
The first report to link a mutation of a translation com-
ponent (mitochondrial tRNALys) to an inherited human 
disease (myoclonic epilepsy with ragged red fibres 
(MERRF) syndrome) was published in 1990 (ref.1). Since 
then, the list of genetic diseases caused by translation 
deregulation has increased exponentially. Translation 
is deregulated in a wide spectrum of human diseases, 
including immunodeficiency2,3, metabolic disorders4, 
neurological disorders5 and cancer, as well as during virus 
infection. In this Review, we discuss our current under-
standing of translation deregulation in non- cancer- 
related human diseases. For translational control of can-
cer and during virus infection, we refer the reader to 
recent comprehensive reviews6–10.

Translation is a multistep process comprising initiation, 
elongation, termination and ribosome recycling11. During 
canonical initiation, the cytosolic ribosome is recruited to 
the mRNA and scans its 5′ untranslated region (5′UTR) 
for the presence of the translation start codon. Under most 
conditions, initiation is the rate- limiting step of transla-
tion (there are ~0.5–3.6 initiations per minute compared 
with elongation rates of 3–10 amino acids per second12–14), 
and therefore it is tightly regulated. Several key signalling 
pathways, including mammalian or mechanistic target of 
rapamycin (mTOR), mitogen activated protein kinases 
(MAPKs) and integrated stress response (ISR) pathways, 
converge on the initiation step to control the rate of pro-
tein synthesis in response to a variety of external and 
internal cues15,16 (Box 1). Control of mRNA translation 
plays a pivotal role in the regulation of gene expression 

in embryonic and adult tissues. Therefore, defects in the 
translation process are deleterious for organismal devel-
opment and physio logy. Mitochondria have a parallel 
translation system, which is more similar to the prokary-
otic system than to eukaryotic cytosolic translation17 
(Box 1), and mutations in this system contribute greatly 
to human disease by impairing the energy- generating 
machinery of the cell.

We categorize the translation- related human dis orders 
into four groups: those involving deregulated tRNA  
synthesis or function, ribosomopathies, deregulation 
of the ISR pathway and deregulation of the mTOR 
pathway. Although this classification aims to simplify 
the description of the molecular mechanisms under-
lying human diseases, there is substantial overlap between 
the categories. For instance, on one hand, disruption of 
tRNA or mitochondrial functions in several dis orders 
triggers activation of the ISR and inhibition of the 
mTOR pathway18. On the other hand, transcriptional 
and translational targets of the ISR and the mTOR 
pathways have crucial roles in tRNA, mitochondrial and 
ribosomal biogenesis19.

Recent advances in whole exome and genome sequen-
cing technologies have provided a wealth of knowledge 
on novel disease- causing mutations that affect trans-
lation factors20–22, leading to a detailed understanding 
of disease pathogenesis and therapeutic opportunities.  
In some cases, however, the precise molecular mecha-
nisms linking genotypic changes to phenotypes remain 
to be established. We first discuss human diseases linked 

Translation deregulation in human  
disease
Soroush Tahmasebi1,2,5*, Arkady Khoutorsky3, Michael B. Mathews4  
and Nahum Sonenberg1,2*

Abstract | Advances in sequencing and high- throughput techniques have provided an 
unprecedented opportunity to interrogate human diseases on a genome- wide scale. The list of 
disease- causing mutations is expanding rapidly , and mutations affecting mRNA translation are 
no exception. Translation (protein synthesis) is one of the most complex processes in the cell.  
The orchestrated action of ribosomes, tRNAs and numerous translation factors decodes the 
information contained in mRNA into a polypeptide chain. The intricate nature of this process 
renders it susceptible to deregulation at multiple levels. In this Review , we summarize current 
evidence of translation deregulation in human diseases other than cancer. We discuss translation- 
related diseases on the basis of the molecular aberration that underpins their pathogenesis 
(including tRNA dysfunction, ribosomopathies, deregulation of the integrated stress response 
and deregulation of the mTOR pathway) and describe how deregulation of translation generates 
the phenotypic variability observed in these disorders.

1Goodman Cancer Research 
Center, McGill University, 
Montreal, Quebec, Canada.
2Department of Biochemistry, 
McGill University, Montreal, 
Quebec, Canada.
3Department of Anesthesia 
and Alan Edwards Centre for 
Research on Pain, McGill 
University, Montreal, Canada.
4Department of Medicine, 
Rutgers New Jersey Medical 
School, Newark, NJ, USA.
5Department of Pharmacology, 
University of Illinois at 
Chicago, Chicago, IL, USA.

*e- mail: sorousht@uic.edu; 
nahum.sonenberg@mcgill.ca

https://doi.org/10.1038/ 
s41580-018-0034-x

 T R A N S L AT I O N  A N D  P R OT E I N  Q UA L I T Y  C O N T R O L

NATure revIewS | MOleculAR cell BIOlOgy

R e v i e w s

  volume 19 | december 2018 | 791

mailto:sorousht@uic.edu
mailto:nahum.sonenberg@mcgill.ca
https://doi.org/10.1038/s41580-018-0034-x
https://doi.org/10.1038/s41580-018-0034-x


to defects in mitochondrial tRNA biogenesis, which are 
rela tively frequent and accordingly were discovered early, 
and then discuss diseases caused by mutations affecting 
cytosolic tRNAs, aminoacyl- trNA synthetases (ARSs; 
also known as tRNA ligases) and translation elongation  
factors (figs 1,2; Supplementary table 1). Next, we focus 
on ribosomopathies (fig. 3; Supplementary table 1) and 
mutations that affect translation regulation through  
the ISR (fig. 4; Supplementary table 1) and the mTOR 
pathway (fig. 5; Supplementary table 1). Finally, we  
discuss the basis of phenotypic variability caused by 
translation deregulation.

Deregulation of tRNA function
Components of the mitochondrial translation machinery 
— mitochondrial tRNAs (mt- tRNAs), tRNA modifying 
enzymes, ARSs, elongation factors and ribosomal 
proteins — are often mutated in mitochondrial diseases 
(Supplementary table 1). Mitochondrial diseases are 
among the most common inherited human dis orders. 
They result from mutations of nuclear- encoded or 

mitochondrial- encoded genes. Diseases associated with 
nuclear genes are usually autosomal recessive, manifest 
very early in life and exhibit multisystem phenotypes 
with fatal consequences. By contrast, diseases caused 
by mutations in mitochondrial DNA (mtDNA) genes 
are inherited maternally and are often less severe. Most 
mt- tRNAs are encoded by a single gene, whereas the  
~50 cytosolic tRNA species are encoded by ~500 nuclear 
genes23. This may explain why no known human dis-
ease is caused by mutations in nuclear- encoded tRNAs. 
Nevertheless, mutations of tRNA splicing and modifying 
factors have been identified in several human disorders, 
primarily in neurodegenerative diseases24–27.

Mitochondrial tRNA
The mitochondrial genome, which is transmitted 
exclusively through the female germ line, encodes 37 genes, 
including 22 mt- tRNAs and 2 ribosomal RNAs (rRNAs) 
(16S and 12S). The remaining 13 genes encode proteins 
that function in oxidative phosphorylation (OXPHOS). 
Most mitochondrial proteins (including those involved 

Aminoacyl- tRNA synthetases
(Arss). enzymes that catalyse 
the addition of an amino acid 
to the appropriate trNA.

Box 1 | mRNA translation in the cytosol and in mitochondria

Nuclear- encoded eukaryotic mrNAs undergo several steps of processing in the nucleus, which include the addition of a 
5′-terminal cap (7-methylguanosine (m7G)) at the 5′-end and a poly(A) tail at the 3′-end, followed by internal base methylation, 
splicing and export to the cytosol (see the figure, part a). ribosomes are recruited to the mrNA through the coordinated activity 
of multiple translation initiation factors. Two protein complexes, eukaryotic translation initiation factor 4F (eIF4F), which 
comprises eIF4e (a cap- binding protein), eIF4G (a scaffolding protein) and eIF4A (an rNA helicase), and the ternary complex, 
which comprises eIF2, GTP and the initiator trNA (met- trNAi

met), have key roles in translation initiation. mrNA circularization 
occurs through the interaction of eIF4G with poly(A)-binding protein (PAbP). The eIF4F complex unfolds secondary structures 
in the 5′ untranslated region (5′uTr) of mrNAs for translation initiation. In addition, an interaction (not shown) between eIF4G 
and eIF3 brings the 40S small ribosomal subunit, as a component of the 43S preinitiation complex, into the vicinity of the mrNA 
5′-end to start the scanning process. The integrated stress response (ISr) and mTor complex 1 (mTorc1) control translation 
initiation through regulation of the ternary complex and the eIF4F complex, respectively. Interaction of eIF4b with eIF4A 
increases the helicase activity of eIF4A. unlike nuclear mrNAs, mitochondrial mrNAs (mt- mrNAs) are uncapped and have a 
short (up to three nucleotides in length) or no 5′uTr, obviating the need for initiation factors to unwind the 5′uTr (see the 
figure, part b).

