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Abstract 

This paper describes a study of petiole structural morphology in which tissue materials, cross-sectional geometry, 

layer-architecture and hydrostatic condition are variables that affect the overall structural properties of the organ. 

Philodendron melinonii is selected as a model species for characterizing the mechanical properties of the petiole.  

The shape of the petiole is modeled through the polar parameterization of the Lame’s curves, i.e. Gielis formulation. 

A multiscale model of bending stiffness is proposed to capture the impact of changing the constituent tissues and the 

cross-sectional geometry. Stiffness and density of different tissues are used to plot the domain bounded by the 

limiting curve of the respective tissue material. Shape parameters and the respective tissue properties are used to 

generate structural efficiency maps displaying property domains within which fall all possible combinations of 

tissues that are shaped into a certain geometry during growth. The turgor pressure is also taken into account to show 

how the domain of the effective material properties changes with water content. Finite Element Analysis besides 

experimental data are used to validate the theoretical results. The maps may offer a source of inspiration for 

biomimetic design, as they help to gain insight into the efficiency of biological beams described by different tissues 

properties, geometry and turgidity.  
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1. Introduction 

 

Nature exhibits many excellent examples of load bearing structures. The petiole in plants is one 

of the most efficient structures abundantly available in Nature. Over the course of its life cycle, a 

plant may develop roots, stems, branches, leaves and eventually flowers and fruits. These 
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biological organs work in synergy to ensure the survival and reproduction of the organism. The 

primary function of the leaf is to harvest light needed to drive the photosynthetic process, 

essential for the synthesis of organic compounds [1]. The petiole is an organ that serves to attach 

the leaf to the stem. The word petiole comes from the Latin word petiolus, which literally 

translates into “little foot”. The petiole allows the leaf to extend outward from the plant, which 

can improve its ability to harvest light. In addition, the vascular tissues running through this 

organ allow it to conduct water and nutrients to and from the leaf. 

Evolutionary processes shape the morphology of all plant organs. Over generations, natural 

selection has driven the evolution of efficient and structurally sound petioles. The petiole 

resembles a cantilever beam that supports the leaf against gravity, exposing it to the sun (Fig. 1). 

Under the action of wind, a petiole acts as a beam that resists the drag acting on the frontal area 

of the leaf exposed to wind. The petiole thus provides mechanical support against the weight of 

the leaf and against environmental factors such as rain and wind, resisting both bending and 

twisting load[2]. 

The petiole can be considered as a hierarchical structure, having structural features defined at 

multiple length scales. At each level of the hierarchy, the elements repeat themselves to form 

ordered patterns. The architecture of the ordered patterns, as well as the nesting of the patterns 

into each other, makes a vital contribution to the overall mechanical properties of the organ. The 

cross-section of the petiole (Fig. 2 shows the C shaped Philodendron melinonii petiole) can vary 

considerably between species, possessing for example a terete (tapered cylindrical), "U", "C" or 

"D" shape.  The "U" and "C" cross-sections are also called sulcate or canaliculated, as a groove 

or “canal” appears to run longitudinally along the organ. A petiole may also have a quadrangular 

or hexagonal cross-section, and may possess striations[3]. 



The biomechanical properties of the petiole govern its ability to support the leaf against gravity 

and wind [4-8]. Broadly speaking, this organ is composed of fibrous composite biomaterials 

consisting of three integrated tissues: epidermis, collenchyma and parenchyma. Each of these is 

distinguishable in terms of its function and its material properties. The material and the 

geometric properties of each tissue may play a role in governing the flexural stiffness and 

torsional rigidity of the whole organ. The ability of an organism to resist deformation by an 

imposed load depends on both the shape of its body and the mechanical properties of its tissues 

[9]. The effect of cross-sectional geometry on the mechanical properties of structures has been 

widely studied [10-11]. Shape transformers [10]  and shape factors [11] are two main criteria used  to 

study this relationship. Using shape factors, the geometry of a cross section is compared with a 

square of the same area. Using shape transformers, the cross-sectional geometry is compared 

with a rectangle that envelops a given cross section. While shape factors depend on both  size 

and shape of a  cross section, shape and size  are decoupled when using shape transformers. 

Shape transformers thus provide a better approach for investigating the geometric effect of cross-

sectional shape on the mechanical properties of a structure.  

Multiscale modeling based on continuum mechanics can be used to capture the influence of 

cross-sectional geometry. The compliance properties of natural shapes are plotted on maps for 

comparison with several petiole specimens [12]. Multilayered shaped structures can display 

superior mechanical performance over monolithic materials. Bi-material sandwich beams are 

frequently used in different micro systems. A flexural stiffness domain for a tri-material laminate 

system has been proposed for different layered architectures [13]. This efficiency map provides 

the boundary domain for all possible material combinations and an effective approximation for 



the conceptual design stage. Using this technique, it is possible to draw an efficiency map of the 

flexural stiffness in the petiole.  

