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Abstract 
 

In this work, we evaluate different approaches of digital signal processing applied 

after a coherent receiver in order to recover the binary information of an optical 

signal modulated in Dual-Polarization Quadrature Phase Shift Keying. We 

explain in details the functioning of a coherent receiver as well as the optical and 

electrical signals travelling inside. We present the criteria of the two lasers 

employed for modulation and demodulation, i.e., the signal and local oscillator 

lasers, as a function of the modulation format and the binary rate. We expose all 

the required signal processing for information recovery out of a coherent receiver 

and mention those who will be assessed in this work, along with the reason of 

their selection. Subsequently, the metric to assess the different methods is 

introduced. The latter is twofold and consists of the computational complexity and 

the final bit error rate that each approach yields. The schematics of the test bed 

follows in parallel with the parameter space of our setup. The computational 

complexity and the bit error rate of ten different approaches are presented, and an 

optimal configuration of methods and parameters to use for such modulation and 

receiver is deduced. 
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Résumé 
 

Dans ce travail, nous évaluons différentes approches de traitement de signaux 

numériques pour un récepteur cohérent optique dans le but de recouvrir 

l’information binaire d’un signal modulé sur double polarization et quatre niveaux 

de phase, ou « Dual-Polarization QPSK ». Nous expliquons en détail le 

fonctionnement d’un récepteur cohérent ainsi que les signaux optiques et 

électriques qui s’y propagent. Nous présentons les critères des deux lasers utilisés 

pour la modulation et la démodulation cohérente, i.e., les lasers signal et 

oscillateur local, en fonction du format de modulation utilisé et du taux binaire. 

Nous exposons tous les traitements de signaux numériques requis pour recouvrir 

l’information sortant d’un récepteur cohérent et mentionnons ceux qui seront 

évalués dans ce travail ainsi que les raisons de leur sélection. Par la suite, nous 

introduisons la métrique d’évaluation des différentes approches. Cette dernière 

comporte deux facettes, soit la complexité de calcul des différents algorithmes et 

paramètres utilisés ainsi que le taux d’erreur binaire final que l’ensemble des 

processus produisent lorsqu’une certaine approche est employée. La présentation 

schématique du banc de test suit de concert avec l’espace des paramètres du 

montage. La complexité de calcul et le taux d’erreur binaire de dix différentes 

approches sont présentés et une configuration optimale des paramètres et 

méthodes pour un tel format de modulation et receveur est déduite. 
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Chapter 1: Introduction 1 

 

 
“If we knew what it was we were doing, it 
wouldn’t be called research, would it?” 
 - Albert Einstein 

 

Chapter 1 : Introduction 

 

1.1 – Motivation 

The demand for increased bandwidth is ever present with the advent of new 

telecommunication services, intensive bit rate demanding applications, and the 

increase of internet subscribers worldwide. The need for increasing the bit rates of 

Ethernet has already been clearly voiced to keep pace with the overabundance of 

data services that drive the exponential network traffic growth between 40 and 90 

percent per year, most notably with the increase of database-centric users and 

applications [1, 2]. The development of higher bit rate transponder technology is 

progressing rapidly to meet the needs of next-generation IP carrier networks. IP 

traffic growth continues together with the need for ever higher-speed ports on IP 

routers and Ethernet switches. 

 

The optical fibre is known to be the transmission medium of excellence for large 

throughputs and long-haul transmissions. Several characteristics of the optical 

field travelling in a fibre can serve to modulate information. These parameters are 

the amplitude, the phase and the polarization. In fact, it is well known that the 

total bit rate carried within a fiber is a simple product of the symbol rate, the bits 

per symbol, the number of carrier and the number of orthogonal polarizations 

used [3]. Increasing needs for higher transmission rates push the need to come up 

with new ways to modulate and demodulate signals for telecommunication. 
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1.2 – Problem Statement 

Up to recently, currently deployed fibre networks were capable to keep up with 

the burgeoning bandwidth demands by increasing the symbol rate of single bit per 

symbol intensity modulated (IM) systems. IM modulated signals use standard 

direct detection (DD) receivers, called IM-DD, where only the squared amplitude 

of the optical field is detected. The increase of the bit rate beyond 10 Gb/s using 

only this approach was proven to be problematic, as high-speed electronic 

components rapidly come to be a strong bottleneck for throughputs and their cost 

rapidly increases with bandwidth. Moreover, broader modulation spectra, from 

shorter time duration bits, increase the impact of fibre transmission impairments. 

As an example, a fourfold increase of the bit rate is 16 times less tolerant to fibre 

chromatic dispersion. Moreover, telecommunications operators have been 

discovering significant amounts of polarization dependant delay, also referred to 

as polarization mode dispersion (PMD), in many of their installed fibres. As PMD 

has a fixed distribution for a given fibre length, it has a detrimental effect on the 

signal to noise ratio that goes proportionally with the data rate, rapidly rendering 

symbols indifferentiable. 

 

Coherent optical receivers allow access not to the power, but the real amplitude, 

phase and even polarization of an optical field. Such type of receiver makes 

possible the use of higher order modulations format, where both the amplitude 

and the phase bear information. Additionally, they allow recovering information 

imprinted on the two orthogonal polarizations of an optical fibre; a process called 

polarization multiplexing (PolMux). These three degrees of freedom allow the 

former 1 bit/symbol scheme to radically increase to )2log()log(2 /M  bits/symbol 

for M different amplitude and phase combinations on dual polarizations. Fig. 1 

shows constellations for various modulation schemes where the I axis represent 

the in-phase information and the Q axis the quadratic-phase, i.e. the information 

shifted by 90° with respect to I. 
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Fig. 1 – Constellations of various modulation constellations 

It is interesting to compare modulation formats with the spectral efficiency they 

yield. The spectral efficiency is simply the bit rate divided by the required spectral 

width of a modulation format. As a mean of comparison, let’s consider 3 

modulation formats all operating on the same symbol rate of 10 Gsymbols/s, 

namely 1) the Non-Return-to-Zero Amplitude Shift Keying (NRZ-ASK) as 

depicted in Fig. 1-A, 2) the-Return-to-Zero Amplitude Shift Keying (RZ-ASK) at 

50% duty cycle, also depicted in Fig. 1-A but where every “+1”s (furthest right 

dot) are always brought back to zero in the middle of the symbol duration, and 

finally 3) the Quadrature Phase Shift Keying (QPSK) which is a 4-ary phase 

modulation (refer to Fig. 1-C). The first thing to find to recover the spectral 

efficiency is the bit rate produced by the format. Both NRZ-ASK and RZ-ASK 

formats give 1 bit of information per symbol recovered whereas QPSK informs us 

of 2 bits per symbol. This gives bit rates of 10 Gb/s and 20 Gb/s respectively. The 

last required information is the full spectral width of the modulation scheme. This 

information depends on the type of pulse shape used, but we will assume a 

common pulse shape being a cardinal sine where the first null to appear after the 

central peak is located at a time equal to the symbol duration. In this case the 
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NRZ-ASK and the QPSK formats share the same full spectral (2-sided) width of 

10 GHz while the RZ-ASK spreads over 20 GHz. Therefore, by dividing the bit 

rate with the spectral width we find the spectral efficiency of each format to be 1) 

1 b/s/Hz for NRZ-ASK, 2) 0.5 b/s/Hz for RZ-ASK and 2 b/s/Hz for QPSK. Here 

we realize the increased efficiency and consequently the interest in using more 

complex modulation schemes like QPSK as they offer the possibility to send more 

binary information within a bandwidth. We will use the latter format in this thesis. 

 

Coherent receivers use digital signal processing (DSP) to remove impairments 

and noise on the received signal in order to recover the information sent. Several 

different digital processes have to be applied to the collected signals for proper 

reconstruction of binary streams. Finding good ways to recover the information 

through DSP is now a sought after research topic 

 

1.3 – Thesis Objective 

The objective of this thesis is to analyze different approaches and various 

parameters embedded in the digital processes at the receiver for information 

recovery. We explain all the impairments we are facing at the receiver and detail 

different ways to mitigate them using digital signal processing. For some 

impairments mitigation processes, we will test completely different approaches 

while for others, we will vary parameters within the process that influence the 

final results. The metric we used to evaluate which method gives better results is 

twofold. First of all, we will calculate the final bit error rate (BER) that the overall 

recovery process yields when using a specific method. Secondly, we will count 

the total required number of real arithmetic operations of additions and 

multiplications for the entire information recovery required by each approach. For 

simplicity, we will name the sum of all real arithmetic operations the computer 

complexity (CC) of the approach. The lower the BER and the lower the CC give a 

better global digital signal process to apply for coherent receivers. With the 

plethora of modulation formats that an optical coherent receiver can recover, we 
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will restrict ourselves only to Dual-Polarization Quadrature Phase Shift Keying, 

or DP-QPSK. Note that the terms “Dual-Polarization” and “Polarization Division 

Multiplexing” refer to the same principle. 

 

1.4 – Thesis Organization 

In Chapter 2, we will explain the use of direct detectors and of coherent receivers 

and will compare the two types of receivers. Will also lay out the basics of 90° 

optical hybrids and how they constitute the main part of a coherent receiver. We 

also introduce the mathematical representation of optical fields. 

 

Required digital signal processing to recover the information sent on an optical 

link after a coherent receiver are presented in Chapter 3. All the impairments the 

processing has to deal with are introduced along with their origins and ways to 

mitigate them for proper information recovery. 

 

In Chapter 4, we define which algorithms presented in the previous chapter and 

required for proper signal demodulation will be assessed in our study and we also 

present the metric we will use to compare different approaches. 

 

Chapter 5 details the test bed used to collect the experimental data. We also 

unfold the characteristics we varied in the setup to accurately differentiate various 

DSP methods. 

 

The sixth chapter exhibits the analysis of 10 different DSP approaches where 

either a DSP method or a parameter within a process is studied. Results are 

presented and a final DSP configuration for best information recovery of a DP-

QPSK transmission is established. 

 

Chapter 7 provides a summary of the work presented, as well as ideas for future 

work. 
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Chapter 2 : Coherent Receivers 

2.1 – Types of receivers 

Different types of receivers have to be used to demodulate specific formats. The 

more complex the modulation format, the more sophisticated the receiver will be. 

They are two main types of photoreceivers in optical communications: Direct-

Detectors and Coherent Receivers. 

 

2.1.1 – Direct-Detectors 

The most basic type of receiver is the direct detector, where the power of light 

hitting a photodiode is proportionally converted into an electrical current. This 

type of detector, when used alone, can only demodulate amplitude modulation 

(AM), also called intensity modulation. This fundamental optical transmission 

scheme named Intensity Modulation with Direct Detection, or IM-DD is widely 

used in today’s 10 Gbit/s optical transmissions, for both terrestrial and submarine 

systems [4]. Such a detector can be seen in the following Fig. 2-A, where Es is the 

optical field at the receiver and i(t) is the current after the photodetector. 

Sometimes, a low noise amplifier or a transimpedance amplifier is used to 

intensify the weak photocurrent due to the small incident optical power. The 

typical photodiode responsivity of WattAmps 5.0 . This type of detector can of 

course also be used for multi-level amplitude modulation, where a higher optical 

amplitude will directly result in a seemingly larger current. 

 

Even if photodiodes are square-law detectors and recover the amplitude regardless 

of the phase, phase modulated (PM) signals can also be direct detected using such 

devices. In opposite to AM where the observed current directly represents the 

symbol transmitted, direct-detectors for phase modulated signals output a current 
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that represent phase changes, or phase jumps of the optical signal and not the 

absolute value of the phase. Therefore, the bit stream has to be differentially 

encoded at the transmitter for the value of the photocurrent at the receiver to be 

representative of the initial information. 

 

Fig. 2-B shows the general configuration of direct-detectors for Multiple Phase 

Shift Keying (M-PSK) modulated signals. The building block of such phase 

demodulators is the optical delay and add filter (DAF), more known as a Mach-

Zehnder demodulator. A DAF consists of two branches into which the incoming 

signal equally separates in power. One branch delays the signal by the duration of 

the symbol, τ, while the other branch can delay or phase shift by constant value 

ϕ. For a binary phase shift keyed (BPSK) format, a single DAF filter is needed 

and ϕ = 0. The more levels of phase used for modulation the more DAFs will be 

needed. For instance, a 4-phase modulation, called Quadrature Phase Shift Keying 

(QPSK), will require 2 DAFs with ϕ1 = +π/4 and ϕ2 = -π/4 and a signal 

modulated on 8 equally spaced phases as in Fig. 1-C will require 3 DAFs as shown 

in Fig. 2-B to properly recover phase jumps with constant phase shifts of 

ϕ1 = +π/4, ϕ2 = -π/4 and ϕ3 = -π/8. After each DAFs, a single-ended (see Fig. 2-A) 
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Fig. 2 - Amplitude (left) and Phase (right) detectors 

or balanced photodetector is used before the optional amplifier [5]. When several 

DAFs are needed, the incoming optical signal Es has to be equally split into each 

of them. For PolMux signals, two identical detectors are needed after a 
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Polarisation Beam Splitter (PBS), where each detector recovers the information 

on orthogonal polarisations. As an example, for an IM signal modulated on both 

polarisations, the detector would look in its simplest form like the one in Fig. 2-C, 

i.e., two replicas of a single DD detector for IM signals, preceded by a PBS. 

 

2.1.2 – Coherent Receivers 

The second type of receiver that is used in optical communications is the coherent 

receiver. A coherent receiver is used to recover the phase and amplitude of an 

incoming signal Es using another signal ELO. This second signal, ELO, is utilized to 

downshift the central carrier frequency of ES around which the information is 

modulated to a central frequency much closer to 0 Hz. In long-haul telecom the 

frequency of ES lies in the vicinity of 194 THz. The down shifted frequency has to 

be within the bandwidth of the optical to electrical photodiodes in order for the 

latter to detect the signal. The amplitude and phase of Es are recovered by digitally 

processing the received signals. In an optical system, the extra ELO signal is a free 

running laser, called a local oscillator (LO). This LO has to have certain 

properties that we will detail later, but for now let’s consider that ELO has constant 

phase and amplitude and a frequency equal to that of Es. By sending 

simultaneously the useful signal Es and the local oscillator signal ELO in a 90° 

optical hybrid as presented in Fig. 3, with ϕ1 = 0 and ϕ2 = π/2, we can extract two 

photocurrents corresponding to }Re{ *LOSEEi  
1 ∝  and }Im{ *LOSEEi  

2 ∝ . 

Consequently, with a theoretical LO being a constantly rotating phasor, we 

exactly recover the real and imaginary part of Es, therefore its complete complex 

value. We will see later on the impact on the recovery of Es when LO has 

independent and varying phase with respect to Es, and a slightly different 

frequency. 
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Fig. 3 – A 90° optical hybrid with 2 DC-coupled balanced photodetectors  

The 90° optical hybrid used to mix the signal Es with the LO is depicted above 

and is an all-optical passive device designed to specifically interact two optical 

signals together. They consist only of four couplers and some phase shifters. To 

be able to relate the outputs of the hybrid to its input, we have to look at the input-

output relation of a single coupler, circled in Fig. 2-B, through its transfer matrix 

notation. The transfer matrix of a single 50-50 coupler is given by 
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where 50% of the incoming optical power goes to one branch and 50% goes to the 

other. Here A and B are the input E fields and A’ and B’ are the output fields. We 

can now relate the input A, B, C, D to the output A’, B’, C’, D’  of Fig. 3 with a 4x4 
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This figure informs us that the second output B’ goes down to the third output and 

conversely for the third output C’. Moreover we observe that the outputs A’ and D’ 
are respectively phase shifted by ϕ1 and ϕ2. Therefore, by doing the four 

transformations 
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 (3) 

we obtain the transfer matrix of the 8-port 90° optical hybrid 
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Now let us assume that input A is the useful signal Es and input D is the local 

oscillator ELO while there are no light shining on inputs B and C, so A = Es, B = 0, 
C = 0 and D = ELO. Let’s define the waveforms of Es and ELO as 
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where PS(t) and ΦS(t) are respectively the power and the phase of the modulated 

signal and PLO(t) and ΦLO(t) the power and phase of the local oscillator. We will 

use this notation to describe optical waveforms throughout this document for its 

simplicity and because it is a base reference in the literature [6]. As previously 

mentioned, if we set ϕ1 = 0 and ϕ2 = π/2, the optical power of the four outputs are 
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 (6) 

where ))()(()()( ttj* ett LOSLOSLOS Φ−Φ= PPEE  and contains the useful information on Es 

we want to recover at the receiver. In our notation, *X  is the complex conjugate 

of X . Looking at (6) we realize the tremendous potential for coherent receivers 

and the power of the 90° optical hybrid. If the receiver client knows all the 

parameters of its local oscillator signal ELO, recovering }Re{ *LOSEE and }Im{ *LOSEE  

turns out to recovering }Re{ SE  and ,}Im{ SE  therefore obtaining all the 

information imprinted on Es through any phase and/or amplitude modulation done 

at the transmitter. In comparison with direct-detectors presented in Fig. 2, the 
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coherent receiver can do everything that the DD receivers can and more. Direct-

detectors built for amplitude demodulation can only recover power changes and 

direct-detectors preceded by DAFs built for phase demodulation can only 

properly recover relative phase jumps. On the other hand, coherent receivers 

recover both the power and the actual phase as they give full access to the optical 

field Es. 

 

Looking at (6) we can understand the advantage of using balanced photodetectors 

to recover the real and imaginary part of *LOSEE . Using a single photodetector 

after the outputs F and G, we recover photocurrents respectively proportional to 
2F  and 2G in (6). Single photodectors are normally immediately followed by a 

DC block (see Fig. 2-A) to get rid of constant photocurrents from the power of the 

local oscillator and possibly the signal. This action is called AC coupling. As 

mentioned in [7], in a receiver without a low-frequency cut-off, a DC offset sets 

an absolute minimum on the detectable signal, introduces pulse-width distortion 

into the signal, effectively decreasing the maximum symbol rate, and makes it 

difficult to implement high-gain post-amplification when needed. The latter arises 

because an amplified DC offset can shift certain signal states out of the linear 

region of operation of the amplifier. Alternatively to single-input photodetectors, 

balanced photodetectors as shown in Fig. 3 can be used. Balanced detectors have 

common mode rejection allowing two input electrical signals to be subtracted one 

another, resulting in removing the common components of said two signals. By 

launching 2E and 2F  from (6) on a balanced photodetector and 2G and 2H  on 

another, we get two photocurrents proportional to ( )}Re{441 *LOSEE  and 

( )}Im{441 *LOSEE  respectively, where all the common terms Ps(t) + PLO(t) are 

removed. By subtracting, the magnitude of the output photocurrents are doubled, 

collecting }{4 *LOSEE  instead of }{2 *LOSEE . Therefore, the use of balanced 

photodetectors first rejects the need for DC blocks and second provides a 

significant gain of ( ) 6)2/4(log10 2 =  dB on the electrical power of the collected 

signals. This 6-dB gain is of tremendous importance for improving the signal to 

noise ratio (SNR) at the receiver, a capital criterion to lower the mean bit error 
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rate. This electrical gain can be enough not to have to use an electrical amplifier 

that inherently adds noise to the signal because of their non-zero noise figure. If 

an electrical amplifier is still needed, it will required less gain, where higher gains 

commonly bear a worst noise figure compared to low ones [8]. 

 

Balanced photodetectors can also be used in direct-detection phase demodulators 

as shown in Fig. 2-B for the same reason as for coherent receivers: no need to use 

a DC block and a gain of 6-dB on the electrical signal power [9]. 

 

The main difference between direct detectors and coherent receivers is the use of 

another laser, called the local oscillator, on the receiver side to mix with the 

incoming signal. For direct-detectors to properly recover polarization multiplexed 

signals, a polarisation controller followed by a polarisation beam splitter are 

needed. Polarisation beam splitters separate the incoming light onto two fixed 

orthogonal axis, that we can arbitrarily identify as x̂  and ŷ . However, the 

polarisation of the signal arriving at the PBS is unknown and is changing in time 

in standard single mode fibres (SMF). This polarisation property of SMFs results 

in information cross-talk at the receiver. As an example, using the Jones matrix 

representation, for a signal arriving at polarisation θ with respect to the PBS’s x̂  

axis the output on the x̂  and ŷ  branches will be 
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where the first and second matrix in the middle part of Eq.(7) are respectively the 

linear x̂  polarizer and the polarization rotator. Similarly, the output on ŷ branch 

will be ( ))sin()cos( tttt θθ XY AA +  when using a linear ŷ  polarizer. Here we assume 

that the X and Y signals arrive perfectly orthogonal: an assumption that is most of 

the time not true and that we will discuss later on. XA t  and YA t are the time varying 

complex signals modulated on the initial X and Y polarisations and tθ  is the time 

varying angle of the polarisation of the signal right before the PBS with respect to 
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the PBS’s principal axis x̂ . We can clearly see the polarisation cross-talk induced 

by varying polarisation tθ . Therefore, a polarisation controller (PC) externally 

actuated would be needed to maintain tθ  at 0, allowing a proper demodulation of 

the PolMux signal. The block diagram of such receiver would look like the one in 

Fig. 2-C but with an actuated PC before the PBS. Tracking and actuating a 

polarisation controller is not easily implementable in practice and makes the 

receiver much bulkier and expensive. Polarisation diversity coherent receivers are 

exempt of this constraint. 

 

2.1.3 – Polarisation Diversity Coherent Receivers 

Polarisation-diversity coherent receivers offer an elegant solution to the problem 

of polarisation misalignment. Fig. 4 shows a block diagram of a polarisation-

diversity coherent receiver. These devices consist of two 90° optical hybrids 

having inputs coming respectively from the x̂  and ŷ  outputs of two identical 

polarisation maintaining splitters (PMS). The LO signal has to be aligned at 45° 

with the PMS’s principal axis or polarized circularly in order to equally split its 

power into the two outputs. Fixing the LO polarization at 45° is readily done by 

using a fixed polarisation controller (PC) after the LO laser output, as the laser 

light is naturally polarized at a steady state [10]. We equally split the LOE  power 

to be able to keep track of polarisation dependant losses (PDL) on SE . PDL is an 

important impairment on SE  when the signal is polarisation multiplexed. We will 

further detail the case of polarization multiplexed transmission but for now, we 

pursue studying the receiver with a signal having single polarisation. 

