum
blanks are inserted.




.

_Figures 3.4a and 3.4b should be read from left to right and from top to bot-
tom. In figure 3.4a the first number refers to the actual number of chara:ct.er§ and
spaces In a line. Since 1t 1s possible to Insert another four spaces between words,‘
the sgcond number repr"esem,s the maximum width of the line. For example, one

of the feaslble llnes runs from “’I'" to “‘to’”. The first number at thls break point.

'(15) equals the actual number of characters and spaces. The second number (27)
equals the first number plus 4 times the total number of Interval spaces In that

llne (4 X 3 = 12). In Aigure 3.4b the adjustment ratlos (r;) are calculated by the

following equatlion:
adjustment ratio (r;)=(I; - L;)/ Y str

where I; Is the deslred length; L; Is the actual length; 3 s¢r Is the stretchability
of line ).

The badness values (8;) are calculated by the following equatlons:

13
o if r; wundefined or < -1

) @ badness (B;) = {100 l,.,.la otherwise

\

The demerits (§;) are calculated by the followlng equation:

Q+8;+m; P + a; itx >0
T - demerits (8;) = {(1+8;) -x}+ a; o0 < x; <O
‘ 0+8;)P + «a; if x; = —o0

where x and a arlse from hyphenation ‘ )

)




TR hem T T T g T

R i Sind - 2 S e . R e s I LT TP U

4

Using the same feasible line example as above (the llne running from “‘I" to *‘t0™")

y L2
(

r, = (25-15) / (3X4) = 0.83
B, = 100 }0.83* = 57.9

6, = (1+57.94+0)* + 0 = 3465.7

Flnally, to find the best breaking sequence figure 3.4b should be read from

the-bo/ti;om to find the least }36; over all lines } and then follow the path back-

ward (right to left; bottom to top) to get all the break polnts (ending words) for

each line.

»

et e S gt e g e A b et 6 A U bt ey




- - N -
. ity o oo ot R R ST T TN S 1 AN A Awmep ot w5 e AW e v a o F— -
- T L ]

s

I was coming to the Computing Centre because the computer was being comical about my code.

111 . 2 3 4 4 5 6 8 7 8 8 9
1 s 25 9 9 6 4 8 7 1 1 5 1

4 0

figure 3.4b: The important information calculated according to ending word (break

point). The values are: adjustment ratio (rj), badness (f;) and demerits
(15‘,‘).l

53




.

LR A————
R R L It L P o S SR s it s i & D s

N e I I S A B E RS

7 The formatted result (least demerlt) will be following:

I was comlng to the
Computing Centre because
the computer was belng "
comlical about my -code.

' The line breaking algorithm developed by Knuth and Plass 1s as follows: -

THE LINE BREAKING ALGORITHM (general outline) [Knuth and Plass 81]

Time complexity
O(D) t

< create an actlve node representing the beginning of the paragraph>;
for b := 1 tom do
: ' <if b Is a legal breakpolnt>
. N then
( begin
<Inltlalize the feaslble breaks at b to the empty:set>;
<for each active node a> do
begin .
<compute the adjustment ratlo r from a o b>;
Ifr < -1 or <b 15 a forced break>
then <Cdeactlve node a>;
' ' If1<r<p
- ‘ then <record a feaslble break from a to b>;
b end;
<If there Is a feaslble break at b>
then ,
<append the best such breaks as actlve nodes>;

end;
< choose the actlve node wlth\rewesc total demerlts>;
I . e q<>0 ;
then <choose the approprlate actlve node>;
< use the chosen node to determine the optimum breakpolnt sequence>

o
f
)




LY

\

< create an actlve node representing the beginning of the paragraph>

\'\
~

‘begin
:= new node(positlon = 0,line =0, fitmess == 1, -
totalwldth = 0, totalstretch = O, totalshrink == 0, @

totaldemerits = O, previous == A, llnk = A);

= A;

end.

*

~
i

(for b :== 1 to m do <If b Is a legal breakpolnt> then <maln loop>)

EW 1= YY 1= %7 := 0;

’ for b :== 1 tom do
If £, = ‘box’ then W 1= YW + w,

- else If ¢, = ‘glue’ then
begln
If ¢_, = ‘box’ then < maln loop>;
EW 1= ZW + w;; n -
: Y=Y + y; i ’ .
X7 = ZZ + z; B

- end
else If p, <> +00 then <main loop>.

< malin-loop>

begin
8 == A;
preva == A;
loop ' .
Dgyi= D;:= D, = Dy 1= D 1= +00; " .

loop
nexta :== link(a); -
< compute the adjustment ratio r from 4 to b>;

Ifr<-10rp, =-00

’

35




t i et ARAATN AP g0 e

e

4 gn
A&
el

oo

then <deactlvate node a>
else preva := a;
If-1 <==T1T <{=DpD

then ) -
begin . o
<compute demerits d and fitness class ¢>;
" itd < D, a
* then
begin
D, = d;
A, == 8;
Ifd <D thenD :=¢;
end;
end; ’

a = nexta;
If a = A then exit loop;
If llne(a) >== ) and } < j, then exit loop;
repeat; -
D < oo o
then <lInsért new actlve nodes for breaks from A, to b>;
If a = A then exit loop; “
repeat; '
ITA=A . :
then <do somethlng drastic since there Is no feasible solution>;
end. ~ '

]

. — , -

< cdmput.e the adjustment ratlo r from a to d> -
’ : EN
== W - totalwidth(a); \
If t;, = ‘penalty’ thenL := L + w, 3
J :== line(a) + 1;
ML < '
then
begin . T
;= XY - totalstretch(a);
IfY>oOthenr:=(;-L)/Y.
; . else r := o0;
end
else If L > I,‘ ’
then
begin

LN
£




g
B o el A SRS

end,_; .

Z := T2 - totalshrink{a);'
ifZ>0 . L
thenr:=(;-L)/ Z°
" else r = 005
end
elser := 0.

[

4

.+
»

<deaciive node a> -
begin o & ) ‘
If preva = A
then A = ne,xﬁa
else link(preva) := nexta;

"ﬂk(a) == P; . o
P = a: .
end; -
i " — 1 ! ’
¢
- - =

<compute demerits d and fitness class ¢>
begin ‘
if p>=20
then d := (1 + 100|r |* + p,,?
else If p, <> -Infinite .
then d := (1 + 100|r{%’ - »,
else d :== (1 + 100jr | %% |
N d:=d+q‘*!l*f'~c;t'n(c);
i r < -0.5then ¢ = .
else If r <= 0.5 then ¢ := )
elseifr <==1thenc:==2¢lse c =3
If |c- fitness(a)l > 1thend:=d + %
+ @ == d + totaldemerits(a);

87




T RETR R T e et

" 3 . -, ' i

— / oy ot e e o - it o
B ¥ T ~ . y ,

E ) . )

g‘ 2 . . A e '

’é : ! i ° M i ‘_’ [ o

[:" (" bk > x

N g - -<Insert new active nodes for breaks from A, tob> |

v begln S ' ’ - “, '@ L . )
. < compute tw = (Zw )c]m(b)v ty = (8’ )cjur(b)l and tZ = (Xz ).[m())),
for ¢:= 0 to3 do _ " {

‘ D, <=D +17 | ! A .

i o then, - :
P v begln C
' $ :== new node(position = b, llne = llne(A )+ 1,
- fitness = ¢, totalwidth == tw, totalstretch == ty,
vooo ot totalshrink == tz, totaldemerlts = D, ,
_ ' ;o previous = A,, link = a);
S ' ) If previ = A £, -

o . then A = 4d. )

R else link(preva) 1= '

N Y preva ‘= s;
. . end; - . ,
end; ; £
s :\, - R M i
! ; o . ) ] :"c !
‘ R j ok
Y o " -

: <c0mpuw W = .(Bw)i]"ll(*)t ty
Y

N

= (BY Yy B0EZ = (E2)osiert)>

* begln ’ L
= LW; ty 1= XY; tz := EZ, l = b;
loop . )
. 1r l_> m then exlit loop; . o . ‘
b i = *box’ then exit loop. “ . o T . .
R . lfl,' == gltle , ’ P L, !
“ ’ thesd = < S : ) -
’ begin - : '
o WIS W e o -
Wy =1ty 4 g; Yy : , ) .
12 ;=2 4 z; . ’ -
, end S . b - e
elseif'p; =-0c0 and'l > b o R
.. then exit loop; e
. =1+1 - . .
repeat; L .
1. N ‘end. - R I . ‘ * v ’
I3 7 A




S

et

B e o

e e

The comparison of the three approaches has clearly Indicated that, t.iJe
heuristic algorithm 1Is Isupeﬂon Of the three methodolc')gles belng dlscussed, the
llne by llne approach Is the slmplest one to lmplexﬁent. However, the output pro-
duced by the llne by llne apprgach usually can be Improved by re-arranging cer-
taln worfls In the paragraph so that each llne Is- equally used up. This 1mplies

that the different Tnterword space of the varlpus llnes ¢an be minimized and the

number of the output lines remalns the same as those of the line by Jine

[ ‘A [

approach. This Improvement 1s actualli’ performed by the\dyn“amlc programming
approach. However, the dynamlc programming approach 1s alsg Imperfect. It will
produce ‘‘bad b'i'eaklng‘ polnts’, “‘widow Ilnes’’ and allows no-optlon for breaking
a llne at the pc:»lnt, deslred by the user. Here, "bé.d breaklﬁg point™ refers to a
slt}latlox; ‘such as the breaking of *“‘flgure 3.1 Into two.separate llnes. ‘*Widow
line" refers to the'case whena tiie-last llne only contalns a few characters (say 5%
of total avallable space). Cerbalniy, wldow uhes and bad breaks are not desirable.

Most of these.bad breaks and wldow llnes can be overcome by using the heurlstlc

)

approach. In fact, this approach provldes several advantages, such as: (a) option
‘ o Y
to break at any polnt (b) different line widths can be specified within one para-

graph (c) pobal‘nlimber of llnes generated can be made greater .or shorter. Also,

2
\ .

hyphens can be generated automatically because the algorithm Is carrled out on a
- \ \ L)
character by character basls. It was declded to adopt the heuristlc approach

because of Its greater power and sophistication, as well as theéafact that 1t pro-

vides some means to help elimlnate bad brea..RS’whlch are not provided by otgher

approa.che;_s. (Since page breaking problems are simllar to those orv line breaking,

the algorithm deveioped by Knuth and Plass also applles)

r;: 1 . 59

e e ot o vt ety b v 3% BT S OPPIPRE R g [ - . R I U R e

ol



St @A e g SER] A R L AR P b gy T L R U
4 T U R L ey Sadiat 4 Cadead 2

[

®

3.3.3.3 Generate Galley Modules : line-galley and page-galley

! > As shown In figure 3.3, section 3.3.3, the llne breaking process (the produc-
tlon of line galley) and the page br);e,aking process (the production of page galley)
Y1
are separated Into two different modules. The reasons for the separation are obvi-
—~~

' ous: t.l<e\ two tasks are practically unrelated, and the separation simplifies the for-
matting process. Flnally, If the dynamlc programming approach or the heuristic

approach were to be used, then the ‘amount of data (text and Its fpormatting Infor-

matlon) needed to be stored In the core memory would be enormously iz;,rge'

(pract,lcally unfeas!ble). The basic tasks of these two modules are the same :

1). é,ccept. input relations
2). call lne/page break routines

3). create galley relations

o

The output relatlon, *‘llne-galley”, from the Ilne-galley module contains all

°

the Information needed to display a line. (n}Ee : the line-galley relation will be

discarded at the end of the formatting process.

piotmmme s
.




