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Abstract

Radiofrequency ablation (RFA) is the preferred choice when minimally invasive methods

are recommended for liver cancer treatment. Being categorized under local hyperthermia,

RFA destroys tumours without surgery and instead uses high temperatures to cook the

cancerous cells. This method works effectively when the target area is kept within an

exact temperature range for a certain duration. However, this goal is not always easy

to achieve as accurate measurement of the temperature inside a tumour is difficult. In

addition, in particular for liver tumours, the outcome of RFA treatment is challenged by

the presence of hepatic blood vessels dissipating heat and changing the size and shape of

the ablation zone. Nonetheless, prediction of the ablation zone is feasible with the help

of mathematical modelling and computer simulation. Such simulations must be fast and

accurate to be practical in clinical procedures.

We first overview the mathematical models of RFA of hepatic tumours and the

multi-physical aspects of these models. In order to reduce the simulation time, the multi-

physics model must be implemented on high performance parallel computers. We explain

the limitations of the finite element method (FEM) for solving multi-physics problems

on parallel computers and then present the finite element Gaussian belief propagation

(FGaBP) method as an alternative to FEM for parallel multi-physics simulations.

In a second step, we focus on parallel implementation of FGaBP for the solution

of the multi-physics problems emerging in RFA models. Both weak and strong coupling

approaches are considered. For the strong coupling, the Newton-Raphson (NR) method

is implemented in parallel by calculating local Jacobian matrices for each finite element

instead of explicitly forming a global Jacobian matrix. This provides an NR algorithm

amenable to different parallel computing architectures. The algorithm is tested on shared-

memory and distributed-memory architectures and compared to highly optimized parallel

solvers, indicating faster solution for large-scale problems.

The outcome of RFA simulations depends on various physiological parameters of the

liver, the exact values of which are unknown. Typically, RFA simulations use average

values for these parameters taken from the literature, resulting in a deterministic ablation

outcome. In contrast, one can implement a stochastic simulation model, where the input



parameters are modelled as random variables. The stochastic approach computes how the

uncertainty in the parameters propagates to the simulation output. In the last chapter,

a variant of the belief propagation algorithm called non-parametric belief propagation is

utilized in order to develop a novel sample-based solver for uncertainty analysis of RFA.



Résumé

L’ablation par radiofréquence (ARF) est le choix de préférence lorsque des méthodes

minimalement invasives sont recommandées pour le traitement du cancer du foie. Classée

dans la catégorie de l’hyperthermie locale, la ARF détruit les tumeurs sans chirurgie et

utilise plutôt des températures élevées pour cuire les cellules cancéreuses. Cette méthode

fonctionne efficacement lorsque la zone cible est maintenue dans une plage de température

exacte pendant une certaine durée. Cependant, cette mission n’est pas toujours facile à

réaliser tant la température à l’intérieur d’une tumeur est difficile à mesurer avec précision.

De plus, pour les tumeurs du foie, le résultat du traitement par ARF est remis en cause par

la présence de vaisseaux sanguins hépatiques dissipant la chaleur et modifiant la taille

et la forme de la zone d’ablation. Néanmoins, la prédiction de la zone d’ablation est

réalisable à l’aide de la modélisation mathématique et de la simulation informatique. De

telles simulations doivent être rapides et précises pour être praticables dans les procédures

cliniques.

Nous avons d’abord passé en revue les modèles mathématiques de ARF des tumeurs

hépatiques et les aspects multi-physiques de ces modèles. Afin de réduire le temps de

simulation, le modèle multi-physique doit être implémenté en utilisant le calcul parallèle.

Nous expliquons les limites de la méthode des éléments finis (MEF) pour résoudre des

problèmes multi-physiques sur des ordinateurs parallèles, puis présentons la méthode de

Gaussian belief propagation (GaBP) comme alternative à la MEF pour les simulations

multi-physiques parallèles.

Dans un deuxième temps, nous concentrons sur l’implémentation parallèle de la

GaBP pour la solution des problèmes multi-physiques émergeant dans les modèles ARF.

Les approches de couplage faible et fort sont considérées. Pour le couplage fort, la

méthode de Newton-Raphson (NR) est mise en œuvre en parallèle en calculant des ma-

trices jacobiennes locales pour chaque élément fini au lieu de former explicitement une

matrice jacobienne globale. Cela fournit un algorithme NR compatible avec différentes

architectures de calcul parallèles. L’algorithme est testé sur des architectures à mémoire

partagée et à mémoire distribuée et comparé à des solveurs parallèles hautement opti-

misés, indiquant une solution plus rapide pour les problèmes à grande échelle.



Le résultat des simulations ARF dépend de divers paramètres physiologiques du

foie dont les valeurs exactes sont inconnues. En règle générale, les simulations ARF

utilisent des valeurs moyennes pour ces paramètres tirées de la littérature, ce qui entrâıne

un résultat déterministe d’ablation. En revanche, on peut implémenter un modèle de

simulation stochastique où les paramètres d’entrée sont modélisés comme des variables

aléatoires. L’approche stochastique calcule à quel point l’incertitude dans les paramètres

se propage au résultat de la simulation. Dans le dernier chapitre, une variante de

l’algorithme de belief propagation appelée non-parametric belief propagation est utilisée

pour développer un nouveau solveur basé sur des échantillons pour l’analyse d’incertitude

de ARF.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Clinical context

Liver cancer is ranked by the world health organization (WHO) as the fourth deadliest

cancer worldwide. Hepatocellular carcinoma (HCC) is the most common type of primary

liver cancer (more than 1 million cases per year) and a leading cause of cancer-related

death in many parts of the world, with an increasing rate in Western countries [1]. Al-

though the disease burden 1 of many other major cancers is decreasing, the overall burden

of liver cancer worldwide is increasing over time. In fact, the incidence rates of HCC in

the United States have increased twofold to threefold over the past three decades [2].

Different treatment strategies for HCC have evolved significantly over the past few

decades, among which surgical resection, liver transplantation, and local ablation are

considered the most effective. Surgical resection removes part of the tissue that is known

to be cancerous, while transplantation replaces the whole organ with a healthy one from

another body. Local ablation induces tumour necrosis by delivering heat directly into

tumours and is potentially effective for patients with early-stage HCC [1].

1The impact of a disease as measured by various indicators such as mortality, morbidity or financial

cost.
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CHAPTER 1. INTRODUCTION

Even though surgical resection and liver transplantation provide the best long-term

survival, only less than 25% of patients with liver cancer qualify for them [3]. This could

be due to different factors such as health condition and age of the patient, or the location,

size, and number of tumours. Regarding tumour location for instance, proximity to vital

organs like the vascular structure is a problem in resection. In addition, patients with

multiple tumours might have inadequate hepatic reserve to tolerate resection [3]. On the

other hand, liver transplantation is limited by the number of donors. Consequently, mini-

mally invasive ablative therapies such as radiofrequency ablation (radiofrequency ablation

(RFA)), high intensity focused ultrasound (HIFU), cryotherapy, microwave ablation, and

laser ablation have gained growing interest for the treatment of liver tumours. Ablation

therapies can also be used during the waiting time prior to transplantation to prevent

tumour progression [1].

Among the minimally invasive treatments for liver cancer, RFA has become the

preferred treatment option for patients who are not candidates for standard surgery or

are in an early tumour stage. There is clinical evidence that RFA could provide equivalent

outcome as compared to resection for treatment of tumours with a diameter smaller than

2-2.5 cm [4]. Moreover, patient recovery after RFA is faster and post-procedure quality

of life is higher after RFA than after surgical resection [4]. Repeat treatment is also easier

in RFA compared to resection [5]. Compared to microwave ablation which is typically

performed at frequencies of either 915 MHz or 2.45 GHz [6], RFA is the more established

thermal technique, specially for lesions with a diameter smaller than 2–2.5 cm, and is

the safer option because of the less aggressive heat production and better ablation zone

predictability [7].

The differences between RFA and microwave ablation arise from the heating mech-

anism. RFA relies on resistive heating sourced by electrical current passing through the

surrounding tissue. On the other hand, microwave ablation heats the tissue through di-

electric polarization by applying an electromagnetic field of either 915 or 2450 MHz to the

tissue around the ablation probe. Due to its direct heating mechanism, the microwave

ablation leads to larger ablation zones than RFA, that are created more quickly.

RFA is a minimally (compared to surgery) invasive therapy with application in var-

ious medical fields, such as the elimination of cardiac arrhythmias, or the destruction of

Page 2 of 99



CHAPTER 1. INTRODUCTION

tumours in different locations including liver, kidney, lung, bone, prostate, and breast.

It uses devices operating between 460-550 kHz delivering electrical currents to biological

tissues to thermally damage a tumour by raising its temperature to approximately 100 oC

for a period of 10-15 minutes. RFA generally uses a pair of electrodes: an active electrode

with a small surface area that is placed in the target zone, and a larger dispersive elec-

trode to close the electrical circuit [8]. Different types of active electrodes can be used,

such as the cool-tip single electrode or the RITA probe (see Fig. 1.1) with three, four

or six umbrella shaped prongs which can be deployed within the tumour. During RFA,

the active probe is inserted into the target zone, usually under ultrasound guidance, as

shown by Fig. 1.2.

RFA is the most widely used minimally invasive approach for liver cancer treatment;

however, there is still a need for training tools for the less-experienced physicians to

improve the treatment outcome. The survival rates significantly depend on the experience

of the physician, i.e., experience of 0–2 years brings 46%-69% survival, while rates of 3–4

years experience corresponds to 89%-92% [4]. Such a learning curve exists since effective

RFA is expected to entirely destroy the tumour with a safety margin of damaged healthy

tissue in its vicinity, which in turn relies on the extent of the ablation zone. Consequently,

the temperature needs to be carefully monitored, leading to the halt of radio frequency

current when the clinical endpoint is reached. However, for treating tumours in the liver,

the ablation zone is difficult to control as the hepatic blood vessels dissipate heat and

change the size and shape of the lesion zone.

This challenge can result in an imperfect outcome of the treatment. Indeed, based on

clinical evidence, a noteworthy mismatch between expected and observed ablation zones

exists, which leads to lower survival rates due to over-treatment with severe injuries (up

to 9%) or under-treatment with tumour recurrence (up to 40%)[9]. In addition, treatment

of tumours larger than 3 cm needs a larger lesion zone whose shape is even harder to

predict and potentially leads to a higher local recurrence and a lower survival rate [10].

Further, patient-specific factors, such as blood perfusion and location of the tumour, and

device-specific parameters, such as delivery of power, strongly influence the lesion zone

[4].

In order to address the concerns related to the misprediction of the lesion zone,

Page 3 of 99



CHAPTER 1. INTRODUCTION

Figure 1.1: RITA probe representation from [11]

Figure 1.2: Ultrasound-guided RFA using RITA probe from [12]

temperature monitoring during RFA treatment seems inevitable. To this end, both inva-

sive and non-invasive temperature measurement techniques are applicable. Non-invasive

methods include ultrasound imaging, computed tomography (CT) and magnetic reso-

nance imaging (MRI). Using these methods, ablation data is reported as image-based

thermal maps. Due to the recent advances in data analysis, ultrasound has particu-

larly become popular among non-invasive temperature monitoring methods in RFA. As

the temperature increases in the tissues, the changes in speed of sound (SoS) result in

echo time shifts. In the past decade, using the echo time shift to visualize temperature

variation during RFA has gained the most attention. For this method to be accurate, a

coefficient parameter, k, which is used to describe the relation between tissue temperature

and changes in SoS needs to be estimated [13]; however the estimation of k is challenging

and is still an active research topic. In addition, the main issue of non-invasive methods

is that the results are not provided in real time which makes it difficult for the physician

to assess completion of the ablation procedure.

Page 4 of 99
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Figure 1.3: Combining invasive temperature monitoring and computer simulation.

The second group of temperature monitoring techniques is invasive methods. Here,

invasive sensors are inserted directly into the target zone to measure the temperature

during RFA. While being cost-effective compared to non-invasive methods, invasive sen-

sors don’t respond as fast to the abrupt temperature changes found in RFA. Additionally,

radio frequency (RF) electromagnetic fields could be induced in the circuitry of the ther-

mometer affecting the accuracy of invasive thermometry techniques [8].

Current temperature measurement methods are either incapable of providing real

time information or are more or less invasive. Theoretical models and computer simula-

tions are powerful non-invasive tools providing information on the electrical and thermal

behaviour of RFA rapidly and at low cost. In recent years, the use of computational

models for RFA has gained interest for studying the heat transfer profiles surrounding

the ablation probes. Physicians of any experience can use software simulation of RFA

and visualize the treatment outcome in advance. In addition, patient-specific factors such

as the heat sink effect of hepatic vessels, or the amount of porous tissue perfusion, affect

the heat transfer and thereby shape and size of the lesion. Contrast Enhanced Computed

Tomography (CECT) allows determination of the vascular anatomy inside the liver and

quantification of the liver perfusion. This enables a reliable treatment planning based on

simulation models that can be adapted to the physiology of each patient. Finally, com-

puter models can be used alongside other temperature monitoring methods; for instance,

Fig. 1.3 shows an illustration of combining an invasive temperature measurement and

computer simulation. The measured temperature is sent as an input to the computer

program, leading to a more accurate simulation of RFA.

Page 5 of 99



CHAPTER 1. INTRODUCTION

1.1.2 Role of high-performance computing

Real-time simulation is getting increasingly important in the prediction of tissue tem-

perature and associated thermal damage in RFA. It has been claimed that real-time

prediction of thermal dose could allow precise control of the ablation zone which in turn

leads to a better control over the thermal damage to the target tissue without exposing

the neighbouring healthy tissue to excessive thermal damage [14]. Also, it helps to avoid

recurrence of tumours due to insufficient thermal exposure at target zones [14].

Development of real-time three-dimensional RFA simulation is a challenging task.

Many of the current RFA simulation environments are only applicable to pre-treatment

predictive analysis since they are focused on numerical accuracy, convergence, and sta-

bility, rather than computation time [14]. This is mainly due to the large computational

cost of RFA simulation. As will be discussed in Chapter 2, RFA simulation involves solv-

ing a nonlinear system of equations in each time step. The nonlinear system of equations

is usually solved iteratively based on the Newton–Raphson method. At each iteration, a

linear system of equations is solved by either directly computing the inverse of the system

matrix or iteratively solving a system of algebraic equations starting from an initial guess.

Either way, the numerical simulation of RFA is computationally expensive.

Current approaches for computational simulation of RFA are either too computa-

tionally expensive or are based on an over simplified model. Simplification is especially

applied to the electrical aspects of the problem. The electrical modelling has a high com-

putational cost since it requires a fine volume mesh on the surface of the very thin probe

tips. Thus, Audigier et al [15] model the electrical heating with a Dirichlet boundary con-

dition on a sphere with a pre-determined radius around the probe tip. Another approach

to approximate the Joule heating is proposed by [11] and used in later RFA simulation

frameworks [16], [4], and [17]. In this approach, the power deposition is estimated using a

Gaussian distribution around the probe tip. However, these approximations are too much

of a simplification as it has been shown by [18] that electrical parameters are critical in

models of hepatic RFA.

In order to simulate RFA therapies and predict the extent of the ablation zone,

a multi-physics approach that combines the electrical-thermal heating process with a
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biophysical model of the heat transfer and cellular necrosis is needed. Multi-physics

modelling problems generally involve a large number of variables and a complex unstruc-

tured mesh which leads to large coupled sets of highly non-linear equations. Therefore,

the numerical solution is extremely challenging. As such, the multi-physics software

tools need to be implemented on high performance parallel computers. The traditional

method to simulate RFA is the finite element method (FEM). FEM implementations

consist of two computationally expensive stages which are the sparse matrix assembly

stage, and the solving stage of the linear system using iterative solvers. These two stages

are even more expensive for non-linear applications. While for certain cases, the assem-

bly needs to be done only once and, therefore, its cost can be tolerated, for non-linear

problems, the assembly stage can dominate the solving stage. This is especially so for a

pure Newton-Raphson (NR) method, when the construction of a Jacobian matrix at each

linearizing iteration could be prohibitively expensive for large scale problems. For these

reasons, a high performance computing (HPC) algorithm for the assembly and solution

of strongly coupled multi-physics problems provides great potential for fast and precise

RFA simulation.

1.1.3 Objectives

The necessity of time-efficient and accurate calculation of the ablation zone on the one

hand and the computational cost of the RFA multi-physics modelling on the other hand

makes using HPC for RFA simulation an inevitable choice. Within this scope, the main

objective of this work is to present a methodology for the multi-physics simulation of

RFA procedure and exploit HPC to speed up the simulation time; specifically, as pointed

out in the previous section, to address the coupled electrical-thermal problem which has

been approximated in the literature because of its high computational cost.

Another important aspect of RFA modelling is dealing with uncertainties. As will

be discussed in Chapter 2, the outcome of the RFA simulations depends on various

physiological parameters of the liver whose exact values are unknown. Typically, RFA

simulations use average values for these properties taken from the literature, resulting

in a deterministic simulation outcome. In contrast, one can implement a stochastic

simulation model, where the input parameters are modelled as random variables. The
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stochastic approach computes how the uncertainty in the model parameters propagates

to the simulation output, i.e., the ablation zone.

Based on the above discussion, the main questions that we aim to answer in this

thesis, are:

1. How to simulate the RFA of hepatic tumours while taking into account the coupled

phenomena occurring in the procedure?

2. How to incorporate HPC in our method in order to run the simulation in compu-

tational time?

3. How to take into account parameter uncertainty in the simulation?

1.2 Main contributions and manuscript organization

1.2.1 Main contributions

In this work, three main contributions to the modelling of RFA are proposed as follows:

1. A computational framework based on the Gaussian belief propagation (GaBP)

method for weak coupling and strong coupling modelling of the electrical-thermal

mechanism involved in RFA.

2. A new parallel implementation of the coupled equations using GaBP method on

HPC architectures.

3. A new approach for uncertainty analysis of the ablation zone based on stochastic

modelling of input parameters and the GaBP algorithm for continuous variables.

1.2.2 Organization of the thesis

This thesis focuses on RFA modelling for hepatic tumours and the associated coupled

problems. Chapter 2 introduces the background on the computational modelling of ra-
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diofrequency ablation. It also presents the state-of-the-art models used in the literature,

highlights their limits and further how those limits are addressed in our choice of RFA

modelling.

Chapter 3 provides a review of FEM and its parallel issues for multi-physics problems.

The finite element Gaussian belief propagation (FGaBP) algorithm as a parallelizable

stochastic variant of FEM is then introduced. The ability of FGaBP to deal with multi-

physics problems is also discussed in Chapter 3.

Chapter 4 presents our first contribution based on the FGaBP method introduced

in Chapter 3. A new FGaBP algorithm for multi-physics applications is presented in this

chapter. The FGaBP method is first modified for solving the heat transfer problem and

then verified against an analytical solution. Combined with a Gauss-Seidel algorithm,

FGaBP is used to solve the coupled electrical-thermal problem that emerges in RFA of

hepatic tumours. The multi-physics FGaBP algorithm is tested on a multi-core personal

computer (PC) whit OpenMP used for parallel implementation.

In Chapter 5, the strongest form of coupling algorithms, which is the NR method, is

implemented in parallel using the localized computations of FGaBP. The message passing

properties of the belief propagation algorithm on a graphical model are exploited for the

first time to compute and distribute local sensitivities instead of forming a large Jacobian

matrix in a multi-physics scenario. In order to verify the correctness of the algorithm,

results are compared with COMSOL Multi-physics software [19], showing good fidelity.

The parallel scalability of the FGaBP method is retained in the proposed algorithm by

calculating local Jacobian matrices for each element and then updating the solutions for

both electrical and thermal problems accordingly at each NR iteration.

Chapter 6 exploits the stochastic nature of the belief propagation algorithm to model

the uncertainties involved in RFA simulations. These uncertainties largely result from

various physiological parameters of the liver whose exact values are unknown. Taking

the randomness of the simulation parameters into consideration, the dependence of the

simulation outcome with respect to parameter variations must be evaluated. Such analy-

sis computes how the uncertainty in the model parameters propagates to the simulation

output, allowing the physician to estimate the expected range of the treatment outcome.

The stochastic finite element method (SFEM) is explicitly developed for solving stochas-
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tic partial differential equation (PDE)s that naturally arise from engineering problems

with uncertainties. In the last chapter, a variant of belief propagation method called

non-parametric belief propagation is utilized in order to develop a novel sample-based

solver for stochastic PDEs. The algorithm is different from SFEM in that it doesn’t

need analytical description of the randomness. Rather, we use samples from the stochas-

tic parameters of the system to locally approximate the uncertainty propagation to the

solution.
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Chapter 2

Computational Models of Hepatic

RFA

Research groups have used theoretical models and computer simulations to study different

aspects of RFA. Various probe configurations, including single probe [20], RITA probe

[21], monopolar probe [22] and bipolar probe [23], probe placement planning [24] and even

the effect of the breathing motion on probe positioning [25] are studied in the literature.