 

As can be seen on Fig. 4, the top hybrid gives the in-phase (I) and quad-phase (Q) 

information of SE  when projected on the axis x̂  of the PMS, namely xS,ˆE , and the 

bottom hybrid gives the IQ information of SE  after its projection onto the PMS’s 

ŷ  axis, namely yS,ˆE . If the LO is not equally split in power, yLO,xLO, ˆˆ EE ≠  and all 

post equalization of * xLO,xS, ˆˆEE  with * yLO,yS, ˆˆ EE  will be biased by the unequal 

magnitude of xLO,ˆE  and yLO,ˆE . For instance, in the particular case where the two 
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states of polarisation of the signal SE  are aligned with x̂  and ŷ  right before the 

PMSs, one would not differentiate a polarisation dependant loss on xS,ˆE  with 

respect to yS,ˆE  and a uneven separation of LOE  on x̂  and ŷ .  

Es  

ELO  

PMS 
x̂

ŷ
} Re{  ̂ ̂

* xLO,xS, EE∝

} Re{ ˆˆ
* yLO,yS, EE∝

} Im{  ̂ ̂
* xLO,xS, EE∝

} Im{ ˆˆ
* yLO,yS, EE∝

xS, ̂E

yS,ˆE

yLO,̂E

xLO, ̂E
90° 

Optical
Hybrid

90° 
Optical
Hybrid

x̂

ŷ

PMS

 
Fig. 4 – Dual Polarisation 90° Hybrid with 4 Balanced Photodetectors 

Another advantage of the polarization diversity coherent receiver is its ability to 

recover all the information on the signal SE , polarisation multiplexed or not, 

without any polarisation controller requiring feedback actuation. Direct-detectors 

cannot claim this property, as we explained earlier. One consequence of this 

property that no polarization actuation is required is that we initially don’t know if 

what we receive in the x̂  and ŷ  polarization are the signals on tX̂  and tŶ . This 

characteristic is easily shown when we look at equation (7) and at the output 

signals on Fig. 4. Let’s assume that SE  is not polarisation multiplexed and that its 

principal state of polarisation is at tθ  with respect to x̂  right before its PMS. The 

output at x̂  will be )cos(ˆ tθSxS, EE =  and at ŷ , )sin(ˆ tθSyS, EE =  from Eqs. (7) and 

(8) by setting . 0=YA t  and S
XA E=t . If we would only use a single 90° optical 

hybrid, e.g. the top one, the signal yS,ˆE  would be lost and the recovered signal 
* xLO,xS, ˆˆEE  could sometimes equal zero and bear no information when °±= 90tθ . 

On the other hand, when two 90° optical hybrids are used as in a polarisation 

diversity coherent receiver, both xS,ˆE  and yS,ˆE  are used to recover SE  and there 

are no angle tθ  at which SE  is lost because the field is trigonometrically split 

among the top and bottom hybrids. Therefore, all the information on SE  is kept 

with this configuration.  
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This property is also true when SE  is polarisation multiplexed. To study this case, 

let’s assume that the two polarisations on SE  are orthogonal before hitting the 

PBS and at an angle tθ  with respect to the PBS’s x̂  axis. We define the 

waveform SE  in terms of its polarisations, 

 tt YX Y
s

X
sS ˆˆ EEE +=  (9) 

It is important not to misinterpret x̂ , ŷ  with tX̂ , tŶ . Small letters x̂  and ŷ  

represent the orthogonal basis of the PBSs while tX̂  and tŶ  represent the time 

varying states of polarisation of the polarisation multiplexed signal SE . At the 

transmitter side, the X )( X
sE  and the Y )( Y

sE  signal are orthogonally modulated on 

tX̂  and tŶ  respectively. As we know from single mode fibre, tX̂  and tŶ  rotate as 

the field SE  propagates. Moreover, even if this is assumed in our current 

discussion, tX̂  and tŶ  are not necessarily orthogonal: there can be a small 

deviation from 90° in the angle between tX̂  and tŶ . As introduced in (7) and (8), 

the x̂ and ŷ  outputs will respectively be 
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tt
tt
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s
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sys,
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EEE
EEE

+=
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Here we clearly see that xs,ˆE  will sometimes contain only the signal sent on X, 

sometimes only the signal sent on Y and most of the time a trigonometric mixture 

of X and Y signals. We can say the same for ys,ˆE  entering the bottom hybrid. From 

this point, using the hybrids outputs * xLO,xS, ˆˆEE  and * yLO,yS, ˆˆ EE  and assuming that 

yLO,xLO, ˆˆ EE = , we can derive 

 ( ))()()(2
ˆˆ

2
ˆˆ tPtPtP Y

S
X

SLO* yLO,yS,* xLO,xS, +=+ EEEE  (11) 

and find that the total electrical power from the polarisation diversity coherent 

receiver is independent of the entering angle tθ  and therefore, no signal power is 

lost using such receiver for both single polarisation and PolMux signals. We also 

show that no actuated polarisation controller is needed. However, post processing 

of xs,ˆE  and ys,ˆE  is required to keep track of rotations and to disentangle X
sE  from 

Y
sE . 
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Looking at Fig. 4, one could question the need for a PBS preceded by a PC simply 

for equalizing the LO power entering both hybrids. One could be interested in 

using two independent LO sources having the same power. There are two main 

reasons why the configuration in Fig. 4 is used. The first and most simple one is 

that good quality lasers are expensive and a single LO is sufficient in this 

application. The second reason, and the most important is found by looking at the 

phase relation of * xLO,ˆE  and * yLO,ˆE . Albeit their required equal magnitude, these two 

lightwaves naturally claim a common property after the PBS: they share the same 

waveform phase. This is of tremendous benefit for recovering xs,ˆE  and ys,ˆE  from 

the collected outputs * xLO,xS, ˆˆEE  and * yLO,yS, ˆˆ EE  because it means that characterizing 

the complex waveform * xLO,ˆE  allowing the recovery of xs,ˆE  disencumber at the 

same time ys,ˆE  with no extra effort. If a certain processing power and time is 

required to disentangle xS,ˆE  from * xLO,xS, ˆˆEE , the extra power and time are saved to 

find yLO,ˆE  in * yLO,yS, ˆˆ EE  when using a PC with PBS for the LO signal. 

 

The observable quantities we collect are xs,ˆE  and ys,ˆE , projections of SE  on x̂  and 

ŷ . Using a simple basis transformation shown below with the Jones matrix 

representation, we can retrieve the useful signals X
sE  and Y

sE  by applying the 

transfer matrix below to these observables. 
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Fig. 5 – PBS axis (black) and Es’s principal state of polarisation axis (red) 

The transfer matrix in (13) is the inverse of that in (12), allowing inverse basis 

switching from ( tX̂ , tŶ ) to ( x̂ , ŷ ). Basis transformations do not require any of the 
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two bases to be orthonormal. The only property they both have to have is not to 

be a degenerate basis, i.e., where the constituting vectors point in the same 

direction. Although the information on SE  is imprinted on orthogonal axes at the 

transmitter, orthogonality is generally lost as the waveform propagates down the 

fibre due to impairments such as polarisation dependant loss [11, 12]. The 

difficult process to realize after this coherent receiver is to find the time varying 

angles tθ  and tθ∆  knowing only how xs,ˆE  and ys,ˆE  vary in time. Do to so, it is 

necessary to take advantage of the knowledge of the modulation format initially 

imprinted on X
sE  and Y

sE  to properly recover the useful information with a blind 

recovery approach. For instance, if we know that both X
sE  and Y

sE  signals that are 

phase modulated only, we can assume that the desired signals at the receiver have 

constant amplitude and derive X
sE  and Y

sE  from xs,ˆE  and ys,ˆE . We will detail later 

a way for such signal derotation. 

 

2.2 – Modelling the lasers 

We introduced in equation (5) the signal and the local oscillator’s waveforms as 

complex numbers having an amplitude and an undefined phase. In this section we 

will detail how we model the lasers waveforms. It will provide a framework for 

future analysis and define how to recover the useful information on SE . 

 

We know from the theory of electromagnetism that light is a form of 

electromagnetic radiation and therefore can be represented by either its electric or 

magnetic field. The Poynting theorem [13] tells us that the power of a wave is 

proportional to the product of the amplitude of the electric and magnetic fields, 

which implies that these amplitudes are proportional to the square root of the 

power. Hence, we represent waveforms with amplitude in a square root of power 

form.  

The phase of the waveform has to take into account all the properties of a laser 

beam. First of all, a lightwave oscillates at very high frequencies. In the 

telecommunication window of interest, signals have center frequencies in the 
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vicinity of 194o =f  THz. A lightwave is said to be monochromatic if a single 

frequency is coming out of the laser source. However, this concept is theoretical 

as no lasers can emit only a single wavelength due to the natural spontaneous 

emission of light from quantum origins. If we were to obtain a single tone laser, 

we would write its complex part as )( ootie φω +  where ωo = 2πfo, fo would be a fix 

frequency at 194 THz and the relative phase of the waveform oφ  would also be 

fixed at an arbitrary value between 0 and 2π. For real lightwaves, however, the 

relative phase is not fixed but varies in time according to a Gaussian random 

process [14-16]. This time varying phase )(tφ  is a stochastic process representing 

angular fluctuation in time. Frequency shifts are also taken into account in )(tφ  as 

the instantaneous frequency is by definition the time derivative of the angle. This 

stationary Gaussian random process is assumed to have a time derivative that is 

zero-mean, so on average, the frequency deviation from fo is zero. Taking into 

account this phase noise, the complex part of a waveform can be written as  
))(( oo ttie φφω ++ and therefore the instantaneous frequency is 

dttdftf o )()2()( 1 φπ −+= . It is this time varying frequency in the last part of this 

equation that leads to the broadening of the single tone spectral line centered at fo. 

Broadening of the emission frequency is an inevitable consequence of the 

spontaneous decay of population from excited levels: a more classical 

explanation. It has been shown in the literature that the shape of the emission 

linewidth is either Lorentzian or Gaussian [17]. This power spectral density shape 

has therefore a Full Width at Half Maximum (FWHM) varying from tens of 

kilohertz to tens of megahertz, depending on a multitude of factors like electron 

decay rate, temperature, average mass of atoms in lasing media and the structure 

of the laser cavity [14]. 

 

Laser phase noise )(tφ  is known to be a random phase walk generated by the 

Weiner process. Random walks, or Brownian motions, are well known processes 

and it is not of our interest to explain them thoroughly. The laser phase noise 

process is commonly characterized by a Weiner process such that 
)(tφ  ≜ ∫ ′t d

0
)( ττφ  [18], with 0)0( =φ , where its time derivative )(tφ′  is a zero-
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mean white Gaussian process with a flat power spectral density of πΔν2 , where 

Δν  is the 3 dB laser linewidth in Hz. The randomly walking phase )(tφ  then 

becomes a Gaussian random variable with variance tπΔν⋅2 . It is well know that 

for a Gaussian random variable Φ  of mean R and variance 2σ , ),(~ 2σRNΦ , 

the expected value of Φje  is 

 [ ] jR
R

jj edeeeE
+

−∞

∞−

−Φ−
ΦΦ =Φ⋅= ∫ 22

)(

2

2

2

2

2

1 σ
σ

πσ
 (14) 

In our case, )(tφ  has tπΔνσ ⋅=22 . For further details on laser phase noise, we 

refer the reader to [18]. 

 

We are now in a position to expand the mathematical expressions of the signals 

collected after the polarisation diversity coherent receiver, i.e., of * xLO,xS, ˆˆEE  and 
* yLO,yS, ˆˆ EE . Let’s start by redescribing SE  in light of the waveform framework 

mentioned above and assuming a modulation in amplitude, phase and 

polarisation. 

 ( ) ( )
t

tttj
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ˆ )(ˆ )(
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Fig. 6 – Simple representation of a dual polarisation transmitter 

For similar reasons as previously mentioned about using a single or two LO lasers 

at the receiver, a single transmitter laser for polarisation multiplexed signals is 

used and split in polarisation. Each orthogonally polarised light is independently 

modulated in amplitude and/or phase before recombined with a Polarisation 

Maintaining Combiner (PMC). A PMS is used between the laser and the two 

modulator inputs. The three ports of the PMS are polarization maintaining fibres 

and are aligned on the slow axis. With the laser also aligned on the slow axis, we 

make sure that the power is equally split. Since the X
sE  and Y

sE  signals come from 
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the same laser, they are characterized by the same central angular frequency ωs 

and laser phase noise )(tsφ . Each polarisation waveform has its own time-

dependant phase modulation )(tX
sΦ  and )(tY

sΦ  and its own time-varying 

amplitude )(tX
sP  and )(tY

sP  from their respective phase and amplitude 

modulation. Finally, each polarisation waveform can have its own relative phase, 

identified as Xs ˆ,,oφ  and Ys ˆ,,oφ , imprinted by the components the X and Y signals 

traverse. Examples of such components are the PMS that can have a reflectance 

and transmittance coefficients with different phase response for TM and TE 

polarisations [19], or the two modulators having a different residual phase shift 

from their electrical driving signals. 

 

We can also redescribe the local oscillator signal at the receiver after it passes 

through its PBS (see Fig. 4) as 

 ( ) ( ) yx
y x 

yLOLOLOxLOLOLO yLO,xLO,LO

yLO,xLO,LO

ˆ )(ˆ )(
ˆˆ

ˆ,,ˆ,, )(ˆ)(ˆ

ˆˆ

oo ttjttj etet φφωφφω ++++ +=
+=

PPE
EEE

 (16) 

where ωLO and )(tLOφ  are the central angular frequency and the phase noise of the 

LO signal, and xLO ˆ,,oφ  and yLO ˆ,,oφ  are constant phase differences that we leave 

independent for the same reasons mentioned above. Ideally, the polarisation of the 

LO before the PBS is such that )()( ˆˆ tt yLO,xLO, PP =  as previously mentioned. From 

this point, we can easily describe the signals we would collect if the signal 

alignment right before its PBS is such that tX̂  = x̂  and tŶ  = ŷ . 
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where we define the new variables IFω , )(tIFφ , x̂,oφ  and ŷ,oφ . The difference in the 

angular frequencies of the LO and the useful signal SE  is replaced by IFω , which 

we call the intermediate frequency (IF), and is defined as LOSIF ωωω −= . The 

difference in the phase noise of the two lasers is represented by the variable 

)()()( ttt LOSIF φφφ −= . We know from previous study that the electrical power 

spectal density (PSD) of photocurrents after a photodiode located on one output 
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port of an optical directional coupler with impinging light sources having 

Lorentzian line shapes also shows a Lorentzian shape with a full width at half 

maximum (FWHM) being the sum of the FWHM of the two ingress signals [18, 

20-23]. In other words, since the transmitter and the local oscillator lasers have 

statistically independent phase noise processes, the resulting linewidth is the sum 

of the individual laser linewidths. Finally, a constant phase difference between the 

signal and the LO is taken into account in the last two arguments in (17). 

 

What we define in (17) are not assuredly the signals we collect, as only rarely the 

principal states of polarisation (PSP) of SE  match those of the PBS. With the help 

of Eq. (13) to (16) and of Fig. 5, we can derive * xLO,xS, ˆˆEE  and * yLO,yS, ˆˆ EE  with 

misalignments 0≠tθ  and 0≠∆ tθ ,  
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To properly recover X
sE  and Y

sE , post processing of Eq. (18) and (19) should 

remove the intermediate frequency IFω , the sum of the transmitter and LO laser 

phase noise )(tIFφ , all the dummy constant phase shifts, polarisation rotations tθ  

and polarization unorthogonality tθ∆ . Polarization dependant loss (PDL) is added 

in Eqs. (18) and (19) through Xα  and Yα  and is also an impairment that will have 

to be removed. As PDL is the extra loss of power on one polarization with respect 

to the other, we set the attenuation coefficient of the highest signal power to zero, 

for instance 0=Xα  if )()( tt Y
S

X
S PP >  and set the other PDL attenuation coefficient 

to )()( tt X
S

Y
SY PP=α . 

 

2.3 – Criteria for Proper Demodulation 

The four electrical signals that come out of the polarisation diversity coherent 

receiver are the real and imaginary parts of equations (18) and (19). These signals 
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have a bandwidth that is function of the intermediate frequency IFω  and of the 

symbol rate imprinted in the amplitude and/or phase of SE . It is known from the 

Nyquist sampling theorem [24, 25] that every signal of finite energy and 

bandwidth W Hz may be completely recovered from the knowledge of its samples 

taken at the rate of 2W per second. This sampling theorem serves as basis for the 

interchangeability of analog signals and digital sequences. The corollary of this 

sampling theorem is that if the electronic sampling speed of the receiver is capped 

at a finite rate of S samples per seconds, the bandwidth of the signal has to be 

lower than S/2 Hz.  

 

Therefore, to completely recover the signals * xLO,xS, ˆˆEE  and * yLO,yS, ˆˆ EE  out of the 

polarisation diversity coherent receiver, the first criterion on the analog bandwidth 

of the analog to digital converters (ADC) is to be greater or equal to half their 

sampling rate. The following figure shows a global view of the complete 

conversion scheme from optical to analog electrical to digital signals. 

Es  

ELO  
} Im{ ˆˆ

*
y LO,yS,y-I EEi ∝

} Re{ ˆˆ
*

y LO,yS,y-R EEi ∝

} Im{ ˆ ˆ 
*

xLO,xS,x-I EEi ∝

} Re{ ˆ ˆ 
*

xLO,xS,x-R EEi ∝

Dual 
Polarization 
90° Optical 

Hybrid

4 channels 
Analog to 

Digital 
Converter

Digital 
Signal 

Processing

 
Fig. 7 – Complete block diagram of a coherent receiver with post DSP 

The optical signals SE  and LOE  get converted to electrical signals after the dual 

polarisation 90° optical hybrid with the help of four balanced photodetectors. The 

four analog electrical currents get sampled by ADCs before being post processed 

by digital signal processing means. ADCs not only have a finite sampling rate, 

they also show a frequency response as they employ CMOS with inherent 

frequency characteristics. Consequently, a second criterion on the bandwidth of 

the ADC is to be at least that of the maximum bandwidth of the ingress signals to 

avoid signal impairments by the ADC. Normally, when the second condition of 

ADCs’ 3-dB bandwidth is met for an ingress signal, the first condition on 
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minimum sampling rate is satisfied, as ADCs producers normally honour the 

Nyquist sampling criterion with respect to the device’s own maximum bandwidth. 

For fixed 3-dB bandwidth and a fixed sampling rate of the ADCs, the collected 

signals * xLO,xS, ˆˆEE  and * yLO,yS, ˆˆ EE  have to have frequency components as depicted in 

the following figure: 

 

3-dB 

collected signal ADC 
frequency response 

 
Fig. 8 – Frequency representation of collected signals and samplingh ADCs 

Here, the bandwidth IFW f+  Hz is the total bandwidth of * xLO,xS, ˆˆEE  and * yLO,yS, ˆˆ EE . 

This means that W includes any modulation formats imprinted on SE  plus the sum 

of the transmitter and local oscillator lasers’ phase noise. In other words, W is the 

bandwidth of the power spectral density of equations (18) and (19) when 0=IFω . 

On the other hand, B is the ADCs 3-dB bandwidth. On this figure we clearly see 

the two requirements for ACDs, i.e., that BW IF ≤+ f  and that the sampling rate 

be greater than )IF2(W f+  samples per seconds. 

 

We differentiate three types of coherent detections based on the location of the 

intermediate frequency IFf  with respect to the bandwidth of the baseband signal 

W . Before to start, it is useful to distinguish synchronous and asynchronous 

demodulation. Synchronous demodulation is in fact also called homodyne 

reception and it is achieved when the local oscillator that is mixed with the 

incoming signal has exactly the same frequency and phase as of the signal itself. 

This is realized using an external Phase Locked Loop (PLL) that adjusts the 

frequency and phase of LO to track those of the signal. Synchronous 

demodulation is readily done for electrical signals and LOs, but gets quite 

elaborated for optical signals. A synchronous demodulation would result in 
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forcing 0=IFω , 0)( =tIFφ  and all the constant phases to zero in (18) and (19), in 

which case LO cancels the slow varying arguments of the signal, leaving only the 

rapidly changing phase modulation. 

 

Asynchronous demodulation can be separated in two subcategories, namely 

asynchronous intradyne and asynchronous heterodyne. Asynchronous 

demodulation mean that the LO’s frequency and phase is not locked to that of the 

ingress signal and is free running. The simplicity of asynchronous demodulation 

over synchronous is what makes it so attractive for optical systems using a 

coherent receiver. By definition, intradyne demodulation is observed when the 

intermediate frequency IFf  is smaller than the signal’s bandwidth W . When this 

happens, there is some spectral content overlapping on the frequency down 

shifted signal. Fig. 8 shows a good example of intradyne reception where some 

frequency content normally laying in the positive side spill over in the negative 

side. Finally, heterodyne reception happens when IFf  is bigger than W . In this 

scenario, there is no spectral content overlapping [26]. 

 

For a coherent detection system with asynchronous demodulation using ADCs 

having a finite bandwidth, it is most preferable to work in the intradyne regime 

with an intermediate frequency laying as close to zero as possible. In this case, no 

complex optical PLL is required and signals with large bandwidth W, as large as 

the ADC’s, can be demodulated. 

