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Two toads diverged in a WOOd~ ~,­
l took the one less traveled by, 
And that has made aIl the difference. 

Robert Frost. 1 
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MÎNERAL RESOURCE POTENTIAL: 

"ROUYN-tiiORANDA REGIÔN, QUE BEC 
1 

by 

, 

Pervez A. Umar 

ABS'PRACT '. 
1 • 1 ",_ 

;; 

The predictlon of ~nknown regional mlneral potential is an 

integral p~r~ of the exploratlon proces~. Quantltatlve te~h­

ni9ues enabL~ the exploratlon planner to more completeli analyze 

alternatlve' investment opportUnities. SUch declsions, are cri ti-

cal for mi~lng reglons like'Rduyn-Nor~n~a,' Quebec, whlch'are . 
1 - _. \ 

chatacterized'by ~ qighly ~evelàped min~ral-based economy, the 

ex~au;~ l'~~l:f s ~::~~~:o::::~~a::: t:
e
.: ~::~:~l ::-:,c:::~~i~:::s ~f 

regression analysls ~nd dlscrlm;nant'~~alyslS are applied ln 

makln~ estimates of undiscovered base met~l:endqwment ln the 

Rouy6-Noranda reglon. Fact~r an~}ysi~ has been applled ln data 

reductlon and varlable selectLon. 

1 The s~udy demons~rates the strengths'and the weak~~ss~~ of 

the statist+cai teéhnlques used, and the problems associated 

Wl th tjhelr appl1catlon to" the analysis of geologlcal' d~ta. ,Solu­

tions \0 these pfoblems are suggested. 

The undlscovered base metal endowment' in the reglon, based 

on geological relationships alone, is estimated bt a minimum of 

131 million dollars. ThlS lS not significant under current 
(1. 

econoIDlcs of mlne development .. It i~ ther~fore suggested th~t 

additional lnputs in terms of newer concepts wlll be required t? 

realize a greater measure of the theoretically pos'sible' endowment 't, ' 1 

ln the region. 

The results obtalned should provlde gUldelines for geologlcal 

research, and for further mineraI exploratlon, not only in the 

Rouyn-Noranda region, but also in other mlnlng regions Eequirlng ., 
resource potèntlal evaluatlon. 
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POTENTIEL DES RESSOURCES MINERALES 

REGION DE ROUYN-N6RANDA, QUE BEC 

par .+ 

Pervez A. Umar 

." .... 
RESUME 

'\ La prédiction du potentiel minéral inconnu d'une région est 
\ 

une trart~e intégrale d'u processus "d'exploration minière. La 

concept~on d'un programme d'exp~otation devrait se baser.sur des 

techniques quantitat~ves qui permettent de mieux aI)alys~r dif-
\ 

férentes opt~ors d'investissement. De telles décisions sont 

très importantes pour de~ régions minières telle Rouyn-Noranda, 

au Quépec, se caractérisa~t par une économie forte baséé sur 

l'industrie m1n~rale, le qriasi-~puisement des ressources 

',·f\.\inérales ,co~nues et un déclin important. dans le taux de 

• ... ·déèouvertes de 'gisements économiques. 
,1 l "-

" , 

Dans cette ét~de, les techniques de régression et d'analyse 
, ~ 

discriminante à variables multiples sont utilisé~s pour prédire 
" . ' 

,les quanti tés non découver.tes de ,métaux de base da:ns la région .; 

/ 

de RJUyn-NOr<;inda. L' a'nalyse des· composantes f'r incipales est 

utilisée pour réduire les données de base et choisir les 

va~iables ~es· plus ~mporta~es. 
L'étude démontre les avantages et 'les désavant~ges des 

_ techniques statistiques, utilisées ainsi que les problèmes 

déc~ul~nt de leur application à des donpées géologi~ues. Cer­

,taines polutions pouvan~ r~soudre, ces problèmes sont alors 
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suggérées. 
1 

, . Basé 'Uniquement sur des· relations géologiques, le potenti.el 
, 

minéral ~n métaux de base non découvert.à date est estimé à au 

moins 131 million de dollars, . Ceci n'est pas très important par 
~ 

rappôrt aux conditions présentes de l'économie minière: Il est 
. 

donc suggéré d'incorporer plus d'information'dans le modèle, en 

te~e de nouveaux c9ncepts métallbgéniques et de détails géo­

chimique& et géophysiques pour réalizer une meilleure mesure du 

potentiel ~inéral. 'possible de la région . 
.. 

Les ~ésultats obtenus pourrout guider des progr~es futurs .. 
~ .... • l 1 

de recherche géOl~gique ~t d'exploration mihière~'non seulement 

dQ.ns l,a régj.on d~ R~nlyn-Noranda, mais aussi dans d'autres 

région;:; 

. 
o 

minières 

, ' 

1 ~... "', 

nécessitant une 

• 
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évaluation de pote!ltiel 
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CHAPTER l 
v' 

l NTRODUCTI ON 

, , 
~.l General Statement 

Minerais are "non-renewable resources. The occurrtpce 
. 

of economic mineral deposits results from'a complex interaction 

of favourable geological factor~, Such deposits are developed 

to production on the basis of economic and technological con-

sideration to becorne assets and P?sitive contributors to the 

national economy. The demand for mineral prbducts is derived 

from the existing socio-economic and technoiogicai environment, 

creating a ~ed for mineraI exploration. However, minerai ex-

'ploration, itself is based fundamentally on geology. 

In any new ar~a, existing geological information is 

at best of a reco,nnaissance nature. However, oncè an econom-

ic discovery i5 made, the area i5 5ubJected to detailed geo-
. , 

logical studies and a varietY,of interpretations on ore gen-

esis. The information base keeps on' improving as ore reserves 

become deplete? When discoverieseare n9 longer readily-forth­

coming, it becomes increasingly necessary to evaluate the ~rea 

in term5 of its potential for further mineraI resourceS 50 that 

the justification for exploration effort and investment can be 

analyzed. This need will be felt at one time or another in any 
-? 

mining area that 15 on the decline both in terms of mineraI 

. 
1 
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l, 

production a,nd economic discoverie,s. ,bne such mini g, area is 

the Rouyn-Noranda region, an area comprised by ~up at, Dufres-. - ~ 

noy, Beauchastel and Rouyn townships in nor~h-wes Quebec. l 

This area, to be referred to as the Rbuyn-Norand region has 
1 § 

been selected in'this study for evaluatioti of copper and zinc 

resource potential. 

"i ' 
Re ource Potential Forecastin 
an Explorat~on Planning 

.1 

Mineral resource potential and explora-

tion planning are close.ly relatefl.; the :former is an attempt r-- J 

to forecast a future conditi;n", and. the latter is an att;empt 
'. 

to "control and ut{li~e the f~ecast cond~tion. Certainly, 

. . 2 h f d 'h f an organ~zat~on, t at can orec~t an react to t e utu~e 

in an" optimally effective and timely manner has a 'c6mpetl t,i Vê,1 

~ . ~ ~ 

edge. This is aIl the more 'important in~h~~usi~ess of min-

ir:g with a heavy long-'term investrr\ent commitmènt and an ever in9'" 

creasing time lag between discovery and production. 
- ' "~, 

~. . 
\'" 

Mining company planning as described by Mackenzie_ , 
\ ~ ~ 

(19~9) 'is based on the objectives of profit, survival and 

growth. Government directed organizations have to pursue"" 

simi1..ar objectives if the operations are to be efficient' 

1 See Figure 1. 

2 \ 
Whether corpor~te or governcien~. 

-.". 

1 
"{ 
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, - ' ancr"competi tive. The profit objective is largely a functidn 
1 

of 90st-pri~e relationships ~ithin à given technological, 50-

cioiogical, 'Politica~ and g~og~ap~'ttl framework. However, 
. ",;;\i' - " ' 

in .arder ta survive antl ,'grow, the mining organiza tion must' 

, have a weIl planned exploration! programme' 50 that as reserves 

deplete, they are rePle~ished with newly discovered ore meet-

3 

ing its profit criterion. If the organizâtian does not 

find reServés will decline and deplete, and it 
1 

able to survive iI"\. the bus,iness of mining l 

of growth, therefore, will not arise. 'Mackenzie 

(l973) gives a comprehensive dls~ussion of different explora-
1 

tion strategies in line with the above objectives. 

l'. ' Forecasting i~ a most e~5enti~elernent of explora-

~ '~ion planning for bath governrnent and corporate organizations. 

< 
It can be the subjective judgment or intuition of the planner, 

or a more rigoro~5 es-ëimate ~ased on the quantified rellation~ 
• ;l, 

ships between mineral end~wmept as known' and associated geo-

logy .. A quantitative technique will enable the,organization 

" 

\ 
to better 'a~~lyze its alternative investment oppor~unities. 

, "~} . 
Howevex, in the final analysis, it is the subjective judgment 

bas~d on quantitative analy~es that~will probably prevail. , .. 
"Mineral exploration is essentially an investment in 
f, , 

information gathering, :t:he objective' being the maximization 
~ , 

of profits th~ough a planned repl9ce~ent of depleting re- , 

~ serves. It includes aIl activities that convert the known 

• 

F 

1 
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and unknown eategory of resources into the category o.f "ore 

reserves". It also ineludes efforts ~hat narrow the focus of -séareh to :areas of more favourable ore potential. The pre/sent 

study is designed to~,arqs this par,tieular obj eeti ve. 

Planning as defined by Elliot-Jones (1973) is the 

proeess of d~termining a desirable future eondi~ion, and de­
I! 

ci ding how to proceed from the existing to th~ desired state. 
, 

In exploration planning, the existing state is often that of 

'dwindling reserves, as is the pituation in the Rouyn-Noranda .. 
region. The, future desired state is an economic diseovery. 

The deeision to proeeed ~rom the existing deteriorating state 

of reserves to the desired state is based·on a planned se-

" - -quèncing of the.exploration process. And since at eaeh stage 

of exploration p~anning, decision rnaking is likely to re~ult 

in the deyelopment of more information, the foreeasting"ffiodel 

ean be continuously improved and better defined as to endow-

ment-geologyi relationships. For a given geologieal environ­

ment in a specified region, the forecasting model can become 

an integral part of the planning process. The information 

~ows to' and from theo forepasting model and the actual ex-. 
ploration aetivity, with the decision rnaker between the two. 

,-
This can continue in a given region unti~ a stage is reached 

where the ~arginal levei of information for a given ou~lay 

does not just,ify additional investrnent in exploration. 

lsee Section 4.6. 
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ihvestment. The reglon "?,an then be -6ons,j,dered as approach~ng 

" exhaustion'under the eXlsting state of information, economics 
1 f ' \ 

and technblogy. Such a decision.can 'he most optima11y based 

on a forecasting model sucn as th~ one dev'eloped 'in this study . 
. 

An optimal mineraI exploratlon plan should 

maximize the present value of an economiè dis~avery for a giv­

en expenditure made. This requires that the expenditure on 

exploration shou1d be ~s ~lt~~nd as late as possi91e with­

in the existing policies 'and priorities of the organization 
\ 

(Herfindah1 and Kneese, 1974). Such a strategy is possible 

through a seguentia1 process in which, vat each stage;small'er 

and smaller sub-areas are~lected for development of more 

detailed inf,orrnation for exploration decision rnaking. This 
... 

strategy can be best deployed through a q4J.anti tat~ve modeling .... 

of endowment-geology "relations~ips at vari0"l~1 levels of it:tfor-

mation and detail.o " 

" , 

'1.3 Need for the Study 

The cost,. of -increasing over the 

eXPloration, p,t uni~ of supply has been 

past 25 years/ .• Martln et al (1976) 
'7 

have ~stimated that to meet the estimated discovery req~ire-

rnents of miReraI deposits in Canada, an average of 332 mil­

lion dollars1 per year will have to be· spent on exploration 
r;; • 

i 
~~ IAll monetary v~lues used in(~is stu~y are in con-

st~nt 1975 dollars. 
c 
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activities b~tween the years 1971 and 1995. This estimate ~' 

more than three times the historica1 annual average of 98 mil-

lion dollars during the period 1951 to 1970. 

~evitably, as exploration proceeds in an area, the 

ret~rns in the forro of economic discover~es diminish aft~~ 

the more obvious larger, higher grade and near surface depos-

its have been discovered. This is reflected in a deterioraj1 

ing relationship between costs and returns. 
~ 

New prospectiye mining areas in Canada are both ré~' 
• "-

mote and climatically inhdspitable. Exploration costs will 

therefore be high, and if an' economic discovery is made, min-

ing opera~ions are typically capital intensive. The need for 
~ 

infrastruc~ure in a new remote aréa will increase~the lead 

time to bring on-stream_new production capacity, thus reguir-

ing long-term financial arrangeme~ts. The current uncertain 
........ ,) ;. 

\ 
and unpredictable socio-eçonomic and political envi"ronment 

has made investrnent capital 5 carc,e. , Furthermore 1 governmel). t 
11 

~ , 
incenfives' to the mining ind'tlstry have declined i'h recent 

, " 

. 
. It is imperative therefore, that the minerar wealth 

. 
in existing mining areas be fully explo~ted within the lim±tp 

of economic jus~ification. To do so requires estimates 

the resource po~ntial of ~}tistihg mining ,'ar~as ~ to for,m . 
1 

, 
of 

the 

basis for exploration planning. The role of tnis study is 

to support this type of planning in an important area, the 

" Rouyn-Noranda region. 

\ 
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1.4 Statement of the problem , 

J, 

Gi ven a mining area wi th weIl known geological. in-

formation and a history of mineraI development and produc-

tion activity, the problem is to estimate quantitative re-

lationships existing between the known mineraI endowment 

a~d the associated geological ractorp, to assess the sta­, 
tistical ieliability.of the estimated relationships, and to 

use these rel~tidhships in making esti~atès of undiscovered 
{ 

resource potenfia~~~n the area. 

The area under study is the 400 square-mile Rouyn-

Noranda region comR~ising the townships Duprat, Dufresnoy, 

Beauchastel, and Rouyn. tpe resource potential estimates 

are based on the known copper-zinc deposi ts in the region 

and their associated geological characteristics. 
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CHAPTER 2 
:1 

~/ PREVIOUS WORK RELATED TO STUDY 

2.1 Geci~ral State~e~~~ 

Near~y aIl 'st~9ies having relevance to the present 

work.were designed'for ~ppiication over areas rnuc~ larger than­

the one se1ected foi the' presênt study. The areas studied by 

Agterberg, et" al. . (1912), Harris ,(1965), Azis, et al. (1972)., 

~ DeGeoffroy and Wu '(1970), aird Allais (1957), w-ere respectiv'e-
\ 

1y 80, 240, 400, 850, and 960 times the size of ROuYn-Noranda 
\ 

region under inv,sstigation. ,Each of· ,these studies" had its own 

objectives, terms of reference, and approach. It should, how-
'1"- \\ , 

eVer, be mentioned here that when r~lat!vely small areas com-

prising a mining region, or center of minerà\~21ation of a cer­

tain age and type,1 are~cons~dered for resource 'p,otential eval­

uation, the~e is the advantage of greater uniforIDdty of geo-
\" 

lbgical detail, terminologYr and reliability. Geo~ogica~ ~e-
\ ' -

latio.nshi~, the~efofe, can be betf~r studie~ 'qrantrt~,~ivelY, 

and re1ationships better defined. sma11-sizeJ areas are, of 
4 Jo ) , 

course, subj~ct to the statistica1 disadvantages inherent in 

,a sma11-samp1e size. 
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2.2 Resource ~otenttal Models 

, \ " . 

A number 01 mathemati'~al models have been developed 
. f 

for evaluating r;,egip~al mineraI resource po,tential at\differ;/' 
; 1 --,. /' 

ent information leYels. All these rnodels in sorne way atternpt 

l , " ",l, k d ' 'f' d to re ate a spec1~~c nown en owrnent to 1tS quant1 1e geo-

graphical or geol4giç:l envifO~en~within an existing, éx­

trapolate~:. or. assFed fr~mework of e'cono~ics and ,.t.echnology. 

In broad term~, th~ models can be categorizeù as following: 
) 

(1) The spatial model; 
~ 

(2 ) The geochemical 'rnodèli 

(3) The mqltivariate nalysis model; 

(4)' The ~ubiecti ve pr b~bility 'model'. ~. 

\ 
. 

These a~d 6ther l~ss important 

c~tegor~ ar~ rev~ewe~ below. 2 

odels not 'falling in the above 

. \ .' . 
2.2.1 /The \Spatiar Model 

\. 
- , 

The'spatial analysis assum~s ~at m~neral e~-

dowment is a function' of area 0 ly, being eq~ally distributed 
,.! 

in unit areas within a given ge graphical or geological region. 

after 

1 ' \j 
Geochemistry and geop~sics are here, assumed to be 

the geological environmert. 

2~he review ai spatial àOd,els h~S coLn~çJàrawn in part"-
ckenzie' U97-1-l-:--~ - ---- . \ ' , 

\\ 
o ,. 

. , 

" 
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The model is therefore,appropriate in information deficient 

situations where, on'a broader reconnaissance level, it is 

desired to have an estimate of the overall regiohal endowment 
I:.(~ 

potential ratner than to provide' small potentially favourable 
i 

exploration targets within it. 
/ \. 

1 Spatial analysis ïs based essentially on the extra-
W •• 

polation of estimated distribution characteristics ~f knowrl 

endowment in selected well-explored reference areas to the 

y studY area unde~eval&atièn! However, fôr a meaningful anal-
'-- ·------A--·_ 

ysis, the reference and, the study areas shou~ have a similar 
o 

geological environment, or otherwise be large enough to in-

corporate a number bf geological envir~~~ts so that there 

is a high probability of sorne of them being cornmon in both of 

them. 
, 

Allais (1957) made the first study in which the con-

cept of p~obability theory was appîied in estimatin~ the eco-

~nomic potential of mineraI exploration. His focus was 

~e Algefia? Sahara, a? area of 386,000 square miles. Allais 
1 

\ compiled st.'atistics such as the number of mining districts, 

and their gross product\~on values for the world' s weIl ex- ~ 
~ , , 

plored mining regions, such as France, North A~rica, and th~ 

western united States. He found that the number 
• ~ 

of miniI'kg districts pér unit t.area shOwed a c.lo'se 'fit with the 

~ 

~ pOisson~ à:ist)pbution'. The probabili ty of exactly X occurrences 

in the Poisson distribution is 
• 

• 
.~ ( 

Il ' '. 

< 
'" 

'. 
r 
\, 
r 

! 
i , 
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( 

f (X), 
X -ll 

= \.1 e 
X~ 

Il 

forXi:~, 1,2, ., •. 

~ /. 
Where/~ is the mean number of occurrences per unit area or 

) 
cell, and "e = 2.71828 .• If the parrpneter \.1 is kno~, the whole 

.' ~Q",,-
distribution can be written. / Thus, by knowing the nurnber o'f,,\ 

minirig Jdistricts, mineraI deposits, and their v~lue per unit 
1 

area in the well-exploredureference cells, the probability 0; 
" 

0,1·,2, ... n depcisits occurri~ per unit area in the stud~.ar,a 

could be estimated . . 
Allais estimated that for the 386,000 square miles 

1 

of the Algerian Sahara, about twenty exploitable d~osits, 

cou~d be discovered' as a result of èxplorat1on. He predicted 

the net gain of th~ exploration effort at 50 'billion francs 
.- ,/ , 

with a-u:35 probab;lity of realization, and a 0.65 probability 

of losing tw~nty billion francs. Perhaps more impor~antly, 
, 

he pointed out that the success or failure of the venture de-

j 

pended on whether or not the, few large deposi ts e»pectedjJ in ...... 

'the Sahara ar-e discovered. 1 . 

Allais assurned conditions of ignorance for the st'udy~ 

area and aJ,.so ignoranqAl" on a macro scale in the choice and 

application of the reference areas. He did not therefore at-
0(1,. , J • .! 

tempt to make any dis~inction-between are as of hig~~ or lower . , 
_ minera,l potential. He noted, however, that the range of his 

estimates could be narrowed by geologicàl and other related 

information inputs. 

DeGepffroy and Wu (1~70) made a similar study over 

" , 

.... ~- " 

1 
l 
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1 
340,000 square miles bf greenstone belts in the Canadian 

Shield. They used a negative binomial distribution to re-' 

present ~spabial distribution, of deposits in the,Shield. 

They predicted a total of between 1,375 and 1,581 ore depos-, . 
... its worth a total esti~ated va~~ of 'fetween $155~ and $432 

billion.
l 

Like Allais, DeGeOffr~y and Wu did not makè dis-
, , 

tinctions between areas of high and low potential. However, 

their results have/a greater'relevance to the Shield area 
8 • • 

than had Allais' results to the A1gerian Sahara for the rea­

""" Sfn that a similar geological environment is available bath 

in the reference and t~ study areas. 

12 

Derry (1973) made estimates of the potential endow-. 
, 

m~nt in the Canadian Nqrth usin~~spatial analysis. However, 

by using a c.?mbination of age and type of "sediments and '1.101-

canics bath in the reference and the study areas, he was able 

ta define his predictions in terms of specifie metals. 
~ 

Spatial analysis is useful in 'evaluating the bene-

fits of exploration over large unexplored areas. However, 

it cann9t provide guidelines for mineraI exploration within 
J .. 

such areas. U~der conditions of ignorance, spatial ana1ysis 

does provide a basis fo+ better exploration investment deci­

,sions in the 1ight of th~ information developed. 

tif 
l$87~$243-billion in 1968. 

" \ 

, , " 
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2.2.2 The Geochernical Model 

The geochemical model re~tesents an atternpt to esti-
"-, , 

mate the endoWIDent of a metal as a function of its average 

concehtration and distribution in the earth's crust. Thé mod-

el does not define target areas for exploration within the 
. . 

studied geochemical environment. ~However, it has the advant-

age of being independent of geological data with its inherent 
, 1 
problems, . and of econornic data which are subject to changes 

~ 
witb tirne. 

McKelvey (1960' observe~ that the contained rnetal , 

c~ntent of mineable reserves of rnany e1ernents in the United 

'i States are equa1 to th~r estimated crusta1 abundance 2 rnul­

tiplied by a factor of betweeJl 109 aIXl 1010. A similar linear rela-

tionship was noted by Sekine (1963) for the metal reserves 

in Japan, the multiplying factor in this case being be~ 10
8 and 

-
Thes~ relationships are tao close to be fortuitous. 

Thus they o~er a pos~ibility of making resource estimates 

on a gen.eral leve!. 

Brinck (l967, 1972) i5 the chief advocate of the 

geochemical model in resource evaluation. By defining the 
1 

lIncompleteness, lack of uniformity, changing in-
terpretations. ~ 

2Expressed as a percentage . 

." 
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\ 
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( 

relationship between the distribution 
. l /' 

propert~es of metal .. , 
concentratidn in geochemical sized samples of rock, and the 

. 
distribution properties of the meta1 2 in known deposits, 

Brinck develops a measure which he calls the "specifie ~in-
'-

eralizability,,3 of that metal for the given enviroruqent. 

Mathematically, 

in which, 

Cl = 
2 _ cr 

3ln D/d 

a. = Speci'fic mineralizability 

14 

cr = Logarithmic standard deviation of initial s~ple4 

d Linear equivalent5 of volume of sample 
:',: "0 

IBrinck assumes that the tonnages and grades of ore 
in deposits, and the concentrations of metals, in geochemical 
sized samples are lognormally distributed. He therefore uses 
their median values and logarithmic ~tandard àeviations in 
his calculations. 1 ~ 

2In terms of both grade and tonnage. 

3S'pecifi~ineralizability, also called the "absolute 
dispersion"is the tendency of a metal to occur in the form of 
an ore ,eposit. This measure is expressed as a percentage. 

l& 0 

4 The sample here means the reference ore deposi téi-. 

SThe term linear equivalent is a function that de'­
pends on both the volume and shape of a body. Matheron (1971) 
has calculated a set of curves from which the linear equiva-

- lent can be directly deterrnined for any given environment 
given the lengths of its three dimensions. It provides al 
means of making inferences from one size of environment ta 
another, ie., geochemical sample size' ta an ore deposit size. ..,n .. 

'1 

.. 
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D = Li'near equivalent of volume of the environment, 
assumed as the dry land area of the earth's erust 
to a depth of 1.5 miles. 

, 
Brinck uses the specifie mineralizability of/a metal, 

, 
as caleulated from its ore reserves, to caleulate the metals 

1 

1 resources for various grades and sizes. This he calls the 

~~reference distributio~based on the.parameters r R and or which 

are respectively, the average abundance of the metal in the 

l 
earth's erust and its logarithmic st'andard deviation in the 

ore deposi~ .. The parameters Xs and as, the median concen­

trations in the results uf geochemlcal surveys and the specif-

ic mineralizability:fro~ the geochemical surveys respectively, 

are then used with the reference distribution to estimate 

the resource potenti~l af the surveyed environrnent with re-

spect to the warld's potential indicated in the referenee dis-

tribution. 

In ~ssurning the whole dry land earth rnass as the total 
" , 

environrnent of average metals abundance, Brinck ignores the 

role of geological processes, even though it is known that' 

differènt metals show a weIl established and consistent asso-

ciation with specific rock types and stratigraPhieS! The mod­

el has not fou~d wide application because of its ~ry general 

approach. However, it rn~ perhaps be useful cbn~PtuallY for 

exploration planning on a reconnaissance level. 

IBrinck uses the average crustal abundance of an ele­
ment as being equal to its median value. 
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~.1"2.2.3 T~e Multivariate Model 

The physical occurrence-of mineral endowment is a , t 
function of certain geologital processes, a modified and in-

complete evidence of which is reflected in regional geologi-

cal variables. If the known mineral endowment and the assô~ 

ciated geol~gical variables could be quantitatively 

16 

related the resulting model co~ld then be used as an endow-

ment predicting tool in a similar geological environment. 

This is the basis of the multivariate statistical model. 

However, different techniques may be applied depending upon 

the objective sought. 

The application of multivariate statistical analysis 

in resource potential evaluation was first demonstrated by 

Harris (i965). The basic postulates of Harris' multivariate 

model are as forlows: 

Where, 

l, 

'w= f(L;S,F,A) 

P(W) ~ f(L,S,F,A,W) 

w = a measure of mineraI wealth 

P (W) == probability of occurrepce of 

L ::: age and type of rock 

S = structural forros 

F = rock fracturing 

.-
W 

\ 

•• 

) 
j -
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,. , . 
A = age of igneous activity and contact relation­

ships. 
( 

ln other words, the occurrence of mineraI wealth l is 

a functioh of the listed geological variables and the prob-
. 

ability of occurrence of the mineraI wealth is a function of 

i ts ,joint occu"rrence wi th the g,~ological variables. 

Harris, after giv~ding his reference area into 243 
\ 

cells, each 20 mile,s square, made a series of measurements 
~~ . \. 

in terms of areas, lengths, and counts of variables in each 

'ce~f' He~used multiple-discriminant2 analysis and classifi­

cation anal~sis by Bayesian statistics to define the rel~tion-
, 

ship of probabilities, mineraI wealth, and associated geology. , .., 
A total of six disc~inant group's were used in· classification. 

The resulting discrimin~nt function from the refer-

en ce area was extrapolated by Hrrris ~o a total of 144 ce11s 

in an area outside the ref~ence area., Of these, 19 cells 

were.clas9ified as favourable for further exploration. This 

'constituted a greatly r~duced target ârea. 

Agterberg, ~.t al.. (1972), applied regr,ession anal­

y5is in rnaking estimates of fhe probability of occurrence of 

lHarris based his study on the base metal de­
posit5 in New Mexico and Arizona. The geological variables 
~erefore reflect the processes of the region. He extrapo­
lated the results for pr~dictive purposes to porphyry copper 
deposi ts in the state "of Utah. .~ <;.,f" • 

2The ' procedure of discriminant function ana1ysis i5 
described and applied later in this study.· 
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copper and in t~e Abitibi belt of the Canadian Shield. 

Since the or absence af an ore deposit is used as 

the value the response var,i'able, th~ir approach 

in effect is equivalent ta a two-group, discriminant analysis . . 
Predicted metal p~obabilities of thè 644-c~111 area, based , . 

;n a 26 geological and geophysical v~ridbles equation, are 

conto~réd usipg moving averages of 16 adjoining cells at a 

time. Peaks in the contours other th an those occurring over 

known mining regions indicate potentially favaurable areas 

for future exploration. 

Other applications of multivariate analysis include 
~ . 

those by Harris (1968) in Alaska, by Kelly and Sheriff' (1969) 

• in British Columbia, by Harris and Azis (1~70) in Mexico, by 
~ 

Sinclair and WOQ~worth (1970) in British Columbia, and by 
\ 

OeGeoffroy and Wignall (1970) in southwestern Wisconsin. 

Multivariate statistical methods can p~ovide mean-
0" 1 ~ 

~nglU~ resource pbtential estimates on both,regional and cell 

bases. ~They must, however, be applied with an awareness of 

the methodological limitations and any shortcomings af the 
"", 'r 

data base. Any multivariate statistical model is bêst for 

the system on which i t i5 develaped. For this r~ason, special 

c~e ~~st.be exercised when extrapolating the model outside 

th~ reference area. The need for such a caution would vary 

lEach cell is 10xlO Km., or about 39 square mil~s 
in area. 0, 

" 
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for the type of endowment sought and on the level of informa-

tion 'avai lable. 

1 

2.2.4 The Subjective Probability Model 

The subjective probability model is based on the pro­

cess of extracting and quantifying individua1'judgment about 

uncertain quantities. The technique can be considered an ex-.. 
tension of the multivariate model in that the endQwment-geology 

re1ationship is estimated by the opinions of geologists instead 

of the explicit geologic and known endowment information. In 

other words, the subjective model assumes' that t~e endowrnent 
1 

poteptial of la region is a function of the experience,· know-
"" 

ledge and insight of the gealogists familiar with the geology i 

of the regian. 

Subj'~~tive prob8:bility analysis was first applied in 
., 

evaluating endo~ent potential of the Canadian northwest by' 

Harris, Freyman, and Barry (1970), and by Barry and Frèyrnan 

(1970) . 
J 

The technique was also applied by Azis, et al. (1972), 
l 

in making estimates of the undiscovered endowrnent of t~e 

canadian Shield in Manitoba. Various methods of subjective 
\ 

p~obabil~y encoding and their applicabili ty are discussed by 

Spetzler 'and ' \Ion Holstein (1975). 
\ 

For the application of this technique, the geologists f 
se,lected and wi l.ling to participa te are provided wi th a set of 

geologica1 mapp of the study area which are divided into equa~! 
l \r (/ 

._ !i 
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area celis and containing ail reIe;rant a~d available, informa­

tion such as existing deposits, their tonnages, grades, and 

va~es. They are aiso provided with a questiodnaire contain­

ing weIl defined and unambiguous questions on the cornmodity . 
50ught, its categories to reflect ranges of economic signi-

ficanceoat various levels of grades, tonnages, and probabil-
, ~ 

''''lJies. 

Since individual, opinions are involved~ any two ~eo­
l., 

- ~ 
logists can arrive at different probability assignments for 

endowment in the same cell. It i5 for this rea50n that the 

interview process is ,so important in this method. Spetzler 
~ 1 

and von Holstein recommend the following steps in the . 

interview process (p. 352): 

(1) 

(2) 

( 3) 

(4) 

Motivation: Rapport with thel subject is estab-

li~hed and possible motivational biases are ex-

plored. 

Str~cturing: The structure of the uncertain 

quantitie5 is defined. 

Contlitioning: The subject is cond~ti)rnèd to 

think fundamentally about his judgment and avoid' 
, . 

cognitive biases. 

Encoding: The sUbject's judgm{nt i5 quantified 
J \ 

in probabilisti'c terms. 

(5) ve,ifying: The re5ponses obtained in the en cod­

.ing are checked for consistency. 

, . 

• 

L 
l" 

" 
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. . 
The geologists may be allowed acces~ to the replies 

obtained from other geologists s'o that if they may want to re-

vise thelr origlnal opinions, the y may do so~ This is called 
\ • 

the Delphi process. And fina~ly, a Monte Carlo simulation may 
t 

-' 

be used to average out the replies and ta obtain results at' 
,-

the desired confidence level. 

The subjective pro~abillty method has the advantage 

that the subjectiv~<"knowled<.1e accumulated by exploration geo­

logists, and their instinct and insight can b~ quantitatively 

inciuded im decision making.' The problems of incomplete and 

non-unlform geological information, and sorne of the Iimita-

tions of 

method. 

statistical techniquesJthemseives are avoided by this 

However, application of the method requires a reIi-

able sample size of geologicai expertise within· the study 

area. This is often difficult because of the reluctance of 

private company geologists to participate due to the competi-

• 
tive nature of exploration. Governmènt agencies in general 

are cooperative but their experts may not have the first-hand 
! 

lOcal experience of the study region 50 essential,to a mean-
# , 

in~ful ap~lication of thé methodology. 

2.2.5 Other Models 

The models desc~ibed in this section are semi-statis-

tical in nature. Their appîication is only on a reconnaissance 

level. The following is a brief review. 

'\ 
\ 

\ 

\ 

\ 
\ 
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- . , 
: 111 a presidential address to the .. Society of, Economie 

'Geo~oglsts.in ~~49, N91an (~950, p. 604) observ~d that: 

If mineralisatlon has 'occurred fairly uniforrnly, 
througho~t a major geologic province, it is safe. 
to conclude, if large enough areas' are involved, 
that-a comparable number of rnining districts of 
varia.us sizes may be expected in that' part of the 
.p'ravince cov~red by yOW1ger rocks as i5 found in 
the exposed areas. ~ d" 

... , 

) 
_Considerlrig the non-statistical fo1um of the address, 

this ",as an importan't and. innovative· suggestio~. The conclu-
, , 

,'( , 

sions arrived at by Allais (1957) are based o~ a postulate' con-

f~rmin~~o t~e above suggestion~ 
" , 

Bates (1959) used Spearman's coefficients:of rank cor-

relation for determining favourable uranium-vanad~urn areas' in 
, , \', 

the Colorado plateau. The Spearman' s rho l is simil\ar to' the' 

ordinary correlation coefficient except,that it requires the 

• 
use of rankings rather than the absolute values 

in t~~ computaJion of the coefficient. 

of variables 

, ' 

Bates noted that 78 percent ,of aIl uranium-vanadium .. 
deposits discoverèd in the colo~~do plateau (sinee 194'4 fell 

within the favourable areas outlined in his, study. Bates was . ~. 

lowing: 

l ' . 
Spearrnan' s rho, denoted r s i5 numerieally the fo'l-

~ 1 

1" './ 

_J 

1 -

... cont' d 
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also ablej to eliminate a particular as being unfa-

vourable for this Jype of deposit t~ereby reducing the area • 
• > ~ 

size for exploration. J 

23. 

"\ Botho1 (-1971) made a study of th rty ~se-meta1 min­

:ng re,,!ions ~n the unit~ftatef using a eChniqU~ he dev,:~- • 

oped caIIed chatacteristic~~n~lY~~S. ~h technique can rank 

large ~rra of geological ; . in or~er of t;heir 

.' decrea ng l typi~i~i ty. 2 Bertbo nurnèrlcal1y coded J;1i'Sb data as 
,lf -----one·or ~ero on the Qasis presence or absenc~ of' the 

characteristics in the ~eferen~e cells. 

m~tiplied by its tra~spose so that~the 
d t 

' 3 , a a matr~x ~s 

s of the resultipg 

• matrix are 10gic vèctors.' The square root of the sum of 

squared co~on occurrences is called th~ t picality~of the ... 
~orresponding characte"ristic., The most ty ical characteris-

'> 
.. \ fi -' .. 

tics based on thei~ ranking are used as al reference base with 

which comparisons ca~ b made with c~~racteristics of oth~r . ~ , , 
j ,~ 1 • 

ar~as. . ~ '*-1 
,~ . l " 

l', l ' 

Characteristié 8na1~sis has the advantrage of defining the i~ 
~, ~ ~; 

.la·tive importance, of various ~eo'logi,c§il factors for a 

" . 
Where D· ~s the'difference associated with the particular in­
dividua1 i, and N is the number of ind{viduals observed. 

~r , 

IllCharacteristics" is synonym6us wi th the terms fac-.­
tors, or expllanatory variables as appli~ to géological da ta. 

, 2Typicality impIie~ ~requency of joint 6ccurrence of 
a cnaracteristic with another. 

3The columns of the matrix represenb the individual 
". ce11s, and the rows denote the characteristics to be ranked. 
'/ "'1 • 

• , § : 
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... 

--_/ .• . 1 ' , 
par.ttcular type" ~of ore deposi t. In this way, the number of 

*variabl~s for subseqJent rnultiv~Eiate analyses c~n be reduced. 

~urther, the ranking of typicaittfes, ;~~~~ectlY helps explora-

tion by invi1:ing greater" atten~ion ,to the more important cha­

racteris,tics' at' the geological rnapping stage. _The method does 
~ 

nQ~, however, make numerical es~imate~of the r~source poten-

tial in the study area . 

.::> 

--- --2.3 The J?resent Study 

.. . 

-
, The studies that p~ve l been described in this 

" 
-chapter have aIl beeR applied on a <,reC!onnaissance lèvel over 

"large regions. The pr~ent study focuses on the applica~ion 

of' multivariat~" techniq-ues over a small area, the 
, J' 

size of an 
~ 

average rnining region. 
. ) 

The advantage here, is, the 

of u,piforrn and detailed geolog±cah inforrnafion and weIl ac-
,. 

~epted conc=pts on ore.genesis. However, there are problerns 

.relating to-! srgall samp~e size in statistics. The anticipated 
) 

benefits in using small areas,and ~etailed geologic~l infor-

mation incI'~de\ predict~ons of narrowe~, better .~efined, target 

areas for.eXPlo~ation, rn®re precise ~timates of enda~~t 
totential 
l, 

,concepts. 
". 

'1 , 

and an ability to statistically eval~te geological 
t.. \ 

Th~a~e described ïn. the following chapters. 

1 . 
Ta the extent th~t the frequency ~f joint occurrence 

is a measure of the ~mportance of a characteristic. 
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THE STUDY 

3.1 General Stat,ement 

, . 

CHAPTER 3 

REG 1 OON ~N-NORANDA 
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The Rouyn-Noranda region lies about 400 miles north-

west ,of M~ntreal, Quebeci l it is centred about the 'twin cities 

of Rouyn and 'Noranda;' and co;mprises the towrt~hips Dutrat, 
, i ~ 

.~ 

Dufresnoy, Beauchastel, and Rouyn. The region has been the 

centre of exploration activity since the discovery by Bd ~orne 

in 1920 of the copper-gold deposit that was tO'become the Horne 

Mine in 1927. Other discoveries that followed in the region 

include the Amulet C a~ Upper ~ ore~odies, and Old Waite in 

1925, Aldermac in 1927, Amule~ orebody in,1929, Amu1et Lower .. 
A orebody in 1938, Qudrndnt in 1945, East Waite in 1949, Vauze 

\. 
in 1957, Norbec in 1961, and Millenbach in 1966 (Dugas"1966: 

Sirrunons,"et al., 1973? Between the yeârs 1927 and 1974, the 
J 

metal~ produced and reported, in reserves exceeded 2'.23 million . ,( .. 
tons of copper, 1.15 million tons of ~inc, 28.76 million oun­

*~~s of~ilver, and ~3.l4 million ounces,èf gold; this produc-

tian was aIl f'rom the massive sulphide deposi ts. Table 1 sum-

marizes the production and reserves figures for these metals 
) . 

on an indi vidual mine bë;lSis. " 

é • 

lsee Figure 1. 

2The Corbet deposit, dis~o"'@red in 1~74', is being 
developed for production. 

" J 
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{ 
TABLE 1 

• COPPER-ZINC PRODUCTION AND RESERVES 
IN_THE ROUYN-NORANDA REGION 

(AFTER SPENCE AND SPENCE 1 19.75) 
1 

vr 

'\1 

âre Copper Zinc 
Mzne Years (t ns) (tons) '(tons) ," 

) Coppe!'-Zinc c;::s 
A1dermac 1931-43 2,057,100 30,845 -\ 
Horne 1927-~0 56,264,700 1,226,018 

i~ 

Mi11enbach # 1971- "- 2,415,000 3.45% 4.35% 
~ 

Norbec 1964-70( 2,800,200 93,242 1,34,034 
Quemont 1949-70 15,013,000 183,801 283,991 
Vauze 1961-64 385,000 Il,150 3,600 

'" Waite Amu1et 1930-62 9,658,000 404,009 352,921 
(A 5,872,000 
B,C,D,E, Bluff 596,000 
F 290,000 
O. Waite 1,245,000 
E. Waite) 1,655,000 

t . ~ 

Zinc 

88,593,000 ~ 

De1bridge 1969-70 400,000 ' 2,170 ,,~ 34,000 
D'E1dona 1950-52 86,500 14 l' 4,360 .. 
West MacDonald 1,O30~OOO ' 1 25' ... 30,000 

1,516,500 f 
~ 1 

1 Mobrun -* 3,000,000 0.69% 2.18% i 
! 

1 

, 
t 

• 
f 
~ /lo 

~ 
# Current producer "' 

î * Reserves, 1972 
~ , t Lâst avai1ab1e data. 

( 
1 
~ 1 

/-1 
- , 

-_._~ 

1 
l 

1 

, 
r \ ~~ 



" 

r 

As of 1977,1 the only remaining producer iri the re­

gion is the Millenbach mine. ,The depleted condit'ion of ore 
~ 

28 

reserves in the Rouyn-Noranda region therefore underlines the 

need for at1 assessment of any additi.onal mineraI potËmti,al of 

the r~gion, an assessment that wou1d assist in exploration 

planning and investment decision making. 

3.2 Geology of the Rouyn-Noranda Region 
( 

3.2.1 Introduction 

This thesis is predicated on the postulate that ore-

deposits result from the interaction ,of specifie geological 
1 • 

processes that were responsible for: 
\ 

(1) Extracting by s~e process the metals contained 
"1 

in the earth's/crust; 

(2) Transporting the extracted metals to near the 

surface of the earth in some:form or medium, 
l , 

.. 1 1 

the tra~sportation itself bel facilitated by 
J 
1 

additional geological pr ce.ses; 
1 

(3) Depositing the concen ate ~e~ulting from chang-
1 

es in the physico-chemistryiof the transporting 

______ a_~_ent' l 1 
lSince January, 1975, the Norb~c mine has acted as a 

~tandby to the Millenbach mine, SUPP1Yirg the millfeed from 
its stockpiled o~e. The Horne mine cea ed.operations in July, 
1976 •• 

J 

"' ,r 

, 
1 

1 
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(4) Preserving the deposited rnetals by further geo-

logical processes. 
1 

The characteristic intèraction of géological processeJ that 

resulted in ore localization was probably random. In fact, 

sorne of the more critical factors are still unknown. It was 

only a decade ago that aIl base rnetals deposits in the Rouyn-
1 

Noranda region were considered to be of hydrothermal epigenet-

ie origin as originally defined by Lindgren (1933). The sarne 

deposits are now believed to be syngenetic, and the result of 
-, 

volcanic processes. Whiie geological thought on ore gen~ 
.J 

esis may change over tirne, the pa-ttern .of ore occurrences in 
~, 

the region does not change. 1 It ts for this reason that t~e 
1 

geological description in ,the fo1lowing sections outlines the .. 
regional aspects fi~st before concentrating on the Rouyn-

" 

Noranc;l·tV region i ts~lf. This approach i5 essentia1 from . an. 
~) 

,exPfora~ion point of view and for a better comprehension qof 
.: 

1 .. -

the resu1ts of multivariate analyses applied in this study. . " 

As Guild (1976, p. 709) observes, systematic exploration 
" 

should be based on a genetic model in se arch of answers to 

the following questions: 

-----------------(1) 'J:fuW'~d the deposit forro? 

(2) Where ~ the conditions favourab'le? 

1 (3) What ancillary features of broader e~tent might 

aid in zeroing in on the target? 
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The answers may only be known conceptually, liut t,hey 

are essential for a meaningful application of'quantitative 

\ analyses in resource potential assessment. 
j ~-~ 

./ 

~ Î 
General Staternent 

Rouyn-Noranda is'one of the s~veral Archean regions 

in the so-called Abitibi greenstone ~~lt of the Canadian 

ShiQld, a belt tha~ contains'clusters of volcanogenic, bas~ 

.metal, massive/sulPhide deposits. The following section re­

views the geology of the Abitibi belt. This is followed by 

a description of the>geology of the Rouyn-Noranda region it-

self, and a discussiDn of1the genesis of the massive sulphide 

ore deposits in the region. 

3.2.3 The Abitibi Belt 

The Abitibi greenstones belt occupies the sout~ern 
1 1 

part of ,the Superior Province, and i5 the Iargest s~ngle 

greenstone belt in the Canadian Shield (Fig. 2). In economic 

terms, it is also the most important. 

The rocks in the beit range from mafic to felsic l ,1 

volcanic flow rocks and py~oclastiqs-to sedimentary rmcks. 
/ , 

These have been intrudeq by a large number of dykes, si11s, 

and irregular bodies representing a wide spectrum of igneous 

rocks. The rocks are' estimated by Goodwin and Rid~er (1970) 



( 

, .' 

( 

r 

~ FIGURE 2 

THE ABITIBI VOLCANIC B~LT 
(AFTER DOUGLAS} 1970) 
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to be distributed as follows in the beIt: 

Màfic; volcanics 45.6% 

Granitie rocks 32.3% 

Sediments 16.0% 

Fe1sie vo1eanies 3.6% 

Mafie intrusions 2.5% 

The volcanic rocks in the be1t are of both tholeiit-

ie and caIea1kalJ.ne affini ty. Chemieally, ,they are poor in 

both potassium and titanium. Descarréaux (1973) observes that 

except for the oceanic tholeiites, the roek~are poor in- ca1-, 
cium relative fO magnesium. Baragar -(1968) in his study also 

notes a similar chemistry ,that is close to that of the cireÜID­

oeeanie basalts exeept for the lower potash, lime a~d iron 

oxides. Based on the average sui~e index1 of the roeki, Des-

carreaux caneludes that the rocks would fa11 within the range 

of the basa1t-andesite-rhyolite association typical of oro­

genie beIts., Goodwin and Rid1er also regard the belt as oro­

genie anq define it as '~a rernnânt ot' a bilaterally synunetrieal 

intratectonic orogen rather than a eonventional asymmetrical 

• 1 

continenta1-oceanic tectonic l.n1:erface, i.e., an island ar,c" . 

lSuite index i5 a numqer equa1Iing 

(N~20+~i'O)2/(Sici2-43), 

and is used to ana1yze 'the proeess of magrnatic diffe~nti~­
tion. See Barth (1962, p. 168) for detai1. 

, 1 

1 
1 
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f\ 
Their concept is explained in Figure 3. 

Wilson, et al., 1965, and more recentiy, Dimroth, et 

al., 1973, have compared the belt to the present day island~ 
~ 

arcs,Jbuilt of highly comPtex groups of shield volcanoes whose 

configuration and spacing have changed with time. -

Gélinas and Brooks (1974, p. 336) on the basis of 
( 

~etaiied chemical and quench-texture studies of, the belt have 
\ 

suggested that "the more northerly part of Abitibi volcanic 

pile studied represent~ a deeper, more basic sectio~ of the 

volcanic sequence, and could possibly be a more primitive 

'base upon which the island arc was buil t, the' isl~nd arc be-

1· 1 
ing typified by the rocks south of the DDM break"." They al-

50 point out the ambiguity that the 5uggested more primitive, 

, ~ 

bas~ ~n the northern part ha~ a lower grade of metamorphism, 

the prehni~e-pumpellyite facies, compared to the southern 
f 

pa~~which is in the greenschist facies. Baragar (1968) has 
, 'fi' 

also observed chernical differences between the northern and 

southern parts of the belt. From a different perppective, 

Krogh and Davis (1971) in their age dating of rocks across 

the belt have observed.a younging trend towards the south. 

The volcanic rocks are generally weakly metamor-
:1-'. phosed except in. the vicinity of granitic intrusions. The 

'b ' ~ metasedimentary belt has been metamorphosed to an amph~ ol~te 

or higher grade. ' '* 
/" 

lThe DUparqUet~Destor~V~lle break. 

.. 

/ 

, ' 
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FIGURE 3 
~HYPOTHETICAL TECTONIC RECONSTRUCrrON OF 'A~ITIBI'BELT 

(AFTER GOODWIN AND RIDLER J 1970) 

Flyschoid 
I:acies 

- Volcanogenic~ 
FaCIes 

Southern Comptex 

erust 

lllIIIII1 
Cl 
lm 
~ L1b 
°o·r .... ,-. r- • 

'c) •• 

r 
LfGEND 

1 
Greywacke. argil11te 
~ 

.J,­

Granodiorlte 

Daclte. rhyolite 

Iii 

Amlesite 

C{)nglo~rate. greywaeke 
(TellÏ$ca.ing) 

.. 

1:. 

AX1al Zone 
of Orogen 

Volcanogenle 
Fae~es 

Northern 
Complcx 

Craton 
North l'orelan.d 

M.intle crust 

Stalle 
erust 

Approx, 
1- .. 1 

100 .iles 

~ Basdlt 

Gabb~o, ano~thoslte 

lii!II GabbTQ, norlte 

I11III Voleanoclastlcs 

" 

-' 

, 
i 

\ 

" 

"...... 

Cl 

'" 
'" 

)~ 

, .- l'I5H7 •• " PT',. JI ----... ,-., '.' ml t ) hW'D' PI'* •• Ir i JlIIIlI.* • ".2: .... ". iii ili dl Ff. Il lit.. sir 
" 

t w 
~ 

.;' , 



\ 

) 
• 

1 

y 
f 

( 

1 

On t~e ba~is of facies, tectonics, structure~ and· 

geophysics, Goodwin 'and Ridler have outlined nine vJlcanic 

complexes in the Abitibi belt (Figure 4). The complexes 

35 

close spatial relationship with the base m~ta~ mining regions 

in the belt. Of these nine, the most important complex is, ~ 

located in the south-central part of the Abitibi greenstone 

belt and includes the cluster of massive sulphide deposits 0 

of the Rouyn-Noranda region. Other complexes contain the 

b~se-metal regions of Chibougamau, Matagami, and Timmins. , 
, " 

The implication of a relationship between the volcanic pro-

cesses in the complexes and the massive sulphide deposits is 
o 

i 

therefore obvious. sec-

,'~ions . 

This aspect is elaborated in lattir 

. ' 
1 

3.2.4,. ,The Rouyn-Noranda Region 

General Geology 

.' 
The 'Rouyn-~npa re~ion, because of its economic 

/ ~l 
pot~ntial and good outcrop exposure, has been weIl mapped 

1 

an~ studied. The general geology ot~the region is shown in 

Figure 5. . , 

THe general stratigraphy'of the region l i9 as fol-

lows: 

IAfter Douglas (19?O). 
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, ,FIGURE 4 

• 1 • 

DISTRIBUTIOt-j OF VOLCMÜ'C" COr1PLEXES IN ABITiBI BELT l 
. (AFTER GOODl'{W AND RIDLER J 1970) \ . 
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FIGURE 5 
GENER~L GEOLOGY) ROUYN-NORANDA REGION 

, (AFTER DUGAS &T AL.) 1965) 
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Rhyoli tic rocks and 
pyroelastics 

Mafic lavas 
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CADILLAC GROUP",. 

1 
~ . 

~l 

COnQ"tomerate 
Graywacke 

Sha).e 
r 

'Unconformity 

BLAKE RIVER GRqUP 
. ......., 

Basic volcanics 
Acidic 'volcanics 

'''Tuffs 

... PONTIAC GROUP (KEWAGAMA) 

"' ... 

Graywacke 
Shale . 

Metasediments 

-7 ' 
The most important group in terms of ore occurrence is the 

~ 

BI~e River group. This group is composed mainly of andesites . . 
and rhyolites wit~ relatively lesser amounts of basalt and .. 
dacite: There ~ay, however, be more basaIt present than ori­

ginally believed, for as Descarrea~ (1973) observed o~ the 
~ . · . J r' .,. 