Special cases such as when the tumour is close to a hepatic vessel [26] or near to the liver

boundary [27] are also investigated in the literature. On the other hand, most of the

research conducted on computer simulation of RFA focus on its mathematical modelling.

These models can be divided in three categories: the electrical models, the tissue bio-heat

models, and the cellular necrosis models. This chapter presents a literature review on the

computational models of hepatic RFA.

2.1 Electrical heating and bio-heat models

At the frequencies employed in RFA (460 kHz – 550 kHz), the wavelength is several orders

of magnitude larger than the size of the probes. Thus, the tissue can be considered purely

11
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resistive and the electrical power is deposited within a small area around the probe tip

through electrical conduction [8]. Consequently, the displacement currents are negligible

and a quasi-static electrical conduction model is assumed, which allows us to obtain the

electric potential around the probe using Laplace’s equation:

∇ · (σ(T )∇v) = 0, (2.1)

where σ(T ) is the temperature-dependent electrical conductivity (S/m), and v is the

electric potential (V).

Even though solving Laplace’s equation is theoretically accurate for the electrical

problem, it requires a fine volume mesh on the surface of the very thin probe tips and

therefore suffers from a high computational cost. Thus, Audigier et al. [15] model the

electrical heating with a Dirichlet boundary condition on a sphere, whose radius is defined

pre-operatively by the protocol followed by the clinician. Another approach to approxi-

mate the Joule heating is proposed by [11] and used in later RFA simulation frameworks

[16, 4, 17]. In this approach, the power deposition is estimated using a Gaussian distri-

bution around the needle tip. Nevertheless, approximation of the Joule heating instead

of solving the electrical problem is too much of simplification as it has been shown by

[18] that electrical parameters are critical in models of hepatic RFA.

The most commonly used model for heat transfer in the tissue is the Pennes model:

ρticti
∂T

∂t
= Q+∇ · (d∇T ) +H(Tbl − T ), (2.2)

where T is the temperature (K), cti is the special heat capacity of tissue (J/kg/K), ρti is

the tissue density (kg/m3), d is the thermal conductivity (W/m/K), H is the convective

transfer coefficient (W/m3/K) and Tbl is the baseline physiological blood temperature

taken to be 310 K. On the right hand side of (2.2), Q = σ|∇v|2 is the heat source

(W/m3) which depends on the electric potential. On the other hand, in the electrical

problem, σ is changing with the temperature. As a result, the electrical and thermal

problems are coupled to each other and a multi-physics approach is needed to model this

phenomenon.

In the Pennes model, the blood temperature is assumed constant, which is only valid

within and close to large vessels [15]. Moreover, this model assumes that the blood acts

as a spatially homogeneous heat sink inside the tissue; however, studies [28] demonstrate
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that since liver is a highly vascularized organ, the perfusion does not act as a uniform

heat sink, and so the basic assumption behind the Pennes model is not valid when applied

to the liver. For these reasons the Wulff-Klinger (WK) model is proposed for a highly

perfused organ with small vessels:

ρcti
∂T

∂t
= Q+∇ · (d∇T )− ϵρcblv · ∇T, (2.3)

where ϵ, cbl and v stand for blood volume fraction (fraction of blood volume over total

volume), the special heat capacity of blood (J/kg/K) and blood velocity (m/s), respec-

tively. Note that the last term in (2.3) accounts for the directional effect of the blood flow

and so the WK model is more accurate than the Pennes model where the blood velocity

magnitude is low [15].

Combining the Pennes model and the WK model, Payne et al [11] derived a more

general model for computing heat diffusion in biological tissues, where each elemental

volume contains both tissue and blood with a certain fraction:

(1− ϵ)ρcti
∂Tti
∂t

= (1− ϵ)Q︸ ︷︷ ︸
source

+(1− ϵ)∇ · (d∇Tti)︸ ︷︷ ︸
diffusion

+H(Tbl − Tti), (2.4a)

ϵρcbl(
∂Tbl
∂t

+ v.∇Tbl︸ ︷︷ ︸
advection

) = ϵQ+ ϵ∇ · (d∇Tbl)−H(Tbl − Tti). (2.4b)

In these two coupled equations, subscripts ‘ti’ and ‘bl’ stand for tissue and blood, re-

spectively. Although large vessels can be clearly identified using state-of-the-art medical

imaging, small capillaries are still difficult to image. As a result, modern medical imaging

does not provide an accurate measurement of the ratio between blood and liver tissue [15].

Because of this, Audigier et al [15] employ a two-compartment model: Pennes model is

used when a point belongs to a large vessel and WK model is used when a point belongs

to the parenchyma. Assuming no interaction between large blood vessels and surrounding

tissue, the temperature is computed by solving the diffusion equation:

ρcti
∂T

∂t
= Q+∇ · (d∇T ) (2.5)

everywhere in the domain, to which they add either the cooling term, H(Tbl−T )/(1− ϵ),

for points residing inside a large vessel or the tissue perfusion term, −ερcblv ·∇T/((1−ε),

when it belongs to the parenchyma.
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Figure 2.1: Electrical conductivity of ex-vivo porcine liver tissue as a function of temper-

ature at six frequencies from 5 to 500 kHz in slow heating [30].

Besides the different types of equations used to describe the electrical and thermal

phenomena in RFA, evaluating the parameters in these equations has been studied ex-

tensively in the literature. As for the electrical conductivity, there are two general ways

of introducing σ in RFA models: (1) using constant values from the measurement data

reported in scientific literature, and (2) using mathematical functions which reflect the

dependence of σ on temperature. The most widely used mathematical function for σ(T )

in RFA models is a piecewise function which uses different mathematical expressions for

different temperature ranges [29]. At temperatures below 100 oC, σ(T ) increases with

temperature, with increase rate from 1.5%/oC to 2%/oC, and increase type of either lin-

ear or exponential. At temperatures above 100 oC, vaporization occurs that involves a

more or less abrupt drop of σ(T ). Two to four orders of magnitude drop for temperature

between 100 oC and 105 oC are reported by [29]. In addition, [30] studied the effect

of different heating rates on σ(T ). Various heating rates at different frequencies were

applied in an ex vivo RFA experiment on native porcine liver tissue. They observed dif-

ferent trends in σ(T ) for the slow and fast heating rates above 60 oC. The temperature

dependency of σ(T ) at different frequencies and slow heating is shown by Fig. 2.1.

As for the thermal conductivity, d, its values is assumed constant in most RFA
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Figure 2.2: Thermal conductivity of ex vivo ovine liver [31].

theoretical models, owing to the fact that changes in d with temperature are not so

noticeable as in σ [32]. Silva et al. [31] conducted ex vivo experiments on ovine liver and

observed no changes in thermal conductivity in the range of below 90 oC. As depicted in

Fig. 2.2, at higher temperatures approaching the water vaporisation process (at 100 oC),

an increase of the thermal conductivity values was recorded. Some models use a piecewise

continuous function to consider the temperature dependency of d between 90 oC and 100

oC , e.g., a linear increase of d up to 100 oC, and a constant value above 100 oC [29].

A few studies considered two different values for d before and after water vaporisation

temperature [33], modelling the temperature dependence with a non-continuous piecewise

function. The typical numerical values of the electrical and thermal model parameters at

normal body temperature, i.e. 37 oC, are provided in Table 2.1.

2.2 Cellular necrosis models

RFA treatment aims at delivering heat energy into the cancerous tumor while creating

a zone of dead cells in its vicinity. The damaged tissue will eventually recover after the

ablation procedure. Because of the thermal tolerance of cells, a temperature threshold

should be exceeded for a certain time duration for a cell to go to a damaged state.

Different cellular necrosis models have been investigated in the literature. The simplest
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Table 2.1: Values of electrical and thermal model parameters used in the literature.

Parameter value Reference

Baseline liver electrical conductivity, σti (S/m) 0.33 [23]

Baseline tumor electrical conductivity, σtu (S/m) 0.640 [34]

Probe electrical conductivity, σprobe (S/m) 108 [23]

Shaft electrical conductivity, σshaft (S/m) 4 · 106 [23]

Liver and tumor density, ρti (kg/m
3) 1060 [11]

Liver and tumor heat capacity, cti (J/kg· K) 3600 [11]

Baseline liver thermal conductivity, dti (W/m· K) 0.512 [11]

Baseline tumor thermal conductivity, dtu (W/m· K) 0.640 [34]

Blood density, ρbl (kg/m
3) 1000 [23]

Blood heat capacity, cbl (J/kg· K) 4180 [11]

Probe density, ρprobe (kg/m
3) 6450 [23]

Probe heat capacity, cprobe (J/kg· K) 840 [23]

Probe thermal conductivity, dprobe (W/m· K) 18 [23]

Shaft density, ρshaft (kg/m
3) 21,500 [23]

Shaft heat capacity, cshaft (J/kg· K) 132 [23]

Shaft thermal conductivity, dshaft (W/m· K) 71 [23]

model is to assume a single critical temperature and a two-state model for cell death;

Below the critical temperature, cells are alive and 100% functional, while above it cells are

dead with 0% functionality. The most widely used value for this temperature threshold is

50 oC. The ablation zone is then defined by the volume enclosed by the 50 oC isothermal

surface [20].

Tissue damage is a function of both temperature and the duration for which cells are

at high temperatures [35]; however, the latter is not considered in the isothermal model.

For this reason, the Arrhenius equation given by [36] is also used in the literature:

Ω(r, t) =

∫ t

0

A · exp(− ∆E

RT (r, t)
)dt. (2.6)

In the Arrhenius equation, Ω is called thermal damage and quantifies the amount of

thermal coagulation inside the tissue, r is the position vector (m) of any point inside the

tissue, t is the exposure time (s) , A is the liver frequency factor (7.39× 1039 s−1[23]), ∆E
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is the liver activation energy (2.58× 105 J/mol [23]) and R is the universal gas constant

(8.31 J/mol ·K [8]). The Arrhenius equation represents the percentage probability of

cell survival at a specific area due to thermal damage, where Ω = 1 is commonly used

to represent 63% of cell death [37] and Ω = 4.6 signifies 99% of cell death [38]. The

main drawback of Arrhenius-based models is that they are sensitive to small changes

in parameters, and they are not able to predict cellular injury over a wide temperature

range [15].

Extending the models that are based on two states (alive and dead), a three-state

model that includes an intermediate compartment between the fully alive and dead states

is proposed by O’Neill et al. [35]. The intermediate compartment is called a vulnerable

state from which cells can either go to the dead state or heal and return to the alive state.

This model consists of a system of two coupled ordinary differential equations (ODEs)

with the constraint A+ V +D = 1, where the proportions of alive, vulnerable and dead

cells are given by A, V and D respectively. The system of ODEs is:

dA

dt
= −kfA+ kb[1− A−D], (2.7a)

dD

dt
= kf [1− A−D], (2.7b)

where kf = kfe
T/Tk [1 − A]. The model has three parameters: kf , kb and Tk which are

all obtained by fitting to experimental data [35]. In addition, the initial conditions are

usually chosen as A = 0.99, V = 0.01 and D = 0 [15]. In this model, thermal-based

necrosis is a function of both temperature and time. It also defines an intermediate

state that allows to consider the recovery process of the cells. The main drawback of the

three-state model is that it requires to estimate several parameters.

Models based on a a parameter known as the thermal dose have also been suggested in

the literature. These models are mostly used for RFA treatments where low temperature

thermal exposures happens over a longer duration. The thermal dose was introduced

to relate the exposure to increased temperatures over different time duration, to an

equivalent exposure time held at a fixed temperature of 43 oC. The accumulated thermal

dose can be computed using the following mathematical expression [39]:

TD43 =

∫ τ

0

C(43−T (t))dt, (2.8)
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where TD43 is the thermal dose in units of cumulative equivalent minutes at 43 oC , C is

approximated as 0.25 for temperatures below 43 oC and 0.5 for temperatures above 43 oC,

and τ represents the final exposure time. A thermal dose of 240 is considered destructive

for liver cells. In this model, the cumulative thermal damage causes cell death. However,

the possibility of cell recovery is not taken into account in the thermal dose model.

2.3 The multi-physics phenomena in RFA modelling

As explained in the previous section, mathematical models of RFA fall into the three

categories of electrical models, heat transfer models, and cellular necrosis models. Based

on the equations introduced to model each of these categories, the most general system

of equations can be written as follows. We have for the electrical model:

∇ · (σ(T )∇v) = 0, (2.9a)

For the heat-transfer model:

(1− ϵ)ρcti
∂Tti
∂t

= (1− ϵ)Q+ (1− ϵ)∇ · (d∇Tti) +H(Tbl − Tti) (2.9b)

ϵρcbl(
∂Tbl
∂t

+ v.∇Tbl) = ϵQ+ ϵ∇ · (d∇Tbl)−H(Tbl − Tti), (2.9c)

and for the cellular necrosis model either:

Ω(r, t) =

∫ t

0

A′ · exp(− ∆E

RT (r, t)
)dt, (2.9d)

or:
dA

dt
= −kfA+ kb[1− A−D], (2.9e)

dD

dt
= kf [1− A−D], (2.9f)

where Q = σ|∇v|2 and kf = kfe
T/Tk [1− A].

The equations in 2.9 are coupled to each other, imposing a multi-physics approach

in hepatic RFA modelling: Equation (2.9a) is coupled to (2.9b) and (2.9c) because the

electrical conductivity σ is temperature dependent. Equations (2.9b) and (2.9c) are

coupled together via their last term H(Tbl − Tti), to (2.9a) because of their source term
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Figure 2.3: Sketch of the coupled electrical-thermal-cellular necrosis models.

Q, and to the cellular necrosis model because some of the thermal parameters have

different values for healthy and damaged cells. Moreover, the advection term in (2.9c),

v.∇Tbl, is locally set to zero when D > 0.8 and also heat capacity, cti, is modified when

D < 0.8 [11]. Finally, (2.9e) and (2.9f) are coupled to each other and coupled to (2.9b)

and (2.9c) as kf is temperature dependent. The coupling between the electrical, thermal,

and cellular necrosis models is depicted in Fig. 2.3. The coupling between the electrical

model and the cellular necrosis model is shown by a dashed arrow because a change in σ

due to cellular necrosis is not reported in the literature.

Because of the recent advances in computing power and the growing desire for simu-

lation in various fields of science and engineering, multi-physics simulations have earned

more attention in the past decade. A multi-physics system consists of two or more phys-

ical models which are controlled by their own physical principles, and yet interact with

each other simultaneously. The components involved in a multi-physics system can be

simulated either individually or in a coupled manner. The latter is called a multi-physics

simulation. Such coupling can introduce new restrictions that don’t exist for the individ-

ual components, e.g., of stability, accuracy, or robustness limitations [40].

Multi-physics systems are classified from different aspects. They can be categorized

based on the level of coupling between the individual components, i.e., either weak or

strong. From this perspective, strong (weak) coupling means that physical components

of the model are coupled by a strong physical (weak) interaction. Strong coupling could

be due to significant overlap of geometric domains or due to a strong impact of one

component on another [40]. Moreover, between two components, physical interaction
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can be strong in one direction and weak in the other, or strong in both directions. The

coupling is described as two-way in the latter case while the former is considered as one-

way coupling. We need to clarify that throughout this thesis, the term coupling is used

in the algorithmic level, that is, to indicate the algorithmic components are coupled by

either strong or weak interaction.

Besides the level of coupling between physical components, the choice of solution

approach for a multi-physics system depends on other factors like the availability of

codes for individual components. From a programmer’s point of view, if computer codes

already exist for individual component solutions, the simplest route to a multi-physics

simulation would be to exploit the existing codes based on a reductionist approach such

as operator splitting. For example, in the partial differential equation modelling a multi-

physics system, if one component is described by diffusion and the other component is

described by convection, splitting of diffusion terms and convection terms and exploiting

the possibly available individual codes sounds appealing. Such decoupling, however, may

overlook strong couplings between physics and give a false sense of completion [40].

Regarding the coupled equations in (2.9), the coupling between (2.9a) and (2.9b)

can be considered strong, as the temperature and the electric potential are interacting

in the whole domain. On the other hand, the coupling between (2.9b) and (2.9c) can

be regarded weak since the tissue temperature and the blood temperature only interact

over the tissue-vessel boundaries. The following two sections present a brief review on

the weak and strong coupling modelling of multi-physics systems.

2.3.1 Weak coupling modelling

The simplest multi-physics system is the coupled equilibrium problem:

f1(x1, x2, ..., xn) = 0

f2(x1, x2, ..., xn) = 0

...

fn(x1, x2, ..., xn) = 0.

(2.10)
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Here, x = (x1, x2, . . . , xn) refers to a multi-physics solution which consists of n compo-

nents and f1, f2,..., fn are called the component residuals.

One can follow a reductionist approach to solve (2.10), that is solving the first equa-

tion for the first unknown given all the other unknowns, the second equation for the

second unknown given all the other unknowns, and so on. This algorithm holds on to the

solution of each uni-physics problem, when the coupling is taken into account by iteration

over the set of equations. The iteration is typically done in either Gauss-Seidel or Jacobi

manner. The Gauss-Seidel method is shown by Algorithm 1.

1 Given initial values x01, x
0
2, ..., x

0
n;

2 for k = 1, 2, ..., (until convergence) do

3 for i = 1, 2, ..., n do

4 Solve for xki in fi(x
k−1
1 , xk−1

2 , ..., xki , ..., x
k−1
n ) = 0.;

5 end

6 end

Algorithm 1: Gauss-Seidel algorithm

When the algorithm converges, the accuracy can be improved by continuing the

iterations. In the Gauss-Seidel algorithm, each equation is solved for its own unknown,

using the most recent values for the other unknowns. This means the equations in (2.10)

need to be solved sequentially. On the other hand, a Jacobi algorithm allows all the

equations in the same iteration to be solved simultaneously. In the Jacobi algorithm,

each equation in (2.10) uses the values for the other unknowns from the last iteration.

Avoiding processor idle time, this further decoupling provides more parallelism, although

at the cost of a slower convergence rate. The Jacobi method is particularly advantageous

on massively parallel computers.

2.3.2 Strong coupling modelling

If the residuals and their derivatives are smooth, Newton’s method is the basic algorithm

that models the tight coupling between components. The problem in (2.10) can be

formulated in terms of a single residual that contains all components:

F(x) = 0, (2.11)
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where F(x) = (f1(x), f2(x), ..., fn(x))
T is the system of n coupled equations and x =

(x1, x2, ..., xn)
T is the vector of unknowns. The key approach of Newton’s method to

solve (2.11) is given by Algorithm 2. Here, ∆x is called the update vector, J(x) is an

1 Given initial values x0 = (x01, x
0
2, ..., x

0
n)

T ;

2 for k = 1, 2, ..., (until convergence) do

3 Solve J(xk−1)∆x = −F(xk−1);

4 Update xk = xk−1 +∆x;

5 end

Algorithm 2: Newton’s method

n-by-n Jacobian matrix of F(x), i.e., Jij(x) = ∂fi/∂xj, and k is the iteration number.

Newton’s method is considered as being tightly coupled because of the presence of the

off-diagonal blocks in the Jacobian. Here, the off-diagonal blocks of the Jacobian matrix

are either dense or sparse with rather large entries. Conversely, a weakly coupled model

may contain relatively fewer or smaller off-diagonal entries.

Newton’s method offers faster (up to quadratic) convergence compared to Gauss-

Seidel and Jacobi iterations. However, computation of ∆x in Algorithm 2 can be too

expensive for large-scale problems. In order to reduce the computational cost of Algo-

rithm 2, inexact Newton methods including Newton-Krylov methods were proposed. In

the Newton-Krylov methods, ∆x is computed with a Krylov subspace. This approach is

beneficial since the Krylov subspace method only needs Jacobian-vector products. Con-

sequently, if these products can be approximated, the Jacobian matrix is never itself

required. For instance, by using a finite-difference approximation to the Jacobian-vector

products, the Jacobian-free Newton-Krylov (JFNK) method bypasses the need for as-

sembling a Jacobian matrix.

2.4 High-performance computing in RFA modelling

Two different approaches are followed by researchers regarding RFA simulation: they

either use commercially available software such as COMSOL Multi-physics [27, 23, 22, 41]

or develop their own code [25, 34, 4, 16]. COMSOL provides all the necessary tools

to build the model, solve the problem, and post-process the results. Also, using its
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equation-based modelling capabilities, one can create new physics interfaces or modify

the underlying equations of a built-in model. This is a key advantage for RFA modelling

as it would allow complicated coupled problems (e.g., thermal-electrical-necrosis) to be

implemented, based on which the relation between temperature and tissue damage can be

simulated. Moreover, COMSOL supports both shared-memory and distributed-memory

parallelization, including cluster implementation. Cluster computing is supported using

the message passing interface (MPI) or by running the program on cloud computing

hardware [42].