As a living organ, the petiole of any plant consists largely of water, with turgor pressure 

influencing the overall effective modulus. Increased turgor pressure can result in increased tissue 

stiffness [14-15]. Pitt et al. modeled plant tissues as fluid filled cellular structures and established a 

relationship between stiffness and turgor pressure [16]. More recently, carrot tissue has been 

modeled as a closed-cell liquid-filled foam, displaying a linear relationship between turgor 

pressure and stiffness [17]. 

In this study, shape transformers are employed to study the influence of cross-sectional geometry 

at different levels of the structural hierarchy of the petiole. This method is also used for cellular 

structures, the macro-scale properties of which are highly dependent on their microstructure. A 

finite element model is developed to elucidate the relationship between bending stiffness and the 

cell radius to cell thickness ratio of the petiole microstructure. The mathematical model is 

compared with experimental results and is used to develop structural efficiency maps that apture 

the effect of turgor pressure in parenchyma tissue on the effective flexural stiffness and torsional 

rigidity of the whole petiole.  

2. Materials and Methods 

 

2.1 Morphology of Philodendron melinonii 

Philodendron melinonii was first found in the rain forests of French Guiana, Suriname, 

Venezuela, and Northern Brazil. Philodendron melinonii is both terrestrial and epiphytic. An 



epiphytic species is one capable of growing on the branch of a tree or climbing a tree to better 

collect sunlight. Epiphytic individuals of this species grow on trees just under the canopy where 

they may be subjected to significant wind load. The leaves and petioles of Philodendron 

melinonii can grow quite large.  The petiole and leaf are nearly equal in length, each growing to 

approximtaely 28 inches (70cm). A fully grown individual can reach approximately eight feet in 

diameter (2.5 meters).  Fig. 1 shows typical P. melinonii leaf and petiole. The petiole is 

somewhat spongy to the touch. In cross section it is shaped like a rotated capital letter "D" or 

sunken on the upper surface to resemble the capital letter "C". 

2.2 Constituent tissues in petiole 

2.2.1 Epidermis 

The epidermis is the dermal tissue system of leaves, petioles, stems, roots and others. It is the 

outermost cell layer of the primary plant body. The cells of the epidermis are structurally and 

functionally variable. Most plants have an epidermis that is a single cell layer thick. Epidermal 

cells are tightly linked to each other and provide mechanical strength and protection to the 

plant[18].  

2.2.2 Collenchyma 

The collenchyma is the ground tissue that is strong in tension, composed of elongated cells 

unevenly thickened walls. It provides structural support, particularly in growing shoots 

and leaves.  The location and type of collenchyma cells vary across species[19]. 

2.2.3 Parenchyma 

Parenchyma is among the most common ground tissues and parenchyma cells are the most 

primitive type in plants. They usually lack secondary cell walls, possessing only thin primary cell 

walls. These cells vary considerably in morphology[20]. 



2.3 Hierarchies in petiole structure 

The structure of the petiole is adapted to meet multiple evolving requirements. Besides 

sustaining metabolic functions, it provides structural support. The internal structure of certain 

organs exhibits complex but repeated ordered organization at each length scale. These 

hierarchical levels are nested in one another, as observed in trabecular bones, wood and tendon. 

For example, in the Euplectella aspergillum, a deepwater sponge, six hierarchical levels have 

been identified [21]. These levels range from the nanoscale to the macroscopic scale. Each level 

possesses a structural design of a particular order that forms at different growth phases. In this 

case, the assembly consists of a three-dimensional cylindrical lattice structure, where the 

interaction of the structural motifs at each order plays a crucial role. Material structuring confers 

remarkable physical properties, such as strength, toughness and resilience, with minimum 

material use. Fig. 2 shows the P. melinonii petiole cross-sections at different locations  along the 

petiole length. The cross sections show the visible cellular structure which varies in density 

along the length of the petiole.  

Although the petiole can consist of a variety of tissues, including schlerenchyma, phloem and 

xylem, for the purposes of this paper, we simplify it into a three-tissue system. These three 

tissues, i.e. parenchyma, collenchyma and epidermis, contribute most to the total mass of the 

organ. Each tissue has distinct characteristics, with patterns that vary among species. Although 

the largest size structure of the hierarchy often plays the most relevant role, each hierarchy 

contributes to the overall mechanical performance. Next section proposes a scheme to 

characterize the effect of such material hierarchies, as shown in Fig. 3 by the cross sections of P. 

melinonii petioles having different hierarchical cellular structure at different length scale. From 

the figure it can be observed that the microstructure of petiole exhibits neither perfect circular 



nor hexagonal. The innermost hierarchy showed in Fig. 3a more hexagonal microstructure while 

others show circular or combination of both.  