AuG, translation initiation codon; mtdNA, mitochondrial dNA; mt- rrNA, mitochondrial ribosomal rNA; mt- trNA, mitochondrial 
trNA; oXPHoS, oxidative phosphorylation complexes; SToP, stop codon.
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in mitochondrial translation) are encoded in the nucleus, 
translated from mRNAs in the cytosol and transported 
into the mitochondria. Mitochondrial genes undergo a 
much higher rate of deleterious mutations than nuclear 
genes28. Uniparental transmission, lack of introns, repeti-
tive elements and recombination, and the low replication 
fidelity of the mtDNA polymerase contribute to the high 
mutation load in mitochondrial genes29,30. Fortunately, 
the deleterious effects of mutations are ameliorated by the 
existence of several copies (2–10) of the mitochondrial 
genome in each mitochondrion and multiple mitochon-
dria in each cell, so diseases manifest only when the 
number of malfunctioning mitochondria surpasses a 
tolerable threshold31. Dysfunction of mt- tRNAs results 
from mutations in mt- tRNA sequences or from defects 
in nuclear- encoded tRNA modifying enzymes (figs 1,2; 
Supplementary table 1). Considering the limited number 
of mt- tRNAs (22 mt- tRNAs decode the 60 sense codons of  
the mitochondrial genetic code), mt- tRNA modifications, 
especially at the wobble position (tRNA nucleotide 34, 
which is the first (5′) base of the anticodon), have a crucial 
role in expanding codon recognition. Thus, in the con-
text of disease, mutations of tRNA modifying enzymes 
limit the decoding capacity of mt- tRNA. A defect in the 
OXPHOS system is a common outcome of deregulation of 
mitochondrial translation32. Brain and muscle are particu-
larly sensitive to OXPHOS activity because of their high 
energy requirements. However, in many cases, disease- 
causing mutations lead to defects in organs other than 
muscle or the nervous system, suggesting the existence of 
gene- specific effects32.

Mutations in mt- tRNA genes can have either a 
multi- organ or a tissue- specific manifestation (fig. 1; 
Supplementary table 1). The two best- characterized multi- 
organ syndromes associated with mt-tRNA muta tions are 
MERRF and mitochondrial encephalomyo pathy, lactic 
acidosis and stroke- like episodes (MELAS). MERRF 
has been largely linked to mitochondrial complex IV 
deficiency33, whereas MELAS has been attributed more 
predominantly to defects in mitochondrial complex I.  
Mutations in several mt- tRNA genes cause MELAS 
syndrome (Supplementary table 1), although in most 
cases, it is caused by mutation of mitochondrially 
encoded tRNA leucine 1 (MT- TL1). Most commonly, 
the mutation is located at the mt- tRNALeu wobble posi-
tion (A3243G) and interferes with 5- taurinomethyluridine 
(τm5U) modification of this position34 (fig. 2). MERRF 
syndrome may also result from lack of taurine modifi-
cation at the wobble position of mt- tRNALys). Notably, 
lack of taurine modification in mt- tRNALys interferes 
with decoding of both Lys codons, whereas lack of taur-
ine modification in mt- tRNALeu affects decoding of  
only one Leu codon (UUG but not UUA)35. This decod-
ing bias preferentially affects mitochondrial complex I 
through a defect in the translation of mitochondrially 
encoded NADH dehydrogenase 6 (MT- ND6) mRNA, 
which has high UUG content. This also explains the 
phenotypic differences between MERRF and MELAS 
syndromes. Indeed, a patient carrying a point muta-
tion in MT- ND6 had a substantial defect in complex I 
activity in muscle and displayed a phenotype similar to  
MELAS syndrome36.

The importance of modifications at the tRNA wobble 
position is underscored by diseases caused by muta-
tions in the enzymes that catalyse these modifications 
(for example, protein MTO1 homologue, mitochon-
drial, GTP- binding protein 3 (GTPBP3) and tRNA 
5-methylaminomethyl-2-thiouridylate methyltrans-
ferase (TRMU; also known as mitochondrial tRNA- 
specific 2-thiouridylase 1))37–39 (fig. 2; Supplementary 
table 1). Modifications of mt- tRNAMet are particularly 
important, as they enable a single tRNA to serve as 
both the elongator tRNA (Met- tRNAMet) and the initi-
ator tRNA (fMet-trNAMet), which is not the case in the 
cytosol, prokaryotes or yeast mitochondria. Methionyl- 
tRNA formyltransferase, mitochondrial (MTFMT) is the 
enzyme that modifies Met- tRNAMet to fMet- tRNAMet. 
Mutation in MTFMT has been linked to Leigh syn-
drome and cardiomyopathy40 (fig. 1). Cardiomyopathy,  
non-syndromic hearing loss and external ophthalmo-
plegia are examples of tissue- specific pathologies 
caused by mt- tRNA mutations (Supplementary table 1). 
Mutations in several mt- tRNA genes have been recently 
identified in patients with maternally inherited hyper-
tension41, but the molecular mechanisms of their action 
remain unknown.

Cytosolic tRNA
The wobble position of cytosolic tRNAs is also sub-
ject to modifications. The highly conserved hexameric 
Elongator complex adds 5-methoxycarbonylmethyl 
(mcm5) and 5-carbamoylmethyl (ncm5) to uridine resi-
dues at the wobble position of several cytosolic tRNAs42 
(fig. 2). Loss- of-function mutation of Elongator complex 
protein 1 (ELP1; the scaffolding protein of Elongator) 
has been identified in Ashkenazi Jews with familial 
dysautonomia43,44, which is an autosomal recessive 
neurodegenerative disease affecting sensory and auto-
nomic neurons. A single nucleotide point mutation at 
the intron 20 donor splice site was identified in >99.5% 
of individuals with familial dysautonomia44. The muta-
tion interferes with proper splicing of ELP1 mRNA, 
causing skipping of exon 20. Interestingly, exon 20 skip-
ping occurs more frequently in neurons than in other 
cells, explaining the predominantly neurodegenerative 
phenotype of familial dysautonomia and raising the pos-
sibility of splicing modification therapy for this disease 
(for example, by kinetin)45. Notably, mutations of other 
components of the Elongator complex have also been 
linked to neurodegenerative disorders46,47.

Nucleotide 37 of tRNAs (the first nucleotide down-
stream of the anticodon) is also a hot spot for modifica-
tions. The highly conserved pentameric KEOPS–EKC 
(kinase, endopeptidase and other proteins of small size 
(KEOPS)–endopeptidase-like and kinase associated 
to transcribed chromatin (EKC)) complex mediates 
threonylcarbamoyladenosine (t6A) modification at this 
position to control the accuracy and efficiency of 
translation (fig. 2). Recent studies identified recessive 
mutations in four subunits of the KEOPS–EKC complex 
in patients with a renal–neurological disease known as 
Galloway–Mowat syndrome20,48. Deletion of the ortholo-
gous genes in mice and zebrafish recapitulates some of 
the phenotypes20.

5-Taurinomethyluridine
(τm5U). A post- transcriptional 
modification of uridine at the 
wobble position of the 
mammalian mitochondrial 
trNAs for Leu (UUr) and Trp.

fMet- tRNAMet

A formylated form of the 
elongating Met- trNAMet that is 
used as an initiator of trNA in 
mammalian mitochondria.

Threonylcarbamoylad enosine
(t6A). A universal trNA 
modification at position 37  
of trNAs that decode ANN 
codons.
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Deregulation of tRNA function is also associ-
ated with mutations that affect tRNA splicing factors. 
Pontocerebellar hypoplasia (PCH) is a spectrum of 
early- onset neurodegenerative disorders of the brain, 
which cause microcephaly, seizures and intellectual dis-
ability. Mutations in various genes can cause PCH, and 
several lines of evidence suggest that defects in global 
protein synthesis underlie this disorder49. Among the 
best- characterized aetiologies of PCH are mutations 
affecting the tRNA- splicing endonuclease (TSEN) com-
plex (fig. 1). Although only 6% of human tRNA genes  
contain introns, recessive mutations of all four sub-
units of the TSEN complex have been linked to different 
forms of PCH24,25. tRNA- intron removal and ligation also 
require the activity of cleavage and polyadenylation fac-
tor CLP1. CLP1, which was the first RNA kinase iden-
tified in mammals50, interacts with the TSEN complex 
to promote tRNA splicing51. Two recent papers reported 
homozygous mutations of CLP1 in individuals with 
PCH with manifestation in both the central and the 
peripheral nervous systems (PCH type 10)26,27.