The FEM is the main numerical technique used by those researchers who developed

their own code. Payne et al. [11] present a parallel RFA simulation where the FEM is im-

plemented in parallel based on mesh partition and the MPI. A model based on weighted

distance fields to approximate the ablation zone is proposed by Rieder et al [43]. The dis-

tance fields of varying RF probe types are derived from FEM simulations to allow a fast

graphics processing unit (GPU)-based approximation of the ablation zone. Mariappan et

al. [16] present a GPU-based FEM model of RFA. They use the preconditioned Biconju-

gate gradient stabilized method (BiCGSTAB) with the assistance of CUDA (dedicated

software for NVIDIA’s GPUs) libraries such as cuBLAS and cuSPARSE to accelerate

their computations on a GPU. RFA Guardian [4] is a comprehensive FEM-based plan-

ning and simulation software application for RFA, which supports simulation on the GPU.

An MPI-based parallel FEM simulation to analyze the thermal and electrical processes

involved in RFA is proposed by [44]. Zhang et al. [45] presents a formulation of bio-heat

transfer under the effect of soft tissue deformation for a near real-time tissue temperature

prediction, based on the fast explicit dynamics finite element method (FED-FEM).

Besides FEM, other numerical methods have also been employed in the paralleliza-

tion of RFA simulations. Kath et al. [25] proposed the finite difference method (FDM) for

running RFA simulations on the GPU, and tried different kernel configurations to find an

optimum use of the shared memory of CUDA in the calculation of the finite differences.

The Lattice-Boltzmann method (LBM) is used by Audigier et al. [15] for the simulation

of heat transfer in the liver. Looking for a near real-time computation of the heat trans-

fer, they provide a GPU-based version of the model, relying on the CUDA toolkit. In

order to show the benefit of their GPU-based approach, it is compared against a central

processing unit (CPU) implementation with multithreading. A maximum speed-up of 11
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with multithreading and 22 threads (OpenMP) and 45 with GPU implemented in CUDA

with respect to a single-core implementation of LBM is reported.

Using neural networks (NN) in RFA modelling has also gained attention. Based

on the tissue complex electrical impedance data, a deep neural network and tree-based

ensembles were trained for estimating the RFA lesion depth via regression by [46]. A

Neural network model of heat transfer in the tissue on three-dimensional regular and

irregular grids was developed by [14].

2.5 Uncertainty analysis in RFA modelling

The outcome of the RFA simulations depends on various parameters such as electrical

and thermal conductivity, heat capacity, density, and water content. These parameters

vary from patient to patient, and in fact their exact values are unknown. Typically, RFA

simulations use average values for these properties taken from literature, resulting in a

deterministic ablation outcome. In contrast, one can implement a stochastic simulation

model, where the input parameters are modelled as random variables. The stochastic

approach computes how the uncertainty in the input parameters propagates to the sim-

ulation output.

The simplest method to handle parameter uncertainty is the Monte Carlo simulation.

In this method, a sufficiently large number of samples to completely cover the stochastic

space are drawn from the input random variables. A deterministic simulation computes

the output for each sample, based on which the output random properties are found.

Although the Monte Carlo method is easy to implement, it has a slow convergence rate.

Moreover, if the deterministic simulations for each sample is already time-consuming, the

total Monte Carlo simulation will be very expensive.

The SFEM is an extension of the FEM that models the uncertainties in a system.

Compared to Monte Carlo, more effort is needed in the implementation, but the results are

provided faster. In the context of RFA modelling, substituting the uncertain parameters

with random variables yields a system of stochastic PDEs, which then can be solved with

SFEM. The SFEM propagates the parameter uncertainty via the mathematical model to

the output. Therefore, the output temperature is characterized by a random field whose
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probability density function can be approximated.

SFEM was first introduced in steady-state RFA simulations by Altrogge et al. [47]. In

their work, the random quantities are described as an expansion of stochastic orthogonal

basis functions with deterministic coefficients. Ristovski et al. [34] extended this steady-

state model to the time-dependent heat equation in RFA. Both methods are based upon

the Wiener-Hermite polynomial chaos expansion combined with the spectral stochastic

finite element method (SSFEM) of Ghanem and Spanos [48]. The stochastic partial

differential system is then solved in the weak form within the random space. The output

temperature is also given as a polynomial chaos expansion using Hermite polynomials.

The goal of uncertainty analysis in RFA is to provide the medical doctor with the

uncertainties associated with the treatment plan showing its robustness with respect to

the variations in the biological parameters of the liver. The medical doctor would adjust

the treatment plan if the uncertainty analysis indicates a considerable variation of the

optimum control parameters, e.g., the input voltage or the treatment duration, and hence

a low confidence that the greatest treatment outcome would be achieved.

In this chapter the computational models of radiofrequency ablation of liver tumours

were introduced. It was also outlined that a comprehensive mathematical model of hep-

atic RFA has multi-physical aspects. The next chapter presents a brief review of FEM

and its issues for parallel implementation of multi-physics problems. Also, the FGaBP

algorithm and its advantages over FEM on parallel architectures will be explained.
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Chapter 3

Finite Element Gaussian Belief

Propagation

In the previous chapter, the multi-physics aspects of the radiofrequency ablation (RFA)

modelling were discussed. The FEM is the most widely used algorithm for computer

simulation of RFA. The two computationally expensive stages of FEM, the assembly

stage and the solving stage, are even more expensive for multi-physics applications. In a

multi-physics simulation, these two stages must be repeated based on the most updated

values of all physical components in the system. This is especially so for a non-linear

multi-physics problem which is linearized with a NR method. This chapter presents an

overview of the FGaBP method as an alternative reformulation of FEM. We start off by

explaining the challenges in parallel implementation of multi-physics problems. The main

concepts of FGaBP and their advantages over conventional FEM-based multi-physics

simulations are then described.

3.1 Parallel acceleration of multi-physics problems

A multi-physics system is usually described with a set of coupled PDEs. Assuming the

coupled PDEs are spatially discretized with the finite element method (FEM), the multi-

physics system is eventually modelled with a linear system Ax = b, where A is the

sparse stiffness matrix, x is the multi-physics solution vector, and b is the right hand side
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vector. The system matrix A and right hand side vector b are dependent on the solution

vector x.

As explained in Section 2.3, there are two general approaches for solving a multi-

physics system, i.e., weak coupling and strong coupling. The weak coupling model solves

each equation for its own unknown, assuming constant values for the other unknowns.

As a result, a linear system A(i)x(i) = b(i) for each component needs to be solved,

where A(i) is the sparse matrix corresponding to the ith component, x(i) is the solution

vector of the ith component, and b(i) contains the elements in b associated with the ith

component. In finite element applications, the coefficient matrices A(i) are usually very

sparse. Consequently, iterative solvers are employed to solve the linear systems associated

with each physics. Iterative solvers need to execute different kernels, including the sparse

matrix-vector multiplication (SpMV). The SpMV is often considered the performance

bottleneck in efficient implementations of iterative solvers.

Strong coupling models are often based on the NR method. In NR, the construction

of a Jacobian matrix at each linearizing iteration could be prohibitively expensive for

large scale problems. Following the same notation used in Section 2.3, a linear system

J∆x = −F(x) needs to be solved at each NR iteration, where matrix J is the Jacobian,

vector ∆x is the multi-physics solution update, and vector F(x) is the residual. The

JFNK method is the most widely used inexact solver that bypasses the assembly of

a Jacobian matrix. This method employs a Krylov-based iterative solver in which the

Jacobian matrix does not have to be explicitly formed, and in this way, JFNK gets around

the main obstacle associated with the assembly stage of the NR method. For solving

J∆x = −F(x) using the Krylov method, only matrix–vector products are needed, not

the individual elements of J. The action of the Jacobian in the form of matrix–vector

products is approximated by:

Jv ≈ [F(x+ ϵv)− F(x)]/ϵ, (3.1)

where ϵ is a small perturbation.

The efficiency of JFNK depends critically on preconditioning the inner Krylov solver.

The preconditioning reduces the number of Krylov iterations by clustering eigenvalues

of the iteration matrix. This operation needs to be done at each Krylov iteration. For
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instance, if a right preconditioner is applied, (3.1) becomes:

JP−1v ≈ [F(x+ ϵP−1v)− F(x)]/ϵ, (3.2)

where P is the preconditioning matrix. Applying the right preconditioner is done in two

steps:

1. Solve approximately for w in Pw = v

2. Perform matrix-vector approximation: Jw ≈ [F(u+ ϵw)− F(u)]/ϵ

It is in this area that the Jacobian-free appeal of JFNK must yield to the construction

and use of a preconditioning matrix which require the execution of the SpMV. The SpMV

operation can strongly limit the acceleration of the preconditioning stage [49].

Many attempts are made to improve the parallel performance of JFNK precondi-

tioning, such as the Newton-Krylov-Schwarz (NKS) method and the multigrid algorithm

as a preconditioner. The NKS method is based on a domain decomposition approach. If

the computational domain Ω is decomposed into a set of p sub-domains {Ω1,Ω2, ...,Ωp}

such that Ω =
⋃p

i=1Ωi, the additive Schwarz preconditioner is computed as:

P−1 =

p∑
i=1

P−1
i , (3.3)

where Pi is the preconditioner defined on the sub-domain Ωi. The primary motivation

for NKS is to construct P−1 concurrently through divide-and-conquer. Each P−1
i in

the sum can be computed in parallel, resulting in parallelism proportional to the num-

ber of sub-domains p. Using multigrid preconditioning to compute P in parallel has also

been considered extensively [50]. In the multigrid preconditioned Newton–Krylov method

(NKMG), the system w = P−1v, is approximately solved for w using a multigrid algo-

rithm. Nevertheless, the SpMV operation is still the main kernel of these preconditioning

methods.

Achieving an efficient SpMV is challenging since its performance is heavily dependent

on the density of nonzero entries in the sparse matrix, or its sparsity pattern. The SpMV

operation can be executed as a number of concurrent vector dot products between each

row of the sparse matrix and the dense vector. The result from each dot product updates

the corresponding entry in the output vector. The vector dot products are independent of
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each other, hence can be executed in parallel. Although this is an embarrassingly parallel

approach, it will result in a poor performance in terms of speed-up. The CPU needs to

read each row of the sparse matrix and the whole dense vector from the main memory

into cache, and then perform the vector dot product. This requires non-coalesced memory

access since the data within each row of the matrix is very sparse. Consequently, a very

low cache hit rates is achieved which substantially causes the CPU to reach only a small

fraction of its peak performance [51].

Optimizing SpMV becomes even harder as the underlying processor architectures are

becoming more diverse. The sparse matrix storage format can have a considerable impact

on the SpMV performance. While an extensive body of research exists on optimizing

SpMV on multi-core architectures [52, 53], it is still unclear how the SpMV performance

on many-core platforms depend on different sparse matrix storage formats [54]. To this

end, a complicated approach is needed to first identify the performance bottlenecks of

SpMV for a specific sparse matrix on a target architecture and then to apply the right

optimizations to address those bottlenecks. Reducing the cache-memory traffic, mainly

by sparse matrix compression techniques, is the general approach followed by researchers

[54]. SpMV is naturally a memory bandwidth bound kernel on multicore machines. Its

bandwidth utilization is highly dependent on the sparsity pattern of the matrix and the

underlying architecture. On a multi-core machine, the memory requests increase with

the number of parallel processes, causing a greater bottleneck for the limited memory

bandwidth. This in turn restricts the parallel scalability of the SpMV.

Optimizing SpMV includes a preprocessing stage to analyze the sparse matrix struc-

ture followed by sophisticated programming techniques such as code transformations,

format conversion, parameter tuning, etc. The cost of this stage can pay off for appli-

cations that reuse the same sparse matrix in several instances of SpMV; however, it can

outweigh the performance improvements when the convergence is achieved for a small

number of iterations, e.g., in preconditioned solvers. The results of SpMV optimization

efforts reveal that maintaining good performance for all sparse matrices, even within the

same FEM application area, is impossible [51]. There exist standard optimized libraries

such as Trilinos [55] and PETSc [56], designed to solve a sparse linear system in paral-

lel. Nevertheless, the varying sparsity pattern of the matrix makes achieving a sustained

performance difficult. Furthermore, such libraries do not improve the assembly stage of
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the matrix, which in should be executed several times for the NR method.

The remainder of this chapter explains the finite element Gaussian belief propagation

(FGaBP) algorithm. The FGaBP algorithm is based on probabilistic inference on graph-

ical models. It turns the underlying formulation of the FEM into localized computations

involving dense matrices of very small sizes. The algorithm progresses by propagating

messages throughout the graph in a flexible manner allowing adaptable memory uti-

lization for various HPC architectures. The FGaBP doesn’t construct any large sparse

matrices, and eliminates all the global algebraic operations, including the SpMV. This

new algorithm provides a highly parallel and adaptable tool for both the assembly and

the solving stages of multi-physics problems.

3.2 The Gaussian belief propagation algorithm

Belief propagation (BP) [57] is a message-passing algorithm that was originally used in

probability problems to find marginal distributions of random variables from their joint

distribution, a process called statistical inference. It infers the marginal distribution

for each variable conditioned on the other variables. The inference is carried out on

probabilistic graphical models, where each node of the graph represents a random variable

and the graph edges show the dependency between the variables. It has proved practical

success in numerous applications such as turbo codes and low-density parity-check codes

[58].

BP performs inference by passing real-valued messages across edges in the graph,

iteratively. An undirected graph G is defined by a set of nodes V and a corresponding

set of undirected edges E . Each node i ∈ V is associates with a random variable xi,

assuming x = {xi|i ∈ V} is the set of all random variables. The joint distribution p(x) is

represented in a factor form by [58]:

p(x) ∝
∏

(i,j)∈E

ψij(xi, xj)
∏
i∈V

ϕi(xi), (3.4)

where p(x) may only be known up to a normalization coefficient, taken so that it integrates

to one. The function ψij(xi, xj) > 0 is called edge potential and indicates the probabilistic

dependence between nodes i and j. The function ϕi(xi) is the self potential of node i,
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containing information about the marginal distribution p(xi). Note that ϕi(xi) does not

equal the marginal distribution p(xi), because of interactions with other nodes.

At each iteration t of the BP algorithm, nodes i ∈ V send messages mt
ij(xj) to

neighboring nodes j ∈ N (i):

mt
ij(xj) ∝

∫
xi

ψij(xi, xj)ϕi(xi)
∏

k∈N (i)\j

mt−1
ki (xi) dxi. (3.5)

The message shows the probability density function (PDF) of node j from the standpoint

of node i. At message convergence, the marginals are computed as:

p(xj) ∝ ϕj(xj)
∏

i∈N (j)

mij(xj). (3.6)

This means the marginal distributions depend on the self potentials and also the so

called beliefs from the neighbouring nodes. If underlying distributions are Gaussian, the

algorithm is called Gaussian belief propagation (GaBP). The GaBP update rules can be

obtained by substituting Gaussian distributions into the continuous BP equations.

The application of GaBP for solving systems of linear equations was originally pro-

posed by [59]. Let the linear system of interest be expressed as:

Ax = b. (3.7)

One can define the joint Gaussian density function p(x) as:

p(x) ∼ exp(−1

2
xTAx+ bTx) ∼ N (µ = A−1b,A−1), (3.8)

where N (µ = A−1b,A−1) represents a multivariate Gaussian distribution whose mean

and covariance are µ and A−1, respectively. A graphical representation of p(x), G, can be

developed whose topology is determined by the non-zero structure of the matrix A. The

set of edges E in G includes an edge for each non-zero entry Aij, for which j < i. If matrix

A is symmetric positive definite (SPD), then solving the linear system is equivalent to

minimizing the quadratic function q(x) = 1
2
xTAx − bTx, which in turn is equivalent to

maximizing the exponential p(x) = e−q(x). On the other hand, p(x) is maximized when x

is equal to the marginal mean vector µ. Consequently, by performing GaBP for the joint

distribution p(x), one can solve the linear system. In GaBP, the edge potentials and self

potentials are defined to be:

ψij(xi, xj) = exp(−1

2
xiAijxj), (3.9a)
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ϕi(xi) = exp(−1

2
Aiix

2
i + bixi), (3.9b)

respectively. Note the self potentials have also a Gaussian form as:

ϕi(xi) ∝ N (µii = bi/Aii, P
−1
ii = A−1

ii ), (3.10)

whose mean and inverse-variance are shown by the scalars µii and Pii. The GaBP algo-

rithm is built on the fact that the product of Gaussian densities over a common variable

is, up to a constant factor, also a Gaussian density. This means all messages are of Gaus-

sian form also [60]. As a result, the update rules for the messages, (3.5), are reduced to

update rules for marginal means and marginal inverse-variances. Assuming the message

mij has a normal distribution N (µij, P
−1
ij ), its mean and inverse-variance are given by:

Pij = −A2
ijP

−1
i\j , (3.11a)

µij = −P−1
ij Aijµi\j, (3.11b)

where:

Pi\j = Pii +
∑

k∈N(i)\j

Pki, (3.12a)

µi\j = P−1
i\j
(
Piiµii +

∑
k∈N(i)\j

Pkiµki

)
. (3.12b)

Here, Pki and µki are the mean and inverse-variances of the incoming messages

mki(xi). In the next section, the FEM-based GaBP algorithm proposed by [51] is pre-

sented.

3.3 Finite element Gaussian belief propagation

The main idea of FGaBP is to reformulate FEM into an inference problem over a factor

graph, which may be solved applying the Gaussian belief propagation rules. Factor graphs

are used in probability problems to represent factorization of a PDF, enabling efficient

computations of marginal distributions through the BP algorithm. A factor graph consists

of two different types of nodes, factor node (FN) and variable node (VN). The FNs stand

for the factorization of the underlying PDF. The VNs represent the random variables,

and can only interact with each other through the FNs. As shown in Fig. 3.1, FGaBP
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Figure 3.1: (Left): Sample FEM mesh of two second order triangles. (Right): Two types

of nodes in the factor graph representation.

turns the FEM mesh into a factor graph. The variable nodes (nodes of unknowns) are

represented by circles, and the factor nodes are represented by squares.

The solution at each VN is considered a random variable with a Gaussian distribution

whose shape is defined by two parameters, α and β, where α is the reciprocal of the

variance and β/α is the mean. By passing messages between each FN and all its connected

VNs, the FGaBP algorithm tries to find the values of α and β for each VN. A message,mai,

is sent from factor node a (FNa) to the connected variable node i (VNi) and represents

the most probable solution value at i, as observed from FNa. In return, VNi sends a

message back to FNa representing observations from other connected FNs. The following

is the formulation of the FGaBP algorithm update rules [49]. The algorithm propagates

the messages over the factor graph edges, iteratively. Before we go over the algorithm, a

brief review of the FEM formulation is necessary. The FEM constructs a linear system

of equations by looping through all the elements in the computational domain. A local

characteristic matrix, Me, and a local source vector, be, is formed for each element e. The

global linear system is then assembled by having each element e contribute Me and be

to the global stiffness matrix and the global right hand side vector, respectively. As will

be explained, FGaBP bypasses the assembly stage. The algorithm can be summarized in

the following three steps:

1. t = 0: Initialize all messages β(0) = 0 and α(0) = 1.

2. Iterate: t = 1, 2, ....

(a) For each VNi, compute messages α
(t)
ia and β

(t)
ia to each connected FNa (a ∈
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N (i)) as follows:

α
(t)
i =

∑
k∈N (i)

α
(t−1)
ki , α

(t)
ia = α

(t)
i − α

(t−1)
ai (3.13)

β
(t)
i =

∑
k∈N (i)

β
(t−1)
ki , β

(t)
ia = β

(t)
i − β

(t−1)
ai (3.14)

where N (i) is the neighbourhood set of node i.

(b) For each FNa:

i. receive messages α
(t)
ia and β

(t)
ia from all the VNs i ∈ N (a).

ii. Assume A(t) is a diagonal matrix of incoming α
(t)
ia messages, and B(t) is a

vector of incoming β
(t)
ia messages, then define matrix W and vector K as

follows:

W(t) = M+A(t) (3.15)

K(t) = B+ B(t) (3.16)

where M and B are element a characteristic matrix and source vector,

respectively.

iii. Partition W(t) and K(t) as follows:

W(t) =

W (t)
L(i) VT

V W̄
(t)

 (3.17)

K(t) =

 K
(t)
L(i)

K̄
(t)

 (3.18)

where L(i) is the local index corresponding to the global variable node i.

iv. Compute and partition (W(t))−1 as follows:

(W(t))−1 =

W̃L(i) C̃
T

C̃ W̃

 . (3.19)

v. Compute and send new FNa messages α
(t+1)
ai and β

(t+1)
ai to each VNi as

follows:

α
(t+1)
ai =

1

W̃L(i)
− α

(t)
ia . (3.20)

β
(t+1)
ai = BL(i) +

1

W̃L(i)
(K̄

(t)
)T C̃

T
. (3.21)
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3. At message convergence, the mean of the VNs, or solutions, can be obtained by:

ui =
βi
αi

(3.22)

where

βi =
∑

k∈N(i)

βki, αi =
∑

k∈N(i)

αki . (3.23)

The messages can be initialized to any arbitrary value given that 0 < α. Using 1 ≤ α

makes the matrix W diagonally dominant which improves the numerical properties of its

inversion [49].