-,\ ~ basis of chemica analyses, ·there hasg been'~ tend~ncy amongst 

geologis~s to give narnes to volcanic rocks in the region that 

, ... 

t 

, 

o 

are too fe1sici this is particular1y true of basalts which ~ ___ . ---'-'-

On the &...ase' map u-s-------ed ';n ' "1 ..-have often been cal1ed andesites. ~ • 

this study, basa1t and andesite have been C~mbi~d and treat-

ed as one unit., '\ 

\ . . \ 
Rl.ver szoup 

"'-'" 

The Blake . - overlies the graywackes of the . 
f 
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1 
Kewagama group, l t1!e contact Jeing characterJzed ';J:t interbed­

ding and interfingèring of seJiments and volcanics. Wilson 
, 1 

(1962) regards this contact a~ an uncoo.formi tY. On the south 
, \' 

wi th an apparent uncon{ormi ty, the more basic voleanics of 

the Blake River group overlie the m~tamorphosed graywacke and 

sha1e of the pontiac, group. \ 

The stratigraphie units are discontinuous, ;:th the 

f+ows pinching out over short distances. The thieknesses al-
, J~ 6 

50 vary, in particular for the morJrviscous~elsie units. 
, 

Baragar (1968) estimates that-~he volcani,s in the region at-

tained a true thickness of at least 40,000 feet . 

1 

MOtt of the felsic rocks are concentrated in the 

central and ea.!itèrn parts of thë· region and most likely repre- ' . 
.: 
( 1 -:t 

sent centres of eruptive activity. No effusive centre~ have 

determined for the basic and interme~ia~ rocks (Spence, 1967). ' 

Roscoe (1965) has observed that the basic ~olcanic 

units becorne more si1iceous in stratigraphic a~ending order 
\ ~ 

t~ugh thé sequence. ~Baragar in his study of the Duparquet 
, 

section north of Duprat township notes a dec1ine in the eolour 

index of rocks from about 40 at the' base to 20 at t~e top of ,. 
~~e main 1imb, and rising àgain to about 30 in the south 1imb. 

\ 
He related th~decrease in colour index ta the inerease in, the 

r , 
This does not itself suggest inereasing 

1 Ambrose (1941) correlated Kewagama group with" the q 

Pontiac. 

1 " 

1 \1<1 
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.. 
" acidi~Y with increasing stratigraphie height: Baragar has 

. 
,su~ge~ted that th~ increase in alumina content rnay be related '" 

'~o prolonged v6lcanism causing enrichment of the plagi~clase 

component and depletion of' the ferromagnesia and titaniferous 

'mineraIs tô ~esocr~tic high alumina l~vas. The concept of 

prolonged volcanism may fin~ support in the study by Krogh 

and Davis (1971) who found a younging trend towards the sou­

thern parts of ,the Abitibi belt. 
il 

In genera1, the volcanic pile is conformable despite 

numerous a1ternations of felsic and intermediate rocks. There 

is a graduaI evo1ution of'rhyo1ites from andesites, the dacites 
1 

being commonly present in transistion. However, rhyolites and 

andesites are also present in sharp contact wi th one another., 

both above and be10w each other. The contacts show no,signs 

of any erosion or sedimentation but they do often ~ontain 1ay­

ers of chert and tuffi tmese layers constitute good marker 

horizons over short distances. Disc6ntinuous and irregu1ar 

belts of breccia are present ln volcanic rôcks. 
f<J 

AlI the vo1canic products are submarine. As evidence, 

Spence and Spence (1975, p. 94) cite the following features: 

(1) 

(2 ) 

<-

\ ~ 

The lack of oxide facies such as banded iron 

forrnati6n; 
y r 

The po cr develop~ent of vesicularity ip the 
! 

lav~s, reflecting. limited escape of volatiles 

due to a high hYdrosta~~c pressurei 

.-
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(3) The'great lateral extent of lava flows, espe-

cially of fluidal rhyolites; 

(4) The paucity of pyroclastic products, implying 
1 

41 

rare explosive activity due to a high confining 

.. 

, ' 

, ' 

.~ pressure and, where found, their restricted dis-

(S) 

(6 ) 

tribution; 

The lack of ~rosional .productsi (}:i,. 

The presence of pillows throughout the verticàl 
1 

extent of individual ande~itic formations which 

are -as much as 3,000 feet thicf. 

. ~' 
In view of the absence of~arèally extensive sheets 

of aquagene tuffs, D~oth, et al., (1~73), ha e also suggested. 

a reasonably great depth 

low more ·than 330 feet. 

.~ 

Lithology 
/ 1 

in'termediate f Mafic to 

For 

rhYOlite l ha 

of eruptive activi 

, 

5: 

y, 
\ 
\ 

certainly be­
\ 
\ 

volcanic f ows more basic than 

in the ma to intermediate 

These'include basaIt andesite with minor 

dacite and trachyte. These rocks exhibit a broad range of, 

lI.e.'t rocks with 5i02 less than 68% (5pence and 
S~e.Pce, 1975, p. 91). .! 

1 

1 

~ -- - .• '. ~,~ ", ... "- ew .cr Ni, ,.1/ '''Ut .. -
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physical features inc1uding, pillows variolites, arnygdules 

and l~inations. Flow brëccia-;s fr~9uentlY present. The 

thickness of individual' f'IOWS . nOrmaflY does not exceed about 

100 feet. The contacts between the: flows are sharp and may 
1 

l ,'" 
include intercalated breccia. Feeqers to these flows have 

~ ! 
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not been re,cognized with certainty!~ Hawever, Gilmaur (1965), 
1 

Van de Wa11-e (1972), Dimroth, et 11. (1973) 1 and Spence and 

Spence (1975) have suggested that'the olqer diaritic-gabbroic 

dykes'may have acted as such. 

Acidic rocks 

, 
1 
1 

1 
1 
1 

. . 1 .. , 
Rouyn-Noranda reg10n 1S except1ona1 ln having a h1gh 

, 1 
proporti'On 'of rhyolites wi thin lits pile of calcalkaline rocks. 

The rhyolites tend ta be conc~~trated in the centre of the 

region, decr~asi~ towards north, south, and west. Spence 
l ' 

~nd Spence (1975) suggest the development of1the pile from a , 

centre that has migrated eastward a10ng an east-west axis, an 
• • 

axis that is now 9ccupied by the Flavri~n and Lake Dufault 
" 

granites. The rhyolites include bath hamogeneous and hetero-
,~ 

geneous types, the physical state being a rune tian of distance 
\ 

• 
from the source and the viscosity of the lava. Spence (1967) 

~pd Spence and Spence (1975) have distinguished five differ­

ent telts of rhyolites on the ,basis of stratigraphY and their 

'PhYSiCal state/~ and suggest that ore dep.oJi ts are associa ted 

with on\y three of the .five belts. This is evidence of 

.t _ .. 
• 
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~multiple cycles of §xuption and ore formation. The problem . 
is that it is difficu1t ta distinguish ~he different rhyo-

lites or ~ven to co~elate between similar rhyo~ites aver 
\< , 

more than short distances because of 1ensing and the' effects 

of intrus~ons and deformation. Although most of khe rhyolites 

in the region aI::e flow rocks 1 .some may be pyroclastic. This 

i5 the view~f Sakrison (1966), and Larson and Webber (1977). 

However, detailed interpretation of Archean volcanics, and 

the recogn~tion of pyrQclastics is a problem. A c1assifica-

tion a~ eluc~dation of such rocks in the region by Dimroth 
,\ 

(1977) is helpfu1 in eva1uating. the flows of pyroclastic ori-.. 
gin and acid volcanics. 

~ 

Gabbros, diorites, and quartz diorites 

'These are the rnost widespread intrusives forming 
f ' 

large irregular bodies, both s,ill-like anid cross-cutting, .and 

confined mostly within the volcanic rocks. They probably cov-- . 
er a wide span of time 1 but the relationships are" not clear. 

The oldest of these, also called meta-diabas~ may be penecon-
, l ,1 

temporaneous with the interrnediate lavas, and rnay likely have l, . 
1 

acted as their feeder dykes. 

Granitic'rocks 
JI 

About one-fourth of the'study area is underlain by 
~ 

\ 

r 
l, 

\ 
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. ~~ 
granitic rock,§>o These include the Lake Dufault granodiorite, 

and the Powell and Flavrian.granites, aIl in foughly ova1-

shaped areas. 

The Lake Dufault gràhodiorite is a composite intru­

sive intersecting and~ites, rhyo'lites, and diorites. Webber 

(1962) observes that the western part is massive,,~ithout 

1ineations and contains inclusions of the brecciated intruded ... 

rocks. Th~eastern part shows the effects of shearing, al­

teration and weathering' more p~ominently suggesting,a hybrid 

origin caused by the cpmbined effects of assimilation and 

metasomatism. Sakrison (1966) suggests that the eastern half " ~ " may include a possible pendent of rhyolite in which the West 

Mac1ona1d ore-body occurs. Wilson'( 19 411) has suggasted that 
o 

in view of the simi1arity in mineralogy and chemical composi-

tion to the quartz diorite, th~ granodiorite may have been 

derived from a dioritic magma" but that the differentiation 

must have taken place at depth because this rock also int,fudes 

q}lartz-diorite. 

The Flavrian Lake granite and its faulted extension, 

the Powell granite, are,mainly enclosed in rhyolite and 'lie 

along the axis bf an anticlinorium. # B~th granites have the 

same minera10gical composition, and chemica'lly are very simi-

1ar to the rhyolites (Wilson,' 1941). Van de Wa1le (1972) has 

suggested that these granite stocks are deeply eroded sites. 

of subvo1canic centres that have been' feeding most of~th~, 

rhyo1itic and dacitic flows that are distributed concentrically 
, \ 

1 
1 .. 
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around the centres. 

Other Intrusives 

These inc~ude the post-ore potassium rich syenite por-

phyry bodies of the 1ate Archean (Wilson, 1962) and the late 

di4base drkes. The dykes are continuous, and almost vertical, 
- " 

and intrude aIl other rocks in the regi9n. There is a controversy 

as to whethet- the dykes are pre- or post-mineralization in age 

(Price, 1934, 1948; Campbell, 1~62). As Ridge (1972) concludes, 

the relationship between the dykes and base meta~~ineralization 

in the region i5 not weIl understood. ~ 

" 

structuJal Geology 
1 

The main structural feature of the region is a 'complex 

antic~inorium p~unging east on an east-west axis. Dips as 
i 

measurad on the rhyolite-andesite contacts are flat at the 

centre;but increase towards the border areas, where they range 
, 

from 15 ta 60 degrees. Spence and S~ençe (1975) postulate the 

control of the fold by the original volcarlic centres because of 
, 

the thickening rhyolites in the axis and nose of the folds. 

Faul ting i'5 wide5pread-~n the volcanics. Wilson 

(1941) believes that faulting is'related to the folding 0+ 
volcanic rocks. He concludes that movements recurred -a long 

the major fau1 t zones at intervals from the early Archean td 

the Proterozoid. He notes that'the intrusions of diorite 

J 
-~ ~_ .. ~ .. ~. ~, •• _ .. _ ...... ..,.~»I:~1t 

) 

l 
J 

1 



( 

( 

_ ..,...-.... _._~,,""'._""."-'._."'"_"_. _*4_. _. ____ . 

, ....... 

46 

follow sorne of the major faults in the region indicating that 

faulting began before the diorites were intruded. Later move-

, yen ts have sheared the diorites but not as much as the vol­

canics. Diorites also appear to have a structural relation-
/ 

ship ta the Flavrian granite in being predominantly outward 

dipping and forming radial dykes about it. 

Summary 

,') 
The following points summarize the aspects of the 

~ouyn-Noranda region geology most relevant to the present \ 

stUd~: 
... 

(1) The region has been a centre of volcanic activ- . 

ity within the larger orogenie Abitibi belt. 
, 

. (2) Andesite and rhyolite are the predominant rocks 

in t~e area. However, basalt may be present 

more prominently than previously believed. Rhy­

olites appear to both'evolve from the andesites 

via dacites, and also to occur with sharp con-
" 

tacts with the andesites. These'fèatures indi-

cate evolutionary and recurring cycles of vol­

canicf acti;i ty. 

(3) Granites j.n the region appear to be genetically 

related with rhyolites, and6diorites with ande-
s 

sites •. 

/ 

\ 
li ~ 

, 

-~~ ......... A ... ~"'\Ol'~Ii~ ... ' .... *'~ , ' 

'I 



1 

( 

( 

.,.._._., .... _~""' ......... .,""'_i _ ................ _,..-#-:...-. ___ ~_._ ... ~_ ~ h~ ___ ,.::.-

47 

(4) The dominant structure in the area is an east-

,west trending anticlinorium. Volcanic activlty 

appears to have controlled the folding. The 

widespread faulti~g in the region ippears to be 

, related to the folding process and 50 ,do the 

dykes. 

(5) It appears that in the Rouyn-Nèranda region, 

practically all aspects of geological processes 

in the Archean, lithological, structural and 

~~e-forming, were directly or otherwise a con­

sequenc~ of volcanic activity. 

3.2.5 Economic Geology 

The massive deposits in the Rouyn-Noranda region are 

elther copper-rich with l~er amounts of zinc, zinc-rich with 

/ lesser amounts of copper, or mainly pyritic with sorne copper 

and zinc., Gold and silver are present with aIl of them. 

Spence and Spence (1975, p. 94) list the following 

features commonly present in the Rouyn-Noranda massive sul-

phide deposits: 

" 

(1) A normally pipe-like zone of chloritic and seri-

qitic alteration, with disseminated and stringer 

sulphides extending stratigraphically below the 

ore. This represents the conduit for rising 

solutions; 

7 
.r 

. , 

1 
1 
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(2) 

o 

( 

, . 
Massi ve sulphides, rooted J in the pip'e, forro 

stratabound, usuall'y lensoid bodies on the 

surface of flows or explosive breccias on or 

" 
,- . 

above the upper contact of rhyolitic forma-
~ 

tions; 

, (3) A meta l zoning showing chalcopyrite and pyr-:-

( 4) 

-
rhotite-rich ore overlain by pyrite and ~pha-

leri) and a latera1 and 

pyrite and sphalerite; 

outward incr~~se in 

L~ye , :hg in the sulphide conforms to that of 

t~t 

the enc10sing ro~ks; 
• v 

(5) Alteration zones and sulphides are cut by the 

iritrusioilS. 

These features are better appreciated in light of 

the fo1lowing review of ore genesis of massive sulphide de-. . 

48 

~ , 

posits. It is not th~ objeèt of'this thes~s te prove or· dis-
~! • 

prove any particu1ar theory of ore format~on. This would not 

conforro with the objectivity contemplated in quantitative1y 

re1ating ore deposits'and associated geo10gy. However, sta-

. . 
tistical deduct~ons are only valid when corroborated with 

geologicàl thought and field evidence, and for this reason, 

theories of ore-genesis, past or current, can be, used in . 

identifying and ~so~ating fortuitous relationships so that 
l' 

their effect can be contro]led and reduced. 

Lindgren (1933) and more recently Ci.idge (1972), in 

, 1 

, 
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their discussion of t»e·Rouyn-~oranda base-metai massive su~­

l phides,assign the deposits to the hypothermal category of hy-

drothermal cdeposits. In faGt until about the mid-sixties, the 

origin of massive sulphides was weIl accepted to conform to 

1 

" 

Mindgren·! 5 hydrothermal hypothesis 1 and exploration for these 
\ 

. ' 

dèposits was carried out accordingly. 

That exploration has been 50 successful i~~he Rouyn-

" c" Noranda region can ~e attributed to the realization of the 

role of stratigraphy in ore localization (Dugas, 1966). The 

/ " role of stratigraphy remains unchanged, perhaps eJen streng-

thened by the current volcanogenic concept o~massive sulphide 
~f 

formation. In view of the extensive field and laboratory 
~ 

eyidence accumulated in"recent years, the close spatial a?d 

genetic relationship between,volcanism and{massive s~lphides 

i5 weIl accepted. This i5 also evident,i~ the present world 
.'t 

wide trend in exploration for ma~~ive base~metals deposits. 

The world-wide application of volcanogenic concept 

has received strong support from the detailed studies of the 

Miocene Kuroko mitsive suIph~de deposits in ~apan (Tatsumi, 

1970) ' .. These deposit~ are relative1y ~deforme~ and are 

found intimately assbciated with calcalkaline volcanic rocks 

in a currently active island arc. Perhaps, the main specu-

'lation remaining, regards the nature of the volc~nisrn related 

\. , 
l .. -
I.e., epig~tic deposits, produced by ascending 

• 

waters of uncerta~n origin, but charged with i9neous ernanations, 
and concentrated a'nd deposited 'at great depth a~ a high tempera..:' 
ture, 300-S00°C. \, 
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.J 
ore-bearing fluids, and the factors that controlled their 

, 

m~v~ments and precipitated the contai~d metais as sulphides. 

Oftedahl (1958) has sugges~~ vapour transport during 
1 
1 

volcanism as an effective method of forming such deposits. 

The suggestion was not, howevei, weIl received in view of the 

extremely low concentrations of metals, in a vapour medium. 

At the other extreme, Hutchinson (1965) suggests molten sul-
, 

phide floW~t but the suggestion dces not conform with experi-

mental evidence on sulphide phase rela\ionships. Most work­

ers,l however, be1ieve that sorne form of hydrothermal activity 

was involved in the transport and deposition of these depo~i.ts. 

The solutions may have been in the form of sulphide complexes 

or salin~ brines, but this is still conjectural. 
" 

The presence of hydrotherma1 activity at the time 

of ore formation is evidenced in the chemistry and mineralogy , 

of the a1teration pipes b~low the pr,esent massive sulphide 

lenses in the region. These pipes in many cases contain sul­

phide mineralization éalled stringer o~e. ~he effec~s of hy­

drotherrnal activity are weIl docurnented by Riddel1 (1952), 

and Sakrison (1966) 0' 

The shift to a vo1canogenic concept for the origin 

of Rouyn-Noranda massive su1phide deposits is not a negation 

of Lindgren's hydrotherma1 concept. The diffeLence lies 

" 

/ lE.go, Sakrison (1966); Barnes and Czemanske (1967); 
Anderson (1969); Ridge (1972); Sangster (1972); Stanton (1972); 
Spence and Spence (1975). 
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'essentia'1ly in the timing· of < the ge,~logicai events. The . , 
availëfble evidence st'rongly ~~g-iests tpat ore deposi tion took 

place co-eval with volcanic ae~ivfty within.a short span of 

,g~olo~fcal ~ime ~nd this has resulted in~. the stratigraphie 

control of re deposition. There may be more th an one stra-
e. , , . 

tigrapHie hti riZOn-1~'f deposition wlten vo1~anism is inten::up-

tive in nat re. It is for this reason that Dimrot4; ettal., 
" ~ 

a97~, have .stressed'that ~xploration for these'deP9sits in 
1 

the Rouyn-;:randa region'should be based on recognition and\ 

mapping oflhorizons of pyritic ehert and ~shales; these hori­

zons indic, te tempotary interruption of vslcanic aetivit~ at 
1r / ' ~-
stràtigrap ie levels where rhyolites are present. 

, , , "~,' . 
n a ~ecent study, B~ooks and Geltnas (1977) have 

1 '" 

~ J 

observed' hat chemical stratit;rraphy i9 à fundamentall pro~erty 
1. 

nadian Archean v91canic be1ts;'and that whereas cal-

~ ~ 

r 

.. ;ealkaliri 
"f--' __ ~ 
1 ::-

voleanics are favourable as potentially mineralized 
\" 

e thol~itic volcanics are relatively barrèn. How-

\ 
\ 
\lI 

'- ) 

'"'i l
1 

.l 1 . 

1 

o 

the Ti 

exception, they point out that mineralization in 
. " 

reçion appears to oceur in· t~leiitie '"'voicaniqs .. 

The si 
. \ 

nifieance o~ the exception is evident in that(the re- " 

gion 90ntains I~ne al the Îno~t important massive sulph~de' de­

'~osit~ in thé ~O~ld, the Ï<idd Creek deposi.. The implications 

i~ tJrms of C:re genesis and explorat{on; aretlob;j.;lous'. 
, " '\ . 

" 

\. 
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3.3 Concluding Statement-, 

'\"Stanton (1972, p. "540) after a detailed"diicussion 
( 

of volcanogenic processes in massive sulphide~ormation sums 
, . 

up the situâtion ~tollows: '\ 

52 

All.this is, how:ve~, no more than a r~:~~ble ' 
hypothesis. Clearly there is no aspe~t of the 
'origtn' of these deposits that ca~ be said to 
have-~een solved. Indeed we have ~~ely shaken 
-ours~lves fr.ee ffom, the aIl embraci~g-Tand,hence 
,highly~'inhibitin~piutonic replacernènt ~heory 
and are hardly past the threshold of a new at- ~ 
tack on the problern. '~Such a stage in the in­
vestigation of so important a group of deposi!'s 
is, howev~r an intriguing and exciting'one. . 

It ~s against the above background that rnultivariate 

statistical analysis is ap~lied in qUantitati~elY relating 
'-

knôwn ~ndo~ent and related geol~gy. 

analysis lies i~ its objectivlty. 
1 

The st~ngth of thi. 

Ba'sic' geoloÇfio~al rneasurements used as data are not 
y~' 

subject to change except in detaiL The resulting model is 
r -

therefore 
, 

,_ 'measured. 

. 
pertinent to ~t is aFtually ibserved and , 

However, since n? statistical analysi's can' prove 
1 

a cause-effect relationship between variables, both the se-

lection of relevant\variables and interpretation of results 

should conform to the curren t albei ~ sub~ ecti-ve, theories 

of ore f5rming processes. This can result in a bias fro~ .. 
the individ~al' s ~rc!=ived' unders'tandi~g of ore genesis and 

thus requires an objective app~oach. There can also be a 

. 
, . .. ~ 
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the relation~hip b'etween geology and endowment does 
"' . 

. not 'conform te what ).S ~ccepted ~ the process of ore forma-, 

l, \'" tion. This indicates that eithe'r the model or the geological 

, , 

, 

theory on ore formation needs .:o,\: re-assessed for validity, 

and if necessary revised. 1 
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CHAPTER 4 .. 
\ TJE DATA BÀSE .. 

~ 

1 1 4.1 General Statement t 

" Duprat, Dufresnoy, Beauchastel and Rouyn, the four 

township's comprising the area under 'present study have been 

,:'mapped in detail on a scale of a thousand feet to an inch by 

the Quebec Depar~ent \; Natural Resources. This Department 

has also prepared compilation maps of the four townships on 

~cales oi\twa 'inches a~d ~ne inch ta ~ mile, and a regional 

map,of 1/4~nch equal ta one mile. 

The eBail on the small scale regional map, i5 too 

sc~t for a me ningful quan~ita~e analysis. On the other 

54 

\~ ,~ l 

~ '~~" 
~hand, the la~ge ~scal~ qua~ter township mapsfare, not suitable 

, either because of~he complexity of detail: Moreover, the 

information, on them\ hasl, been mapped by different geologists 
~'P 1 

, r' . 
over different pêriods' of time, and thus, there have ar~sen 

r . 
problems of ?Diformity. .From the pragmatic point of view of 

\ . . 
including the 'optimum detail èombined with the ease of mak~ 

t!>.,. .....,\ \' 

ing measuremehts, the' compilation map on a scale of two inch-

es to a mile was chosen for the study. This map also has the 
1 

ILe., 1/4'''-= 1 mile. 

2. 
1. e. , 

, 
1" = 1,000 feet. 
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advantage of uniformity of datail and nomenclature. 

As a first step, the 400 square mile area represent-

ed by the four townships mentioned, was d~v~ded into subareasi 
, 

• " Il these wlll be referred to as celis throughout the following 

discussion. The subdivision of 'an area is based on the 101-
'" 

lo~ing considerations: 

J? 

J 

- The total siz~ of the area beipg considered{ 

- The "grain" of thec geological information on base 

mapi' 

The objective of the study; 

~ The statistical approach contemplatedi 

- Pragmatism._ 
~ 

Cells tpat\are too small make measured data in in~ 

dividual cells approach' dich9tomy.l On the other hand, for 

~ 

a fixed size ar~a, ~he choiee of large'sized cells will re- , 

suIt in a decreased sample size for an effective statistical 

'ana~sis. While smaii cells have the advantage of providing'-
) 

.,r 

a more specifie focus for exploration,1 the larger cells have 

a greater variety of geology in them and are thus 
lit 

able to developing more effective relationships. 

amen-

\ Against the àbove background, it was' decideq that 
\ 

di~~ding the tot\l area into 64 equal sized square cells, 
" J' 

each \ 6 • 25' square mi les' in area would be the mos t pr aC,ticab le 
" 

--------_-'l t 

l l.e« , of the "present" or "absent" type. 

Il 

l, 
i' 
! ' 
1 

" -

1 
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solution. Therefore, each towpship of ten b~ ten miles square 

~ area was divided'into pix~e~n cells,' each a square of 2.5 by 
~ 

1 
\2.5 miles. was done by drawing 

equi di s'tan t 
f 

The diVisiOr of each township 

lines parallel to the township 
l 

boundaries. l 

4.2 Measurements Made 

Ore deposits result from distinct geological process-

es following physico-che~ical laws. In varying degrees of-
. 1; . 

modification, distortion \and completeness, atrecord of these 

processes is available in\ the rocks and structures observed 
\ 
i, today. 
1 ' \ 1 

If the volume of 'a rock type way' responsible fpr ore 

formation,' it can now only be approxi,mated by its surficial area, 
\ ~~ 

the measurements along the depth are'least known. If sorne 
"0 

\ 

timing was involved in the ore-forming event, then 's~rati-, 
, . 

graphy or contact lengths between formations may be indica-

tive. Contacts with igneo*5 intrusions can be evalua~ed fo; 

evidence of their cont!ibu,\:ion to' the fOrInation of ore de- , 

posits. And finally, if any structures were fnvolved in t~e 

formation of ore deposits, or were themselves a result of ore 

forming processes, tneir measur~ments can be usefully incor-
1 

porated ialong wi th the areas of rock formations an'd the con-

tact,lengths amongst thern', Therefore, in each of the 64 
! 

..., 
, 1 1 

,1 
6. \ See Flgure 

~ 

4' 

for 

", 

,--~,--' __ 1~4r_' .P_'_.-~~- , "-; - - ~~~ ~'t"* •• 'fiwtl1 .. r'''.1t_hi r ~ 
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CELL DISTRIBUTION IN THE STUDY REGION 1 
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1 
cells of the study area, measu~ements were made of the_~reas 

'of rock formations, contactllengths between every possible 

pair qf these formations, and of synforms, antiforms, dykes 

and faults. 

li Areas of forrnat:ions were measured using a planimeter. 

The measurements were made four tirnes for each formation in 

a cell, and the result averaged. The total of aIl areal rnea­

surements in a cell was recalculated to'bring the tocalJto 
l '. 

6.25 square m~les, the theoretical cell size. The following 
't 

are the fonmations measured on the base rnap: 
\ 
\ 

Rock type/Formation 

Biotite, hornblende paragneises, etc. 

Tuff, agglomerate 
1 

Rhyolite 

Andesite, basaIt, dacite, trachyte 

Graywacke, arkose (Temiscaming) 

Conglomerate (Temiscaming) 

Peridotite, pyroxenitè 

Diorite, gabbro 

Rhyolite porphyry 

Syenite, monzo~ite 

Granite, granodiorite 

( , 

Areas of lakes and rivers, geology on 
which was not extrapoled 

Graywacke, conglomerate, etc. (Huronian) 
~ 

"- 'J 

Coding ,. 
AREA l 

AREA 2 

AREA 3 

AREA 4 

AREA g" 

AREA 6 

AREA 7 

AREA 8 

ÀREA 9 

AREA 10 '. 

AREA Il 

AREA 12 

AREA 13 
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• J 
Lxnear measurements were made on all possible contacts' 

betweep pairs of formations and on structural e1ements: synforms, 

antiforms, dykes, and faults. These 'mllsurements were made us­

constant spacing of 0.1 inch. oing a pair of dividers with a 

Visua1 interpolation was made ~ 
for 1engths less than 0.1 inch. 

&âch of these measurements was made twice, averaged, and con-
1 

verted into miles. The fo1lowing are the contact lengths mea- . ., 
- sured and their coded variable names. 

CODING 

CNTL 1 
CNTL 2' 

CNTL 3 

CNTL 4 

CNTL 5 

CNTL 6 

CNTL '7 

CNTL 8 

CNTL 9' 

CNTL 10 

. CNTL Il 
1 
1 CNTL 12 

CNTL 13 

CNTL 14 

CNTL 15 

CNTL 16 

CNTL,17 

CNTL 18 

CNTL 19 

CNTL 20 

CNTL 21, 

Contact between formation: 

Parag~èisses & aJh~s~~ç/basalt 
Paragneisses & cori~lqrnerate (Temiscaming) 

Paragneisses & peridotite 

~Paragneisses & granite/granodiorite 

Parâgneisses & grk:Ywacke (Huronian) 

Tuffjagg1bmeràte & rhyolite 

Tùff/agglomerate & andesite/basait 

~uff/agglornerate & g~ay~cke (Terniscarning) 

Tuff/agglornerate & diorite/gabbro 

Tuff/agg1omerate & granitejgranodiorite 

Rh,yo1ice & 
1 

Rhyolite'& 

'R."tyo1ite & 
\ 

Rhyolite & 

andesite/basa1t 

gra~a~ke (Temiscaming) ,., 
diorite(gabbro 

rhyolite pqrphyry 

Rhyolite & granite/granodiorite 

Andesite/basalt & grayWacke (Temiscaming) 

Andesite/basa1t & conglomerate '(~erni~camillg) 
Andesite/basait & 

Andesite/basait & 

Andesitejbasalt & 

peridotite 
1> 

diorite/gabbro 

rhyolite porphyry 

Andesite/basalt & syenite/monzonite 

, 



( 

( 

CNTL 22 

CNTL 23 

CNTL 24 

CNTL 25 

CNTL 26 

CNTL 27 

CNTL 28 

CNTL 29 

CNTL 30 

CNTL 31 

CNTL 32 

CNTL 33 

CNTL 34 

CNTL 35 

CNTL 36 

CNTL 37 

CNTL 38 

-,' :' 
; ~ 

,J 'f" 

the y are 

"" .... wu ... , -~'I-'--- -._--
\ 

... 

Andesite/basait & granite/granodiorite 

Andesite/basait & graywacke (Huronian) 

Graywacke (Temiscarning) & conglomerate 
(Temiscarn~ng) 

, 

'GO 

Graywacke (Terniscarning) &, diorite/gabbro 

Graywacke (Temiscarning) & syertite/monzonite 

Graywacke (Terniscaming) & graywacke (Huronian)' 

Conglomerate (Temiscaming) & syenite/monzonite 

Conglomerate (Temiscarning) & granite/grano­
diorite 

Conglomerate (Temiscarning) & graywacke (Huronian) 

peridotite & graywacke (Huronian) , , 
Diorite/gabbro & rhyolite 'porphyry 

Diorite/gabbro & syenite/rnonzonite 

Diorite/gabbro & granite/granodiorite 

'Diorite/gabbro & graywacke (Huronian) 

Rhyolite p~iphyry & syenite/rnonzonite 

Syenite/monzonite & graywacke (Huronian) 

Rhyolite & syenitejmonzonite 
.. 

. """ Structural parameters are directional features and 

ther~ote ~ssigned to one of the foilowing groups 

based~on,their direction. 

Direction Group 

East-west to north-east 

North-east to north-south 

North-south to north-west 
"'­North-west to east-west 

COding 

I 

2 

3 

4 

The structures are therefore coded as shown below . 

. } 

.... , 
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to reflect their direction. 

Structural Pararneter 

SynfoI'R}s 

Antiforms 

Dykes' 

Fault~ 

Coding 

SNFM l to SNFM·4 
C," 

ANFM l to ANFM 4 

D~KE l to DYKE 4 

FOLT l to FOLT 4 
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AlI measurements,' areal and "linear, are made cumui.a": . 
ti vely for'· the 'partièJlar variable in each cell. 

In view of the cell size chosen, and because of the 

variety of geology presént in the area, only sorne of the above 

variables are actually present in any particUlàr celle Vari-

ables not present 'in a cell are given ~ero value. As shall be 

explained in later sections, only sorne of the variables are 

significant in quantitative modelling. 

4 . 3 ~ Da ta Compiled 

, 
OFe production ana reserws figures' 0f copper and 

zinc l for the mines inœthe region were compiled from the fol­

lowing sources. 

- Quebec Dept. of~atural Resources mineraI inventory 
~ 

. . 
cards; 

IA~d al~o, for the associated silver and gold. 

). \ 
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, . 

- Canadian ~ines Handbooks; 

National mineraI inventory cardl at the Department 
~ 0 
lof Energy, Mines, and Resources:~ttawa; 

Canadian MineraIs Yearbooks~ f, 

~ Company annual reports; 

-' Unpublished record at the office of the Resident 
, 

f, Geologist, Rouyn-Noranda re~ion. 

The ,total ~rod~ction and reserves figures converted 

into contained copper and zinc tonnages are assigned to the 

cells on the basiJ of ~ir kn<;Mn characteristios. These values are re-, 

ferred to as the known endowme.lt. To obtain a cornmon value 
, 

denominator for copper and z~nc, their tonnageG were convert-
Oc.,.. 

ed into dollar values using the 1975 37 cents" 
'-( 

per pound respectively, and ed. 

Of the 64 cells in the region, o~ly eight co~tain ~ 
known ore deposits with production history and measured re-

serves. 

4.4 The Known Endowment 

In developing ,a multivariate statisti:'cal model, it 

·is hecJssary to relate the known miner~l endoWment of the 
f 

~egion fo its associated geologicai characteristics. Oes-

pite their gr~at geological age, early precarnbrian, these . 

characteristics can be reasonably mapp~d and interpreted. 

.' 

, 1 
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But the associated '. mineraI endowrnent can never be fully ~nown 

even after an,area has been i~tensively eXPlored' and~in~er-
preted. u1der these .conditions, the rnost reliable estimate 

of e.}xlowmen t i s the sun of what has been produœd 
l ,',' \ ..... 

anQ~urrent ore reserves. In this study, this will be re- . 

ferred tÇl as the "known endowrnent". Unfortunately, the ·known 

endowment ~s not the whole endowment.' Of the~wo contributors 
~ , 

to the known'endowment, i.e., productioh and reserves, the . \ 

former is the more reliable estimate because ~ wa~ produced 

and reported in terms of both tonnage and grade~ But produc-

tion itself is dep~ndent upo~ the technology and economics of 

the time,4and as Harris (1975) points out, these effects can-

not be isolateo or removed. Produçt~on in aetua~'practice is 

the material mined above a selected eut-off grade. 
, } 

No record 
" ~ . 

is geneFally available of the marginal or lower grade materia1 

1eft inside the mine that is no~ reported as part of reserve~. 

"" Reserves,.unlike production, are subject to great 

variation, again ~ependi~g,upon the economics and technology 

rt a given point i~ tirne. An increase in metal prices Mill 

permit a 'lower grade rnaterial to be mined and thus increase 

the mineab1e reserves. Advances'in te9hno1ogy have a similar 

effect. And because of the exponential tonnage grade rela-
o , ~ 

,t?~hips present in sorne ore deposi ts, the effect on tonnage of 

mining, lower grade ore can be' consid,erable. . Yet the re-

serves as measured are above an economic eut-off grade and, thus, 

are not a cœplete estimate of what is really knawn ta exist. 
• q' , 

\ 

\ 

• 1 
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Further, the reported reserves are dependent on an individual 

company's policy of disclosing information and may be biased 

by the existing soci~-economic environrnent. < There a~e also 
, 1 

problems' related to the terminology used in repo~ting re-

sources. This too can bias the overall estirnate. 
1 

1 

It i9 obvious, therefore, that the known ,endowment 

as asse~sed in this study is incornpl,.e, and therefore repre­
'SoI.J 

sents the llminimum possible"'estimate. The forecasts made us-

lng this known endowment, will therefor-e-; be conservative es-

timates. 

4'.5 
~~ . 

Problems Related to Geological Vata 
\lJ 

" 

An objective study of geological phenomena requires~ _. ." 

qthat a cert~in level of objectivity be maintained in the rnea- \ 

surement of geological information, in part~cuIa~tfield map-

ping. A significan~!~ount of subjective information accumu­

lates in the rna~pin4' process for the following reasons: 
, <,' J A. 

- Lac'k of ~ffic~ent rock expo!3urei 

- Lack of a third dime~sion in viewing rock forma-

tions; 

~- Altered, metamorphosed, and deformed state of the 

rock; 

~l / 
~~ For problems related to,resource termin~logy, ~ee ~ 

Section 4.6 // 
".' ~ /' , ~ 
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r'" 

Scale of mapping ,-~-and the time available for map-
, " 

• 
~ingi --, 

1 • 

Judgrnent of the ~eologist'relativè ta his training, 

" ! expe.rience and ,current geological concepts'. 

/ :' '0 "., 

o Regio6al data therefore tend ta be non-uniform in 

quall.' ty" land 1.' ilterpretatl.' on,' a'nd' .. ~ sometimes continuity .• In re~ 
1 

1 

o'f ~pplying mathematiqal techniques in geo-viewrn,g pr~bie 
/ 

logy" Agterberg RQbrnson (197,1, pp. 569-570) <,?bserve that 
f " 

" "the produglt availab e ta the r,nathematician co eYSj the geo­

y obser.vations, 
• . " l' 

logist's i~terpre~ations of field and l~borato 
• • 

and meas~emen~s, but not~the 'observations an ~eaaurem~nt~ 

themselv~s".' Fregue~tly', the interpretation made are relat-. 
',e<;1 tq ~e particular objective of the geaI gi~t 1 s study, and 

. J.::.' ~ may contain emphas~s on Iactors less relev nt ta a quantita-
, 

tivEt study of unknoWn endowmen1;:_~ _ This ,is .... 
rticularly a prob­

" 
. ~/ w~th o\qer 'data which _may have ta b'ê re. ~nterpreted for a 

meaningful application. Geologists" apart from their possible 
l ' \, ~ , 

.. : skepticism of mathematical studies, are also hamper1ed- ~n their' 1", ' l ,. 

1 

ô) 

/ 

/ work by the absence of a universal1y accèpted classification 

, 

/ 

~ 

of rocks. There are a munber of rock classification systems' 

bps,ed 011 various criteria !àuch, as geochemistry, mineral/:)gy, 
: "fItA' 

and ~extures. Howeve~, it was only in 1973 that ~ sub-commis-~ 

sion of the International On~on of Geological SCie~c~sl 1 

, 
l l .-.9., 1. q~ •. G • 5 • ' 

l , 

;. . 
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\ 

submitted its rec~~~ndation~ for classifying ig~ rocks. 
------ -. ~ -

In practi'ce, ffield geol9gists conti'nue t":p'c,lassify a rock by 
, -its locally adopted name .w~n first mapped, or by their own 

sdjective judgment. " 
l' 

.\1" 

It is obvious therefore, that a geomathematical study 

inherits a certai~~bias even befere it gets start~d. \This 

bias will pe 1ess for a wel~ developed mining regi6n which , 

~ustifies detailed study over a long period of time and, th~s, 
\. 

resu1 ts -,yn a s;andardization of, geologi~al nom1nclature. 
- , 

, 
4.6 Resource Classification~oblems 

r. \, 

., 

( 

1 / 

A,number of pro~lems relating to geological âata are 

discussed in Section 4.5." ~~rnilar problerns 'with more serious 
1 

possible consequences exist in the case of resource inforrna-

tion. Part of the problem with both geologibal and resource 
'\ 

data is that t~ey are dependent upon the particul~r objective 
t' " If' 

at the tirne of their measurernent or compilation. The Ulti-
,-

mate application of this information may be quite different 
JI 

from the initial objectives. However, standardizing the ter-
(, . \, 

minology alone can ameliorate the situation and irnprove the .. ' • foundation for objective studies. 

Practically aIl definitions of reserves and resources 
"1 

are adaptations of ~arlier sets of d~fini1iofis with intent to 

elimi~ate~amb~g~i~y, increase precision~nd to account for. 

changing uses and perspectives. The Departmlnt of ~?argy, 

\ 

\ 
. \ ' , 
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~ '~ 
"M,es, and Resources, Ottawa, reco~endsl '" the fol1owing usage 

for metalliferous and industrial mineraIs: 
/' 

, '" ~ 
Ore: A natura11y occurring, sol id ffiinera1-bearing 

, J 
., 

/ 

l 

substance from'which one or more'valuable con­
stituents could be profitab1y ext'racted by 
~ning and separation'under the conditions 

" prevai1ing 'at the time of the appraisaJ:.' 

" 

\ 

.... ; 

_,,-_L.: 

1 

or: reseryes: Ore, 'tonnage that can be reasonab1y assumed to 
existe . It requir~s an indication of accuracy' 
of measureme~t in àccordance w,ith the Depart-

Resources: 
" . 

ment c1assificatiôn tab1e. 2 • 

These'are identified and mere1y surmized con­
centrations of naturally occ~rring solid~ liq-' 
uid, or ga'seous materials in or 0'l1 the earth's 
crust from which specifie commodities are es­
timated to be obtainab1e economica11y with a 
specified probabi1ity and within a specified 

,time span, under explicit assumptions. 

" 

The U,. S. Bureau of Mines uses a similar 1>et. of defi-
. , 

ni tions.· However', i ts resource def ini tion ,is not as precise 
~ . 

since it does not, specify a time span over which the resource 

cou1d be considered economically feasib1e. 

The "first comprehensive attempt to define and clar:L-
1 • 

fy the meaning o~ reserves and res~urces was made by a com~ . " 

~ ttee of tJe 'so'cie'ty of Economie Geologüft (Blonde'1 and 
~ . 

Lasky '", ~956). Jhis wa$ follow.ed 19y ,a class~fication of min­

eralresources by McKeYvey (1972, 1975) shown in Figure 7.' 
.. • * 1 

The U.S. Bureau of Mines has, adopted this classification for 

1 See Zwartendyk (1975). 

2 , See pt igure 8. 
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: " FIi1URE 7 

~~SSIFICATION 6F MINERAL RESOURCES 
, (AFTER MckEL~EYJ 1975} 
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) 

1lP].ts usage. Sin'ce McKelvey r s classification scheme is rather 

zwa;ten~ykl andr-Jis associates at the Department it,ati,c" J" 

of Energ~ 
" " Mines, and Resources, Ottawa, have made certain 

modifications, and recommend the modified classification 
2 

scheme for the Department's use. A simplified forro af this 
3 

scheme has been presented by Azis, et al., (1977). In a con-
~ ; 

tinuing work on improving resou\ce terminology, Schanz (1975) 
cl 

has made a series ot r~(ommendations in â detailed report for 
, . 

Resources for the Future. 

Th 1 ' f' ,II d'If 1 tee ass~ ~cat~on ~agrarns shown are se -exp ana-

tory, and it is not intended to go into details. ijowever, 
"... 

the work being done is still essentially at an acade~ic level, 
'" ) ..; 

both in Canada and the United States. The need for 'acti ve ~ 
,1 

participation by the mining ind~stry is essential if the re-

source classification schemes ·are to be tested for applica­

ti-e>n 'and general adoption. Standardized ,.jii'esour,ce terminalogy 

will assist in developing a better i-nventory of wha't is actu-

ally known. More importantly, it will make it easier to re­

late what i\ known, economic and uneco~omic, to the associ-' 
• f' 

Jted geological environment in helping to make forecasts of 
i' l! ~.. 

unknown resourfes. From an exploration inve~tment point of 

1 See Z artendyk (1~75). 
;yt 
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view, this will be of direct benefit to the mining companie!il-, 

particularly with~n a mining district, and to gove~ent 'and 

corporate economists in their long range planning •. If ore 
... 
, 

forming processes}are sirnilar in both space and time as indi-
• 

cated by geological studies, it should be reasonable tQ ex­

pect that different categories of resou,rce \~ill behave in
l 

a 

similar manner. The characteristics of an~ore deposit could 

be thus predicted as reserves deplete. Mining companies per­

ceive reserves differently, and what they<r~ort as reserves 
, f-

is base9 on practical planning problems, and the company 
~"" 

policy on reporting in a competitive business env~ronment. 

Under the existing conditions, the most reliable 
,..... 

the estimates ~ known resources in R~uyn-Noranda regidn \tare 

productio~'~(~d reserves l figures. These arê referred to as 
"r ;. 

the known endowment in this study, and are the basls of aIl 

\ forecasts made using multivariate statisticai mèthods. 
~. 

4.7 Distribution Characteristics of Data 

41 
Most of the general studies in stati~~ have deait 

with normal data, and consequently, most techniques and in 

particular, tests10f significance,have been developed for the 

normal distribution.~ Natural data, however, are skewed and 

~ 

lThe reserves are as reported by the companies and 
not necessarily in conforrnity with any of the classifications 
presented in this section. 

" 
,J., 
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Ithis (s especia~ly true of geOl~~Cal data. In the present 

case both the measure~d compi~ed data are positively 

skewed, the degree of skewness being different for eaçp vari­

abie. There is also a tendency to~rds dichotomy b~~ause of 
. " 

a large nurnber of zeros in the data. 

Most statistic~ methods of data analysis require 
.~ 

that the observatio~s conform to a normal distribution. 

Transformations may therefore h~ve tO,be made to norrnalize 

the data. Most cornrnonly ~e transrormation is logarithmic or 

of the X~/N type, particularly, the square-root member of ~he 
,~ ~ 
f~ily. Joreskoq et al (1976) provide a review 

of various transforrnatibns~ 
~ ~ 

Harris (1965) used a number of transformations to 

reduce the skewness of his data. The 400 square mile cell 

"" size chosen by Harris makes this possible because of a variety 

lof geology present in such large sized cells. Harris also 

used factor scores instead of the raw variables because being 

unco!related, they are likely to be more norrnally distributet. 

Agterberg, et al. ",\(1972), circurnvented the problem 

of skewness by converting the data base into ~dichotomous 

• 1 . l' form, coding a variable equal to one 1f present 1n a cel and 

zero if absent. 

In this study, the multivariate.;techniques used are 
r-

mul tiple regression analysi's, discriminant analysis and ~actor 
~ , 

analysis. Regr~ssion analysis does not require nor~altY dis-

tributed dâ.ta for explanp.tor~ variables. However, normality .. 

, 1 

~ 
-----~~. --______ '"_"C_ 
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is one of tHe assumptions in factor analysis and discriminant 

analysis. The objective of factor rnalysis in this st.udy is 
, 

tooobtain insight into the,structure of the data base so that 

the1most relevant variables could be select~d for regression 

" and discriminant analysis., And discriminant analysis is used 

here to compare the technique with regres~n ana~ysis. 

A series of transformations was theréfore attempted 

on the data base, but bé'cause ,of the presence of a large number 
1 

of zeros~ no significant impr,overnent in normalizing is obtained. 
\ ' 1 

The large number oR\zeros res t f-rom from the relati~ small 

cell,size used in the ,study. an increase in the cell 

size while incorporating a ogical vari~bilit1 will 

proportionately reduce the number of cells because the 'total 

reg~onal area is fixed at 400 square 'miles. On the other hand, 

converting the data base into a dichotornous forrn will f~if ta 
, ' 

give ~he necessary weightage ~~ individual variables relative 

to their areas or lengths . 

It iê felt that while transformation may ~elp make the 
- , 

data base more arnenable to tests of significance, pàrticularly 

in discriminant analysis~,an artificial barrie~ is created 

between the experimenter ~nd the technique. Geologiçal,dat~ 

are unique in the sense that they are of both evolutionary 
't 

o..... ' 
and interruptive nature. They evolutionary in that various' 

" ~ 

rock ty~es evol~e through the procèss of magma tic differentia-
w 

tian. They are interi~ptive in that different 

1 ( 
1 

. -,. 
\ ' 

\ 

1 

-- J 

l, 
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--. 

cy\cles rnay be involved in the "'évolutionary process. They are 
• 

also interru?tive 'in th~t igneous intru$ives cut aeross'the 

existing rock formations. But the data base is meas~ed at a 
1 

single point in time. Therefore, when using quantitative 

techniqué~q. i t is necessary to isolate and rernove an'y spurious 
l, ) • 

~ ,,'j ,"" , 

contributions to the 9fuodel fro~ strictly spatially correlated 
... 

variables. When the information base is as well develo~ed as 

in the present study of the Rouyn-Norand~ ?:egion, it is 'essen-
r-

,tial to incorporate the role of the relevant variables as ful-

1y as possible and too observe~eir relative contributions. 

These contri~utions \sho~ld ~onform to ac~Pted geological ' 

theories on ore gene~i~. For these reasons, raw data base is 
. 

used in the analyses and the possible effects of viola~ing' 

the norrnality assurnption discussed,in the appropriate cases~ 
, 

The models are validated by the \'leaving one out"rneth-
l .... 1 1 

odl in which the known endowrnent cells, one at a time are as- J 
sumed to have no endowrnent and their value predicted on the 

\ 

basis of rernaining cells. Thè results obtained indiçate that 
, J ~ 

the techniques used have the robustness tG accornmodate viola-
I 

t~c. 
tion of normality 

~ 

A number 

;1 

assumption .' 
'1).' 

of statistical problerns such as multicol-

lineari ty: resulting from the pec6.1iar nature of geol'ogical 
~ Il! < 1 

data are discusseâ under. regression and discriminan~ ~nalys~s 
l ' 

k ... 

'" IThe leaving one o,ut rneth~d is' dernonstrated in"'Chap­
ters 8 and 9. 

" 

. ./ 

.~ 
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and the àpproache~~escr~bed to minimize their'effects. 
" 

,J.8 Reduction of Data ~imensionality 

~ g 

The object~ve of data reduction is to ac~ieve an op-
r • 

timal ~alance betwee~_ simplicity fo~ cornprehens\on ~d inter-

pretation, and the desired level of releva det~il for ade-
'). 

quate representation. The need for uction is neces-
1 

·sary ,in the present s~udy because ther a total of 67 ex-

planatory variables, sorne of which ·do not warr~nt inclusion 

because they are shcMn te have no ,apparent pertinence te the formation of 

ore deposits. Their inclusion, in addition to increaSing 

comp~ting costs, can also cloud significant relationships. 

Som~ of thè variables may he 50 highly correlat~d that Qnly 

one or two of them rnay give sufficient representation. 

Gnanadesikan (1977, p. 6) gives the following condi-
1 1 

tions that may require reduci~,g dimensiona:bi ty of," muI tivari-
1. • _ ,') ~ ~ 

ate .data: 
'" 

(2) 

Î 

~{~ 

E l ... d ," ~l ." xp oratory s1tuat1ons 1n ata ana yS1s 
especially when there' is ignorance of what ,1 

is important.~n the rneasurement planning. 
Here dne may want to screen out redundant 

\ cqordinates or to find more insightful ooes 
as a prelimi~ry step' .to,further analysis 
or data collection. 1 

Cases in which one hopes to stabilize 
'scales' 'of measurement when~a similar pro­
pert y i9 described by each of ~everal coor­
dinates. Here~he aim is to compound the 
various measurements into a fewer number 
whictv'in~y exhibit Imore s'table statistical 
propert1es. ~ 



[ 

( 

(, 

, 

, , 

The co~ounding of ~u'ltiPle inf~rmation 
às"t an aid, in significance ass'essment. 
Specifically, one may hope ~hat smail 

" 77 

-.' (departures, from,null conditions may be 
evidenced on each,of several jointlY ob­
served responses. Then one ma~-try to 
integrate these noncentralities into a 
sma~ler dimensional spa~ wherein th~ir 
existence might be more sensitively in­
dicated. One ~ch technique that has 
receivr,d sorne usage is the ,univariate 

~analysis of variance applied to princi­
, pIe components. 

(4 ) The preliminary specification of a space 
that is to be used as a basis for even­
tual discrimination or classification 
procedures. 

