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ABSTRACT

The strong coupling constant αS is measured in proton-proton collisions

at a centre-of-mass energy of 7 TeV using 38 pb−1 of data recorded by the

ATLAS detector. An inclusive jet production ratio distribution is used to

reduce parton distribution functions dependence and measure the coupling

strength at energy scales between 100 GeV and 1.5 TeV. The value of the

strong coupling constant αS(MZ) is measured to be 0.111+0.016
−0.012, in agreement

with similar measurements performed at hadron colliders and the world av-

erage value. Results are also consistent with the running of the coupling as

predicted by Quantum Chromodynamics, tested for the first time at energy

scales greater than 209 GeV.
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ABRÉGÉ

La constante de couplage des interactions fortes est mesurée à partir

de collisions protons-protons effectuées à une énergie de centre de masse de

7 TeV et enregistrées par le détecteur ATLAS. Un rapport de probabilité

de production inclusive de jets est utilisé afin the mesurer la valeur du cou-

plage à différentes énergies allant de 100 GeV à 1.5 TeV, tout en minimisant

l’impact des densités de partons. La valeur de la constante de couplage

(αS(MZ)) mesurée est de 0.111+0.016
−0.012, en accord avec les résultats obtenus par

des expériences similaires, ainsi qu’avec la moyenne mondiale. Ces résultats

sont également compatibles avec l’évolution de la constante de couplage, telle

que prédite par la chromodynamique quantique. Ces prédictions de varia-

tions sont testées pour la première fois à des échelles d’énergies supérieures à

209 GeV.
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CHAPTER 1

Introduction

Looking at the world around us, it is hard to imagine that everything we

see is ultimately composed of elementary particles obeying four fundamental

forces. This incredible, yet inevitable conclusion can be drawn from theories

and experiments developed and performed by thousands of physicists since

the early 20th century. One of the four fundamental forces, known as the

strong force, is responsible for binding protons and neutrons together to form

the nucleus of atoms, but also for the existence of those protons and neutrons.

The work presented in this thesis describes a measurement of the strong force’s

strength at unprecedented energies, using a new approach, thereby validating

our understanding of one of the four fundamental forces of nature.

The remainder of this chapter provides a brief overview of the basic con-

cepts of particle physics, and of the analysis presented in this document.

Chapter 2 introduces advanced theoretical concepts relevant for the results

presented in this thesis. Chapters 3 and 4 respectively provide descriptions of

the physical apparatus and software used to collect, simulate and reconstruct

data. Theoretical predictions of distributions used to perform the analysis

are described in chapter 5, while the measurement of those distributions from

data is described in chapter 6. Chapter 7 compares theoretical predictions to

data measurements to obtain the final results of this analysis. The analysis

conclusions that can be drawn are summarized in chapter 8.
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1.1 Theory Overview

Our current understanding of the universe leads us to believe that the

world around us is composed of elementary particles governed by four funda-

mental forces known as the electromagnetic, weak, strong and gravitational

interactions. These four interaction types mediate the dynamics of the sub-

atomic world. The Standard Model theory of particle physics was developed

to explain observed phenomena resulting from the presence of electromagnetic,

weak and strong forces. The current formulation of the Standard Model does

not include gravitational interactions; however, gravitational effects are gen-

erally negligible at the subatomic scale [1] and can therefore be safely omitted

from all Standard Model calculations. The Standard Model was used to make

several predictions, such as the existence of the top quark, which would later

be confirmed experimentally. The large body of data agreeing with Standard

Model predictions greatly contributed to establishing it as a generally reliable

description of particle interactions at all energy scales studied to this date.

Twelve elementary particles known as fermions are currently included in

the Standard Model. A corresponding antiparticle of equal mass but opposite

charges (or quantum numbers) is also postulated to exist for each fermion.

Figure 1–1 shows the different types of fermions classified as either quarks

or leptons. There exists six types, also known as flavours, of quarks and six

leptons. Quarks are fundamentally different from leptons in that they carry

colour1 charge and therefore interact via the strong force. This leads them to

form bound states known as hadrons. Quarks also carry electrical charge, as

seen in figure 1–1, which allows them to interact through the electromagnetic

1 Colour charges and the theory of strong interactions are discussed in sec-
tion 2.1.

2



force as well. Finally, the only way a quark can change flavour is through the

weak interaction. Both electromagnetic and weak interactions are generally

negligible when compared to the strong force [1]. Leptons do not carry colour

charge, and therefore do not interact via the strong force. Leptons known

as neutrinos have very small non-zero masses and do not carry any electrical

charge. These particles therefore interact with matter solely through weak

interactions. This feature renders neutrinos notoriously difficult to detect.

Charged leptons, such as electrons, carry electrical charge and therefore inter-

act mainly via the electromagnetic force.
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Figure 1–1: Summary figure of elementary particles of the Standard Model
and their respective mass, electric charge and spin [2].

Both quarks and leptons can be divided in three pairs of particles known

as generations. A quark generation is composed of one quark flavour with

electrical charge 2/3 and one with −1/3 in units of electron charge e. A lepton

generation on the other hand is composed of one electrically charged lepton
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with charge −1e, and its corresponding electrically neutral neutrino. Only

the first generation of charged fermions, composed of the lightest particles, is

stable. Charged particles from both the second and third generations decay

into lower generations with short half-lives. The first, second and third gener-

ations correspond to the first three columns of figure 1–1 in that order. The

up and down quarks are the basic constituents of protons and neutrons which,

along with electrons, are themselves the building blocks from which all atoms

currently known to man are built.

Also included in the Standard model are five bosons, which act as force

carriers or mediators. Photons are electrically neutral, but couple to electric

charge in particles and are therefore mediators of the electromagnetic force.

Three massive bosons known as the W+, W− and Z, whose masses are given

in figure 1–1, mediate the weak interactions. Finally, gluons are massless and

electrically neutral, but couple to colour charge, and are therefore mediators

of the strong force.

1.2 Analysis Overview

Collisions of protons (i.e. hadrons) often result in the production of two

or more quarks or gluons. The probability of producing quarks or gluons de-

pends on the number of particles produced, and the strength of the strong

force at the energy of the collision. This analysis counts the number of colli-

sions showing indications that three-or-more or two-or-more quarks or gluons

were produced at different collision energies. The value of the ratio of these

two quantities therefore depends on the strength of the strong force. A mea-

surement of the strength of the strong force as a function of collision energy

is obtained by comparing the measured value of this ratio to theoretical cal-

culations. Finally, the energy dependence of the strength of the strong force

is measured at energies beyond those of any past measurements. Figure 1–2

4



gives a schematic overview of the different parts of the analysis and how they

lead to the measurement of the strength of the strong force.
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CHAPTER 2

Theoretical Foundations

According to our current understanding of physical processes, forces can

be described by gradients of fields. Field theories are therefore used in the

studies of fundamental interactions. The Standard Model of particle physics

is a quantum field theory defined by a SU(3) × SU(2) × U(1) gauge symme-

try. The invariance of the theory under local symmetry transformations is

achieved by the introduction of vector fields, which when quantized become

gauge bosons, the ‘force carriers’. Quantum Chromodynamics (QCD) is the

SU(3) quantum field theory describing strong interactions and is part of the

Standard Model of particle physics.

This chapter first describes the theory of strong interactions, followed

by practical applications of the theory to describe hadron collisions. The

last section describes how the study of these hadron collisions can be used to

measure the strong coupling constant αS, which in the theory of QCD provides

a measure of the strong interaction strength.

2.1 Theory of Strong Interactions

According to quantum mechanics, fermions can be described by a proba-

bility wavefunction. A quark’s wavefunction is composed of three parts: spa-

tial, spin, and colour. The quark’s colour wavefunction, which allows them

to interact via the strong force, can take three different colour states named

after the colours red (r), green (g) and blue (b). For antiparticles, these states

become the anticolours anti-red (r̄), anti-green (ḡ) and anti-blue (b̄). These

7



colour states correspond to a combination of two conserved and additive quan-

tum numbers: a colour hypercharge and a colour isospin charge. The values

for these quantum numbers for each state are listed in table 2–1.

Table 2–1: Values of the colour hypercharge Y C and the colour isospin charge
IC3 for quarks and antiquarks

Quarks Antiquarks
Colour Y C IC3 Colour Y C IC3

r 1/3 1/2 r̄ −1/3 −1/2
g 1/3 −1/2 ḡ −1/3 1/2
b −2/3 0 b̄ 2/3 0

Gluons, the strong force mediators, couple to colour charge in a very

similar way that photons couple to electric charge in electromagnetic interac-

tions. However, gluons are fundamentally different from photons in that they

themselves carry colour charge. As a matter of fact, gluons carry a quan-

tum mechanical combination of both colour and anticolour states. Gluons can

therefore not only couple to quarks, but also to each other. This property

of gluon interactions is at the origin of two properties of strong interactions

called colour confinement and asymptotic freedom.

2.1.1 Colour Confinement

According to the colour confinement hypothesis, only states with total

colour hypercharge (YC) and colour isospin charge (IC3 ) of zero can be ob-

served. The colour confinement hypothesis therefore precludes us from ob-

serving individual partons, where a parton is defined as either a quark or a

gluon. Quark bound states known as hadrons are required to satisfy the colour

confinement requirements. These states are also known as colour singlets or

colourless states. Two types of hadrons have been observed: quark-antiquark

pairs called mesons, and three-(anti)quark combinations called baryons.

8



2.1.2 Asymptotic Freedom

Asymptotic freedom is a defining property of the strong force, accord-

ing to which the strength of interactions weakens with decreasing interaction

distances. These short-distance interactions are associated with large energy-

momentum transfers (Q) between particles. The strength of strong inter-

actions, and hence the value of the strong coupling constant αS, therefore

decreases as the energy-momentum transfer increases. The dependence of the

strong coupling constant on the interaction’s energy-momentum transfer, or

the hard scale of the scattering, is known as the running of the coupling.

2.1.3 Running of the Strong Coupling Constant

Due to asymptotic freedom, the strong coupling constant αS is small

enough at high energy momentum transfers Q that perturbation theory [3]

can be applied to QCD calculations. In the framework of perturbative QCD

(pQCD) , the running coupling satisfies the renormalization group equation

(RGE) [4]

µ2
R

dαS

dµ2
R

= β(αS) = −(b0α
2
S + b1α

3
S + . . .), (2.1)

where µR is an unphysical parameter known as the renormalization scale. To

be representative of the interaction strength, the strong coupling is evaluated

at µR = Q, the energy-momentum transfer of the interaction. In the com-

monly used modified minimal subtraction (MS) renormalization scheme [5],

the one-loop [6,7] and two-loop [8–10] beta-function coefficients introduced in

equation (2.1) are

b0 =
33− 2nf

12π
(2.2)

b1 =
153− 19nf

24π2
(2.3)

where nf is the number of light quark flavours, and a quark flavour is con-

sidered light if its mass is smaller than the renormalization scale µR = Q. A

9



two-loop solution to the RGE [11] approximated to O(t−2) is given by

αS(Q) ≃ 1

b0t

(

1− b1 ln t

b20t

)

, t ≡ ln
Q2

Λ2
, (2.4)

where the integration constant Λ corresponds to the energy scale below which

perturbation theory cannot be applied to QCD, and is dependent upon the

renormalization scheme used. The RGE can also be solved exactly using

numerical methods; and in such cases there is no integration constant. To

avoid the ambiguity associated with the different methods and renormaliza-

tion schemes used in the determination of the strong coupling constant, the

αS value is usually quoted at a specific scale (typically Q = MZ · c, the mass

of the Z boson). The current accepted world average of the strong coupling

constant is αS(MZ) = 0.1184 ± 0.0007 [12]. The running of the coupling is

illustrated in figure 2–1 using the previously described two-loop solution to

the RGE.