Aminoacyl- tRNA synthetases
ARSs are enzymes that catalyse amino acid attach-
ment to cognate tRNAs: 17 ARSs function in the 
cytosol, 18 function in mitochondria and 2 function 
in both the cytosol and mitochondria (glycine–tRNA 

ligase (GARS) and lysine–tRNA ligase (KARS)). The 
bi-functional glutamate/proline–tRNA ligase (EPRS)  
carries out tRNA aminoacylation with both Glu and Pro 
in the cytosol.

Mitochondrial aminoacyl- tRNA synthetases. Mutations 
of mitochondrial ARSs interfere with the mitochondrial 
respiratory chain and cause multisystemic disorders. 
The phenotypes of these mutations vary from enceph-
alopathy to cardiomyopathy or sideroblastic anaemia 
(Supplementary table 1). These rare diseases are autosomal 
recessive and fatal in the first few years of life52,53.

Cytosolic aminoacyl- tRNA synthetases. The tRNA 
multi- synthetase complex (MSC), which carries out 
the aminoacylation process, comprises eight cytosolic 
ARSs and three scaffolding proteins (MSC auxiliary 
component p43 (also known as AIMP1), MSC auxil-
iary component p38 (also known as AIMP2) and MSC  
auxiliary component p18 (also known as eEF1E1))54. 
Most disease- causing mutations of cytosolic ARSs 
spare the central nervous system (with few excep-
tions55) (Supplementary table 1) but cause peripheral 
neuropathies or Charcot–Marie–Tooth (CMT) disease 
(fig. 1). This is especially the case for haploinsufficiency 
mutations, which exclusively give rise to peripheral 
neuro pathies or distal hereditary motor neuropathies56.  
CMT is the most common inherited polyneuro pathy 
(with a prevalence of 1 in 2,500 individuals in the  
United States). It is a genetically heterogeneous disease 
that affects both sensory and motor neurons through 
axonal degeneration or demyelination of  neurons. To date,  
mutations of six ARSs (alanine–tRNA ligase, cyto-
plasmic (AARS), GARS, histidine–tRNA ligase, cyto-
plasmic (HARS), KARS, methionine–tRNA ligase,  
cytoplasmic (MARS) and tyrosine–tRNA ligase, cyto-
plasmic (YARS)) have been linked to CMT disease.  
As the nerve endings of peripheral neurons are remote 
from the soma, local mRNA translation has a cen-
tral role in regulation of the axonal proteome. This 
feature is thought to make peripheral neurons more 
prone to impairments of cytosolic ARSs57. It is note-
worthy that loss of aminoacylation activity is not the 
main consequence of all ARS mutations, indicating 
that non-canonical functions of ARSs have a role in  
the pathogenesis of some ARS- related disorders58. 
Some mutations cause conformational changes in 
ARSs that promote interaction of the enzymes with 
novel partners and result in new functions59,60. There 
is also evidence of non- canonical functions of ARSs 
in angiogenesis61, immune response62 and the DNA 
damage response63.

Translation elongation factors
Mutations of three mitochondrial elongation factors 
(elongation factor Tu, mitochondrial (EF-Tumt), elong-
a tion factor Ts, mitochondrial (EF- Tsmt) and elongation 
factor G, mitochondrial (EF- Gmt)) and of their cyto-
solic counterparts (eukaryotic translation elongation  
factor 1A (eEF1A), eEF1B and eEF2, respectively) have 
been linked to human diseases that mainly affect the 
central nervous system (fig. 1; Supplementary table 1).

Haploinsufficiency
A condition in diploid 
organisms where one gene 
copy is inactivated by mutation 
and the activity of the 
remaining copy is insufficient 
to maintain normal function.

Fig. 1 | Defects in tRNAs, aminoacyl- tRNA synthetases and translation elongation 
factors. Diseases associated with cytosolic and mitochondrial defects are marked in 
blue and pink , respectively ; diseases associated with both are marked in purple. tRNA 
splicing is affected by mutations in components of the tRNA- splicing endonuclease 
(TSEN) complex (TSEN2, TSEN15, TSEN34 and TSEN54) and in the polynucleotide 
kinase CLP1 (also part of TSEN). CCA tRNA nucleotidyltransferase 1, mitochondrial 
(TRNT1) catalyses CCA addition to tRNA 3′-ends. The tRNA multi- synthetase complex 
(MSC) comprises the aminoacyl- tRNA synthetases (ARSs) lysine–tRNA ligase (K), 
arginine–tRNA ligase, cytoplasmic (R), glutamine–tRNA ligase (Q), methionine–tRNA 
ligase, cytoplasmic (M), isoleucine–tRNA ligase, cytoplasmic (I), aspartate–tRNA ligase, 
cytoplasmic (D), leucine–tRNA ligase, cytoplasmic (L), bifunctional glutamate/
proline–tRNA ligase (EP) and the scaffolding MSC auxiliary components p43, p38 and 
p18. Formylation of tRNAMet by mitochondrial methionyl- tRNA formyltransferase, 
mitochondrial (MTFMT) is required to generate the initiator tRNA fMet- tRNAMet. 
Elongation factor Tu, mitochondrial (EF- Tumt) and eukaryotic elongation factor 1-A2 
(eEF1A2) deliver aminoacyl- tRNAs to the mitochondrial and cytosolic ribosome, 
respectively. EF- Tsmt and eEF1B2 are guanine nucleotide exchange factors for EF- Tumt 
and eEF1A , respectively. eEF2 is a GTPase and translocase that mediates ribosome 
movement on mRNA. There are two eEF2 homologues in mitochondria: EF- G1mt is a 
translocase, whereas EF- G2mt functions in ribosome recycling. CAGSSS, cataracts, 
growth hormone deficiency , sensory neuropathy , sensorineural hearing loss and 
skeletal dysplasia; CMT, Charcot–Marie–Tooth; COXPD, combined oxidative 
phosphorylation deficiency ; CPEO, chronic progressive external ophthalmoplegia; 
DHM, distal hereditary motor ; EIEE29, early infantile epileptic encephalopathy 29; 
GRIDHH, growth retardation, intellectual developmental disorder, hypotonia and 
hepatopathy ; HBSL , hypomyelination with brainstem and spinal cord involvement 
and leg spasticity ; HLD, hypomyelinating leukodystrophy ; HUPRA , hyperuricaemia, 
pulmonary hypertension, renal failure in infancy and alkalosis; ILLD, interstitial lung 
and liver disease; LBSL , leukoencephalopathy with brainstem and spinal cord 
involvement and elevated lactate; LKENP, leukoencephalopathy , progressive, with 
ovarian failure; MEL AS, mitochondrial encephalomyopathy , lactic acidosis and 
stroke-like episodes; MERRF, myoclonic epilepsy with ragged red fibres; ML ASA , 
myopathy , lactic acidosis and sideroblastic anaemia; MSCCA , microcephaly , 
progressive, seizures, cerebral and cerebellar atrophy ; NSHL , non-syndromic hearing 
loss; SIFD, sideroblastic anaemia with B cell immunodeficiency , periodic fevers and 
developmental delay.
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Ribosomopathies
Defects in ribosome biogenesis and function cause a 
spectrum of diseases called ribosomopathies. The mam-
malian cytosolic ribosome consists of four rRNAs and a 
large number of ribosomal proteins (there are 80 core 
ribosomal proteins). Assembly of the pre-40S and pre-
60S ribosomal particles commences in the nucleolus and 
is completed in the cytosol (fig. 3a). Diseases associated 
with ribosomal gene haploinsufficiency surprisingly 
exhibit tissue- specific and sometimes cell type- specific 
phenotypes, with many causing impairments in bone 
marrow- derived cell lineages and skeletal or craniofacial 
abnormalities64,65 (fig. 3a; Supplementary table 1).