2.4. Modeling hierarchical structure with shape transformers 

Provided the appropriate assumptions, the theory of elasticity can be applied to any length scale 

in a hierarchical structure. Classical mechanics is able to predict the deformation of a structural 

configuration at any length scale. For a multi-scale structure like the petiole, the theory can yield 

accurate results as long as each length scale is significantly different (at least differ by the order 

of 10) from those above or below it in the hierarchy.  

Cross-sectional effects can be captured by using the method of shape transformers. With this 

method, a geometrical quantity of a cross section is normalized by the same geometrical quantity 

of the surrounding envelope, which is  is the rectangle defined be the main cross section size. 

The shape transformer of a geometric quantity, g, is defined by: 

D

g
g
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Where Dg is the geometric quantity of the envelope. For example, shape transformers for area, 

second moment of area about x-axis and torsional constant can be defined as:  
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To describe the structuring effect of a material, we can examine the idealized example shown in 

Fig. 4b. This figure shows four hierarchical levels of a cross section where the elements are 

assumed to be continuous at each level of the hierarchy. At level 0, the material M0 is uniform 

and shapeless. When shaped, M0 becomes a solid circular two-dimensional structure. During this 

process, M0 is conferred with geometrical properties G1 and M1, i.e. the shaped material at level 

n=1, inherit properties M0G1. As an example, we apply the scheme of shape transformers, 𝛹𝐺  to 

the bending stiffness [12, 22-23]. The effective flexural properties 𝐸1 at the first hierarchical order 

are obtained by normalizing 𝐸0𝐼1 with the envelope property𝐼𝐷1: 

𝐸1 = 𝐸0
𝐼1

𝐼𝐷1
= 𝐸0Ψ𝐼

1         (3) 

At the following level, the circular elements of the first level are clustered together to form a 

hollow rectangular cross section. Assuming that the circular elements of the first level show 

isotropic and uniform material properties, similar to the first level, at the second level (n=2) it 

can be expressed as, 

Ψ𝐼
2 = 𝐸0Ψ𝐼

1Ψ𝐼
2             (4) 

Hence the structure of two hierarchical levels is factored in by the shape properties. This can lead 

to the determination of the effective material properties. Further structuring of the cells in the 

previous level results in an effective Young’s modulus at level 3 that is expressed as 𝐸3 =

𝐸2Ψ𝐼
3 = 𝐸0Ψ𝐼

1Ψ𝐼
2Ψ𝐼

3. 

If the process repeats at the higher levels, the effective Young modulus at the nth level can be 

expressed as, 
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The above relationship is a ratio of effective material properties and is valid for a single-layered 

material. However the petiole of P. melinonii is a multilayer structure where each layer has 

different mechanical properties.  

2.5. Multi-scale model for a layered micro-structured petiole 

In Fig. 3, different layers can be identified in the petiole cross-section, each with its own material 

properties. The inner layer is a structured material of uniformly distributed hollow tubular cells. 

The outer is the dermal tissue, which consists of peripheral bands of lignified material. The 

properties of the former are described by Eq. (5). The contribution of the latter depends on the 

thickness of the outer coat, which is often species-specific. The material properties resulting 

from layering a system with k materials can be expressed in terms of shape transformers [22]. In 

this case, the effective flexural modulus of a multilayered cross section can be written as:  

𝐸𝑇 = ∑ 𝐸𝑖Ψ𝐼𝑖
𝑘
𝑖=1        (6) 

Replacing the En in Eq. (5) with Ei in Eq. (6) yields: 

𝐸𝑇 = ∑ (𝐸0 ∏ Ψ𝐼
𝑗𝑛

𝑗=1 )Ψ𝐼𝑖
𝑘
𝑖=1      (7) 

Similarly we can obtain the equation for torsional stiffness, 

𝐽𝑇 = ∑ (𝐽0 ∏ Ψ𝐽
𝑗𝑛

𝑗=1 )Ψ𝐽𝑖
𝑘
𝑖=1       (8) 

The relationship between G and E is, 



𝐺 =
𝐸

2(1+𝜈)
        (9)  

where G is the shear modulus, JT is the torsional constant and 𝜈 is Poisson’s ratio, which is 

approximately 0.3 for cellulose in plants.  