2.2 Hard Scattering Processes in Hadron Collisions

This section first describes how perturbative QCD can be used to study

parton collisions resulting in the creation of outgoing partons. The concept

of factorization is then introduced to compute QCD predictions of hadron

collisions resulting in the creation of outgoing partons. Finally, the evolution

of outgoing partons into particle jets is described.

2.2.1 Hard Scattering of Partons

A hard scatter of partons is defined as a collision in which the energy-

momentum transfer between partons is clearly large enough (few GeV/c) to

justify the application of perturbation theory to QCD. Some of the most com-

mon outcomes of such hard scatterings include two or more partons being

produced. Parton collisions leading to the production of two or more outgoing
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Figure 2–1: Running of the strong coupling constant as a function of
renormalization scale µR using the two-loop approximate solution to the
RGE [11] and the accepted world average of the strong coupling constant
αS(MZ) = 0.1184 ± 0.0007 [12] . Results from the DØ inclusive jet fit [13],
ZEUS [14] and H1 [15] collaborations are also shown.

partons can be studied using Feynman diagrams. These diagrams provide a vi-

sual representation of terms from perturbation series in quantum field theory,

including QCD [16]. These diagrams can be interpreted as scattering matrix

elements using Feynman’s rules [16], which can then be used to compute the

cross-section of a specific process.

Figure 2–2 shows Feynman diagrams representing the different types of

interactions allowed in QCD between quarks and gluons. Each type of inter-

action has a certain probability of occurring, which is proportional to powers

of the strong coupling constant αS, as labelled in the figure.

Larger diagrams can be constructed by combining the above three basic

interaction diagrams. The probability of the interaction portrayed to occur is

proportional to the square of the product of the probabilities of each vertex.
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(a)

∝ √
αS

(b)

∝ √
αS

(c)

∝ αS

Figure 2–2: The three Feynman diagrams represent the possible interaction
vertices between partons. Quarks are represented by lines and gluons by
springs. Figure (a) shows a quark-gluon interaction similar to a photon-
electron electromagnetic interaction. Figures (b) and (c) show gluon-only in-
teraction vertices which are a direct consequences of gluons carrying a colour
charge and for which there are no equivalents in quantum electrodynamics.
The probability of each interaction vertex to occur is proportional to powers
of the strong coupling constant αS, as labelled next to each diagram.

The probability of a certain reaction to occur is expressed in terms of a cross-

section with units known as barns1 (b). Diagrams such as those shown in

figure 2–3 therefore have a cross-section, σ, proportional to α2
S, while those in

figure 2–4 have a cross-section proportional to α3
S. These diagrams effectively

represent contributions in a pQCD series.

Figure 2–3: Sample Feynman diagrams for the production of two outgoing
partons from a hard scattering of two incoming partons. The interactions
evolve with time from left to right.

1 The barn unit is defined as 10−28 m2.

12



Figure 2–4: Sample Feynman diagrams for the production of three outgoing
partons from a hard scattering of two incoming partons. The interactions
evolve with time from left to right.

Several more diagrams featuring two initial2 and two final state3 par-

tons could be drawn. The diagrams with the highest probabilities of occur-

rence (∝ α2
S) are called leading order (LO) diagrams. Higher order contri-

butions include diagrams with cross-sections proportional to higher powers of

αS. Summing the contributions from all possible LO diagrams yields the total

pQCD LO approximation of the cross-section for the process involving the

hard scatter of two incident partons and the creation of two outgoing partons.

Next-to-leading order (NLO) pQCD predictions of N outgoing partons

cross-sections account for several additional O(αN+1
S ) terms in the pQCD ex-

pansion. These terms correspond to diagrams similar to figures 2–3 and 2–4

but with an additional parton present. The parton can be emitted and then

re-absorbed in the same diagram (figure 2–5(a)), which is known as a virtual

correction, or it can be emitted resulting in a total of N + 1 outgoing partons

(figure 2–5(b)), which is known as a real correction. Total NLO cross-sections

are therefore generally computed for inclusive final state parton multiplicities,

e.g. requiring the number of partons N ≥ 2, so as not to artificially truncate

the perturbation series. The total inclusive 2 → N partons production cross-

section σ
(partons)
Npartons

approximated at NjLO is calculated as the square of the sum

2 Initial state particles are present before the hard scattering takes place.

3 Final state particles are present after the hard scattering took place.

13



of all contributing diagrams, and can therefore be expressed as the sum

σ
(partons)
Npartons

= αN
S

j
∑

i=0

(

ciα
i
S

)

, (2.5)

where the ci coefficients depend on the kinematics of the interaction.

(a) (b)

Figure 2–5: Example of NLO Feynman diagrams for virtual (a) and real (b)
corrections to pQCD calculation of the inclusive two-parton cross-section from
a hard scattering of two incoming partons. The interactions evolve with time
from left to right.

Partons are confined within bound states known as hadrons. Theoretical

cross-section predictions compared to experimental measurements presented

in this thesis therefore need to describe hadron collisions.

2.2.2 Hadron Collisions

As described in section 2.1.1, all known hadrons are composed of two or

three quarks known as valence4 quarks. Quarks within hadrons continuously

emit and absorb gluon radiation. Gluons on the other hand continuously and

spontaneously create quark-antiquark pairs which then annihilate back into

gluons. Thus, at any moment, valence quarks ‘bathe’ in a sea of quarks and

gluons. The total momentum of the hadron is therefore divided among all its

constituents. Moreover, the internal structure dynamics of hadrons belongs

to the non-perturbative regime of QCD and therefore cannot be included in

4 Valence quarks, unlike sea quarks, are used to determine a hadron’s quan-
tum numbers.
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pQCD calculations. In order to perform QCD calculations involving non-

perturbative effects, factorization theorems [17] are used.

Factorization theorems allow to separate (factorize) non-perturbative from

perturbative effects contributing to a hadronic collision. Applying factoriza-

tion theorems therefore allows the computation of perturbative effects such

as the hard scatter of quarks and gluons by pQCD, while non-perturbative

effects, typically too complicated to be computed directly, are modelled after

precise measurements from particle colliders. The separation between non-

perturbative and perturbative effects is parametrized by the factorization scale

µF . In the MS factorization scheme [5], particle emissions with transverse mo-

menta larger than the factorization scale are accounted for in pQCD, while

emissions with transverse momenta smaller than the factorization scale are

included in non-perturbative modelling of the interaction.

The internal structure dynamics of hadrons is modelled by parton dis-

tribution functions (PDFs). The PDFs are measured experimentally as a

function of the factorization scale µF . These PDFs provide the probability

of an incident particle to strike a parton carrying a fraction x of the proton’s

momentum at a specific energy-momentum transfer value.

Equation (2.5) can therefore be modified to express the NjLO cross-section

σ
(hadrons)
Npartons

of the production of N outgoing partons from a hadron-hadron col-

lision as

σ
(hadrons)
Npartons

=

(

αN
S

j
∑

i=0

(

ciα
i
S

)

)

⊗

f1(x1)
⊗

f2(x2), (2.6)

where the ci coefficients depend on the kinematics of the interaction, f1,2 are

the PDFs of the two initial state hadrons, and the
⊗

symbol indicates the

convolution over the momentum fractions x1 and x2 of the hadrons.
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2.2.3 Particle Jets

Outgoing partons resulting from a hadron collision are ejected from the

hard scattering interaction point in different directions in accordance with en-

ergy and momentum conservation laws. As these partons get further away from

each other, the strong interaction strength between them increases rapidly.

When the separation distance reaches∼ 10−15 m, the strong interaction strength

becomes so great that it is energetically preferable for partons to radiate a

gluon. Gluons can then also radiate other gluons or produce quark-antiquark

pairs, which themselves can radiate gluons as well. This cascading process, as

depicted in figure 2–6, repeats itself until it is no longer energetically favourable

for new partons to be created. New partons created this way are predominantly

collinear with the original primordial partons. This leads to the creation of

parton sprays in the direction of the primordial partons originating from the

hard scattering. The process responsible for the creation of those sprays or

showers is known as parton showering or fragmentation. Following the show-

ering process is the hadronization of partons. During this process, partons

merge together into hadrons. These two processes are almost entirely non-

perturbative and are described by showering and hadronization models rather

than pQCD.

With the exception of top quarks, parton jets are generally created before

primordial partons decay into other particles. The sum of all the particles in

a jet thus generally reflects very closely the kinematic properties of the parton

from which the jet originated.

Factorization theorems, PDFs, showering and hadronization models can

be combined with pQCD calculations of the hard scattering of two partons

to predict the probability of producing two or more particle jets. Based on

equation (2.6), the expression describing the total NjLO cross-section for the
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Hard Scattering

Figure 2–6: Sample parton showering diagram for two primordial quarks
emerging from a hard scattering interaction. New partons are created un-
til it is no longer energetically favourable to do so. The interaction evolves
with time from bottom to top.

production of N -jets in a hadron collision can be written as

σNjets
= Cnon−pert ·

[(

αN
S

j
∑

i=0

(

ciα
i
S

)

)

⊗

f1(x1)
⊗

f2(x2)

]

, (2.7)

where the ci coefficients depend on the kinematics of the interaction, f1,2 are

the PDFs of the initial state hadrons, the
⊗

symbol indicates the convolution

over the momentum fractions of the hadrons, and Cnon−pert represents the

non-perturbative corrections due to showering and hadronization effects.

LO pQCD predictions of collisions resulting in N outgoing partons only

include contributions from those N partons. Higher order pQCD calculations,

on the other hand, account for the possibility that more than N partons are

created. Similarly, non-perturbative effects can also lead to the creation of

additional partons. These perturbative and non-perturbative emissions can

sometimes lead to divergences in the QCD calculations if the quantity being

calculated is too sensitive to those effects. Two conditions are required to avoid

these divergences: the quantity being computed should be invariant under low-

energy parton emissions, or infrared safe, and insensitive to the splitting of a
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parton into two collinear ones, or collinear safe. For this reason, perturbative

QCD predictions can only be compared to experimental observations if the

chosen observable is defined such that it is both infrared and collinear safe. In

the case where the observable is a jet production cross-section, this is achieved

by using a jet reconstruction algorithm (see section 4.3.2) that is both infrared

and collinear safe.

2.3 Observable for the Determination of αS

Several techniques [12] have already been used to measure the value of

the strong coupling through tau-lepton (τ) decays, radiative Υ decays, lattice

QCD calculations of hadronic mass differences, electroweak measurements,

non-singlet structure function measurements, hadronic event shapes, and jet

production. Precision αS measurements from jet production have been per-

formed in electron-positron annihilation, deep-inelastic electron-proton scat-

tering and hadron collisions up to energies of 209 GeV [12]. Due to the over-

whelmingly large jet production cross-sections at hadron colliders, the strong

coupling constant was also measured at the Tevatron by the CDF [18] and

DØ [13] collaborations from the inclusive jet production cross-section. How-

ever, neither CDF nor DØ were able to extend the probed energy range beyond

approximately 230 GeV due to two effects [19]:

• CDF and DØ results were used in the measurement of PDFs, leading

to complicated correlations between experimental and theoretical uncer-

tainties

• PDFs are calculated at different factorization scales using the DGLAP [20]

procedure that assumes the validity of the RGE, which has only been

experimentally verified up to energies of 209 GeV

Both issues are linked to the observable used to measure αS, that is, the

predictions of the inclusive jet cross-section directly depend on the PDFs.
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Measuring the strong coupling at energy ranges beyond 209 GeV at a hadron

collider should thus be performed using a quantity largely independent of

PDFs, yet still sensitive to αS. The three- to two-jet production cross-section

ratio has been shown to satisfy both requirements [19].