-

The relation *’llne-galley™ will have the following attributes ;
Y

, . \

0) partname -—>> used to distingulsh a different part of the text
: A

e.g. ‘" —-> means front matter
‘b” —-> means maln body
‘a’ > means appendlx

o

1) tag —> GML tag - ° : * s

2) leftspace  —>> left space 1s needed before printing a word

3) wordseq —> word sequence numbel/:
4) lineseq —> llne sequence number
AN &

AN )
5) maxhelght —> maximum vertlcal space needed for a line

85 maxup -> maximum upper vertlcal space needed for a line

e.g. vertical size of a character Is defined in two
parts ‘up’ and ‘down’, which are used for
, llne-up purposes.

7) word -> actual word
The output relation, “pa.ge-g;lley", from the page-galley module wlll contaln

all the lnr})x"mat.lon needed to produce the formatted: output (all the Information

contalned In the line-galley plus Information needed to display a page).

The relation ‘‘page-galley” will have all the attributes contalned In the relatlon

*“llne-galley’” plus the following two attributes :

1) pagenum --> page number

2) topspace —>> upper vertical space needed before printing a line

61

-




B e R I L T R P R T v o

i MG

-

3.3.3.4 Display Driver S

Since the display. drlver ﬁ machine dependant, the module- was designed
with the output device 1n mind. In order to make the system ‘easler 10 adjust to

other output devices, the functlons of this module were kept as general and sim-

: I
ple as possible. They are:

?

1). to request the Input relation

2). to process the Input relation (page galley)

3). to transiate the logical formatting commands Into machine readable form

1

4). to send the machine readabie form to the output device

®

82




ot o mempurermn s R e & B T -

CHAPTER FOUR
Details of Implementation

This chapter deals with a descriptlon of the host system configuration which

was u\§ed 1o bulld the exgerlmemal formatter. The programming language used to

bulld the system wlill be discussed. Then the implementation goal and the output

-

device for the system wlill be descrlbed. Finally, a brlef discussion of the Imple-

mentation of each Important module will be presented.

A1
o

4.1 Host System Configuration

[y

The experimental relatlon-based formatter Is bullt on a small Cadmus work

N +

‘statlon. The work statlon consists of one console, three normal CRTs am} one
black and white raster graphic terminal with mouse Interface. The system Is run
- by two Motorola Mc68000 serles mlicroprocessors: one for the operating system
and the ot.fxer for the graphic controller for the graphic terminal. The memory of
the work statlon Is three mega bytes of RAM. Two 65 mega byte winchester hard
disks are also Included as a secondary memory. A streamer t.apé and a floppy dlslcr
drive unit are equipped for back up 'pqrposes. The graphics terminal 1s able to
address 1024 x 1024 plxéls, the display screen can display 1024 x 800 pixels. The
rest of the 10’24 X 224 pixels are deslgned for patter;x storage purposes. The
operating system used on thls work station Is a multl-user UNIX operating sys-

tem.

63




i Sl ARARIFINL St Ao ks 28

A

4.2 Programming Language Used

{

.

*C" was chosen because 1t Is the major programming language for UNIX as well
as the fact that 1t allows Its user to deal with both low level objects (masking

words, shifting bits, ete.) and high level objects (records, flles, polnters, etc.).

These features make this programming language extremely powerful and appeal--

ing. “*C” also has a simple, yet extremely efficlent fling mechanism. There are
no complicated flle structux@s. All files are flat flles and no speclal deflnitions are

- [

1mposed on thém.

4.3 Implementation Goal - .

Due to time constralnt, 1t was decided to concentrate on one document type,
namely book. Only one formatting style was implemented for that type. In other

words, Instead of an Incomplete system with formatting cholces, 1t was declded to

bulid one complete formatter (based on relations). Even though only one docu-

ment type was used for the Implementation part, the system was developed to be
as general as possible, so that in the future’ muitiple cholce optlons conld' be
easlly added. For example, though there were no other formatting options, the

switch board mechanism was stlil Ijiplemented for each formatting command.

“

The default cholce of each formatting command on the switch board was “t.he ohe

implemented and was the only workable 'o.;xe.

.

/o

o

The “°C” programming language was used to build the experimental system.

r)




4.4 Output Device

The output Qevl;:e chosen for the experimental system was the Cadm)ls

graphic terminal. Thils terminal is able to display one page per screen, and the

v

major goal was to determine whether or not a formatter based on rélza'ti;ns was
feasible. For our purpose It was Inconsequentlal whether the rormat,te& results
were printed on paper or displayed on 'a screen. 'However, the use of the graphlc
screen as the output device proved that the formatter ’could be device lndepen—

L d

dent. Furthermore, In the future the system can easlly be changed to a ‘*What

s .

you see, Is what ydu get’” type of formatter. This Is of Interest since many find 1t

moreé appealing to see the formatted output before It 1s printed on paper.




o e

e NIRRT RN AT, i e

AT b e e

P TR

- ¢

4.5 Simple Description of the Implementation

T

In this sectlon, the physical storage structure (methods) used to store the

relatlons will be described. After this, the implementations of each important

module described in figure 4.1 will be discussed briefly.

. lnput| text
oo e emenee
| pre-processor |
POl S S M

STRUC and COPY

relations
,, |
L I na L TR 2 LT P PP PP PP L TP PR *
Bt ot e o -
4==--> | line / page | <---~+
break
|
font width font height |-
inforrmtion information
4
Becoaomoan * | Scccmemcn.o * line galley #--~--n---- page galley
user user v galley stored page stored
input ——->| ineerfuel---;-->'fonmtt.lng,---> in ---->|fonmt.t.|ng —+--> in
L L L & relational &----cee-.. relational
. form form
= .
e |
: N P
, display
- e driver
; [T S
. |
' A\
‘ , copcrete
/ output

N "

[ BN

Flgure 4.1 Major components of the relatlonal formatter




4.5.1 Storage Structure of Relations

fn this experimental formatter, relatlons are stored in n-tuple form In secon-
dary storage. For the purpose of this thesls, n-tuple form means that each tuple
was stored exactly as is, without golng through other forms of operations before
storing or retrieving. In <.3t,her words, If a tuple will take 20 bytes In RAM then
the attempt was n;ade to use the exact memory (20 bytes) to store It in secon-
dary storage. However, since the sn;ucture of the memory devlces are one dlmen-
slonal, In order to preserve the tabular structure of a reiatlon some kind of Ind}-
cator was needed to signify the end of one tuple ;nd the beginning of another.
The lndlca.;,or chosen for this purpose Is **/”. In the n-tuple form, If a tuple will

. -
take 20 bytes In RAM, 1t will take 21 bytes in secondary storage.

The major advantage of the indicator I1s that 1t alk‘)ws the tuple to be stored
in various léngths. F;n' example, In 3 COPY relation each tuplie has the following
attributes: CTAG, CSEQ, WORDSEQ and WORD. When the tuple is stored the
attributes are stored In the forms of an Integer (2 bytes), a float (4 bytes), an
Integer (2 bytes), and n characters (n bytes) respectlvely. In additlon, 1 byte will
be reserved for the separator. In this case, the ordering ;>r the attributes Is Imma-
terlal and the slze of each attribute Is fIxed except for the word slze. The only
,place an Indicator 1s needed Is Immedlately after the word. Once t.ile slze of the
word Is known the end of the current tuple Is also known. The only disadvantage
of thls kind of flle structure i1s that the flle which contalns the tuples gannot be

processed with a normal text edlitor.

67 g T




e

(W e R, Lt

e ————

o sy o APPSO
.

-

.

B Vs AN NS S R R T KRERSCIASES SRR SWTRR ST NS K RE 1 T e [ s Rmabmamre  m ) a4 e e 4 oy b Fro— B, S —— o

’

While this m;;y be a disadvantage for ch;cmlng it 1s an advantage rovr file
securlty. For an unauthorized user who does not know the ordering of the :}ttl:l-l
l?ut.es or the Indlcator symbol, tfxere Is no way he/she can figure out the cox/lt,ents
from t,hat‘ flle. In other words, the flle Is encoded by litself, and the key to decod-

Ing 1t 1s knowledge of the ordering of the attributes and the Indicator symbol.

Besldes providing document security there are other advantages to thils system.

The n-tuple rérm saves memory space. In the ASCII form (common prac-
tice), for every non character type at,t,rlb:ne (1.e. integer, real) with a value
greater than or equal to 10, at least one byte more will be needed for storage
than 1n the n-tuple form. For example, to s‘t,ore the Integer 10 in the ASCII form
‘then one byte wlill be needed for the character °1°, one byte for the character ‘0’
and one b;rte for the Indlcator (used to Indicate the end of the attribute). How-
ever, to store 10 in n-tuple form only 2 bytes (Integer size on CADMUS) will be

needed. The indicator, Is not required, because the size of an Integer type element

will always be 2 bytes.

In terms of processing time at run time, the n-tuple form s much more
efficlent than the ASCII form. Following are two examples, one for ASCII and
another for n-tuple form, used to illustrate the required statements to read in the

value of one integer type attribute.

68

B ke T



o e

3

— f .
Ezample 1 (data stored In ASCII form) . .

number = 0; -
read(*'data”,chartemp,1);  /» read one character from file »/.
do h

{

number = number * 10 + (chartemp - ‘0');
read(**data’,chartemp,1);

} :
whille (chartemp != ‘/'); - ‘ \

Ezample 2 (data stored In n-tuple form) - -

read(*‘data”, &Znumber, 2);

: A ] 3 . .
In example 1, at least 2 asslgnments, 1 comparison, 1 multiply, 1 addition, 1
~ N
subtraction and 2 read statements are needed. However, In example 2, only 1

read st,at,e/nent. Is needed. The same sltuation will be true for the storage of a

%2
‘number. X
( ! r__.—_——i‘%____,éjﬁ’ 1
N "fn?“h . o '/: Il\"_: ‘ .

" 69




R

[ TR

4.5.2 Pre-Processor for the Formatter

!

As discussed In chapter three, the Input relatlons to the formatter, naxﬁely
COPY and STRUC, are generated by/t.hefelamonal edltor. Since the editor 1s not
the malor concern In thls thesls, but(Avghe /ﬁvo relatlons for our experimental for-

*

matter were stlll needed It was d;f‘clded to build :a pre-pgocessor. The Job of the
. ! |4

pre-proc'@or is firstly to read \a normal ﬁle cdmg.\mng the GML commands and
the document; and secondly to produce the two relat,lons‘. The Implementation of
the pre-processor Is quite simple. Essentlally, it works on two tables: ’t.he
"com.mand—stack” and "‘word”. The ‘‘command-stack" Is a two dimenslonal table
with t.hé’r;f:tllo?vmg atvributes: ‘PTAG’, '‘PSEQ’, CTAG ‘CSEQ’; where 'PTAG’
contalns parent ‘‘tag name’ (GML tag), '‘PSEQ’ contalns the parent tag-id,
‘CTAG" con,t.z'uns child “tag name’, and ‘CSEQ" contalns chlld tag-ld. The
“word”’ 1E a one dimenslonal table, which 1s used to store one word or the ‘‘tag
name’’. The ;lgorlt.hm préexit.ed on the following page ls the simplified version of

o

the pre-processor.