Shape transformers and envelope multiplicators allow for the reformulation of the equations of 

mechanics in terms of the factors as F. M. Ψ𝑔. 𝑔𝐷where F describes the functional requirements, 

M the material properties, Ψ𝑔 the cross section geometry decoupled respectively in shape and 

size [22, 24]. Such a formulation permits the co-selection of material and shape in constrained and 

unconstrained design. Both Cross-section geometry and structured parenchyma tissue geometry 

have been shown in Table 1. In this work, we assumed the innermost microstructure to be better 

replicated with the array of regular hexagons. This array is more closely packed that represents 

the actual hierarchy better than the circular array. Table 1 shows the formulation for the 

rectangular, circular and hexagonal microstructure.  

The relation of ET can be rearranged and substituted in the shape transformers expression of an 

Equation of Mechanics, E.M.  [23], which, for instance, for mass, torsional and flexural stiffness 

cam be rewritten,    

𝐸. 𝑀. = 𝐹 × 𝑀0 × ∑ (∏ 𝑆𝑗𝑛
𝑗=1 )𝑘

𝑖=1 𝑆𝑖 × 𝐺𝐷   (10) 

Shape transformers in Eq. (10) were previously formulated for idealized pure geometric shapes. 

In this paper, the Gielis parameterization of the Lame’ curves [25] has been introduced to redefine 

their formulation for biological cross-sectional shapes. This enables the accurate representation 

of natural forms and is used here to capture the last hierarchy level of the petiole, i.e. the hollow 

grooved contour. In polar coordinates (r,φ), the shape contour is given by:  
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The parameters a, b, m, n1, n2, n3 are used to plot the shape contours of Philodendron melinonii, 

and are 0.6, 1.8, 8, 250, 115, 75 respectively. 

2.6. Flexural modulus of three-tissue multilayered petiole 

To characterize the flexural modulus of a three tissue system, we consider as design variables the 

material properties of the layers, the shape and size of the cross-section, the architecture and the 

number of the layers. The model presented here is based on the assumption that there is a perfect 

bonding between each layer. Although this hypothesis is too unrefined to describe the real 

interfacial bonding between cells and layers, it still fits the purpose of a approximate study  of 

the constituent materials since it allows for finding limiting ideal bounds of the effective 

properties. The strain at the interface between materials is also assumed to remain unchanged. It 

is assumed that bending strain varies linearly along all the layers without any discontinuity. On 

the other hand, only the stress varies continuously within each layer but discontinuously at the 

layer transition since each material has its own modulus.  

A petiole beam subjected to a pure bending moment 𝑀𝐵 per unit width may consist of multiple 

material layers arranged with respect to the shape classes. The flexural stiffness and unit mass of 

the system can be simplified as follows 

𝑀𝐵

𝑐1
= Ψ𝐼𝐼𝐷𝐸𝐷 = 𝐼𝐷𝐸𝐷      (12) 

𝑚

𝑙
= Ψ𝐴𝐴𝐷𝜌𝐷 = 𝐴𝐷𝜌𝐷     (13) 



where, 𝑐1 is the curvature of the beam. 
𝑀𝐵

𝐼𝐷𝑐1
= 𝐸𝐷 and 

𝑚

𝐴𝐷𝑙
= 𝜌𝐷 are, respectively, the effective 

properties, flexural modulus and density, of the beam. To express them as a function 𝑓() of the 

layer geometry, 𝐿𝑔, and their materials, we assign to the ith layer, where i = 1,2,…k, Young’s 

Modulus and density 𝐸𝑖 and 𝜌𝑖, respectively, and second moment of area and area 𝐼𝑖 and 𝐴𝑖. 

Then, we express the geometry of the layer architecture in terms of the shape transformers of 

each layer, Ψ𝐴𝑖 and Ψ𝐼𝑖, and write the effective properties of the system as 

𝐸𝐷 = ∑ 𝐸𝑖
𝑘
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𝜌𝐷 = ∑ 𝐴𝑖
𝑘
𝐼=1

𝐴𝑖

𝐴𝐷
= ∑ 𝜌𝑖Ψ𝐴𝑖

𝑘
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Having modeled the properties at the level of the layers, the focus is now on the next level of the 

structural hierarchy, i.e. the cross-sectional geometry. We consider a beam of generic cross-

section shape, S, which can have either a double axis or single axis symmetry. The transformed 

flexural modulus and density can be obtained by rearranging Eq. (14) and (15), and by applying 

Ψ𝐴 ≠ 1  and  Ψ𝐼 ≠ 1 to their respective properties of the envelope, 𝐸𝐷 and 𝜌𝐷, as  

𝐸𝑇 =
𝑀𝐵

𝑐1𝐼𝐷
2 = Ψ𝐼𝐸𝐷 = ΨI ∑ 𝐸𝑖Ψ𝐼𝑖
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𝜌𝑇 =
𝑚

𝐼𝐴𝐷
2 = Ψ𝐴𝜌𝐷 = Ψ𝐴 ∑ 𝜌𝑖Ψ𝐴𝑖

𝑘
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The above effective properties can capture the multiscale effect of changing the variables at 

different level of the structural hierarchy.  