The first step toward a measurement of the strong coupling constant is

selecting a physical quantity, or observable, sensitive to changes in αS. As

described in section 2.2.1, the cross-section associated with the production

of N partons, and hence N jets, is a function of αN
S . It follows that in the

LO pQCD approximation, the three- to two-jet production cross-section ratio

defined as

R
(LO)
3/2 =

σNjets=3

σNjets=2

∝ αS, (2.8)

where σNjets
is the N -jet production cross-section, is proportional to the strong

coupling constant αS. NLO pQCD predictions are, on the other hand, com-

puted in such a way that they are by definition inclusive jet multiplicity pro-

duction cross-sections. The inclusive jet production cross-section ratio at NLO

can therefore be defined as

R
(NLO)
3/2 =

σNjets≥3

σNjets≥2

, (2.9)

where Njets is the number of final state jets. The inclusive ratio is still sensitive

to the strong coupling constant, although terms with higher orders of αS are

now present due to the inclusion of higher jet multiplicity contributions.

In order to observe the running of the coupling, the analysis is performed

over different energy ranges, or energy bins, corresponding to different values

of the energy-momentum transfer Q. The inclusive three- to two-jet cross-

section ratio expressed as a function of a collision’s hard scale Q is defined

as

R3/2(Q) =

(

dσNjets≥3

dQ

)/(

dσNjets≥2

dQ

)

, (2.10)
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where the differential cross-sections
dσNjets≥2,3

dQ
are computed in pQCD at NLO.

Experimental measurements of the inclusive three- to two-jet production cross-

section, as defined in equation 2.10, can then be matched to NLO pQCD

predictions to measure the strong coupling constant at different hard scales,

in order to observe the running of the coupling.
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CHAPTER 3

The ATLAS Experiment at the Large Hadron Collider

The Large Hadron Collider (LHC) [21] is the largest and highest energy

particle collider built in human history. The LHC was designed to collide

protons at the unprecedented centre-of-mass energy of 14 TeV approximately

forty million times per second. In March 2010, protons were collided for the

first time at a centre-of-mass energy of 7 TeV, which marked the beginning of

the first large scale data taking campaign. Since then, the LHC has delivered

well over 3 fb−1 of data and achieved unprecedented instantaneous luminosi-

ties1 at a hadron collider. Section 3.1 provides an overview of the LHC and

its operation.

The work presented in this thesis uses data recorded by the ATLAS (A

Toroidal LHC ApparatuS) [22–24] detector, one of six particle detector exper-

iments in operation at the LHC. ATLAS is a multipurpose detector designed

to detect a broad range of physics signatures, including jets, electron, pho-

tons, muons and missing energy. A general description of the ATLAS detector

is presented in section 3.2. Section 3.3 provides details about the ATLAS

calorimeter system on which much of the work presented in this thesis de-

pends.

1 The instantaneous luminosity L indicates the number of interactions N of
a specific process generated per second by the LHC according to the equation
N = Lσ, where σ is the cross-section of the studied process.
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3.1 LHC Overview

The LHC [21] accelerator ring has a circumference of 26.7 km and is

located in a tunnel between 45 m and 170 m underground, straddling the

Swiss-French border. Two transfer tunnels of approximately 2.5 km link the

LHC to the CERN accelerator complex which acts as injector, as illustrated

in figure 3–1. Protons supplied to the LHC are first accelerated by the Linac 2

to an energy of 50 MeV. The protons are grouped together in bunches rather

than in a continuous stream. These proton bunches are then injected into

the Proton Synchrotron Booster which accelerates them to 1.4 GeV before

injecting them into the Proton Synchrotron (PS). The PS further accelerates

the proton bunches up to an energy of 25 GeV. The protons are then trans-

fered into the Super Proton Synchrotron (SPS) which accelerates them again

before injecting them into the LHC with an energy of 450 GeV. The LHC is

designed to accelerate two proton beams in opposite directions, each to an

energy of 7 TeV, before colliding them at the centre of the particle detectors

built around the accelerator ring. The accelerator magnet system squeezes the

beam size down as much as possible at the collision points in order to increase

the likelihood of hard collisions to occur. However, even with nominal 64 µm

wide bunches composed of 100, 000 million protons, only approximately 20

collisions occur per bunch crossing, which is known as an event. Therefore,

once the LHC has accelerated beams composed of up to 2808 proton bunches,

it can collide them for several hours. When the beam intensities becomes too

low, the beams are dumped and the machine is refilled.

In 2010, the LHC was able to collide proton beams at a centre of mass

energy of 7 TeV [25], which was unprecedented for man-made particle colliders.

Several physics runs were done with up to 9× 1010 protons per bunch and 25

bunches per beam. The maximal number of bunches used in 2010 was 348.
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This configuration resulted in a maximum average number of collisions per

bunch crossing of approximately four. The fastest recorded turn-around time

to re-fill the LHC from the Linac 2 after a beam dump, and to accelerate the

new beam to 3.5 TeV was 3.66 hours, while a stable beam’s lifetime can range

from 15 to 30 hours.

Figure 3–1: Diagram of the CERN accelerator complex. [26]

3.2 ATLAS Detector Overview

The ATLAS detector is designed to study a broad range of physics signa-

tures containing photons, electrons, muons, jets and missing energy. To that

end, it features

• a highly efficient tracking system designed to measure the trajectory of

charged particles within high particle rate and occupancy level environ-

ments typical of the LHC,

• electromagnetic and hadronic calorimeters designed to identify and mea-

sure the energy of electrons, photons and jets with extensive angular

coverage for accurate missing energy measurements,
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• muon detectors capable of high-precision muon momentum measure-

ments,

• and a triggering system designed to select potentially interesting colli-

sions to save to permanent storage for a wide range of physics interests.

The overall layout of the detector and its sub-detector systems is illustrated

in figure 3–2. When the LHC collides proton bunches at the centre of the de-

tector, different types of particles emanating from the interaction point travel

through the several layers of the detector, each corresponding to a different

sub-detector system as illustrated in figure 3–3. Each sub-detector is briefly de-

scribed in the following subsections with the exception of the ATLAS calorime-

ters, central to this analysis and described in details in section 3.3.

Figure 3–2: Layout of the ATLAS subsystems [24].

3.2.1 Nomenclature

In order to describe both the detector systems and measured physical

quantities, Cartesian and cylindrical coordinates are used. The z-axis is de-

fined by the particle beam and the origin is set to be at the nominal collision
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Figure 3–3: Particle identification by various ATLAS subsystems [27].

point. The positive x-axis is chosen to point toward the centre of the LHC

ring while the positive y-axis points upward. In polar coordinates, the az-

imuthal angle φ sweeps the x − y or transverse plane perpendicular to the

beam axis. The polar angle θ is measured from the beam axis in the r − z

plane, where r2 = x2+y2. The pseudorapidity2 is defined as η = − ln tan(θ/2)

and the transverse momentum pT , transverse energy ET and other transverse

variables are thus defined in the x − y or η = 0 plane. The distance ∆R

2 In the limit of massless particles, the pseudorapidity is equivalent to the
rapidity y = 1

2
ln (E + pZ)/(E − pZ) . At hadron colliders, the rapidity is

preferred over the polar angle since the difference in rapidity of two particles
is independent of Lorentz boosts along the beam axis. Also, it is useful to note
that particle flux is constant as function of rapidity.
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between two objects in the pseudorapidity-azimuthal angle space is defined as

∆R =
√

(∆φ)2 + (∆η)2.

3.2.2 Tracking System

As illustrated in figure 3–3, the ATLAS tracking system [22, 24, 28–30] is

the closest sub-detector system to the interaction point. The tracking system

is primarily tasked with vertex3 measurements, particle identification, and

charged particle momentum measurements within the pseudorapidity region

|η| < 2.5. The physics program requires the momentum resolution of charged

particles σPT
/pT to be better than 0.05% pT [GeV/c] ⊕1%. Moreover, the full

tracking system’s size is limited by the surrounding calorimeter systems, and

its components must introduce as little material as possible upstream of the

calorimeters.

Figure 3–4: Layout of the ATLAS tracking system and its components. [24].

3 An interaction point of particles, for example the location of the hard
scatter of the collision, or of a particle decaying in other particles.
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In order to fulfill these physics and design requirements, the tracking sys-

tem is composed of three complementary types of particle detectors arranged in

layers: pixel, semiconductor tracker and transition radiation tracker as shown

in figure 3–4. Each sub-detector can be divided into three units: the barrel and

two identical end-caps. Each time a charged particle is detected while travers-

ing a detector layer, its location along the layer’s surface is recorded. Such an

occurrence is known as a hit. By combining several hits together, it is possible

to reconstruct the path or track that a charged particle followed through the

tracking system. Applying a strong magnetic field to the region monitored by

the tracking system bends the charged particles’ trajectory. If the magnetic

field is well understood, the radius of curvature of a track can then be used

to infer a particle’s momentum. For this purpose, the tracking system is con-

tained within a solenoidal magnet with a nominal magnetic field of 2 T. Pixel

and semiconductor tracker sensors are located close to the interaction region

to provide high-resolution pattern recognition capabilities. Innermost layers

of the pixel detector contribute significantly to secondary vertex4 position

measurements, while the semiconductor tracker is central to impact parame-

ter5 measurements [24]. The transition radiation tracker provides continuous

tracking information at larger radii, as well as electron identification through

the measurement of transition radiation along the particle’s track. The final

assembly forms a cylinder 7.02 m in length and 2.3 m in diameter [24].

4 A vertex which does not correspond to the hard scatter of the collision,
e.g. vertices associated with heavy-flavour and τ -lepton decays.

5 The impact parameter of a particle track is the distance between the pri-
mary vertex and the track’s point of closest approach.
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Pixel detectors [22, 24, 28–30] are placed as close as possible to the in-

teraction region. The barrel unit consists of three concentric barrels located

between ∼ 5 cm and ∼ 13 cm from the beam axis. End-cap units are composed

of 3 disks placed on each side, perpendicular to the beam axis between radii

∼ 8 cm and ∼ 15 cm. Each track therefore crosses an average of three pixel

layers. Each silicon pixel’s nominal size is 50×400 µm2 and provides a spatial

resolution of 10 µm and 115 µm in the r − φ and z directions, respectively.

The semiconductor tracker detector [22,24,28–30] envelops the pixel sys-

tems and covers the intermediate radial range of the tracking system. The

semiconductor tracker’s barrel unit is composed of four layers of silicon mi-

crostrip detectors at radii between ∼ 30 cm and ∼ 52 cm. Each layer consists

of a set of strips parallel to the beam direction and a set of small-angle (40

mrad) stereo strips glued together to obtain a z measurement. The end-cap

units consist of nine disks of various radii to provide angular coverage up to a

pseudorapidity of 2.5. Each disk is built from a set of strips running radially

and a set of stereo strips at a relative angle of 40 mrad. A particle’s track

therefore crosses an average of eight strip layers, providing four space-points.

