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Lo MINERAL RESOURCE POTENTIAL:

- " ROUYN-NORANDA REGION, QUEBEC

| - )

Pervez A. Uﬁar

- ABSTRACT o N ‘
. . ‘7
The prediction of unknown regional mineral potential is an

<A B,
*

integral pérﬁ of the exploration process. Quantitative tech-

niques enable the exploration planner to more completely’ analyze

el

alternatlve'investment opportUnities, Such decisions. are criti-

cal for mlnlng reglons like Rduyn Noranda, Quebec, which are . ~
characterlzed\by a highly developed mlneral based economy, th; '
exhaustion of known endowmentz and declining discovery rates.

’ In thais study, the multlvarlate statlstlcal‘technlques of
regression analysis &nd dlscrlmlnant analy51s are applied in
maklng estimates of undiscovered base metal:endowment in the
Rouynh-Noranda region. Factor anglysis has been applied in data
reduction and variable selection. o . .

The study demonsﬁrates the strengths and the weaknesses of -
the statlst;cal tecthniques used, and the problems assoc1ated
with ?telr application to’ the analysis of geologlcal data. .Solu-
tions to these problems are suggested.

The undiscovered base metal endowment in the region, based
on geological relationships alone, is estimated 4t a minimum of
131 mi}lion dollars. This 1s not significant under current
econom;cs of mine development. ‘It is therefore suggested that ’
additional inputs in terms of newer concepts will be required to ' -
realize a greater measure of the theoretlcally possible’” endowment

Q_ly
1in the region.

The results obtained should provide guldélineé for geological
research, and for further mineral exploration, not only in the !
Rouyn-Noranda region, but also in other mining 5e§ions reguiraing

resource potential evaluation.
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POTENTIEL DES RESSOURCES MINERALES -

REGICN DE ROUYN—NékANbA, QUEBEC

par ¢

Pervez A. Umar . R
- e
N ~ RESUME

\\\La prédiction du potentiel min&ral inconnu d'une ré&gion est

une pPartie intégrale du processus d'exploration miniére. La

conception d'un programme d'explofation devrait se baser .sur des

+

techniques quantitatives qui permettent de mieux analyser dif-

-
férentes options d'investissement. De telles dé&cisions sont

’

‘trés importantes pour des régions mini&res telle Rouyn-Noranda,

au Québec, Se caractérisant par uhe é&conomie forte basée sur

’

1'industrie minérale, le quasi-é&puisement des ressources
‘‘minérales connues et un déclin important dans le taux de

".découvertes de gisements étdnomigques.
0 ! N

" N

., Dans cette &tude, les techniques de régression et d'analyse

discriminante 3 variables multiples sont utilisées pour pré&dire

»

.les quantités non découvertes de.métdux de base dans la région
.

de RJuyn~Nor§nda. L'analyse des composantes principales est

utilisée pour réduire les données de base et choisir les

-

variables ies”plus lmport;2¥es,
L'€&tude démontre les av&ntage§ et ‘les désavantgqes des

_techniques stétistiques‘utilisées ainsi que les problémes

découlant de leur application 3 des données géologiques. Cer-

 taines polutfons pouvan} résoudre ces problémes sont alors
/ ' v
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‘ suggérées. . . ’ . . .

+ Basé uniquement sur des" relations gé&ologiques, le potentiel

b *
) . minéral en métaux de base non découvert.a date est estim& & au r

[} ’

moins 131 million de dollars. .Ceci n'est pas trés important par

v :
’ rappért aux conditions présentes de l'&économie miniére: 11 est

donc suggéré d'incorporer plus d'information‘dans le modéle, en
o4 ’ f.d

terme de nouveaux concepts métallogéniques et de détails géo-

chimigues. et géophysiques pour réalizer une meilleure mesure du

potentiel mingral possible de la région. ’
» , ° . ° -

Les résultats obtenus pourrout guider des pYogrammes futurs
' -
de recherche géologique %t d'exploration miniére’, non seulement

dans la région de Rouyn-Noranda, mais aussi dans d'autres

régions mini&res nécessitant une évaluation de potentiel minéral.
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national economy.

* ‘ploration, itself is based fundamentally on geology.

. "~ CHAPTER I T

[,

" “
B Ll
ey

INTRODUCTION .

1.1 General Statement

Minerals are non-renewable resources. The occurnﬁﬁce 2N
of economic mineralrdeposits results from'a complex interaction
of favourable geological factors. Such depcsits are developed
to production on the basis of economic and technoloéical con- "
gideration to become assets and positive contributors to the =~ -

The demand for mineral prbducts is derived .

#e

from the existing socio-economic and technological environment,

creating a nged for mineral exploration. However, mineral ex- oF)
‘L

9

In any new area, existing geological information is

py;

at best of a reconnaissance nature. However, once an econom-

ic discerry is made, the area is subjected to detailed geo-
logical studies and a vaiietylbf interpretations on ore gen-
esis. The information base keeps on'imp}oving as ore reserves
become depleted. When discoveriesgare no longer readily-forth-
coming, it becomes increasingly necessary to evaluate the area
in terms of its potential for further mineral resources ;o that
the justification for exploration effort and investment can be
analyzed. This need will be felt at one ti%e or another in any

mining area that is on the decline both in terms of mineral




E

noy, Beauchastel and Rouyn townships in north-wes 1 '

s

Quebec.

region has
{ f
been selected in-this study for evaluation of copper and zinc

This area, to be referred to as the Rduyn-Norand

resource potential.

.

-~

1.2 JRes%urce Potential Forecasting .
‘and Exploration Planning

£
o

/ Mineral resource potential eval tion and explora-
tion planning are closely rel?Feg; £he forme: is an atteampt
to forecast a %uture con&%ﬁién} and- the 1atter is an attempt
to control and ptilize the fofecast condition, Certainly,

ap‘organization? that can forec%§t and react to the future
in arr optimally effective and timely manner has a‘cémpeﬁitivq
edge. Thgs‘is all the more‘importéﬁt inﬁtﬂéwﬁusiﬁess of min—
iqg with a heavy lopg—term investment commipmént ;nd an ever in-~

creasing time lag between discoveiz and production. ‘

3

-~

Mining company planning as described ﬁy Mackenzie _

U
\

(19@9)\is based on the objectives of profit, survival and

growth. Government directed organizations have to pursue”

similar objectives if the operations are to be efficient

TN

lSee Figure 1. X 5 (

2 \ .
Whether corporate or government.

Par

el -

s -
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. .

and§Eompetitive. The profit objectlve is largely a functlon

of cost—prlce relatlonshlps w1thln a given technologlcal, SO~

, T
AP

clologlcal polltlcal and geoqraphl a1 framework. However,
oot i ;
. in ,order to survive and grow, the mlning organization must-’

o . have a well planned exploraxion’piogramme~so that as reserves
deplete, they are repleniéhed with newly discovered oré meet-

o "
’ 1 Y @

ing its profit criterion. If the organization does not

find new e, its reserves will decllne and deplete, and 1t

will 20 longer be able to surv1ve in, the bu51ness of mining;

e question of growth, therefore, will not arise. 'Mackenzie \
(1973) gives a comprehensive discussion of different explora-
tion strategies in line with the above objectives.

. . Forecasting is a most eesentiQ}Lelement of explora-

~ “tion planning for both government and corporate organizations.

It can be'the subjective judgment or intuition of the planner,

or a more rigorous estimate pased on the guantified relation- %
e

ships between miﬁeral endowment as known and associated geo-

logy. A quantitative technique will enable the‘organization

to better ‘apalyze its alternative investment opportunities.

. Wy .
‘j\\ However, in the final analysis, it is the subjective judgment :

., based on quaﬁtitative analyses that”will probably prevail. N

N > Mineral exploratlon is essentially an investment in
%1nformatlon gathering, the oéjectlve belng the maximization
of profits through a planned replgcement of depleting re-:

_~ serves. It includes all activities that convert the known

N
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and unknown category of resourcesl into the category of "ore

Al

reserves"., It also inélddes effprts that narrow the focus of

search to ?reas of more favourable ore potential. The present

|

3

study is designed towards this particular objective.

Planning és defined by Elliot—Jonés (1973) is the
process of determining a desirable future condition, and de-
ciding how to proceed from the exis;ing to the desired state.

<~

In exploration planning, the existing state is often that of

‘dwindling reserves, as is the gituation in the Rouyn-Noranda

region. The future desired state is an economic discovery.

The decision to proceed firom the existing deteriorating state

of reserves to the desired state is based on a planned se-

~

- . ' N . - - ]
gquencing of the.exploration process. And since at each stage

of exﬁloration planning, decision making is likely to result

.in the development of more information, the forecasting model

can be continuously improved and better defined as to endow-

ment-geology relationships. For a given geological environ-

3

ment in a specified region, the forecasting model can become
an integral part of the planning process. The information o

flows to’ and from the- forecasting model and the actual ex-

ploration activity, with the decision maker between the two.

i~

This can continue in a given region until a stage is reached

where the marginal level of information for a given outlay

does not justify additional investment in exploration -4

Y

1See Section 4.6. .
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ihvestment. The region can then be -considered as approaching

exhaustion under the e;istipg state.of info;maéion, economics
and techgology. Such a decision, can be most optimally based
Aﬁ optimal minefal exploration plan should

maximize the pféSent value of én economic discovery for a giv-
en expehdituré made. This requires that the expenditure on
exploration should be as f&tﬂleA nd as late as possible with-
in the existing policies-and pfiorities of the organization
(Herfindahl and Kneese, 1974). Such a strategy gs possible
through a sequential process in which,\at each stage,smaller

. and smaller sub-areas are Selected for development of more

detailed information for exploration decision making. This

strategy can be bestrdeployéé through a ghantitative modeling ™

%

of endowment-geology ‘relationships at varioyg, levels of infor-
mation and detaile - e

14

‘1.3 Need for the Study

cxine

The cost, of exploration ;?# unit of supply has been
iﬁcreasing over the past 25 yearé.;;Martin et al (1976)

have estimated that to meet the estimated discovery reqﬁire-

\

ments of mineral deposits in Canada, an average of 332 mil-

o
-

" lion dollarsl per year will have to be spent on exploraﬁiOn

. @ %

All monetary vAlues used anMkls study are 1n con-
stgnt 1975 dollars. . hat

r

N

on a forecasting model such as the one develoﬁed~ih this study.

!

s
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activities 5%tween the years 1971 and 1995. This estimate Ei‘
more than three times the historical annual average of‘98 mil-
lion dollars during ihé period'l951 to 1970.

%hevitably, as exploiation %roceeds in an area, the
returns in the form of economic discoveries diminish afté;

the more obvious larger, higher grade and near surface depos-

rd

its have been discovered. This is reflected in a deterioratﬁ’

/

ing relationship between costs and returns.

<

k]
New prospective mining areas in Canada are both ré-
N v

~

mote and climatically inh&bpitable. Exploration costs will )
therefore be high, and if an' economic discovery is made, min-

ing operations are typically capital intensive. The need for

»
infrastructure in a new remote area will increase,the lead

time to bring on-stream new production capacity, thus requir-

ing long-term financial arrangements. The current ungcertain
Ly }
1

and unpredictable socio-economic and political environment

has made investment capital scarce. . Furthermore, government
i ! A

. 14 .
incentives  to the mining indmstry have declined in recent

.

b .
years. K ) e

It is imperativé thereforé, thét,the'mineral'wealfh
in existing mining areas be fully explojited withln the limits
of economic juspification. To do so requires estimates of
the resource poéghtial of ékistihg mining-hrgas:to form thé
basis %or gxploration planning. The'fole of this study is
to support this type of planning in an important area, the

‘

Rouyn-Noranda region. ' {

Lo
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1.4 Statement of the Problem ' !

~

3

éiven a mining area with well known geolégical.in-
fermation and a hiétory of migeral déVelopment and produc-
tion activity, the probiem ;s té esfimate quantitative re-
lationships existing between the known mineral endowment
and the associated geological factoif, to assess the sta-
tistical reliability.of the estimated relationships, and to
use these relationships in making estiqatés of undiscovered
resource potenﬁia;“}n the area.

The area under study is Fhe/400 square-mile Rouyn-
Noranda region comprisiné the townships Duprat, Dufreshoy,
Beauchastel, and Rouyn. The resource potential estimates
are based on the known copper-zinc deposits in thé fegioﬁ

and their associated geological characteristics.

P
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Y CHAPTER 2

e PREVIOUS WORK RELATED TO STUbY

. ’ .
2.1 Geﬁéral Statefment '

I
S ‘

g

Nearly all\studies having relevance to the present
work .were designed ‘for éébiication over areas much larger than-
the one selected foé the present study. The areas studied by

Agterberg, et al. (1972), Harris (1965), Azis, et al. (1972),

DeGeoffroy aﬁg~53\1197o>, aﬁa Allais (1957), were respective-
i !
N

ly 80, 240, 400, 850, and 960 times the size of Rouyn-Noranda

N
region under invgstigation. .Each of\these studies had its own

objectives, terms of reference, and appgoach. It should, how-

*

ever, be mentioned here that when relattvely small areas com-
prising a mining region, or center of minera{i;ation of a cer-
tain age and type,are&considered for resource potential eval-

uation, there is the advantage of greater uniformity of geo-

€

ngical detail, terminology, and reliability. Geoiggicar re-

. . \ ) »

lationship, therefore, can be better studied :?antyia;ively,
- . % ! A

and relationships better defined. Small-sized areas are, of

course, subjéct to the statistical disadvantages inherent in

v
i

,a small-sample size.

\ety—
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\,( T 2.2 Resource Potential Models ’
- 4 k / , - . -

“ ~ A number o mathematical models have been developed

-f
for evaluatlng regvonal mineral resource potentlal atxd1ffi§7/
¢

‘ ent 1nformatlon le%els All these models in some way attempt

to relate a specifpc known endowment to its quantified geo-

E graphical or geoldgigal envifbn@ené'within an existing, ex-
trapolated, or assumed framework of etconomics and .technology.

In broad terms} th models can be categorized as following:
) : : '
(1) The spatial model;
(2) The geochemical model;

(3) The myltivariate analysis model;

N

(4) The ‘subjective pr bgbilitylmodell | % ,
, o i VT ) ‘

These and dther lgss important models not ‘falling in the above
categdr&ei\arg reviewed below.2 ' o

2.2.1 ,The\Spat{:% Model

*
. . I . " . <
'j . The -spatial analysis model assumes tpat mineral ep- 1"»

- r
dowment is a function of area only, being equally distributed

. o \ . H
in unit areas within a given geographical or geological region.

i [

!

4

1/ 1Geochemlstry and geop 1cs are here assumed to he
part off the geolOglcal env1ronme

13 - ' . Py - ‘ <

The rev1ew of spatlal odels has nﬁdrawn in part




10

o - %

, ‘ ) N _
( The model is therefore;appropriéte in information deficient
situations where, on a broader reconnaissance level, it is
desired to have an estimate of the overall regional endowment
potential ratégr than to provide: small potentially favourable <.
eip}oratign targets within it.

/ Spatial analysis is based essegéially on the extra- W
ﬁolation‘of estimated distribution characteristics ‘of knowd

endowment in selected well-explored reference areas to the

. \ , '
stud§ area unde;mevalﬁationi However, for a meaningful anal-

S

SIS S

ysis, the reference and the Gﬁudy areas should have a similar .
geological environment, or otherwise be large enough to ih—
corporate a number 6f geological environggits so that there

is a ﬁigh probability of some of then being common in both of

them. P ‘( " . .

Allais (1955) made'the firét stud§ in which the con-
cept of p;obabili£§ theéfy was apptied in.estimating the eco-
nomic potential of mineral exploration. His focus was '
the Algefiap Sahara, ap area of 386,000 square miles. Allais
.compiled statistics such as the number of minind districts, - 1

and their gross production values for the world's well ex- B

.

e, ; '
plored mining regions, such as France, North Africa, and the i
b 1Y

western United States. \
$

of mining districts per unit saarea showed a close ‘fit with the

He found that the number -

A

Poisson.disﬁjybutionl The probability of exactly X occurrences

. o, . . . .
in the Poisson distribution is
. ! ' . 3 ¢

o «
° Y ova




P

% . \ .
Wheresu is the mean number of occurfrences per unit area oOr

. area in the well—explored"reference cells, the probability of

_mineral potential.

11

for X=0,1,2,...

/

cell, and.e = 2.71828., If the parameter u is known, the whole
. y - "\‘74\
distribution can be written.” Thus, by knowing the number oI™

minifAg ‘districts, mineral dﬁposits, and their value per unit

0,172)...n depdsits occurrifyg per unit area in the study.area
could be estimated.
Allais estimated that for the 386,000 square miles
. ¢

of the Algerian Sahara, about twenty ekploitable deposits

could be discovered as a result of exploration. He predicted
the net gain of the exploration effort at 50 'billion francs

with E;ﬁ%%g’probab;lity of realization, and a 0.65 probability
of 1osing’twentylbillion francs. Perhaps more impdrggntly, .

he pointed out that the success or failure of the venture de~-

pénded on whether or neot the few large deposits expectedpin o

'‘the Sahara are discovered. - |
s Allais assumed conditions of ignorance for the sﬁudyq

area and also ignoranqd’on a macro scale in the choice and

’

application of the reference areas. He did not therefore at- . *

of
N v

tempt to make any distinction between areas of highe} or lower

He noted, however, that the fange of his

v

S~

estimates could be narrowed by geological and other related

’ -
~

information inputs.
DeGeoffroy and Wu (1970) made a similar study over

5 | ' , -

R
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) 340,000 square miles of greenstone belts in the Canadian
Shield. They used a negative binomial distribution to re-’
present Bbﬁfgpatial distribution‘of deposits in the . Shield.
They predicted a total of between 1,375 and 1,581 ore depos-—

- its worth a total estimated vayqé of\?etween $155° and $452
billion.l Like Allais, ﬁeGeofffé; and Wu did not make dis-
tinctions between areas of high and low potential. Ho@evér,
their results have a greater ‘relevance to the Shield area
than had Allais’ results to the Algerian Sahara for the rea-
gfn that a simier geological environment is available both

in the reference and tM8 study areas. o
Derry (1973) made estimates of the potential endow-.

ment in the ganadian North usingispatial énalysis. However,

by using a c9mbination of age and type of .sediments and vol-
canics both in the reference and the study areas, he was able

1

to define his predictions in terms of specific metals.

¥ Spatial analysis is useful in ‘evaluating the bene-
fits of exploration over large unexplored areas. However,
it cannot provide guidelines for mineral exploration within

m

; ,
such areas. Under conditions of ignorance, spatial analysis . -

does provide a basis for better exploration investment deci-

\ o
,sions in the light of the information developed.

~_"
“a’ ﬂ ‘ ' ’
l487-$243 billion in 1968.

( - >
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2.2.2 The Geochemical Model ¢

N /

The geochemical modellgepfesents an attempt to esti-
mate,the endo&ment of a metal as a function of its average
concentration and distribution in the earth's crust. Thé mod-
el does not define target areas for exploration within the
studied geochemiéal environment. VHowever, it has the advant-
age of being independent of‘geological ddta with its inherent
»problems,l,and of economic data which are subject to changes
with time. , ¥ .

McKelvey (1960) observed that the containgd metal
content of mineable reserves of many elements in the United
States are equal to th;ir estimated crustal abundance2 mul-
tiplied by a factor of between 109 and 1010. A similar linear rela-
tionship was noted by Sekine (1963) for the metal reserves
in Japan, the multiplying faetor in this case beinghebmgﬂllogand
109. These relationships arewtoo close to be foréuitous.

Thus they oﬁfer a possibility of making resource estimates
on a general level.

Brinck (1967, 1972) is the chief advocate of the

geochemical model in resource evaluation. By defining the

I
L

B T ]

lIncompleteness, lack of uniformity, changing in-

terpretations. .
, ¢
2Expressed as a percentage.

- y
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eralizability"
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relationship between the distribution propertieslof metal ~

1
concentration in geochemical sized samples of rock, and the

1

distribution properties of the metal2 in known deposits,

Brinck develops a measure which he calls the "specific ﬁdn—
N .
3 of that metal for the given environment.

Mathematically,

. g
3ln D/d

in which,

IS

/
@ = Specific mineralizability

o = Logarithmic standard deviation of initial sample4

d = Linear equivalent5

ay .

St

of volume of éample

lBrlnck assumes that the tonnages and grades of ore

in deposits, and the concentrations of metals, in geochemical
sized samples are lognormally distrihuted. He therefore uses

their median values and logarithmic ‘standard deviations in
his calculations.

2 " - { ,

In terms of both grade and tonnage.

35pec1f£%~m1nera11zablllty, also called the “absolute
dispersion” is the tendency of a metal to occur in the form of
an ore tep051t. This measure is expressed as a percentage.

|

The sample here means the reference ore deposits.

5The term linear equivalent is a function that de=-

pends on both the volume and shape of a body. Matheron (1971) o
has calculated a set of curves from which the linear equiva-
lent can be directly determined for any given environment
given the lengths of its three dimensions. It provides a,
means of making inferences from one size of environment to
another, ie., geochemical sample size to an ore deposit size.

)
[ ' ¢ —
v 4
!

i 4
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D = Linear equivalent of volume of the environment,
assumed as the dry land area of the earth's crust
to a depth of 1.5 miles. \

l Brinck uses the specific mineralizability of a metal,
as calculated from its ore reserves, to calculate thelmetalg

resources for various grades and sizes. This he calls the

~*reference distribution based on the parameters Yr and o which

are respectively, the average abundance of the metal in the
earth's crust and its logarithmic standard deviation in the

ore deposits. The parameters ?; and o the median concen-

S 14
trations in the results of geochemical surveys and the specif-
ic mineralizability:from the geochemical surveys respectively,

are then used with the reference distribution to estimate

the resoutce potential of the surveyed environment with re-

spect to the world's potential indicated in the reference dis-

tribution.
In assuming the whole dry land earth mass as the total

environment of averége metals abundance, Brinck iénores the
role of geoiogical processes, even though it is known that'
different metals show a well established and consistent asso-
ciation with specific rock types and stratigraphies, The mod-
el has not found wide application because of its vgry general

approach. However, it may perhaps be useful congeptually for

exploration planning on a reconnaissance level.

1

lBrinck uses the average crustal abundance of an ele-
ment as being equal to its median value.

'
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~*+2.2.3 The Multivariate Model

The physical occprgéﬂbe-of mineral endowment is a
function of certain geologital processes, a modified and in-
complete evidence of which is reflected in regional geologi-
cal variables. If ghe known mineral endowment and the assé- N
ciated geological variables could be quantitatively
. related the resulting model could then be used as an endow-
ment predicting tool in a similar geological environment.
This is the basis of the multivariate statistical mbdel.
However, different techniques may be applied depending upon
the objective sought.

Thg application of mul£ivariate statistical analysis

in resource potential evaluation was first demonstrated by

Harris (1965). The basic postulates of Harris' multivariate

model are as foMlows:

‘W= £(L,S,F,R) ‘ < s

1

P(W) = £(L,5,F,A,W) _y

b X

Where, ‘

W = a measure of mineral wealth
|
: P(W) = probability of occurrence of W ‘
, .
L = age and type of rock

S = structural forms‘

F = rock fracturing .

L o . R AP ot E e . N e e ekt ke wTR .« ke woa.
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A = age of igneous activity and contact relation-
ships. ¢

3
In other words, the occurrence of mineral wealthl is

. a function of the listed geological variables and the prob-

ability of occurrence of the mineral wealth is a function of
1ts jOlnt occurrence with the geological variables.

Harris, after lehdlng ‘his reference area lnto 243
cells, each 20 miles square, made a ser%es of measurements

Np { . “y . +
in terms of areas, lengths, and counts of variables in each

"cell. He used muitiple—discriminant2 analysis and classifi-

cation analysis by Bayesian statistics to define the relation-

’

\
ship of probabilities, mineral wealth, and associated geology.
¢ -4 )

A total of six discriypinant groups were used in-classification.

The resulting discriminant function from the refer-
ence area was extrapolated by'H rris to a total of 144 cells
in an area outside the refg}ence area.‘iof these, 19 cells

were .classified as favourable for further exploration. This

‘constituted a greatly reduced target area.

Agterberg, et al. (1972), applied regression anal-

ysis in making estimates of Fhe probability of occurrence of

lHarris based his study on the base metal de-
posits in New Mexico and Arizona. The geological variables
thkrefore reflect the processes of the region. He extrapo-
lated the results for predictive purposes to porphyry copper *
deposits in the state 'of Utah. =

2The procedure of discriminant function analysis is
described and applled later 1n this study.

7
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copper and zinf in the Abitibi belt of the Canadian Shield.
Since the pregsence or absence of an ore deposit is used as ’
the value crite™on for the response variable, their approach
in effect is equivalent to a two-group,K discriminant analysis.
Predicted metal pfobab;lities of the 644—célll area, based
Sh a 26 éeological and geophysical varidbles equation, are
contoyred usipg moving éverages of 16 adjoining cells at a
time. Peaks in the contours other than those occurring over
known mining regions indicate potentially favourable areas
for future exploration. |

[

Other applications of multivariate analysis include
those by Harris (1968) in Alaska, by Kelly and Sheriff (1969)
in British Columbia, by Harris and Azis (1970) in Mexico,‘by

o .
Sinclair and qud%orth (1970) in British Columbia, and by

BeGeoffroy and,Wignall (1970) in southwestern Wisconsin.
Multivariate statistical methods can provide mean-
\}ngﬁu} rgsource pbtential estimates oﬂ both regional and cell
bases.h{They must, however, be applied with an awareness qf
the methodological limitatioes and any shortcom;pgs of the

data base. Any multivariate statistical model is beést for

*
the system on which it is developed. For this reason, special

s

chzf must be exercised when extrapolating the model outside
th

reference area. The need for such a caution would vary

lEach cell is 10x10 Km., or about 39 square miles
in area. 3 !

L4
|
‘
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of the explicit geologic and known endowment information. 1In

(

L g

' ‘ 56
for the type of endowment sought and on the level of informa-

tion‘available. ’ . - .

- ‘

2.2.4 The Subjéctive Probability Modei .
The subjective probability model is based on the pro- |
cesé of extracting and quantifying individual'judgment about‘
uncertain guantities. The technique can be considered an ex-
tension of the multivariate model in that the endowmént-geology
relationship is estimated by the opinions of geologists instead

other words, the subjective model assumes’ that thg endowment

~

potgetial of g region is a function of the experience,'knéw—
ledge and insi?ht of the geologists familiar with the geology - %
of the region. . . | : ﬂ LR g
Subjébtive probqbility analysis was first applied in g
evaluating endowment potential of the Canadian northwest by~
Harris, Freymap, and Barry (1970), and by Barry and Freyman
(1970). The téchnique was also applied by Azis; et al. (1972),

P

in making estimates of the undiscovered endowment of the

¢ a

Canadian Shield in Manitoba. Various methods of subjective
\

pfobabif§€§ encoding and their applicability are discussed by

Spetzler '‘and . ¥on Holstein (1975). i
o ‘

For the application of this technique, the geologists -,
selected and willing to participate are provided with a set of
geological ﬁaps of the study area which are divided into equad:

A4
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ing well defined and unambiguous guestions on the commodity

I

o

area cells and containing all relevant abd available informa-
tion such as existing deposits, their tonnages, grades, and

> - . . . > .
values. They are also provided with a questionnaire contain-

sought, its categories to reflect ranges of economic signi-~
ficance.at various levels of grades, tonnages, and probabil-~
‘ﬁJies.

Since individual opinions are involved, any two geo-
e ;

t

- ¥
logists can arrive at different probability assignments for

endowment in the same cell. It is for this reason that the

g

1

interview process is so important in this method. Spetzler %
- g

and von Holstein recommend the following steszin the , %
interview process (p. 352): é
(1) Motivation: Rapport with the' subject is estab- %

. lished and possible motivational biases are ex- i
, ' 3

! plored. é

(2) Strwcturing: The structure of the uncertain

quantifies is defined. '
(3) Conditioning: The subject is conditioned to
think fundamentally about his judgment and avoid’ ‘ ?'
cognitive biases. ) -
(4) Encoding: The subject's judgméht ii‘quantified
in probabilistic terms.

(5) Ve{ifying: The responses obtained in the encod-

.ing are checked for consistency. ’




A A

R The geologists may be allowed acces§ to the replies
obtained from other geologists so that if they may want to re-
vise their original opinions, they may do so. This is called

the Delphi process. And finally, a Monte Carlo simulation may

be used to average out the replies and to obtain results at?

“~

the desired confidence level.

The subjective progability method has the advantage
that the sﬁgjectiverknowledQe accumulated by exploration geo-
logists, and their instinct and insight’ can be quantitatively
”ﬁ included im decision making.» The problems of incomplete and

non-uniform geologi.cal information, and some of the limita- K
tions of statistical techniqueszthemseives are avoided by this
method. However, application of the method requi;es a ;Fli— \
able sample size of geological expertise within- the study

area. This is often difficult because of the reluctance of

private company geclogists to baFticipate due to the competi-

tive ngture of exploration. Government agencies in general

are cooperative but their experts may not have the first-hand

lo?al experience of the study region S0 essential to a mean-

ingful application of the methodology.

2.2.5 Other Models i :

~

The models described in this section are semi-statis-
tical in nature. Their application is only on a reconnaissance

level. The following is a brief review.
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T In a presidential address to thewSociety of. Economic

[3 . .
. Ed

‘Geologists.in 1949, quaﬁ (h950, p. 604) observed that: -

¢

N —

~1

If mineralisation has‘occurredlféirly uniforml§,
throughout a major geologic province, it is safe,

v
to conclude, if large enough areas’ are involved, :
that "a comparable number of mining districts of %

. various sizes may be expected in that part of the |

- province covered by younger rocks as is found in ¥

the exposed areas. : » . - :

17’ N . - , . .

| ~Cohsider1ﬁg the non-statistical fo;um of the address, ?

¢ i N . ¢ ¥

| this was ad important and innovative-suggestion. The concltu- ’ /5

G \t v / 3. ;

W7 - .

sions arrived at by Allais (1957) are based o a postulate' con- ’ %

N 4

forming-¥o the above suggestion. ;O é

Bates (1959) used Spearman's coefficients of rank cor- é

relation for determining favourable uranium-vanadium areas' in 3

. ~ , ‘ , * ;

' the Colorado plateau. The Spearman's rhol is similar to’the . %
\ ordinary correlation coefficient except that it requires the | 3
N ‘1

use of rankings rather than the absoclute values of variables P)
4~

-

in the computation of the coefficient.

ki
)

o YR e g
N

Bateq*ndted that 78 percent of all qraniﬁm—vaﬁadium

3

deposits discovered in the Colorado plateau |since 1944 fell

f within the favourable areas outlined in his, study. Bates was

'
Al
¢ N \

lSpearman‘s rho, denoted ry is numerically the fol-
lowing: ¢ [ o
' s ’ P
t N
: 6( & D,2). :
' 1 —
, _ =1
rg = 1- 2
N(N"~1)
...cont'd
\1
. ’ 3
RN ‘ 9
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gize for exploration. x

\\Botbol (1971) made a study of th rty(base-metal min-

hY e v

ing regions in the Unite tat7£ using a technique he devel-
& o ’
oped called characteristic

anqu51s. The technique can rank
large arra of geological cht racterlstlc in order of their

- decrea ng‘typic&lity.2 Botbo numérically coded hiiﬂdata as

. » :
one .or zero on the basis of th¢ presence dr absence of' the

- 4 =

characteristics in the referente cells. ‘The data matrix3 is (f‘

[
m@%tlplled by its transpose s0O that.the rows of the resultlng

.matrix are logic vectors.. The square root|of the sum of

squaréd compon occurrences is called the typicality-of the -~ %

gorresponding characteristic, The most ty ical characteris-

. L o > -
tics based on their ranking are used as a‘’ reference base with

\]

'Y
which comparisons can bg made with characteristics of other
! , w ) ; -
areas. ¥ “
N - Vo ~ A Y - ! *

\ ! . LT t ’ ) . ! VA’

Characteristic analysis has the advantage of*defining the Tre-

.lative importance.of varidus gedloéicgl factors for a

’

o \“

8 -~

Where D; s the difference associated with the particular in- -
dividual i, and N is the number of individuals observed.

A,. ‘ ‘ - . ¢
l“ChafacteristicS" is synonymous with the terms fac-.- .
tors, or explanatory variables as appligd to geological data.

o
- -
.

b 2Typ1ca11ty implies frequency of joint bccurrence of
a characteristic W1th another.

3The columns of the matrix represent the individual

cells, %nd the rows denote the characteristics to be ranked.
7, ! .
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“'part%cular type“of ore deposit.l' In this way, the number of

‘variables for subsequent multlvgglate analyses can be reduced.

Further, the ranklng of typlcafztles‘lndlrectly helps explora-
tion by invitihg greater’attention to the more important cha-

racteristics at the geological mapping stage. .The method does
3 .

nqot, however, make numerical estimatesy of the resource poten-

tial in the study area.

feal L]

f\_ft.t;ZJBU The Present Study °

»

. ‘.
et

o ' * The studies that have ' been described in tn;s
s«chapter have all been appliéd on a.reconnaissance level over
’large regions. Tﬁe present study focusés on the application

o of'multivariété;techniques over a small’area, ;he size of an
averaée mining region. The advantage here is. the availability

of uniform and detailed geologicaltrinformation and well ac-

ELY

-
P

gepted concepts on ore.genesis. However, there are problems

relating to“small sample size in statistics. The anticipated

1] L t N \ ¥

benefits in using small areas ~and detailed geologicalhinfor—
mation incldde predlctlons of narrower, better defined target
areas for exploXation, mere precise timates of endowmegt
potential and an ébility to statistically evalugte geological

céncepts. Thes® are descr}bed in the following chapters.

lTo the extent that the frequency of joint occurrence
is a measure of the importance of a characteristic.

¢

-~ - - e
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 of Rouyn a?d Noranda, and comprises the towrdbhips Dug?;t,

- CHAPTER 3 R

THE STUDY REGION: ROUXN-NORANDA ’

I

3.1 General Statement

§

The Rouyn-Noranda region lies about 400 miles north-

v

west of Montreal, Quebec;l it is centred about the'twin cities

Dufresnoy, Beauchastel, and Rouyn. The region has been tge
centre of exploration activity since the discovery by Bd Horne
in 1520 of the copper-gold deposit that was to- become the Horne
Mine in 1927. Othér discoveries that followed in the region
include the Amulet C agg Upper A orebodies, and 0l1d Waite in
1925 Aldermac in 1927, AmuleE&; orebody in- 1929~ Aﬁulet Lower
A orebody in 1938, Qudmdnt in 1945, East Waite in 1949, Vauze
in 1957, Norbec in 1961, and Millepbach in 1966 (Dugas, 1966;
Simm?ns,"gt al., 1973f. Between the yegis 1927 dnd 1974, the

metals produced and reported in reserves exceeded 2.23 million

4
-

tons of copper, 1. 15 million tons of zinc, 28.76 million oun-

».
ces of;gllver, and 13.14 million ounces¢df gold; this produc-

-

tion was all from the massive sulphide deposits. Tgble 1 sum-

F -

marizes the production and reserves figures for these metals

on an individual mine basis. -

lSee Figure 1.

« o &d‘

2The Corbet deposit, discowered in 1374, is being
developed for production. '

/

r
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( TABLE 1
. COPPER-ZINC PRODUCTION‘AND RESERVES
IN. THE ROUYN-NORANDA REGION ’
(AFTER SPENCE AND SPENCE, 1975)
re Copper Zinc
Mine Years (tons) (tons) -(tons) -
. o

Copper-Zinc \\\\d}:’\\“':::)

Aldermac 1931-43 2,057,100 30,845 -
y ‘ Horne 1927-70 56,264,700 1,226,018 -

* Millenbach # 1971-% 2,415,000 3.45% 4,35%
Norbec 1964~70{/ 2,800,200 93,242 134,034
Quemont 1949-70 15,013,000 183,801 283,991
vauze 1961-64 385,000 11,150 3,600
Waite Amulet 1930-62 9,658,000 404,009 352,921

(A 5,872,000

B,C,D,E, Bluff 596,000
R 290,000

0. Waite 1,245,000

E. Waite) 1,655,000

?? 88,593,000 Q
Zine
Delbridge 1969-70 400,000 2,170 . 34,000
D'Eldona 1950-52 86,500 14 4,360
West MacDonald 1,030,000 ?125° | 30,000
Mobrun -% 3,000,000 0.69% 2.18% i
Ve |
# Current produger
* Reserves, 1972
+ Last available data.
( 5

.
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-
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T
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As of 1977,l the only remaining producer in the re-

gion is the Millenbach mine. The depleted condition of ore

reserves in the Rduyn-Noranda region therefore underlines the
need for an assessment of any additional mineral potential of

the region, an assessment that would assist in exploration

planning and investment decision making.

[
¥

3.2 Geology of the Rouyn-Noranda Region
7 =

3.2.1 Introduction

This thesis is predicated on the postulate that ore

deposits result from the interaction}of specific geological

. . AN
processes that were responsible for:

)
i

(1) Extracting by sdfie process the metals contained
in the earth's. crust;

(2) Transporting the extracted metals to near the

Il

surface of the earth in some;form or medium,
] .

i

the transportation itself bei facilitated by

additional geological pregcesses;
] '

(3) Depositing the concentrYate #esulting from chang-

/
es in the physico-chemistry of the transporting

/

agent; \% . / .

lSince Janﬁary, 1875, the,Norbeb mine has acted as a
tandby to the Millenbach mine, supplying the millfeed from

its stockpiled ore. The Horne mine ceased operations in July, .
1976.- '

- a ;..:xm»..u‘h,, “ a N A i i T i M st g N ke Ao A v R Ak r n




(;) Preserving the deposited metals by further geo-
logical processes. 3)
g .
_The characteristic interaction of géological processeg tha@
resulted in ore localization was probably random. In fact;
some of the more critical factors are still unknown. It was
only aidecade ago_that all bése metals deposits in the Rouyn-
ﬁoranda region were considered to be of hydrothermal epigenet-
ic origin as originally defined by Lindgren (1933). The same
deposits are now believed to bé syngenetic, and the result of
voléanic processes. Whiie geological thought on ore gen-
esis may change over time, the patte;n of ore 6icurrenceé4in
the region does not change. }It f; for this réason that tﬁe
geologicél descgiption in the following sections outlines the
regional aspects fi;st before concentrating on the Rouyn-~
Norand&“region itself. This approach is essential ffom,aﬁ

J : s
exploration point of view and for a better comprehension of

£ a4

s

thé results of multivariate analyses applied in this study.
As Guild (1976, p. 709) observes, systematic exploration

'should be based on a genetic model in search of answers to
~

the following questions:

—

— )
(1) - HoW\d&f\::e deposit form? ' ©
(2) Where were the conditions favourable?

P (3) What ancillary features of broader extent might

aid in zeroing in on the target?

3
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The answers may only be known conceptually, But they

are essential for a meaningful application of quantitative

analyses in resource potential assessment. -
& -

Y

312.2 General Statement

Rouyn-Noranda is-one of the several Archean regions
in the so-called Abitibi greenstone belt of the Canadian
Shield, a belt that contains clusters of volcanogenic, base
.metal, massive(sulphide deposits. The following section re~
views the geology of the Abitibi belt. This is followed by
a description of the .geology of the Rouyn-Noranda region it-
self, and a discﬁssion of 'the genes;s of the massive sulphide

ore deposits in the region.

3.2.3 The Abitibi Belt

)

.- The Abitibi greenstones belt occupies the southern
4 ]

- part of the Superior Province, and is the largest single

greenstone belt in the Canadign Shield (Fig. 2). In economic
terms, it is also the most importaﬁt.

T?e rocks in the belt ;aﬁge from mafic to felsic
volcanic flow rocks and pyrociastiqs'to‘sedimentary rocks.
These have been intruded by a la;ge number of dykes, sills,
and irregular bodies representing a wide spectrum of igneous
rocks. The rocks are estimated by Goodwin and Rid%er (1970)

-+ . ¢

t
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. FIGURE 2
THE ABITIBI VOLCANIC B
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to be distributed as follows in the belt:
Mafic volcanics = 45.6%
Granitic rocks 32.3% "
Se@iments o 16.0%
Felsic volcanics 3.6%
\Mafic intrusions 2.5% »

The volcanic rocks in the belt are of both tholeiit-
ic and calcalkaline‘affinity. Chemically, they are poor in
both potassium and titanium. Descarr€¢aux (1973) observes that
except for the oceanic tholeiites, the rocksi are poor in- cal-

e »

cium relative Fo magnesium. Baragar (1968) in his study also

notes a similar chemistry that is close to that of the circum-

oceanic basalts except for the lower potash, lime and iron

oxides. Based on the average suite indexl of the rocks, Des- §
B B )

carreaux concludes that the rocks would fall within the range

of the basalt-andesite~rhyolite association typical of oro- ¢

7

genic belts. Goodwin and Ridler also regard the belt as oro-

genic and define it as "a remnant of a bilaterally symmetrical
intratectonic orogen rather than a conventional asymmetrical

. * . L] ‘ . ' ‘
continental-oceanic tectonic interface, i.e., an island arc".

. -~

lSuite index is a number equalling

2, o]
(Na,0+K-0) "/ (810,~43),

and is used to analyze the process of magmatic diffeéZntia—
tion. See Barth (1962, p. 168) for detail.
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Their concebt is exélained in Figure 3.

\ Wilson, et al., 1965, and more recentiy, Dimroth, et
al., 1973, have compared the belt to the present day islandC:::
arcs,) built of highly complex groups of/shield vélcanoes whose
configuration and spacing havé changed with time.

4
i

Gélinas and Brooks (1974, p. 336) on the basis of

. !
H@tailed chemical and guench-texture studies of.the belt have
\

suggested that "the more northerly part of Abitibi volcanic

» pile studied represents a deeper, more basic section of the

volcanic sequence, and could possibly be a more primitive‘
'base upon which the island arc was built, the island arc be- .
ing typified by the rocks south of the pomt bfeakL.' They al-
so point out the ambiguity that the suggested more primitive,
base in the northern part has a lower grade of metamorphism,
the prehnite-pumpellyite facies, éompa;gd to the southern
paft@which is in ;he grsenschist facies, Baragar (1968) has
also observed chemical differencés between the northern and
southern parts of the belt. From a different perspective,
Krogh and Davis (1971) iﬁ their age dating of rocks across
the belt have observed.a younging trend towards the south.
The‘volcanic rocks are generally weakly metamor-
phosed except iﬂ%the vicinity of granitic intrusions. The

metasedimentary belt has been metamorphosed to an amphibolite

or higher grade.’ P

-

lThe Duparquethestor:EQHhville break.

s q
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On the bas@s of facies, tectonics, structures and -

geophysics, Goodwin and Ridler have outlined nine vilcanic —

—

complexes in the Abitibi belt (Figure 4). The complexes have.

close spatial relationship with the base mgtai mining region
in the belt. Of these nine, the most impértant complex is
located1ig the south-central part of the Abitibi greenstone
belt and includes Ehe cluster of massive sulphide deposits -
of the Rouyn-Noranda reqion. Other complexes contain the
basé-metal regions of Chibougamau, Matagami, and Timmins.

o

The implication of a relationship between the volcanic pro-

-

cesses in the complexes and the massive sulphide deposits is
; ‘ ’
therefore obvious. This aspect is elaborated in lattTr sec-

‘

3.2.4 . The Rouyn-Noranda Region

¢

General Geology

The'RouY2:g9réhpa region, because of its economic
< .

potential and good outc}op exposure, has been well mapped
| .

—

and studied. The general geology o%’the region is shown in

Figure 5. - e
THe general stratigraphy' of the regionl is as fol-
lows: ) ‘ '
; ‘
1

Aftexr Douglas (1970). ~
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. : FIGURE 5
: ( ‘ T GENERAL GEOLOGY, ROUYN-NORANDA REGION .
N ~ (AFTER DUGAS ET AL., 1965)
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The most important group in terms of ore occurrence is the

Blake River group. This group is composed mainly of andesites

Y

and rhyolites with' relativeiy lesser amounts of basalt and
k

dacite: There may, however, be more basalt preseht than ori-

ginally believed, for as Deécar;eadx (1973) observed on the

1 " ﬁ ’
basis of chemicag analyses, there hasabeen‘\i tendency amongst !

R e

geologists to give names to volcanic rocks in the region that

" are too felsic; this is particularly true of basalts which
: i

have often been called andesites. On the base map used in . -

this study, basalt and andesite have been combinéd and treat-

ed as one unit., \\\

N\ .
The Blake River gi?up overlies the graywackes of the
AN S :

\\

/

{

b b e e T S TR T TR ST % P4 T
i

~
% -, -~
T e A R AR AN ) e ek o w4 =



1

L e, AN ey F a9 0T

ENE A ]

R

s, s 2w Y

R

n -
u o A ot AL e 1§ Y iabh ik ity » ¢

4
Kewagama group,l the contact being characterizedtgg interbed-~

ding and interfingering of seAiments and volcanics. Wilson
‘ I
(1962) regards this contact as an unconpformity. On the south
‘ ‘ v
with an apparent unconformity, the more basic volcanics of

the Blake River‘group overlie the mgtamdrphosea graywacke and
shale of the Pontiac group.

The stratiéfaphic units are discontinuous, With the
flows pinching out over short distances. The thicknesses a%:
so vary, in particular for the morJr;iscousgfelsic units. v
Baragar (1968) estiﬁates th;thhe volcanigs in the region at-
tained a true thickness of at least 40,000 feet.

Mo§t of the felsic rocks are concentrated in the

central and eagtern parts of thé?regionnand most likely repre-

&

k-3
sent ‘centres of eruptive activity. No effusive centret have

‘determined for the basic and intermegiatg rocks (Spence, 1967). -

‘.

Roscoe (1965) has observed that the basic yolcanic

units become more siliceous in stratigraphic asgending order
' |

@
thtéugh the sequence. *Baragar in his study of the Duparquet

section north of Dubrat téwnship nétes a decline in the coiour

index of rocks from about 40 at the base to 20 at the top of;

the main limb, and rising &again to about 30 in thé south limb.

He related the* decrease in cglour index to the increase in_ the
'

- £
alumina._content. This does not itself suggest increasing

[

') N

lAmbrose (1941) correlated Kewagama group with' the ’

Pontiac. .