The final hierarchical level of the petiole resembles the actual shape of the organ and is a two 

dimensional irregular shape formulated by Gielis parameterization. In this work, the domain 



integral is transformed into line integral using Green’s theorem. Then the integral is computed 

using quadratic elements that represent the coordinates over the boundary. The procedure 

produces exact and symbolic formulas for shapes enclosed by boundaries that can be represented 

by 1st or 2nd order polynomials. The integrals are used to compute various geometric properties 

e.g., area and inertial properties. Fig. 5 shows a two dimensional arbitrary domain in the x-y 

plane with continuous piece-wise boundary. The geometric and inertial properties of the domain 

can be obtained by integrating the following integrals, 

𝐴 = ∬ 𝑑𝑥𝑑𝑦 ;  𝐼𝑥𝑥 = ∬ 𝑦2𝑑𝑥𝑑𝑦;    𝐼𝑦𝑦 = ∬ 𝑥2𝑑𝑥𝑑𝑦 ;  𝑥̅ =
𝐴𝑦

𝐴
;   𝑦̅ =

𝐴𝑥

𝐴
   (18) 

where, A is area, 𝐼𝑥𝑥 is the moment of inertia about x-axis, 𝐼𝑦𝑦 is the moment of inertia about y-

axis and 𝑥̅ & 𝑦̅ are the centroid of the given domain. Each one of the above integrals can be 

written in one of the following forms: 

 


 dydx
x

F
I 1

1 ,  


 dydx

y

F
I 2

2 , or  







 dydx

y

F

x

F
I )(

2

1 21
3   (19) 

where F1 is x, x y2, and x3/3 for A, xxI  and
yyI  respectively. F2 can be obtained in the same 

manner. Putting the integrals of Eq. (18) in each one of the three forms given by (19) and using 

the well known Green’s theorem for transforming domain to boundary integrals, the following 

equations are obtained for each case: 
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where the line integration over the boundary is counterclockwise for the exterior boundary and 

clockwise for the interior boundary as shown in Fig. 5. The boundary is discretized by N number 

of nodes and intervals. Over those intervals the integration is performed and summing up the 

sub-integrals yields the desired area and inertial quantities. 

2.7 Modeling stiffness with turgor pressure 

The parenchyma tissue contains vascular bundles which carry the nutrients, water and other 

fluids through the organism; the effect of turgidity is the highest in vascular tissues. The 

parenchyma tissue is modeled by assuming two cell geometries for the cell: the simplest 

spherical cell and the regular hexagon cell (Fig 6), surrounded by the elastic cell walls. It is 

observed in the Fig. 3a, the fluid filled cells are nearly hexagonal in shape and very densely 

packed. But more realistically the cells shapes are both hexagonal and circular (Fig. 3). The cell 

walls are pictured as thin elastic membranes. Each cell is filled with an incompressible fluid, 

which exerts a pressure 𝑃 in excess of the external atmospheric pressure on the cell walls. This 

pressure, which corresponds to the turgor pressure in the cells of the parenchyma, is supposed to 

be equal in each cell of the geometric model. It is further assumed that the cell fluid cannot 

penetrate the walls when the parenchyma is being stretched. The cell wall material is assumed to 

follow Hooke’s law, which describes the proportional relationship between stress and strain. 

Changes in turgor pressure result in cell structural changes, such that an increase in pressure 

gives rise to an increase in parenchyma volume. The elastic cell walls stretch in response to this 

pressure. In stretching a strip of material following Hooke’s law from a length 𝑙 to 𝑙 + ∆𝑙, the 

potential energy stored in a volume is changed by, 

∆𝑈 =
1

2
𝐸𝑉 (

∆𝑙

𝑙
)

2

       (21) 



where, E is the Young’s modulus. For the cellular structure, the energy is the increased elastic 

energy of the cell walls due to stretching. Based on this fundamental relationship Eq. (21) 

Nilsson et. al derived expression that relates the stiffness of parenchyma tissue to the turgor 

pressure. [14]. 

𝐸 = [1 +
7−5𝜈

20(1+𝜈)
] 3𝑃 +

3(7−5𝜈)

10(1+𝜈)

𝐷

𝑟0
     (22) 

where, D is the ratio of Young’s surface modulus to (1 − 𝜈), and 𝑟0is the radius of cell. The 

above expression, further simplified, can be written for circular (spherical cell in 3D) model as, 

𝐸𝐶 = 3.6𝑃 + 2.5         (23) 

The expression for the hexagonal array (tetrakaidecahedron cell in 3D) is, 

𝐸𝐻 = 3.63𝑃 + 2.7       (24) 

Where in both the above two expressions, P indicates the turgor pressure. 