One of the first described ribosomopathies was 
Diamond–Blackfan anaemia (DBA), which is character-
ized by dramatic reduction in erythroid progenitors in 
the bone marrow, accompanied by macrocytic anaemia 
and reticulocytopenia66. This congenital anaemia is most 
often diagnosed during the first year of life. Up to 50% of 
patients with DBA have short stature, craniofacial defects 
(cleft lip or palate), thumb abnormalities (triphalan-
geal thumbs) and congenital heart malformations. 
Mutations in the gene encoding 40S ribosomal protein 
S19 (RPS19) account for ~25% of individuals with DBA, 
whereas mutations in other ribosomal proteins are less 
common67 (Supplementary table 1). DBA is caused by 

ψ

ψ

τ

τ

Fig. 2 | Human diseases linked to mitochondrial or cytosolic tRNA modifications. All factors involved in tRNA 
modification are encoded in the nuclear genome. Diseases associated with cytosolic and mitochondrial defects are 
marked in blue and pink, respectively ; diseases associated with both cytosolic and mitochondrial defects are marked in 
purple. Ψ, pseudouridine; τm5s2U, 5-taurinomethyl-2-thiouridine; τm5U, 5-taurinomethyluridine; ADAT3, probably 
inactive tRNA- specific adenosine deaminase- like protein 3; ALS, amyotrophic lateral sclerosis; CDKAL1, CDK5 regulatory 
subunit- associated protein 1-like 1; COXPD, combined oxidative phosphorylation deficiency ; EKC, endopeptidase- like 
and kinase associated to transcribed chromatin; FTSJ1, protein ftsJ homologue 1; GTPBP3, GTP- binding protein 3;  
i6A , N6-(dimethylallyl)adenosine; KEOPS, kinase, endopeptidase and other proteins of small size; L AGE3, L antigen family 
member 3; m1G, 1-methylguanosine; m2

2G, N2,2′-O- dimethylguanosine; m5C, 5-methylcytidine; m7G, 7-methylguanosine; 
mcm5U, 5-methoxycarbonylmethyluridine; ML ASA , myopathy , lactic acidosis and sideroblastic anaemia; ms2t6A , 
2-methylthio- N6-threonylcarbamoyladenosine; MSSGM1, microcephaly , short stature and impaired glucose metabolism 1;  
MTO1, MTO1 homologue, mitochondrial; ncm5U, 5-carbamoylmethyluridine; Nm, 2′-O- methylnucleotides; NSUN,  
NOL1/NOP2/Sun domain family member ; OSGEP, O- sialoglycoprotein endopeptidase; PRPK , p53-related protein kinase 
(also known as TP53RK); PUS, tRNA pseudouridylate synthase; t6A , threonylcarbamoyladenosine; TRMT1, tRNA (guanine(26)-N(2))- 
dimethyltransferase; TRMT5, tRNA (guanine(37)-N1)-methyltransferase; TRMT10A , tRNA methyltransferase  
10 homologue A ; TRMU, tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase; TPRKB, TP53RK-binding  
protein; TRIT1, tRNA dimethylallyltransferase; WDR4, WD repeat- containing protein 4.
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reduced ribosome biogenesis and impaired protein syn-
thesis, but the mechanism of preferential manifestation 
in bone marrow erythroid cells is not well understood68 
(fig. 3a). Recent studies uncovered the importance of 
GATA- binding factor 1 (GATA1), which is a crucial 
transcriptional regulator of erythropoiesis, in the patho-
genesis of DBA and provide a potential explanation for 
the erythroid specificity of its phenotype69,70. Alternative 

splicing of human GATA1 mRNA generates two GATA1 
isoforms, a long isoform that contains the second exon 
and a short isoform that lacks this exon. Mutations in 
GATA1 that reduce the production of the full- length 
protein (through interfering with splicing or translation 
of the GATA1 long isoform) can cause DBA69,70. In addi-
tion, translation of GATA1 mRNA is specifically sensi-
tive to downregulation of ribosomal proteins, which was 

Fig. 3 | A simplified overview of ribosome biogenesis. a | The precursor to 18S, 5.8S and 28S ribosomal RNAs (rRNAs) is 
transcribed in the nucleolus by RNA polymerase I (Pol I), whereas 5S rRNA is transcribed in the nucleoplasm by Pol III. After 
processing and modification, the 18S, 5.8S and 28S rRNAs assemble with 5S rRNA and ribosomal proteins (RPs), which are 
synthesized in the cytoplasm and imported into the nucleolus to form pre-40S and pre-60S ribosomal subunits. Pre-40S 
and pre-60S subunits are then exported to the cytoplasm, where they undergo further maturation. b | Three models 
explaining tissue- specific phenotypes of ribosomopathies are depicted. The ribosome concentration model proposes  
that ribosome dysfunction affects global translation but that certain mRNAs and cell types are more sensitive to the 
change in ribosomal function. By contrast, the specialized ribosome model proposes that the composition of ribosomes 
varies depending on the tissue and stress conditions and that this unique composition determines which subset of mRNAs  
is translated. The tumour suppressor p53-mediated model suggests that impaired ribosome biogenesis activates the  
p53 pathway to induce cell cycle arrest or apoptosis in affected cell types. CHH, cartilage hair hypoplasia; DBA ,  
Diamond–Blackfan anaemia; MDM2, E3 ubiquitin- protein ligase; SDS, Schwachman–Diamond syndrome.
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linked to a higher threshold requirement for translation 
initiation of GATA1 mRNA69.

A well- studied syndrome exhibiting erythroid defects 
is 5q– syndrome, which is caused by a heterozygous 
deletion of the long arm of chromosome 5 (del(5q)).  
The macrocytic anaemia that is a hallmark of this dis order 
is caused by haploinsufficiency of the RPS14 gene71,72,  
whereas haploinsufficiency of other genes in the deleted 
chromosomal region contributes to non- erythroid 
phenotypes: haploinsufficiencies of the microRNAs  
miR-145 and miR-146a are linked to thrombocytosis73, 
and haploinsufficiency of early growth response protein 1  
(EGR1) is linked to clonal dominance74. A recent study 

demonstrated the importance of La- related protein 1 
(LARP1), which is a translation regulator and effector 
of mTOR complex 1 (mTORC1)75, in 5q– syndrome 
pathogenesis76. Anaemia in DBA and 5q– syndrome is  
ameliorated in animal models and patients by treat-
ment with l-leucine77,78. l-leucine-induced activation 
of mTORC1, which promotes mRNA translation and 
ribosome biogenesis, has been suggested to mediate 
these beneficial effects77. Although there is growing 
concern regarding the possible cancer- promoting effect 
of mTORC1 activators79, these findings offer a thera-
peutic option for patients with DBA or 5q– syndrome  
and provide a basis to test the efficacy of l-leucine in 
other ribosomopathies.

Other syndromes associated with mutations in 
proteins involved in ribosome biogenesis exhibit a wide 
range of symptoms. Schwachman–Diamond syndrome 
(SDS) is characterized by exocrine pancreatic dysfunc-
tion, impaired haematopoiesis and neutropenia and 
bone defects80. SDS is caused by mutation in the gene 
encoding ribosome maturation protein SBDS, which 
binds to the 60S ribosomal subunit and functions in 
60S ribosome biogenesis and RNA processing81 (fig. 3a). 
Cartilage hair hypoplasia (CHH) is a disorder charac-
terized by short- limb dwarfism and fine, sparse hair, as 
well as defective cellular immunity, hypoplastic anae-
mia and neuronal dysplasia of the intestine82–84. The 
disease is caused by mutations in the gene encoding  
RNA component of mtRNA processing endoribo-
nuclease (RMRP), which encodes the non- coding RNA 
component of the RNase mtRNA processing (MRP) 
complex required for rRNA processing82,85. Defective 
rRNA processing, involved in the maturation of 40S sub-
unit, has also been linked to Bowen–Conradi syndrome  
and Aplasia cutis congenita, non- syndromic86,87. 
Whereas Aplasia cutis congenita is a relatively mild 
condition that often manifests as a skin defect on scalp, 
Bowen–Conradi syndrome is a fatal congenital dis order 
presented by numerous developmental defects and  
early death. Treacher Collins syndrome is characterized 
by craniofacial growth defects without haematologi-
cal abnormalities. The disease is caused by mutations  
in RNA polymerase I and III subunit D (POLR1D) and 
RNA polymerase I and III subunit C (POLR1C), each 
encoding a subunit of both the RNA polymerase I  
(Pol I) complex and the Pol III complex, and in treacle 
ribosome biogenesis factor 1 (TCOF1); the three encoded 
proteins are involved in the transcription of genes 
encoding ribosomal RNA, tRNA and other small RNAs 
and in rRNA methylation88–90. Defective rRNA modifica-
tion in general may be responsible for ribosomopathies. 
For example, X- linked dyskeratosis congenita, which  
is loosely classified as a ‘premature ageing syndrome’, is  
caused by mutation of the gene encoding dyskerin 
(DKC1), which mediates pseudouridylation of rRNA91.