-

.
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»acidity with increasing stratigraphic height. Baragar has

suggested that the increase in alumina content may be related
%0 prolonged voleanism causing enrlchment of the plagioclase
component and depletlon of' the ferromagne51a and titaniferous
wmlnerals to mesocratlc high alumina lavas. The concept of
prolonged volcgnism may £fin& support in the study by Krogh

and Davis (1971) who found a younging trend towards the sou-

thern parts of - the Abitibi belt.

)

In geﬂerﬁl, the volcanic pile is conformable'despite
numerous alternations of félsic and intermediate rocks. There
is a grédual evolution of rhyolites from andesites, the dacites
being commonly present in transistion. However, rhyolites and ‘
andesites are also present in sharp contact with one another,
both above and below each other. ‘The contacts show nossigns
of any erosion or sedimentation but they do often gontain lay-
ers of chert and tuff; these layers constitute good marker
horizons over short distances. Discéntinuous and irregulaf

belts of breccia are present in volcanic rocks.

ﬂa

All the volcanic proéucts are submarine. As evidence,

Spence and Spence (1975, p. 94) cite the following features:

-

(1) The lack of oxide facies such as'banded iron

formati&n; . .
¥ L .
(2) The poor development of vesicularity in the

4
lavas, reflecting @ limited escape of volatiles’
due to a high hydrosta&%? pressure;

b ‘
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v (3) The great lateral extent of lava flo&s, espe- .

- cially of fluidal rhyolites;

S

“ (1)' The paucity of pyr?clastic products,'imgiying
rare explosive activity due to a high confining
w# bressureaqnd, where found, their restricted dis-
* .« tribution;
(5) The lack of ?rosional.products; &
(6) The presence of pillows throughout the vertical
extent of individual andesitic formations which
L are -as much as 3,000 feet thick.
( In view'of the absence ofua%éally exfensive sheets
of aguagene tuffs{ Di{goth, gg_gl.i(l&?ﬁ, have also suggested
a reasonably great depth of eruptive activity, certainly\Qe-
low more than 330 feet. | \
4
Lithology ]
Mafic to inﬁerﬁediatg £ YOS :
\ ,
dy, all volcanic flows more basic than
to intermediate
s )
flows categdTy. These include basalt and andesite with minor
dacite and trachyte. These rocks exhibit a broad range of
. 1 ’

I.e., rocks with SiO; less than 68% (Spence and
Spesice, 1975, p. 91).
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physi;al features includihg, pillows[ variolites, amygdules

and lgminatiohs. Flow brgccia~;é fﬂLguently present. The
thickness of individuairflows'norma#ly does not exceed about
100 feet. The contacts between thefflows are sharp and maf ~
include intercalated bre%Fia. Fee#ers foxthese flows'have

not been recognized with certaintyﬂ However, Gilmour (1965},
Van de Walle (1972), Dimroth, et #l. (1?73), and Spence and : }
Spence (1975) have suggested that/the older dioritic-gabbroic (\
dykes may have acted.;s such. f ’

/
Acidic rocks /

/

Rouyn-Noranda region is exceptional in having a high
proportion'éf rhyolites within ﬁts pile of calcalkaline rocks.
The rhyolites tend to be conceétrated in the centre of the
region, decreasifig towardf north, south, and west. Spence

?nd Spence (1975) suggest the development of}the pile from a

centre that has migrated eastward along an east-west axis, an
Iy

Al

axis that is now occupied by the Flavritn and Lake Dufault
granites. The rhyolites include both homogeneous and hetero-

geneous types, the physical state being a function of distance
N .

from the source and the viscosity of the lava. Spénce (1967) .

and Spence and Spence (1975) have distinguished fivé differ-

ent belts of rhyolltes on the -basis of stratigraphy and their

physxcal state, and suggest that ore depoélts are assoc1ated

with ormly three of the .five belts. This is evidence of

)
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fmultiple cycles of gruption and ore formation. The problem
is that it is difficult to distinguish the different rhyo-
lites or even to coﬁ@elate between similar rhyolites over
% s _ ’

more fhan short distances because of lensing and the effects

Iof intrusions and deformation. Although most of khe rhyolites

in the region are flow rocks, .some may be pyroclastic. This

is the view of Sakrison (1966), and Larson and Webber (1977).

However, detailed interpretation of Archean volcanics, and
the reéognﬁtion of pxroclastics is & problem. A& elassifica-
tion and elucidation of such rocks in the region by Dimroth
(1977) is he£§ful in evaluating the flows of pyroclastic ori-
gin and acid volcanics.

- | )

éabbros, diorites, and quartz diorites

.

‘These are the host widespread intrusives forming
large irregular bodies, both sill-like anh cross—;uttiné,.and
confined mostly within the volcanic rocké. Thqy probably cov-
er a wide épan of time, but the relationships are’ﬁot clear.
The oldest of these, also called meta-diabase maylbe penecon-

temporaneous with the intermediate lavas, and may likely have

acted as their feeder dykes.

Granitic rocks
) ) ]

About one-fourth of the study area is underlain by
. ,

v

L]
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granitic rockgs. These include the Lake Dufault granodiorite,

and the Powell and Flavrian:granites, all in roughly oval-
shaped areas. g

The Lake Dufault grahodiorite is a composite intru-
sive intersecting andégites, rhyolites, and diorites. Webber
(1962) observes that the western part is massive;jithout
lineations and contains inclusions of the brecciated intruded i
rocks. Thgugastern part shows the effects of shearing, gl-
teration and weathering more prominently suggesting a hybrid -
origin caused by the cpmbined effects of assimilatiSn and ‘
metasomatism. Sakrison (1966) suggésts that the eastern half
may include a possible pendent of rhyolite in which the West
Macﬂonald ore-body occurs. Wilson (1941) has suggested that
in view of the si&ilarity in mineralogy and.chemical composi-

tion to the quartz diorite, ther granodiorite may have been

derived from a dioritic magma, but that the differentiation

must have takeh place at depth because this rock also intxudes
quartz-diorite.
The Flavrian Lake granite and its faulted extension,

the Powell granite, are -mainly enclosed in fhyolite and ‘lie -

along the axis éf an anticlinorium.  Both granites have the | f
same mineralogical composition, and chemically are very simi- j
lar to the rhyolites (Wilson, l94l). Van de Waile (1972) has
suggested that these granite stocks are d?eply eroded sites.

of subvolcanic centres that have been feeding most of .the,

rhyolitic and dacitic flows that are distributed concentrically
v \
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around the centres.

Other Intrusives

i

These include the post-ore potassium rich syenite"por-
phyry bodies of the late Archean (Wilson, 1962) and the late

diabase dykes. The dykes are continuous, and almost vertical,
f o

and intrgde all other rocks in the region. There is a controversy
as to whéthef~the dykes are pre- or post-mineralization in age
{Price, 1934, 1948; Campgell, 1962). As Ridge (1972) coﬁcludes,"
the relationship between the dykes and basé met?%%mineralization

in the region is not well understood.

StructuJal Geology ‘
i
| | :
The main structural feature of the region is a complex

antic;;norium plunging east’on an east-west axis. Dips as
measuréd on the rhyolite-andesite contacts are flat at the
centre;bﬁt increase towards the borde; areas, where they range
from 15 to 60 dégrees. Spence and Spence (1975) postulate the
control of the fold by(the original volcéﬁic centres because of
the thiEkening rﬂyolites in the axis and nose of the folds.
Faulting is widespread \in the volcanics. Wilson

(1941) believes that faulting is'related to the folding ofu
volcanic rocks. He concludes that movements recurred along

the major fault zones at intervals from the early Archean to

the Proterozoic. He notes that'the intrusions of diorite




v

follow some of the major faults in the region indicating that
faulting began before the diorites were intruded. Later move-

yents have sheared the diorites but not as much as the vol- :

» ' canics. Diorites also appear to have a structural relation~-
ship to the Flavrian éranite in being predominantly outward
dipping and forming radial dykes about it. Q
Summary
N
/ .
The following points summarize the aspects of the
Rouyn~-Noranda region geology most relevant to the present' \
\ ' stud@: C
’ (1) The région has been a centre oﬁ volcanic activ-,
ity within the larger orogenic Abitibi belt.
(2) Andesite and rhyolite are the predomiﬁant rocks
el in the area. However, basalt may be present
more prominently than previousi& believed. ﬁhy—
olites appear to both evolve from the andesites
BN ‘; ' via dacites, and also to occur with sharp con-

tacts with the andesites. These features indi-

'S

v cate evolutionary and recurring cycles of vol-

canid’activity. i
(3) Granites in the region appear to be genetically

related with rhyolites, andadiorites with ande-
& !
. ) sites. . \
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(4) The dominant structure in the area is an east-

s
( * _west trending anticlinorium. Volcanic activity
appears to have controlled éhe folding. The
widespread faulting in the region dppears to be
~related to the fglding process and so do the
dykes. v
(5) It appears that in the Rouyn-Noranda region,
practically all aspects of geological processes
. ~ in the Archean, lithological, structural and

¥ O . ) ore-forming, were directly or otherwise a con-

sequencé of volcanic activity.

3.2.5 Economic Geology

The massive deposits in the Rouyn-Noranda region are

, . . - , , . .
either copper-rich with lesser amounts of zinc, zinc-rich with

/ lesser amounts of copper, or mainly pyritic with some copper f
and zinc. Gola and silver are present yith all of theﬁ.
Spence and Spence (1975, p. 94) list the following
, "‘features commonly present in the Rouyn-No?anda massive sul-

phide deposits: -

- s Va

. \ A

(1) A normally pipe-like zone of chloritic and seri- i
citic altera£ion, with disseminated and stringer
sulphides extending stratigraphically below the
ore. This represents the conduit for rising

( ' . solutions;

.; &
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(2) - Massive shlphides, rooted‘in the pipe, form
stratabound, usually lensoid bodies on the

surface of flows or explosive breccias on or

above the upper contact d% rhyolitic forma-
0’

tions;
- (3) A metal zoning shoﬁing chalcopyrite and pyr-
. rhotite-rich ore overlain b§ pyrite énd §§ﬁa—
leri. , and a lateral and outward incréése in

pyrite land sphalerite; - ) .

(4) LayerAng in the sulphide conforms to that of’
the enclosing rocks; ‘ .

. v
(5) Alteration zones and sulphides are cut by the

“

intrusiopns. ‘

These features are better appreciated in light of

the following review of ore geneéis of massive sulphide de-
posits. It is not tﬁg objeéé.othhis thesis to prove or’ dis-
prove any partic&lér theory of ore formatioﬁ. This would not -
conform with.the objectivity contemplated in quanﬁitativély

» -

relating ore deposits and associated geology. However, sta-

‘tistical deductions are only valid when corroborated with '

.

geological thought and field evidence, and for this reason,

S

theories of ore-genesis, past or current, can be, used in - oo

identifying and isolating fortuitous relationships so that

@

their effect can be controllled and reduced.

Lindgren (1933) and more recently @idge (1972), in

o -

o CHEE Pt W Ramilrogbivobie it B f Wt Mot ek i ¥ b 4w o o ) Lt SO SR PO PP Jovis 1
- s N N N . . o I . . o A



g R PN S A e s - - . B e L LR TR

their discussion of the-Rouyn-Noranda base-metal massive sul-
phides, assign the deposits to the hypothermall category of hy-

drothermal -deposits. In fagt until about the'mid~sixties, the

i

origin of massive sulphides was well accepted to conform to

#indgren's hydrothermal hypotﬁesi§,~and exploration for these .

!
déposits was carried out accordingly. )

'

That exploration has been so successful infghe Rouyn-
» ‘«Noranda region can be attributed to the realié%tion of the
role of stratigraphy in ore localization (Dugas, 1966). The
role of stratigraphvy remains unchanged, perhgps’%;En streng- g
thened by the current yolcanogeﬁ%c concept 9n/massive sulphide % ‘
2 formation. In viey of the extensive field and laboratory . {

QE §
evidence accumulated in” recent years, the close spatial and
. .

genetic relationship between,K volcanism and(massive sulphides
1%

is well accepted. This is also evident.in the present worldﬂ
‘wide trend in expioration for magesive base-metals éeposité.

The world-wide appliéation of vélcanogenic concept
has recéived strong support from the detailed étudies of the *

Miocene Kuroko ngsive sulphide deposits in Japan (Tatsumi,

1970). These depositf are relatively undeforme$ and are
found intimately associated with calcalkaline volcanic rocks ;
in a currently active island arc. Perhaps, the main specu- |

"lation remaining, regards the nature of the volcgnism related

»

§
lI.e., epigqﬁetic deposits, produced by ascending
waters of uncertain origin, but charged with igneous emanations,
and concentrated and deposited 'at great depth amgd a high tempera-
ture, 300-500°C.

)
'
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ore-bearing fluids, and the factors that controlled their

50

movements and precipitated the contained metals as sulphides.

Oftedahl (1958) has suggesggﬁ vapour transport duﬁing

!
volcanism as an effective method of forming such deposits.

The suggestion was not, however, well received in view of the

extremely low concentrations of metals.in a vapour medium.
At the other extreme, Hutchinson (1965) suggests molten sul-
phide flowss; but the suggestion ddes not conform with experi-

mental evidence on sulphide phase relationships. Most work-

ers,l however, believe that some form of hydrothermal activity

was involved in the transport and deposition of these depog:ts.

The solutions maj have been in the form of sulphlde complexes

’
’ N

or saline brines, bug this is still conjectural.

The presence of hydrothermal activity at the time
of ore formation is evidenced in the chemistry and Aineralo@y
of the alteratlon pipes below the present massive sulphlde
lenses in the region. TheSe pipes in many cases contain sul-
phide mineralization called stringer ore. The effecys of hy-
drothermal activity are well documented by Riddell (1952),
and Sakrison (1966).

. The shift to a volcanogenic concept for the origin

of Rouyn-Noranda massive sulphide deposits is not a negation

of Lindgren's hydrothermal concept. The difference lies

lE g., Sakrison (1966); Barnes and Czemanske 11967),

Spence and Spence (1975).

J

Anderson (1969) Ridge (1972); Sangster (1972), Stanton (1972) ;

o e T e




essentlaily in the tlming of . the geologlcal events. The
available ev1dence strongly §quests that ore deposxtlon took
' place co~-eval w1th volcanic ac%lvity w1th1n a short span of
geoloqécal ime and thls has resulted in the stratigraphic
control of ore dep051t10n. There may be more than one stra-
- tigraphic h rléonqof deposition when voléanism is interxup-
’ | tive in nature. Ié is for this reason that Dimroth, et:al.,

=

(1974, have stressed that éxploration for these deposits in
!

the Rouyn—jpranda region *should be based on recognition ands

§
te temporary interruption of Eglcanic activity at
i

stratigraphic levels where rhyolitggiare present.

mapping ofihorizons of pyritic chert and shales; these hori-

< \
zons indic

\

n a xecent study, Brooks and Gekihas (1977) have

Y

\'r . . \ o ) « .
§ N dones, the tholeéiitic volcanics are relatively barrén. How-
; \ . ;
: \ ever,- ag an exception, they po%@t out that mineralization in
P -
ST the Timmins region appears to occur in- tholeiitic volcanics

] - . " \ ’ ’ . »
gion qontalns!one of(the most important massive sulphide de-

ot

posité in the world, the Kidd Creek deposify The implications

1n t rms of ore genesis and exploratrbn, areﬂobVLOus.
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3.3 Concluding Statement ’ .

N
’ ]

'%"Stanton (1972, p. -540) after a detailed discussion

. {
of volcanogenic processes in massive sulphidef%ormation sums

o *

up the situation a§/§ollows: . L @i
17/ \ T )
All.thies is, however, no more than a reasonable °
hypothe51s. Clearly there is no aspeét of the
orlgE" of these deposits that can be said to

have /been solved. Indeed we have Warely shaken
-ours 1ves free from the all embracing-yand hence
.highly inhibitin plutonic replacement'fheory
and are hardly past the threshold of a new at-
tack on the problem. # Such a stage in the in-
vestlgatlon of so important a group of deposmés
is, however an intriguing and exciting one.

Is

s It fs against the above background that multivariate
& -

statistical analysis is applied in quantitatively relating

known endo%ment and related geolggy. The stx;ngth of this

analysis lies in' its objectivity.
|
Basic~geologi£al measurements used as data are not

e

subject to change except in detail. The resultlng model is

£

therefore pertlnent to wﬁat is qFtually qbserved and
AY

]
‘measured. However, since no statistical analys1s can’ prove

€ L4

a cause-effect relationship between variables, both the se-
lection of relevant variables and interpretation o% results
should coeform to the current'albeiﬂ@lsubjective, theories
of ore f%rmigg processes. This can result in a bias from

the individual's qerceived‘understanding of ore genesis and
L] :

thus requires an objective approach. There can also be a

¥

-
ity
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case where the relationéhip‘bétween geclogy and endowment does

T
.
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not ‘conform to what ds éccepted ag the process of ore forma-.

/

u‘tion.‘ This indicates that either the model or the geological "

’

theory on ore formation needs to {z re-assessed for validity,

and if necessary revised. " g g' ,
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CHAPTER 4
( o \ Ay
. | \ . o T:}E DATA BASE .
5
N / /
4.1 General Statement } . .
- ) w /
° " Duprat, Dufresnoy, Beauchastel and Rouyn, the fou%

townshiﬁ% comprising the area under 'present study have been
‘f’mapped i; detail on a scale of a thousand éeet to an ihch by
the‘Quebec Deparéhent gg Natural Resources. This Deﬁartment

§ has also prepq;ed compilation maps of the four~townships on

scales of\two inches and one inch to a mile, and a regional
¥

|
map,sof 1/4 inch equal to one mile.

‘
Y e

o The \detlail op the small scale regional map% is too
scapt for a meaningful quantitatfwe gnalybis. QP the other
*hand, the la;ge ~scale quarter townsh?;nﬁ;;;;;}ebnot suitable

" éither because of \the complexity of detail.” Moreover, the

info}matioq“on theﬁ‘hasébeen mapped by different geolpgists
; .

over different periods of time, and thus, there have arisen

problems of uniformity. From the pragmaiic point of view of
§ . -
including th@~0ptimum detail dombined with the ease of mak-
. - ~ .

ing heasurements, the compilation map on a scale of two inch-

es to a mile was Fhosen for the study. This map also has the ;

¥ . N <
live- ¥4 1/4" - l mile. , 4" "
o > ! . ’ % s

2i.e., 1" = 1,000 feet. . .t

e !




advantage of uniformity of detail and nomenclature.

As a first step, the 400 square mile area represent-
these will be referred to as“cellglthroughout the following

| ’ discussion. The subdivision of -an area is based on the~¥olf

: ’ lowing considerations:

. 4
- The total size of the area being considered;

- The "grain" of the, geological information on base

L&
1 ¢ map;' .

¥

The objective of the study;

Y ' ' : The statistical approach contemplated;

- Pragmatisg.,

Cells that are too small make measured data in in-
\

\i dividual cells approach’dichotomy.l On the other hand, for

’

\ a fixed size arga, +the choice of large/sized cells will re-

sult in a decreased sample size for an effectlve statlstlcal
ana;¥315‘ While small cells have the advantage of providing-~

a more specific focus for exploration,]the larger cells have

¢

a greater variety of geology in them and are thus ‘ amen-
? v able to developlng more effectlve relationships. Y - ~

\\ ’ Against the above background, it was deciaed that

dﬁgldlng the tothl area into 64 equal sized square cells,
\l’

o each 5.25 square miles ‘in area would be the most practicable
]

a ¢

X.e., of the "present” or "absent" type.

/

ed by the four townships mentioned, was divided into subaréas;
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/

(f solution. Therefore, each township of ten by ten miles square
# area was divided into §ixgégn cells,!each a square of 2.5 by
E.S miles. The divisiﬂn of each township was done by drawing
equ%distant lines pafallel to the township boundarigs.1 - .

. 4.2 Measurements Made

Ore deposits result from distinct geological process-

es following physico-che@ical laws, In varying degrees of -

{

i
modification, distortion land completeness, afrecord of these

{
i

processes is available in}the rocks and structures cbserved
B g - .
today. - 1

‘ !

e Y {

Y
i If the volume of '‘a rock type wgg/resﬁonsible for ore
formation, it can now only be approximated by its surficial area, for /
A A

pon

the measurements along the depth aré‘iéast known.\hIf some
timing was involved in the ore~forming event, thengég;ati—
graphy or contact lehgths between formations may bé iﬁdica-
tive. Contacts with igneo&s intrusions can be evalua%ed fo£
evidence of their cont;ibufion to the formation of ore de- -
posits. And finally, if any structures were %nvolved in the
formation of ore deposits, or were themselves a result of ore
forming processes, their measurements can be usefully incor-

|
porated along with the areas of rock formations and the con-

tact lengths amongst them. Therefore, in each of thF 64

% ' , <

(} ~\ lSee ngure 6. ‘ )

I . ’ ) f




FIGURE 6
CELL DISTRIBUTION IN THE STUDY REGION'
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cells of the study area, measurements were made of

58

the areas

‘of rock formations, contact”lengths between every possible

pair of these formations, and of synforms, antiforms, dykes

and faults.

& Areas of formations were measured using a planimeter.

'

The measurements were made four times for each formation in
»

a cell, and the result averaged. The total of all

surements in a cell was recalculated to bring the total to

areal mea-

L4

‘ 6.25 square miles, tge theoretical cell size. The following
’ are the formations measured on the base map: )
. \\ ’ |
4 Rock type/Formation K ' Codi?g )
Eiotite, hornblende paragneises, etc. AREA 1
Tuff,'agglqmerate AREA 2
' Rhyolite AREA 3
! ) Andesite, basalt, dacite, trachyte AR#A 4 -
‘Graywacke, arkose (Temiscaming) AREA %
Conélomerate‘(Temiscaming) AREA 6
Peridétite, pyroxeni;é AREA 7
Diorite, gabbro ‘ o . AREA 8
Bhyolite porphyry oA y AREA é
Syenite, monzonite r AREA 10*
Granite, granodiorite AREA 11
Areas of lakes and rivers, geoldgy on
which was not extrapoled ) AREA 12
AREA 13

Graywacke, conglomerate, etc. (Huronian)
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i

Linéar measurements were méde on all possible contacts
between pairs of formatio&s and on structural elements; synforms,
antiforms, dykes, and faults. These'm%gsurements were made us-

. .ing a pair of dividers with a constant spacing of 0.1 inch.
Visual interpolation was made for léngths less than 0.1 inch.
Edch of these measurements was made twice, averag?d, and con-

® , verfed into miles. The following are the contact lengths mea-.

2z -
sured and their coded variable names.

CODING - ' Contact between formation:
( CNTL l» Paragneisses & aghésigg/basalt
CNTL 2 Paragneisses & conglomerate (Temiscaming) ‘
N CNTL 3 Paragneisses & peridotite
, CNTL 4 VParagneisses & granite/granodiorite T
CNTL 5 . Paragneisses & gré&wacke (Huronian)
CNTL 6 . Tuff/agglomerate & rhyolite &
' CNTL 7 Tuff/agglomerate & andesite/basalt '
. CNTL 8 Tuff/aégldmerafe & g?hngcke (Temiscaming)
CNTL 9° Tuff/agglomerate & diorite/gabbro 1
. CNTL 10 Tuff)agglomerateu& granite/granodiorite ‘
-jCNTL 11 RPyoliﬁe &~andesite/basalt
|CNTL 12 Rhyolite & graxyaéke (Temiscaming)
CNTL 13 Rhyolite & diorite/gabbro
CNTL 14 Rhyolite & rhyolite porphyry ;
CNTL 15 Rhyolite & grénite/granodiorite [
/ CNTL 16 Andesite/basalt & graywacke (Temiécaming) fﬁ
CNTL .17 Andesite/basalt & conglomerate Tiemiscaminé)l ' u
CNTL 18 Andesite/basalt & peridotite '
. CNTL 19 Andesite/basalt & diorite/gabbro
CNTL 20 Andesite/basalf & rhyolite porphyry
( CNTL 21 Andesite/basalt & syenite/monzonite

b e s ek, S AT I g T Sy Pactuand
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CNTL 22 Andesite/basalt & granite/granodiorite
CNTL 23 Andesite/basalt & graywacke (Huronian)
CNTL 24 Graywacke (Temiscaming) & conglomerate
(Temiscaming) !
CNTL 25 Graywacke\(Temiscaming) & diorite/gabbro
CNTL 26 Graywacke (Temiscaming) & syenite/monzonite v
CNTL 27 Graywacke (Temiscaming) & graywacke (Huronian)'
CNTL 28 Conglomerate (Temiscaming) & syenite/monzonite
CNTL 29 Conglomerate (Temiscaming) & granite/grano-
diorite ‘
CNTL 30 Conglomerate (Temiscaming) & graywacke (Huronian)
CNTL 31 Peridotite & graywacke (Huronian)
CNTL 32 Diorite/gabbro & rhyolite ‘porphyry
CNTL 33 Diorite/gabbro & syenite/monzonite
- CNTL 34 Diorite/gabbro & granite/granodiorite
CNTL‘35 '‘Diorite/gabbro & graywacké (Huronian)
CNTL 36 Rhyolite pbrphyry & syenite/monzonite
CNTL 374" Syenite/monzonite & graywacke (Huronian)
CNTL 38 Rhyolite & syenite/monzonjite
P o ) * ‘ “
AN . . o
vy - Structural parameters are di;ectional features and
‘they are therg¥ofe éssiéned to one of the following groﬁbs
~ basedson their direction. )
L
Directipn Group ’ Coding -
East-west to north-east 1
" North-east to north-south 2, *
North-south to north-west ) 30 -
North~west to east-wggf 4
) The structures are therefqre coded as shown below
~

JrT
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P

to reflect their direction. ‘:} g
) k-2
Structural Parameter Coding
K Synforms SNFM 1 to SNFM.4
Antiforms ' ANFM 1 to ANFM 4
Dykes - : D¥KE 1 to DYKE 4
Faults ‘ FOLT 1 to FOLT 4

¢

’ -
All measurements, areal and linear, are made cumula-

tively fortthe‘partiduﬁar variable in each cell.

Iﬁméiew of the cell size chosen, and because of the
variety of geology presént in the area, only some of the above
variables are actualiy present in any particulér cell. Vvari-

ables not present ‘in a cell are given zZero value. As shall be

explained in later sections, only some of the variables are

significant in guantitative modelling.
4.3* Data Compiled . i
, 7
Ore production an8 reserves figures' of copper and ‘

zincl for the mines in,the region were compiled from the fol-

lowing sources.

- Quebec Dept. ofsNatural Resources mineral %nventory

LY

cards;

lAnd also, for the associated silver and gold.




e’

1 s

i Canadian Mines Handbooks;

- ™

National mineral inventory cardd at the Department
- ! ﬁ?’ -~

‘'of Energy, Mines, and ReSources,/ﬁttawa;

. 1
Canadian Minerals Yearbooks: .

:-'

Company annual reports:

N

'Unpublished record at thé office of the Resident -

" Geologist, ﬁouyn—Noranda region.
L ,'

The .total ,production and reserves figures converted
into contained copper and zinc tonnages are assigned to the
cells on the basij of théir known characteristics. These values are re-
ferred to as the known endowmedt. To obtain a common value.
denoﬁinétor for copper and zinc, their tonnages were convert-

. . :
ed into dollar values using the 1975 3 and 37 cents’

per pouﬁd respectively, and then added.

Of the 64 cells in the regioﬁ, only eight coptain
known ore deposits with production history and measured re-
éerQes. .

.7

e

4.4 The Xnown Endowment

. %

In developing a multivariate statistical model, it

-is hecéssary to relate the known mineral endowment of the

region to its associated geological’characteristics. Des-
pite their great geological age, early Precambrian, these -

-

characteristics can be reasonably mapped and interpreted.

| .3

<
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But the associated mineral endowment can never be fully knowﬁ
even after an area has been intensively explored éndginter—
preted. U?der these .conditions, the most reliable estimate

of ex}dowment is the sum of what has been produoed

-
andwéurrent ore reserves In this study, this will be re-.
ferred to as the "known endowment". Unfortunately, the known

endowment is not the whole endowment. ~ Of the &wo contributors
« N

to the knownrendpwment, i.e., productioh and reserves, the

former is the more reliable estimate because it was produced
and reportea in terms of both tonnage and graszr But produc-
fion itself is dependent upon the technology and economics of
the time,“and as Harris (1975) poinﬂs out, these effects can-
not be isolated or removed: Production in actual practice is
the material mined above a selected cut-off grade. No‘feéord
is generally available of the margiﬁal or lgwer grade'material
left inside the mine that is nog‘reporteé as part of reserves.
Reserves,, unlike production, are subjgct to great

variation, again @ependipg(upon the economics and té;hnology

t a given point in time. An increasé in metal prices will
permit a ' lower gragé material to be mined and thus increase ‘
the mineable reserves. Advances’in teghnolod? have a similar q
effect. And because of the exponential tonnage grade Fela—

¢

.t%gﬁships present in some ore deposits, the effect on tonnage of

mining lower grade ore can be considerable. * Yet the re-

serves as measured are above an economic cut~off grade and, thus,
rd

are not a carplete estimate of what is really known to exist.

¢ \
. ’ L") ' \
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Further, the reported reserves are dependent on an individual
company's policy of disclosing information and may be biased

by the existing socig-economic environment.. There are also

v

problems related to the tefminologyl used in fepo;ting re- ° .

o o

sources. This too can bias the overall estimate.

t
|

It ig obvious, therefore, that the known endowment

as assessed in this study is incomplqﬁg, and therefore repre-

-

= \ . . v I .
sents the'minimum possible”estimate. The forecasts made us-

ing this known endowment, will therefore; be conservative es-

I 4

timates. \ T - &
/‘ﬁ ¢! (mv
4.5 Problems Related to Geological Lata
. 13 P
4 ‘ Qé
An objective study of geological phenomena requires . =~ =
"that a certain level of objectivity be maintained in the mea- & I
surement of geological information, in partjicularntfield mép-
ping. A significant{é&ohnt of subjective information accumu- L/ ;
ﬁ‘ %‘ ,
lates in the maﬁpi@é process for the following reasons: '
" . L a .
- Lack ofﬁéufficient rock exposure; 5 C
- Lack of a third dimension in viewing rock forma- :
]q c
tions; ! g
. Altered, metamorphosed, and deformed state of the }f
v ! ﬁ
rock; - : 'y
Kl y - ‘ _
Nil - ) -
AN For problems related to.resource termin@logyﬂxsee ~
Section 4.6 ‘ e ,
Fad > ﬂ ¢ - , &
- B - ¥
— N —
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- Scale of mapping,-and the time available for map-
o ) ‘ ;

. ?ing; CoLe

! LI :
- Judgment of the geologist 'relative to his training,

[ »/experience and .current geological concepts.

f

<
]

Reglohal data therefore tend to be non- unlform in

o

quality 'and 1Aterpretatlon, and sometimes contlnulty. °In res

tiva'study of unknoWn endowment.{ This ,is

I
meanlngful appllcatlon. Geologlsts,,apart from their possible
'skept1c1sm of mathematlcal studies, are also hampere@*;n thelr
, ' i
~ ' - - X
work by the absence of a universally accepted classification

it

3 v 13 = 13 ’
of rocks. There are a number of rock classification systems

based on various crlterla §uch as geochemistry, mineralagy,

“

and textures. However, 1t was only in 1973 that iksub—commls-v )
’ ‘ o
e\cesl , “&\\

lI."e" Iou:.o:GbSo' . ‘ L S

sion of the Internat}onal Union of Geological Sci

?

- .9

. l
: = ¢
y &
. ‘

6
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_ mate appllcatlon of this 1nformatlon may be gquite different

data is that tn@y are dependent upon the partlcular objectlver

- vV T T~

—
~

submitted its recommendationg for classifying igﬁéous\rocks.'

N N
In practice, field geologists continue toﬁclassify a rock by
' T
its locally adopted name when first mapped, or by their own

/_ . . il G"
subjective judgment. © ‘
4 4 ’ b,r
) It is obvious therefore, that a geomathematical study

inherits a certain-bias even befdre it gets started. \This

bias will be less for a well developed mining reg}dn wnich

justifies detailed study over a long period of time and, th%s,
® )

results 4n a standardization of, geologital nom?nclature.

‘
- . . “

f ’ 4

-

4.6 Resource Classification Bxoblems |, '

y \

A Aumber of proBlems relating to geological data are

<

discussed in Sectlon 4.5.° Similar problems with more serious

o 3

possible consequences ex15t in the case of resource informa-

I

tion. Part of the problem with bofth geclogical anq%resource

at the time of their measurement or compilation. Theé ulti-

g

from the initial objectives. However, standardizing the ter-
[ \ [} {
minology alone can ameliorate the situation and improve the
- s ‘
foundation for objective studies.

- 57
Practically all definitions of reserves and resources

) - ] I
are adaptations of earlier sets of definitioms with intent to

eliminatebambrgnity, increase precision, jand to account for .
' 2 d
changing uses and perspectives. The Departm&nt of Energy,
{ 4




it
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' L4
o
~ ’ -

% -
Mines, and Resources, Ottawa, recommendsl the following usage

’ ' * 1 ﬁ\
(‘ for metalliferous and industrial minerals: -
‘ N
I § E e " *
k3 LY ®
P Ore: A naturally occurring, solid mineral-bearing

substance from which one or morelvaluable con-
stituents could be profitably extracted by

g mining and separation-under the conditions

| ' g , ! " prevailing -at the time of the appraisal.’
~ ¢ ' - ,
Ore reseryes: Ore ‘tonnage that can be reasonably assumed to
I i exist. It requires an indication of accuracy’
! of measurement in accordance with the Depart-
' ment classification table. . ,
L ‘ s 1
Resocurces: . These'are identified and merely surmized con-
' centrations of naturally occurring solid, lig~"
uid, or gaseous materials in or on the earth's
crust from which specific commodities are es-
! s timated to be obtainable economically with a
_ specified probability and within a specified
» time span, under explicit assumptions.
) The U.S. Bureau of Mines uses a similar ‘set of defi-
nitions.- However, its resource definiéion.is not as precise
! 1 .
\ since it does not. specify a time span over which the resource
could be considered economically feasible. =~ = .
The first comprehensive attempt to define and clari-
fy the meaning of reserves and reséurces was made by a com=<
s{ . s 1 \ . ~~
r - ‘ o . Ny v
. ‘ R %gttee of the Society of Econonic Geologist (Blondel and
Lasky, %956). :?his wag followed by a classification of min-
P
N Y eral resources by McKeM¥vey (1972, 1975) shown in Figure 7.

* The U.S. Bureau of Mines has, adopted this classification for

s

) ~
3 . ~
g ' lSee Zwartendyk (1975). .
$ 2 ) ’ ~.
- ", “SBee Figure 8. o .
¢ /
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( #ts usage. Since McKelvey's cléssification scheme is rather
ftéti07 J. Zwaftengykl and' Nis associates at the Depar}yent
\ A of EnergYﬂ Mines, and Resources, Ottawa, have made certain
& * modifications, and recommend the modified classification

. scheme for the Department's use.2 A

scheme has heen presented by Azis, et al.,(lQ?ﬂ? In a con-

P

tinuing work on improving resouﬁse terminology, Schanz (1975)

has made a series of reEommendations
t L3
. Resources for the Future.

l _
;The, classification diagrams

. tory, and it is not intended to go into detailsu

R

both in Canada and the United States.

i
participation by the mining industry

-

source classification schemes -are to

tien and general adoption. Standardized gesource terminology
will assist in developing a better inventory of what is actu-
ally known. More importantly, it will make it easier to re-

late what i% known, economic and unecoﬁomic, to the associ-

¥ .
unknown resourfes. From an exploration investment point

-

5

Isee zyartendyk (1975).

1

2See Figure 8
b » 3- \
See Figure 9.

(g ;

the work being done is still essentially at an academic level,
A : L

v}ted geological environment in helping to make forecasts of
4 » '

simplified form of this

¥

focs
in a detailed report for

shown are self-explana-
However,
The need for active #
is essential if the re-

3

be tested for applica-

¥
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’ ¢ FIGURE 8
' - DEPARTMENTAL RESOURCE CLASSIFICATION SCHEME
- . ENERGY, MINES AND RESOURCES, OTTAWA
’ . (AFTER ZWARTENDYK, 1975)
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RESOURCES = RESERVES plus all other numbered areas
RESOURCE BASE = RESQURCES plus ind¥finite area beyond top of diagram

3B and 3C, and between 4B and 4C. .

i -
It -has been found impossible in practice to make distinctifms bewepr}
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FIGURE 9 |
a - A R%SOURCE CLASSIFICATION SCSIEME
’i ( AFTER AZIS, ET AL., 1977
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view, this will be of direct benefit to the mining companies,
parficularly within a mining district, and to gove%gyent‘énd
Y

corporate economists in their long range planning. If ore

R

forming processesy are similar in both space and time as indi-

cated by geological studies, it should be reasonable to ex-

pec% that different categories of resource will behave in)a

similar manner. The characteristics of an’ore deposit could
be thus predicted as reserves deplete. Mining companies per- !
ceive reserves differently, and what they‘géport as reserves

is based on practical planning problems, and the company
-l

policy on reporting in a competitive business environment.
Under the existing conditions, the most reliable ’
o . . ’
estimates ﬂf known resources in Rouyn-Noranda regidh@are the
i

. 1 .. g ‘
production ahd reserves~ figures. These até referred to as

-~ ‘ *
the known endowment in this study, and are the basis of all

A forecasts made using multivariate statistical methods.
AN

3

v

4.7 Distribution Characteristics of Data
@ h f
r ¢ ~ ¢ 3
Most of the general studies in statistics have dealt

with normal data, and consequently, most techniques and in
particular, tests]of significance, have been developed for the

normal distribution:f~Natural data, however, are skewed and

* 5
|

<
lThe reserves are as reported by the companies and

not necessarlly in conformity with any of the classifications
presented in this section.
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jthis Ls especially true of geol&iical data. In the present

I

case both the measured and compiled data are positiVely

skewed, the degree of skewness being different for eagh vari-

able. There is

9

also a tendency towards dichotomy bgcause of

a large number of zeros in the data.
- Most statistical methods of data analysis require
that the observations conform to a normal distribution.

1

Transformations may therefore have to be made to normalize

-

the data. Most commonly #he transformation is logarithmic or
L\
¥/N type, particularly, the square-root member of the
- Y
provide a review

y of the X

fqmily. Jdreskoo et al (1976)

of various transformations,

-

¥

Harris (1965) used a number of tfansformations to

reduce the skewness of his data. The 400 square mile cell

®
size chosen by Harris makes this possible because of a variety

. lof geology present in such large sized cells. Harris also

L3

used factor scores instead of the raw variables because being
uncorrelated, they are likely to be more normally distributef.
Agterberg, et al. £1972), circumvented the problem

of skewness by converting the data base into a dichotomous

ks

form, coding a variable equal to one if present in a cell and

<
n

zero if absent.

In this study, the multivariate techniques used are
P . W

multiple regression analysis, discriminant analysis and &actor

A .
analysis. Regression analysis does not require normally dis-

tributed déta for explanatorg/vafiables. However, normality

v

|
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is one of th% assumptions in factor analysis and discriminant
analysis. The objective of factor égélysis in this study is

to.obtain insight into the structure of the data base so that

the{most relevant variables could be selected for regression

- and discriminant analysis., And discriminant analysis is used

here to compare the technique with regresg&en analysis.

A series of transformations was théréfore attempted
on the data base, but bécause .of the presence of a large number
/ \
of zeros, no significant improvement in normaliz%ng is obtained.

1

The large number Of\zeros res

cell size used in the study.
2 ' / .
size while incorporating a great?r g egical variability will
[
proportionately reduce the number of cells because the total

regitonal area is fixed at 400 square'miles. on the other hand,

converting the data base into a dichotomous form will faii to

give the necessary weightage to. individual variables relative

to their areas or lengths.

It %§ felt that while transformation may nélp make the

¢

data base more amenable to tests of significance, pafticuiarly

-

in discriminant analysis) an artificial barrier is created
3

between the experimenter and the technique. Geologigal data

are unique in the sense that they are of both evolutionary
‘ N

y ofe. .
and interruptive nature. They evolutionary in that various

rock types eVolbe through the procéss of magmatic differentia-

tion. They are interrfiptive in that different
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tial to incorporate the role of the relevanémvariables as ful-

.tﬁe techniques used have the robustness to accommodate violq—
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\ : . . .
cycles may be involved in the @volutionary process. They are

also interruptive 'in that igneous intrusives cut across - the

existing rock formations. But the data base is measu#ed at a
T &
single point in time. Therefore, when using gquantitative

techniquég'it is necessary to isolate and remove any spurious
i ]
X oy A
contributions to the ‘model from strictly spatially correlated

EY

variables. When the information base is as well develo?ed as

it the present study of the Rouyn-Noranda -region, it ig ‘essen-

» ’
. .

ly as possfble and to observ%/tgsir relative contributions.

4

These contributions ,should conform to accepted geological

~

. o d .
theories on ore genesis. For these reasons, raw data base 1is

used in the analyses and the possiblé effects of violating:
N >

the normality assumption discussed in the appropriate case&% .

The models arﬁnvalidatgd by the“leavinq one out'meth-
odl in which the known endowment cells, one at a time are as~- j

sumed to have no endowment and their value predicted on the
\ 3 N !

basis of remaining cells. The results obtained indicgate that
- .

the "
tion of normality agfpmptiona - : "

" A number of statistical problems such as multicol-
linearity, resulting f¥om the pecaliar nature of geoXogical

N H
i}

. ] 1 13 . . .

data are discussed under regression and dlscrlmlnanngnalysqs

4

¥ 1

L i

N lThe leaving one out method is demonstrated ifd*Chap-

ters 8 and 9.

~

N .
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* and the approacheéﬁiescribed to minimize their effects.

fA.B Reduction of Datagggmensionality N

\
~ &

&
The objective of data reduction is to achieve an op-

timal balance betweeh“simpficity for bomprehensﬁon 2Pd‘inter—
pretat;on, and the desired level of re}eva deggil for ade-
gquate representation. Th; need for data\re uction is neces-
sary in the bresent s%udy because there are a total of 67 ex-

planatory variables, some of which .do not warrant inclusion
because they are shown to have no apparent pertinence to the formation

ore deposits. Their inclusion, in addition to increasling

L

compyting costs, can also cloud significant relationships.

4

Some of thé variables may be so highly correlatgd that aqnly
one or two of them may give sufficient representation.

Gnanadesikan (1977, p. 6) gives the following condi-

' > [y .
tions that may require reducing dimensionality of-multivari=-

.
¥
ate data: ’ ﬁ%

~

(1) Exploratory situations in data analysis
especially when there’ is ignorance of what
is important-in the measurement planning.
Here JOne may want to screen out redundant

\ coordinates or to find more insightful ones
as a preliminary step .to, further analysis

~ or data collection. ’ :

(2) Cases in which one hopes to stabilize
'scales' ‘of measurement whensa similar pro-
perty is described by each of several coor-
dinates. Here>he aim is to compound the

x /’ various measurements into a fewer number

which®may exhibit more stable statistical
properties. "

of

7
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(3) The compounding of Jultiple information
( “S asian aid in significance asslessment.
- i Specifically, one may hope that small
" =+ ¢ departures from null conditions may be
’ . evidenced on each.of several jointly oh-
served responses. Then one may try to
- integrate these noncentralities into a
smaller dimensional space wherein their
existence might be more sensitively in-
, v . dicated. One sach technique that has
r received some usage is the .univariate
analy$is of variance applied to princi-
ple components.
* ¢
(4) The preliminary specification of a space
that is to be used as a basis for even-
tual discrimination or classification
procedures.

hae Y

(5) Situations in which one is interested
| in the detection of possible dependen-
] " cies among observations in high-dimen-

sional space.

1

@ When the data are geological, and the geology inEom-‘
pletely resolved, it becomes necessary to check‘the role of
. ;ll but those va;iables whose insigﬁificaﬂce is without dis-
pgte. Such a situation does exist in the Rouyn-Noranda »e-
. gion even though it has been intensely 'studied. The same is

the case with all mining regions, for geological obsegvations

i

are but indirect evidence of the actual geological processes.
- - A -
The dimensionality of hultivariate data can be re-
duced by correlation analysis, factor analysis,.ch§raqteri$4

. tic analysis, or simply by trial and error: bated on the

w N ¢ '
perceived significangé of individual variables. All these ”

«

L . % . Y ;4
//H/dpprgaéhes are made use of in this study.
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4.9 Computational Procedures Used ) 3
-Jﬂ.]“ '.‘i 00 A3 i ’ ~
PR M ’ ¢

All computer runs in factor analysis, regression °
analysis and discriminant function analysis were made'using
the standard s.p.s.s.t (Version '6) p;&grams on the I.B.M.

. ]

360 computer at McGill University. éﬁnumber of regression
LN

runs was also made on the C.D.C. 6400 compuéer at the De-

& ,
partment of Enerqgy, rlnes and Resources, Ottawa.
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oo THEORET I CAL-MEFAL ENDOWMENT

Theoreticéldmetal gndowment r7fers to,  the total en-
dowhent, both known and uﬁinown, and wﬁéé&%r economic or not.
Such an eﬂdowméktacan never be fully known. Ho&ever, a rough
estimaﬁe of the order:of—magnitude can be attempted on the
basis of the crustal abundance of elements. The implicit as-
sumption here is thét the geologic processes‘that created en-
dowment were‘hﬁgﬁiy efficient in extractingéyetal'wealth in
accordance with physico-chemical laws. Since crystal abun-
dance is only one of the factors that led to the concentra-

Y

tion of-endowment, and s%&ge other'factors relatiné to trans-
portation and deéositiontggé not¢known, the estimate will be
crude. But i;\relating whati;s known to what was theoreti-
cally produced, a roughﬁ&easurg_can be obtained of how much

L
additional endowment could be expected if the post-minerali-

z3ation 3§ologicaldprocesses did not in part, or in'full; des~-
trdy it." )

v :

\ Gapdwin (1965) has noted that the metal content in
o

olcanic complexesl represents integral producté of the
Qorsfvic cycles and migrated from the parent source to the

vy . ° e .
AW . : . .