The FGaBP messages carry information on the most probable states of variable

nodes as seen from the standpoint of each connected factor node. As shown by [49],

the factor nodes can either represent single elements, or can comprise multiple elements

merged together. A vital property of the FGaBP update rules is that they are built on

local computations, while the computations of each FN are independent of other FNs at

each iteration. As will be explained in the next chapters, we can exploit this property to

build local Jacobian matrices associated with each factor node, and implement the NR

algorithm at the element level. This provides an efficient tool for parallel implementation

of non-linear multi-physics problems on HPC platforms.

Message communication in FGaBP can be implemented based on a specific schedule.

Each FGaBP iteration goes over all the FNs exactly once. One of the key empirical

properties of the FGaBP algorithm is its flexibility in message scheduling, which allows

implementations that provide a trade-off between computation and communication on

different parallel architectures [49]. However, message scheduling can significantly affect

the number of iterations needed for convergence; an optimum scheduling must exploit the

underlying connectivity structure of the graph with minor effect on the iteration count.

There are two primary scheduling schemes for FGaBP message passing, i.e., sequen-

tial (asynchronous) and parallel (synchronous). The sequential scheduling computes and

communicates the messages one FN at a time, when the FNs are traversed based on a

specific order. Therefore, each FN computes its messages based on the most recent mes-

sages propagated within the current iteration. This message schedule delivers the lowest

number of FGaBP iterations, with the cost of compromising parallelism. In parallel mes-

sage scheduling on the other hand, all the FNs are processed at the same time while
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Figure 3.2: Structured quadrilateral mesh containing four colours.

using messages computed at a previous iteration. The parallel scheduling offers a high

degree of parallelism; however, due to the slower propagation of information throughout

the graph it needs higher number of iterations to converge.

Figure 3.3: Local exchange of residuals between a child element a and its parent element.

The numbers stand for the weights that are used to transfer the residual contribution

from a node in the child element to a node in the parent element [51].

An element-based colouring schedule is proposed by [49] for shared memory paral-

lelism. This method exploits the parallelism in the factor graph model while not con-

siderably increasing the number of FGaBP iterations. They use an element colouring

algorithm when mesh elements are coloured in such a way that every two adjacent el-

ement have different colours. Elements are considered adjacent if they share at least a
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node. A simple mesh colouring scheme is illustrated in Fig. 5.2 using a quadrilateral

mesh. FN messages in each colour group are computed and communicated in parallel.

This method is particularly effective for multi-threaded implementations on multicore

CPUs, as thread-safety is automatically guaranteed here.

A multigrid version of FGaBP, the finite element multigrid Gaussian belief prop-

agation (FMGaBP), to accelerate its convergence was introduced by [61]. The multi-

grid scheme reduces the iteration count while maintaining all the parallelism features

of FGaBP algorithm. Compared with the multigrid preconditioned conjugate gradient

(MG-PCG) solvers, FMGaBP algorithm demonstrated considerable iteration reductions

and a speedup of up to 2.9 times using eight CPU cores [61]. In addition, the convergence

rate of FMGaBP is independent of the problem size on the finest mesh. The FGaBP algo-

rithm benefits from multigrid schemes since communications on coarser levels can serve

as bridges to communications between far away nodes on finer levels. This improves

the propagation of information throughout the mesh and therefore improves the overall

convergence.

The multigrid method in general assumes that the high frequencies of the residual

vector are almost removed in a few iterations, but low frequencies are reduced very slowly.

The multigrid idea is to turn a fine grid into a coarser grid, on which low frequencies

behave like higher frequencies. This is conducted in the following four steps [62]:

• Residual computation: computing residual error on the fine grid.

• Restriction: down sampling the residual error to the coarse grid.

• Prolongation: interpolating the correction from the coarse grid into the fine grid.

• Correction: Adding prolongated coarse grid solution onto the fine grid.

In order to incorporate the above steps into the FGaBP method, El-kurdi et al. [61]

defined element-wise belief residuals and corrections for each factor node. For each factor

on the fine grid, a quantity referred to as the belief residual is defined. The belief residuals

of each group of child elements are locally restricted into the parent element. On the other

hand, the corrections from the parent elements are mapped onto the child elements using

interpolation. This is shown graphically by Fig. 3.3, where Ωh and ΩH represent the fine
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and coarse meshes, respectively. The figure shows how each node in the fine mesh (child

elements), contributes to the residual in the coarse mesh (parent element).

1 for level l = 1, 2, . . . , L in the mesh hierarchy do

2 Perform partition-colour;

3 Generate elemental dense matrices and source vectors;

4 Initialize the messages;

5 end

6 for cycle c = 1, 2, . . . in the V-cycle do

7 for level l = L,L− 1, . . . , 1 in the mesh hierarchy do

8 if l is the coarsest level then

9 exit;

10 end

11 Execute v1 iterations of FGaBP ;

12 Restrict residuals from child-factors into parent-factors;

13 end

14 Execute FGaBP on coarsest level;

15 for level l = 1, 2, . . . , L in the mesh hierarchy do

16 Prolongate corrections from parent-factors into child-factors;

17 Execute v2 iterations of FGaBP;

18 end

19 if global tolerance < tolerance then

20 break;

21 end

22 end

Figure 3.4: FMGaBP pseudo-code

Figure 3.4 shows the FMGaBP pseudo-code proposed by [61]. The FMGaBP exe-

cutes the FGaBP algorithm on each level in the multigrid hierarchy. A single iteration

of the algorithm is referred to as a V-cycle. The loops on lines 8 and 16 traverse all the

levels on the V-cycle except the coarsest level, first going down the cycle and then up the

cycle. As the coarsest level includes a very small number of elements, its execution can
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be rather fast. The application of the multigrid method to multi-physics FGaBP will be

described in the next chapters.

In this chapter, we first introduced the main obstacles associated with parallel scal-

ability of multi-physics simulations, i.e., global algebraic operations such as the SpMV.

Next, the FGaBP algorithm as an alternative for conventional FEM iterative solvers was

marked out. The basic properties of FGaBP that makes it an ideal candidate for parallel

multi-physics solvers were also explained. In the following chapters, we will modify the

FGaBP to solve the coupled problems that emerge in the simulation of radiofrequency

ablation of hepatic tumours.
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Chapter 4

Parallel Weak Coupling Modelling of

RFA

A Multi-physics system consists of more than one simultaneously occurring physics. As

discussed in Section 2.3, the physics involved in a multi-physics system interact with

each other, where the interactions can be modelled with either strong coupling or weak

coupling. Strong coupling finds the monolithic solution of all the physics together, while

weak coupling is established on individual solutions of each physics. In weak coupling,

the individual solutions converge to the multi-physics solution through iteration, which

is done via Jacobi or Gauss–Seidel methods. Both methods deal with individual physics

separately. The difference is that the Gauss–Seidel method uses the latest updated values

during the iterative process, while the Jacobi method applies the values obtained from

the previous iteration. The Gauss-Seidel and Jacobi iterations are shown graphically by

figures 4.1 and 4.2, respectively. Here, there are two physical fields in the multi-physics

system, depicted by v and T .

Besides the level of coupling, another major classification in multi-physics systems is

whether the coupling occurs in the whole domain or whether it occurs over an interface. In

the former case, the physics share the same computational domain while in the latter case

they have separate computational domains interacting through an interface (for example

the interaction between a fluid and a structure). The interface coupling is often based on

the domain decomposition method (DDM), in which the computational domain is divided
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into multiple disjoint sub-domains, each belonging to one component. Each component

is modelled with a (or a set of) partial differential equation(s) with appropriate initial

and boundary conditions. In the multi-physics DDM approach, the equations are solved

separately and the coupling happens via boundary conditions. For the sake of clarity, we

emphasize that the weak coupling method introduced in this chapter deals with volume

coupling. Unlike interface coupling, in volume coupling the individual physics interact

everywhere inside the domain, which makes the DDM not applicable.

This chapter is organized as follows: Section 4.1 provides the solution of the heat

transfer equation using the FGaBP. The coupled electrical-thermal problem in radiofre-

quency ablation is revisited in Section 4.2. In Section 4.3, the Gauss-Seidel algorithm

is modified and combined with FGaBP method, providing a parallel weak coupling ap-

proach. The results are presented and discussed in the last section.

4.1 Solving the heat transfer problem

In Section 2.1, the electrical heating and the bio-heat model of heat transfer inside the

liver were introduced. The Pennes equation is the most widely used model for heat

transfer in the tissue:

ρc
∂T

∂t
= Q+∇ · (d∇T ) +H(Tbl − T ), (4.1)

where T is the temperature (K), c is the special heat capacity of tissue (J/kg/K), ρ is

the tissue density (kg/m3), d is the thermal conductivity (W/m/K), H is the convective

transfer coefficient (W/m3/K) and Tbl is the baseline physiological blood temperature

taken to be 310 K. On the right hand side of (4.1), Q = σ|∇v|2 is the heat source

(W/m3) where v is the electric potential around the probe tip, and σ is the electrical

conductivity of the tissue.

The application of FGaBP to solve Laplace’s equation has already been studied by

[49]. Consequently, this section only provides the solution of the heat transfer equation

using FGaBP. Since the last term in (4.1) acts as a heat sink, we assume its effect is

included in the source term and drop it for now to have a pure diffusion equation as:

ρc
∂T

∂t
= Q+∇ · (d∇T ). (4.2)
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Figure 4.1: Illustration of weak coupling using Gauss-Seidel iteration, with iteration

number n advancing to the right.

Figure 4.2: Illustration of weak coupling based on Jacobi iteration, with iteration number

n advancing to the right.

The spatial discretization of the domain is based on the finite element method (FEM).

The theta scheme is chosen for time discretization. The theta scheme generalizes the

explicit Euler (θ = 0), implicit Euler (θ = 1), and Crank-Nicolson (θ = 0.5) time dis-

cretizations. Since the latter has the highest convergence order, we will choose θ = 0.5,

but make it so that changing this parameter remains simple. Employing the theta time

discretization, (4.2) becomes:

ρc
T n+1 − T n

∆t
= Q + θ ∇ · (d∇T n+1) + (1− θ)∇ · (d∇T n), (4.3)

where the superscript n denotes the nth time step and ∆t is the time step value. Also,

0 ≤ θ ≤ 1 is the parameter of theta-scheme time discretization. After applying spatial

discretization using finite elements, we will have the following discrete equation for each

element: [
M−∆t θ S

]
Tn+1 =

[
M+∆t (1− θ)S

]
Tn +∆t f, (4.4)

where Mij = ρc
∫
NiNj dV , Sij = d

∫ −→
∇Ni ·

−→
∇Nj dV and fj =

∫
QNj dV . Here, Ni and

Nj are FEM scalar basis functions.
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As described in the previous chapter, FGaBP formulation is based on small dense

matrices and vectors instead of global sparse data structures. For the heat transfer

equation, the characteristic matrix M and the source vector B in the FGaBP update

rules, i.e., (3.13) to (3.23) in Chapter 3, should be replaced at each time step with

M−∆t θ S and the whole right hand side of (4.4), respectively. Doing so, the α and β

messages are computed iteratively until message convergence is achieved. At this point,

the solution of (4.2) in the current time step and at node i is obtained from the ratio

βi/αi, according to (3.22).

In order to evaluate the correctness of the FGaBP heat transfer solver, the results

are compared on a regular rectangular domain with an analytical solution. For a source

released at x0 at time t0, the 2D analytical solution of the diffusion equation: (∂T/∂t) =

∇ · (d∇T ) +Q, inside an infinitely wide domain is [63]:

T (x, t) =
K

[4π(t− t0)d]
exp

(
−∥x− x0∥2

4d(t− t0)

)
. (4.5)

We initialized the temperature values at each point of the domain with the analytical

solution at time t = 0 with this set of parameters: K = 450 oC ·mm2, d = 0.15 mm2/s,

t0 = −0.1 s, x0 = (0, 0). The diffusion equation is solved using our FGaBP solver and the

temperature at a specific point of the domain is compared with the analytical solution

values. For the purpose of being consistent with the analytical solution, the domain was

chosen to be large enough with Neumann boundary conditions used at its border, so as

to simulate the infinitely wide domain by eliminating the boundary effect at the probed

point.

The theta-scheme with θ = 0.5 is also called Crank–Nicolson method. For diffusion

equations, it can be shown that the Crank–Nicolson method is unconditionally stable [64].

Consequently, no hard restrictions for the time-step exist; nevertheless, in practice, we

still want to make the time-step smaller to decrease the error. In the FGaBP heat transfer

simulation a time-step of 0.2 s appeared to be a good compromise between accuracy and

computational time. When the time-step is fixed to a constant value, a non-oscillatory

criteria imposes an upper bound for the spatial resolution as [65] :

∆x2 ≤ 20θd

ρc
∆t. (4.6)

This means for ∆t = 0.2 s, θ = 0.5, and with other parameters values as in the literature
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Figure 4.3: Temperature distribution for an instantaneous point source using different

space resolutions and time-step = 0.2 s.

[15], ∆x must be smaller than 0.53 mm. In Fig. 4.3, the analytical solution and FGaBP

solution with a time-step of 0.2 s and different spatial resolutions are plotted. Figure 4.3

shows the smaller the spatial resolution, the closer the computed solution is to the ana-

lytical one. Quantitatively, the Root-Mean-Square (RMS) errors between the computed

solution and the analytical one decreased with the resolution: 3.31 oC, 0.5 oC, 0.14 oC

for 0.625 mm, 0.5 mm and 0.2 mm, respectively. This analysis confirms qualitatively

and quantitatively the accuracy of the implementation of the heat transfer model with

FGaBP.

4.2 The coupled electrical-thermal problem

After setting up FGaBP for the thermal problem, it is time to consider the coupled

problem. In our multi-physics modelling of RFA, we start with the coupled electrical-

thermal problem as described in Section 2.3. The two coupled PDEs are:

∇ · (σ(T )∇v) = 0, (4.7a)

ρc
∂T

∂t
= Q+∇ · (d∇T ), (4.7b)

where σ(T ) shows the temperature dependence of electrical conductivity. We assume

σ(T ) increases linearly with the temperature, using a temperature coefficient of +2 %/oC

[8]. Since the heat equation is also coupled to the Laplace’s equation by its source
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term Q = σ|∇v|2, the thermal profile and the electric field are interdependent. After

using theta-scheme for time-discretization of the heat transient problem, and similar

FEM space discretization for (4.7a) and (4.7b), we will have the following set of coupled

discrete equations: [
Mv(T )

] {
v
}
= 0, (4.8a)[

MT −∆t θ ST

] {
T
}n+1

=
[
MT +∆t (1− θ)ST

] {
T
}n

+

∆t ((1− θ)
{
f(v)

}n
+ θ

{
f(v)

}n+1
),

(4.8b)

where Mv,ij(T ) =
∫
σ(T )NiNj dV and fj(v) =

∫
σ(T )Nj|∇v|2 dV . The matrices MT

and ST are exactly the same as M and S in (4.4).

The choice of solution approach for these coupled equations relies on a number of

considerations. Due to the prohibitive cost and numerical complications of multi-physics

modelling, the coupled equations are usually divided into separate problems dealing with

each physics exclusively. This leads to the simplification of the coupled problem, allowing

individual numerical solutions to each PDE based on their own boundary and/or initial

conditions. Moreover, from a practical standpoint, existing codes for component solutions

often motivate successive substitution as an expeditious route to a first multi-physics

simulation capability making use of the separate physics. This approach, however, may

ignore strong couplings between physics and give a false sense of completion. In the next

section, we illustrate weakly coupled solution strategies within the context of FGaBP and

the coupled problem above.

4.3 Weak coupling formulation of FGaBP

FGaBP turns the FEM mesh into a factor graph, over which an inference problems is

solved to find the FEM solution. There are two distinct nodes in the factor graph, VN

and FN. FGaBP assumes the FEM solution at each VN is a random variable with a

Gaussian distribution whose shape is defined by two parameters, α and β, where α is

the reciprocal of the variance and β/α is the mean. By passing messages in the graph

iteratively, FGaBP tries to find the values of α and β for each node. A factor node

message, mai, is sent from factor node a (FNa) to the connected variable node i (VNi)

and represents the most probable state of the solution, from the standpoint of FNa. In
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return, the variable node message ηia represents observations from other connected FNs.

The FGaBP can be summarized in the following two steps:

1. The first step updates β and α values for all VNs associated with each FN. This

operation is done by each FN sending messages to all connected VNs, which then

updates the local α and β values. This requires solving two small systems of equa-

tions [49]:

α
(t)
ai =

1

W̃L(i)
− α

(t−1)
ia . (4.9)

β
(t)
ai = BL(i) +

1

W̃L(i)
(K̄

(t)
)T C̃

T − β
(t−1)
ia . (4.10)

Noteworthy, the scalars W̃L(i) and BL(i), and the vectors K̄ and C̃, are local values

corresponding to the local factor a. Specifically, W̃L(i) and C̃ depend on the char-

acteristic matrix of a, while BL(i) and K̄ depend on the right hand side vector of

a.

2. In the second step, each VN receives the new beliefs from the connected FNs,

computes VN messages accordingly and sends them back to each neighbouring FN

[49]:

α
(t)
i =

∑
k∈N (i)

α
(t)
ki , α

(t)
ia = α

(t)
i − α

(t)
ai ,

β
(t)
i =

∑
k∈N (i)

β
(t)
ki , β

(t)
ia = β

(t)
i − β

(t)
ai , (4.11)

where N (i) is the set of all FNs connected to VNi.

These steps are repeated until the changes in α and β values reach a certain threshold.

After convergence, the solution is recovered computing the mean as µ = β/α. It is im-

portant to observe that FNs (where most of the computation is done) are only connected

through variable nodes and that messages are only sent to local neighbouring FNs. This

is a key feature that gives FGaBP great potential for parallel processing.

Traditional multi-physics algorithms often hold on to already available codes for each

of the uni-physics problems, that is, solving each equation for its own unknown, given

the other unknowns. This represents a weakly coupled manner and is done iteratively

in either Gauss-Seidel or Jacobi approach. After each iteration, a convergence criterion
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such as L2-norm of the electrical conductivity is evaluated to determine whether or not

to repeat the iteration. When the convergence criterion is fulfilled, the accuracy with

which the coupled equations are solved can be improved by continuing the iterations. In

the Gauss-Seidel algorithm, each equation is solved for its own unknown, using the most

recent values for the other unknowns. This means the coupled equations of (4.7) need to

be solved sequentially. On the other hand, a Jacobi algorithm allows all the equations in

the same iteration to be solved simultaneously. In the Jacobi algorithm, each equation

in (4.7) uses the values for the other unknowns from the last iteration.

The Gauss-Seidel and Jacobi methods are depicted by Figures 4.4 and 4.5, respec-

tively. In the Gauss-Seidel method, component 2 must wait for component 1 to finish

its computation and send the potential values. Component 2 then starts computation

when component 1 is waiting for it to send temperature values. In the Jacobi algorithm,

both components can start computation simultaneously. They interact with each other

at the end of each iteration. Avoiding processor idle time, the Jacobi method provides

more parallelism, although at the cost of a slower convergence rate. It is particularly

advantageous on massively parallel computers.

We can exploit the local computations and message passing strategies used in FGaBP

to enhance the computational performance of the Gauss–Seidel method. Unlike a classical

Gauss-Seidel, in which the uni-physics problems are solved sequentially, the proposed

parallel algorithm solves both electrical and thermal problems in parallel. In this method,

each component updates its local data structures and messages according to the other

component values in the current iteration. Before describing the algorithm in more details,

we need to define a local convergence first.

In order to define the local convergence, we start by assigning a multivariate distri-

bution to each individual factor node, referred to as the factor node belief. The factor

node belief takes the form [51]:

ba(Ua) ∝ exp[−1

2
UT

aWaUa +KT
aUa] (4.12)

where the matrix Wa and the vector Ka are defined by (3.15) and (3.16), and represent

the inverse covariance and the source vector of the factor node a, respectively. Note

that the local belief ba takes an iterative form, where Wa and Ka are formed iteratively

according to the FGaBP update rules. It has been shown by [51] that for a vector
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1 Code for component 1:

2 for Time steps do

3 for coupling iterations do

4 Compute potential;

5 Send potential;

6 Receive temperature;

7 Update σ;

8 end

9 end

1 Code for component 2:

2 for Time steps do

3 for coupling iterations do

4 Receive potential;

5 Update source term;

6 Compute temperature;

7 Send temperature;

8 end

9 end

Figure 4.4: Conventional Gauss-Seidel algorithm

of nodal marginal means, µa, as computed by the FGaBP for the set of nodes in the

neighbourhood of factor node a, at message convergence we have:

µa = W−1
a Ka. (4.13)

Given the above equation, for each factor a we can formulate a vector referred to as the

local residual ra given by:

ra = Ka −Wa µa. (4.14)

The factor node a is considered locally converged if ra is smaller than a pre-defined

threshold.