 

2.3.1 – Laser Criteria as a Function of the Modulation Format and Speed 

What we presented above are criteria about the required sampling rate and 

bandwidth of the ADC to properly demodulate a signal who’s frequency is 

downshifted at IFf  and with a bandwidth of W . The major part of the bandwidth 

W  of said signal, described in (18) and (19), comes from the modulation format 

and the modulation rate imprinted on the transmitter laser. With today’s optical 

transmission rate in the gigasamples per second, only a small fraction the total 



Chapter 2: Coherent Receivers 25 

 

received bandwidth is due to the transmitter and local oscillator laser’s phase 

noise. 

 

There is another criterion concerning the LO’s frequency compared to the signal’s 

when phase modulation is employed. To explain this, let’s take an example where 

the signal is modulated in 8-PSK, as depicted in Fig. 1-C, and where the symbol 

rate is 20 Gsymbol/s, meaning a symbol duration of 50 ps. This means that every 

50 ps, the phase of the lightwave can jump by 4π⋅n , where { }7,...,0∈n . At one 

sample per symbol the minimum sampling rate is 20 Gsamples/s. The effect of 

IFf  on the 8-PSK signal is a rotation of the signal constellation (Fig. 1-C) by IFf  

complete rotations per second. Before pursuing, we should mention that any 

receiver has a slicer that associates received samples to the closest symbol in the 

constellation. In the 8-PSK case, eight phase-intervals are defined, each of which 

being 82π  wide. Now we imagine that a symbol is perfectly sampled at ( )01 ⋅+ i  

in the constellation and that the next symbol sent is the same. As our received 

symbol has a phase within ]8,8[ ππ−  and is properly mapped in the 

constellation. We find that to properly distinguish a 82π  phase jumps to a simple 

rotation due to the frequency offset IFf , the intermediate frequency has to be such 

that the constellation rotates by less than 8π  in 50 ps, giving an extra criterion 

on ( ) ( ) =≤ ps 5028 ππIFf  1.25 GHz for this specific case of 8-PSK at 20 

Gsymbols/s. Consequently, even if the bandwidth B  and the sampling rate of the 

ADC are satisfied for the incoming signal of bandwidth IFW f+ , the LO’s laser 

frequency as to be tuned within a certain bandwidth around the transmit laser’s 

frequency. Generally speaking, this constraint applies whenever the signal is 

modulated in phase, and when it is the case, this criteria is the most constraining. 

On the other hand, when only amplitude modulation is employed as in Fig. 1-B, 

this extra constraint on IFf  is absent and IFf  can take any value from 0 to W-B . 
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Chapter 3 : Algorithms for signal recovery 

In this chapter, we will talk about the required digital signal processing to recover 

the information sent on optical links. We will mainly introduce digital ways to 

remove impairments on the signal due to the transmission channel itself, i.e., the 

optical fibre, and due to the type of receiver employed, i.e., the coherent receiver. 

We will talk about ways to compensate for the fibre dispersion, how to remove 

the frequency offset between the signal SE  and the local oscillator LOE , how to 

suppress the transmitter and LO phase noise and we will present a method to 

remove the polarisation cross-talk on the signal. Before beginning to describe the 

digital processings, we will discuss the effects of sampling at the minimal Nyquist 

rate and oversampling. 

 

3.1 – Nyquist Sampling and Oversampling 

As previously mentioned, the Nyquist-Shannon sampling theorem says that an 

analog signal having a maximum frequency of Fs/2 Hz is fully represented in the 

digital domain if sampled at a rate of Fs samples/s. We could then ask our self 

what would be the benefits of sampling this analog signal at a rate higher then Fs. 

There are in fact many reasons to sample at a higher rate than the minimal 

predicted by Nyquist. 

 

The very first reason is the increase of ADC resolution when oversampling is 

used. Indeed, it can be proven that sampling at N times the minimal rate followed 

by proper filtering of the digital signal and decimating by 1/N gives a digitized 

signal that has a higher signal to quantization noise ratio (SNRQ) that can be 

translated to an increased bit resolution of the ADC. Actually, the ADC resolution 

is increased by ( )NSOS FFlog)602.0( 1−  bits when oversampling is done, where NSF  
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is the Nysquist sampling rate and OSF  is the oversampling rate [27, 28]. Therefore, 

a fourfold oversampling increases the SNRQ by 6.02 dB and acts as if the ADC 

had an extra bit of resolution. 

 

Processing or filtering a signal oversampled by an integer factor is called in 

digital communications a Fractionally Spaced Equalization (FSE) or a T/N-spaced 

equalizer, where T is the symbol duration and N is the oversampling factor. 

Filtering a digital signal sampled at Nyquist is called Synchronous Equalization or 

T-spaced equalization. A FSE has the capability of compensating for delay 

distortions more effectively than a conventional synchronous equalizer [29]. 

Another advantage of the FSE is the fact that data sampling may begin with an 

arbitrary sampling phase, compared to an equalizer working with T-spaced data 

that requires the sampler to sample right in the middle of the symbol duration, 

where the eye is the most open. We can easily visualize this sampler criterion for 

T-spaced sampling by imagining a pure sinusoidal signal of frequency f being 

sampled once every 1/( 2f ) seconds but exactly at the nulls. No information is 

recovered on the digitized signal even if sampling is at Nyquist, hence the name 

Synchronous Equalization for the need for phase synchronization of the sampler 

with respect to the incoming signal. However, the signal frequency f can be 

recovered with any phase when sampling is happening once every fN21  seconds 

for 1>N . Moreover, in can be proven FSE have a minimum mean square error 

that is independent of the sampling epoch [30]. 

 

A last argument in favour of oversampling at an integer multiple of the Nyquist 

rate is understood by looking at the frequency response of digital filters. Digital 

post-processing of the acquired signal will be done using digital transversal filters. 

These filters take previous samples to process a current sample and output a 

filtered sample that can be utilized again for the filtering of the next sample. Such 

finite length filters have a separate magnitude and phase response and one cannot 

set both of them independently, i.e., a filter designed to have a desired magnitude 

response will inherently engender a phase response that is in most cases not 
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desired, and vice versa for a filter designed for a specific phase-response. In most 

cases phase shifts is null at DC and monotonically increase with frequency. This 

results in more phase shift received by frequency components further away from 

DC, or in other words closest to the maximal frequency represented: half the 

sampling rate. If the signal is sampled at Nyquist, fs/2=fmax, the high frequency 

content of the signal will receive a maximum amount of phase shift engendered 

by the T-spaced filter. However, if the signal is N-times oversampled, fs/2=Nfmax. 

The equivalent T/N-spaced filter will have the same phase response, but now 

applied only from DC to fs/(2N), and undesired the phase shifts around fs/(2N) 

will be less than those around fs/2.  

 

In our processings, we will work with signals sampled at the Nyquist rate. We 

will see in a later section that this rate is equivalent to 2 samples per symbol 

duration, due to the type of pulse used. We work with such a type of pulse to 

benefit from the T/2 oversampling, and to be realistic with the finite sampling 

speed of ADCs. Of course, system performance would increase by sampling at 4 

or 8 times the baud rate, but we limit ourselves to the minimum integer 

oversampling rate that is beneficial. 

 

3.2 – Required Signal Processing 

In this section we will lay the required digital processing to be done in the 

“Digital Signal Processing” box of Fig. 7. This section is not intended to provide 

ways to implement each processing numerically. We rather explain the origin of 

the impairments and mathematical methods to suppress or mitigate them. We will 

mention what operations ought to be applied to the 4 signals coming from the 

ADCs in order to recover the binary information sent. These operations arise from 

our knowledge of: 1) the shape of the signal sent, 2) the characteristics of the 

transmission channel, and 3) the type of receiver used. For certain processings 

that are modulation format sensitive, we will assume DP-QPSK, a modulation on 

4 phases sent independently on two orthogonal polarisations. We will present the 
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processing in the sequence they have to be applied to properly recover the 

information. The following figure shows the required operations to apply digitally  
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Fig. 9 – Sequence of Digital Signal Processings for Coherent Receivers 

when a coherent receiver is used. Some of these operations can be regrouped and 

be done simultaneously. We will discuss later on the different outcomes in the 

latter case. 

 

3.2.1 – Optical Hybrid Amplitude Imbalance 

The very first process to apply to the four numerical signals is to remove any DC 

offset from the real and imaginary parts of both collected polarisations. By 

looking at Fig. 3 and Fig. 4, we realize that there could be an impact if the four 

directional couplers in each 90° optical hybrids are not perfect 50 % - 50 % 

couplers. Our simplified study in equation (4) detailing the outputs of each 

hybrids would then become more complicated if each coupler is assumed to have 

its own power transfer coefficient α  different than 21 . We can study the effect 

of imperfect couplers for two cases. In the first case, let’s assume that the four 

couplers are identical, but with 21≠α . It can be proven that the output electrical 

signals, after balanced photodetection, are described by  

 
}Im{)1(4)()12)(1()()12(

}Re{)1(4)()12()()12)(1(
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LOSLOS
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EEPPi
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tt  (20) 

In this case, the amplitude of Re  and Im  of }{ * 
LOSEE  are the same. We are only 

interested in the last term in the previous equations and the different DC terms 

with )(t 
SP  and )(t 

LOP  on the left hand side are irrelevant and need to be removed. 
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We say that these terms are DC because for QPSK signals )(t 
SP  is theoretically 

constant and so is )(t 
LOP . 

 

We subtract the DC sources by removing the mean value of each of the four 

acquired signals x-RV , x-IV , y-RV  and y-IV , referring to Fig. 7. We now speak in 

terms of voltages as the currents are converted into voltages right before the 

ADCs based on Ohm’s Law, i⋅ℜ=V , with 50=ℜ  Ohm resistors. For instance, 

the term x-RV  is obtained from the uppermost output current x-Ri  in Fig. 7. With 

the means of x-RV , x-IV , y-RV  and y-IV  at zero, we now have to set their variance to 

be the same respectively for each polarization, and here comes the second case 

study. 

 

Let’s assume that the first two couplers to the left of the 90° optical hybrid on Fig. 

3 are not identical anymore but have power transfer coefficients of α  and β . 

These couplers’ transfer matrix would then be 
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For this case study, we can assume that the last two couplers to the right of Fig. 3 

are perfect 50 % - 50 %. The signals out of this hybrid, after balanced 

photodection, would be 

 
}Im{12
}Re{12
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2
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1

LOS

LOS

EEi
EEi

βα
βα

−∝
−∝  (22) 

In this case, we observe that there is no DC component (because the last two 

couplers are 50 % - 50 %) but the multipliers of the real and imaginary part of 

}{ * 
LOSEE  are different. This has a direct impact on their variances which is 

supposed to be equal. To compensate for this, we modify x-IV  such that 

)( x-Ix-Rx-Ix-I σσ⋅→VV  and repeat the same for the y  polarisation signals, 

represented by the y-  subscript. Here x-Rσ  is the square root of the variance of 

x-RV . This whole process of removing the mean (due to imperfect couplers) and 
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equating the variances (due to different power splitting coefficients of the first 

two couplers) is called I-Q amplitude imbalance correction. 

 

3.2.2 – Optical Hybrid Angle Imbalance 

Another effect caused by the 90° optical hybrids is the phase mismatch of the 

output I and Q signals. We studied in Eq. (4) the four outputs in the general case 

where the phase retarders of upper and lower branch phase of the 90° optical 

hybrid (see Fig. 3) are 1φ  and 2φ  and ended up with the set of equations in (6) by 

setting 1φ  to 0 and 2φ  to 2π . Let’s study the impact of a phase retarder 2φ  that 

is slightly off 2π , i.e., the case where δπφ += 22 . To simplify this study, we 

consider that the four directional couplers are identical and evenly split inbound 

optical powers. By using the matrices in Eq. (4) with δπφ += 22  and 01 =φ  we 

can prove that the two balanced photocurrents are now identified by 

 
}Im{

}Re{
* 

2

* 
1

δje−∝
∝

LOS

LOS

EEi
EEi  (23) 

where δ  is assumed to be small compared to 2π  and represents a deviation 

from the optimum optical path length. The consequence of such phase deviation is 

that the signal’s constellation will be distorted and compressed in one direction. 

We can easily visualize this using the analogy of a perfectly circularly polarised 

light that suddenly experience a slight phase shift on one axis with respect to the 

other orthogonal axis. The perfectly circular polarisation will deform into an 

ellipsoid, i.e., a squeezed circle. The constellation is squeezed in the same manner 

when 2φ  is deviating from 2π . To rectify this impairment, one can simply 

remove the phase shift the imaginary part of }{ * 
LOSEE  before adding the real part 

to recover }{ * 
LOSEE . To explain in details how to recover * 

LOSEE , let’s simplify the 

study by saying that bja ⋅+=* 
LOSEE . We know that a=}Re{ * 

LOSEE  and that 

==− ce j }Im{ * δ
LOSEE  )sin()cos( δδ ⋅−⋅ ab . We can then find b with our knowledge 

of a , c  and δ . With b and a, we now recover * 
LOSEE  with the following 

operation, using the definitions in Eq. (23), 
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 ( )21* 
)cos(

1 iiEE ⋅+⋅= je jδ
δLOS  (24) 

As each 90° hybrid, receiving the x̂  and ŷ  components, has its own small phase 

shift δ , the previous operation has to be applied to each of the two pair of signals 

x̂)( QI −  and ŷ)( QI −  signals with their own phase mismatch x̂δ  and ŷδ . This 

phase mismatch does not vary in time and is an inherent impairment due to the 

finite fabrication precision of optical hybrids. This operation is called I-Q angle 

imbalance correction and is even more detailed in [21] and especially in [31]. 

Optical hybrid’s amplitude and phase correction is applied to every I and Q 

samples, for each polarisations. 

 

3.2.3 – Resampling at Twice the Baud Rate 

The numerical operations we will apply to the acquired signals will be based on a 

twofold oversampling with respect to the baud rate, or 2T . We explained in the 

previous section the pros and cons of sampling two times per symbol duration. In 

our experimental setup, we will transmit at a symbol rate of 10 Gsymbols/s and 

use Analog to Digital Converters working at a fix sampling rate of 50 Gsamples/s, 

giving a five-fold oversampling factor with respect to the baud rate. Therefore, we 

need to downsample from 50 to 20, by a factor of 2.5. Downsampling by a factor 

that is not an integer is subtle and we will discuss of this in subsequent sections. 

In this section we lay out the basic methods of two different ways for 

downsampling by a factor of 2.5: one done in the frequency domain and the other 

done in the time domain. 

 

3.2.3.1 –Frequency Domain Downsampling 

The way to downsample by a non integer factor is easily done in the frequency 

domain. In fact, downsampling by any factor, rational or not, is straightforwardly 

achievable in the frequency domain. We know that the sampling rate of the ADCs 

is fixed at 50 GSa/s. At such a rate, the unaliased frequency content goes up to 25 
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GHz [25]. We know that our signal has a symbol rate of 10 GSym/s and we will 

see in a future section that our signal’s single-side bandwidth is 10 GHz, or a full 

width of 20 GHz. The following figure describe the general view of how any 

downsampling is in done in the frequency domain. 

 
convertion 

from 
time to 

frequency

convertion 
from 

frequency 
to time

keep only 
a portion

10-10-25 25 10-10 f (GHz)
 

Fig. 10 – Downsampling method in the frequency domain 

Each sample collected is spaced in time by ps/Sa 20)GSa/s 50(1 =  and we collect 

for a certain amount of time, Δ seconds. Therefore, in Δ seconds we have 

)Saps 20( //∆  samples. To diminish the number of samples but keep the same 

total time duration Δ, we have to increase the time between two samples. The 

schematic of such a process is depicted in Fig. 10. We convert our acquired signal 

into the frequency domain using the Fourier Transform. This gives a signal 

represented on the left-hand side of Fig. 10, consisting of the useful signal and 

noise spanning up to 25 GHz. By converting back in time only the central portion 

of interest, for instance the resulting frequencial signal spanning from 10−  GHz 

to 10 GHz, we will obtain a temporal signal with 5.21025 =  times less samples 

but lasting the same duration in the time domain. Consequently, this decreases the 

sample rate. Actually we could downsample by any factor k from 1.0 to 2.5 by 

simply converting back to time the appropriate portion of the frequencial signal, 

namely from k25−  GHz to k25  GHz. In our case, we use 5.2=k . 

 

3.2.3.2 – Time Domain Downsampling 

The second way to downsample by a fractional factor is a process applied entirely 

in the time domain. This process can be summarized in three operations: 

upsampling, filtering and decimating. In fact, downsampling by a rational factor 

of NM  is very similar to simply decimating by N; it is only preceded by an 
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upsampling process of a factor M. Therefore, we first study the process of 

decimating by a factor N. Let’s imagine a numerical signal that has a frequency 

content going up to 25 GHz that we want to decimate by a factor of N. One could 

think of simply keeping 1 sample every N samples as a way to downsample. This 

simple operation doesn’t decimate the sampling rate because the resulting signal 

would still have a frequency content up to 25 GHz. In other words, keeping a 

sample every N samples does not diminish the frequency content and simply 

result in signal aliasing. To avoid this aliasing, we need to filter in the first place 

the signal in time domain and then retain a sample every N samples. The temporal 

filter is the impulse response of a perfect low pass rectangular frequency domain 

filter which keeps intact N%100  of the frequency content and sets the remaining 

frequency content to zero. For instance, for 5=N , the temporal filter is the 

impulse response of a frequency filter for which 1)( =fH  for 

GHz 5GHz) 25( =≤ Nf  and 0 elsewhere. Applying this filter assures that the 

resulting signal has frequency content bounded at 5 GHz, allowing us to retain 

without any aliasing one sample every 5=N  samples for decimation. 

 

Signal upsampled by M
(M-1 zeros added after 

every sample)

keep 1 sample 
every N samples

t

Appropriate filter 
impulse response

 
Fig. 11 – Downsampling method in the time domain 

Now, imagine that we want to decimate by a factor KNM 1=  a signal having 

frequency content up to 25 GHz. As an example, let’s take 5.2152 = . The first 

step of the previous case where we filter by the impulse response of the filter 

1)( =fH  for GHz 10GHz) 25( =≤ Kf  can still be applied with no problem. The 

only problem comes when we need to take a sample every 5.2=K  samples, 

which is impossible. The way to realise this is to initially upsample the signal by a 

factor of 2=M . Interpolation does not add any new frequency content to the 

signal, besides doubling the frequency span by padding zeros. The interpolated 
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signal is then temporally filtered the same way as described above, with the 

appropriate filter removing content above GHz 10GHz) 25( =K  and finally, 1 

sample every 5=N  is retained to obtain the temporally downsampled signal by a 

factor of 5.2=K . Fig. 11 is a representation of how downsampling by a 

factorizable number is realized in the time domain, where ⊗  denotes convolution. 

 

3.2.4 – Pulse Shaping and Matched Filtering 

In this section, we will get familiar with pulse shaping at the transmitter and 

matched filters located at the receiver. Pulse shaping represents how the logical 

information will be imprinted in a temporal signal to be transported in the 

channel. For instance, if the modulation format used is BPSK and we have a 

sequence ks , ... 2, 1, 0,=k  to send where each { }1 1,−∈is , the pulse shape will 

represent the temporal waveform onto which the information ks  is imprinted. A 

pulse shape has its frequency representation and both the frequency domain and 

time domain characteristics of the pulse are of tremendous importance. The 

maximum width of the pulse, when represented in the frequency domain, 

designates the signal’s bandwidth. While propagating, pulses will be impaired and 

noise will be added. Consequently, the receiver always includes a filter 

suppressing noise from frequencies out of the useful signal’s band, called out-of-

band noise. Such receiver filter can also improve the receiver’s response to the 

type of pulse used, named Matched Filters. 

 

The most basic type of receiver filter for a signal of single-side bandwidth W  is a 

rectangular filter with a frequency response of 1)( =fR  for Wf ≤  and 0 

elsewhere. The information symbols to transmit are conveyed by the temporal 

pulses )(tp  created at the transmitter, where )(tp  is the inverse Fourier 

Transform of )( fP , which can also be considered as a pulse shaping filter, 

applied at the transmitter. We call a matched filter at the receiver a filter that is 

matched to the pulse shaping filter )( fP . Matched filter maximizes the signal to 

noise ratio (SNR) at its output when a signal passes through an additive white 
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Gaussian noise (AWGN) channel [32] as the optical fibre is [33]. A matched filter 

)( fH  at the receiver has an impulse response )(th  that is a flipped version of the 

transmitter pulse shape, i.e., )()( tpth −= . There are lots of possible matched 

filters to use for the transmission of signals. The most common ones or called the 

Root-Raised Cosine (RRC) filters. RRC filters are defines such that two 

sequential RRC filter act as a single Raised Cosine (RC) filter, where a RRC filter 

is the square root of a RC filter. Raised Cosine filters are apodized rectangular 

filter that have an impulse response that is null at every T  seconds, where T  is 

the symbol duration. A RC pulse shape gives no intersymbol interference (ISI) 

when the receiver samples once every T  seconds, at the center of pulses. 

Therefore, the presence of neighbouring symbols is seamless to the symbol of 

interest. A Root Raised Cosine filter has the following frequency response and 

impulse response 
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As mentioned above, oftj
RCRRC efXfX π2)()( −=  where ot  is some nominal 

delay required to ensure physical realizability of the filter. In the time domain, 

)()()( txtxtx RRCRRCRC ⊗= , where ⊗  denotes convolution. Here, we clearly see 

that if our pulse shape at the transmitter is )(txRRC  and we filter at the receiver 

with )()( tTxth RRC −=  before sampling, we will benefit from matched filtering 

and synchronised sampling once every T seconds will show no ISI. In the 

equations above, α  is called the roll-off parameter or the excess bandwidth and is 

a measure of percentage of excess bandwidth with respect to the minimum signal 
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bandwidth of Tf 21=  for rectangular filters (when 0=α ). The roll-off 

parameter α  can vary from 0 to 1, where the signal’s bandwidth is Tf 21=  for 

0=α  and is Tf 2)1( α+=  for a specific excess bandwidth α . Here, we clearly 

realize that for 1=α , the signal’s bandwidth is twice the one for 0=α  and 

consequently the required Nyquist sampling rate doubles at T2 . It is important 

to mention here that even if an excess bandwidth is used for pulse shaping at the 

transmitter, the symbol rate remains T1 . We therefore realize that for the specific 

case where 1=α , Nyquist sampling at T2  is not considered oversampling but 

our study on T/2-fractionally spaced equalizers applies because we still sample 

two times for each symbol. 