70




| e BN

Algorsthm

1). open the flle needed to be formatted;
1=1; top=20; wgrdseq:—-o; tagseq = O; .
command-stack[CTAG] ftop] = **gdoc™;. command-stack[CSEQ] [top] = 0;

2). read one character from the file put, Into word[O].
If end of file goto 13;

3). .1r word;[(;)] =" " goto 2; ° ) ¢
4). If word[0] = *':" goto 10 <
5). read one character from flle put Into word|[1];

8). If wordfl] = " " or wordfl] = *:"* goto 8;

7} I=1+4+1; goto5

8). wrlte one COPY tuple;
wordseq = wordseq + 1:° .
If word[l] = *:" goto 10; -

0). 1=1;goto 2;

" 10). look ahead one characi./er;
If character = “'e" goto 12;

11). read In the new tag name; t.agseq = t.agseq +1;
top = top + 1;
command-stack [PTAG] [top] = command—stack[CTAG] [top - 1J;
command-stack[PSEQ] [top] = command-stack{CSEQ) [top - 1};
command-stack{CTAG] [top] == new tag name;
command-stack[CSEQ] [top] = tagseq;
write ope tuple of STRUC flle from command-stack(s] [top};
wordseq = 0; goto 2; i

102). read In the tag name;

top = top - 1; /* pop the eommand-stack(top] */
goto 2;

ep——

»

113). close all flles; terminate,
4




oy «(«m).@«"gﬂm

B T T

g W

i

(IR sl e B

' '
0 e & R T R WReT - g o v v on e - ~n e & - - - 1 e g o - .-
WG e e e e AU AR S g o e o DA RTINS SN YRGS Ay g et

1

f [}
N a

Ezample -
Assume we have the following Input text file (taken from chapter two of this
thesis)
Q\ N
! :body. .
:hO. ]
DEMO ' ’
:h1. . )
Empty Chapter
p.
Empty paraoraph
ep.
“:ehil.
:hi.
Survey of '
sehl. ' -
:hl.
Existing
:ehl. °
shi.
Text Formatting Systems ,
:p.
. A text formatting system ... program deslgned to deal
with ... doéument on a specific medium.

.«
2 -

7

-
-

of computer hardware and software ... the popularity and
desirabllity of text rormamug systems.

.ep». ¥
’ :h2.
Procedural Approach Systems "
:p. ’
Systems using ... text formatting problems aré ... of the
. system will ... document. The obJective ... Is therefore

.
* 9
.
.

necessary tools.
iep.

e se

:eh0. e

:ebody.
segdoc. -

72

P.w

-



g I e A e 5 vra e

e AT

¢

o araeay Ao % ar

Same emom v

——

”~ . .
| e T R S 1SS e st Kk oY e vt r rbm  a e

STRUC ( PTAG , PSEQ , CIAG , CSEQ )

gdoc
body
ho .
h1
ho
ho
ho
hi

h1
2

NP RWN O

o

- T R

.

o
T

body
ho
h1

S -

D
h1
h1l
h1
p

h2
p

[

WA W

COPY ( CTAG , CSEQ , VORDSEQ , WORD )

ho
ho
ho
ho

Tow Qo T

ToT

DRVATIINIDBNUN D DWW NN

@0 W ®©

00 00

17
17

17

17

17
17

<

WHONOOmOO~OWN O

[=X-X- ]

106
107
108

a8 .-
. 19
‘20

29
30 *
31

78
79

73

9

D
E
M
(9]
Empty
Chapter
Empty
paragraph.
Survey
of
Existing
Text
Formatting
Systems
A
text
formatting

designed
to
deal

popularity
and a
desirability

the
system
will

document .
The
objective

necessary
tools.

B

The output/from the pre-processor will be the following two relations:




-

[ N

~

g

A

4.5.3 User-Interface Modgle o
. {

The user-Interface module was Implemented as mentioned In the previous

chapter. The “ScreenuUpdat.lng Ha‘nmd Cursor Movement Optlmizatlon: A Library

Package” [Bell Laboratorles 83] ( a utllity program on UNIX operating systexﬁ)
was used to bullci the user Interface module. This package proWdes facllities for

the **C” programmer to deal with the CRT screen dlsplay and updating. Detalls
4

of each page template will be discussed In Chapter flve, section 5.3.'
- ‘

3
- , *

Followling Is a general outline of the algom.hma of this module:

- »
L

1) clear the screen

3

. 2) display one screen of default optlons;
move cursor to the “change’” place-hole;
. /* default place-hole value equal to NO »/ : ‘

- [
.

3) accept Input;
if Input equal to <CR> goto 12
clear the .place-hole:
echo Input; accept input;: N
while (Input != <CR>)
. g{ .
echo Input; ®
accept Input;

. .
} ’ )

L+

4) niove cursor to the first plgce—ho]e of the optlons

[
o

5) accept Input; ‘
s _If Input equal to <CR> gpto 10

¢

~ 8) clear place-hole °
7)  echo Input \ : -
8) . agcept lnput; . ‘

If Input ot equal to <CR> g,ovt.o 7

« . N \
.

- . 4
.
" 74 o '
| N
‘ ’




.

8) change the current optlon’s value
T

10) ' move cursor tp the next place-hole;
- If current place-hole equal to “‘change’ place-hole goto 3

§
3

-

11) gotos
12) If all default options not displayed goto 1

13) terminate.

4.5.4 Line/Page Break Module ’

As mentloned In chapter 3, sectlon 3.3.3b, the line breaking algorithm
developed by ﬁzbum and Plass was lmplemented. The algorithm had to be
mgdlﬂed so as to handle our‘ba)slc Input data structure. (Slnce our application
handled a paragraph word by word rather than character by charact,e~r). Only
lnforma@t:lon about word éize, word type and total number of words In the para-
graph 1s required, slnce the appllcation routine Is designed to produce the optimal
break po\nt,s.for each paragraph. The Information of word size and word type 1s
stored In two separate arrays. In contrast to the llne breaking algorithm, the
word type only indlcates penalty type and boi-t.ype. There are only _two types

i,
because the Input paragraph Is stored In a relational form and the Inter-word

- i

space has been assumed to be unique. The Information on the Inter-word space Is
not necessary for our appllication. Without the glue type, 1t Is ‘3ssumed that there
1s a legal brqak polnt after each word. Further, our application allows freedom for

the uge of phototypesetter, CRT and normal typewrlter devices for the formatted

output. A listing of our llne breaking procedures 1S also Included In appendix A.

X

2 g e 3 ot

o i ek A A P e B

S e, P ot




Exzample /

With the same Input paragraph as 1n Example 1 and Example 2 (In vchapbel‘

3, section 3.3.3b), our line breaking routine will have the following lnputs:

plype - array used to store word type
pslize = array used to store word size

v‘t" .

Index (index - 1) polnting to the last word N
PN
GLUEWIDTH = 1.0
GLUESTRETCH = 1.5
GLUESHRINK = 0,0
‘ GLUE = ‘0 \
. BOX = 1’
PENALTY = * ‘2
size ' = 35
Figure 4.2 lllustrates the result of our llne breaking routlne.
B mmank
8----->| the |
L TR X *
L IR ]
10463- - «-vmmo - +-->| the 4----u--- »
L St D *
' [ ] | .. . *
Lo i | s o1 LSS
10426---->| by 4+~=---10538--->| tO +----nn-- —+
ok e
Hoeww oo * L LT TR *
. 17236-~-=---w=mn-- >| time 4~-~--- e >| line. |
L i ] Bomm » Koo - *
10201--->|. solve |
. I TS B e
' 65042~ === cmmonmons > I r—— -+
- R LT
L
*-—fk
35735---->} is |
* e K
3 Mo =k
416676~ ~~=---m-mn=- >| at 4----eoemn *
[ TP

Filgure 4.2. This network 1S constructed by the program using the
algorithm developed by IKnuth and Plass. It shows the feasible
breakpolnts (In box) and number of demerits charged (numbers)
when proceeding from one breakpolnt to another. Note: thls exam-
ple has been represented In a network structure as compared to the
shortest path graph In flgure 3.4b but represents the same process,

\

\

e e a s fuke MO o

P



Once the network 1s established, it Is trivial to find the best sequence to break

the paragraph. Finally, the same routlne as In example 1 (chapter 3, sectlon

3.3.3b‘) can be used to produce the following formatted output.

N N

The conventional way to solve *

the line breaking problem s by “
assigning one word at a tlme to

the current line.

4.5.5 First Pass Module : galley formatting

The maJor goal of this module 1s io generate the temporary line-galley rela-

tlon. As mentloned above, (figure 4.1) the Input to. this module will be the COPY

g

and STRUC relatlons. Since the only Instructions contalned In the COPY and
STRUC relations are document structure and types of document elements, thls
module requlres an understanding of a number of GML tags, presented In section

3.2. For Instance, the module must understand the hlerarchical structure of the

4
\

GML syntax and the loglcal meaning of t,he GML tags. A switchboard mechanism
must be lmplemented In order to allow ror different formatting styles for each
adopted GML tag. In order for thls module \i»o meet the above requlrements, It

was declded to Implement each of the adopted\ GML tags as Indlvidual units

\
\,
\

(modules). In other words, each tag will have a uxﬁgue procedure (subroutlne) to

-
\

. berform the necessary taskst These procedures process the STRUC and the

COPY relatlons and store the Information Into arrays, w\hlch are the Input of the

llne/page break module. At the end of each procedure, If the current document

type Is to be treated as a complete unit, then the corresponding procedure will

.
~ A r

PN

POTNpa—— -

L




B ]

Eo

T TR R Ly ey oy T

pass the Informatlon arrays to thg llne/page break module to break the stream of
text Into llnes and store the line-galley tuples according to the result returned .Py
the line/page break module. For example, “*p” (paragraph) and "'lq"" (long quote)
a:re complete unlts, but **q” (quote) and *““hp2" (bold face font) are not considered
complete units. This form of Implementation was necessary in order to make the
switchboard mechanlsm posslble as we}l as to facllitate the adherence to the GML

hlerarchical schema.

From relatlons COPY and STRUC a new relation “LINEGALLEY" can be
generated with the following new attributes: partm’;‘me, leftspace, lineseq, max-
helght, maxup (see sectlon 3.3.3.3).

The algorithm presented_ on the following page Is the simplified verslon of

the Implementation of the first pass.

-

78




Algorithm (general outline) .
1) open STRUC and COPY flles

i -2) read In one tuple from STRUC relation;
push the tuple Into STRUC-STACK

3) If current tag (CTAG) has no text elements goto 2
look ahead the CSEQ from COPY relation; .
If ((current (CSEQ) not equal to the CSEQ fromm COPY relation)
and (CSEQ from COPY relatlon not In STRUC-STACK)) goto 2
/* e.g. tag “"toc”” has no text elements x/

4) read In one tuple from COPY relation;
. If COPY relation finlshed goto 9

5) 1f current tag-1d (CSEQ) from COPY relation not equal to
tag-ld (CSEQ) from STRUC-STACKftop] goto 7

!

8) calculate the slze Information of the word;
store Informatlon Into arrays;
goto 4 ‘ " /’

li

. 7) push back the COPY flle pointer one tuple; /

If CTAG of STRUC-STACK(|top] Is a complete unit goto 8;

look ahead one tuple from STRUC flle;

iIf ((STRUC flle finished) or (PSEQ from STRUC file not equal to
CSEQ from STRUC-STACK(|top])) pop STRUC-STACK;

If CSEQ from STRUC-STACK[top] equal to CSEQ from COPY
£oto 4;

goto 2

8) call lne/page break module;

store the line-galley tuples according to the results
returped by llne/page break module; :

look ahead one tuple from STRUC flle; :

If ((STRUC flle finished) or (PSEQ from STRUC flle not equal to™ ’
CSEQ from STRUC-STACK( [top])) pop STRUC-STACK; ~

If CSEQ Tfrom STRUC-STACK]|[top] equal to CSEQ from COPY
goto 4;

goto 2

o

9) call line/page break module;
store the llng—galley tuples;
close flles; terminate.