The resulting spatial resolution of the entire semiconductor tracker is 17 µm

in the r − φ direction and 580 µm in z direction. This allows the pattern

recognition algorithms to distinguish tracks that are more than approximately

200 µm apart.

The transition radiation tracker [22, 24, 28–30] is the outermost detec-

tor sub-system of the tracking system. It uses straw detectors to provide an

average of thirty hits per track while maintaining good performance at high

occupancy and counting rates. The use of straw detectors therefore allows

for a large number of track points while keeping the amount of material up-

stream of the calorimeter systems within acceptable limits. Straws are aligned
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along the beam direction in the barrel unit and radially in the eighteen end-

cap wheels on each side. The end-cap wheels’ radii and straw densities were

adjusted to provide a constant number of crossed straws over the entire accep-

tance region. Each straw is 4 mm in diameter and filled with a xenon-based

gas mixture, providing a spacial resolution of 130 µm per straw. Although

transition radiation tracking points are not as precise as those provided by the

pixel detector or semiconductor tracker, the large number of available points

per track compensates the lack in precision which allows transition radiation

tracking points to contribute significantly to momentum measurements.

3.2.3 Muon Spectrometer

The muon spectrometer, represented in figure 3–5, is the outermost de-

tector system of the ATLAS detector. It is designed to measure the muons’

momentum based on the magnetic deflection of their tracks within its accep-

tance range (|η| < 2.7). The ATLAS physics program requires a measured

momentum resolution σpT/pT of at least 10% for a muon with momentum

pT = 1 TeV. The deflection of muons is achieved by large superconducting

air-core toroid magnets interspersed and surrounded by tracking chambers.

The muon spectrometer’s magnet system is composed of a barrel and two

end-cap units. The geometry and alignment of these magnets are shown in

figures 3–2 and 3–6. Both the barrel and end-cap units are composed of eight

racetrack, double-pancake coils. The barrel toroids generate a magnetic field

with bending power6 ranging from 1.5 to 5.5 Tm in the |η| < 1.4 region, while

the end-cap units create a field with 1.0 to 7.5 Tm of bending power in the

6 The bending power is defined as the integral of the field component normal
to the muon direction, computed along the infinite-momentum muon trajec-
tory between the innermost and outermost muon chambers.
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Figure 3–5: Layout of the muon spectrometer and its different tracking cham-
ber types [24].

1.6 < |η| < 2.7 region. As depicted in figure 3–6, the end-cap toroids are placed

within the barrel toroids. Both barrel and end-cap toroidal magnets thus

contribute to the field in the 1.4 < |η| < 1.6 pseudorapidity range. Moreover

the end-cap units are rotated 22.5◦ with respect to the barrel unit in order to

provide radial overlap of the magnetic fields and optimize the muon deflection

in the 1.4 < |η| < 1.6 region. The overall magnetic field is mostly orthogonal

to the muon trajectories and is constantly monitored by ∼ 1800 Hall sensors

distributed throughout the muon spectrometer system.

The muon spectrometer features both high-precision and trigger-specific

tracking chambers. Precision muon measurements are performed by three

layers of monitored drift tubes throughout the acceptance range except for

the forward region (2.0 < |η| < 2.7) of the innermost layer. Due to the high

muon track density and particle flux, this region of the muon spectrometer uses

cathode strip chambers. Each monitored drift tube module is equipped with
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Figure 3–6: Geometry of ATLAS magnet systems and tile calorimeter steel.
Both the barrel and end-cap units are composed of eight racetrack, double-
pancake coils. The inner cylinder represents the tile calorimeter and its outside
return yoke for the inner solenoid magnet. [24]

six or eight layers of drift tubes approximately 30 mm in diameter filled with

an Ar/CO2 gas mixture (93%/7%). Placed concentrically within each tube

is a 50 µm tungsten-rhenium wire which collects ionisation electrons. This

configuration provides each tube with an approximate resolution of 80 µm.

Each cathode strip chamber module is composed of four planes, each one

providing an azimuthal and pseudorapidity measurement with a resolution of

approximately 60 µm per plane. On average, the monitored drift tubes provide

20 measurements per track over the whole acceptance range while cathode strip

chambers provide 4 measurements per track.

The muon spectrometer’s trigger measurements are obtained using resis-

tive plate chambers for the central (|η| < 1.05) region and thin gap chambers

at larger polar angles (1.05 < |η| < 2.7). These trigger chambers are also used

to provide bunch-crossing identification and complement the monitored drift

tube measurements by measuring each track’s azimuthal coordinate.
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3.2.4 Trigger

The ATLAS trigger system [22, 24] is designed to select in real-time po-

tentially interesting collision events to be recorded for a detailed analysis. This

system is optimized for event rejection in order to reduce the amount of data to

be recorded to a sustainable rate of ∼ 300 Mbytes/sec7 [24]. To that end, the

system is composed of three sequential steps or levels: Level-1 (L1) , Level-2

(L2) and Event Filter (EF). Each level is designed to apply increasingly strin-

gent requirements on each event. Less than 0.2% of the events satisfy the L1

selection criteria, reducing the event rate from 40 MHz to 75 kHz. The L2

further reduces the rate of selected events to 3.5 kHz. A nominal final average

output rate of approximately 200 Hz is obtained by applying the EF trigger

selection; however the final event rate can be significantly higher depending

on the individual event size.

For an event to be deemed interesting by a specific trigger level, it must

satisfy at least one selection criterion. The entire set of trigger selection criteria

or trigger items form the trigger menu. The trigger menu is actually defined

as a group of trigger chains. The simplest type of chain is composed of one L1,

one L2 and one EF item. For more complex sets of criteria combining different

types of detected features, chains can include several different trigger items for

a single level. For an event to be recorded, it must satisfy all the trigger items

of at least one trigger chain. In order to select a wide array of events and not

only rare and highly energetic ones, some trigger chains are designed to have

loose selection criteria. Since events satisfying these loose selection cuts can

be very frequent, those trigger chains can easily saturate the entire available

7 Note that the system also has sufficient memory buffer to cope with band-
width peaks of up to ∼ 600 Mbytes/sec
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bandwidth. To avoid this, trigger items with loose selections are pre-scaled8

to artificially reduce the associated chain(s)’ output rate. Pre-scale factors can

be set for any trigger item in order to fully optimize the available bandwidth

of each level.

Since it must cope with an event input rate of 40 MHz, the L1 trigger is

implemented using custom-made electronics. In order to reduce the individual

events’ processing time to an average of 2.5 µs, the L1 trigger uses only a subset

of the detector data. Resistive plate chambers and thin gap chambers are

used to identify muon candidates, while all calorimeter systems with reduced-

granularity information are used to detect electromagnetic clusters, jets, τ -

lepton candidates, large amounts of missing and total energy. Each time such

a feature is detected, the L1 trigger defines a region of interest. This region of

interest includes the η and φ location of the feature, as well as its type and the

satisfied L1 trigger item. The L2 and EF trigger algorithms can then focus on

these regions of interest in order to save processing time.

The L2 and EF trigger levels form the high-level trigger (HLT) which

is implemented almost exclusively on commercially available computers and

networking hardware. HLT reconstruction algorithms have access to all the

detector sub-systems and can use the full granularity information of each sub-

detector. L2 algorithms are seeded by the L1 regions of interest and typically

restrict themselves to the detector region surrounding the feature detected

at L1. These algorithms are designed to refine the L1 selection process with

advanced reconstruction techniques and more detailed detector information in

8 A pre-scale factor is an integer which quantifies the proportion of events
satisfying a trigger item’s criteria that passes the item’s selection process. A
pre-scale factor of N thus indicates that only 1 out of N events satisfying the
associated item’s criteria passes its selection.
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an average of 40 ms per event. The EF algorithms on the other hand use

reconstruction algorithms almost identical to those used in the ATLAS offline

reconstruction software. Events satisfying at least one full trigger chain are

then moved to permanent storage, along with a subset of the data generated

during the trigger selection process. This information can then be used to seed

offline analyzes.

3.3 ATLAS Calorimeter System

This section first introduces basic concepts of calorimetry. Section 3.3.2

uses these concepts to present the physics requirement of ATLAS calorimeter

systems, while section 3.3.3 details the construction of the different ATLAS

calorimeter modules.

3.3.1 Basic Concepts of Calorimetry

Calorimeter systems [31] are used in particle physics to measure the en-

ergy of particles through electromagnetic and strong interactions. To do so,

particles are fully absorbed by an instrumented volume known as a calorimeter,

which transforms the energy deposited by the particle into a measurable elec-

trical signal. The process begins when an incident particle enters a calorime-

ter and interacts either electromagnetically or strongly with the material. A

shower of secondary particles is then produced with particles of progressively

lower energy. Charged particles from the shower deposit energy into the active

medium of the calorimeter, producing electrical charge carriers or light. In-

struments coupled to the active medium measure this activity which can then

be used to infer the initial incident particle’s energy.

The length and width of electromagnetic showers can be described in

terms of radiation lengths X0, which is equal (proportional) to the average

distance an electron (photon) needs to travel in a material to lose all but 1/e

of its initial energy through bremsstrahlung (pair production). Similarly, the
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interaction length λ, the mean distance travelled by a hadron before interacting

with a nucleus of the material it’s traversing, is used to describe hadronic

showers.

Calorimeters can generally be classified as either electromagnetic or hadronic

depending on the type of particles they are designed to detect and contain.

Electromagnetic calorimeters are primarily used to measure the energy of elec-

trons and photons through electromagnetic interactions such as bremsstrahlung

or pair production (for energies greater than 10 MeV). Hadronic calorimeters

are designed to measure the energy of hadrons through both electromagnetic

and strong interactions. Calorimeters can also be classified as sampling or

homogeneous based on their design. Sampling calorimeters are built using al-

ternating layers of an absorber, a dense material used to produce the particle

showers, and an active medium, which provides a sampling measurement of a

shower’s energy. A homogeneous calorimeter on the other hand is made of a

single material that acts as both the absorber and active medium. Because

all of a particle’s energy would be deposited into its active medium, a homo-

geneous calorimeter generally features a much better energy resolution than

a sampling calorimeter. However, homogeneous calorimeters are not as easily

segmented as sampling calorimeters. A fine segmentation or granularity of

the calorimeter is essential to measure the location or shape of a shower. The

position measurement can, in turn, be used to match a shower to a particle

track, helping in the task of particle identification. Homogeneous calorimeters

are therefore less suited for experiments requiring strong position measure-

ments and particle identification capabilities. Moreover, suitable materials for

active mediums generally feature very large interaction lengths. Homogeneous

calorimeters are therefore not generally used in the measurement of hadronic

showers.
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3.3.2 ATLAS Physics Requirements

The ATLAS calorimeter system [22,24,32–34], shown in figure 3–7, is de-

signed to identify and reconstruct electrons, photons and particle jets, as well

as measure missing energy. It is composed of electromagnetic and hadronic

sampling calorimeters. The ATLAS physics program requires the energy reso-

lution of the electromagnetic calorimeter σE/E to be at most 10%/
√

E [GeV ]

⊕ 0.7% for the pseudorapidity region |η| < 3.2, while the required energy res-

olution of the hadronic calorimeter for the same region is required to be at

most 50%/
√

E [GeV ] ⊕ 3.0%. In the forward region (3.1 < |η| < 4.9), the en-

ergy resolution requirements are less stringent at 100%/
√

E [GeV ] ⊕ 10.0%.