T < L

\ A
lOf thcﬂh¥k uyn-N;§§nQa region is one . (Goodwin and

Ridler, \970). . \

@
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volcanlc.env1ronméht in association with the differentiated

~silicic volcanic rocks; and Krauskopf (1967) has emphasized

¢
that sufficient sulphur is present in pormal'igneous rocks

9” 0 ",' !
to generate ores from reasonable volumes of rocks. Under the

&

assumptions made thérefore,‘it should not be unreasonable to

make estimates of‘the theoreticél endowﬁent in the region. ’
The average combosition of the earth'g crust has

been estimated by a number of workeré in terms of major'and -

trace element contents. As part of the United States Geolo-

*

gical Survey program on the data of gedchemistry;, Parker (1967)

compiled this information, sources of which aré referred to’

in his paper. Table 2 suymmarizes his trade element estimates

-

for copper, zing, a;d"sulphur in selected igneous rocks and

: %

for the crust as a whole. -
i Shaw, Dostal and Keays (1976) ﬁave méde estimates of
the trace.element composition of the Canadian Shield. Their

estimates of copper at 14 ppm., and of zinc at 52 ppm. appear

. o1
to be low when compared to the crustal abundance estimates

compiled by Parker. However, since these figures relate to
. ] 4
the Canadian Shield1 which includes the present study area,

they are more pertinent for makiné estimates of copper and

»

zinc endowment in the Rouyn-Noranda region. The proviso is

S
that -the trace element estimates adequately represent the

< . {

¢ -

lThe shield is assumed to be homogeneous for .esti-
mates of the trace element abundance.

-

- g
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TABLE 2
TRACE ELEMENT ABUNDANEE OF COPPER;,?INC, AND SULPHUR : >
(AFTER PARKER, 1967

fe]

Rock Types |, . Copper (ppm)1 . Zinc ‘(ppm) Sulphur (ppm)

>

\ . -

A Ultramafics 84100 300 |-

Intermediate 35

Felsic granites and
ranodiorites
High calcium granites

Low calcium granites

i Syenites

' o Average for igneous
rocks'’

Average for the earth's 4555 65-83 - 260-520 ‘
t crust ’ ) . - §

< * N i

lparts per million. -

g .4 # v ,
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composition of the original material now solidified as rock..

Using abundance estimates of Shaw, et al., the con-

~ r

tained copper metal per cubic mile in the “Canadian Shield is

1.73 x lO5 short tons, and of zinc is 6.44 x 105 short tons;

. F

2

For a‘maximum feasible mining depth of one mile, and for the

-

400 square-mile Rouyn-Noranda region, the estimate of cont

tained copper is 69.2 million short tons, and of zinc is 257.
million short tons.
- The, known® metal endowment of copper and zinc in t?e

jegion is 2.24 and . 1.16 million short tons respectively. In

'

other words, the theoretical estimate of copper exceeds its

known endowment by a multiple of 31. Similarly, the theoretical

. §
estimate of zinc exceeds its known endowment by a multiple of

222.

°

As the theoretical endowment figures indicate,'thé

1

region should contain seven times more zinc than copper.

However, since the known endowment of copper is almost twice
B A " g
as much as that of zinc, it should be reasonable to conclude

that there is far more potential for zinc in the region than

for copper.!
The question one may ask is that if indeed more

deposits than presently known were concentrated from the

»

!

1
1This is only the economic endowment, for no esti-
mates are available for the uneconomic endowment.
- o

L]
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inherent availability of. both s&hphur, and’, copper and zinc,

\then how many of them were able to survive the effects of de-

formation, metamorphism and erosion? It is not possible to ° . "

o
L

isolate and identify individual factors‘that helped cause or '
destroy ore concentfations. Most probably the factors were ‘
agting jointly?lg?he onl§ app&paéh to understanding the’ situ- :
ation Qould be in‘the Huttonian concept ‘of surmising causes

from t&e observed effects. This can be doﬁe‘py-quantitativeiy | S
relating known ore depoéits to their surrounding ;éological |
environment and by applying this relationship in reverse to
predict‘péssible locgtions of any additional grospective/dé- ' :

posits. This'is Ehe'aim'of the present study. : e
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CHAPTER 6

. |
W CHARACTERISTIC ANALYSIS OF DATA

6.1 General Statement

(

. -

The technique of characteristic analysis was des-

cribed in Section 2.2.5. Botbol (1971), and DeGeoffroy and

‘Wignall (1972) applied characteristic analysis to determine

-

the most comqonly present geological features in a large num-
* 4
ber of ore deposits of a particular type for,égéh@ble use in

) , J
mineral exploration. g

The focus of the present study is a single mining re-
gion, the ore deposits in which are the result of geological
pfocesses in a self-contained volcanogenic unit that created
massive sulphide mineralization. If all the ore-forming pro-
cesses were concentrated within this unit, then a crude mea-

sure of their relafive importance can be obtained by the re-

lative proportion of the characteristics present provided

that accepted geological caﬁcepts are not violated. Fﬂr ex-
m »

ampie, it would not be valid to draw, conclusions from areal

meashrementg qf post-ore sedimentary processes. However,

sincde it’ is the joint occurrence of geological processes that

rééufts‘in ore formation, characteristic~analysis should give
\

a more reliable estimate of ‘the significance of a character-

“ V4

idtic than'measuring its simple presence in a certain proportion

ot : ' ~\p

2,
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as compared to.the other characteristics. . L C e,
o ] ' " ,.’

6.2 Characteristic Analysis Results

.
- T < v {
- >
. . .
f. . i
! .
1] - -

4 ' H

g Chéractqéistic analysis was carried bhé’separately .

for the following sets of data as measuréd- in eaqﬁ of the’ 64
' g * "

cells in the study region. T . ‘ -

/

-

1) r Areas of geologlcal formations;
(2) Contact lengths betyeen formatlons, *

'

(3) \Stigctural elements: synforms, antiforms,

i

s dykéﬁ, and faults. |

i ' 5
- Since similar types of variables are.present in each'

set, é better comprehen51on of  their relative’ importance can
i 4' "

4 .I'

be made. Also, the typicality obtained for each’ characteris-

¢ ¢

tic is converted into a ratio expressed as the percentage - of .

the total tyggcalities in that set. These percentages are

v

‘ calleX\“relative typicalitiesz. The data used in the analysis

/ are in binary code, i.e., a value of one is assigned if a vari-
able is present in a cell, and zero if not. -

4 .

The relative typicalitieéAof the areas of geological .

formatlcns, ranked in a descendlng order are shown in Table 3.

By lnspectlon, the variables may be subdivided into three
groups as based on their relative typicalities shown by the
broken lines. . <

The top two groups include essenttally igneous rdtks"

1
[

- ’
- -

. 5 -
s

+
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- TABLE 3. '
) ¢
~ RELATIVE TYPICALITIES OF AREAS OF
A : GEOLOGITAL FORMATIONS :
Rank Variable Relative Typicality
= l AREA 4 3 17.55
3\ 2 AREA 3 - + 16.58
L < o ,
3 ¢+ AREA .8 - ""15.73
; . -4 * AREA 12 14.91
5 AREA 11 9.19
6 ‘AREA 2 6.90 S
» . T \\ - =T
, 7 ARBA 6 . , 4.12
" 8 AREA 5 , 3.99M
\ AR
. 9 AREA 10 . 3.05
10 - AREA 1 . 2.82
i1 - AREA 13 2.37
12° AREA 9\ 1.79 '
13- " AREA 7 - ~ 0.98- - )
N o
See page' 58 for description of var,iab'le names. \
.l
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) - .uv_x,»::_ _;: L ~ b ,"‘:'m e i



-

«

the only exception being AREA/lZ}'which represents the areas

of lakes.1 Of these, the first group includes the .volcanics :

\

andesitej; basalt (AREA 4), ‘and rhyolite (AREA 3) -and dlorlte,

§m1x£>(AREA 8). The dlorlte-gabbro formatlon is believed to_

«
.

be- an intrusive equivalent of the volcanics andeslte-basalt. .

The fjirst group thus represents a typical calcalkallne assemb-

© . h’ >
. . . , - :

@

Jdage.

. The second group lncludes granlte, granodlorlte (AREA

b}

11), and tuff, agglomerate (AREA 2). Granlte, tuff, .and ag-

]

glbmerace are essentially chemipal equivalentg of rhyolite

(AREA 3). » . ~ .
N .

‘The formations in the last group are elther metasedl—

mentary rocks, or .minor igneous intrusidéns’ with apparently no

genetlc relation to the oreé deposxts in the region. -

\

Table 4 shows the relative typicalities of ¢tontact
lengths between geologicai formatione. The breags‘in typi-

calities'are shown by broken linee.“ Since thé‘contact lengths

\ l . h

rare a dlrect functlon of the joint occurrence of formations,-

the rankings obtalned in thls~tase, therefore, correspond with ‘-
\_

thase cbtaihed for areas of formatlons.2 The most commonly

present contacts are bétween pairs of the following formations:

e . N .A: ¢
o

i

v

1In geologlcal terms, 1akes are a recent phenomenon,
and .in the Cana@xan Shield are a result of widespread glac1a- . ;
tion. The variagple is .ranked hlgh because of the common oc-‘*
currence of lakes w1th most-rock types in the region.

*

- 2See Table 3. ) .o . ) - .

] ‘

-, . . . i
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- . TABLE 4 J ‘
L '// ‘ - .
0 - RELATIVE TYPICALITIES OF CONTACT‘LENGTHS ‘
' / BETWEEN FORMATIONS '
» // ’ . .
-' ‘ 4
,// Rank Vgriable Relative Typicality
CNTL 11 4 14.14
CNTL 19 13.62
CNTL 13 ® . 13.04
CNTL 22 - 6.34
CNTL 7 5.69
CNTL 15 5.65 Y
‘CNTL 9 - 5.18
CNTL 6 ] 4.47
' CNTL 34 3.50
CNTL 16 T 3.18
‘CNTL 24 - K , 1.81 (
CNTL 21 1.80 C
,CNTL 14 - 1.48, :
CNTL 17 ] 1.46
CNTL 33 ’ 1.34
CNTL 2 v1l.29
CNTL 3 - 1.18
ggg%/ég . 1.14 ,
‘35 1.13 )
CNTL 23 : . 1.12
CNTL 20 - 1.05
CNTL 1 1.03
. CNTL 28 0.91
CNTL 36 0.88
25 = .CNTL 5 : 0.84
¢ 26 CNTL 10 =~ 0.84.

27 CNTL, 32 0.82 :
| . . 28 CNTL 27 0.79 ’
| . o 29 +° - CNTL 12 0.77
| , 30 CNTL 37 T 0.69 )

31 CNTL 8 0.47

. 32 CNTL 29 . * 0.45

- - 33 CNTL 25 , ) +0.45"°
; 34 TL 4 0.35
- : 35 CNTL 18 ‘ 0.32
L ° 36 CNTL 26 0.32
- 37 - CNTL 3. 0.22
, . 38 CNTL 31 0.22

lSee page, 59 for description of variable names. .

‘r
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andesite, basalt (AREA /4)' . '
( rhyolite (AREA” 3)
- . . .
diorite, gabbro - (AREA 8)
/ granite, granodiorite (AREA 11)
tuff, agglomerate (AREA 2)

The remaining contact lengths are sparsely distribui-
ed and do not appear to be genetically involved in the ore
forming proégsses.

Table 5 ranks the relative typicalities of structufal
elements, i.e., synforms, antiforms, dykes,«énd faults. There

-

do not appear to be any sharp breaks in the rankings. Over-
all, 36 percént of the structural eleméﬁts lie in diréctions
g ranging from eést*west to north-east, 27 percent in directions
north—soutg to'north-Qest, 20 percent in north-east to north-
south, and the remaining 17 percent in north-west to east-west.
There are no folds péﬁfent ingdirections nofth—east to north-
so&th. |
It is stated in Section 3.2.2 that structural elements
N and volcanism appear to be closely relafeéjz However, the role
of the structural features in ore formation has not been re-

&
solved for the region.

6.3 Review of Results

o

- ’ -

Characteristic analysis has been deweloped for appli-~
3
( cation to a large number.of mineral deposits or mining districts.:

s S I R R TR E - ’ e . Ik eyt B
‘ ’
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TABLE 5 *
RELATIVE TYPICAL{TIES OF STRUCTURAL ELEMENTS -
Rank Variable Relative JTypicality ¢
- / .
1 FOLT 1 19.11
2 DYKE 2 11.46 ‘
3 DYKE 1 11.36
4 FOLT 3 1127
5 DYKE 3 { ) 10.35
. .
6 FOLT 2 8.20 .
7 "FOLT 4 5.25
” 8§ DYKE 4 4.87
9 SNFM 4 4.o;g
l.‘
10 SNFM 1. 3.02
11 ANFM 4 2.87 S
12 SNFM 3 = 2.80 "Me
13 ANFM 1 2.72 R .
14 ANFM 3 =€ 2,63
15 SNFM 2 0.00 y
16 SNFM 2 0.00 .
¢ !
1See page 61 for desc#‘iption of variable names: s ’/
AN\
® |
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In thks study, the technique is used over a single mining Ye-
gion to highlight the most typical geological characteristics
as an aid in data reduction. The technique serves the objec-

tive, apd at the same time emphasizes the calcalkaline volca-

I

nogenic nature of the region and its structural attributes.
The volcanogenic nature of the region is well known
-from its lithology. What characteristic analysis does is to
quantitatively express relationships that might otherwise not
have been conspicuous.‘ This it does by emphasizing the com-
momnness o%gn characteristic rather than its actual measure-

/

ment relative to other characteristics. For example, in the
Rouyn-Noranda region, while the cuﬁulated areas of éiorife,
gabbro (AREA 8), rhyolite (AREA 3), and andesite, basalt
(ARQA 4) are in the ratio of 1:2:4, their,zeiggiv typicali-
ties are in the ratio oﬁ 1.00:1.05:1:12, i.e., the three are
dlmost equally significant. The analysis thus indicates that
the role of rhyoiite and‘dfbrite, gaber: relative to Ehat of

andesite, basalt is more "typical" than shown by their re-

N 9

spective areas. This ig achieved by the binary ‘'coding of the

-

vayiables which considégrs the presence rather than the actual

measuremeﬂt of a vari
& - ‘

It is of interest to note that the most typical con-

le.

tact length determined by characteristic analysis is CNTL 11,
. )
i.e., between rhyolite,and‘andesite, basalt. The contact

; ; /

length . is importaAt in that nearly all base metal deposits in

/

the region occuy at or near this contact. In this way, the
e / .

// >
/
/

/
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[L L , ' _technique can hé’lp in selecting ‘thgvmost relevant variables
| ( . . «for further stétistj.cal’s,tudy. This is true only if the re-
levance i‘t~se-lf“ is a fungf;‘,oﬁx of the joint commonness of cha~
ractfzris'tic%‘ - §g1c?x a situatior*”does Qexist‘;.ri the' Roulyn— s
‘ oy Noranda regfon which w !a”centre of volcanic act1v1ty, and
; . ”“{ in whlch all base metal depos:.ts are d.Lrectly related to that
&‘*g I activity. "\" ‘ ' ’ '(, : e
i - Characteristic -analysis, lacks the proba--
i o ) biiistic and predicti*v;e resolution needed for estimating thc? '
2 ' Munknéwn mineraf endowment of a regiém. It is more & mathé*-‘
: matical man‘ipulaﬁion than a statistq‘.cal pr‘ocedufe.» ,
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HAPTER 7~

. - ) FACTOR ANALYSIS .

R “\ L \\" ) . ) - -
» - . "" _

7.1 General Statement

o
¢ = . .
. ) N
A t N . LY ’ A . . o 0
a o
- -
.

2

" 3

Factor analysis, as deflqsﬁ by Mather &@976) is the

- determlnatmon of a set of descrlotlve concepts which summar- -

H
4

- izes the r%latbonshlps among the components of a system of in-
- teractiné variables. The adfm of the technigue.is to explain
N "relationships among correlated variables’ in terms of a rela--

& tively few underlying factor variates, thus reducing the di- y
§ N | . /
mensiénality of the problem for more incisive interpretation.

LN .

Factor éhalysis is not a predictive tool in resource
/ ) ) ) : N
g forecasting. However, when the basic postulate of resource . ' °

evaluation is the interaction and integration of‘'geological
? L) ' o
‘ . . . .
v * processes in ore formation, the technique becomes most useful

" o

in analyzing the apparent relationships existing between geo- . =
A 5 ° > ' ’
a * logical variables that indirectly are a measure of the pro-

cesses themselves. The factor'anatyst %yst therefore, have *

_ some "a brioridﬁknowle&ge of the system under study so that
,/ meaningless or misleading interpretations;regarding "cause"
and "effect" cap,be aéoided. %his is particqlarly true of
geological data in which the roles of differeé} age rblationgiL

' . ‘of variables, and of. the unknown third dimensionl are not
» - —l / s ' !

( . lI.e., dépth?\ o \ 1
K “ \ A

14 N ' - ’ -
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fully resolved. It may seem paradoxical thag an "a prio#i} N
knowledge is required‘to understand and intermret the‘byécqmg)
of factor analysis when lhe technique of ‘factor anq}yéis it-
self is suﬁposed to identify‘fundamgntal and meaningful asso-
c1at10ns amongst the variables. Actually, the outcome of fac-

tor analysis. i& a re-expression of the 1nf07hatlon content of

the data in a manner that highlights préviously unsuspected
. - ' 3
relationships. : The identification of these relationships is
only possibie against a background of known geological crite-
’ " »—-wrf\ -

ri?. The greater the Jevel of geological information, the

>
better the insight obtained. >

7.2. Methodology

, .
4 ' .
L

Lawley and Maxwell (1971) brovidé perhaps the best

mathematical treatment of factor analysis. Gnanadesikan

~

(1977),'M5ther (1976),Kbver%li and Klett (1972), and Cooléy
and Lohnes (1962) discuss,the‘techniqﬁégin general terms.

From a geological point of .view, Fhe technique is well des-
crfped inﬁgsreskog ;ﬁ al (197s), énd Davis

L

(1973). Thg following 'review has been’ prepared from these

" ! references. &

Factor analysis methods always employ grincipal com-
ponent analysis as the starting point. In principal compa-
- h ° ©
nent analysis, a set of p variates, generally called lele

...xp, is linearly and orthogonally transformed into an equal

©

L

X




Lid

! . .
. where, X; are the p original variates, fr is the rth common

+

i b s ASIL oAbk o Maao i s m o

is the loading of ith variate on the rth factor.l ]

!
s

number of new variates yl,yz,...yp, that age/all uncorrelated.
These are selected such that yl has maximum variance, y2 has

maximum variance at tire same time beikng uncorrelated with y,,

and so on. The objective is to find a minimum number of in-

] [y

dependent, components that will account for most of the vhri~

ance in the original set of variates.

While principal component,aﬂalysis is varidnce ori-
ented,gf;ctor analysis is covariance oriented, that is,xit
interprets the structure within the variance-covariance maLrix
of the data. Principal components are in fact the gigenvec-
tors of this variance-covariance m;trix. -~

In féctor analysis, the basic assumption is that
X. = LI A, £ + e, v (i =-l;2;...p) o

&

factor, k is the specified number of factors, -and e, is a

randbm residual variable affecting X, - The coefficient Ay

Assuming a multivariate normal distribution, the P

x'P matrix of wvariances anq c6variances will include as its ~

- !
t

. "
1A factor is a vector weighted in proportion to the .,
amount of the total variance which it representsﬁ The ele- '
ments 1n the factor are called its loadings. Factbr scores

-are medsurements of a factor, defined as the weighlted combi-
mation of several original varlables.

3

/ | '
e - " !

4
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diagonal elements the following variances:

A2+ Var e
1 ir i

: . T

VAR, . =
11 .
1

~——

v ' ’ k .
z Q~(where k<p

a

where Air is the ith measurement of variable r, and }iq is the

ith measurement of variable q.

N The resulting matrix of variances and covariances {VC]

’

is equal to. the product of a p X k matrix of factor loadings Aﬁf

[FL] multiplied by its transpose plus a p x p_mQtrix of unique

=

variances [var ei], which ' accounts for the variance not in-

1

cluded when the summation is done from 1 to k instead of 1';0
b, and where k, the number of factors is less than p, the num-
ber of variates. When k and p are equal, the result is the

same ds that given by principal component analysis.

Eigenvalues and eigenvectors are then-cgculated for

the standardized variance-~covariance matrix.1 H er, the

2

eigenvectors must be ngrmalized so that they defihe a vector

2

of unit length. K s is done by simply dividing each eigen-.
;éctor by the square root of the summation of the squares of

R

1This‘-becomes the correlation matﬁix because of stand-
ardiza&ion. . .

L]
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. the eigenvectors. MuItiplying eaéh normalized ;ector by the!
squaﬁe root of-the associated eigenvglue fesulté in a factor’
vector. Arranging the elements of a factor Vecth in matrix
form gLveé the factor matrix, a matrix which contains the co- -

N ¢

\efflc1ents of, relatlonshlp between the original variables ‘and
wkhe derived fact;r variates.

, cWhile‘the dimensionality of the prleem‘is reduced o
! by factor analysis, more meaningful resul ~%én bé obtained
by factor rotation so that high loadxﬁgs ar obtalned‘for a
few var1ables,<de the rest of the loadlngs\§9 a factor are

low. This is the Xarimax rotation solution. The final solu-

tion has the form:

L

[z] = [T]\ x [FL]

where [FL] is the original matrix of faétor‘loading, [T] is a
non-singular transfgrmation matrix,lgénd‘[Zf\is the matrix re-
su®ting from varimax rotation. hAccording to Cooley dng Lohnes
(1962), the varimax solution has the advantage that the fe—

sultlng factors tend to be invariant under changes in the com-

position of the test battery, i:e., small changes in tHé sam—
ple of tests should not affect the basic inferences drawn. ?
Such a procedure is used in this study:

The desirable properties of a good factor solution,

after Overall and Klett (1972, p. 90) include:

4 4 <

A ,

‘ ) lWh:Lch causes the orthodonal rotation becau§é (T’ x
( [T] = [I], the identity matrix. .
|
| |
o
i * ?
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-a unique source of variation. If the above properties are not

ey i e x)

L4 1

(1) Parsimony; ~

L3

(2) Orthogonality, or at least relative independence;

(3) . Concepédé¥‘meaningfulness.
By ”

/

) 7 . /

-3,

That is, a lower number of factorSJggfuld explain most of the
ot /
variance and each factor should be independent, representing
obtained in the final solution, then it is likely that facto§§ -
analysis is not a spitéble model. o ~
' Before factor ana;yzihg a,set of daﬁa, the following
' R Y] »

aspects of variables should be evaluated as discussed by Mather

(1976, p. 242):

(a) The type of relationship existing among the vari-

ables. Factor analysis is concerned with linear

’

- relationship-and deviation from this assumption

can effect results in a manner difficult to pre-
dict’
: 9

(b)l The number of factors to be expected. The 1mpli-

cation is- thaJ the factor analyst has some in-
sight into tlie probable nature of the factors,
and can predict the number of factors. One way -
is to extract all possible factors and then de--
cide the number to be retalned. A more practical
way is to retain all' facters having an eigenvalue

(greatef)than one, i.e., to retain those factors

containing a greater variance than. the original
tning a g

4
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: 1 dtandardized data. This approach is adopted in
the present study. V“, N
' (c) The nature of factors to be expected. This means

\

that "a priori" ‘knowledge bﬁ the geological pro-

.+ Cesses in, the area is necessary. Ob%iously,

o ' ) 3 b. .
something must be wrong if two highly antithetic

geological variables load significantly on the

.
4

. ¢ . |
! ) same factor. %

\ . ‘ .
| B T ' ‘/ (d) The variables to be included. Here again, "a

pridgi" knowledge of the éeological processes 1is

L33

necessary. If the objective is to analyze all

possible qéolog;cal relationships in the area,

™ "
then no pre-selection is required.. In the pre-
. , . k4 | ’ R €
. ‘sent 8Base, the ¢bjective is to observe how min- é
L Y N . A

- eral endowment ,in Rouyn—Norandé region relates
- " to geological variables. There is thus no ‘rea-
» “ - - - : /

son to include post-ore geq%é%Agal aspects, and

therefore, all‘;réas of sedimentafy“robk forﬁa—— .
! - tioﬁs and their contactflgngths cag.be excluded. ~_{E7}
) This leaves the igneous rockg, the Jolcanics aéd ) ]
N ). the later intrusives for analysis. Since there ° ‘ }af
- 'is some evidence that the later intrusives may’ ‘ - }

have been a part of the original volcanic pro-- .

cesses, they have been included as«vér%&bles.

} ’ | And finally, all structural elements in the.re-
.\% . )
y . gion are also retained. There-is no guestion

;]
( ’ N L »

i
t

) *

]
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‘ , that dykes and faults are later features than

\

the volcanism with which Ere formation was as-

sociated. But sjﬁf%rms and antiforms are be-~

T i - 1

Y lieved to be related to volcanism,” and at ;east

some of the faults and dykes may have been a
consequence of this foiding. Therefore, no pre-
- selection is done in case of structural elements.

The variables used are listed in Table 6.

1"

(e) The inter-factor relationships., Since an or- 3

* thogonality of factor is desired in this study, .

the varimax rotation method is used. The fac-
tors, therefore axe believed to be free of any

correlation among them. Qﬁl

v

‘The decision on the number of factors to be retained
is an arbitrary one. ,Most commonly all factors Baving an ei- _
genvalue greater than one are retained since they contain a
éreater variance than the’original standardﬁzed vériables;
However, Overall and Klett npte that factors deflned by three
or more variables hav1ng loadlngs in excess of 0. 35 have been
found in their experience to be both stable and replchble.
Thqy#also state that statlstlcalﬂﬁata reduction is usually

, con51dered to be adequate and effective when the number of

14
¥ factors is approximately one fourth the number of original

t - “
¢ hd o &

lSee Section 3.2.2.
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variables, and the variance accounted for is 50 to 75 percent !

3

of the total variante. 'This range is acceptable particularly
when the objective of féctor analysis is to explain the cor-

relations among variables in terms of a minimum number of

»

[N

7.3 Factor Analysis of Data ’

7.3.1 Variables Analyzed

Factor analysis is performed on three sets of 38

variables each. The first two sets include, respectively,

~
LY

the contained metal konnage of copper and zinc as a variable.
The 'third set uses the dollarrvalue of cumulated copper and
zinc tonnages as a variable. Thé remaining 37 variables are

the same in each of the three sets. Table 6 shows the vari-

"

ables used. : : ,

.Iwo procedures for factor analysis are applied:
1

[

(i) keeping the diagonal elementsl,Gf the corre-

[N
lation matrix at one, and

(i), replacfng'these variances by the communality

estimates of the variables followed by vari-

4 [ [y

max rotation.

:

s}

' - .
- - N . ‘
N .

I.e.s, variances. -

. - ' T s/
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TABLE 6

VAR ABLES;USED IN FACTOR ANALYSIS '

e b ———— a2 A
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/“\

/ Variablé | ) ]
No./ Name | Variable Description
T : ,
1{ (Value){ Contained tonnage of‘copper, or zinc, or
; ! their total dollar value
' AREA 2 Area of formation: tuff agéloﬁerate
kAﬁEA 3 Area'of formation: rhyolite a
# AREA 4 Area of formation: anéesite, basalt
5 AREA 7 Area of formatibon: peridotite
6 AREA 8 Area of formation: diorite, gabbro | ,
7 ‘ARgés 9 Area\ef formaFion: rhyolite porphyry
8 | AE%A 10 "Atea of formation: sysnite, monzonite
9 AREA 11 Area oflformation: &granite, granodiorite ~
10 CNTL 6 Contact length between: AREA 2 & AREA 3
11 © " CNTL 7 Contact length between: AREA\ 2 & AREA 4
- 12 CNTL ? Contact lengéh betwgen: AREA 2 & AREA 8
13 CNTL 10 Contact length between: AREA 2 & AREA 11
14 CNTL 11 Contact length between: AREA 3 & AREA 4
15 CNTL 13 Contact length,between: AREA 3 & AREA 8
16 vrCNTB’l4 Contact lengﬁﬁrbetweeg: AREA gﬁ& AREA 9
17 CNTL 15 Contact lengtﬁ betweeri: AREA 3 & AREA 11
18" éNTL"iS éontact length between: AREA 4 & AREA 7 -
nJ 19 CNTL 19 C;htact length between: AREA 4 & AREA 8
20° CNTL 20 Coﬁtgct length between: AREA 4 & AREA 9
.
U
» ' Y
e . ,
A ) |
e ok v o o S % o - e st o *

+
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N TABLE 6
| (CONTINUED) —t
-9

- =
21 Cﬁ&i‘zz Contact length between: AREA 4 & AREA 11l
22 CNTL 34 Contact length between: AREA 8 & AREA 11
23 ‘ SNFM 1 . Synform length EW €5 NE '
24 SNFM 2 Synform lehgth NE to NS
25 SNFM 3 *Synform length NS to NW /f
26 SNFM 4 Synform length NW to EW N
27 ANFM 1 A;tiform length EW to NE b~
28 ANFM 2 Antiform 1éngth NE to .NS
29 ANFM 3 Antiform length NS to NW
30 ANFM 4 Antiform length NW to EW ' m
31 DYKE 1 'Dyke length EW to NE - *
32 DYKE ™2 Dyke length NE to NS :
33 DYKE 3 Dyke length - NS™Fo-NW
34 DYKE 4 Dyke length NW to EW ’
35 ronr 1 ¢ Fault 1 ngth " EW to NE "
36 FOLT 2 . Fault lZggth NE to NS
37 FOLT 3 Fault ien§£h " NS to NW )
38 - FOLT 4 Fault length NW to EW

- e il SN Ak a2 05 1H S -~ P
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In the latter case, an iterative prqcedure is used ﬁfter re-

»
i N

tracting the same number of factors by re-factor ahalyzing,

placing the variances by the communality estimates/by ex-

and replacing the communality estimate by the newér, improved
(/-\\\ - | estimate. The iteration continues until the difference be-
i tween two successive communality estimatés are negligible, or
; 'if after a particular itgration, any one or more of the com-
munalities exceeds one. The results obtained by the two pro-
cedures give essentially similar insights into the relation-
ships between the variables. The second agproach, however,
results in a greater parsimony, and therefore, the analysis
of results is based on this approach.

Factor loadings for copper and zinc sets are shown
graphically in Figures 10 and 11. The variables shown on the
diagrams are all positivelyl loaded on their respective fac-
‘ togs, each with a value‘greater than 0.20. This is an arbit-

. rary decision to avoid crowding of the diagrams with non-sig-
nificant variables. The suggestion by Overall and Klett that

4

Q.BS gives better results when three or more factor loadings
of at least this value are present is incorporated in the1
discussion. The 0.35 threshold is marked on the diagr%ms
with broken horizontal lines. In line with the’ objec &ve of

4
this study, the factors considered to be important are those

2

w

lThe exceptions are copper and zinc. These|/are shown
on the diagrams whether they show positive or negative load-
ings. ! .

e
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Pn which either copper or zinc loads most heavily.

/

/.

|

/
|

! ¥ - .

7.3:%/ The Copper Set

A total of 14 flactors are extracted on factor ana-

lyzingl the copper set. ' 0f these 14, nine have eigenvalues
in excess of one, and chulatively account’,for 85.3 percent

of the variance present. ’ Table 7A shows the eigenvalues as-

sociated with eadh of the 14 factors, and the variances ex-

plained by them individually and cumulatively. The folldwing
is a revie@ng?\éhe assoc#ations of variables as they load on
individual factors shown in Figure 10.

Factor #1 contaiﬁs variables predomgnantlg of the ‘
tgff,'agglomé:até type. There is a positive but Lnsigni?i— w
cant amount of copper associated‘wiﬁh this set of variables. \

Factor #2 combines predomig;ntly rﬁyolite porphyry
variables with a negative loading of coppér. This is an
evidence of the antithetic relationship existing between the
two.

Féctbr #3 is an important factor becauiﬁ oﬁ\the‘high
positive value of copper. Thé variables asgociated %ith it

which have a value higher than 0.35 are the following:

lUsing the varimax rotation method.

v s oA % woeet wx ed e Ceg
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( ‘ - r TABLE 7A _
E1GENVALUES ASSOCIATED WITH COPPER SET FACTORS
. i 7
) . 7 * —
Factor, . Eig’envaluel PCT of Var . CUM- PCT/ |
) () fﬂ;\ " | Lo 4 . '
LS [ o
! . 4.23 16.7 16.7
y ) ) -
2 3,701 - 14.6 31.2
o3 3.155 v 12.4 . 43.7°
r ‘ . . N .
4 2.580 vdw, 53.8
TN \]\ T - .
5 2.075 ‘ 8.2 - 62.0
6 <« ~1.857 . 7.3 . -69.3
7 1.453 5.7 75.0
8 © 1.398 / 5.5 80.5
9 \ ®.213 4.8 ¢ 85.3 )
\
. ,
\ 10 . 0.945 . . 3.7 89.0
11 - 0.836 3.3 92.3
, . 12 ,§p.707 2.8 95.1
. /
13 . 0.645 2.5 - 97.6
- " ‘ . . ‘ ) . .o
1 14 " 0.603) — 2.4 * ©100.0 *
N ’ - A
T k £
g ., / ° ! * a
{‘w :;' 4 - S0 N .
: “Using the varimax'rotation method. ’ ‘
- A , .
. \\ ‘l 7 ,\ 8
\ . P N N
’ " ) - “‘(’;:n °
- ( - T e ¢
) R of "y
. , R
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FIGURE 10
FACTOR LOADINGS IN COPPER ENDOWMENT FACTOR ANALYSIS
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_ gabbro contact to be an important one also.
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A

A
~ area of rhyolite (AREA 3);

- contact length between rhyblipe and andesite,

-

- contact lengthr befween rhydlite and Fgiorite,

W basalt (CNTL 11);
l >

-

T
‘ ™

gabb¥o (CNTL 13).

/ . .
The remaining variables are:

-

- contact length ggtween'tuff, agglomerate, and

rhyolite (CNTL 6); , -

/

- area of diorite, gabbro (AREA 8);

o,

-~ faults lying in directions NW to EW+ (FOLT 4).

All copper ore deposits in the re§ion occur in rhyo-
liteimifﬁg; near theorhyolite——andesite, basaiL contact.
These are the.typ most important relationships shown in fac-
tor #3. Howéver, this factér indicates the rhyolite?-diorite,'
: The significance
of this variable is- not clear in terms of ore occurrencg.

The explanation may, however, lie in the bélief that diorite,
éabbro, aﬁd andesite, Basalt, may be genetically related.l
The same comments mué% apply to the positive association of
the areas of diorite, gabbro, with copper. The.only struc-
turai’elemént associatai—with this factor is the Jength of

/ > ] .

of faults lying NW to EW.

P
YA
o

S
»

}See Section 3.2.2; p
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Factor #4 includes the structural elements synforms,
antiforms and faults, all lying in directions NS to NW. ‘Also
pfesengygﬁz; the area of andes%te, basalt, and the contact
lengths of this formation with,dior?ﬁek,gaﬁbro, and with rhy-
. olite. The close association of folding, faulting, ang the !
volcanics andesite and basalt, give credence to the beiief2
that volcanism and structural deformation in the region Qere
related and were pfobablyh coeval. The negative association’

¢

of copper with this factor.éiscounts its economic potential.
- ' K

\ Factor #5 essentiéil} includes diorite, gabbro, and

— . ,
andesite, t, and their associations. The possibility of

3

- —

a genetic association between these rocks in the region has

H

been mentioned above. Copper £§ strongly antithetic with
. Pl

this association of variables.

" Factor #5 is structurally oriented, and includes
dykes and faults lying NW to EW and dykes lying NE to NS.
Also included are, the contact length between andesite, ba-

salt, and granite, granodiorite, area of diorite, gabbro, and

the contact between tuff, agglomerate, and diorite, gabbro.

. |

The factor hag a moderate positive loading of copper. How- o '

ever, the associations are not clear because the role of
structural elements has not been satisfactorily resolved in .
the region. BWF the joint presence of dx}es, faults and éhe
intrusives, diorite, gabbro, and ;;;;Ite{/granodiorite, and
]
” 4

2See Section 3.2.2.
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] positive loading of copper tempt to invoke a hydrothermal
explanation.

| Factor #8 has loading of.mainly granite, granodio-
rite} with a negative association of copper. Since all the
base metal massive éuléhide deposits in the region occur in
the volcanics, the neggﬁive loading of copper is understand-
able. N

Factor #9 has a hetero%eneous set of variables in

it. However, only one variable has a value greater than 0.35,

and_;herefore, the factor cannot be cdhsidered as stable or

Y
»

significant.

\ Factor #10 shows a strong antithetic relationship of
copper with tuff, agglomerate. Such is the observation in
the field also.

Factors #11, 12 and 14,;all show associati?ns wiFh
which copper has negative affiliations. @hey are, therefore,
not significant from an economic point of view.

Factor #13 includegvfault length lying EW to NE,
contact length between rhyoliéé and granite, granodiorite,
dyke leﬁgth lying NS to NW, and areas of rhyolite, énd of
granite, granodiorite. Despiﬁe the rather high positive as-
sociation oflcopper with it, the facfor is not important in
that it has an eigenvalue of only 0.64 compared to 3.15 for

factor #3 and 1.86 for factor #6.%

-

lFactors #3 and 6 are the only other factors that
have high positive copper loadings.

3
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'sociated with structurally dominated associations observed in

accounted fqg,by them are shown in Table 7B. The association .»_

e e - e

b : 111
/ N

. e
In summary, copper shows a strong litho-stratigraphic

w -

association with the volcanics in factor #3, and is also as-

factors #6 and 13. The selection of variables for resoﬁrce
N W R
potential evaluation of copper can be based on these three

.factors. ’

7.3.3 The Zinc Set \

t

b d

Of the 14 factors extracted in the zinc set, there

LS ¢

'

are nine with eigenvalues in excess of one. These niTe fac-
tors cumulatively account for 84.8 perCent.of the total vari-
ance. The eigénvalués for the 14 factors and the variances
S

of rock types as represented By their loadings on different
factorsl runs parallel ;o those in the copper set. However,
zinc loads significantly on two factors, numbers, 3 and 7 com-
pared to th;ee for fopéer. In add%gaon,’zinc loads positively,
though non-significantly on seven additional factors compared

to three more fofwgopper. The indication is that zinc has an

apparen( relationship with a broader range of geological vari-

% -
ables. It may also be possible that at the time of zinc miQ:
B

eralization, geological activity may have become more wide-

spread. But this is conjectural and only warrants support in
wb

2

léee Figure 11.

p B .
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- | 0 TABLE 7B
EIGENVALUES ASSOCIATED WITH ZINC SET FACTORS |
~ Factor , Eigenvalue PCT of Var CUM PCT
i ( r'
[,.’ 1 4.218 | 16.6 16.6
2 3.698 14.5 31.1
3 B 3.149 12.4 : 43.4
4 . 2.566 10.1 //ffy/“saﬁsf
5 2.070 . 8.1 - 61.6
6 1.838 T2 68.9
7 ©1.513 - 5.9 74.8
. 8 ©1.293 - T “ 79.9
9 1.258 4.9 . 84.8 "
.._-......-........-..T. ...... c-.n-----s———--m—-\---—,—_——-—-_——-————d—-—-—v—-—-—
10 0.944 3.7 | 88.5
' 11 : 0.881 3.5 : 92.0
12 " 0.743 2.9 94.9
13 . 0.662 2.6 . 97.5
14 ) 0.636 ‘:3 2.5 100.0
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Jf/b lthét, compared to copper, zinc always.occurs, at a higher stra-
( rigraphical level. v B
| . Factor #3 has a positive zinc loading with the fol-
lowing associations: . ‘ ‘ i’
ﬁ ,
. % ~ area of qhyolite (AREA 3);° .
| - contact length between rhyolfte and andesite, ba-
\ | salt (CNTL 11)4 ~
: : - contact léngt; between rhyolite and diorite, gab-
bro (CNTL 13); :
/ - contact length between rhyolite and tuff, agglom-
erate ,(CNTL 6) ;
- area of diorite, gabbgo (AREA é);
/ - length Of faults lying NW to EW (FOLT 4). .
> o This set of vagiables “is highly important frofn tpe
point of view of zino occyyrence, and corresponds»essentia%ly e
< with those in factor #3 of“thé'coppor set. This is an indi-A
cation of similarity in ore-forming eqvironmenﬁs of zinc and
K ‘ copper.. . o

Factor #7 shows a hlgh loading -of zinc with strue- -

tural elements,_dyke length lylng NS to NW (DYKE 3),.and with -
fault length lylng EW to-NE (FOLT l) The role of these dykes Lo

and faults is not clear beyond their strong spatial cerxela-

P

tiOn w1th zinc and to & 1esser extent with copper _ Being

post-ore features, these structural elements cannot be the

[

cause of ore formation. However, if they are a consegquence

e m ey e et e
hY
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A jective of obtaining an

.
- w e ——

S -

processes, they can still be used as effective
~ k-

of ore-formin

L L
\

‘Véfiaﬁles”inqu;ﬁhef'statigtical analyses’ subject to %he con-

..iz.-dition.that other variables with accepted genetic affiliations
A ¢

s O
are also included with them.

. - » .. . J
7.4 Summary . «
i
.- Factor analysis consists of extracting a parsimonious

number of linear relationships from a set of data with the ob-
understanding of a complex of
observed variables in terms of a few underlying factors The

follow1ng is a summary of the results obtained:
L I,

kl) The three most important stratigraphical asso-~

ciations of variables for copper and zinc are:

NV - (1) area of rhyolite (AREA 3); — R X

- (i1) contact length between rhyolite and anr
- desite, basalt (CNTL 11); 4

(iii) contact length between rhyolite and dio-

. &

rite, gabbro (CNTL 13).%

| -
[L2\ ' J. .An additional association of zinc is the con-
tact length between rhyolite, and tuff, aggldom-
erate (CNTL 6). This may be rélated to the ob-
servation that zinc occurs at a higher strati-—

Y

graplgjc levél than copper.

O
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'Boph zinc ané copper are closely\gﬁséciated with
NS to NW dyke length (DYKE 3) and EW to NE fault
length (FOLT 1). This may be only a spatial as~—
sociation, but cannot be ignored in subsequenF
statistical analyses. —
The associétions determined by fgctoé analysis -~
~ma§ already be known on a subigctive level.

What factor analysis does is to provide a more
guantitative understanding of the qualitative

‘relationships so that the relative significance

of each variable .can be deterﬁined.

-

{4) “The relationships determined by factor analysis

- may have a genetic or a spatial base. The dis-

s

(5)

tinction can best be made with "a priori" know-
ledge of the geological processes in the region.
The greater this knowledqg, the greater
the comprehension of inter-relationships
_present. The fact that the relationships can |
be isolated and explained has a great signifi-
cance in variable selection for further statis-
tical analyses.

Factor analysis briAgs out relationships in ac-
cordance with the information base applied. It

can indicate previously unsuspected associations.

It cannot, however, indicate any relationships

" not already known or measured. For example, if

!

-y
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o
( - either copper or zinc occurs in a)different geo~—
| logical environment in the region, and if this

occurrence is unknown, factor analysis will not
! help.' Bﬁt this is also the’case with every other’
multivariate statistical technique.
(6) Factor analysis cannot be used difectlf in re-

B N P P ‘. . . -
source forecasting except in a very sub¥jective

manner: What it does is to give the factor ana-

i
-

lyst an additional dimensfon, an insight that
is most eséent&al for further statistical work,
‘ ' so that he can regognizé and isolate spurious
o g relationships and minimize their e%fect. Fac£or
= , ' analysis enables the selection of a reduced num-
ber of more\pertinent variables for an incisive
haa . multivariate analysis by other methods.

(7) Factor analysis should prove an excellent guigde

in mineral exploration, but only in region%
where ore deposits are known and the éﬁﬁociated
geoloéy studied. Instead‘dbf concentrating on T !
any individual favourable featurélof geolog&,

the expiorgtiohist can have a mulﬁgvariaée com-

prehension based on factor loa?ings related with

th¢ particular endowment sought.

L3
f

hoc

RN
.
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CHAPTER 8 =

REGRESSION ANALYSIS -

8.1 " Introduction

! & ! ) \
»

1 Geological p;ocessesnrepresent a comélex system in
yhich optimal integration of favourable factors have resulted
l/in ore formation. These processes éannot‘be duplicated, but
wﬁ»’ the conditions of optimality can be studied by examining re-
lationships between known ore %FPOSltS and assogiated geology.
A mathematical function can be formulated to learn more abput

the underlying relationships and to apprec1ate thé separate

\ . \ -
\ R and joint effects produced by changes in the geological vari-

\ ables comprising the functigg. If the function is valid, it
can be used as a predictivé:tool withi; the system under study,
ané for extrapolation to sim;lér geéléﬁical sy§teﬁs. Draper
aqq_Smith (1966, p. 2) stress that, "ev%n where no sensible
ph&sical felationship exists between variables, we may wish -

to relate them by some sort of mathematical equation. While
the equation might be physically meaningless, it may neverthé—
less be extremely valuable for prediéting the values of some
variables from knowledge‘of other variables, perhaps under
certain stated conditions." The most common method of obtain-
ing a mathematical function‘t% summarize a mass of data is by

the "least squares" method also called regression analysis.

by

¢

1\'

o)
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¢ #

. The objectibe in the least squares method is to find ,the val-
Fi ¥

> -

N
ues of constants in the chosen function that will minimize

“ the sum of squared deviations of the observed values from

those predlcted by the. equatlon. The equation consists of '

two parts: vy, the dependent 'or response variable, and SRTY

the p explanatory variables, also called factors. 1In

pl
-, :
this study, the metal content of copper and\;inc, and their

Te.X

combinaed dollar value are used as response h riablek. The

independent variablesl consist of geological factors, such as

areas of formaﬁions,}contact lengths, and stmictural elements.

4§
8.2 Regression -Attributes ’

a

Reg:eseion analysis is perhaps the most important‘
technique in statistics,)and most other multivariate tech-
niques, in some way, are derived from it.” a well-fitted re—
greésien equation should: -g

- provfﬁe estrmates of values j; response variables
. from values of the independent varlables If the

' corrert form of the equation has been chosen, the

\

’estimates (bredictions) should be both precise and

»

unbiased.

-4 ‘ i o ‘wﬁ/r
l"Independent varlables" and “explantory variables" ‘
are synonymous terms.

¢
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ggniél and Wood (1971, py/r Sjééest that a good method of

fitting‘eqpations to data should:

—-A -

e

- provide an estimate of the error involved in using

)

the equagion as a predictive tool;

} - provide a measure of the correlation existing

N

‘Y;

Qconstant estimated;

-

'

&
amongst the variables.