-




.

- b S DT T MY W om0

mhwn*nmﬂxéﬂwbm,m s o— e

~ e

————a 1 o PG

R el o

F bt e e 7 e

Faliatt

Ezample

relations shown In section 4.5.2 wilil look like the following:

13

: . K
The output relation (“‘line-galley’’) from this module, for t

he COPY and STRUC

line-galley ( PART , TAG .msmcz.vuosm.mbm,man'.mr'.wm)

-N-o- -4 -4-&-4 coov -~

- &-X-

-2

ooyUw

‘www

A- AR R -] h-B-R -

woo

T74.75
9.56
9.56

9.56
9.56
74.75
10.77

7.81
7.81
74.75

12,05
12.05
74.75

7.45

'7.45
74.75
10.65

N N N~

LA X

10
11

»

gERN

-N-X-]

10
10

19
19
20

288

. 10,
10.

P ot

sy

ocoo

ocooco coo cooo

ocoo

L

0w~

®mon ®»® :
[N~ N -4 [~ N~

(=X NN

® oo
[-N-N-]

A
text
formatting

progran
designed
1o

deal.

popularity
and
desirability

of
the
system

will

document
The ’
objective



I
|

o e O A 0 o e e

Sk i oy o

[,

[y

. vt WY L arwd e

o

@ T R WP A MR WAy e Rty R 4 KT g WE e mgr me b A PSR BN R e 8 b Ly e e A SR % g N —_—

l

\

S

s

A o

4.5.6 Second Pass Module : page formatting

This module 1s used to generate the page-galley relation. The Implementa-

.tlon of this module Is simllar to the first pass module, the major dlﬂerénce belng

the problems dealt with. In this module, the Implementation part Is concerned

with makling the page attractlve. Tpus, there I1s more deslgn dependency than In

’

the first pass module. The implementation part Is also structured according to

\ &)Y\\\\\
‘the formatting rules, such as startlnig a new page when text type 1s “*h1’" (chapter

<

heading). The page-galley relation generated by thls module has all the attrlbutes

&

of the line-galley relatlon. In addition, there are two more attributes:.

page_number (Indicate the page number) and topspace (top space needed before

/printing the llne). The simplified verslon of the Implementatlon can be summar-

-

jzed 1n the followlng algorithm. oo

_, Algorithm (general outline) .

i) read In one tuple from the llne-galley file; .

if llne-galley file inlshed goto 5 .

2) If current document type should" begln on a new page goto 4

’

3) store the vertlcal Information Into arrays;
skip all tuples belongling to this line;
goto 1

>

4) call llne/page break module; .
store the page-galley tuples according to t,he result ret.umed R

by the line/page break mddiile;
goto 3 ' .

5) call llne/page break module; (
store the page-galley tuples; - . -
terminate.

Er—

P



3

».:\»u-

VE o e o S PG

s

R

N B SRR W it o

>
7
7

~

ety W

-

Ezample .

The output relation (‘' page-galley™) from this module, for the

f

“lne-galley” rela-

.

tion shown 1n sectlon 4.5.3 will look llke the following:

¢
" b
B

me-pney(mu'.m.m.m,m.m.m.me.m-.W)

<

b b 1 5535 'Y 17.0 74.76 9.0 0 A
b P 5 56.35 19.0 17.0 0.50 9.0 1 text
b P 5 $5.35 0 17.0 0.56 9.0 2 fonmtting
\ . '
> » 5 55.35 9.0 17.0 0.86 9.0 7 pm%m
. Y p 5 65.35 19.0 17.0 9.50 9.0 8  designed
b » s 4.0 10.0 8.0 74.76 10.0 1 7Y
b » 5 4.0 10.0 8.0 10.77 10.0 - 2 deal
. i P
' b p 5 o 7 10.0 8.0 7.81 10.0 s/ popularity
b P 6 40 10.0 8.0 7.81 19.0 ° ' .
b P 13 4.0 10.0 8.0 74.75 20.0 1 desirabiiity
1Y p 3 4.0 1.0 8.0 12.05 3z.0 10 of
, b P 3 4.0 10.0 8.0 12.05 32.0 11 the
'] P 5 - 4.0 10.0 8.0 74.75 33.0 1 system \
, b P -8 4.0 10.0 8.0 7.45 33.0 2 will
» , -
‘» P T a0 10.0 8.0 7.45 33.0 11 . document,
b » s 22.33 11.0 8.0 74.75 34.0 1 The
b p s 22.33 1.0 8.0 10.65 34.0 2 objective

s

" 4.5.7 Display Driver Module

+

, :Thfe\lmplem‘entat.lon of thls module is the easlest one In the system. The sys-
tem was designed so that the display driver only has to do the following: a) use
the right character font, b) move to the right place, and c¢) display the character.

» It ls easy for the display drlver to meet the requlrements. In the page tuple, attrl-
bute “‘tag’ iIndicates which character font to wuse, attributes “maxhelght",

“maxup’’, ‘‘leftspace” and ‘‘topspace’’ Indlcate where to print the character.

Finally, to display the character knowledge of the control sequence 1s needed for

82




the particular output device. As mentioned In the beginning of the chapter, it
was declded to use the Cadmus graphlc terminal as the output device for our

Aexperlment.al system. Since the output Is shown on the screen Instead of on

paper, one more function must be added into the display driver. This Is the walt

/§ function which Is added to aliow the users the time to view any particular for-
/

i / - L4

§ matted page displayed on the graphlec screen.

’ Following Is a general outline of the algorithm of this modixle:

; <

.f';{ - }-—i) ) e oy )

b . _ 4} open the page-galley flle

i, 2) clear the graphlc screen; .

¥

E . display one blank page template;

g , o current_page = 1

g\t{«. . . - .
E ( o ‘ 3) read/ In one tuple from the page-galley;

i If page-galley finlshed goto 7

i ,

’ 4) If pagenum not equal to current_page goto 6 . = q'

Ay Y “ o
. 8) move the cursor to the right locatlon; ’ /7
. _display the word; . ) ' - \
. T goto 3 ) : o
' ! 6) accept Input; /* walt for Input */ ‘ ‘
If Input characteng.qual to *'s’ goto 7; '
current_page = pagenum;
: clear page template;
: goto 5
- 7) close file; ‘ ' ~
» terminate '

LR S o e T T
—



PR

L]

Ezample ) '

For the “page-galley " relatlon shown In the previous sectlon, the output from the

display driver will look ilke the following:

SRR " EXISTING

4 TE\T FORMATTING SYSTEMS

“,“”,A text formateing sycten is 2 Computer pragrac designed
xo" deat with the physical layour of’ a2 ‘docunent oo a gpecific
medium. Since the first appcarance of the vevt formatting system

S RUNOFF in the early 1960°s, a concidérable amount of research

' thac., been done in this arca The advantages o0f using 2 texe

form;gcing Tyz=gem are obvious: it =aves tarié, rvreduces production
-§= - cazierx {or updating and cotg less {or reformacting.
orfaats -cap casily be achieved, and output can be

o "different -devices, The increasing cost of maanuaity
"'oduccdudocument: wersus the decreasfog cost of conpucer
hardvnre "and Torftware Turther cootributes to the populiarity and

- ) d s]rnbllhy of texe forematting systens.

hlsfvxurw:y, we are intercested in the following issues:
thc formatun: powcr of the formattcr,
2)._‘he ‘user Interface, -
3). ;,other -fcatures relatced to the docunene, such as table of
contents, ndice s, fooetnoctes and cross references

T Syxstems using the "pro@cdural approach™ (tov.icvel approach)
" will be comparecd and contrasted 0 the “dcoclararive approach™
'_'(M;h-lcyc( approach), and the advaontages and drawbacks of cach

systcem discussed.

v
b

s

2.4. PROCEDURAL APPROACH SYSTEMS

I Systems using the procedural approac':“h tD text fovmateing
problems are based on the asxunption ¢that the user af the
system will wane to design the 7inal appear ance o' the docunent

3

84

[N
4



" CMAPTER TWO
gt 1 .&’lm ebjuctive of the wysicn fe shercfere te previde Its ueer
) A ‘}S:ﬁl'"“ set of toole (cormmands) to Mantpulate the phywicai \ayour
i 7~ the dacument. I& OIRCT words. the urPra of the avitees ave
i‘-\“l,‘ renponaitle Tor the {ornatted eutpur. as long ae 1he ayxsem
nbl’"“" atlt the meconsary toois
SIS S

‘tng-\.t.-jQ'}J, i ‘wan demigoed toideal with ﬂn;lnput wnd

,typ'-k)lu Llike -device.-Sloc

P
R op ocuology*%-: ia fte !.{-ncy,_fx{t:ﬁ!urn-nln;’f -
um‘%ﬂﬁo-x‘ro Vimited: by the output, d"iC&":Mlo
W{‘tﬁi,;‘tz -foroattersy; tﬂprovldnmfrelnﬂvﬂy
d *to “text’ forantting’ nyztemn’ co'm:or:lnlly
y;Séoday.sEsmentially, ‘noything -produced-by  RUNOFF "caa
nf{“,rgducea =inila¥ly by =" typewriter * !f. :uf!lclenl tloe ix
*ﬁ&r vided:- X However,  RUNOFF proved.that " uxing = - conputer to
pu-;ni:'mrtrdlou: work-rcsultx io » great, reduction of man hours
rollcvln: sye smome: of the RUNOFF conmands::

iccoter - ‘place tbe objecce in the center of a tine

. ] .space £ - £kip ¥ of lines (produce vertical spacing)
- Jdndent £ - skip £ of spacex (produce hovirontal. spacring)
.wndent * - unskip £ of space? (reduce horyzontal cpacing)
cadjuse - gtare lefe and raght jJustificaon
a .noadjuse - no jusrificatwon

RUNOFYF is obviously casy to use There are fev ronnan.lf;“

All gconuand naacs arc sclf{ cxplavcatory, and au dcal with the

ny ;roqulre the \vhole documem to be vre-organized.

v 'fﬂ( £ 5l
‘}- : 5




o R

1 t
Soma

-

CHAPTER FIVE - ’ /

Tutorial Introduction

This chapter wlll describe the use of the experimental formatter. First the
creation of the Input data flle will be discussed, followed by an explanation of the

use the pre-processor to generate the COPY and STRUC relatlons. Then the use

2 .
of the formatter and the display driver willl be explalned. Finally, a list of lmple-

mented GML formatting commands wlll be provided and the user will be told

how to use the cor_nmands collectlvely.

5.1 How to Create Input Data File

As frlennlon;d In the previous chapter, the relatlonal editor 1s not avallable
at the prt:asent. time. As an alternatlive, a normal 'l;ext. editor was used to enter the
documents and subsequently the pr&procesgor was used to generate the required
relatlons, namely COPY and STf{UC, to the formatter. The text edltors avallable

»

on the UNIX operatlng system are *‘ed”, “*ex’ and *‘v1'* editors. The '“v1'’ editor

I

" was chosen not only because “vi'* 1s a full screen editor, but also because It Is

[

easy to use. In the followling paragraphs a few '‘v1’® commands will be provided,

and the way to use “v1"" to create a-flle will be discussed.