The mechanisms by which aberrant ribosome bio-
genesis affects cellular functions and the reasons for the 
variability in the clinical manifestation of ribosomo-
pathies remain elusive92,93. The ribosome concentration 
model posits that deregulated translation of specific 
mRNAs or reduced levels of global translation could  
link ribosomal mutations to impairments in cellular 

Clonal dominance
A condition in which a single 
clone of haematopoietic stem 
cells (HsCs) supersedes the 
other HsC clones.
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Fig. 4 | Integrated stress response- related diseases. Cellular stress leads to activation 
of the integrated stress response through phosphorylation of the α subunit of eukaryotic 
translation initiation factor 2 (eIF2α). This is mediated through stimulation of one of four 
eIF2α kinases: general control nonderepressible 2 (GCN2), PKR- like endoplasmic 
reticulum (ER) kinase (PERK), protein kinase RNA- activated (PKR) and haem- regulated 
inhibitor (HRI), each of which is responsive to different cellular stressors (not shown). 
Growth arrest and DNA damage- induced protein GADD34 (also known as PPP1R15A) 
and constitutive reverter of eIF2α phosphorylation CReP (also known as PPP1R15B) are 
regulatory subunits of PP1, which can dephosphorylate eIF2α. Phosphorylation of eIF2α 
attenuates general translation by inhibiting the assembly of the eIF2–GTP–Met- tRNAi

Met 
ternary complex, but also stimulates translation of stress response mRNAs such as those 
encoding activating transcription factor 4 (ATF4) and C/EBP homologous protein 
(CHOP), which have upstream open reading frames in their 5′ untranslated regions and 
thus escape the inhibition of general translation by an indirect mechanism. eIF2B is a 
multisubunit (comprising eIF2Bα, eIF2Bβ, eIF2Bγ, eIF2Bδ and eIF2Bε) guanine nucleotide 
exchange factor for eIF2. DNAJC3, DnaJ homologue subfamily C member 3; GCN1, 
general control of amino- acid synthesis 1-like protein 1; IER3IP1, immediate early 
response 3-interacting protein 1; MRXSBRK , mental retardation, X- linked, syndromic, 
Borck type; PVOD, pulmonary veno- occlusive disease; SIL1, nucleotide exchange factor 
SIL1; VWM, vanishing white matter ; WRS, Wolcott–Rallison syndrome.
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Fig. 5 | Human diseases linked to the mTOR complex 1 pathway. Diseases 
linked to growth factor- dependent activation of mTOR complex 1 (mTORC1) 
are highlighted in blue, and diseases linked to amino acid- dependent 
mTORC1 activation are in green. Brown denotes the diseases that are shared 
by both pathways. In response to growth factors and insulin, the PI3K–AKT 
pathway stimulates mTORC1 through inhibition of the tuberous sclerosis 
complex (TSC), a negative regulator of the small GTPase GTP- binding protein 
RHEB. Amino acids activate mTORC1 through activating RAS- related GTP- 
binding protein (RAG) GTPases. Both growth factor- dependent and amino 
acid- dependent pathways must be activated to stimulate mTORC1 activity. 
mTORC1 controls translation initiation through phosphorylation of several 
effectors. In addition to translation initiation, mTORC1 controls elongation 
through phosphorylation of ribosomal protein S6 kinases (S6Ks) and 
eukaryotic elongation factor 2 (eEF2) kinase (eEF2K). The activity of RNA 
polymerase I (Pol I) and Pol III and the transcription of mRNAs encoding 
ribosomal proteins are also controlled by mTORC1 through S6Ks and 
repressor of Pol III transcription MAF1 homologue (MAF1). 4E- BPs, eIF4E- 
binding proteins; ARCL2A, cutis laxa, autosomal recessive, type IIA; ATP6AP1, 
vacuolar proton pump subunit S1; ATP6V0, vacuolar proton translocating 

ATPase 116 kDa subunit; ATP6V1B1, vacuolar proton pump subunit B1; BRRS, 
Bannayan–Riley–Ruvalcaba syndrome; cyclin D2, G1/S- specific cyclin D2; 
CLOVE, congenital lipomatous overgrowth, vascular malformations and 
epidermal nevi; DEPDC5, DEP domain- containing 5; eIF, eukaryotic 
translation initiation factor ; FCORD2, focal cortical dysplasia type II; FFEVF, 
familial focal epilepsy with variable foci; FLCN, folliculin; GATOR1, GAP 
activity towards Rag 1 ; HIHGHH, hypoinsulinaemic hypoglycaemia with 
hemihypertrophy ; IGF1R , insulin- like growth factor 1 receptor ; INSR , insulin 
receptor ; IRS, insulin receptor substrate; ITFG2, integrin- α FG- GAP repeat- 
containing protein 2; KICSTOR , KPTN–ITFG2–C12ORF66–SZT2; KPTN, kaptin; 
L ARP1, La- related protein 1; MAPBPIP (p14), (mitogen- activated protein- 
binding protein)-interacting protein; MCAP, megalencephaly–capillary 
malformation–polymicrogyria; MPPH, megalencephaly–polymicrogyria–
polydactyly–hydrocephalus; NIDDM, non-insulin-dependent diabetes 
mellitus; p110, PI3K catalytic subunit; p85, PI3K regulatory subunit; PDCD4, 
programmed cell death protein 4; SHORT, short stature, hyperextensibility , 
hernia, ocular depression, Rieger anomaly and teething delay ; SZT2, seizure 
threshold 2 protein homologue; TBC1D7 , TBC1 domain family member 7; 
TSC1, hamartin; TSC2, tuberin; v- ATPase, lysosomal vacuolar H+-ATPase.
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activity68 (fig. 3b). The tissue specificity of ribosomo-
pathies has been attributed to the differential sensitiv-
ity of the translation of specific mRNAs to ribosomal 
dysfunction in different tissues69. Alternatively, ribo-
somopathies may arise from an imbalance in the ratio of 
ribosomal proteins, which has been shown to activate the 
tumour suppressor p53 signalling pathway. According to 
this model, reduced synthesis of a certain ribosomal pro-
tein leads to impairment of ribosomal biogenesis and the 
accumulation of unassembled ribosomal proteins. These 
proteins bind the E3 ubiquitin–protein ligase MDM2 
and suppress its activity94,95. MDM2 negatively regu-
lates p53 by targeting it for proteasomal degradation96. 
Therefore, reduced MDM2 activity leads to stabilization 
and activation of p53 (refs95,97–99). In turn, this promotes 
cell cycle arrest and apoptosis, which disproportionately 
affect fast- dividing haematopoietic cells. Inactivation of 
p53 in mouse models of DBA (mutation in Rps19)100 and 
5q– syndrome101 rescued several phenotypes, including 
erythrocytic hypoplasia, thereby supporting the notion 
that p53 activation contributes to erythroid deficits in 
these ribosomopathies102,103. An alternative hypothesis 
suggests that ‘specialized ribosomes’ with unique ribo-
somal protein composition and tissue distribution are 
required for the translation of particular mRNAs104,105. 
Loss of such specialized ribosomes could explain the tis-
sue specificity of ribosomal protein deficiency (fig. 3b). 
Further studies are required to determine whether the 
so- called specialized ribosomes reflect unique properties  
of distinct ribosomal proteins or differential sensitivities of  
certain mRNAs to alterations in ribosome abun-
dance (ribosome concentration model)68,106. The role 
of p53-dependent and p53-independent pathways in 
the response to aberrant ribosomal biogenesis and the 
mechanisms underlying tissue specificity are intensive 
areas of research68,107, which should yield important 
insights into ribosomopathies.

The integrated stress response
The ISR senses diverse cellular stresses and mediates 
changes in gene expression to adapt to stress. Distinct 
stressors activate four kinases, which converge on a 
single phosphorylation site: Ser51 (in humans) of the 
α- subunit (or subunit 1) of human eukaryotic transla-
tion initiation factor 2 (eIF2α; also known as eIF2S1). 
The four kinases are haem- regulated inhibitor (HRI; 
also known as eIF2AK1), protein kinase RNA- activated 
(PKR; also known as eIF2AK2), PKR- like endoplasmic 
reticulum (ER) kinase (PERK; also known as eIF2AK3) 
and general control nonderepressible 2 (GCN2; also 
known as eIF2AK4) (fig. 4). The eIF2 complex functions 
in translation initiation by forming a ternary complex 
with the initiator Met- tRNA and GTP, which is deliv-
ered to the small ribosomal subunit (40S) to form the 
43S preinitiation complex (Box 1). Phosphorylation 
of eIF2α blocks the activity of the guanine nucleotide 
exchange factor eIF2B, which recycles GDP-bound 
eIF2 to GTP- bound eIF2. Phosphorylation of eIF2α 
reduces general translation but selectively increases 
the translation of mRNAs harbouring upstream open 
reading frames in their 5′UTR, such as those encod-
ing the transcription factors activating transcription  

factor 4 (ATF4) and C/EBP homologous protein (CHOP; 
also known as DDIT3). The vital role of the ISR in cel-
lular function is illustrated by several diseases caused 
by mutations in genes in this pathway, including those 
encoding the eIF2α kinases PERK and GCN2, eIF2B, 
the γ- subunit (subunit 3) of eIF2 (eIF2γ; also known as 
eIF2S3) and protein phosphatase 1 regulatory subunit 
15B (PPP1R15B) (fig. 4; Supplementary table 1).