(5) 
'-

Situations in which one is interested 
in the detection of possible dependen- 9 
cies among observations in high-dimen­
sional space. 

l , 

wqen the data are geological, and the geology in~om-

pletely resolv~d, it becomes necessary to check the role of 

aIl but those variables whose insig6ificance ts without dis-

p~te. Such a situation does exist in the Rouyn-Noranda ~e­

gion even though it has been intensely ~tudied. The same is 
! 

the case with aIl mining regions, for geological observations 
--è-

are but indirect evidence of the actual geological processes. 
~, 

o \ 

T~ ~imensionality of ~ultivariate data ca~be re~ 

duced by correlation analysis,' factor analysis"cpiracteri~~ 

tic analysis," or simpiy by trial and error'b~èd ~n the 
" \W 

perceived significanqe of individual variables. AlI these 
\ 

" 

_______ -,~apprqaches. are made use of in this study. 
~ 

'.-

-

.. , 

-, 

, l' 
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4.9 Computa'çional Procedures Used 
; 

o 

AlI computer runs in fact'or analysis, reg:r;ession u 

analysis and discriminant function analysis'were made using 

l the standard, S·.P.S .5. (Version '6) prJgrams on the I.B.M. 
~/ 

'360 computer at McGiIl University: 5 nurnber of regression 
. ' \ -----_'\ -

runs was also made on the C.D.C. 6400 computer at the De-
il 

partment of Energy, Mines and Resources, O~tawa. . ~ 
( , 

, , 
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, 'CHAPTER 5 

THEORET 1 e~·,~1(L ENDOWMENT 

Theoretical metal endowment 
~ , 

dowment, both known and ~~Ownl and 

..­
r(f:r: tQ, the total en-

whèt~r economic or not. 

S~Ch an endowm~t,can never be f~+ly known. However, a rough 

estimate of the order-of-rnagnit~de can be atternpted on the 

basis of the crustal abundance of elements. 'The irnplici t as-
, 

sumption hère is that the g~ologic' processes tha t creatëd en-

dowment were '~ig~y efficient in 

aciordance with P~Si~o-Chernical 
extracting metal 'wealth in 

"l> laws. Since cr~tal abun-

/ 
d_ance is only one of the, factors that led{to. the concentra­

tion of~endowrnent, ànd since other factors rel~ting to trans-

\0 

t~,'i.1b 

portation and deposition 'i~e not known, the est~ate will' be 

crude. But ~~relating what is known to what was theoreti­

cally prqd~ced, a rOUgh1beas~r~ can be obtained of how rnuch 
~ . 

• ajitional endowrnent could be expected if the po~t-minerali-

~ , z~ ion_,OlOgieal" proee.'.e. 'did not in part, or in' full; des-

\ tr ~ it.' 

\. --' GQp'dwin (1965) ~as noted that the metal content in 

t~e ~oleaniC eomplexes1 repres~nts i~~egral produets of tao 

V~l~a~ic cycles a d migrated from the~pare~t so~ce to the 

\\ • • ,0' 

~ Rl.dler, . 

J. 

."":' ---~- -~ ...... --
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volêanic envi~onme~t in association with the differentiated 

silicic volcanic rocks; and Krauskop! ~·1967) has emphasized 

that sufficient sulphur is present in normal'igneous rocks 
• 

80 

9"" ,1 ' 

to gener~te ores from reasonable volumes of rocks. Onder the' 

assumptions made therefore, .it shotild not br unreasonab~e to 
, . 

make estimates of the theoretic~l endo~nb in the region. 
. , 

The average composition of the earth's crûst has 

been estirnate:d by a number of workers in terms of major' and 

trace element contents .. , ~s part of the Oni ted States Geolo­

gical Survey program on the data of gea~hemistry~ Parker (l9~7) 

compiled this information, sourc~s of \V'hi'Ch arê referred to 

in his pap~. Table 2 s~arizes his traéè eleme~t estimates . 

i n selected igneous roe~s and 

for the crust as a whole •. ~ 

Shaw, Dostal and Keays (1976) have mad~ estimates of 
. , 

'the trace. element composition of the Can,adian Shie ld. Their 

estimates of copper at '14 PPJll., and of zinc at 52 ppm. appear 
• 1 

tq be low when cprnpared ta the crustal abundance estimates 

eornpiled by Parker. However, sinee these,figures rela~e to 

the 'Canadian Shie;dl which includes the present study area, , 
.... 

they ar~ more pertinent for making estirnates of copper and 

zinc endawrnent in the Rouyn-Noranda region. The proviso is 
~ 

that·the trace, element estirnates adequately represent the 

, 

lThe shield is -assumed to be homogeneous for ,esti­
mates of the trace element abundance. 

, 

l 
t , 
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TABLE 2 

TRACE ELEMENT ABUNDANCE OF COPPER~ lINC~ AND SULPHUR 
CAFTER PARKER} 1967) 

À 

Rock Types $ 

U1tramafics 

Intermediate 

Fe1sic, granites and 
franodiori tes, 

~calcium ~~anites 
Low calcium granites 

Syenites 

Average for igneous 
rocks' 

Average for the earth~s 
l crust 

1 'Il' Parts per m1 10n. 

~ 
( 

" 

.. 

Copper (ppm)l ... 
~-100 

35 

30 

10 

5 

55-100 

4'5/-45 

:# 

li 
Zinc '(ppm) ,Sulphur (ppm) 

-130 300 
.., 

72 200 
/ __ /0---- ---< 60 

60 300 

'. 300 

~ 300 .. 
40-111 520 

65-8.3 260-520 
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~ l ". ~ 
composition of the original rnater~a1 now solidified as rock. , 

Using abundance estimates of Shaw, et al., the con-
r 

1:;1:1 r ~ 

tained copper meta1 per cubic mile in the Canadian Sh~eld is 

1.73 x 10 5 short tons, and of zinc is 6.44 x 105 short tons . 
• " For a ~maximum feasible mining depth of one mile t, and for the 

400 square-mile Rouyn-Noranda regi~:m, the estimate of CoI1'~ 

tained coppel' is 69.2 million short tons, and of zinc i5 257.6 

million short tons. _. 
The,known1 metal endowment of capper and zinc in the 

" .. 
region is 2.24 and,I.16 m41lion short ton~ respectively. In 
'" 
other words, the theoretical estimate of copper exceeds its 

known endowrnent by a m~ltiple of 31. Simi1arly, the theoreticai 
i 

estimate of zinc exceeds its know~ endowment by a multiple of 

222. 

As the theore,tica1 endowment fi<;p,l,res indicate,' th~ 

region should contain seven times more zinc than copper. 

However, sillce the known endowment of copper is a.lmost twice 
1-

as rnuch as that of zinc, it should be reasonab1e to conclude 

that ~here is far more potential for zinc in the region than 

for copper.~ 

The question orye may ask i5 that if indeed more 

deposits than pr~sent1y known were concentrated from the 

1This is on1y the economic endowment, for no esti­
mates are available for the uneconomic endowment. 

\.. 
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inhe.,rent availability of_ both sJlPhur, and", copper and zinc, 

,then how man~ of them were able to survive the effects of de­

formation, metarnorphi'sm and'erosion? It is not possible to 

ieol~te and identify individual factors that helped cause or 

,destroy ore concentrations. Most probably the factor~ were 

açting jOintly'.< ,,\~he only app~oadh to understanding the" situ':' 

atiôn would be in the Huttonian concept ~f surmising causes 

from the obser~ ,effects. This can be do~e' by .qUantitati'rei~ " 
p o , 

relating known ère deposits to their surrounding geological 

enviro~ent and by applying this relationship ~n reverse to 

predict possible locations of any add~tional prospective dê-
o f , 

posits. This' is the aim of the present study. 
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CHAPTER 6 

1 

), CHARACTERISTIC ANALYSIS OF DATA 

6.1 Géneral Statement 

The technique of characteristic ana1ysis was des­

'cri1?ed in Section 2.2.5. Bo'tbol, (1971), and DeGeoffroy and 
, . 

, 'Wignall (1972) applied characteristic analysis ~o determine 
• 1 

84 

the most c?~o~ly present geological features in a large nurn­

ber of ore deposits of a particular type fo'r ~ble use in 

mineraI exploration. 

The focus of the present study i5 a single mining re-
~ 

giop, the ore deposits in which are the result of geological 

processes in a self-contained vo1canogenic unit that created 
, 

massive sulphide mineralization. If allthe ore-torming pro-
l ' 

cesses were concentrated within this unit, then a crude mea­

sure of their rel.at'ive importance can be obtained by the re-

lative proportion of the characteristics presen~ provided 

I~at accepted geo1ogi~al cohcepts are not violated. F~r ex­

am~le, it would not be valid to draw, conclusions from areal 
• 1 _, 

measurements of post-ore sedirnentary processes. However, 

since it is t4e joint occur~ence of geological processes that 

re~urts 'in ore formation, characteristiQ#anaIysis should give 

a more reliab1e estirnate of 'the significance of a character-
" , 

i~tic than"measuring its simple presence in a certain proport~on 

1 

17 
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6.2 Characteristic Analysis Results 

\l . 
Ch~ract~istic analysis was carried o~i 'separately 

'. 
for the followi~g sets of data as rneasurè~~n ea~h of the'64 

cells in the s~udy region. 

r l • ~ 

(1) ( Areas of geological formations; 

(2) Contact lengths ~tween formations; 

(3) \.St~ctural elements ~ . 

dyk~, and faults. 

synforms, antiforms, 

1 
l ' 

qince similar' types of variables are· present in each 
.1 

set, J better comprehension of,their relative' importance can 
/~ ;\~ , 

be made. Also, the typicality obtained for eàch'ch~racteris-
, 

tic ls converted into a ratio expressed a~ the percentage'~f 
, . 

the 'total tY~icali ties in thjlt set. 

callei "relative typicalities". The . r 

These percen1:!.age's ar~ 

data used in t~e analysis 

• 

" 

.( are in binary code, Le:, a value of one is assigned if a vari-/., :~, 

able is present in a cell, and zero if note 
. 
The relative typicalities o~ the areàS of ,geol.ogical 

formations, ranked in a descending order are shawn in Table 3. 

By inspection, the variables may be subdivided in.to three 

groups as based on their relative typicalities shown by the 

broken lines. , ' 

The top two groups include essenttally 'igneous rocKs 

/ 
, ' 

11 

l , 
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,TABLE 3 
. J. 

RELATIVE TYPICALITIES OF AREAS OF 
GEOLOGi'CAL FORMATIONS 

Variable Relative Typic~lit~ 
, ' 

86 

~'- 1 AREA 4 17.55 

, / 
, 
\ 2 AREA 3 16.58 

! ' ...: 

"- 3 AREA ,8 "15.73 

1 '4 AREA 12 14.91 

5 AREA Il 9.19 

6 'AREA 2 6.90 

, . , 
~-------------~-------~--~---------~~-----------------------.. . \' 

", \ 

7 'ARiÀ 6" • 

8 

'9 

10 
il . 

12 
'c 

I\REA 5 

14ŒA 10 

AUA 1 

• AREA 13 

AREA 9 
c, ~ 

AREA 7 

, 3.05 

2,.82 

2.37 

1. 79 

0.98· 

lsee page 58 for description of varia~le n~es . 
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,. ' 

the only exception being AREA 12:'which represents the areas 

of lakes.;I. q'f these, the first group in~ludes the .. volcanics 

andesite~ basaIt (AREA 4), "and rhyolite (AREA, 3)', ,and diorite, 
, , 

gal:bro (AREA 8). The diorite-gabbro formatIon' is believed. t'o p' 

be an intrusiv~ equivalent of'th~ volcanics andesite~b~sa~t. 

The first group thus represents a typical calcalkaline assemb-
a 

• 

'l'he' second group lncludes granite, granodiori te (AREA 

\ 11), and tuff, agglomerate (AREA 2). Granite" tuff, ,and ag­

glomera~e are essenti.:llly ~hem.:i.l:;al equivalent:; ?f 'rhyolit~. 1 

(AREA 3). '\ 

.. ' - , J ... 

,The -f-orInatîon..s in ,the last group are' ei the:r: rnetasedi-

men~ary rocks,'or,minor igneous intrusiéns'wiph apparently no . . 
, 1 

genetic relation to the o~é deposit~ in the regioq. 

Table 4 shows the rela ti ve typicali tles of Contact' 

lengths between geological formations. rhe breaks'in typi-. , 
, .. . ~ 

caliti·es, are S'hown by brok~n line~.· Since !:he contact lengtl)s' 
l' , 

1 are a direc.t ,#unction of the joint occurrel1ce of formation.~" 
, , 

the rankings obtained in this -'Case, therefore, correspond' wi th ' ... 

thQs,e obtaihed fql; areas 

. ... "-
-·2 ' 'of formationSi. The mOst conunonly 

.. , 

• .L-

present contacts are between paîrs of the following formations: 

1 . . 
In geologioal terrns, lakes are a r~c~nt phenomenon, 

and ,in the cana~ian Shield are a re'sult o~ widèspread ,glacia­
tion. T,he v;,ariëWle is ,tank,e,d ,hig~ b~cause of the cornmon 0(;"-' 

curr~nce of lakes wi th rnos.t:-rock, type,s in the region'. 

2See Table 3 . 

0' 

\ 

• 

'. ... .. >AI "i' t~'~ v~,,,,'t~ 
1 
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TABLE 4" 

TYPICALITIES OF CONTACT LENGTHS 
BETWEEN ,FCffiMATIONS ' 

" .. 
V~riab1e Relative Typica1it~ 

CNTL 11 
CNTL 19 
CNTL 13 .. 

14.14 
13.62 
l3.04 

. ' 
88 

--------~---------------~---------------~-------------------
4 CNTL 22 6.34 
5 CNTL 7 5.69 
6 CNTL 15 5.65 \ 
7 'CNTL 9 5.18 , " 
8 ÇNTL 6 4.47 
9 CNTL 34 3.50 

10 CNTL 16 3.18 
---------~--------------------------------------------------. 

11 'CNTL 24 
12 CNTL 21 \ 1. 81 

1. 80 
13 ,CNTL 14 1. 48...; . 14 CNTL 17 1. 46 
15 CNTL 33 1. 34 
16 CNTL 2 '1'1. 29 
17 CNTL 3 .- 1.18 
18 CNTL 0 1.14 
19 ' . 35 1.13 
20 CNTL ·23 ,1.12 
l1 CNTL 20 1. 05 
22 ' . 

CNTL 1 1. 03 
23 CNTL 28 0.91 
24 CNTL 36 0.88 
·25 -:cc . CNTL 5 0.84 
26 CNTL 10 

/ 

0.a~4, 
27 CNTL, 32 0.82 
28 CNTL 27 0.79 
2~ ~ • CNTL 12 
30 CNTL 37 

0.77 
"- 0.69 

31 CNTL 8 0.47 
32 CNTL 29 
33 CNTL 25 1 

. 0.45 
"':) 

": 0.45 
34 ~L 4 
35 C L 18 

0.35 
0.32 

36 CNTL 26 0.32 
~7 

, 
ÇNTL 3, 0.22 

38 CNTL 31 0.22 

1 See page v 59 for description of variable names. 

" -- - - Cl.--
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/ 

) 
/ l 

andesite, basaIt (AREA 
/ 
4) , 

'" 
rhyolite (AREA1 3) 

dioritè, 
..... -

gabbro (AREA 8) 

granite, granodiorite (AREA 11) 

tuff, agglorl'tera.te (AREA 2) 

The remain~ng contact lengths are sparsely dis tribut-

ed and do not appear to be genetically involved in the or~ 

forrning processes. 

Table 5 ranks the relative typicalities of structural 

elements, i.e., synform~, antiforms, dykes,~and faults. There 

< do not appear to be any sharp breaks in the rankings. Over-
- " 

aIl, j6 percent of the structural elements lie in directions 

ranging from east·west to north-east, 27 percent in directions . 
north-south to north-west, 20 percent in north-east to north-

south, and the remaining 17 percent in north-west to east-west. 
, 

There are no folds p~sent in~irections north-east to north-

south. 
j 

It is stated in Section 3.2.2 that structural elements 

and volcanism appear to be closely relafesY However, the role 

of the structural features in ore forma\ion has not been re-

solved for the region. 

6.3 Review of Results 

Characteristic analysis has been dev.eIoped for appli· 
il 

cation to a large number,of mineraI deposits or mining districts.' 
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TABLE 5 
~ 

RELATIVE TYP l CAUTI ~S OF STRUCTURAL ELEMENTS 

Rank Variable RelativelTypicality 

• 
1 FOLT 1 19.11 

- " 
2 DYKE 2 Il.46 

.... --::.. 

3 DYKE l 11,.36 , 
. 4, FOLT 3 1r:'27 

5 DYKE .3 10.35 

6 FOLT 2 8.20 

") 'FOLT 4 5.25 

8 DYKE 4 4.87 

9 SNFM 4 4.09( 

10 è~FM l, 3.02 

11 ANFM 4 2.87 • 'Il' 

12 SNFM 3 
~ 

2.80 
~.<J ~ 

13 ANFM 1 2.72 

14 ANFM 3 2.63 

15 SNFM 
/ 

2 O.Op 
~~ l' 

, 16 SNFM 2 0.00 

~ 
~ 

lsee page 61 for descfiption of variable names':. 
;-
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In th1~ study, th~ technique is used over a single mining te­
~ 

gion ta highlight the most typical geologiçal ctiar.~cter:!-stiès 

as an aid in data reduction. The technique serves thè objec-
, 

tive, a~d at the same time emphasiz~s the calcalkaline volca-

nogenic. nature ot' the region and i ts struct'ural attributes. 

The volcanogenic nature of the region is weIl known 

-from its lithology. ~hat characteristic analysis does i~ to 

quantitatively expr~ss relationships that might other.wise not 

have been conipicuous. This it ~oes by emphasizing the com-

mmmess o~ cha·racteristic rather than its actual measure,­

ment relative ta oth~ characteristics. For example, in the 
~ . 

Rouyn-Noranda re~ion, while the cumulated areas of diorite, 

• 
gabbro (AREA 8), rhyol te (AREA 3), and andesite, basaIt 

(ARJ;A 4) are in the ra t'io ~f ~: 2: 4: ,the IX .. 1a:~iir~ tyfica li­

ties are in the ratio of l.OO.1.05.~~~, 1.e., th~ree ~re 

almost equally significa~t. The analysis thus indicates that 
, 1 1 

\ 
the role of rhyolite and dforite, gabbr~ relative to ;hat of 

andesite, basaIt "typical" than shown ~y their re-

spective areas . 
./ 

achieved by the binary 'codinç of the 

variables which consid presènce rather than the actual 

measurement of a vari le. 
>\, 0 \ 

It is of .\i.n erest to note that the mo,s~ typical con-
\ 
\ 

tact length determiled ~Y ~haracteristic analysis is CNTL Il, 

i.e., between rhyo~ite, and andesite, basaIt. The contact 
1 • -

lepgth.is importa~t in that nearly aIl base metal deposits in 
/ 

the region occui at or near this contact. In this way, the 
/ 

'. 
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,technique can help in selecting the most rele~ant variables 
e.-' 

,:for f~ther stàtisttCal s,tudy. 
, ~ ~,', ! 

This is tru,e only if the re-. . 
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levance it~eif' is a funct~on of the joint commonnese of cha- 4~ 

~act;riEitii'''. : ..... ~u:h ' a \~ tua tioIl" does l'xi st' iIi the' Rouyn­

Noranda reg{on which w~f!;a" centre of volcanic act~vity 1 and 
• to 

/"--. 

in which aIl base mètal 'deposi~s are directly related to that 

activity. 
,.. ~'~l t 

Cha~acteristic ~nalysis, laoks the proba--

bilistic and predictive re'solution needed for e,stlmating the 
o ./ l 

. ~ p . 
"' unknown m.J.neral endowment of a reg~OJ1. It is m9re ~ m~the-, 

matical manipulation than ~ statistical procedure., 

\ 

, 
, l, 

, , 

• p 

l.l .... 

. l' 
. , 

,,(:' 
. ' 

\ 
,\ 

\ 
\ 

" 

1 

... 
: ~-

0' 

; . 

l' 
~. 

~. 

" t 

~ 1 

• 

, " 

, 

. . \ 
, .. 

"1 

) 

'1 
\ 

1 
j 

, ·1 

1 

1 



!\, 
1 

, , 

\ 

" 

( 

( 

",," 

93 

" 

. ' 
HAPTER 7 rt-

\ 
\ 

\~ 
\ 

FACTOR AN~r:YSIS J 

~ -
'- .' General Statement l' , 

,p \ • 

7.1 

• . 
Factor analysi~, as defin~' by Mather (.J.9 76) is 'the 

determinat10n of a set of des~riptive concepts which. summar- '0-

izes the reIat~nships'among the components of a system of in-
~ . 

teracting variabIe&. The a1m of the technique,is to explain 

'relationships among correlated variabl'es' in terms of a rela-' 

tively few underlying' factor "'aria tes, thus reducing the di-

~ensi~nality of the p'roblem Îormore incisive int~rP1etation. 
t" • 

Factor analysis is not a predictive tool in resource 
" " .1 

forecasting. 
~) 

However, when the basiq postulate of resource 

evaluation' is the interaction and inte'gration of' geological , . 

procetses in ore formation, the technique becornes most useful 
, ~ 

"-
\ 

in analyzing the apparent relationships existing between geo- ~ 

, " .. 
logi~al variables that indirectIy are a rn~asure ôf tpe pro-

- p ~ . 
cesses themselves. The 'factor' anatyst must therefore, have 

l' 
, -

sorne "a priori" knowledge of the system under study 50 that 

rneaning;t.ess or rnisleading in'terpretations regarding n cause" 
" , 

" 
,anq. "effect" can.be avoided. This is particularly true of 

" / 
geological data in whlch~the roles of differe\t age rklation~ ~ 

of variables, and of~the unknown' third dimension l are not 

i 
4 

-
- - __ .. _to/.: .. "f" ........ ;....,.,.'~~ .. ".. ..... ~/.' .. 1'I ilfU!lI/I!lbi1ît.*-1IIW ..... l'~~'':'...,....';H:, .. ,,~ ... ' ..... ~~--_ ..... ' .... 
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fu~ly resolved. It,may seem p~radoxical that an lia prio+i',;---\ 
l '- i ) 

k 1 d ' . d ' d d d' '" \ now ~ ge 15 requ1re to un ers tan an 1nter~ret the outc~m~' 
Q 

of factor analysis when .the technique of ~actor ana)ysi~ it-

~ self is su~posed to identify'fundamental and méaningful asso-

ciations arnongst the variables. Actually, the outcome of fac-
, 1 . 

1 to,r analysis.' a re-expression of the ,~nfo7mation content of 

the data in a manner that highlights previously unsuspected 
~ 

relationships. ' The identification of these relationships is 

onli' possible :against a back~round of known geological cri te-- ... ~---
ria. The greater the 

\ ~ 
~evel of geological information, the 

better the insight obtained~ 
.... -,-' 

,.-. 7.2· Methodology 

) 

- ' 
Lawley and Maxwell (1971) provide perhaps the be5t 

mathematical treatment of factor analY5is. Gnanadesikan 
. -- ..', .' 

(1977), Mather (1976), Over~11 and Klett (1972), and Cooley 

and Lohnes (1962) discussq the , techniqùe in general terms. 

From a geologic~l point of .vie~, the technique is weIl des-

cr!fed in Joreskog e't al (1976), ~nd Davis ,., '" 
(1973). The following 'review has been'prepared from these 

'C) 
\ 

. .\ ref erehces .• 

Factor analysis methods always employ~~incipal com­

panent analysis as the starting point. In principal compQ­

n~nt analy~is, a set of p variates, generally called xl"x2 , 

... x , is linearlM and orthogonally trans~ormed into an equal p , 

liII 
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nwnber of n,ew variates Y1'Y2""'1 , that ~Jll uncarrel:ted. . p 

These are selected such that YI has maximum variance, Y2 has 

maximUm variance at the same time be~g uncarrelated with Y
1

, 
J, 

and 50 on. The objective is to find a minimum number of in-

dependent~components that will account for most of the vari-

ance in the original set of variates. 

While principa~ component.analysis i5 variance ori­

ented, '/actor analysis is covariance oriented, ~t ~s,~ it 
interprets the 'structure within the variance-covariance matrix 

of the data. Principal components are in fact the eigenvec-

tors of this variance-covariance matrix. / 
.. 

In factor analysis, the basic assumptian is that 

x. = 
~ 

k 
l: 

r=l 
À. f + e. 
~r r ~ 

(i =·l,"2i ... p) 

where, Xi are the p originll variates, f r is the rth cornmon 

factor, k is -the specified number of factors, 'and e. is a 
l. 

randbm residual variable affec~~ng Xi' The coefficient Àir 

is the loading of ith variate-on the rth factor. l 

Assuming a multivariate normal distribution, the p 
x p matrix of variances anq covariances will include as its 

lA fac~or is a vector weighted in proportion to the 
amount of the total variance which it represents~ The ele­
ments in the factor are called its loadings. Factbr scores 

"Fre meàsurernents of a factor, Q,efined as the weigl1ted combi­
'~ption of several original variables. 

,f 

1 , 
" 

• 

, 
lJ-. 

/, 
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diagonal elements the following variance~: 

VAR .. = 
~~ 

k -2 
LÀ. + Var e

i ~r i=l 

. ' 

~J 
• (whe,re k < pj 

/ 

the off-diagonal elements, he., the covariances wiiI be:' 

COV. = 
~q 

k 
L 

i=l 
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where À. is the ith measuremen,t of variabD..e r, and '\. is the 
~r . ~q 

ith rneasurement of variable q. 

~ The resuiting matri~'of variancés and c9varianees IVe] 

is equal to, the product of a p x k matrix of factor loadings ~ 

" [PL] multiplied by its transpose ~~~s ~ p x p'rnJtrix of unique 
.. 

vari~nces {var eil , whien'aceounts for the variance not in-

cluded when the summatlon is done from 1 to k instead of l'ta 
, 

P, and where k, the number of factors is less than P, the num-
, 

ber of variates. When k and pare equa1. 1 the result is the 
! 

sarne ~s that given by princip~l component analysis. 

Eigenvalues and,eigenvecto;s ar~ then.etulated for 

the standardized var nee-covariance matrix. l H er t the 

~ eigenvectors must be n rma~ized so that they define a vector 

of uni t length. dividing each eigen-, 
.... 
vector by the square root of the'summation of the squ.res of 

IThi~ beeomes the correlation mattix because of stand­
ardizaJ;ion. 

1 

~, 

! -



( 

, 

( 

_ ~At"4 .$ 

~7 

.. 
the eigenvectors. Muitiplying each normalized vector by the 

square root o~-the associated eigenvalue results in a factor' 
1, 

vector. Arranging the elementp of a factor vectSr in matrix 

form g~ves the factor matrix, a matrix which contains the co-
"',- ~ 

\efficients,o;, relationship between the original variables 'and 
\\ ' < . 
. the derived factor varia tes. 

l ,While the dimensionaiity of the problem is reduced 

by factor analysis, more meaningful resul '~ân be obtained 
... 

by factor rotation so that high loadi~gs ar obtained1or a 

few variables, ~?d the rest of the lo~dings \r a factor are 

low. This is the varimax rotation solution~ The final solu-
" tion has the forro: 

[Z] :::;, [T] x [FL] 

where [FL] is the original matrix of factor 'loading, [T] is a 

non-singular trans/ormation matrix,l" and [z]', is the matrix re-
• 

su~ting from,va~imax rotation. According to Cooley ang Lohnes 
,~ 

(1962), the varimax solution has the advantage that the re-

sulting factors tend to be invariant un der changes in the com­

position of the test battery, i~e., small changes in t~e sam-
- . ~ , . , . 

pIe of te~ should not affect the basic lnferences drawn. 

Such a procedure is used in this study. 

The desirable properties of a good factor solution; 

after Overall and Klett (1972, p. 90) includé: 

l, . ~ rotat;on b'eca1u<C"g [T]' Whl.ch çauses the or:tho':jonal .... st;: x 
[T] = [I], the identity matrix. 

.. ,-
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" \,. , 

ParsimonYi (1) 

(2) 
'~ , 1 

Orthogonality, or at least relative in~ependëncei , ; 

'( 3) _ Conceph.iaf rtleaningfulness . 
.,' ,J> / .' , / 

/ /j - ~~ 
That is, a lower number of factors 1~~Uld explain' most 9f ~he 

variance and each factor should'be indepe~dent, representfng 

'a unique source of variation. If the above properties are not 
'i,; 

obtained in the final soiution, then it is likely that facto~ -
. 

analysis is not a suitable model. 
, 

. Before factor analyzing a 1set of data, the following 
r... l , . 

aspects of variables should be evaluated as discussed by Mather 

(1976, p. 242): 

.. 

(a) The type of relationshio exi'sting among the vari-.. 
ables. Factor analysis is concerned with lin~ar 
t 
relationship'and deviation from this assumption 

" ' 

can effect results in'a manner difficult to pre~ 

dict', ' 
'J 

(b) The number of factors to be expected. The impli- o 

cation is/thaJ,the tactor analyst has sorne in- 1 

sight into the prpbable nature of the factors, 

and can p~edict the number of factors. One way . 

i5 to extract aIl possible factors and then de-~ 

cide the number to be retained. A mor~ p'ractical 

way is to retain aIl' fact~rs having an eigenvalue 

'qreateÈ!than one, i.e., to retain those factors 

containing a 9reater variance than, the original 

c.. 
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~tandardized data. This-approach is adopted in 

the present study. 

(c) The nature of factors to be expected. This means 

t~a·t "a: p,riori" :knowledge 'q,f the geological pro-

I~ cesses in, the area i9 rt~cessary. ~b~iously, , 
, t -. a 

sornething must be wrong if two highly antithetic 
, . ~ '" 

geolégical variables load significantly on the 

sarne factor. 

(d) 'The variables to be included. Here again, "a' 
l 'J ~ " 

priori" knowledge of the geological processes is 

necessary. If the objective is to analyze all 

possible g-eological re'Iationships in the area, 
, - ~ r-- ,- , 

then no pre-selection. i5 requ'ired.~ In the pre--. ' 

t • ~ 1 

C sent ,trase: the- QbjE?ctive iSl,.to observe how"rnin-
.. . 

eral endowment~in Rouyn-Noranda region rel~teq 
, 

to geologi~al variables. l'here is thUS rro '~ea- ,~ 

son to inclq.de ,post-ore geo,lig\~al a'spects, and 

therefore, all ~reas'of sedime~tary~ro\~ for~a--
" " tio~s ,nd their c0ntact~l~ngths ca~ be excluded. 

, 
This leaves the igneous rocks, the volcanics a~d 

the later i~trupives for analysis. Since there ~ 
, 

is sorne evidence that the later întrusive~ rnay' 

have been a part of tqe original volcanic pro-, 
_ 0 

cesses, they .ha~e bee~ included as~ya~~bles. 

And finally, all structural elements in the.re-., 
"Il 

gion are also retained. There ... is no q'-lestion 

" 

J 
'r' . 

! 
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, 
that dykes and faults are later features than - . 
the volcanism w~th-which bre formatio~ was as-

sociated. But SyMt:nns an"- antiforms are be­

liev:t to be related to volcanisfu,l Jnd at least 
, 

sorne of the" faults and dykes may have been a 

consequence of thi~ folding. Therefore, no pre~ 

selection i5 done in case of st,ructural elements. 

The variables used are listed in Table 6. 

(e) The inter-factor rela~ionships. Since an or­

thogonality of factor i5 desired in this 5tudy, 

the varirnax rotation method is used.' The fac-

tors, therefore a~e ,believed to be free of a?y 
'! , 

correlation among them. ~ 

'The decision on the nurnber of factors to be retained 
" 

is an arbitrary one. ,Most cornmonly aIL factors having an ei-

genvalue greate~ than one are retained since they contain a 

greater variance than the -ori~inal standarJized v~riables'. 
However, Overall and Klett npte that factors defined by three 

-
or more variables having loadings in excess of 0~35 have been 

found in their experience to be both stable and rePlicLble. 
1* 

They al~o state that statistic~l data reduction is usually 
" . ' , , 

considered to be adequate and effective when the number of 

factors is approximately one fourth the number of original 

1 
. 1 See Section 3.2.2. .. 
• 0 ., .. 
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variables, and the varia'nce accOl;mted for is 50 to 75 percent 

of the total varianbe. 'This range is acceptable pa~ticularly , . 
• wheh the objective, of f~ctor analysis is to explain the cor-

(\ 

relations among variable~ in te~ms of a minimum number of 

façtors. 

7.3 Factor ~alysis of Data 

7.3.1 Variables Analyzed 

F,actor analysis is performed on three sets of 38 

variables each. The first two sets include, respectively, 
. 

the con~ained meta~ tonnag~ of copper and zinc as a variable. 

The "third set us~s ~e dollar r value of cumulated c9Pper and 

zinc tonnages as a variabli. The remaining 37 variables are 

the same in each of the three sets. Table 6 shows the v~ri-

ables used. 

c) 

,Two procedures for factor analysis are applied: 

(il 
l"", 

keeping the diagonal elements ,of the corre-

lation matr1x at one, and 

" ,(ii), replacing these variances by the communality 

1 
l oe 0", 

estima tes of the variables followed by vari-
,~ 

max rotation. 

variances. 
/ 

4 ' 

1( 

/ 

• ( 

.. , 
"'!~4_J> .... f """* .. Jl;#-,~,,,,~_~ç 

, / 
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TABLE 6 

'" 1 
(CONTINUED) 

> ~, 

;>" -' 
21 C~~· 22 Contact l.ength bett:leen: AREA 4 & AREA Il 

22' 1 CNTL 34 Contact length between: A REA 8 & AREA 11 
;-. -t> ~.7 

23 SNFM 1 Synforrn length EW to NE .. , 
f .-: 

24 SNFM 2 Synfovrn léhgth NE to NS , 
'" 

25 SNFM 3 -Synforrn length NS to NW 1 
26 SNFM 4 Synform length Nl.v to EW 

27 ANFM 1 An tif 0 rrn length EW"to NE 

28, ANFM 2 Antiform lÉmgth NE tO,NS .-
29 ANFM 3 Antif9rm length NS to NW 

30 ANF~ 4 Antiform length MW to EW • 
31 DYKE l 'Dyke' length EW to NE' 

.. 
32 DYKE -'2 1 Dyke, length NE to NS 

33 DYKE 3 , Dyke length N~eo',NN 

34 DYKE 4 Dyke length NW to EW 
.. "". 35 FOLT l Fault lÇgth EW to NE 

36 FOLT 2 Fault l r;-gth NE to NS 
" " 

". 37 FOLT 3 Fault length NS to NW 

38 - FOLT 4 Fa~.length MW to EW l' 

) . 

( 
1 

.1 

.. 
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In the lattér case, an iterative pr~cedure ~s used if ter re-

placing the varian~es br the commun,~lity estimates /bY ex­

tracting the sarne number of factors by re-factor ~halyzing, 

and replacing the communality estimate Dy the new~r, improved 

ese~mate. The iteration continues until the difference be-

tween two successive communality estimates are negligible, or 

'if after a particular iteration, any one or more of the com-

munalities exceeds one. The results obtained by the two pro-

cedures give essentially similar insights into the relation-

ships between yhe variables. The second approach, however, 
r 

results in a greater parsirnon'y, and therefore, the analysis 

of results is based on this approach. 

Factor loadings for copper and zinc sets are shown 

graphically in Figures 10 àpd Il. The variables shown on the 

diagrams are aIl positivelyl loaded on their respective fac-

tors, each with a value greater than 0.20. This is an arbit­• 
> rary decision to avoid crowding of the diagrams with non-sig-

nificant variables. The suggestion by Overall and Klett that 

0.35 gives better results when three or more factor loadings , 

of at least this value are present is incorporated in the 
1 

disc~ssion. The 0.25 threshold is marked on the diagrams 
1 
1 

with broken horizontal lines. In line with the~Objec1iVe of 

this study, the factors considered to be important ar those 

l h' d . T e except~ons are copper an Zlnc. 
on the diagrams whether they show positive or 
ings. 

are shown 
e load-

,< 

, 
~ , ' 

1 
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which ei~er copper or zinc loads most heavily. 
1 

7.3.2, The Copper Set 
\ ... / --

1 A total of 14 f\1ctors are eX,tracted on fqctor ana-

1 lyzin9l the copper set. ' Of these 14, nine have eigenvalues 

in exce~s of one, and cjumula tively accounto.,for 8,5.3 percent 

of the variance present .• Table 7A shows the eigenvalues as-

sociated with eaqh of the 14 factors, and the variances ex-

plained by them individually and cumulatively. The folldwing 

is a revi~the assochtions of variables as they load On 

individual factors shown in Figure 10. 

Factor #1 contains variables predorn{nantl; of the 
,..,l 

tuff,'agglornerate type. There is a positive but insignifi­

c{int amount of copper associa ted wi 't"h. this set of variables. 
, ... 

Factor #2 combines predomi~~tly r~yolite porphyry 

variables with a negative loading of copper. This is an , fi 
evidence of the antithetic relationsqip existing between the 

two. 

Factor #3 is an important factor becausf 0\ the high 

positive value of copper. The variables asjociated ~ith it .. 
. which have a value higher than 0.35 are the following: 

lusing the varimax rotation method. 

( 
\ 

• 
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,JABLE 7 A 

,..,. ~ \1 1 

EIiEMVALUES ASSOÇIATED wrXH 'COPPER SET FACTORS 

----------------~--------~--------------------------~-------

10 

- 11 

12 

13 

14 

l ." 
; Qs~ng 
,\ l ' 
1 • , ' 

/ 

-, . 
. . 

." 

the 

~ 
0.945 

0."836 

,\0.707 
, , 

0.645 

.' , o . §,-o 3/, Cl 

t 
" 
,J 

varirnax'rotation methoà. .. r 

'./ 

-0' 
~ 

'b 

- , 
, 

3.7 

3.3 

2.8 

2.5 

2.4 '" 

~ (: 
'19' 

"",' 

89.0 

9;2.3 

95.1 

97.6 

'100'.0 \. 
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Il 
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/ 

- area of rhyolite (AREA 3); 

- contact 1ength betwe~n r~yol~te and'andesite, 

basalt (CNTL 11); 

- contact length bètween rhy61ite and &iorite, 

gabB~o (CNTL 13) . 

The remaining variables are:' /' 

contact length ~tween tuff, agg],ornerate, and 
. , rhyolite (CNTL 

~ 

6) ; 

are a of diorite, gabbro (AREA 8); 
~, 

-' faults 1ying in directions NW to EW' (FOLT 4) • 

\. 

All copper ore deposits in the region occur in rhyo-

lites at o~ near the rhyolite--andesite, basalt contact. 
-~/ . 

These are the, two rnost'i~portant relationships shown in fac-
, 

tor #3. However, this factor indicates the rhyolite--diorite, 

gabbro contact to be an important one also. The significance 

of this variable is-not clear in terrns of ore occurrenc6' 

The e~pJanation rnay, however, lie in the bê1ief that diorite, 

gabbro, and andesite, basalt, rnay be genetically related. l 

The sarne cornments rn~ apply to the posi~ive associaaion'of 

the areas of diorite, gabbro, with ~opper. The,only, struc­

turai element associated with this factor i5 the Jêngth of 

of f'aults .. lying NW to EW. 

--

-, ,-

ISee Section 3.2.2. 

1 

1 
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! 
Factor #4 includes the structuràl elements synforms, 

antiforms and faults, aIl lying in directions ~S to NW. Also 

p~esen~, the °area of andes~te, basaIt, and the contact 

lengths of this formation wi th ,diorite, .gabbro, and wi th rhy-
Ji,. 

olite. The close association o~ fold~ng, faulting, and the 

volcanics andesi te and basal u" give credence to the beiief 2 

that volcanism and structural deformation in the regio~ were 

related and "were probably" coe,val,. The negative' association' 

of cop~er with this factor hiscountp its economic potential. 
~ / " 

Factor #S essenttally includes diorite~ gabbr~, and ,- ' 

andesite, t, and the;r associations. 
<; 

--t ------ -

/ 
~he ~ossibility of 

. ',) 

a genetic association b~tween these rocks in the'region has 

been mentioned above. cop~er ~~ strongly antithetic with 
; 

this association of variables. 

Factor #~ is structurally oriented, and includes 

dykes and faults lying NW to EW and dykes lying NE to NS. 

Also included are, the contact length between andesite, ba-

salt, and granite, granodiorite, area of diorite, gabbro, and 
1 

the contact between tuff, agglomerate, ~nd diorite, gabbro. 

The factor ha~ a mOderate~positive loading of copper. How­

ever, the associations are not clear because the role of 

structural elements has not been satisfactorily resolved in 

the region. B~t the joint presence of dykes, faults and the 
~,. 

intrusives~ diorite, gabbro, and grani'te'-L-.g~anodiorite( a'nd 

4 
2See 

-
Section 3.2.2. 

" 
-ott 

~ 

Il 
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t posit~ve loading of copper tempt to invoke a hydrothermal 

explana tion. 

Factor #$ has loading of.mainly granite, ~ranodio-
. 

ritef with a negative association of copper. Since aIl the 

base metai massive sulphide deposits in the region occur in 

the volcanics, the negative loading of copper i5 understand-

able. , 
Factor #9 has a heterogeneous set of variables in 

it. However, only one variable has a value greater than 0.35, 

and ../therefore, the factor cannot be c~sidered as stable or 

signifieant. 

Factor #10 shows a strong "antithetic relationship of 

copper with tuff, agglomerate. Sueh is the observation in 

1 the field also. 

Factors ~ll, 12 and 14, aIl show associati9ns wifh 

whieh copper has negative affiliations. ~ey are, therefore, 

not significant from an economie poin~ of view. 

Factor #13 ineludes ·fauit length lying EW to NE, 

contact length between rhyolite and granite, granodiorite, 
! 

dyke length lying NS to NW, and areas of rhyolite, and of 

granite, granodiorite. Despite the rather high positive as­

~ociation of copper with it, the factor is not important in 
'" 

that it has an eigenvalue of only 0.64 cornpared to 3.15 for 

factor *3 ~nd 1.86 for factor #6. 1 

... 
IFactors #3 and 6 are the only other fqctors that 

have high positive copper loadings. 

1 
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J In summary, copper shows a strong litho-stratigraphie 

association with the volcanics in factor 1(3, and is also as-

'sociated with structurally dorninated associations observed in 
r 

factors *6 and 13. The selection of v~riables for reso~rce 

potential evaluation of copper can be based on these threJ 

·factors. 

7.3.3 The Zinc Set 

Of the 14 factors extracted in the zinc set, there 

are nine with eigenvalues in excess of one. Th~se nife fac­

tors curnulatively account for 84.8 percent of the total vari~ 

ance. The eig~nvalu~s for the 14 factors and the variances 

,jc'counted f0o/by them are shown in Table 78. The association ,.'!, 
~".", 

of rock types as represen~ed by their loadings on different 

factors l runs parallel to those in the copper set. However, 

zinc aoads significantly on two fac~rs, numbers, 3 and 7 com~ 

pared to three for copper. 
1 1 

though non-significantly on 

to three more fo~opper. 

In add~ion,~zinc loads positively, 

seven additional factors compared 

The indication is that zin~ has an 

apparenf relationship with a broader range of geo10gica1 vari-.- ~ 
ab1es. It may a1so be possible that at the time of zinc m~n-

fs, "-

era1ization, geological activity rnay have become more wide-

spread. But this is conjectural and on1y warrants support in 
"L 

1 . 
See Figure 11. 

., 
f 
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TABLE 7B 

EIGENVALUES'ASSOCIATED WITH ZINC SET FACTORS 

... factor Eigenvalue peT of Var CUM PCT 

L 1 

1 4.218 16.6 16.6 ,. 
t 2 3.698 14.5 31.1 r 
f 

t 3 3.149 12.4 43.4 
t- .,' 
• / 1 \ 
t 4 2.566 10.1 ~ 53,.5. 

~' i; -' ,ve
/ 

" 5 2.070 8.1 61.6 

6 1. 838 ' " 7.2 68.9 

7 1:513 5.9 74.8 

8 1. 293 
... 

5.1 79.9 

9 1. 258 4.9 84.8 . 

---~------~--------~~--~~---~~-----~-~--~-~-------~-----~---• 
10 0.944 3.7 88.5 

J..1 0.881 3.5 92.0 
.. 

12 0.743 2.9 94.9 

" 13 0.662 2.6 '97'.5 

14 0.636 ) 2.5 10'0.0 

\ 

;( 
1 At 
1 
t 
! 
1 

1 
, : 

l 
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,that, compared to coppe,r, zinc a1ways" occurs
J 
.at a higher stra-

rigraphical leve1. 

Factor #3 has a positive zinc loading with the fol­

lowing associatibns: . 

- area of :qhyo1i te (AREA 3) i' 
J 

- cofitact length between rhYOlire and andesite, ba­

saIt (CNTt Il);,, 

contact 1e'ngth between rhy'oli te and diorite, gab­
rr-... 

. bro (CNTL 13) i 

;' - contact length between rhyolite and tuff, agg1om-

erate ,(CNTL 6); 

- area of diorite, gabbro (AREA 8); 
. ~ 

1ength ~ fau1 ts 1ying NW to EW (FOLT 4). 

This set of variables ~s highly important from tpe 

point of view of zin~ o~c~)renc~, and corresponds, es~entia11y 
with those in factor #3 of' the 'copper set. This is an indi-

cation of similarity in ore-forming e~yironments of zinc and 

copper •. ... -' . 
...... ' .. .. 

Factor #7 shows a high'loading-~f zinc with ~t~~é~ 
, 

turq.l elements" dyke length lying NS to NW (DYKE 3) T .and wj" th- ---
• • l J ~ .. ~ _... • 

fauit length lying EW to'NE {FOLT 1). :he role of th~se dykes 

and faults i5 not clear beyond their str~ng ~p.atial cg~J:eJ:a­

tion wi th zinc and to a: ~es'Ser·, e~tent wi th cOJ?Pe:,:ç;,.. ~ ~~i!lg 

post-ore fèatures, these structural elements cannot be the 

cause 'of ore formation. However, if they are a consequence 

• ô 

. , . -

1· 

, 
... -.. ;' 
......... ".-~-
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they can still be used as effective 
r " 

- ~ 'vàr-ia1:5les' 'in Ifurther- statistical analyses' subject to ,he con-. ... ., ~ " 

.. :~.~dition,that other variables with accepted genetic affiliations 
• • .., ~. Il; 

- , , 

are also inc~uded with them. 
1 

7 • 4 S ununary 
• 

1 
1 

Factor analysis consists of extracting a parsirnonious 

nurnhèr of linear relattonships from a set of data with the ob-

'~ - :jective- of obtaining an '. , understanding of a cornplex of 
u • 

-
observed variables in t~rms of a few underlying factors. The 

~ . 
f0110wing is a"summary of the results obtained: 

'"'" Ilu 

(1) The three rnost important stratigraphical asso-' 
• >, 

ciations of variables for copper and zinc are: 

(i) 

(ii) 

(iii) 

~rea of rhyolite (AREA 3); 
.1 

contact length between rhyolite and an,.. 

desi te, basaIt (CNTL Il); 4 

contact 1ength between rhyolite and dio­

rite, gabbro (CNTL 13) .~ 

_An adqitional association of zinc is the con­

tact length between rhyolite, and tuff, agglom­

erate (CNTL 6). This may be rélated to the ob-

servation that zinc oocurs at a higher strati­
"-

g~rap~c levél than copper. 

-.) 

.J 

, /' 

1 

1 1 

... 
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(2) 'Both zinc and copper are closel~~ssociated wi~h 

NS to NW dy~e length (DYKE 3) anp EW to NE fault 

length (FOLT 1). This may be only a spatial as-

sociation, but cannot be ignored in subsequent 
1 

statistical analyses. 

)'(3) The associations determined by factor analysis / 

'may already be known on a subjective level. 
~-" 

What factor analysis does is to provide a more 

IqUantitative unde~standingof the qu~litative 
"relationships 50 that the relative significance 

. 
of each variable ,can be determined. 

:( 4) -l'The relationships determined by factor analysis 

may have a genetic or a spatial base. The dis-

tinction can best be made with "a piiori" know-

ledge of the geo~ogical processes in the region. 

The greater this knowledge, the greater 
, . 

the comprehension of inter-relationships 

present. ~he fact that the relationships can 
4IIIttft --

be isolated and explained has a great signifi-

'~ cance in variable selec~ron for further statis-

tical analyses. ~ 

(5) Factor analysis bridgs out relati~nshiPs in ac­

cordance with the information base applied. It 

can indicate pre~iously unsuspected associations. 

It cannot, however, indicate anv relationships 

not already known or measured. For exarnple, if 

., 

., 

(j 
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-
either copper or zinc occurs in a different geo­

;, 

logical environrnent in the region, and if this 

oçcurrence is unknown, factor analysis will not 
~ 

• help. But this is also the case with every other" 

multivariate statistical technique. 

Factor analysis cannot be useà directly in re­

source forecasting except irt-<a very s.uJ:;.jective 

manner; What it does is to give the factor. ana-

~ lyst ~n additional dim~nsîon, an insight that 

is rnost essent~al for further statistical wor~ 

50 that he can recognize and isolate spurious 

relationships and rninimize their effect. Factor 

analysis enables the selection of a reduced num-
, 

ber of more pertinent variables for an incisive 

multivariate analysis by other mètnods. 

'"' ('7) Fac~r analysis should pro'Ve an excellent guiç1e 

') 

in mineraI exploration, bu~ only in regions , 

where ore de~osits are known and ~he ~ociated 

geology studied. Insteadtbf concentrating on 
. 

any individual favourable feature of geology, 

the expio;atio~ist can have a mUlfiivaria~e com­

prehension based on façtor loadings related with 
, \ 

th, particular endowrnent sought . 
. 
) • 
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CHAPTER '8 

REGRESSION ANALYSIS 

8.1 . Introduction 

... 
'1 
1,\ 

il 
Geo~ogical processes represent a complex system in 

l' 
~hich optirna~ integration of favourable factors have resulted 

"\. >/in ore formation. These processes cannot .pe duplicated, but 

.~ the conditions of optimality can be studied by exarnining re-

lationships between 'knovvn ore dfPoSits and asso.çiated geology. 

A mathematical ~unction can be formulated to learn ~ore abput 

the underlying relationships and to appreciate thé separ~te 
- \ \ il:· 

\ ,..t.':,:; and joint effects produced by changes in the geological vari-
, 
"' ... ables comprising the function. If the function is valid, it .... ' 

• • 
can be used as a predictive tool within the system under study, 

and for extrapolation to similar geo16gical sy.~tems. Draper 

a~d\. Smith (1966, p. 2) stress that, "evfn where no sensible 

phisical ~elationship exists between variables, we may wish' 

to relate them by sorne sort of mathematical equation. While 
.. 

the equation might be physicqlly rneaningless, it may neverthe-

less be extremely valuable for predict~ng the values of sorne 

variables from knowleqge'of other variables, perhaps under 

certain stated conditions." The most" common method of obtain-

ing a mathematical function tt summarize a rnass of'data is by 

the "least squares" method also called regression analysis. 

li 
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,The objective in the least squares method is to find~the val-
~ ""' .. 

ues of constants in the'chosen function that will minimize 

" the ~UIn of squared dreviations of the ,observed values from 
, , 

those predicted by the. equation. The equation consists of 

two parts: y, the dependent 'or response variable, and x l ,x2 , 

: .. xp ' the p eXElanatory va~iables, also called factors. In 
• - J 

th1S study, the metal content of copper and\~inc, and ~heir 

combinad' dollar value are ~ed as response viriable~. The - ( 

independent variables l consist of geological factors, auc~ as 

areas of formations, contact lengths, and structural elements. 

8.2 Regression -Attributes 

" 

Reg~ession analysis is perhaps the most important 

technique in statistics, and most other rnultivariat& tech-
1 

" niques, in sorne way, are derived from it. A well-ritted re-

gression equat~on should: 
~ 

" 

'", 

p,rovrtl: esttmatE:7s of values / .reèpons~~\ variables 

from values of the independen~ variables. If the 

corre~t form of the equation has been chosen, the 

estima tes (predictions) should be both precise and. 

unbiased. 

l . ~~ 
"Independent variables" and "explan~c>ry variables" 

are synonymous terms. 

.. 
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J 
p~vide an estimate of the è~ror involved in using 

~he equa~ion as a predictive tool; , < 

~ - provide a measure of the correlation existing 
,1 

amongst the variables. 

"\ 
~anii!l and Wood (1971, p/r sutgest 

fi tting "equa tions to da ta ~OU~d: 

that a good method of 

-, . 
~ ... -..."'''"l- ......... 