The Insert and command mode of vi** Is suflicient for our purposes. The

' -

° . N '
Insert mode, which Is triggered by typing the “1"” once, will allow 1ts user to enter

r madt b i r - ' o



-

2%

TR v e % 4o - B I ——

any printable text. To exit the Insert mode, the user must press -down the
<ESC> key -once. The command mode Is the home mode of *‘vi'*, which Is

;!eslgned for modifylng text.

~ PR

1

The follox;rmg Is a partlal list of "vI”’ command mode commands, suflicient for

the new user.

_.—"1)h - move cursor to the left

2)] - move cursor down one line '
)

3)k ~ - move cursor up one line ~~"

t

4)! - move cursor to the right B

_5)x - delete the character polnted to by cursor
i 6) dd - delete the line polnted to by cursor

7)u - undo prevlous opgrzﬁ.lqn |

8) 1 - enter Insert mode

0)‘ :'wq - save the flle and then exit the **vi"” editor L.

/ . | J

]

et P ST A B rrnnn

- g b

£ . "
~ P 7 i e



e

P T

e acr ¢ e <

B L T T —

- . ¢

The following is a demonstration of the creation of a new: filé:

" UNIX -> login: .
user ~->  frank ' o
UNIX --> | psssword:
user —-> /+ not echoed »/ -
UNIX-> 9% /¢ prompt from the system ¢/
Qser —~>  vi example

A

~
[ I N N |
.

L]

»

' 4
“*example” ‘lNe- hie]

user --> <i>
user —»>  gdoc. , L, .
‘fronum. ‘ ) ’ e,

:e(m-'ntm. s 4 --

1. . : ) )
, . ‘Tutorial Introduction . ' '

P .
In this chapter ... ......... . use the tommand 'collectively.

h2. : \ )

How o Create the input Data File , , o
Pp. - ¥
As mentioned in the ... .. .. 8Kip to next section. ' : C
‘ep. . - : .

p. . : " "
The editor**vi”* ... .... . commands |
ep. : , .
. P N * * 8 . N
T Sy
~ 1
’ : . - .
. R
: , Cee o
B le'h‘-. ’ . Do i
4 + * '
! -ebody. ) . . L )
appendix. - ’ .. , . “
] : o N " " 8
. Wy

:upéendix.' Co y v
;egdoc.

. uwer > <ESC> ‘/¢ gey out of the insert:mode s/

" oser--> wq <a> /+ save the file and terminate the editor o/

UNIX ~>  “example” {New file] #lines, #charncters . e
- YN ~>v B - .

PRy




PR

I

i
t

Once . a flle 1s created, the *"v1" editor can be used to modify it. To modify an

°

existing file, a user has merely to type *‘vl fllename <CR>" and the ‘v1’" editor
will be actlvated. The user will then be In the ‘v command mode in which he
can use the cursor movement commands to move the cursor to the right poﬂslnuon

to make the desired changes. .

5.2 How to use the Pre-Processor

The pre-processor 1s simple to use. After signing on to the system, the user
has merely to run the pre-processor. The pre-processor Is activated by typing the
‘*pre-processor's name <CR>"". Of: course, the user has to make sure that t.h?
pre-processor 1s In his/her current directory or Is In the system directory. Once
the pre-processor has tzeen\ actlvated, 1t will ;sk for the Input flle name of the

document needed to be formatted. The pre-processor wlll produce the COPY and
oS

STRUC relatlons in the current directory under the flle name COPY and

STRUC,

Ezample:

UNIX -> % K
user —> gen_copy<cr> [/ actlvate the pre-procasor 74

Pre-Processor —> ° /#* <clear the screen =/

Pre-Processor —> . enter Input text flle name —>

o

user —>  example<<er>  /+ document needed to be formatted +/°

UNIX -> % /# return from the pre-processor #/

°

we




p———

&

Fan AR A NG A AL A g 4 oo i1 Gt Pt TR

b 1t

23 fman s et e

- !

5.3 User Interface with the Formatter

Once the relations COPY and STRUC are ready, the user can actlvate the

formatter by typing “formatter’s name <CR>". The formatter will first clear

e A ‘
the screen and then print out t,uhe first page of the avallable default optlons. One
page of the screen Is assumed to contaln 24 llnes vertically and 80 columns hor-
. [ 4 ’
1zontally. It I1s assumed that a normal CRT ls belng used with the graphlcs termil-

-

nal beslde {t. However, If the user wants to use the graphics terminal as the only

»

communlication devlce, the formatter wlll\stlll aclept. it. In 'such a case, however,
|

even though the' graphics terminal can dlgplay 66 lines per scregen, the formatter

will only use the first 24 lines.* Simliarly, for each line t.he'rormgtter will oy use °

the first 80 columns (note: this Is only for| displaylng the options, It Is the display

driver which &lsplays the formatted text).

-

The interface always starts at the 'CHANGE' place-hole which asks the

*
user whether he/she wants to make c,hahges to the.current page, or not. If no
changes are required, the user simply hits the return key once. The Interface rou-
tine will go w Ll}e next page of default dptlons. If the user does want to make
some changes, he/she has to type 'y’ or “Y** in the first p}ace—hole and then us;e

£

the return key to Jump to the place-hole \JIhere the change 1s desired.

A pes



o

s S p e BRSNS e s 3 et - e e D et L T N P S

.

. s

The followlng are examples of the actual screen display of the four pages of

Q

default options: . I

B

#0‘.‘&‘#.tt‘t#.#‘t*““tt““i#““‘“““.‘0.‘*.‘.‘t.b“*i‘.“.‘..“.#“‘t.‘t‘

» Defaults for the Relations . ,‘/ . CHANGE -->NO »
- . .
] «/. « L]
x® ///:\ A »
* Input Relations ) . *
X0 emeremmccccnecwoe- g /,.v -
* : / -
- OOPY --> copy . -
* STRUC --> struc o .
* N . ¢
» Output Relations » . s ’ .
L I e D LR b % Il . *®
* I *
» LINE galley --> line_galley - *
* PAGE galley ~=> page_galley .
* TABLE of (I)NTB\ITS --> tableofcontent - .
* - L]
* » &
» Output  device ks bip *
B ecccsccccccmes &®
. /\ .
itttttitttt*ttttttt‘**t*##tt? EEEERRAEBEEBERERERRREBE SRR EEEEBESRR NSRBI R e R SR

%

°

Page 1

} | :

““t#i##‘#‘tt*‘*t*t‘tt*t*‘**#&##ltiti*‘ﬁ‘t‘*i#tt“'*tlt'#ltit.lt‘tt‘t#“.““l

» 4 ! . *
* i LS
*+ Text Type --> O;Nof book; 1 - for paper; 2 - others } *
- ° *
* LEFALLT for PHYS]O\LOUIPUI‘SIB *
s R *
* PR
* width heigm units -
L T U »
+ Page Size --> 650 =» 797 pixels *
[ ] »
* MRGINS . ‘ *
k eeseo-- - *
L a) left 11.5 % ol the page width =
. b) right 11.5 % of the page width "
* ¢) top 5.6 % of the page height (include page nurber) *
. d) bottan 5.6 % of the page height (include page nurber *
- . *
* *
* " CHANGE -->DND ]
* : R &
. »
““"ttl‘t‘.#ttt!ﬁ‘#tl‘t'!#t‘ttt"tt"ttt‘t'!tt!t“lt.ttt‘.t.t.tttttt‘.‘t.t“‘

Page 2

o

-

-

=




e v ST SR
[N

et s A,

v
B T T I U P

.

‘v

i

T T I RS I PR P ES ERT ER R T RS F R Y R R R E R T PR R TSRS 22 T2 1]

L] 3 *
- GIANGE -->ND .
+ FORVATTING RULES N
. implanented -«-ovca-a. >1<~- not implarented *
* *®
L Y fee--- R i REEEY EETTES B fremme .
N Headings ho hl h2 h3 h4 h5 hé *
0 esemcseees eeen- At EEL T L R T cermeanane *
* Begin a new page yes Yes no no no no no L4
[ I IR AT [ el Bl R [P *
+ Heading inline with text no no no no | yes no } yes |° =*
- - Y jeese= LR R R R R i Bl il - -—-— &
* Heading Capitalized yes yes | yes no no no no -
2 et Ikl R R B R RN E R N R R o -
« Highlight type (BOLD) yes | ves | yes | yes { ves | yes | ycs -
» S EEE LT P L B LR ERET TN R »
* Heading Nubered no yes | yes yes yes no no *
3 Rl R T IR I N R R LR RN B *
* Table of Congents Entry yes yes | yes | yes | yes no no -
L R R B B LN B o -
* &
* *
A2 ol e ol o o 0k e ks o ol o o ok o ok o ok ol ol e o ol o ot ok ol e i e e o ol ol ok e ol ol ol ol e ol ol e ol ol ol e e e e e o ol ale ol e ol ol o ol A e e o ol ke

Page 3

-~

BERERPBARABRE R RSB SRR RERER RN B ER A AR A EAERERERAREBRERR AR ARSI R RE AR AR RERR R KRR R RS

. - Switch Board (Default Options) *
* *
»* -
- , . »
» ™GS OPTICNS TAGS CPTIONS L
» —m——— emeeee. cm—w eceseen -
* 1 frontm --> O 2 titlep -~> 0 - *
s 3 address --> O 4) . body --> 0 .
*« 5 1q --> 0 6) abstract --> 0O »
- 7 appendix --> O 8 aline -~> 0 »
* 9 author --> 0 10) date --> 0 L]
+ 11 docnum --> O 12 ho ~> 0 -
* 13 h1 - 0 14 h2 -—> 0 L]
*« 15) h3 --> 0 . 16) hpo -> 0 ) .
» 17 hpi --> 0 18) hp2 ~=> 0 *
» 19) hps --> 0 20) p -> 0 ’.
- 21; q . =-> 0 22) title --> 0 *
* 23 toc L 0 »
» . *
* v QNG --> NO *
L ] . *
[ ] - [ ]
RABERERXRN R LSRR R RS R DR A K AR AR R AR SRR AR B R AR AR AR R R R E R R SR AR R AR R RN SR s bR

Page 4 a

PRETEN




¢ -~

The first page Qf the default optlons Is concerned with the Input and output
. /)

relatlons as well as the display device. The user should check the screen for the

i 4

file names (relatlon names) and the output device name.

The second page of the default optlons coﬁbalns the default setting for the

tgxt type, pag}z slze and margins. The text type wlll be "book™, wh!c}x Is the one
implemented and whlceh should not be changed. The units of the page slze will be
In pixels, the defat;fn value 1s equlvalent to the paper slzc% 8.5 X 117. This value
may be changed by thie user, but it Is the largest.size the graphlcs screen can
handle for one page per screen. The other default settings on this page are for
marglins. Margins Include the left, right, top and bottom marglns, which users are

able to adjust.