PERK integrates ER- related stress to mediate 
translation attenuation during the unfolded protein 
response (UPR)108. The UPR is activated as a conse-
quence of the accumulation of misfolded or unfolded 
proteins in the ER lumen, which is a major site of protein 
processing and folding109. PERK activation leads to eIF2α 
phosphorylation and translation attenuation, result-
ing in decreased protein load in the ER. Deregulation 
of PERK function leads to a failure in coping with the 
accumulation of misfolded proteins in the ER, especially 
in cells with high secretory demands, such as pancreatic 
β cells, resulting in cellular damage and dysfunction110. 
Mutations in the gene encoding PERK (EIF2AK3) cause 
a rare autosomal recessive disease, Wolcott–Rallison 
syndrome (WRS)111. Consistent with the vital role of 
PERK in secretory cells, the most prominent feature  
of WRS is neonatal or early infancy diabetes112. WRS also 
manifests with skeletal abnormalities (epiphyseal dyspla-
sia, osteopenia and spine defects) that result in delayed 
growth, episodes of acute liver failure and intellectual 
deficits accompanied by microcephaly and epilepsy. 
Whole body knockout of Eif2ak3 in mice recapitulates 
the WRS phenotype, including neonatal diabetes, skele-
tal malformation and growth retardation113,114. Specific 
deletion of Eif2ak3 in insulin- secreting β cells causes 
defective β cell proliferation and differentiation dur-
ing the fetal and neonatal periods115,116. A recent study 
showed that the detrimental effects of Eif2ak3 deletion 
in the pancreas are caused by increased type I inter-
feron receptor 1 (IFNAR1) expression and signalling. 
The authors proposed inhibiting IFNAR1 as a means to 
mitigate cellular damage caused by PERK deficiency117.

Diabetes or nervous system phenotypes partially 
overlapping with WRS are caused by mutations in several 
other genes that encode ISR proteins, for example, DnaJ 
homologue subfamily C member 3 (DNAJC3), imme-
diate early response 3-interacting protein 1 (IER3IP1) 
and nucleotide exchange factor SIL1 (refs118–120) (fig. 4).  
DNAJC3 is a heat shock co- chaperone that is induced by 
ER stress121 and that inhibits PERK, PKR122 and GCN2 
(ref.123) to suppress eIF2α phosphorylation and prolong 
translation in stress conditions. Homozygous mutations 
in DNAJC3 cause increased eIF2α phosphorylation, 
leading to diabetes mellitus (age of onset 11–18 years), 
central nervous system phenotypes (early- onset ataxia 
and pyramidal tract signs) and peripheral nervous sys-
tem phenotypes (sensorimotor peripheral neuropathy 
and sensorineural hearing loss)119. The diabetes pheno-
type is recapitulated in Dnajc3 knockout mice, which 
exhibit hyperglycaemia and glucosuria associated with 
apoptosis of pancreatic β cells and reduced insulin 
levels124. SIL1 is a nucleotide exchange factor for binding- 
immunoglobulin protein (BiP; also known as HSPA5), 
which is a crucial regulator of the UPR. Mutations of 
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SIL1 have been identified in patients with Marinesco–
Sjögren syndrome, which is characterized by cerebellar 
ataxia, developmental delay, myopathy and cataracts118. 
IER3IP1 encodes a small protein (~10 kDa) that is local-
i zed in the ER and is involved in the ER stress response. 
It is highly expressed in cerebral cortex and pancreatic 
β cells. Mutations in IER3IP1 cause microcephaly with 
simplified gyration, epilepsy and permanent neonatal 
diabetes syndrome (MEDS), which has overlapping 
phenotypes with WRS120.

Mutations in PPP1R15B impair the phosphatase 
activity of PP1, leading to increased eIF2α phosphoryl-
ation125,126. Clinically, this causes early- onset diabetes 
(age of 15–28 years), microcephaly, intellectual dis-
ability and bone dysplasia. The similarity of the clinical 
manifestations among ISR- related disorders supports 
the notion that any deviation from the optimal level of 
eIF2α phosphorylation, either an increase (for example, 
because of mutations in DNAJC3 and PPP1R15B) or a 
decrease (through mutations in EIF2AK3), preferentially 
affects β cells, brain and bone tissues. This hypothesis is 
consistent with the phenotype (detailed below) caused 
by mutation in the γ- subunit of the trimeric eIF2 com-
plex127. Missense mutations in EIF2S3 (encoding eIF2γ) 
disrupt the eIF2 complex, causing mental retarda-
tion, X- linked, syndromic, Borck type (MRXSBRK 
(pronounced ‘Marx Borck’)), which is characterized  
by intellectual disability, microcephaly, epilepsy and 
growth retardation127–129.

One of the most common inherited childhood leuko-
encephalopathies is vanishing white matter (VWM), 
which is also called childhood ataxia with central hypo-
myelination130. VWM is caused by autosomal recessive 
mutations in any one of the five genes encoding eIF2Β 
subunits (eIF2B1–eIF2B5) and is characterized by selec-
tive dysfunction of brain glia cells (oligodendrocytes 
and astrocytes), diffuse lack of myelin and white matter 
cystic degeneration131. Early- childhood onset progres-
sive cerebellar ataxia is a hallmark of VWM, but the 
disease can develop at older age and involve spasticity, 
optic atrophy with loss of vision and epilepsy. The onset 
of the disease and rapid neurological deterioration occur 
following stress, such as minor head trauma and febrile 
infections. Some female patients develop premature 
ovarian failure in addition to cerebral abnormalities 
(ovarioleukodystrophy). Notably, co- occurrence of 
ovarian failure and neurodegenerative disorders has also 
been reported for individuals with mutations in prob-
able histidine–tRNA ligase, mitochondrial (HARS2) 
(ref.132) and probable leucine–tRNA ligase, mitochon-
drial (LARS2) (ref.133) in Perrault syndrome; and for 
individuals with mutations in alanine–tRNA ligase, 
mitochondrial (AARS2) in LKENP (leukoencephalo-
pathy, progressive, with ovarian failure)134, suggesting 
a common mechanism underlying these disorders (see 
below). Studies of transgenic mice harbouring muta-
tions in eIF2B, supported by human data, provide 
evidence that astrocyte dysfunction is a core VWM 
feature, leading to inhibition of oligodendrocyte matur-
ation and myelin production135,136. The mechanism 
causing the selective effect of eIF2B mutations in glia 
remains elusive, although a recent study demonstrated 

increased sensitivity of mouse astrocytes to eIF2B 
mutation- induced impairment in mitochondrial oxi-
dative respiration137. An increase in mitochondrial 
abundance sufficed to meet the energy requirements of 
Eif2b5R132H/R132H mouse embryo fibroblasts (which are not 
involved in the pathogenesis of VWM) but failed to do 
so in mutant primary astrocytes138.

Mutations in the eIF2α kinase GCN2 (encoded 
by EIF2AK4), have been linked to pulmonary veno- 
occlusive disease (PVOD) and pulmonary capillary 
haemangiomatosis21. PVOD is a rare form of pulmo-
nary hypertension that is characterized histologically 
by fibrous intimal proliferation of septal veins and 
pre- septal venules, resulting in luminal narrowing  
and pulmonary capillary dilatation and proliferation139. 
The obstructive changes in pulmonary veins cause an 
increase in pulmonary vascular resistance, which in a 
large fraction of patients leads to right ventricle failure 
and death (72% mortality within 1 year of diagnosis)140,141. 
Despite evidence of autosomal recessive transmission of 
the EIF2AK4 mutations in PVOD and the availability 
of a mouse model, the functional link between GCN2 
and disease pathophysiology remains unknown. Several 
lines of evidence suggest that environmental stress has a 
crucial role in triggering the disease onset140. It is also not 
clear why mutations in GCN2 lead to pulmonary pheno-
types, whereas other tissues commonly associated with 
deregulated ISR, such as brain and pancreas, remain 
unaffected. Notably, a recent study identified mutations  
of general control of amino- acid synthesis 1-like protein 1  
(GCN1), an activator of GCN2, in individuals with 
 intellectual disability142.