/-use, a;~ reJ,evant 'a in estimating each çonst,~nt; 

~ - have rea~nable eco orny in the number of ~nstant5 
'\ 

p 

requiredi 

provide s~me ~stimate of the uncont~~iled error in 

Yi 

- "provi.de sorne indication of the random error in each , 

• . d constant est~mate ; 
'(, t 

~ake it po~sible 'to find r~gions of~systematic de~ 

viations f:rtrn the equation if any such existi j'( 
show wheth~~ the ~onclusions are unduly sensitive 

~ ~, 
to the result of a small number of'runs, perh?ps 

.' 
even of'one run; 

- he3.p to spot sets -Qf data that really are not from 

* -
s~parate runs, but açtually are from ,parts of one 

1 

- give sorne idea of how weIl the final equation can 
ç# 

be expected to ,predict the res~onses, bath in the 

"" ov~rail sense, ,and at ,important sets of" condi tians 

inside the region covered by the data. 

'. 
~I 
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, 

'The,resdlts obtained from regression analysis, and 
, 

the problems associ~ted with its application to minerâl ~e-
1 

source eval ua t-ion, é!-17~ di{cu~~ in sepa'ra te sections l in 
/ ,.. 

terms of the suggestions listed above. 
1. 

8.3 Assumptions Ln Regression Analysis 
l 

c!) 

The ~mplicit assumption in regression an\~ysis is 

that a reasonable linear r~lationship exists;among, the unknown 

parameters q~ t~e model. Th~ parameters are estimated ~y fit­

ting an equation to the availableldata under the following 

~~ assumptions: 

1 4'l~.! _..... "' .. 

(ll The vai~es of resp~nse variable Yi are normally 

distr-ibùted for a gi ven x .. 
~ 

(2) The vafiance of.)f'i values remains the s'ame for 

any given x .. 
• i> ~ 

... ~ , ... ' 

---....-ü''"-'.H. (3) -.. The error terrns, e. are uncorrelated and inde­
~ .............. 

,,~ 

-pèhtie~±. 
" ~ ..... ~ .. -... 

..... ~ ...... -- ..... ~ 

~',.. 

~pe above assumptions ca~~~~~~e expressed in terms 

of the .. random\~rror t;'rrn ~i in tha\ for :--se 
a·r.0rmal,digtrib~tion with rnean ~ro and vari~nce cr , 

e. has 
~ 

.ter Qeing th~~am~ for all X~IS. In additio~, the third as-
1 

sumption 
l, 

of indrPendenC:'~ddzero covariance holds ,for the 

., 

.' 

, 
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error terms. 'l'hïs is because" for a gi ven' x" the variabili ty 
~ 

in Yi is ~n~irely dependent on the random error term ei' 

The response variable has o be a quantitative mea­
l 

sure but this is not the explanatorY'variables 

whlch may be qualitative or d' or a' combination of 

quantitative and dichotoroouS,rneasures. The response variable 

is assumed to have a normal distribution, its vAriance rernain-

ing the sarne for a1l cornbinations of exp1anatory vatiab1es. 
r 

However~ it,is not ~ssumed that the explanatory var~les are 

normal1y~istributed, or even"that they are quantitative~mea­

surernents (Overa11 & Klett, 1972). 

The effects of vio1ating these assumptions are dis-

cussed in Sectio~ 8.8. 

8.4 The Regression 

i/ 
Mode1 l 

« 

~ 
The 1inear~regression model desçribes the linear re-

lationship between a random response vector Y and a set of 

in~ependent predictor variables x" i . . ~ 

linearity in the model means that the 

, 
~ 1,2, .•• p. The term , 
equation chosen ~11 

~line~ in the coefficients sO,al,a2,~ .. 8p' 1 The Inurnber of 

variables p in the equation and thus the number of coeffi-

cients, cannet be mpre than n,the number of observations. 

be 

lThro~~hout this thesis, the term "regression" will 
be used to denete linear multiple regression analysis. 

L 

, .. ~ F -"" 1', ,,'Ci' .CP' Ilil1 ......... 



,/ 

~ ... 

( 

o 

1 
1. 
1 
1 
( 

" 

( . .,. 

1 

1 

i~ 

n ........... _ ~ __ ..... , ___ ,_'" T_ . ., __ It:ou_t 7.,....'--.. ~ . -- - + ~-~-........------

1 1 ) 
_Suppose the ~odel 

~l;.,-

y=. X6+e 

und~onsideration is: 

wher~, 

f 

Y - is an (nj x 1) vector "of observâtions; 

X - is an (n x p) matrix of known factors; 

B - is a (p x 1) vector of coefficients;' 

e - is an (n x 1) vector of error terms. 
~ , 

, 

123· 

As stated prev~ous1y, E(e) = 0 and V(e) = 2 10' , the l 

indicating that the error terms are uncorre1ated. 

The 1east squares estimates of 8 are given by: 

where b is a vector ~ ~stimated 
1 \, 

B values. ,- The fitte~va1ues 

~y2" ~ ~' are dbtained by éva1uating: 

\ 
_ 1 
y = Xb 

lA 

the 

The elemenyof 

observations l which 

the vector b are linear functions of 
1 

minimize the error SUffi of squares e'e 

regard1ess of the distribu~ion properties of the errors. The 

vector b prov:i,.des unbiased estimates of a wch have? rnin.irnum variance 

4"', 

~\lThe description is based a~ter Draper and Smith 
(1966) • 

2 II.e., the estimates of Y. 

,-, -- ~-------
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of any linear functions af the vector Y elements. And, if the 

errors are no~al,'" then b is the maximum likelihood esti-

mate of S. 

A quantity R2 , called the- coefficient of multiple de-

termina tian is normally used to assess the variation in the 

data explained by the regression equation. The quantity is 

actually the square of the multiple c~rrelation coefficient, 

and calculated as: 

'-
/ 

1 

·i . ' 

R2 is often stated as a higher it is the bet-
1 

ter the fitted equation explains the variation in the data, 

subject ta the condition that the ~mprovement obtained in the 

2 1 b' . R va ue_ y ~ncreas~ng 

under a pre-dete~ed 
the regression mo~el. 

the number of variables is significant 

criterion and not becau~e of saturating 

U 
: Another' measure that is used in examining a regres-

sion term is the standard err6r of the estimate of y, a qu!n-

tity analogous 'te standard deviation in the sense that it es-

timates th~ scatter of th~ observed values of Y around the 

computed Y values on the reçression line. It is defined'as: 

= Ires~dual ~ean square 

... 
If the y values are normally distributed; the st~ndard error 

/ 
\ - \ 
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pf the estimate can be used to set confidence l-imits of the 

estimated valu& at the desired level. 

8.5 ReJression procedures l 

Geological information can never be complete and 

therefore, geological re~ationships remain a matter o,f opin­

ion. FOf this r~ason, when fitting an equation to data, it 

is essential fo~ reliability to include a~ many geological 

factors as possible. However, 'this consideration must be 

balanced against the need for a relatively small 'number of 

factors for effective monitoring, and to'keep computer costs 

to a reasonable level. The following i5 a brief review of 

the most commonly used regresitÎ-0n procedures" and commentary 

'on their application. 
" "" 

(i) AlI possible regressions: 

. This procedure requires developing a set of equatiohs 

for aIl possible combinations of 

cluding cases where one or more vari"bles rnay 'not be included 
~ 

in the equation. Thus, the number f equ~tions for.mulated in-

creases exponentially with each additional variable. The equa­

tion f1nally selected~s generally the one that explains tge 

. , 

lThe description in this section ois mainly after 
_Draper & Smith (1966). 

• 
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maximum amount of variability in the data. 

This method becomes unwieldy when a large number of 

factors is being considered. Its utllity lies in looking a~' 

aIl possibilities before selecting an equation. In min~al 
. 

resource evaluation tNïs will not be necessàry except under, 

conditions of complete ignorance, in which case the number of 

variables will be small. Perhaps an entirely different model 

J would be considered under such conditions. 

(ii) The backward elimination procedùre: 

In this procedure, a iegress~on equation containin~ 

aIl variables is first determined f~llowed by a calculation . 

of thé partial F-test value for each variable on the assump-

tion that each variable is the best one to enter the equation. 

Any variable with an F-value below a pre-selected eut-off F-
r • ." • -" 

test value is deleJ:.ed. Then the regression"equation"is re­

formulated. with. 'the. remaining variables. A partial F-value 

is again calculated fo~ each ~ariab~e as ~efore, and a new 

regression equation cqmputed with variables exceeding the F 

significance level. The Iprocedure continues until no fur~her 
, 

variables can be deleted. 

The pr~cedure ~s quicker and less costly ~han ~alcu­

lating aIl possible regressions. The number of variables 

mus~ not exceed the number of observation~ or else they will; 

not aIl be included at one time. When geoloqical factors are 

being evaluated for res,ource assessment, 'the meth0d proves of 
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t 

use only if aIl the input factors are believed to na~e ~een. 

.related in ore formation. Otherwise, the presence of redun-

dant variables in the first equation 

'reSU1 ts. particular ly if they happen 

of F-test value than those more direct1y related 

formation. 

(ii1) The forward selection procedure: 

This procedure forrnulates a regressian eq~dt~pn by : 

includirtg one variable at a time" performing regressian, then 

including one more variable, and 50 on. The order of ~nser­

tion is based on the value of the partial correlation cb~f-
. 

ficients of the variables not yet included in the equation. 

The procedure therefore i5 the reverse of the backward e1i-, 
mination method. It has the advantage of including only-those . ' 

variables that have a significance above a pre-selected F-test 

value, instead of first computing a large regression equation 

and then eliminating unnecessary variables. 
/ 

The method does .. 
not, however, consider the effect that the insertion of a new 

variablé May have on the cont;ibution of those variables al­

ready in the equ;tion. However, this can be rectified by a 

judiciou,s selection of variables or by using the stepwise re-. .., 

gression method. 1he fo~~rd selection met10d has the advan­

tage of economy in computing time. 

>eq ........ \ tl b 
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(iv) The stepwise regression method: 

The stepwise regression method is the same as the 

forward selection procedure e~cept that after each addition 

of a variable this method exami~. partial F-values of 

those. already in the equation. If the partial F-val1l1e of 

any variable in the equati9n decreases below a pre-selected 

F-test value' on the addition of a new variable, it is deleted 

from the equation. The protedure con~{nues until the equa-

tion is satisfied. Thus, this method i~ an improvement on 

the.forward selection procedure. ~ 
1 

8.6 Procedure"Used 

The forward selection procedure available in the 

S.P.S~S. library at McGill University is used in aIl regres­

sion analyses. A' 'series Ç>f runs was also made. using the step­

wise procedure available on the C.D.C. 6400 computer at the 

pepartment of gnergy, Mines & Resources, ottawa, and ~he re-

sults were compared with those obtained using the~forward se­

lection ,p~ocefure. The results in the two cases are similar. 

In an oral communication, Agterberg (1976)/stated that in his 

studies, he too had observed thae the results obtained by the 

two methods are essentially the )ame. 

/ 

1 : 
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8.7 Selection of Variables 

Perhaps the mos~ difficult problem in applying re-

gression analysis to geologica1 data is the selection of the 

"best" set of explanatory variables for the model. The im-

portance of se1ecting the right variables cannot be over em­, 
phasized. The pecu1iarity of geo1ogica1 information is that 

/ 

ohservations and measurements of data are the deformed, modi-

fied and incomplete representations of geo1ogica1 processes 
l' 

and not the processes themselves. Geo10gica1 processes are 

both evo1utionary a~d interruptive, spreaà o~t over long spans , 
of geo1ogica1 time. Yet geological observations are measured 

, . 
in one point in ti~e. If the role of this time dimension'is 

not fu11y ,understood, the va~ious stages of geological pro-

cesses cannot be id~ntified; they can only be approximated 

from existing evidence. This is the case with the Rouyn-

Noranda region, necessitating therefore, a greater number oft 

trials to obtain the appropriate equation, and greater cau-

" 
tion in interpretation. 

The easiest approach in variable selection is to let 
" ,. .. . 

_the computer do ~t automat~cally on the bas~s of part~al\ cor-

relation coefficients. This approach is a1so suggested by 
1 

Agterberg, et al. (1972, p. 27)', where they state that "By 

working with many variables . • • , we admit considerable re-

dundancy in the data base. However, during the multiple re-' 
.f 

gression, the redundancy is automatically eliminated. For 
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".. this type of multivariate statistical analysis', it May be best 

to start off with as Many variables as possible "and to let the 

elimination of redundaricies be done by the computer<~ ~ 

In the present study, it has been observed that ex-

trernely misleading results can be obtained by allowing an au­
r 

tomatic selection of variables by the comp~ter. The partial 

correlation coeffieientsk~hich are the basis for computer se­

lection only reflect the spatial re"iationships among the vari-

ables. They May or rnay not have any genetie link with the re-
,l . 

sponse variab,le. The computer cannot make any distinction be-~'" 
1 , . , " 

tween variables that have spurious or genetic correlations. 

The following two regression equations l illustrate this point. 

logio Copper == 4.64 - 1.31 CNTL 7 + 0.34 FOLT 1 

- 0.02 CNTV 13 - 0.18 AREA 4 
1 

ft + 0.3~TL 34 - 0.40 AREA 8 

/ 
loglO Zinc ; 5.04 - 2~2 CNTL 14 - 0:14 CNTL 13 

+ 0.20, FO~T l + 0.37 Aru:A 2 

/ 

" 

~ 0.17 FOLT 3 - 0.02 AREA 12 

~hese equations have been obtained for the eight cells 

that contain known ore deposits. There were no constraints 

placed on the computer and the s[election of variables was d~ne 

,'if ' , \ 

lsee Section 4.2 fo~criPtion of variable names. 
~ 

.. 
, / 

< , 

ti.; 
.' 



1 

( 

~--_ ..... __ .... _. ---~--,-- - '.~----'-'-'----;.r-'.' 0 

\. 
131 

automatically using the stepwise regression procedure.' Each 
1 • 

'h R'2l l f '"d" h h e3uat~9n as an , va ue 0 one, ~n ~cat~ng t at t e equa-
.... .,,/~ 

tion fuIIy acc~unts 'for the variability in the data for 4he 

~ight cells. . 

Observe that neith~r of the equations contains the 

variables, are a of rhyolite (AREA 3), or the contact lèngth . 

between rhyolite and andesite,' basaIt (CNTL Il). These are 
1 

the two variables with which nearly.all massive sulphide de-
'0 .. \. .. 

posits are asso~iated in the region. Yet other, less perti~ 

nent but more spati~ll~ cor~elated variables are automat~cally 

selecte'd by the computer. ' 

Although these equations can be fitted to the data 

in the eight cells with known ore depOsits in them, what is 

the predictive worth of equations that do not include vari-

ables known to be associated with the ore deposits? There 

are other examples in which the mere presence, or absence of 

ta certain variable .significantly changes the r~gression equa-
1 

tion. Sorne of these examples are disc~ssed ib the evaluation 

of results. Àt this stage, it should be stressed,'·that in re­

gressioIl-or any other statistical analyses, the ~bili ty to 
, ' 

, 
monitor the rolé of variables can help avoid irlcorrec't C,011-

clusions.' This requires' ha priori Il subjective knowledge of 

.lR2 is the coefficient of determinatiorr. 
measure of the proportibh of variance in'Y which is 
for by the estimated linear regression of Y on t~e 
planatory variables. 

It i~"a , 
acc:ôurited p : ex':'" 

.. 

, 1 

j 
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1 

the behaviour of geological factors. Where this knowledge i5 

incomplete, information from a similar geological system can .. 
be useful. 

Sometimes it may be necessary to i~d~ variables 

h h t , l h h ' l;n'k w)th h ,t at ave a spa ~a ,rat er t an a genet~c. • t e pro-

cess of ore formation~ This is the case if such variables in-

stead of ,being.a cause of ore forming processes are a result 
f' ( , 

of ~uch processes.: Structural features can result from fold­

ing ~ssoci~ted with volcanism which itself may have been the 

cause of o~e formation . These "indirect ,relationships can be 

"~ useful. 

It is perhaps best to i~put variables in a 'pre-deter­

mi~~d order based on thê~~ genetic afÏiliation for the re-.. ~ ~':' 

sponse variable rather than on the basis'of partial cor~ela- ~ 

'. t tion ~efficients. However, where there ~s uncertainty con-

cerning the relative importance of variables, they can be 

~rouped together in sets, the insertion level among the group' 

bei",g pr~-established, but the selection from wi thin the' 'groups 

being left to the computer. This p~~ctical procedure is used 

in this study: The final equat~on shouldofeflect the geolo­

gical system under evaluation as ,logically as the present 

knOW~edge~f the local geology permits. 

The decision as to the initial set,of input variables 

is an extremely important one, for any further selection is 

based on the resulting contribution to the response variable. 

The method of letting the comp~ter do the work by inputting 

--------___ -"f----
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the maximum number of variables has already been commentèd 
--; '\ 

:fpon. Another ~ethod is to use subjective judgment in m~king 

the initial selection, based--on knowledge Jl)d experience of 
, , -the type of deposits and the area under study. It has been 

, . 
shown in many statistical analyses, and also observed in th.is 

study that quan'titat.ive relationships ex tend to variables not'" ", 
earlier believed to have d significance ,i~ subjective ~serva-

tions. 

Characteristic analysis i5 a simple wày of choosing 
. 

the initial variables on the ba~~~Jof their relative typica-

lities. The assumption is that the frequency of observation .-
\ 

of a variable is an indication of the importance of its role 

in geoLogical processes. This may ot may not be the case de-

pending upon the type and complexit'y $f geology in the regign. 
• • 1· 

To be acceptable, the selected characteristics should cbnform 
J 

to the various concepts 

'" order of input can then 

l ,",,' 'l' ,1 l a~lve typlca ltyes. 

on ore formation in the region. The 

be based on decreasing values of re-
~-~ 

" 

When the area under evaluation is well'known with 

sufficient information, availablë on both the explanatory, and 

response variables, it helps greatly to perform appropriate 

factor analyses and then select the variables loaded' on the 

~ctor accounting for the greatest varïance in the response 

variable. It is believed that this is the best method of 

t 

lSee Section 2.2.5, and Chapter 6. 
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variable selection. r An addi tional advantage of factor analy- . 
, \ 

sisis tnat othèr ge6lpgical.relationships, previously unsus-

peçted,' also are hi~hlïghted for a better coMprehension of 
. 

~ gealogy of the regian. ;t.shaul~,be paint~~ aut~ 

~hat tR~ "cause" ~nd "effect" relationship should not 

hawever" 

,.;t' ' - .. 
tomatical y accepted based an factor analys~s. 

~ 1 

lem of statistically treating geological data. 
" il 

be au-

This is a prob- , 

Res,Ul ts havJ 

ta be monitored with sound judgment at each step. / 
c,.~ 

&?ince factor analysis after-lorthogonal rotatio~. re-

s~lts in uncorrelated f-'tors, some'wonkers have uSèd factor 

variables in SubSeqUe::(st~ti.­
of this approach is ~~t it 

scores rather thap the actual 

tical ~nalyses. The·drawbaok 
, , 

builds an artificia~ barrier between the statis 'cal model 
\/ 

formulated and the geological' system as descri d b~ ~he vari-

ables. lt nO.lon~er is P~~~ible then to obser e\ understand 
• 1 1 • 4. 

and.ke~p track of the ,ales of individual variable~. 
s 

After the initial Nariables have been selected, it 

will be nece~sary ta monitJr the raIe of those mos.t signifi-

cantly . contrib~ti!ncj te the res'ponse var~>ables\. Because of a 

sen 
c 

high corr~lation,·some of ,these variables can beceme very 
\ 

" -' sitive to chanrres in their valuès. 
• ';1 l If such a si~nificant ~

. 

~ 
var~-

able happens to -be, "a stru,ctural element such· as a .dyke or a ' 
~ 'II" ;'\ 
• 'fault, ft should be in~t at ~ later stage' in regre~ion ana-, 

" -<!I. 
1ysis, if at aIl. For example, the variable ~YKE 3 is so 

highly correl~ted with zinc that its mere i~lusion in the , , 

( 
, 

, early stage of regre;sion resulës in a pesftive value 

0,,-_' ~ " " , 
. l , 

" , , 
1 " 

" 
) 

. .., 
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pr~di~tion in cell 1027. This ce,~l contains onti:y granite and 
• 1 

granodio~ite rock~a~d massive" sulphides fannot be expected 
~ .. . 

there1 DYKE 3 gives m'isleading tpos1tive results in thar- c~l).. 
J, 1 ~"" 1 

The actual contribution of such linèar structural el~~ents 
. / 

has to be watchedi,tney are o~ten ~n interpretation 

terpolation, ,their recorded length bein~ Subje~O 
the mappi.ng geologist, and la~el" oy- the 'dr~-ftsrnan. 

or an 

error 

It is 

in-

byr 
'li 

felt 
" . "-

t1}at the~ most "stable measurernents onJa geolqg~cal'-map are the 
~ a,- . 

areas of format.ions and the. co"n"tact length.s··'between them. ..The 
\ . ~ ... 

- .. ",~", ~ 

lengths of dykès'~ faul ts, etc i are probably less accura~~_ mea-

surernents. However, they can be·valid contributors to t~e re­

~pohse,variable;and t~erefô~e should be included, bu~ their 
~ ----... . -- -

\ 

• effect cldsely observed. - -~~ 

,. 

• • 
-~hê initially selected vari~êS can be reduced·ih 

. 
number after regression analysis if any of them do not signi-
\ • . fl~antly contribute to. the co~fficient of~multiple'detetmina-
/ ,. 

- 2 . . 
tion, the R 'value. It may also be'necessary to experiment-. .. .. ' - /' , 

wi,th additional variables to acl}ieve an optimal combination ; 

for a regression model that 

of the geolo~icll system in 

. . 
adequately describes ,the behaviour 

/ ~ 

the Rou~-Nor~~da region. 
l ' • . 

8.8 Treatment of Response Variable Data 
1 

\ 
Ideally, ,in any type of re9ression ana}YSiS, raw data 

. for ~he response variable should be normally distributed. This, 

however, is not the/case for-most data relating to natural -

f 

'" 

r' .,,' 

'. 
" 

r.;: 
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phenomenon. Suitable transformationsl may t~en be necessary 

~~ reduce non-normality in the response variable~, using the 

transforrned state in fo~ulating the least squares model. It 
, . 

'should be emphas~zed that minirnizing the sum' of squared d~vi-
ations for the transforrned model is not necessarily the same 

"-

as minimizing the,surn of'or~ginal, untransformed datai that, 

iS: the lea~t squares esti~tors of the transformed~variab~es , 

wi~l not be~the sarne as those of the original model. For ex­

,an;pie, in the . Rouyn-Noranda:; .~egiorr the re~ession models for-

.t' 

(> 

mulated on the raw'data and ~3~their l09;rithrnic transforma­

tions are diflferent in terms of both the coefficients and the 

explanator. variables included. 
, 

A decision has therefore to 
Il /, 

be made between using the raw data t~us violating the normal-
.,:;. ,.' 1 9. 

ityrassurnption or tq~ake suitable transfo~ations/tQking the 

risk of obtainingoa least squares fit significantly differ~nt 

from that obtainable from the raw data. 
'~ 

The response variable data of the Rouyn-Noranda re-
T ,'iIo 

gion consists of th~, foflowing: 
?-
; . 

~ known endowrnent iJ eight of the 64 cells, in terms 

• . d 1. d of contained mecal tonnages of copper .an z~nc,;an 

their dollar va/lue; 
\ 

- unknown èndowment in th~ ~emaining 56 cells. 
( 

'It is likely that sorne additibnal Unknown endowment 

; 

lsee also Section "4.7. 

, ) 

, 1 

-~.~---.. ... ~ .. _ .. _,._. _." ....... -..11 ... '.Ifl,r 'IIun.Z l1a 1 ••• 11" JI!? I,,'QI,'*~-"""''''''''~'''' ~7.;-A -/ , 
. ., ./. ..... il· ..... _'._ .• .... , ' 



î 

t 

1 
\ 
! 

( 

~ l' 

1 

~ 

__ .... _ ... , .... tU t1 AJU dl; 

137 

may be present, in the ei,ht cells with known endowment. Fo~ 

tnis ~ason, the known endowment defined \as the sum of pro­

duction and reServes of economic deposits\in these cells re-
Il l , 

.~esents the minimum possible endowment. AlI predictions of 
1 

endowment in the region should therefore be considered 'as mini-
, \ 

'mum possib'le values. 
1 

The 56 cells with no known endowment are of the fol-

lowing two types: 

cells that have mineraI endowment which is at pre-
<t 

sent undiscoveredi 

- cells that have no endowment. 
1 

At the time of ùata'compilation, there,is no way of 

knowing whether a cell with no kno~ endowment belongs to the 

first, favourable qroup, or to the second, barren group. It 
\ 

may be subj ectivel.y possible to pre'dict that a ce\.l has no 

endowment if it does not have any attributes directly or in-

directly associated with knawn or.e deposits in the ragian. 
~ , 

On the other hand, however, it will not be pOssible to sub-

jective"ly assign a value to the unknown endowment in a cell 

on the basis of the mere presen<:é of attributes :related to 

known ore deposits. 1 "what is important is not so rnuch the 

, 
.J 

lResource estimates based on quantified subjective 
probabilities represent a difterent model, the effectiveness 
of which is, not contradicted py the above statemene. See 
Section 2.2'.4. 

1 \ 

• l "~~t.t:~· .. PI1 . .r: '1 Il' 1'.II$1r 

, ~ 
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presence of a favourable set of attributes as the presence of 

a relationship among these .:;tttributes which correspond~ to the' 
" 

relationship which exists in the reference cells that have a 
1 

known endowrnent. This relationship can'only be known after 

statistical analyses. Such analyses require that aIl response 

variabtes have a quantitative value. Sin'ce no endo'wment is 
, 

presently known in 56 of the 64 cells in the region, there is 

no alternative but to initially assign a ,zero value ta the re­

sponse variables in such cells. Should the mathematical re-

lationships forrnulated from the known endowme~t cells hold, 

then it will be"possible to distinguis~ between cells with no 

" endowme~t and cells wi~undiscovered endowrnent., Until this 

is done, the data on response variablés consists of eight posi­

tive values for the cells with ino~ endowrnent and 56 zerés 

for cells wi th zero known endowrnent. The 'l~rge ~umber ot zero~ 
~ 

causes a strong positive skewness in the response variable 
1 

distribution f The presence ,~of zeros also makes it very dif-

ficult to apply any tran the dp,ta l for 

effect is uniforrn on aIl the 

zeros, and the overall distribution remains skewed. 
<, 

R e ring to the lack of normality in the distribu-

tion of ;esponsel variable data, Draper and Smith (1966, p. 

1 ' 
It ia not assurned that exp1anatory variables are 

norma1ly distributed o~ even that they are quantitative mea­
shr~s. COverall and Klett, 1972, p. 425). 

1 ~ 
, 1 

Il 
1 
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1 
S9) note that "An assumption that the errors e, are normally 

• . -
distributed is not required in order to oPtai~ the estimates 
.2-'P, but it is required later in arder to make tests which de-

.... t ~ >. .. 

, pEmd on the assumption of norrna!ity such as t- or F-test, or 
1 

for obtaining confidence in~ervals based on the t- and F-dis-

tributions." -
. 

Regression techniques are robust enough te adapt to . 
moderate deviations from the normality assumption, particular-

ly when the aim of the study is on1y te find the best fitting 
'r 

-, least squares function. However, norrnality in the response 

variable is·essential when interval estimates are to be made 

or' significance Jes·ts applied. 

8.9 The Ore Cells Regression Madel , , 

19"1 _ 

The problems caused by a large number of zeros in the 

response variable data can be circumvented to a certain/extent 

by computing the regression ~odel on the basis of observations 
• 

on the known enpowment cells alone. 
.. , , 

Xhe assumpt~on here- ~s 

that ore forming processes are represented by the geology ~n 
. ~ , ~ 

these cel1s, and t9àt the size of the cells is large enough 
~ ...... ",,_ ....... _ ,7 .. 4 

to have accommodated ore forming activity. The relationship 
i , , 
1 

1 '. 
t ~s the vector of'error terms ei' 

the vector of regressiOh coefficients. 
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formulated from the known endowment cells can then be applied 
Ji' 

for, predictive purposes over the cells 'with no known endowment. 
1 

It i5 also assume~that sufficient'number of known endowrnent 
1 j 

cells are present for the forrnulated model to aaequately ~e­, 
present the geological system under observation. On a recon-

naissance level, it may be acceptable to a~gment the data base 

by including known endowment cells from other typical mining 
,r , , 

regions. The increased number of observations will improve . 
the reliability and comprehensive~e5s of the computed model. , , 

It should be obvious, however, that an equation which repre­

"" sents .the typical behaviour of a regional system cannot be de-

,rived from non-typical data. 

When a network of cells is randomly superimposed over 

a given regio,n., it is likely that the ore deposits will not be 

centred in their respective cells. There can be instances in 

which qn ore deposit lies 50 close to ~1e boundary with the 

adjacent cell that geological relations presefnt'in the a~ja-
cent ceJ.,l may also have contributed to its occurrence. Thus, 

when the objective is to build a model based only on the known 

endowment 'cells, it may be more desirable to first centre the 

ore deposits in their respective cells and then make the-ne­

cessary mea~urements assuming that the centre of the cell is 

close to the centroid of geological activity that led to ore 
J'" 

formation. The situation w~l alsd.depend on the presence of 

geological trends and intrusions within the region as well as 
1 

~he size and shape of the individual cells. How~ver, to avoid 

N"."').. rrt' nt1'NW r r 

. , 
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• Q 

a bi,as, particularly where geo1ogical relation~ a~e e~Plex, 

it may be bast to confine the méasurements within tn{ random­

ly'p1aced network of ee11s. +hé reg~ession mode1s and fore­

easts made using the eight known endowment eells in the re-• 
gion are discussed in Section 8.19.-1. 

8.10" The Total Area Regression Model 

The Rouyn-Noranda region has been described as an 

eruptive centre of ore producing volcanogenic àctivity.l The 

reg~ can be considered as ~ se1f-contained geologie. unit 

sinée there is little evidenee of simi1ar eruptive aetivity 
\ ' 

or associated ore formation outside it. The quantitative re-

lationsh~ps betwéen geology and ore occurrence are therefore 

believed to be local to the region or i~s immediate vicinity.2 

Therefore, if a funetiona1 relationship exists bëtween the, ex­

planatory variables â1ltd the known endowment, i.e., with "'the 

.J ., 1 11 h . '1 f response var~able ~n one or more ee s, t en ~ s~m1 ar unc-
c, 

tional re+?tio~ship should also extend to the cells with no 
• ..,." , ... .1 • 

., ~., ~ JI.' • 

knt5wn·-endowment but which have the necessary integrated pre-

sence' of explanâtory variables stàtistieally similar to those 

/ 

1 See Section 3.2~~. 

2 "II , 
On a.- more g'eneralized level, however, geolOgiqal re-

'lationships/can be s.iJ.Ili!ar fot, typical ore rdeposits in other 
regipns,--and of ditf1Û:'ent geologiea1 ages~ 

o __ .. , 

- ... -

/ ,. 
/ 

, 
/ 
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in the known endowrnent cells so that the endowment not known 

can be predicted in thern. Such a situation should be true in 

relatively c~osed geological systems in which aIl ore forming 

activity was confined within limited areas. If such is not 

the case, then either a state of disequilibriurn exists in the 
-

response variable data,l or otherwise, the functional'relation-

ship between the response and explanatory variables is not 

valid. 

The data for the response variables in the region con­

sists of the known endowrnent as defined fO~i~hi~ study, and 

the unknown endowment to be predicted but initially assign.d ,1 

a zero value. 'The~ct of perforrning regression analysis 

with this kind of~nse variable data is as follows: 

- cells with no known endowment which have been as-

signed a zero endowment value, and which do not • 
. 

have any levei of geological similarity with known 

endowment celis should obtain a predicted value of 

zero or close to zero. In extrern~1 cases, a nega-

tive value may be predicted which while indicating 

a high degree of dissimilarity will in effect be 

the sarne as zero endowment. 

lThe situation arises when part of the response vari­
able data has to he arhitrarily assigned a zero value for lack 
of information on' its unknown endowment. Sorne of the cells 
may he correctly.assigned a zero value, but other cells that 
~do in fact have an endowment which is not known, are wrongly 
assigned a zero value. This thus creates a disequilibriurn in 
the system. 1 

) 
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, . ...-

cells with no known endowment which have been as-

signed a zero endowment value and which have a 

geological similarity with known endowment cells 

should obtain a positive but a rather low predict­

ed value irrespective of the R2 value, the,reason 
, 

being a!3 indicated earlier, that instead of z'ero, 
, j 

a higher,. but unknown va.lue should have been as­

signed .to _ thec.ma.w...·.--
,1.. 

- cells which have a known endowment in~them should 
. 

obtain a p~edicted value lower than their known 

endo~ent b~cause similar integration of geologr 

in cells of ûnknown endowment have their respon~e 

variabtes arbitrarily assigned zero values. 

1 ,In such a situation, it is possible to simply app~y 

regression anàly~is, over the total observations in the re-
l 

gion and then to examine the resu~ts knowing that the greater 

the number of unknown èndowment cells with incorrectly as-. 
~ signed zero values with respect to the known en~owment cells, 

""'l' . 
, 

the lowet:" will be the general level. of prediction~ obtained. 

Tl)ese predictions can be examined from a relative point of 
fi l' 

view, Le. , cell9' with a higher potential will in general 
, s. 

show higher predicted estimates than these with less. Ce).ls J 
with little or ~o POtential can be el~nated by this method, 

Q , 

and at thë sarne time other cells can be rahked relative te 

, 
/ 

1 

~ ... ~_r"-""""".,14>,pl~,,U\' I.
t
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one another. l These rankings will-;not."nave any economic im-

plication in strictly objective terms. However, on a purely 

reconnaissance level, the method should prove useful. 

2 1 

Agterberg et al. (1972) , used a modification of 

this rnethod ta obtain an estimate of the relative 1 potentiall. of 

copper and zinc in the Abitibi area in ontario andOUebec. On di-

chotorn~us data, they used regression analysis as an' estimate 

of the discriminant function separating two populations of 
Ir , . ~ 

cells with response variable set at one if an ~re deposit was 

present, and zero if it was note The results obtained were con-
1 

ta ured ta obtain 'a copper and zinc potential contour map of the area". 
" 

The r~sponse variables in aIL cells that had an ore deposit 
" 

in t~em, were each 'assigned a value of one regardless of the 
~ 

size of the deposit. Their results, therefore, imply the 

C' 

presence of an ore deposi t as a "geological event ", the pro-, y. 1-..... 
bability of which is p~edicted by the regression estimate of 

the r~sponse variable. Although no economic considerations 
. 

are involved in their study, the study is still useful for 

reconnaissance level exploration. 
Il 

\ 

, IThis ranking can vary with d!fferent sêts of expla­
natory variables, depending upon how pertinent and how highly 
'correl~ted they are. The right selection of var~bles is mos~ 
important if reliable results are to be obta!ned. See Se,?tion _ 
8.7. 

2See Section 2.2.3. 
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8.11 Iterative Regression Analysis 

The problem ,of what values to assign to cells of un-

known endowment c~n be resolved using an iterative process of 

regression analysis which will in affect provide, the predict-

~d estimate~ of endowment in these cells. The implicit as­

sumption is that in- terrns of information and concepts, the 

wegion under evalua~t'on is a closed geQlog~cal syste~ at the 

presênt point in ti ,and that a state of statistical equi-, 

librium exists between the re'sponse .and explanatory variables' 

such that if ore en~owment is a function of a particular in-
v 

tegration of'''geological variables, then a similar integration' 

of these variables should also reflect a sirnilar level of ore 

endowmeht. This assumption is necessary because-wit~ addi- 1 • 

tional information or newe~ conc~pts, the ·model will require 

an updating or a re-evaluation.' / If this i5 --not done, there 

will be an increased deviation of the predicted values from 
.. 

the actual observations. 

A regression analysis is first performed using the 

pre-selected set of explanatory variables, and the set of re-

sponse variables including the suhset'of known endowment val-

~ ues for cells' that have known ore deposits in them, and the 

subset of zero values assigned to the ce Ils with no known en-

dowrnent. The regression estirnates for cells with no known 

endowment in them will be higher than zer~in cases where 

any level of geological sirnilarity exists with respectrtO 

, 
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that in the known ore-bearing cells. The~e estimates will 
, 

vary in each case ~epending on the degree of similar~ty. 

Therefore, they are relativ~ly moretprecise estirnates of tqe 

endowwent in the unknown cases ~than the arbitrary, zeros a~­

signed tb each of them. 

After the first regression run,,~ a new set of response 
./ 

variables results consisting of the subset of known e,ndowp1ent 

values which rernains unchanged, and the subset of pred~cted 

values replacing the zeros in cases where there is no known 

endowment. The exp1anatory variables remain the s~~as in 

the initial run. The regression i5 performed ag/in ~n this 
~r , ' 

new set of data and the predicted values obt~ined for each 
"', 

'-,'-, 

cell. -------"'" 

d ' d 1 1'''~' d pre ~cte v,a ue1 ear ~er aSS'l.~ne At this stage, the 
-----. 

1(.0 the unknown endoWrnent cells are replaced by the newly pre-
1 

dicted values. However, the value~ if response variables ,in, 

,<ells of known endowment are kept at their sarne original val-
\ 

ues-. Regr~ssion ~alysis i5 repeated on this most recent 

data, and the predicted value? observed for trénds with re­

spec.t. to the earlier predictions. The objective here is ta 

see if the predicted values of the cells that do have a known 

endowment conv~rge towards that value. It shall also be ne­

cessary to check on the irnprovement in the R2 values. The 
~ . 

rate of irnprovement ~etermines the nurnber of iterations re-
~ , 

-, 

quired tornake\~h~'-~greSsion results converge on the observed 
, 1 

values in the known endowrnent oe11s. It rnay pe necessary 

t 

\ 
! 

'. 

" 
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after,a number of runs to increase the number Df explan~tory 

variables particularly if the en~owm;,t has more than 'one 
N ~~ 

mode of association with other var~ables as determined by 

suçh methods' as factor analysis. Obyiously,~ -~e first set of 

--independent variables regressed.on are the ones that have a ,~~ 

greater correlation with the resource,constit~~~ng the endGw-

ment. J 

The regression procedure is repe~~ed iteratively un-
l ') 'l,.' 

2" v 
til a st~ge is reaihed where the R, v~~~~s approach one and i 
where the predicted values of endowment for the known endow-

,J, 
- ~ent'cells nearly equals the kI10wn value"s.- At this point the 

'r 

system can be condidered to have stabil~zed,0that i5, each 
l, ,,1 

~ •. ll .... 

cell has now been assigned an endo~ent v~~ue based on the 

level of geological similarity with the kijown endowment cell~. 

Any further regression i teration wil~ not significan"tly change 
. 

the values in any of the cells'. Thè-predicted value of the 

response variable in each cell is an es'tima -ee of unknown en­, 
dowm~nt in it with a ~tandard error of estimate as determined 

for the particular iteration. 1 The standard error can be used 

to set 'confidence limits at any desired level. 

The problems in regression analysis will vary from 

prpject ta project, but 'will in general be relate? to the com­

plete~ess, corr.ectness and detail of the data base and to the 

j 

:,( 
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! , 
'/ 

set of explanatory variables selected. 
. 

It may,not be pos-

• 

sibte ta futly eliminate 9r $ven 
, ~ J 

the problems, but the regression 

reduce the effect of 'Sorne of. 
. . 1 

analyst ~ust nevértheie'ss be 
. . 

aW1e' 'ofttheir presence and 'possible effects when evaluating 
1 • 

" -... .. J .. 

'results. . ' ' 

The faptors considered in variable selection have al-
--- '. 
rea~y been discussed in Séction 8.7. It shou~~ be n~ted here" 

. (. 

that the omission of 'a/relevant variable, particularly if it 

i5 correlated '-With those already in the mqd'éi, ma~' resul~ ±n 1 ..... ,.(' 

bias~d and ihconsi~tent Ieast,squares estimators., The inclu-
- . ~ , ( 

t' sion of an. irrelevant ~ari,able on" th~ jther han~ will 0!1ly 

, , 

make the re~~ession coefficients~fess efficient. 

There are aiso proQlems of autimcorrelation, heteros-~ , - ~ '\) . 

""';'cedasticity and multicollinearity, eabh of whicn results in , 1 
l / 

. inefficiency, bias or error'l 

Autoco;xelation is the g(ouping together of .posit~ve 

or negative ~esiduais. . . . When autocorrelation is present as a 

"result of an, incorreç:t ~orm'"of regression model, or because 

some pertinent ;ariable h~s nJt be~n ~cluded ~ the rnQdel, , . ."' , . 
~ L 

it Is possible to rectify.the situation by suitablê revisions 
\-"- . \ . 

and m~di~ieati~s. However, the pr~blem ~ecomes more complex 

and.difficult wpen the distutbance terms have an autqregres-
\1 ' 

sive 'structure. 
" ( ) Aut6correl~tiqn results in ineffic~ent least squares 

;e~t~ators"l·Whl"h •. howeve~ { may still he un~iased. ~oJ",~~r, 
thè variances of the parame~~rs_and ~~e error te~s may he 

t .. 

\ 

r 
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,\ 

~---~,.. . ..,. "..,.-----... -n--__ ... IIIWillliiltmlïil\i'J. 



" ( 

( 

\. 

• ' 1 

_______ ' IS tniI • 
3 j 

149 

\. 
bias~d. It should be noted that in studies of resource eval-

, , ". " 

uation, autocorr~lated posit~e residuals~may b~ indïcators 
t 1 

of more Ifavourable areas in terms of minera1 potential. This, . . 
-, 

in fact is the first observation made when ~e~ssion results 
t 1 

are, stndied 'irfor ce~ wi th an unknown endowment ~ich have 

beéh initially assigned a zero value. In the \tera:i~e ~­
gression ana1ysis used in this ~tudY, it is n~t'until S~iS-

• /J 

tica1 equi1fbriUIit r attained in the resp,onse variables that 

the .auto~orrelatior::~~s minimiZ~:' Autoc~rrelation" mq.y also 

sugges,t phenomena of geologia interest particular1y when sorne ,.­

te~evapt'variable'is no~ ~cluded in the regression mode1. ~ 

. , 
This -may havé a bearing on the genesis of ore deposits in the 

~ • '.. / 1 

ar~a'being s€u~~d .. Other geological implications are beyond 
- • t> 

the scope ,of this study. 
, 

. 1 .. 
H~eroscedasticity -resq1ts when th\ assumption that 

l''~ne variance is b,nstant about 'the regressi9n \line is vio1at-
f 

ed. When this -is the case, the reast squares estimators do 

not possess me property of 

estimators. Al th'ough; they 

r 

minimum variance of a11 linear 
~ 'f ' 

w~ll sti1~ pe ~~~s~d, t\e ca1-, 
oulated co1i·fidence 
t 

interv~~s and ac?eptance regions will 1ike-

. '" :ly be, .W'rong. 

1 ' . "11' \. lt h 1 f th . r, d d t MU t~co ~ne~F~ty resu s w en any 0 e '~n epen en 
, 

yariab1es are·corre1at~d. Thè ques~n is not*so much the 
. 

ill" 

. lSee Figure 12. 
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HETEROSCEDASTIC VARIANCES 
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presence of rnulticollinearity but rather, the degree of multi- , -col11nearity which exists. The regression coefficients will' 

be imprecise when a high degree of multicollinearity exists . .. 
This is because the least squares estimators~have a high vari-, 1 1 •• , 1 
ance. 

! { 

The degree of multicollinearity will increase as the 
Ill.! 

scale of observations increases, Or conversely, as the ~ell 
" 

size decreases. This is a problem that arises in aIl studies 

wher~rne~surements are made on geological observations after 

superimposi~g 'a gri' of cells over the area. Geological pro­

èesses pârticularly of an evolutionary type occur over large , 
areas. Structural features like dykes and faults rnay extend 

.. 
f!Om one corner of a rnap area to the otber. The result is 

1 

that individual cells cannot contain a set of response vari-

ables that do not influence ~which are not thernselves in­

fluenced by, the geOlOgic~l relati~~~e~t in the ad-

joining cells. One solution for 

large size'but this will not be 
... ~ 

areas such as ~ rnining region. 

this is to use cells of 
i 1 

possible over size-restricted 

To reduce Possibl~harmful 
effect of mul ticoll~neari ty' i,t:l-." this stüdy, ~,the superimpose~ 

~et of 64 cells is divided into two subséts bY converting the 
~..... \ 

re~p.on into a "checkerboard" pattern of cells 50 that alte~-
" nating cells \are inc~uded in each subset. There is no.cell 

, 1 

that has a common boundar~ with any other éell in each subset 
1 

r 

, \ 

1 

... 
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except for the point connectiC?ns a't the corn~~~. 1 Looking at 

the map of the are a with the "checkerboard" ~ells on it,2 it 1 f 

is evident that the continuity of_ geology from one ce~'l to 

the next is abruptly halted or decreased as a result of in-

Only tho)e 
, 

cluding only alternating cells in each subset. 
~ 

geological features that have a distinct direction, either 

north-ea~t or north-west~ appear ~o continue diagonally i~to 

the next cell in the subset, but such cases are rare. The 

lundesirable ~~f'ect of usini the "checkerboard" scheme is 1l'.ha~ 

the degrees ct freedom are reduced in accordance with the re­

ductio1 in number bf observations. However, ,when the number 

of obse~ations is la~e cornpared with the number of explana­

tory variables being used in the -analysis, this effect should 
, ,. 

not be signific~nt.' Another difficulty that is observed in 

this study is that, of ,the eight known endowment cells, thfee 

fall in one sub"set~'and five in the other. Thus the number of" 

reference cells, which is always small in a mining region, is 
~ 

further reduced. The pz:e&icted etidowment therefore in one 

• , 0 subset of the checkerboard type da ta will, be based on the 
\~ -~---

"Â-

geological relati~ns present in the~three cella with known 
1 

endowment, and in the other subset will depend on five fsuch) < 
_ .. ~ r 

cells. The regression models will also be different in the 

" 

'" lSee Fi4-ure 13. 

~see Figure 14. 
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CHECKERBOARD-TYPE DIVISION OF CELLS 
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FIGURE 14 

THE CHECKERBOARD /TYPE DIVISION! OF GEOLOGICAL.DÀTA)2 .SUBSET A • 
. \ " 

'Y 

IPor conceptual reasons# the above map area nas Jlen divided 
into 16 cells instead of the 64 as actual~ used in the 
study. 

2 
The seale of the map and th~'colour index used for rock 
formations arethe same as in Figure 5. 
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(CONTI NUED} 
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e THE C~ECKERBOARD TYPE DIVISION OF GEOLOGI~AL DATAI SUBSET B 
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lSee footnotes on previous page. 
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two cases. ~in~lly, it should be realized that all predic-.... 
tians will be based on what is present in the knawn endowment 

cells in' each subset. It i5 not POS1ble to make a prediction 

af additional endowment in sueh eells sinee the y are the ones 
~. ! 

against which the whole system has been calibrated. However, 

~ if at any stage new information is available in terrns of en-

dowrnent or geology, the r~gr€ssion model should be changed to . 
"1 , 

:..4' accommodate the new. data.' ,If the additional information re-
.' 

lates te the diseovery of new endowment in any eell in excess 

of that known, then re-evaluation of the regression,model by 

'the iterative process might !ring out info~ation o~ addi­

tional endowment in the cells thât already have a known en-

dowmen t • ~othe,r ,,!ay 9f maJdng an fJ!S ti~a te _ of addi tional min­

eraI endowrnent in known ore:-b~aringO o~llS ia to further reduce'-

the size of ~he cells or better still, subdivide'each oeIl 
>, 

into 'smalfer parts and thert per~rm the iterative regression 
~ , 

a;nalysi:s. NÊ!edless to say there will â'lways be a certain 

minimum si~e of the cell be10w which i twill not be possihle 
, ~ 

to obtain a model bas~d o~\ geologicarrelationships, for re-

gardIe'sa of .how small or: Ipcal a certain or~ dept;'sit is, the 

geological processes that produced it are more extensive. 

The problems'rélated tp geologica~ da~a are l discussed , 

in Section 4.5. It wou~d be "per.tinent her.!, to repèat that:<', ," 
J' 

aIl geological relati-ohships that a.re observed -and measured 

are in two dimensions ohly. Apy info~a~ion as to changing 

relationships at depth is either 'unavailable or,incomplete. 

\ 
\ 

____ ........ _._,,..., ' ....................... \1 ~ "[ 
.. ~ r_J' ...... 'IIr, t. . ... 
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... 

The most efficient regression model would accommodate infor-
1 

mation on this third dimension. - Since this is ~ot possible, 
. 

the imp1icit .assurnption made is that the observations observed 

in two dimensions reflect the geological re1ationships of alr' 

three dimensions. The error associated with this assumption 
, 

is directly related to the comp1exi ty of ~eology and on 'how 

'the observations at the surface continue at depth. 

8.13 Regression Results 

Iterative regression analysis1 is separately performed 
, 2 

on the 64-ce11 data set, and on its two 32-ce1l checkerboard 
r, 

type data components. 3 After eight iterations fo11owing the 

first regression run, no further improvement was noted in the .. .. " \ 

coefficient of deterrnination and, therefore, the iterative 
iJ". 

~ procedure was terrninated. The results of these runs are shown 
, , 

in Tab1f 8. 

Table 9 compares the results of the 64-ce1l analysls 

and the ahedkerboard analysis after the comp1etion of eight 

, ~ 

Isee Section 8.11 for description. 

2 ' The 6'4-ce;1.1 d&,1:a set includes all the 64 cells in 
the re9io~. This set is referred to as the 64-ce1l set. 

, 3The two ,32-ce11 checkerboard type data components, 
subaet Pl and B are shown in Figure 1'3. The two components 
are jointly referred to as ~e checkerboard set ta dis tin­
~uish it.from the 64-ce11 set • 

.' 
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TABLE 8 

RESUlTS OF ITERATIVE REGRESSION ANALYSIS OH THE CHECKERBOARD seTS OF DATA 

Known 
EndOlollMnt 

•. f~clOll 
, :Ji ' 

Pre­
Itera-tive, 

Run <, 

$ 
1 

Second 
Iteration 

$ 

Fohth 
Iteration 

$ 

5lXtb 
Iteration 

$ 

Eigbtb 
Iteration 

$ 

1 471 10,723 86,548 27,179 26,757 
2 32,552 3,002,989 31,176,618 13,086,183 13,776,3"5 
:J- 284 213 III 879 1,027 
.. 1,316 5,989 17,431 7,158 6,g68 

,5 Q- 1,446 17,623 63,811 51,665 50,499 
6 - 213 832 2,4'" 1,181 1,~60 
7 19,013 1,018,449 4,830,4~ 9,728,26lt 12,~04;578 
8 174' 246 31'0 150 146 
9- 3,552 324,177"1'- 3,637,521 1,882,032 2,01'0,861. 