-

Page three of the default optlons contalns the default formattlng rules,
which are the general formatting rules for the document. For example, there may
-be questions such as **Should the system start a new page at headlng leve]l 2 ?°,

or "*Should the formatter number the headlngs?’, etc.
&

- Finally, the lasaopage of the default options Is the default setting for the
swlitch board. This page Is concerned with the formatting style. As mentloned In
the previous chapters, the switch board combines different Toutines to achleve the

final document style desired by the user. Different cholces of each routlne for a

N

particular formatting command s deflned by a number. Number 0 is the default

- 1%

«

option. For the time belng, the default setting )s the only cholcé-provided to Its

-
-

users.

g4




“

Once the user has selected the optlons, the system will start formatting the docu-

5

ment accordingly. Unless-changed by the user, the output file name of the page-

éalley wlill be *“page-galley''. When executlon 1s completed, the formatter will

°

return control to the UNIX operating system. If an error occurs during the for-

matting process, the formatter wlil print- the-error message on the CRT and ter-
. ¥
minate 1tself.

Example: ‘ ; N

B , S \
UNIX+«> %

user -- > formatter<<cr™ /» actlvate the formatter */
. |

Once the I‘Ol'm;m,er Is actlvated the user will beglr\; with the options given above.

*

When the formatting task Is finished the formatter will return the control to the

¢

UNIX operating system.




5.4 How to use the Display Driver : v

The display drlver Is acblvat.ed‘whenuthe user types In the *‘display driver's
rname <C£§>".‘ The routine begins by asking the user for the Input page:galley’s
file name. If 1t gan fh;d the pa;e-gancy flle and has permlssion to access it, the
display routine will clear the Cadmus‘grapmcs screen and display one blank page.
It will then display the first page of the document. The display routine will walt
for the user command before It wlll dispkys the next page. ‘I'he command is “'s”
for terminate; other characters z‘u'e taken as a request for the next page. After
displaying all- the pages, the routine will automatically return the control to the
host system (UI\;IX operating system). " L. °

Ezxzample: .

UNIX —> %
R user --> bipdriver<er> /% actlvate the display driver »/

display drlver --> /#* clear the screen */
display driver -->  enter the page-galley name -->

user --> page_galley <cr>

display drilver --> /* start display =/

g0




¢

SURUPPAPR - . m T METIT aR WA 0 bR R L @ Caxs k& ey ko d e ket “s P T e

5.5 Formatting Commands

-

This sectlon contalns a list of the Implemented GML commands. The use ot‘

each command will be explalned briefly and t.heféynt.ax rule provided. The syntax

3

Is provided 1n abstract form in order to show the complete syntax under the com-

~

mand and to save space. Two notatlons are’ belng u§ed to help to express the syn-
tax structure of the formatiing language. The first notation Introduced Is the

square bracket (*[.....]'"), which means zero or more. In other words, the items in

-7 h *,
19 A

the square bracket can be repeated as many times as necessary or not used at all.
If there Is more than one square bracket under a particular formatting command,
there Is no %er)ng Imposed on them. For example, assume we have the following

syntax rule under a particular formatting command:-

. - < formatting command > -
[“a"] . ;
[ “b” ] - , ‘
[ ooc-- ] °

< end of formatting command >

The ltems might be arraﬁged In the following order:-

< formatting command >
ot
.
et
g .
h
b
e

<end of formatting command>

.

07




kr B A G tge Y Y D Ry e e -, e w

" The séeond notation introduced Is the string of “*x**, which Is the symbol for text.

|

-

o

The co‘(nmand list on the following page Is arranged 1n alphabetical order.
. ' \

1. abstract

3. allne

12

4. appendl

8. author

6. body

&

X

a

use to ldentify a summary of the document
\

:abstract. ; . =
[:p. ... eenee :ep. ]

S L R :elq. |

[:h2. ... erenees :eh2. | ,

[ :address. .......... :caddress. | ;
seabstract.

uses1o identify the beginming of an address

taddress.
[:allne. xXXXXXXxxxxx :eallne. }
seaddress. )

use to ldent!fy a single line of text

S

:allne. -~

XXXXXXXENXAXXX XXX X XXX XXX XAXXX XX XXX

:ealine.

use to tdentify text materlals helpful to the reader, but
not essentlal to the maln text.

:appendix.
[:hi. e tehl. ]
s:eappendix.

use to ldenilry the writer of the document

B ¢ °
:author.
XXXXXXXAXXXXAXX XX XAXXXXXXAXXXXX XXX

seauthor.

use to,ldentify the beginning of the major elements of

the document. s
:body. .
[:h0. ...ceceeeeee. zehO. ]
sebody.
y \ )
08 :

PR

%

o et




N

7. date

8. docnum

9. frontm

H

11. hpoO

. :edocnum.

use to Identify the date assoclated with the document

'3
:date. - | .
xxxxxxxxxxx%xicxxxxxxxxxxxxxxxxxxxxx
tedate. i ‘

&
\ . .
(document humber) use to identify the number assoc)
ated with %he document N

- e
:docnum. . E
XXXXXXXXAXXXXXXXXXKXXXKKXXXXXXXXXXKK

(front matter) use to 1dentlfy the starting of the gulde
lite and the Introduction part ‘'of a document (e.g.

abstract, title page, table of contents ete.) * , - ¢
:frontin. . N ~/

[ viclep. ... :etltlep. ] )

[ :abstract: ......... :eabstract. ] . .
[ :toc. tetoc. | , ’
efrontm. )

[ %
¥

(zeneral document) use to ldentify the beginnmg of
the general docur’gent . ,

:gdoc. o e
[ (frontm. ........... :efrontm. | . : ;
[:body. .eeeennnn. . :ebody. ] ' .
[ :appendix. ......... :eappendix. ] ‘
":egdoc. ' ) ) S ’
A

(highlighted phrase) use to identlfy a-phrase which will
be printed In normal text style Lot v ¢

99

<hpO. " o TN
[ XXXXXXAXXKXXXXXXXXXKXKXXXKXKX ] o ’
( :hpo. ... ———— :ehpO. | T ; o
" [:hpl. e, :ehp1.] . *® ey
[ :hp2. ... 5v.e. :ehp2.] \
[hp3. e :ehp3.] , o
[:hp4. ..ccvnnee. :ehp4: | $ ;
:ehpO0. ) .

T b A




—

i
v

(mghllghted phrase) identifles a phrase whlch wm be
printed in underilne form .
('same as hpO )’ . ‘ : ]
(hlghllghne& phrase) ldentifies a phrase which will be

printed in bold form

t

°

( same as hpO ) - \ -

(highlighted phrase) Identifies a phrase which will be

printed In bold and underline form “

( same as hpO ) h - ‘
i

(hlghllgmed phrase) identifies a phrase which willl be

prlm.ed In lt,auc form o - T -

( same as hpO )" ) 4 ‘ ) ) .

" ~ . Ce T
(heading level 0) use to identify the beginning of 2 - °
group of elements (eg. a _group of consecutlve o
chapt,ers) 3
:ho. - oo _ f o
[ -address. .......... :eaddress. ] K . T
dpe el :ep.] .. L )

53 [« TR elg. | ) .
[:hi. ...l :ehl.] . )
:eh0., v .
(heading level “})" use to lﬂe’n’ﬂg‘& chapter’ heading, o §
appendix, etc. : : . . S ;
:hl. . . I i C
[ :taddress.- .......... :eaddress. | : . e . A
{:p. P B K N S i
[Hda. ... eeeer celQ. ] Lo '
[:h2. ....... beeeene :eh2. } ’ . .
ehl. : a : .
’ ! M ‘ b
. : . .
¥ / . . . ° B ;
i . N ,
* . '
3 : w ’
;100 , ' ' .
- e, " 4 N ('



- = \
[4 . : N o ) 3
> (heading’level 2) use to ldentify sections )
) .o ) ;o )
N :h2. . - LY *
[ :address. ....... ... " ieaddress. ] .
R [ - N—— :ep. |
a R 1 [ TR zelq. ] '
S [:h3. .eeereennes we. :eh3.1
L :eh2. .
- ] .
- (heading level 3) use to ldentu};/saubsectlons
B . » . ” - ., o S
:h3. \../,// ° ’ R -
. > [ :address. .......... :eaddress. |
. (] + T tep. ] )
[+ [« TR telq. jo .
:eh3. '
' To- (long quotatlon) Xto ldent.lry a ‘block of text which
- Is quoted from another source. .
{
:1q. ' S o ..
o “ X, . -
| :address. .......... :eaddress. ] . ‘
[ip. oo, zep. ] . v
3 1o PO o celq. ] - T
~ elq. : '
a \ 4
| ) oL (paragraph) use to ldentify a paragraph
¢ D . Ce v R .
' {xxxxxxypgxxxxxxxxxxxxxxxxxxaﬂx‘x ] a e
. [:q. ... o zeq, ] oo )
2L [:hpO. ..c.coaee.nee :ehpO. ] . -
T:hpl. e :ehpl. | !
[:hp2. .rreenes :ehp2. ] .
o shp3. e :ehp3. ]
[hp4. ... :ehp4. ]
:ep. . -
- useyto Identify preface . . S
. P N - . ;
< . f ”
:preface. ~ R . , K e
) [ :address. .......... :eaddress. | ) _
™ \ 1 [ : TOUOOROR . ep.] . ) . )
, (3 [ PO 1) [ I )) o ) C
[h2. ...l . eh2.] » . [ r
' :epreface. 1
- . . . N
‘\ ) .
: 101 - o -




il

¢
e

23. q . . = (quote) use to ldentify a phrase cited from a'person or -

- - | text: . . .
a * L4

v . :q.‘ ' ’

eq.

[

24, title "~ use to Identify the name of a document

¢

.

ititle. .
. XXXAXX XXX XX XOXXXXFXXXXKK KKK
. - etitle, : -

¥

‘ 4
25. titlep : - (}ltle page) use -to ldentify the beginning of a title page

‘

4

’ ‘titlep.
‘ e [title. ... cetitle.]

. ' [:docnum. ... zedocnum.] -
Y o [:date. ........... :cedate.] |
' + [:muthor. ......... :eauthor. ] ' .
) " [:address. ... :eaddress. ] C ‘a/
. ‘ setitiep. o ' ‘ .
26. toc . : use to request the ‘‘table of contents” generated by
N . Al

o the system

stoc. ' .

N e A ek T P L s L

L]
eto
. o
.
.
1
- 13 - v +
a
{
R e
o N )
¢ -
. . -
Gd ‘o
&
n
R .
"
N N # r =
o - - -
o %
§
..
. .
E ) !
. ¢
v
. . ° o ¢
3 -
. N -
N -
.
- - t
. .
:
) - v @ . - .
[ B i -
. . N . = .
. - Tt
PN Y A . ‘
» . x
¢ ) . ¢
i
- N . -
. ¢ d
.
’ » N -
] - 4 B
Y = o’
e - , %
. s
' - ',
" b
. A N
. “~ .
' ‘ ) . f : <
v ¢ L3 \ " i
. 1 ' “ .
R .
= f R « ¢ “ . % -
4 ! p
- . 3 .oy - T p
. y : ‘
H , o , -
. i R .
! r :
§ - -102 . e
\ ' - o ; = ’
.
- ’
) -
6
- ' PR =
- Y Wl A




pr—— Y T IT

T e e i

1,

e

CHAPTER SIX .

v &‘ xm '
~ Conclusion

6.1 Summary and Advantages

This thesls was a dlscusslon of the the retical and practical aspects of the

&

development of an experimental formatter based on the relatlonal model. A brief

introduction to the relational algebra was given In order to explain how relations

can be manlpulated by means of algebrale operations. This was done In aorder to

'

illustrate the ways In which algebrale operatlons are applicable to the text pro-'"

.cesslng problem.