~ , e,

b3 ©

o

»

use all relevant data in estimating each constant;

o

have reé}pnable ecopomy in the number of &onstants
. .

required; -

~ N v

provide seme estimate of the uncontfbiled.error,in

“R

-

~

provide some indication of the random error in each

. ¢ '] \l\‘\ .« I 1
hake it possible to find regloné of.systematic de-

viations frgm the equation if any such exist;

-
#
e

FYSN

show whethew the cenclusions are unduly sensitive

bl - ¢

dw

to the resulf'of a small number of ‘runs, perhaps

' R
‘ 1'%

‘even of one run; *,

s

help to spot sets of data that really are not from
8

E

sééarate runs, but actually are from parts of one

longer run; -

'

give some idea of how well the final equétion can

Ve d L

be expected fo.predict the resﬁonses, both in the

ovgrail sense, .and at important sets of conditions

inside the region covered by the data.

D

et dme % s ol S SRk W kS
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y,;// ‘ The, results obtained from regression analysis, and

( » .

the pr?bléms associated with its application to mineral re-

» source evaluation, are digcusdgg,in Séparate sections1 in
AN T
o
terms of the suggestions listed above.
% o -
. ‘ Y.8.3 Assumptions in Regression Analysis
/ ‘: . o
) o
3 The Jimplicit assumption in regression aﬂ%iysis is

that a reasonable linear relationship existsv%mong/the unknown
pafameters of the model. The parameters are estimated by fit-

ting an equation to the available:data under the following
e
‘2? assumptions: ) .

PRt s

/

. -

-
o -,

(1) The valWes of resﬁ@nse variable y, are normally

-

~

e distributed for a given X, . ' )

(2) The vayiance of y; values remains the same for

. - N \ \.,
; L any given x,. i o
\‘“*ﬂm\quB) The error terms, e; are uncorrelated and inde-
3 " 7 1 peﬂhdent‘-\:‘n._ -
- \“"«N‘~ }
3 s \,,_7\
Tpe above assumptions can‘é&sg\?e expressed in terms
] L N . \'\q‘.
of the .random\error term e; in thag, for a ce e. has
- a)normaladlstrlbdtlon with mean zero and variance ¢°<, lat-
. . . 4

wer being th%4§am$ for all xi's. In addition, the third as-

° |
sumption of indeendence and jzero covariance holds .for the

—— .
' : ‘ [
hl
}
~ 7/

lsee sectidns 8.12 and §.13. .

° @ o
( ’ % A
N

L
T

R ! . -
4 < . ¢
: ' [f IS - e e - e ey N .
. L i P Lo A AT ok vl &

T AR L My s e A Acawiol] yall " ol Ty—



B ik £ - ——

‘ : : Lzz%\

- . -~

-

( - error terms. This is because, for a given“xi, the variability

in yi is eq;irely dependent on the random error term e,.
Ve

The response variable has

o be a quantitative mea-
. Ii
sure but this is not the requiremght for explanatory-variables

PR which may be qualitative or diefiotomous, or a combination of

quantitative and dichotomous measures. The response variable

’

is assumed to have a normal distribution, its vdriance remain-

ing the same for all combinations of explanatory Yariables.

However! it is not éssumed that the explanatory varjmpBles are
; normallx‘ﬂis%ributed, or even "that they are guantitative, mea-

N surements (Overall & Klett, 1972).

-~
The effects of violating these assumptions are dis-

cussed in Section 8.8.

| .
. 7 yd )

8.4 The Regression Mt;dell
. . ‘ "

'Y -
4
o The linear,regression model describes the linear re-

lationship between a random response vector Y and a set of
- ad \
independent predictor variables X5 i=1,2,...p. The term
« * 1
linearity in the model means that the eqguation chosen will be

“J}ine2§ in the coefficients 80,81,82,...Bp. , The number of
variables p in the equation and thus the number of coeffi-

cients, cannot be mpre than n,the number of obsaervations.
!

3 v ™

0 . i

l'I‘hrodghout this thesis, the term "regression" will
w be used to denote linear multiple regression analysis.

( . ‘ .
IR L L.
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I \ ,Supposel the model under consideration is:

. hY
Y= X8 +e
s,
where,
Y - is an (n x 1) vector of observétions;
X - is an (n x p) matrix of known factors; 2
N B8 - is a (p x 1) vector of coefficients;
e - is an (n x 1) Vectof of error terms.
\ ®
. » . 2
- As stated previously, E(e) = 0 and V(e) = Io“, the I

'

indicating that the error terms are uncorrelated.

4

The least squares estimates of 8 are'given by:
J_‘ t "l
b = (X'X) X'y

Va

' |
where b is a vectorcyf’estimated 8 values. The fitted”values
’ ’ <

«\;‘\\i,zare Sbtained by evaluating:
. i
' ¢
- \‘\ §=xb ) I

Q2 The elemen of the vector Q are linear functions of

‘ 13 (] » []
the observations Y which minimize the error sum of squares e'e

l

regardless of the distribution properties of the errors. The

vector b provides unbiased estimates of 8 which have a minimum variance

, 1
r q
[ \ . / ’
\\\_lThe description is based afiter Draper and Smith
(1966) . , ,

o g 7 (el o W b L e o A =

?I.e., the estimates of Y.

8
¢ . —~
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of any linear ﬁpnctions of the vector Y elements. And, if the
errors are anﬁal,‘ then b is the maximum likelihood esti-
mate of B. ’

A guantity Rz, called the coefficient of multible de-
termination is normally used to assess the variation in the

data expiained by the regression equation. The quantity is

actually the square of the multiple c@rrelation coefficient,

‘and calculated as: g

s =y 2
g2 = oL (3{-,—3{_)2 .
L (¥;-¥) / y

~
-~

/

R2 is often stated as a rcentage; the higher it is the bet-

ter the fitted equation explains thé variation in the data,
subject to the condition that the improvemeﬁt obtained in the
R2 value. by increasing the number of variables is significﬁnt
under a pre-dete ed criterion and not because of saturating
the regression model.

3Anotherpmeasure that is used in examining a regres-
sion term is the standard errdr of the estimate of ¥, a quén—
tity analogous ‘to standard deviation in the sense that it es-

timates the scatter of the observed values of Y around the

5 . . . , L]
computed Y values on the regression line. It 1s defined as:

o

-

/1 (y-%) 2

/;esidual'mean square
n-p-1

If the Y values are normally distributed,; the standardyérror

o
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of the estimate can be used to set confidence limits of the

estimated value. at the desired level.

8.5 Regression Proceduresl ) Ve e s

, Geological information can never be complete and
therefore, geological re;ationships remain a matter of opin-
ion. For this reason, when fitting an equation to data, it
is essential for reliability to include as many geological
factors as possible. However, 'this consideration must be
balanced against the need for a relatively small number of
factors for effective monitoring, and to'keep computer costs

to a reasonable level. The following is a brief review of

the most commonly used regresgion procedures, and commentary

.on their application. '

(i) All possible regressions:

* This procedure requires developing a set of equatlohs

for all possible combinations of expla ory variables, 1n—

cluding cases where one or more varigbles may not be included

“ :
in the equation. Thus, the number of equations formulated 1n-

creases exponentially with each additional variable. The equa-

. tion finally selectea s generally the one that explains the

£

The description in this sectlon is mainly after
Draper & Smith (1966)




A

maximum amount of wvariability in the data.

= This method becomes unwieldy when a large number of
factors is being considered. 1Its utility lies in looking ate

all possibilities before selecting an equation. In mineéfal

resource evaluation thiis will not be necessary except under.

conditions of complete ignorance, in which case the number of

variables will be small. Perhaps ah entirely different model

would be considered under such conditions.

(ii) The backward elimination procedure:

In this procedure, a regression equation containing
all variables is first determined fpllowéd by a calculation °
of thé’partial F-test value for each variable on the assump-
tion that each vari;ng is the best one to enter the equation.
Any variable with an F-value below a pre-selected cut-off F-
test value is deleted. ~Then the regressionnequation”is re-
formulated. with the remaining variables. A partial F-value
is again calculated for each Vvariable as before, and a new
regression equation computed with variables exceeding the F
significance level. The]procedure continues until no fur'ther
vériables can be deleted. ; ) 4

The procedure is quicker and less costly qhan calcu-
lating all possible regressions. The number of variables
must, not exceed the number of observations or Qelse they will ¢
not all be included at one time. When geological factors are

being evaluated for resource assessment, the method proves of




.
8
14
FAS

* NN

use only if all the input factors are believed to Hage been
.related in ore formation. Otherwise, the presence of redun-
O

‘dant variables in the first equation may lead to \unexpected

esults, particularly if they happen to havé a higher

of F-test value than those more directly related in reso xnce

o

formation. * . n

(iii) The forward selection procedure:

This procedure formulates a regre551on equatlon by
includind one variable at a tiﬁe,~perform1ng regre551on, then
including one more variable, §nd so on. The order of Znser~
tion is based on the value of the partial correlation céqﬁ—

°  ficients of the variables not yet included in tﬁe equaéion.

The procedure therefore is the reverse of the backwa¥d eli;
mination method. It has the advantage of including pnly~£ho§e
variables that have a significance above a pre-selected F-test
value, instead of first computing a large regresgion equation |
and then eliminating unnecessary Véfiables. The method does
not, however, consider the effect that the insertion of a new

variablé may have on the contribution of those variables al-

ready in the equﬁtion. However, this can be rectified by a

~

judicious selection of variables or by using the stepwise re-

| gression method. The forward selection method has the advan-

P

tage of economy in computing time.

e el A i b
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(iv) The stepwise regression method:

/

The steéwise regression method is the same as the
forward selection procedure except that after each addition
- of a variable this method examiffidfﬁé partial F-values of

L)

those already in the equation. If the partial F-value of

- »

any variable in th? equation decreases below a pre-selected
F-test value on the addition of a new variable, it is deleted
from the equation. The protedure contfnues until the equa-
tion is satisfied. Thus, this method is an improvement on

Lhe forward selection procedure.

8.6 Procedure-Used

|

The forward selection procedure available in the

4

S.P.S.S. library at McGill University is used in all regres-

-

sion analyses. A series pf'runs was also made.using the step-
" wise procedure available on the C.D.C. 6400 computer at the

Department of Energy, Mines & Resources, Ottawa, and the re-

sults were compared with those obtained,usiné the .forward se-
lection procefure. The results in the two cases are similar.
In an oral communication, Agterberg (1976), stated that in hls
studies, he too had observed that the results obtained by the

two methods are essentially the }ame.

Ve

S
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8.7 Selection of Variables

’
P

Perhaps the mosb.difficult problem in applying re-
gression analysis to geological data is the séleétion of the
"best" set of explanatory variables for the model. The im-
portance of selecting the right variables cannot be over em-
phasized. The peculiarify of geglogical’information is that
obhservations and measurements of data are the deformed, modi-
fied and incomplgpe representations of geological pfocesses

and not the processes themselves. Geological processes are

both evolutionary and interruptive, spread out over long spans

of geological time. Yet geological observations are measured
in one point in Eﬁne. If the role of this time dimension 'is
not fully,unders£ood, the vaLious stages of geological pro-
cesses cannot be identified; they can only be approximated

from existing evidence. This is the case with the Rouyn-

Noranda region; necessitating therefore, a greater number of.

'trials to obtain the appropriate equation, and greater cau-

tion in interpreyation.

- The easigst approach in variable seiection is to let
_the computer do it automatically on the basis of partiaLtgbr—
relation coefficients. This approach is also suggested by
Agterberg, et al. (1972, p. 27)', where they state that "By
working with many variables . . . , we admit considerable re-

dundancy in the data base. However, during the mu};iple re-’

" gression, the redundancy is automatically eliminated. For

»

e g s

PP R

|
!,



£) __'/
-,
130
( #¢ this type of multivariate statistical analysis, it may be best

to start off with as many variables as possible and to let the

elimination of redundancies be done by the computer." cﬁ:z

’

.

, In the present study, it has been observed that ex-

tremely misleading resuits can be 6b£ained by allowing an au-
tomatic selection of Jariables by the computer. The partial
correlation coefficientsiWhich are the basis for computer se-
lection only reflect the spatial relationships among the vari-
ables. They may o} may not have any genetic link with the re-

I3

sponse variable. The computer cannot make any distinction be-]”

F PO

. tween variables that have spurious or genetic correlations.

The following two regression equationsl illustrate this point.

logl'O Copper = 4.64 - 1.31 CNTL 7 + 0.34 FOLT 1

- 0.02 CNTL' 13 -~ 0.18!AREA 4

s + 0.33_CNTL 34 - 0.40 AREA 8
° log;, Zinc = 5.04 - 25.}2 CNTL 14 - 0.14 CNTL 13

+ O.20,FOI/T 1 + 0.37 AREA 2

1

-~ 0.17 FOLT 3 - 0.02 AREA 12

These equations have been obtained for the eight cells
AT that contain known ore deposits. There were no constraints

4
placed on the computer and the selection of variables was done

R

— B s
lSee Section 4.2 fox;@sfcription of variable names,

(-2 | .

“«
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( automatically using the stgpwise regression procedure.' Each

eguat1¢n has an RZ,l

o

tion fully accounts 'for the variability in the data for the

value of one, indicating that the equa-
eight cells. °
Observe that neithbr of the equations contains the i
variables, area of rhyolite (AREA 3), or the contact 1éng£h
basalt (CNTL 11).

A {
the two variables with which nearly.all massive sulphide de-

between rhyolite and andesite,' These are

= - .\ - r
posits are asSociated in the region. Yet other, less perti-

" nent but more spatially correlated variables are automatically

3 - ¢

selected by the combuter.

y 1

Although these equations
in the eight cells with known ore

the predictive worth of equations

can be {itted to the data
deposits in them, what is

that do not include vari-

ables known to be associated with the ore deposits? There

are other examples in which the mere presence or absence of
ra certain variable significantly changes the rkgression equa-

1 N ¢ o

Some of these examples are discussed in the evaluation

tion.

of results. At this stage, it should be stressed 'that in re-
. ..

gressiomor any other statistical analyses, the ablllty to R I

monitor the role of variables can help avoid 1ncorrect con- , Lo

clusions.' This requlres "a priori” subjectlve knowledge of

&

- -
1) « 7

182 ig the coefficient of determinatiom. It 1L a
measure of the proportioh of variance in‘'Y which is acc0unted
for by the estimated linear regre531on of Y on the p S ex-
planatory variables. o

R
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the behaviour of geological factors. Where this knowledge is

incomplete, information from a similar geological system can
»

be useful.

Sometimes it may be necessary to inetude variables

J
.that have a spatial,rather than a genetic link with the pro-

cess of ore formation¢ This is the case if such variables in-

stead of-beiﬁg»a cause of ore forming processes are a result

3

of such processes. Structural features can result from fold-

ing associated with volcanism which itself may have been the
cause of ore formation. These 'indirect relationships can be

[4

useful. -
o

It is perhaps best to inpput variables in a pre-deter-

[y
Ry

m;néd order based on tﬁ%if genetic aﬁgiaiation for the re-
sponse variable rather than on the ba;is'of partial correla-
tion qpefficients. However, where there‘;s uncertainty co;-
cerﬁing the relative impoftance of variables, they can be
grouped together in sets, the insertion level among the group
bei?g pr%—established, but the éélection from within thé'groups
being left to the computer. This pigctical procedure is used
in this study. The final equation should reflect the geolo-
gical system under evaluation as ,(logically as the pfesent
knowiedge\of the local geology permits. . )

- The decision as to the initial set.of input variables
is an extrémely impoktant one, for any further selection is
based on the resulting contribution to the response variable.

3

The method of letting the compyter do the work by inputting

o
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) the maximum number of variables has already been commented
. - . ,
( ™~ ppon. Another method is to use subjective judgment in making

the initial selection, based--on knowledge~dnd experience of
the type of de9051ts and the area under study It has been
shown in many statlstlcal analyses, and also observed in bhlS
study that quantitative relationships extend to variablee»not”
earlier believed to have é significance in subjective'qpserva-
tione.

Characte}istio analysis is é simp;e way of choosing
the initial varidbles on the ba§}§jof'1heir relative typica; .
lities. The assumption is that the frequency of observation =
of a vgriable is an indication of the importance of its role
in geological processes. This may or may not be the case de-
pending upon the type and complexity of geology in ?he regipn
To be acceptable, the selected characteristics should conform
to the various concepts on ore formation in the region. The
order of input can then ge based on decreasing values of re-

1 -

lative typicalitpes. .

-

>

When the area under evaluation is well known with

sufficient information availablé on both the explanatory- and

“ response variables, it helps greatly to perform appropriate k.
factor analyses and then selec¢t the variables loaded on the
f#ctor accounting for the greatest variance in the response ‘ |
‘variable. It is believed that this is the best method of

s \ B 4

lSee Section 2.2.5, and Chapter 6.
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‘sitive to changes in their values. If such a siynificant vari-

'fault, it should be inppt at J later stage in regredsion ana-.

N
»
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variable selection. fAh additional advantage of factor analy- "~
sis is that othér gedlogical ,relationships, previously unsus-

pected, "also are highIighted for a better comprehension of

T g
4‘9 ‘\U‘f\

(he geoloqy of the region. It should be 901nted out, however,

that the "cause" and "effect" relatlonship should not be au-

tomatlcal y accepted based on factor analysis. This is a prob-.

G

lem of statistically treating geological data. Results havé
i e

to be monitored with sound judgment at each step. /

/

N $&Since factor analysis afterﬁbrthogonal rotation re-
‘ ’ ¥

-

591té in uncorrelated f4ptors, some workers have used factor

scores rather than the actual variables in subsequent) statis-

)

tical analyses. The®drawback of this approach is thdt it

builds an artificial barrier between the statistical mogel

N | '

formulated and the geological system as described by the vari-
: LN

L) i“‘

ables, It no longer is possible then to obserwve), understand
A : )
! ' /

and keep track of the roles of individual variables.

" ¢

After the initial .variables have been selected, it

will be necegsary to monitg} the role of those most signifi-
cantly contrlbutxng to the response varlablei. Because of a

high cornelatlon, some of these variables can become very sen

able happens to be.a structural element such-as a.dyke or a

v

o . .
lysxs, if at all For example, the variable DYKE 3 is so

hlghly correlated with zinc that its mere 1nslu31on in the

early stage of regression results in a pOSﬁtlve value

] U

. o , »
Bl ‘ i

e

b




predietion in cell 1027. This cell containe ordy granite and

. &« granodiorite rocﬁg\add ﬁaésive“selphides cannot be egpected

, » theres DYéE 3 gives misleadinq7bo§ﬁtive tséults in that cell.
;o The actual contribut}on of such lieéar etructural elehents

- a
. has to be watched;, K they are often an interpretation or an in-
~

‘terpolation,‘their recorded length being subject®™to error by’m
R ’ . e ]
1 ’ the mapping geologist, and later by the draftsman. It is felt

. ; ‘ RS
: that the, most‘étable measurements onda geologlcal“map are the
i - - &l{

areas of formatlons and the, contact lengths- between them. .The

lengths of dykes, faults, etc. are probably less accuraﬁe méa-
surements. However, they can be valid contrlbutors to th re-

gponée_variable%and therefore should be included, bﬁt‘their

N} ' —

.9 effect cldsely ebserved. - agkif:Zi;////’///f//
. . ® .
. Phé initially selected variag¥les can be reduced-in

;, number after regre551on analysis lf any of them do not 51gni—
. * A\

-ﬁlcantly contrlbute to. the coefficient of*multlple determlna-

i )
¢ - - . .

» tion, the R2-value. It may also be'pecessary to éxperiment.
¢ - ® i .- » g N ~
. with additienal variables to achieve an optimal combination;

for a regression model that adequately descrlbes the behav1our

8 . Tooe
of the geologlcgl system in the Rougn—Norag?a reglon.

L)

8.8 Treatment of Response Variable Data

?

%

| , X

- \ :
g .

3

|

\&,

Ideally, in any type of regression analysis, raw data
"for the response variable should be normally distributed. This,
however, is not the case for-most data relating to natural -

.
,
( ¢ 2 4 . /
N . ,

v




{
o A
. ( phenemenon. Suitable transformationsl may then be necessary
,‘; , td reduce non-normality in the response varlableéi using the
" transformed state in formulating the.least squares model. It
 should be emphasized khat minimizing the sum' of sguared dévi~
ations for the transfermed model is not necessarily the same
as minimizing the. sum of or;glnal untransformed data; that
is, the least squares estlmators of the transformed varlables ®
;iil not be_the same as thoee of the orlglnal/model. For ex-
o dﬁpie, in the Rouyn—NorandéLtegioﬁ# the reﬁression models for-
| mulated on the raw data and on_ their log?rithmic transforma-
tions are dlﬁferent in terms of both the coefficients and the
e explanatorx variables included. A decision has therefore to

/l

l
be made between using the raw data thus v141at1ng the normal-

\ ) . . < , .

ity’assumption or tq‘make suitable transformatlons/taklng the

risk of obtainjng-a least squares fit significantly different
& I
“from that obtainable from the raw data. ®

: L
! ¢ v _ The response variab}e data of the Rouyn-Noranda re-
{ - , _ -
gion consists of the foflowing:
{ . .

! - known endowment ié eight of the 64 cells, in terms

i

p ‘ o o of contained metal tonnages of copper and zinc,,and
T . their dollar ?a}ue;

- unknown éndowment in the remaining 56 cells.
£

'It is likely that some additfbnal unknown endowment

¢

:3 C | lsee also Section 4.7. ‘
\ % i ¢
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A
»q

may be present in the eight cells with known endowment. For
this *pason, the known endowment defined @as the sum of pro-

/
duction and reserves of economic deposits\}n these cells re-
@ t

gresents the minimum possible endowment. Allnpredictions of

endowment in the region should therefore be considered ‘as mini-
.0
‘mum possible values.

The 56 cells with no known endowment are of the fol-

lowing two types:
l , ) i
- cells that have mineral endowment which is at pre-

. &
sent undiscovered;

- cells that have no endowment.

At the time of data“cbmpilation, there ,is no way of
knowing whether a cell with no knoyn endowment belongs to the
first, favourable group, or to the second, barren group. It
may be subjectively possible to predict that a ce%} h;é no
endowment if it does not have any atfributes directly or in-
directly'associated with known ore %eppsits in the regibn.

On the other hand, however, it will not be possible to sub-
jectivéﬁ& assign a value to the‘unkﬁown endowment in a cell
on the baéis of the mere presenéé of attributes related to

known ore deposits.l ‘'What is important is not so much the -

N
e

lResourca estimates based on quantified subjective
probabllltles represent a different model, the effectiveness

of which is not contradicted by the above statement. See
Sectlon 2.2.4.

-,
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presence of a favourable set of attributes as ;he presence of
a relationship among these gttributes-which corresgonds to the
relationship which exists‘in the reference cells that‘have a
known endowment. This relationship can only be knowh after
statistical analyses. Such analyses require that all response
variables have a quantitative valug. Sinée no endowment is
presently known in 56 of the 64 cells in the region, there is
no %lternative but to initially gssign a zero value to the re-
sponse variables in such cells. Should the mathematical re-
lationships formulated from the known endowmeFt cells hold,
then it will be possible to dlstlngulsﬁ between céils Wlth no
endowment and cells witﬁ%undiscovered endowment. Until thisv
is done; the data on response variables consists of eighé posi-
tive values for the cells with known endowment and 56 zeros

, ¢ .
f%r cells with zero known endowment. The lérge number of'zero;\\§
causes a strong positivé skewﬂes§ in the response variable
distribution} The presence ‘'of zeros also makes it very dif- -.

/23

whatever the trangfOrmation, its effect is uniform on all the

ficult to apply any tran rmation to normalize the data, for

zeros, and the{)for= the overall distribution remains skewed.

- Re rihg to the lack of normality in the distribu-

tion of response1 variable data, Draper and Smith (1966, p.

lIt is not assumed that explanatory variables are f
normally distributed or even that they are quantitative mea-

stres. (Overall and Klett, 1972, p. 425).

X
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’

. ) 1
59) note that "An assumption that fhe errors ¢, are normally
distributed is not required in order to obtaih the estimates
‘b, but it is required lateér in order to make tests which de-
\'&»

" péend on the assumption of normality such as t- or F-test, or’

]
for obtaining confidence intervals based on the t- and F-dis-

e
L

tributions." -
s Regréssioq techniques are robust enough to adapt to
moderate deviations from the normality assump%ion, particular-
’ ' ly when the aim of the study is only to find the best fitting
o least squares function. However, normality in the response
variable is-egsential when iqterval est%mates are to be made
or‘significanceﬂfeéﬁs applied.

—

° 8.9 The Ore Cells Regression Model

ol . B

\,
e _\,/?

N
The problems caused by a large number of zeros in the

response variable data can be circumvented to a certain’/extent

. by computing the regression model on the basis of observations
on the known endowment cells alone. The Essumpticn here is
that ore forming processes are represented by the geology in

these cells, and ;95% the size of the cells is iarge enough

Tty g I

to have accommodated ore forming activity. The relationship P
17, )
¢ is the vector of error terms e;. -
*9 - h

-b is the vector of regression coefficients.

( - \ Q
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formulated from the known endowment cells can then be apblied
’ ¥

'for. predictive purposes over the cells with no Known endowment .

It is also assumgggthét sufficient number of known'endowment
cells are present for the formulated model to adequgtelyé:e—
present the geological system under gbservatio&. On a recon-
naissance level, it mayube accepéable to ;qgment the data baée
by includigg known endowment cells from other typical mining
regions. The increased number of observations will impfove
the reliability and comprehensiveness of the computed model.

Tt should be obvious, however, that an equation which repre-

\
sents .the typical behaviour of a regional system cannot be de-

.rived from non-typical data.

-

When a network of cells is randomly superimposed over

a given region, it is likely that the ore deposits will not be

_centred in their respective cells. There can be instances in

A

which an ore deposit lies so close to the boundary with the
adjacent cell that geological relations presé%t'in the adja-
cent cell may also have contributed to its occurrence. Thus,
when the obﬁective is to build a model based only on the known
endowment cells, itumay be more desirable to first centre the
ore deposits in their‘respective cells and then make the-ne-
cessary measuremen{s assuming that the centre of the cell is
close to fhe centroid of geological ag}ivity that led to ore
férmation. The situation will also- depend on the presencé of
geological trends and intrusions within the region as well as

'
the size and shape of the individual cells. Howpver, to avoid

>
AN

-

- N 1
o m e wes ¥,
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. knqﬁﬁ:endowmeﬁf but which have the necessary integrated pre- {
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fh’

B - /
a bias, particularly where geological relations é;é cocplex,
it may be best to confine the measurements within thfg random-
ly ‘placed network of cells. The red#ession models and fore-
casts made using the eight known endowment ce%Ls in the re-
gion are discussed in Section 8:19;1.

7

8.100 The Total Area Regression Model

%

& )

t

The Rouyn-Noranda region has been described as an n,

eruptive centre of ore producing volcanogenic a'ctivity.l The

regygp can be considered as a self-contained geologic, unit
since there is little evidence of similar eruptiye activity

or associated ore formation outside it. The quantitative re-

lationships between geology and ore occurrence are therefore

believed to be local to the region or its immediate vicinity.2

Therefore, if a functional relationship exists between the ex-

[

planatory variables aMd the known endowment, i.e., with "the

. . c .
response variable in one or more cells, then a similar func-

tional“rg}atiogghip should also extend to the cells with no

~

sence of explanatory variables stétistically similar to those

Ve 4 !

| lsee section 3.2.2. ,

2On a more gene;aliZed level, hbwever, geolbgiqal re-
‘lationships can be similar for. typical ore,deposits in other
regions,"and of different geological ages. \
. " - <

-
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in the known endowment cells so that the endowment not known
can be predicted in them. Such a situation should be true in
relatively closed geological systems in which all ore forming
activity was confined Qithin limited areas. If such is not

the case, then either a state of disequilibrium exists in the
response variable data,l or otherwise, the functional ‘relation-
ship between the respénse and explanatory variables is not

valid.

The data for the response variables in the region con-

s 'f]

sists of the known endowment as defined fog‘this study, and
the unknown endowment to he predicted but initially assigﬂﬁd -

a zero value. 'Thwct of performing regression analysis

with this kind of Yesponse variable data is as follows:

-~ cells with no known endowment which have been as-
signed a zero endowment value, and whiéh do not P
have any level of geological Similarity with known
endowment cells should obtain a predicted value of
zero or close to zero. In extreme cases, a nega-
tive value %ay be predicted which while indicating
a high degree of dissimilarity will in effect be

, the same as zero endowment.

©

lTh.e situation arises when part of the response vari-
able data has to be arbitrarily assigned a zero value for lack
of information on its unknown endowment, Some of the cells
Jmay be correctly assigned a zero value, but other cells that
do in fact have an endowment which is not known, are wrongly
assigned a zero value. This thus creates a disequilibrium in
the system. '
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9 b, geological similarity with known endowment cells

»

Al
T e

- cells with no known endownment which have been as-
( signed a zero endowment value and which have a

s

should obtain a positive but a rather low predict-
ed value irrespective of the R2 value, the .reason
being as ingicated earl@er, tha£ instead of zero,
a higher,‘but unknown value should have been as-

- signed to them.. —. N
\\\ - cells which have a known é;dowment in-them should
obtain a pﬁedicted value lower than their known
endowment because similar integration of geology
. in cells of anknown endowment have their response

variabtes arbitrarily assigned zero values.

In such a situation, it is poésible to simply app}&
regression analy§is,over the total observations in the re-
gién and then to examine the results knowing that the gréater
the number of unknown endowment cells with incorrectly as-

N g&gned zéro values with respect to the known endowment cells,
the lower will be the generé; level of predictions obtained.
These predictions can be examined from a relative point qf

- ¥

view, i.e., cells with a higher potential will in general

i s
show higher predicted estimates than those with less. Cells

)
with little or no potential can be elimgnated by this method,

and at the same tihe othér cells can be ranked relative to
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one another.® These rankings wil};not/ﬁéﬁe any economic im-
plication in strictly objec@ive terms. However, on a purely
reconnaissance level, the method should prove uéeful. ¢ )
Agterberg et al. (1972),2 used a moéification of

this method to obtain an estimate of the relative potential of

copper and zinc in the Abitibi area in Ontario and Quebec. On di-

[

chotomous data, they used regression analysis as an estimate .

of the discriminant function separating two populations of
F 3

cells with response variable set at one if an ore deposit was *

*

present, and zero if it was not. The results obtained were con-

|
toured to obtain ‘a copper and zinc potential contour map of the area.

~,

Ay
The response variables in all cells that had an ore deposit

in tﬁ$m, were each\assigned a value of one regardless of the
size of the deposit. Their results, therefore, imply the
presence of an ore,deggsit as a "geplogical event", the pro-
bability of yhich is p:edictéa by the regression estimate of
the response variable. Although no economic considerations
are involved in their study, the study is still useful for

reconnaissance level exploration.
|

<

A

lThis ranking can vary with different sets of expla-
natory variables, depending upon how pertinent and how highly

important if reliable results are to be obtained. See Sectio
8.7. )

‘correlated they are. The right selection of varifbles is mostS
n
-

2gee Section 2.2.3.

- P
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8.11 Iterative Regression Analysis

The problem of what values to assign to cells of un-
known endowment can be resolved using an iterative process of
regression analyéis which will in effect provide the predict-
ed estimateq of endowment in these cells., The implicit as-
sumption is that in terms of infdrmation and concepts, the

S , {
vegion under evaluation is a closed geological system at the

Eres%nt point in time/, and that a state of statistical equi-

librium exists between the response .and explanatory variables:
‘such that if ore endowment is a function of a part%pulér in-
tegration of%geological variables, then a similar integration:
of these variables should also reflect a similar level of ore
endowment. This assumption is necessary because with adai—‘ »
tional information or newer concgpts, the model will require
an updating or a re-evaluation. If this is mot done, Ehere
will be an increased deviation of the predicted values from
the actual obser%étions.

A regression analysis is first performed using the
pre-selected set of explanatory variables, and the set of re-
. sponse variables including the subset of known endoYme;t val-
ves for cells that have known ore deposits in them, and the
subset of zero values assiqned to the cells with no known en-
dowment. The regression estimates.for cells with no known

endowment in them will be higher than zerd®in cases where

any level of geological similarity exists with respect'fa

s

4
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that in the known ore-bearing cells. TheSe estimates will
vary in each case @epending on'the degree of similarjty.
Theréfore, they are relatively more’ precise estimates of the
endowpent in’the unknown cases ‘than the arbitrary zeros asg-
signed to each of them.

After the first regression runs: a new set of response

-’

w

variables results consisting of the subéet of known endowment
values which remains unchanged, and the subset of predicted
values replacing the zeros in cases where there is no known
endowment. The explanatory variablés remain the sgm%>as in
the initial run. The regression i%‘performed agﬁin on this

new set of data and the predicted values obtained for each

% AN
cell. . AN

< ~.

™~
At this stage, the predicted value§ earlier assigned

~~—

to the unknown endowment cells are replaced by the newly pre:\‘\n

}
dicted values. However, the values of response variables in
gells of known endowment are kept at their same original val-
\

ues.. Regression\iﬁalysis is repeateéd on this most recent
|

data, and the predicted values observed for trénds with re-

5

spect to the earlier predictions. The objective here is to
see if the predicted values of the cells that do have a known

endowment converge towards that value. It shall also be ne-

2 values. The

-

rate of improvemen&’aetermines the number of iterations re-~

cessary to check on the improvement in the R

. N T .
quired to‘make\ghe‘ﬁhgreSSLOn results converge on the observed
. .

values in the known endowment cells. It may be necessary
¥

m—— T O R - wssia | -
s & " "y ) Lo
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( after.a number of runs to increase the number of explanatory
- L 4
varlables partlcularly if the endowmegt has more than one
M;,

mode of association with other variables as determined by |

sugh methods-as factor analysis. Obviously, he first set of
independent variables regressed on are the ones that have a

greater correlation with the resource,constituting the endow-
i b

ment. 7 T ‘ o

The regression procedure is repeated iteratively un-
o Q
til a stage is reached where the R? values approach one and Z/

£
Pk 20

o1

\
where the predicted values of endowment for the known endow-
- ment -cells neérly equals the kndwn value%.' At this point the

system can be condidered to have stablllzed; "that is, each

*
£ "

cell has now been assigned an endowment value based on the
level of geological similarity w1th the kno&g endowment cells,
Any further regression lteratlon W1ll not significantly change
the values in any of the cells. The'predicted value of the

response variable in each cell is an estimate of unknown en-

'
s dowment in it with a standard error of estimate as determined

for the particular iteration. The standard error can be used

to set‘confidence limits at any desired level. Y

.12 Regression E[g;lems

8
A

N Lt

The problems in regression analysis will vary from

\
“Ea

project to project, but 'will in general be related to the com-

. pleteness, correctness and detail of the data base and to the

( ‘
"
v

-
N . "
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V% (' ) set oI explanatory variables selected. It may -not be pos-
P - sible to fully eliminate Qr gven reduce the effect of some of
» .. the problems, but the regre551én analyst must nevé¥rtheiless be
i
o . aw e’ogitheir presénce and ‘possible effects when evaluating

‘resilts.

, The faptors considered in varlable selection have al-

ready been discussed in Sectlon 8.7. It should be noted here -

o

~ that the omission of ‘a relevant variable, partlcularly if it

is correlated With thdse already in the quel, may resul; in Lyﬁ/)

biased and ihconsistent least,squares estimators. The inclu-
1‘ - ° ’
sion of an irrelevant variable on thejgther hand will only
T ‘ . . .
hake the regression coefficients ,less efficient.

. ' ) There are also problems of auﬁmcorrelation, heteros-"

T

”cedast1c1ty and multzcolllnearlty, eébh of which results in . e
b o
,lneff1c1ency, blas or error.

JP\/ ' Autocqgrelation is the'gfouping éogether of positjive .
or negative residuals. When autocorrelation is present as a
. ‘result of an incorrect ﬁormvpf regression model, or because

) * N , . '% xn .
some pertinipt variable has net been included in the mqdel, .\
it is possible to rectify .the s1tuat10n by sultablé revisions
) ~ s 3 o ’ 7\} . \ ﬂ”‘@
. and modlflcatlohs. However, the problem zfcomes more complex

and.dlfflcult when the disturbance terms have an autoregres-— ‘
¢ ' v : '

- sive ‘structure. . : ' ° .
’ /
(
. / o Autocorrelatlon results in 1ne£f1c1ent least squares
@}

’ \) 0estimators whichy however'(nmy still be unbiased. %odever, ) A
J ¢ .

> Cf) . the variances of the parameters and the error terms may be

¢ . . . ¥ y ! . 7
# ! . L “ '

v . - ’ . - -
- , ) ! Vs




the scope of this study.

“£He variance is gbnstant about the regression line is violat-

/ 5

biased. It should be noted that in studies of resource eva%-

L N . ¢ s
uation, autocorrelated positive re31duals“may be indicators

* ° i

of more 'favourable areas in terms of mineral poﬁential. This,

+

in fact is the first observation made when(reqﬁpssion results
t t /

arg stndied.;br ce&}s\with an unknown endowmenp ahigh have
be€h initially assigned a zero value. In the Y terative re-
gression analysis uéed in this studyf it is gqt'unta} statis-
tical équilFbrium %}‘attained in the response vargables that

the autocorrelatiop}is minimizqgf Autocorrelation mgy also
. TN ' /

suggeqt bhenomena of geologic interest particularly when some ~

;elevant‘variable°is not ¥ncluded in the regression model. ¢

’ 5 R ‘
This may have a bearing on the genesis of ore deposits in the
., . /

area ‘being s€udi§d.' btﬁer gevlogical implications are beyond
- ) . b %

¢

H _eroscedasticityl-resqlts when thi\assumption“that

ed. When this 'is the case, the least squares estimators do

£

‘ - - .

estimators. Although, they will stil] be unq;ﬁsgé, the cal-
Ay . .. = \

riot poséesé fhe property of minimum variance of all linear

‘ N 13 13
oulated cofifidence intervals and acceptance regions will like-
s ~e -

w

1y be wrong. ) \ .

Multicallinea;ity results when any of the independent ,

variables are -correlated. The questﬂbn is not‘so much the

\
i f N

-

. . Y
1 f

lsee Figure 12.
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presence of multicollinearity but rather, the degree of multi- J
. e
collinearity which exists. The regression coefficients will'

be imprecise when a high degreé of multicollinearity exists.

-

This is because the least squares estimatorsshave a high vari-
/ /
ance. .
¥ {
The degree of multicollinearity will increase as the «
=4

scale of observations incréases, or conversely, as the cell
size decreases. This is a problem that arises in all studies
where‘megsureménts are made on geologicél oBservations after
superimposing a grf& of cells over the area. Geological pro-

cesses particularly of an evolutionary type occur over large
/ T
areas. Structural features like dykes and faults may extend

p

ﬁ;om one corner of a map‘area to the other. The result i$

[ i ‘ I

that individual cells cannot contain a Set of response vari-
ables that do not lnfluence oﬁhwhlch are not themselves in-
fluenced by, the geologlcal relatlgﬁgh;;;\;fesent in the ad-

joining cells. One solution for this lF to use cells of

f

) 1
large size but this will not be possible over size-restricted
N b

areas such as a mining region. To reduce possible harmful

effect of multicollinearity in, this study, ‘the superimposed .
) ' ' . ) - ‘ S |
5et of 64 cells is divided into two subsets by converting the

- \ s

r%gion into a "checkerboard" pattern of cells so that alter-
nating cells are inéluded in each subset. There is no .cell

that has a coﬁﬁon boundaqy with any other cell in each subset

P | é
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A

. . < .
except for the point connections at the cornerg.l Loocking at

the map of the area with the "checkerboard" Eells on it,2 it
is evident that the continuity of. geology from one cell to

the next is abruptly halted or decreased as a result of in-

S

cluding only alternating cells ih each subset. Only the!e
7

geological features that have a distinct direction, either
north-east or north-west, appear to continue diagonally into

the next cell in the subset, but such cases are rare. THhe

tundesirable gffect of using the "checkerboard" scheme is tha®

"

the degrees of freedom are reduced in accordance with the re-

duction in number of observations.

However, when the number

of observations is large compared with the number of explana-

tory variables being used in the analysis, this effect should -

*
not be significdnt.® Another difficulty that is observed in
this study is that, of_the eight known endowment cells, three

fall in one subset and five in the other. Thus the number ofs

reference cells, which is always small in a mining region,

P y 4
The predﬁcted endowment therefore in one

Ny

subset of the checkerboard type data w111 be based on the s

further reduced.

e

geologlcal relatifons present in the’ three cells with known

endowment, and in the other subset will depend on five ¥®uch) -

Pl

cells. The‘regression models will also be different in the
! ) )

p ' =

1
5

See Figure 14.

See Fi&ure 13.
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FIGURE 14 ' S
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( THE CHECKERBOARD {TYPE DIVISION™ OF GEOLOGICAL ,DATA;} .SUBOSET A
‘ \
'é
!
~ &
N v
1
s
i.
¢
g
% -
; '
(R §
i -
For conceptual reasons, the above map area has béen divided Y
. into 16 cells instead of the 64 as actually used in the
study.
. 2'!‘he scale of the map and the colour index used for rock ‘
formations erethe same as in Figure 5.
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two cases. Finally, it should be realized that all predic-
tions wiil be based on Qhat is present in the known endowment
cells in’éacﬁ's&bset. It is not posﬂzble to make a prediction
of additional endowment in such cells since they aré the ones
against which the whole system has been c&librated. However,
if at any stage new information is available in terms of en-
dowment or geology, the regression model should be changed to .
accommodate the new,d:ta;' If the additional information re-
lates to the discovery of ;éw’endowment in any cell ip excess
of that known, then re-evaluaticn ¢f the regression model by
‘the ite;ative process might %ring out infommation on addi-
tional enQowmént in the cells thdt already have a known en-
dowment., &hothe; way of making anfﬁstiqate’of additional ﬁin-
. eral endowment in known orefﬁéaring’célls is to further reduce”
the size of the cells or better still, subdivide\each cell 0

LS

into smaller pérts and then perform the iterative regression

analysis. Needless to say there will alWays be a certain

o

minimum size of the cell below which it will not be possible

to obtaiﬁ a model baséd cnxgeoiogical‘reiationships, for re~
gardless of how small or i;cal a certain ore deposit is, the
geological processes that produced it are more exteﬂsive,

| The problems related to geological data gre,discussed
in Section 4.5. It would be ‘pertinent here’, to repeat thatﬁﬂﬁ

all geological rélatiohships that are observed -and measugea

are in two dimensions only. Any inforﬁatibn as to changing

relaficnships at depth is either 'unavailable or . incomplete.

’
4 - ® . [
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A
’

The most efficient regression model would accommodate infor- ’
]

‘mation on this third dimension. . Since this isigot possible,
the implicit assumption made is that the observations observed
in two dimensions reflect the geological relationships éf all
three dimensions. The error associated with this assumption
isodirectly related tolthe complexity of ,.geology and on ‘how

‘the observations at the surface continue at depth.

~ Pl
-

8.13 Regression Results

&}

Iterative regression analysisl is separately performed
on the é4-cell da?a set,2 and on its two 32-cell checkerboard
type data compopents.3 After eight iterations following the
first regression run, no further improvement was noted in the

s “ . \
coefficient of determination and, therefore, the iterative
’ - . &
+« procedure was terminated. The results of these runs are shown

in Tablz 8.

5. Table 9 compares the results of the 64-cell analysis

and the aheékerboard analysis after the completion of eight

lSee Section 8.1l for description.

2The 64-cell data set includes all the 64 cells in
the regiog, This set is referred to as the 64-cell set.

! ' '3The two 32-cell checkerboard type data components,

., subset A and B are shown in Figure 13. The two components

are jointly referred to as the checkerboard set to distin-
guish it.from the 64-cell set. :

S



- aE e P S A e

. J'
‘ ~J o
- \\\\‘
- .
i -
2 - .
. L5
7
¥ ) H
_ TABLE 8 -
RESULTS OF I1TERATIVE REGRESSION ANALYSIS ON THE CHECKERBOARD SETS OF DATA ‘
- . Pre~
Cell Known Tterative Second Forth Sixth Bighth
No. Endowment Run v Iteration Iteration Iteration Iteration
. .sxlof . $ $ $ $ $
L
1 - * 471 10,723 86,548 27,179 26,757
2 - 32,552 3,002,989 31,176,618 13,086,183 13,776,345
3 - - 284 213 111 879 1,027
4 - 1,316 5,989 17,431 7,158 6,368
.5 &= , 1,446 17,623 63,811 52,665 56,499
6 - 213 832 2,4 1,181 1, Y60
7 - 19,013 1,038,449 4,830,4 9,728,263 12,404,578
8 - 174 - 246 310 150 146
5 - 3,552 324,177 - 3,637,521 1,882,032 2,010,861,
Y} - 2,692 706,804 29,108,243 9,922,870 9,806,795
11 - . 123 870 2,483 1,552 1,591
12 - 3,544 408,393 5,002,523 13,043,616 16,016,662
. 13 18,81 2.153 201,293 1,311,736 13,678,044 17,501,368 |
. 14 - . - " © 582 10,464 68,784 36,745 36,758
15 - 18 41 154 73 69
16 14.46 31.469 3,207,217 . 14,084,486 45,345,271 66,723,528
17 - - i 620 _ 13,617 104,592 59,161 59,780
R 18 - 641 12,409 126,408 74,103 74,996
ke 19 - - 127 246 365 385 © 340
<20 - 570 2,408 4,077 2,689 2,750
2) 244,66 853 523,685 942,019 214,884,950 251.214.672
22 - 389 2B 20,254 540,352 57,338 s 53,5417
23 27.80 s 27,799,885 ofBWE-27,799,821 27,799,757 27,799,821 27,799,821
24, - 15 2 1 2 I S
25 ~ 397 ™ 9,882 78,918 44,916 46,472

8ST
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& -, (CONTINUED) -
¥
S N N I
"
26 - 120 - 347 702 604 609
27 - 118 152 ¢ 11 563 599
28 ‘- 85 54 36 1,194 1,358
29 1,123.84 1,894 .70,543 1,209,771 726,065,832 1,056,956,223
30 - 127 420 947 926 951
31 - 100 100 - '3 100 100 100
32 - 14 1 0 0 )
i3 - 11,008 3,227,822 91,305,933 57,637,880 62,322,376
34 - 95 104 97 ‘57 55
15 - 66 84 110 95 90
36 - 397 115 144 ¥ 146
37 - 25 . 7 1 1
38 2,109,28 112,440,560 2,460,775,53 2,809,156,922 1,916,266,909 2,065,142,384
39 34,88 1,806,550 20,020,642] - 26,216,287 313,388,046 34,366,950
40 S 312 29 242 < 210 218
41 - 8,548 182,25% 824,763 12,278,859 15,076,065
42 43.48 1,500 107,178 1,659,680 . 32,298,399 37,577,170
, 43 - 707 4,03 11,109 22,344 24,069
¥ 44 - . 1,858 19,93 66,128 , 31,676 32,535
45 - 194 45 N 825 N 955 975
46 - < - 688 6,703 * 26,761 . 26,816 27,594
47 - 18 6 3 1 4
48 - " , 772 1,783 - 2,882 1,450 - 1,385
49 - 899 6,886 10,077 9,414 9,792
S0 - 2458 4,391 21,215 542,001 661,161
51 - F'd 1,2£ 50,423 548,274 /588,531 614,312
52 - 4 10,854 .124,649 69,050 70,676
53 - 100 160 100 100 100
54 - 184 348 461 3,178 3,573 %
55 - 151 335 561 415 421 '

6ST
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lThe analyses were carried out separately o% two 32-cell checkerboard—tyye«ﬁg;s*of data.

shown for ‘all the

2

runs.