Furthermore, adequate material thickness and density of the calorimeter is

required to limit the high energy jet (transverse momentum greater than

500 GeV) punch-throughs in the muon detectors. In order to perform the

required measurements, the electromagnetic and hadronic calorimeters were

both built with an acceptance range of |η| < 4.9, using different modules

for different pseudorapidity regions. Each module was designed to match the

physics requirements and radiation environment of its specific region, as de-

scribed in section 3.3.3.

3.3.3 ATLAS Calorimeter Details

ATLAS electromagnetic calorimeters surround the tracking system and

are composed of a barrel (|η| < 1.475) and two end-cap (1.375 < |η| < 3.2)

units, residing in their own cryostat. A presampler detector is used to correct

for electron and photon energy losses due to interactions with the tracking sys-

tem, solenoid and cryostat walls. The presampler consists of an active liquid

argon layer located in front of the electromagnetic calorimeters and covering

the |η| < 1.8 region. All electromagnetic calorimeter modules are sampling liq-

uid argon detectors with accordion-shaped kapton electrodes and lead absorber

36



Figure 3–7: Layout of ATLAS electromagnetic and hadronic calorimeter sys-
tems. [24].

plates. The lead absorber plates’ thickness has been optimized as a function

of pseudorapidity to obtain the required energy resolution in each region. The

accordion geometry of the electrodes and absorber plates ensures a gap-less

azimuthal symmetry over the entire acceptance range. The electromagnetic

calorimeters feature a fine granularity and three detector sampling layers in

the η region matching the tracking system’s acceptance range (|η| < 2.5) in

order to provide precise electron and photon measurements. The more forward

region (|η| > 2.5) is predominantly used to measure jet and missing energy.

A coarser granularity and only two detector sampling layers are therefore suf-

ficient to meet the physics requirements in this region of the detector. The

total depth of the electromagnetic calorimeter is at least 22 and 24 radiation

lengths in the barrel and end-cap units respectively, ensuring the containment

of electromagnetic showers.

37



Enveloping the electromagnetic calorimeters are the hadronic calorime-

ters. The barrel hadronic calorimeter is composed of three cylindrical units:

a central barrel (|η| < 1.0) and two extended barrels (0.8 < |η| < 1.7). These

sampling calorimeters are divided in three layers and use plastic scintillator

plates (or tiles) as active medium and steel plates as absorber. This tech-

nology provides the required radial depth and response while minimizing the

cost of the detector. At larger rapidities (1.5 < |η| < 3.2), the hadronic

end-cap calorimeter units are required to operate in a much higher radiation

environment. The hadronic end-cap modules therefore use the radiation resis-

tant liquid argon sampling technology with parallel copper plate absorbers of

various thickness. These modules consist of two wheels, each sub-divided in

two layers and sharing the same liquid argon cryostats as the electromagnetic

end-cap calorimeters. Also sharing the same cryostats and covering the very

forward region (3.1 < |η| < 4.9) of the detector are three forward calorimeter

modules. The module closest to the interaction region is designed to detect

electromagnetic particles, while the two other modules at higher z measure

hadronic activity. All forward calorimeter modules consist of an array of elec-

trodes embedded in a metal matrix. Each electrode is composed of a rod

centred within a tube parallel to the beam axis. A small gap between the rod

and tube is filled with liquid argon to be used as active medium. The width

of the gap is kept constant by a radiation hard plastic fibre wound around

the rod. The electromagnetic module uses copper as absorber material for

the matrix, tube and the rod. The hadronic modules however use tungsten

for the matrix and rods to provide the required containment and minimize

the lateral spread of hadronic showers. Overall, the hadronic calorimeters’

depth is greater than 9 interaction lengths throughout the acceptance region
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of |η| < 4.9, ensuring the required jet energy and missing energy resolutions,

as well as minimizing punch-throughs in the muon system.

The ATLAS calorimeters were initially calibrated using electron test beams.

However, the ATLAS calorimeters are non-compensating, that is the calorime-

ters’ response is different for electrons and hadrons. Reconstructed particle jets

must thus be calibrated to account for this effect. These calibration techniques

are discussed in section 4.3.2.
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CHAPTER 4

Event Simulation and Reconstruction

The work presented in this thesis greatly depends on the ability to re-

construct particle jets from energy deposits in the ATLAS calorimeters. This

reconstruction is performed by complex algorithms that account for detec-

tor effects to infer the kinematic properties of partons produced during the

hard scattering of two protons. In order to compare observed quantities with

theoretical predictions, full event simulations are commonly used. These sim-

ulations are often generated using a sequence of several computer programs,

each configurable to reflect the intended process to be simulated or the detector

configuration used.

An overview of the ATLAS simulation process and third-party event gen-

erators are presented in section 4.1. Section 4.2 describes official ATLAS

simulated data sets used in this analysis. Finally, section 4.3 describes jet

reconstruction and calibration procedures, central to the measurements per-

formed in this analysis, as well as the reconstruction of primary vertices.

4.1 ATLAS Simulation Process

The ATLAS Monte-Carlo1 simulation [35] of events is divided in three

steps, the event generation, simulation, and digitization. The output of each

step is used as input for the following one. At the end of the digitization

process, the format of the simulated data is identical to that coming from the

1 Monte-Carlo simulations rely on the pseudo-random generation of large
quantities of events to study probability distributions of physical quantities.
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real detector. The same trigger and reconstruction packages can then be run

on both real and simulated data. This section gives a brief overview of each

step of the event simulation process.

The event simulation sequence starts with the event generation, which

produces a set of particles resulting from a single interaction with a vertex lo-

cated at the geometrical centre of the detector. Events are generated to match

a set of basic properties such as the centre-of-mass energy of the collision, en-

ergy ranges, and the process intended to be studied (e.g. two protons → two

jets). All the particles with lifetimes cτ < 10 mm are immediately decayed by

the generator, while particles with longer lifetimes are deemed stable.

Stable particles provided by the generator are propagated through a sim-

ulation of the detector. Interactions between the particles and the detector

material are simulated using the Geant4 [36,37] simulation toolkit. The sim-

ulation uses a detailed geometrical model of the ATLAS detector and a set of

detector conditions retrieved from a central database. At this point, cuts can

be applied to process only a subset of the available particles if needed.

Energy deposited in the sensitive regions of the detector is then digitized

into voltages and currents, emulating the readout systems of the ATLAS de-

tector. During the digitization process, detector noise is added, and the hard

scattering event is superimposed with a configurable number of pile-up2 , beam

2 Additional soft collisions from other protons in the same (in time) or
neighbouring (bunch train) proton bunches.
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halo3 , beam gas4 , and cavern background5 events. Finally the L1 trigger

(described in section 3.2.4) algorithms are executed and the decision to record

or reject the event is stored, but not applied.

Throughout the simulation process, truth information is stored to even-

tually be used to quantify the success of reconstruction algorithms. During

the event generation, the decay history of each particle is stored as truth infor-

mation, as are true tracks and decays of certain particles during the detector

simulation process. Simulated data objects are created from the truth informa-

tion during the digitization stage. These objects can be used to map the energy

deposits in the detector to generated particles during the event reconstruction

process.

The full simulation of events is computationally intensive and therefore

requires the commitment of large computing resources. ATLAS uses a distribu-

tive computing model known as the World-wide LHC Computing Grid [38].

Tasks submitted to the grid, such as Monte-Carlo simulations, can be sep-

arated into many jobs depending on complexity, and executed at different

production sites around the world, seamlessly to the user. The output files

can easily be retrieved from the computing sites, or stored on the grid to be

used by other users. Data and Monte-Carlo analysis jobs can also be per-

formed on the grid, which is highly time-efficient due to the large reduction of

3 Machine-induced particles due to the scattering of beam protons on resid-
ual gas in the beam pipe and beam cleaning inefficiency.

4 Particles created by the collision of beam protons with residual gas
molecules in the ATLAS cavity.

5 Particles present in the ATLAS cavern that can deposit energy in the
detector.
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data to be transferred (i.e. sending a job to the data, rather than retrieving

the data locally to run a job).

4.1.1 Event Generators

This analysis relies on three LO event generators: Pythia [39], Her-

wig/Jimmy [40–43] and AlpGen [44]. The NLO event generator NLO-

Jet++, central to this analysis, is also described at the end of this section.

Pythia is optimized for processes involving the collision of two particles

leading to the production of one or two outgoing particles (i.e. 2 → 1 or

2 → 2), and is generally regarded as very reliable for these processes. For final

states consisting of two or more jets, the generator computes matrix element

(see section 2.2.1) contributions for two outgoing partons, using the following

hard scale parametrization:

Q2 =
m2

3 · c2 + p2T,3 +m2
4 · c2 + p2T,4

2
, (4.1)

where m is the mass, pT is the transverse momentum, and the indices 3 and

4 refer to the outgoing partons. Using a parton shower and Lund string

hadronization model [45], the two partons resulting from the hard scatter-

ing can then form two or more jets. The remainder of the partons that were

not involved in the hard scattering, called spectator partons, also interact softly

(i.e. at low energies compared to the hard scattering) and give rise to an un-

derlying event. This non-perturbative effect is calculated by Pythia using a

complex multiple interactions model [46].

The Herwig event generator features many similarities with Pythia,

including its optimization for 2 → 1 and 2 → 2 processes. Herwig uses a

different hard scale parametrization of

Q2 =
stu

s2 + t2 + u2
(4.2)
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to compute the hard scattering matrix elements, where s, t, and u are the

Mandelstam variables6 . However, the two generators differ mainly in their

treatment of non-perturbative processes, especially for the hadronization pro-

cess for which Herwig uses a cluster-based model [40,41]. The cluster model

is also applied to spectator partons leading to a very different modelling of the

underlying event compared to Pythia. An additional library of routines called

the Jimmy generator [42, 43] is linked to the Herwig generator, which can

produce multiple parton scatterings in a single hadron-hadron collision. Since

the parton density in hadrons increases as a function of the centre-of-mass en-

ergy, the likelihood of multiple scatterings occurring during a hadron-hadron

collision also increases. The effects accounted for by the Jimmy generator are

therefore potentially significant at the LHC energy regime.

The Alpgen generator [44] differs from Pythia and Herwig in that it

uses full matrix element calculations to model hard scattering processes of two

partons resulting in n-parton final states (i.e. 2 → n), where n ranges from

two to six. The hard scale parametrization used for such processes is defined

in Alpgen as

Q2 =

Npartons
∑

i=1

(

p
(i)
T

)2

, (4.3)

where p
(i)
T is the transverse momentum of the i-th final state parton, and

Npartons is the total number of final state partons. The Alpgen generator does

not model final-state non-perturbative effects. Therefore, the parton-level out-

put needs to be interfaced with a showering and hadronization algorithm, such

6 The Mandelstam variables are defined as s = (p1 + p2)
2 = (p3 + p4)

2,
t = (p1 − p3)

2 = (p2 − p4)
2 and u = (p1 − p4)

2 = (p2 − p3)
2, where p1 and

p2 are the four-momenta of the incoming partons, while p3 and p4 are the
four-momenta of the outgoing partons.
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as Pythia or Herwig/Jimmy. Using the prescribed MLM matching proce-

dure [44], matrix element and parton shower calculations can be combined.