1.0 2,692 706,8'0'" 29,108,243~ 9,922,870 9,806,795 
11 123 870 2,483 1,552 1,591 
12 3,544 408,393 5,002,523 13,043,616 16,--016,662 
13 18.81 2,153 201,293 1,311,796 13,678,04. 11,561,368 
14 582 10,464 68,784 36,745 36,758 
15 18 H 15" 73 69 
16 74.4' 31,469 3.267,217 14,'084,486 45,345,271 66.723,528 
17 620 Il,617 • 1'04,592 59,161 59,78'0 
18 641 .. \, 12,409 126,4'08 74,103 74,996 
19 127 ~ H6 365 385 ' 31(0 
·20 570 2,408 4,'077 2,689 2,750 
2.1 2,fJ.6§. 95J 53,695 942,019 214,884,950 251.214,672 
22 389' 20,254 54'0,352 57,338 " 53,547 
23 27.8'0 27,799,885' ,> 27,799,821 27,799,757 27,799,821 27,/~,821 
24 15 i'f,' 2 1 2 2 
25 :.' 391 .' 9,882 78',918 44,9.16 46,472 

" 
," 
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TABLE 8 
(COHTINUED) 

l " 
1 

II, / 

• 

'" 

~ 

~ 

26 120 ' 347 { 102 604 609 
27 118 152 171 563 599 
28 85 54 36 1,194 1,358 
29 1.123.84 1.894 .70,543" 1.209,771 126,065,832 1.056,956.223 
30 121 420 941 926 951 
31 '100 100. 100 100 100 
32 14 1 ~ 0 0 0 
33 II,008 3,227,822 91,305,933 57,637,880 62,322,376 
3. 95 ~104 9.7' -51 55 
35 66:14 110 95 90 
36 397 - 115 144 ~ 146 
37 '25· 7 1 1 

40 
U 

43 

-" 
560 2.46U.115.53 2.809.156.922 1.916.266.909 2.065.142.384 
550 20.020.642/' 26,276,287 33.388.046 34,366.950 
312 294/ 242 '\ 219 218 

8,548 182,25~ , 824,763 12,278,859 ~S,076,p6~ 
659,680. .. 32.l98,_J9~ ~7,577,77~ 
11,109 22, 344 ~ 24,G69 
66,128 31,676 32,535 

825 955 915 

.;l 

~ 44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

.. . 

707 
1,858 

194 
688 

18 
172 

:'},.899 
~458 

t -26,761 26,816 27,594, 
311 

~ ) . 
\. 

~ 1/!~ 
-100 
1'84 
151 

'" 

1,783 1 6,886 
4,391 

50,423 
10,854 

100 
34a 
335 

.:;Z 

2,882 1,450 1,385 
10,071 9,414 9,192 
21,215 542,001 .. 661",161 

548,274 588,531 614,312 
,124,649 69,050 70,676 

100 100 100 
461 3,178 3,513 
561 415 421 
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" ~1 
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Ut 
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.. 
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57 118 
58 .' U 5' 38 
60 66 
61 38 
62 66 
63 118 

~ 64 66 
.. 

AV,arage RZ-
, 
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TABLE. 8 
(COHTlHUED) 

7 
152 

84 
" 15 

84 
Hi 
U 

152 
84 ", . 

0.800--

~ , 

--~ \ -. 

'" 

2 l 1 
171 77 74 • 110 Ss 54 

8 25 26 
110 55 54 

9 3 3 
110 155 158 
171 292 302 

1l~ 55' 54 

0.935 0.999 0.999 

~: ,.. 

/' 

1 • ~ The ~nalyses were carried out separately on two 32-cell checkerboard-t of data. However, the results are 
shown for 'aIl the 64 cel1s in one table. -

-.-, r-' 0 

2'rhe pre-Iterative run means the first r~gression run, the p~dicted values from which are input in the iterative 
runs. 

3) , J 
- 'l'he results a:f~ Shown for -Alterna te iterat,ions only'; , 

1 ~ 
4 2' 2 0 

AverÀge ft 1& the .aan of the ft values of subaets A and B for the particular Iteration made. 

~ 

1-

S'lbe results for the k,Rown endoWlDe1lt cells have been u~7,rlined. 
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iterations~ The evaluation of predicted values is made after 

comparing predic~ed and known endowrnent 1evels in 'the appro-

priate cel-ls. 
1 ~ 

The closer the convergence the better ,should 

be the predicted estimates in cells with no known endowment. 

Stated another way, the closer the èonvergence of predicted 

anq known endowrnent, the better is the statistica1 equilibrium 
""'i 

achieved in the observed geologica1 system. 

In the 64-èell analysis, it~is not gene~ally possible 
~ 

to obtain a reasonab1e convergenc~ on known endowrnent values 

in spite of a coefficient_~f aetermination of 0.991. The ex-
(j. ',(~ 

l 

ceptions ,re cell 1038 with a 7~ percent 'convergence, and cell 
~ ~ 

1023 with a 90 percent convergence. A highly anomalous value 

exceeding 10 times that kd~n is Eredicted in cell 1029.)1- -', - ," 

And, for the remaining five known endowment cells,3 an avet­

~ge convergence of only 65 percent is obtain~d. 

Given ,.j~se results, the predicted values in cells l '\ 

fl 1 \ 
with no known,/endowment is d6ubtf~1. It is evident that ob-

served geOlOg~ al relationships are in disequi1ibrium. As i~ ~ Î 

long as the convergence on known endowment values is 

1 ~ 
Convergence is the ratio of predicted endowrnent to 

"' ... 

the known endowrnent in a c~ll. Convergence applies only to 
the ce11s that have a kno~ endowment in them, i.e.'- ce1ls 
#1013, 1016, 1021, 1023, 1029, -1038, 1039, and 1042. See Fig­
ure... 6 for .the locatio~ of thes9,._ce11s. 

.,.' 
2se~ fol1owing paragraphe 

"'", , 

1039, and 1042. ."> 

3 " 
I.e., cel1& r1013, 1016, 1021, 

1, 

.. t~ 

--' 

! 
/ 

'" 
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;. 
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TABLE 91 

COMPARISON OF PREDltTFD ÉNDOWMENT IN THE'E4-CELL SET ANALYSIS 
~ AND THE CHEC~ERBOARD ANALYSIS USING ITERATIVi REGRESSIONS,2 

, Cell # 
Known i J 

Endowmen 

PREDICTED'ENDOWMENT 

1 

, \ 64-cell analysis , <. 

Checkerboard 
analysis' .. 

o 0 

, { . 
, ,.. 

l'; , 

, , 

'n ." . . 

q, 

0-

.' 

($XI0 3) ($xlO~) . / 

1001 ",/ 596 27 
1002 " 133,052 13,766 
1003 42 1 
·1004 . - 67 7 

~ " 1005 ..: l '" 1 ' ~ $6 
1006'; -2' 1 
1001 ] ~ 30 12,405 
1008 ; . 0 .... 0 

'1'009 . i:ç 17',980 .?' 011 
1010, '3,238 ',8"a07 
1011.- ' 1 - 2 2 
1 012' .. ~:::. j . - ' Ct • 1 , 002 ,691 16 , ... 017 1 

" ,~~::Z------~~~:~----~------'---~~~:~---------,--_:~~~~:-----
10~~ / -. l i 9 ' 37 ~ 
1015'0 1 83. 0 
1016' 1 74,480 32,538 66,724 

.. 1, '" 

----------------~~------------------------------------------1017 !J' ,rI - ' ; .... 8 60, ., 
10i8 l ',~ - 5,10 75 
1,019 . . "0 0 

102<>' - , ~ 23,. • '3" 

:~~------~~~~~~~~4~----------~:~-~:---~~-------~::~:::~---- ~ '. ".112 '2 ' "t - 1 2 7·59' 54 
~023 '2'7,800 2S:033 27,800 
;----------~--------------~-~--~---------------------~--.--~-
1024 0 0 '. 
1025 c St6 ~ 46 
i026 ... c.. S. 1 

/ 1027, . ~ .,.' 33 1 
o 1028 l ' " 0 1 

1029 - 1';123,840,' 11,412,138 , '1,056,956 

+ . " ----- ---~--~--------~---~-~.--------~~---~---~----~----~---1030 '" -, ~, . 2)t. . 1 
~031 ~ 214,+'9,4 t " a 

. J.b.32 . ,,: 01 0 
~ 

fJI,,;) "'. {, 
\Q::i/ <," r.) l '- '4 ' ~ . . 

• »,\ " lResu1tis ,>Ilof known', endowment cel1s are'·underlined. 

',., '" ' ~~sults ~p~ are for the 8th ite~tive ~~. 
", . ~i .' \ \ • •. cont' 

.; , 
1 . 1 J 
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,,1033' '- 1,61'0 ... · 62/,322 
lq34 6 0 
1035 ~ 0 \ 0 i l 
1036 ~r -\~ 8 0, 
1037 - l 1 0 Q 
1038 2,109,280 1,551:~47 2,065,142 
-----------~-----~---------------~-~-~-------------------~-
1039 34,880 '. 34,912'"' 3~,367 .. .. 
------------------------------------l---~-------------------
1040 <J L " " . 0 , ( 0 " 
1041 -, ~ 89,214'... 3.5,076 1 
1if42' 43,480 3~855 ~7~578 . , 
~-----~----------------------------~-------------------~-+-~-
1043 

, 1044 
1045 
1046 
1p47 
<J.048 
1e'49 
1050 
1051 
1052 
.1053 
1054 
105"5 
1056 
1057 

~ 1058 
1059 
10tlO 
1061 
1062 
1063 
1064 

" 

1 

, . 

'I, 1 
~ 

.. -

S.E. = 

,) i 
/' 

1 / 

1 

104 
3. ' 
~:' 

65 
o 

• 0 
58,6g0 

851 
16 

169 
If 30 

5 
o 

.0 
o 
o 
o 
o 
o 

0".991 

$1. 846xI06 

1 ,. '\ 

...,.24 
"f 3 3 

1 ' 
; 28 ;-

o 
1 

10 
661 
614 

71 
o 
4 
o 
o 
o 
o 
o 
o 
o 
o. 
o 
o 

0.999 
, 6 

$1.050xlO 
"~--"'--

-----~e=-

/ il W 
.~ ---) 

1 ' j , 
~ footnot~s on pré.ti~s 1 

page. 
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incomplete, tHe predicted values in the remaining cells should 

"f be similarly. incomplete o~ otherwise incorrect. The high pre-

1 

~ . 
~ _ 1-

dic~èd Nalue for cell 1029 is the result of ~ulticollinearity 

which affects the predicted values in varying ,degrees depend-

ing upon the dbrrelation structure arnong' the ~xplanatory vari-
.... A 

1 • ' 

ables., A lack~ of converge,nce can also result if sorne re'levant .­
/" 

,l 

~xplanatory variable kas been omitted from the model, but this } 
1 ~ ~ 

should be indicated by the lack of improvemeTht in the co~ffi- ) 
" _\ ( • l 

cient of determination wiUh further iterations. 

As compaJed t6 the· 64-cell analysis, la near complete 
1 

f 

con~erget!.ce is obtained wi th, r~,gression on the checkerboard 

set of da~a't the !convergence averaging over 9S percent for 

the known endowrn4nt ce11s, and,ranging from 86~to 103 p~rcent. 
~ 1 

Also, there is ~ anomalously high value estimated for any 

~e1l a~ ~s t?e 1a~e with cell 1029 in the" ~4-ce~1 analysis. 
The hi~h R2 value obtained in the ,checkerboard ana-

l J 

lysis is partlybecause the subdivision of the 64~cell data 
1 

into ,two 32-celt companents redures the degr~es of freedqm . 
.. 

" -
'\ However, t:e near'complete 9~nvergence Qn know~ ~ndowrnent 

:::tt:; ::iS~::::: ~: ::::~::~i::::::yi:h:::s:::ec::c:e::- , 
'board appr~acrr achieves. / 

, J 

General1y, the results obtained by regressihg ~n the 

64-cel1, and the ch~ckerboar~~amponents~ppear to be com­

parabl~ in the sense that high and low predicted values cor-
1 . 

"respond in eâch case. However, there is a w~ di vergenc.e in 

" .' 
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tne estimates Of 

The check~rboard 

dollars.in cell 

endowment ~ cells 1007, 1031 and 1049. 

analysi~ ~ives a'prediétion of 12 milliçn 

1007,. but the 64-cell analysis predicts!, only ,. 
30,000 dollars. F?rther, the predicted values in cell~ 1031 

,:' 1 ., 

and 1649 p':re. 2'14 and 59 million dollars {espectivelY using 

the 64-cell set as compared to çheckerboard predict}ons of / 
" 

zero and 10 thou5and dollars. / 

By superimpo~ing the grid,of éells~on the ge010~ical 
" 

map of t~ region, it i5 evidept tha~ not only does'cell 1007 

lie diagon~lly north-west of known endow.ment cell 1016, but 

,also that ,the geological trends in the, two cells are north- h 

Il' 1\ 1V", 

~es.t, conti~ing florn one cell into the o~her. To-observe 

the influence Of'~l 1016 on cell.1007, a new regression run 

was made assigning'a zero talue ~ the knoWn!nd~wrn~~t in cell 
< 1 

10l6. The result shows a predidtion of six million dollars 
, • l' 1 

in ~e~l 1016 compared~ith its known 74 million do~~~r endo~ 

ment. The predicted value in ~ell 1007 is ~hre~ million dol-, , 
lars. The re'solution of mUlticollinearitf in such a case be-

r 

, come~. diffic~lt part~é"ularly whe.n ther; is no other kn6~ en­

dOMnent cell nei!lr'by. Ol?viously, cE\ll,s" 1007, a~d 1016 'halve a 
. -

certain measure of geological similarity between them. Cells 

,like 1007 ther~fore, ~hould not be ,ignored in any explpratiQn 

ef·fo~'€'. The pot.)al o~..- this cell will b~ furthe'r evaluated' 
~ , l 

,,~ing,multi~le discriminant analysis. 

,., 
'~see 

$' 
Chapter 9. 

. J 

dl' 

~ ~ 
, , 
~ ,..;t- ....... 

~, 

-. /' . 

. 
4 

f 

--__ .... dT, .... ~''''' 't>I'::tIlMN' ••• :IJ5It; 18; Il 1 Il'; Il. "JI. us. '.~ 

,. 



< j 
1 

/ 
1 

1 

( 
, 

j 

~ 
1 ~ 

() 

\ 

, , 

.. 

, 

•• 

166 

) 

The 64-cell analy~is gives a prediction of 214 mil-
o 1 Nil 0 

lion dollars for Cell 1031. However, the checkerboar~/analy-

sis predicts a virtually zero endowment for'this celle The 
~ . 

reason for this difference becomes clear when the locat~on 
1 

of the cell i5 observed on thegeological map. Cell 1031 

lies directly south of the known endowment cell 1023'./ The 

kn~n endo~ent in cell 1023 o~urs in tuff, ~gglOmerate,l ~ 
/ ~/ 

forrnc3;tion ~hat contJnu:( into cell 1031.- There is no other 

-massive sulphide deposit in the region that occurs in this 
l ' < 

rock fo~atiÇ)n. ,_ .Obv,iouSly ther'efore, the geological relation-

ships pre,sent in cell 1031 bear li ttle if any s'imi1.arity with 

any known endowrnent cell except 1023. The applicat~oh of the~ 

checkérboard approach removes the influence of known endow­
" 

ment cell 1023 ~esulting in the low prediction of value- in 
, 

cell 1031. The original 64-ce11 analysis estimate for this 

ëe,lJ. appeirs- to be a result of rnulticollir'l'€arity. However, v' 

because of the similarity of this ceil with cell 1023, it 

should mot be dropped from consideration because there is no 

reason why the, unique .. h' d d d i assoc~at~ons t a~ pro 'u~e en owment n 

c,ll 1023 could ,not have done 50 in the similar 
?' » ~ 

environrnent continuing into cel1 1031. 

geological 

1 r, 
1 

- '-. ~' .. 
The 64-ce1l analysis also gives a high value of 59 

million/dollars in cell 1049. The checkerboard analysis pre­

dict$ ah !endo~ent of only 10 thousand dollars in this cell 

1 
I.e., AREA 2. / 
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~ 
despite the fact that the regressed checkerboard component 

, 
also includes the known endowme~t cell 1042 lying diagonally 

~ 

beside this celle The only logical explanation for the high 

predicted endowment in cell 1049 appears to be its joint bor-

der with cell,l041, which by the iterative ~rocedure gives a 
,,1 

high predicted value eV1n though because of its unknown ~n­

dowrnent, it had originally been assigned a zero value'. The 

high value of cell 1049 also appears to be the result of mul-' 

ticol1inearity, and this"value is therefor~ spurious. 
~ 

~ 

Because of the chan~ing nature of geological data, 

it will not be possible to completely eliminate multicolli-

nearity. However, by use of the ch~ckerboard approach, the 

continuity in the data.is broken up, so that the explanatory 
, ) 

~~ 

variables within eaeh set are no lon,ger as strongly-related 
) j 

as in the continuous 64-cell ana1ysis. l Also, w~en it is pos-
1 

sf~le to converge on known endowment.values, multie-ollinearity 

can be considered to hav~ béen suppreSSfd., Otherwise, spuri­

ously hig~ values May be obtained with little if any conver~ 

gençe on ,known endowment. 
1 

It has been earlier stated that the efficiency of 
, .. 

iterative regression analysis can be judged by the statistical 
~" ."", 

stabi1iza~ion of geo1ogica1 ielatipnships combined w~th a con­., 
vèr~ence on the'k~own endowment in each of the ref~rence cells • 

It May be possible tq statistically ~tabi1ize g~ological 

~-----------------
\ f ' 

E.g.,'see Figure 14. 
'"" 

j 

' ... 
~I!I 

.. 
.0...,. 
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Irelationships; but'this may be'a result of rnultidollinearity 
'( 

or inappropriate and insufficient explanatory variables. In 

such a case, ,the stabïliza tion of R 2 , the coefficient of. de-

o. b l, 1 d' 0 h terrn~nat~on, may e m1S ea ~ng. It ~s the convergence on t e 
fil' 

known values in the réference cells combined with a stabilized 

R2 value which is important. 

In the Rouyn-Norandà region, the eight reference 
\ 

cells have a total known~endowment of 3,677 million dollars. 

The 64-cell~hàlysis predicts an endowment of 13,093 million 1 
te' '\1 ' 0' 

dollars in these eight known end~wrnent cells, ~n inc~ease of 

3, tirnes. Actually, this increase is rnainly because of the . , 
. anornalously6 high predlcted value of $11,412 million in c~ll 

1029. If this anorna1ous value is reduced to that actuoally . \ 

endowment predicted by the known in the cell, then the total 

64-cell analysis for the eight reference cells ~s 2,805 mjl-

lionYdol ars, or only 76 percent of that known. No fu~ther t 
1· • 

conver~en _can be ~btained with additional iterations. 

Th~ checkerboard analysis predîcts a total endowrnent 

of 3,557 millio~ dollars cornpared with the 3,677 million dol-
A ,~ . . 

lars known in ~he eight known endowment cells~ This is a 
t: 

close convergencé, b~ing. 95 percent o! that knoWn. Cell 1016 

and ce11 1042 are the on1y ones with a relatively low conver­

" gence a! 90. pe.~c:ent and 16 perce'll't' respective~y. ABd un1ike 

,;;;;;e 64-cell ,an~lysis. the~e are n,o anomalousy high values as­

aociated with the·ref.erence cella. 

The tot?l en~owrnent prediàted bX the,checkerboard 
'\ 

( , 

, 0 

t : 
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set for theR whole region is 3,690 million dollars. Since this 

set predicts a total endowment of ,3,557 million dollars for 

the eight referenc$ cells that have an already kn~n endow.ment, 

the predicted val~e in the remaining 56 cells is 133 million 

dollars. About ~9 percent of this amount is contained in the 

folJ.owing cells. 
r 

~ 

Predicted Endowment 
Cell (Millions of Dollars) 

1002 l'3,a 

1007 12.40 

100-9 
~ 

- 2.01 

1010 9.81 
~ 

_1t12 16.02 ~ 

33 6<2132 
r 

1041 15.08 :) 

" , 
Total 131.41 

j :::. <::: j 

The rest of the cells can be considered as barren until such . 
t~e as addition'l favourable ihformation may become avail-

41 
able. 

With the exception of ce11 1033, the predicted en­

dowment val,ues in the other cells appear to be of a low order. l 

--------------------~ " 
1 ,.,; l 

Sangster (1976) in an ora~ communication observed 
that ~here is no ~ike1ihood of a large "Horne typen QjPo&it 
being disçovered in ~e Rouyn-Noranda r~gion. He stated that 
sma1ler deposits, could be found in the region: •. " 

... 

1 \ 
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This situation ~hould be looketat from the fact that of the 