The mTOR pathway in human diseases
mTOR is a serine/threonine protein kinase of the PI3K- 
related kinase family that participates in two multi-
subunit protein complexes, mTORC1 and mTORC2. 
mTORC1 integrates various internal and external stim-
uli to coordinate major anabolic (for example, protein 
synthesis, lipogenesis and nucleic acid production) and 
catabolic (for example, autophagy) processes in the cell. 
The discovery that rapamycin (an allosteric inhibitor 
of mTORC1) inhibits translation initiation across spe-
cies revealed the importance of protein synthesis as a 
major downstream target of mTORC1 (refs143,144). The 
eIF4E- binding proteins (4E- BPs), ribosomal protein 
S6 kinases (S6Ks), eIF4G, LARP1 and repressor of  
Pol III transcription MAF1 homologue (MAF1) func-
tion as direct mTORC1 effectors in controlling protein 
synthesis (fig. 5). mTORC1 controls global protein syn-
thesis indirectly by regulating the transcription and 
translation of ribosomal proteins and translation factors. 
Studies in animal cancer models have demonstrated 
that impairing protein synthesis through pharmaco-
logical or genetic manipulation substantially attenuates 
the oncogenic effect of mTORC1 activation145,146. Here, 
we summarize the human diseases linked to deregu-
lation of two major signalling pathways upstream of 
mTORC1, the PI3K and amino acid- sensing pathways. 
Diseases associated with deregulation of other regu-
lators of mTORC1 have been discussed extensively in 
other reviews147,148.
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The PI3K–AKT–mTORC1 pathway
The PI3K–AKT pathway is a major growth factor- 
stimulated signalling pathway that activates mTORC1 
through inhibition of the tuberous sclerosis complex 
(TSC) (fig. 5). It is also the most frequently activated sig-
nalling pathway in cancer; therefore, most of the disorders 
discussed in this section are in fact cancer prone or accom-
panied by benign or malignant tumours. Deregulation 
of the PI3K–AKT–mTORC1 pathway has been impli-
cated in a large number of human diseases, including 
metabolic diseases, neurodevelopmental disorders, 
overgrowth syndromes and immunodeficiencies149,150 (fig. 5; 
Supplementary table 1). Several common oncogenic 
mutations of the PI3K–AKT–mTORC1 pathway have also 
been identified in non- cancer-associated dis orders, pro-
viding an opportunity to repurpose drugs developed for 
cancer treatment for non- cancer diseases151,152. mTORC1 
is a major regulator of cell growth. Accordingly, muta-
tions that activate this pathway are accompanied by a 
variety of overgrowth phenotypes (fig. 5; Supplementary 
table 1). Brain disorders are frequently observed with 
deregula tion of the mTORC1 pathway, underscoring the 
importance of this pathway in brain development and 
function153. Megalencephaly is associated with muta-
tions in PIK3CA, PIK3R2, PTEN, AKT3, TSC1, TSC2, 
MTOR and DEPDC5 (which encodes a component of 
the GAP activity towards Rag 1 (GATOR1) complex; 
see below)154–156. Autism spectrum disorder (ASD), focal  
cortical dysplasia and seizures are also frequently obser-
ved in mTOR-related syndromes155,157,158. Here, we discuss  
the role of components of the PI3K–AKT–mTORC1 
pathway in human disorders.

PI3K. Mutations in both the catalytic (p110) and the regu-
latory (p85) subunits of class IA PI3Ks have been linked  
to human disorders149. Disease outcome largely depends 
on tissue distribution as well as on the functional con-
sequence of the mutations (activating or suppressing). 
Whereas mutations in the ubiquitously expressed genes 
PIK3CA (encoding p110α) and PIK3R2 (encoding 
p85β) frequently cause brain malformation156, activat-
ing mutations in PIK3CD (encoding p110δ, which is an 
immune- specific isoform of p110) or in its regulatory  
subunit, PIK3R1 (encoding p85α), cause an immuno-
deficiency syndrome known as activated PI3Kδ syn drome  
(OMIM: Immunodeficiency 14 and Immuno defici-
ency 36, respectively)159,160 (fig. 5). Importantly, loss- of- 
function mutations in PIK3CD or PIK3R1 have been 
linked to immunodeficiency, indicating that precise regu-
lation of PI3Kδ activity is required for proper function of  
immune cells2. Some immunodeficiency phenotypes 
of gain- of-function mutations are rescued by rapamy-
cin treatment161, indicating that mTOR activation has a  
crucial role in the pathogenesis of immunodeficiency.

PTEN: dose- dependent effects on disease. The tumour 
suppressor PTEN is a lipid phosphatase that counteracts 
PI3K activity, resulting in inhibition of AKT phospho-
rylation (fig. 5). In addition to its prominent role in 
cancer, germline mutations in PTEN have been asso-
ciated with several distinct overgrowth syndromes 
and with ASD. The phenotypes observed in patients 

carrying PTEN mutations cover a wide range of tis-
sues and severities, such as macrocephaly, intellectual 
disability, ASD, seizures, immunodeficiency and skele-
tal abnormalities155,162–167. Several genotype–phenotype 
studies have provided compelling evidence that the 
extent of PTEN deficiency determines disease severity. 
Partial inactivation of PTEN, by mutations that render 
the protein unstable or reduce its ability to suppress 
AKT, is largely associated with ASD and macrocephaly, 
whereas complete inactivation of PTEN is associated 
with overgrowth syndromes and cancer168.

AKT: the intriguing case of the E17K mutation. AKT 
has three isoforms, AKT1, AKT2 and AKT3, which are 
encoded by three genes. Whereas AKT1 is ubiquitously 
expressed, AKT2 is expressed at the highest level in 
insulin- sensitive tissues, and AKT3 is expressed at the 
highest level in the brain. A somatic activating mutation 
of AKT1, E17K, causes an overgrowth syndrome known 
as Proteus syndrome169. Interestingly, the same mutation 
of E17K in AKT2 or AKT3 causes different phenotypes. 
The mutation in AKT2 produces a metabolic dis-
order known as hypoinsulinaemic hypoglycaemia with  
hemihypertrophy (HIHGHH)170, whereas in AKT3, it 
has been associated with a megalencephaly syndrome 
(specifically, megalencephaly–polymicrogyria–
polydactyly–hydrocephalus syndrome 2 (MPPH2))171. 
The overlapping and unique consequences of homo-
logous mutations in AKT1, AKT2 and AKT3 highlight 
the importance of tissue distribution of the affected 
protein in disease manifestation. Strikingly, E17K in 
AKT1 is also frequently found in cancer. The timing 
of mutation (germline versus somatic) and predispos-
ing factors (genetics or environmental) dictate whether 
E17K promotes cancer or a non- malignant phenotype. 
Notably, loss of AKT2 or AKT3 generates phenotypes 
opposite to those of the E17K mutation in AKT2 or 
AKT3 (refs172,173).

Tuberous sclerosis complex. Tuberous sclerosis is a 
neurocutaneous disorder resulting from inactivat-
ing mutations of hamartin (TSC1) or tuberin (TSC2) 
(refs174,175); it is characterized by benign tumours in mul-
tiple organs, seizures, intellectual disability and ASD176. 
TSC consists of TSC1, TSC2 and TBC1 domain family 
member 7 (TBC1D7) and functions as a GTPase acti-
vating protein for GTP- binding protein RHEB to inhibit 
mTORC1 activity (fig. 5). Notably, mutation of TBC1D7 
has been identified in patients with macrocephaly, 
intellectual disability, osteoarticular defects, myopia and 
coeliac disease177.

mTOR. Although mutations of various upstream regula-
tors of mTORC1 have long been associated with various 
non- cancer-related human diseases, no mutations of 
components of mTORC1 (mTOR, regulatory- associated 
protein of mTOR (RAPTOR), proline- rich AKT1 sub-
strate 1 (AKT1S1), target of rapamycin complex subunit 
LST8 and DEP domain- containing mTOR- interacting 
protein (DEPTOR)) had been identified until recently. 
This delay was attributed to the rarity of such mutations 
owing to the crucial role of mTORC1 in development. 

Overgrowth syndromes
A group of genetic diseases 
that are manifested as 
abnormal growth of the whole 
body or of body parts.
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However, recent whole exome sequencing studies have 
uncovered several de novo and somatic MTOR muta-
tions in patients with megalencephaly, focal cortical 
dysplasia and epilepsy154,178.