The procedure rejects events to avoid double-counting similar jet configura-

tions produced by the matrix elements and parton showers. Because of its full

matrix element calculations for events containing more than two and up to six

jets, Alpgen is expected to yield better approximations of final states with

several well-separated hadronic jets than Pythia or Herwig/Jimmy alone.

This hypothesis was confirmed, for example, in the recent detailed study of

multi-jet events at ATLAS [47].

Unlike all previously described event generators, NLOJet++ [48, 49] is

used to produce NLO pQCD predictions of differential cross-sections. The gen-

erator achieves this by applying the Catani-Seymour subtraction scheme [49],

which provides an efficient way to compute accurate NLO pQCD differential

jet cross-section predictions. Conceptually, the algorithm introduces counter-

terms in the NLO calculations to systematically cancel singularities arising

from real contributions [49]. Using dimensional regularization techniques, dou-

ble and single poles arising from the integration process of the counter terms

can be made to cancel singularities arising from virtual contributions. With

both real and virtual divergences removed, the NLO calculations can be per-

formed numerically to predict jet production cross-sections.

In order to remove infrared and collinear divergences from the calcula-

tions, a jet clustering algorithm needs to be applied to the generated partons.

To perform this task, we use the FastJet [50] package, which supports several

common clustering algorithms. However, the parton-level output of the tool

cannot currently be interfaced with any parton showering or hadronization

tool. Non-perturbative corrections therefore have to be folded into the NLO

parton-level results. These corrections are based on LO calculations performed
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with other event generators and parton showering/hadronization algorithms.

The procedure to accomplish this is described in section 5.2.

4.2 ATLAS Simulated Data Sets

Various combinations of event generators, showering and hadronization

algorithms are used to address the different needs of the analysis. Since the

analysis strongly depends on calculations involving more than two jets, the

analysis primarily relies on Monte-Carlo simulations computed from full matrix

element calculations performed by Alpgen. The Alpgen+Herwig/Jimmy

combination has been shown to properly model multi-jet events at the LHC

in ATLAS data [47], and is therefore used to compute all the correction fac-

tors required for this analysis. The agreement between these simulations and

data was verified for all variables used in the analysis. Other simulated data

sets are only used to estimate systematic uncertainties on correction factors

computed from the Alpgen+Herwig/Jimmy sample. The complete list of

all LO Monte-Carlo simulated data samples used in this analysis and their

configuration is found in table 4–1.

All LO Monte Carlo samples used in this analysis were officially produced

and validated by the ATLAS collaboration. Furthermore, all Alpgen-based

Monte-Carlo data sets were generated using the same initial set of stable par-

ticles, before showering and hadronization models are applied. The configu-

ration used to generate this initial set of particles includes contributions from

two to six final state parton configurations, and the five lightest quark flavours.

Parton showering and hadronization algorithms can be tuned by adjusting sev-

eral parameters in the description of underlying events, such that simulations

better reflect observations in data. The list of underlying event tunes corre-

sponding to each simulated data set is found in table 4–1.
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Table 4–1: LO Monte-Carlo simulated data samples used and their configura-
tion.

Event Parton Shower Underlying PDF Pile-Up

Generator & Hadronization Event

Alpgen Herwig/Jimmy AUET1 [51] CTEQ6L1 [52] none

Alpgen Herwig/Jimmy AUET1 [51] CTEQ6L1 [52] in time

Alpgen Herwig/Jimmy AUET1 [51] CTEQ6L1 [52] bunch train

Alpgen Pythia AMBT1 [53] CTEQ6L1 [52] none

Pythia Pythia AMBT1 [53] MRST07 LO [54,55] none

Pythia Pythia Perugia2010 [56] CTEQ5L [57] none

In order to assess the effects of pile-up on the measurement,Alpgen+Her-

wig/Jimmy Monte-Carlo samples were generated with simulations of two

types of pile-up contributions: in time and bunch train. In time pile-up sam-

ples include an average of two additional soft collisions per event originating

from the same proton bunch crossing as the hard scattering. Bunch train pile-

up samples include an average of 2.2 additional soft collisions per event and

include effects from overlapping signals of neighbouring bunch crossings in the

detector.

4.3 ATLAS Reconstruction

Although several common physics objects such as muons, photons, elec-

trons and missing transverse energy are reconstructed by the default ATLAS

reconstruction software, this analysis only relies on jets and primary vertices.

The primary vertex of an event represents the ‘real’ interaction point where the

hard scattering occurred, and its reconstruction is described in section 4.3.1.

Jet reconstruction and energy calibration procedures are described in sec-

tion 4.3.2.

4.3.1 Primary Vertex Reconstruction

ATLAS software reconstructs primary vertices based on reconstructed

particle tracks from the tracking system. Reconstructed tracks satisfying the
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following default set of criteria [58] are used in the primary vertex reconstruc-

tion:

• pT > 150 MeV

• |d0| < 4 mm

• σ(d0) < 5 mm

• σ(z0) < 10 mm

• at least four hits in the semiconductor tracker

• a total of at least six hits in the pixel and semiconductor trackers

where d0 and z0 represent the transverse and longitudinal impact parameters7

of tracks from the centre of the luminous region, while σ(d0) and σ(z0) are their

respective uncertainties from the track fit. The vertex is found iteratively by

first selecting a vertex seed corresponding to the maximum in the distribution

of z coordinates of the tracks. The vertex is then reconstructed by fitting the

tracks surrounding the seed. Tracks that are incompatible with the vertex

by more than 7 standard deviations are used to seed a new vertex. This

procedure is repeated until all the reconstructed tracks have been associated

with a vertex.

4.3.2 Jet Reconstruction and Calibration

Jets can be reconstructed from individual particles or calorimeter energy

deposits, however a common procedure must be defined to combine them into

jet objects. This process is known as jet reconstruction, which can be divided

into two tasks. The first task consists of determining a procedure to group

nearby jet constituents8 into a single jet object. This task is handled by

7 The impact parameter is the distance between a reference point and the
track’s point of closest approach.

8 Truth particles or calorimeter energy deposits
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the jet algorithm. The second task is to combine the four-momenta of all the

selected constituents of the jets according to a recombination scheme, in order

to estimate the energy and direction of the parton that created the jet. The jet

definition and the ensuing reconstructed jet calibration used in this analysis

are detailed in the following sections.

Jet Definition & Inputs

The jet algorithm used by ATLAS and throughout this analysis is called

the anti-kt algorithm [59, 60], as implemented by the FastJet [50] package.

The algorithm uses a clustering technique, whereby it iteratively combines

pairs of objects according to their physical distance and transverse momenta.

Each iteration, the algorithm computes the quantity di,j = min
(

1
p2
T,i

, 1
p2
T,j

)

·∆Rij

R

for every object pair and di =
1

p2
T,i

for every object, where pT,i is the i-th object’s

transverse momentum, ∆Rij is the physical distance between objects i and j

as defined in section 3.2.1, and R is the algorithm’s resolution parameter, set to

0.6 for this analysis. The algorithm then finds the minimum value of all these

quantities and takes one of two possible actions: if the minimum value corre-

sponds to a di,j definition, then objects i and j are merged according to the

chosen recombination scheme, otherwise the minimum quantity corresponds

to a di definition, in which case the corresponding i-th object is declared a jet

and removed from the recombination procedure for the next iteration. The

algorithm continues this process until all input objects have been merged into

jets. Conceptually, this procedure clusters less energetic objects around more

energetic ones, resulting in an algorithm both infrared and collinear safe. The

recombination scheme used by the jet algorithm is known as the four-vector

recombination scheme [50], which essentially sums the four-momenta of the

objects to be merged, such that energy and momentum are conserved.
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Different input objects are used to construct jets throughout this anal-

ysis. Parton jets are created by applying the anti-kt algorithm to generated

partons, while truth jets are obtained from Monte-Carlo simulations by apply-

ing the same jet algorithm to simulated particles, after accounting for non-

perturbative effects such as showering and hadronization. To reconstruct jets

from data, topological clusters [61,62] are used as calorimeter input objects to

the jet algorithm. Topological clusters are three-dimensional energy clusters

built from calorimeter cells, following energy flow patterns in an attempt to

reconstruct individual particle showers. This technique is designed to take full

advantage of the fine granularity (segmentation) of the ATLAS calorimeters.

The energy of a topological cluster is computed as the sum of the energy of the

calorimeter cells it groups, while its direction is computed from the geometri-

cal center of the detector, to the energy-weighted centre of the cluster. Both

the energy and direction of reconstructed jets are then calibrated, as described

in the next section. The ATLAS reconstruction process was found to be fully

efficient for jet energies above 40 GeV [63,64].

Jet Calibration

Calorimeter cells used to construct topological clusters are calibrated

at the electromagnetic (EM) scale based on test beams [65, 66] and Z → ee

data [67]. Topological clusters are therefore also evaluated at the electromag-

netic scale. Reconstructed jets therefore need to be corrected for the different

response of the calorimeter to hadrons and electrons. The energy and direc-

tion of reconstructed jets is also sensitive to pile-up, the location of primary

vertex, energy lost in the detector material, etc. The calibration scheme [64]

used to correct for these effects applies corrections to the jets based on their

energy and pseudorapidity. The calibration process consists of four sequential

steps: pile-up, vertex, jet energy and pseudorapidity corrections.
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When additional protons interact during the same bunch crossing as the

hard scatter being studied (i.e. pile-up), additional energy can be deposited

in calorimeters. This additional energy can subsequently be merged with jets

from the hard scattering, altering their energy and direction. In order to cor-

rect for this effect, a correction is calculated from minimum bias9 data as a

function of the number of reconstructed primary vertices and jet pseudorapid-

ity [64]. The calculated average energy due to pile-up is then subtracted from

the measured calorimeter energy. This correction is performed first such that

other calibrations do not have to account for additional collisions.

After pile-up effects are corrected, the origin of the jets needs to be ad-

justed. Up to this point, the origin of the jet was assumed to be at the geomet-

rical centre of the detector. The four-vector of the jet is then recomputed using

the primary vertex location as the origin of the jets [64]. If multiple primary

vertices are found, the vertex with the highest sum of transverse momenta of

tracks (
∑

tracks pT ) associated with it is used as the origin of the hard scatter.

Once the origin of the jets has been corrected to match the primary vertex

location, their energy is calibrated to match the energy of Monte Carlo truth

jets, thereby restoring the jets to their final hadronic energy scale or jet energy

scale (JES). In order to compute the JES correction [68], Monte Carlo simu-

lations are used. Isolated reconstructed jets are matched to isolated truth jets

and the EM-scale jet energy response is calculated as Rjet
EM =

Ejet
EM

Ejet

truth

in bins of

truth jet energy and pseudorapidity. The final JES correction is obtained in

bins of pseudorapidity by fitting the average jet energy response as a function

9 Minimum bias events are randomly selected events showing evidence that
a collision occurred.
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of the average jet EM-scale energy. The calibration can then be applied to

each reconstructed jet individually, and account for

• the difference in calorimeter response between electrons and hadrons

• energy losses in dead material

• energy losses due to particles not contained by the calorimeter

• energy deposits included in truth jets but not in reconstructed jets

• energy losses due to clustering and jet reconstruction

The last correction applied to reconstructed jets is a pseudorapidity cor-

rection to account for a bias cause by poorly instrumented regions of the

calorimeter. In these regions, the reconstructed energy of topological cluster

constituents is smaller than in the better instrumented regions, which can shift

the calculated centre of the cluster. The correction factor is calculated taking

the difference in pseudorapidity between the truth and calibrated jets. This

difference is then parametrized as a function of calibrated jet energy and uncal-

ibrated jet pseudorapidity. This results in a very small (∆η < 0.1) correction

to the direction of calibrated jets [64].
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CHAPTER 5

Theoretical Predictions of R3/2

Theoretical predictions used to measure the strong coupling αS are com-

puted from pQCD at NLO precision with NLOJet++. However, NLO-

Jet++ predictions cannot presently be interfaced with hadronization and

showering algorithms. Hence, LO pQCD Monte Carlo simulation samples are

also used to fold non-perturbative QCD corrections into NLO predictions. The

NLOJet++ predictions are detailed in section 5.1, while section 5.2 details

the non-perturbative QCD corrections.