eight known endowrnen~lls w~h reference to which the fore-
, 

casts have been made, four have a known endowrnen.t av~~qing 

~~~million dollars, the range bein\c from 19 to 43 ~.llion dol-
.... ~ 1) 

larS. And only two of the remaining four cells have a'known 

endowment in the billion dollars eategory. The other reason 
»61 <t 

for f low predict~d value is that as a result of iterative 

\ 
reg~essiOn analysis, a part of t.he tot,al variance is lost in 

\ 'eac! iteration 50' that th, ~esult te-;'d~ to de1i'elop aroun~ the 

. \ most, lik~ly value. This is al~o evident in that after eight 
~ \ 

\ \ ~-,' 1 \ 

\-iter~tions, the standa,rd.error of the estimate narrows doWn 
1$. 

to 1.05 million dollars. The predicted results must there-
--- 0 

'l' 

fore be simultaneously eonsidered on thèir absolute values a~ 
. 1 

weIl as their, relative values.', It should bé clear from Table 

9 that following a prediction of 2.01 million dollars for cell 
, r 

10,09, th eJ:; e' is a sharp downward break in, the continuity of 

predieted valUes in the remaining cells. In exploration -pIan-
, 

ning ~herefore, these figures,should mean much more than their 

absolute estimated values. ~And sinee, the forecasts made are 

based strictly on geologieal data alone, the ël'Iëidition: of new 

dimension's such as geophysical inf:rmatton can further d;fine 
. 

the quality of estimates for exploration decision making. 

1" 
~ 8.14 Variables Used 

The variables used l,f th'e first regression and the 
.. 

... 
Il .,. 

- f: ....- " 

} ~ \ ,i 

-} 
~ j 

\ , 
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succeeding four iterations are as 'fol+ows: 

Variable Name 

AREA 3 

A~ 8 

CNTL 6 , 

CNTL 10 

CNTL Il 

GNTL 13 

1-e:NTL 15 

DYKE 4 

FOLT 4 

:-

Variable Description 

Area of rhyolite. 
~ 

Area of' diori te" gabbro 

Contact length between rhyolite, and 
tuff: àgglornerate 

Contact length between tuff, agglorner­
ate, and granite,_granodiorite 

Contact le '\ t~ betw~en rhyoli t~ and 
andesit aIt ! 

Contact length bet 
diorite, gabbro 

rhyoli te, 'and 

çontact leng~h between rhxolite, and 
granite, granodiorite ,# 

" Dyke length in directions north+west 
to east-west 

Fault length in directions north-west 
to east-west 

171 

The selection of the variables is made on the basis 
\, 

of factor analysis 'and otHer considerations described in Sec-

tion 8.7. The above variables'are closely assoc~ate~ wfth 

copper and zinc as determin~d by factor ,analysis. 1 They are 

also consistent with t~e geolo~ical con~epts as related to 
" 

the volcanogenic ~~ure of base metal deposits in the region. 

After four iterations, te irnprove convergence and 

" l' ; 
Factor'#3-for beth copper and zinc • 

1 - . \ 

/ 

" 

l __ ~,. 
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'~ 

the coéfficient o~ deterrnination, R2~ the following variables 
(: 

are added to tho~e alre~dy in the equation: 

Variable. Name Variable, Desèription 

- AREA Il 
, ,'j , ; j 

, ~I Area of granite, granodiorite ---.. -

DYKE 3 

FOLT l 

t 
) 

Dyke length in directions north1outh 
to north-west . . 
Fault length in direc'tions east-west 
to north-west r 

The selection of these variables i~ also based essen-
1 

tially on factor analysis. 
-1 

These'variables were not 'included in 

the initial stage of iteration for the following reasons': 

, , 

", 

, 

. , 

(i) They are less relevant than the ~ariables !n- ~ 

'. (ii) 

cluded ea~lier. This i5 evident from both. geo- J ' 
logical.concepts ori ore genesis, and also from 

the fact that whi~e the earlier included vari­

able's are associated with factor' #'-1: for both 

copper"'and zinc, ~ese variables are 
1 

associated . 
wi~h the less important factors, #13 and #7 for 

and ' t' l 1 copper Z1nc ;esp~c 1ve y. , 
• 

anà DYIŒ 3 FOLT l are very highly correlated 

with knoww'endowment in the region. Their re-
\, .. ! , " 

lationship withJthe known endowment appears 
f! , 

IFactor 
; ,~ 

\a.. 
A~7 for einc. r 

#13 for coP.'t" and factor 
~ 

r' 

~ 

... " 

f 
, , ~, 

\ 

.. ' 

1 

r \ 
1 
1 

, 
\-
1 

! 

... 

~ 
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stri~~~ spatial because they are post-ore 
. 

features~ When these variables are included 

in the early stages of iteration, they corn­

pletely ~minate the regression equation sp 

that even those cells that have post-ore rock 

formations in thern lare predieted a~ favourable 

if DY:E 3 ~ FOLT. l are present i\ tlJ.m. It 

is essentifll, the;refore, to )Uild 'the base of 

~egression moqel on varia~ beli~ved to be 
~ 

gene~ically related with ore formation. But 

since DYKE 3 and FOLT 1 may ha~e been a conse-

quence of ore forrning proéesses, their influ­

ence must also be eonsidered. For thiJ rea-
V' . .,-

spn, they are added to the already in~ut vari-

a~l~s at a stage ~here an increa~e in th~ R
2 

.Value and/or the convergence on known endowment 

starts to taper off with further iterations. 
1 

\ . 
In ~the present' study, this stage lis reaehed 

1 

af~er fo~ iterations. 

, '1' 
Regression equations ~e obtained fur 

cornponeilits l 'in the ucheckerb;~rd analysis. 

each of the 

Subset A in-
, 
\ 

e1udes the known endowment cet+s 1016" lO:l, 1023, 1039, and 
~ 'i. 

1042 having a tot~l value of 425.30 million dollars. Subset 

~ 

t referrred 
IThe two cornponents i~the checkerboa~d ~nalysis are 
t~s subset A and subset B. 

;"" 

l 
! 

, '·1 

: 1 
1 
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B cÇ>ntains the kn~,;~ endowment c;:eLlS 1013, 1029: and J,.038 hav-

ing a total value of 3251.93 million doliars. The'regression ~ 

equations.-for the two subset.s,after the eighth i'teration are 

as~: J 
1 

Subset A 1 

" Log10 DOLLAR = - ..4.265603 + 0.2859512 x CNTb. 11 

Subset 

Log10 

'-

B 

+ 0.7733751 x AREA 3 
+ 3.526068 x AREA 8 - 0.6875897 x \CNTL 13 

+ 0.6636013 x CNTL 6 - 0.07064882 x FOLT 4 

+ 0.1054084 x FOLT 1 - 42.99437 x DYKE 4 '" 

, ~ 1.081944 )( DYKE 3 + °1.04084261 x ARp."IP 

- 1.120562 )( CNTL 15 + 2.736221 x CNTL 10 

(R2 
b:: d.999) 

DOLL~ = - 4.067191 + 1.900224 x AREA 3 

;; 

( 
\, " 

, 
'1 

",1 

-
-' 

+ 

+ 

-

0.2760116 x CNTL 11 + 

0.2741231 x CNTL 6 -

0.9608059 x DXKE 3 

2.119953 X FOLT\ 4 -
'-

0.02074412 x FOLT 1 -

9.070831 x CNTL 10 
'. 

(R2 = 0.999) ~ 
·f 

-2.679324 x AREA 8 

d. 2130330,. x CNTL 13 

3.327689 x DYIŒ 4 

0.3091724 x AREA 11 

2.264679 x CNTL 15 

J' 

As shown, the logarithm to the base 10 of dollar val-
• 

~ 

ue of endowrnent is used as the response variable inStead of 
li> 

the untransformed dollar value. The conversion used is: 
, . 

. -

li 1 1 

1 

l-
I 

11. i. J>' 
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. ' 

; DOLLAR = 'Log lO (Dollar V~lueo + O~OOOl) 
,< 

The constant tenn 0'.0001 is added so that zero val­

ues become amenablie to logarithmic conversi~~. The objective 
, . . i \ 

of the conve~sion is to have a rnoder~ting effect on the ex-

treme values of the untran~~~rrn~?~r~~onse variabl~. The· 

logarithmic conversion also reduces~skëwness but it cannot 
~l 

eliminate it. ~ 

The relative contributions of individual explanatory 
, 

~ariables used are shown graphically in Figures 17 and 18. 
" 

These are also disGussed in Section 8.18. 
',' 

. 
8.15 Statistical Stability of the Geological System 

;. 

" 
In it'e.rative re~ressiC1h analysis, the geoloJical re-

lationships are ass~d te be in a state of equilibriurndwhen 

all the r~sponse varIables becorne consistent and' do net change 
o ! 

~, 

with additional it~rations. The cons'istency in the value of 

Othe 56 unknown 'response vari~bles is attaiijed with rèspect to 
" 'é-' , . 

relationships between~pe explanftory.vari~bles ànd the un-
, 

'known endowrnent in each of the aight~reference' cells. To tést 
li' 

the equilibrium of thé system, any one of the non-zero response 

variables can be assigned a zero value ~nd the ~gression per-

f \l'f ' J d k 1 - F fOrred ~ be o~~ to see 1 convergenèe. oes t~ e ,P ~~. or 

--~t---7~----------- \ -
'lTh'is point has been discussed ·in Sections 4.7' and 

• '_lsoa; -- .. 

\ o • 
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(, 

thî~,ré~so?:~~acn resppnse variable with an origina~ly known 

endowWent has bee~ one at a time assigned a zer6 v~ue, an~ 
... .) , 

'r~gression performed iteratively on, the checkerboard type 

dà~.l • The res:::~./~e shown i~ Table 10 -:'nd Figure ~ _ The' 

results shown ar~ for the eight known endowment cells O~y 
sinee t,hey are the ones thât ean indicate the.rva-lidity of the 

relationships- developed. ( 
-1' 

, - 0 ~ A cltse convergence 
4> 

of predicted and known endoWrnen t 
1 

values is obtained for aIl refe~ce cells e,xeept eelis 1023, 
~ -------:::--- ---

1038, and 1039. ~ ___ /c;-
, -------/"-

-----
, .. 

~<---- . The endowment in cell 1023, as has been pointed out,' 

occurs in a ~ifferent geologieal environment, being associat-
,-r" ' 

ed with tùff and agglomerate. ~ other known deposit in the 

l " 
region "bas this kind of assoe)' tion. Therefore l' when ~hi~ . 

cell is assigned a zero value i t' is, not' possible ·for the re-

lationships in the remaining eells t~~redict any endowment . \ 

i?~it. It is also~observed from Table ,10 that when itera~ive 

règressiot ~~alYSiS i5 performed, white converg~nge in e~eh 

of the remarnïng seven known endow.ment cells takeJ place 
, \ 

gradually, it is cell 1023 that irnmedlate!y -~e~eives its full 

known 'Emdowment; in the first r,egres--sfém run. This oecurs be-
:' ./ -------cause it is a,.ssoc;i.atea with an environment not present in the 
~ 

lThe response'variable lo91Q (Dollar + '0.0001) was 
assigned a zero value. This in effect means a starting point 
of~one million dollar ,in an untransformed state o~ response 

~ . , 
variable. ~ 
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ORICINAL 
FORECAST-

lHOWH $ 
CUL $ (afl:er 8 , X 106 Itors.) 

lOtS 1 tA.81 17.50 

1016 14.48 66.72 

1021 244.66 2.51.21 

102'3 27.80 J7.80 

1029 1123.84 roS6.96 . 

1038 2109.~8 2065.14 

1039 34.88 34.37 

1042 43.48 37.58 

1 -
See a150 Figure 15. 
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.1 TABLE 101 
ITERATIVE REGR€SSION ESTIHATE- CONVERGENCE ON KNOWH ENDO~'ENT VALUES ASSUHING 

ZERO LOG DOLLAR VAl~E IN KNOWN ENDOWMENT CELLSJ OH~ AT A TIHE 

INPlII' VAWI! FOR RI!SPONSI! VARIABl.I! 

ZERO . ht 2nd lrd . 4th Sth 6th 7th 8th ~h 

LOG • FORE CAST FORECAST FORECAST FORECAST FORECAST FORI!CAST FORE CAST FORECAST FORECAST 
VALUE JHPlII' INPt1I' INPÙT INPlII' INPlII' ~NPlII' INPUT INPUT IHPlTf 

., 
/~ 

~S.37 3.76 7.66 11.22 13.77 16.1Q 16~83. 17.12 17.27 17.36 

6.01 16.18 30.20 42.28 51:26 57.24 60.96 63.21 64. sl' 6S.30 

9.50 36.55 81.82 132.51 176.81 210.11 232.96 247.80 ,.., 251.12 262.87 

O.O~ 0.00 

34.60 73.72 203.72 382.00 563.55 7l6.n 831.14 911.90 965.29 999.87 

3.47 __ 9.83 23.47 48.58 89.26 148.42 227.06 323.98 436~ 11 559.13 

1. 73 . 2.76 4.08 G 5.6& 7.48 9.44 11.49 13.57 15.60' 17 .55 . 
l3.82 ..,28.28 34.37 36.25 36.78 36.92 36.96 

" ... -- - ---- CI 

.~ 

• ... t 
( . 

~ 
.' 

..-... .. .. 
~ 

'" 

.. 

-~ 

10th 
.... 

l11:h , 
FORI!CA-S~S-T 

INPUT ' INPUT 

65.74 

266.37 268.49 

1021 :88 1035.72 

688.24 818.79 .. 
21.06 " 19.37 

4 

~-; 

'\.; 
' ... 

~ 

12th 
FORE CAST 

INPUT 

< 269.76 

1044.3~ 

... 946.76 

22.59 

.... 

-, 

~. 

-...J 
-...J 
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other(cells. 
/' 

( 

Ce1ls 1038 and t039 both shQ~ a convergence similar 

to, but slower than t>other known endowment" referen.ce .<:el15.' 

That complete convergknce does take place, i5 apparent from . 
• 

the trends of their curves ïn Figuré 15. The,se curves have 
;4. ~I' 

a shape similar ta that in 
i i 

every othe,r case, bU,f becav-se 'of 
• 

a flatter slope, need an,additional number of iterations to 

'fully converge on their known endowment. 

B .16 The Magusi River Cell 

.' . 

!~ The Magusi River deposi,t and the New In'sco deposit ... 
d ' ,1 are recent ~scOver1es. They ~céur close together in the' 

south central part of Hébécourt township adjoining,the Rouyn-

d
. . 2 No;-an ~ reg1on. The two deposits'have an estimated total 

value of more than' 75 million d«:Jl:lars. 

A grid-( of cells similar to that used over the Rouyn­

Noranda region was superimposed over Hébécourt township, and 

geolqgical parameters rneasured in the cell that contains the 
t 

Magusi River and the New Insco d~posits. The meaauremënts . ~ 

are made on al" = 1000 ft. quarter township rnap prepared by 

the Qu~bec Oepartment of Natural Resources.~ This cell is re­

ferred to as the Magusi River çell. 

IThese discoverieslWere made·in 1972/73. 

2See Figure'16. 
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The explanatory variables data of the Magusi River 
.~ . ~ 

cell are added to the checkerboard' subsets A and B.I The re-
. ! 1 

:-sponse variable is assigned ,a zero value in the Magusi River 

çelf while the response variables in all other cases ret,?,-in 

their values as calculated by Iterative regression analysis 

on the checkerbo~rd data. An Iterative regressi?n analysis l 

i5 performed on -the t~o .,subsets, and convergence ob,tained af-' 

ter four "runs. The res~l ts are shown in Table lI. 

A study'of'Table Il shows that different estjmates 
, r· 

of en'dowment are obtained for the Magusi River cell/u5ing .. 
the two checkerboard analyses. The question, therefore, 

ari-ses 'aS to which of the two forecasts should he consider~d': 

The results are, _different, .iJ:n the~cases' because different 
, 

règression equations are computed for the diffe~ent relation-, 

.; ships present. The two subsets have different known endow-
• 

ments and thus different ençowment--geology relationships. 

Obvio,usly., the choice should depend on the' level of similarity 

betw~~n the geological relationshipslcomp~ted in èach subset 

and èh;se existing in the Magusi River ce11. " 
Each of the two checkerboard subsets has at'tained a 

state of statistical equiliprium following Iterative regres­
,.. 

~ sion analysis. In other ~ords, each response variabie has 

" 

, 
been assigned a certain value such that further Iterations 

~ 

l . ,,' 
The explanatory variables u~ed are the same ~s, ~n 

the earlier cheèkerboard analysis. See Section 8 ~ 14. 
l '-., 'of) 'II 

" 

, 
j 

t 
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~ ~ TABLE 11/ -'. 

'-~ 
PREDICTED VALUES IN THE ~I RIVER CELL USI-~ 

ITERATIVE REGRESSION ANALYSIS -~, ... ""' ... 

SUBSET A ~ET B 

R
2 

. 
R

2 Predicted Value predicted' Value 
(Dollars) 

"1 -
._ (Dollars) 

68,134 O.g48 13,128 0.913 

320,389 0.997 _ 22,774 0.999 

462,60]: 0.999 31,163 1.000 
, . -~ 

504,731: 1.000 31,719 1.000 

.' 
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.n' 

do not significantly affect the stability 0f the system being 

regr7~sed.' When a sell with an unknown enÇiowment i;; addéd to 

the cells~ in the system under eqliilibri~, an arbitrary zer'o . 
f " • 

value has to be a~signed t~'the' respon~e vari~ble of such a ~­

cell if its endawment is not knOo/TI.I Performing regression . , 

analysis on the new set of cells 2 will tend to disturb the 

equilib,rium of the system. The' greater the s,imilarity of geo­

lqgy in the cell added to tDat in the system, the greater will 

be the'disturb~nce shown in the prêdicted values of response 

variables. Th~s is because the response variable in the add­

, " ed 'cell (is '·as~igne<;1 a zero 'value for lack Qf information on 

its unknown endowment, The disturbed state of 'equilibrium , . ' . 
will become evident in'the change brought about in the coef­

ficient of determination. This ·coefficient in a system u~der 
. , 

ôta tistical equilibrium ·is normally c:J.ose to one. ' 

It ±a observ~ in-Table 11 that· following the first 

regrè,ssion run, the coefficient Of, determination drops to 
" , 

O'.~48·in subset A and 0.973 in subset B, from its original , . 

value of one. ,It is aiso observed that the geologicai system' 
. 

',' achieves equilibri um after ,four runs.:Ln 0 subset 1\ and afl\:er 

" 
., lI:-

i 

" ( .. ~ 

~ 

\J 

r, : .. 
J ••• _ 

t only two in sub.set; B.- It is therefore apparent, that the 
• 

~) 

1 ~ 
In this -6'tudy, the Magusi River cell ,is assigned an 

arbitrary zero' value to test if ït is possibl~ to predi'ct its 
'known endowment fram the existing relationships. ~ 

20r~ o~servations. 

.. 

1 

. , 
'0 
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. \ 

, " 
Magusi River. cell, has more geol.ogical s'imilari ty wi th subset 

A than with subset B. 
r" , , , 

The endoNnne~t pr'edicted in the Ma~usi R+';'~r cell ar­

- '~r three itèra'tions'with subl:!et AI is 504,731. Compared to 
~ 

t.he known endowment in this cell, the pr:edictecf"estimate i5 

very low. It is, however, pbseryed that ~hile "'"the total com-
, 

puted endowment in subset Al ~s 519 million ~ollars, it in-" 

creases to ov~ 5''27 million dollars :-,hen the, Magu~_i River ,ce~l 
t 

is 'added, to the.analysis. In another set of runs, the data< :. 

on Magusi Rivei cell j? comb~bed· with the 32 ~rigin~l ~n-re­

gressed observations of subset ~, and regression performed ~ 

iterativély. After eight iterations, the systèm reaches equi-
'\ ,'. / 

. ' 
librium, and the total value- 0f.', endowmen'j: predict~d in the 

'. ' 

subset is now estimated at 6'67 mill.ionl
• dollr;lrs. "This means 

::~i::r::::i::~::8t:i:~:O:a:::~a::~rN::l:~1'::i:a:::~~ 
predicted value fo.r this celi' by this 'method' is onl;i 3'46,276. • 

.' But the 'increase itself is a measure of the improved favôur-
, • 1 

o 

abl~ relationships resulti~g from'the addttion 'of this cel~ 

to' the subset. 2 

.. 
, 1 . 

After eight itéiation. See -Section ~.13 . 
,- , 

2A s'imi l..ar set'" of. 'runs was made wi th the subset :S. 
The original estimate of ,endowment over the 32-céll subset 
is '3,17~ million dollars. This increases to 3,234 million 
dollars, ,an increase of 63 million dollars following the ad­
dition of the Magusi River cell to the origInal observations 
and iter1tively regressing to c,onve,rgence. 

1 

1 



t 
\ 

" f 
1 

" 

, 
! '. 
1 

0' • 

,1 

;' 

.. 

\ 
\ 

-..,.~,~ .. ,,---
185 

y. . . 
TO,observe 'further the effect'of an additional obser-

vation on t'he êxisting equilibrium of a geologiça'l system' being 
\' 

Cl regressed, two more runs were made. , . In' the first, the data-

~f cell l02
lr
l .was'repeated,)5o th~ tbhe tepea~ b~comes ln,ad~~~, 

tional 'observa tion. Il In t)1e second.' run f the'da'ta of celi 103·2 __ :'" 

Wé7-S similal\ly repea,ted. The objecti~e ~as to observe the ef(ect . , 
-

that a high and a low va1ued cell would have on the equilibrium 
! • 

that, a geo~gipa1 system has achieved. 
• l 

ce11 1021 is a known 
.. 

endowment reference cel1 va1ued"at 244.66 mill;ion dollars with 
~ 

a predicted value of 2S1.21 million dollars. Cell +032 has no 

known endowment, and a pr~dicted zero endowment., 

Regression, ~0110wing the addition of cell 1021 has 
. 

an insignificant but positive effect on ~he original1y esti-

mated endowmant va1ue~.1' But this shou~d be expected. When 

, ...1 1 
a hi~h valued ,celf has i ts data repeatl!d and used as a new '\. j' 
observation, it re-emphasizes the existing respo~se-explanator 

,V~;iables ~cnShiPs. TiJe ·system is net disturbed and \ 

r€ffiaïns in equilibrium as be~ore. Similarly, th~ repeat as an ~ 

additional observation of the barren cell 1032 data has nâ . 
·effect on the equilibrium of the system, and changes in the 

estimates 9f enaowment are negligiblé.· 

In the above runs, there is no effect on the equili-

'f \ ,II . h' ' 
r~um 0 the system because the.relat~ons ~p be~ween response 

lThat is, the estimates of response variables in the 
checke bo~rd analy~is after eight iterations. 

i 
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-and explanatory variables of the repeated cells has already 
) 

been 'aGcounted for in the iterative analyses leading to con-

vergence and equilibrium. " , On the other hand, when the Magusl 

River cell; which has sorne level~f similarity with the known 

e~dowment cells in the existing system is included, it causes , . . 
disequilibrium until its response variabl~ has been assigned ....... ' 
a value commensurate with tht interaction of geology,repre-

sented by its explanator~ variables. But this does not ex-
, 

" pli!;Jin the low value predicted in the Hagusi River celi even 

though'it otherwise shows a high degree of favourability as 

explained earlier. 
./.-

Sïnce the predi~ted value. of the Mag.usi River cell 

is anomalously low compared to its known endowment, the cell 

" ~J (1 

probably r'epresents a different geologLcal environment locall-

ly. 1 Or, the predictive efficieflcy of the system itself may 

• be poor. The predictive efficienoy of the system has already 

been validated by performing iterative regression analysis 
ç 

with el. , d.y zero ~~dowment value assigned to known endowment 

cells, one at a time in each series of l runs. However, in 

> the present set of runs, the explanatory variable data of 

. known endowment cell 1021 is repeated as an additional vari­
~ 

able. The response variable9 for thi~ cell is assigned a zero 

value. The repeated cell data is added to the checkerb'oard 

subset A and regression performed iteratively. Convergence 

( 

lsee Figure 15. 
;1 

( 

l 

• 
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..A ~. 

the respon~e .ariable are shown below for each iterative ruh. 

Run # Predicted Value ($ x 10 6 ) 

l 1. 02 

2 32.30 • 

3 117.71 

4 191. 01 

5 228.95 
<œ) 

6 245.02 

The known endowment of the cell is 244.66 million 

dollars, and therefore a nQ4r pèrfect CQnvergence is obtained 

after six runs. This is a measure of the efficiency(~f the 

system in ~uilibriurn. But such a convergence is only pos-

sjble when the added observation lies within the confines of 

the geological system aQd not outside it. 

The Magusi River cell is rich in pyroclastics; al-
, ' 

most one-third of th~ cell ~~a has been mapped as tuff , ag-

glomerate (AREA 2). Should sorne of the material presently 

classified ts tuff , agglo~rate prove to be rhyolite (AREA 

3) 1 the predicted value of endowment will increase signifi­

cantly. 'This is possible because the ~agusi River are a has 

not yet been studied in as much 

region. As an extreme~example, 

detai'l as the Rouyn-Noranda , 

if al~' agglomerate ~ 

• 

, \ 

, , 

l, 
1 
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" 

'1_ l . is assumed ta be rhyolite, then without any changes in thè 
... \ t ,f \ 

other ~xplanatory variables r the predicted valùe of endowment 

in the Magusi River cell is 17.56 million dollars with check~ 

erboard subset A and 131.55 million dollars with s~set B. ~ . 
These -estimates are respec"'tively 34' and 603 times the pred.~c-

• tions made.when the forma~ion, tuff~ agglomerate itself is 

used in the regression models. -This is the reason why it is 

emphasized that the most effective predictions are made with-

in the limits of a system within which the classification of 

rocks is consistent. 

Conversely, ff sorne of ,the material classified as 

~yolite in the Rouyn-Noranda regipn be regarded as tuff , 

agglomerate, the regression models developed will have a . 

similar favourable effect on the estimate of endowment in , 
• 

h .. Il 2 t e l-lagus l Rl ver ce . 

The reason for the low predicted value of endowment 
, 

in the Magusi River cell lies essentially in its lying out-

side the Rouyn-Noranda region which is considered as a clo~ed 
• 

geological system for statistical analysis. ~ a local level, 

the Magusi River ,cell may lie ih a different 1 . l' geologlca , 

/' 

lE' t t l th .9., con ac eng s. 

:2sakrison (1966) stated that most ~f the roc~ clas­
sified as 'rhyolite in the Rouyn-Noranda region is of 'pyro-
élastic origin. Similarly, Larson and Webber (1977) have ~ 
indicated that the propartioq of pyr6~lastics in the regian 
is considerably more than reported. See detail in Section 
3.2.2. _ 

.. 
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sense'/,However, sorne of 

related to dif'fer"'ing rock 
) } 

" 8.17 Certain !spe'cts of Known Endowment Cells 

,. ." \ y; , .. 

/ f/"~ I:."evahating performance of._a staOtistical analy'sis ,. 
~" ~ 

it is useful to be- a\'lare of .the relatïonships ~xisting ,among . 
1 ~ 

the~casestDeing used as ca1ibrators for predictive purposes. 
"1 

Such cases~in this study 
"'-

'. 
arè the known.endowment reference ... , 

t ,.cells. ~ 
. 1 f· 

• Regression analysis has therefQre been performe~ 
. ' 

over ~he 64-c~11 data but endowrnent.is assumed to qe present 

in only one reference cell. The response variable in this ' 
, .-

cell tlis assi'gned a value of one while the 
r 

response varirbles 
, , 

'~ ,the 'remainin~ seven r,eference cells and the 56 unkn6wn 

endowrne~t cells.are aIl assigned a value of zer~ I~fter 

ana~ysis,r"'the procedure {s' repeated, one at a time for ea.ch' 

of the remaining reference cells. A total of eight ,such 
• 

~, . 
, '" "-

'~"" runs is
o 

thus made. The results obtained are essentially 

,. 

""~ ~~~~imilaritY. o~ the particula~ refe~ence ceIl • 

\, ~Of ass esent endowrrtent with the other cells with an • 

"'~' 

et al. 
cribed 

\ 

lThe p;ocedure i5 similar to that used by Agerberg 
(1972), but has been modified for the objective des­
above.~ See_al~o Section 2.2.3. 
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" { 
assumed zero e~dowment. ,Since ~e response variables have 

been assigned diChot~~s, values,' i.e., zero and one, the 

analysi~ is much like a~-g~oup ~iscriminant analysis ex-

cept that instead of the cells being assigned to either one 
• 

of the two groups, the estimated values of the response vari-
, 

able,are continuous. These values have been converted into 

percentages,l and ~re 'shown for the reference cells orlly, \ 
.J 

in Table 12. 

One of the striking observations in Table 12 is· that 

indivtàual reference cells 2 are unabl~ to predict any endow­

ment in cell 1042~'.It is pre~ict~d with a 100 perce~t pro-, 

b~bility when cell 1042 itselr is the one with an assumed 

present endoWme~; but then, it does not.p~é?lct endowrnent . ... 

in any other cell eithèr. 
, : l ' 

This uniquene~s IDFY be attributed 
~ 

to a different local environment in the cell, it being away 
... , 

from'the main cluster of-ore deposits in"the centr~ 0:6 t'he 

region . 
. \ 

Cell 1042 is also unlque in containi~g post-ore 

stocks of syenite-monzonite. 
, \ 

Cell 1021 on the other hand gives positiv~ pre~ic­

tians in àil oth~r cells except 1042ànd lO~6. This cell 

:f 
-y-

IThe results sh~~lld theoré~~cally lie be~ween zero 
and,one, and are equivalent to prababilities of occurrence 
of endawment-without r~gard ta econornics,tonnage or. grade. 
These probabilitje~ave been mu!tiplied by 100 te ebtain 
percen tages . .--'~"""'-.- -

cell 

\. 
2rn the' descriptioh ~elated ~o Table 12, the term 

means the known endowment reference celle 
& 

J 

t 
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f ~ 

..<! .. 
"'oS~_ .... 

r 

fi " 
PROBABILITY OF JCCURREN~E OF ENDOWMENT IN KNOWN ENDOWMENT CELLS 

USING ONE REFERENCE CELL AT A TIME , • 

li .... 
probabi1ity 

of 
El;pdowment 

OCCurrence 
in 

'Reference Ce11 Numbers 2 ~ith Assumed Present 

1013 1016 1021 1023 1029 1038 
Ce11 -t 

'.l 

.~ 

1013 90.70 -2.53 19;0,~ -0.30 -4.94 -2.78< 
\ 

-î016 . -5.69 1 BB. 49 -2.13 - 2.31 8.4B 0.71 
~ 

, 
43.0Ô 2.3i 2.39 1021 18.83 -3.77 25.48 ,.. 

} 
1023 - 0.06 2.76 2.32 99.17 , -1.98 -1.19 

1 - ..:;. 

1029 -6.34 8.22 24.09 -1. 78 8!.10 1.93 

1038 1.19 0.28 4.64 -0.47 -0'.34 95.15 

1039 4.19 -0.66 0.19 0.64 -0.84 -0.78 
::.. 

1042 .- 'O. 00 \. > O. 00 0.00 __ 0.00 0.00 0.00 
~ 

, -~ 
.> ' 

1p'robabi1ities have been expressed in percentages .. 

2prediction.made -by a reference celi for itse1f is underlined . 

• 

)' 

~ 

Endowm~~~~ 
~ ~ ,. 

1.039 104'2 

~ 
4 :33 0.00 

3.22 0.00 

- • .'91 p. 0.00 
,r 

0.69 0.00 

-0.43 0.00 

-1.37 0.00 ~ 

,(,94.49 0.00 
, ... 

0.00 100.00. 

~ 
~ 

~ 

1 
1 

! 

l ...... 
1 

i 

1 
. 1 

' 1-
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therefore is more ,similar to other reference cells. Spatial­

l~, it ,lies within the main cIU~~yf ~re deposits' in, ,the 

region. ' 

Both cells 1042 and 1016 are situated away from the .- . 
c1uster of ore deposits lying in cplls ~013, 1021, 1029, and 

1038. Dugas (1977). in an oral communication pq,ints out' that 

the ~1obrun deposit lying in cel1 1016 is believed t'o be at a , 

higher stratigraphie level than the other deposits in the re-

:/ g~on. He further points out thatc the~ are n<l dykps assoe~,:-' 

ated with thi~ deposit or oeeurring in its irnrnediate sur­

roundings, But eell 1016 does have sorne sirnilarlty with 

other referenoe eells as evidenced by its positive predicted 

values in cells 1023, 1029, and 1038. 

It is obvio~s that when only one response variablé 

out of 64 has a value -of one assigned ta it, and aIl othe~ 

are assigned zero values, the regression equations will be 

different in each regression rune The fac~ that sorne of the 
a; 

regression equations cannot predict the presence of endowment 

in' other cells is an evidenee that with changing or evolving 

geologieal environrnents, the predict~d values may be unex-, 
... .~ , , 

peeted, unless and until.the 'regression runs are eith,\r con-

fined to the limits ~J the system or a broad enough ris~onse 

,variable information is available to generate a model that 

reflects the variabilities of explanatory v~riables. 

Another set of runs has therefore been made using a. 
, • 'If' • 

similar approach, but this time assurning",~ndowrn1nt to be 

1 

. 1 
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present in seven of the eight reference cel15. From them the 

probability of occurrence of endowment in the eighth cell is 

es~irnated. Eight separate runs are made. each with a i~O va1-

'ue asstgned to the response variable of a different reference 

celle A value of one ts assigned to the response variables 

of the seven other reference cells. As before, the unknown 

endowment cells are assigned a zero value fo~ their response 

variables. The results of probabil.ities generated' for the 

reference cel1s' are shown in T~le 1~. 

It ~s observe~~from the tablel that negative proba­

bilities are obtained in case of cel1s 1016 and 1039, a~d a ' 

~ zero prooability is obtained in cell 1042. These runs con-

firrn the conclusion 'described earlier that cells 1016~d 

Il 1042 ,represent a locally different geological environrnent of 

, ore occurrence·. Both cells 1016 and 1042 are located away 

from tWe main concentration of ore deposits. Further, cell 

1016 is very rich in zinê whiole cel1 104..2 has no reported 

zinc in it. Similarly, cell 1039 is zinc-rich even though, 

the adjoining 'cell 1038 is( copper-rich. !t therefore tay be 

related to another cycle of activity wr;' hin the larger vol­

canogenic environment i~ the region. ~ relationship~ be­
) 

tween intermediate·cases are,various measures of their simi-
. 

larities as shown in the table. 
, 

The purpose of ,the above exercis~ ~as been to 

1 . 
See Table 13. 

'1 
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Ref. 
Cell 

i 

1013 

1016 

1021 

1023 

1029 

" r'\ 

fil, 

" . TABLE 13 
, " 

PROBABILITY OF OCCURRENCE OF ENDOWMENT USING SEVEN REFERENCE CELLS 
AT A Tf ME AND ASSUMING ZERO ENDOWMENT IN THE EIGHTH 

Qi 

Known Predicted "'- Prèdicted trobability by Excluding Cell # (%) 
Prol:iability by 

~ . 
% 8 Cells 1013 1016 1021 1023 1029 1038 1039 1042 

"-

~ 

100 98.12 8.70" 99.53 80\ 05 98.60 101.31 95.57 97.30 94.15 

100 90.52 96.83 -1.13 '90:61 87.92 80.54 85.32 88.05 85.89 

.. 100 84.17 62.74 99.88 44.68 78.75 68.58 94.25 88.21 95.88 

.-, 100 103.85 103.29 100.34 100.47 4.32 104.0B 103.26 103.47 lQ2.93 
! .. ~, 

, - , 
... :. ~I 

IbL.27 
"-

"-. ., 
100 108.80 99.68 77.52 103.80 24.72 105.41 104:18 ~05.17 

1 

.. 

- 'If 

t 
t 

~ , 
t 

1 

1 
",' ~ 

" 1038 100 98.01 98.48 100.43 95.93 98.18 "/"98.51 0.54 99.60 100 .• J:8· , 
1 

. \ 
-

1039 100 92.85 90.94 99.95 96.'61 93.16 100.47 100.00 -3.51 100.37 
1 1 ... -

1042 ,100 100.02 ,100.00 100.00 100.00 100.00 100.00 100~OO 100.00 0.00 \ . \ 

~, 41-

1 , 

"'lprobabilities ha'ITe been conver:,teLinto percentages. 
_ 0 

2Assumerl.unknown (zero)" endowment cel1s in a partlculafr run are underlined. r· .,. ! .' 
1-' 
\0 
,c:. 

--.!.. 

~ < " --__ ~ 1 r, 
- _ 1 

mW1I1 Itltt 1 --9liicJ illi. !fiU.1ii lliiF liif ~* WeNËI • ·'."T. III W.? , ... 7 : 5 • ~ 
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1: 
J 

observe the relationships amqng the known endowment célls , 
, 

The conclul;don i8' that in spi te 'of the brd&der 8imilari ti 8 

- ---âni6ricj 'rèfe~ence cells, there are significant differences in 
. ----

, , 

\ their localized geological environments as determiried statis-

tically. AlI foreca:s~s have been made in rèferenc,e to ~these 

cells, -and it is inev~table that som,e resolution/ 'is lost be-

ca~se of the local differences that are present. Once an 
1 4' .1 q 

equilibrium has been attained in the system with 1terative , -

" , 

, ~. ' ~"\': 
re9ression a~alysis the model will reflect the join~enyiron-

ment observed in the reference cells. It will nôt be able 

to fore~st any endowrnent the environment of which has not 

been considered in the modelling proc~ss. The case of the l, 

Magusi River cell appears, to bel'ong to thfs "C~tegory. 

The results shown in Tables 12 and 13 should pave a 
1 

bearing on the genetic history of the reg~on. It is well ac­

cepte! now that the Rouyn-Noranda region was the centre of 
, 

vdldanic activity that led ta the' formation of massive base ',. 
~etal deposits. But the different environrnents associated 
1 

o/ith ore deposits in their re~pective cells indicate a pul-, 

satory nature of the vo\canism. This thought should agree 

,--;-{ with the s'outhward lIyounging" trend in metavolcanics observed 

across the region by Krogh and Davis ~197l), and with the 
, 1 \ 

postulate of Spence anp Spepce (1975) tha~ rhy ites of sev-

eral different ages are present in the region. A d Roscoe 

(1965) has d~scribed the metal~ic zoning in massive ulphide 
j;, 

deposi-ç.s in the region in which zinc lies' at a stratig phically.-

/ 

1 
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higher 1evel-than copper •. '~~ese aspects max also be observed 
!! 

regionally in tha t the southern-most reference ce.ll 1042 has 

on1y copper endowment and no reported zinc with it, while the 

northern-most anq outward-most cells 1016 and 1039 respective-, i~ 

• 

ly'are very ~inc-r~ch, and re1at~vely poor in copper.' 

the 

If volcanism was indeed pulsa to~, a~ appea~s, to be 

case, then the predicti~e effective~es~ of the model will 
. \ -. 

be affected when extrapolated outside the i 
! 

ediate environ-

ment of the system uhder study. Alternatively the model 
) 

should be'mod1fied to accommodatè the variabilit es in exp1an----
at~--v~ria?leS ~f newer areas. ~his aspect i5 me tioned to 

-­"~ 
_-~ indicate the usefulness of regres~ion analysis in un erstand­. \ 

• 

\ 

ing, confirming or appra~sing for.modification, the e~sting 
1 \ 

f'!J 

theories of ore f6~eion ift the region. It should be point-

,/ ed out"ttere thab while most' coinparative studi9s ,on the geo-
.. . 1.. 

logy of mass"ive sulphide deposlts have emphasized features of 
"" ~ ~"l 1> 

similarity, their differences have not been as wel~reported , . , 
.... *':.' ~ ... 

... J..la.... 1: .. 

upon. Regres~ion analysis ca~be a us~ful tool ±n'th~s re-" 
" . • ;." \10" _ ' 

,gard. Needless to say 1 informatio? q"n ... d!fferences among mas-" ''''" 
. 

sive sulphide deposits can ~elp explo~tion as much as ~no~ 
.. 

ledge of the similaritïes i~ them . 

;7 
8.18 R91~ o,t ExplanÇttory Variables in Iteration ) ... 

, 
The explanatory variables have been the 

basis of factor an~lysis; .. Their input in~e regression model 
1 • 

'r ---\ 

\ "" 
\ 

, , 

! 

/ 
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• "fi ...... 'f 

~ 

has been controlled s~ ~hat the first two 'input variables 

.. !ire ~ areà of rhyolite (AREA 3), and the contact length be­

tW~h rhyolite and andesite, basalt (CNTL 11). Rhyolite is 

th~ m~st cornmon' hOS~:=.p3ck~ and its, contact, with the, andesite­

basaIt group of-rocks the most persistent stratigraphie fea­
,f.;;('! 

ture in'ore loc~lization. These are followed by other ex-
1 .,; "'" 

Ir' • " 

. planatorytariables the inputs of which are determined by a 

, .' 

combination of pre-se1ected inclusion levels and the partial ... 

cèrrela~ion coeffiçients' The regressian models obtained in, 

the check~tboard analysis are given in Section 8.13. A bet-
f 

ter comprehen·sion of 'the role of variableS" can be abtained 

by st~dying their stand~:r~ized coefficients.l For comparison, 

the standardized coefficients have been cumu1ated and then 

,ponverted into percentage of the total. The resu1ts of the 

checkerboard subsets A and B 
.. 

,.' .It is observed from 
II' 

ar&.shown 'in Fig~s 17 and 18. 

Figures 17 and 18 that AREA 3,2 

and AREA~8 both 'contribute positive~y to the models in ~ach 

of the subsets. In addition; the str~ctural elements FOLT 4, 

FOLT 1 and DYKE 3, al1 contribute.positively ta the regres-

sion mode1s in each of the subsets. 

1 / 

lwlien explanatory variables' are measure~ in ~iffer· 
ent ~its such as areas ànd lengths, their relative /éontrib­
utions to the' regression ~odel can be studied by st~dardiz­
ing,them in unitless form. This~s done by computing the 
model on the stafidardized variable values rathar than the ' 
orig~nal va1ue!f. ,~ 

.. 
'. 

.. 
2see Section (.2 for descriptio~ of variable names. 

1 

1 

_,,,.~._,-.,~_ ... __ ,~~.,. __ ,>_,,J_~ _~ --
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" 

FIGURE 17 , ~ EXPLANATORY VARIABLES CONTRIBUTèONS eN ITERATIve REGRESSION ANALY 
FOLT 4 

OYlŒ 4 

\ 

CN1'L lS 

CNTI. 13 

1 
CNT1. 11 

NOTE: ' --, , 
Positive1y contrlbuting 
variables are 'shawn 
hatched. 

Iteration .... 

\ . 
o' 

CNtL6 

:5 

11 
4 

DYIŒ 4 

\ 

CNTL lS 

l • 

! • 

-' 

\ 
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DYlŒ 4 

CNTL 15 
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CNTL 10 
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On the other hand, CNTL 13, CNTL 15, and DYKE 4, aIL 

contribute negative1y ta both regression models,. 

The role of structural elements in the reg~ ~s 

not been fully >reso1ved, eit~er with respect ~o one anôther 
1 -

o~'with resp~ct to vOfcanism and r~1aeed ore deposits. ~he 

positive1y contribù'ting structu,ral elements, however, show 
, ", 

some re1ationship: FOLT 4 and FOLT~ are both essentia11y 

eas,t-west trending feat-ures anc; may be re).ated to the east- .­

west anticlinorium str/ucture of the region. Furthey, DXKE 3 

cuts across the directions of FOLT 1 and FOL~'4, and may be 
l 

rrlated ta thern. }Any other comm~nts beyond this would be 

speculative. 

The positive contribution of AREA 3 is understand- 1 

,. -
able, but not that of ARE~ 8. The positive contrib4,ltion of-. ' 

AREA 8 may be a r,s~~t of pure1y spat~al cotrel~tion or to.a 

deeper underlying cause as reflected by thé be1ief~of sorne 

: ... l 
regiona1 geolog~sts that diori~ and gabbro indicate_chan-

ne1ways of the extruded andesites and basa1ts. 
, 

~ 'The negative contributions of,CNTL 13 and CNT~ 15 
1 . 1 -....., 

to each of the two r~~ssion\~1eIs are c1er;tr inasrnuch' as 

(the ore d~posits are .considere~?f volcanoge~ic origine 

CNTL 13 and CNT,L 15 r~present the 'contact 1engths of rhyo-
) 

lite with diorite, gabbro, and with granite~,granQdiorite 

• lE.go, Wilson (1962), Van de Wa11e 
and Spence (1975). 

19-12) ; ,and Spence 

, 1 
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. , 
respectivelY. S,ince the ore deposits are believed to be vol-

~ 

canogenic and occurring at a certain evolutionary stage of 
r 

volcanis~, it is more likely that ore localization will take 

place between two volcanic fo~mations rather than between a 

volc~nic formation and an intrusiv~. In addition, the pre­

sence of an intrusive can only have an assimilative or ùis-

persive effect on any existing massivelsulphi~es. These com­

ments are valid only if the volc'anogenic origin of ore 'depos-

• .1" 
its is assumed, and may not hold if a hydrothermal eplgenetlc 

.. 
concept i5 invoked. 

/ 1 
In respect of the remaining variables, their contrib~ 

r 

utions, whether positive or negative, d~pends upon the partic-

ular response-explanatori variables relationsh~ps present in' 

'the known endowrnent reference cells in each of the two sub-
~ , 

sets A and B. For exarnple, subset A has the West Macdênald. 

ore deposit ocèurring in tuff, agglomerate in cell 1023. 
\ 

CNTL 10, ~he contact between tuff, agglomerate, and granite, 

granodiorite, therefore contributes positively to the model • 
. , 

Since no such deposit occurslin the subset B cells, the, pre~ 

sence of CNTL 10,in its model contributes negatively. 
1 

In subset B, CNTL Il makes a negative contribution. 
1 

This may appeaL.unexpected but as observed on the geological 

-roap of the region, cell 1038 wh~ch has~the highest known en-

9.owrnent and, thJls is a'~major contributor to the equ'a tion, is 

_largely composed of AREA 3 and contains relatively minor 

! 

'" ., .,.!' •• _.J. .. ~.(I'!.""~ .... '*-' •• lo! •• ~ .. :; ......... $.t.._~ . .,. .. ,-" .. ,_ .. ""'h ... ,,~,,~ ..... J._ ... ~ ~» .... -:'_,.~I;..o. 
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CNTL Il. 1 AREA 3 is correlated with CNTL 11 being one of its 

compo~nt members; because of its predominant presence in the 

cell, it makes up for the contact length's negative role~ The 

r~le of multicollinearity should not be forgotten when siroul-
J , 

taneously, the areas of formations and the contact lengths be-

tween them are considered as explanatory variables. The ob-

jective is to balan..ce the role of variables so tp.at in their 

final forro, they best describe the system., 

Figures 17 and 18 show changes in the performance of 

explanatoryi variables with each iteration, and after the fourth 

iteration, the overall effect when three more variables are 

adde~ the f igd'tes show, the system rapidly converges ta , 

equ~librium after the fifth it~ration because the relative 

contributions of variables become consistent. This also rneans 

that the system has ~tabilized with respect to the values es-
, 

timated for (the response v~i~&les. Th~ figures plso indicate 

t:hat the predictions based on ,1' single\ ::egression run will not 

be efficient ;nd will be likely to change both with further 

iter~tions or addition of yariables. 

8.19 Other Regression Tests ( 

In this section, a review ~s given of a number of 

lCNTL Il'is the contact length between ARE~ 3 and 
'AREA 4. 

" 

,. 
1> 

)-

1 
j 

l' 

!~ 
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.. 
'" 

regress10n tests that precede~ the checkerboard models. The ~ 
Objective of the earlier runs was to observe the response and 

i 

\ efficiency of the variables'uhder regression, and to make 
, . , 

va~ious manipulatToIls leading to 'the procedure finall,Y aéiopt-

ed .. AlI these runs are non-iterative, and therefore, the pre:-
, .... 

dicted results are of a low order of màgnitude. As has been 
\, 

l' , 

described eat1ier', the ~ow predicted estimates result when 
, . 

the resp~?se variables in cells with no known endowment are 
, 

arbitrarily assigned' zero values, thus in e'ffect attenuating'· 
1 .... 

" 1» 

the response exp~anatory variable r~lationships that are de-

~e~9ped from the known endowrnent cells. 

1 

'S .19.1' The 8-Cell Moder 

/ ", 

In resource e~aluation studies using regression • 

a~alys.is\ if the values. o~ the resp~nse v~able l'are' npt . 1 

\ 

known in most of the cells, and ,if al~ cells are believed to 
f ,1 , 2, 

geo10gical system, a regression model 'bé part of the samé . '\ 
• o. 

can be formulated based only on cells in which t~e response. 

variable'ls known. Such a mqdel can then be extrapolated 

over the remaining ceIIs to make estimat~s of the unknown 

response var~a~le. , "'. "-The advantage o~ this approach is its 
, 

• r 

,.. I,l 'l, 

I.e., mineraI endowment. 

2 . 
I. e ~ , 

popülation. .. \ 

they should. have been, drawn from t~e. sarne, 

: \ 1 \ 

" 

• 

r • 

"',! • 
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'l--) 

simplicitYi also, no initial assumption has to be made'regard~ 
l, >... 

ing the values of response variable in the unknown endowment 
, 

cells. With only eight cells ~)Ut of 64 that have a known en-

dowment, the sample size is tO? small_ for" an effective model, 

particularly because dissimilarities exist among the refer- v 

ence ~ells themselves. Apd with only eight reference cells, 
. " . ; 

the number of explanâtory'varia~les that can enter the'equa-. . ,­........ ,;, 
tion cànnot e~ceed six in 'addition to the constant terme Such 

an equation can only be effective if the system,is such' that 
\ 

\each cell contains at least several of the explanatory vari-
~. 

àbles present in the equation. MQst of the 67 explana~ory 
. \ 

\ 
variables measured in the,region are not present· in the known 

'". , 

enèO~erit'--cells, and ar~ thenefort#- not a part of the regres;' 
. \ 

sion rnçdel. Many of 
/~ \ ,; 

these do not' evSh have any relevance with 

presen(~in varing amounts in about one-. ore fo~tion, but are 

fourth of~the reg4on. The application of the regression model 

should give fi zero predïd:tion.l of endo~ent in cell,s that do 

not have any variables present in the model. But w~th a pos­

itive constant t!=rm in the !Uode),.;. "the predicted value in the 

po{;'ntially barren cells becomes equal te the constant terme 

For example! observe 't:he foliowing re,gression equatiQn. 
.{ 

')j 
" 4.645 - 1.; 308 CNTL 7 + 0.335 FOL':\, 1 

'., 

, . 
- 0.018 CNTL 13 ":",.0.180 AREA 4 , ' 

+·0.329 CNTL 34 - 0.398 AREA 8 

. " 

~'All cells that do ~ot~ave ~ny of 'the above six variables 
\ 

~\ fi l, 

; 

") 
........ ~~~ .. :,.-~~~~~...Q;a;~~~ f~,_~ .. ~ ... __ OWII$f.,.,--..... - r_ 

; ,~ , 

.. 

" 

o 
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~ill still obtain a predict~d value of 44,1571 tons of cQPper 
t~ 

,.worth over S5 million dollars. : In fact, if a cell' had only 

post-ore sedimentary formations, the 'mere presence of FOLT l 

in it will give a predicted value equal to the 'constant term 

pius the pos~tive contribytion of FOLT l relative to itj 

length. The resulting fore~ast can t~n exceed 55 million 

)llars .. Most of the other equations calcul~~ for, copper 

and zinc ,usiI;1g different cornb:imations of variabl~;\are beset\ 
/ 

with similar problems. 

The above condition 'is the same as trying'to apply 

~ • L a model based on a certa~n geological system tu a\different 

system. This can to an extent be controlled by using larger 
, 

, . 

sized cells So that a greater varietY/of explanatory variables 

is present in thern, but for a region of fixed size, the nuffiber 

of observations is thereby reduced, and the objeètive 9f using 

cèlls tannot be fulfilled. Further, since ore de-, ~ll-sized 

------posits !=end to occur as clusters, the number of known endow-

ment cells becomes further redùced. 

At a purely reconnaissance level, -a broad based re-, , ..,. 
gres~ion model can be forrnulated by incorporat~ng data from 

known endQwment celis outside the study region, taking care 
~I 

that there is a similarity in the characteristics of the 

geological elv~ronment between the study regièn and those 

terme 
144 ,157 is the antirogaritpm o~ 4.645, the CO~$tant 

", 

1 

1 
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" . 

0utside it. 
., 

1 
8.19.2 The Over1apping Cell Mode1 

A technique in which the size of a cel1 can be en­
\ 

larged four times to incorporate a greater geological vari-

ab~lity but without a proportionate reduction in the number 

of,reference cells is to over1ap adjoining ce1ls. As Figùre 

19 shows, the first enlarged cell i5 a cornbination of cellg 

l, 2, 9, and lOi the second one is the addition of cells"2, 

3, 10, and Il; this can ~e continued till the end of the first 
""\ 

row. T~e second row has its first enlarged, cell consisting 
~ 

of cells 9, 10, 17, 18, and 50 on as in the first row. In 

this manner, 49 c~lls, each four times the initial size, are' ~ 

obtained. The knoWJl.lendowment oe1l5 increase to 22 from the 

origina~ eight because of repetitions with neighbouring cells. 
) / ~ 

This seemed tô be a good solution to sorne of the problems 

mentioned in Section 8.19.1. 

The results obtained on applying regression ana1ysis~ 

- over the overlapping cells are poor, to __ the extent that even 

in the -known endowment cells, the predicted~estimates are 

highly erra tic. The only explanation~ lies in a hi~hly in-
~ , 

creased multicollinearity resu1ting from overlapping and re-

'" petitions of cells. If 50 many inter-relationships exist 

among explanatory variables in normally adjoining cells, theh 

\ -~~- ~.~ ±he addition of intermed1~~rl~pping cells is"bound to 

/ , 

lII., 

\ 
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multiply the intercorrelative effect. 

Simi1ar prob1ems are incurred when ovev1apping is 
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attempted using two cells at a time, whether the overlapping 

i5 done along the rows or along the columns. 

The approach is not considered statistically sound 

and was therefore not pursued furl~er./ 

8.19.3 Non-Overlapping Enlarged Cells 

Figure 20 shows the three different grids that hav,e 
1 1 

been a~tem~ted to obtain estima tes of endowment in the region. 

They are described below. 

The 4xl En1arged Cells 

Iterativer.,~gression analysis was carried out on 

the sixteen 4xl enlarged cells. A checkerboard division of 

enlarged cells is not desirable because it reduces in half 
/ 

; 

, -
'. ( 

\ 

\ 

.the already reduced number of cells, and as a res~lt, further 

decreases th~ degrees of'~eedo: for variable input. Besides: . 
i ) 

it .is felt that enlarging the cell size does not result in as 

.m~ch mu~collinearity as with cells one-fou~th the si~e. 
The results shown in Tabl~' 14 are obtained after the fifth 

regression Fun. '"'l'ne' input variables are th~ ~aIJ!e as used in 
- . 

the checkerboard analysis described .in Sec,tion 8.1.4 • 

, Enlar,ging cell size has two inunediate affects which 

.. 
- r "' ..... w '~-'#'''_M1t.~~ ..... 
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FIGURE 20 
ENLARGED 'NON-OVERLAPP l NG /CELLS 
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bear on regression analysis. The first is that the decreased 

number of cells reduces the n~er of degrees of freedom; the 

second is that the?proportion of known endowment cells in­

-creases. Both of these imp~ove the rate of convergence and 

the coefficient of determination. The predicted estimates, 

however, a~e affected differently. Since in iterative re-
'~. \ 

, . gr~ssion analysi5, the response variable value of known en-

dowment cells is kept cons'tant!' and convergence at~mpted on 
, . , 

Il these values ,fl1the total predicted endowment in the regiGln is 

likely to be ~educed. Thts 15 ?epause previously a cell of 
~ 

6.25 square miles area,is a\ known endowment cell, but enlarg~ 

ing it foùr times makes the new known endowment cell egual 

to 25 square miles, yet with exactly the sarne response vari-

able value as the or~inal smaller cell. 

'....;,.5 15 shown in Table 14,. i t is not possible to ob-

tain converg~nce in most known endowment cells, particularly, 

cells 3, and 7.~In general~' BO percent of the total known 

endowment is predicted. The only significantly valuable cell 

is #l'worth over 41 million dollars. This enlarged ce11 is 
• 1 

~A 

the equivalent of cells 1001, 1002, 1009, and 1010 of the 
\ 

chec~rboard analyses in which a total endowment estimate of 

25.6 million dollars is obtained for the four cells. 

The fact that convergence i5 not fully a~tained, 
l' 

stresses again the effect of intercollinearity amongst thé 

éxplanatory variables; in spite of this~'the low endowmen~ . " 

or barren cells are p~edi~ted in rea50nable terms. When 
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using e~larged cells, the signifi~an~e of smalle~ cells that 

jointly comprise the enlarged cells is suppressed. For ex­

amp,le, the 4xl cells analysis estimates a zero endowment in 

cell 2. This cell is composed of cel1s 10~3, 1004, 1011, 

and 1012. With 'the checkerboard analysis, cells 10,03, 1094,' 

and, 1011 a~e predicted as barren. However, cell 1012 is,fore-
l, 

past,as relatively favourable worth 16 milliorr dollars. Ob-. 

* viously, when the four cells are combined into one enlarged 

unit~ the favour~blè geological relationships ~t~sent in one 

cell are. suppressed by the in the 

other three cells. Such a of course, de-

pending upon the relative strengths 
l , J 

favourable relationships present'in 

are cornbined to forro the enlarged celle 
~ 

The Rectangular Cells " 

J 
and un-

r cells that 

The use of 2xl rectangular cells has been made to 

observe any rEÇl~tionship between the shape of a cell and the 

d~rectî9nally oriented geological data: Iterative reg~es­

sion analyses was therefore p~rforroed separately on checker-
I~ 1 

board data of 2xl vertical and 2xI ~rizontal cells. 
, 

A èomparative study of regression results and the 

lSee Figure 20 for explanation of vertical and hori­
zontal cells. 

1 

~ 
-------, 
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' .. 
,geology of the region shows·that for the Rouy~~Noranda reg~on 

J"'(,> ' 

itself, the directionally orientid cells do not apparently 
• 

ghow any.particular trend, except in individual tases where . , 

each of the two original cells that join together and form 
1 

a rectangular c~ll, has a hlghly endowment-correlated vari-

able, such as rhyolite (AREA 3), or NS to NW trending dykes 
''b. 

(DYKE 3).' When 'su~h explanJt~ry variables s~rike generally 

.1 

parallel with the longer! direction of the cell, a dispropor­

~ionate weightage is attached to them'which tends ta rapidly 

increase during i terations : Rectangular cells are therefore .);. 

subject te an increased bias and increased multicollin,earity 
-y 

depending upon the nature and orientation of the7expla~atory 
, ~ . ~ 

variables. Fur~her, it has not been possible to ,achieve con-

vergence on t~e known endowment rectangular cells despite the 
\ 

checkerboard approich. In view of these reasons, it is felt 

tbat for the present study region, réctangular cells are 

neither efficient nor effective for the·cornbination of vari-

" ables, and under the conditions used ~n the tests. 

8.20 Concluding Statement-

. , 

Of aIl the models attempted under regression ,naly­

~esl the 6.2·5 square miles s~uare cel"ls give the. most ~fec-
". 

,tive results under the checkerboard techniquè7 This state­

ment should hold for the Rouyn-Noranda region eva~uated in 

this s tudy' • However, a model can always be "lmproved wi th 

<x 
1 

, " 

1 

.. 
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• additional information or improved techniques; Maki, and 
, 

-Thompson (1973, p. 418) sum up the situation as follO'ws:' 

8.21 

(1) 

:> , 
A statistical evaluation of the accuracy of a 
model is usually carried out with the use of _ 
a standard measure of the discrep~ncy between 
the predicted and the observed data. In this 
way one obtains a ~umerical measure of the 
goodness of fit for each model. Naturally, 

.. '. if ohe model gives a consistently better fit 
than any other model, then this model ~ilL be 
accepted and the others rejected. However, 
it often happens that one model will be the 
best to explain and fit certain sets oE data, 
while another model will be the best-at ex­
plaining and predicting other sets'. Nei ther 
model can be r€jected, since each is better 
under certain circumstances. Likewise, neither 

'model should be completely accepted since in 
" certain cases each model is not the be~t avail~ 

able .\':1 They can be eonditionally ac'cep'ted, 
studied, and used in those circumstances where 
they are the appropriate choiee. Naturally a 
scjentist would like to have a singie model 
whlch is the best at explaining all thè known 
experimental results. However, such a model 
is not always available, and the scientist _ 
must work with the models at hand until better 

" ones are ,deve loped. \ 

R~gression surnrndry 

Regression ana~ysis is a powerful a~ effective method 

for determining relationships amongst explanatory geo-
1 

/ 

logic~l variables, and for-applying these relat~onships 
, -

in making for~casts of ~do~ent w~thin the ge01pgiCal 

system under investigation. 
j 

(2) ~he forecast values are calculated with respect to the 

existing known endowment within the system. Since the 

\ ~ , 

-(') 

'/ 

r 
1 
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known endowment is-~efined a~ the SUffi of past produc-
, 1 

,tion and reserves in the region, i t re,presents the min-
• • < 

irnum possible endowrne·nt. · The f.orecast values 1 too, 

therefore, are the minimum possible ~lues: ,However, 

these forecast values' should be assessed in 1erms~of 

their absolute forecast estimates aF weIl a§ their com­

parative values within the system. 
" iIt 

(3) As a result of itera~ive i~gres~i~?,the relationships 

determined and the response variables cal~ulated are in 

a state of sensitive equilibrium within the geological 

t • s~ste~of the,region. If a new discovery is made in 
,,'-' 

the reg on- or if there is an increase in the'oknown en­

dowment 'th additko~al reserves, the reg~eSSiOn model 

will have 0 be updated and the system re-equilibrate~. 

This would r suIt in increased fo~ecasts because, any 

addition to t~ known endowment.will midify response 
\ , 

variable - expla\latory variables relationships. 
Q 

(4) The selection of ah optimal set of explanatory variables 
~ 

is an extremely ~mpF tant aspect in ~egres'sion analysis~. 

While factor analysis 's an efficient teohnique of under-
" -

standing underlying rel tionships amongst explanatory 

variables, the their selectio~ has to 
" 

be made in the geological theories on 

Cause and ef,fect Should,these theories 
1 _ 

change, both thft basis nterpretation of the mo~e1 

rnay have to be revised of this new infor-

mation. 

1 _ 
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(5) While ge?10gica1 concepts are the basis of tinderstand-
, ~ f ( 

ing an:d interpreting regression analyses 1 th~ reverse 
~ 

.is also true in that regression analyses he1p under-

stand geological relationships in quantitative term~. 

The particular variables determined to'he the rnost sig-
" 

nificant by regression ana1ysis can then be given a 

greater attention at th~ time of geol~gica1,mappinq: 

This improves the cost-effectiveness of mapping and re-
l 

sults i~ a better data base for future exploration. 

(6) The standard square cells used in .. their checKerboard 

(7) 

; " 
forrn give more efficient results than the larger 4xl 

4 0 , 

s~~are ce1ls or the'2~1 rectangular cells. ,The square 
1 

checkerboard cells are Less prone to bias or multicol-

1ineJrity up to a certain stage depending upon the cell 

size and the geological "grain" in the region. 
\ . 

Itt descending order of value, the follmdng cells are 

.. predicted by regressing the checkel:"hoard set of data 
~ 

to 'he the most favo~ab1e ones ~rom amongst the 56 ce Ils . . , , 
~n t~e region with no known endowment. 

• Il 

CELL # ' PRED!CTED: $X10
6 

~ 

1033 62.32 
r 

1012 
1 

16.02 

1014 15.08 ' 

1002 13.78 

100'7 12.40 

1010 9.81 

1009 2.01 

" 

. '. 
'" 

u 

1 (. 

, , 
l' 
i j 

1 

l 
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~ ( ~ ~ 
";î' J 0 

, 

The tot~l p'otêntial predicted by reqreJssion analysis 
\ 
1 

is 131 million dollars.' This indicates a neax:... exhaustion 

of base-metal endowment in the regiO~ when evalu~èd under 
4 l':''"f''' . '" 

current ~bJ.6gi:cal.infobnation and con,c;ep-ts', Newer con-

. r 
il 

~f: 

\ ,. 

'have; "to be e"olved.'and additional informa;ti~n, 
c· 

ly as regards the 

. Plofation to 

ç~ be;-~sefully 

" 

depth dimension, will he 
0, 

be successful. Geophysical 

incorporated in âmodel for 

the th dimension. 
( 

, 1 
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CHAPTER 9 , 

DISCRIMINANT ANALYSIS I 

9.1 introduction 
-
,~ 

Discriminant analysis is analogous to regression anaI-. \-

that both techniqueslattemP: ,to predict a "best !ittiny", 

plane; For this re~son, Mather (1976) defipes discriJ-

ysis in 

line or 
\~ ~ 

inant' ana,lysis as being equivalent to the regression of inter ... 
, . 

group mean differences on the explan~tory variables. Discrim-
, 

inant analysis, however, dis regards relationships obtaining be-
\\\ 

\ 

'\. tween continuous,ly measured .class:s~, by using group membership 

a~ the criterion and makipg aIl comparisons between,the groups 
\ 

( 

and none with~n the groups. 

The application of discriminant analys~s,-lies both in 

understa~ding differenqes--between t~o or more sris of groups 

~and in classlfYing new ca~es to the most relev~nt groups. The 
,. 't 

technique involves first determining statistically significant 

differenqe~in the multivariable measurements among the given ./ , ' 
groups. These are then forced ta become ma~imally distinct 

th1:01'h a 

, var ~a.l\~es 

unique'weighted' linear cornbination of discriminatory 

~ 

selected. The ~~m~2at~on of discrimination is 

( ~ 
--' 

.r- 'l' 0 \ l i 1. ,', l' D scr~m~nant, ana ys~s as 
two-g~oup-cases ~nd the multiple group,cases. 

~ 

used wilL refer to\both the 
\ 

1 
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" achieved by spreading apart the group means-while simultane-
1 .. 

ously compressing ;the spread of iI'l;,dividual values about their 

resp~ctive group means (Bibb and Roncek, 1976). The discrirn-, 

in~t func~ion form~lat~d'C n then be used for classifying new 

cases in their respective roups. 

Cacoullo5 and tyan' (1973) compiled a bibliography 

of publications on the theqry q.nd 't:ech~iqUeS of discriminan1l\~~ 
analysis. A more recent bibliography is available in Lachen-

'j 
bruch (1975) '. In the field of earth sciences, the technique 

has found applications in petrology, geoch~mistry and paleon­

to16gy (Griffiths, {966; Burnaby, 1966; Klo~n and Billings, 
>( , ,~ 

1967; Link and Koch, 1967; Cameron et al., 1971: and Lenthall, 

1972). In the f~eld of mineraI resource evalua~on, the work 

of Harris (1965) was, perhaps, the earliest: Other related 

applications of disçriminant analysis in resource evaluation 

include those ~f DeGeoffroy and Wignall (1970), and Rose (1972). 
o 

~ 
9.2 The Disqriminant' Model l 

• • 

t. 
/" 

The general form of a-discrimihant ~unètion ls: 

, 
where Vl 'V2 ' •.• vp are the optimal weighting coefficients 

lThis section of the th~sis ha; been drawn from T!t­
suoka (1970) and Blbb and Roncek .(1976). 

l , 
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ft _ • 

assignèd to each of the p original "explanatory variables, 
~ -Xl ,X 2 ,···xp • 

In a mUlti-gr~ discr~minant ana~sis, the objective 

is' to find/the set of w~hts which will maximize the discrim­

inant criterion, i.e., the eigenvalues À and their associated 

, eigenvectors. 

Ma'thematically, 

Between group variapce, ~Sb 
À = <,-", / = 

Within group variance , 55 
Ilt>/ w 
,/ 

1 , 

v' B v 

v'w 
v 

~ 1 

where B i;; a p x p matrix of,' among <jroup variances-covariances, 

, .. 

i. e. , B = (X - x-f (X - X)" 
9 g' 

and W ~s the' within g~oup vari-

ance-covariance matrix, i.e., W = (X - X ) (X - X )' • 
9 9 

" 

In the above ~prrnulas, 

J 
-1 

~2~ector 
X = "'ctot 

9 group 

X = v~fttor 

of weighting coefficient» 

of predictor variables means in the gth 

\ .' \ . '\ J 

\ X "" véctor 
1 

of means of predictor v\riables 

:. 
'. 

When ther~l three 
/ 

of À are set to zero, 
/ 

• 1 

of/variables in the gth group ?! 

o~ more groups present, ,the derivatives 

and following simplification, the matri 

equation (~ - ÀW) V = 0 is obtained. This i5 the basic 

tion of discriminant analysis and can be re-written 

,. 
wher.e' 

J' 

l' 
1 

Iwl :1= 0 

as:~ 

,/ 

r 

/ 
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In. the above equation, l is a p x p identity matrix, and 0 is 

a p dirnensional null vec~or. As a first-step, the eigenvalues 

of the matrix W-lB are determined. These are al~ays positive 

or zero because of 'the nature of the matrices 'w ànd B •. The 

number of positive eigenvalue5, r, i5 ~lways equal to the les­• 
ser of either the number of predictor variables or one less 

than the number of groups. Each eigenvalue À., i = 1,2, .•. r 
1. 

c -1 
has a unique eigenvector V. which satisfies the equa~ion (W B 

1. 

Ir' _ À il) Vi = O. In thts equation, the mat'rix (W-lB - À il) i5 

nO\>l known. 
1 

After ordering the eigenvalues in a descending order, 

the successive ei~nvalue5 and their associated eigenv~ct~rs 

impart the f.ollowing)properties to the discriminant functions. 1 

~ 

The first discriminant function is that single weignted,com-
-, 

bination of rneasurernents which has the maximum possible vari-

ance ~etween groups relative to the variance within group~. 
The second discriminant function is that weighteà combination 

::d:::~~:u::m:::Sf::::hd::C:::i:~~::::h:::o::::i:::i:;~ 
maximum of the remaining group differences. And 50, on for the 

'H 

third and,successive.discriminant functions, the maximum num-4 l'..,. , • 

"b~r ~~ which is equal to the n~'er of posftive eigenvalues. 

In ~ractice, however, the first few functions are the most 

* important; much like the factors in factor analysis. 

The'calculated discriminant function ~s assessedt~r 

statistibal significance to Idetermine whether or not the~ 

• 

, 
" 
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, 

between-group differences are real. Sorne variables may have' 

to be added; others may have to be deleted to improve the dis­

criminatory power of the function so that fut1,1re observa~ions 
~ 

are sui~ably classified. The ~rror rate of the discriminant 

function is al'so estimated as th.is rate will liffect future ob'­

.servations" (Lachenbruch, 197,?) .•. , Be..caUS.è "thèse aspects are re-
, " . 

lated to ~esou~ce po~~n~ial evaluation in the Rouyn-Noranda 

region, they are discussed in the following sections. ~~ 

9. 3 Variables Selection and, Assumptions 

The selection of variables for discriminant analysis 
, .. ' . 

-".- can be done -in much the S'ame way a~ in regression analys~s. 

\ 

To be most 'effective r the' selected dJ.scriminatorY variables 
, 

should ~~ve directly ai indirectly made a positive or negative 
<iV, ' \ 

contribution to the relationships that caused ore formation 

·~ithin the concepts accepted fo~ the study under investigation. 
. 

For an efficient discriminant analysis, Tatsuoka (1970) sug-

" ge s t s tha t : 
'0: ' . , , 

, ( . ~ 

...-, 

. " ... 

~a) The number of, v. riahles included sho'uld be more 
) 

than the numb r Of g~oups being compared; 

(b) T~e' total sample size should be at l~st two 

.. 

" . 
f (c) . -

'. " 

• ; 

~nd preferab1t three 
" 

times the, number of vari-

... . 

lbl~s used; ,. 

The size of the.smallest g~oup should not be 
, . 

less than the number,~f variables used . 

• 

, 1 

1 

41 
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With the data available, it is possible to accornmodate the 

first two suggestions. The cells containing known endowment 

are too few for the third suggestion to be accommodated ex-

cept in a two-group discriminant function. 
, 

Discr,iminant analysis, unl1ike regression, assumes 

that the measurements have' a rnultivariate normal distribution 
, ; 

with equal variance-covariance matrices within the several ' 

samples. These are the two basic assumptions in discriminant 

analysis. 

When the assumption of multivariate'normal distribu-

tion and equal dispersion matrices do n9t hold, the calculated 

discriminant function will not/be optimal or efficient. How 

crucial the equality of dispersion matrices is, remains a rnat-
, 

ter of dispute (Bibb and Ron~ek, 1976). It is likely that 

with unequal dispersion matrices, the resultant discriminant 

weight Iwill be biased towards the group having the larger var,i-.. ' 
ance. The full impact of non-normal distribution characteris-

tics is not clear eitner. Lachenbruch (1975, p. 36) states 

that "finding the distribution of linear combinations of non-

normal variables is a difficult and as yet unso1ved probfem". 
1 ~ .... /r"-;. 

Mat~er (1976) believes that rnoderate departures 'from the above 

conditions do not have a serious effect on the r sults. And 

Klecka (1975, p. 435) notes that the "technique i very robust 

and these assumptions need not to'·. The 

situation is s~ed up by Link and Koch (1,96"»; p. 1 ) as fol-

lows: 

1 
l, 

1 
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For multivariate' data, little is known about the 
effect on 'analysis of departures of the data from 
these two assumptions. l The :analysis of val:'iance 1 
is relatively insensitive t.o departures of the ,1 

data f.+om normality and homogeneous variance; by ." 
analogy, it can be hoped that multivariat~ anal-
ysis is also. \:..~ 

Since t~e rrteasurements made in this s~' ~re not nor-

m~lly distributed~~- the effectiveness <bf discriminant' analysis 

can b~ viewed in comp,arison witn the results obtàined.tor re-

gression analyses. Another method for testing effectiveness 

is the "leaving one out" technique similar tà that suggested 

by Lachenbruch (1975). In this technique, one known endowment , ' 
cell at a time is assigned an arbitrary zero value, or a value 

equal to that of the lowest valued group, and discriminant 

analysis performed keep'in,g t'he rest of the data as such. If 

the cell with the lassumed zero value can be properly classi­

fied ta i ts group', then it can be accepted tha t the 'absence 

of ideal conditions did not impair the discriminant function. 

When such is not the case, i,t is possible t?at sorne other ex­

planation-exists requiring another selection of the variables, 

a revision of the number of 4roups for discrimination, or even 

\ the,' re-~~aluation of tr'e" discriminant model i tself. . A mis­

èrassification will a1so result if all ~he cases are not drawn 
" 

fro~ the same population. 
. 

Such a situation can oc~ur in geo-

logy where the v~riables are a result of both evolutionary 
~ /, 

l I. e. , multivariate normality and equality of disper-
sion matrices. ! 

" 
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and interruptive ?~ocesses, and 'in additi~n~ subject to addi­

tional changes fOllowing post-ore process~~ .'- ~,I 

9. 4 Methodology Used 

, 
\ 

J 

When diSCrimina~YSiS is applied in resource 

evaluation, the selection of optimal l groups can be as impor-

tant as the selection of discriminating variables./ In general, 
u 

group selection shoul& be a matter of pragmatism as long as 
• ~ J ~ 

aIL cases are drawn from the same parent population. This 
/ 

means that geological variables quantified should aIL be part 

of the same geological system. This information is only sub-

jectively and ?ften, incompletely ('nown p~ior to 

tion of discriminant analysis. \-

the applica-

\ 

A two-grouPI discriminant analY5is based on the pre­

sence or absence of known endowment i5 the simplest approach 

to distinguishing betwe,en areas of favourable and unfavourable 

potential. The advantage of the two-group analysis is that in, 

small sample studies such as the present one, the number of 
, 

known endowment cases ~er group increases because.they are~a~l 

classified into one group. The calculated discriminant func-
. . "\. fIl. t19n can thus take ~nto account a greater var1ety 0 geo Og1-

cal relationships associated with the individual known 

1 . l' '\ f h fI" d' . . Opt1ma 1n terms 0 t e range 0 va ues 1n 1n 1V1-
dual groups, and the total number of groups. 

/ . 
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endowment cases. However, beyond 'in~ating, the "presence" 

or "absence" potential, the two group functiC?n 'will.not dis-
.' 

criminate between different levels of endowment values. 

An increased number of 'groups permits a bettë~ de-, 

fined evaluation of various levels of" endowment 'estima tes. , 

However, an increased number of groups can reduce the proba-
/ . .' 

, . 
bility {Jf correct classification becaus'e there' are more chanc-, 

- " •• • • 1 
• P , " 

es of erroneous assignments (Lachenbruch, 1975). The optimal 
• 1 

nurnber of groups lies in between the' .minimum two and the inaxi-
1 

mJm 'equal to the total number of cases with known endowment. 

Further, when the response variable' distribution is skewed 
~ 

the selection of group value ~ângés~will be affected by the, , " "\. 

distribution characteristics. Because o~ a highly skewed en-

dowment Nalue dis~ribution in the Rouyn-~oranda region, the\ 

are more groups 0 the lower range of end0wment values and . ) 

few of the highe . . 

The fo lowing groups are selected for discriminant 
. .~.---/ 

analysis v/Their explanation and results are discussed sepa-. , ~ 

rately: 

- a two-group set based on th~ presence or ab$ence 

a 

of known endowmenti 

- two five-group.~ets: 

- a seven-group set. 

A stepwise discrim{na'nt procedure 

pre-determined input ord~ of variables, 

is 

and 
f' 

used with both 

an input with 

1 

1 

• 1 
1 

.:.... 
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equal inclusion level for aIl variables such that the selec-.... 

tian orderr is determined acc9rding to the selec;t:ed cri terion 

used. The __ variables selected for inpu,t are essent~ally the .. 
\ 

same as used in re~ression analysis, and are believed to be 

pertinent irt accordance with the current vOlcan~ic thinking 
't 

on massive sulphide formation (Sangster, 1972), and ta sorne 
1 

extent with the c1assical hydrotherma1 the ory of Lindgren 
1 

(1933). Of the' criteria avai1ab1e in the S.P.S.S. prograrrune"-
, l 

Discriminant, bath the Wi1ks and Maha1anobis methods are used. 

In the former, the s,electlon criterion is the maximization 'of 

the 'overa1l multivariate F-ratio for the test of differenëes 
" 

among group centroids, and in the latter it is the maximiza-

tion of Mahalanobis' distance between two closest groups. It 

should be pointed out here that the ranges used are 50mewhat 

arbitrary, in particular for those groups that have only one 

reference cell in them. When an unknown case i5 predicted as 

belonging to a certain group, it is done so with reference to 

the averag! endowment existing in that group rather than the 

actual range used. And for groups with only one reference . 
cel1 in.them, it becomes a single point situation regardle5s 

of the 'range used. I~ an unknown endowment cell is predicted 

ta fall ;~n the group with only one known endowment reference 
. 

ce,! 1 , then the prediction made i5 for an endowment valu~ equi-

valent to that contained in the rdference celle 

1 ~ 
~hese are defined in the ~~xt section. 

... 
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9. S Discriminant Results 

9 . SN 1. The 2 - Group Mode l 

'\ 

If the mere presence or absence of known mineraI en~ 

dowment is assurned to be à dichotomous function of a quanti­

fied geological ~nvir~ment, a two-group discriminant functi~n 
\. " 
\ " 

can be calculated from -'the endowment-environment relationship 

to distinguish between potentially favourable and unfavourable 
• 1 'f 

areas within ~at environment. This assurnption circurnven~s 

~he postulate used in regression and multi-group discriminant! 

analysis that both the presence and value of mineral endowment 

are a function of geological relationshigs. When the sample 

size is sma'll, a large nurnber of relationships cÂn be jointly . 
incorporated in a single two-group discriminant function, but 

without the ability to distinguish between various levels of 

endowment richness. "In such analyses, the endowment if fore-

cast will be at least equivalent to that contained in the cell 
1 

with the minimum known endowment. tn any case, in terms of 

the presence-absence of end~wment,~the results' from the two -' 
group function should be compatible with those obtained by 

regression and multiple discriminant analyses. 

The two group function is also an eff~cti~e means of ~ 
, 

delterminincg the conunon~ess o~ ore forming processes as present 
, -!';' , 

in the endowment bearing cases. This knowledge can then be 

used in evaluating and eX~la~nin~ the results obtained in a 

'multigroup analysis. 
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Discriminant analysis the pre- .. 
} 

sence-absence of endowment as the criterion the f,ol~ . 
lowi~g set of variables: 

AREA 2 area of tuff, agglomeral:: 

AREA 3 , area of rhyol,ite 

AREA 4 rrea,of andesite, 

AREA 8 hréa of diorite, gabbro 

AREA Il area of granite, granodior'te 

CNTL 6 contact length between & AREA 3 

CNTL 10 contact length between & AREA Il 

CNTL Il contact length between & AREA 4 

CNTL 13 . èontact 1ength between AREA & AREA 8 

CNTL 15 contact length between AREA AREA Il 
(-, 

FOLT l fault length, EW to NE 

FOLT 4 ~~ength. NW to EW 
j to' NW DYKE dy e length, NS 

DYKE 4 dyke 
,.., 

length, NW to EW 

~ It should be noted that the above list,coritains a \ 

number of var,iables l that have not shown âny sign'ificant re- 1)-) 1 

~ 

" lationship with endowment value, either in factor or in re-
"';Il 

gression analysis. They have be~n included to compare result5 

u~ing~.the 'four options 2 available in the S.P.S.S. programme 

'1 I.e., AREA 2 AREA 4, AREA Il, DYKE 4. . 
,.; .. 
, , , 

" 2 ,'{i~ ire~'t Meth<;>d:. a~l. variab~e 'a::e. entE~re;d [conr 
currently reg - dless of the~r ~nd~v~dual d~scr~rn~nat~ng powet. 

J • 1 

(ii) Wilks Method: the variable which maxirnizes 
the F-ratio and thus minimizes Wilks Lambda, a rneasure of 
group discrimination i5 entered first. 

, ! 

1< 

" • 

1 

t 
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1 

, . 
Discriminant. For this purpose, no inclusîon level is speci-

fied for the variables' 50 t~at'each optio its 

" own criterion in the selection of 
(l 

i-
~ ,., ~ , 

nant t'unct;ion. This is then used as guide for selectinE th~ -rnost effective op~~on. 
,-

The direct rnethod uses". all variables s'irnultaneou~ly. 
'. . ~ 

their standard ... These are l~sted below in decreasing order of 

'\ ized di~crimin':nt! function coef-tiGients. T~'e coeffici.:mts 

have been converted into percentages of theif absolute values. 

Variable Standardized - Va;riable Standardiest 
Narne Coeff % Name Co~ff. % -1 

~NTL 10 -lS.l FOLT l' -3.7 

YKE 3 -14.9 A~EA, 8 -3.5 , " 
-' AREA 3 -13.6 DYIŒ 4 3.3 

CNTL 15 12.5 AREA 4 1:-5 

CNTL 13 8.5 AREA Il .!' -0.04 , 
FOLT 4 -8 .. 0 

CNTL 6 -5.5 VI 

AREA 2 -5.4 

CNTL Il) -4.1 r-
"\ 

(iii) Maha1anobis Method; th~ distance between the 
two c10sest groups is maximized. 

" 

(iv-) Rao Method:, "the vari~le se1ected for inclu­
sion is the one that contributes the 1argest increase in Raols ~ 
V, ·resu1ting in the'greatest overal1 separation of ~he 'groups • .. 

" 

l' 
i ' 
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In a two group,analysis, there is only one discrimi­

nant function accoun~ing for 100 percent discrimination. The 

standa~dized coefficients of a function are measures of the , ... 
. discriminatory powers o~ the variabl~s. This statement is 

"v amplified later in ,this chapter: 

~ The Wilks, Mahalanobis and Rao methods use their ~ar-

~cu:ar c~~te~ia' in the :electicn and inclusiori of,independent 

variables in a stepwise procedure~ However, for the two-group 
1 " analysis, the ca1cu1ated discriminant function/is exact1y the 

( 
,~same in eac~ "met~~~~ This ~ou1d not be taken as a gener~l 

rule. VlheJ;1 the iri'c1usion 1ev~ls are specified_~"a 9riori" ,. and 

Wh~n'there' ar~ more than two gro~ps, the fo~cast results by 
L ' • 

the t~ree s~pwise methods may not be the s 'e .. ~In the pre-

sent case, the following variables ~re inliuded in the dis-

t: ~/ . 
meth d. Thés~ are listed 

ab otute standardized con-

criminant.function by the stepwise 
, ' lIï; • j 

below in ~escending .Qrder of, their 
, . \ ' 

tributions to the discriminant function. The figures be~ow 

, represent percentagé~ of the total for better comparison. 

t' 

Variable Name Standard;i.zed C'oefficient Value (%) 
\l 

AREA 3 

j DYRE :3 
~- ) r 

t\ CNTL; la. 

~"eNTL 15 , 
FOL'!' 4 

} 

\ " 
- . 

24.3 

,21.6 

" 'f 

19.4 , . " 
-15.3 >\ -.r Il.'2 , 

CNTL 13 - 8."'3 
r-

l' 
.'r 

\ 1 

-' 

~ 

)01 
" . -, 
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-
As a result'of the stepwise" procedure, 'pn'lyl s,ix vari-

1 ,- , ~ 
.ables are included in the function ins~ead of the original 14 

used in.the Direct method. 
~\ . It is eas!er to observe,t~e rela-

tite contrib,utions of the variabtes in a reduc~d space. 
~, t: 

sh6wn for ,the predicted 
~ \ 

in~cates presence and 

In Table 15, resulf~'" are pre-

sence of mineraI endowment. One, zero, 
/ 

absence. The table inèludes the kni~endowment cep1s, but 

does not include those cells where neit~r a knb~ nor a fore-

cast endowment exists. " - .. J .... , 
t. 

From the table, it is seen that despite different è~ 

criminant ~unctions, the results obtained'with both the direct 
fla 

and the stepwise metfiods are comparable. The on~y differen~e 

is that an endowment occur.re~e is forecast in cell 1050 by 
" " 

tpe direct method, but not th.~ejfis~ method. · r:- 1 0 ~t is of particular ' terest at this stage t~'~bserve 
• • 

that no endowment is foreeast for cells 1013 and 1042, eaçh of 
4;, ~~ 1. 

which is a reference cell ~itm7a known endowment. The~alid-

" 

ity of a discriminant model i~ediat~l~is suspec~if ~e k«Ow 
.. • () q 

endowment cell~ cannot~be predicted. It is possible that the 
"" . ,...... '. 

cells discrimina~ed do not necessarily aIl c~me from-the same., , 

pdp'ulation. In' other/word~. i~.' sphè of r e ."rel:'ti v; sm,a1'!nes", Ji 
, of, the 'studY region 'and the"9 belief~ttat aIl vÔlcanog1mic,,'actd- f ..' . . \ ~ ri t 

',vi~y related to massive suiphioe formation was confined there-

in, t~e ·possibi'lity 'cann~t ba r'l:}.lfd out that individual cells 

• dq not aH exÎüb!'t the Sarn",geOl~giCal\rnVironment of' ore gen-' 

esis. Ano~er possibility is that the set of variables 
, 1 

"', 

~. 
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TABLE' 15 ~ 

PRESENCE OF, ENDOWMENT.tS ,FCwECAST ~TH A 2-GROÙP â 
DISCRIMINANT FUNCTI~ USING DIREC~AND .T~WISE ME'HODS 

l '1 
:;: , tfft 

-~ 

direct Method jIr Stepw.ise Me~oft 
Ce11 No. Known 

... 
For~cast •. Forecast " 

');, 
~t ,.. 

~ 41 ~ ,ç:r 

100~ "" 0 l' 1* t l"t '" - .# 101). , 0 1 1* 
"il .. t!{)13 . fi; l 0 .. 0 '" ' " ~ 

1 .. 
_'1~ 

.,.. 
iIJ • •• , 

, '~~ . 10~ ~' l tp i Qrt. - '" ,,1 1 

. ', . 

1021 ; ,-~ .... ' -~ 1 .. ... _ .. 
.a 

*1023' ... 1 ~ 1 -. 1 

• ~7 0 
il! 

1~ 1* 

~ 
,.,., • 102.9 1 .,. 

,,~ .. • 11 .. 
.) ('" 

.. . _,.. J', 

f, .- " ~31 O· .. 1* ,l, .- •• ~ " " 1038' 1 .. 1 1 , la. 
, ., ~ .. ., 

-1 '" ~ #1 • ~ 

'" lOf- a 1 ~ 1* 
fit Jli.' , 

~ 1042 1 a 
~..t 1 

.:t 1* . 1049 () l-
I:, 

1050 0 .., 1 0* • 
1053 01 1 1* 

r 
\ 

~ 

1. .. i 

*Ce11s indicating endowrnent potentia1 by direct and/or stepwise 
, jlethod-. 

. ) 
J 

; .. 

, "1 

Û, 

~ 

/ 

, . 

, ,.. -.., 
:P 

"'" • 
~ 

.. 



y 

) 
r 

A 1 .. 

initially selQCted are not the best. 

To claiii~~ the anoma1ous situation of cells 1013 and 

1042 referred to above, eight,stepwise discriminant runs were 
i 4 

made as before with the same set of variables, using the Wilks 

and Maha1anobis criteria separately. However, in each run, 

only one reference cell' at a time was input as endowment bear-: . , 

ing, and aIL others were arbitrarily assumed to hav~1 zero val­
. \ 

ues. The Wilks and Maha1anobis rnethods give exactly the same 

results. These are shown in Table 16. 

It is se en from the table that each known endowmeq~ . 

cell wheTh input as such is able to be predicted as endowment 

bearing with a probability close to one, except ce11 1029 

which has a probabi1ity of 0.86 and ce11 1042 which has a pro-
/ 

bability of 0.58. The refer~nce cells a,ssigned a zero endow-

ment value which are predicted by the 'other referen'ce cel1s . 1 

are as follows: 

" 
" Cell 1038 predicted by cell 1016 , 

Cell 1029 predicted by ce1l 1021 

Cell 1021 predic)ted by cell 1029 

Cell 101:3 predicted by ce11 1042' 

Cel1 1021 predicted by cell 10,42 
~ Cell 1029 predicte'd by cell 1042 

The prediction of endowment in cel1s with na known 
1. J ..... t .. 

endowment'is not relevant at this stage of d~scussion. 
.. . .. ) 

. When a partiou1~r cell is assumed ~o be barren but 
r 

has endowment predi~te~ ~Y a_~nown endowment cell, the 

~ 

l 

/ 

1 
1 

/ 

," 

; - , 
1 

;' 
/ 
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TABLE 16 
"'\. 

ENDOWMENT AS FORECAST USING'ONE REFERENCE CELL AT A TIME . .') , 

IN A 2-GROUP DISCRIMINANT ANAlYSIS 

Ce11 Known 

Particu1ar reference ce1l used in discriminant function 

1013 1016 1021 1023 ,1029 1038 1039 1042 1-
'NO. 'Endowment '" 

. ." 
1003 0 1 
1012 0 l 
1013 1 0 
1016 1 l 
1021, 1 1 
1023 1 1 
1027 0 1 
1028 0 0 
1029 1 , 1 
1031 0 1 
1032 0 0 
1035 0 0 
1038 l 1 
1039 1 . 1 
1041 0' 1 
1042 r 0 
1049 0 1 
1050 0 0 
1053 0 1 
1054 0 0 
1059 0 0 

;., 1 

II1II '1 • 
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TABLE 16 
(CONTINUED) 

co ~ 
f' 

, 0 

, . 

• 

'\ 

Notes: • • 

l­

I 
! 
! 

.' l 

y 
(a) 

(h) 

(c) 

'/ , 

~-

The table includes ,results for known endowment reference 
the presence of endowment is indicated by a discriminant 
table includes results of disqriminant analysis in which 

cells Ind fqr cells in'which • 
run. ~or comparisop, the 
all referenpe c~ll3 were in-

• v 
put as endowment bearing. ~ 

• . 
The presenae-of endowment is indicated by'one and its absence by ~ero. The figures 
in parentheses are the probabilitiesiissociated with the occurrence forecast of endow­
ment. 

~ 

" 

• 

A stepwise discriminant analysis i5 used in which the Mahalanobis and 
are used ~eparately. The results obtàined are the sarne in each case. 
inpu~ are: AREA 2, AREA 3, AREA,4, AREA B, AREA Il;.CNTL 6, CNTL 10, 
CNTL 15'; DYKE 3, DYKE 4; FOLT 17 FOLT 4. 

wilks_ criteria 
The variables 

CNTL Il, CNTL 13, 

\.' ~, 

" 

, . 

.. 

1 

1 "'" • t 
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similarity of d~scriminant function scores between the cells 

is indicated. When the discriminant function applied includes 
..'4' • 

var~ables that are pert~nent in accordance with accepted ore 

genesis concepts, and if these variables' are relatively heavily .... 
weighted, then the function i5 an important one with valid re-

sults. On the other hand, if ,the discri~inant function car­

ries one or more heavily weight~d variables that may be, pecu­

liar to the known endowment cell used as a "present Il input, 

but'whose ~ole is not believed to be i~portant in ore genesis, 

then both ,the function and its predictions require a deeper , li' 

examination to determine if the uniqueness is fortuitous or 

~represents a different geologica1 environrnent, or if there is 

sorne other explanation demanding additiona1 investigation. , 

It is against this bapkground that the eight discrim­

inant functions obtained separately in each run described 

above are discussed. Further, the va1idity of the unknown 

endowrnent ce1ls forecast to be endowment beàring 'will be eval-

uated accordingly. 
; 

The standardized discriminant function coefficients 

calculated for eacp run with one kn6wn endowment cell input 

aS'à "present" case are shown in Table 17. As before, the 

discriminant co'effi~ients have been convetted into percen'tages. 
t 1 

In jthe eigh1=: functions shown in Tab/~e 17 the mos.~ 

commonly selected variable is AREA 3 (5 times)J followed by 

CNTL 15 and DYKE 3 (4 tirnes each) , and CNTL 6, CNTL Il, anù 

Ç~~~~l~ (3 times each). The remaining variables, regardless 

\ 

\ 
, \ 
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TABLE 17 , 

.. l 
RELATIVE CONTRIBUTIONS OF VARIABLES TO THE 2-GROUP DISCRIMINANT FUNCTIONS " , , . 

US 1 NG ONE REFERENCE CE'LL AT A TIME -
~ 

,1 

'. 

AlI Particular reference eell used as showing endowment presence Reference 
Variables Cells 1013 1016 1021 " 1023~ 1029 103B 1039 1042 Input Input 

-.. .. ~ ,-
AREA' '2 .... . 9. o-~ ~ - ... 

rj 

AREA 3 24.3 23.7 42.2 -B .'1 -29.9 11.9 

, AREA 4 - c '- 17.5 9.0 
AREA 8 9.~ -, 
A~EA 1·1 38.8 ... 
CNTL 6 ~ -B.O 7.8 -21.7 

CNTL 10 19.4 68.0 1-

CNTL Il Il.8 16.8 -20.5 

CNTL 13 -8.3 -59.0 -29.5 -8.2 ., 
- ~-

CNTL 15 -15.3 -11.4 -21.9 3.8 13.6 ~ -) 

DYKE 3 21.6 11'.3 39.3 82_5 ~ -=- ~ " 100.0 
-& DYKE 4 -~.~ 8.4. 

:......----
FOLT l, -8.9 -7.A 

FOLT 4 ,h Il.2 . '" . -9,.9 ' -19.5 

'", 

lSee Table 16 for discriminant results: and text for detai1s. / 
~ ... N 
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of their weightage are local to the particular known endowment 

cell/used in the analysis. 

Each known endewment cell when discJ1iminated ·indivi-
1 

dually has its own discriminant function. While the sarne vari-

ables may be included in seyeral of the functions, the discrim-

inant coefficient varies. Thus each variable makes a unique 

contribution to each function. When aIl the knewn endowment 

cells are simultanèously input as showing the presence of en-

dowment, the resulting function is affected by the ~trength 

of the discriminant function coefficients as indicated in their 

individual cases. In addition, some~riables may be elimi­

nated even though locally in ~he conJ1rned individual fun~­
tio?, they are heavily weighted. Thisrexplain~ why ~llS 1013 

and 1042, both endowment bearing, .are net forecast as such by - ~ 

'the two-group discriminant function when aIl referenc~ ce Ils 
1 

are input as showing the presence of endowment. 

Cell 1013 is fereqast as belonging to the "absent" 

endowment group with a probabi,lity of 0.684, and to the "pre­

sent" endewment grdup with a pr.obability df 0.3Î6. The pro­

bability figures for cell l042,are 0.654 and,'O.346 respective-

ly. 

It is seen fro~ Table 17 that CNTL 13 centributes a 

pr9deminant 59 percent te the cell 1013 function. However, 

the contribution of this variable:is only.8.3 percent in a .. 
discriminant function based on aIr eight reference cells • .. 

1: 

., -. 
1 
r 

,1 
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" 
The larger l discriminant function also includes other vari-. ..--
" 
ables not present in the cell 1013 function. This therefor~ 

results in the absence of a Iforecast of'endowment in this 

cell, .although with o~ly a moderate probability becau~e the . . , 
larger discriminant function aIso includes aIl the variables, 

present ln the cell 1013 function. 

The, situation with cell 1042 is rather e~treme in 

the sense that its discriminant function 'is composed of just 

one variable, DYKE 3, the NS to NW trending dyke length which 

accounts for 100 percent of its discrimination. The larger 

discri~inant function which includes the joint contribution 

of the relationships of aIl other endowment bearing cells ,also 

~~Wincludes DYKE 3, but the weightage attached to it is only 21.6 

percent of that ,for aIl the included variables. For this rea-
~, 

son, it is not possible for cell 1042 to be predicted by the 

,larger discriminant function. 

A~so, since th.e presence of endowment of the type ex­

hibited in cell 1042 is forecast on the basis of the presence 
, 2 

of one variable alone, therefore, every cell that has a mea-

sure of this variable commensurate with its score in cell lOA2 

will show the presence of endowment, even~ though under 

1 
l h 1 d'" f ' f t th t b T e arger 1scr1m1nant unct10n re ers 0 a 0-

tained using aIl e~ght reference cells. The results obtained 
with the funêtion are also included in Table 17. 

2 l • e ., DYKE 3. 

, 

1 
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theoretical geological concepts, this should not be possible. 

The predicted endow.ment in ce~ls 1003, 1013, 1021, 1027, 1028, 

1029, 1041, 1042, 1050, 1053, 1054, and 1059 using cel1 1042 

are aIl a resu1t of the presence of DYKE 3. DYKE 3 is a post 

ore event, and a~ has been stated ear1ier its role has not 

been fu1ly reso1ved. There is no doubt, however, that most, 
( 

of the known ore deposits in the' region lie adj-acent to this 

variable, or converse1y, this variable appears to be spatially 

associated wi th most of the ore deposits in ~the region. The 
Ir 
correlation of DYKE 3 with endowment is so high that to avoid 

fGrtuitous predictions, its role has to be contro11ed in any 

stepwise analysis. 

Another variable that deserves attention at this 
~ 

stage Es CNTL 10, the'contact 1ength between AREA 2 and AREA 
• 

Il. This feature is unique to endowment occurrence in cell 

1023, carrying a 68 percent weightage of ,the variables in the 
, ,,- of 

concerned function. The relationship of this variable is 50 

strong with endow.ment~in cell 1023, that it becomes almost 

impossible to make a prediction of the presence o~ endowment 

in that cell without inc1uding t~is variable. And because 

this variable extends, into ce Il 1031 on the south f the strong 

relationship result~ in a prediction of endowment there. 

Cell. 1021' s function is dominated by DYKE 3 and-AREA 

Il. ,Both these fèatures are local to the ce1l, in particular, 

AREA Il. This cell predïcts presence of endowment in the 

known endow.ment cell 1029, a cell that also has a function 

-e 

l ' 

: b 

1 
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domina ted by DYKE 3. The unknown _endowment cells 'predi(ited 
( 

to.contain endowment b~ cell 1021 are, cells 1027 and',03S, 

, J' both rich in AREA Il and containing 9YKE 3. 
/ The conclusion from the above set of runs i~that 

the known endowment Ci/lIS do not exhibi·t exactly th 

geological environment and therefore they m~y not a 

," ta the same population in a strict statistical sens 

1 

same 

belong 

It is 

", 

" ..- ----....J. 
possible that sorne o~ the ore deposits in, the region are~~~ . 

sociated w~. different statigraphic levels ~f 
sarne type of rocks, indicating an interruptive 

basical)Y the 

type of erup-

" }tive'geo~ogical activity. What ,is :r:equired therefore "is sorne 
1 

kind of discriminating function that can predict aIl the known 
~ v 

éndowment èases or at léast rnost of them, sa that a greater 

credence can be attachedto the predictions made in the un-
A 

known endowmentocells. To do this requires rnanïpulaning the 
• 1 

forced inclusion of the variables believed to be fundarnental-

ly associatedlwith ~~e occurrence as part of the discriminant 

function. 

The above set of runs also makes the analyst aware . 
of the spurious predictions that are likely to be made, e~.g., 

1 

cells 1027 and 1035, or cell 1031. The role of the respon-
b , 

" 
r sible variables in' such cases can therefore be controlled. 

9.5.2 Other 2-Group Discriminant Functions 

,r 

A set of three two-group discriminant analyses was 

I! 

\ 
-_._- ------"- -_. __ --I •. ~_. 

w , 
" 

, , 

! 
" 
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Il 

performed using pre~specified incl~sion levels of variables 
o 

in two and an equal inclusion level ih the third. The vari-

ables selected for discrimination are believed to be the most 
~. 

pertinent to the endowment in the region, and their inclusioti~ . 

. "a. order is based on subjective judgrnent in line with the accept-

ed thought on ma,Ssiye .sulphide ore genesis in the region. " The 

analyses were made using the following variables . 

, n 

Flrst Analysi,s: 

• 

AREA 3, CNTL Il 

CNTL 6, CNTL 13, AR,EA 8, FÇlLT 4 

CNTL., 15 

CNTL 10, DYKE 3 " 

• 
Second Analysis: AREA 3,. CNTL Il 

V CNTL' 6, CNTL 13, AREA 8,. FOLTt4 

CNTL 15 

~TL 10 fi 

Third AnalY~is:2 AREA 3 .. AREA 8, CNTL 6, CNTL Il, 

CNTL 13, CNTL 15, FOLT 4 

r ' < 

In the above.listings, the top row is assigned the O~ 

highest ~nclusion level fol~owed by decreasing inclusion lev-

els in the lower rDWS. 'Where two or more variables are ~hown .____ -~~- ---- '---l' .. '0' -Ct," 

to be,in thé same row, they have an eq~al inc1u~~~n-level, 

and the order in which they will enter the discriminant func­

tion is, based upon the Wilks or MahalanObiq~ c:iterion fe­
lected-. The standardized d,iscriminant function coefficients 

"' 

-------------------'~ 
'-

l~he results obtainéd 
-; / 

are ident1cal in both cases. 

ables in 

2 An equal 
the third 

.. 
inclusion levei is~ specified for aIl vari-' 
analysis. t 

\ 

. , 

) 

. ! 
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, ~-

are shown in Table 18 for thè three analyses. These are ex-
~ . 
pressed ~n terms of percentages of their total absolute value . 

... ~ .,.1 • .. 

Of the .five variables constitut.ing the discri.minant function 

in the first analysis, the highest con~ribution--is mad~ by 

DYKE' 3 in spite of the fact that this'~ariable had been as-

signed to the lowest inc lus ion level along wi th, CNTL 10, }tIhi~h 

also makes a high contribution, almost aszmuch as, that'of Ithe 

second hi·ghest contribut;0r,t AREA 3. 
J' . 

DYKE 3 is omitted from the secon~ analysis, and as 

such, there appearS to be an increased contribution by the 

remain~n~,four variabies, the highest 

10, -and the maximum ïncreasB in value 

contributor being CNTL 
l../" ' 

b~ing" ShO~ by FOLT 4, 

a feature that is probably, evidence of its relation~hip with 
\~ 1 

DYKE 3. 

In the third analysis, both DYKE 3 and CNTL 10 are 

omitted, and despit~ the same inclusion 'l~vel, no fresh vari~ 

able is included in the equation. ARE A 3 shows the highest 

increase in value and makes the,~maximum contribution .to the 

function. 

The roles of CNTL 10 and" DYKE 3 have been discussed 

previously.l CNTL 10 i5 a very local feature in cell 1023, .. 
and since it is absent in all other known endowment cells, 

1 . 
it is bound to be highlighted in a dispriminant function . ...... . 
DYKE 3 carries a strong spat:ial correlation ,wi th m.ost( o'f the 

~C> 1 < J~ 

1 
1 See Section 9.5.1. 

1: 
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TABLE'18 
~'->~ 

sTANDARDIzED, DIsèRI~;NANT ~UNCTIO~ 'tOEFFICI-ENTs 

,- DYKE • 3' 
ft '\. 

. 
FOLT ;4'i' 

~ J" .. 

. . 

,I 

IN 2-GROUP" ANALYSES 

·.First .. 
Analysis 

-l6.4 

25.9 

13.0 

.. 

Second 
Analysis 

29.9 

30.4 

'1$ 
,< 

,~ ..... 'ü 

f \, 19.1 

\.., ': 

Third 
Analysis 

'47.6 

-\ 

--25.'6 : 

26.8 
1 

• 
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• r '. 

IThe ,coefficients are expressed as percentages, indicating' 
'their relative contributl~ns to t~e'discriminant func~ion.' 

" f' 
~ 'f ' , ,1 

• .. 
.-<.,. 

• J Î 

\ 

è-
1 J 

'-, ,-
-(1 • . 'f 

0{ # :... 
.. ., 0 ' ~ 

-

t . ,-
. , 

eo , .. , ~ 

{-
~ 

II' 

,'li 
.( 

\ 

\, 

\ . 
,c 

. , 



r 

r 
1 
, 

~ , 
f 
t 

1 

1 
! 

: 1 

./ 
// 

.~ , 

( 

~ 

,- , -~)~ ... :---: "1 

" 

, 
• 

" 

known ~ndowrnent cillS. Therèfore, {ts contribution is dis-
1 

proportionately high. 
\ 
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.. The predicted values obtained "by the three run.s are 

shown in Table 19.' T~~' ~e~:ts are shown onJy for :hose cells 
, . ~ 

that are known to be endbwment bearing, and for those unknown 

. endowment cells in whicn endawment has been farecast. 
F ..... 0' • 

~ . T~rim~5Y ~vid~nce of a gOdd '~scriminant function 

'is .that i t should corr(1!ctly classify "tlhe maxilpum .u:we.r:: of· • 
J \. ' 

known cells. ' This is accomplished by' the first "ët1\.alysis wI:ich . , 
correctly éraS~ifies aIl the know~ endoWI1fnt;, cells ex~ept éell 

1042.
0 
H?wf~r, the ornis~ion, of v~riable .DY~ 3 in the second 

"ana1ysis results. i~ ceil 1013, 1021, and.l029 being misclassi-
.. 'J,"" 

fied in addition to cel1 1042.,. The results from thef second 

anal~~is thérefore ~re, an~y with reference ta the rema~ning 
f<Ol.lrf'knawn endQwrnent cells', Le., cells 1016, 1023, 1038, and 

" 
1,.. 

10'39. In actua1 effect, the results ,r~ with reference t<? 

onry ~hree ce11s ~ec~use, fe11 1Q23 

c1ose,as~ociation ~ith'CNTL 10. 

is uniq'ue 

\, 
~n.having a very 

Tne omissi9n of both CNTL 10 and DYKE 3 fram the ( 

th~r~ ,function ~esu~~in the restoration of cel1 1013 as 

showing th~ prese?ce o~ endawrnent, b~'becaus~ of ~he absence 
f ~ . , d 

.' 'af CNTL '10, -oe11'10.23 now shows an absence' of'endowrnent. 
Î • ,.., • 1 

• ~ ~ . 
l " .... - The above desc;ribed changes brought abou.t by om~ tt~ng 

"~ a certain- V'~riable ~~e evidence of,rthé str.ength and' weakness 
<4 --

~f\~iScriminanü analysis. ~ therefore emphasizes the imp?r-

• (l;!,tance of selecting the "best" variables. The fact that the .. 
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" TABLE'19 , ' . 
1 • 

.' , 

, ,PRESENCE OF ENDOWMENT AS FORECAST BY 
, 1 

~, 'l-GROUP DISCFHMINANT ANALYSES , . 

Cell 
• u 

\~ No. 
-(Anal:isis 

, 
No . 

""" 2 ,3 
f 

( 

1002 "- "' .\ 

1(.655) r 1 ( • .,758) 

,1003"- 1(.840) 1(.653) 1(.756) 

1007 J _ .1 (.555) 

106'19 " , 1(.512) '1(.647) 
1 '" 10l!2 1(.685) ~1 (.753) 

" 
1(.829) 

1013 \ 
1016 ~ 

1020 

~(.169)· " O(~) 1(.592) 

1(.527) 1 ( .782?<,,, 1(.848) /' ~ -- ~ 

~ "" 
".1{.569) . . 

1021 ; . 
1023 

1(.771) 0(.\904) 
Il 

0(.816) 

1(1.00) 1(.999) O"~. 79 3) 

c 1027 
~ , ---1(.790) .. 

'-
1029Q 

,1031 

,1032 

1(.997) 0(.796) 0(.664) 

1(.959)", 1{.969) 1(.687) 
( 

\, . -: \- 1.(.515) 1 ( • 6'49) 

1038 . 1(.987) 1(.9,6) 1(.978) . . 
103~ 

1 

1041 

1(.989) 1(.989) ~(~. 986) 

l, ( .977) , 1{.628) 1(.738) 

1042 0(.629) 0(.828) o (~706) 
1045 1 (.551) 

1046 

1~9 
- 1(.506) 

~:847) 
, 

1(".578) 1 (.855)...? " 

1053 1(.824) 

'lit 
1 

f lon~ indicates.endowment presence ?nd zero, absence. Figures 
in parentheses indicate probabilities associated with predicted 
endowm~nt_presepce . 

• 

.. 

,( 

. 
" 



.,( 

" ' 

, , 

. 
1 
l: ( 

o 

"f: .. / F­
I 

M l , ___ ~~"" ..... , ..... _. __ ,;""' .... _4_ ... ' ... __ ........ _,U. __ ._--r-- - ~.- -- -,--- ..... ---*I----f( 
( 

248 

". ". 

enàowment in ~ertain known cells is classified 5 being pre­
e 

'" sent or absent by the inclusiqn~r omission 0 sorne variables~ 

indicates"that al! the "member-s are not dra 
" 

~ Ç", 1 - 1 

parent pQpulation in a ~tatistical sense. 
\ . from the same , 

Cell 1023 is per~ 

haps the best example in this regard~be ause the endowment 
l' ~ 

ass0J'c{~ted with the 9~1'0s unique in eing associated with 
1 l ' 

,tuff and agglomerate (AREA 2) and nyi with rhyolite (AREA 3)' / 7 ~ 
later. 

. -

a's in the other in'tance.~>._ Other imPlicat, iO~, s ar,e discussed 

, In Table 19, ail th~e analyses 1nd1cate prob~ility 

of endowme't ,in 'cells 1003, /1012, 1031, 1041, and 1049; two 

of the three runs also pr~~c~ endewment in cells 1002, 1009, 

and 1032. None of th~sl cells has any knewn endewment asso­

c:ated with i ti of th,9'e, <'" cells 100 2, 1009, 1012" J,04l, and 

1049 have af.so b~en~redicted as prebably faveurable cells by 

, l' lH '1" d regress1on:ana ys. owever, regress10n ana yS1s oes net 
, ~,' . 

~redict endowme . in cell~0~31, and 1032. ,Also, ce Ils ' 
.. 

1010 and 1033 redicted as very favourable by regression, are 

net den?ted ~s favourable'by the three discrimin~nt runs shown 
/ 

, _. 1 () 
~in-Table ~1. -This latter situation is b~ter understood when 

• 1 

it is se~n that of the knewn ~ndowment cells 1042 is no~ pre-
l , , 

dicted te contain endowment by any of the three runs, ce1ls • , . 
1013 and ,102'j by one of the t~re~ runs, j_a~d cells 1021 an~,1 

102,9 by two of the th~ee runs. When t.hese cells are not··· 

\ 

, 
----,- _ t F rt pt ~kl 
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\, 

~redicted as endowment bearing, then those ce~ls bearing sta­

tistical similarity with them, e.g., cells 1010 and 1037, will 

also not be .predicted. 
-, 

The above cri ticism s.hould not detrac/t ,tr~ the uti-
. 

lit y of a 2-group analysis, particularly when the general eh-

vironments associated with known ore bearing cells do not de-

viate to' an extent that the discriminant function)fails to 

classify them properly. From this point of view, the two­
A 

group discriminant function should workJefficiently over areas 
, '" 

the geology of whiqh is not ~omplex, particular+y in term~ of 
/ / 1 

more than one or tw~ ~ycles of,pr6ces~es. It should-~lso work 

weIl at a reconnaissance level where the smaller scale of map-
JY 

ping does not de termine the more complex and local features 

of geology. 

"'---, 
':----. .4 " 9. 5.3. 5-Group Discriminant Analyses ~ . 

~. 

,1 

The following groups are selected for the fir~t five-

group set of analyses. The selection of variables and their 

ünput order is made in accordance with their pertinence as ex­

Plained~~lup discrifuinant ~a!yses. The known endow-
f' 

ment cell~that uhe groups represent are also shown,below: , . ,) , 

. , 
1 



( 

'f 

Group No. Range of Value ($xl0 6 ) 

.; 

1 ~:J 0 < 10 . 

t 10- 50 .. 

2 50- 500 

3 500'-1506 

4 > 1500 

It has been ~~ted earl~er 

/ 

I--~:"'--' __ ' 
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luded Cell Nos. 

Il unknown endow­
ent cells. 

1023, 1039, 

the range limits are 

t:aS~d on pragmatism. For 

only one known cell each, 

such 

the 

, 

#3 and #4 which h~ve 

rang # become,~. practically mean­

cas s fa11ing within these groups 
/' 

ingless oecause aIl predicted 

refer to the specifie endowment in the single cell com-

, pos ing the' group. ç"" 

T~e f,ollo~ing variabl input in the three anal-

yses to be described. falling in a row have the 

sarne inclusion level, while the lower rows have re-

spectively lower inclusion 
tI . 

ANALYSIS ~n: 3, CNTL Il 

6, CNTL 13, AREA 8, FOLT 4 

15 

3, CNTL 10 

ANALYSIS #2: 3, CNTL Il 

6, CNTL 13, AREA 8, FOLT 4 • 
15 ... . 

f 

10 

.. 
, .. -

4f 

1 
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1 

~ .. 
ANALYSIS #3: AREA 3, CNTL IL 

CNTL 6, CNTL 1'3, AREA al-roLT 4 

CNTL 15 
1 

/ 
, (' 

_ c -- ... The discriminant function coefIicients, stan~ardized 

and conve.rted to relative 'perce'fitages, are shown ih Table 20 
\ ..., .... to -.. ~:: ... ~ 

for the three analyses. . . . - . 
The' difference in the three ana~yses ,i's that whil~ 1 .. 

the first. one incl1J.~e·al]:·the 

analysis d~ès' :nq_t:~~.~lûde DYKE 

.. 
input variables, the sed:md. 

1 •• '~.' • 
1 .". 

3, and .the th,!i:"rd var ian ·f: ex-

cludes DYl<E 3 a'nd :ëNTL 10. Of the four-' di5~~±trtinârit -.t'urictièns .. 

extraçted in each-of' the t~analyses, ~able 2i.ihows,re •. ' 
..:a.q -

sults. ba~e~ on the first functions in each case. In the ,fir~t 
'." h- ....- ~ .. 7\ 

analysis, ,the first... .. Junction accounts for 42 percent of l:he~ . 

-- - , l' :" \ f h ·d· 1 • ". 51 cumu at:tve ea.genvalues, or·t e secpn 'ana ys~s, _ p.erc!en.t, 
... 

and for the third,analysis, 65 perce~t. The i~pliéation i8' 
'r -

thaJ the ~est ~esul:ts ,are obtained in the third case. All 

three res~.s_are compared in Table 21 for both the knqwn en-
~. : ~ 

dowment cell,f;3; 'and for t.be unknown endowment cells that have 

a predicted endowrnent. 

makes 

Re~erring first tri T~~~e 

the ~igh~st contribu~n to 

20 , it is· seen that AREA 3 ' 

the discrimination in eac~ 

' .. 

of the three analyses, and that the contribution of this vari-
1/1 

able increases with, the omission of DYKE 3 and CNTL 10. Vari-
.1' 

ables CNTL 13 and CNTL 15 remain unaffected with the omission , 

of DYIœ 3 and CNTL 10. Thè roles of AREA -8,1 CNTL 6, and CNTL 

10 are significantly inf1uenced by the removal of DYKE 3. 

, 0 

1 \ --------- . , 

1 1. 

.. 

Il 1> ' 

' .. ~ 
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TABLE 20 
, 

STANDARDI1ED DISCRIMINANT FUNCTION COEFFICIENTS 

1 
, 

Variance 
il 

NéU'f\e 

AREA 3 

AREi\ 8 

CNTL /6 

.) CNTL 10 

CNTL Il 

CNTL 13 

CNT:L 15 

DYKE 3 

FOLT 4 

IN 5-GROUP ANALYSES Al 

Analysis No. 
1 2 

25.0 

4'.1 

-0.9 

Il. 8 

-0.8 

-13.9 

-13.S 

21.6 

8.0 

3.4 .1 

-2.5 

-9.9 

-'5: 9 

-1~. 7 

-13.5 

-10.9 

17.5 

3 

36.3 

-2.6 

-9.3 

-, , 
-15.7 

-12.7 

-12.8 

1J>.5 

IThe coeffi(!ients are ek,re'ssed as percbPtages, indicating 
their relative contribution,s to the discriminant function., 
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The removal of CN'N.. 10 in ana1ysis #3 dôés not appear to in-

fluence any other variable '. an 'indication of i ts highly local 
• 

and indépendent natur~. Obviou~ly, the predicted presence of 

an endowrnent when the variable CNTL 10 is present~in the fupc­

tion will bec~me suspect wnen JPe ~ame cel1 shows no predic y 

tion on the omission of :N~ 16. The on1y possible exception. 

'is a cell w~th a kn~~n endowment. 

Referring now to the predicted endowment shown by the 
• 

> 
three analyses in TabIe 21, it is seen that the most copsist~ 

~ 0 . 
~ 

ent results are obtained for ce11s 1007, 1012, 1032, 1041, anœ 
• ~ . 

1045. None of these cells originally had any known endowm~nt 
~ 

associated with·it. Cells .1007,1012, and 1041 have been • .. .\. 
c1assified as be10nging to group #2, ~.e., the $50-500 mi1~ion 

ran~e. Since the group range is made ta accommodate'endowment-. 
" . bear$ng reference ce Ils ~016 and lO)1 worth 74.48 and 244.66 • 

L 

million dollars respectively, the gro~p actualfy indicat~s a .. 
1 

'value closer to $110 million, the mean of the two knowh case~.~ , 
• 'l'hese threF ce11s have als\ b~n' predicted ·as endowrnent bea;r--

ing by the 2-group func'tiort as weIl as by the iterative r,e-
<-. , 

gression analysis. The predicted values for cells 1007: 1012, 
r 

~nd 1~4l by regressi~ are $12.4 million, l~ mil~ion and $15 
e 

million resEectively. While these values'appear anômalously 

\ high amongs~. the unknown enqowment cell predictions, ·theit 

values appear low:when cornpared to the discriminant function ~ 

,ànalyses. There are two reasons for this. 
MT 

, 

The first·is that 
• f 

the discriminant function compares the·group value as such 

• 

.' 

~"-~"'''''cNli\<\I.wt~~4~~#at.r'_ ~ 1_lV._''''_ rh,;,U~M"""'\\ÎII'l"'IIiIoI'!U""til'"",_IIMI."'."IIflj.,," ............ , ... '_ ............. tI."..~ ..... r"'~ -- ~ -:"" .-;~~-..r.-'>1~~_ • ..t~~ __ ~ . . .. .. ~. 
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... -... TABLE 21· 
( [ . , 

- . -
FORECAST ENDOWMENT GROUPS ... 

ob 

lIN 5-GR~UP nISCRlMINANT ANA~ysEs A 
.- -. 

Cell . Known Ana1lsis No. 
No. . GRP l ~ 3 .' 

1002 2(.409) 2 ( • 35'6)- ~o .0, 

1004 2(.589) 2(;584) 
100i 2(.:724) 2(.805) 2(.796) 
1009 1 1(.609) 
1010 3(.710) 3(.673) 
1011 1(.772) 
1012 2(.829) 2J .792) 2(.781) , -
1013 l 0(.513} 0(.701) 1(.904) -- .. 
1015 2 C 616) 2(.488) 2 ( :4'78) .; .... :' 
1016 2 .2 ( . 998 ) 2(.995) 2(.995) 

" 1018 3(.~19) 3(.506) 
, 1021 2 3(.577} 0(.485) 0(.464) ... 

,~ 

1022 
lP, 

3 ( . ,858) 3(.846) ..... 
1023 l 1(1.00) 1(1.00) 0(.625) 

1027 2(.609) 
1029 3 3~1.00) 3(.7.58) 3 (". 753) 

\ 

1031 1(.886) 1(.939)'" -
"If' 1032 1 (~ . .,7 50) 1 ( .930) l(.995T" 

" 
C· 71033 3(.676) 3-(.613) 

1038 4. 4~l.dO) g 4 (1.00) 4(1.00) 

1 1039 1, 1(1.00) 1(.999) 
~ 

1{.999) 
.1 " , ; 

~40 .. .. .. :.. . l (:5!f9') 
1041 .2 ( • 949) 2(.449.) .' 2(.410) 
1042 .1 1(.543) 0·( .45,1) 0(.422) 

1045 1(.818) l(.J77) ,1 (. 918) 
1050 2(.567) 

, 
-

1053 2(.S09) 

'%. • 

. 
1Fig~res ,in pa~entheses are the associ~ted ptbbabilities of 
occurrence in the parti~~lar forecast group. 'l'he results 

: (,,, for the known endowment cel1s are underlined: See text for 
details. 
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ignoring intermediate values between the groups. Regression 

analysis considers the continuum of forecast values drawing 
~'-.. 

1 t th 1 . kIl b bfi6 f' / . c oser 0 e most 1 e y va ue, ut ause 0 lteratlve re-
l:> 

,,:i' ;.-

gressions, sqme of th~ variance is lost. 
, 

While cells 1032 and 1045 are both classified as fall-

ing in group #1, i.e.,'the $10-50 million range, they are not 

forecast as such by regression .nalysis. 

Cells 1002, 1004,:1010, 1018, 1022, }031, and 1033 

have been favourably grouped as endowment bearing. Of these, 

cell 1031 can be igno~ed pecause its endowment prediction is 

strictly'related to the presenc~ ot' CNTL Idl, a variable of 

" highly local significance, and associated with only one en-

.dowment cell, 1023. In the ansence of CNTL 10 in the func-

tion, no endowment is forecast for this'cell, much like the 

case of cell 1027 which gives a high prediction when DYKE 3 
...:.. 

is present, ~ut is reduced to a barren classi~ication other-

wise. Of the rest, cells 1002, 1010, and 1033 are very fa-

vourably forecast by regression analysis. ce,lls ~,' 1018, 

- ~~ and 1022 are not. <. 

Of the cells that are predicted by - , 
only one of the 

three analyses, cell 1009 i5 also predicted by regression, 

but not as favourably as the ones mentioned earlier. 
1 

However, the problem still remains that the known 

endowment cells 102J-..J1nq. 1042 are not correctly ptedicted. 
/ ) 

This is discussed in the next· section.' 

1 ' 
1 
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c..' " 
9.5.4 5-Group Discriminant Analyses B 

The following groups are selected for the s~cond five-

group set of analyses: 
.... -

Group No. Range of Values ($xl0 6) Cells Included 

• 0 0- 10 AlI unknown endowment--
'cells ~-------lo-

1 .-

2 
li,. 

3 

4 

10- 100 

100- 5,Q 0 

500-1500 

"'> 1500. 

1013, 1016, 1023, '1:039, 
1042 

1021 

1029 

1038 

" . 

The difference betwe~n this set and the preceding one is that ... 
1 .-

a change has been made in the value rarige fo~ groups #1 anà~ 
1 , t ... 

2, as a result of whiéh, ~ell 1016 which origina1lY fe1l with . A -0 

cel1 1021 in group #2 now falls in group #1. The effect of 

this change is analyzed in this section. 
I~ e 

The set of variables used, and their inclusion lev-
" 

e1s, is the same as for the 5-group set A d~éribed previous-l, ," ~ , .' 1y. As beiore, three runs are made;' the first one including 
t.) '\ l",J 

• 
aIl input variables, the second with Dm 3 ol)litted, and the . ' 

third with both DYKE 3 and CNTL l~ omitted. 

The highest discrimtn~nt ~unction of.the four func-
1 1 

~i~ns extracted in each of the/ three analyses,l accounts forr-.;., 

45 percent, 6'4' percent, antl 76 percent of the' cumùlat·ive 
fi> 

l 

. . 

~~;. 

'"l' 

" 

. t ~. 

l 
1 
1 
~ 

J 
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eigertva1ues in the first, second, and third ana1ysis respec­

tively. The standardized coefficients of this function, con­

verted into relative percent age are shown in Table 22 .. tDYK~ 
3 predominates in the first ana1ysis whi1e AREA 3 does in the le 

o 

others. l'n gen~ral, the va~iables 60st contributi"i1g to the 

first discriminan~ function in each analysis~re AREA 3, FOLT 

4, CNTL 15, and CNTL Il. The omission of DYKE 3 results in 

a sigrti~cant increase in the contribution of CNTL 11, AREA 

3, AREA 8, and FOLT 4. The omission of CNTL lQ does not af- ft 

fect any variable except CNTL 11. 
\. 

The,predicted estimates ~he three analyses are 

shown in Table 23. The first observation in the table is 

that with.the ex~eption of known endowment cel1 1023 in the 

~ third analysis, a11 r~ferènce cells are~rèdicted as end9~­

~ent bearing. The case of 1023 is not unexpeated because of 

the absence of the variable CNTL 10. 

A com~rison of Tabl~s 21 and 23 indicates th~ anti­
Q 
thetic relationship between the centroids of multivariate re-

lationships iri the known endowment cells L016 and 1021. In 

• • the 5-group analyses A.described previously, both -these cells 

are i~c~de~in gFouP #2, and the resu1t is that'cell 1021 
, ~ 

cannot 'be predicted. The explanat&on is also clear when the 

coefficients of discriminant functions are compared with the 
o 

variables present in these cel1s. While cell 1016 is rich in 
. 

AREA 3 it is devoid~f CNTL 15. Both these variables rnake 

significant contributions to the functions: and both of those 

" ( 

/ 

;' " 1 

\ 

(;l' • 

1 
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," TABLE 22 '1 

"".STAIiDARDlzeD DISCRIMINANT FUNCTION COEFFICIfNTS 

IN 5-GROUP ANALYS€S B 
"-
Variable 
\ Name 1 

i 

.. ~t ' J 
~ -' ~ 
A REA 3 21.3 

AREA 8 0.6 

CNTL 10 18.6 

CNTL Il -0.8 

CNTL 15 • 
DYIŒ 3 

, FOLT 4 10.7 
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IThe,qoe ficients are expressed as p'ercentages, indicating 
th~r contributi~ns to the discriminant function. 
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TABLE 23 
~ l ' .. , 

FORECAST ENDOWMENT GROUPS 
, 1 

. . 
IN. 5-GROUP DISCRI~tNANT ANAI,YSES B 

Cell Known 
'No.' GRP 

, lOJ.'f" 101 
1,92 . 
102 , 

1 

, 

l ' 

10~5 ~'l 

10~71 
102'9: ~ 

r 
3 

'-
4\ 

o 

... 

p c 

f 
'r 
I-
r 
I-

I -
t -:-

f 
'L 

/ -
:2(.493) 

1(.620) 

. , -
-, 

2'(.941) 

1(1.00) 

2(.924) 
3(.943) 

1(.927) 
1(.694) 

Ana1ysis No. 
2 

3(.465)-
3(.505) 

1(.465) 
3(.677,) 
3(.490) 
3(.395) 

3 ( • 676)., 

1(.673) 

,,-:2 (.393) 
~!2(.551) 

2(.507) 

2(.572) 
1(1.00) , 
3(.576) 

'3(.483),; 

" ,f" If 9"0'0) 
...,1 ( •• 697) 

- .~ 3(.605)' 
4(1~90r' 4(1.00) 

3 

3(.398) 
1(.47.4) 
1(.521) 
1 (.735) 
3,,( • 517 )" 
3 (.476) I~ 
3t.375) 
1(.604) 
3(.582) 

1(.645) 
1{.841) 

2(.378) 
2(.539) 
1(.468) 
2(.494i 

2 (.560) 
0(.427) 

3(.494) 

3t.44~~ 

-
1(.8655 
3(.488) 
4 (1.001 

'-

1039 :, 1 , 1 ,<1, ( • 997) 1:'( • 997) 1 ( • 997) , , 

" 'l-'~'------------~--------------------------------------
~", 1041 2(.591) 3(.49Q) 1(:444) 

- . ... 

" , ' . 

-1042 1 2J ;.$93) 3 (.415) 3 (~388) , 

1045 
11049 <: 

1050 
.1051 

.... 2(.B60) 

" ,. 1052 
0'4,0.1053 - - "2(.871) 

2(.517) 
1(.570) 
2 ( • 364 ) 
3(.361} 
2(.-,491>. 

2(.484) 
1{.716) 
~(.347) 
3(.340) 
2(.479) 

~ .... p "\1' Q "b.' 
'L -c t . , 

'~~i9ures iri parentheses, are probabilities' of ocqurrence in 
Q the particula.r group.· The forecastwa:J,ues of know:n r , éndow­

ment cella are under1ined. See text for details. ~. 
< < c' \ 

'., .. ( \ - 1 .\ 
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are present in ce Il l02l,which is rich in cNTL 15 but ràther 
. '" 

t :"'. ~o \r 
poor in AREA 3. 

4< 

. A similar èxample is that of cell 1042. This known 
1 ~. ~ 

endoWment cell cannot be 50 prèd~èted in the 5-group A anal-

. yses #1 and 2. 
~t " ' " , 
But the tr~nsfer of cell 1016 from group #2 

" . ' . 
to group #1 in thè new grouping B results in the correct en-" . 
dowment prediction Ifor ,this cell by aIl three analyses. - \ \ ,., , , 

~t 15 essentlal, therefor~~~ hat the variables s~-

~ lected be pertinen tly "be~t", and t .- an optimàl selection 
~, 

of gr0ups be mad~ 50 that known endowm t c~lls in~luded in 
-'II 1 " t 7' - ... C 

t~ a group are not antithetic with one aAother in terms of mul-
~ 9 .... ,,~b 

" . 

l , ' 

tivariate rela~ionship. The ideal situation is th&t aIl cases 
,~ t "b 

should be drawn from the same population. ~ever, as long .' 
• ,,~'\ 1 

as the known endowment cells themselves 'are predicted as such, 
.1 1 ~ • p 

the predictions for the unknown endowment cells should be 

credible. , 
• 1 

In this regard, a set of eight discriminant runs waS 
" 

. made over the 64-cell ~aia, with each known endowment cell be-
, • ,. '\ ~ 1 V'". 

ing.a~signed to the zero group in turne The objectiv~ was to 

se~ if the value of this cell could be predicted from the ,re-
• ' l' 

ma,inin<;? seven refell!ence cells. In this manner, the general " 
f, , 

\ relationships amongst suq~ ce~ls Fan also be ooserved. Tee 

vari...ables used i are AREA 3, AREA 8, CNTL 6, CNTL Il}, CNTL 13, 

C~TL 15, and FOLT 4. Since a known endowment cell is;pssigned • 

a zero value in each ~un, the discriminant functions obtained 

[1 7-' are different in each case. On o~e function is extràcted 
", 

" 
" 
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~ --, 
when céll lofs is omi tted, and tÎîis function include~ one vari-e , r" 

-''''''---, table, CNTL Il. In al lbther cases, 'the!'e i s a general uniform-