The proposed parallel weakly coupled FGaBP algorithm is shown by Fig. 4.6. The

electrical component sends the updated βv and αv messages of the locally converged cells

to the thermal component. The thermal problem then updates the local right hand side

(RHS) matrices of the corresponding cells and starts calculating βT and αT messages

while waiting for more cells in the electrical problem to converge. Whenever a number of

cells are converged in the thermal problem, the local matrices of those cells are updated

accordingly in the electrical problem and messages are calculated again. This procedure

continues until a convergence criterion such as L2-norm of the electrical conductivity is

smaller than a threshold. To accelerate FGaBP iterations, at each coupling iteration we

use the values of α and β messages from the previous coupling iteration. Hence, the

messages only need to be initialized before the first iteration and then will continue by
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1 Code for component 1:

2 for Time steps do

3 for coupling iterations do

4 Compute potential;

5 Receive temperature;

6 Update σ;

7 Send potential;

8 end

9 end

1 Code for component 2:

2 for Time steps do

3 for coupling iterations do

4 Compute temperature;

5 Send temperature;

6 Receive potential;

7 Update source term;

8 end

9 end

Figure 4.5: Conventional Jacobi algorithm

just updating their values. In fact, as shown by [49], we only need to update β messages

since α messages converge after a few iterations.

4.4 Results and discussion

In order to simulate the FGaBP Gauss-Seidel algorithm, we used the same geometry,

mesh size, time-step and parameter values as in the heat transfer model. As shown

in Fig. 4.7, the conducting tip of the electrode is embedded into a 8.0 cm by 8.0 cm

rectangular region that simulates tissue surrounding the probe tip. A source voltage of

16 V is applied to the conducting tip of the probe. All of the outer boundaries of the

rectangular domain serve as a return ground electrode. Regarding the thermal problem,

the initial value of the temperature is chosen to be the normal body temperature, i.e.

37 oC and a Dirichlet boundary condition of 37 oC is applied at the outer boundary.

To verify the correctness of the algorithm, the computed temperature at a certain

point in the domain is compared to that obtained from COMSOL Multi-physics software

[19]. Figure 4.8 shows the transient temperature computed from both methods; the RMS

error between them is less than 0.02 oC which confirms the correctness of our algorithm.

To test the parallel scalability properties of Algorithm 4.6, a CPU implementation with

multi-threading (OpenMP) is provided. For this purpose, the grid was further refined to

a medium sized problem with 1,000,000 elements. The code is executed on a Compute
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1 Code for component 1:

2 for coupling iterations do

3 for FGaBP iterations do

4 for each factor a do

5 Compute messages, (4.9),

(4.10);

6 Compute local residual,

(4.14);

7 if local convergence then

8 Send potential;

9 end

10 Receive temperature;

11 Update σ;

12 end

13 end

14 end

1 Code for component 2:

2 for coupling iterations do

3 for FGaBP iterations do

4 for each factor a do

5 Receive potential;

6 Update source term;

7 Compute messages, (4.9),

(4.10);

8 Compute local residual,

(4.14);

9 if local convergence then

10 Send temperature;

11 end

12 end

13 end

14 end

Figure 4.6: Weakly coupled FGaBP algorithm

Canada cluster node. The node contains 2 × 20-core Intel Gold 6148 Skylake 2.4 GHz

CPUs with 186 GB Dynamic random-access memory (DRAM). As shown by Fig. 4.9,

the performance scales up almost linearly up to sixteen threads, and then experiences

fluctuations when the number of threads increases. The results show speedups of sixteen

times with respect to one CPU core.

In this chapter, we modified the classical Gauss-Seidel method and designed a new

weak coupling algorithm. This approach is not only more parallelizable than the con-

ventional Gauss-Seidel, but is also more efficient than using FGaBP in a classical Gauss-

Seidel since it makes FGaBP solver converge faster. This can be confirmed by using

FGaBP in a classical Gauss-Seidel to obtain voltage and temperature values at each iter-

ation, and then comparing the total number of FGaBP iterations with that obtained from

Algorithm 4.6. The results indicate that with similar convergence criterion, although Al-

gorithm 4.6 needs more Gauss-Seidel iterations to converge, e.g., 11 iterations compared
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Figure 4.7: The geometry of the simple test case.

Figure 4.8: Temperature at a specific point over 10 minutes of ablation, obtained from

the multi-physics FGaBP algorithm and COMSOL multi-physics software.
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Figure 4.9: Performance scaling of the multi-physics FGaBP method in terms of speedup

with respect to 1 core implementation.

to 8 iterations, its total number of FGaBP iterations is about half of that needed in the

conventional Gauss-Seidel. In the next chapter, we will present a parallel strong coupling

algorithm based on Newton’s method and FGaBP.
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Chapter 5

Parallel Strong Coupling Modelling

of RFA

In the previous chapter, the coupled electrical-thermal problem that appears in the multi-

physics modelling of RFA was solved following a parallel weak coupling approach, based

on the FGaBP algorithm. This chapter provides the strong coupling modelling of the same

coupled electrical-thermal problem, and also of the coupled thermal-thermal problem in

RFA heat transfer equations.

Strong coupling is usually based on the NR method. As described in Section 2.3.2,

the construction of a Jacobian matrix at each linearizing iteration of NR could be pro-

hibitively expensive for large scale problems. The JFNK method is the most widely

used inexact solver for the NR algorithm. This method employs a Krylov-based iterative

solver in which the Jacobian matrix does not have to be explicitly formed, and in this

way, JFNK bypasses the main obstacle associated with the assembly stage of the NR

method. On the other hand, in the solving stage, the efficiency of JFNK depends crit-

ically on preconditioning the inner Krylov subspace method. It is in this area that the

Jacobian-free appeal of JFNK must yield to the construction and use of a preconditioning

matrix which require the execution of a number of global algebraic operations in each

JFNK iteration, such as a SpMV.

The SpMV operation, as explained by Section 3.1, can strongly limit the accelera-

tion of the solving stage using parallel processing due to its dependency on the under-

53



CHAPTER 5. PARALLEL STRONG COUPLING MODELLING OF RFA

lying sparse data-structure [49]. In addition, the approximation error associated with

the Jacobian-vector multiplication represents the greatest disadvantage of JFNK, espe-

cially when variables associated with different physics being coupled in a multi-physics

application differ by orders of magnitude.

This chapter presents a NR reformulation of the FGaBP in order to exploit its

localized computations and message passing scheme for solving multi-physics problems

in parallel. Similar to the JFNK, FGaBP does not need to explicitly form a global

Jacobian matrix, instead, local computations are performed to calculate local Jacobian

matrices for each element in parallel. This provides a NR algorithm amicable to different

parallel computing architectures. On the other hand, in contrast to the JFNK, there is

no approximation associated with the local Jacobian matrices which makes the novel NR

method more accurate than the JFNK method.

5.1 Parallel strong coupling formulation of the cou-

pled electrical-thermal problem

The focus of this section is the coupled electrical-thermal problem. For this reason, the

coupling between the tissue temperature and the blood temperature is neglected here

and the thermal problem is modelled by the the Pennes equation [66]:

ρticti
∂T

∂t
= Q+∇ · (d∇T ) +H(Tbl − T ), (5.1)

where T is the temperature (K), cti is the special heat capacity of tissue (J/kg/K), ρti is

the tissue density (kg/m3), d is the thermal conductivity (W/m/K), H is the convective

transfer coefficient (W/m3/K) and Tbl is the baseline physiological blood temperature

taken to be 310 K. The electric potential around the probe is solved using Laplace’s

equation:

∇ · (σ(T )∇v) = 0, (5.2)

where σ(T ) is the temperature-dependent electrical conductivity (S/m), and v is the

electric potential (V).

We use the theta-scheme [67] for time discretization of (5.1), and similar FEM mesh
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for (5.1) and (5.2), to obtain the following set of coupled discrete equations:[
Mv(T )

] {
v
}
= 0, (5.3a)

[
MT + δt θ ST

] {
T
}n+1

=
[
MT − δt (1− θ)ST

] {
T
}n

(5.3b)

+ δt
{
(1− θ)

{
f(v)

}n
+ θ

{
f(v)

}n+1}
,

where Mv,ij(T ) =
∫
σ(T )

−→
∇Ni ·

−→
∇Nj dV depends on the temperature, fj(v) =

∫
(HTbl +

σ(T )|∇v|2)Nj dV depends on the potential, MT,ij = (ρcti + δtH)
∫
NiNj dV and ST,ij =

d
∫ −→
∇Ni ·

−→
∇Nj dV . Note that Ni and Nj are FEM scalar basis functions, n is the time

step number, δt is the time step value and 0 ≤ θ ≤ 1 is the parameter of the theta-scheme

time discretization.

5.1.1 Formulation

Owing to its straightforward implementation, successive substitution is often the first

route to a multi-physics simulation. This approach, which is considered a weak-coupling

model, iterates over the uni-physics problems, solving the first equation for the first

unknown, given the second unknown, and the second equation for the second unknown,

given the first. The main advantage of successive substitution is making use of the

existing codes for the uni-physics problems; however, it may ignore strong couplings

between physics and give a false sense of completion [40]. If a solver code that goes

beyond the weak-coupling is needed, the NR method is the simplest algorithm. This

chapter provides an efficient FEM-based NR algorithm for solving the coupled electrical-

thermal problem of (5.3) in a strong coupling manner. For this purpose, a parallel FEM

formulation based on FGaBP algorithm is modified for solving multi-physics problems.

The FGaBP algorithm is already explained in Chapter 3. The message passing

scheme of FGaBP is shown graphically by Fig. 5.1. In a uni-physics problem, each mes-

sage contains information about the value of the unknown parameter at each node. For

example, in Fig. 5.1, left, the message mai in the electrical problem carries information

on the potential at node i, vi. On the other hand, the different physics involved in a

multi-physics problem need to exchange information with each other; if a strong coupling

approach is needed, the exchanged messages between different physics must contain in-

formation about their sensitivity with respect to each other, besides information about
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Figure 5.1: (Left): A message mai is sent from FNa to VNi. (Right): A message mia is

sent back from VNi to FNa.

Figure 5.2: (Left): A message mai,v (mai,T ) is sent from FNa to VNi in the electrical

(thermal) problem . (Right): A message mia,v (mia,T ) is sent back from VNi to FNa in

the electrical (thermal) problem.

their values. Figure 5.2 shows the message passing scheme in a multi-physics scenario.

Here, a massage mai,v (mai,T ) sent in the electrical (thermal) problem carries information

about vi (Ti) and also dvi/dTj (dTi/dvj).

When FGaBP update rules introduced by (3.13) to (3.23) are applied to the coupled

electrical-thermal problem, it should be noted that, in the electrical problem, element a

characteristic matrix, Mv, depends on the temperature values at nodes i ∈ N (a), where

N (a) shows the neighbourhood of factor node a. On the other hand, in the thermal

problem, element a source vector, BT , depends on the electric potential values at nodes

i ∈ N (a). Consequently, the α and β messages update rules can be rewritten as:

α
(t)
ai,v =

1

W̃L(i),v(Tj)
− α

(t∗)
ia,v , (5.4a)

β
(t)
ai,v = BL(i),v +

1

W̃L(i),v(Tj)
(K̄v

(t∗)(vj))
T C̃v(Tj) , (5.4b)
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α
(t)
ai,T =

1

W̃L(i),T
− α

(t∗)
ia,T , (5.4c)

β
(t)
ai,T = BL(i),T (vj) +

1

W̃L(i),T
(K̄T

(t∗)(vj, Tj))
T C̃T , (5.4d)

where (αai,v, βai,v) are messages in the electrical problem, (αai,T , βai,T ) are messages in the

thermal problem and i, j ∈ N (a). Equations (5.4a) to (5.4d) present a coupled system

of non-linear equations at each FGaBP iteration inside factor node a. The rest of this

section provides a parallel strong coupling algorithm to solve these coupled equations.

According to (5.4c), α messages in the thermal problem are independent of the potential

values; therefore, we only consider the coupling between (5.4a), (5.4b), and (5.4d):

α
(t)
ai,v =

1
W̃L(i),v(Tj)

− α
(t∗)
ia,v ,

β
(t)
ai,v = BL(i),v +

1
W̃L(i),v(Tj)

(K̄v
(t∗)(vj))

T C̃v(Tj),

β
(t)
ai,T = BL(i),T (vj) +

1
W̃L(i),T

(K̄T
(t∗)(vj, Tj))

T C̃T .

(5.5)

In general, a multi-dimensional zero-finding problem could be written as:

F(x) = 0, (5.6)

where F(x) = (f1(x), f2(x), ..., fn(x))
T is a system of n coupled non-linear equations

and each fi(x) maps the vector of unknowns x = (x1, x2, ..., xn)
T with dimension n into

a scalar. The NR method solves such a non-linear system by solving linear systems

successively, that is:

J(x(m))∆x(m) = −F(x(m)), (5.7)

where ∆x is called the update vector, J(x) is an n-by-n Jacobian matrix of F(x), i.e.,

Jij(x) = ∂fi/∂xj, and m is the iteration number. The update vector is then used in order

to obtain the solution vector x for the next iteration:

x(m+1) = x(m) +∆x(m). (5.8)

Here, we apply the NR method to (5.5), i.e., at the element-level. Suppose k = L(i) and

l = L(j) are the local indices corresponding to global VNs i and j, respectively. Since

both FGaBP and NR are iterative, we will have two nested iterations at each time step.
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If we are at iteration t (or t∗ ≤ t) of FGaBP and iteration m of NR, then we will have

the following non-linear residuals for factor node a:

α
(m,t)
ak,v − fk(v

(m,t∗)
l , T

(m−1)
l ) = 0

β
(m,t)
ak,v − gk(v

(m,t∗)
l , T

(m−1)
l ) = 0

β
(m,t)
ak,T − hk(v

(m−1)
l , T

(m,t∗)
l ) = 0 ,

(5.9)

where fk, gk and hk are the right-hand-sides of the equations in (5.5). At each FGaBP

iteration, the sensitivities ∂αak,v/∂Tl, ∂βak,v/∂Tl, ∂βak,v/∂vl, ∂βak,T/∂vl, and ∂βak,T/∂Tl

are calculated and sent to the neighboring nodes of factor a. After FGaBP iterations

have converged, the non-linear system of (5.5) can be solved with a pure NR method,

using local data for each FN. A local Jacobian matrix is constructed for factor node a

based on (5.5) and the sensitivities calculated during FGaBP as follows:

Ja =

I2nc×2nc Ja,v

Ja,T Inc×nc


3nc×3nc

, (5.10)

where nc is the number of nodes per cell, and I is the identity matrix. The details

on the calculation of the off-diagonal elements of Ja are provided in Appendix A. The

calculation of Ja,v and Ja,T entries needs the partial derivatives of local scalars and vectors

with respect to the temperature values at the nodes in the neighborhood of a; Thus,

the Jacobian matrix associated with factor a, Ja, is only dependent on the local data

structure of factor a, i.e., dense matrix Ma, vector Ba, and messages (αai, βai). After

FGaBP iterations have converged and the local Jacobian is formed for factor node a, the

message updates are computed as:

{
∆αak,v

}
nc×1{

∆βak,v

}
nc×1{

∆βak,T

}
nc×1



(m)

=
[
J−1
a

](m)

·



{
fk − αak,v

}
nc×1{

gk − βak,v

}
nc×1{

hk − βak,T

}
nc×1



(m)

. (5.11)

Finally, at the end of the current NR iteration, the messages αak,v, βak,v, and βak,T are

updated using the results from (5.11):
{
αak,v

}
{
βak,v

}
{
βak,T

}


(m+1)

=


{
αak,v

}
{
βak,v

}
{
βak,T

}


(m)

+


{
∆αak,v

}
{
∆βak,v

}
{
∆βak,T

}


(m)

. (5.12)
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Initialize messages in both problems

Calculate local vectors and matrices

Solve using FGaBP iterations

Calculate local Jacobian matrices

Update the messages

NR Iterations

Figure 5.3: The parallel NR algorithm.

The updated messages are then used in the next NR iteration. After the NR iterations

have converged, we proceed to the next time step. Figure 5.3 shows the element-wise NR

iterations graphically.

Figure 5.4: (Left): The geometry of the test case in two dimensions. (Right): Structured

quadrilateral mesh containing four colours.
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1 Import problem geometry and mesh;

2 for NR iteration m = 1, 2, . . . do

3 for each level in the mesh hierarchy do

4 for cell a = 1, 2, . . . do

5 for node i ∈ N (a) do

6 Initialize messages mai,(v,T );

7 end

8 Calculate local vector f and local matrices Mv,T inside cell a;

9 end

10 end

11 for cycles = 1, 2, . . . in the V-cycle do

12 for Mesh levels from fine to coarse do

13 Execute v1 iterations of Algorithm 2;

14 Restrict;

15 end

16 Execute Algorithm 2 on the coarsest level;

17 for Mesh levels from coarse to fine do

18 Execute v2 iterations of Algorithm 2;

19 Prolongate;

20 end

21 if global tolerance < tolerance then

22 break;

23 end

24 end

25 Execute Algorithm 3 on the finest level;

26 if global residual < NR tolerance then

27 break;

28 end

29 end

Figure 5.5: Parallel NR pseudo-code in each time step.
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5.1.2 Implementation

In this section, the parallel NR algorithm is applied to the coupled equations of (5.3) in

two dimensional (2D) and three dimensional (3D) geometries. As shown in Fig. 5.4, left,

tissue surrounding the probe tip is modelled by an 8.0 cm by 8.0 cm square (8.0 cm by

8.0 cm by 8.0 cm cubic) domain in 2D (3D), when the 16 V source voltage is modelled

as a Dirichlet boundary condition on the probe located at the center of the domain.

The outer boundaries of the domain serve as a return ground electrode. In the thermal

problem, the normal body temperature, i.e., 37 oC is the initial value of the temperature,

and a Neumann boundary condition is applied to the outer boundary. The electrical and

thermal parameters in (5.1) and (5.2) are chosen according to Table 2.1. In addition, the

electrical conductivity increases with the temperature with a linear rate of 2%/oC. The

algorithm is implemented using the open-source FEM software deal.II [68].

1 for FGaBP iteration t = 1, 2, . . . do

2 for colour c = 1, 2, . . . do

3 for cell a in colour c do

4 for node i ∈ N (a) do

5 Calculate mai(v,T ), i.e., (3.13) to (3.23);

6 Calculate Ja, i.e., (5.10) ;

7 Update vi and Ti, i.e., (5.12) ;

8 Calculate local message tolerance;

9 end

10 end

11 Update global message tolerance;

12 end

13 if global tolerance ¡ FGaBP tolerance then

14 return(global tolerance);

15 break;

16 end

17 end

Figure 5.6: FGaBP with local Jacobian calculation
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1 for colour c = 1, 2, . . . do

2 for cell a in colour c do

3 Update mai,(v,T );

4 Update vi and Ti;

5 Calculate local NR residual;

6 Calculate local vector f and local matrices Mv,T inside cell a.

7 end

8 Update global NR residual;

9 end

Figure 5.7: NR parallel update

An element-based colouring message schedule is implemented in order to avoid any

race conditions when parallel processing is used. The race condition might happen when

two different elements, e.g., elements a and b in Fig. 5.2, left, try to update the same

global node j. If elements a and b belong to two different threads, then we need to make

sure that the messages maj,v and mbj,v do not try to update the voltage value at node j

at the same time. One solution is to schedule the messages based on element colouring.

The mesh elements are coloured so that no two adjacent elements have the same colour

symbol. In this way, the messages in each colour group can be computed and safely

communicated in parallel, since elements that belong to the same group do not share any

global nodes. A mesh colouring diagram in 2D is illustrated in Fig. 5.4, right, using a

quadrilateral mesh.

Mesh refinement is conduced in 2D (3D) by splitting each quadrilateral (hexahedral)

cell into four (eight) smaller cells successively. In this parent-child scheme, we start by

a coarse mesh and continue mesh refinement until a fine mesh is achieved. In order to

accelerate the FGaBP iterations, information from the coarse mesh (Parent) are trans-

ferred to the next fine mesh (Child). The transferred information is the local messages,

mai,v and mai,T calculated for each element a and node i ∈ N (a). In our multi-physics

scheme, these messages contain the so called beliefs regarding the temperature and po-

tential values at each node, as well as the sensitivity of these values with respect to their

neighbouring nodes. The transfer of information between different refinement levels is
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conducted in a multi-grid scheme [61].

Figure 5.5 presents a pseudo-code for the parallel NR method with OpenMP direc-

tives. Lines 14 to 28 indicate the multi-grid scheme implemented as a V-Cycle [61]. The

algorithms depicted by Fig. 5.6 and Fig. 5.7 execute FGaBP iterations and the appli-

cation of local Jacobian matrices to update the messages, respectively. Although the

sensitivity information is carried on by the messages, only the potential and temperature

values are considered in the prolongation and restriction steps in Fig. 5.5; Hence, these

two steps are implemented in parallel exactly as proposed by [61] and described in Section

3.3. Because of the distributed nature of our method, no global Jacobian matrices are

assembled which means the application of a conventional preconditioner is not needed;

however, the multi-grid approach acts as a preconditioner in reducing the number of

iterations on the finest level.