5.1 NLO Predictions of R3/2

NLO predictions are generated with NLOJet++, using a hundred mil-

lion simulated events for each jet multiplicity, as well as five quark flavours

so as to be compatible with LO simulations listed in table 4–1. A thorough

analysis of NLO predictions obtained from NLOJet++ is performed to de-

termine the optimal parameters to be used for the measurement of the strong

coupling using the inclusive three- to two-jet cross-section ratio. To ensure

the validity of the results presented in this document, several key observa-

tions were compared with results obtained by other members of the ATLAS

collaboration using NLOJet++, results obtained by theorists external to the

collaboration using different NLO simulation software, results obtained by the

author of NLOJet++, and published ATLAS results performed with NLO-

Jet++ [47]. All comparisons were found to agree with results and observa-

tions presented in this section.

In order to observe the running of the coupling, the measurement of the

strong coupling constant is performed as a function of the hard scale Q of
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events. For multi-jet events, the hard scale can be approximated using a

quantity computed entirely from the final state jets of an event, i.e. a jet

observable. Hence, the renormalization and factorization scales used by NLO-

Jet++ to compute the two- and three-jet differential cross-sections are de-

fined as µR = µrX and µF = µfX, where the µr and µf factors are respectively

known as the renormalization and factorization scale factors, and X is the jet

observable used to parametrize the hard scale of an event.

The observed cross-section of a QCD process in nature does not depend

on the unphysical parameters that are the renormalization and factorization

scales. If an infinite number of terms could be computed in the pQCD expan-

sion, any dependence of the results on these scales would disappear. However,

since the perturbation expansion used by NLOJet++ is truncated at a finite

order, the cross-section predictions it generates exhibit residual dependencies

on both the renormalization and factorization scales. A procedure known as

the principle of minimal sensitivity [69] is therefore applied to minimize this

residual dependence on the scales, in order to obtain the most stable and ac-

curate pQCD predictions in each bin of the jet observable X. To that end,

differential cross-section predictions are computed for a broad range of renor-

malization and factorization scale factors.

During the NLOJet++ event generation process, each permutation of

renormalization and factorization scales yields a different event weight. The

event kinematics remain the same for each scale configuration so as to avoid

statistical fluctuations when comparing them. In each X-bin, the resulting

NLO two- and three-jet differential cross-section’s dependency on µr and µf

typically features a saddle point, as indicated by a white ‘X’ in figures 5–1

(a) and (b). The saddle point location corresponds to the µr and µf config-

uration which minimizes the residual dependencies of the calculation to the
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renormalization and factorization scales within the kinematic range of the cor-

responding bin. The scale factor values µr and µf at the saddle point location

for a particular bin of an observable X are therefore used to compute NLO-

Jet++ predictions for the remainder of the analysis for the specific bin and

jet observable studied. This procedure is applied independently to both the

inclusive two- and three-jet predictions before they are combined to obtain the

inclusive ratio according to equation (2.10).
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Figure 5–1: Example of two- (a) and three-jet (b) differential cross-section
computed using NLOJet++ for several renormalization (µr) and factoriza-

tion (µf ) scale factors, for events with

√

∑Njets

i=1

(

p
(i)
T

)2

values between 460 and

550 GeV. The saddle point is indicated by a dashed cross while the solid line
defines the µr,f region scanned while estimating the scale uncertainty on the

cross-section predictions. All jets are built from partons and satisfy p
(jet)
T > 40

GeV and |η(jet)| < 2.8; all events satisfy p
(leading jet)
T > 60 GeV.

Several hard scale parametrization options are investigated in section 5.1.2.

The merit of each jet observable is based on the resulting inclusive three- to

two-jet production ratio’s sensitivity to the strong coupling, as well as the size

of theoretical uncertainties associated with the PDFs, renormalization and

factorization scales’ stability. The techniques to compute these theoretical

uncertainties are detailed in the following subsection.
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5.1.1 Theoretical Uncertainties

Scale Uncertainty

Once renormalization and factorization scale values are found for a jet ob-

servable’s bin, an uncertainty associated with the scales’ stability is estimated.

This theoretical scale uncertainty is calculated by varying the renormalization

and factorization scales independently by factors between 1/2 to 2 around the

bin’s saddle point configuration, or

1

2
µ(saddle)
r ≤ µr ≤ 2µ(saddle)

r and (5.1)

1

2
µ
(saddle)
f ≤ µf ≤ 2µ

(saddle)
f , (5.2)

where µ
(saddle)
r and µ

(saddle)
f are respectively the renormalization and factor-

ization scale factors corresponding to the saddle point location. However, in

order to avoid large logarithms of µ2

R/µ2

F
in the NLO calculations or accidental

cancellations between µF and µR, we require the additional constraint [70]

1

2
µr < µf < 2µr. (5.3)

to be applied. These requirements are illustrated in figures 5–1(a) and (b) by

solid lines delimiting an area in the (µf , µr) plane. The positive and negative

scale uncertainties on the differential cross-section predictions are computed

as the maximum difference between the value of the cross-section at the saddle

point and the cross-section values within the area delimited by the solid line.

This procedure is repeated for each jet observable bin and each jet multiplicity

sample. These uncertainties on the two- and three-jet cross-sections are prop-

agated to the calculation of the inclusive three- to two-jet cross-section ratio

bin-by-bin, using standard partial derivatives error propagation techniques.
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PDF Uncertainty

NLOJet++ is configured to use the MSTW 2008 NLO [55] PDF set with

90% confidence-limit errors. The reason for this choice lies in the PDF sets

available for αS studies. The MSTW 2008 PDF set for αS studies [71] includes

PDFs for 0.110 ≤ αS(MZ) ≤ 0.130 while the CTEQ6.6 set for αS studies [72]

is limited to the range 0.116 ≤ αS(MZ) ≤ 0.120. NLOJet++ simulated sam-

ples are generated for each αS(MZ) value of the MSTW 2008 PDF set. During

that process, the αS(MZ) value is evolved internally through LHAPDF [73]

interfaces for each event using two-loop renormalization group equation ap-

proximations in the MS renormalization scheme [5, 11]. The theoretical PDF

uncertainty on the calculated cross-sections is obtained by computing event

weights with each of the twenty MSTW 2008 eigenvector1 PDF sets, each set

composed of two members corresponding to a positive or negative variation

in the default PDF. Cross-section predictions obtained from all PDF varia-

tions are computed using the same generated events so that the comparison of

results between variations only reflects changes in the PDFs and are indepen-

dent of statistical fluctuations. The overall asymmetrical uncertainty on the

predicted inclusive three- to two-jet production ratio is computed bin-by-bin

using equations [74]

∆R+PDF
3/2 (X) =

√

√

√

√

N
∑

i=0

[

max
(

R+i
3/2(X)−R0

3/2(X), R−i
3/2(X)−R0

3/2(X), 0
)]2

,

(5.4)

1 The PDFs are fitted to data by diagonalizing a 20x20 matrix, correspond-
ing to the twenty free parameters of the fit. The resulting eigenvectors corre-
spond to a linear combination of PDF parameters that can be used to estimate
the success of the fit.
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∆R−PDF
3/2 (X) =

√

√

√

√

N
∑

i=0

[

max
(

R0
3/2(X)−R+i

3/2(X), R0
3/2(X)−R−i

3/2(X), 0
)]2

,

(5.5)

where R±i
3/2(X) is the three- to two-jet inclusive ratio’s prediction for the jet

observable X computed from the i-th ± eigenvector, R3/2, 0(X) is the same

quantity computed from the PDF set’s central value, N is the total number of

eigenvector sets, and ∆R±PDF
3/2 (X) is the ±ve PDF uncertainty on R0

3/2(X).

5.1.2 Hard Scale Parametrization Selection

For the purpose of measuring a value of αS, three jet observables are

considered to parametrize an event’s hard scale: the scalar sum of all jet

momenta HT , the leading jet transverse momentum, and Q′ defined as

Q′ =

√

√

√

√

Njets
∑

i=1

(

p
(i)
T

)2

, (5.6)

where p
(i)
T is the i-th parton-jet’s transverse momentum, and Njets is the total

number of parton-jets present in the event. The inclusive three- to two-jet pro-

duction ratio is also calculated as a function of inclusive jet transverse momen-

tum using the leading jet transverse momentum as hard scale parametrization.

For a specific jet multiplicity, the same event kinematics are used to compute

predictions of the inclusive three- to two-jet production ratio for all jet observ-

ables considered.

The saddle point optimization of the renormalization (µr) and factoriza-

tion (µf ) scale factors is performed independently for each bin of the jet ob-

servable considered, hard scale parametrization candidate, and jet multiplicity.

The chosen values of µr and µf are displayed in figures 5–2 and 5–3 for each

jet observable studied, and for the inclusive two-jet and three-jet cross-section

predictions, respectively. As results indicate, the saddle point location is fairly

constant for all inclusive three-jet cross-section predictions. However, much
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larger variations are observed in the inclusive two-jet cross-section predictions

when the HT observable or the leading jet transverse momentum are used as

hard scale parametrization. Both the Q′ and inclusive jet transverse momen-

tum variables show similar stabilities in the location of the saddle point. As

the predicted value of the strong coupling is strongly dependent on the renor-

malization scale, the renormalization scale factor should be as insensitive as

possible to variations of the chosen observable in order to avoid any bias on the

measurement of the strong coupling. In that respect, figures 5–2 and 5–3 sug-

gest that both the inclusive jet transverse momentum and the Q′ observable

are suitable observables for the purpose of this analysis.

Another factor to be considered in the choice of hard scale parametrization

is the inclusive three- to two-jet production cross-section ratio’s sensitivity to

the strong coupling constant’s value. This sensitivity is qualitatively evaluated

by comparing NLO predictions of the inclusive ratio computed with different

values of αS(MZ). The results are shown in figure 5–4 for the four jet ob-

servables considered for the analysis. Results indicate that both the HT and

leading jet transverse momentum variables are only sensitive to changes in the

strong coupling below ∼ 400 GeV, making them unsuitable for this analysis.

On the other hand, both the inclusive jet transverse momentum and the Q′

observables feature very similar sensitivities to the strong coupling. Hence,

the inclusive ratio’s dependence on the strong coupling’s value suggests that

both the inclusive jet transverse momentum and Q′ observables are suitable

candidates to perform this analysis.