~~~ty in the varlables included and their coefficients. For the 

, ' 

. " 

" l' ~ 

highèst functiGn in the remaiJing seven runs, AREA 3 rnakes the 
,.y.,; "--- " ," ,,'-

highest 2o~ributio'n, followe by CNTL Il, FOLT 4, CNTL 15, . 
,~ 

and AREA 8. CNT~ 6 and CNTL 13 are included in only three runs , 
ea.ch • 

., 
1 

~- The results of omi t;ting o~è andowment ce~l at a tjme 

are shown in Table 24. It is seen that cells 1013,~1023, and 
t ? 

1039 ad not ~eceive a predlcted endowrnent. The lack of pre-

di,ction in cell 1923 is easily understood because of the ab-
( 

, sence in th~ input variables of CNT~ 10, the variable m08t io-
1 

cally re~ated to endowrnent in this celle And while cel1 1913 
~ t JI 

is predicted to be10ng to group zero with a probability of ' . . 
f) 

0.700 by the first discriminant function 'whi~h acçountsfor 
~ • fI', ' 

71 percent Qf the cumulat~ve e~genvàlue, it is predicted to 
) ,; 

belong ~o'group\#2 with a probability of 0.254, by tpe second 

discriminant function which accounts for 19 p~r~ent of the 

total eigen~alues. Sirnilarly, cell 1039 is predicted to be-

~' lqng to ',groqp #1 wi th' a pro'babilit.; Qf 0.409' by the' se:(;md \ 
~ '. d '~ • 
. disc;iminant function qf that run which accounts for 12 per- • 

, 
y <lent 'of,Jthe eig~nvalue~,. "The first function in th~t. run~ ai..: 

. counts fo~ 83 'p~rc~nt' of the eigenva~ue,S. 1 . <) {I. 

Cells 1016, 'loil, and 1042 have been ~redicted to 

belong ',' to a higher group than kriown. 
" 'J> 

Obviously, this i8 aiso 
~ , 

a measure of the similarity of these c,e11s ta the centroid of 

• 

/If 

, , 
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"'TABLE 24_ 
-? .. - ~ 

~" 

-"t ~. 
" 

~ 

~ 'pFORECAS[ ENDOWMENT GRQUPS FOR KNOWN E~ENT CELLS ASSUMiP TO ~AVÉ ZERO ENDOWMENT J 

. . ~ .' ONE AT A "t..IME IN EACH DISCRIMINANT RUN . -' ,. 
g". --- .~ 
~- --- --- ----;;~-

. ~ Predictéd EN'DOWMENT CELL OMITTED 
.. frorn 

Cell AlI Cells • 'c PREDICTED GROUPS 

" 

No. Known In' 1013. 1016 1021" 1023 1029 ..--1038 '1039 1042 

, 
l 3(.582) 0(.700) l(.~ 1(.574) 3(.617) 1{.373) 1'(1.00) 3(.47:f') 3(..641) 1013 

{j/ 

1 ('--' 9 ~ 3 ) ll.§§~) , 1 ( • 529 ) 1 ( • 9 U> ) 1 ( • 834 ) 1 '(l • 00) '1 ( • 7'17 J l ( . 911) ç 10.16 l 1(.841) 

1021 2 2(.494) 2(.606) 2(.!f90) .3(.480) 2 ( .504) 2 ( 1. 00) 2 ( . 459) 2{.507) 

" 

~ 

~(.716) 
.~ .~~"'" . 

,/ 

0(.686)r'O(.526) 0(.716) 0(.48.9) 0(.584) 

\ 

ID.,2 3 1 .0 .(~. 427) 3~1.0'0~ 1(.344) 0(.469) 

10t9 3 3(.449) ".~{'669) 3(.669) 3(:854) 
• 3 <_472) 2 (.506) 3(1.eO) 3(.390} 3(.475) 

W38 '4 4(1.00) 4 (~. 00) .4 ( 1 • 00) 4 (1. 00 ) 4 (1 . 00) 111 (1 • 00 ) 3(1.00) 4(1.00) 4(1.00) .,..../ ... 
1-039 1 1 c: 997) 1( • .999) 1(.999') 1(.998) 1(..999) 1{l.00) 0(.250) 0(.538) 1(.999)'!j 

1042· l' 3~. 388) 2{.40'5) 2(:405) 3(.445} 3(.406} 2(.49~) 0(.989) 3(.341) , 
r 

3(;4~9)'S . 