‘Average Rz

~
5

The pre-iterative

64 cells in one table.

—

run meana the firat regression run, the p}adicted values from which are input in the iterative

. ~3The results are shown for alternate iterations only
/

C /7

~

The results for the gnoun endowment cells have been un@erlined.“

—

o

E

. . § ‘
. ) w g - ’ .
Jg . a N -
‘. ¢ 3 - s
o -~ « L
(Y
!
-— ('Y e * : <
v ©N . - TABLE 8 ST
. (CONTINUED) ) )
n ™ B +
L 56 i - 45 7 T2 1 1
: 57 - 118 152 171 77 74
. s8 -~ b6 84 » 110 55 s LY]
59 - . 38 .15 8 25 : - 26
60 ! - 66 84 110 55 54
61 - T 16 9 3 3
62 - 66 84 110 155 158
— 63 ° - 118 152 171 292 302
2 6 - . 66 B4 . ' 1104 : 55- 54
Q )
Average R . < 0.390 0.800- 0.935 0.999 0.999
%, * =R - °
- ° *
.- " Notes: X ) , ®

However, the results are

igvthe maan of the R2 values of subgets A and B for the particular iteration uaée.
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iterations. The evaluation of predicted val&es is made after‘
comparlng predlcted and known endowment levels in “the appro-
priate cells. The closer the convergencel the better, should
be the predicted estimates in cells with no known endowment.
Stated another way, the closer the convergence of predicted
anq known endowment, the better is the statistical equilibrium
achleved in the observed geological system.

In the 64-cell analysis, it)is not generally posgible
to obtéin a reasonable conveégencé’on known endowment values
in spite of a coefficient Qf aeterminatiga‘of 0.991. The ex-

ceptions are cell 1038 with a 74 percent convergence, and cell
R *

1023 with a 90 percent convergence. A highly anomalous value
exceeding 10 times that kﬁé;n is predicted in cell 1029+
And, for the remaining five known endowment cells,3 an avéi—

age convergence of only 65 percent is obtainé&. ‘
: )
Given,ﬁ;;se results, the predicted values in cells%

[

/ﬂ - 1
with no known /endowment is doubtfyl. It is evident that ob-
served geolog&&gl relationships arg in disequi%ibrium. As

long as the convergence on known endowment values is

B

e

» N\
lConvergence is the ratio of predicted endowment to
the known endowment in a cell. Convergence applles only to
the cells that have a knoyn endowment in them, i.e.,’ cells
41013, 1016, 1021, 1023, 1029, .1038, 1039, and 1042. See Fig-
ure, 6 for the location of these cells.

-

@ ~

1 ‘A

¥

2Seg following paragraph.

o

31 e., cells 3“013' 1016, 1021, 1039, and 1042. .

3 1t

[
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; - o TABLE 9* -
COMPARISON OF PREDIZTED ENDOWMENT IN THE EU-CELL SET ANALYSIS
L . AND THE CHECKERBOARD ANALYSIS USING ITERATIVE REGRESSIONS,? ,
, ' :
X * " Zoown . . PREDICTED ENDOWMENT
Cell # Endowmen ) ; Checkerboard
o A ﬁ ( 64-cell analysis " analysis
o - ‘ ($x103) ($x107) @
1001 - 596 : 27
1002 * n ‘ 133,052 . 13,766
1003 . : L 42 1
; 1004 - ‘ 67 . 7
: 1005 -/ ;o 1. | 56
1006 7 , .2 1
1007 7 ‘. T30 12,405 r
1008 - e 0 0 S
1009 - f"— . 17,980 ~ 2,011 ,
1010 f=t '3,238 9,807 L'
101y - -~ /- 2 2
1012 SO . . 1,002,691 16,017 |
.. 1013: ,{8,810 . - 8,032 17,501
¥ .--' ————————————————— D AED W G SRS Gy SIS SN GHS SN U TS A D QNS WED AUS SES WIS SR WU N S Mt S 1 ——————————————
10125‘? Fooo= v 9 . 37 :
1015, - . 83 .0 ,
10160 / 74,480 32,538 : 66,724
1017 & . = 8 , 60 *
1018 / - %y - 510 75
1019 . - - 0 ‘ 0 '
102¢/ - 23, ” 3 ’
1?;\ 244,660 25,411 251,215 .
-; —_-_-~--T ------ 4 -------------------- r--—c-—-—-—~——~--: ——————
\1422 - ' 2,759 54
2023 27,800 25,033 27,800
——————————————————————————— T — - — T - - Y o 0 TS WS e P T > T il T s A0 e it o I e o
1024 - 0 0
1025 - 516 Y46
i026 - “ 5 1 ,
, 1027, - " - 33 1 )
1028 . - o . 0 . 1 ’at‘u}
1029 - 17123,840 . 11,412,138 . 1,056,956 ,
-------- - - - - ——-——-e-—---———-a—v—'---*--—'-—~——=-~-:-—--f--— -
1030, . - ’ "2
1331 < 214,194¢ ..
1032 s - - .10 . .
' ‘ . v } u
- ~ & .
..,, ) l & -

* “Results "of known“endowment cells are underlined.

2z !

estlts shown are for the 8t{1 ite%tive ru(.

;,“d" | J‘
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. )( - ' ’TABLE 9 .
" ‘ ‘ (CONTINUED) = V-
A} N .\-at.r ' 1 ,_ﬁ‘\\ﬁ,, )
% "
; /1033 - 1,610 ¥ 62,322
‘ » 1034 - 6 0
; ; 1035 - s 0 N oo
1036 SR 8 90,
£\\_ 1037 S ) .0 Q
b ( 1038 2,109,280 1,5512547 2,065,142
B 1039 34,880 34,912 34,367 X
* e e 20 Je et ittt
1040 -y L 0 { 0
1041 - . L. 89,214 5,076
1042 43,480 3,855 , 37,578
. T e e e e e e e e e o e e et 0 o o 2 s S e o e ———
: 1043 - - 104 124
4 1044 - 3, . 33
f 1045 - 6 1 -
i 1046 r . 65 ¢ 28 7
1 1047 ’ - 0 ! 0
1048 - .0 1
] 1049 - 58,690 10
1050 - 851 661
1051 - 16 614
1052 - 169 K 71
1053 - ¢ 30 \ 0
\K 1054 - , 5 Y 4
f 1055 .- . 0 0
1056 ;- 0 0
N 1057 - 0 0
. 1058 - , 0 0
1060 ' - 0 0
1061 - 0 . ~ 0
1062 - , ;0 ™ / , 0%
1063 v, - —_— 0 0 )
1064 " - ‘ TT—0 - 0 o
T Ve
4 \ \\\ . ¢
2 . 5 !
‘ R® = 0. 991 . 0.999
* S.E. = $1.846x10° $1.050x10°
. rl‘\\‘\\
' /; Py { .
(i | J ‘
4 . / )
See footnotes on pre’&vi.c?hs page.
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¢
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incomplete, the predicted values in the remaining cells should
6

o X

be similarly incomplete or otherwise incorrect. The high pre-
Bdict?édfvalue for celi 1029 is the result of fwulticollinearity
which affects the predicted values in varying degrees depend-
,3 ing upon §he dbrrelatiog'structure'among‘the explanatory vari;
. .

/ .
ables.} A lack- of convergence can also result if some relevant

o

A%

/ explanatory variable has been omitted from the model, but this
' / - ‘n N

should be ig@icated by the lack of improvement in the coe%fi— 5
- ¢

/
1

cient of determination with further iterations.

» ~

As compagéd te the. 64-cell analysis, ‘a near complete «
confergence is ob]ained with\regression on the checkerboard
set:of data,‘the convergence averaging over 95 pefcent for
the known endowmént cells, and ,ranging from B6 ~Eo 103 percent.

-~ I
Also, there is _’ anomalously hlgh value estlmated for any

i ¥ i

‘cell as is the ase with cell 1029 in the 64-cell analysis.

The high R® value obtained in the checkerBoard ana-

( / .
tysis is partly because the subdivision of the 64~-cell data

into two 32-cell components reduges the degrees of freedom.

L

“ . o~
s %sHowever, the near complete convergence @n known endowment

and the con51stency of preélcted values 1is p0551ble as a re- | ,

AU %
sult of th control %p multlcolllnearlty which the checker-

L . / o 7 @,@
. ‘board apprdach achieves. . / :

, ¥

Generally, the results obtained by regressing on the T
64-cell, and the checkerboard~cempenents,appear to be com-

parable in the sense that high and low predicted values cor- -
\ _1

-respond in edch case. However, there is a wids\divergence in

\ . K, .
.
, ) %ﬁ
,
o > -
N
.




-also that -the geological trends in the qu cells are north-

" west, contindling ffom one cell into the other.

% ;
‘wsing multiple discriminant analysisal

PR e -
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4

the estimates 6f endowmenteggz;cells 1007, 1031 and 1049.

The checkerboard analysis §ives a~Fredid%ion of 12 million

"
.

dollars.in cell 1007hﬁbut the 64-cell analysis predicts only
30,000 do%lars \Further the predicted values in cell® 1031
and 1049 are 214 and 59 million dollars qéspectively using
the 64-cell set as compared to checkerboard predic?%ons of /
zero and 10 thousand dollars. ‘ ’

By superimposing tﬁe grid-of c¢ellsgon t@e éeological
map of tHe region, it is evidégt that not only does cell 1007
lie &iagonally north-west of known endownent cell 1016, but

v o« 2

To -observe
the influence of$;;§1 1016 on cell. 1007, a new regression run
was made assigning-a zero galue ﬁp the kndthpndqwmgnt in ceil
10l6. The result shows a pfedidtion of six milligh dollars

s e

in cell 1016 comparedywith lts known 74 million dollar endow-
A f

ment. The predicted value in ¢ell 1007 is thred mllllon dol-

lars. The resolution of multmcolllnearltg in such a case be- -

comes dlfflC?lt part;cularly when there is no other known en-

dowment cell nearby. Obviously, c%}Ls;1007, and 1016 ‘have a

certain measure of geological similarity between them. Cells

¢

like 1007 therefore, should not be ignored in ény exploration

effofﬁi The pot al of this cell will be further evaluated’

\ .

. —

s
W . ’ ! ;

3 S 3 )
l ’
. See Chapter 9 - :
* ,
. . &, . oo ' P
../ y-’t’ n.“‘ ’ ! -
1 " o
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‘massive sulphide deposit in the region that occurs in this
!
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Wi b b

The 64-cell analysis gives a prediction of 214 mil-

1ion dollars for gell 103€. However, the checkerbogné”analy-n
sis predicts a virtually zero endowment for this cell. The
reason for this difference becomeglclear when‘the location

of the cell is observed on the geological fhap. Cell 1031

The

lies directly south of the known endowment cell 1023.

™
known endowment in cell 1023 ocgurs in tuff, ggglomerate,1 acs

, o

formqtion that continugé into cell 1031.” There is no other

—— <
rock for@atipn.‘,Obviously therefore, the geological relation-

ships present in cell 1031 bear little if amy simifarity with

any known endowment cell except 1023. The applicatidh of the%

checkerboard approach removes the influence of known endow-
4

ment cell 1023 resulting in the low prediction of value. in

-~

cell 1031. The original 64-cell analysis estimate for this
cell appefrs,to be a result of multicollim®€arity. However,
because of the similarity of this cell with cell 1023, it

should mot be dropped from consideration because there is no, ‘-

P4
-, reason why the unique associations thq% produced endowment in

¥
environment continuing into cell 1031. ! _—

i

2}11 1023 could not have done so in the similar geological
& b f ’

The 64~cell analysis also gives a high Qélue of 59 :
million‘dollars in cell 1049. The checkerboard analysis pre-

dicts ansendowWment of only 10 thousand dollars in this cell i

o

w

' PN & ‘"
lI.e., AREA 2. /o .. A

/
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( (T ' despite the fact that the regressed checkerboard component
. | &

also includes the known endowment cell 1042 lying diagonally
d v

beside this cell. The only logical explanation for the high

3 e

predicted endowment in cell 1049 appears to be its joint bor-

e

“~

der w1th cell, 1041, whlch by the iterative ‘procedure gives a |

g e =

hlgh predicted value ev?n though because of its unknown en-

] , dowment, it had originally been assigned a zero value. The

/

high value of cell 1049 also appears to be the result of mul-

o F
o

ticollinearity, and‘this“value is thereford spurious.
Because of the changing nature of geological data,

it will not be possible to completely eliminate multicolli-

nearity. However, by use of the checkerboard approach, the

“

continuity in the daﬁf.is broken up, so that the explanatory

i o VRO &N\’“

variables ylthln each set are no longer as strongly*related
¢ i

“as in the continuous 64-cell analySLS.l Also, when it is pos-

<

1

Sfble to converge on known endowment values, multlcolllnearlty

/

can be considered to have been suppress?d. 0therw15e, spuri- o
ously high values may be obtalned with little if any conver®

gence on known endowment. % . 7

. : It has been earlier stated that the efficiency of ”
ieefétive regression ana}yiis can be judged by the statistical’ .
stabilization of geological QelthQnships combined with a con-
vergence on the knbwn endowment in each of the reference celzl. é

It may be possible tQJstatistlcally stabilize geologlcal
\w i

\(:) 3 1E.g.,\see Figure 14. . N ‘ s
] R ) .
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. o

relationships; but this may be'a result of multicollinearity
v

or inappropriate and insufficient explanatory variables. In

2

14

such a case, the stabilization of R the coefficient of de-

N [, . .
termination, may be misleading. It is the convergence on the
#

known values in the reference cells‘combined with a stabilized
R® value which is important.

In the Rouyn-Noranda region, the eight reference
celis have a total knownsendowment of 3,677 millid; dollars.
The 64-cell gnhalysis predicts an endowment of 13,093 million

dollars in these elght known endowment cells, an 1ncrease of

3% times. Actually, this increase is mainly because of the

i

" anomalously? high predicted value of $11,412 million in cell

- 1029. If this anomalous value is reduced to that actually

known in the cell, then the total endowment predicted by tﬁe
64-cell analysis for the eight reference cells';s 2:805 mil-
lion’dollars, or only 76 percent of that known.h No further
convergendag. can be obtained with additional iteratiens:

The checkerboard analysis predfcts a total endowment
of 3,557 million dollars$compared with the 3,677 million dol-
lars known in ihe eight known endowment eells, ?his is a
clgse convergence, being 95 percent df that known. Cell 1016
and cell 1042 are the only ones with a relatively low conver-

gence at 90.percent and 86 percent respectively. And unlike

N

the 64-cell analysis, there are no anomalousy high values as-

Q

sociated with the- reference cells.

The total endowment predicted by the, checkerboard
v , :
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°
. \
; - g
“

: ( . set for the: whole region;is 3,690 million dollars. 'Since this
% ' set predicts a total enéowment of 3,557 million dollar; for
the eight reference cells that have an already kn nq endowment,
. the pre:dicted value in the remaining 56 cells is 133 million

i ' dollars. AQout’QQ percent of this amount is contained in the

¥ . following cells.
r
v
: N ’ Predicted Endowment i
‘ Cell _ {Millions of Dollars)
1002 1‘3;?8 ,
} 1007 ' 12.40
1009 | . _2.6T o
1010 . 9.81
o ’ . . *
%%12 1l6.02 ¥
33 - ' : 62732
-~ . ' .
9 1041 ’ " 15.08 .
N —

Total 131.41
g

The rest of the cells can be considered as barren until such

* time as additionfl favourable ihformation may become avail-
N ¢ §
able. i » :

a
B g

With the exception of cell 1033, the predicted en-

dowment values in the other cells appear to be of a low order.l

;
K - © B f e 5

B lSangster (1976) in an oral communication observed
that there is no likelihood of a large "Horne type" dgposit
being disgovered in t#he Rouyn-Noranda region. He stated that

(;) ’ smaller deposits.could be found in the region. * .

©
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N .
This situation §hould be lookiz‘at from the fact that of the

eight known endowmenE’gglls with reference to which the fore-

casts have been made, four have a known endowment avegaging

3k million dollars, the range being from 19 to 43 mgllion dol-

¢
lars. And only two of the remaining four cells have a known

endowment in the billio&ﬂdollars category. The other reason
b4

for low predicted value is that as a result of iterative

regyession analysis, a part of the total variance is lost in

each iteration so' that thﬂ result tends to develop around the

most 11k§ly value. ThlS is also evident in that after eight
B b ;Y
1Efratlons, the standard . error of the estimate narrows down

to 1.05 million dollars. The bredic;gd results must there-

. %
fore be simultaneously considered on their absolute values as

well as their relative values. It should b€ clear from Table

9 that following a prediction of 2.01 million dollars for cell

/

1009, there is a sharp downward break in the continuity of |

1

predicted values in the remaining cells. 1In exploration -plan-

ning therefore, these figures should mean much more than their
- » s ’ &
absolute estimated values. «And since. the forecasts made are

9

based strictly on geological data alone, the axidition of new

e 4

dimensions such as geophysical information can further define

the quality of estimates for exploration décision making.

,A ‘ -
8.14 vVariables Used L . : &

The variables used LP the first regression and the
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, . -
succeeding four iterations are as follows:

'

Variable Name Variable Description

’ I

AREA 3 Area of rhyolite. ¢
‘. v ‘ ;
AREA 8 .  Area of diorite, gabbro
CNTL 6 Contact length between rhyolite, and
tuff, agglomerate
CNTL 10 ' Contact length between tuff, agglomer-
, ate, and gganite,ﬁgranodiorite
. CNTL 11 Contact length betwéen rhyolitﬁ and
co andesit alt |
CNTL 13 ' Contact length between rhyollte, Yand
. diorite, gabbro
“CNTL 15 Contact length between rhyolite, and
granlte, granodiorite |,
\
DYKE 4 Dyke length in dlrectlons north«west
’ to east-west
FOLT 4 ~ Fault length in directions north-west

to east=-west

-
35

The selection of the variables is made on ﬁhe basis
Y. ’

of factor analysis'and other considerations described in Sec-
/ N

tion 8.7. The above variables are closely associated with
N
copper and zinc as determined by factor,analysis.l They are

also consistent with the geological concepts as related to

b4

the volcanogenic mature of base metal deposits in the region.

.

After four iterations, to improve convergence and

. 4 Y h .o B ” !
1Factor~#3$for both copper and zinc.

\ [ . W

e
i

“
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1\ ™
kS
(j the coefficient of determination, Rzy the following variables

\

are added to those already in the equatfan:‘

- ﬁ[

!
Variable. Name VariableaDeséription\

- * AU
‘ X 5] . , N N N .
: - AREA 11 4" Area of granite, granodiorite -
, ,
E DYKE 3 Dyke length in directions north-south
i : o to north-west
] k53 oo < e

. FOLT 1 Fault length in directions east-west
' to north-west S
] a o

J L3

° The selection of these vgriabi;s is also based essen-

5
tially on factor analysis. These variables were not 'included in

the initial staée of iteration for the following reasonsh
ko

l »

] A (i) They are less relevant than the variables %h— N

cluded earlier. This is evident from both geo-j'

logical .concepts on ore genesis, and also from -
the fact that while the earlier included vari-

ables are associated with factor #32 for both

> v * ' copper”and zinc, these variables are associated
- wi%h the less important factors, #13 and #7 for

. |
) . copper and zinc ;espgctively.l , ‘

3
- . (ii) DYKE 3 and FOLT 1 are very highly correlated

4 with knowg;endowmenﬁ in the region. Their re- .

! . -4

re lationship with' the known endowment appears
’ "

o

{

3 .
('15 . lFactor #13 for cosﬁgr and factor #7 for ginc.’ .
. . I b - .

- o

2
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strig}{y spatia} because they are post-~ore

features. When these variables are included
in the early stages of iteration, they com-
~ . pletely é@minate the regression equation sp

\\\ & that even those cells that have post-ore rock

&

formations in them jare predicted as’ favourable

F .
» if DYKE 3and FOLT 1 are present ibQ thém. It

\

is essential, therefore, to Build the base of

- regression model on variables believed to be
: -
genetically related with ore formation. But

since DYKE 3 and FOLT 1 may have been a conse-

quence of ore forming prodesses, their influ-

, . !

ence must also be considered. For this' rea-

» IS
-

°\ son, they are added to the already input vari-
2

3

ables at a stage where an increa$e in the R
-value and/or the convergence on known endowment
starts to taper off with quther iterations.
In,the presénﬁ‘study,;this\stageWis reached

after four iterations. %
Regression equations i?g obtained for each of the

1

two componefits™ in the‘checkerboard analysis. Subset A in-

A

cludes the knowﬂ\endowment ce%ls 1016, 1021, 1023, 1039, and

~

¢ .
\ 1042 having a total value of 425.30 million dollars. Subset

&y

lThe two components in,the checkerboard analysis are
‘refqrred t?/as subset A and subset B.
& , R

4

ﬁﬁe L T s e
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B contains the knoy& endowment qéllSlDlB, 1029, and 1038 hav-

ing a total value of 3251.93 million dollars. The regression »

Q) o
equations.for the two subsets after the eighth iteration ar
as \f/ol-_l\O(§: .
. ij oy
Subset A ~ ’ '
A
Log;, DOLLAR = - .4.265603 + 0.2859512 x CNTH 11
'+ 0.7733751 x AREA 3 ~ a
+ 3.526068 x AREA 8 - 0.6875897 x !CNTL 13 °
+ 0.6636013 x CNTL 6 - 0.07064882 x FOLT 4 |
+ 0.1054084 x FOLT 1 - 42.99437 x DYKE 4-
¥ 4
'+ 1.081944 x DYKE 3 + 0.04084261 x AREA -
- 1.120562 x CNTL 15 + 2.736221 x CNTL 10
(R® = 0.999) |
Subset B
Log,, DOLLAR = - 4.067191 + 1.900224 x AREA 3 <
. o .
< - 0.2760116 x CNTL 11 + 2.679324 x AREA 8
~ 0.2741231 x CNTL 6 -~ 0.2130330, x CNTL 13
+ 0.9608059 x DYKE 3 - 3.327689 x DYKE 4
) , .+ 2.119953 x FOLT. 4 - 0.3091724 x AREA 11
A { : S ’
- 0.02074412 x FOLT 1 -~ 2.264679 x CNTL 15
= . - 9.070831 x CNTL 10 -
2 - °
(R = 0.999) o - '
. K4 ‘ B
’ ' As shown, the logarithm to the base 10 of dollar val- -
‘ ' Y !
ue of endowment is used as the response variable instead of o

&

the untransformed dollar value. The conversion used is:

- Ry L
~
- N * - 3
8 - -
. < .

¥ ; . s i r‘ ’ mgj S
|
!
!
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o
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| &
i

: =3

4w -+ "+ DOLLAR = Log 4 (Doller'ValueO+ 0.0001) ¢

The constant term 0.000L is added so that zero val-
C
ues become amenable to logarithmic conversion. The objective
)

of the conversioh is to have a moderating effect on the ex-

treme values of the untransformed,;eglonse variable. The

logarithmic conversion also reduces skéwness but it cannot e
&
. ) .
eliminate it. )
, The relative contributions of individual explanatory

e

. wariables used are shown graphically in Figures 17 and 18.

These are also disguSsed in Section 8.18.

8.15 Statistical Stability of the Geological System

2
A\ J

In iterative regfessidh analysis, the geoloJical re-
lationships are assm?ed to be in a state of equilibriumwwhen -~

all the response variables become consistent and do not change
o
with additional iterations. The con51stency in the value of

~ b ¥

%he\ss unknown’response variables is atsgiged with respect to
relationships between\ﬁhe explangtory variablesoand the un- .
known endowment in each of the ewght~reference cells. To test
the equilibrium of tqé system, any one of the non-zero response S

variables can be assigned a zero value and the ré&gression per-
[ ' -

forTed as befoge to see if convergence does take‘pieieT For ‘1
a ) " ’ ‘ .
T S . . }
’ 1This point has been discussed -in Sections 4.7 and . ‘i
8.8: hh ’ Y oe -

) T ’ .
/ ' = 4 "‘t\ h ' \ = s .
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‘regression performed iteratively on. the checkerboard type

. data.
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e - N .
this,réasop,.each responke variable with an originally known

endowment has been, one at a time assigned a zerd vadue, and

L
4 4 {

* -~
1 “ The results are shown in Table 10 and Figure . The

C s .
results shown afé For the eight known endowment cells on\y
) !

since they are the ones thdt can indicate the¥validity of the ! Pt

relatlonshlps developed. K\ i h ) ' ' ¥

A cldse convergence oé predicted and known endowment

values is obtained for all refeggnce cells except cells 1023, J

‘c — -

Prestsca
1038, and 1039. -~

'
l ' v sy
. = N . i

o
" .The endowment in cell 1023, as has been pointed out,

occurs in a different geological environment, being associat-
¥ ‘
0 /\

ed with tuff and agglomerate. MNo other known deposit in the

[

-

reqlon“has this kind of association. ¢;Therefore, when this
)ait'is‘not~pbssible for the re— , ’

cell is assigned a zero value

lationships in the remaining cells to predict any endowment

1nm&t. It is also, observed from Table 10 that when 1terat1ve

regre551dﬁ a§é1y51s is performed, while convergence in each
of the remaining seven known endgyment cells takeg place
gradually, it is cell 1023 that immediate;y—receives its full

known endowment,in the first regression run. This occurs be-

v —
i

. . — N I
cause it is assgglateﬁ'with an environment not present in the

. ~
LAl ’ “

Lthe response variable logjg (Dollar + '0.0001) was
assigned a zero value. This in effect means a starting point
of .one million dollar'ln an untransformed state of. response
yariable. . "

" o

.
. »
*Q* N ’

-~
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é — 5 - 7 TABLE 10' - T
E - I TERATIVE REGRESSION ESTIMATE CONVERGENCE ON KNOWN ENDOWMENT YALUES ASSUMING s i
ZERO LOG DOLLAR YALUE IN KNOWN ENDOWMENT CELLS, ONE AT A TIME
1 ORIGINAL INPUT VALUE FOR RESPONSE VARIABLE ' &
. FORECAST- - . -
KNOWN 3 ZERO - 1st 2nd 3rd 4th Sth 6th 7th 8th 9th 10th 11eh” 12th
i CELL $ (after 8 10OG ¥ FORECAST FORECAST FORECAST FORECAST FORECAST FORECAST FORECAST FORECAST FORECAST FORECAST —FORECAST FORECAST
) x 108 Jters.) VALUE  INPUT  INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT ' INPUT INPUT
g ) ‘s - “““K\
gi 1013 : I8, 81 17.50 . 3.76 7.66 11.22 ' 13.77 "%s.:\? - 16.39 16,83 17.12 17.27 17.36 - - - o
. L]
- 1016 74.48  66.72 6.01 16.78 30.20 42.28 51726 57.24 60.96 63.21 64.53 65.30 65.74 - -
1021 244.66 251.21 9.50 36.55 81.82 132.51 176.81 210.11 232.96 247.80 g 257.12 262.87 266.37 268.49 . 269.76 T
1 : 1023 27.80  27.80 0.00 o0.00 _ - - - - - - - - - - v
1029 1123.84 1056.96 ° 34.60 73.72 203.72  382.00  563.55  716.78&  831.74  911.90  965.29  999.87 1021.88 1035.72 1044.39’
1638 2109.28 2065.14 3.47._ 9,83 23.47 48.58 89.26 148.42 227.06 323.98 436711 559.13  688.24  B18.79 ,946.76
1039 34,88 34.37 _ 1.73 ' 2.76 4.08 S 5.66 7.48 9.44 11.49 13.57 15.60 17.55 18.37 21.06 ©  22.59
N ’ 1042 43.48  37.58 $3.82 28.28  34.37 36.25 36.78 36.92 36.96 - - - . N -
) hl - =
1] . * -‘ - . R . . ..‘
' lSee also Figure 15. . . , '
1 " > ’ » “ N
; y . T ¢ -
: * . . ' ‘ ~
=
A
¢ ' - - .
% . o C. S~
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CONVERGENCE ON KNOWN ENDOWMENT VALUES .
USING ITERATIVE REGRESSION ANALYS1§.2

=

Co - FIGURE 15

2

f e
(‘1 . Iteration # ’ .
/’ <+ o
13« text for explanation. '
o zFigures in cireles ate the last two digits of known endowment cell numbers. .
4
~
~
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"fully converge on their known endowment.

179

. , P
otherycells. . -

I3 ] [

Cells 1038 and ?039 both shqw a convergence similar

to, but slower than tha.other known endowment reference .cells.

That complete conver&égj; does take place, is apparent from.
~ - =>4 ®
the trends of their curves in Figure 15. These cuive; have

a shape similar to that in every other case, qu becagse'of

'..
a flatter slope, need an additienal number of iterations to

v

8.16 The Magusi River Cell

\
1
h

\u‘ e

A The Magusi River deposit and the New Insco deposit
-y

are recent discoveries.?! They océur close together in the’

' south central part of H&b&court township adjoining the Rouyn-

No;andg'region.2 The two debositsrhavé an estimated total

value of more than’ 75 million dellars.

A grid‘'of cells similar to that used over the Rouyn-

Noranda regioﬁ was superimposed over Hé&b&court township, and
geological paraméters measured in the cell that contains the

Magusi River and the New Insco deposits. The measurements
'& N Ql .

are made on a 1" = 1000 ft. quarter township ma§ prepared by

the Quebec Department of Natural Resources.! This cell is re-

ferred to as the Magusi River cell.

lThese discoveries;wege made-in 1972/73.

2See Figure 16. ) . .o

.
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THE. MAGUSI RIVER CELL S
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1Shown'ha:cch_ed. Rouyn-Noranda, the study region, is comprised of
the four townships, Duprat, Dufresnoy, Beauchastel and Rouyn.
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L

The %xplanatory variables data of the Magusi River

cell are added to the checkerboard subsetS'A and B. The re-

f
¢ sponse variable is assigned a zero Value 1n the Magusi Rlver

i

cell while the response variables in all other cases retain
their values as calculated by lteratlve regression analysis

on the checkerboard data. An iterative regression analysisl

is performed on -the two subsets, and convergence obtained af-'

ter four 'rups. The results are shébwn in Table 11.

A study‘qf’Table 11 shows that different estimates
qf'endowment are obtained for the Magusi River cell?using

the two checkerboard analyses. The question, therefore,

arjses as to which of the two forecasts should be considered’

[
The results afe.different. in the’%%g*cases‘because different

regression equations are computed for the different relation-

ships present. The two subsets have different known endow-

ments and thus aifferent endowment--geology relationships.

Obvidusly, the choice should depend on the' level of similarity
L
between the geological relationshipslbomputed in each subset
" n
and those existing in the Magusi River cell.

Each of the two checkerboard subsets has attained a

!

state of statistical equilibrium following iterative regres-
o @

In other yofds, each response variable has

L

sion analysis.

been ass%gned a certain value such that further iterations

lThe explaqatory variables uzed are the same as in
the earller checkerboard analy51s. e Section 8.14.

- o

AR T 2



TABLE 11© - ™ .

.

PREDICTED VALUES IN THE M&EUSIT RIVER CELL USING™ _

ITERATIVE REGRESSION ANALYSIS

~

I TS -

——
- — .
————

SUBSET A

SubseT B

Run Predicted Value R2 - Pfedicted‘ Value R2 -
~# o (Dollars) ‘ . . (Dollars) . .
1 C s 68,134 0.948 13,128 0.973 -~ -
2 326,389 e 0.997 _ 22,774 0.999 *
3 462,601 0.999 311163 ; 1.000
; o _ .
4 504,731 1.000 31,719 1.000 ] ’
| . ' . .
a_/ B . \ ~
: ¥ ) ' he LI
, ’ it
- - hat - ‘ " m
I} * »hJ
I -
: 51‘ ) ~ "
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do not significantly affect the stablllty of the system belng
regressed. When a cell with an unknown endowment is addéd to

the cells. in the system under eqdnllbrlum, an arbitrary zero.

LN

‘value has to be a$signed tg the response variable of such a ‘-

N

N
I P D T TR DY

cell if its endowment is not known.l Performing regre531on

analysis on the new set of ce1152 will tend, to disturb the
equilibrium of the system. The~greeter the similarity of geo-
logy in the cell added to that in'the system, the greater will
be the’disturbance shown in the predicted values of response

Ll

Variables. This is because the response variable in the add-~

Y

-
ed celltls ‘assigned a zero- value for lack of 1nformatlon on

"1ts unknown endowment The dlsturbed state of ‘equilibrium

will become evident in'the change brought about in the coef-

ficient of determination. This coeffi¢ient in a system under

‘stétistical equilibrium is normally close to one. '

T

- It is observed in- Table 11 that- following the first

regression run, the coefficient of, determination drops to
v ) ‘

0.948 in subset A and 0.973 in subset B, from its original

€

value of one. It is also observed that the geological system'

achieves equilibfium after four runs. in subset A and after

only two in subset, B.” It is therefore apparent'tnet the

L}

L N

lIn this - study, the Magusi River cell .is assigned an

‘arbltrary zero value to test if it is possible to predict its -
known endowment from the existing relationships. . &

|
2Or', observations. -

i e e . e S 1 o R R e e
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» But the -increase itself is a measure of the improved favéuy— ﬂ

. N L - e e S
.

. -~ - . 4
. , ¢ - . S
‘ i

Magusi River:cgll,has ﬁore geological éimilarffy with subset
A than with subset B. - | . ‘ ’

The endb@meqt pfedicted in the MQ&Usi R%Gér cell af-
Eﬁr three itérat#ons‘with subset Aﬂis 504,731. Comparédwto
the knoqﬂ endowment in this cell, the éredicté&;éstimate i§
very low. It is, however, gbserved that while “the total com-
puted endowment in subset al is 519 miilion dollaré, it in-" ’
creases to over 527 million dollars yheﬁ the Magusi River cell
is ‘added- to the.analysis. In another set of runs, the data’
on gagusi‘River céli is combihed with the 32 ¢rigiﬂal un-re-
gressed observations of subset XK, énd regression performed *
iterativél&. After eight iterations, the system reaches equ;;
librium, and the\totai valhe'oﬁ,endﬁwmenF predictgd {n the
subset is now estimated at 667 miliiog*&ollarg.‘“This‘means

an increase of- 148 million dollars. Not -all'this increase

can be attributed to the Magusi River cell. In fact,|{the’

predicted value for this cell by this '‘method is only 346,276. ) 7

ablé relationships resulting from' the addition -of this cell

to” the subset.2 " . : ' . - l

'lAftér eight iteration. See -Section 8.13.

s

2A similar set of. runs was made with the subset B.
The original estimate of endowment over the 32-cell subset
is 3,171 million dollars. This increases to 3,234 million
dollars, an increase of 63 million dollars following the ‘ad-
dition of the Magusi River cell to the original observations
and itef%tively regressing to convergence.

e I L= SR T N T
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»
y < To,observe "further the effect of an additional obser-

vation on the éxisting equilibrfum of a geological system being
¢ N -
* regressed, two more runs were made. In the first, the data

A\ of cell 1021 was repeated, so that the fepeat becomes ?h addl—

b tional observation. ﬂIn the second run, the\data of cell 1032

v

was similanly repeated. The objective was to observe the effect

.-

that a high and a low valued cell would have on the equilibrium

that a geoLpglpal system has achieved. Cell 1021 is a known

// endowment reference cell valued at 244.66 million dollars with&
/’ - a predicted value of 251.21 million dollars. Cell 1032 has no
/ . ’

2 known endowment, and a predicted zero endowment. N

. ) ’ Regression, following the addition of cell 1021 has
an insignificant but’positive effect on the originally esti-
mated endowment Valué%.l' But this shhuld be expected. When

° a high Qalued~cell'hae its data repeéz;d and used as a new 1. g
- ohservatioh, it re-emphasizes the existing response—explanatorgé/

!
avariables’ie;atihnships. The -system is not disturbed and

\\ . remains in equilibrium as before. Similarly, the repeat as an

N additional observation of the barren cell 1032 data has ﬁg

-effect on the equilibrium of the system, and changes in the

o s,

estimates ¢of endowment are negligible.
In the above runs, there is no effect on the equili-

.~ hrium of the system' because the.relationship between response °

-
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and explanatoty variables of the repeateé cells has already

- /
been accounted for in the iterative analyses leading to con-

vergence and eguilibrium. On the other hand, when the Magusi
River cell; which has some level~of similarity with the known
endowment cells in the existing system is‘included, it causes
disequilibrium until its fesponse variable; has been ass}ggsﬁ
a value commensurate with thg interaction of geology, repre-

sented by its explénatory variables. But this does not ex-

" plain the low value predicted in the Magusi River cell even

though "it otherwise shows a high degree of favourability as

explained earlier.

-

Siﬁce the predigted value. of the Magusi River cell

is anomalously low compared to its known endowment, the cell
' 3 ’

W
i

probably represents a different geblogical environment locﬁl—

8

ly. ! Or, the predictive efficiefcy of the sysfem itself may

- . » ~
be poor. The predictive efficiency of the system has already
been validated by performing iterative regression analysis
‘with a,dxﬁh\y zero ﬁéndowment value assigned to known endowment

. . . -1 .
cells, one at a time in each series of runs. However, in

the present set of runs, the explanatory variable data of

' known endowment cell 1021 is repeated as an additional vari-

3
able. The response variable’ for thig cell is assigned a zero
value. The repeated cell data is added to the checkerboard
subset A and regression performed iteratively. Convergence

- /

lSee Figure 15. -
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( is obtained after five iterations. The predid@ed values of

« . L Te A
the response gariable are shown below for each iterative run.

'
v

\ Run # ' Predicted value ($ x i06)
\ .,
1 1.02 o
’ 2 _ . 32.30 S
3 . 117.71
3 | 4 ‘ : . 191.01
5 ‘ _ 22899 {

6 C 245.02 1

’

The known endowment of the cell is 244.@6 million
dollars, and therefore a negr pérfect~convergence is obtained
\ after six runs. This is a measure of the efficiency(gf the
¢ system inxgguilibrium. Bq} such a convergence is only pos-
e' \\ sible when the added observation lies within the confines of
theNgeological system and not outside it.
The Magusi River cell is rich in pyroclastics; al-
most one-third of the cell arga hés'been mapped‘as tuff, ag-

glomerate (AREA 2). Should some of the material presently

classified ﬁs tuff, agglomerate prove to be rhyolite (AREA
. 3), the predicted value of endowment will increase signifi-
can?ly: "This is possible because the Magusi River area ha;
not yet been studied in as much detail as the_Bouyn—Norandg

region. As an extreme-.example, if all the tuff, agglomerate

( SN
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is aséémed to be rhyolite, thén;wéthout any chahbesl in the
other\qxplangtory variables, the predicted value of endowment
. in the Magusi River cell is 17.56 million dollars with check-
- erboard subset A and_lSl.SS million dollars with subset B. N
'These»estimates are reépe@%ively 34’and 603 times the pred;c—
¢, tions made .when the férmaﬁ;on, tuff, agglomerate itself‘is
used in the regression models. - This is the reason why it is
| emphasized that the most effective predictions are made with-
in the limits of a system within which the classification of
rocks is consistent. e
Conversely, if some of ,the material classified as
‘Eyolite in the Rouyn-Noranda region bé regarded as tuff,
agglomerate, the regreés%on models developed will have a
similar favourable effect on the estimate of endowment in
the Mggusi River cell.2
. The reason far.the low predicted value of endowment
in the Magusi River cell lies essentially in its lying out-
side the Rouyn- Noranda region which is considered as a cloged

geological system for statistical analysis. _n a local level,

. the Magusi River cell may lie ih a different %eologicalf

n

v

o 1k.g., contact lengths.
Y - \

2Sakrlson (1966) stated that most of the rock clas-
sified as rhyollte in the Rouyn-Noranda region is of pyro—
cdlastic origin. Similarly, Larson and Webber (1977) have
indicated that the proportion of pyr&clastics in the region
( is considerably more than reported. See detail in Section
3.2.2. ¢
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envirorment in a litho-stratigraphic sense.~ However, some of

the differences in lithology may be related to differ“ingrfock

/

-

classifications. g
” ‘ e
8.17 Certain Aspeécts of Known Endowment Cells - )
\ N
kd ﬂ N ’ ~ -
] o \\ . , [ 4

i

théicases‘being used as calibrators for predictive purposes.

B

4
Such cases*in_this study aré the known.endowment reference

.cells, e o } o

o - B ;
l, .

s N L4
4

: Regression analyéisl has therefore been performed

over the 64-cell data but endowment is assumed éo be present
in only one reference cell. The response variable in this

's P (‘
cell “is assigned a value of one while the response varifbles

, QQ in the remalnlng seven reference cells and the 56 unknéwn

endowment cells are all aSSLgned a value of zeree After v

analysis,’“the procedure is' repeated, one at a time for each’
of the remaining reference cells. A total of eight such

runs is thus made. The results obtained are essentially

PRI ) 3
r 4 .
* , In.evaluating performance of_ a statistical analysis,-

4

it is useful to be aware of the relationships existing,amongv.

measures%of similarity of the particular reference cell .

of ass esent endowment with the other cells with an

-

~ « - . ’

~— i ! l-\ } (
lThe procedure is similar to that used by Agerberg
et al. (1972), but has been modified for the objectlve des-
cribed above.- See also Section 2.2.3.

. <
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(~ assumed zero endowment. _Since e response variables have ‘
£ been assigned dichotdjous values,‘@.e., zero and one, the
( analysis is much like a TWwp-group discriminant analysis ex-
* A}

- cept that instead of the cells being assigned to either one

4

of the two groups, the estimated values of the response vari-

»

Al
able are continuous. These values have been converted into

percent'agés,1 and are‘shown for the reference cells orly,
L -

' in Table 12. - ’ o <

2 A +

- , ‘ One of the striking observations in Table 12 is. that

’

individual reference cells2 are unablé to bgedict any endow-
é " ment in cell iOﬁZa”\It,is predictgd with a 100 percent pro-
? ' bability when cell 1042 itself is the one with an assumed
? 1 . present egdSWmegt; but then, it does pé?lpﬁéﬁict endowment Bj&'}
| in any other cell either. This uniquenéss may be attributed

:
] N ', b

5 to a different local environment in the cell, it being away
| / * . ‘ iy ’ ) ’ .

from the main cluster of-ore deposits in the centre ofi the
regioR. Cell 1042 is also unique in containipg post-ore

R : . .
* : stocks of syenite-monzonite. * -

Cell 1021 on the other hand gives positive predic-

. tions in all other cells except 1042 dnd 1016. This cell

L

: -
: ‘ . ' 4

: - 4

I

lthe results shqqﬂd theoretically lie between zero
and one, and are equivalent to probabilities of occurrence

of endowment- without regard to economics, tonnage or.grade. . ;
These probabilities Have been muftiplied by 100 to obtain -

—

percentages+—" .