 

There are some advantages and disadvantages of using a RRC pulse shape with a 

RRC matched filter of large excess bandwidth α . The main advantage is most 

clearly seen when we look at the )()()( txtxtx RRCRRCRC ⊗=  equation 
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Here, we notice that for 0=α , there’s no excess bandwidth and we find back the 

rectangular filter of TfH =)(  for Tf 21≤  and 0 elsewhere. We observe that 

the tails of )(txRC decay as t1 . Consequently, a small mistiming error 

onTt δ+=  in sampling epoch at the receiver results in an infinite series of ISI 

components. Such a series is not absolutely summable because of the t1  rate and 

does not converge. However, when a certain excess bandwidth 0>α  is used, 

)(txRC decay as 321 tα  and a mistiming error in sampling leads to a series of ISI 

components that converges to a finite value, and converges faster and to a smaller 

value as α  increases. 

 

The drawback of using an excess bandwidth is first of all the necessity of 

sampling )1( α+ -times the required speed when 0=α . Moreover, higher α  

exhibits a spectral efficiency loss of a factor )1(1 α+ . By spectral efficiency, we 
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mean that if we were to concatenate several channels of information, each having 

a )(  fX RRC  pulse shaping filter and matched filter with maximum bandwidth 

TW 2)1( α+=  and symbol rates of T1  symbols/s, the closest apart two 

consecutive spectrum )( nFfX n
RRC − , { }1, += kkn , could be is WF 2=  Hz away. 

As W  increases with α , for the same symbol rate we get a spectral efficiency of 

)1(1)(1 α+=TF  symbols/s/Hz which decreases with increasing α . 

 

It is worth mentioning that for non-coherent transmission of an electrical signal, 

the signal at the receiver can first enter the matched electrical filter )( fX RRC  and 

is then be sampled every )1( α+T  seconds. In our case, with an optical coherent 

receiver like the one in Fig. 7, neither the optical signal nor the electrical signals 

after the balanced photodetectors are analogously match filtered. The filtering part 

is done after the ADCs, through digital signal processing. The following figure 

depicts the matched filtering that has to be applied at the receiver side for both 

temporal filters and frequencial filters. Just like the resampling process we 

previously introduced, matched filtering can be done in the time domain and in 

the frequency domain. The )(txRRC  pulse shape (to the left) or its equivalent 

pulse filter )( fX RRC  (to the right) are specific representations for 1=α .  Here, 

⊗  denotes convolution and × , multiplication. 

 

signal in 
time domain

signal in 
frequency domain

t f  
Fig. 12 – Matched Filtering at the receiver. Applied in (left) time or (right) frequency domain 

 

3.2.5– Chromatic Dispersion Compensation 

The optical fibre is a transmission channel that exhibits chromatic dispersion 

(CD), that is, where different optical frequencies travel at different speeds, or in 
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other words, where the speed of light is frequency dependant. The transfer 

function of an optical fibre is well known to be 
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where ωωββ dvddd g )/1(22
2 ==  is the group velocity dispersion (GVD) and 

determines how much an optical pulse will broaden while propagating inside the 

fibre and L  is the length of the fibre. β  is the propagation constant and is 

function of the frequency. It also defines the group velocity 1)()( −= ωβω ddvg  

which represent the speed at which a specific spectral component at ω  travels. In 

Eq. (28) we observe the transfer function of the optical fibre represented in the 

frequency domain (left hand side) and in the time domain (right hand side). We 

clearly see that the fibre transfer function acts an all-pass filter, meaning that it is 

an unbounded filter, and therefore its impulse response )(th  is also a double-sided 

and infinitely long response. For standard Single Mode Fibre, the GVD parameter 

nmps 87.21 2
2 −=β  at the wavelength nm 5.1547=λ . The GVD can also be 

expressed as a function of λ  instead of ω , by defining a dispersion parameter 
2

22)/1( λβπλ cdvdD g −== , where km)(nmps 2.17 ⋅=D  for SMF fibre. 

 

To compensate for chromatic dispersion, we simply need to apply the inverse of 

the transfer function described in Eq. (28), by using the opposite group velocity 

dispersion of the fibre, i.e., 22 ββ −→ . As for the matched filtering and the 

downsampling, chromatic dispersion compensation can be applied either in the 

time or in the frequency domain. We will study in a later section the advantages 

and disadvantages of choosing one approach or the other. Finally, Fig. 12 helps us 

understand how to apply chromatic dispersion compensation (CD-1) in time and in 

frequency domain. CD-1 and matched filtering can be applied the same way. 
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3.2.6 – Non-linear impairment mitigation 

On top of chromatic dispersion, the optical fibre also exhibits nonlinearity. 

Nonlinearity comes from the dependence of the refractive index of the material 

that consist the optical fibre on the intensity of the light travelling inside it. It is 

well known in the literature that for an optical wave on two polarizations 
yExEE yx ˆˆ+=


, the Polarization Coupled Nonlinear Schrödinger’s Equation is 
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where xE  and yE  are complex fields [34] and γ  is the nonlinear parameter 

defined as )()(2 ffoo Aecn ⋅⋅= ωωγ . For a central wavelength of 1547.715 nm, the 

nonlinear (NL) refractive index 2n  is Wm 1056.2 220−×  and the effective area is 
2m 80 µ=effA  in a standard single mode fibre, giving a -1-1Wm  0013.0=γ . The 

first term of the right-hand side of Eq. (29) is responsible for a nonlinear 

impairment called Self-Phase Modulation (SPM) while the second term is 

responsible for the nonlinear impairment called Polarization Cross-Phase 

Modulation (Pol-XPM). SPM causes a nonlinear phase shift acquired by one 

polarization due to its own polarization component’s power while Pol-XPM 

causes a nonlinear phase shift due to the other polarization component’s power. 

As we will use a signal modulated on two orthogonal polarizations (see Eq. (15)), 

these nonlinear phase shifts apply to our signals. As we can observe in Eq. (29), 

the strength of the nonlinear phase shifts shown in parentheses are proportional to 

the power of the optical signal on the x̂  and the ŷ  components. Therefore, for 

some low power, the nonlinear phase shifts are negligible. As the power 

increases, they become very important and a lot of NL phase shifts are imprinted 

on xE  and yE . 

 

The most common way to suppress nonlinear phase shifts are through the well-

known Split-Step Fourier Method (SSFM) [34] in back propagation mode. This 
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method is often used to solve nonlinear differential equations and is more 

precisely used for beam propagation. SSFM is a way to apply iteratively the linear 

and the nonlinear part of a differential equation like Eq. (29) as 2 independent 

linear operators over a short distance. Mathematically, if we cast Eq. (29) in the 

form ),()ˆˆ(),( tzENDztzE iii +=∂∂  where },{ yxi∈ , we can find the field at zz ∆+  

as ),(),( ˆˆ tzEeetzzE iNzDzi i∆∆=∆+  for i representing either x or y with 

)3),(2),((ˆ 22 tzEtzEjN yxx +−= γ and )3),(2),((ˆ 22 tzEtzEjN xyy +−= γ  as 

nonlinear operators and 22ˆ 22 αωβ −−= jD  as the linear operator taking both 

chromatic dispersion and attenuation into account when we assume that the mean 

group velocities of x̂  and ŷ  are the same ( yx 11 ββ = ). This hypothesis is satisfied 

for long haul transmission as the states of polarization tX̂  and tŶ onto which 

xE and yE  are modulated rotate while propagating and because the two signals 

come from the same laser at the transmitter and are therefore propagating at the 

same carrier frequency. The finer the distance z∆  propagated each time the more 

realistic the approach is, at the expense of extra computation time requirements. 

One can find reliable results at a certain z∆  that barely change when decreasing 

the step size, making the extra computational time useless. The D̂  operator is 

normally applied in the frequency domain using the left-hand side of Eq. (28). 

The calculation of xN̂  and yN̂  is repeated for each z∆  increment until the 

distance L is traveled. We will use the SSFM technique for nonlinear impairments 

mitigation. 

 

When we mitigate nonlinear phase shifts using the SSFM, chromatic dispersion is 

compensated at the same time, and therefore does not need to be previously 

compensated for. That is the reason why we coupled chromatic dispersion 

compensation and nonlinear compensation in Fig. 9: if no NL compensation is 

applied, CD is applied alone, when NL is compensated, CD is simultaneously 

compensated. 
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3.2.7 – PMD and PDL Compensation, Polarisation Demultiplexing 

The optical fibre can be represented by two orthogonal axes that can present 

slightly different refractive index and attenuation coefficient. The slight difference 

in refractive indices of the two orthogonal axes is called the birefringence of the 

fibre and cause polarized light to travel at different speeds. This property induces 

a temporal spreading of the light pulse as it propagates, because the portion of 

light in each orthogonal axis doesn’t travel at the same speed. This phenomenon is 

called Polarization Mode Dispersion [35]. Moreover, a slight different attenuation 

coefficient on each axis leads to what is called Polarisation Dependent Loss. Even 

though silica fibres themselves have relatively little PDL, the signal passes 

through a variety of optical components in a transmission link such as modulators, 

isolators, amplifiers, filters and couplers, most of which exhibit loss (or gain in 

the case of optical amplifiers) whose magnitude depends on the state of 

polarizations of the signal. PDL leads to unequal signal power of xE  and yE . 

 

PDL can cause interaction between the two signal information originally 

imprinted on orthogonal, non cross-talking axes. This behaviour can reduce the 

extinction ratio of each signal on its polarized light. It can also induce inband 

crosstalks and vary the OSNR on each polarization with respect to the average 

OSNR [36]. The performance of a polarisation multiplexed data stream is 

determined not only by the average optical signal to noise ratio, but also by the 

optical signal to noise ratio of the two polarization tributaries. Although in most 

cases, a similar OSNR can be expected on both tributaries, this situation changes 

in the presence of PDL. 

 

To demonstrate the impact of PDL, imagine two orthogonally polarized 

lightwaves XE  and YE  entering a section at angle θ  with respect to two 

orthogonal fibre axis x̂  and ŷ , where the x̂  axis has a power attenuation 

coefficient of β  and the ŷ  axis is lossless. As depicted in the next figure, the 

polarization multiplexed signals XE  and YE  are no longer orthogonal. The new 



Chapter 3: Algorithms for signal recovery 43 

 

θ

θ

)sin(θβ XE

x̂
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Fig. 13 – Impact of PDL on Pololarization Multiplexed Signals 

signals 'XE  and 'YE  will crosstalk after demultiplexing onto any orthogonal basis. 

Moreover, we can clearly see in Fig. 13 that the total power of XE  and YE  has 

diminished, which directly leads to a smaller OSNR for signals 'XE  and 'YE . It is 

important to mention that the principal fibre axis change in space along the fibre, 

mainly because continuous sections of fibre are not flawless, perfectly cylindrical 

fibre and can contain mechanical stress. Slight temperature variations throughout 

the fibre length can also cause small refractive index and power attenuation 

coefficient variations. 

 

As introduced in Eq. (12) and (13), the required processing for a coherent receiver 

to properly recover XE  and YE  when it receives * xLO,xS, ˆˆEE  and * yLO,yS, ˆˆ EE  has to 

include cancelling of PMD, PDL and to properly demultiplex the two Pol-Mux 

information streams. The information we receive 'XE  and 'YE  (see Fig. 13) right 

before the coherent receiver front end is likely not orthogonal, has suffered from 

PMD and has unequal average optical power. In order to extract XE  and YE  from 

'XE  and 'YE , a multiple-input–multiple-output (MIMO) equalizer is used. In fact, 

because of PDL and PMD the optical channel is itself a MIMO system. 

Polarization demultiplexing is one of the most interesting problems of coherent 

receiver design [37] and we have to tackle it. We will detail in the next section 

how to numerically implement the issues due to polarizations but for now we will 

only present an overview of the required compensations 
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We use a MIMO filter that is called in the scientific community a “Butterfly 

Filter”. It has two complex inputs and two complex outputs that consist of the 

sum of the two inputs independently filtered, and that, respectively for the two 

polarizations. The filter is depicted in Fig. 14. It consist of 4 complex valued 

Finite Impulse Response filters xxh


, xyh


, yxh


 and yyh


 each having a certain length 

N. This type of MIMO filter can be represented with the Jones transformation 

matrix [38, 39] where the input-output relation is dictated by Eq. (30) [40]. Each 

element ijh


 of this matrix is in fact a vector of length N to apply to N sequential 
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Fig. 14 – 2 X 2 Multiple-Input-Multiple-Output Filter for Polarization Related Impairments 

samples in 'XE  and 'YE  in a dot-product from in order to create a pair of scalar 

outputs XE  and YE . The vectors ijh


 of the filters can be updated with the known 

Constant Modulus Algorithm [41-43] (CMA), which goes as follows 
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where inyxinxxout yhxhx 
⋅+⋅= ††  and inyyinxyout yhxhy 

⋅+⋅= †† , * denotes complex 

conjugate, † denotes the transpose of the complex conjugate and 10 << µ  is a 

small step size factor. We will use this CMA adaptation for our MIMO filter. The 

4 coefficients are updated at the symbol rate and the input vectors inx  and iny  are 
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2T -spaced. Processing a twofold oversampled input with respect the baud rate 

gives the ability to this filter for retiming of the input signals [44]. 

 

The reason why we use the CMA algorithm as the method for updating the 

coefficients in each ijh


 are many-fold: First of all, it can mitigate simultaneously 

the impact of cross-talk, PMD, PDL and small residual Chromatic Dispersion 

[45]. It also offers a relative simple complexity and easy hardware 

implementation, it blindly equalizes the input signal without requiring the 

knowledge of the desired symbols for updating (no training sequence necessary) 

and finally it takes into account the type of modulation format used for 

transmission, i.e., QPSK in our case. The 4-ary Quadrature and Amplitude 

Modulation scheme has a constant amplitude and a phase varying on 4 different 

states, all equally spaced. The Constant Modulus Algorithm updates the 

coefficients such that they minimize the square error 222 )1( y−=ε , where 

xwy 
⋅= †  is, in the general case, the complex output value where the filter w  is 

applied to the input x . We clearly observe that the minimisation is solely based 

on the magnitude of the output value y  and not on any desired or decided value. 

Updating the coefficients such that 2ε  is minimized directly leads to updating 

such that 2y  tends towards 1. This is exactly what we need, as we know that we 

want our output signals to have constant magnitude, the property of QPSK 

modulation. Fig. 13 gives the visual representation of what the CMA equalizer 

does: if XE  and YE  have equal and constant amplitude, 'XE  and 'YE  don’t and the 

equalizer serves to push to unity the square magnitude of the orthogonally 

collected signals, 2
x̂S,E  and 2

ŷS,E  which eliminates cross talk, PDL and PMD. 

 

If the fibre would present no Polarization Dependent Loss, the H matrix in (30) 

would be a unitary matrix, with the property that *
xxyy hh


=  and *
yxxy hh


−=  and 

therefore where 122 =+ yxxx hh


 [40]. This property will not hold in a real system 

because of PDL and hence we cannot obtain a coefficient ijh


 from its diagonal 

opposite jih


: we have to calculate the 4 coefficients ijh


 independently as dictated 

in Eq. (31). 
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3.2.8 – Carrier and LO Frequency Offset Removal 

In this section, we describe how to remove the frequency offset between the light 

received and the light from the local oscillator. As mentioned earlier, a coherent 

receiver mixes the light of a local oscillator with that of the signal. Even with 

today’s fine tunable local oscillators, it is very difficult, not to say impossible, to 

tune the free running LO exactly to the frequency of the signal. The first reason is 

because of the finite resolution of tunable lasers. Around 193.7 THz where the 

frequency of the transmitting laser sits, tuning another laser at a frequency within 

100 KHz requires a wavelength precision smaller than the femtometer, which is 

practically impossible to obtain. However, tunable lasers with a wavelength 

accuracy smaller or equal to pm 1±  are commercially available [46]. Such a 

wavelength precision converts into a frequency precision smaller than 125 MHz 

around 1547.715 nm. The second reason why the received light and the LO have 

variable frequencies is because of their respective independent phase noise. Phase 

noise is summarized as a random walk of the phase in time, which gives two 

independent instantaneous frequencies that will not match. Matching the LO 

frequency with that of the signal could be done in an optical phase locked loop, 

but adds a lot of undesired complexity to the receiver and is out of our interest. 

 

To find the frequency offset between the Signal and the LO, we have to remove 

the modulated information imprinted in the phase of Signal. Each polarisation 

signals X
SE  and Y

SE  is modulated onto 4 phases. Taking the fourth power of a 

QPSK signal, for instance ( )4 X
SE  and ( )4 Y

SE , will remove the phase information 

and will bring all the possible states in the constellation to a unique state. . The 

constellation we observe at the receiver is rotating at an angular speed of 

LOSIF ωωω −=  [47]. Now taking the fourth power of each rotating point in the 

constellation will give a single point rotating 4 times faster than the intermediate 

frequency IFω . The following figure depicts this situation. 
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Fig. 15 – Removing the Phase Information on a Rotating QPSK Signal by Taking the 4th Power 

There are two ways to find the intermediate frequency πω 2IFIF =f : a time 

domain approach and a frequency domain approach. In order to find IFω4  using a 

frequency domain approach, we have to compute the Fourier transform of the 4th 

power of a sequence of symbols of length N. We then calculate the magnitude of 

this Fourier transform and the frequency at which the transform has the highest 

power spectral density represents IFω4 . Having found IFω , we can remove it from 

the signal by applying tje  IFω−=EE . In a time domain approach, we don’t need the 

Fourier transform for processing. The method is well explained in [47] and 

requires each sampled symbol to be multiplied by the complex conjugate of the 

previous one. The result is put to the 4th power, again to remove the QPSK 

modulation information and deal only with phase drifts. Multiple results of this 

operation are summed. Finally, the angle of this sum represents IFω4  and we 

remove this mean frequency deviation again by applying tje  IFω−=EE  to the signal 

E . Lets explain this temporal approach visually and consider that we have a 

sequence of digitized symbols ,...], ,,,[ 4321 ++++ kkkkk jjjjj eeeee ϕϕϕϕϕ . Here we 

assume unit amplitude for simplicity of writing and because we are only 

interested in the phase components but this assumption is not required and the 

results still valid for small amplitude deviation from unity. This process takes the 

sum of the elements in ,...] ,,[ )(4)(4)(4 23121 +++++ −−− kkkkkk jjj eee ϕϕϕϕϕϕ  and compute the 

angle of this sum. By considering that IFωϕ ⋅≈ kk , the resulting angle is in fact an 

averaged value of IFω4 . 
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Both approaches are coarse as they only remove the average frequency difference 

between Signal and LO. Its goal is in fact to remove the bulk frequency offset and 

not the phase noise. For simplicity, if we assume that we receive a perfectly 

polarized signal, the signals we obtain are dictated by Eq. (17). The above process 

removes IFω  but leaves untouched the difference of the phase noises 

)()()( ttt LOSIF φφφ −= . As seen in Eq. (17), the bulk frequency offset IFω  is the 

same for both signals, i.e., for both polarisations. Therefore, even if we only use 

the signal from one polarisation to find IFω , we can use the same result for 

intermediate frequency offset removal on both polarizations which inherently 

reduces the computational complexity. 

 

3.2.9 – Carrier and LO Phase Noise Removal 

This operation is intended to remove 3 angular components that the bulk 

frequency offset removal operation could not do. These components are 1) the 

remaining frequency offset, 2) the lasers phase noise and 3) the relative phase on 

the signal from each polarisation. It can be seen as a fine tuning of the previous 

operation (§ 3.2.8), but is applied in a totally different way. As mentioned above, 

the previous operation removes IFω  but leaves )(tIFφ  and the relative phases 

to XS ˆ,,φ , to YS ˆ,,φ , xLO ˆ,,oφ  and yLO ˆ,,oφ  intact. This operation completely removes these 

phases, and is applied independently for each polarization. As we did for the 

coarse frequency removal, this phase removal also works with the fourth power of 

each sample to remove the QPSK modulation and read only frequency and phase 

noise drifts. 

 

We will explain how we remove phase noise and relative phases by defining the 

type of phase we deal with: randomly walking phase drifts. We explained in 

section 2.2 that the laser phase noise is described by a Wiener process as a 

randomly walking phase, starting at 0)0( ==tφ  and where the phase )( otφ  at time 

ott =  as an integral from 0=t  to ot  of Gaussian random variables. When working 

with discretized signals as we do with the coherent receiver, the integral naturally 
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becomes a summation a Gaussian random variables, and we define 

nφ ≜ )( nTt =φ , where nT are sampled symbol and 00 =φ . Each nφ  can be 

represented as a Gaussian variables distributed as )2 ,ˆ(~ 1 ΔνTN nn πφφ − , where 

1ˆ −nφ  is the realization of the random variable 1−nφ  and Δν  is called the 3-dB 

linewidth of the laser phase noise. This previous equation gives us the flavour of 

how the summation comes into play. An ensemble of M realizations nφ̂ , 

1,..., −+= kMkn , of phase noises will therefore most likely not have a zero-mean, 

as the mean of the distribution of each phase nφ  is the value of the previous 

realization 1ˆ
−nφ . We know from theory that the summation of two Gaussian 

random variables ),( 2
11 σµN  and ),( 2

22 σµN  gives a Gaussian variable of 

distribution ),( 2
2

2
121 σσµµ ++N . This means that the phase nφ̂  at time nTt =  has 

a global variance of ΔνnTπ2 . Good lasers can have a linewidths as low as 

100 KHz and we assume that the symbol rate is 10 Gsymbol/s, with T = 100 ps. If 

both the signal laser and the LO laser have linewiths of 100 KHz, the total 

linewidth when the two mix is summed at 200LOSIG =+= ΔνΔνΔν KHz. 