¥

“

' Existlng text rormp,ttlng systems were studled in order to find the most sult-
able apriroach to our,experimental sys&m. Both high and low level systems were

. dlscussed. High lgvel systems were found to be easler to Implement .and were

more user frlendly. Finally, the GML formatting language was chosen because it

is a high ‘levé‘ system with a well defined syntax structure. N 5

Ing problems In order to produce attractive text. Three different methods were

examined and éompared. Knuth's and Plass’ heurlstic approach was found to be

" superior to ‘both the conventlonal (lne by line) and the dynamlc programming

approaches. The heuristic approach was somewhat modifled in order to a.dapt. 1t




A tame w e e o

‘ting optlon for the initlal page number.

to the page breaking problem. . “ e

1

The system was designed with the user In mind. A switch board mechanism

was Implemented In order to provide a wide varlety of formatting styles. New

styles can easlly be created through the combination of different styles. A tem-
. ' ]

plate mechanism was Implemented in order to facllitate changes or corrections In

formatting rules. Finally, a modular approach was adopted In order to maximize

the system's ﬂexlbmt,)ﬁFor example, new formatting styles can easily be added to

the switch board.

°

" The experimental rormapt,er produced results that were highly satisfactory. It
generated a balanced, attractive output that was free rrom‘loose or widow llnes.
It also avolded bad page breaks. Its success proved the feasiblliity of ‘rorn;att.lng
text from data stored In relatlonal form. In addition, It demonstrated the possibil-
l;.y of applylng relatlonal algebra to text procwslng' tasks. It also unlfied the

i
methods of text data storage.

6.2 Limitations and Drawbacks .

At present, there are some milnor limltatlons to the formattlng system. The
/’, °

first drawback Is the fact that in order for the system to produce the final for-

matted output, the document must be complete. The user can format indlvidual

chapters In order to check layout style (see example, sectlon 4.5.2). However, the

formatter wlil not asslgn the correct page numbers until the document 1s com-

a

plete. This problem can easlly be overcome with the additlon of another format-

v _; ’ - . . 194

[



[

ey

R

The second llmltatlon Is t.hat: prese

o

on paper. The formatted output Is only

ntly there 1s no means of printing output

registered on the CADMUS raster graph-

lcs terminal. Also, at present there 1s mL means of Incorporating table and flgures

Into the system. This problem must be solved by further research.

There 1s a maximum llmlt to the dumber of lines In a paragraph and to the

number of pages in a chapter (approxmrat;ely fifty in both cases). This 1s because’

a fixed array type data structure was uged to Implement the algorithm developed

by Knuth and Plass. This problem can

uses the polnter type data structure lnstead. However, the processing time will be |

slowed as a result.

be overcome by a program change which

S

\

w

Presently, the total number of chapters per document 1s llmited to twenty

five, the total number of appendlces.ls limlited to fifteen, and headlngs are limited

to elghty characters. These limits can easily be extended. For example, chapter

o

heading llmlits can be extended by changing the value of the constant’‘ “MAX-

CHARHEAD".

-

o

Slnce the system 1s deslgned to d(J most of ‘t,he layout detalls for the user,

and because of the extra I/O operatlonE Involved In extremely high quality for-

-mately half the speed of TROFF),

6.3 Further Work

e

matting, tﬁls formatter tends to run slower than conventlonal systems (approxl-

|
b 1
|

|
|
‘While the experlment was syccessful, further research would Increase the

gsystem's appéal and practicality. At prelsent., the switch board has beén provided

'
1

I



.w.;
M
9

b SRR T
i

[}

with only one formatting style. Obviously, the addition of more formatting styles

r—

would allow the user a wlder varle}y of cholces.

As mentioned In Chapter 3, not all of the GML formatting commands have
been Implemented. These remalning commands must be added In order to make
the system complete. This prolect was an experiment only, therefore, as noted
earller all formatted output is only registered on the CADMUS raster gra:phlcs
termlnal. There 1s no means of printing output ‘on paper. In order to make the

system practical, a new display routine must be developed.

J }

More research/1s needed In order to fully Implement the relational edltor
(used to generate COPY and STRUC relations). In additlon, further research
must be done In order to develop a means of Incorporating tables and figures Into

the high level system.
Finally, new algorithms should be developed In order to use relational alge-
bra to generate Indexes, cross references, word frequency counts, lingulstic ana-

lyses, etc.

s

106

B e i T i i e R o o e B I U VG B T T BT e



o s PRV PSP IR

APPENDIX ‘A

The **C” program listing on the following page Is a modified version of the
algorithm developed by Knuth and Plass.

107




ek 2 A 2 T 33 3 A 441 R b3 34 d 2 {3 b a3 S N v of of -SRI

352082388

FALSE 0
Qe

BOX R
PENALTY

GLUEWIDTH 1.0
CGLUESHRINK

NES 50

A % met oA NN e om

/* penalty for different class !/

iy

/* stors the word =ize ‘/
/* store word type ¢y L

/itittiﬂttttl.it'tliiiiliittiili/

/IQ..&!C.OQ..i.ltiiltt‘tlI“.ttl'/

choosenoda ()

/.tQQtill."llﬁil“‘l‘tllil‘ii/ ll)s

1 Y] " E>

/: choose the best node LY 2 R .
/ irmput :- size,passive &/ y

/:’ output :- active .:

/Iilli‘tttiltll‘.‘l“.‘itﬁllll/

int &,
first,
second; 1]

float templ,
temp2;
1 = paxt [passi
first = 1::assi‘v:?3
gsacond = passive;
while((t.width[passive] - t_width{i]) <= size)

if zt:_danerit[j.] <= t_demerit[first]) ~

second first;
first i

?3156 it (t_danerlt[i] < t_demerit [second])
second = 1;
i = next(i]:

1€ (((cdemerit(second] - t.demarit(tirst]) < 300) &

tampl = adj_ratio (first] - adjratlo{previous{first]];
e ( 0 templ;
: -

tenpz adj_ntlo[seoond] - adj_ntio[prcvious[socond]]
it (temp2 < 0)
if (gnpzl—<g t.: s i

seie Seivee:

else
active = second;

uun

else
active = first;

help()
/* the max ratio is not big enough %/

{ write(efd, "\n\n noway to break the lines.\n¥n",630);




PR

133 getnode (ptr 199
134 ) 200
H 138 int *ptr; 201
| % 202 getstart()
138 if (avnoda <= MAXNODE) %gi /ntuunuuuuuucuuuuuutniuuunn“nuunutunuuu/
13 N oty = avnode++; 205 /R% . ey
: 140 . . 206 /* for b := 1 tomdo <if b is a legal breakpoint> then <mainloop> ¢/
! 141 write(efd, "\n\n out of nodes.\n":17): 207 /** i
142 } L e L A Ly
143 209
144 210 {
145 211 twidth = 0; -
146 loadword() 212 tstretch = 0;
< 147 - 213 tshrink = 0;
»i:g { ) . gig vhile (more)
: 150 5’(’3&2"”’ Ilzoéﬁclﬂ : 216 e type EQ GLUE) - .
151 it (type EQ P - 217 -
H 152 panalty = 100; /4 penalty for '-' s/ . 218 if (pretype EQ BOX)
153 elge psmalty = 0; . 219 mainloop();
f 154 220 it (pt EQ index) N
155 21
3 156 222 type = PENALTY:
! 157 ¢ ) : ggz ) penalty = ~INEINITE;
158 setup (Indent N
159 225 else
169 int indent; - 126 {
16 227 twidth = twidth +« GLUEWIDIH;
162 { 228 tstretch = tstretch + GLUESTRETCH:
163 Pt = 0; 229 tshrink = tshrink + GLUESHRINK;
igg avnode = 0; ‘ - %go loadword() ;G‘LUE
pretyps = GLUE; 1 retype = ;
. 166 more = TRUE; . : 232 P &
i 167 it (indent 0) 233 ) .
’ 168 cadword() ; 234 elsa if étypa EQ BOX)
! 169 else o . 235
170 { 236 twidth = twidth + width;
} m = BOX: . 237 type = GLUE;
| 17 vidth = indent; 238 , Fretype = 8OX:
9
g& } /* satup %/ gg else if 1ty 1= INFINITE) &
176 ’ 242 mainloop ) ¢ ) .
177 tirstnode() ~ 243 it (pt indax)
178 244 more = FALSE; )
1'79 /.i‘i‘i..ﬁ..i.‘iihii.ttttliit.ltlttt’t‘tlltih&.li.iiii’tlhiiiiiiillilii/ 245 else
gg /:. ive node ting tha beginin f the .:; ’ gg type = GLUE
create sctive TRSAN . = :
183 Jos an ree s 9 ° paragragh. ¢ 248 . _pretype = PENALTY; ~
w /iitl‘.l..dlﬁttiitﬂtllltll.Oitliltﬂiiﬂll.ltltlb.‘li.tti'tiili‘ﬁt.t‘tlti/ 249 }
184 250 }
11:6? { getnode (&acty %g% N 3}
ve) ;
, 187 guluan[mlw = 0; 253
i 188 inenusfactive =0; 254
! 189 fitness [active LI ¥ 255
. 190 adi_ratio[active) = 0; 156
191 t.width{active] = 0; 257 mainloop()
192 [active) = 0; 258
193 wh,k[miv.] = 0; 259 /tsstensssataiasny
198 L"-i'“a;‘:tl v;] - !oli].’. ) 360 /4 L4
previous ve] = ‘ 6L /* main 1 by
196. next mtivo] = NIL: 262 /“ et “/ a
197 ve NIL; 263 /esnsseasisissians/
198 ¥ 264

%



v

before = NIL;
do

{ bestfit = INFINITE;

“

tor (i = 0;1 <= CLASS;i++) |

fitclass P] =
adjrat [

vhl{o (TRUE)

INFINITE;
INPINITE;

future = next[now]};

ratio

if s(&jut\' < -1) || (penalty <= -INFINITE))

/ alse 0
¢ bafora = now

it ((-1 <= adjustr) &5 (adjustr <= MAXRATIO))

demerits (

)
now = future;

if (now EQ NIL)
break;

it ((I.Umxmn[nw] >z lnum) && {lnum < lineindex))
break;

3
if (pestfit < INFINITE
ingertnode () ; )

L (row 1= NIL),

if (acti NIL
rasp 0

Idj_rat[cg.ass] = adjustr;

demerit < fitclass[class]})

fitclass[class] = demerit;

ptract&ve{class] = now;
if (demerit < basttfit)
best{it = demerit:

,l.iiilillll.itil..ilttli!ilillt‘.tiiiiiiltil.lil/

/:. coopute the adjustment ratio r from a to b .:/

/lii.ltt‘lil..tl!.lttt.it‘tt.tl.ttitt.tititll..ll/

¢ tlo.lt:b lm?th.