Amino acid- dependent mTORC1 activation
In 2007, a novel primary immunodeficiency syndrome 
was reported — immunodeficiency owing to a muta-
tion in MAPBP (mitogen- activated protein- binding 
protein)-interacting protein (MAPBPIP; also known 
as LAMTOR2 and p14) — which is characterized by 
congenital neutropenia, B cell and T cell deficiency, 
hypopigmented skin and short stature179 (fig. 5). The 
growth defect distinguishes the syndrome from lyso-
somal diseases that also manifest immunodeficiency 
and hypopigmentation. MAPBPIP (p14) is a compo-
nent of a pentameric complex termed Ragulator180. 
Upon activation by amino acids, Ragulator recruits 
RAS- related GTP- binding protein (RAG) GTPases 
to lysosomes to mediate mTORC1 activation180–182. In 
addition to Ragulator, mTORC1 relies on several other 
protein complexes to sense the levels of lysosomal and 
cytosolic amino acids, including the complexes lyso-
somal vacuolar H+-ATPase (v- ATPase), GATOR1, 
GATOR2 and KICSTOR (kaptin (KPTN)–integrin- α  
FG- GAP repeat- containing protein 2 (ITFG2)–
C12ORF66–seizure threshold 2 protein homologue 
(SZT2))183 (fig. 5). Mutations in different components 
of these complexes (except GATOR2) have been linked 
to various human disorders. In particular, defects 
in GATOR1 or KICSTOR, which are inhibitors of 
mTORC1 in response to nutrient deprivation, generate 
neurological phenotypes similar to those observed in 
PI3K–AKT–mTOR- linked disorders. Mutations affect-
ing DEP domain- containing protein 5 (DEPDC5) 
(ref.184), NPRL2 and NPRL3 (ref.185) (components of 
the GATOR1 complex) and SZT2 (ref.186), KPTN187 
and C12ORF66 (ref.188) (components of the KICSTOR 
complex) have been identified in patients with seizures, 
ASD, intellectual disability and neurodevelopmental dis-
orders. The v- ATPase is a multisubunit proton pump that  
interacts with the Ragulator–RAG complex. Mutations 
in different subunits of v- ATPase have been linked to 
various human disorders (fig. 5; Supplementary table 1). 
To what extent v- ATPase-linked disorders are associated 
with mTORC1 dysfunction remains to be determined.

Other factors in neuronal diseases
Mutations in translation regulatory factors such as GRB10-
interacting GYF protein 1 (GIGYF1), GIGYF2, zinc-finger 
protein 598 (ZNF598) (components of a translation 
repressor complex189) and eIF4G1 have been linked to vari-
ous neurodegenerative and neurodevelopmental disorders 
including Parkinson disease190–192, autism and intellectual 
disabilities (Supplementary table 1). In addition, recent 
studies highlighted the importance of translation deregu-
lation in repeat- associated disorders such as Fragile X  
syndrome and amyotrophic lateral sclerosis (ALS), fur-
ther emphasizing the crucial role of translation con-
trol in neurodegenerative diseases. For recent reviews  
on repeat- associated disorders, the reader is referred  
to refs193–195.

The basis of phenotypic variability
How does deregulation of general protein synthesis 
generate such a diverse range of human disorders? 
Undoubtedly, several factors contribute to this diversity. 
First, not all mRNAs are equally sensitive to trans-
lation deregulation. Differences in sequence, length 
and secondary structure of 5′UTRs and 3′UTRs make 
mRNAs differentially sensitive to the activity of distinct 
translation factors. For example, mRNAs with long 
and structured 5′UTRs, mitochondria- related mRNAs 
with short 5′UTRs and mRNAs with 5′-terminal 
oligopyrimidine motifs are sensitive to deregulation of  
the mTOR pathway196–198. The differential response  
of mTORC1-sensitive mRNA subsets to distinct 
translation initiation factors controls the expression 
of functionally related transcripts196. In addition, as 
described for mt- tRNA mutations, differences in 
codon usage between distinct mRNAs (for example, 
high UUG content in MT- ND6) may contribute to dis-
ease outcomes (for example, in MELAS syndrome)36. 
Despite our knowledge of translation deregulation of 
a few disease- related mRNAs (GATA1 and MT- ND6), 
important questions remain unanswered. First, for each 
disease, what are the specific mRNAs that are transla-
tionally deregulated and responsible for disease onset? 
Second, what features of mRNAs make them more or 
less sensitive to deregulation by translation regulators? 
Finally, can this knowledge be tailored for targeted 
therapy, and, if so, how?

In addition, gene expression varies in time and 
between tissues. The phenotypes of mutations in the genes  
encoding AKT and PI3K clearly show that the tissue 
distribution of mutated genes has a crucial role in dis-
ease outcome, as homologous mutations in three AKT 
isoforms with over 80% sequence identity are associ-
ated with different pathologies (fig. 6a). Loss of essential 
genes is incompatible with embryogenesis. Thus, 
disease- causing mutations tend to only partially reduce 
the activity of essential genes, rather than engender 
complete inactivation, or appear as somatically mosaic 
mutations. Differences in the extent of inactivation or 
the distribution of mutations in the body cause diverse 
pathological manifestations, as documented for PTEN 
and PI3Kδ (PIK3CD or PIK3R1) mutations (fig. 6b).  
In addition, different tissues and cell types respond dif-
ferently to translation deregulation. Tissues with high 
energy consumption are more prone to deregulation of 
mitochondrial translation, and peripheral neurons with 
long processes are more susceptible to ARS mutations. 
Finally, as described for GCN2 mutations, predispos-
ing genetic and environmental factors contribute to the 
pathogenesis of diseases.

The nervous system is particularly vulnerable to 
deregulation of mRNA translation, likely owing to both  
structural and metabolic features. Neurons have an 
extraordinarily complex and polarized morphology, 
in which dendrites and axons are distinct functional 
compartments, and these compartments depend on 
local translation of pre- existing, localized mRNAs to 
rapidly respond to a bevy of stimuli (fig. 6c). The remote 
regulation of mRNA translation renders neurons more 
susceptible to translation deregulation. In addition, 

Codon usage
The frequency with which a 
specific codon is used in the 
coding sequence of a mrNA  
or set of mrNAs.
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Fig. 6 | Proposed mechanisms for tissue specificity of diseases caused by deregulation of protein synthesis. 
 a | Tissue- specific gene expression has a crucial role in phenotype tissue specificity. This is exemplified by E17K 
mutations in the AKT genes. The figure was generated using the ProteomicsDB server203. b | The dose- dependent 
effect of PTEN inactivation is well established in cancer and may also explain the tissue- specific phenotypes observed 
with various PTEN mutations. PTEN partial inactivation often correlates with autism spectrum disorder (ASD) and 
macrocephaly , whereas complete inactivation correlates with overgrowth syndromes or cancer. Both loss- of-function 
and gain- of-function mutations affecting PI3Kδ activity can cause an immunodeficiency phenotype, suggesting that 
precise regulation of PI3Kδ activity is required for immune cell functions. There are multiple copies of mitochondrial 
DNA (mtDNA) in each cell, and most often, mitochondria carrying mutated (green) or wild- type (orange) copies are 
both present in each cell (heteroplasmy). Disease severity correlates with the amount of mutated mtDNA. c | Several 
models have been proposed to explain the vulnerability of neurons to translation deregulation57. The prevailing 
hypothesis postulates that a subset of functionally related mRNAs is stored in distal compartments of neurons 
(dendrites and axons). These localized mRNAs engage in translation only if they receive the proper internal 
(arrowheads) and/or external (arrows) cues. Although such remote regulation of translation is beneficial for 
supporting abrupt neuronal response, the long distance between the nucleus and synapses renders neurons 
hypersensitive to translation deregulation. ER , endoplasmic reticulum; HIHGHH, hypoinsulinaemic hypoglycaemia 
with hemihypertrophy.
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glucose is the main energy source in the brain. Although 
brain represents only 2% of the body weight, it con-
sumes the highest amount of glucose- derived energy 
(20%) of all organs199. It is thus conceivable that trans-
lation deregulation of mRNAs whose products are 
involved in glucose metabolism preferentially leads to 
brain disorders. This is consistent with the observation 
that several neurodevelopmental disorders caused by 
translation deregulation are associated with defects in 
glucose metabolism and with diabetes, as in the case of 
diseases linked to deregulation of the ISR and the mTOR 
pathway. Development of therapeutic approaches that 
target glucose metabolism (such as ketogenic diet200 

and anti- diabetic drugs201) could be a promising strat-
egy for treatment of neurological disorders caused by 
translation deregulation.

An understanding of the pathophysiology of rare 
human diseases could benefit from the use of induced 
pluripotent stem cells202 in combination with widely used 
gene- editing techniques (for example, CRISPR–Cas9) 
to interrogate translation at the genome- wide level (for 
example, using ribosome profiling). Such technologies 
provide an unprecedented opportunity for discovering 
new mechanism- based therapeutics.
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