5.1.3 Results

The numerical results of the new NR formulation are verified using COMSOL Multi-

physics software. The temperature obtained from COMSOL and the new multi-physics

NR algorithm at a specific location during one minute of ablation are shown in Fig. 5.8.

Quantitatively, the RMS error between these two simulations is 0.028 oC, which validates

our method.

To test the parallel scalability properties of the method, a CPU implementation

with multi-threading (OpenMP) is provided. As indicated in Fig. 5.5, the CPU time

calculation includes all the steps except for the output of results. All runs are executed

on a Compute Canada cluster node. The node contains 2 × 20-core Intel Gold 6148

Skylake 2.4 GHz CPUs with 186 GB DRAM. When the parameters v1 = 1 and v2 = 5 in

Fig. 5.5, the V-Cycle required 5 iterations for all 2D and 7 iterations for all 3D runs. This

is independent of the number of unknowns in the finest level which is in agreement with

the findings reported by [61]. Note that the number of iterations in the inner FGaBP

execution, i.e., line 19 in Fig. 5.5, remains proportional to the problem size in the coarsest

level. In the electrical problem, we start by a mesh size of 400 cells in 2D (8000 cells

in 3D) which takes 380 (430) inner iterations to reach a message residual of 10−8. The

thermal problem converges faster in both 2D and and 3D implementations. Figure 5.9
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Figure 5.8: Temperature values over time at a specific point, i.e., x = 1 cm and y = 1

cm in 2D domain, when the ablation probe tip is located at the center of the domain, i.e.

x = 0 cm and y = 0, cm . The time step size δt is equal to 0.5 s.

shows the speedup for a fixed problem size of 4,173,281 unknowns in 3D with respect to

the number of processors (strong scaling).

A curve is fitted to the plot based on Amdah’s law [69], from which the ratio of

the serial part of the algorithm (s) is obtained as 0.032. Weak scaling is performed by

running the algorithm with different numbers of threads and with a correspondingly scaled

problem size in 2D. The problem size is varied from 410,881 to 13,148,192 unknowns.

The scaled speedup data and a linear curve fitted to it based on Gustafson’s law [70] are

depicted in Fig. 5.10. The fitted value for s is 0.12 which is different from that given by

Amdah’s law and strong scaling. The discrepancy in s can be due to the approximations

in both Amdah’s and Gustafson’s laws, i.e., the serial part is assumed to remain constant,

and the parallel part is assumed to be scaled up in proportion to the number of threads.

In our strong and weak scaling studies, no scheduling type is specified for the parallel

loops, i.e., OpenMP uses its default scheduling type. In Fig. 5.11, a comparison between

static and dynamic scheduling with different chunk sizes is provided. The number of

threads is chosen to be 12 and 16, when the problem size is the same as that of strong

scaling, i.e., 4,173,281 unknowns in 3D. According to Fig. 5.11, the best performance

observed is similar to that delivered by the default scheduling in Fig. 5.9. Also, for
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Figure 5.9: Strong scaling of the multi-physics NR method in terms of speedup with

respect to 1 core implementation. The dashed line is the fitted curve based on Amdah’s

law.

Figure 5.10: Weak scaling of the multi-physics NR method in terms of scaled speedup

with respect to 1 core implementation. The dashed line is the fitted curve based on

Gustafson’s law
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Figure 5.11: Speedup of the parallel NR method in terms of OpenMP for loop’s scheduling

type and chunk size when the number of threads = 12 and 16.

reasonably large chunk sizes, the difference between static and dynamic scheduling is

insignificant, which is due to the fact that the iterations of the parallel loops in the code

have almost the same computational work.

We compare our OpenMP NR algorithm to a parallel implementation of the tra-

ditional NR method provided by the optimized library Portable, Extensible Toolkit for

Scientific Computation (PETSc)[71, 72, 73]. PETSc employs the MPI standard for com-

munication between parallel tasks. The PETSc implementation is tested on a single

cluster node with total 40 number of cores, where one MPI task is defined per core. The

Jacobian matrix is formed at each NR iteration, when the assembly of the Jacobian is

done in parallel using deal.II’s WorkStream shared-memory model. For the solving stage,

PETSc provides an interface to a variety of iterative and direct solvers, from which the

MUltifrontal Massively Parallel sparse direct Solver (MUMPS) [74, 75] is selected here.

Figure 5.12 shows the average execution times per time step for our OpenMP NR code

with 16 threads, and the PETSc implementation with 16 threads for the assembly and

16 MPI tasks for the solution, respectively. Problem sizes change from 500K to 33M

unknowns in 3D. The Parallel NR demonstrated faster execution time while preserv-

ing linear scalability with the number of unknowns. As the problem size increases, the

overhead due to PETSc’s MPI calls reduces resulting in improved efficiency for larger

problems.
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Figure 5.12: Execution times using 16 cores.

Finally, the convergence plot of the parallel NR method is depicted and compared to

that of a Gauss-Seidel algorithm when applied to the same electrical-thermal problem in

Fig. 5.13. As for the NR approach, in the early iterations, changes of the residual norm

are almost linear; however, when we get sufficiently close to the solution, the quadratic

convergence can be observed in the last three iterations until the convergence criterion,

i.e., a residual norm smaller than 10−10, is achieved.

5.2 Parallel strong coupling formulation of the ther-

mal tissue-blood interaction

This section presents an MPI-based extension of the multi-physics algorithm in Section

5.1. Instead of the electrical-thermal coupling, the multi-physics heat transfer problem in

radiofrequency ablation is considered in this section. The Pennes model which was used

in the previous section assumes the blood temperature is constant, i.e., 310 K. However,

this is only true within and close to large vessels [15]. For this reason, Payne et al. [11]

model the heat transfer problem with two coupled equations:

(1− ϵ)ρticti
∂Tti
∂t

= (1− ϵ)Q+ (1− ϵ)∇ · (d∇Tti) +H(Tbl − Tti), (5.13a)

ϵρblcbl(
∂Tbl
∂t

+ v · ∇Tbl) = ϵQ+ ϵ∇ · (d∇Tbl)−H(Tbl − Tti). (5.13b)
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Figure 5.13: The convergence plot of the parallel NR algorithm compared to that of the

Gauss-Seidel algorithm.

In these two equations, subscripts ‘ti’ and ‘bl’ stand for tissue and blood, respectively.

The two additional parameters ϵ and v are the fraction of blood volume over total volume

and blood velocity (m/s), respectively. These equations are nonlinear due to the linear

dependency of thermal conductivity d on temperature. Payne et al. [11] solve the coupled

blood and tissue equations based on the Picard linearization which is only valid if the

non-linearity is mild. In this section, the Newton Raphson method is used to solve the

non-linear coupled equations of (5.13). The spatial discretization is based on FEM and

the backward differentiation formula of order two is employed for time discretization:

(1− ϵ)ρticti
3T n+1

ti − 4T n
ti + T n−1

ti

2∆t
= (1− ϵ)Q + (5.14a)

(1− ϵ)∇ · (d∇T n+1
ti ) +H(T n+1

bl − T n+1
ti ),

ϵρblcbl
3T n+1

bl − 4T n
bl + T n−1

bl

2∆t
= ϵQ + ϵ∇ · (d∇T n+1

bl ) (5.14b)

+H(T n+1
ti − T n+1

bl )− (ϵρblcbl)v · ∇T n+1
bl ,

where the superscript n denotes the nth time step and ∆t is the time step value.

5.2.1 Algorithm

Similar to the coupled electrical-thermal problem in the previous section, when applied to

the coupled thermal equations in (5.14), the FGaBP messages should carry information
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Figure 5.14: The tissue-blood interaction with message passing, where mbl (mti) contains

blood (tissue) temperature information [76].

Figure 5.15: The neighbourhood of factor node a.

on how the tissue (blood) temperature depends on the blood (tissue) temperature. By

doing so, we can deal with the tissue-blood interaction in the element level, avoiding

the construction of a global Jacobian which is needed by the conventional NR. The key

property of FGaBP which allows this is that the messages sent by a FN at each FGaBP

iteration only depend on the local data, i.e., the values in the neighbourhood of the FN.

Mathematically speaking, we can write:
mti

ai = fi(T
ti
a ,T

bl
a )

mbl
ai = gi(T

ti
a ,T

bl
a ).

(5.15)

Here, mti
ai and mbl

ai are messages sent from factor node a to variable node i ∈ N (a)

for tissue and blood temperature, respectively. The vectors Tti
a and Tbl

a contain tissue

temperature and blood temperature in the neighborhood of factor node a, N (a). The

functions fi and gi describe the dependency of the messages on the temperature values.

It’s important to note that fi (gi) is a non-linear function of Tti
a (Tbl

a ) because of the

temperature dependency of d in (5.13).

At each FGaBP iteration, the non-linear system of (5.15) can be solved with New-

ton’s method. A local Jacobian matrix, Ja is constructed based on the functions fi and
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gi as follows:

Ja =

Jti,ti Jti,bl

Jbl,ti Jbl,bl


2n×2n

, (5.16)

where n is the number of nodes per element. The entries of Ja are found based on the

derivatives of fi and gi with respect to mti
ai and m

bl
ai. For instance, the sub-matrix Jti,ti is

formed as:

Jti,ti(L(i),L(j)) =
∂(mti

ai − fi)

∂mti
aj

, (5.17)

where 1 ≤ L(i),L(j) ≤ n are the local indices corresponding to the global variable nodes

i, j ∈ N (a). These partial derivatives are calculated analytically based on the update

rules of FGaBP introduced by [61]. After the local Jacobian is formed, message updates

are computed as:
{
∆mti

ai

}
n×1{

∆mbl
ai

}
n×1


2n×1

=
[
J−1
a

]
·


{
fi −mti

ai

}
n×1{

gi −mbl
ai

}
n×1


2n×1

. (5.18)

The above update rule is carried out for each factor node a and then the FGaBP algorithm

propagates the updated messages throughout the mesh. After the FGaBP iterations have

converged, we proceed to the next Newton iteration and compute the local Jacobians and

update messages again. This continues until the local update messages are smaller than

a threshold, meaning the cell-wise Newton’s method has converged for the current time

step.

5.2.2 Implementation and Results

The computational domain is discretized using a hexahedral mesh. Starting by a coarse

mesh (and its corresponding graph), mesh refinement is conduced by splitting each hexa-

hedral element into eight smaller elements successively. As proposed by [61], a multi-grid

scheme to transfer information between different refinement levels is used to accelerate

FGaBP iterations. The multi-grid approach resembles a preconditioner in reducing the

number of iterations on the finest level.

An MPI (message passing interface) version of the multi-physics FGaBP method is

developed in this section. The MPI code is built upon the parallel distributed computing
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1 while NR threshold < global NR residual do

2 for cell each a in sub-domain s, and for node each i ∈ N (a) do

3 Calculate local Jacobian Ja;

4 Calculate local residual;

5 Update the messages mti
ai and m

bl
ai;

6 if i is at the interface then

7 Send out mti
ai and m

bl
ai to the adjacent sub-domains;

8 end

9 end

10 Update global residual;

11 for FGaBP iteration t = 1, 2, . . . do

12 for each sub-domain s in the domain do

13 Load input messages from adjacent sub-domains;

14 for cell a in sub-domain s do

15 for node i ∈ N (a) do

16 Propagate the messages mti
ai and m

bl
ai inside s;

17 if i is at the interface then

18 Send out mti
ai and m

bl
ai to the adjacent sub-domain;

19 end

20 Update T ti
i and T bl

i ;

21 Calculate and send out local message residual;

22 end

23 end

24 Update global message residual;

25 end

26 if global message residual < FGaBP threshold then

27 break;

28 end

29 end

30 end

Algorithm 3: Parallel NR with local Jacobian calculation.
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Figure 5.16: Mesh partioning using p4est. The dashed line shows the interface between

two sub-domains Ω1 and Ω2.

in deal.II [77]. The parallel pseudo-code is shown by Algorithm 3. For massively parallel

computations, deal.II builds on the p4est [78] library and so does our code for mesh

partitioning. Deal.II assigns each part of the partitioned mesh to one MPI process.

Each processor stores the cells it owns and also one layer of adjacent cells—called ghost

cells—that are owned by other processors. The locally owned cells and ghost cells can

be identified by specific indices that deal.II assigns to them. We exploit this feature to

define adjacent factor nodes and interface nodes in each sub-domain, and communicate

messages between MPI processes. Such communication occurs at the end of each FGaBP

iteration. This is shown graphically by Fig. 5.16. The dashed line is the interface between

the two partitions, while the layers shown by grey elements are the ghost layers and are

shared between the two partitions. Consequently, the messages sent inside elements a

and b are communicated between the two processors.

The numerical results of the parallel algorithm are verified against the built-in RFA

model in COMSOL Multiphysics software. Figure 5.17 shows the geometry of the model

in COMSOL. The tissue temperature from COMSOL and our algorithm at a specific

location inside the domain are depicted in Fig. 5.18. The RMS error for 10 minutes

of ablation is 0.021 oC. To assess the parallel efficiency of our method, we perform a

strong scaling analysis. The global unstructured mesh is partitioned first. We map each

partition to one MPI process (node), and use one thread per process. The algorithm is

tested on Compute Canada cluster nodes. Each node contains an Intel Gold 6148 Skylake

2.4 GHz CPU with 186 GB DRAM. Figure 5.19 shows the speedup for solving the multi-

physics system of 200,000 double-precision unknowns. The speed-up degrades from 1 to
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Figure 5.17: The built-in COMSOL model of RFA.

Figure 5.18: Comparison between COMSOL and the parallel NR algorithm. Plot shows

tissue temperature at a specific point for 10 minutes of ablation.

2 processes because of the introduction of mesh partitioning and MPI communication.

The parallel performance then improves by increasing the number of processes up to

128. After this point, the overhead of communication between the processes and also

the assembly of the solution vector dominates the computation time, resulting in the

degradation of parallel scalability.
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Figure 5.19: Strong scaling analysis.

Figure 5.20: Convergence plot of Algorithm 3.

The convergence plot of the parallel NR method is depicted in Fig. 5.20. If the

initial messages are chosen sufficiently close to the solution, the quadratic convergence

can be observed in NR iterations until the convergence criterion is achieved. To ensure

the initial guess is close enough to the NR solution, we had to run the algorithm in a

Gauss-Seidel manner for a few iterations first.

The FGaBP algorithm was modified and applied to the coupled electrical-thermal
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and thermal-thermal problems that emerge in the mathematical modelling of RFA. By

forming local Jacobian matrices instead of a global sparse Jacobian, our method provides

a highly scalable strong coupling algorithm for solving the non-linear coupled equations

on multiple cores (shared-memory) and multiple cluster nodes (distributed-memory).

This is important in the context of fast and accurate simulation of RFA treatment for

hepatic tumours, considering that the coupled problems are often solved in a decoupled

manner because of their high computational cost. The correctness of the algorithms

provided in this chapter are verified by comparing against COMSOL multiphysics soft-

ware. The parallel implementation of the algorithms shows reasonable speedups on both

shared-memory and distributed-memory architectures. The next chapter exploits the

probabilistic properties of belief propagation in order to deal with the uncertainties in

RFA modelling.
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Chapter 6

Uncertainty analysis of RFA

Uncertainties are inevitable when simulating RFA treatment. These uncertainties largely

result from various physiological parameters of the liver whose exact values are unknown.

Even small uncertainties in measuring the physiological parameters can have a substan-

tial impact on the outcome [4]. Taking the uncertainty of the simulation parameters

into consideration, the dependence of the simulation outcome with respect to parameter

variations must be evaluated. Such analysis computes how the uncertainty in the model

parameters propagates to the simulation output, allowing the physician to estimate the

expected range of the treatment outcome. In this chapter, we start off by a brief overview

of SFEM and its basic concepts. Then, we will put together a novel sample-based solver

for uncertainty analysis of RFA, using the SFEM concepts and a variant of the belief

propagation method called non-parametric belief propagation.

6.1 The stochastic finite element method

Engineering problems that contain uncertainties are often described by stochastic differ-

ential equations. The stochastic finite element method (SFEM) is a numerical approach

specifically developed for solving stochastic PDEs. It takes advantage of numerical tech-

niques for deterministic problems in order to characterize stochastic properties of the

solution. If one or more components of a PDE exhibit random behaviour, the response

field will also be random. The SFEM studies the propagation of randomness from the
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PDE components, such as material properties, geometry, and external forces, to the solu-

tion. The SFEM consists of three basic steps [79]: 1) discretization of the stochastic fields

representing the random properties of the system, 2) construction of the local stochastic

matrices and then assembly of the global stochastic matrix and finally, 3) calculation of

response statistics. These three steps will be explained in this section.

6.1.1 Discretization of stochastic fields

The first step in the analysis of stochastic PDEs is the representation of the uncertain

quantities of the system. These uncertain quantities are described with the definition of

random fields. A random field is a random function f̃(x) taking on a random value at

each point x inside a multi-dimensional space Ω. The stochastic characteristics of f̃(x)

are often obtained through experimental measurements. The continuous stochastic field

f̃(x) is then discretized, that is, replaced by a finite number of indexed random variables

forming a random vector:

f̃(x) 7→ {fi}, (6.1)

where index i depicts the position at which f̃(x) is evaluated.

The discretization methods comprise two basic categories: point discretization meth-

ods and average-type discretization methods. In the point discretization, the set of ran-

dom variables {fi}, is simply calculated based on the values of the continuous stochastic

field f̃(x) at specific points inside the domain Ω. Assuming the domain is already dis-

cretized using a finite element mesh, the evaluation points could be element centroid,

element nodes, or integration points inside each element. In the average-type discretiza-

tion method, a random variable is assigned to each finite element, whose value is found

from the integral of f̃(x) over the element. Both point discretization and average-type

discretization methods have been widely utilized in the SFEM literature resulting in

different levels of accuracy.

The stochastic mesh used for the discretization of the stochastic field doesn’t have

to be the finite element mesh. The stochastic mesh is controlled by the spatial variability

of the random field, while the finite element mesh is determined by the geometry and the

gradients of the response field. As these two meshes are selected based on different criteria,

the use of different meshes may be more efficient in certain problems. For instance, if
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the stochastic field has strong spatial correlation, the problem size can be reduced by

choosing a stochastic mesh that is coarser than the finite element [79].

6.1.2 Formulation of the stochastic linear system

In the context of SFEM, the stochastic behaviour of the solution can be due to the

random material properties, problem geometry, and the forcing field. In this chapter, we

assume the material properties—represented by a stochastic field f̃(x)—are the sources

of randomness, considering the geometry and the force to be deterministic.

To follow the standard notation of FEM, stochastic quantities are often denoted

by adding a tilde to their deterministic counterpart in the SFEM literature. Thus, the

stochastic element matrix is indicated by K̃e, and Ke stands for a realization of this

matrix. The global properties are formed by the standard assembling procedure of FEM,

that is, the individual element contributions are added to the global stiffness matrix and

forcing vector:

K̃ =
∑

K̃e, q̃ =
∑

q̃e. (6.2)

The global system of equations is then obtained as:

K̃ũ = q̃ , (6.3)

where ũ is the vector containing the solution values at the nodes. The key task of SFEM

is to estimate the stochastic properties of ũ from those of the global stiffness matrix K̃.

For this reason, the right-hand-side vector is often considered deterministic [80].

6.1.3 Calculation of response statistics

The Monte Carlo simulation (MCS) is the simplest method for calculating response vari-

ability in the context of SFEM. Assuming the right-hand-side vector is deterministic, n

samples of the stochastic stiffness matrix K̃ are generated and the linear system of (6.3) is

solved n times, producing n samples of the solution vector ũ. Basic statistical properties

of the solution vector are then calculated from these samples. For example, the mean

and variance of the solution at node i are:

E(ui) =
1

n

n∑
j=1

ui(j), (6.4)
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κ2(ui) =
1

n

n∑
j=1

[
ui(j)− E(ui)

]2
. (6.5)

The accuracy of above estimations depends on the number of samples. In the case of

large-scale systems, the solution of n deterministic problems has a prohibitively high

computational cost. Therefore, the MCS is often used as a robust reference for validating

the results of other methods in the SFEM literature.