, e T ’ - . ! 'Y .
e T . 2In the description related‘io Table 12, the term i
, ¢ cell means th known endowment reference cell. x
( o R . ‘ ' ‘
. ; ' 9
\A -
l 4
1
E' - ~ . v 4
Y o« . 2 “
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i N g i : e
= J . TABLE 12 :
. i ?1 o * '3
PROBABILITY OF OCCURRENCE OF ENDOWMENT IN KNOWN ENDOWMENT CELLS
USING ONE REFERENCE CELL AT A TIME
! - N .
¥ . . * , ) 4
. 7 P
; ' Probability ’ ", , \%Mv\ ' §
i? of "Reference Cell Numbers” with Assumed Present Endowment \%%%Mf//
: Endowment - ) ) B "
¥ Occurrence . . S
¥ in 1013 1016 . 1021 1023 1029 1038 1039 1042
- 4 =
: Cell # 3 ,
! : : s .
; + . s
- b - . A w .
] 1013 - 90.70 -2.53 19:0P\\ -0.30 -4.94 -2.78" 4.33 . 0.00 -
3 . ! . .
| 1016 « -5.69  88.49 -2.13 -2.31 -+ 8.48 0.71 = 3.22 0.00
i 1021 © 18.83 -3.77 - 43.00 2.39{ 25.48 2.39 -3.91 7" 0.00 "
. ’! 5 : N - '
o 1023 -0.06 _  2.76 . 2.32 99.17? -1.98 -1.19 0.69 0.00
3 1029 -6.34 8.22 24.09 -1.78 8%.10 1.93 © -0.43 0.00 .
- ‘ 1038 1.19 0.28 4,64 -0.47 -0.34 95.15 -1.37 0.00 £
] 1039 . - 4.19 -0.66 0.19 0.64 -0.84 -0.78 - .84.49 0.00 X i
fé, ) 1042 . G.00% ° 0.00 0.00 .~ 0.00 ° - 0.00 0.00 0.00 100.00. ﬂ ﬁ
. ; ) " ) : - -
: lPfobabilities have been expressed in percentages. . \ - o )
]
- ¢ -
¥ ~ 2Predi:ctionmade—by a reference cell for itself is underlined. -
3
£




Q(fg@on. He further points out thatnthere\are ng dykes associ-

[~
regression equations cannot predict the presence of endowment

e s b st ke - & § At ————— o a—
R R s T T WY

therefore is more similar to other reference cells. Spatial-

ly, it lles within the main cluste f ore deposlts'in,the

N

region.
. " a -
Bota'cells 1042 and 1016 are situated away from the
cluster of ore deposits lying in'qplls’EOlB, 1021, 1029, and

1038. Dugas (1977) in an oral communication pgints out’ that

the Mobrun deposit lying in cell 1016 is believed to be at a,

higher stratigraphic level than the other deposits in the re-

ated with this deposit or occurring in its immediate sur-
roundings. But cell 1016 does have some similarify with ; .
other reference cells as evidenced by its positive predicted

-

values in cells 1023, 1029, and 1038. .
It is obv10us that when only one response variable “\\\
out of 64 has a value -of one a551gned to it, and all others

are a581gned zero values, the regression equations w111 be

dlfferent in each regre551on run. The fact that some of the

in other cells is an evidence that with changing or evolving

geological environments, the predicted values may be unex-~

~ &

pected, unless and until.the regression runs are eithgr con-

fined to the limits of the system or a broad enough response

w

gvariable information is available to generate a model that

~

reflects the variabilities of explanatory variables. Fre

’

Another set of runs has thereﬁgre been made using a.
{

similar approach, but this time assuming gndowment to be

f/ ’ & .
N - ’
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present in seven of the eight reference cells. From them the -
> i . °

probability of occurrence of endowment in the eighth cell is

estimated. Eight separate runs are made each with a zé¥xo val-

‘ue assrgned to the response variable of a different reference

o

cell. A value of oneNES assigned to the response variables
of the seven other ;eference cells. As befo£;, the unknown
endowment cells are assigned a zero value fot their response
variables. The results of probabiliéi?s generated for the
reference celié are shown in Taple 13. *
It is observéﬁgﬁrom the tablel that negative probaj
bilities are obtained iﬂ case of cells 1016 and 1039, and a’
zero probability is obtained in cell 1042. These runs con-
firm the conclusion described earlier that cells 1016 and
1042 represent a locally different geological environment of
ore occurrence. Both cellé 1016 énd 1042 are located away

’

from th'e main concentration of ore deposits. Further, cell

1016 is very rich in zind while cell 1042 has no feported
zinc in it. Similarly, cell 1039 is zinc-rich even though,
the adjoininglcell 1038 is.copper-rich. It therefore ﬁgy be

related to another cycle of activity wi hin the larger vol-

¢

canogenic environment irn the region. d relationships be- ™

/
tween intermediate-.-cases are.-various measures of their simi-

q -

J

larities as sﬁown in the table.

The purpose'ofuthe above exercis% Eas been to “ .

N\

lSee Table 13. ‘ *x

¥
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“TABLE 13 I

\PROBABILITY OF OCCURRENCE OF ENDOWMENT USING SEVEN REFERENCE CELLS
AT A TIME AND ASSUMING ZERO ENDOWMENT IN THE EIGHTH

~

) / .
=~ Predicted Probability bthxciuding Cell # (%)

Assumed unknown (zero) endowment cells in a particular run are underlined.

Ref. Known Predicted
Cell Prohability by - - :
# % . 8 Cells 1013 1016 1021 1023 1029 1038 1039 1042
. ) 1013 100 98.12 8.70~ 99.53 80.05 98.60 101.31 95.57 97.30 94.15°
1016 100 90.52 96.83 -1.13 '90?61 87.92 80.54 85.32 8B.05 85.89
1021 & 100 84.17 62.74 99.88 44.68 78.75 68.58 94.25 88.21 95.88
1023 o 100 103.85 103.29 100.34 100.47 4,32 104.08 103.26 103.47 1Q2.93
1029 100 lglm27 108.80 99.68 ~77.52 103.80 24.72 105.41 104.18 105:17
. , - ' v ® ‘
" 1038 100 98.01 - 98.48 100.43 95.93 98.18 .-98.51 0.54 99.60 100.18°
o 1039 IOd 921?5 90.94\ 99.95 96,61 93.16 100.45 100.00 -3.51 100.37
1042 ) 100 100.02 .100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00
- _ 5
~.. ' .
\1P§obabilities have been converted into percentages. . . -
2 ) i

g

[
O
F=3
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7 |

v . .
observe the refétionships among the‘knowﬁ endowment éélls,
The conclusion is that in spite "of the broader similarities
émbﬁé'féfééencq\eells, there are significant differences in
their localized geoloéical environments as determiﬁ%d statis-
tically. All forecasts have been made in réferencﬁ to *these
cells, and it is inevitable that some resolutiog/is lost be-
cause of the local differences that are‘present; Once an
equlllbrlum has been attained in the system w1th iterative
regreSSLOn analy51s the model will reflect the jclﬁi?environd -

ment observed in the_reference cells. It will no; be able

to for;éast any endowment the environment of which has not \

been considered in the modelling process. The case of ;Fe““
Magusi River cell appears to belong to this scategory.

' The results shown in Tables 12 and 13 should have a
bearing on the genetlc history of the region. It is well ac-
cepteg now that the Rouyn Noranda region was the centre of
velcanic activity thats}ed to the formation of massive ba;é
metal deposits. But the different environments associated
W1th ore deposits in thelr respective cells indicate a pul-
satory nature of the volcanism. This thought should agree
with the southward "younging" trend in me£avolcanics observed
across the regioq by Krogh and Davis (1971), and with the .
postulate of Spence and Spgéce (1975) that rhy\ ites of sev- .

eral different ages are present in the region. Ard Roscoe

*

.
v - 3Nt g1 Sk Y quﬁmhd‘qﬁ;nﬁﬁﬂﬁj{&\.‘vsqw_( N

!
!
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i
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(' higher level than coppef..'These aspects'hay also be observed
. : b &
: regionally in that the southern-most reference cell 1042 has

;

only copper endowment and no reported zinc with it, while the
northern-most and outward-most cells_ 1016 and 1039 respective-

3

/ i ly ‘are very %Zinc-rich, and relatively poor in copper.’

) If volcanism was indeed pulsatd§<é\é§ appears to be

Lk . .
the case, then the predictive effectiveness of the model will
4 Y ° B \

b !
be affected when extrapolated outside the immediate environ-—

meﬁt of the system under stud&. Alternatively) the model

e

o W TTAE R e

LA
[y

at/;y varlables of newer areas. Thls aspect is mehtioned to
5
g/

o indicate the usefulness of regre551on analysis in un\erstand—
. *

e © ing, confirming or appraising for modification, the eﬁ@sting
[ . N

T LW

1 v (- E
theories of ore formation in the region. It should be point- g

a2 bl

AR SR SRR

~ ed outMere that while most-coﬁparative studigs.on the geo- . %
> . £ ;

logy of massive sulphide deposits have emphasized features of 8

, . ~ " '

. similarity, their differences have not been as wellvreported 1

- - .y
upon. Regreskion anaIYSlS canmbe a useful tool in this re—*

£

. -gard. Needless to say, lnformatlon on_ differences among mas-~‘w Ce

sive sulphlde deposits can help exploratlon as much as/E/}nowF R

w

t ledge of the similarities in them. ‘ !

«
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" 8.18 Roleée of Explanatory Variables in Iterdtion ‘
Y i v N «
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- The explanatory variables have been selected/on the . ;

|

B L
.

g b

basis of factor analysis. . Their input in®*he regression model ’ ’
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- . . . .
(;a , ) ‘uha§ bée; controlled so that the first two ‘input variables
. are, area of rh&olite (AREA 3), and the contact length be-
twegn rhyolite and andesite, basalt ECNTL 11). Rhyolite is
the most common’ hos;légck and its, contact, with the andesite-
. basalt %ﬁoup of .rocks the most persistent stratlgraphlc fea- '
. - ture in ore locdlization. These are followed by othef ex-
.félaﬁétory‘%ari;bles the inputs of which are determined by a
comblnatlon of pre-selected 1nclu51on levels and the partial
- correlation coeff1c1ents° The regression models obtained in,
‘ the checkgfbogrd analysis are given in Section 8.13. A bet-

- - . .

ter comprehension of the role of variables* can be obtained
o, /

by studylngthelrstandardlzed coeff1c1entsl For comparison,

the standardlzed coefficients have been cumulated and then

converted into percentage of the total. The results of the
AN

‘ checkerboard subsets A and B agé.shown‘in Figuges 17 and 18.
o ‘H, It %s ébserved from Figures 17 and 18 tﬁat AREA 3,2 j
) anq ABEAJS both contribute positively to the models in éach 1

” of the subsets. In addition, the structural elements FOLT 4,
FOLT 1 and DYKE 3, all contribute.positively to the regres- : i

¥

sion models in each of the subsets. - : . ' I

T

b
'
/

/ 9

. e i

T ’ ' Wﬁen explanatory variables are measured in gdiffer-
M ent units such as areas and lengths, their relative contrlb-
(o g utions to the regression model can be studied by standardiz-
i 0 ing-them in unitless form. This”is done by computing the

model on the staﬁdardlzed variable values rather than the
original value#.
%/ . * i ? - &

(‘ o 2See Section 4.2 for deéscription of variable names.
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FIGURE 18
EXPLANATORY VARIABLES CONTRIBUTIONS IN ITERATIVE
REGRESSION ANALYSIS, SUBSET B
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g deeper underlying cause as reflected by thé belieﬁubf‘some

-

On the other hand, CNTL 13, CNTL 15, and DYKE 4, all

contribute negatively to both regression models.
, A5 -
The role of structural elements in the regica H@s

not been fully=resolved, either with respect .to one anéther
oA 'with respect to volcanism and related ore deposits. The
positively cohtribﬁting structural elements, however, show

»
! .
some relationship: FOLT 4 and FOLT «1 are both essentially

east-west érénding features an@ may b? related to the east-
west anticlinofium étﬂucture of the region. Furthe?de¥KE 3
cu£s across the directions of FOLT 1 and FOLT'4, and may be
rflated to them. >Any other comments beyond this wo&%d be
speculative.

The positive contribution of AREA 3 is understand-’

able, but not that of AREA B. Thé positive contriQ&tion of-

AREA 8 may be a raéé}t of purely spatial co¥relation or to.a

regional geologis%sl that diorit® and gabbro indicate chan-

nelways of the extruded andesites and basalts.

(3

‘The negative contributions of,NTL 13 and CNTL 15
{ “-..\’
)

- N | . .
to each of the two r gre551on\§jgels are clear inasmuch as

“

/ . S s . .
the ore deposits are considered of volcanogenic origin.
‘ . - ’ N

* .CNTL 13 and CNTL 15 represent the contact lengths of rhyo-

lite with diorite, gabbro, and with granite, granodiorite

/

-

o

|

! lE.g.,ﬂWilson (1962), Van de Walle d19?2);,and Spence
and Spence (1975). . .-

1o e etk gt e ot B At Vo s MeaYontnig, .
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resbectively. Since the ore deposits are believed to be vol-
*
canogenic and occurring at a certain evolutionary stage of

volcanish, itfis more likely that ore localization will take
place between two volcanic fonmations rather than between a

. ~

_volcanic formation and an intrusivé. In addition, the pre-
sence of an intrusive can only have an assimilative or dis-

-

persive effect on any existing massiveesulphides. These com-
ments ére valid only if the volcanogenic origin of ore depos-

) . b
its is assumed, and may not hold if a hydrothermal epigenetic

«
concept is invoked.
S

°

utions, whether positive or negative, dgpendé upon the partic-
ular response-explanatory variables relationships present in-

‘the known endowment reference cells in each of the two sub-
> , .
sets A and B. For example, subset A has the West Macddnald.

ore deposit occ¢urring in tuff, agglomerate in cell 1023. °

CNTL 10, #he contact between tuff, agglomerate, and granite,

-

granodiorite, therefore contributes positively to the model.

Since no such depogit occurs |in the subset B cells, the pre-
sence of CNTL lofin its model contributes negatively. l
In subget B, CNTL 1l makes a negative qpntribution.
This may appearuunexpected-but as observgd on the geological
map of the region, cell 1038 which has*the highest known en-
dowment and thus is a'major contributor to the equation, is

- largely composed of AREA 3 and contains relatively minor

o
4

\ )
In respect OF the remaining variables, their contrib-

«i‘:’

'%
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CNTL ll.l AREA 3 is correlated with CNTL 11 being one of its

, componknt members; because of its predominant presence in the

¥ -

cell, it makes up for the contact length's négative role. The

)

Sgle of multicoll%nearity should not be forgotten when simul-
taneously, the areas of formations and the contact lengths be-
tween them are considered as explanatory variables. The ob-
jective is to balance the role of variables so that in their
final form, they best describe the system.

Figures 17 and 18 show chaﬁges in the performance of
explanatoryf variables with each iteration, and after the fourth
iteration, the overall effect when three more variables are
addeéT“\As the figdtes show, the system rapidly converges to,
equilibrium after the fifth iteration because the relative

*

conéribg}ions of variables become consistent.: This also means
that the system has stabilized with respect to the values es-

timated for{the response vapiéBigs. Thé figures also indicate
that the prédictions based on‘@asiﬂéle\regression run will not

be efficient Snd will be likely to change both with further

iterations or addition of variables.

,

8.19 Other Regression Tests

?

In this section, a review is given of a number of

~

Lentr, 11'is the contact length between AREA 3 and

“AREA 4.

[N

JUSURRPINRIURIPL. "W
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‘{’, ” regresdion tests that preceded the checkerboard models. The °

objective of the earlier runs was to observe the response and
- . (v efficiency of the variables‘uhder regression, and to make

Q" o

. various manipulations leading to the procedure finally adopt-
ed. - All these runs are non-iterative, and therefore, the prer-
dicted results are of a low order of magnitude. As has been

N .

¢ » -
described eafiier} the ow predicted estimates result when

P

the response varlables in cells with no known endowment are

arbltrarlly a531gned zero values, thus in effect attenuating -

the response explanatory variable relationships that are de-

] v

veioped from the known endowment cells.

» o

‘8.19.1- The 8-Cell Model’ . o -

S

- . .
s . =,
)

bl

z . In resource evaluation studies using regression

analysxsy 1f the values. of) the response vé@;ablel'are not -

s  THTEEREARTRT

known ;n most of the cells, and if all cells are believed to .
’ b l ' - o )
be part of the same geological system,2 a regression model

[+]

can be formulated based only on cells in which the response 4

variable 15 known. Such a model can then be extrapolated

‘; - ’ " over the remaining cells to make estimates of the unknown '
3 * B - :
) . y Pl ' ., .
j_ ‘ response variable. The advantage of this approach is its
. S Tooa
- . J i ‘, , o ,
0 i o P o -, " . ) Ay .
' S I S |
' . . I.e., mineral endowment. ' - 1
/ " 2 - v
‘.. I.e., they should have been. drawn from t@e.same
(' e population. =~ i -
o \ ) ,
£ ij\
. - ’ g’

s Y .

‘) oo ’ : s [~ o
t v o ., _
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9 4 ,
( - . simplicity; also, no initial assumption has to be made -regard-

ing the values of reéponsé variable in the unknown endowment
cells. With only eight cellé out of 64 that have a known en-
dowment, the sample'size is too small for an effective model,
particularly because dissimilarities exist among the refer- ¥
ence ¢ells themselves. And with only eight feferenqe cells,

. ¢
the number of explanatory variables that can enter the egua-

\,‘ s

; tion cannot eXbeed six im addltlon to the constant term. Such

‘ 4 . .
an equation can only be effective if the system:is such that
) { : 3
\each cell contains at least several of the explanatory vari-
' By . .
dbles present in the equation. Most of the 67 explana&pry
A f i

, c . \ . .
; variables measured in the region are not present- in the known
¢ &

endoypent\cells, and are therefore” rot a part of the regres-

sion mpdel Many of these do ﬁft evSh have any refevance with

.

P

« ore formation, but are presenggln varing amounts in about one-

-~

, fourth of \the region. The application of the regression model
: . should give ja zero predidtion’of endowment in cells that do 1

not have any variables present in the model. But with a pos- '

) . ) . itive constant term in the model;. the predicted value in the ]
| - ) ),/
- h poéentially barren cells becomes equal to the constant term. - F

3

For example, observe ‘the following regression equatian.

| | 3

.

‘Log,, Copper; =  4.645 - 1:308 CNTL 7 + 0.335 FOLY, 1

= - 0.018 CNTL 13 =.0.180 AREA 4

e
B
~
>
-

+-0.329 CNTL 34 - 0.398 AREA 8

\ '

™~
”

7 All cells that do ﬁot*haQeLany of ‘the above six variables )
\ . ) .
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( ‘%ill still obtain a predicted value of 44,1571 tons of cqpper

: Jorth over 55 million dollars. In fact, if a cell had only

—

ﬁost-ore sedimentary formations, the mere presence of FOLT 1
- in it will give a predicted velue equal to the 'constant term A
» plus the positive contrib;tion of FOLT 1 relative to it

7 length. The resulting forecast can then exceed 55 million

llars. " Most of the other equations calculated for copper

and zinc using different combinations of variables\are beset
/7 . ) v
with similar problems. .

&

The above condition 'is the same as trying to apply
o .
a model based on dﬁcertain-geological system ¢d a\different

%g system. This can to an extent be controlled by using larger

sized cells g€o that a greater variety,of explanatory variables

is present in them, but for a region of fixed size, the number
”

of observatlons is thereby reduced, and the objective of using:

egall—sized cells ctannot be fulfilled. Further, since ore de-
e -

posits tend to occur as clusters, the number of known endow-
4

ment cells becomes further reddced .
At a purely reconnaissance level, -a broad based re-
gresgion model can be formulated by incorporatf;g dat3" from .

- known endowment cells outside the study region, taking care

~

that there is a similarity in the characterlstlcs of the

geological egilronment between the study region and those

4

“

& ’ '

1

44,157 is the antilogarithm of 4.645, the constant

/ 1
(“ term.

$ ‘ Yy - < ’ s

Can o a3 D A i . w « ! o Al o 2 ek vl o ] - LR I - ...aw*u:'mmm,%:

I



3 o

SRR 2 o SRS

¥

. ©-206

outside it. o o

{

8.19.2 The Overlapping Cell Model

<

| , -
d?’M‘ A technique in which the size of a cell can be en-

i
larged four times to incorporate a greater geological vari-

ability but without a proportionate reduction in the number

of \reference cells is to overlap adjoining cells. As Figdre\
19 shows, the first enlarged cell is a combirnation of cells )
1, 2, 9, and 10; the second one islthe addition of cells’2,

3, 10, and 11; this can ‘be continued till the end of the first
row. The second row has its first enlarged. cell consisting

of cells gtzlo, 17, 18, and so on as in the first row. In
this manner, 49 cells, each four times the initial size, are :
obtained. The knownjendowmeh% cells increase to 22 from the

/

original eight because of repetitions with neighbouring cells.

This seemed to be a good solution to some of the problems

mentioned in Section 8.19-.1.

The results obtained on applying regression analysisw

over the overlapping cells are poor, to the extent that even

in the known endowmen; cells, tﬁé predicted- estimates are
h%ghly erratic. The only explanétiQnmlies in a highly in-
creased multicollinearity resulting from overlapping and re-
petitioné of cells. 1If so man§ inter-relationships exist
amo?g explanatory variables in normally adjoining cells, then

. : 4
the addition of inter&gaTatg\gggrlapping cells is.bound to

J : ’ ‘

&

o "
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1 OVERLAPPING PROCEDURE:FOR 4x1 ENLARGED CELLS
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.the already reduced number'of cglls, and as a result, further

-much mu}%icollinearity as with cells one-fourth the size.

208

. 9

multiply the intercorrelative effect.
~ AN »

_ Similar problems are incurred when overiapping is
attempted using two cells at a time, whether the overlapping

is done along the rows or along the columns.

The approach is not considered statistically sound

!

and was therefore not pursued furjherf f

v

8.19.3 Non-Overlapping Enlarged Cells

Figure 20 shows the three dlfferenF grids that have
been aétempted to obtain estimates of endowment in the region.

They are déscribed below.

i »

|

The 4x]1 Enlarged Cells

»" Iterative:segression analysis was carried out on

the sixteen 4x1 enlarged cells. A checkerboard division of
enlarged cells is not desiragle because it reduces in half

, . X . )
decreases the degrees of eedom for variable input. Besides,

it is felt that enlarging the cell size does not result in as

’

The results shown in Tablg‘l4 are obtained after the fifth

regre551on run. ‘Thé'input variables are the same as used in .

the checkerboard analysms described 1n Sectlon 8.14,
@

,Enlaqging cell size has two immediate effects which

L4

<
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FIGURE 20
ENLARGED NON-OVERLAPPING CELLS
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6\ : : TABLE 14
: 1
;\ , . - ENDOWMENT FORECAST IN U4x]l ENLARGED CELLS
’ \ , USING ITERATIVE REGRESSION ANALYSIS =~
\ .- 5
Cell Known Estimated
# Endowment Endowment . -
. ($x106) ($x106)
\ 3 -
1 - ., 41.784
2 -~ 0.0 ‘ 3
3 18.810 5.113
~ ‘ 4 74.480 65.247
5 - ' 8.662
6 - 0.9
7 1,368.500 '940.023
. |
8 27.800 27.800
. 9 43,480 50.913
10 - 0.0 .
; 11 2,109.280 1,816.557 i
12 »34.880 39.314
13 - 0.0 ,
14 - 0.872 ‘
AN
! 15 - 000 . ’\‘
16 - . 0.0 ;
RZ . 0.995 /
S.E. $3.56x10° -

(_ ' 1

) 2

See figure 20.

. . ,
Results shown are obtained after the fifth regression run.

A}

. . ,
v, /.
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]
bear on regression analysis. The first is that the decreased
number of cells reduces the number of degrees of freedom; the

second is that thesproportion of known endowment cells in-

.creases. Both of these improve the rate of convergence and

the coefficient of determination. The predicted estimaies,
howevgr, are affectgd differently. Since in iterative re-
gression analysis, the response variable value of known en- -
dowment cells is kept constant, and convergence attempted on
these values,mthe total predicted endowment in the region is
likely to be reduced. This is because previously a cell of
i:?s square miies areaxis a known endowment cell, bu; eplarg~
ing it four times makes the new knowﬁ endowment cell equal

to 25 squaié’miles, yvet with exactiy the same response vari-
able value as the or;ginal smaller cell.

“NAS is shown in Table 14, it is ngt possible to obi
tain convergence in most known endowmen; cells, particularly,
cells 3\and 7.V/In general;'SO percent of the total known
endowment is péedicted. The only significantly valuable cell

!

is #1 worth over 41 million dollars. This enlarged cell is
- .

the equivalent of cells 1001, 1002,’1009, andflOlO of the

$
_checkerboard analyses in which a total endowment estimate of

3

25.6 million dollars is obtained for the fopr"cells.

,

The fact that convergence is not fully attained,
7 -

stresses again the effect of intercollinearity amongst the
éxplanatory variables; in spite of this,’'the low endowment

or barren cells are pnedi&ted in reasonable terms. When -

s AP 3 2ok Mo s il . i batiesos N — L LI

.
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. cell are suppressed by the unf

- other three cells. Such a sithation can vary
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£y

dsing'eglarged cells, the signifiéanqe of smalle? cells that
jointly~comprise the enlarged cells is suppressed. For ex-
amplé, thé 4x1 cell; analysis estimates a zero égdowmenp in
cell 2. This cell is composed of cells 1093, 1004, 1011,

and 1012. With 'the checkerboard analysis, cells 1093, 1004f .
and 101l are predicted as barren. Howeverj cell 1012 is. fore- .

cast .as relatively favoﬁiable worth 16 milliorY dollars. Ob-.

viously, when the four cells are combined into one enlarged

unit, the favourablé geological relationships présent in one

able relationships in the

of cpurse, de- .
J

pending upon the relative strengths of the fgvourable and un-
!

favourable relatioﬁships present'injthe s r cells that

are‘combined to form the enlarged cell.
- .

o

The Rectangular Cells . ‘ ’ 1

t

The use of 2x1 rectangular cells has been made to ]

i

observe any fgiationship between the shape of a cell and the 5
E

; i
directionally oriented geological data:. Iterative regyes- ;
' 3

sion analyses was therefore péffofmed Separately on checker-
’ /‘ 1 ,j

board data of 2xl1 vertical and 2x]1 horizontal cells.
/

A comparative study of regression results and the

lSee Figure 20 for explénation of vertical and hori-
zontal cells. : :

4
; ‘
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.geology of the region showsethat for the Rouyn-Noranda region

00 -

itself, the directionally oriented cells do not apparenyly /

P

show any-particﬁlar trend, except in individual tases where
each of the two oriéinal cells that join together and form ‘
»a rectaﬁgular cell, has a pighly égdowme;t—cdrrelated vari- "’
able, such as rhyollte (AREA 3), or NS to NW trendlng dyvkes
(DYKE 3) .  When sugn explathory variables strlke generally
parallel with the longer: direction of the cell, a dispropor-
tionate weightage is attached to them which tends to rapidiy
increase during iterations. Rectangular cells are therefore -,
» subject to an increased bias and increased multicéllinegifty
depending upon the natﬁre and orientation of the.explanatory

~an

L4 h Y N o
variables. Further, it has not been possible to achieve con-

vergence-on tbe known endowment rectaﬁgular cells despite the
checkerboard approgch. 1In view of\th;se reasons, it is felt

, that for the present study fegion, rectangular éeils are
neither effigient nor effective for the' combination of vari-
ables, énd unéer the conditions used in the tests:

%

8.20 Concluding Statement’ t

.
5

Of all the models attempted under regression énaly-

bk,

ses, the 6.25 square miles séuare 2?115 give the-mostv;}fec-
‘tive results under Eﬂe checkerboard techniqué% ~This state-
ment should hold for the Rouyn-Noranda region éva;yated in P
this study. However, a ﬁodel can always be “improved with

. . v ' ‘
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- ¢ additional information or improved techniques: Maki and

s *Thompson (1973, p. 418) sum up the situation as follows:

L4

!

(1)

(2)

L]

. N o
A statistical evaluation of the accuracy of a '
model is usually carried out with the use of .

, a standard measure of the discrepancy between

e the predicted and the observed data. 1In this
way one obtains a numerical measure of the
goodness of fit for each model. Naturally, ‘
if one model gives a consistently better fit
than any other model, then this model will be
accepted and the others rejected. However,
it often happens that one model will be the
best to explain and fit certain sets of data,

- while another model will be the best at ex— &
plaining and predicting other sets. Neither
model can be rejected, since each is better
under certain circumstances. Likewise, neither
model should be completely accepted since in
certain cases each model is not the best avail=-
able.® They can be conditionally accep%ed, ‘
studied, and used in those circumstances where .
they are the appropriate choice. Naturally a

;entlst would like to have a SLngle model

ch is the best at explaining all thé known
experlmental results. However, such a model
is not always available, and the scientist
must work with the models at hand until better
ones are developed. \

\ E
: v
?
! e i
\
!
.
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8.21 Regression Summary

w

¥

-

Regression adnalysis is a powerful ayd effective method

’

for determining relationships amongst explanatory geo-
logicgl variables, and for‘apply#ng these relatiosships
in making forecasts of éndowment within the geolééical
system under investiqhtion.

The forecast values are calculated with respect to the

ex1st1ng known endowment within the system. Slnce the
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known endowment is defined as the sum of past produc-

tion and reserves in the region, it represents the min-

-
a

imum possible éndowméhh. " The ﬂprecaét valdesftoo,
zherefore, are the minimum possible alues. however,
these forecast values should be assessed in ﬁerms’of
their absolute forecast estimates aF well a$ their com-
parative values within the system. ) '
As a result of iteraqive fégressié;,'the relatio;ships
determined and the re;poﬁse variables calqulated are in
a state of sensitive edquilibrium within the geological
systeé\of the region. If a new discovery is made in
P
the region or if there is an increase in the-known en-

dowment with additﬁonal reserves, the regression model

will have to be updated and the system re-equilibrated.
This would result in increased forecasts because any

addition to ;ﬁQ known endowment will m?dify response

\ .
variable — explanatory variables relationships.

The selection of ah optimal set of explanatory variables
N - s

N

is an extremely ;mpf tant aspect in regression analysis..

While factor analysis

standing underlying relationships amongst explénatory

N

variables, the final judqment in their selectiorr has to
be made in the light of aqcepted geological theories on
cause and effect:relations ips. Should these theories
change, both thé basis and ntérpretatioh of the model
may have to be revised in the light of this new infor-

mation.

is an efficient technigue of under-

iy
« 's?,,

3
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, (6)

(7)

.1s also true in that regression analyses help under- . v

The standard square cells used instheir checKerboard

| ’ e
¥

While geological concepts are the basis of understand-
, v e
‘ - (
ing and interpreting regression analyses, the reverse

stand geological relationships in quantitative terms.
o
The particular variableé determined to be the most sig-
‘ . . N

nificant‘by regression anélysis can then be given a
greater attention at the time of geongical‘méppindT
This improves the cost-effectiveness of mapping and re-
sults in a better ddta base for future exploration.

:w
form give more efficient results than the larger 4x1
sggare cells or the’le rectangular cells. The squA}F
checkerb&ard cells are less prone to bias or multicol~
lineirity up to a certain stage depending upon the cell

size and the geological "grain" in the region.

v ‘
In descending order of value, the following cells are

predicted by regressing the checkerboard set of data
. %
to 'be the most favog;able ones from amongst the 56 cells ~

in the region with no known endowment. ; ‘ .

b

[ 3 1/ 1]
. i
/ . ] 6 ‘i
CELL # | * PREDICTED: $X10 B
- X . 1
1033 ’ 62.32
1012/ . 16.02
1014 . 15.08"
1002 13.78
1007 £ 12.40
1010 ' 9.81
1009 2.01 -

S
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. ( » The totdl potential predicted by regression analysis
. \ .
N is_131 million. dollars. This indicates a near_ exhaustion
- of base-metal endowment in the region when evaluaig“ed under

L P, VR
‘ . , Fanls ) ) ' , , M
‘ ‘ ;o current ggablég;cal,lnf—ormatlon and concepts, Newer con-

S
- N ’ <

A . cepts willl ‘have %o be evolved. and additional i-nformaj::L:p;n, )

'
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\tween continuously measurdd classes by using group membership

" and none within the groups.
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CHAPTER 9

i

DISCRIMINANT ANALYSIS!

- , A

2

9.1 Introduction . £

A

%

Discriminant analysis is analogous to regression anal-
s \.
ysis in that both techniques,attempt to predict a "best fittij?"

line or plane. For this reason, Mather'(1976) defines discrim-

\n ~
inant’ analysis as being equivalent to the regression of interw

N 4
group mean differences on the explandtory variables. Discrim-

T

inant analysis, howeVer, disregards relationships obtaining be-

s

aﬁ the criterion and making all comparisons between, the groups
. .

1 4
The application of discriminant analysis- lies both in

understanding differences-between two or more ggés of groups

7

Qénd in class}fying new cages to the most relevant groups. The

it

technique involves first determining statistically significant

differences in the multivariable measurements among the given

3¢

groups. These are then forced to become magimally distinct

thyoygh a unique ‘weighted linear combination of discriminatory

L S 3

variables selected. The miiimization of discrimination is

~

* S

\ e 7

k) s y ;
A < } &
Y / |1
lDl’scriminant analysis as used will refer to'\both the
two-groupwcases and the multiple group. cases.

~ £

o

/ & ! {
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achieved by spreading apart the group meané“while simultane-
i -
ously compressing the spread of individual values about their

respective group means (Bibb and Roncek, 1976). The discrim-

in&ﬁt Function formulated can then be used for classifying new

cases in their respective groups.

Cacoullos and Atyan’ (1973) chpiled a bibliography ’

-

of publications on the theory and ‘techniques of discriminants

analysis. A more recent bibliOgraphy‘is available in Lachen-
bruch (1975). 1In the field of eart@ sdﬁences, the technique
has found applications in petrology, geochémistry and paleon-
toldgy (Griffiths, i966; Burnaby, 1966; Kld@gn and Billings,
£%67; Link and Koch, £967; Cameron et al., 1971{‘and Lenthall,
1972). In the field of mineral resource evaluatfion, the work
of Harris (1965) was, perhaps, the earliest. Other related

applications of discriminant analysis in resource evaluation

include those;@% DeGeoffroy and Wignall (1970), and Rose (1972).

>

<, & L I
9.2 The Disgriminant Model ‘
L
- 7
The general form of a®discrimihant ‘function is:
i o
y=Vx +VX +...VX -« ' R /

171 272 PP

IN
r

;Q where Vl’VZ""Vp are the optimal weighting coefficients

A

I ( ) R
lthis section of the thesis has been drawn from TAt-
suoka fl970) and Bibb and Roncek (1976).

' | |

\d
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N - L4
assigned to each of the p original explanatory variables,
X, ,X X
1rXgr e Xy
In a multi-gr discriminant ana%ysis, the objective

is to find the set of wéjghts which will maximize the discrim-
inant criterion, i.e., the eigenvalues ) and their associated

" eigenvectors. ’ ,

Mathematically,

' ’
\ - Between group varlépce, §Sb _ A\ Bv ~
t  Within group vaﬁigﬁce S8, VW o

¥ 2 : .
where B is a p x p matrix of among grbup variancés—covariances,/
'i.e., B = (Xé - XY (ié - X)' and W is the within group vari-

ance-covariance matrix, i.e., W= (X - ?é) (X - ié)'.

In the above fprmulas,

, 4
| -
Jk/;/Vector of weighting coefficientg .
XY= V%ctof of predictor variables means in the gth
g group
/ 7 -

" X = Veééor of means of predictor vafiables
X

= Véctor of variables in the gth group o »3

/

“

;
When thergﬁgi; three or more groups present, the derivatives

/ > » . 3 . >
of X are set to zero, and following simplification, the matri

/ .
L

equation (B - AW) V = 0 is obtained. This is the basic e

¢
W

tion of discriminant analysis and can be re-written as:b/\x
Id

. r
N Wl - A1) v=10  wherel |W|*o0

/s

pres P " " —-—-— R .
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In. the above equation, I is a p x p identity matrix, and 0 is

a p dimensional null vector. As a first step, the eigenvalues

of the matrix W—lB are determined. These are always positive

or zero because of the nature of the matrices’W'énd B. .The
number of positive g}genvalues, r, is always equal to the les-
ser of either the number of predictor variables or one lesé
than the number of grouﬁs. Each eigenva}ue ki, i=1,2,...r
ﬁas a unique eigenvector v which satisfies the equationc(w_lB

T -y V; = 0. In this equation, the matrix (Wi - ;1) is
now known. '

After ordering the eigenvalﬂes in a descending order,
the successive eigenvalues and their associated eigenvéctqrs
impart the fpllowing;broperties to the discriminant functions.
The first discriminant function is thaf single weigﬁted.com— &
bination of measuremenEs whiéh has the maximum possiblé vari-
ance bptween groups relative to the variance wiihin group$.

The second discriminpant function is that weighted comblnatlon

of the measurements which of all p0551b1e welghted comblnatlons

independgnt of the f1¥st discrimin t fupction accounts for ar

maximum 'of the remaining group differences. And so, on for the
hthlrd and successive. dlscrlmlnang‘functlons, the maximum num-'
'uber gf which is equal to the number of posgtlve elgenvalues.

In Qfactice, however, the first few functions are the most

-

., = importanﬁ, much like the factors in factor analysis.

’

o

The calculated discriminant function %s assessed for

statistical significance to /[determine whether or not the *

s i s RS,
S bV (58 O 0 SR AT s HEMAG) 4502 SR A AR 1 - ™
p
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. contribution to the relationships that caused ore formation

‘"gests that: ‘ ‘ )

-

: \gnﬁ preferably three times the, number of vari- o
\ ) L] v . A .. \ . .
' bles used; . i . o
\. . . / "
4_ ,' (e} The size of the smallest group should not be

222

’

between-group differences are real. Some variables may ?ave‘
to be added; others may have to be deleted to improve the dis-
criminatory power of the function so that future observakions
N N !

are suitably classified. The error rate of th; discriminant
function is also estimated as this rate will %ffect/future ob-
-servations (Lachenbruch, l9j§[._iBecausé'théée aspects are re-
lated to ngsod}ce po¥én£ial evaluation in the Rouyn-Noranda

¢

region, they are discussed in the following sections. w4

[

9.3 Variables Selection and Assumptions !

}

4 [N

The selection of variables for discriminant analysis

.

can be done ‘in much the same way as in regression analys#s.

To be mést'effective,~the~seleqted discriminatory variables

should Mave directly of indirectly made a positive or negative
o, i

'

-within the concepts accepted for the study under investigation.

For an efficient discriminant analysis, Tatsuoka (1970) sug-

*

-

¢ - /!

(a) The number of vAriables included should be more

(b) The total sample size should be at 1&mst two

less than the number. ¢cf variables used. -




R ' , )
(- With the data available, it is possible to accommodate the
first two suggestions. The cells containing known endowment
are tog few for the third suggestion to be accommodated ex-
cept in a two-group discriminant function.
Discriminant analysis, unl&ke regression, assumes
that the measurements have  a multivariate normalxgistribution‘

with equal variance-covariance matrices within the several

)
1

samples. These are the two basic assumptions in‘discriminant_ﬂ
analysié.

When the assumption of multivariate normal distribu-
tion and equaltdispersion matrices do nqt hold, the calculated
discriminant function will not‘be opﬁimél or efficient. How

\ crucial the equality of dispersion matrices is, remains a mat-
ter of dispute (Bibb and Roncek, 1976). It is likel§ that ¢
with unequal dispersion matrices, the resultant discriminant
weight will be biésed towards the group having the larger vari-

. »
ance. The full impact of non-normal distribution characteris- L

o

tics is not clear either. Lachenbruch (1975, p. 36) states
that "finding the distribution of linear combinations of non- ,

normal variables is a difficult and as yet unsolved problem".
. ' o T ,
Mather (1976) believes that moderate departures.from the above

conditions do not have a serious effect on the results. And
»

very robust i

Klecka (1975, p. 435) notes that the "technique i

and these assumptions need not be ‘strongly adhered\to". The

situation is summed up by Link and Koch (196%; p. 12) as fol-

lows: *

T\ e st o T e Mt s Ao o

P
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is the "leaving one out" technique similar to that suggested .

a revision of the number of Jroups for discrimination, or even

\\the re- evaluatlcn of tpe discriminant model ltsel# .A mis-

.

3 . !

For multivariate data, little is known about the

effect on ‘analysis of departures of the data from

these two assumptions.l The’analysis of variance

is relatively insensitive to departures of the /
- data from normality and homogeneous variance; by .-
analoqyr it can be hoped that multivariaté anal-
ysis is also.

Since the measurements made in this stidy are not nor-
mally distributed,the effectiveness ¢f discriminant-analysis
can bL viewed in comparison with the results obtéinedi&m‘re-

gression analyses. Another method for testing effectiveness

by Lachenbruch (1975). In thi§ technique, one known endowmen£
cell at a time is assigned an arbitrary zero value, or a value -
equal to that of the lowest valued group, and discriminant
analysis performed keeping the rest of the data as such. If
the cell with the assuméd zero value can be properly classi-

fied to its group, then it can be accepted that the absence

e

of ideal conditions did not impair the discriminant function.
When such is not the case, it is possible that some other ex-

planation -exists requiring another selection of the variables,

class;ficatlon will also result if all the cases are not drawn
)]

froﬁ the same population. Such a situation can occur in geo- |

logy where the varlables are a result of both evolutionary

.

e

1I.e., multivariate normality and equality of disper-

sion matrices.’ - T T




and interruptive processes, and in additign, subject to addi-

J [ N Y
tional changes following post-ore processe%. -

t
A <

9.4 Methodology Used

When discriminant anaflysis is applied in resource

evaluation, the selection of optimall groups can be as impor-

/

tant as the selection of discriminating variables.’ In generalk

group selection should be a matter of pragmatism as long as
|

all cases are drawn %rom tﬂe same parent population. This
means that gealogical variables quantified should all be part
of the same geological system. This information Es only sug—
jectively ahdlpften, incompletely(kﬁbﬁg pﬁior to the applica-
tion of discriminant analysis. :

A two-group| discriminant analysis based on the pre-

sence or absence of known endowment is the simplest approach

to distinguishing betweén areas of favourable and unfaveourable
potential. The advantage of the two-group analysis is that in,
small sample studies such as the present one, the number(of
known endowment cases per group increases because they afe;a;l
classified into one group. The calculatedﬂdiscriminant func-

tion can thus take into account a greater variety of geologi-

cal relationships associated with the individual known

<

, - . 1Opta.mal in terms of the range of values in indivi-
dual groups, and the total number of groups. ,

7
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(- . endowment cases. However, Beydnd ing#cating. the "presence"

or "absence" potential, the two group function will not dis-

o
)

criminate between different levels of endowment values.
An increased number of '‘groups permits a better de-.
fined evaluation of various levels of endowment‘estimatee.

Howéver, an increased number of groups can reduce the proba-
/- . - N

nl

. bility of correct classificdtion tecause there are more chanc-.
ee of erroneous assignmengs (Lachenbruch 197;) The optimal
number of groups lies in between the mlnlmum two and the maxi-
mdm equal to the total number of cases with ‘known endowment.
Further, when the response variable distribution is skewed

the selection of group Value‘wéde5\wi11 be affected by*the‘
distribution character::tlcs. Because of a highly skewed en-
dowment value distribution in the Rouyn -Noranda reglon, ther,

are more groups of the lower range of endowment values and

.

few of the higher.

-

The folllowing groups are selected for discriminant

analySLS,//Thelr explanation and results are discussed sepa-

rately:

- a two-group set based on the presence oOr absence
of known endowment; . '
- two five-group. sets;

- a seven-group Set. ; ¥

A stepwise discriminant procedure is used with both

( a pre-determined input ordé€r of variables, and an input with
(2-

. 4

~a&
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|

equal inclusion level for all variables such that the selec-

tion order?is determined according to the selected criterion
used. Thquariables selected for input are essentially the

same as hsed in regression analysis, and are believed to be
pertinent irn accordance with the current volcangé%;ic thinking -~
on.massive sulphide formation (Sangster, 1972), é;d to some
extent with the classical hydrothérmal theory of Lindgren‘

4 /
(1933). Of the criteria available in the S.P.S.S. programme-

Discriminant, both the Wilks and Mahalanobis methodsl are used.
In the former, the selection criterion is the maximization ‘of |
the overall multivariate F-ratio for the test of differences
aﬁong group centroids, and in the"latter it is the maximiza-

- 1

tion of Mahalanobis' distance between two closest groups. It

should be pointed out here that the ranges used are somewhat
arbitrary, in particular for those groups that have only one
reference cell in them. When an unknown case is predicted as
belonging to a certain groﬁp, it is done so with reference to
the averagé'endowment existing in that group rather than the

actual range used. And for groups with only one reference

cell in.them, it becomes a single point situation regardless
of the ‘range used. If an unknown endowment cell is predicteq
to fall in the group with onlyhone known endowment reference
cell, then the prediétion made is for an endowment value équi—

valent to that contained in the réference cell. 8

| . *

Pt

These are defined in the ngxt section. -

fq\\\ ' | .
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9.5 Discriminant Results ¢

9.5.1. The 2-Group Model -

If the mere preéence or absence of known mineral en-
dowment is assumed to be a éichotomous function of a quanti-
fied geological énvirzﬁ@gnt, a two-group discriminant functién
can be calculated from}the endowmént—enviroﬁment reiation@ﬁip .
to distinguish between pot?ntially favourable and unfavourable
areas within that environmentf This assumption circumvents
;hé pos}ulate used in regtession and multi-group discrihinan;f
analysis that both the presence and value of mineral endowment
are a function of geological relationshibs. When the sample
size is small, a large number of relationships cén be jointly
incorporated in a siﬁgle two-group discriminant function, but

without the ability to distinguish between various levels of

endowment richness. ’In such analyses, the endowment if fore-

cast will be at least equivalent to that contained in the cell
with the miﬁimum known endowment. {n any case, in terms of
the presegge-absence of endewment,® the results from the two
group function should be compatible with those obtained by

regression and multiple discriminant analyses. toow

v

The two group function is also an effective means of -

[

dekermining the commonness of ore forming processes as present

L
‘e

in the endowment bearing cases. This knowledgé can then be

/

used in evaluating and explaininé the results obtained in a

‘multigroup analysis. : . <
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lowing set of variables:

AREA 2 area of tuff, agglomerat
AREA 3 ,area of rhyolite
AREA 4 ?reaiof andesite, pasalt .
AREA 8 areéa of diorite, gabbro
. AREA 11 area of granite, granodiorite

. CNTL 6 contact length between AREA 2 & AREA 3
CNTL 10 / contact length between AREA\2 & AREA’ll
CNTL 11 ~ contact length between AREA & AREA 4
CNTL 13 )  éontact length between AREA & AREA 8
CNTL 1 & AREA 11

5 contact length betw¢e§A§REAo3
JFOLT 1 fault length, EW to NE

FOLT 4 faul# length, NW to EW

DYKE 3 ‘dyke length, NS to NW

DYKE 4 dyke 1ength, NW to EW

i |

. , C \
It should be noted that the above list .contains a

number of va:iablesl that have not shown any significant re- g}) {

lationship with endowment value, either in factor or in re-~ -

gression amalysis. They have been included to compare results

usingwthe'foug options2 available in the S.P.S.S. programme

~ N\ oo
i ’ .

1

I.e., AREA 2, AREA 4, AREA 11, DYKE 4.

2,f(i} irect Method: all variable 'are entergd(coni
. /

- cuf?gntly regardless of their individual discriminating powe

. (ii) Wilks Méthod: the variable which maximizes
the F-ratio and thus minimizes Wilks Lambda, a measure of ‘
group discrimination is entered first. [

K}
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Discriminant. For this purpose, no inclusion level is speci-

fied for the variables so that'each option_ can utilize its
hY © .
own critigion in the selection of variab;:;\gg;\fg;f;;;;;;hi-

nant function. This is then used as guide for éélecting the .
-

most effective option,

The direct method usegﬂall variables simultaneously.
/

4, [ .
These are listed below in decreasing order of their standard-
ized discriminant’function coeffigients. The coefficients

have been converted into percentages of thei; absolute values,
% ° - \

@ Ld

&

Variable " Standardized ~ Variable ‘ Standardiest
Name “Coeff L Name Coeff %

CNTL 10 " -15.7 FOLT 1° - -3.7
\\$D¥KE 3 -14.9 . AREA, 8 -3.5

AREA 3 -13.6 DYKE ~ 4 3.3

CNTL 15 T 12.5 AREA 4 1.5

CNTL 13 8.5 , AREA 11 .. -0.04

FOLT 4 ~ -8.0  _

CNTL 6 . =5.5 B v

AREA 2 - -5.4 ' '

CNTL lL) -4.1 o ~

P

(iii) Mahalanobis Method: the distance between the
two closest groups is maximized. =~ °

(iv) Rao Method:. ‘the variable selected for inclu-
sion is the one that contTFibutes the largest increase in Rao's
V, 'resulting in the ' greatest overall separation of the groups.