6 

~he results shown above are based on the 5-G~OUp B analyses. Underlined figur~s indic~te 
predicted endowrnent in known endowment cells assumed barren for ~ particular rune Figures 
in pare'nthesis indicate probab:j..lity of belonging to thepredicted· group'. 
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cell 1029, the only cell belOng,ng in group #3 in w.hich the 

above th~e c~lls have' been classified. 'Cell 10
1
29 which, on 

the basis/of its ~own endOt-nnent fa1ls in group #3 is classi-

" fied in gro~p #2. Cell 1038, which originalyY belongs to 
'h' 

group #4, has now been pre~icted to be10ng to group #3. 

cases of cells 1029 and 1038 can be' understood when it is ob-
1 

served that there is only one cell, 1029, which constitute~ 

group #3, and on1y one cell, 1038 which constitutes group #4. 

So when these very cel~s are assigned a zero group,dthere no 

longer remains~ny case of group #3 or #4, depending on what 
• 

cell is omitted. Therefore, the püedicted cla5sificatio~ of 
r ' 
th~se cells i5 in the highest grouping available next to the 

<ifctual or iginal groups. 

prove the 

a lack of 

But the point to be made here, is that the ~sults 

effectiveness of ~iscriminant analykis in spite of 

com~liande with aIl thé assurn~ti~ns., And more ik-' 

pOrtantly, the resu~,ts are evi,dence of, quan~it~tive relation-
• l 

ships èxisting betw'een predictor'variables as selected, and 
, . -

'" the endowment in the'region. 

When aIl krown endo~nt cells " are includ@<tl' in the 

anal~5is, cel~ 1016 i5 class~fied in its own group, but cells 

,1013 and 1042 are ~till c.lassj,fied in higher groups. And 
;1 

while th~ second discriminant function classifies ce1~ 1013 - ... . , , 

in its o~n original group''''l with a probability of O.i6l,'this " 
, _.10' 

is n~t the case with cell 1042, which the second discriminant 

function claseifies 'to, .group. #2 with a probability of 0.307. 

·1 
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"Tbus, cell 1042 's expected to contain a greater endowment 

1 f !!~ 
than tha t known'r " 
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\ 

Of thejce11s/with no known endowment, the most con-

~istent· resh1t~ obtained in the three analyses shown in TaBle 

23 are for cel~s 1032~ 1041, and 1050~)~cell l032 is not pre-
• 1 

dicted as hav~ng endo~ent by the iterative regression anal-l , / 

ysis. This cF11 received a favourable prediction by about aIl 

runs of discJiminant analysis. The remaining two cells, 1042 
1 

and 1050, tht former in particular, are assigned high values 

Dy the cregr~ssion model. ,\ 

In/ana~YSiS *1~ thé predictio~ of endowrnent in cells 
{ r 

1027 and 1~53 is based only on the presence of DYKE 3. When 

,the geo1ogf of these cells is ~jectively eva1uated, the re­

sults appe~r to be spurious, particularly when the y are no 

lOnge~ faiourabl~ predicted' on the omis!!jion of DYKE 3'~ Simi­

larly, th ~rediction in cell 1031 appears to be ~he result. 

'of CNTL l' only, and thus 0+ li ttle credence,. In general, 

the thre 

and #3. 

,/ 

analyses appear to overclasli"ify cases in groups #2 

The situation is summarized in Table 25. 

lIn t~e discriminant a~lysis performed, it is assurnëd, 

that aIl groups have an equal probability of occurrence pro-
o 

vided of course that the necessary geological relationships 
;, 

pertain'ng to the ;entroi~ the group are present in the . 
r i 

cases a alyzarl. Of the eight known endowment cells in ~e 

region, there are five that fall in group #1, and one each in 

, groups f2, °i, and 4. There are 56~ unknown endowment ce.lls 
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TABLE 25 ' 

5-GROUP ANALYSES B: NUMBÉR OF CASES 

Group 
No~ 

0 

l, 

('1 

ft.. 2 

3 

. s' 
4 ' 

1- • 

l 8 

1 

. \ 

< ~f':\ ~ 
}1tr\~~ 

........ ( ..,:~ 

... 

, " ' . 

1 

CLASSIFIED IN INDIVIDUAL GROUPS .. 
PREDICTEO 

~Input Ist 2nd 
Cases AI'lalysi.s Analysis 

56 50 37 

5 5 7' • 
l " 7 '1t 7 

' 0 

l l 12 . . 
" . 

l l l 
,;;, 

~,I -

" 
\ 

~ 

1. 

1 
~ 

,-' 
\, - ~ ~..(' , 

... , r~ ~~t J 

j\ 
~ 

J '. 

" 
" . . , 

'! 11"" _ . 
• 1-" 
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, 
/ 

1 
3rd! 

Analysis 
1 
1 
! 

l' 
1 
/ 

35 ~ 
\ 

1 
11 \/ 

7' ·r 1 
! 

1 10 y 

1 
1 1 '" '..; !.I~ 1 

~ /0'\ ' , 

1 

1 ' . 
! 

1 
1 ,1 

1 
i r 
1 

" 1 

1 f'" 
1 

1 , 
1 
1 

1 
1 
1 

1 
.. ~ 

1 

1 
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which cannot be initiall~ cl1s,ified, and ther~fore assigned 
. 

to group '#0. If aIl these 56 cells could be. classified ·in 

porportion to r~tios existing in the known groups then there 

should be 35 more celfs falling in group #1 a~ 7 more cells 

fa~ling ,in each of groups 2, 3, ~nd 4. But such is not the 

case, for tKe region is composed of both favourable and unfa-
\ 

.vourable parts. Obviously therefore, when seven ce Ils are 
.' 

li. forecast to fall in group # 2 in each of the three analyses 
r 

(Table 23) and, 12 and 10 cases fall~in group 3 in analyses 

#2 and 3, the situation calls for examination because initial-

ly, of the eight known endowrnent ce1~" only one cell falls 

in each of the two groups. 

The problem could be partiall~r~solved by adjusting 

t.l!,.e p,robabilities of group, mernbership based on lia prfori" 

knO~dge of the: population distribution of caées. This is 

not possible in problems of resourc~evaluation because mea-
" .. 

surement~ regarding both geology and endowrnent are at best 

incomplete. ~owever, one decision rule ~hat can ne applied 

in the prese~t p~Oblem is to accept only those '2elIS cla~si­
fied in g,roups2 and 3 which have a probability of belonging 

~o one of ttem at least eq~al to that of the individual knpwn 
41 

endowrnent ce11s composing the two grou~~~.i.e., celis 1021 

and'1029 respectively. Using this arbitrary rule, the number 
ft 

of cells falling in group #2 is reduced from the original 
;- c 

forecast of·seven, ta one, four, and three in anaIy$es #1, 2, \ 

and 3 respectively. 
, 
\ 

Similarly~ the number of celis forecast 

4 

Il 
, 1 

) 

t 1 
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• 
: 

to fali in group 3 is reduced from'12/and 10, te eight and~ 
. ~ 

six respectively ~n analyses #2 and 3. This is more in line 

with what ~puld subjectively be expected in relation to the 
---\.. i 

ratios of group memberships known. t 

Table 26 is a re~ed form of Table 23 after using 

the rule mentioned above. However, aiso inciuded in the table 

are' the classifications bas~~ on theoseconq highest probabil­

ities. This ta~e shows results for ~~alysis #3 'only, since 

this analysis does not have the 'influen6e 
1 

~ ~ 

of either DY~E 3 or 

CNTt. 10. And as has been ptated eariier, bhe highest discrim-
-P ~ 

~ant function for thi~ analysis accounts for 76 p~rcent If 

the _eigenv~lues . followed by the second higtest function wi th 
• 

19 percent. While the first discriminant functien is domi­

nated by AREA 3, the s~cond is controlled by CNTL Ji/' 'both 

c'iosely related to endowment in the region. 
, • 1 

The originally unknown endowment cells retaining this 

favourable status in both the highest and the next highest pro­

babilities are the following: 

~ 

1002 
'" ~ 

'" 
1009 

1 • 

---~, 

1010 " ~ 
______ ------ 1 

.... 101~ _----~ J 
- .. 1-

1022 :.J 
\ , 1033 

Ü)41 J .. 
, ~ 1 1 

~ll of these ~e1ls except 1018 and 1021 have also 
1 

been predicted as highly favourable by regression analysis. 

+ 
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r 

(\ " ) " TABLE 26 
( 

5-GROUP B, ANALYSIS ~3: REDUCED 
FORM OF TABLE ?2 

ANA:LYSIS #3 
PREDICTED GROUPS 

" (, 
Cell Khown Highest Second Highest 

No. 

~OO2 
903 '" 

1007 
1009 
1010 
1012 
1013 

1015 ' 
1016 

1018 
1020 
1021-, 

1022 
1023',.:-

1025 
1029 

1032 
1033 
1038 

1q39\' 
1 1 

Ip41 
1042 

1049 

, GRP 

" 

-' 
l 

1 

2 " 

l 

- ' 

3 

- e. 1 

4 1 

l, 

1 

. 

., 

p~babi1ity Probabi1ity 
) 

3 

1(.474) 3(.316) 
1 ( .5 ) o ( . 411) 
1 ( . 73 0(.197) 
3(.517) 1(.286) 
3 ( .476 2(.38l1) 
1(.604) 0(.184) 
3(.582) 1(.161) 

1(.645) ", 0(.175) , , 
1(.~41) 0(.143) 

2(.539) 3(.279) 
1(. 468 l 0(.368) 
.2 ( .494' 3(.312) , ~ 

2 (.560) \ 3(.368) 
0(.427-) 3(.264), 

3(.494) 0(.171) 
3(.449) 2(.284) 

1(.865) 0(.083) 
3(.488) 1{.231) 
4 (1. 00) , . -

l' , 

1( •• 997) 0(.003) 

1(.444) , ... 3(.317) 
3(.388). 2 ( • 307) , 

,J ... , 

'1(.716) 0(.2l0} 

l.see text '''''for details-. The resul ts for the known enèlqwment, 
ce~ls are underlined. 

o • r '. 
/ . 

\ . , 

~ 

" j 
'1 

l 
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Cell 1018 appears to be a case of misclassifièation because , ' 

the cell contains only one of the five varïab16s forming the 

function, i.e., AREA\8. Other cells which are grouped in the 

zero category in the next highest~function, but in which the 

'" probability itselE is lpw, are cells 1007, 1012, 1015, 1025, 
1 

and 1032.~ Of'~~ese ~ells 1007 and 1012 are also cl:ssified 
1, ... '\.~ 1~ 

as favourable by regresslup analysis, çut the others are not, 

particularly, cell 1032 Wh~CH,iS forecast-as com~letelY bar-; . 
ren. 

f' 
The results of the two five-gr0up analyses and the 

following seven-group ~ysis are jointly concluded upon at 

the end of the rhapter. 

9.5.5 S_even-Group Analyses 
t 

In~reasing~~e number 'of groups in a discriminan) 

analysis serves the pur"po~ of 'a mOfe relevant classification 
, ~ 

bu~with an increased risk of'tn~1asSification. ~~, the pre-

sent study there are only eight'kn~~n~endowm~nt cases and a . -

ninth set of un~nown cases. It would thèrefore appéar that 
. 

dividing the\e nine'categor~s into seven 

tO,)bring out 'discrirninatory relationshd.ps . ~ 

, 
groups woul'd fail 

v 

li' 

joiritly b~~n two' , . ~ 
or more ~nown endo'*nent cells; it wou,ld, how~ver ~intlY ~~-'-'~ 

yse cells that are Ilassified in the zero or barren category. • . ~ 
sincé in sorne of the earlier runs, it was observed that a nurn-

-1" '. .' 
~ ber of endoW,ffient cells had shown an antithetic relat~onsh~p 
J .. 

• __ l... __ 

.. 



!'" . -
• "'-" ,-~------

... , 

... 
, ·11" 

( 
./' 

~ with one another'when considered jointly in the same group, 

e;g., cells 1916 and lOtI, the 7-group analyses are made to 
- --- -.//' " "?:.\, • - / "-

observe"'the behaviour of the disd';r-iminant function in sepa.t"at-

~ing the vario?s groups. The .following '9roups are used in the 

.~ analyses: ~ 

" " Group # Range ($xlO 6 ) Cells'f Included , 
• r' 

" 0 Assumed Zero AlI unknown endowment 

) 
cellS' 

, . 
~-~--_.- ... ~-~ 

-T~- '" 
f 

0- 25 1013 

/2 25- 50 1023,. 1039, 1042 

3 50- 100 1016 
1" 

4 100- 50'0. ],021 

5' 500-1500 1029 
... "-' '. 

6 ',' 'r > J:500 1038 

, J 

. .. 
Tne best results as jÛldged 'from th~ 'predictabili!y 

of ""the knowri 'endowment cells .. are obtained >usil'W' the followinc; 
o 

variah~es in their order of ~nclusion: 

j 

"î AREA 3\ -'1 

A~ 8 

~ Il .... 
'. " CNTL '" l' ~,' 

CNTL 15 \. . 

.... 

DYKEI :t 
y " 

~ 

\ The "results1"'obtained and the associaté'd probabilities 
't ; "~ , ), 

1 

( 

e:' 
' / 

1~he 
~ 

\ , 
~ { ,-

table does not in 0 l'l;lde cells predicted t<\ belon~ 
to zero'cCategory. "'t / ,. iJ. 

'" 1 

Î 
.. 

• 

a". 
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are shown in Table 27. The known endowment ce1ts have been 

hig;lighted in the table.' It il observed tha t wi th the ex­

ception of J1l 1042 which is forecast to belong t~,"c-;lower 
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group, aIl known endowrnent cells have been properly c1a~sified. 

r Another set of discriminant runs was mÇlde using the 
\ 

" same variable~ as before,~ but asr.min~ a zero inpu~ rndowinent 

for one known ~ent ce1l at a ti~e. The runs were made 
1 

over the 64-ce11 data, but the results shown in Table 28 are 

for the known endowrnent cells only because they alone can be 

used to observe the predict~ve efficiency of the discriminant 

functi6n, or of the choice of using seven groups. 

,The first observation is that of the ei~ known en­

dowrnent cells,only cells 1016 and 102 13 fail to have any endow-' 
, 

ment predicted,in them. Both these cells, however, are clas- t 

sified in group #~o ,by the second highest probability. 

The probability of cell 1016 belonging to group #~ -

as given in Table 28 is 0.44. However, the probabili ty that 
, -, 1 

~ a member of the predicted group zero would be as far from the 
, . 

t 

centroid as 'cell 1016 is very low~ on1y 0.115; this suggests 

. the possibi~ity that cell 1016 might not bel~ng to the popu-

la~i9n of cells'from which,çroup #0 is drawn. This would ap-I, -, .... " 1 

pear to be the case because cell 1016 is a known endowrnent 
, 

\ 
celle The cel1 is miscla~ified because it iS.located away 

~"ei j . 

from the cluster of ore ~éposits in the region. The ce11 is 

devotd of any kind of ,-dyk~ activity afld is main1y pyrite and 
~ / . . 

spna1erite. rich. Furthermore, the Mobrun o~e deposit contained 
\";tW 

II> -~ 

... 
/ 

*' " 
,~ 

/ , 

C<, 
'l 

... 

\ 



[ 

.( 

p 1 

~ 

, 
r 
i 
t 

" 
\ 

, 

.. 
V 

Q 

" 

/ , 

~ ... -; -~#-~.,.;~ ...... _ ..... _.'I\j..,. .. _1 __ ' ........... _.""', _._. __ .. _. ____ ~____ tt 
~~ 

... 
~ 

Op 

TABLE 27 
l>'f' ... 

"~i ~rl. ~ ~:l 
,if} ~ ~ ) 

.,fORECAST ENBOWMENT GROUPS 

Ce11-
No. 

1002 
1003 
1007 
1009 

~ 1012 
10l} 

1015 

IN 7-GROU~ ANALYSIS 

Known 
.... Group 

f 
- 1 

l , 

• J,016 3 

\ 

1021 

1023 

1025 
1027 
1028 
1029 

1031 
1032 \ 
1033) .J. 
1038_ 

• 6 

1039 

4 

2 

5 ~ 

6 

2 

2 

t 

predicted 
Groups 

1 (A49) 
3D669) 

( _~( 805) 
~ 2(.453) 

1 (.36'4) 
1(.914) 

2{.944) 
AI ' 3(.~85) 

4(!900) 

2(.498) , 

2(.593) 
4(.916) 
2(.534) 
5(.932) 

6(.460) 
2{.917) 

.2(.760) 
60(.995) 

2 ( .73'1)' 

1(.899) 
.,1(.362,) 

:l C. 7e-8) 
4(:687) 

" ~ .. 

272 J 

1045 
1050 
1053 4(,.854). . ., 

-----
" ;J' .. 

i .' " 

..,. . '" .. 
~igures in pareQtheses indicate probability of be10nging 

t,o th~ predic\ted iroup. ~ ~ 

/'" .. 1 J ,ft, 
;-:-"--

\, 

. ' 

, . J, 

" 

,/ 

1. 

" 

" 
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Cell 
No~' 

'" 
1013 

1016 

1021 

1023 

1029 
~ 

1038 

1039 

1042 

\ , 
... 

~ > 

., 

TABLE 28 

.. 

... j 

~ . 
1 

" 

"' 
) 

7-GROUP ANAL~ES:~ONE KNOWN ENDOWMENT BEARING CELL ASSUMED TO HAVE 

Known 
GRP 

l 

, 
3 

4-

2 

5 

6 

2 -

2 

, 
, ZERO ENDOWMENT IN EACH DISCRIMINANT ,RUN 
~.- - _ .. _._~-_ ... _- -- ----_ .. ~--~, 

KNOWN ENnO~ENT CELL eMITTlD (ASSUMED BARREN) 
PREDICTED G~OUPS ~ 

1013 ,,1016 1021 • 1023 li)29 . 1038 1039 1042· 
? / ~ 

2 ( .42) 

• 
3(.99) 

4(.92) 

~2(.52) 

1(.9~) 1(.93.) 
" 

0(.44) 3(.98) 

, / 

1 ( • 8 9) --r(. 8 7 ) 
~ 

3(.98) ~(.98) 

4{.90) 5(.63) 4(.90) 4(.94) 
9 

2(.52) 2(.51)~ 0(.87) 2(.53) 

L-

1(.85) 1(.81)' 1( .. 95). 

3(.92) 3~~)' 3(.98) 

4(.87) 4(.86) 4(.9?J 

o (. 5 3).. ·O~(. 6 0 } 0 ( • 5 ~{ 

5 ( • 9 2 ) 5 ( • 9 3 ) 5 ( 1. 0) 5 ( • 9 4 )~ 4 ( •. 9 7 ) 5 ( • 9 1 ) 5 ( • 91 ) 5 ( • 9 3 ) 
, 

" 6 ( 1 • 0 ) 6 (1 • 0 ) 6 (1 . 0 ) 6 (1 . 0') 6 (1. 0 ) 3 ( . 94 ) '6 ( • 6'11-- 6 (1 • 0 ) 
< 

\(.73) 2(.95) 2(.75) 2~ 2(.74) 3(.45r ~3~4) 2(.90) 

. "' " " :::.' ) 

4(~44} 1(.36) 1(.43) 1(:36) 4(.32) 1f.34) 2(.42) 1(~43) 
'. ~ - J 

.. __ ._ ____ 1;.. ____ .. ___ .... . .~~~ ._~ .. _._._. 
-.::::' "7 'iIIir' 

1· . '. -----------------

~ 
1 , ' .... , 

,.t 
~ 

\ 
4 

J • 

'.' • 

Underlined figures indicate predicteq êndowm~nt in known endo~nt cells assumed 
·barren for the particular rune Figures in' parentfle.sJ.s indicate probabi1,ity of \ 
belonging to th~ predicte'd group. -:---.---___ . 

---...------..__ AIr 
-", ,----- -~- -. 
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.. 
~ ~ 

in the cell is believed to bé stratigraphically higher than { . 

the rest of the o~e del"OSi~ ~n the ,region (Dugas ••. 1~.77. oral 
, . 

communication) . 
'r' 

~he case of .cell 1023 has been explained before., ' It 

contains the West Macdonald deposit, th~ only deposit in the 
.J .t 

region that dges hot have a âi~ect rhyolite assbciation. Its , , 
host rock is AREA 2 consisting of tuff and agglomerate. 

The' predicted endowment in cells .1013, 1021', and 1039 '. 

falls in the next group higher than that known when e~Qowment( 

is assUrned to be absent in them. Tliis implie? a pbssibility 

" of a greater endowment in the,se cells thah tha,t presently 

known . 
Il -

The predicted endowment in cell 1029'falls. in group 

# 4 . ~ f k" ,', '" , , 
~nstead 9 the nown #5. S1m1larly, for cells 1038 and ~ 

f ÇJ ~- # 

10~2, the classification,is 1n groups #3 and #1 instead of the 

known groups #6 and #2 respectively. 

SA far as'cell 1038 is~cQncerned, it w~~ld be diffi-

cult to forecast its original known group when its endowment .. 
is assumed zero. The reason is that this is -the only cell 

< 

associate~ with t1f highest val~e~ g~oup #6. When the ènvi­

ronm~nt of this highest'valued'cell is asspmed to have no en­

dowmènt associated with it", then the highes't valued' group dces 

nGt exist as such, and the pr~dicted,value has got ta be in 
: ~~ , 

relation ta the h~xt- lowey/gro:up' the centroid of 'wh,ich iS" cl~s~ 
/ 1 // • ~o. 
to' tha"t of cell '1038. ,1 0 ,.). 

l' '\ .. 

Cell 10~9' cdntp~ises' the second highest group' vaJ.ue 1 

D 

(J " 

o 

o 

, 1 

M~.J_C(J""",~"I.,,& .'PIPf~~~"-'~-""·-"'-~- ~ 

.. 
;-

o 
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( 

, • f' 

and is the only cell ta po SQ. Its predicted value there~ore 

at the next lower group in the light of explanation given for 

cell 1038, appears pèrfectly àcceptable. 

The c~~~ of ce1l,1042 appears to be somewhat like 

that of cell 1016 in that it i5 located 'away from the ,main 

group of ore deposit$ in the region. Besides, this cell has 

the only ~eposit in.the regio~ which has no reported zinc in 
~ . 
iti only c.opper. Like celi 1016, this tao could be'related , . 

, 

to:a ~eparate eruptive phase of volcanism. The cell is. clas~ 
'. 

sified in group #1 instead of its knawn group #2. It is in-

terest~g ta note that even when aIl known ~dowment cells, 

including cell 1042 are discriminated under the 7-group anal-
, . 

yses, its predicted value stiil is in·group #1 instead of #2. 
., ft. , 

,The second ~ghest F-robability classifies this cell i\ group 

#4 with ~ p~o~abilit? of 0.101. The possibility has been ex­

pressed earlier that the cell may belong ta a higher group. 

The results of the 1-group discrim~nant analyses 

shown in Table 27 contain three obvious misclassifiqations, 
1 . (' \. 

i.e., cells 1027,1028, and 1031. Cell 1027 is wholiy com-

pased of AREA Il, and the only variable present in the cell , 

and ,al~~ 'in the discrimInant functi~n is DYKE 3. l The, removal' 
" 

of b~KE,3 from the analysis makes celi 1027 a barren on~, 

" 

l' , 
" DYKE 

naht function • 
3:\ -13",2%, AREA 

\ . 

3 accourits for + 54.7% of the highest discrirni­
Other variables contributr as following: AREA 
8: +21.0%; CNTL Il: +7.2%, and CNTL 15: -3.7%. 
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1 

which indeèd it ,should be because in the Rouyn-Noranda r~gion, 

r 
q 

no massive sulphides are known IO bl associated with AREA Il, . . .. 
Le., granites and granod'iorites. , 

.' 

Irr case of cell 1028, the probability of any rnember' 

from group 2 b~ing as far aw~y from the centroid as this cell, 

is 0.015, a very low probability. The cell 
" 

to belong to th~ sane population as that of 

it may,have been classified as being closes.t to group 2. This ,'-" 
is further bO,rne out- by th~. fact that 'the second highest pro­

bability for this ce Il is the zero value group. 

S'imilarly, ce Il 1031 has been forecast to belong :ln 
. 

the highest group #6. Yet, the probability·of a mernber from 

group 6 being as far away from the centroid as cell 1031 i5 

only 0.083. The second highest'-prob,abili ty i5 fpr the cell 

to' belong in group zero. In aIl previous runs, whether re-

gression or discriminant, the only basis for an endowment fore-

cast in this cell has been the pres~nce of CNTL 10, the contact 
-

~ength between ~EA 2-and AREA Il. CNTL 10 is ,a variable high-
11 '. 

ly locally"re~ated with endowment in cell 1023, and extend~ 

into cell 1031. When CNTL ~O is not inGluded in. the ana1ysis, 

the cell is forecast as barren. This tOo is a result 0f rnis-

classification.' , 
Cell 1045 too a~pears to bè miSclassified in group 

#1, because the probanility'of a mernber from group #1 being 
r ' 

'- '. 1 • as dist1nt from the centroid as th15 cell ~s,only 0.025. 
• 1 • 1 

Cells 1050 and 1053 are both predicted to fall in 
t 

1 ) 

, 
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"-
but wi~h probabilities less th an that of,the only re-

• rroup 4, 

1erence cell l composing the group. These too can be rejec~ed. 

The remaining cells app~ to conform with the favour-' 

able predictions obtained in other discriminant runs. In the . 
following section, the results are'joint~y discussed and eval-

uatèd. 

~ 9.6 Discriminant Results Review 

The efficieJCy of a discriminant function is' affected , , -

by the "number of groups, by the particùlar cases falling in 

individual'groups, and by the presence and absenc~ of certain 

variables. Changes in the number of groups willJ for a given 

set of da ta, resul t in modifications t,o the group c,en1troid re-
. 

sul'ting from changés in -the ~embers composing the groups. ,The 
. 

ertect can be profound if \ . 

of statistical simil~rit~ 

cells falling in a group show a ~ack 
p • ~. 

, 
in termsftof multivariate geological 

relationshi,ps. This has been explained previously as the rea-
• 

~ 

son for the misclassificatfon 'of the known endoWffient cells in-. '. 
2 ta a barren category under the two-group and the 5-group ~ 

analyses. 
• 

]he discriminatory power of the function is affected 

by the variab~ input, bath individually ~nd jointly, dependin~ 

y-----

l cell 1021. " ~ I.e. , , l 

2The barren category refers to the zero value group. . 

(-

f­

t 
\ 
" 
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on their relé'.tive correlations. ~}'1s Lachenbruch (1975, p. 76) 

notes: 

( 1) 

! 

If most of the correlations among the poor 
variates and between poor and good yariates 
are positive and not t<;>o large, the .joint 
contribution of the poor varia tes will be 
less than in ~ndependent cases. 

(2) If the correlations are negative, the j0int 
contribution of the po or varia tes will be 
more ,than in t,he independent case. 

(3) Positiv~ correlations have to be quite high 
if th,e1 are ta be' helpful . 

(4) Any variable haying hegative correlation 
with the good variate will be helpful. 

, A 
The role of the variab~es in re~ource evaluation is 

more complex because of the evolutionary nature. and variable 

timings of geological ~vehts as inferred by the measurement"s 
} 

made. For example, in the 5-group discriminant analysis B,l 

the exclusion of 9XfE 3 from the input vari~les results in 

the classification of cells ,1027 and 1053 as barren. This i8 

because of the high correlation of DYKE 3 with the spatial 

presence of ore deposits in the regYon. Similarly, the ex-

clusion of variab~e C~L 10 resùlts in cells 1023 and 1031 

being classjfied 'as barren, even ~hough the former ois a known 
1 

endowment celle In the same 5-group B, the new discriminant 
Il 

funètion resulti~g after excluding DYKE 3 classifies the fol-

~lowing additional cells as probably endowment bearing: 1001, ,.. , 
, 

l î 
See Table 23. 

." 

"" \P ' .. 

.. 

1 ° , 

.1 
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1002, 1007 1 ~ 009, 10 l 0, 1011, 101 7, 1018 1 1, 0 2 2, 1025, 10,33, 

1045, 10~9, 1051~ and 1052. AlI these ce11s either do pot 

contain ~YRE 3, or if i~ is present, it i~ insignificant~ 
- ri ( 

This under1ines the influence of a highly positive1y corre-. . 
1ated variabr~ despite its having been re1egated to a lower 

( ,inCIUSi;>n l"V~l i~ stepwise' discrimina~t analysis.' , 

~ 1 A,cr1ter10n of the effectiveness of the discriminant 

ffunction ~s it,s abi1ity to properly predict kno~ endowmen't. 

ce11s. 
t 
1 

~n this regard, both 5-group B, and 7-group analyses 

have been effective. 

"and 27. 2el~ 1027 1 

Table 29 is a comparison ~of Tables ~6 

1028, 1031, 1045, 1050, and 1053, a1ready 
/ \. 

commènted upon in evaluating tre 7-gr?up analysis are not in-

cluded in the table. The following is a compa-rilSon of the 

grbup ranges used in the two analYSeJ: 
/ 

" 

Group # . 5-Group Set B ($xlO 6 ) 7-Group Set ($x10 6 ) . 
~~ 10 • 

. 
0 G- O 

\ l 10-" 100 0- 25 

2 100- 500 25- 50 

:3 500-1500 ~50- 100 

4 > 1500 100- 500 

5" 500-1500 

6 > 1500 

It will be seen that Groups ~l, 2, and 3 of the 7-

group set fal1 within the 'range of group #1 of the 5 group 

set B. And groups #4, 5, and 6,of the 7-gr0up set correspond 

, 

t 
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TABLE '29 
" 

COMPARI§O~ OFI5-~ROUP RAND 
7-GROUP ANALYSES RESULTS 1 

5 GRP "B" ~_. 
. 

7 GRP 
Predicted' 

Ce11 
No. 

Predictéd 
Groups ana 

Known' Probabl1ities 
" 

• 1 Group's and 
Known 1 Probabifities ( 

.1002 
1003 
1007 
1009 

l 1010 
'-. -- -.. - ---- --"101-2 

1.013 

1015 
1016 

1018 
1020 
1021 

,\? ' 
10'22 
1023 

1 

1 

2 

1 

'1 ( .474) 
1(.521) 
1(.735) 
"3(.517) 
)(.476)' 

--"1 (.'60AI ---
3(.582) 

1(.645) 
1(.841) 

2(.539) 
1(.468) 
2(.494) . 

'2 (.560) 
0(.427) 

f) • 

1015 3(.494) 
1029 3," 3(.449)' 

,1032'1 1"(.865) 
10331 3 ( • 48 8 ) 
1038 4 4(1.00)' 

1 

3 

4 

2 

5 

.-
n 6 

1(.349) 
3(.669) 

,2(.805) 
2(.453) 

1'(.364) 
1(.914) 

2 ( • 94,4) , 
3 ( • 985,) 

4(.900) 

2(.498) 

2(.593) 
5(.932) 

2(.917) 
2(.T60} 
6 ( :~95) 

, 

.. 
280 

- 1 

" 1 

~- -- --' -- =;;:;;:..;;;~--~-------------------:------

( 

." 

,1039 1 1(.997) 2 2(.731) 

~ 1(.899) 
2 ... ],,(.362) 

1 0 41. :1-... (.( • 4 4 4 ) 
1042 1 3~388) 

., , - - - .. -- --1049 .1'(.116) . 
h 

1 . . , 
Figures in parentheses are probabi1ities associated with the 
predicted groups. Resu1ts for known en~owment ce1ls are 
un~erlined. , 
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-group sef. The results corres-, with the ,#2,,3, anq 4 of 

pond'theref~re, for the ~riginaily unknown endowment cells. 
n ..-

1002, 'IQ03, 1007, 1012, 1015, ~032, and 1041. In terms of' the 
\ 

endowrnent presence forecast, th~se results agree" with those of 

regression wi th the exception of \ celJs 1015 and 1032. 
\ 

Cells lOlO, 1018, 1020, ~022, and 1049 fDrecast by 

the 5-gro~p ~functions are not doné 50 by the 7-group discrim-
\ 

, ination. Of 'the se, bnly cell 1010, has been forecast as endow-

ment bearing by regression. .. 
Cel1s 1009, 1025, and 1033', forecast in gr'oups # 3 of 

'I 1 \ 

the 5-group B analy~is a\l fa1l in ~roup '#2 of the 7-group 
, \ 

anatysis. In this regard, the resul~5 pf th~ 7-group ,set ap-
I 

pear to, be more reliable because the esults are, based on ·com-

parison j~ith three r~terence cells con tituting group #2 in-, 

stead of the only one cornparing group # in the 5-group anâl­

ysis. 9f these, bath cells 100: aond 10.3\ have be~n favour­

ab1y forecast as endowment bearing by reg~ession. 
\ 

Table 30 makes a comparison of thè resu'lts obtained 

for the most favourable cells predicted'by regression analysis 

with' those of the 5-grQup and the 7-group analyses., ,With the 

exception of cell lOlO, the,~ost comparable 'results are ob-

tained between regression and the 7-group analysis .. However, . 
cells 1015, 1025, and 1032, which are not forecast as favour- t 

"" . able oy regression are predicted as such by both the 5-group 

• and 7-group analyses; their results are sununarized in Table 

31. 

• 

1 

1 

"l-
I 
1 

1'-
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" -TABLE 30 "-

, 
COMPAR 1 SON 'OF FOREtAST ESTIMATES 1 N Po.TENT 1 ALLY FAVOlJRABLE 

CEL'lS iN 5-GROUP R AND 7-.GROU~ DISCR)MINANT ANALYSES" 

.. AND ITERATIVE ~GRESSIDN ANALYSIS . .. . 
Cell 5; GROUP B 7 GRGUP REGRES-
, No. Range Prob. Range Prob. SION , 
1002 10- 100 .474 0-25 .349 13.78 

1007 10- 100 .735 25-50 .805 12.40 

~ 
25-56' 1009 500-1500" .5l.7 .453 ...; 2.01 

'l' 

1010 500-1500 .476 
'1' 

9.81 , 

1012, '10~ 1~604 0 ... 25 .364 16.01 

... 
1033 500-1500 . ~'. 488 25-50 .760 62.32 

1041 10- ,100 .444 0-25 .899 15.01 
, . / 

, 
"-

lAIt figures are in mi11i,ons of dollars. 

i' l' 
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. ' 

~ 

o 

/ 

\ 
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, TABLE 31 

COMPARISON OF, FORECAST ESTIMATES IN POTENTIALLY 
-FAVOURABLE CELLS IN 5-GROUP BAND 7-GROUP 

.. 'DISCR'IMINANT ANAhYSES 
1 

Cell ,5 GRP "B" 7 GRP 
No. Range Probe Range Pr~b. 0 

~'1 , 
1015 10- 100 44

,S 
.... 

25-50 .944 

1025 SOO-15qO .494 25-50 • '593 
'" " 

1032 10- 100 .865 25-50 .917 

• Range == $ x 10 6 

283 

• 

IThese ce11s are not favourably forecast by i terative regression! 
analysis. ~ , 

, , 
n 

, 
) 
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9.7 Summary of,Di~criminant Analysis 

o 

(1) Discrirrtinant'analysi~ is a powerful technique for classi-

fying cells into pre-selected groups. While it can as-
1 

sign a cell to an appropriate group, it cannot define i~s 
/' 

specifie position within the,valu~ range of the group. 

Discriminant analysis is also very useful for explaining 

and understanding the system being evaluated. -(2) The selection of discrirninating variables in discriminant 
') 

,analysis is as important as the ~election of explanatory 
, 

variables for regression. The inclusion of a single high-
1> ' 

ly correlated, b~t otherwise non-releyant variable can re-

suIt in a rnisleading discriminant function. Conversely, 

this is also true when a relevant variable is ornitted. 
~ . 

(3) It is rnost essential that aIl cases, be drawn from the 

( 4) 

, -
same population, at leas,t within the grQJ,.1ps. In: studies 

, \ 

using geological data, this information may initially be . 
"known only subjecti v~ly. To overcorne thi~ difficul ty, 

.~ 

the selection of optimal grou~s, both in terms of their 

number and re range of values ass,igned to them, becornes 

as impo:ttant as the selection of the "best" variables. 

The cells that are classified as favo~rable by discrimi­

nation are essentially the ~ame as t~9se by regression 
Jo 

val-

used 

analysis. As with regression analYSis~t orecast 

u~s aré the minimum POSSibl: because t calibrator l 

~ ~ ----------------------
1 I.e., the known endowrnent. 

" .... ~,.. ... iI"~"M."'>oI_' " ... ~~' ... ,.,j.~""'*.,...t...\oIjI~...tA.>t."''''l{. .. ",J\o.i~.r;t;t..~ .. ~ .... ~, ':-

. 
\ 



" 

( 

1 
f 

. i 
t ...... _- ._" · 

assumptiol). The validi ty.pf the re'sul ts obtained çan be 

tested by the procedure dfj "leaving one out" in which, a 

known eI1dowment cell is' assigned to the lowest value group 

and discriminant ana1ysis performed to observe 'if that 

cell can be assigned to the correct group on th~ ba~is 

~f the remaining cells. 
\ " 

'-. / 

1 

Il 

) 

.." 

(') 
, , t, 

0 

\ 
\ 
'. 

.~ 

'1 

~ 
t" '1 

, 
" 



. - -

( 

\ , 

• 

,., 

0 

~- \ 
.1, 

J f 

J 

. 
1 ~ 

, . 

$;:' .. 
;- \ . 

"\: 
• 0 

Q CHAPTER 10 
" 

0 ~' 
j 

CONCLUSIONS 

\ 
~~ 

\ '/'''... k 
J'The object~-v ... of this study is\to make estimates of 

l;ll1discovered resource end.o\iffient in the Rouyn-Noranda region 

using multivariate statistical analyses. \ Howe~er,fbecause 
f-

of the nature of the J,data. base, the study has broadened in-
1 I.i 

to an evaluation of the mu).tivariate techniques themselves-, 

~al~ resource endowment and asso~ia ted geolog ical charëtc­

teristics can be quantitatively related for'deve~oping a model ',. 
to for~cast ~~known resource potential. This is possible in 

spite of the common shortcomings and~prob1&ms of. geological 

and resource endowment data. 

~ (2~~he quantitative modelling of g~ological phe-

nomenon dra~s guidanc~ ~~d interpretation from the ~c­
cepted concepts on the processes that created the phenomenon. 

o 

rThe more complete the geological explanation available, th~ 
."" 

bett~r is the ,interpretation of the quant·i ta tive resul ts. 

However, while, a .... ge<::Jn.athèmatical interpr~~atio~ .depends fun-
, ~ ~ 

damental-l;y on the valfdi ty of the geologica'l concepts held, 

( 
, 
' .. 

~ 1 C Il 

, 
S'M'lliiII1f._i III 1 .,mt'H._f1 ... '""'_ .. _ .... ~""-- ,~ ";.:' ~ ", 

) ~.. ' 
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, \ 
it can.als~ contribute \ \ 

to -the ualua,tion of geological conr 

cepts themselves. 

~ (."" (3) It has -been sl;.lown in the study th~t 'a multi-
-l • 'J 

variate statisti~a+ "moGel developed. for a geologïcal system ~ 

is op~imally ~fficient ~or .t~e system itself. Its applica-
~ 

tion'outsfde the system can lead to serious errors and should 
~' - ~ D 0 

, not be attempted except on a reconnaissance level . 

(4) ln any. mulfivàriate statistica?- .application in 

rl!souJ;:ce evaluation', the selection of the "best" set of vari­
/'-

ables and the 9,etermination of the "best" brder of variables 

~ ~nput in.stepwise analysis ~s a critical consideration. Such 

\ - ;:;eJ!ection must; be ·,guided by the generally accepted concepts 

on the~esi~of the resourc"e. being 'evaluated: . 
f ) (5) 'The quanti~iable relations'hips which are shOwn 

{-

ta exist between endowment and geology, should provide ex-

pl~ration gtidelines in terms'of'the geological variables 
c 

determined .to be the most pettt~ent, and-the ;ubareas'esti­

mated to be poteptial1y the mdst favourable. ThIs 1 supports· ~ , 
expJbration planning investment and execueiQn. '"" 

(6r· ... The application o~ quan'titative meth~dS in geo- " 

~Ogy has c~rtain limita41ons. Beca~se, of the interruptive 

:..J nature of geologi~~l processes, geological data cannot.be 
• 

directly tre?-oted Like_ econometric or other "present momen,t" ·,1 
, " 0 1, 1 \. 

data. Oepending upon the scale of méasur~ents made, thê 
, ~ 

grain and c~m~exity of.geology, and the s~ze and shape of 
" 

the cells adopted,~a number of statistical.problems will ~ 
1 
~ 

--
" 

. , 
.~ 

• 1-

... • .... foV. • ..... It..:,~ <~ 1, .. t.Q..·Wl: __ t~ ~~~ *~"'r", ~t _'Iii,: ,~~dr •• ~~ ~)r.'s.*:""'~~ ..... ~~'< __ R, 
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. , 
., arise. HO~ iritical thesè problems are will vary wi th the 0 

1. • t \ ' 

objective of the s1udy and the statistical) approach èente~­
, . 

o 

plated. Statistical studles can become mean~ngless ~ithout 
, 1 

~ , ff 

an awar~ness of these problems, and attempt~ must be made to 

:minirniz~ thefr effects. Furthermore, the results must be ~ 

interprete~ and evaluated against this awareness. 
, d 0) 

(7) !he need for a more objective approach in geo-

logical mapping' and a more uniform procedure in r.oresource 

classification has bsen emphasized in th~~Ydy. Simultanr 
-
epusly, thêre is also need fo~.more reséarc].ï in evaluating 

~ , ~ 

the role of muitivariate tèchniques in the violation 1 of as-

,sumptions and for the 

for data that are not 

development of tes~s 

norm~lly dis,tributed. 

of' significance~ 

'A namber ,of variables in. the ,Rouyn~Noranda re-
l '," • 

gion have shown a high positive correlation with known en­

'dowment. This is particularly true ~f the~length of north-
1 • /' • 

south to.north-wes~ trending dykes~. The high correlation 
o 

may be genetically related w'ith endowment, or may be cHlly 

~ ~spatial,and thus spurious. However, even as post-ore fea-. 

, , 

turc <::', such variables can have an indirect or consequential 
..... '! 

. . FU'" 

relàti~nshiP wi~h ore formation. This.a's~e~t needs addi-

tionai 'investigation in the field .. The role of the a~ea of 
• " 1 

diorite, gabbrq, requires similar investigation • 
<ft 

c (9) ,The Rouyn-Noranda region is one of the most 

inten~ively st~died ,geoiogicai regions in Canada. 
. 

However, 
" 

therè is st~l debate on the" classification of certain rock 

,; 

) 
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types such aJ rhyolite 0, tuff aed~omerate •. Such lack 

of uniform:term~noiogy 15 a matter of concern to a quantita-
, . 

~ tive ,analyst, and this is one of ~helreasons why extrapola­

tion of a quantitative model outside its own regi~n can b~ 

misleading. 

'(10) In t~is study, the selection of variables has' 

. béen based essentially on factor analysis. tt is felt that 
'.e. ., \ ~ 
factor ana1ysi& can be, effectively employed in relating re-

'source endowrnent and associated geological pararneters. It 
/ , 

can aiso be used in determining if~ore than one mode of ore 

formation 15 present in the region. In this. manner, faptor 
. 

analysis helps guide exploration. However, it does not pro-
, 

vide estima tes of undiscovered endowment potentiai in the 

region. 

(11 ) Regression analys1s and discriminant analysis 
r 

are two powerful statistical methods of resource potential 

.. 

_ evaluation. Both these rnethqds have neen used in this 5tudy 

and provide com~arablè resuIt~. However, regression analysis 

is shown to have advantages in terms of greater flexibility . 
and more defined results. Furthermore" this method does not 

,/ 

require a normalized distribution for the explanatoiy vari-

ables. 

(12) It has bee~ shown that ae iterative approach 

to regression analysis i5 an effective anQ efficient approach 
, i 

in resource endowment foreca5ting for the type of data avail-

able for this study. The ~èlé of multicollinearity i5 
( ~ 

.. 
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With these techn~q~e9' it ~s possible to assign the most like-, 

ly values to response variables i'h cells that do not haVe a 

known endowment value. 

( 13) In spi te of the skewnes,s ùf the data', factor 

analysis and discriminant analysis, both-of which assume a 

"" normal distribution for the dat~, appear to be robust enough 
, 

against violation of this assurnption. When tests of slgnifi-

canee are not applicable because of the absence of a normal-, 
v". 
)~J 

ized distrib~tion, the results can be validated by the !'leav-" ' 
irig one. out" technique as ,applied in this study. 

(14) Sorne seven out of the 56 unknown endowment /' 

cells in the study region are forecast as potentially fa­

vourable for !urt}1er exploration at different lev~l~ of- en- ~ 
, 

dqwment estimates,'both by regression and di~criminant' anal-

~ yses. Three other cells are forecas,t as favou.rable by dis-

criminant analys~s alone. The remaining unknown endowment , 
cells are estimated to be barren by both regression and dis­

criminant analyses. From ~n exploratio~ p;~~ Of view, it 

is just as,- significant to know t~at àn areJd barren than 

that it is'favourable, within the hypothesis testing err~ 
limits. This, therefore; greatly narrows down the ta~ 

, ~ 

area for potentially economic exploration effort. 

are 
,(1-

tion 

'1 

The endowment estima tes forecast in favourable cel)s 

of a'low order considering the current costs of exPlo~~ 
• 

and mine development. 'Therefore, these cells should be 

.. 
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considered on the basis of both their absolute and tneir rela-

tive estimated values. 
-

(15) The absolute potential of 131 million dollars ~ 

forecast for the region is ~nsignificant compared'to its known 

endowment. This implies that either the region has reached a 
,--

stpte of near exhaustion of endowme~t or, a state of saturatio~ 

has been reached in the utility of traditional geological con­

cepts and information in e;ploration and ;e~ource modell~ng. ~ 
'\ 

The region cannot be considered as exha~sted when i~is con­

sidered thatcthe estimated theoretically possible endowment 

exceeds that kn~n for copper by a factor'of 31 and that for 

zinc by a factor of 222." It is therefore suggested that newer 
1 

" " concepts will have to pe ~vàlvea and new information obtained, 
/ 

particularly for the dept~ dim~nsion in the region for incor­

porating in both the forecasting model and in actual explora-
'1 4 ~ " 

tion. Geophysics can be a valuable t091 in this regard.' 

~ 
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CLAIM OF ORIGINAL WORK AND CONTRIBUTION TD KNOWLEDGË 

It is c~ed that the results'and interpretations, 

presented in this thesis'are the original work pf the author 

and a contribution to knowledge. The following features of 

the study have contEibuted to kno~ledge: 

. 
(1) A q,uantitatïve assessment of the undiscov~ed 

resource potentiai of 'the Rouyn-Noranda region has been made. 

The application of'statistical models to the size of tne 
" 

study area chosen and ta the size of individual ceIIs with-

in it, offe.r advan,tages that are not possible in "tradition-

al" reconnaissance level studies. The contribution to know-

Iedge is, thus, in~solving the problems associated with sta-
11 

tisticai r~source evaluation for a study area and celi size 

smailer and more detailed than that used in any previous 

study. 

(2) The present study is basic for other similar 

studies that may have to be,undertaken in other mining re-

gions that have a history of intensive exploration, develop-

ment and mineraI production, but which are becaming exhaust-

ed. Such studies can further guide exploration investment, 

decision making, and regional planni~g. / 

(3) Itl has been demonEltr,a ted in this study that 

quantifiable relationships exist between mineraI endowment , 

and associa ted geolog,icai characteristics wi thin the Rouyn-

< 

C"'n- . . , 

, 
~ 
~ , 
1 

t , 
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Noranda' region,. and that this relationshfp can ne appl'ied to 

rnake· forecasts of unknown end9wment within ~he region. 
o 

(4) The problern of selecting a value to ass'ign J to 
. 

a response variable~for cells with no kncwn endowment has 

bJ.n resol~ed in' this stucr.! by using an "i tera~ive! regres­

s&'n" technique. 

(5) Although rnulticollinearity.presents a serious 

T problem in ,the application of statiètical models ta geologi-

cal data, the author has been able to control this problern 

with the "checkerboard" technique. , 

(6) The author has obtaine~ estirnates of resource 

potential of the Rouyn-No~anJa region using regression anal­

'Y5is and discrirninant-an~lysis separately. In 6~ing 50, the 
• r ,~ 

author has dernonstrated the relative strengths and weaknesses 
1 

of the two techniques. 
• D 

(7) The use of factor analys~s in data reduction , . 
~ ~ 1 

and in the selection of variables has beep de~;nst~ated. 

The author has discussed ,the additional advant«ge of factor 
. '" analysis irt identifying different sets of geo~ogical charac-

te~istics in terrns of their syrnpathetic and antithetic àsso­

ciations with known endowment in the region. This knowledge 
l' 

can assist in ore-genesis, and in focussing mineraI explQra-

tion on the rnost relevant set of geological characteristics. 

(8) The impo~~ance of s~lecting the ~t appropri-
. . 

'~te geological variables fbr~statistical analysis has been . 
. ' 

dernonstrated in this study. The advantages of including or 

1 
1 

<1"' 
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'excluding certain variables has been discussed:l,n terms of 

the spati~l and genetic aff~~Î~tlons of each variable .with 

known endowment "Jp the i:eg ion. ..'" , 
(9) 1 A characteristic of geological processès is 

that they Jre evolutionary, interruptive; or both. But geo-

, logical measurements can only be made at a single point 'in 

time. This aspect of geological knowledge has been stressed 

throughout the thesis. Statistical applications, however 
. • J 

sophisticated" can become misleading wi~ho~t a rea1ization 
~ 

of this dichotomy. An understanding of geologioal concepts 

is fundamental to the application of mu1tivariate statisti-

,cal techniques to resource po~entia1 eva1uation, and to tne ) 

interpretation of results. ~ 
(10) It has been shQwn that statisti,cal techniques, 

whi1e drawing their interpretation from geological knowledge, 

also contribute to the understanding of geological processes 

to differentiation among' different geol~gical environments. 

:J{ ... (11) The need for developing distribution-free 

~ultlvariate tec'hiliques and, in particu1ar, tests of signi­

ficance, has been featured in the st~dY. A leaving one out 

techniqu~ is user in validating the predictive mode1s devel-

oped tÎÏn the study. . . 
(12) It is demonstrated that quantitative relatioh-

.. 
ships developed for a geologiéal 'system should ~e confined .. 
to that system only. Extra~olatipn outside the system can 

resu1t in a 10S5 of reso1ution and erroneous conclusions. 
'" <) ., 

# 
• 

~ l, 

o 
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(13) An ?p-to-date synthesfs of the gèology of -

has been 121: 

tibi bel"t. 

, . 
region and i ts base m.èta'l sulphid~ d~posi ts 

within the larger framework of the Abi-

(14) The conclusions arrived at in the present 

study 6ho~ld significantly contribute' to the" Quebe~ govern-, , 

mentIs efforts to expand the province's miner~l resourc~s. 

Particularly, because in April 1977, the government of 

Quebec1annoùnced a 5-year exploration project for the Abi-

ti~region in north-west Quebec. 

b~ween 60 and 80 million dollars. 

The project will cost 

Similar projects will 

be undertaken in other provincial reg~ons if the Abitibi ,.. " 

project proves successful. 

(15) The present study is a contribution to the 

future res'earch needs referred to by Harris (1975, p. 349): 

. . ~ although progress in the design of geo­
statistical models for the'appraisal of metal 
resources is apparent, mu~h of this progress 
is reflected in a greaterl awareness lof the 
inadequacies of past and present efforts and 
in a greater ability to delineate the problem 
and.to forrnulate the questions' that will be 
the substance of future research and achieve­
ment. 

\ , 

\ 
lThe Northern Miner,\At>ril 7, April 14, and April 

21" 1977. 
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