The MCS treats the stochastic system in a black-box approach, i.e., the random

properties are never characterized directly. The SFEM on the other hand characterizes

randomness analytically by deriving approximate series expansions of the stochastic stiff-

ness matrix and of the solution. Two popular cases are Taylor and Karhunen–Loève series

expansions, known as perturbation method and spectral method, respectively. Assume

the stochastic field f̃(x) representing the random behaviour of the material is discretised

into N random variables {fi}Ni=1. In the perturbation method, Taylor series expansion of

the stochastic stiffness matrix is computed as [79]:

K = K0 +
N∑
i=1

KI
ifi +

1

2

N∑
i=1

N∑
j=1

KII
ij fifj + ..., (6.6)

where

KI
i =

∂K

∂fi

∣∣∣∣
fi=0

(6.7)

and

KII
ij =

∂2K

∂fi∂fj

∣∣∣∣
fi,fj=0

. (6.8)

Taylor series expansion of the right-had-side and solution vectors are also required:

q = q0 +
N∑
i=1

qI
ifi +

1

2

N∑
i=1

N∑
j=1

qII
ij fifj + . . . , (6.9)

u = u0 +
N∑
i=1

uI
ifi +

1

2

N∑
i=1

N∑
j=1

uII
ij fifj + . . . . (6.10)

The solution vector is then calculated in an iterative approach as:

u0 = K−1
0 q0,

uI
i = K−1

0 (qI
i −KI

iu0),

uII
ij = K−1

0 (qII
ij −KI

iu
I
j −KI

ju
I
i −KII

ij u0).

(6.11)
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If the right-hand-side vector is deterministic, q = q0 and qI
i = qI

ij = 0. The main

drawback of the perturbation method is its need for calculation of the partial derivatives

which increases the computational cost of the approach in large-scale problems.

The SSFEM was introduced by Ghanem and Spanos [48] for solving PDEs with

uncertain material properties. If f̄(x) and C(x1,x2) stand for the mean function and

covariance kernel of the stochastic field f̃(x), the Karhunen-Loeve (K-L) expansion of

f̃(x) is:

f̃(x) = f̄(x) +
∞∑
i=1

√
λiϕi(x)ζ̃i, (6.12)

where {ζ̃i} is an infinite set of random variables representing the randomness of f̃(x).

The deterministic parameters λi and ϕi are eigenvalues and eigenfunctions of C(x1,x2),

obtained from the integral equation:∫
Ω

C(x1,x2)ϕi(x1)dx1 = λiϕi(x2), (6.13)

in which Ω is the domain of interest and the normalized orthogonal eigenfunctions satisfy:

∫
Ω

ϕi(x)ϕj(x)dx =

1 i = j

0 i ̸= j.

(6.14)

In practice, a finite number of terms with the largest eigenvalues are retrained in the

infinite K-L series of (6.12). It can be proved [48] that the terms of the random series

{ζ̃i} are obtained from the following integration:

ζ̃i =
1

λi

∫
Ω

α̃(x)ϕi(x)dx, (6.15)

where α̃(x) ≜ f̃(x)− f̄(x) is a zero-mean random field.

The stochastic field f̃(x) is discretized as explained in Section 6.1.1. This turns the

function f̄(x) and kernel C(x1,x2) into a mean vector and covariance matrix, respectively.

The K-L expansion of f̃(x) is then evaluated at each discretization point xd of the domain:

f̃(xd) = f̄(xd) +
∞∑
i=1

√
λiϕi(xd)ζ̃i. (6.16)

Substituting (6.16) in the element matrices and assembling the global stiffness matrix

leads to series expansion of the stiffness matrix. AssumingM terms in the K-L expansion

are retained, the stochastic stiffness matrix will have the following form:

K̃N×N = K̄+
M∑
i=1

Ki ζ̃i. (6.17)
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Here, N is the number of degrees of freedom, K̄ is the mean matrix of K̃, and Ki are

deterministic matrices. The random solution vector ũN×1 is represented using polynomial

chaos (PC) [81] expansion:

ũ =
∞∑
j=1

ujΨ̃j, (6.18)

where uj are the unknown vector coefficients to be found, and Ψ̃j are known random

polynomials. Truncating the PC series at the P th term, and assuming the source vector

is deterministic, the linear system becomes:

(
K̄+

M∑
i=1

Kiζ̃i
)( P∑

j=1

ujΨ̃j

)
= q. (6.19)

The optimal set of coefficients {uj}Pj=1 is found by minimizing the residual RM,P defined

as:

RM,P ≜
(
K̄+

M∑
i=1

Kiζ̃i
)( P∑

j=1

ujΨ̃j

)
− q, (6.20)

with respect to {uj}Pj=1. This finally leads to solving an NP × NP linear system of

equations [48]: 
K11 K12 · · · K1, NP

K21 K22 · · · K2, NP

...
...

. . .
...

KNP, 1 KNP, 2 · · · KNP,NP




u1

u2
...

uNP

 =


q1

q2
...

qNP

 . (6.21)

The advantage of SSFEM over the perturbation method is that it doesn’t require

calculation of partial derivatives. However, as the number of dofs N is multiplied by P

in the dimension of the linear system, the computational cost required for the solution

of (6.21) is much larger than that of its corresponding deterministic system. In the next

section, we devise a novel technique based on belief propagation algorithm for the solution

of stochastic PDEs.

6.2 Non-parametric belief propagation

The BP algorithm was introduced in Chapter 3. Given the joint distribution p(x1, x2, ..., xn)

of n random variables {x1, x2, ..., xn}, BP aims to find their marginal distributions p(xi)
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for 1 ≤ i ≤ n. The probabilistic dependence between the random variables can be de-

picted by a graph. If these dependencies are symmetrical, the graph is defined by a set

of nodes V and a corresponding set of undirected edges E . At each iteration t of the BP

algorithm, nodes i ∈ V send messages mt
ij(xj) to the neighbouring nodes j ∈ N (i):

mt
ij(xj) ∝

∫
xi

ψij(xi, xj)ϕi(xi)
∏

k∈N (i)\j

mt−1
ki (xi) dxi, (6.22)

where the function ψij(xi, xj) > 0 is called the edge potential and indicates the probabilis-

tic dependence between nodes i and j. The function ϕi(xi) is the self potential of node

i, containing information about the marginal distribution p(xi). At message convergence

the marginal probability at node j is computed as:

p(xj) ∝ ϕj(xj)
∏

i∈N (j)

mij(xj). (6.23)

Most BP applications assume each random variable xi takes one of k possible dis-

crete values, meaning that messages and marginal probabilities can be represented by

k-dimensional vectors. As a result, the message update integral of (6.22) becomes a ma-

trix–vector multiplication. For graphical models with continuous variables on the other

hand, closed-form evaluation of the integral in (6.22) is only feasible when the variables

are jointly Gaussian. The resulting algorithm is called GaBP, in which the messages

mij(xi) can be described by their mean and variance. These parameters are iteratively

updated via (6.22). With the exception of multivariate Gaussian problems, finding the

marginals is challenging for continuous random variables; the messages are continuous

functions and so, are expensive to compute and transmit, in which case the BP approach

is not computationally feasible.

Various techniques have been proposed in the literature to moderate the complexity

of continuous BP in different applications [82, 83, 84, 85]. These techniques often ap-

proximate the messages as mixtures of normal distributions [85] or as weighted particles

[83, 84]. A low-complexity alternative to continuous BP based on expanding the messages

in stochastic orthogonal series was proposed by [86]. All these techniques are categorized

as non-parametric belief propagation (NBP), a variant of BP for graphical models con-

taining continuous non-Gaussian random variables. The NBP represents the message

mij(xj) using kernel–based density estimation. Assume N (x;µ, κ) indicates a Gaussian
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density of mean µ and variance κ, we may then approximate mij(xj) by a mixture of L

Gaussian kernels as:

mij(xj) =
L∑
l=1

wl N (xj;µl, κl), (6.24)

where wl is the lth kernel’s weight. Although other options for kernel functions are also

suggested, in order to exploit the simplicity of the GaBP algorithm, we only consider

Gaussian kernels in this chapter. The NBP algorithm uses sampling methods to estimate

the parameters of (6.24).

One can break down the message update rule in (6.22) into two stages. First, the

product of all incoming messages,
∏

kmki(xi), is computed. Second, the product is

combined with the self-potential ϕi and edge potential ψij and integrated to produce the

outgoing message. The NBP algorithm approximates these two stages using a sampling-

based approach. To approximate the incoming message product, the NBP notes that the

multiplication of d Gaussian distributions of a random variable xi is itself Gaussian:

d∏
k=1

N (xi;µk, κk) ∝ N (xi;µ, κ), (6.25)

where:

κ−1 =
d∑

k=1

κ−1
k , κ−1µ =

d∑
k=1

κ−1
k µk. (6.26)

Therefore, one can conclude that if the incoming messagesmt−1
ki (xi) in (6.22) are Gaussian

mixtures each containing L components, the output of the message product will be a

Gaussian mixture with Ld components.

Although the message updates could be computed using (6.22) to (6.26), the number

of mixture components grows exponentially with each iteration. In other words, if we

start with L–component messages in the first iteration, the second iteration messages will

have Ld components and the messages in the third iteration will have (Ld)d components

and so forth. As d, the number of nodes in the neighbourhood of each node, is usually

greater then one, the exponential growth of the number of components makes direct

application of (6.25) and (6.26) intractable. Thus, the NBP algorithm approximates

the Ld–component outgoing messages by first drawing independent samples from them,

and then fitting an L-component Gaussian mixture to the samples. This technique is

called mixture reduction and is an extensive research topic in non-parametric statistics

[87]. Mixture reduction can be as simple as eliminating Gaussian components with lower
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probabilities (smaller wl in (6.24)), while more advanced techniques such as merging

components according to certain similarity criteria [88] also exist.

The theoretical background of NBP and its convergence criteria is explored in statis-

tics literature [86] and is not within the scope of this chapter. In the remainder of this

chapter, we exploit the main ideas of NBP and combine them with those of SFEM in

order to design a new algorithm for solving stochastic PDEs. The Laplace’s equation

with random conductivity plays a key role in the uncertainty analysis of RFA, and so

is chosen as an illustrative example of solving stochastic PDEs with NBP in the next

section.

6.3 Solving stochastic Laplace’s equation with NBP

In this section we combine the ideas from the SFEM and NBP in order to develop a

novel method for solving stochastic PDEs. We use SFEM to construct a stochastic linear

system from a random field. Then, instead of following conventional SFEM approaches,

we will give our attention to NBP for solving the stochastic linear system. The electrical

conductivity of the liver is considered to be a major source for uncertainty in RFA mod-

elling. For this reason, the Laplace’s equation with random conductivity is considered in

this section.

6.3.1 Assembly of the stochastic linear system

RFA is a type of hyperthermia treatment that uses high temperatures to cook the can-

cerous cells. The source of this heat is the pass of electric current through the conductive

medium of the liver, a phenomenon known as Joule heating. As such, Laplace’s equa-

tion is used to model the electric potential and subsequently the heat source in RFA

simulations:

∇ · (σ(x)∇v) = 0, x ∈ Ω, (6.27)

where Ω is the spatial domain of interest, σ (S/m) is the electrical conductivity of the liver,

and v (V) is the electric potential. As explained in Section 2.1, the electrical conductivity

of the liver depends on the temperature. Due to the spatial variations of the temperature,
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σ(x) depends on space as well. Liver conductivity also depends on the physical state of

the tissue, and varies from day to day depending on the patient’s physical condition. The

range of values outlined in the literature marks out this uncertainty. In the ambient body

temperature (37 oC), the conductivity of liver tissue is reported as [89]:

σ = 0.17− 0.6 S/m. (6.28)

The uncertainties associated with σ mean it can be modelled as a random field.

The random conductivity induces uncertainty in the electric potential. Following the

notation introduced in Section 6.1, the stochastic Laplace’s equation inside the domain

Ω with boundary Γ becomes:

∇ · (σ̃(x)∇ṽ(x)) = 0, x ∈ Ω,

ṽ(x) = v0, x ∈ Γ,
(6.29)

where σ̃(x) and thus ṽ(x) are random fields. The term field is used in statistics for a

function that takes on random values at each point inside a domain. For simplicity, we

assume σ̃(x) is a Gaussian random field, i.e., any spatial discretization of it produces a

Gaussian random vector
(
σ̃(x1), . . . , σ̃(xn)

)
, where {x1, . . . , xn} is the set of discretization

points. Assume the FEM mesh divides the computational domain Ω into Ne elements. If

the midpoint method is used for random field discretization, σ̃(x) is approximated inside

each finite element Ωe by its value at the centroid of the element:

σ̃(x) ≈ σ̃(xc), x ∈ Ωe, (6.30)

where xc is the center of element Ωe. The approximated field is then completely defined

by the random vector X = (σ̃(x1
c), . . . σ̃(x

Ne
c )), whose mean vector and covariance matrix

are obtained from the mean function and covariance kernel of the Gaussian field σ̃(x).

Note that the Gaussian random field σ̃(x) is entirely defined by its mean function, µ(x),

and covariance kernel, C(x, x′).

The stochastic element matrix K̃e associated with Ωe is then approximated as:

K̃e(i, j) =

∫
Ωe

σ̃(x)
−→
∇Ni ·

−→
∇Nj dV ≈ σ̃(xc)

∫
Ωe

−→
∇Ni ·

−→
∇Nj dV, (6.31)

where Ni and Nj are FEM scalar basis functions. Finally, the global stochastic linear

system is assembled:

K̃ṽ = b, (6.32)

where the right-hand-side vector b is deterministic due to fixed boundary conditions.
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6.3.2 NBP algorithm for solving K̃ṽ = b

In Chapter 3, solving a deterministic linear system Kv = b using Gaussian belief prop-

agation (GaBP) was explained. It was shown that assuming the solution vector v is a

jointly Gaussian random vector, solving the linear system is equivalent to finding the

marginal mean of v. GaBP defines the edge potentials and self potentials respectively

as:

ψij(vi, vj) = exp(−1

2
viKijvj), (6.33a)

ϕi(vi) = exp(−1

2
Kiiv

2
i + bivi). (6.33b)

It was shown that substituting these potentials in (6.22), the message mt
ij(vj) will have

the form of a Gaussian distribution, whose mean and precision are determined by (3.11).

If the system matrix K is stochastic and represented by K̃, the potentials in (6.33) and

the message update rules are valid for each realization of K̃. In other words, the self and

edge potentials are also random variables that are computed as:

ψ̃ij(vi, vj) = exp(−1

2
viK̃ijvj), (6.34a)

ϕ̃i(vi) = exp(−1

2
K̃iiv

2
i + bivi). (6.34b)

Hence, the deterministic update rules of (3.11) and (3.12) will take a stochastic form as

well:

P̃ij = −K̃2
ij P̃

−1
i\j , (6.35a)

µ̃ij = −P̃−1
ij K̃ij µ̃i\j, (6.35b)

where:

P̃i\j = K̃ii +
∑

k∈N(i)\j

P̃ki, (6.36a)

µ̃i\j = P̃−1
i\j
(
bi +

∑
k∈N(i)\j

P̃ki µ̃ki

)
. (6.36b)

Even if the PDF of K̃ii and K̃ij are known, computing those of P̃ij and µ̃ij is not analyti-

cally tractable. An alternative approach is to represent the messages non-parametrically

using kernel–based density estimation [85]. For notation simplicity, the random mean

and precision messages sent from node i to node j will be shown by a single random
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variable m̃ij, where m ∈ {µ, P}. Following the NBP method introduced in Section 6.2,

m̃ij may be approximated by a mixtures of L Gaussian kernels:

m̃ij(xj) =
L∑
l=1

wl N (xj;µl, κl). (6.37)

Here, wl, µl, and κl are the weight, mean, and precision associated with component l in

the mixture. These parameters can be approximated by drawing independent samples

from m̃ij.

Sampling from m̃ij is straightforward. In equation (6.36), the two summations S̃1 =∑
k∈N(i)\j P̃ki and S̃2 =

∑
k∈N(i)\j P̃ki µ̃ki contain the incoming messages P̃ki and µ̃ki. If

the incoming messages have the form of Gaussian mixtures like (6.37), then S̃1 and S̃2

are also Gaussian mixtures models (GMM). In particular, S̃1 is a GMM containing Ld

components, where d is the number of nodes in the neighbourhood of node i excluding

node j. The second summation S2 contains the multiplication of two GMMs, P̃ki and µ̃ki,

each containing L components. Since the multiplication of two Gaussian distributions is

itself a Gaussian distribution, S̃2 is a GMM with L2 d components.

Assuming the PDF of the stochastic matrix K̃ is known, K̃ii and S̃1 are sampled

to generate independent samples for P̃i\j. Independent samples from µ̃i\j are drawn in

a similar way. In the next step, the sampled data from P̃i\j and µ̃i\j are made use of to

sample from P̃ij and µ̃ij according to (6.35). Finally, by fitting two GMMs to the driven

data for P̃ij and µ̃ij, the outgoing messages are expressed in the mixture form of (6.37).

These steps can be summarized in Algorithm 4.

6.3.3 Implementation and results

Laplace’s equation with random conductivity is solved in two dimensions:

∇ · (σ̃(x)∇ṽ(x)) = 0, x ∈ Ω, (6.38)

where the computational domain Ω is shown in Fig. 6.1. Dirichlet boundary conditions

are applied at the conducting tip (16 V) and the outer boundary (ground). A triangular

FEM mesh of first order is used to discretize the domain (Fig. 6.2).

The conductivity σ̃(x) is a Gaussian random field with pre-defined mean function

σ̄(x) = 0.4 S/m and covariance kernel C(x1,x2) = κ e−(x1−x2)/d, where C(x1,x2) is an
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Algorithm 4: The NBP algorithm for solving K̃ṽ = b

1 Receive input messages P̃ki and µ̃ki for k ∈ N (i) \ j in the form of GMMs and

construct output messages in the form of GMMs following 2 to 8;

2 Construct a new GMM from the summation over the input messages

S̃1 =
∑

k∈N (i)\j P̃ki ;

3 Draw M independent samples from P̃i\j by sampling S̃1 and K̃ii;

4 Construct a new GMM from the summation over the input messages product

S̃2 =
∑

k∈N (i) P̃kiµ̃ki ;

5 Draw M independent samples from µ̃i\j by sampling S̃2 and using the sampled

data from P̃i\j in step 3;

6 Draw M independent samples from P̃ij by sampling K̃ij and P̃i\j samples;

7 Draw M independent samples from µ̃ij, using K̃ij, µ̃i\j, and P̃ij samples;

8 Using the samples drawn in steps 4 and 5, express P̃ij and µ̃ij in terms of two

GMMs;

exponential covariance with κ being the variance at each point and d being the correlation

length (m) between two points x1 and x2. The correlation length d is a measure of the

statistical correlation between two points of the field. The midpoint method is used for

random field discretization and thus σ̃(x) is approximated inside each finite element Ωe

by its value at the centroid of the element:

σ̃(x) ≈ σ̃(xc), x ∈ Ωe. (6.39)

The random field is then represented by the random vector X = (σ̃(x1
c), . . . κ̃(x

Ne
c )),

where Ne is the total number of elements. Next, the stochastic element matrices K̃e

and the stochastic linear system K̃ṽ = b are constructed according to (6.31) and (6.32),

respectively.
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Figure 6.1: The geometry of the stochastic Laplace’s problem.

Figure 6.2: Sample triangular FEM mesh used to discretize the random field.

The stochastic system matrix K̃ has to be sampled, as depicted by Algorithm 4,

steps 3 and 6. On the other hand, the FEM connectivity matrix dictates a linear relation

between K̃ and the random vector X . Such linear relation means the non-zero entries of

K̃ have jointly Gaussian distribution. This is because if X ∼ N (µ,Σ) is a multivariate

Gaussian distribution and Y = BX , then Y is also a multivariate Gaussian distribution:

Y ∼ N (Bµ, BΣBT ). (6.40)

Consequently, assuming the non-zero entries of K̃ are contained in the random vector

Y , samples from K̃ are generated from the distribution of (6.40). Nevertheless, one can

also generate samples from σ̃(x) and then construct large number of K̃ samples prior

to Algorithm 4. This approach is similar to the MCS in that a large number of global
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Figure 6.3: The PDF obtained from the MCS and NBP methods

random matrices K̃ are constructed. However, unlike the MCS, these matrices are not

inverted to generate the solution vectors directly, and rather are used in Algorithm 4 to

sample the NBP messages.

In order to investigate the NBP as a probabilistic solver for the stochastic linear

system K̃ṽ = b, Algorithm 4 is implemented in the same iterative manner as of belief

propagation. This means the non-parametric messages are sent along the edges of the

graph associated with the sparse matrix K̃ (See Section 6.2). The iterations continue

until the mean of the messages converge. Note that since the messages are represented

as Gaussian mixture series, the mean of each message is the weighted sum of the means

of its mixture components.

Figure 6.3 depicts the PDF of a specific element of the solution vector, ṽi, obtained

from the MCS and the NBP with different number of mixture components. The number

of unknowns (number of degrees of freedom in the FEM mesh) is 2500. The Number of

samples for both MCS and NBP is 10,000. According to the figure, by increasing the

number of mixture components L, the NBP algorithm shows better agreement with MCS

by better capturing of the random properties of the solution vector. Figure 6.4 shows the

variance of the solution vector at a specific point versus that of the random field σ̃, i.e.,

κ in the exponential covariance kernel C(x1,x2) = κ e−(x1−x2)/d. The correlation length

d is 0.5 cm for all simulations.
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Figure 6.4: Variance of the solution vector versus random conductivity variance.