*

P -

]

~
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5 (T In a two group analysis, there is only one discrimi-
_ nant function accounting for 100 percent discrimination. The

standardized coeffic%ents of a function are measures of the

‘ discriminatory powers of the variables. This statement is

S R s A

amplified later in this chapter-.
©

£

D

- The Wilks, Mahalanobis and Rao methods use their par-
T;kcular criteria in the selection and inclusion of independent
variables in a stepwise procedure’. However, for the two-group

analys1s, the calculated dlscrlmlnant function/is exactly the

‘. éisame in each methoc‘F3 This gMould not be taken as a general
- “
p rule. When the 1nclu51on levé%s are specified ™a prlorl"L and
(" when' there are more than two groups, the foracast results by
‘ ® .
g . the three sﬂbpw1se methods may not be the sapgle. “In the pre-
sent case, the following variables -are inéiuded in the dis-
- N ! rs a
criminant function by the'stepwise methpd. These are listed
%
below in descendlng order of their ab oipte standardized con-
- o
o tributions to the discriminant function. The figures beLow
[ J -
f , ¢ - represent percentages of the total for better comparison.
1 .
f d I3 -
F . . Variable Name . Standardized Coefficient Value (%)
g L4 : >
-4 . N "‘ ;1
‘. T AREA 3 24.3 (
, DYKE 3 " \21.6
S 5 . ) } ]
QCNTL 10, : o 19.4 2
~eNTL 15 . ‘ 4 ~15.3 ’ A ’
oo FOLT 4 < . 11.2 ‘
. ':W ' 4 ! \
| CNTL 13 < : -8.3




Lal

v

e e < st gy ol e e g e Moo e w
.

Ad

N

Yo e e——

w*232 N

L

As a result' of the stepwise’ procedure, pnly six vari-
|
2bles are included in the functlon 1nstead of the original 14

used in the Direct method. It is easiaer to observe  the rela— >

E3
ti*&e contributions of the variables in a reduced space.
In Table 15, results are shéwn for .the predicted pre-

Y

\
sence of mineral endowment. One, inﬁcates presence and zero,
¢ , \ : ‘
absence. The table includes the kng endowment ce;,ls, but

-~

does not include those cells where neithdr a krfbm nor a fore-

cast endowment exists. h -

™~

. 'y
From the table, it is seen that desplte different Els—

criminant functlons, the results obtained’ w:.th both the direct ry
L
and the stepwise metﬁods are comparable. The only dlfferen%e : !

is that an endowment occurrex;ce is forecast in cell 1050 by ®
'y
the direct method, but not th S*teylsﬁ method. s

S .
.It is of particular/vﬁ/t/erest at this stage te dbserve °
L

that no endowment is fore&ast for cells 1013 and 1042, eag:h of
“ & A

which is a reference cell Witlw-a known endowment. The ‘Valid- e

ity of a discriminant model immediately is suspect,if the kffow
. . ¢ ’
endowment cells cannot? be predicted. It is posiible that the
-5
cells discriminated do not necessarily all cQme from“the same ,

[

tad
\ pdpulatlon. In other/words, in spfte of thegrelatlve sm;l“!nes$ i ‘

. N4 «
L of .the study region and the belief*t%at all valcanocjﬁn;cg'acti—

i ¥ -
v

" vity related to massive sulphjde formation was confined there- .

in, t:he 'pos'sibility ,cannot ba rglga out that individual cells
. . L .
" do not all exhibit the same»;geological\)environment of ore gen-

esis. Another possibility is that the 'set of variables

| . e . . [
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~ TABLE 15 - - -
v e -~ » e‘
. R PRESENCE OF, ENDOWMENT;\S FORECAST wﬁ‘TH A 2-GROUP &
.j ’ DISCRIMINANT FUNCTI%’N USING DIRECEAND ®TEPWISE METHODS
b ‘ L
. ~a R s \ T .

: - ﬁlrect Method w Stepwise Method
§ Cell No. Known Forecast « Forecast ’
4 o - W
% 1003 g 0 1% e 1*

§ © 1012, R * + 1 1*

y p w0013 - @ A o - 0

i . g A 1Y P e ‘ *

e o ®

% m g B ” - / i » * v
H 1021 —— | N oo 1

; ﬁ\ . ﬁ - ]@ » “”!’ .

§ ©1023" N 1 o« 1 - 1

i

; © %

?r # e v *
| % - Ny : d“7 % .~'0-‘.q . B 1 ' & 1
e v 1029 1 oa o .1 . A ® 1o
S S - < - » : .

A ot Ws1 0 1 > 1+
B @& ° 1038 1 ® , 1 1

g P . Pk N
' ¥ 3 <

L. % j0m » & & 2 . ° 1

: @ € ) ' :

\ .., log 0 1 . 1*

! ’ ) @ &

B 1042 .1 0 ]J
1049 0 R O 1
» -*
1050 0 . 1 “ . p
1053 ° 0 1 1*
&
I \
4 L
Y ; 1("
¥ . " *Cells indicating endowment potential by direct and/or stepwise
! . a\ethOd’. had i ¢ '
&
. , e
N\ ) ,. ‘
~a ;

i N | .
5 .

2 o ’

&
q




(‘ : initially seleeted are not the best. |
To qlaiiﬁy the anomalous situation of cells 1013 and

’ % 1042 referred to above, eight_stepwise discriminant runs were

made aspbefore with the same set of variables, using the %ilks

e and Mahalanobis criteria separately. However, in each run,
only one reference cell at a time was input as‘endowment bear-f

g ing, and all others were arbitrarily assumed to haveizero val-
ues. The Wilks and Méhglanobis methods give exactl& the same
results. These are shown in Table 16.

| i

It is seen from the table that each known endowment

v e e

cell whem input as such is able to be predicted as endowment
: / bearing with a probability close to one, except cell 1029
/// which has a p?obability of 0.86 and cell 1042 whic? has a pro-
bability of 0.58. The reference cells assigned a zero endo@— ’
ment value which are predicted by the“gther reference cells

are as follows:
%

Cell 1038  predicted by cell ‘10,16 L g
Cell 1029 predicted by cell 1021 . ‘%
Cell 1021 predicted by cell 1029

7 _ ) Cell 1013  predicted by cell . 1042

Cell 1021 predicted by cell 1042
' Cell 1029 predicted by cell 1042

The prediction of endowment in cells with no known
. i v

endowment' is not relevant at this stage of discussion.
. . J .

When a particular cell is assumed to be barren but
—~ A

has endowment ﬁredibtg§<by a knoyn endowment cell, the

)
. E

» 8w .

< n s

. . R .
. .
.
.
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TABLE 16
~ i . —
. PRESENCE OF ENDOWMEQT AS FORECAST USING ONE REFERENCE CELL AT A TIME
IN A 2-GROUP DISCRIMINANT ANALYSIS )
R Particular reference cell used in discriminant function df,

Cell Known 1013 1016 1021 1023 1029 1038 1039 1042
‘No. -Endowment Cells ‘ &
1003 0 1 - - £ = ;= - - T - 1(.509)
1012 | 0 1 - - - - - - - -
1013 1 0 “I(.999) 0(1.00) 0(.981) 0(1.00) 0(.996) 0(1.00) 0(1.00) 1(.559)
1016 1 1 0(1.00) 1(1.00) 0(1.00) 0(1.00) 0(1.00) 0(1.00) 0(1.00) ‘D(.645)
1021 1 1 0(.985) 0 0) 1(.297) 0(1.00) 1(.883) 0(1.00) 0(1.00) 1(.734)
1023 1 1 0(.998)-0(2¥00) 0(.988) 1(1.00) 0(1.00) 0(1.00) 0(1.00) O0(.645)
1027 0 1 - - 1(1.00) - - 1(.831) - - 1(.749)
1028 0 0 - - - - - - - - 1(.695)
1029 1 - 1 0(.977) 0(1.00) 1(.995) 0(1.00) 1(1.00) 0(1.00) 0(1.00) 1(.864)
1031 0 1 - 1(.705) - - - - - - =
1032 0 0 1(1.00) - - - - - - - -
1035 0 0 - - 1(.854) =~ - - - - -
1038 1 1 0(1.00) 1(.970) 0(.999) 0(1.00) 0(1.00) 1(1.00) 0(1.00) 0(.598)
1039 1 .1 0(.924) 0(1.00)-0(1.00) 0(1.00) 0(1.00) 0(1.00) 1(1.00) 0(.645)
1041 0 1 - S - .- - - T 1(.645)
1042 I 0 0{.995) 0(1.00) 0(.973) 0(1.00) 0(.985) 0(1.00) 0(1.00) 1(.580)
1049 0 1 - - .- - - - - -
1050 0 0 ) - - - - -~ - - 1(.636)
1053 0 1 - /// - - - - - - 1(.738)
1054 0 0 - - ~ - - To- - 1{.538)
1059 0 0 - - - - - = - 1(.512)

qee

-
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TABLE 16 - " .
(CONTINUED) '

3 ’ _

N N N
. Notes: ’ . ' . ' .

s B : ' ‘

. (a) The table includes results for known endowment reference cells é%d fqr cells in'which *
the presence of endowment is indicated by a discriminant run. ¥For comparison, the
table includes results of disgriminant analysis in which all referenge cells were in- . 7
put as endowment bearing. « . . . & e

' (b} The presence of endowment is indicated by’ one and its absence,by ‘zero. The figures
in parentheses are the probabilities "associated with the occurrence forecast of endow-
ment. . » . . . .

. .

; {(c) A stepwise discriminant analysis is used in which the Mahalanobis and Wilks. criteria

' are used separately. The results obtained are the same in each case. The variables
1nput are: AREA 2, AREA 3, AREA 4, AREA 8, AREA 11; CNTL 6, CNTL 10, CNTL 11, CNTL 13,
CNTL 15. DYKE 3, DYKE 4; FOLT 1, FOLT 4.

s * . . ~ }
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similarity of dFscriminant function scores between the cells
is indicated. When the discriminant function applied includes
variables ghat are pertinent inyaccordance with accepted ore
genesis coiéfpps, and if these variables are relativély heavily
weighted, then the function is aﬁ important one with valid re-
sults. On the other hand, if ‘the discriwinant function car-
ries one or more heavily weighted variables that may be. pecu-
liar to the known endowment cell used as a "pfesent" input,
butf whose role is not believed to be i?portant in ore genesis,
. then both the function and Sts predictions require a deeper

]
examination to determine if the uniqueness is fortuitous or

\*;epresents a different geological enyironment, or if there is
éome other explanation demanding additional investigation.

IF is against this baFkground that the eight discriﬁ-
inant functions obtained separately in each run described
above are discussed. Further, the validity of the unknown
endowment cells forecast to be endowment bearing 'will be eval-

- uvated accordingly. ’ L , .

The standardized discriminant func?ion coefficients
calculated for each run with one kndwn endowment cell input
as -a "present" case are shown in Table i?. As before, the
discriminant coéffiéients have been conveLted into percgntages.

In{the eight functions shown in Table 17 the most
commonly selected variable is AREA 3 (5 times), followed by
CNTL 15 and DYKE 3 (4 times each), and CNTL 6, CNTL 11, and

CNPL"13 (3 times each). The remaining variables, regardless

n

e




details.

— & ’ 4 B
' # -
b TABLE 17
. * - 3 ' ' 1
RELATIVE CONTRIBUTIONS OF VARIABLES TO THE 2-GROQP DISCRIMINANT FUNCTIONS
a ' USING ONE REFERENCE CELL AT A TIME
All . i . . ’
Reference, Particular reference cell used as showing endowment presence
Variables Cells :
Input _Input 1013 1016 1021 . 1023, 1029 15038‘ 1039 104‘2\
AREA" 2> < - - - - - -1 e -
AREA 3 24.3 23.7 42.2 - -8.1 - -29.9 11.9 -
"AREA 4 - - - - - 17.5 -.7 7 9.0 -
AREA 8 - - - - - - - 9.4 - -
AREA 11 - - - 38.8 - . - = - -
CNTL 6 = - - -8.0 - - - 7.8 -21.7 -
CNTL 10 19.4 - - - 68.0 - - . - -
CNTL 11 - - - -, 11.8 . . - 16.8 -20.5 =
. CHNTL 13 -8.3 -59.0 ~29.5 - -8.2 - - - -
CNTL 15 -15.3 - -11.4  -21.9 3.8 - 13.6 . - =3
DYKE 3 21.6 173 ~ 39.3 - 82.5 , _ - - 100.0
DYKE 4 - - - - - - ~5y2 8.4 -
FOLT 1 - - . -8.9 - - - -7 - -
FOLT 4 11.2 - - - - - -9.9° -19.5 -
1See Table 16 for discriminant results; and text for

8€2
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. of their weightage are local to the particular known endowment

"the two-group discriminant function when all reference cells

P o - - i s e ——— S S——— e

cell “used in the analysis.

Each known endowment cell when discyiminated -indivi-
dually has its own discriminant function. While the same vari-
ables may be included in several of the functions, the discrim-
inant coefficient varies. Thus each variable makes a unique
contribution to each function. When all the known endowment
cells are simul;anéously input as showing the presénce of en-
dowment, the resulting function is affected by the strengéh
of the discriminant function coefficients as indicated in their
individual cases. 1In addition, some friables may be elimi-
nated even though locally in éheaconc rned individual func-
tion, they are heaVi1§ weighted. Thisfexplainé why gglls 1013

and 1042, both endowment bearing, are not forecast as such by =«

are input as sho@ing the presence of endowment.

Cell 1013 is forecast a; belonging to ‘the "absent"
éndowment group with a probability of 0.684, and to the "pre-
sent" endowment gréﬁp with a probability 6% 0.316. The pro-
bability figures for cell 1042/ére 0.654 and’'0.346 respective-
ly. . > '

It islseen from Table 17 that CNTL 13 contributes a
predominant 59 percent to the cell 1013 function. However,

the contribution of this variable:is only-8:3 percent in a

-

discriminant function based on all eight reference cells. !

-»

J
{
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(‘ The largerl discriminant function also includes other vari-
" ables not present in the cell 1013 function. This therefore
| : ,
results in the absence of a 'forecast of endowment in this
9 J celi,-altyough with only a moderate probability because the

Y « ‘ °
larger discriminant function also includes all the variables.

present in the cell 1013 function.
The. situation with cell 1042 is rather extreme in
the sense that its discriminant function‘is composed of just
one variable, DYKE 3, the NS to NW trending dyk;'length which
\\\ accounts for 100 percent of its discrimination. The 1ar§er
discriminant function which includes the joint contribution
of the relationships of all other endowment bearing cells also
*é¥includes DYKE 3, but the weightage attached to it is only 21.6
percent of that for all the included variables. For this rea-
son, it is not possible for cell 1042 to be predicted by'the

larger discriminant function.

Also, since the presence of endowment of the type ex-
hibited in cell 1042 is forecast on the basis of the présence
" of one variable élone,2 therefore, every cell that has a mea-
sure of ;his variable commensurate with its score in cell 1042

™~ [4

will show the presence of endowment, even- though under

1/ : : : L
The larger discriminant function refers to that ob- -
tained using all eight reference cells. The results obtained
with the function are also included in Table 17. .
2 o .
I.e., DYKE 3.
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theoretical'éeological‘concepts, this should n;t be possible.
The preéicted endowment in cells 1003, 1013, 1021, 1027, 1028,
1029, 1041, 1042, 1050, 1053, 1054, and 1059 using cell 1042
are all a resul£ of the presence of DYKE 3. DYKE 3 is a post
oré event, and a# has been stated earliér its role has not
been fully resolved. There is no doubt, however, that most
of the known ore aeposits in the region lie adjacent to this
variable, or conversely, this variable appears to be spatially
associated with most of the ore deposits in the region. The
zgrrelation of DYKE 3 with endowment is so high that to avoid
fortuitous predictions, its role has to be controlled in any

stepwise analysis.

Another variable that deserves attention at this

' stage fs CNTL 10, the contact length between AREA 2 and AREA

.

11. This feature is unique to endowment occurrence in cell
1023, carrying al§§ percent weightage of .the variables in the
concerned function. The relationship of this variable is so
strong with‘endowment,in cell 1023, that it becomes almost
impossible to make a prediction of the presence of endowment
in that cell without including this variable. And because
this variable extends into cell 1631 on the south, the strong
relationship results in a prediction of endowment the&g.

| Ce%L 1021's function is doﬁigated by DYKE 3 and-AREA

|
11. -Both these features are local to the cell, in pa*ticular,

o

AREA 11. This cell predicts presence of endowment in the

known endowment cell 1029, a cell that also has a function

<
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dominateé by DYKE 3. The unknown eﬂdowment cells predleted
to.contain endowment bx cell 1021 are, cells 1027 and’ Ef35
both rich in AREA 11 and containing DYKE 3. ‘ /

The conclusion from the above set of rgnsui§/{hat
the known endowment c7lls do not exhibit exactly thg same
geological environment and therefore they may not alll belong

to the same population in a strict statistical sense, It is

7 C N
possible that some of the ore deposits in. the region are ag=—"

{

sociated wi different statigraphic levels of basically the

same type ofj rocks, indicating an interruptive type of erup-
\ “w

’tiﬁe’geo;ogical activity. What is required therefore "is some

kind of discriminating function that can predict all the known
, B . v
endowment cases or at least most of them, so that a greater

f

credence/gan be attached to the predictions made in the un-

v

known endowment .cells. To do this requires manipulabting the
’ } ! .
forced inclusion of the variables believed to be fpndamental-

ly associated with ore occurrence as part of the discriminant

S

function.

The above set e¢f runs also makes the analyst aware

-~
)

of the spurious predictions that are likely to be made, e.g.,

cells 1027 and 1035, or cell 1031. The role of the respon-
1y / [}

%

sible variables in such cases can therefore be controlled.
' %

N

27

9.5.2 Other 2-Group Discriminant Functions

a

-~

A set of three two-group discriminant analyses was

J e !
! ¢
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A .
’performed using pre-specified inclusion levels of variables

P e ’.7 sy T P Ty —4——%—-—..—-»-_._.._.. e w
"

in two and an e&ual inclusion level in the third. The vari-
ables selected for d}scriminationdare believed to be the most
peftinent to the endowmen£ in the region, &@nd their inclusioff .
orde; is based on subjective judgment in line with the accept—

ed thought on massiye sulphide ore genesis in the region. . The

analyses were made using the following variables.

First Analysis: AREA 3, CNTL 11 . -
CNTL 6, CNTL 13, AREA 8, FOLT 4

/

) CNTL, 15 . }
: CNTL 10, DYKE 3 i o
Second Analysis: AREA 3, CNTL 11 n?
- ] Y CNTL® 6, CNTL 13, AREA 8, FOLT%4
roo. gmas |
Syt 10 - o

. Third Analysis:2 AREA 3"AREA 8, CNTL 6, CNTL 11,

CNTL 13, CNTL 15, FOLT 4

Vol .

In the above.ligtings, the top row is assigned the o’
highest inclusion level fdl;owed by decreasing inclusion lev-
els in the lower rgggLﬂ)Wheremﬁwq*qf_more variables are shown

- - - Q- . _Q\ i

to be in thé same row, they have an equal inclusgion.level,

and the order in which they will enter the discriminant func-
\ 1

tion is. based upon the Wilks or Mahalanobig™ criterion Fe— !

lected. The standardized discriminant function coeff%cients

i

{ L3
\
N
- <

lxbe results obtained are identical in both cases.

» 7 <

o Zan equal inclusion level istspecified for all vari-
ables in the third analysis. T |

\ ° ﬁ

-
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are shown in Table 18 for theé three analyses. These are ex-

¢ . .
pressed in terms of percentages of their total absolute value.

s
.

of ?hé{fiye-variabkes constithting the discriminant function
in the first analysis, the highest contributionis made by
DYKE' 3 in spite of the fact that this’ wariable had been as-
signed ;onfhe lowest inclusion level along with CNTL 10, Which
also makes a high contribution, almost astucp ds.that'o%lthe

second highest contributor, AREA 3.
e ? . '
DYKE 3 is omitted from the second analysis, and as

such, there appears to be an increased contribution by the

remainﬁng four variables, the highest contributor being CNTL

X .

10, -and the maximum increase 1n value belng shozg by FOLT 4,

a feature that is probably, ev1dence of its relatlonéhlp with

4
\

DYKE 3. -

In the third analysis, both DYKE 3 and CNTL 10 are

omitted, and despite the same inclusion'lévei, no fresh vari-

3

able is included in the equation. AREA 3 shows the highest
increase in value and makes the maximum contribution.to the

function.

»
3

The roles of CNTL 10 and- DYKE 3 have been discussed

previously.l CNTL 10 is a very local feature in cell 1023,

and since it is absent in all otper known endowment cells,
it is bound to be highlighted in a discriminant function.

DYKE 3 carries a strong spa@iai correlation with most, of the

a ' » - N ’ o ‘{/
lSee Section 9.5.1. \\ . (‘
M i

2
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\> .+ 'Variance ‘First Second Third
’ Qame Analysis Analysis Analysis
R A v
bi t ‘ ,
: L PO ’
) AREA 3 } 22.5 " 29.9 47 .6 J{/
R | " CNTEL 10 22.2 ¢ 30.4 -\ ‘
' = oo - % T, ) , ,
| s ‘ CNTQ 5. | -16.4 g -20.6 ‘ -25.6 ¢
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known endowment cgllS. Therefore, fts contnibu?ion is dis-

proportionately high.

. 5

The predicted values obtained by the three runs are

L]

'shown in Table 19.> Tbg’regylts are shown only for those cells

« - P N

that are known to be endowment bearing, and for those unknown

. endowment cells in which endowment @as been forecast.
, . .

Q! &

., . The.primary evidence of a good ‘discriminant function

is that it should correctly classify the maxipumggumber of -
known cells;‘ This ig a%eomplished by  the first\anélysié which
correctly ¢ ssikies all the known eﬁdowmfng cells éxpept Gell
1o42. H?WFY?K; the omis§ionlof vériable,DYKﬁ 3 ;n t?e second

‘analysis results in cell 1013, 1021, and.i029 being mi%pLaséi-

fied in addition to cell 1042. . The reéults from thd second

~

anal§sis therefore gre only with reference to the remaining

four(known endqwment cells, i.e., cells 1016, 1023, 1038, and
b‘ '

1039. In actual effect, the results ﬂre with reference to

on%y three cells beéause cell 1023 is unigqué in.having a very
close -as§ociation with CNTL 10. \i
. The omission of both CNTL 10 and DYKE,3 from the

thirdﬂfunction results in the restoration of cell 1013 as

’shbwing the preéepce of endowment, b@i'becausé ¢f the absence
. "3 . 9

“ -~

‘/bfoNTL 1dh-cell‘1023 now shows ah'absence:dfkendowment.

>

Le . The above described changes broﬁghfvabout by omitting

a certain'eriable are evidence of~the strength and weakness
. - e ) )
oftdiscriminant analysis. ﬁi therefore emphasizes the impor-

-

;
“tance of selecting the "best" vatriables. The fact that the

i » - L.
Y\ N ' ¢ -
\ [

|




R S -

p \ . .
G N S
o Tl mBE 1 .
. ,
. PRESENCE OF ENDOWMENT AS FORECAST BY >
\ . . "2-GROUP DISCRIMINANT ANALYSES' ‘
. Csll ' ; (ﬁpalysés No. 5
“ No. '
. A
{ “
1002 = ey 1(.655) ;  1(,758)
1003 1(.840) 1(.653) 1(.756)
1007 - - 1(.555)
' 1009 - w 1G512) . 1(.647) v
' 10»2 1(.685) 1(.753) 1(.829)
A~ 1013 }(.769) . 0(>550) 1(.592)
) 1016 v 1(.527) 1(.782) | 1(.848) -
1020 - < - T~.1(.569)
.- : 1021 1(.771) 0(4904) H 0(.816)
: 1023 1(1.00) 1(.999) 01.793)
- . 1027 1(.7%0) - - 3
g 1029+, 1(.997) 0(.796) 0(.664) ..
_ o+ 1031 1(.959)__  1(.969) 1(.687)
11032 - 1(.515) 1(.649)
‘ 1038 . 1(.987) 1(.9¢6) 1(.978)
e 1039 1(.989) 1(.989) %Q»9ss)
’ ) 1041 1(.977) 1(.628) (.738)
1042 0(.629) 0(.828) 0(.7os)a
) 1045 - - 1(.551)
: 1046 - - 1(.506)
- ) 1(.578) “?j,847) 1(.855),
1053 1(.824) - -
! ~
! -~
[lOne indicates. endowment presence and zero, absence. Figures

'y

«fF

in parentheses indicate probabllitles associated with predlcted

endowment. presggce

-

A4
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' indicates*hhat all the members are not dra

~

sent or absent by the inclusidh or omission o

from the same

- S vt

parent pqpulatlon in a statlstlcal sense. / Cell 1023 is per-=

haps the best example Ln this regardsbecause the endowment
/ .

o

associated with the 9%11 is unique in
&

~

eing associated with

/ ~
- tuff and agglomerate (AREA 2) and not with rhyolite (AREA 3)°

-
&s in the other in§tances. Othe? /implications are discussed

/ e
later.

/ > -

In Table 19, all three analyses indicate probgpility

of enddwmeﬁv in cells 1003, /1012, 1031, 1041, and 1049; two

of the three runs also predict endowment in cells 1002, 1009,

aﬁé 1032. None of thegg/cells has any known endowment asso-
Ns

ciated with 1t, of thgse, “cells 1002, 1009, 1012, 1041, and

1049 have also been/éredlcted as probably favourable cells by

.l However, regre551on analy51s does not

regre551on/analys'
predlct endowme £ in cells 0657\1931 and 1032. Also, cells"
101¢ and 1033 redicted as very favourable by regression are

not denoted #s favourable by the three discriminant runs shown
/ h .

o I \
in Table lﬁ{ -This latter situation is ggzter understood when

it is seen that of the known endowment cells 1042 is not pre- -

] /
dlcted to contain .endowment by any of the three runs, cells

1013 and 1023 by one of the three runs,}and cells 1021 and,

1029 by two of the three runs. When these cells are not -

- lgee table 9. - \ L

some variable%J

|
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predicted as endowment bearing, then those ceﬂls bearing sta-
tistical similarity with them, e.é., cells 1010 and 1037, will
also not be .predicted.

The above crftiéism ipould not detraqt'ﬁfép the uti-
lity of a 2-group analysis, particulafly when the general en-
vironments associated with known ore bearing cells 40 not de-
viate to an extent that the discriminant functionails to
classify them properly. From this point of vigw, the t&o~
group disc;iminanthfunction should work‘efficiently gver areas
the geology of which is not ?omplex, particular%y in terms of
more thah one or twqf%ycles oflprﬁcésses. It should. #lso work
well at a reconnaissance level where the smaller scale of map-
ping do;s not determine the more complex and local features

of geology.

N

™~

\\

~ 2
9.5.3. 5-Group Discriminant Analyses A -

o
)
iy

wd 4

" The following groups are selected for the first five-

grbup set of analyses. The selection of variables and their

1\

input order is made in accordance with their pertinence as ex-

— ol
plained for 2=group discriminant analyses. /phe known endow-=

»

‘ment celld that the groups represent are also shown, below:

. . 249

-
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Group No. Range of Value ($x106) Ivéluded Cell Nos.
’ .
0 ’ < 10 - 11 unknown endow- )
. ent cells. o 4
1 10- 50 . 1013, 1023, 1039, .
7 1042
50~ 500 , 1016, 1021 -
3 : . 500-1500 1029 )
> 1500 1038

1

It has been \tated earlLer hat the range limits are

based on pragmatism. For such groups as #3 and #4 whlch have
only one known cell each, the rang becomes .practically mean-

ingless because all predlcted cases falllng w1th1n these groups

refer to the specific endowment known in the single cell com-

-posing the 'group. 2
T%e following variablgs are input in the three anal- 3
1 2 ) ‘

‘yses to be described. All vayiables falling in a row have the

)

same inclusion level, while ose on the lower rows have re- ,

/ ANALYSIS #1: , CNTL 11 ”

, CNTL 13, AREA 8, FOLT 4

: l
3, CNTL 10 l

ANALYSIS #2: 3, CNTL 11

6, CNTL 13, AREA 8, FOLT 4 °*

- . . .
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ANALYSIS #3: AREA 3, CNTL 11.
( ‘ CNTL 6, CNTL 13, AREA 8L~FOLT‘4
CNTL 15 .-

- L4
- * /
PR S /

+

. ‘ 4’
The discriminant function coefficients, standardized

and converted to relative percentages, are shown in Table 20
Uy S ar.e

.

for the three analyses. ) R o

The dlfference in the three analyses is that whlle ‘

. . €
T 7 L

the first. one 1nclud£s all the 1n%ut variables, the second
‘ analy51s does not-include DYKE 3, and the thdird variant.ex—

cludes DYKE 3 and CNTL 10. Of the four-dlscriminant EUnctlons ?

. - ...
. . . >

e extragted in each- of the thgge analyses, Table 21 shows res - 7
. Wy :
~=«_ ., . sults based on the first functions in each case. In the flrst

-
N

. _ analy515, ‘+the first..function accounts for 42 percent of“the~; ~

cumuldtive eigenvalues, for the second: analy31s, 51 nercent, | 3
I “ar j
and for the third—analy51s, 65 percent. The 1mpllcatlon is © -

thad the est Qesults are obtained in the third case. All - !

three resu ts,a;e'compared in Table 21 for both the known en-
WP . *

oy

downient cells;'and for the unknown endowment cells that have

a predicted endowment.

4

Referring first %é;jabxe 20, it is-seen that AREA 3. -

-

#\/ makes the @ighest contribufion to the discrimination in each

of the three analyses, and that the contribution of this vari-
» .

able increases with. the omission of DYKE 3 and CNTL 10. Vari-

2 i

. - |

ables CNTL 13 and CNTL 15 remain unaffegted with the omission

of DYKE 3 and CNTL 10. The roles of AREA -8, CNTL 6, and CNTL

( 10 are significantly influenced by the removal of DYKE 3. @/
AN I . L - .
N \/4, _ T g f

i\
5
A
~
\
—
N



TABLE 20

STANDARDI'ZED DISCRIMINANT FUNCTION COEFFICIENTS
IN 5-GROUP ANALYSES Al

+

*

252

/

: Yériénce Analysis No.

Name 1 2 ‘ 3
_TAREA 3 - 25.0 34.1 36.3
. AREA 8 £.1 -2.5 ~2.6
. oNtL 6. 0.9 -9.9 -9.3

> CNTL 10 11.8 43:9' -
ONTL 11 0.8 S15.7 “-15.7
CNTL 13 ~13.9 ~13.5 -12.7
CNTL 15 . -13.8 -10.9 -12.8

" DYKE 3  21.6 - -
» ' FOLT 4 8.0 7.5 10.5

1

» -

1

The coefficlents are ekpressed as perantages, indicating

their relative contrlbutlons to the dlscrlmlnant function..

———

~
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The removal of CNT4 10 in analysis #3 dbéé not appear to in-

fluence any other variable, an ‘indication of its highly local

and independent nature. Ohviously, the predicted presence of

" an endowment when the variable CNTL 10 is present”in the func-

tion will become suspect when gbe same cell shows no predice

[ 4
!

tion on the omission of CN%% 1. The only possible exception _

-is a cell with a known endowment.
' % - ’ . o -
v Referring now to the predicted endowment shown by the

' three analyses 1n Table 21, it is seen that the most con51st—
&
ent results are obtained for cells 1007, 1012, 1032, 1041 and
. . - - R o .
. 1045. None of these cells originally had any known endowment .

associated witﬁ'it. Cells 1007, 1012, and 1041 have been .

classified as belonéiﬁg‘to group #2, 4.e., the $50~500 mildion
s . oo .
. range. Since the group range is made to accommodate endowmente

s

bearfng réference cells 1016 and 1021 worth 74.48 and 244.66
L .. 1 .
million dollars respectively, the grotp actualfy indicates a ¢,

‘yvalue closer to $110 million, the mean of the two knowh céses.ﬁ

14 . .

‘These threF cells have alé% besn predicted ®as endowment bear—

’

N

ing by the 2-group function as well as by the 1terat1ve re-
gression analysis. The predlcted values for cells 1007' 1012,
.

and 1041 by fegressi?p are $12.4 million, 16 million and $15 !

million respectively. While these values appear anomalously

\ high amongst the unknown endowment cell predictions, -their

values appear low; when compared to the discriminant function -,
: . P

analyses. There are two reasons for this. The first is that “

o - - +- *
the discriminant function compares the-group value as such

.
L) ¥ N
( S
. . « v -
. o .
.

.
.
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% = TABLE 21- -
FORECAST ENDOWMENT GROUPS A
[IN 5-GROUP DISCRIMINANT ANALYSES A . -
Cell ‘Knawn Analyéis No.
No. .GRP 1 2 3 ‘
1002 - - 2(.409) 2(.356). o
1004 - - 2(.589) 2(:584) . -
1007 - 2(.724) 2(.805) 2(.796) ;
1009 - - - 1(.609) .
1010 - - 3(.710) 3(.673)
1011 - - - 1(.772)
1012 - 2(.829) 2(.792) 2(.781) P
1013 1 - 0(.513) .  0(.701) 1(.904) . . -
1015 - 2(.616) 2(.488) 2(.478)
1016 2 2(.998) 2(.995) 2(.995)
’ 1018 - - 3(.519) 3(.506) |
-1021 2 3(.577) 0(.485) 0(.464) .
1022 = - 3(.858)  3(.846)
1023 1 . 1(1.00) 1(1.00) 0(.625) e
1027 - 2(.609) - .-
1029 3 3¢1.00) 3(.758)° . 3¢.753)
1031 - 1(.886)  1(.939) & = . —
: - 1032 - 1(-.750) 1(.930) 1(.995)
. #1033 .- s 3(.676) 3(.613) -
1038 4, 4(1.00) , 4(1.00) 4(1.00)
. 1039 1. 1(1.00)  1(.999) .. 1(.999) ‘
. —r I M L' - — . 1
i .~ 1040 - - LT . 1(.559) !
) 1041 - 2(.949) 2(.449) -~ 2(.410)
1042 . .1 1(.543) . 0(.451) 0(.422)
1045 - 1(.818) 1(.677)  1(.918) .
1050 = 2(.567) - : - : o
. © - 1053 - 2(.509) - - : -
f =, - .

.- lFigures,in parentheses are the associated prvbabilities of
occurrence in the particular forecast group. The results
. ( for the known endowhlment cells are underlined. See text for
” details.

3
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ignoring intermediate values between the groups. Regression
analysis considers the continuum of forecast values drawing
closer to t;e most like;y va}ue, but b%%ause of%iteréiive re-
gressions, some of the varianéé is }ost.

While cells 1032 and 1045 are both Classified as fall-
ing in group #1, i.e., the $10-50 million range, they are pot
‘forecast as such by regression analysis. |

Cells 1002, 1004,.1010, 1018, 1022, }931, and 1033
Qhave been favourably grouped as endowment bearing. Of these,
cell 1031 can be ignored because its endowment prediction is
strictly ‘related to the presenc; of CNTL lJ, a variable of

highly local significance, and associated with only one en-

P

.dowment cell, 1023. 1In the absence of CNTL 10 in the func-

tion, no endowment is forecast for this'cell, much like the

case of cell 1027 which gives a high prediction when DYKE 3

>

is present, but is reduced to a barren classification other-
wise. Of the rest, cells 1002, 1010, and 1033 are very fa- ,

vourably forecast by regression analysis. 1018, .

and 1022 are not. ”

T Of the cells that are predicted by only one of the

thre®e analyses, cell 1009 is also predicted by regression,

but not as favourably as the ones mentioned earlier. .

However, the problem still remains that the known

endowment cells 1021, and 1042 are not correctly predicted.
/ p)

« ]

This is discussed ih the next section. .

RO

Pt Mkt
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9.5.4 5-Group Discriminant Analyses B

‘ »
» ~
’

The following groups are selected for the second five-

group set of analyses: * Jj ’
\
Group No. Range of Values ($x106) . Cells Included
“ 0o o- 10 All unknown endowment“‘
. ‘cells ¢ . e

1 . 10- 100 , 1013 1016, 1023, 1039,
: _ 1042 _ ‘

¥ ' 100- 500 .+ 1021 T -

500~1500 1029 ¢

' "> 1500, 1038
-

o
A

The difference between this set and the preceding one is that

a change has been made in the value range for groups #1 an&‘ »

2, as a result of which, ®ell 1016 which ori@inally‘fell with .

cell 1021 in group #2 now falls in group #l1. The effect of

this/gpange is analyzed in this section.

r'4
The set of variables used, and their’inclusiqn lev-

els, is the same as for the 5-group set A des¢ribed previous-
\u' .
ly. As before, three runs are made, the first one 1nclud1ng
ff; N
all input variables, the second with DYﬁE 3 omltted, and Ehe

w

thlrd with both DYKE 3 and CNTL 10 omltted : ¢
\ , . ~
The highest discriminant function of.the four func- .
. . . .
Figns’extraéted in each of the, three analyses, accounts for.

45 percent, 64 perceht, and 76 percené of the“cugdlabive
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eigenvaiues in the first,'second, and third énalysis respec-
tively: The standardized coefficients of this function, con-
verted into relative percentage are éhQWn in Table 22."DYK%

3 predominates in thé first analysis thle AREA 3 does in the
others. In géhéral, the variables host,contributiag to the |
firﬁt discriminant function in each analysis“%re AREA 3, FOLT

4, CNTL 15, and CNTL 1l. The omission of DYKE 3 results in

a sigriificant increase in the contribution of CNTL 11, AREA

3, AREA 8, and FOLT 4. The omission of CNTL 1Q does not af- *®

fect any variable except CNTL 1ll. .

t

The predicted estimates S%the threé analyses are
shown in Table 23. The first observation in the table is
that with.the ex®eption of known endowment cell 1023 in the
third analysis, all réferénce cells are‘%rédicted as endow-

flent bearing. The case of 1023 is not unéﬁpeated because of

the absence of the variable CNTL 10. .

L]

A comﬁarison of Tablés 21 and 23 indicates thé anti-

£ )
thetic relationship petween the centroids of multivariate re-

lationships in the known endowﬁent cells 1016 and 1021, 1In
the 5-group aﬁalyses A described previously, both these cells
are iﬁc%pde&‘in group #2, and the result is that cell 1011
cannot ‘be predictéd. The explanation is also clear when tﬁe
coefficients of discriminant functions are compared with the
variables present in thése cells. While cell lOlGOis rich ini

AREA 3 it is devoid of CNTL 15. Both these variables make

significant contributions to the functions; and both of those

+ ~
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~ STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS v
s c IN 5-GROUP ANALYSES B ‘
\ . X [N
Variable Analysis No.
* Name 1 2 I - &
9 _{i;., ‘i'l . " -
- S : -
( AREA 3 21.3 ' 34.7 39.7
AREA 8 0.6 -7.6 ~ -8.5
CNTL 10 18.6 131" -
" CNTL 11 u -0.8 -12.3 -20.4 '
. g P2 % ’
.o DYKE 3 ©32.5 / - -
'FOLT 4 10.7 16799 6.1
- ‘ pe 0 \ e [y .
( o

@

lThefqoé ficients are expressed as Qercedtages, indicating
th%;r rglative contributions to the discriminant function.

1
v

j % < ‘
F 3
.
‘ ¥
/ : ‘on,
", , d
N,
% h
1] ’
) //
P
g P Ste
s © | .
- L
- )
- -~




ﬂ , ) " TABLE 23 ? o
'C“.‘ ' ”f b . s r

y FORECAST ENDOWMENT GROUPS

o * IN. 5-GROUP DISCRIMINANT ANALYSES B *
T ‘ -
‘ o Cell Known | Analysis No. | .
’ ‘ No.: GRP ) 2 3
g {
. ' ‘ 1001 - - 3(.465) 3(.398)
P - ©o1002 0 - - 3(.505) 1(.474)
: . 1003, - f- - 1(.521) .
g - : 1007 - / - 1(.465) 1(.735) ~
r N 1009 - P £3(.677) 3. 517)‘ . .
: \ ® 1010 - 0 - 3(.490) 3(.476) , s
G . © 1011 - [ - " 3(.395) 31.375) . :
, CE 1 12 - ;- - 1(.604) ’
' : . ; i'z( .493) + 3(.676)- 3(.582) w
% O : f
. , i - > 1(.645)
D SR 1e JaRas 620) 1(.673) 1{.841)
f !
: - ' -1Q17/ _3(.393) 2(.378) ,
©o101 - < 2(.551) 2(.539) - ‘
‘o192 | = - , 1(.468)
© 102 2(.941) 2(.507)  ° 2(.494% ;
* T iom ., - 2(.572) 2(.560)
; r;jf.' ©1023 41 1(1.00) 1(1.00) 0(.427)
P . e 1025 ,° - C- " 3(.576) 3(.494) ° .
/ 10277 - 2(.924) - - LT
s .4 1029 . 3 3(.943) *3(.483). 31.449) - .
40 | 2 , - ‘ . ' .- ‘_;;" . R
e S 1081 - 1(.927) - 7~ 1(.900) -
o : 1932 - - 1(.694) «1(.697) 1(.865)
- ) Y033 - - .= '7 3(.605) 3(.488)
° ° /1038 4. . 4(1.g0f  4(1.00) 4(1.00f =
1039 1 '1(.997) '1¢(.997) 1(.997) .
2,0 1041 . - 7 2(.591) 3(.49Q) °  1(.444) )
~ -1042 1 2(:593) 3(.415) 3(2388). coh
. 1045 - - 2(.517) 2(.484) S
- - 049 . - %, - 1(.570) 1(.716) '
) . 1050 . - *2(.860) ., 2(.364) . 2(.347) , . e |
© »1051 | v~ - 3(.361) ° 3(.340) <
L. T, los2 - ~ 2(.491). 2(.479) ‘
U0 10530 - - "2(.871) - et
.- N, \_'L - o Nt ' .
{ lF:Lgures in parentheses are probabllltles of occurrence in
‘.. ° the particular group.- The forecasti%yalues of known_ éndow-
LT ment cells are underlined. See text for details. *'
‘ . " - . , . \
w‘ ‘ f s “on v ) ¢ b (l ' \ - § - L N *
: - » A - Y f - . — Eh

T A TS LT



> B : Lo
.
v E . .
P egrnie iy abiaten B st ———r A s . oo -— -
.
o

\ a

are present in cell 1021 which is rich in CNTL 15 but rather

4 / A - ¢
( . ' - - v g )
R poor in AREA 3.

*

, " "A gsimilar é&xample is that of cell 1042. This known

X | endowment cell cannot be so pre§§cted in the 5-group A anal-
% & _yses #1 and 2. Bt the transferlof cell 1016 froﬁ‘group $2

s to group #1 in the new grouping B resultg in the correct en-

, dowment prediction/for4this cell b& all three analyses.
~. - ) : , N\
‘It is essential, therefore,-that the variables sk-

lected be pertlnently “best" and that an optimél selectioo

i = 7=
*

of groups be made so that known endowment cglls 1n&luded in

-t l" 0
”ﬁ growp are not antithetic w1th one ahother in terms of mul—

tivariate relationshlp. The ideal sxtuatlon is thét all cases

. -
shHould be drawn from the same population. HQWever, as long

e TR B e e e
+
\

as the known endowment cells themselves'are predlcted as such,
LN [4

& the predictions for the unknown endowment cells should be

J

3
-

s
credible.

P . ' . . . . . . a 1
In this regard, a set of eight discriminant runs was

1 ‘ 2

P

»

) .maae over the 6§—cell daéa, with each onQ@ endowment ce}l be-

of

g s £
'

AY

ing,aésigned to the zero group in turn. The objective was to

see if the value of this cell could be predicted from the re-

maining seven reference cells. In this manner, the general °

{krelationsﬁips amongst such cells can also be observed. The
T w n
varirables used:are AREA 3, AREA 8, CNTL 6, CNTL 11, CNTL 13,

NTL 15, and FOLT 4. Since a known endowment cell isﬂﬁssigned L

a zero value in each xun, the dlscrlmlnant functlons obtained
i
». are different in each case. On oqe function is extracted

b
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" )
when cell 1038 is omitted, and tHis function includes one vari-
‘ x' ) Lo .