However, as each sample kje ϕ̂  is put to the 4th power, kje ϕ̂4  exhibit a phase noise 

four times that of the real signal+LO phase noise. As we know, the variance of a 

Gaussian variable multiplied by four, ),(4 2
11 σµN , is 42=16 times greater, at 

16 2
1σ . Therefore, the variance between two consecutive samples in this phase 

noise removal process is 3102216 −×≈⋅ ΔνTπ . If we take an ensemble of M 

samples nje ϕ̂4  where nφ̂ , 1,..., −+= kMkn , the variance of the last phase 1
ˆ

−+kMφ  

with respect to the first phase kφ̂  will be ΔνTM π32)1( −  with 0ˆ
0 ==kφ . To find 

an approximate maximal value for M for which the variance is considered small, 

we define that a small variance Φ  in radian is such that 95.0)cos( =Φ  in order to 

approximate 1)cos( ≈Φ  and Φ≈Φ)sin(  with a maximal error of 5%. This gives 

a maximal variance of 317.0=Φ  rad. We find we can sum up to a maximum of 

151≈M  phase noise random variables before reaching a phase noise that has a 

variance greater than 0.317. 

 

What we collect at the receiver are kje φ̂  and not kφ̂ . In order to apply our study 

on summation of Gaussian variables kφ , we need to map kje φ̂  to kφ̂ . As we 
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know, )ˆsin()ˆcos(ˆ
kk

j je k φφφ += . The only way kje φ̂  can be approximated using 

kφ̂  is if kφ̂  is small. As 14φ  has a zero mean and a variance of 
3102216 −×≈⋅ ΔνTπ , the assumption that kφ̂ ’s are small is justified up to 

1−= Mk  and kje φ̂4  can be cast as )ˆ41(ˆ4
k

j je k φφ +=  for 1 ..., ,0 −= Mk  with a 

5% accuracy. Now summing M terms of kje φ̂4  turns to summing )ˆ41( kj φ+  

which is effectively )ˆ411( 1
0∑ −

=⋅+ M
k kMjM φ . We observe that the imaginary term 

in this equation is the mean of the phase noise for acquisitions spanning from 

0=k  to 1−=Mk , which is what we want to recover. This mean can be extracted 

from the summation ∑ −
== 1

0
ˆ41 M

k kM φζ  by taking the angle of the summation, as 

ζζζ ≈=+∠ − )1(tan)1( 1j  for small ζ . This technique is in fact known as the 

Viterbi and Viterbi feedforward carrier phase estimation algorithm for MPSK [48, 

49]. As we proved earlier that the variance of the 1−M th term 1
ˆ4 −Mφ is the 

greatest at 317.032)1( ≈− ΔνTM π , we can assume with confidence that the mean 

of the angles  is small enough, knowing that 2)1(1 1 
0 −=−

=∑ MiM M
i , and find 

the mean phase noise with the angle of the sum of kje φ̂4 . 

 

Now let’s study the case when a small residual frequency offset is added to the 

phase noise kφ̂ . We define a vector V that shows all the three angular components 

our algorithm has to remove, i.e., 1) the remaining frequency offset, 2) the lasers 

phase noise and 3) a relative phase. Let V be 

 [ ])ˆ4(4)ˆ3(4)ˆ2(4)ˆ(4ˆ44 43210o  , , , , φψφψφψφψφ ++++Φ= jjjjjjj eeeeeeV  (32) 

For visual simplicity, we use a short length for V, namely 5=M . We observe 

that V has a relative phase o4Φ , a frequency dependence fTπψ 2=  and phase 

noises imprinted in the kφ̂ ’s. We observe in Eq. (32) that the angular components 

can now be described by summations of Gaussian random variables, each 

distributed as  

 o1 4)216 ,4ˆ(~ Φ+⋅+∠∠ − ΔνTN nn πψ  (33) 

where k∠̂  is the realization of the variable k∠ . This distribution is an altered 

version of our previous distribution )216 ,ˆ(~ 1 ΔνTN nn π⋅∠∠ −  for Wiener phase 

noise. The only difference is an inclusion of a frequency shift which constantly 
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adds an offset of ψ4  to the mean of the distribution of each angular component, 

summing up and acting as an angular frequency. The relative phase oΦ  can be set 

to zero for simplicity of comparison. To see the impact of the frequency shift to 

the computation suggested above, allowing us to find the mean of the angles by 

the angle of the mean, let’s compute the angle of the mean for angles distributed 

as in Eq. (33) but with a null linewidth, i.e., with 0=Δν . By taking V as example, 

we find that the angle of the mean of V is 24)1(4 o ψ−+Φ M . This value can 

readily be found with a drawing of M phasors, each of which is juxtaposed to the 

previous and rotated by ψ4 , where the first phasor is at angle of o4Φ . Moreover, 

the mean of the angle in V is =Φ+−Φ+Φ+ }44)1(,...,44,40{ ooo ψψ M  

24)1(4 o ψ−+Φ M , where {}  denotes the mean of {} . We realize that both 

results also match even when only the frequency offset and the relative phase are 

considered. The component in V that is closest to this value of 

24)1(4 o ψ−+Φ M  is always the central component, that is, the 2)1( +M th 

component [49]. For this reason, the length of V should be an odd number, so that 

the angular component of its central component is represented with the least bias 

by the angle of the mean of V. 

 

A sum of phasors with linearly increasing angle engenders a circular rotation in 

the Argand plane. In fact, adding the remaining frequency to the phase noise 

wraps the summation of phase noise represented by unitary phasors pointing East 

in the Argand plane into a circle or radius ))24tan(2(1 ψ=R . To obtain the 

mean of the angles using the angle of the mean, the circular rotation cannot 

exceed a complete revolution. To honour this criterion, we state that the maximal 

revolution allowed is half a complete circle. This constraint is mathematically 

interpreted as 21)1(4 ≤−MTfIF  [47]. This equation dictates the relation between 

the maximal frequency offset IFf  and the number of samples considered M. With 

our previous 151≈M , this mean phase removal technique also works with a 

remaining intermediate frequency of 8≈IFf  MHz and increases for a smaller 

sum. This process is called Carrier Phase Estimation (CPE) [49]. 
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3.2.10 – Constellation Derotation 

Finally, the last process to apply to our signals is the final constellation derotation. 

The previous steps helped us getting rid of all the unwanted phases and leave us 

with a QPSK constellation unrotated, aligned with the axis of the Argand plane. 

This means that we end up with clouds of symbols around the points 1, j, -1 and 

-j. QPSK signals are modulated from a real signal of phase zero superimposed by 

an imaginary signal of phase 2π . Extracting the real and imaginary part of 

symbols wandering around these four points would not give us back the 

information we initially sent: we have to rotate the clouds of symbols by a value 

around 4π . To find the exact value, we find the mean of the angle deviation of 

each symbol with respect to its nearest point 1, j, -1 or -j and we finally rotate the 

symbols in the constellation by 4π  minus this mean angle deviation. We repeat 

for the signal of each polarization. 

 

3.2.11– Symbol and Bit Decision 

We decide which symbol we receive by looking at which quadrant of the Argand 

plane the symbol belong to. As an example, if we detect a symbol with a positive 

real component and a negative imaginary component, we decide that this symbol 

is 4πj
k ed −= . To convert from symbols to bits, we use the Gray coding that 

allows most adjacent symbols to differ by a single bit, minimizing the number of 

bits in error for the same number of symbols in error. Fig. 16 depicts this slicer. 
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Fig. 16 – Symbol and Bit Decision Slicer using Gray Coding 
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Chapter 4 : Algorithms Assessment 

In this chapter, we define which algorithms presented in Fig. 9 and detailed in 

Chapter 3 will be assessed and how. Moreover, we explain why some algorithms 

are not assessed.  

 

The sequence of operations presented in the chapters above allows us to recover 

the symbols sent in a Dual-Polarization-QPSK transmission and consequently 

recover the bits of information transmitted. We will apply our algorithms to 

different optical launch powers and optical signal to noise ratios. Algorithms can 

be distinguished based on the final bit error rate (BER) they yield when applied to 

different sets acquisitions and on their computational complexity. Therefore, there 

are chances to obtain sequences of algorithms that give a lower BER, but at the 

cost of a higher complexity. The trade-offs of the two will we analysed. We will 

find the final BER first by comparing the symbol detected and the symbol sent. If 

the two don’t match, the amount of bits in error will be counted based on a Gray 

coding for QAM, i.e., strictly adjacent symbols have only one bit different and 

symbols touching diagonally have two bits different. So, a symbol in error found 

in a strictly adjacent decision region counts for 1 bit in error and a symbol in error 

in a touching diagonally adjacent decision region counts for 2 errors. 

 

We will analyze sequences of algorithms graphically though different kinds of 

plots. First of all, the BER that each sequence of algorithms gives will be plotted 

against variable OSNRs and that for different optical launch powers. 

Subsequently, we will use the latter plots to calculate the required OSNR 

(ROSNR) for a bit error rate of 3108.3 −×  as a function of the launch power. This 

type of plot is also used in the literature to compare the performance of different 

approaches [50]. We chose the BER value of 3108.3 −×  first of all because it is the 
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limit for uncorrected errors available in production hardware, but also because 

forward error correction (FEC) delivers corrected BER 1510 −<  from raw BER 
3103.8 −×≤  [51]. This will allow us to compare all the sequences of algorithms on 

a single graph. With this graph in hand we will be able to ponder each 

performance curve with their relative computation requirements. 

 

4.1 – The Computational Complexity and Bit Error Rate 

Digital signal processing is a vast term meaning that a discretized input signal will 

be processed by means of elementary operations to output a modified signal. Most 

of the time, this process is done in order to remove impairments on the input 

signal and obtain a clearer signal. Any numerical process done to a signal boils 

down to applying sequences of multiplications and additions. We will use the sum 

of the required number of Real Multiplications (RM) and Real Additions (RA) to 

assess different numerical processing. The software we will use to operate on our 

discritized signals is MATLAB©. We decide to sum the numbers of RM and RA 

instead of evaluating them separately for simplicity of comparison. It would mean 

that we assume that it takes as much effort for a processor to process a real 

multiplication and a real addition. 

 

The following table defines the general functions we will use and their respective 

required number of RA and RM. We consider that the input vector has a length of 

N. We use a simplified notation to identify “Real” with R and Complex with C. 

For example, the specification “R with C” for the process “Convolution” means 

that one vector utilized has real content and the other has complex. For the 

specials functions processing N complex numbers, we represent a single number x 

as )( jbax += . By “complex” number we mean that the number has both real 

and imaginary components. We assume that a purely real or a purely imaginary 

number are as sophisticated to process and are categorized under “real” number. 

We assume that a real division and real multiplication as well as real subtraction 

and real addition bear respectively the same computational intensity. 
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Table 1 - Computational Complexity of Numerical Operations Applied to a Vector of Length N 

 Specification # of real 
multiplications # of real additions 

    

Addition/Subtraction R with R 0 N 
 R with C 0 N 
 C with C 0 2 N 
    

Multiplication R with R N 0 
 R with C 2 N 0 
 C with C 4 N 2 N 
    

Division R with R N 0 
 R with C 6 N N 
 C with C 8 N 3 N 
    

Mean R input 1 N-1 
 C input 2 2(N-1) 
    

Convolution 

with a vector of 
length M 

R with R 4)1( 2 −− MNM  4)1()1( 2 −−− MMN  
R with C 2)1(2 2 −− MNM  2)1()1(2 2 −−− MMN  
C with C )1(4 2 −− MNM  NMNM 2)1(4 2 −−−  

    

FFT R input 2)3(log2 2 +−NN  4)5log3(2 2 +−NN  
 C input 4)3(log2 +−NN  4)1(log3 2 +−NN  
    

Special Cases for 
Complex Numbers *x

x
 5 N 2 N 

2x  2 N 1 N 

 4x  3 N 1 N 

 2x  3 N 1 N 

 4x  6 N 2 N 

 

For example, a complex multiplication of )( jbax +=  with )( jdcy +=  requires 

4 RM and 2 RA, detailed as )()()()( adbcjbdacjdcjba ++−=+⋅+ . In the same 

vein, a complex division of yx is assumed to require 8 RM and 3 RA in is 

detailed as )())()(()()( ddccadbcjbdacjdcjba +−++=++ . We only observe 6 
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direct RM, but we have to consider dividing the real and imaginary part of the 

numerator by the denominator, adding 2 extra RM. 

 

For every convolution, we want the vector of length N to conserve its length in the 

process. We impose this criterion because we simply do not want to add 

components to the vector during convolution. For a convolution involving the 

vector to process of length N, named for simplicity V, with one of length M, we 

find that the number of RM and RA per element in V is respectively M and (M-1), 

except for the elements at the beginning and end of V. By computing this we find 

the numbers in the previous table. 

 

For the Fast Fourier Transform, we assume that N is a power of 2. When mN 2=  

where m is an integer, we can use the split-radix or radix-2 Discrete Fourier 

Transform (DFT) decimation-in-time (DIT) computation simplification to 

decrease the required number of multiplication and addition. Discrete Fourier 

Transforms using fast algorithms like the radix-2 DIT are called Fast Fourier 

Transforms. The required number of real multiplications and real additions come 

from the text book referred here [52] and from the paper [53], references we 

recommend to the reader for further details on radix-2 DFT. 

 

There is another way we can assess a complex multiplication in terms of real 

multiplications and additions. Let consider again that )( jbax +=  and 

)( jdcy +=  and let’s define the variables )(1 dcak += , )(2 dcbk −= and 

)(3 badk += . We can easily show that )()( 3231 kkjkkyx ++−=⋅ . Therefore, 

we multiply 2 complex numbers by computing 3 real multiplications and 5 real 

additions. Compared to the previous method where 4 RM and 2 RA are required, 

this technique trades 1 RM for 3 RA. In the event that the hardware uses fewer 

clock cycles to perform 3 additions than a single multiplication, we gain overall 

processing speed by using this technique [28]. For the particular operation of 

FFTs, one of the two terms in the complex multiplication is the twiddle factor at a 

power m, identified by Nmim
N ewy π2−== for a FFT of length N. This twiddle 
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factor can be precomputed before the FFT of x . In other words, 

)sin()cos( θθ mjmy +=  can be mapped in a lookup table to their counter parts 

)sin()cos( θθ mm +  and )sin()cos( θθ mm − , saving 2 real additions per complex 

multiplication during the FFT. Therefore, FFTs of complex sequences can require 

3 RM and 3 RA per symbol, using the ,1k 2k  and 3k  variables [54]. This 

motivates our decision to assess the computational complexity by summing the 

RM and RA, as fast algorithms like the FFT realize a complex multiplication in a 

3/3 or 4/2 real multiplication/addition approach, both giving a total of 6 

operations. 

 

For FFTs of real inputs, the number of multiplications needed is half of that for a 

complex input, because real input sequences have the property )()( * kNXkX −=  

where *  denotes conjugate and X  is the Fourier transform of x  of length N [52].  

 

In our processings, we sometimes compute transcendental operations applied on 

vectors, element by element. These operations like x , xe

and )(atan x  will not be 

taken into account in the calculus of the number of RM and RA because their 

computer implementation efficiency can only be accounted for by counting cycles 

for a convergence up to a specific error using for instance the Newton’s method. 

Moreover, cycle counts vary with the computer architecture and most importantly 

with the Math Library used for processing the operation. We refer the reader to 

Intel©’s Vector Math Library (VML) for a table of performance and accuracy of 

all the functions included in their library [55]. It can be relevant to the reader to 

know that the math library used for processing our data is Intel® MKL (Math 

Kernel Library). 

 

4.2 – Algorithms to Assess and Ways of Variation 

In our procedure of assessing sequences of algorithms, we will not analyze every 

algorithms presented in Fig. 9. In this section we describe which algorithm will get 

assessed and which will not, as well as some explanations as why some 
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algorithms are not appraised. Moreover, for the ones we will study, we will 

explain what parameters will be varied or what methods will be tested. To have a 

clear view of what algorithms will be studied, we reprint Fig. 9 where algorithms 

under study are circled in green and algorithm to leave aside are crossed out in 

red. 
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Fig. 17 – Algorithms to be Assessed 

We will give ourselves the latitude to vary multiple parameters and use different 

approaches for each algorithm. It would be absolutely tedious to make them all 

vary linearly in a range and to map the complete ensemble of all the possible 

values and results they yield in a multidimensional plot. Instead, we compare a 

single parameter or method at a time, leaving all the others fixed and we study 

solely the impact of this parameter or method. We repeat for each parameter or 

method we want to assess. 

 

To start with, the optical hybrid amplitude imbalance and angle imbalance will 

not be assessed because, as we saw in § 3.2.1 and § 3.2.2, they are impairments 

that are due to physical manufacturing challenges of making 90° optical hybrids. 

Moreover, they are fixed impairments that do not depend on the optical link at all. 

We described in these two subsections how to compensate for the hybrids 

imperfection and we will simply do so for every processing. 

 

The process of resampling at twice the symbol rate will also not be studied. 

Resampling a sequence of acquisitions is a field of study itself where many 

different approaches and ways can be used, most especially for fractional 

resampling as we do. We decided not to investigate on ways to resample because 
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in a real system, if one wants to process samples at twice at the baud rate, the 

ADCs will be set to sample at this specific rate. This is even truer in a high 

symbol rate system where it is the maximal sampling rate and the analog 

bandwidth of ADCs that are the bottlenecks for high baud rate optical 

transmissions employing a coherent receiver where we don’t have the luxury to 

sample at high multiples of the symbol rate. 

 

Matched filtering, explained in § 3.2.4, and chromatic dispersion, explained in 

§ 3.2.5, are processes that will be investigated. We discuss these two processes in 

the same paragraph because they can be applied to the signal in the same way, 

both acting as regular filters applied either sequentially or simultaneously. We 

will try to eliminate chromatic dispersion and to match filter (MF) by operating 

both process in the time domain and in the frequency domain representation. 

When both processes are applied in the same domain, they will be applied 

simultaneously using a single filter. Therefore we will operate in four different 

ways: 1) apply simultaneously MF and CD-1 in the frequency domain, 2) apply 

independently MF in frequency and CD-1 in time, 3) apply independently MF in 

time and CD-1 in frequency and finally 4) apply simultaneously MF and CD-1 in 

the time domain. We know from mathematics that the convolution of three 

functions, f, g and h, can be applied in any sequence. If f is our function of interest 

and g and h are the MF and CD-1 time responses respectively, we can apply the 

two filters in a single convolution as )( hgf ⊗⊗ . This possibly reduces the 

computational complexity of the time domain approach while providing the same 

result as for separate filter application. The same simplification is done for the 

multiplication of filters in the frequency domain. We will differentiate each 4 

cases by observing the impact on the final BER and their total number of required 

real multiplications and real additions. 

 

Nonlinear phase shifts will not always be taken into account and therefore will not 

always be assessed. However, NL mitigation will be through the method 

described in § 3.2.6 when applied. Its total computational complexity will be 
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assessed by summing the total number of RM and RA using the numbers in  

Table 1. As chromatic dispersion compensation is applied within the algorithm of 

nonlinear compensation, its complexity will be taken into account within the NL 

compensation process when activated and as a standalone algorithm otherwise. Of 

course, applying nonlinear compensation will also affect the final BER that we 

will monitor. We will vary the step size parameters within the NL mitigation 

algorithm. The Split-Step-Fourier-Method we use works well for nonlinear 

compensation but is absolutely not computationally efficient. Our goal is not to 

thoroughly study different digital NL compensation approaches, but to use only 

the SSFM method and to vary its computer complexity, most probably altering 

the final BER, by varying the propagation step size z∆ . However, efficient digital 

mitigation of nonlinear effects is an attractive and promising research topic [3]. 

We will not only study the impact of changing z∆  when we activate the nonlinear 

compensation algorithm but also compare results with and without NL mitigation. 

The step size we will take for the SSFM method will be of 5, 10 and 20 km. 

 

The process that compensates for polarization mode dispersion and polarization 

dependent loss, and that demultiplexes polarization multiplexed signals will be 

thoroughly studied. These processes, explained in § 3.2.7, are crucial for a 

transmission scheme like the one we study, i.e., Dual Polarization-QPSK. The 

three dimensional MIMO matrix H  introduced in Eqs. (30) and (31) does at the 

same time PMD and PDL compensation and polarization demultiplexing. The 

parameters we will have the freedom to vary in this Constant Modulus Algorithm 

equalizer are 1) the third dimension of H , i.e., its length, 2) the method for 

updating H  and also 3) the impact of the strength of the adaptive parameter µ  in 

Eq. (31). All the three above variations will influence the final BER, but only the 

method of adaption of H  and its length will influence the process’s 

computational complexity. For the method of adaptation of H , we want to know 

if it is better to update continuously, once every symbol, or to update for N 

symbols for filter adaptation and then apply a fixed matrix H  for a duration of 

NM −  symbols and repeat every M symbols. The latter is obviously less 
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computationally intense than always updating H . Additionally, increasing the 

length will let the algorithm take more neighbouring bits into account for 

processing, assuredly requiring more computations per sample, but could be 

detrimental for very noisy signals. Finally, the adaptive parameter µ  will be 

tested for the four values of 0.001, 0.002, 0.003 and 0.005 

 

For the carrier and LO frequency offset removal, we will study the two methods 

described in § 3.2.8, namely the time domain and the frequency domain 

approaches. The sum of the total required RM and RA and each method’s 

resulting BER will be used to assess the two methods. 

 

Finally, the carrier and LO phase noise removal (§ 3.2.9) will be assessed by 

varying the amount of elements to take in the computation of the mean of phasors. 