 

 

2.8 Torsional and flexural testing of P. melinonii petioles 

We collected P. melinonii samples from the Montreal Botanical Garden. These are grown in 

greenhouses at 70% humidity with a temperature varying from 220C at night to 260C during the 

day. The plants are watered with 150ppm fertilizer, alternating between 21:5:20 and 15:0:0 

N:P:K. Petioles were cut at the base and stored with the cut end in standing water to avoid 

dehydration. Immediately prior to testing, petioles were cut from their leaves and subsequently 



cut transversely into two unequal portions. The cut was consistently placed such that the 

proximal portion measures 35cm in length, to ensure a reasonable length to width ratio for 

flexural testing. The distal portion was used for torsional testing. Before each experiment, the 

proximal and distal ends of the petiole were photographed in cross-section, as well as the 

“middle” location where the petiole was cut in two. The dimensions of these cross sections were 

measured using digital calipers. 

An apparatus for testing the torsional and flexural stiffness of plant samples was constructed in 

house. Petiole portions were placed within aluminum clamps and fixed by using epoxy adhesive. 

During torsional testing, one of the clamps was rotated by adding weights to a pulley. During 

flexural testing, weights added to a second pulley would put tension on a thread attached to the 

middle of the sample by means of a torus-shaped steel ring. The angle of deflection caused by 

the addition of weight was measured using a touchless rotary sensor feeding into a digital 

oscilloscope. Fig. 7 shows the experimental setup. 

The samples were loaded in 200g increments up to 3kg, although the maximum load was 

frequently lower in the case of more compliant samples. After initial testing of whole petioles, 

the thin epidermal layer was carefully removed with a peeling device. After the sample was 

tested a second time, the thicker collenchyma layer was removed in the same way.  

The mass of whole petioles was measured using a digital scale. The volume was estimated by 

measuring the displacement of water inside a graduated cylinder. These measures were used to 

estimate the organ density. 

3. Results and Discussion 

3.1 Maps describing the effective flexural modulus and density of multilayered petiole 



We assumed that the petiole consists of three integrated tissues, though in reality there is no 

bonding between epidermis and parenchyma. In our analysis we plot the efficiency zone based 

on all possible combinations of these three tissue types. One aim of this paper is to create a 

domain within which the bending stiffness of the P. melinonii petiole falls. The three constituent 

tissues are 𝑀𝑒𝑝𝑖(𝜌𝑒𝑝𝑖, 𝐸𝑒𝑝𝑖), 𝑀𝑐𝑜𝑙(𝜌𝑐𝑜𝑙, 𝐸𝑐𝑜𝑙), 𝑀𝑝𝑎𝑟(𝜌𝑝𝑎𝑟 , 𝐸𝑝𝑎𝑟). Fig. 8 shows five sub domains 

consisting of three tissues. Domain I, II, and III refer to bi-tissue systems of 𝑀𝑒𝑝𝑖 − 𝑀𝑐𝑜𝑙, 

𝑀𝑒𝑝𝑖 − 𝑀𝑝𝑎𝑟, 𝑀𝑝𝑎𝑟 − 𝑀𝑐𝑜𝑙. These actually indicate the sandwich concepts having specific 

property bounds. Within these there exist all possible bi-tissue systems containing multiple 

layers arranged. Region IV describes properties that can be achieved by either the bi-tissue 

systems 𝑀𝑒𝑝𝑖 − 𝑀𝑐𝑜𝑙, 𝑀𝑒𝑝𝑖 − 𝑀𝑝𝑎𝑟 or the tri tissue system 𝑀𝑒𝑝𝑖 − 𝑀𝑐𝑜𝑙 − 𝑀𝑝𝑎𝑟. Domain V 

consequently shows the three integrated constituent tissues. The petiole flexural stiffness is 

expected to fall within this region as the petiole consists of the three tissues. The black dots in 

the figure are experimental data from the mechanical testing of Philodendron melinonii. The 

experimental values of flexural stiffness of the petioles fall within the zone V. These values are 

expected to fall closer to the parenchyma tissue (zone II). However, the theoretical model does 

not account for all of the tissue types normally present in a plant organ. The tissues that have 

been ignored, despite contributing little mass, may affect the mechanical properties in 

unpredicted ways. Moreover, it is assumed that there is perfect bonding between two layers 

which may not be realistic for the petiole morphology. Although the tissues are considered to be 

fibrous composite but in this modeling it has been ignored which may affect the overall 

mechanical properties of the peiole. 

3.2 Effect of cellular microstructure in flexural stiffness 



Considering a tissue as a homogeneous material can be informative, however tissues are cellular 

in nature and tissue density varies along the length of the petiole. The microscale cellular nature 

of the parenchyma tissue can be observed from a cross-sectional image of the petiole (Fig. 3). 