“able, CNTL 11. In all other cases, the¥e is a general uniform-

o s
ity in the va;'ables included and their coefficients. For the
&

~ - ¥ -
N highést functioen in the remaijing seven runs, AREA 3 makes the -
4

highest consrlbutlon, followed by CNTL 11, FOLT 4, CNTL 15,

[N

and AREA 8. \NTL 6 and CNTL 13 are 1ncluded in only three runs
¥ » ’ .
A . ; ! .
each. " : : *
/l - v‘\ / hd
4 The results of omitting one endowment cell at a tjme

are shown in Table 24. It is seen that cells 1013,-1023, and
. ‘ . : ' s
1039 do not receive a predicted endowment. The lack of pre-

diction in cell 1023 is easily understood because of éhe ab-

‘sence in the input variables of CNTL 10, the variable most lo-

cally related to endowment in this cell. And while cell 1013
. . . ", . P .o
is predicted to belong to group zero with a probablllgy of *

. n
0.700 by the first discriminant function whic¢h acgounts for

-

71 percené of the cumulative eigenvalue, it is predicted to .
, Dl
belong to'group #2 with a probability of 0.254 by the second

discriminant function which accounts for 19 percent of the '] . .

total eigenvalues. Simiiarly, cell 1039 is predicted to be-

+ L

¢ l#ng to .group #l with a probabllltg of 0.409 by the second ,
"B

dlscmlminant functlon of that run whlch accounts for 12 per- , .
~ gent bfathe eigénvalued. *The first function in that:run a%— ‘ |
“counts for 83\pgrcent‘of the eigenvalues. ;0 ’ éﬁ ,

-

Cells 1016, '1021, and 1042 have been predicted to

belongwio a higher group than known. Obviously, this is also
-~ ™ !

a measure of the similarity of these cell$ to the centroid of

- o

L 4 , -~
.
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o , TABLE 24, fe - %
' ‘»FORECASJ ENDOWMENT GRQUPS FOR KNOWN ENBQ!?ENT CELLS ASSUMED TO HAVE ZERO ENDOWMENT, "
7 N & . ONE AT A RIME IN EACH DISCRIMINANT RUN Tt o=
o o Predictéd ‘ KNOWN ENDOWMENT CELL OMITTED ) o
ceil ﬁg Alirg’glls . - __~ N PREDICTED GROUPS ‘ % l a
) No. Known In \ 1013. 1016 - 1021~ 1023 1029 1038 1039 1042 ;
- . N N ? g
Y : . 2
1013 1 3(.582) . 0(.700) 1(.€8M 1(.574) 3(.617) 1(.373) 11.00) 3(.479H~3(.641) .
-101% 1 1(.841) 1(~943) 3(.663) 1(.529) 1(.9Y0) 1(.834) 171.00) 1(.7175‘1(.911) _
' _lo21 "t 2 2(.494) 2(.606) 2(.%90) 3(.480) 2(.504) 2(.716) 2(1.00) 2(.459) 2(.507) \
T | : — : .
1023 L1 D (.427) 0(.686) "0(.526) 0(.7%6) 0(.489) 0(.584) 311.00) 1(.344) 0(.469) .
| : i = v N L.
1029 - 3 3(.449) %24.669) 3(.669) 3(.854) 3(.472) 2(.506) 3(1.00) 3(.390) 3(.475) (o
. ) s - ) ; N
1038 ‘4 4(1.00) 4(&.00) .4(1.00) 4(1.00) 4(1.00) #(1.00) 3(1.00) 4(1.00) 4(1.00) A §
1039 1 ©1(.997) 1(.899) 1(.99%) 1(.998) 1(.999) 1(1.00) 0(.250) 0(.538) 1(.999) 3§ L
\ . . { ‘
1042 1 - 3(.388) 2(.405) 2(.,405) 3(.445) 3(.406) 2(.494) 0(.989) 3(.341) 3(;409)\?' :
B - ’ ™, <
. -
» LThe results shown above are based on the S-Gfoup B analyses. Underlined figurés indicate
i predicted endowment in known endowment cells assumed barren for £he particular run. Figures
in parenthesis indicate probability of belonging to the predicted group. ‘
\ J . T . - -
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cell 1029, the only cell belonngg in group #3 in which the
above thnég cells have been classified. *Cell 1029 which, on
the basis}of its Kéown endowment falls in group #3 is classi-

fied in groyp #2. Cell 1038, which originalI? belongs to
(-4
f

group #4, has now been predicted to‘belong to group #3. TWe
- he ]

cases of cells 1029 and 1038 can be understood when it is ob-

|
served that there is only one cell, 1029, which constitutes .
o e . z
group #3, and only one cell, 1038 which constitutes group #4.

¥

So when these very cells are assigned a zero group,“there no
ionger remainsh»any case of group #3 or #4, depending on what
cell is omitté&. Therefore, the predicted classific;tiog of -
rtheée cells is in the ﬁighest grouping available next to the
dctual original groups. S ’

But the point to be made here, is that the #esults
prove the effectiveneés of discriminant analyLis in spite of
a lack of complianJe with all the assumptions. And more ih—
portantly, the'resu;;s‘are evidence oquuangitqtive relation~-

ships existing between predictof’%ariables as selected, and

the endowment in the region. P

When all kpown endowgpnt cells are included in the

analysis, cell 1016 is class¥fied in its own group, but cells

1013 and 1042 are »still classified in higher groups. And
‘{ ’ .
while the second dlscrlmlnant function classifies cell 1013 C !

in its own orlglnal group #1 with a probability of 0 161 thlS
is 7ot the case with cell 1042, which the second dlscrlmlnant

function clasgifies to -group #2 with a probability of 0;307:

“+

.| \ © 1&&\ '
‘ 3

-
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- Thus, cell 1042 ;s expected to contain a greater endowment

than that known./ ‘ ir
» ; N o ,
of the{cells/with no known endowment, the most con-
{
e . ‘t . L] i A
SLStent-result7 obtained in the three analyses shown in Table

-

-+

23 are for cells 1032, 1041, and 1050:] Cell 1032 is not pre-

t

dicted as‘havyhg endowment by the iteréfive regression anal-
ysis. This cell received a favourable prediction by about all
runs of discriminant analysis. The reéaining two célls, 1042
and 1050, thf former in particular, are assigned high values
by theeregrdssion model. 3

In/anaiysis #17 the prediction of endowment in cells
1027 and lﬁg3 is based only on the préﬁence of DYKE 3. When
the geology of these cells is QEPjectively evaluated, the re-~
Eults apple tc be spuriousf particularly when they are no
longer fa ourabl§ predicted on the omission of DYKE 3. Simi-
larly{ the prediction in cell 1031 appears to be the result,
Bf CNTL 1f only, and thus of little credence,J In general,
the three analyses appéar to ovérdlassify cases in groups #2
and #3. |[The s£tuatioﬁ is summarized in Table 25.

}In the discriminant apglysis performed, it is assumeéd . -

!

that allfgroups have an equal probability of occurreﬁbe pro-
vided off course that the necessary geological re%ationships

pertaining to the centroi&i%% the group are present in the
- ' #
cases analyzed. Of the eight known endowment cells in the

region, [there are five that fall in group #1, and one each in

' groups #2, 3, and 4. There are 56 unknown endowment cells

N
- >
.
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A TABLE 25 . ' -
1 - K .
. 5-GROUP ANALYSES B: NUMBER OF CASES /
" CLASSIFIED IN INDIVIDUAL GROUPS ’ ¢
) ' PREDICTED
> Group .Input 1st 2nd 3rd
No¥ Cases Analysis Analysis Analysis
0 56 50 37 35 -
1 , ° 5 7™ 11
e 2 1 . 7 / 7 7
/ ' n " ; ’
i 3 1 1 12 .. 10
, /
4, 1 1 1 - 1/
) ) o /
n / \\\l
> = }I
. “ I\
: o
] \ /
B , . s A ‘l
rj‘\; - r ) .
) -~ ™ - i 3
4 ( 1 ]
/ ! / I /
g , f
. ™7 o [ ) j 4 °
% .~ - . Tt 4 L j’r *
! ‘ /Q“ s ! !
L ¥
4 ) - ~>i'<{~\s/::‘? - / - | /
¢ 3 ' - j "
|
o 0 L
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which cannot be initially, clgsgified, and therefore assigned

to group -#0. If all these 56 cells could be classified .in

v &

- porportion to ratios existing in the known groups then there

should be 35 more cel}s falling in group #1 and 7 more cells

Y
» falkling in each of groups 2, 3, and 4. But such is not the

case, for tHe region is composed of both favourable and unfa-
.vourable parts. Obviously therefore, when seven cells are

L forecast to fall in group #2 in each of the three analyses

(Table 23) and, 12 and 10 cases fall*in group 3 in angiyses
#2 and 3, the situation calls for examination because initial-
ly, of the eight known endowment cei%§, only one cell falls
;n each of the two. groups.

’ The problem could be partiall§ﬁresolved by adjusting
the probabilities of group membership based on "a priori”

knoﬁ%§9ge of the population distribution of cakes. This is

not possible in problems of resourc&’evaluation because mea-

—
: t 7 »
AR surementd regarding both geology and endowment are at best
incomplete. However, one decision rule that can be applied e
1l ~, "
.

in the present pfoblem is to accept only those cells classi-

fied in grohpsZ and 3 which have a probability of belonging
- - ‘
ko one of tﬁem at least equal to that of the individual knpwn ’
) . ¢
endowment,bells composing the two grouggidi.e., cells 1021}

and "1029 respectively. Using this arbitrary rule, the number
B
of cells falling in group #2 is reduced from the original

forecast of -4even, to one, four, and three in analyses #1, 2,

~

and 3 respectively. Similarly; the number of cells forecast
(1’ ’ > [ - 2 H l ! M
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to fall in group 3 is reduced frOm’12/and 10, to eight and. ?

six respectively in analyses #2 and 3. This is more in line

.

with what would subjectively’be expected in relation to the

? o

ratios of gréG;*hemberships known. o ,
Table 26 is a redgfed form of Table 23 after usiég
the rulé mentioned above. However, also included in the table
are’ the classifications basé@ on thersecond highest probabil-
ities. This tabfe shows results for J;aly%is #3 only, since
thls analysis does not have the influente of either DYKE B&br
CNTg 10. And as J?S béen stated earlier, hhe hlghest discrim-
nant function for thig analysis accounts for 76 percent of
the_eigenvﬁiues'followed by the second higﬁest function with

19 percent. While the first discriminant function is domi-
nated by AREA 3, the second is controlled by CNTL 11/ ‘both
ciose}y related to endowment in the region.

The originally unknown endowment_ cells retaining this

favourable status in both the highest and the next highest pro-

L3

babilities are the following:

¢

. | R
1002 'y
. 1009 |
1010 “‘ 2 i
~ 1014 e T BN
1022 . : 3
: ' L 1033 . Q :
; “ 1041 ‘ ~ ‘ /
r ’ g ) ’

. E ' . & ) a

All of these cells except 1018 and 1022 have also - :
? i

[
been predicted as highly favourable by regression analysis.

¢ ’ # ! ' ' .
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© /" TABLE 26
. T L
5-GROUP B ANALYSIS #3: REDUCED

FORM OF TABLE 22

ANALYSIS #3

o, PREDICTED GROUBS
Cell Khown Highest Second Highest
No. |, . GRP Probability Probability
/ . A a
002 © . ‘
003 Ty - N
1007 -
1009 -
1010 e =
1012 =3
1013 1 -
1015 . - |
1
1016 -~
1018 -
1020 - [ ° Y
1021, 2 - ‘
1022 - .
’ 1023w oo 1
, 1
1025 bt 2 3(-494) 0(‘171) /
1029 3 3(.449) 2(.284)
1032 - " 1(.865) 0(.083) ~
1033 - ol 3(.488) 1(.231)
. 1038 4 | 4(1.00) .. _ - -
1939 1, 1(.997) 0(.003)
1041 - 1(.444) 3(.317)
1042 1 3(.;88). . 2(.307) ¥
1049 - - 1(.716) 0(.210)
. -
1 ~ . :
See text for details. The results fof the known endowment
cells are undérlined. ’
. ; LN ) .
v /‘ . i / " -
\ . ~
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(j ' Cell 1018 appears to be\a case of misclassificdation because

!

the cell contains only one of the five variablLs forming the
function, i.e., AREA 8. Other cells which are grouped in the

zero category in the next highest.function, but in which the

-

probability itself is low, are cells 1007, 1012, 1015, 1025,

and 1032., ©Of qhese eells 1007 and 1012 are also clggs1f1ed
\

as favourable by regre551on ana1y51s, but the others are not,

particularly, cell 1032 which is forecast as com letely bar-,

ren.
v . : —-
» Iz The results of the two five-group analyses and the
' following seven—grouptéﬁ%}ysis are jointly concluded upon at
. i
v the end of the ohapter. &
N /’//;_ ' | of
5.5.5 Seven—Group Analyses .-
- :’,f} ’ ‘% ~ ~
e N i

Increa51ng\tpe‘humber'of groups in a discriminaq}

analy51s serves the purpdse of a moTe relevant classification
.

bu# with an increased risk of ml\eia551flcat10n In the pre-
- sent study there are only elght known\endowﬁgnt cases and a N
ninth set of unknown cases. It would therefore appéar that v N
dividing the®e nine categor;es into seven groups would fail ’
to/brlng out dlscrlmlnatory relatlonshaps jointly beE\ n two !

’ e
. or more known endowment cells; it would, however %:1ntly aﬁEﬁ\ I

se cells that are lassified in the zero or barren category. .
Y ¥

ze Sifice in some of the earlier runs, it was observed that a num-
e - E

( L } ber of endowment cells had shown an antithetic relationship *

:}' 5. .

, _ ”

R A, - -
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e.g., cells 1916 and 1021,

,A‘_.»

-

. T . P
with one another when considered jointly in the same group, ﬂ

the 7-group analyses are made to
'VK\\ ‘

observe the behav1our of the dlsdrlmlnant functlon in separat-

.ing the Varlops groups. The following groups are used in the

analyses: .@ ,
‘__&A : ‘
| Group # | Range ($x106) Cells % Included '
N . ) :
0o . ) Assumed Zero All unknown endowment
cells
1 Y 0- 25 1013
2 25- 50 " 1023, 1039, 1042
3 g . 50— 100 1016
4 : 100- 500. 1021
A
5 500-1500 1029
6 > 1500 ’ 1038

LS

?&";» '

The best results as 1ﬁﬁged from the predlctabllléy

of mthe known endowment cells, are obtained wusing the following

o

variables in their order of inclusion:

- #

’

v, -
'S

]
AREA 3 )

AReEa 8 . : : °
CNTL 11 g e B B

CNTL 15 - T . L

DYKRE: 4

\ The resultsl\obtalned and the associatéd probabilities

3

to zero category.

J*‘I\ ®

[l

-
/

The table doeé not 1nclude ‘Sells predicted tdjbelong

»

. o

fmkWUnm

)
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are shown in Table 27. The known endowment celfb have been
highlighted in the table. It ig observed that wiﬁ% the ex-

LU

ception of chl 1042 which is forecast to belong to a lower

t

. group, all known endowment cells have been properly cla3sified.

- Another set of discriminant runs was made using the
same variables\ as beforeg, but aSjpmlng a zero 1nput!éndowment
for one knownggagSWment cell at & timge. pTheﬁruns were made
over the 64-cell data, but the resﬁlts shown in Table 28 are
for the kn;wn endowment cells only because they alone can be
used fo observe the predictpve efficiency of theudiscriminany
functidn, or of the choice of using seven groups.

«The first ébservatlon is that of the eiq’§ known en-
dowment cells,only cells 1016 and 1025 fail to have any endow-—'
ment predicted  in thém. goth these cells, howeve;, are clas-
sified in group #2 by the second highest probability.

. The probability of cell 1016 belonging to group #0
as given in Table 28 is 0.44. However, the probability thaE“

1 ':’ {
a member of the predicted group zero would be ag far from the

. ‘
centroid as cell 1016 is very low, only 0.115; this suggests -

the pOSSlblllty that cell 1016 might not belong to the popu-

€

laflon of cells from whlch group #0 is drawn. This would ap-
pear to be the case because cell 1016 is a known endowment )

cell. The cell is misclagg}fied because it is. located away

)

from the cluster of ore dep031ts in the rbglon. The cell is
devd%d of any kind of dyke activity and 1s mainly pyrite and

sghalerlte rich. Furthermore, the Mobrun ote deposit contained
ﬂ . ) - .
L} "’4 . ‘ s >

ey Ve
L]
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TABLE 27 .
. " <§7 ¥ FORECAST ENBOWMENT GROUPS

IN 7-GROUP ANALYSIS

Cell Known Predicted .
No. ~ Group Groups
) )
‘ 1002 - 1(;549)
: : 1003 - 3(1669)
.. 1007 - (___2(/805)
" 1009 - 2(.453)
@ 1012 - 1(.364)
1013 A | 1(.914)
. i 1015 - 12(.944)
. 1ols | 3 3(.985)
1021 4 ! - 4(,900)
T . ) py .
1023 2 2(.498)
1025 ~ 2(.593)
1027 L= 4(.916)
1028 - 2(.534)
1029 5 % 5(.932) © |
' 1031 . - 6(.460)
1032 \ - 2(.917)
1033 ‘ - .2(.760)
1038 6 6(.995)
1039 2 2(.731)
1041 ., - 1(.899) :
1045 - 1(.768) i ‘
1050 - 4(.687)
1053 - 4(.854). ,
~ AP 4 R =
/ — - L : .
A’ ’ - ""P . N
. 1Flgures in parentheses lndlcate probahlllty of belonging
to the predlc‘ted group. . - . .
7 A /
.~ ) - \ )
. ‘\Y:’ X
4. [ )

A A2 e i
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. TABLE 28 | P
i - . 3 ¢
7TGR0UP ANALYXSES * ONE KNOWN ENDOWMENT BEARING CELL ASSUMED TO HAVE - 1h\
) ' ZERO ENDOWMENT IN EACH DISCRIMINANT .RUN
? - N )
. s Ny KNOWN ENDOWMENT CELL OMITTED (ASSUMED BARREN)
 Cell Known PREDICTED GROUPS L \ . . . ot
No._ : GRP . 1013 . 1016 1021 ° 1023 19 9 . 1038 1039 1042 i
e z : 2 N bo
: , _ ' L
- y 2
1013 1 2(.42) 1('9]’;@. 1(.93) 1(.89) ~I(.87) 1(.85) 1(.81l) 1¢(.95) -
1016 3 3(.99) 0(.44) 3(.98) 3(.98) 3(.98) 3(.92) 3¢ng0) © 3(.98) . '*\
; - 1.
1021 4 4(.92) 4(.90) 5(.63) 4(.90) 4(.94) 4(.87) 4(.86) 4({. 98) o il
1023 2 £2(.52) 2(.52)  2¢. 51) 0(.87) \ 2(.53) 0(.53). 0«(.60y OfF. 51{ v B
~ 1029 ¢ 5 5(.92) 5(.93) 5(1. 0) 5(.94) 4(.97) 5(.91) 5(.91) 5(.93) ;'
1038 6 ‘6(1.0) 6(1L.0) 6(1.0) 6(1.0) 6(1.0) 3(.94) + 6(.6TK 6’(1.0)
- . — - = <
1039 ° 2 - 2(.73) 2(.95) 2(.75) 20{32) “ti('“) 3(.45) -3(%44) 2(.90)
- . N . X J":. o . - -
‘1042 2 4(.44) . 1(.36) 1(.43) 1(J36) 4(.32) 1t.34) 2(.42) 1(.43) _
S— ] a -
1 T
Underllned flgures indicate predlcted \ﬁdeument in known endowment cells assumed
barren for the particular run. Figures in parenthesls indicate probability of
belonglng to the predicted group. ““\\\. . )
“\\\\\\‘ .
= X ( —~. ~\H~\F , ':; .
. B
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in the cell is believed to be stratigraphically higher than:: -

o -‘f‘mnmmw "

" is assumed to be absent in them. This implies a possibility

e

the rest of the ore depossgj in the region (Dugas, 1977, oral
1 R . ’
communication) . T T - 0
A A8 . oy
The case of .cell 1023 has been explained before. ' It
contains the West Macdonald deposit, the only deposit in the

’ g2 . R 3 .
region that does flot have a diﬁect rhyolite association. 1Its
’3} . ’
host rock is AREA 2 consisting of tuff and agglomerate.

<4

The' predicted endowment in cells .1013, 1021, and 1039°

falls in the next group higher than that known when endowment,

€

of a greater endowment in these cells thah that presentl§

known.
J

!

L

The prédicted endowment in cell 1029 falls in group ’
‘ ” - ]

#4 instead of the known #5. Similarly, for cells 1038 and o

1042, the classification-is in groups #3 and ¥1 instead of the

-

known groups #6 and #2 respectively.

So far as cell 1038 isyconcerned, it would be diffi-

cult to forecast its original known group when its endowment .-
is assumed zero. The reason is that this is -the only cell

associated with tRe highest valued group #6. When the envi-
L4 ° ! € )

ronment of this highest~valuedqcell is assumed to have no en-

]

dowment associated with it then the higheét valued group does

>

not exist as such, and the prgdicted'yalue has got to be in "

relation te the n?xt'ldygp/gréup’the/gentroid of ‘which ig close

[ '
.

to* that of cell '1038. » | . : Pt

. . il N
cell 1059 comprises the second highest group value,
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to’a separate eruptive phase of volcanism.
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L
and is the only cell~to do sbﬂ’ Its predicted value therefore
at the next lowé} group in the light of explanation given for
cell 1038, appears pérfectly acceptable.

The ca§é of cell.1042 appears to be somewhat like
that of cell 1016 1n that it 1s located -away from~the main
group of ore deposits in the region. Besides, this cell has
FQe bnly deposit in.the region which has no reported zinc in
it; only copper. Like_celi 1016, th}s.too could be related ' R
' The cell_is.claSr
51f1ed ln group #1 lnstead of its known group #2. It is in-
terestxng to note that even when all known endowment cells,
lncludlng cell 1042 are dlscrimlnated under the 7-group anal-

yses, its predicted value still is in group #1 instead of $2.

1

.The second Hgghest probability classifies this cell fﬁﬁgroup

#4 with % probability. of 0.30l1. The possibility has been ex-

pressed earlier that the cell may belong to a higher group.

The results of the 7-group discriminant analyses

shown in Table 27 contain three obvious misclaSsifii?tions,
. v .
i.e.,{cells 1027, 1028, and 1031. Cell 1027 is wholly com-~ : ,

posed of AREA 11, and the only variable present in the cell
1

{

and also in the discrimlnant function is DYKE 3. The removal’

of DYKE\3 from the analysis makes cell 1027 a barren one,

\‘ .
T - . - . . K : ‘ -
; lDYKE 3 accounts for +54.7% of the highest discrimi- :
ant function. Other variables contributg as following: AREA _
s -13.2%, AREA 8: +21.0%, CNTL 1l: +7.2%, ahd CNTL 15: -3.7%. o

e i Aihs



. \ ' : 276

4 . o , "
- which indeed it should be because in the Rouyn-Noranda region,

- 3
r no massive sulphides are known to bé associated with AREA 11,

“

i.e., granites and granodiorites.

£

a y wt

*

In case of cell 1028, the probability of any member "
from group 2 being as far away from the centroid as this cell,
is 0.015, a very low probability. The cell does not appear
to belong to thg same population asathét of group 2 ev?n/;hough B
«. it may have been classified as being closest to group étw~;££;

is further borne out.by the.fact that ‘the second highest pro-

bability for this cell is the zero value group.

s
i

Similarly, cell 1031 has been forecast to belong in
the highest grdup #6. Yet; the probability-of a member from
group 6 ﬂeing as far away from the centroid as cell 1031 is
only 0.083. The second highest probability is for the cell
to belong in group zero. In all érevious runs, whether re-
greésion or discriminant, the only basis forﬁan endowment fére-
cast in this cell has been ;he presence of CNTL }0, the contact
length betwee; A?EA 2-and AREA 11. CNTL 10 is,é variable high-
ly log%llydreLated with endowment in cell 1023, and extends
into cellglOBl; Wﬁeh €NTL 10 is not included in the analysis,
o the cell is forecast aé barren. Ihis too is a result of mis-

classification.’ N ’ , T h
- \ Cell 1045 too aépears to be misclassified in group
41, because the probability'of a membgrifrom group #1 éeing
ag'Qist;?& froT the centroid as this cell is.only 0.025.

1

Cells 1050 and 1053 are both predicted to fall in
. o

¥
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A
roup 4, but with probabilities less than thag of.the only re-

erence celll composing the group. These too‘can be rejected.
The remaining cells app$§; to conform with the favour-:

able predictions obtained in other discriminant runs. 1In the

following section, the results are jointly discussed and eval-

uated. ' ' .

9.6 Discriminant Hesults Review

a
°

The efficiency of a discriminant function\ié‘affectgd
by the number of groups, by the particular cases falling in

individual: groups, and by the presence and ébsence of certain

| variables. Changes in the number of groups will, for a given

set of data, result in modifications to the group ceqtroid re-
sulting £rom changes in -the members composing the groups. . The
eﬁ{ECtncan be profound if cellspfal}ing in a group show a'&pck
of statistical similgrit} in termsﬁoflmultivariatetéeologica}
relationships. This has been explained previously as the rea-
son for the ﬁisclaséificatfbn‘of the known endowment cefls in-
to a barren2 category under the two-group and the ngroup‘A

analyses.

-

Fhe discriminatory power of the function is affected

by the variables input, both individually and jointly, dependinq

—

l1.e., ce11 1021. A 2

sze barren cétegory refers to'the zero value group.

r

Y
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i

on their relative correlations. ‘As Lachenbruch (1975, p. 76)

¥i
notes:

(1) If most of the correlations among the poor
variates and between poor and good variates
are positive and not too large, the Jjoint
contribution of the poor variates will be
less than in independent cases.

)

(2) If the correlations are negative, the jeint
\ contribution of the poor variates will be
A more -than in the independent case.

(3) Positive correlations have to be quite high
if they are to be helpful.

(4) Any variable having hegative correlation
with the good variate will be helpful.

Q

The role of the variab;es in resource evaluation is
morebcomplex because of the evolutionary nature.and variable
timings of geclogical evehts as inferred by the measurement§
made. For example, in the 5—gr6ug discriminant analysis B,l
the exclusion of DYKE 3 from the input varigples results in
the classification of cells 1027 and 1053 as barren. This is
because of the high correlation of DYkE 3 with the spatial
presence of ore deposits in the reg&%n. Similarly? the ex-
clusion of variable CNTL 10 results in cells’1023 and 1031
being classjified ‘as Barren, even thpﬁqh the former "is a known
endowment ce#}. Iﬁ Lhe same 5-group B, the new discriminant

function resulting after excluding DYKE 3 classifies the fol-

yJlowing additional cells as probablyepndowment bearing: 1001,

N lSee Table 23.

” \J
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4

. 1002, 1007, 1009, 1010, 1011, 1017, 1018, 1052, 1025, 1033, ]

1045, 1049, 1051y and 1052. All these cells either do not

contain DYKE 3, or if it is present, it is insignifican?//”
t ”

This underlines the influence of a highly positively corre-

lated varlabye despite its hav1ng been relegated to a lower

1nclu510n level in stepwise dlscrlmlnant analysis.
7 . .
A.criterion of the effectiveness of the discriminant

|

function js its ability to properly predict known endowment

r

. i '
cells. In this regard, both 5-group B, and 7-group analyses

have been effective. Table 29 is a comparison -of Tables 26

d
‘and 27. éel&s 1027, 1028, 1031, 1045, 1050, and 1053, already
AN
/
commeénted upon in evaluating tpe 7-group analysis are not in- '
cluded in the table. The following is a comparison of the
group ranges used in the two analyses:
Group # "5-Group Set B ($x106) . 7-Group Set ($x10§)
. . | .
0 & 0- 10 0
11 1 . 10-_100 0- 25 {
2 100- 500 25- 50
/ 3 500-1500 - + -50- 100
4 > 1500 100- 500
' 5 500~1500
6 ' > 1500
It will be seen that Groups #1, 2, and 3 of the 7- - ;
group set fall within the range of group #1 of the 5 group
( set B. And groups #4, 5, and 6 of the 2-grodp set correspond -

: A a e s M el e R i eI R . E T et v i SR A T et it AR RV AL W AR 4 - o RS o M St g ..
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" - | - " TABLE29 | F )
coMPARISON OF $5-GROUP BfAQD ‘ I_‘
. .. 7-GROUP ANALYSES RESULTS  ~ o
: ! 5 GRP "B" _.. 7 GRP )
Predicted Predicted -
Cell Groups and , Groups and
No. Known Probabilities Known | Probabilities
S 1002 - 1(.474) - 1(.349)
- 1003 - 1(.521) - 3(.669) |
1007 - 1(.735) - . 2(.805) ;
1009 - "3(.517), - 2(.453) - ,
. 1010 - - 3(.476) - - |
e e 1012 = 1 (L 604) T e 1(.364) =~ 0¥
1013 1 3(.582) 1 1(.914)
- 1015 - 1(.645) - 2(.944) .
SR 1016 1 1(.841) - 3 3(.985)
o 1018 - 2(.539) - -
1020 - 1(.468) - -
1021 2(.494). 4 4(.900) .
' 1022 - 2(.560) - - -
1023 1 0(.427) 2 2(.498)
v 1025 - - 3(.494) . - 2(.593)
1029 3, ' 3(.4497 5 5(.932)
. 1032 - . 11.865) - 2(.917) -
. 1033 - - 3(.488) S 2(.760)
1038 4 4(1.00)- 7. 6 6(:995)
1039 ¢ 1 1(.997) 2 . 2(.731)
1041 - (.444) -~ .+ 1(.899)
., 1042 1 3\ 388) 2 1(.362)
o 10a9 - - Treme s - =TT

3 L«

*"

lFigures in pafentheses are probabilities associated with the
predicted groups. Results for known endowment cells are
underlined. Ce ) .

\

\
1
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“ination. Of 'these, onlf cell 1010 has been forecast as endow- '
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. f o G

. with the+#2 ,‘and 4 of the H-group set. The results corres-

pond therefore, for the orlglnally unknown endowment cells.
ry

LOOZ,»lQOB, 1007, 1012, 1015, ﬁPBZ, and 1041. In terms of the

endowment presence forecast, thése results agree with those of
\ .

regres510n with the exception of, cells 1015 and 1032.
\
v Cells 1010, 1018, 1020,§1022, and 1049 forecast by

the S—groupnfunctions are not done so by the 7~-group discrim-
: i

A
H

ment bearing by regression. oA ®

Cells 1003, 1025, and 1033, forecast in groups #3 of
the 5-group B analysis 5&1 fall in éroup 42 of the 7-group
ana;ysis. In this regard, the resulks of the 7-group set ap-
pear to be more reliable because the results are, based on .com-

r
parison with three reference cells congtituting group #2 in-_
stead of the only one comparing group #‘ in the'§—group anal-
ysis. Of these, both cells 1009 and 1033 have been favour-

ably forecast as endowment bearlng by regness1on

\
Table 30 makes a comparison of the results obtained
S

for the most favourable cells predicted-by regression analysis .

with those of thels-gfoup and the 7-group analyses. With the
exception of cell 1010, the, most comparable results are ob-
tained between regression and the 7-group analysis. . However,
cells 1015, 1025, and 1032, which are not forecast as favour—,
able by regnessign are predicted as such by both the 5-group
and~7-group analyses; their results'are summarized in Table

31.

3
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“ o . TABLE 0

COMPARISON 'OF FOREYAST ESTIMATES IN POTENTIALLY FAVOURABLE
CELLS IN 5-GROUP B. AND 7- ~GROUP DISCRIMINANT ANALYSES,

. AND ITERATIVE ﬁEGRESSION ANALYSIS
Cell 5° GROUP_B 7_GROUP REGRES-
' No. Range Prob. Range Prob. SION
4 | : : l ‘ \
. 1002 10- 100 .474 0-25 .349 13.78
1007 10- 100 .735  25-50 .805 12.40
- ’ + 1009 500-1500° .517 25-56 .453’/ 2.01
1010 500—;506 .476 - - 9.81

1012, "10- 1q9/>//i;o4 0-25 °  .364 16.01 ,

) , -

1033 500-1500 . *°.488 25-50 , 760 62.32

1041 10~ .100 .444 0-25 . 899 15.01
i
S —— . 1 - H
la1n figures are in millions of dollars. . i

r " -
'(‘ i » -
& R

\Q
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- TABLE 31

COMPARISON OF FORECAST ESTIMATES IN POTENTIALLY
-FAVOURABLE CELLS IN 5-GRrRour B ?ND /-GROUP
DISCRIMINANT ANALYSES

4

g v -

283

Cell 5 GRP "B" 7 GRP
No. Range Prob. Range Prob.
£ ) 3 l .
1015 10- 100  .645 * 25-50  .944
( N .
1025 500-1500  .494 25-50  .593 ‘
1032 10- 100 .865 25-50  .917
‘ & 7
‘ _ 6
Range = $ x 10 !

analysis.

lThese cells are not favourabl

™

y forecast bXAiterative regression

1
H
i
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Summary of,DiGcriminang Analysis

i

. . . ¢ . . ’ . I .
Discriminant ranalysis is a powerful technique for classi-

fying cells into pre-selected groups. While it can as-
sién a cell to an appropriate group, it canﬁot define its
specific position within the,valuélrange of éhe group.
Discriminant analysis is also very ﬂéeful for explaining
and understanding the system being evaluated.

The selection of discriminating v:}iables in discriminant
~analysis 1is as import;nt as the selection of explanatory
variables for regression. The inclusion of a singie high-
ly correlated, but otherwise non~}eleyant variable can re- .
sult in a misleadiné discriminant function. Conversely,
this is also true when a relevant variable is omitted.

It is mos;?éssential that all cases be drawn from ghe

same population, at least within the qréppé. In studies
using geological data, Ehis information‘may initially be
"’known only subjecfivgly. To overcome this difficulty,

. wf
the selection of optimal grod%s, both in terms of their

i
§

number and ?he range of values assigned to them, becomes

as impottant as the selection of the "best" variables.

[F QAR -

The cells that are classified as favourable by discrimi-

nation are essentially the same as those by regression )
el * H- .

analysis. As with regression analysis, t orecast val- \
&

ues ard the minimum possible because t calibratorl used
~

lI.e., the known endowment. ‘

/’f: ' ‘ * w %,
2
< — <
- T B e AT % & SRR b BB s T T S R e 2 Sk s 2 - -
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] »

is the minimum possible. .

B

N ’

Discriminant, analysis is robust to vrolatlon .of normallty
assumption. The validity ©#f the results obtained can be
tested by the procedure 5f "leaving one out" in which, a
known endowment cell 1s a551gned to the lowest value ;roup
and discriminant ana1151s performed to observe if that

cell can be assigned to the correct group on the basis

éf the remaining cells.

F , y
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\
“The objecty&b of this study is-to make estimates of -

— ~ ~

undiscovered resource endowment in the Rouyn-Noranda region

[y

. » L] » . i
using multivariate statistical analyses. However, fbecause

f 2
of the nature of the .data. base, the study has broadened in-
; 3
to an evaluation of the mq}tivariate techniques themselves,

y

and the problems associated in the{r application to geologi-

-

cal data. The following ﬁoints rize the essential con- .

ciusions‘reached in this study:

o,

(1) It has been@nonstrat‘ed in the study that known'

%&ﬁera% resource endowment and assoeiated geological charac-

| " . . -
teristics can be quantitatively related for'déveiog%ng a model

to forecast Uftknown resource potential. This is possible in

i

spite of the common shortcomings anddproblems of geological

and resource endowment data.

(2)% _The quantitative modelling of ggological phe-

nomenon dra ts guidance and lnterpretatlon from the ac-

cepted concepts on the processes that created the phenomenon.

o

rThe more complete the geological explanation avallable, the:
, : ' Sy

better is the interpretation of the guantitative results.

However, while‘a\geqhathématical interpretatioﬁ.depends fun-

o .
damentaldy on the validity of the geological concepts held,
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it can.also contribute to +the &valuation 3f geological coh-

.
i ‘ Y

cepts themselves.

et Q\< (3) It has been shown in the study thet a multi-
_ variate statistical model developed. for a geologiéal system 7
“ ' j

is optimally efficient for .the system itself. Its applica-

SN

tion outsfde the system can lead to serious errors and shoul%
\ S ver.

not be attempted except on a reconnaissance level.

- (4) In any multivdriate statistical application in .

’

. résource evaluation, the selection of the "best" set of vari-
’/\ '

ables and the determlnatlon of the "best" order of variables

-

¥ 'Input 'n stepwise analy51s is a critical consideration. Such

N sekection must Be'@uided by the generally accepted concepts
, on the, gehesis of the resource. being -evaluated. \
4 ;}Ff/ he qudntifiable relationkhips which are shOwﬁ
to exist between endowment and geolpgy, should'provide ex- .
h’ pl@ration é%idelines in terms'of’the geological.Gariab}es ﬂ-k

{

. ‘ » .
) determined .to be the most peét”nent, and’ the subareas esti-

A

mated to be potentially the most favourable. This\supports

exploration planning investment and executign.
-~

. (6)"~ The appllcatlon of quaﬁiltatlve methéds in geo-

h
Y

T\\\v&ogy has certaln llmltaéiOns Because, of the 1nterrupt1ve
J

nature of geologiqal processes; geological data cannot.be
P
directly treeted like econometric or other "present moment" ../

+ : a

data. Depending upon the scale of meésurgﬁents made, the '
<i grain and cqmp&exf%y of. geology, and the size and shape of
} the cells'adoﬁted,“% number of statistical .problems will ©
{ .
~ . A R
- P . -
- &
. A - .xh 5 b
’ . N - ’ \‘ ' ! a 7 "“..
L R s o an i 2o - i oA KL e Areisamscitti b DA o o' A “Q‘ *"}ﬂaﬁihmwu oy
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‘arise. Hoy ¢ritical thesé problems are Wwill vary with the ©

- \2

objective of the s%udy and the statistical}approach éontem—
4

plated. Statistical studies can become meaningless Wwithout

4
an awaréness of these problems, and attempts must be made to

’
’

‘minimize their effects. Furthermore, the results must be 4

-

interpr§t%ﬂ and evaluated against this awareness.

~ ]
L]
N

logical mapping and a more uniform procedure inkresource

o

classification has been emphasized in thigsstudy. Simultanc
- , e . l . .
eously, there is a%so need for,more rese¢arch in evaluating

b .
the role of multivariate techniques in the violation of as-

-~ -

sumptions and for the development o} &es§s of significaan
for data that are not norm%lly distributed. .

(é3 A pumbef.df variables in.%?eJRouynJNoranda re-
gion have showﬁ a high positi?e correlation with known en-

-dowment. This is particularly true »f the “length of north-
) .o ’ -

south to. north-west trending aykesl' Thé high'correlation

°

may be genetically related with endowment, or may be dnly

IS

"spatial and thus spurious. However, even as post-ore fea-.

L
turgs, such variables can have an indirect or consequential
»‘7 N 4 ,
relatijnship with ore formation. This, aspect needs addi-

tional investigation in the field. ' The role of the area of

-

diorite, gabbrq,‘requires similar investigation.
' » »
. (9) .The Rouyn-Noranda region is one of the most

h * . . . .
intensively studied geological regions in Canada. However,

i 2

there is 5tjll debate on the' classification of certain rock

3
R a

(7) Ehe need for a more objective apﬁ%oach in geo- ~
\
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types such a; rhyolite ox tuff a@&jégéflmerate.. Such lack
of uniform:term;noiogy is a matter of concern to a quantita-

tive analyst, and this is one of thelreasons why extrapola-

]

tion of a quantitative model outside its own regign can be

misleading.
. 9

(10) In this study, the selection of variables has’

3§éen pased essentially on factor analysis. It is felt that

factor analysis can be, effectively employed in relating re-

®

-source endowment and associated geological parameters. It
4 {

can also be used in determining ifg¢ore tﬁag one mode of ore
formation is present in the region. In this manner, fapto?
analisis helps guide exploration. However, i% does not pro-
vide estimates of undiscovered endowment potenti;l in the
region. o T *
(11) %Fgression analysis and discriminant analysis
are two powerful statistical methods of resource potential
evaluation. Both these methods have been used in this study
and provide comparablé results. However, regression analysis
is shown to have advantages in terms of greater flexibility

and more defined resg};s. Furthermore,fthis method does not

require a normalized distribution for the explanatory vari-

- ables. , .

" Fr
(12) It has bee? shown that an iterative approach
- .

to regression analysis is an effective and efficient approach
-

in resource endowment forecasting for the type of data avail-

.

able for this study. The role of multicollinearity is

/ :

4
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vourable for gurther exploration at different levels of en- LT\\
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minimized using aﬂéﬁéckerboard—type division of thendata.
~ T

With these technﬂgﬁes, it irs possible to éssign the most like-
ly values to response variables in cells that do not have a
known endowment va%ue. ' |

(13) 1In spite“of the skewness of the data, factor o
analysis and discriminant anélysis, both -of which assume a
no;mal distributio;‘for the déth, appear to be robust enough
against violation of this assumption. When tes;s of signifi-

cance are not applicable because of the absence of a normal-.
o

lf.-J ®
¥

;Eed distribut}on, the results can be validated by the "leav-
ing one out" technigue as appliéd in this study.

(14) Some seven out of the 56 unknown endowment,ff

o
¢

cells in the study region are forecast as potentially fa- y

dqﬁmént estimates, 'both by regression and discriminant anal-
yses. Three other cells are forecast as favourable by dis-

criminant analysis alone. The remaining unknown endowment
! 4

cells are estimated to be barren by both regression and dis-
criminant analyses. From an exploration bo & Qf view, it
\

is just as-significant to know that an are s barren than

that it is- favourable, within the hypoéhesis testing erry;

Y

limits. This, thereforé; greatly narrows down the ta t
' A"

area for potentially economic exploration effort.

oz

The endowment estimates forecast in favourable celé;

are of a" low order considering the current costs of expldra-
(@. . ':
tion and mine development. 'Therefore, these cells should pe

| :




-

i

ponsidered on the basis of both tngir absolute and their rela-

tive estimated values. )

(15) The absoclute poténtiél of 131 miilion dollét; r
_ forecast for the region is }nsignificant compared to its known
endowment. This implies that either the Fegi&n has reached a
s£§te of near exhaustion of endowment or, é/state of saturatiop

has beéen reached in the utility of traditional geological con-

“
0y

cepts and information in eébloration and ;ggource modelling.
The region cannot be considered as exhausted when iﬁéis con-
sidered thatgthe estimated theoretically possible endowment

exceeds that known for copper by a factor of 31 and that for

zinc by a factor of 222. It is therefore suggested that newer

LA N . ] , .
concepts will have to pe evolved and new information obtained,

/

particularly for the depth dimension in the region for incor-

porating in both the forecasting model and in actual explora-
9 . ) . v -

tion. Geophysics can be a valuable tool in this regard.’

o .

<
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CLAIM OF ORIGINAL WORK AND CONTRIBUTION TO KNOWLEDGE

* 7

It is claimed that the results and interpretations.
presented in this thesis‘are the original work of the author

and a contribution to knowledge. The followihg features of

the study have contributed to knowledge:

¥

(1y A quantiﬁaiive assessment of the undiscov%@ed*
resource potential of the Rouyn—Noranéa region has been made.
The application of ‘statistical models to the s%ge of the
study area chosen and to éhe size of individual cells with~
in it, offer aanqtages that are not possible in "tradition-
al" reconnaissance level studies. The contribution to know-
ledge is, thus, in solving the problems associated with sta-
tistical E;source evaluation for a study area and cell size
sméller and more detailed than that used in any previous
study. ’

(2) The present study is basic for other similar
studies that may have to be undertaken in other mining re-
gions that have a history of intengive exploration, develop-
ment and mineral production, but which are becoming exhaust-
ed. Such studies can further guide exploration investment,
decision making, and regional planning.

(3) It' has been demonstrated in this study that

quantifiable rglationships exist between mineral endowment

and associated geological characteristics within the Rouyn-
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( Noranda region,. and that this relationshfp can be applied to ’

makenforecasts of unknown endowment within the region.

(4) The problem of Selectiné a value to assign‘to
a“responseovariablekfor cells with no‘known endowmeﬁt has
bebn resolved in this stuqé by using an "iéeraéﬁve,regres-
si®n" technique. |
- (5) Althéugh multicollineafity,presents a serious

 problem inAthé apélication of statistical models to geologi-
‘ cal déta, the author has been able to gontrol this problem

e

with the "checkerboard" technique.

e

(6) The author has obtained estimates of resource

potential of the Rouyn-Nor%hda region using regressioﬁ anal-

.ysis and discriminant-analysis separately. In d®ing so, the -
. ¥ Y

author has demonstrated the relapive étrengths and weaknesses

of the two techniques. .

-

¥ - ] -

(7) The use of factor analysis in data reduction -

9 1? .

and in the selectlon of variables has beepn demonsﬁ&ated . =
Y

The author has dlscussed,the addltlonal advantage of factor

analysis in identifying different sets of geological charac- .

teristics in terms of their sympathetic and antithetic asso- “

ciations with known endowment in the region. This knowledge

can assist in ore- gene51s, and in focussing mineral explora—

A -

[

tlon on the most relevant set of geological characterlstlcs.
(8) The impogtance of selecting the &t appropri-

“ate geologica® variables for' statistical analysis has been

{ demonstrated in this study. The advantages of including or
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: excluding certain variables has beén discusséd:in terms of
the spatigl and genetic aff%%égtions of each ;ariable.with
known endowment{%n the region. " .

(9) ' A Eharactgristic of geological processes is A

that they Jr% evolutionary, interruptive, or both. But geo-
,logical measurements can only be made at a single point in

time. This aspe;t of ggological knowledge has been stressed a
throughout the thesis. Statistical applica@ions,‘however
sophisticated,. can become misl?édzng'wiQpOpt'a realization )

of this dichotomy. An understanding of geological concepts -

is fundamental to the application of multivariate statisti-

" cal techniques to resource potential evaluation, and to the 7

interpretation of results. {7;
(10) It has been shown that statistical techniques,

while drawing their interpretation from geological knowledge,

also contribute to the understanding of geological processes

to differentiation among°different geolpgical environments.

A Y

» (11) The need for developing distribution=-free

3 ¢ "
multl&ariate techniques and, in particular, tests of signi-

ficance, has been featured in the stde. A leaving one out

-~ -~

technique is useF in validating the predictive models devel-
/ »

oped €in the study. ' e

|

(12) It is demonstrated that quantitative relation-

ships developed for a geologital "system should 'be confined&

S ‘'

to that system only. Extrapolation outside the system can

result in a loss of resolution and erroneous conclusions. .

°
o

- -
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E 3

An pp-to—daﬁe synthesis of the geéology of -

Rduyn;Noraq a region and its base metal sulphid¢ deposits

has been presented within the larger framework of the Abi-

tibi belt.

14

(14)

H

The conclusions arrived at in the present

»

study should significantly cdntribute to the Quebet govern-

ment's efforts

to expand the province's mineral resources.

Particularly, because in April 1977, the government of

Quebeclannohnced a 5-year eiploration project for the Abi-

t:z}/region in
be&tween 60 and

!

north-west Quebec. The project will cost

80 million dolléfs. Similar projects will .

be undertaken in other provincial regions if the Abitibi

project proves

(15)

N -
successful.

The present study is a contribution to the

future research needs referred to by Harris (1975, p. 349):

P
¢

. %« ., although progress in the design of geo-
statistical models for the-appraisal of metal
resources is apparent, much of this progress
is reflected in a greater| awareness of the
inadequacies of past and present efforts and

in a greater ability to delineate the problem \\\;\\;

and. to formulate the questions that will be
the substance of future research and achieve-~

ment. . C
P — - }
;o . ' , -
- i ! t ' .‘
L : \ .
The Northern Miner® \April 7, April 14, and April ) "
.21, 1977. | J
' s . I'
%
. ‘
1S ‘
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