= twidth - t_width([now]; ,

U !typow

PENALTY) /
length + < width of '-' >; ¢
Tl lm[nov].¢ 1‘,' ° /

]

>

/Qliitllltlﬂllkttlliﬁhl

.

it élangth < mize)

difterence = tstretch - t_stretch(now];

it (differenca > 0

adjustr = (sue)- length) / difference; -

adjustr = INEINITE:

elsg if (length > s!.ze)
) difference = tshrink - t_shrink(nov];

if (difference > 0)

adjustr = (size - length) / differencs;

alse
adjustr = INFINITE;

adjustr = 0;

freenocds ()

/!t‘.l’l.'.“.i!’.lll./

deactive node a */ L
+ e

{
if (baford EQ NIL)

active = future;
aelse .
naxt (before] = future;
naxt [nov] = passive;

passive = now;

demorits ()

/ttltiltllt.llﬂlt(tiillliill‘i.l..i‘til.t..il/

[1]

conpute demerits d and fitness class ¢ :/

/iiit.lQ01‘t.litii!lﬁilt.liilﬂillll‘.l...itil/

{
float teopl,

terp2;
it (adju.str <o) .
= 0 - adjustr;
olsa

tupl = adjustr;
terpl = taxpl ¢ terpl ¢ tampl;
demerit = 1 + 100 ¢ tempi;
if 1ty >= 0)

l.t; = (danari. réw) * (demerit + psnalty):

vlse 1f mlty 1= -IRE NI

demarit * demerit - penalty * penalty;

else
demarit = demerit * demerit.
damarit * depsrit + < & ¢ fb ¢ fa>; */

2




it (nﬂ:str(-o 8) - .

elze if (adjustr <= 0.5)

=1;
else if (adjustr <= 1)
class = 2;

else

class = 3; b& ]

tampl = clm)- ﬂtneu {now] ;

it (tm&g

O-tarpl .

it !
t = dansrlt + P_DCLASS;
demerit = damerit ¢+ tidemerit [nw];

/.i.tiit‘tttt‘llQtlli..'liilti&ltt..ltlil'llittl‘ti‘lt../

/.t

/‘ insart new active nodes for breaks from Ac to b .:/

/.ll.".‘llﬁlll!llt‘lltlItiiitltttllitt.'ttt'ttliilt.l'i/

< int §i;
- findtuyz () ; ’
for (L = 0;1 < CLASS;i++)
it étitclass[l] <= (bestfit + P_DCLASS})
tnoda (&hum) ;
inernum|num = linenum(ptractive(i]] + 1;
fitness num] =4,
position{num] = pt;
t width[num] = tw;
t_stretch[num] = ty,
tshrinkinum} =
t_demarit [num} = titclass P.]:
adj_ratioinum] = adj_rat(
previm:s{num] £ ptractive 1.].
M = now;
o it (before EQ NIL)
B active = num;
‘else (before]
naxt ore] = num;
before = nunm;
}
}
findtwyz ()

/iﬁ‘...‘.‘ﬁ.i“iii....i'il‘ilil‘l‘.l/

ak

/* cy = {sum y)after

sum z)dfter

7* coapute tw = gsum v§after§§§

/l'iﬂt..l‘ttt.l.lt”t".‘...il.t.ltt/

Il []

Lege

R
tau

twidth;
tstretch H

étwe EQ CI-UE)

tw + GLUEWIDTH;
ty + GLUESTRETCH;
tz + CLUESHRINK:

3

/

I L LT T e O SR PE

o




o QTR

Ve e

v
e .
SIS O A (IS L TS R AT T3 T RS SRS WV Wi e “Kﬂ'rmr-"n THS PP PGS AT WA G IR LOR G ® SUEENT B By S anmt SURE s g s o e d et w8 (e ey i iy
,

a

[Achugbne 81}

* [Allen 81]

{Bell Laboratories 83)

{Bernes 1069]

[Chamberlin et al 81]

‘{Chamberlin et al 82]

[Date 81]
[Fayerman 84]
{Furuta 82}

[Goldfarb 80}

T

”~

References

James O. Achugbhe

On the lines breaking problem in text formamag
Department of Mathematical and Comput.er Science
Michigan Technological University, Hoynton MI

Todd Allen, Robert Nix and Alan Perlis
Pen : a hierarchical document editor i .
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland (1981)

Bell Laboratories
UNIX Programmer’s Manual Vol. 1 and Vol. 2
CBS College Publishing, (1083)

Gerald M. Bernes
Description of FORMAT, a text-processing syst.em
CACM Vol. 12, March (1969)

Chamberlin, D.D., et al. .
JANUS: an interactive system for document composition
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland (1981)

Chamberlin, D.D., et al.

JANUS: an interactive document formatter based on declarative r.ag's
IBM Research Laboratory

San Jose RJ3366 (40102), (1982)

Date, C.J.
An Introduction to Database Systems
Addison-Wesley Publishing Company, Inc. (1081)

Brenda Fayerman -
A Text Editor Based on Relations
MSc Thesis, McGill University, (Aug. 1984)

Richard Furuta, Jeffrey Scofleld, and Alan Shaw
Document Formatting Systems: Survey, Concepts and Issues
ACM Computing Survey, (Sept. 1082)

Goldfarb, CF.
Document Composlzion Facility GML: concepts and design guide
Form no. SH20-9188-0, IBM, (1080)

113 , \/

R ]




PORRRIEEAE A s

ey A

ot L b 4k

vy e g e barvenemet na o

L L

C

Wy

’

D & A R A

.
v

e

8 }

[Goldfarb 81]

[Good 81]

]
[Gutknecht 84]

Lo

©

[Hammer et al 81]

[Han 83]

[Hayes 81]

[Horowitz 1976]

[Kn{uth 81]

[Knuth 84]

(Knuth and Plass 81]

[Merrett S4a)

da e R L

. Knuth, D.E. ‘ ) s

"Knuth, D.E.

ST RPN

M i N - o i
S R M AT R AR e RN TR

BNV B WA R 2 S VITRE SARRE) gﬂv’ :
K RN

. .
[ — N "

-

10

Goldfarb, C.F. . ° ’ § -
A Generalized Approach to Document Markup ’
SIGPLAN/SIGOA Symposium on Text Manipulation, ‘Portland (1981)

Michael Good' \
Etude angd the Folklore of User Interface Design
SIGPLAN/SIGOA Symposmm on Text Manipulation,” Portland (1981)

- g
J. Gutknecht and W. Winiger ¢
Andra The Document Preparation System of the Personal Work.sta.tion Lillth
Sof tware-Practlce and Experience, vol. 14, (1984),.73-100

- ~ . > s

Hammer, M., et al. R
The mmplementation of Etude, )
an integrated and interactive document prod‘uction. system
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland (1

-

Han Noot )
Structured Text Formatting e i
Software-Practice and Experience, vol. 13, (1983) 79-94 . V- :

o

Phil Hayes, Eugene Ball, and Raj Reddy

* Breaking the Man-Machine Communication Barner N 8 N

IEEE Computer, Vol. 14,.No 3, (1981), 19-30 .
Ellis Horowitz, and Sartaj Sahni ) ‘ "
Fundamentals of Data Structures ” e
Computer Science Press, Inc. (1976)

The Art of Computer Programming, vol. 2: Seminumerical Algont.hms )
Addison-Wesley, Reading Massachusetts, (1981) * . ) "

B

The TEXbook _—
Addison-Wesley Publishing Company, (1984) .

Donald £ Knuth and Michael F. Plass . - v S,
Breaking Paragraphs into lines z ) g
Software-Practice and Experience, vol. 11, (1981), 1118-1184 © .

Merrett, T.H. - ’ )
First steps to algebraic processing of text ] ' ..
Gardarin, G., Gelenbe, E.. eds.

New Applications of Databases . o J .
Academic Press, (1984)

114 , . . oo




» C AR T ' * s . o i . .
4 - Pyt . W ™ 4 2, J A " //_
) e ty \ br'»’ N . . i PN s .
’ - B N . « El R .
- : ’ n" S foaa ! \‘ : s
\‘ ? vy " J * R o1 ¢ - e . : P
\ N ,) - ‘ ' N ' -0 L ! : a't v
’ ' ' v - "\ t‘\ ' L i - 3 .
- + x .
s ifMerrett 84b). - - Me;retté TH. ) . n .
(:} - : . " Relaticiial In»formation System - . g -
/, 2 v ' ‘Reston 'Pubhshmg Co., Reston Va.. (1984) »
. N [}

te
R a - . ? b 5

s w4 v
i

%

H

PS. _I}IeWman

o

» ot

w

Towards an Integratéd Development Environment : .
IBM Syst_emdonggzz.l, Vol. 21, No 1, (1982)

Nievergelt, J., et a,l eds.

13
H

v

Seribé: a document specification language and its compiler
Technlcal Report Carnegie-Mellon Upniversity, Oct., (IOSQ)

D
'Bram K. Reid

A high level a.pproach to computer doc
7th ACM Symposmm on Pnnciple of P qgrammmg Lantnage (1981)

n &

Se;lgc—a;rvick, Robert.

~

v

1

!

oo

o

<

ment formatting

[
s

(3

. a . : Document Preparation Systems - ;
N ‘ North Holland Publishing Co., Amsterdam, (1982)
"+ 7 [Reid80] - '  Brain K. Reid .

¢ B .
; s o . Algorithms : * .
PR o , - Addison-Wesley Publishing Company, (1988). ~
] ("“ ;'f ’ i R “ . ; ;o
S ; . , '
§ ; {Teitelbaum 81a) Tentel&aum T. . ‘
Peog oo : The why and wherefore of the Cornell program synthwlzer
! - , “ SIGPLAN/SIGOA Symposmm on Text Mampulat.xon, Portland (1981)
C T, - - ;‘ ' :1 b . n '
‘ [Tei.telbaum 81b} .  Teitelbaum, T., Reps T . o, .
: -7 a . " The Cornelt Program Synmeslzer ‘A syntax-directed programmlng env;ronmem.
' X e * . Commun. ACM 24, 9 (Sept. 1981) S
\ c‘ " i ’ ; - X
. . [Walker 81] "+ -Janet H. Walker y -, 5 ., 8
. PO ' The Document Editor: . A .
- T A Supporting Environment for Preparmg Technical Documents -
: . ! e S * SIGPLAN/SIGOA Symposium on Text,,Ma.mpu]'anon, Portland (1981)
! ‘ t . s i ) ’ 4 *
E s . s N o L4 . ., '
: . EE . P > ;. :
. LT f £ !
. % ' .\ ‘} L : ’ l ‘ ! ' '? -
- in “ \ L 'f, , e .
; 3 . A s ,}3 | L K —~ j" o
: . X ) . ‘- - © ' , ) . * )
» s " ‘ﬂ 1 » . ” ]l ™
o, N T
- ° + 4 B - ~
T [ . . 'S -
P ‘ 1 -~ ' ) ) ! 6 * s -
' ’ ! . : & f ! ! ‘ ¢ M 115 o ! " ° . ’
« - ¥ . ¢
A
- =]




Lo '

R - b B d
"'-x + ‘
oy ? . N
R . -
* .
¢ £
- £ ’
t & - h , :
AR * b
. : L
1 -
PPN
. =
EE R ' ~
X . .
) . e,y - -
I .
- : L ’
PR R .
.
£ * ! )
; '
¢ ]
‘ - -+ <t
h - L
» 7 . oo -
, .
-
v ’i
.
. o
“ o .
. » s
o
. ;
. .
-

note: This thesis was formatted by b TROFF systen on a VAX/750 ;:omi)ute‘r" .The
+ output printer was a laser' IMAGEN 8/300. o

v

3

‘ S : o

P . . 5
4 v y i ——
T ) P S L
. . Lo
A Col o e o
w s n "
v PR L *
1 . T e
. RN Y .
R - A2 e O RN
. - e . .
K . . P e ° ror -
. ER .
\ . R
o s : o .
. v .
.- . o * vt
R . . - AT
coe T e
. v
. =, - B
' .
. e
. I
3 N

N N J

\ o
3 . .o
e T,
.
. P
. .
. . ’ T ’
» * T
PN
- e
L o . . -
- e . '
N '
‘ . R
- ~5
~ . e .

A . % l\
+ e ' ‘
a