The idea of NBP is to involve the random field samples to locally approximate the BP

messages. By doing so, the statistical information recorded in the random field samples at

each discretization point of the domain are propagated to the whole system. Comparison

to the MCS is often performed in the literature to validate new stochastic approaches.

In this regard, the results of figures 6.3 and 6.4 prove the capability of the algorithm to

model the uncertainty propagation from the input random field (the conductivity in this

example) to the system response (the electric potential).

The computational cost of Algorithm 4 increases with the number of Gaussian com-

ponents L and the number of samples M . Efficient implementation of NBP on parallel

computers can reduce the simulation time. For instance, similar to the finite element

Gaussian belief propagation algorithm which was introduced for deterministic systems in

Chapter 3, Algorithm 4 can be implemented on a factor graph to gain more parallelism.

Also, a multigrid version of the algorithm can be devised for accelerating its conver-

gence. Nevertheless, this chapter aimed to build a proving ground for using the NBP as a

sample-based solver for stochastic linear systems and more research is needed to improve

the computational efficiency of this novel technique.
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Summary and future work

Computer simulations of RFA have gained attention over the last decade and many

research groups have already developed software for RFA simulation over the last few

years. The main challenge involved in computer modelling of RFA is its high computa-

tional cost. Therefore, how to speed up the simulation time is an active area of research

in computer-aided RFA. Throughout this thesis study, we aimed to outline the main

obstacles associated with fast RFA simulations and proposed solutions to bypass these

obstacles.

Being the principal technique in RFA simulations, the FEM and its challenges for

parallel implementation of multi-physics problems were described. Then, the finite ele-

ment Gaussian belief propagation (FGaBP) algorithm as a parallel FEM-based solver was

introduced and revised for solving the coupled electrical-thermal and thermal-thermal

problems that emerge in RFA models. The local computations and message passing

strategies of FGaBP were made use of to enhance the computational performance of the

two general approaches for solving multi-physics systems, i.e., weak coupling and strong

coupling methods.

The weak coupling approach solves each equation for its own unknown, assuming

constant values for the other unknowns. This is usually conducted in either Gauss-Seidel

or Jacobi iterations. Gauss-Seidel solves each uni-physics problem for its own unknown,

taking the most recent values for the other unknowns. This means the individual uni-

physics problems need to be solved sequentially. On the other hand, the Jacobi algo-
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rithm allows all the equations in the same iteration to be solved simultaneously, where

each equation uses the values for the other unknowns from the last iteration. Avoiding

processor idle time, Jacobi iterations provide more parallelism, although at the cost of a

slower convergence rate.

In this thesis, we combined the Gauss-Seidel and Jacobi approaches to devise a

parallel weak coupling algorithm. Unlike the conventional Gauss-Seidel where the uni-

physics problems are solved sequentially, the proposed algorithm solves the equations

concurrently. A local convergence was defined and used to pass the updated values of each

component to the other components, using the message passing scheme of FGaBP. This

approach provides more parallelism than the classical Gauss-Seidel and is particularly

advantageous on large number of computer processors. According to the results this

method is more efficient than using FGaBP in a classical Gauss-Seidel since it makes

FGaBP solver converge faster. In addition, in contrast to the Jacobi algorithm where the

component values are taken from the previous iteration, the new algorithm uses updated

values from the current iteration.

The strongest form of coupling algorithms, which is the NR method, is also imple-

mented in parallel using the localized computations of FGaBP. In the NR method, the

construction of a Jacobian matrix at each linearizing iteration could be prohibitively ex-

pensive for large scale problems. The JFNK method is typically used as an inexact variant

of the NR, whose advantage over the traditional NR method is that it does not require

to compute and store the Jacobian matrix. On the other hand, parallel acceleration of

JFNK is restricted due to its dependence on the execution of global algebraic operations

in each JFNK iteration, such as the sparse matrix-vector multiplication. In addition,

the approximation error associated with the Jacobian-vector multiplication represents

the greatest disadvantage of JFNK, especially when variables associated with different

physics being coupled in a multi-physics application differ by orders of magnitude.

In this thesis, a NR reformulation of FGaBP was presented to exploit its localized

computations and message passing scheme for solving multi-physics problems in parallel.

Similar to the JFNK, FGaBP does not need to explicitly form a global Jacobian matrix,

instead, local computations are performed to calculate local Jacobian matrices for each

element in parallel. This provides a NR algorithm amenable to different parallel comput-
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ing architectures. On the other hand, in contrast to the JFNK, there is no approximation

associated with the local Jacobian matrices which makes the novel NR method more ac-

curate than the JFNK method. The algorithm was executed on both shared-memory and

distributed memory architectures. According to the results, the parallel scalability of the

FGaBP is retained in the new multi-physics algorithm, while the quadratic convergence

of NR is also preserved.

The last chapter exploits the probabilistic message passing attribute of belief prop-

agation for solving stochastic linear systems, establishing an explicit connection between

the two fields for the first time. The non-parametric belief propagation is combined with

SFEM in order to develop a novel method that makes use of the appealing sample-based

approach in MCS and yet is computationally efficient. The algorithm is also different

from SFEM in that it doesn’t need analytical description of the randomness. Instead,

we use samples from the stochastic parameters of the system to locally approximate the

uncertainty propagation to the solution. The algorithm is applied to stochastic Laplace’s

equation and validated by comparison to the Mont Carlo method.

Future work can be pursued in two distinct directions. First, the parallel weak-

coupling and strong coupling algorithms provided in this thesis are tested on simplified

models of RFA. Regarding the model geometry, state of the art medical imaging tech-

niques can produce three-dimensional anatomical models of the liver and its vascular

system. As such, treatment planning based on individual patient images is the current

trend in computer-aided RFA. Implementing the algorithms on complex liver models

obtained from medical images can better reflect their capabilities for fast simulation of

RFA. In addition, using realistic medical images, simulation outcomes can be validated

by comparison to clinical data.

Besides the model geometry, simplifications are also assumed in the multi-physics

couplings. While a fully coupled RFA model includes the interactions between electrical,

thermal, and cellular necrosis processes simultaneously, these couplings are studied sep-

arately in this thesis. For instance, the electrical-thermal coupling is modelled while the

thermal-thermal and thermal-cellular necrosis couplings are ignored. While such a divide

and conquer method provides the building blocks for a fully coupled model, incorporating

the individual couplings is essential for the development of a comprehensive simulation
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environment.

A second research direction could be to investigate further the non-parametric belief

propagation algorithm introduced in the last chapter. Chapter 6 explores the potential

of belief propagation as a probabilistic solver for stochastic linear systems that arise from

the finite element formulation of stochastic partial differential equations. The results

provided in Chapter 6 serve as a proof of concept in this regard. However, more research

is required to investigate the computational efficiency and parallel scalability of non-

parametric belief propagation for solving stochastic linear systems.
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A local Jacobian matrix is constructed for FNa, based on the sensitivities calculated

during FGaBP:

J(m)
a =

I2nc×2nc J(m)
a,v

J
(m)
a,T Inc×nc.

 (A.1)

The off-diagonal elements of the local Jacobin matrix are updated during FGaBP itera-

tions; inside iteration m of Newton’s method and iteration t of FGaBP we have:

J(m,t)
a,v (k, l) =

∂α
(m,t)
ak,v

∂β
(m−1)
al,T

=
∂α

(m,t)
ak,v

∂T
(m−1)
l

∂T
(m−1)
l

∂β
(m−1)
al,T

=
1

α
(m−1)
l,T

∂α
(m,t)
ak,v

∂T
(m−1)
l

, (A.2)

for 0 ≤ k < nc, and:

J(m,t)
a,v (k, l) =

∂β
(m,t)
ak,v

∂β
(m−1)
al,T

=
∂β

(m,t)
ak,v

∂T
(m−1)
l

∂T
(m−1)
l

∂β
(m−1)
al,T

=
1

α
(m−1)
l,T

∂β
(m,t)
ak,v

∂T
(m−1)
l

, (A.3)

for nc ≤ k < 2nc. Here the chain rule and also the fact that based on (3.21) we can write

∂Tl/∂βal,T = 1/αl,T are used. Now, the elements of the sub-matrix J(m,t)
a,v are updated as:

J(m,t)
a,v (k, l) =

1

α
(m−1)
l,T

∂fk

∂T
(m−1)
l

, (A.4)

for 0 ≤ k < nc, and:

J(m,t)
a,v (k, l) =

1

α
(m−1)
l,T

( ∂gk

∂T
(m−1)
l

+
∑

l′∈N (a)

∂gk

∂v
(m,t∗)

l′

∂v
(m,t∗)

l′

∂T
(m−1)
l

)
, (A.5)
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for nc ≤ k < 2nc, where:

∂fk

∂T
(m−1)
l

=
−1

W̃ 2
k,v

∂W̃k,v

∂T
(m−1)
l

, (A.6)

∂gk

∂T
(m−1)
l

=
−1

W̃ 2
k,v

(K̄v
(m,t∗))T · C̃v

∂W̃k,v

∂T
(m−1)
l

+

(K̄v
(m,t∗))T

W̃k,v

· ∂C̃v

∂T
(m−1)
l

, (A.7)

and

∂gk

∂v
(m,t∗)

l′

=


0 k = l

′

1
W̃k,v(Tl)

∂
(
K̄v

(m,t∗)
)T

∂v
(m,t∗)
l
′

· C̃v(Tl) k ̸= l
′
.

(A.8)

Finally, the partial derivatives in A.6 to A.8 are calculated analytically based on (3.14)

to (3.18).

Following a similar approach, the elements of the sub-matrix J
(m,t)
a,T can be calculated

as follows:

J
(m,t)
a,T (k, l) =

∂β
(m,t)
ak,T

∂β
(m−1)
al,v

=
∂β

(m,t)
ak,T

∂v
(m−1)
l

∂v
(m−1)
l

∂β
(m−1)
al,v

=
1

α
(m−1)
l,v

∂β
(m,t)
ak,T

∂v
(m−1)
l

=
1

α
(m−1)
l,v

( ∂hk

∂v
(m−1)
l

+
∑

l′∈N (a)

∂hk

∂T
(m)

l′

∂T
(m)

l′

∂v
(m−1)
l

)
, (A.9)

for 0 ≤ l < nc, and:

J
(m,t)
a,T (k, l) =

∂β
(m,t)
ak,T

∂α
(m−1)
al,v

=
∂β

(m,t)
ak,T

∂v
(m−1)
l

∂v
(m−1)
l

∂α
(m−1)
al,v

=
−β(m−1)

l,v

[α
(m−1)
l,v ]2

∂β
(m,t)
ak,T

∂v
(m−1)
l

=
−β(m−1)

l,v

[α
(m−1)
l,v ]2

( ∂hk

∂v
(m−1)
l

+
∑

l′∈N (a)

∂hk

∂T
(m)

l′

∂T
(m)

l′

∂v
(m−1)
l

)
, (A.10)

for for nc ≤ l < 2nc. Here, the chain rule and the following relation are used:

vl =
βl,v
αl,v

=
1

αl,v

∑
a′∈N (l)

βa′ l,v , (A.11)

which means ∂vl/∂βal,v = 1/αl,v and ∂vl/∂αal,v = −βl,v/α2
l,v. Similar to A.6 to A.8, the

sensitivities ∂hk/∂Tl′ and ∂hk/∂vl are calculated as follows:

∂hk

∂T
(m)

l′

=


0 k = l

′

1
W̃k,v

∂
(
K̄T

(m,t∗)
)T

∂T
(m)

l
′

· C̃T k ̸= l
, (A.12)
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∂hk

∂v
(m−1)
l

=
∂Bk,T

∂v
(m−1)
l

+
1

W̃k,v

∂
(
K̄T

(t∗))T
∂v

(m−1)
l

C̃T , (A.13)

in which the partial derivatives are calculated analytically based on (3.14) to (3.18).
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tugaller, J. Fütterer, D. Schmalstieg, M. Kolesnik, and M. Moche, “Rfa guardian:

Comprehensive simulation of radiofrequency ablation treatment of liver tumors,”

Scientific reports, vol. 8, no. 1, p. 787, 2018.

[5] J. H. Oh, D. H. Sinn, G.-S. Choi, J. M. Kim, J.-W. Joh, T. W. Kang, D. Hyun,

W. Kang, G.-Y. Gwak, Y.-H. Paik et al., “Comparison of outcome between liver

resection, radiofrequency ablation, and transarterial therapy for multiple small hep-

atocellular carcinoma within the milan criteria,” Annals of Surgical Treatment and

Research, vol. 99, no. 4, p. 238, 2020.

[6] M. B. Glassberg, S. Ghosh, J. W. Clymer, R. A. Qadeer, N. C. Ferko, B. Sadeghi-

rad, G. W. Wright, and J. F. Amaral, “Microwave ablation compared with radiofre-

quency ablation for treatment of hepatocellular carcinoma and liver metastases: a

i



BIBLIOGRAPHY

systematic review and meta-analysis,” OncoTargets and therapy, vol. 12, p. 6407,

2019.

[7] F. Izzo, V. Granata, R. Grassi, R. Fusco, R. Palaia, P. Delrio, G. Carrafiello,

D. Azoulay, A. Petrillo, and S. A. Curley, “Radiofrequency ablation and microwave

ablation in liver tumors: an update,” The oncologist, vol. 24, no. 10, p. e990, 2019.

[8] E. J. Berjano, “Theoretical modelling for radiofrequency ablation: state-of-the-art

and challenges for the future,” BioMed. Eng. Online, vol. 5, no. 1:24, 2006.

[9] S. L. Wong, P. B. Mangu, M. A. Choti, T. S. Crocenzi, G. D. Dodd III, G. S.

Dorfman, C. Eng, Y. Fong, A. F. Giusti, D. Lu et al., “American society of clin-

ical oncology 2009 clinical evidence review on radiofrequency ablation of hepatic

metastases from colorectal cancer,” Journal of Clinical Oncology, vol. 28, no. 3, pp.

493–508, 2009.

[10] J. H. Kim, H. J. Won, Y. M. Shin, S. H. Kim, H.-K. Yoon, K.-B. Sung, and

P. N. Kim, “Medium-sized (3.1–5.0 cm) hepatocellular carcinoma: transarterial

chemoembolization plus radiofrequency ablation versus radiofrequency ablation

alone,” Annals of surgical oncology, vol. 18, no. 6, pp. 1624–1629, 2011.

[11] S. Payne, R. Flanagan, M. Pollari, T. Alhonnoro, C. Bost, D. O’Neill, T. Peng, and

P. Stiegler, “Image-based multi-scale modelling and validation of radio-frequency

ablation in liver tumours,” Phil. Trans. R. Soc. A, vol. 369, no. 1954, pp. 4233–4254,

2011.

[12] Scientific animations. [Online]. Available: https://www.scientificanimations.com/

[13] Y.-D. Liu, Q. Li, Z. Zhou, Y.-W. Yeah, C.-C. Chang, C.-Y. Lee, and P.-H. Tsui,

“Adaptive ultrasound temperature imaging for monitoring radiofrequency abla-

tion,” Plos one, vol. 12, no. 8, p. e0182457, 2017.

[14] J. Zhang and S. Chauhan, “Neural network methodology for real-time modelling

of bio-heat transfer during thermo-therapeutic applications,” Artificial Intelligence

in Medicine, vol. 101, p. 101728, 2019.

[15] C. Audigier, T. Mansi, H. Delingette, S. Rapaka, V. Mihalef, D. Carnegie, E. Boc-

tor, M. Choti, A. Kamen, N. Ayache et al., “Efficient lattice boltzmann solver for

Page ii of xiv

https://www.scientificanimations.com/


BIBLIOGRAPHY

patient-specific radiofrequency ablation of hepatic tumors,” IEEE Transactions on

Medical Imaging, vol. 34, no. 7, pp. 1576–1589, 2015.

[16] P. Mariappan, P. Weir, R. Flanagan, P. Voglreiter, T. Alhonnoro, M. Pollari,

M. Moche, H. Busse, J. Futterer, H. R. Portugaller et al., “Gpu-based rfa sim-

ulation for minimally invasive cancer treatment of liver tumours,” International

journal of computer assisted radiology and surgery, vol. 12, no. 1, pp. 59–68, 2017.

[17] M. Reinhardt, P. Brandmaier, D. Seider, M. Kolesnik, S. Jenniskens, R. B. Se-

queiros, M. Eibisberger, P. Voglreiter, R. Flanagan, P. Mariappan et al., “A

prospective development study of software-guided radio-frequency ablation of pri-

mary and secondary liver tumors: Clinical intervention modelling, planning and

proof for ablation cancer treatment (clinicimppact),” Contemporary clinical trials

communications, vol. 8, pp. 25–32, 2017.

[18] S. K. Hall, E. H. Ooi, and S. J. Payne, “Cell death, perfusion and electrical pa-

rameters are critical in models of hepatic radiofrequency ablation,” International

Journal of Hyperthermia, vol. 31, no. 5, pp. 538–550, 2015.

[19] Comsol multiphysics® v. 5.4., comsol ab, stockholm, sweden. [Online]. Available:

www.comsol.com

[20] D. Panescu, J. G. Whayne, S. D. Fleischman, M. S. Mirotznik, D. K. Swanson, and

J. G. Webster, “Three-dimensional finite element analysis of current density and

temperature distributions during radio-frequency ablation,” IEEE Transactions on

Biomedical Engineering, vol. 42, no. 9, pp. 879–890, 1995.

[21] S. Tungjitkusolmun, S. T. Staelin, D. Haemmerich, J.-Z. Tsai, H. Cao, J. G. Web-

ster, F. T. Lee, D. M. Mahvi, and V. R. Vorperian, “Three-dimensional finite-

element analyses for radio-frequency hepatic tumor ablation,” IEEE transactions

on biomedical engineering, vol. 49, no. 1, pp. 3–9, 2002.

[22] F. Soetaert, G. Crevecoeur, and L. Dupré, “Coupled electrical-thermal model for
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of electrical and thermal performance during bipolar pulsed radiofrequency for pain

relief,” Medical physics, vol. 41, no. 7, p. 071708, 2014.

[122] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact newton methods,” SIAM

Journal on Numerical analysis, vol. 19, no. 2, pp. 400–408, 1982.

[123] C. Audigier, T. Mansi, H. Delingette, S. Rapaka, T. Passerini, V. Mihalef, M.-P.

Jolly, R. Pop, M. Diana, L. Soler et al., “Comprehensive preclinical evaluation of a

multi-physics model of liver tumor radiofrequency ablation,” International journal

of computer assisted radiology and surgery, vol. 12, no. 9, pp. 1543–1559, 2017.

[124] X. Wang, H. Gao, S. Wu, T. Jiang, Z. Zhou, and Y. Bai, “Numerical evaluation

of ablation zone under different tip temperatures during radiofrequency ablation,”

Math. Biosci. Eng, vol. 16, pp. 2514–2531, 2019.

[125] C. Rossmann, F. Rattay, and D. Haemmerich, “Platform for patient-specific finite-

element modeling and application for radiofrequency ablation,” Visualization, Im-

age Processing and Computation in Biomedicine, vol. 1, no. 1, 2012.

[126] A. Akbari and D. Giannacopoulos, “An efficient multi-threaded newton–raphson al-

gorithm for strong coupling modeling of multi-physics problems,” Computer Physics

Communications, vol. 258, p. 107563.

Page xiv of xiv


	Acronyms
	Introduction
	Motivation
	Clinical context
	Role of high-performance computing 
	Objectives

	Main contributions and manuscript organization 
	Main contributions
	Organization of the thesis


	Computational Models of Hepatic RFA
	Electrical heating and bio-heat models
	Cellular necrosis models
	The multi-physics phenomena in RFA modelling 
	Weak coupling modelling 
	Strong coupling modelling

	High-performance computing in RFA modelling
	Uncertainty analysis in RFA modelling 

	Finite Element Gaussian Belief Propagation
	Parallel acceleration of multi-physics problems
	The Gaussian belief propagation algorithm
	Finite element Gaussian belief propagation

	Parallel Weak Coupling Modelling of RFA 
	Solving the heat transfer problem
	The coupled electrical-thermal problem
	Weak coupling formulation of FGaBP
	Results and discussion

	Parallel Strong Coupling Modelling of RFA
	Parallel strong coupling formulation of the coupled electrical-thermal problem
	Formulation
	Implementation
	Results

	Parallel strong coupling formulation of the thermal tissue-blood interaction
	Algorithm
	Implementation and Results


	Uncertainty analysis of RFA
	The stochastic finite element method
	Discretization of stochastic fields
	Formulation of the stochastic linear system
	Calculation of response statistics

	Non-parametric belief propagation
	Solving stochastic Laplace's equation with NBP
	Assembly of the stochastic linear system
	NBP algorithm for solving   = b
	Implementation and results


	Summary and future work
	Appendices
	
	Bibliography