The length scale is different for the cellular structures of parenchyma and collenchyma. Fig. 9 

shows the effect of cellular structure over homogenous material properties. The solid lines depict 

the boundary of two-tissue (collenchyma and parenchyma) systems, considering both tissues to 

be homogeneous. The parenchyma tissue is cellular at two length scales, in contrast to the 

collenchyma tissue which is only cellular at the microscopic scale. The cellularity of parenchyma 

tissue will thus be a primary factor governing the mechanical properties of the whole organ. The 

first dashed line, closest to the solid green line, represents the stiffness of solid circular tissues 

that represent very densely packed parenchyma. The tissue density appears higher near the stem 

(base), so this line is intended to represent that part of the petiole. The line to the right of the 

previous one represents a structure of lower density and the outermost dotted line indicates lower 

density cellular tissue, which can be considered as the middle section of petiole lengthwise. The 

domain is expanded for cellular microstructures compared to homogeneous tissues, and it is 

shifted outward with increasing r/t.  

FE modeling has been performed based on a two-tissue cellular system having microstructure. 

The results of the theoretical modeling are validated by finite element modeling of a micro-

structured cantilever beam modelled in the finite element software ANSYS. In this model the 

bending stiffness of the structure, EI , is obtained by using the relationship between the tip 

deflection,  , of a cantilever beam  of 12 cm in length and the applied concentrated force, F

. As shown in Fig. 10a and 10b the petiole model consists of outer collenchyma layer that is 

tightened with connected hollow parenchyma cylinders. Here, the petiole outer layer is meshed 



with Solid 95 element, a 3D element with 20 nodes, and the Beam 4 element, a 3D beam 

element, is used to model the hollow parenchyma cylinders. The petiole finite element is shown 

in Fig. 10c.The connectivity between the parenchyma layer and the collenchyma as well as the 

connectivity between the collenchyma cylinders is modeled by coupling the in-plane degree of 

freedom of the nodes located on the inner surface of the petiole to beam nodes. All the degrees of 

freedom of the nodes on one of the petiole distal are taken to model the cantilever beam 

boundary condition. A concentrated force of 0.2 N is applied on the petiole tip, and the 

corresponding beam tip deflection is obtained. The bending stiffness resulted from FE modeling 

is shown in Fig. 9. 

3.3 Effect of turgor pressure on tissue mechanical properties 

The previous modeling and FE results do not include the effect of turgor pressure on stiffness. 

Fig. 11 displays the effect of turgor pressure on parenchyma tissue for different types of 

microstructures. Effective flexural modulus appears to increase as a function of the turgor 

pressure, which is expected, since the stiffness of parenchyma tissue varies with the turgor 

pressure. Turgor pressure can have a dramatic effect on the stiffness, which can increase up to 

70% compared with a baseline of no turgidity.  Table 2 shows the change in flexural stiffness of 

parenchyma tissue with respect to turgor pressure.  

Fig. 11 shows also the effect of changing the cell geometry on the flexural stiffness. Since the 

tetrakaidecahedron (hexagonal) cells are more closely packed than the spherical (circular) cell 

forms, tissues of the former structure will generally be stiffer than tissues of the later structure. 

Although the model presented in section 2.7 and used here to generate this map is simplified, it is 

capable of capturing the effect of turgidity with a good approximation of same order of 



magnitude as the approximate theoretical value [14]. It is worth mentioning that the effect of 

turgor pressure does not change for both the flexural and torsional stiffness. Table 2, indicates 

the % gain in both torsional and flexural stiffness. In Fig. 12 the domain of flexural stiffness has 

been shown in log scale with the effect of turgor pressure. The turgor pressure impacts the 

effective flexural modulus of the parenchyma-collenchyma domain.  

3.4 Maps describing the effective torsional modulus and density of multilayered petiole 

Fig. 13 shows the domain of the torsional stiffness. Similar to the domain of flexural stiffness 

with a three-tissue system, this domain is more compact than the previous domain. The 

experimental results for torsional stiffness lie closer to the boundary of epidermis and 

parenchyma domain. The collenchyma tissue is stronger in tension but not in twisting load. 

Hence the experimental results are closer to the region of epidermis – parenchyma region. But in 

reality there is no bonding between epidermis-parenchyma tissues. So, It can be deduced that the 

torsional stiffness largely depends on the epidermis tissue and epidermis tissue is rigid to 

twisting load. The epidermis tissue is stiffer than the other two tissue types. The stiffer epidermis 

appears to play a key role in controlling torsional stiffness rather than flexural stiffness.  