This will impact solely the final BER. The computational complexity doesn’t 

change by changing the number of element accounted for in the mean because of 

the way we process the moving mean. For a simple explanation, our process of 

phase noise removal can be seen as a moving average window, repeatedly moving 

by one sample and applying the output of a filter to a single element. The way we 

compute the sum of elements inside a new shifted window is simply by 

subtracting the element that left the window form the previous sum and adding 

the newly included element in the sum. With this efficient technique, the length of 

the window does not change the computational complexity. Only the sum of the 

initial M elements has to be computed on system startup and will be neglected in 

the calculation. The computational complexity of phase noise removal can already 

be accounted for as being two required complex additions per symbol. We use 

summation instead of mean because the angle of the mean equals that of the sum. 
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Chapter 5 : Experimental Setup 

In this chapter, we will present the test bed we worked on to collect the 

experimental data and unfold the parameter space we worked with. The optical 

test bed is depicted in the block diagram below. 
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Fig. 18 – Block Schematic of Optical Test Bed 

The experiments were realized at Nortel Networks© in Ottawa, CANADA, in 

December 2009, in the Metro Ethernet Networking Solutions laboratory. Some of 

the equipments we used are the following: 

• The transmit and LO lasers: Emcore© ITLA TTX1994x 

• Optical fibre: Corning© SMF-28TM (ITU-T G.652 compliant) 

• Single-ended PIN + TIA: Discovery Semiconductors© DSC-R401HG 

• Scope: Tektronix© DPO71604 

• Polarization Scrambler : Agilent© 11896A  Polarization Controller 

The “X signal” and “Y signal” are repeated known De Bruijn sequences of length 



Chapter 5: Experimental Setup 63 

 

214 varying at a speed of 10 Gsymbols/sec. The transmit laser emits at 

=λ 1547.715 nm with a 3 dB linewidth smaller than 100 KHz. The “LO laser” is 

tuned to emit within 200 MHz of the transmit laser and has the same linewidth. 

The other parts in the setup are not mentioned either because they are proprietary 

Nortel©’s parts or are generic, commonly used optical parts. Again, the software 

utilized to process offline the acquired data is MATLAB©. 

 

The first parameter in our parameter space is the pulse type. We used two 

different types of pulse shaping filter at the transmitter: the Root-Raised Cosine 

filter (Eqs. (25), (26)) with roll-off factor 1=α  and another pulse shape developed 

by Ph.D. candidate Benoît Châtelain at McGill University, Montreal, CANADA 

[56, 57]. This optimized pulse shape is intended to mitigate the nonlinear effects 

when propagating in an optical fibre. We will refer to the first pulse as the “RRC” 

pulse and to the optimized pulse as the “OPT” pulse. Both pulses occupy the same 

bandwidth, i.e., for a symbol duration of =T 100 ps they occupy a single-side 

bandwidth of == TW 1 10 GHz or a full width bandwidth of =T2 20 GHz (see 

§ 3.2.4). The pulse shaping filter are made to be applied in a matched filtering 

way, i.e., that the same filter is applied at the transmitter and receiver. 

Consequently the MF at the receiver will be the same as the pulse shaping filter. 

 

For each pulse shape we vary the launch power launch P  of the signal as it enters 

each fibre span through the variable optical attenuator VOA #1 and the 15 Erbium 

Doped Fibre Amplifiers (EDFA) such that the total signal power+in-

band noise power after each span of 80 kilometres is brought back to launch P . This 

launch power variation is our second parameter in the parameter space. The 

power of the signal launched was varied to the values of -4, -2, 0, 2, 3, 4, 5 and 6 

dBm and the total propagated distance is 1200 km. As a reminder, dBm and 

milliWatts (mW) are power related as )[mW](log10[dBm] 10⋅= . The previous 

power values are accounting for the total optical power entering the optical fibre, 

meaning that for a polarization multiplexed signal, launch P  is the sum of the 

powers of both polarizations. A single carrier at wavelength of =oλ 1547.715 nm 
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was used to transport the binary stream. Two idle wavelengths far from oλ , 

located at the extremity of the gain spectrum of the EDFAs were used to flatten 

the EDFA gain around oλ , called gain balancing, and are considered not influent 

on oλ . 

 

Moreover, for each launch power for each pulse shape, the OSNR was varied at 

the receiver using a broadband source. The OSNR, our third and last parameter, 

was changed by varying the noise floor through VOA #2 in the previous figure. 

The OSNR was varied from around 6 dB to around 18 dB by incremental steps of 

roughly 1 dB. The optical signal to noise ratio is found using port 2 of the optical 

spectrum analyzer (OSA) with a resolution bandwidth much higher than the 

useful signal’s total bandwidth. As the total two-sided bandwidth of our signal is 

20 GHz (0.16 nm around 1547.715 nm), we choose a resolution bandwidth of 

0.5 nm, equivalent to 75 GHz. With an OSA of finite resolution of 0.003 nm, 

setting the resolution bandwidth to 0.5 nm lets the OSA output window averages 

of approximately 167 spectral powers, applied for the entire frequency display of 

the OSA. As an example, we plotted in Fig. 19 an acquired optical spectrum at the 

receiver after 1200 km with a resolution bandwidth of 0.5 nm for which the 

OSNR in 0.5 nm is found to be 7 dB or of a ratio of 5. The OSNR in 0.5 nm and 

in 0.1 nm are known to be dictated by Eqs. (34) and (35). The middle green dot is 

a linear interpolation of the power of the noise residing inside the bandwidth of 
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Fig. 19 – Optical Spectrum at the receiver: Resolution bandwidth of 0.5 nm 
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the signal. By calculating the OSNR in 0.5 nm, we take into account all the 

optical noise in 0.5 nm. Eq. (35) allows us to find the in OSNR in 0.1 nm by 

simply assuming that there is 5 times less noise in a bandwidth of 0.1 nm than in 

0.5 nm. The black dots serve as the extremes for linear interpolation and are 

assumed to be located where there is solely noise. (35) 

 

The power ratio between the Local Oscillator LOP  and the signal SIGP  at the 

receiver, before entering the Dual-Polarization 90° Optical Hybrid (see Fig. 4), 

was kept at around 100=SIGLO PP . We chose this value, used in the literature, 

because high local-oscillator-to-signal power ratio minimises the distortion caused 

by the direct square-law detection of photodetectors. Such distortion may severely 

degrade the performance of DSP-based CD/PDM compensation and polarization 

recovery [58, 59]. The SIGLO PP  ratio was kept constant using VOA #3. It is worth 

noting that the input polarisation state of the signal was not controlled, and an 

arbitrary mix of each transmitted polarisation state was incident on the 

photodetectors [58]. 

 

For each pulse shape, launch power and OSNR, we collected 10 million samples 

at a rate of 50 Gsamples per second, giving a collection time of roughly 0.2 

millisecond. As our symbol rate was fixed at 10 Gsymbols per second, each 

acquisition encompassed 2 million symbols’ worth of time. We decided to process 

for only roughly one fourth of this time, or for exactly 524288219 =  symbols’ 

worth of time, because otherwise the required processing time was too long. In 

fact, as we processing at 2 samples per symbol, 220 samples we used for each of 

the 4 channels, making a total of 4.2 million samples to proceed for every 

sequence of algorithms to study. 
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Chapter 6 : Analysis of Processes and Results 

In this chapter we present the BER and the total amount of real multiplications 

and real additions that all DSP processes yield when applied after the analog to 

digital conversion in the optical coherent receiver. We compare the results for all 

pulses, launch powers and OSNRs for a single parameter or method under study 

at a time, while leaving the other parameters fixed. This way to present results 

allows us to point out the impact of a single approach or of tuning a parameter. 

 

We compare 10 different parameters or methods in order to give us a broad view 

of the impact of several aspects in the digital process of a coherent receiver. The 

10 comparisons are the following: 

1. Vary the length of H  in Eqs. (30) and (31) in the polarization 

demultiplexing process without any nonlinear compensation: 9 and 5 taps 

2. Change the method of adaptation of H : always adaptive versus adaptive 

for 2048 symbols and fixed for 6144, repeated every 8192 symbols 

3. Include or exclude the nonlinear impairment compensation through the 

SSFM method using a length of H  of 5 taps 

4. Vary the length of H  in the polarization demultiplexing process when 

nonlinearities are compensated: length of 9 versus length of 5 taps 

5. Compare all the possible methods to match filter and to apply chromatic 

dispersion compensation either in time or in frequency domain. The 

following summarizes the possible methods: 

 MF CD-1 

in Frequency A 
B 

A 
C 

in Time C 
D 

B 
D 
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 where the four different approaches are letter tagged A, B, C, and D. For 

instance, process B applies the match filter in the frequency domain and 

the CD compensation (CD-1) independently in the time domain. Processes 

A and D are applied simultaneously as they are applied in the same 

domain. 

6. Vary the duration of the fixed coefficients in H  when adaptive for 2048 

symbols: fixed for 6144 and repeated every 8192 symbol or fixed for 

18432 and repeated every 20480 

7. Vary the strength of the step size parameterµ  in the adaptation of H : 

005.0or    ,003.0  ,002.0  ,001.0=µ  

8. Vary the amount of elements to take in the computation of the mean in the 

carrier phase estimation: 71 versus 101 elements 

9. Change the method to remove the carrier frequency offset: using the 

frequency domain versus the time domain approach 

10. Vary the propagation distance steps z∆  in the SSFM method: 

km 20or    km 10  ,km 5=∆z  

To compare all our results, we will plot “BER vs OSNR in 0.1 nm” showing results 

for a specific type of pulse and a specific method or parameter under study. These 

plots will show the results for each launch powers. Additionally, in order to 

synthesise the results for the parameter under study, we will construct a “Required 

OSNR vs Launch power” figure obtained by finding the points where all the curves 

in the previous “BER vs OSNR” plots cross the BER threshold of 3108.3 −× . These 

points are circled in black in these plots. 

 

6.1 – Study of Comparison 1 

For comparison #1, we compare the impact on the BER against OSNR and on the 

computational complexity when we vary the number of taps in the polarization 

demultiplexing process from 9 to 5. The plots on next page are detailed as follow:
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 Comparison 1 Figures 
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Fig. 20 – 1) BER vs OSNR: RRC - H has 9 taps 
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Fig. 21 – 1) BER vs OSNR: OPT - H has 9 taps 
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Fig. 22 – 1) BER vs OSNR: RRC - H has 5 taps 
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Fig. 23 – 1) BER vs OSNR: OPT - H has 5 taps 

 

-4 -3 -2 -1 0 1 2 3 4 5 6

8

10

12

14

16

18

Launch Power [dB]R
eq

ui
re

d 
O

S
N

R
 in

 0
.1

nm
 fo

r B
E

R
 o

f 3
.8
×1

0-3

Comparison of Number of Taps in CMA
Required OSNR vs Launch Power

 

 

with 9 Taps: RRC
with 9 Taps: OPT
with 5 Taps: RRC
with 5 Taps: OPT
Theory

Complexity with 9 Taps = 860354000
Complexity with 5 Taps = 776460000

 
Fig. 24 – 1) ROSNR vs Launch Power : RRC & OPT pulses: Length H of 5 and 9 

[dBm] 

[d
B]

 



Chapter 6: Analysis of Processes and Results 69 

 

plots in the first row are results for both the RRC and the OPT pulses when 9 taps 

are used, plots in the second row are results when 5 taps are used for both pulses 

and the final third row shows the comparison of the computational complexity 

between 9 and 5 taps along with the required OSNR in 0.1 nm for a BER of 
3108.3 −×  against different launch powers. We observe that for all the top 4 plots, 

the BER is always lower when the OPT type of pulses is used, as predicted by 

Ph.D. candidate Benoît Châtelain [56, 57]. If we compare the top left plots 

looking only at RRC pulses, we realize that there’s practically no difference 

between using 9 or 5 taps: a result that is confirmed by the ROSNR vs Launch 

Power plot by the quasi-superimposed ×  marked two solid lines. For a numerical 

comparison, the RRC pulse between –4 and +3 dBm using 5 taps has, on average, 

a better performance of roughly 0.033 dB. Surprisingly enough, the inverse 

happens when the OPT pulse is used: over the same launch power range, the 9-tap 

length always gives a better performance, by 0.175 dB on average. It is hard to 

explain why 5 taps work better for RRC and 9 taps for OPT, but as the variation is 

quite low, we can make the hypothesis that the performances are very similar for 

longer, real time processing. 

 

We equally observe that using only 5 taps lowers the final complexity by roughly 

10%. This makes sense as the polarization demultiplexing process acts as a 

convolution of input signals with short vectors, in our case either of length 9 of 5. 

As we previously discussed, convoluting by a shorter vector inherently requires 

less computations. Another observation to be made comparing the two types of 

pulses is that at high powers, starting at +2 dBm and above, the OPT pulse 

outperforms the regular RRC pulse in terms of the BER it yields. We confirm this 

by looking at figures in the same row, where pulses RRC and OPT receive the 

exact same processing from end to end. Curves of the same colour in the last 

ROSNR vs Launch Power figure concur with this observation. For example, at +4 

dBm of launch power, OPT requires an OSNR that is 5.2 dB lower than that of 

the RRC pulses to achieve a BER of 3108.3 −×  when both use 9 taps; an 

improvement mainly due to the OPT pulse receiving less SPM effects. 
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Therefore, we conclude that for RRC pulses, it is simply advantageous, both in 

terms of system performance and computationally, to use 5 taps instead of 9. 

When OPT pulses are used at the transmitter, however, the performance 

improvement in the ROSNR, up to 1.05 dB at +5 dBm of launch power, is most 

probably worth the 10% increase in the total computer complexity. For sure, the 

margin of our overall receiver dictates the final choice for OPT pulses 

 

6.2 – Study of Comparison 2 

The second study allows us to compare the impact of changing the method of 

adaptation of the hij coefficients of the H  matrix in time. We study two different 

approaches. In the first one, we continuously adapt the hij coefficients at every 

symbol whereas in the second method, we adapt hij’s for 2048 symbols then keep 

them fixed for 614420488192 =−  symbols and repeat every 8192 symbols. For 

the record, we used a vector length of 5 taps for the four ijh


 in both types of 

adaptation. We observe in the bottom figure on next page that the reduction of 

complexity is very minor when the coefficients are updated only 2048 times every 

8192 symbols. A reduction of barely 2.5% of the total computer complexity (CC) 

is achieved by updating one fourth of the time. However, by comparing the solid 

lines together and the × -marked lines together in this plot, we realize that this 

computation improvement is obtained at practically no cost as the solid and the ×  

curves respectively overlay almost perfectly when we omit a single experimental 

point for the OPT pulse at +3 dBm in the 2048/6144 case. We therefore conclude 

that it is not needed to continuously adapt the coefficients of the H  matrix in the 

polarization demultiplexing process. It proves that the variation of the principal 

states of polarization in the fibre is done on a scale much larger than 

s 1ps 1008192 µ≈× . When we compare results from the RRC pulse with those of 

the OPT pulse processed the same way, we can solely conclude what was already 

pointed out in the analysis of the first process, that is, Châtelain’s OPT pulses 

render a much lower BER at high launch powers. In fact, for a launch power of +3 

d B m,  t h e  R O S N R  i s  i mp r o v e d  b y  1 . 8  d B  i n  t h e  c o n t i n u o u s l y 
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 Comparison 2 Figures 
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Fig. 25 – 2) BER vs OSNR: RRC - always adapting 
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Fig. 26 – 2) BER vs OSNR: OPT - always adapting 
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Fig. 27 – 2) BER vs OSNR: RRC - 2048/6144 
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Fig. 28 – 2) BER vs OSNR: OPT - 2048/6144 
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adaptive case. This enormous improvement solely due to the shape of the pulse, 

imprinted at the transmitter to send down the fibre is a gigantic step forward in the 

research of ways to combat nonlinear impairments in an optical system. It is 

worth to say that this observation is valid for the first two comparison studies 

above and that neither of those include nonlinear effect mitigation. 

 

6.3– Study of Comparison 3 

The third study allows us to compare the impact of including nonlinear mitigation 

in the digital signal process. We compare two different processing schemes. In the 

first one, we do not take into account any nonlinear mitigation technique and 

remove chromatic dispersion as a regular linear process in lump fashion in the 

frequency domain. We compare the results that this technique yields to a second 

approach where nonlinearities are mitigated using the Split-Step Fourier method. 

In this second technique, the beam propagation method that consists the SSFM 

allows the back propagation of the received optical field from the receiver to the 

transmitter. This technique, explained in §3.2.6, doesn’t compensate for chromatic 

dispersion all at once in the frequency domain as we do in the first approach but 

use small propagation steps, each of which compensates for its small chromatic 

dispersion as well as for nonlinearities occurring within this small distance. The 

propagation step size utilized for this comparison is 5 km and consequently the 

NL small step process is repeated 1200/5 = 240 times to backpropagate the entire 

distance. The top 2 plots are BER vs OSNR results for both types of pulses when 

no NL mitigation is done and CD is bulk compensated in the frequency domain. 

The 2 plots in the middle row are results for both pulses when the SSFM is 

activated and the last plot shows the ROSNR vs Launch Power for both 

approaches, for both pulse types. The improvement in the system performance 

when nonlinearities are mitigated is tremendous. If we look at BERs using a 

regular pulse shape like the RRC pulse, located on the left-hand side of next page, 

we realize that the curves for all the different launch powers are pushed down. 

This is even more apparent at high launch powers of +2 dBm and above, whereas
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 Comparison 3 Figures 
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Fig. 30 – 3) BER vs OSNR: RRC-NL off/5-tap CMA 
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Fig. 31 – 3) BER vs OSNR: OPT-NL off/5-tap CMA 
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Fig. 32 – 3) BER vs OSNR: RRC-NL on/5-tap CMA 
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Fig. 33 – 3) BER vs OSNR: OPT-NL on/5-tap CMA 
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the system improvement is not as significant at low powers of –4 or -2 dBm. 

Accordingly, we clearly observe a down push of the RRC curves in the bottom 

plot when NL mitigation is on. When we look at the results when Châtelain’s 

OPT pulses are used, we observe that the system improvement is still present but 

not as strong as for RRC pulses. Curves are indeed pushed down, in both the BER 

vs OSNR and the ROSNR vs Launch Power plots for the OPT pulses but less 

substantially. This makes senses as the OPT pulses were conceived to receive less 

nonlinear impairments as they propagate down a fibre. 

 

One important thing to observe is that the natural system performance benefit of 

using OPT pulses compared to RRC pulses is not that evident when NL 

impairments are reduced. The two plots in the second row agree with this 

observation as curves of launch powers from –4 to +4 dBm roughly lay around 

the same locations when comparing RRC to OTP pulses. To quantify system 

improvement for both the RRC and OPT pulse types, the required OSNR for 
3108.3BER −×=  for a launch power of +3 dBm is lowered by more than 2.3 dB 

for RRC pulses but only by 0.8 dB for OPT pulses. This shows not only how 

beneficial the inclusion of NL mitigation is to the overall error rate but also that if 

NL compensation is to be done at the receiver, the use of OPT pulses is not as 

advantageous. However, on the other hand, if the receiver does not compensate 

for NL effects digitally, the use of OPT pulses helps a lot to combat nonlinear 

impairments. 

 

Per contra, this major improvement is not achieved for free. By looking at the 

total number of real multiplications and additions for the entire digital signal 

processes of both cases, we realize that the inclusion of NL compensation 

increases the number by more than 110 times that when no NL is accounted for. 

This means that not only much more processing power is required when NL 

compensation is activated, but practically all of it goes to the sole purpose of 

compensating NL effects. Therefore, under these conditions, the cost is seriously 

too much. Nevertheless, now that we know how advantageous compensating for 
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NL effects is, we realize how important investigating in other less 

computationally intense methods for NL effects reduction is. Consequently, we 

will process and study in later pages the results for step sizes bigger than 5 km. 

We can predict in advance that using fewer steps to backpropagate the same 

distance in the NL mitigation process will substantially lower the total complexity 

but the study will assess the tradeoffs of such coarser NL processing. 

 

6.4 – Study of Comparison 4 

For the fourth comparison, we confront face to face two methods that mitigate 

nonlinear impairments but that are differentiated by the number of taps utilized in 

the polarization demultiplexing process. The first method uses 9 taps while the 

second uses only 5 taps in the CMA subprocess. The results of these two 

processes are shown below. For this study it is more relevant to compare the 

results of RRC pulses together and OPT pulses together. When RRC pulses are 

utilized, we observe that the use of 5 taps or 9 taps in the CMA subprocess 

practically doesn’t change the final BERs. By looking at figures on the left-hand 

side of next page, we observe that, to some extent, the results for the various 

launch powers practically overlay. For the single case of very high launch power 

of +6 dBm, the process involving 5 CMA taps is unable to converge for low 

OSNRs of 12 and 13 dB because of the high level of noisiness in the signal at the 

receiver, whereas the one involving a CMA that includes more neighbouring 

samples to extract data can actually converges and deal with such a signal. As the 

two methods give equal system performance, we can look at their complexity to 

differentiate them. We realize that, as expected, the method including 9 CMA taps 

requires more computations than the one using only 5 CMA taps. This result 

concur with what we observed in Comparison 1, but this time instead of a total 

complexity increase of 10% due to the longer vector length from 5 to 9, this same 

tap number increase turns into a little relative 0.1% increase in the total 

complexity when nonlinear compensation is included. This gives us, again, a 

sense of how NL compensation in computationally intense. Moreover,  
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 Comparison 4 Figures 
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Fig. 35 – 4) BER vs OSNR:RRC - 9 tap CMA, NL on 
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Fig. 36 – 4) BER vs OSNR:OPT - 9 tap CMA, NL on 
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Fig. 37 – 4) BER vs OSNR:RRC - 5 tap CMA, NL on 
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Fig. 38 – 4) BER vs OSNR:OPT - 5 tap CMA, NL on 

 

-4 -3 -2 -1 0 1 2 3 4 5 6

8

10

12

14

16

18

Launch Power [dB]R
eq

ui
re

d 
O

S
N

R
 in

 0
.1

nm
 fo

r B
E

R
 o

f 3
.8
×1

0-3

Comparison of 9-taps to 5-taps CMA, both with NL comp.
Required OSNR vs Launch Power

 

 

With NL (5-taps): RRC
With NL (5-taps): OPT
With NL (9-taps): RRC
With NL (9-taps): OPT
Theory

Complexity with NL comp. (5-taps CMA) = 86596000000
Complexity with NL comp. (9-taps CMA) = 86680000000

 
Fig. 39 – 3) ROSNR vs Launch Power: RRC & OPT pulses – 5 and 9-tap CMA with NL mitigation 

[dBm] 

[d
B]

 



Chapter 6: Analysis of Processes and Results 77 

 

Comparison 3 informed us of a rough 110 times increase in the CC when NL 

compensation is included, which roughly concurs with the %1.0%10  ratio 

discovered in this fourth comparison, proving that NL mitigation takes over all 

the processing power. The nearly equal system performance with the RRC pulses 

is verified by looking at the × - marked curves on the bottom plot on next page.  