4. Conclusion  

The plant petiole, like many biological structures, is a hierarchical cellular solid. At the 

microscopic scale, this organ consists of fluid filled cells bounded by cell walls. The parenchyma 

tissue also exhibits cellularity at a higher length scale with air filled pores on the order of 

millimeters. Here only the parenchyma tissue is considered as a cellular structure, although the 

other tissues are cellular at the microscopic level. This type of modeling can be extended to such 

microscopic cellular structures in future work. The turgor pressure has a dramatic effect on tissue 



properties as well as mechanical properties, increasing torsional and flexural stiffness by up to 

70%. Turgor pressure modeling is done for regular cell geometry, although the cells in the 

biological petiole have a random orientation. Future work will address the irregular cell 

orientation for predicting the effect of turgor pressure. Experimental results suggest that the 

epidermal tissue makes a key contribution to torsional stiffness while its effect on flexural 

stiffness is minor. From a statistical point of view, the number of experiments should be higher 

to predict real life petiole structural properties. Accurately predicting the properties of the 

biological petiole will require further experimentation in order to gain statistically relevant data. 

The goal of this work was first to gain insight into the mechanics of petiole structure at multiple 

length scale to apply such lessons to the design bio-inspired compliant composites based on 

cellular microstructure. Tissue properties, their relative volume fractions and their orientations 

are the governing factors for controlling the overall structural properties of the petiole subjected 

to both twisting and bending load. This is the main challenge of the current research and the 

subject of future work. 
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Figure 1: Philodendron melinonii  whole plant (left) and leaf with petiole (right) 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Petiole cross sections at different locations along the length 
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Figure 3: Images of petiole hierarchies at different length scales (a) SEM images of parenchyma 

tissue in µm, (b) microscopic image in mm and (c) photographic image of petiole cross section in 

cm length scale 
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Figure 4: a) Structural hierarchies of a petiole. b) An ideal cross-section structure [26]. 
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Figure 5: 2-dimensional arbitrary area with irregular boundaries. 
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Figure 6: Parenchyma tissue modeling based on circular and regular hexagon to evaluate turgor 

pressure  
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Figure 7: Experimental setup   



 

Figure 8: Domain of epidermis-collenchyma-parenchyma tissue 

  

300 350 400 450 500 550 600 650 700
0

200

400

600

800

1000

1200

1400
Domain of epidermis parenchyma-collenchyma tissue


T
 (kg/m3)

F
le

x
u
ra

l 
s
ti
ff

n
e
s
s

I 

V 

III 

II 

IV 

parenchyma 

epidermis 

collenchyma 

   Exp. result 

  

300 350 400 450 500 550 600 650 700
0

50

100

150

200

250

300

350

400

450

500
Domain of epidermis parenchyma-collenchyma tissue for torsion


T
 (kg/m3)

T
o
rs

io
n
a
l 
s
ti
ff

n
e
s
s



  

Figure 9: Flexural stiffness of structured tissues  
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Figure 10: FE model on ANSYS  



 

Figure 11: Effect of turgor pressure on flexural stiffness within parenchyma tissue. 
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Figure 12: Turgor pressure on the complete petiole (3 tissue) domain 
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Figure 13: Domain of torsional stiffness for epidermis-collenchyma-parenchyma tissues 
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Table 1: Area(A), Second moment of area (I), Geometric transformation, Ψ𝐼 and Ψ𝐴 of section 

Cross sectional  shape A I 
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Table 2: Effect of turgor pressure on stiffness of parenchyma tissue 

Turgor pressure 

(MPa) 

Increase in stiffness  

(%) 

1 49.22 

2 53.42 

4 60.02 

6 64.98 

8 68.85 

10 71.95 

  



Figure 1: Philodendron melinonii whole plant (left) and leaf and petiole (right) 

Figure 2: Petiole cross sections at different locations along the length 

Figure 3: Images of petiole hierarchies at different length scales (a) SEM images of parenchyma 

tissue in µm, (b) microscopic image in mm and (c) photographic image of petiole cross section in 

cm length scale 

Figure 4: a) Structural hierarchies of a petiole. b) An ideal cross-section structure [26]. 

Figure 5: 2-dimensional arbitrary area with irregular boundaries. 

Figure 6: Parenchyma tissue modeling based on circular and regular hexagon to evaluate turgor 

pressure.  

Figure 7: Experimental setup 

Figure 8: Domain of epidermis-collenchyma-parenchyma tissue 

Figure 9: Flexural stiffness of structured tissues  

Figure 10: FE model on ANSYS 

Figure 11: Effect of turgor pressure on flexural stiffness within parenchyma tissue. 

Figure 12: Turgor pressure on the complete petiole (3 tissue) domain 

Figure 13: Domain of torsional stiffness for epidermis-collenchyma-parenchyma tissues 

 