 

For the case using the OPT pulses, we realize that the system performance is 

slightly improved by using 9 taps instead of 5 in the CMA when NL is 

compensated. Compared to results in Comparison 1 where NL was not 

compensated, the small improvement of, for example, 0.28 dB at +4 dB of launch 

power is not a lot less than the one without NL compensation being 0.46 dB. If we 

look at OPT curves only in the ROSNR vs Launch Power plots of Comparison 4 

and Comparison 1, we observe that they follow the same course, considering that 

the experimental +5 dB and +6 dB curves of BER vs OSNR never cross the 
3108.3 −×  BER threshold when NL is compensated because we decided to stop 

acquiring at OSNRs of 13 and 14 dB respectively, as our initial quick processing 

of the data would not converge at lower OSNRs. Finally, the ROSNR vs Launch 

Power plot tells us that from launch powers of 1 dBm and above, the two types of 

pulse give very similar results, all meeting the BER threshold within an OSNR 

range of ± 0.16 dB. 

 

6.5 – Study of Comparison 5 

In this section we will analyze the impact of the method used to match filter and 

remove chromatic dispersion. As explained in sections §3.2.4 and §3.2.5, these 

two subprocesses are linear filters that have a representation in both the time and 

the frequency domain. Consequently, we are interested in knowing the impacts on 

the final BER but most importantly on the total computational complexity of each 

filter when applied using either domains. Therefore, we will look at results when 

A) both the matched filtering and the removal of the chromatic dispersion is done 

simultaneously in the frequency domain, B) the match filtering is initially done in 
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the frequency domain followed the temporal filter removing chromatic dispersion, 

C) the matched filter is applied in the time domain followed by the chromatic 

dispersion removal in the frequency domain and finally D) the matched filter and 

the chromatic dispersion compensation are applied simultaneously in the time 

domain. When frequency domain equalization is used, the entire 192  symbols’ 

worth of time acquisition is used to do the FFT and therefore the entire length of 

the input signal gets filtered all at once. Additionally, for each time domain 

filtering of chromatic dispersion, the vector used for convolution with the useful 

signals always has full length, i.e., a length that allows compensation for the 

entire bandwidth of the signal while avoiding aliasing. For our configuration 

where kmps87.21 2
2 −=β , km 1200=L  and the signal bandwidth goes up to 

10 GHz at a baud rate of 10 Gbaud/s, this number of taps is 61 [43]. Of course, 

we are aware that the computational complexity can be lowered by using a 

convoluter of a smaller length, but such an approach engenders some penalty as 

not all the frequencies are compensated and we decided not to vary this 

parameter. Moreover, time domain matched filtering is always applied using a 

convoluter of length 33, either for RRC or OPT pulses. Finally, for case D), the 

time domain convoluter allowing simultaneous removal of CD and application of 

MF always has a length of 101, again permitting full CD compensation. 

 

As 4 methods have to be studied, we decided to present the results for RRC pulses 

on one page and those for OPT pulses on another for visual simplicity. We start 

by presenting the results when the RRC pulse is used. By looking at the top 4 

figures on the page below, we realize how little or not the system performance 

changes by using one method or the other. In fact, besides the method where 

matched filtering is applied in frequency and CD is removed in time which 

degrades a little the overall system performance, we can observe that all the 

curves in the ROSNS vs Launch Power plot overlay. Because BER results are 

equal, it comes very interesting to look at the total computational complexity 

when each of the 4 techniques is used. This is where we find a real differentiator. 

The method that has the lowest computational complexity is the one where
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 Comparison 5 Figures : RRC Pulses Only 
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Fig. 40 – 5) RRC) BER vs OSNR: MF + CD-1 in f 
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Fig. 41 – 5) RRC) BER vs OSNR: MF + CD-1 in t 
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Fig. 42 – 5) RRC) BER vs OSNR: MF t, CD-1 f 
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Fig. 43 – 5) RRC) BER vs OSNR: MF f, CD-1 t 
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both MF and CD-1 are applied in the frequency domain. We will assess the three 

other methods based on their relative extra complexity with respect to this one by 

normalizing their CC with that of the “MF and CD-1 applied in frequency” 

method. The second more computationally intense process is the one when 

matched filtering is applied in time and CD-1 in frequency, i.e., process C). This 

method requires 1.56 times more real multiplications and additions. We can 

understand why this method requires more computations than the previous one by 

coarsely studying the required amount of complex multiplication each sample has 

to receive to apply MF and combat CD. In the first case, when both filters are 

applied simultaneously, two FFTs are required along with one complex 

multiplication (CM) for each sample. As studied in the previous sections, an FFT 

of length N requires in the order of )(log2 N  complex multiplication per sample. 

Therefore, processing in the frequency domain requires roughly )1)(log2( 2 +N  

CM per sample. This number doesn’t change because we filter both CD and MF. 

In fact, if we were to filter only CD, the same complexity would be required. 

However, when we separate the two filters, one still applied in frequency and the 

other in time, we inherently increase the CC because we directly add extra 

multiplication and additions to filter separately in time another linear process. By 

looking at the length of the time convoluters mentioned above, we can already 

predict which of the two remaining methods will be in third place for its computer 

complexity. This second most complex process, C), has a convoluter of length 33. 

Process B) which keeps the matched filtering in the frequency domain but filters 

chromatic dispersion in time, uses a convoluter of length 61, and it is indeed the 

third most complex method with a total CC of 3.1 times that of the all-frequency 

method and of roughly 2 time that of C). Comparing the total CC of B) and C), we 

realize that their ratio is really close to the ratio of the length of the convoluter 

used for the time domain linear filter. This directly tells us that the longer the time 

domain filter, the more complex the processing will be. Finally, the most 

computationally complex of all the processes is the one where both MF and CD 

removal are applied in the time domain. For this case, even if no Fourier 

transforms are required which could be thought of as a good way to reduce the 
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complexity by not computing two times a FFT, the CC is still really high at 3.8 

times that of the all-frequency process. This informs us how linearly filtering in 

the time domain is cost ineffective. 

 

One could think that dividing the entire signal into shorter blocks and processing 

each block independently in the frequency domain could increase the 

computational complexity of the all-frequency case and possibly make case C) 

more attractive. In fact, computing more FFTs of shorter length requires fewer 

computations than a single FFT of the entire sequence. This can be proven as 

follows. Imagine applying a FFT on a vector of length N. The computational 

complexity of doing so is roughly to the order of )(log2 NN ⋅ . Now imagine that 

we divide the initial vector into 16 smaller vectors, each of length 16N  and we 

process 16 FFTs, each requiring a complexity of )16(log16 2 NN ⋅ . The total 

complexity for processing the entire vector is now )16(log2 NN ⋅ , and therefore 

the complexity per sample is )16(log2 N  instead of the initial )(log2 N : a 

reduction by a ratio of 4)16(log2 =  per sample. However, there are two trade-

offs for operating in the frequency domain on smaller block sizes, or on shorter 

temporal acquisitions. The first is that short blocks contain less accurate 

frequency content than longer ones, simply because the statistics acquired by 

short temporal acquisitions contain less information on the signal than longer 

acquisitions. Removing chromatic dispersion on a signal that has biased 

frequency content can lead to a performance penalty. The second trade-off is the 

frequency resolution of short FFTs. Indeed, short or long FFTs of signals sampled 

at the same rate have frequency content that spans in the same range, from maxf−  

to maxf . An FFT of length N will therefore have a frequency resolution of 

)1(2 max −=∆ Nff . One can clearly observe that the resolution will be finer 

using longer lengths. As chromatic dispersion is an all-pass filter (see Eq. (28)), 

this filter )( nfH  will only apply inverted dispersion to frequencies 

maxffnfn ≤∆⋅= . As the real physical process of chromatic dispersion in an 

optical fibre is applied to all the frequencies continuously, it is better to mimic CD 

with the finest frequency discretization possible. This greater discretization is 
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 Comparison 5 Figures : OPT Pulses Only 
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Fig. 45 – 5) OPT) BER vs OSNR: MF & CD-1 in f 
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Fig. 46 – 5) OPT) BER vs OSNR: MF & CD-1 in t 
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Fig. 47 – 5) OPT) BER vs OSNR: MF in t, CD-1 in f 
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Fig. 48 – 5) OPT) BER vs OSNR: MF in f, CD-1 in t 
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obtained by taking larger temporal lengths. Our study here is not to assess the 

impact of processing CD-1 using shorter lengths N but only to assess different 

ways of processing CD and MF in their time and frequency representation. To 

study the impact of shorter lengths, we could have proceeded by blocks of a 

fraction of the total length of 1922× , obtain BER vs OSNR results using the all-

frequency method and repeat by increasingly shortening the block size until a 

system performance degradation is observed and stop at this point. This block size 

would give the smallest computational complexity for equal system performance. 

 

The results when the OPT pulses were used are presented in the previous page. 

The observations and conclusion that can be drawn for the OPT pulses are the 

same as those made for the RRC pulses. One thing to point out is that the ROSNR 

at +3 dBm of launch power is 1.95 dB less for OPT pulses compared to RRC 

pulses when using one of the three methods giving the same results, proving again 

how tolerant to SPM the OPT pulse is. Of course, BERs as low as 3108.3 −×  can 

be reached at high launch powers due to the specific properties of this OPT pulse, 

allowing curves in the ROSNR for 3108.3 −×  BER vs Launch Power plot go to as 

high as +5 dBm  instead of the +3 dBm limit for RRC pulses.  

 

In light of this fifth comparison, we can conclude that it is very beneficial in terms 

of computational complexity to remove chromatic dispersion and to match filter 

simultaneously in the frequency domain. Moreover, it makes us tend to think that 

any bulk linear filter should be applied in the Fourier domain using long lengths. 

 

6.6 – Study of Comparison 6 

In this section we will study two different methods to update the coefficients ijh of 

the polarization demultiplexing subprocess introduced in §3.2.7. We will 

repeatedly let the coefficients adapt for 2048 symbols using the CMA algorithm 

followed by a period where the coefficients are fixed and have values given by the 

last adaptation step. What we will vary is the duration of the period where the 
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ijh ’s are fixed. In the first case, this period lasts 6148 symbols and in the second, 

this period lasts 18432 symbols. In terms of time duration, coefficients are always 

adapted for roughly 0.2 sµ and are then fixed for either 0.61 sµ  or 1.84 sµ  in a 

repeated fashion. As we process a total of 524288219 =  symbols per polarization, 

the first method is repeated 64 times while the second is repeated 25.6 times. We 

show the BER vs OSNR curves for both RRC and OPT pulses along with the 

ROSNR vs Launch Power plot to characterize the methods’ performances. 

 

By observing the bottom plot on next page, we realize that keeping the ijh  

coefficients fixed for a period three times longer doesn’t change the final BERs, 

for any pulse. When we closely look at the two curves in ROSNR vs Launch 

Power plot for each of the RRC and the OPT pulses, we can clearly appreciate the 

similarities of the results of the two processes, where the required OSNR for a 

BER of 3108.3 −× never changes by more than 0.07 dB for the two methods of 

adaptation. To differentiate the two methods, we can look at the total 

computational complexity that each method requires. It is obvious that the method 

where the ijh  coefficients stay fixed for a longer period will require less CC, as 

the adaptations explained in Eq. (31) do not have to occur within this period, 

saving processing power. This concurs with what we observe above: the 

complexity for the 2048/18432 adaptive/fix case is less than that of the 

2048/6144 case. However, the complexity reduction with respect to the total 

complexity of the system when ijh  are fixed for 18432 symbols is very little: a 

mere 0.78% of reduction. This tell us how little computationally intense the 

adaptation of ijh ’s in the H  matrix is. With such small variations, in both the 

ROSNR and the CC, is it harder to find which of the 2048/6144 or 2048/18432 

methods is better. To answer this question, we have to look a little deeper at the 

ROSNR vs Launch Power plot. If we closely look at the curves, we observe that 

the 2048/6144 case is always slightly better than2048/18432, by a maximal value 

of 0.07 dB. Knowing that 0.07 dB equals 1.6%, we can answer the previous 

question by answering the following one: is a reduction in the total complexity of 

0.78% worth the increase of ROSNR by 1.6%. Such a small complexity reduction 
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 Comparison 6 Figures 
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Fig. 50 – 6) BER vs OSNR:RRC - 2048/6144 
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Fig. 51 – 6) BER vs OSNR:OPT - 2048/6144 
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Fig. 52 – 6) BER vs OSNR:RRC - 2048/18432 
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Fig. 53 – 6) BER vs OSNR:RRC - 2048/18432 
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might not worth the increase of the ROSNR, making the 2048/6144 method the 

preferred one. The final choice would really depend on the system margin itself. 

 

6.7 – Study of Comparison 7 

This section of the analysis will look at the impact on the final BER when the step 

factor µ  in the CMA algorithm (see Eq. (31)) is varied from 3101 −×  to 3105 −×  

on 4 different values: =µ 0.001, 0.002, 0.003 and 0.005. For this study we will 

only show the BER vs OSNR curves for the extreme values of 001.0=µ  and 

005.0=µ . We motivate this choice as the BER results for the 4 values of µ  only 

very slightly change. On the ROSNR vs Launch Power plot, we will show the 

results for all the 4 values of µ . By looking at the two top-left figures, 

representing the RRC results, and the two top-right figures, representing the OPT 

results, we observe that the overall BERs between an adaptive coefficient µ  of 

0.001 or 0.005 don’t change much. This means that the µ  parameter has a stable 

value in between these two values. This is straightforwardly proven by looking at 

the proximity of the curves in the ROSNR vs Launch Power plot. When we 

closely look at this figure, we observe that the results using 0.005 are always 

slightly worst. We also observe that, on average, for all the launch powers, the 

OPT pulse has a ROSNR 0.1 dB lower for 001.0=µ  than for 005.0=µ  and the 

RRC pulse performs better on average for 002.0=µ  compared to 005.0=µ  by 

0.057 dB. To differentiate 001.0=µ  from 0.002 and find the best value, we find 

which of the 2 coefficients maximize the deviation from the results using 

005.0=µ . For the OPT pulse, 0.001 has a ROSNR lowered by 0.184 dB at launch 

power of +3 dBm and for the RRC pulse, it is also 0.001 that lowers the most the 

ROSNR from the 0.005 results, this time by 0.06 dB at launch power of 0 dBm. 

Therefore, we conclude that 001.0=µ  is a better choice. 

 

Even if results are similar between 0.001 and 0.005, one cannot say that µ  can be 

increased by factors of 5 indefinitely without affecting the results. By doing so we 

would rapidly fall out of the stable zone. We can have a better understanding of
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 Comparison 7 Figures 
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Fig. 55 – 7) BER vs OSNR: RRC : μ=0.001 
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Fig. 56 – 7) BER vs OSNR: OPT : μ=0.001 
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Fig. 57 – 7) BER vs OSNR: RRC : μ=0.005 
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Fig. 58 – 7) BER vs OSNR: OPT : μ=0.005 
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the impact of µ  on final errors by looking at the equation that drives the updating 

method of  
xxh


: **ii hh ininoutoutxxxx xxxx


  


   )1( 

 

21 εµµ −=⋅−−=−+ . The term under the 

curly bracket is )(hJh∇ , the vector gradient of the CMA cost function 
[ ]22 )1( −= outxEJ  where inxxout xx


⋅= †)( ih . We clearly see the impact of µ  on 

the following 1+ihxx


 coefficients, and consequently on the output outx , when 

updating from i  to 1+i . The more 0→µ , the less xxh


 is changed for each 

adaptation, to the limit where  
xxh


 stays fixed for 0=µ . The other limit, when 

1→µ , means that  
xxh


 is always increased by full value of the update error 

ut oout x x )1( 2 −=ε  and will make ihxx


 wobble and diverge with increasing 

indices i as soon as 1≠ut ox . It is easier to see for real outx , where the slope of 

the error ε  equals 2 at 1=ut ox  while the error itself is 0, giving a bigger error ε  

than the deviation itself of ut ox  from its desired value of 1. We could have 

studied a wider range of µ  parameters, from values much closer to 0 to values 

much closer to 1, but the bulk of the results would not lead to a stable converged 

H  matrix either because the adaptation is not sensitive enough (too small µ ) or 

too sensitive (too high µ ) to the inputs and we would simply have a symbol error 

rate of 3/4. By this study, we wanted to prove that the CMA algorithm has a 

stable output for step parameters in the relatively wide range 3101 −×  to 3105 −× . 

Of course, changing µ  does not impact the computational complexity. 

 

6.8 – Study of Comparison 8 

In this comparison, we will study the Carrier Phase Estimation process. More 

precisely, we will analyse the impact that the number of taps used in the CPE can 

have on the final BER and we will show the results for two different numbers of 

taps. The figures will show the BER vs OSNR plot for both types of pulses, each 

processed using 71 or 101 taps. The bottom figure shows the ROSNR vs Launch 

Power plot along with the total computational complexity. As we know, changing 

the number of taps doesn’t change the CC, because of our efficient 

implementation of the moving average windows (see §4.2). As explained earlier, 

the goal of the CPE process is to remove the phase noise due to the LO and the 
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transmit laser as well the any remaining frequency offset that the bulk removal 

done is the previous Carrier Frequency Offset (CFO) process did not remove. 

 

We observe in the figures that the use of a number of taps as high as 101 removes 

without any problem the phase noise and remaining frequency. This means that 

the remaining frequency offset between the LO and the signal lasers after the 

CFO process is smaller than 5.12450 =  MHz (see § 3.2.9). We knew from 

previous study in § 3.2.8 that the maximal CFO for a QPSK signal at 10 

Gbaud/sec is 1250 MHz. This means that our CFO removal algorithm suppress 

any frequency offset up to MHz 1250± to MHz 5.120± , assuring us that our CFO 

removal process operates adequately. Moreover, we know that for a CFO removal 

process operating in the frequency domain using an FFT, the frequency 

discretization is roughly 40 KHz, obtained from 402GHz 102 19 ≈× KHz where 

the total bandwidth of the signal is 20 GHz and the FFT accounts 219 points. If we 

allow a ± 4 points deviation of the frequency selected from the real mean 

intermediate frequency, this means that the CFO process removes frequency 

deviation to a precision of roughly 160± kHz, a value far from 12.5 MHz. 

Therefore, this working phase removal process using 101 taps attests that during 

the 219’s symbols duration of ≈52 sµ , the LO’s instantaneous phase derivative 

does not deviate by more than 12.5 MHz. 

 

Consequently, one could think that as the CPE works for 101 taps, meaning that 

there’s a maximum remaining frequency offset of 12.5 MHZ, it would give the 

same results for any other number of taps as long as it is below 101. Such a 

smaller number would then wrap the phase noise on the same circle of radius 

))24tan(2(1 ψ=R , with Tf rem. IF2πψ = , but covering a circle portion smaller 

than half the circumference. In fact, this for true up to a lower bound at which the 

results start to be biased. For too small tap lengths, the normally round 4 blobs of 

points that consists the constellation become squeezed in the angular direction. 

This phenomenon can be understood by observing the limit behaviour when the 

tap length is 1where all angular deviation from 4)12(  /π+k , }3,2,1,0{=k , is 
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removed, inherently biasing the naturally complex nature of additive white 

Gaussian noise of amplified spontaneous emission in optical amplifiers. 

 

On the other hand, we found in § 3.2.9 that a maximal number of taps of 151 

would still converge with a remaining intermediate frequency offset of 8 MHz. To 

explicitly demonstrate this with experimental results, we show below a figure of 

the corrected phase noise out of the CPE process for 6 different tap lengths For 

tap lengths greater then 391, we observe phase slips [60, 61]. Phase slips can 

occur when the outputs of the mean phase detector lie in the vicinity of the 

extremes of the [ ]ππ ,−  range. When the output of the mean phase is close to π+  

or π− , π2±  phase jump have to be applied to the output for proper phase 

tracking. This phase jump correction is called Phase Ambiguity Resolver (PAR), 

is part of the CPE algorithm and is needed as phasors pointing at δπ −  and at 

δπ −−  have numerically the same real and imaginary values. 
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Fig. 60 –Phase Output of the CPE algorithm for 7, 391, 401, 405, 411 and 415 taps 

From tap lengths 7 to 390, the BER does slightly vary but the CPE keeps track of 

the phase noise and the proper constellation is recovered. Starting at 401 taps and 

above, we observe several π2  phase slips, where their number increase with 

number of taps. It is worth noting that for QPSK signals and due to the fourth 
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power operation, the π2  phase jump will turn into a 42π  jump, rendering each 

decided symbols erroneous.  

 

On the previous figure it is interesting to notice that all corrected phase initially 

start operating similarly and suddenly loose track and begin differing with higher 

tap lengths. This specific experimental result shows a phase noise that is almost 

constantly drifting during this time duration at a rate of roughly 5.3 MHz. Using 

the equation 21)1(4 ≤−MTfIF , with 391=M  and remembering that the 21  

factor comes from the half circumference allowance for phase wrapping, we 

prove here that our study works experimentally: by allowing a wrapping around 

65 th of the circumference instead of 21 , we fall back on the allowed remaining 

IFf  of 5.3 MHz. Said differently, for a IFf  of 5.3 MHz, the theoretical maximal 

number of taps is 391, which is what we observe experimentally. 

 

The PAR works in conjunction with the moving average window of length M 

introduced earlier: its input is the angle out of the average of the elements in the 

window and its output is either the same as the input when no phase jumps are 

detected or a π2±  rectified version of it in the contrary [48]. The length of this 

average window obviously changes its output as more or less terms are summed. 

This consequently changes the input to the PAR and possibly its output and the 

phase decided. This moving average window acts as low pass filter, and such 

filter could, for very noisy signals, not be able to properly track the drifting phase. 

 

To prove similarity of results between 7 and 391 taps, we processed all our 

acquisitions using another number of steps: 71. By looking at the ROSNR vs 

Launch Power curves, we can say that the results for both types of pulse are the 

same. We show that any number of taps between 7 and 391 will properly remove 

the remaining frequency offset (for a maximum of 3.5=IFf  MHz) and the phase 

noise. The goal of our analysis here was not to find the lowest or the highest 

bound for each launch power and pulse type but to explain in detail the 

consequences of taking too long of too short window lengths. 
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Fig. 61 – 8) BER vs OSNR: RRC – 101-tap CPE 
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Fig. 62 – 8) BER vs OSNR: OPT – 101-tap CPE 
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Fig. 63 – 8) BER vs OSNR: RRC – 71-tap CPE 
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Fig. 64 – 8) BER vs OSNR: OPT – 71-tap CPE 
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6.9 – Study of Comparison 9 

In this study, we compare the differences of two methods for removing the bulk 

frequency offset between the transmit and the LO lasers. The first method uses a 

frequency domain approach whereas the second method uses a time domain 

approach. For the first method, we use the Power Spectral Density (PSD) of the 

fourth power of the input signal to find a tone to which we assign the value of the 

frequency offset. As explained in earlier chapters, putting a QPSK signal to the 

fourth power completely removes the modulation. Both the time and the 

frequency domain approaches use this unmodulated data to find the frequency 

offset. The frequency approach computes the FFT of this unmodulated signal and 

finds the frequency at which the magnitude of the FFT has a maximal value. This 

frequency is labelled IF4 f  and the phase nTf IF2π , =n 0, 1, 2,… is removed from 

symbols nâ . For the time domain approach we use the method of A. Leven [47] 

and explained in §3.2.8 where each fourth power symbol is multiplied by the 

fourth power of the complex conjugate of the proceeding symbol. The resulting 

phasors are summed. The angle of the sum represents IF4 f  and the intermediate 

frequency is removed using the same technique as for the PSD approach. For both 

approaches, the entire length of 192  symbols is used to compute the FFT or in the 

sum. The computational complexity of the methods is calculated and displayed in 

the ROSNR vs Launch Power figure at the bottom of the previous page. 

 

We observe that for very noisy signals, due to low OSNR and high nonlinear 

phase noise, the time domain approach doesn’t work and the CFO doesn’t capture 

the bulk frequency offset between the LO and Signal lasers. As a consequence, 

the remaining frequency offset is too large for the subsequent CPE algorithm to 

track and we observe a very high BER due to multiple phase slips. These points of 

non-convergence are seen in the top-right figure for the OPT pulses at +3 and +4 

dBm for very low OSNR and even at high OSNRs when a lot a NL phase noise 

occur, at +6 dBm. On the other hand, the PSD method applied to the same very
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Fig. 66 – 9) BER vs OSNR: RRC –CFO in t 
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Fig. 67 – 9) BER vs OSNR: OPT –CFO in t 
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Fig. 68 – 9) BER vs OSNR: RRC –CFO in f 
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Fig. 69 – 9) BER vs OSNR: OPT –CFO in f 
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noisy sequences have no problem to deliver a tone that truly represents IFf . 

Besides these extreme cases, we can observe that the two methods give coincident 

BERs. This observation is easier to make when looking at the ROSNR vs Launch 

Power figure. We see that the curves for the time approach and the frequency 

approach overlay, respectively for the RRC pulse and the OPT pulse. It then 

becomes very interesting to look at the computational complexity. We then realize 

that the time domain approach requires 7% less computations then its frequency 

counterpart. As a 7% reduction of the total required computations is significant, 

we conclude that the time domain approach is the better choice as it gives equal 

results to the frequency approach, at a computational cost reduction of 7%. 

 

6.10 – Study of Comparison 10 

In this last analytical section, we will study and compare the impact on the BER 

for three different nonlinear propagation steps. By nonlinear propagation step, we 

mean the distance increment for each nonlinear compensation application, named 

z∆  in section §3.2.6. The steps we use and study are of 20 km, 10 km and 5 km. 

As a way to better assess the impact, we not only compare the results for these 

three steps values together but also with the case where no nonlinear mitigation is 

done at the receiver. For this case, the chromatic dispersion is removed all at once 

in the frequency domain, for the entire distance of 1200 km, instead of by chunks 

of 5, 10 or 20 km like is done when nonlinearity compensation is applied. Of 

course, one would expect that the smaller step would give the best results as it 

mimics more appropriately the beam as it propagates down the fibre. 

 

The first set of figures presents the results only for the RRC pulse. We decided to 

separate presentation of the results for the RRC and the OPT simply because the 

OPT pulse was itself designed to mitigate nonlinearities without the need to apply 

nonlinear DSP at the receiver. Our goal here is more to compare the impact of the 

choice of NL step size than to compare the results of NL mitigation for RRC and 

OPT pulses. Although, as all the figures are presented, the reader can without any 
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problem compare the results of the two pulses for a same step size. By looking at 

the figures for the 5, 10 and 20 km steps using the RRC pulse, we realize that, 

indeed, the BER is lower for smaller values of NL propagation distance. If we 

observe only one acquisition result, say at a launch power of +4 dBm with an 

OSNR of 18 dB, we realize that as the propagation distance z∆  decreases, the 

resulting BER decreases as well: for =∆z 20 km, the BER equals 5102.20 −× , for 

=∆z 10 km, the BER equals 5100.7 −×  and for =∆z 5 km, the BER equals 
5109.4 −× . This proves the effectiveness of our NL mitigation method and the 

accuracy of the parameters it uses, especially the nonlinear parameter γ . 

 

For the =∆z 5 km case, it is very interesting to see how close the -4 dBm curve 

behaves with respect to the theoretical curve representing the BER in the purely 

linear case where only white Gaussian noise is assumed. This curve, representing 

a launch power that is known not to suffer a lot from nonlinearities, obeys very 

similarly to the linear theory. The curve doesn’t go pass an OSNR of 13 dB 

because higher OSNRs showed no errors in 4x219 bits received. Compared to the 

“No NL mitigation” case, this means that even at such low powers the benefit of 

NL compensation is perceptible. As a numerical comparison, the BER at a launch 

power of -4dBm with OSNR of 13 dB is at 51005.11 −×  without NL mitigation, at 
51069.7 −×  for the =∆z 20 km case and at 51073.6 −×  for the =∆z 5 and 10 km 

cases. A BER reduction of 39 % by switching on the NL compensation even at 

such low power is very considerable. 

 

When we look at the two figures representing BER results for the =∆z 5 and 10 

km cases, we realize however how little the results change by doubling the 

nonlinear propagation distance. In fact, the ROSNR vs Launch Power figure at the 

bottom of the next page shows how close to a perfect superimposition the “5 km” 

and the “10 km” curves are. They differ by roughly 0.002 dB when we closely 

zoom in: an insubstantial difference. On the other hand, the “20 km” curve 

effectively shows a small penalty compared to the more precise NL mitigation 

approach of “10 km”. The presence of the nonlinear uncompensated curve in this
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Fig. 71 – 10) BER vs OSNR: 16 steps per span 
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Fig. 72 – 10) BER vs OSNR: 8 steps per span 
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Fig. 73 – 10) BER vs OSNR: 4 steps per span 
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Fig. 74 – 10) BER vs OSNR: 0 steps per span 
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figure gives us a better sense on the BER improvement increasing with launch 

power by applying NL compensation. We can appreciate how this curve is pushed 

down, allowing smaller signal power to noise ratio requirements by compensating 

NL even with relatively large steps of 20 km. 

 

Finally, we want to compare the change in the computational complexity when 

we change the size of the nonlinear propagation distance. As expected, the total 

required amount of real multiplications and additions is decreased by increasing 

the NL propagation step size. We observe the nearly linear decrease of total CC 

with increasing step size. For instance, decreasing by a factor of 2 the number of 

NL steps per span of 80 km from 16 (5 km case) to 8 (10 km case) diminishes by 

a factor of 1.99 the total complexity. A reduction factor of 4, decreasing to 4 NL 

compensations per span (20 km case), diminishes by a factor of 3.93 the CC. This 

reminds us how computationally intense NL mitigation is, accounting for almost 

all the computations at the receiver, and shows an almost direct relation between 

the number of NL compensation steps applied per span with the total CC required. 

For the case when 4 NL compensations is applied per span, 10102.2 ×  operations 

are required to process 192  symbols’ worth of time at 100 ps per symbol. This 

means that 420 Teraoperations/sec would be required in a real-time system, which 

is totally unrealistic as 2009 commercially available coherent receivers offer 12 

Teraoperations/sec [62]. Our case without NL compensation requires 8108.7 ×  

operation, giving a real time implementation at 14.8 Teraoperations/sec, which is 

much closer to the available speed of commercial products. 

 

The next page displays the results for the OPT pulse alone. As the BER vs OSNR 

curves look very similar for the three NL step sizes, we will focus our comparison 

on the ROSNR vs Launch Power figure. First of all, by comparing the three 

curves where NL is mitigated with the one where is it not, the realize that 

activating NL compensation is of course beneficial in terms of system 

performance, but the improvement is not as substantial as for the RRC pulses. The 

OPT pulse naturally behaves better at high powers when no NL mitigation is 
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 Comparison 10 Figures: OPT Pulses Only 
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Fig. 76 – 10) BER vs OSNR:OPT 16 steps per span 
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Fig. 77 – 10) BER vs OSNR: 8 steps per span 
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Fig. 78 – 10) BER vs OSNR: 4 steps per span 
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Fig. 79 – 10) BER vs OSNR: 0 steps per span 
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applied at the receiver through DSP because they were conceived intentionally. 

Hence, the improvement when NL mitigation is activated is not as substantial and 

it shows in the bottom plot where the push downwards is not as strong. 

 

Just like the results for the RRC case, the three curves almost overlay. However, 

when we closely look, the OSNR requirements are always a little bit lower when 

steps of 20 km are used compared to 5 or 10 km. This observation is surprising 

and unexpected. We believe that this behaviour could be explained through the 

OPT pulse as it was created in the sole purpose of diminishing the effect of Self-

Phase Modulation. As our NL compensation technique mitigates at the same time 

SPM and Pol.-XPM, it could explain why compensating for both nonlinearities 

more frequently per span gives poorer results. With our NL mitigation methods, 

these two effects are fully compensated 16, 8 or 4 times per span. However, NL 

compensation every 20 km is much less accurate than every 5 km and represents 

less precisely the real NL impairments that happened in the fibre. As the OPT 

pulse received less SPM, fully compensating it 16 times per span, as much as 

Pol.-XPM, can lead to excessive SPM compensation and worsen results. We can 

confront this observation with the results obtained in [50], where the authors use 

NL pre-compensation instead of post-compensation as we do. They obtain at the 

receiver a clean eye diagram, showing that the nonlinear phase noise is removed. 

If they were to back propagate again the received signal though post DSP, results 

would be worsened because extra NL phase noise would be added. Analogously, 

this is what happens by fully compensating the SPM for the OPT pulse. 

 

We can equally assess the simultaneous use of OPT pulse with NL compensation 

and find that both usage improves the OSNR requirements compared to an equal 

processing method applied on RRC pulses. For instance, as a numerical 

evaluation, the OSNR requirement for a BER of 3108.3 −×  improves by 0.27 dB 

at a launch power of +3 dBm using NL propagation steps of 10 km. Finally, the 

computational complexity obviously doesn’t change with the type of pulse used 

and our analysis on CC for RRC pulse directly applies to OPT pulse 
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6.11 – Summary of Analysis 

We will summarize the conclusions drawn from each of the 10 analysis realized 

in this chapter, in order to point out the best way to post-process a DP-QPSK 

signal after an optical coherent receiver. By best way, we mean the choice of 

parameter values and methods that give the lowest bit error rate at the receiver. In 

the case where the method engenders a strong compromise on the computational 

requirements, we opt for the approach demanding the least computations. 

 

In our first comparison, we studied the impact of the length of the depolarization 

process H , for 9 taps and 5 taps. We obtained different results for RRC and OPT 

pulses. We conclude that, for RRC pulses, 5 taps gave better system performance 

and required less computation. For OPT pulses we conclude that 9 taps is a better 

choice with a trade-off of 10% increase of CC, increasingly improving the system 

performance with launch power, of 0.175 dB on average. 

 

In our second study, we compared two methods to adapt H : always adapted at 

every symbol or adaptive for 2048 symbols and constant for 6144 symbols. Both 

methods gave the same system performance, but as the non-always adaptive 

approach reduces the CC by 2.5%, we conclude that the 2048/6144 adapt/fix 

method is better. 

 

In the third comparison, we compared the impact on the performance and on CC 

when nonlinear impairment mitigation is activated and when it is not. We 

observed an increase of the CC by 110 times when NL is compensated by chunks 

of 5=∆z  km. We conclude that for RRC pulses at high launch powers, the benefit 

on the final BER is enormous, e.g. 2.3 dB of ROSNR reduction at +3 dBm, but 

not as much for OPT pulses, lowering by less than 0.8 dBm the ROSNR. We 

conclude that NL mitigation does improve a lot the final BER, but with a 

significant drawback when using standard SSFM at 5=∆z  km. Therefore, NL 
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compensation should be applied, but through a method requiring much less 

computations than the several-step-per-span SSFM method used. 

 

The fourth analysis was studying the same parameter as the first analysis under 

the same conditions, except with nonlinearities mitigated. Similarly to what was 

observed in Study 1, it is also better to use 5 taps for RRC pulses when NL is 

compensated, only because it requires 0.1% less computations. For OPT pulses, 9 

taps give a better ROSNR of 0.16 dB on average. We therefore conclude that, 

with or without NL mitigation, it is better to use 5 taps of RRC and 9 taps for 

OPT. 

 

In the fifth comparison, we compared all the possible methods to match filter and 

apply the inverse chromatic dispersion, both either in the time or in the frequency 

domain. We conclude that, simply because of its smaller CC, it is better to remove 

chromatic dispersion and to match filter simultaneously in the frequency domain, 

for both type of pulses. 

 

In our sixth comparison, we studied two non-continuously adaptive ways to 

update the coefficients of the depolarization H  matrix. The first way kept H  

fixed for 6144 symbols and the second, for 18432. Both methods were adapting 

the coefficients for 2048 symbols and the process was repeated. The 6144 method 

had ROSNR results never better than 0.07 dB compared to the 18432 method, at a 

CC cost of 0.78%. We conclude that system margin would differentiate the best 

choice, but tend to prefer the 2048/6144 approach simply for its small overall 

ROSNR reduction. 

 

In Study of Comparison 7, we varied the strength of the step size parameter µ  to 

four different values, namely 0.001, 0.002, 0.003 and 0.005, to observe the impact 

on the tracking of the H  matrix and consequently on the resulting BER. We 

conclude that 001.0=µ  gives a lower BER, sometimes giving a ROSNR lowered 

as much as 0.18 dB compared to using 005.0=µ . 
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The eighth comparison was intended to study the impact of varying the amount of 

elements in the carrier phase estimation process. The two number of taps used 

were 71 and 101, and both gave similar results, where the ROSNR didn’t diverge 

by more than 0.018 dB, with equal computational complexity. As using 71 taps 

acts as a less stringent low pass filter and can recover higher remaining frequency 

offset, we conclude that the smaller window length of 71 is better than 101. 

 

For the ninth comparison, we examined two methods to remove the bulk of the 

carrier frequency offset. The first method employs the power spectral density 

using the FFT of the signal and the other multiplies each element by the complex 

conjugate of the preceding element, and sums the results. We conclude that the 

time domain approach is a better choice as it gives the same results for a 

computational complexity reduction of 7%. 

 

In the last comparison, Study of Comparison 10, we varied the number of steps 

per span of 80 km at which the nonlinear coefficients of the SSFM method are 

calculated. We varied between 16, 8 and 4 times per 80 km. For both type of 

pulses, all of these 3 step sizes require a gigantic amount of computations that is 

unrealistic with today’s available processing speeds, even if a diminution by a 

factor of n of the number of steps almost proportionally decreases the total 

complexity. As the ROSNR results are no more than 0.3 dB apart from -4 dBm to 

+2 dBm for OPT pulse when comparing with and without NL compensation, we 

conclude not to compensate NL for OPT pulse if the launch power is lower or 

equal to +2 dBm. For the RRC pulse, the system performance increase, even 

using =∆z 20 km, is too strong not to recommend compensating NL, although the 

required computation increase stays out of reach of today’s capabilities. 
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Chapter 7 : Conclusion and Future Work 

Optical coherent receivers offer the advantage to access the amplitude and phase 

of the optical field. On the other hand, direct detection squares the complex 

optical electric field and looses track of any phase variation, making linear 

impairments happening in the optical fibre becoming nonlinear due to signal 

squaring. The advantage of coherent receivers is to allow post compensation in 

the electric domain of linear and nonlinear impairments through Digital Signal 

Processing applied at the receiver side. This new approach makes the use of 

optical compensators obsolete, and alleviates the optical link from expensive and 

bulky dispersion compensation modules that increase significantly the loss per 

span, traditionally compensated with additional amplification. Moreover, coherent 

receivers with DSP allow the use of advanced modulation formats which can 

increase manifold the spectral efficiency and also enable the recovery of 

polarization multiplexed signals, further doubling the transmission bit rate. 

 

7.1 – Summary 

In this thesis we presented the fundamental digital signal processing to be applied 

to a Polarization Division Multiplexed Quadrature Phase Shift Keying signal 

collected after an optical coherent receiver. The purpose of this work was to study 

different methods and parameters to use at the receiver in order to obtain the best 

system performances. Three types of optical receivers were presented: the direct 

detector, allowing the detection of the squared magnitude of the optical field and 

employed for intensity modulation only, the Mach-Zehnder demodulator followed 

by a direct detector, allowing the detection of phase modulated signals only, and 

finally the coherent receiver allowing the recovery of both phase and amplitude of 
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any quadrature amplitude modulated signals. We revealed the building blocks of 

an optical coherent receiver. 

 

The polarization diversity coherent receiver was detailed schematically and 

mathematically and the polarization variations in the optical fibre were exposed. 

The transmitter and local oscillator laser criteria along with the bandwidth of the 

analog to digital converters are exhibited as a function of the modulation format 

and symbol rate. A detailed analysis of laser phase noise followed and we 

explained its impact on the phase information. 

 

We subsequently introduced the required digital signal processing to recover the 

information sent down the optical fibre and received through a polarization 

diversity coherent receiver, where impairments come from both the fibre and the 

receiver. We briefly discussed the minimum Nyquist sampling rate and we 

explained the origin of the impairments and ways to mitigate or suppress them. 

Thereafter, the metric used to analyse different methods and parameter values was 

presented and consisted of the final bit error rate yielded by the approach and the 

required amount of real additions and multiplications for post-processing, entitled 

the computational complexity. 

 

Finally, we exposed the experimental setup used to capture several signals under 

different conditions, namely for two types of pulses, different launch powers with 

varying OSNRs. We analysed 10 different methods and parameters, extensively 

studied their impact on the system performances and found the best approaches 

based on our metric. 

 

7.2 – Future Work 

Several parameters and approaches studied in this work could be scrutinized more 

deeply. In this section, we propose possible directions for future research based on 

the work presented in this thesis. 
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The first study that would be interesting is an extension of our 6th comparison, 

where we adapt the demultiplexing coefficients ijh  for 2048 symbols and then 

leave them fixed. Our study shows that a fixed duration of 18432 symbols gives 

the same results as for 6144. Finding the longest fixed duration that gives a 

ROSNR penalty of 0.5 dB, for instance, would inform us how fast the PMD is 

varying in the fibre and would give the lowest computational complexity of this 

adaptive/fixed approach. Along the same vein, we could extend our study in 

Comparison 7 to find the lower and the upper bound of the step size parameter µ  

and find the experimental convergence range of the CMA algorithm. We know 

that reducing the equalizer step size proportionally reduces the adaptation noise 

[63], but we could find the lower bound where µ  is too small to converge. 

 

We could also study other ways to subtract the carrier phase. We only used a 

single way in our study, i.e., the moving average window with different window 

lengths. We could study the impact on system performance by using other 

methods, for instance with a phase-locked loop. Another interesting approach 

would be to implement a CMA equalizer embedded with a decision-directed PLL, 

alleviating the need for separate operation of polarization demultiplexing, bulk 

carrier frequency offset removal and carrier phase estimation, which would most 

likely drastically reduce the total required computational complexity. 

 

Finally and foremost, working on computationally more efficient ways to mitigate 

nonlinear effects in post-compensation through DSP is of capital importance. To 

increase to spectral efficiency and consequently the bit rate, higher order QAM 

signal constellations have to be employed, inherently requiring a higher OSNR at 

the receiver. For a signal like ours with a bandwidth of 20 GHz, theoretical 

ROSNRs for BER of 3108.3 −×  are 7.56 dB for QPSK and 11.21 dB for 16-QAM. 

Therefore, high OSNRs after long distances means higher launch powers, and 

accordingly more nonlinear effects imprinted on the signal. Proper information 

recovery for long haul transmissions is hardly attainable without implementable 

nonlinear processing in an ASIC semiconductor device for high powers. 
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