The last step in the selection of a hard scale parametrization and indepen-

dent variable for the inclusive three- to two-jet production cross-section ratio is

to investigate the relative size of the inclusive ratio’s theoretical uncertainties.
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The total theoretical uncertainty is calculated from the statistical uncertain-

ties due to the finite simulated sample sizes, as well as uncertainties associated

with variations in PDFs and scales, all of which are added in quadrature in

each bin of each jet observable. Theoretical uncertainties are computed as

described in section 5.1.1 and the resulting ratio distributions are shown in

figure 5–5 with total theoretical uncertainties. According to figure 5–5, the Q′

variable features on average the smallest total uncertainty. The relative size of

each individual source of uncertainty is displayed in figure 5–5, which reveals

that the total NLO theoretical uncertainty is entirely dominated by the scale

uncertainty for all observables. The investigation of theoretical uncertainties

therefore suggests that the Q′ variable would be better suited to perform the

intended measurement than other variables investigated.

Although results obtained using the inclusive jet transverse momentum as

observable yields very similar results as the Q′ observable, additional studies

would be required to ensure that cross-section predictions computed using

a hard scale parametrization based on an individual jet as opposed to an

event’s overall kinematics provides an adequate description of experimental

data. Therefore, the Q′ jet observable, as defined in equation (5.6), is used as

hard scale parametrization in NLO calculations, and as independent or binning

variable when computing the inclusive three- to two-jet ratio.

5.2 Non-Perturbative QCD Corrections

NLO predictions do not include showering or hadronization effects; they

are generated at the parton-level. To be compared to measurements per-

formed in data, NLO predictions must be evolved to the particle (truth)

level. Since NLOJet++ predictions cannot be interfaced with parton shower

or hadronization algorithms, a correction factor is applied to the predicted
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inclusive three- to two-jet production ratio, which accounts for these non-

perturbative QCD effects. This folding of non-perturbative effects into NLO

predictions relies on LOMonte-Carlo simulations including leading-logarithmic

parton showering effects from Herwig/Jimmy and Pythia.

The QCD non-perturbative correction factor is computed for each bin of

the inclusive three- to two-jet ratio distribution. To that end, the ratio distri-

bution is computed from parton and truth (i.e. particle) jets. The correction

factor corresponding to each Q′ bin Cnon−pert(Q
′) is then computed as

Cnon−pert(Q
′) =

Rparticle, UE
3/2 (Q′)

Rparton, no UE
3/2 (Q′)

, (5.7)

where Rparticle, UE
3/2 (Q′) is the inclusive three- to two-jet ratio computed from

particle-jets with underlying event contributions, and Rparton, no UE
3/2 (Q′) is the

same ratio computed from parton-jets without taking into account any un-

derlying event contribution. Particle-jets are built from truth information

available in Monte-Carlo simulations, while parton-jets are built directly from

the events’ partons, including parton showering but not hadronization effects.

NLO predictions of the inclusive ratio are corrected by multiplying each bin’s

prediction by the corresponding non-perturbative QCD correction factor2 .

The resulting non-perturbative QCD correction factors are shown in fig-

ure 5–6(a) with statistical uncertainties derived from the Monte-Carlo simu-

lated samples involved in the calculations. The larger correction factors ob-

served in the first two to three bins of the distribution are caused by the

2 This procedure is mathematically equivalent to folding non-perturbative
effects in the inclusive two- and three-jet cross-section distributions individu-
ally, then calculating the inclusive three- to two-jet cross-section ratio.
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presence of underlying event alone. Removing the underlying event contribu-

tions from the folding correction factor reveals a nearly constant factor for all

bins.

The Alpgen+Herwig/Jimmy Monte-Carlo sample listed in section 4.2

is used to compute the central value of the non-perturbative QCD correction

factor due to the availability of parton-level information, as well as for consis-

tency with the rest of the analysis. The denominator, however, is computed

from the parton-level information used to generate theAlpgen+Herwig/Jimmy

Monte-Carlo sample, without any underlying event contributions. Both the

numerator and denominator are therefore based on the same set of matrix

element calculations from Alpgen. An uncertainty associated with choosing

Herwig/Jimmy to model hadronization and underlying events is estimated

in subsection 5.2.1. The final corrected ratio prediction is shown in figure 5–

6(b), and individualQ′ bin values are tabulated in table 5–1, providing detailed

uncertainty contributions from each source.

5.2.1 Uncertainty on Non-Perturbative QCD Correction

In order to estimate the uncertainty on the non-perturbative correction

factors due to different hadronization and underlying event models, referred to

as Monte-Carlo modelling, the Rparticle, UE
3/2 distribution is calculated using an

Alpgen+Pythia Monte-Carlo sample. The resulting distribution is found

in figure 5–7(a). For each bin of the Rparticle, UE
3/2 distribution, the variation in

central value between the Alpgen+Pythia and Alpgen+Herwig/Jimmy

result is used as a symmetric uncertainty on Rparticle, UE
3/2 due to the choice of

hadronization and underlying event models. This uncertainty is propagated to

the unfolded inclusive three- to two-jet ratio, as shown in figure 5–7(b). The

overall uncertainty due to non-perturbative effects on the NLO predictions

is shown to be approximately 8% for the entire Q′ range considered. Values
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of the non-perturbative correction uncertainty on the corrected theoretical

predictions of the ratio are tabulated in table 5–1.

Table 5–1: Detailed uncertainty contributions to the inclusive ratio computed
from NLOJet++ simulations, using αS(MZ) = 0.12018. All the results are
corrected to the particle level. Results are tabulated as a function of Q′ and
are computed with all analysis cuts described in section 6.1 applied.

Q′ bin range Corrected Sources of uncertainty

(GeV) R3/2 NLOJet++ statistics AlpGen statistics

100- 120 0.171 ±0.004 ±0.005

120- 150 0.296 ±0.004 ±0.007

150- 180 0.391 ±0.007 ±0.008

180- 230 0.442 ±0.007 ±0.008

230- 280 0.519 ±0.006 ±0.009

280- 330 0.545 ±0.005 ±0.009

330- 390 0.571 ±0.006 ±0.009

390- 460 0.602 ±0.007 ±0.008

460- 550 0.617 ±0.012 ±0.009

550- 700 0.631 ±0.005 ±0.010

700-1000 0.659 ±0.005 ±0.016

1000-1500 0.619 ±0.013 ±0.031

Q′ bin range Sources of uncertainty

(GeV) Scale PDF Monte-Carlo Modelling

100- 120 +0.009
−0.013 ±0.002 ±0.015

120- 150 +0.012
−0.046 ±0.002 ±0.019

150- 180 +0.034
−0.049 ±0.004 ±0.027

180- 230 +0.041
−0.085 ±0.003 ±0.035

230- 280 +0.028
−0.092 ±0.004 ±0.039

280- 330 +0.029
−0.046 ±0.005 ±0.035

330- 390 +0.033
−0.049 ±0.006 ±0.046

390- 460 +0.034
−0.052 ±0.006 ±0.035

460- 550 +0.069
−0.125 ±0.006 ±0.042

550- 700 +0.038
−0.072 ±0.006 ±0.045

700-1000 +0.047
−0.067 ±0.008 ±0.050

1000-1500 +0.049
−0.118 ±0.009 ±0.013
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Figure 5–2: The two-jet optimized renormalization (µr) and factorization (µf )
scale factors for the HT (a), leading jet pT (b), inclusive jet pT (c), and Q′

(d) observables. The calculations are performed consistently using the jet
observable as the hard scale parameterization. All jets are built from partons
and satisfy p

(jet)
T > 40 GeV and |η(jet)| < 2.8; all events satisfy p

(leading jet)
T > 60

GeV.
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Figure 5–3: The three-jet optimized renormalization (µr) and factorization
(µf ) scale factors for the HT (a), leading jet pT (b), inclusive jet pT (c), and
Q′ (d) observables. The calculations are performed consistently using the jet
observable as the hard scale parameterization. All jets are built from partons
and satisfy p

(jet)
T > 40 GeV and |η(jet)| < 2.8; all events satisfy p

(leading jet)
T > 60

GeV.
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Figure 5–4: Sensitivity of NLO predictions of inclusive three- to two-jet ratio
R3/2 to variations of the strong coupling constant αS. Predictions are shown
as a function of HT (a), leading jet pT (b), inclusive jet pT (c), and Q′ (d) ob-
servables. The calculations are performed consistently using the jet observable
as the hard scale parameterization. All jets are built from partons and satisfy
p
(jet)
T > 40 GeV and |η(jet)| < 2.8; all events satisfy p

(leading jet)
T > 60 GeV.

66



 [GeV/c] jets

T
p

200 400 600 800 1000 1200

 
un

ce
rt

ai
nt

y 
/ v

al
ue

To
ta

l t
he

or
et

ic
al

0.8

1

1.2
200 400 600 800 1000 1200

je
ts

T
p

3/
2

R

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

=0.12018SαNLOJet++, 

MSTW 2008 PDF
ATLAS Preliminary

 [GeV/c] Q’
200 400 600 800 1000 1200 1400

 
un

ce
rt

ai
nt

y 
/ v

al
ue

To
ta

l t
he

or
et

ic
al

0.8

1

1.2
200 400 600 800 1000 1200 1400

Q
’

3/
2

R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

=0.12018SαNLOJet++, 

MSTW 2008 PDF
ATLAS Preliminary

(a) (b)

 u
nc

er
ta

in
ty

 / 
va

lu
e

je
ts

T
p

3/
2

R

200 400 600 800 1000 1200

S
ta

tis
tic

al
 

0.8

1

1.2

200 400 600 800 1000 1200

S
ca

le
 

0.8

1

1.2

 [GeV/c] jets

T
p

200 400 600 800 1000 1200

P
D

F
 

0.8

1

1.2

=0.12018SαNLOJet++, 
MSTW 2008 PDF ATLAS Preliminary

 u
nc

er
ta

in
ty

 / 
va

lu
e

Q
’

3/
2

R

200 400 600 800 1000 1200 1400

S
ta

tis
tic

al
 

0.8

1

1.2

200 400 600 800 1000 1200 1400

S
ca

le
 

0.8

1

1.2

 [GeV/c] Q’
200 400 600 800 100012001400

P
D

F
 

0.8

1

1.2

=0.12018SαNLOJet++, 
MSTW 2008 PDF ATLAS Preliminary

(c) (d)

Figure 5–5: NLOJet++ predictions of the three- to two-jet inclusive ratio
R3/2 and total theoretical uncertainty as a function of inclusive jet pT (a)
and Q′ (b) observables. Contributions to the theoretical uncertainties are pre-
sented for both observables in figures (c) and (d) respectively. The calculations
are performed consistently using the jet observable as the hard scale param-
eterization. All jets are built from partons and satisfy p

(jet)
T > 40 GeV and

|η(jet)| < 2.8; all events satisfy p
(leading jet)
T > 60 GeV.
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Figure 5–6: (a) Values of the correction factor for non-perturbative effects as a
function of Q′. Results are obtained from Alpgen+Herwig/Jimmy Monte-
Carlo samples and only include statistical uncertainties. (b) Comparison of
three- to two-jet production ratio prediction before and after correcting to the
particle-level. Predictions are evaluated at αS = 0.12018, and the parton-
level results include only NLOJet++ statistical uncertainties (smaller than
the marker size) while particle-level results include all uncertainties listed in
table 5–1. Results are shown as a function of Q′. Jets are built from partons or
truth particles and satisfy p

(jet)
T > 40 GeV and |η(jet)| < 2.8; all events satisfy

p
(leading jet)
T > 60 GeV.
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Figure 5–7: (a) Inclusive ratios computed from Alpgen+Pythia and Alp-
gen+Herwig/Jimmy to determine the uncertainty in NLO correction due to
showering, hadronization and underlying event models. (b) Three- to two-jet
cross-section ratio corrected for non-pQCD effects (particle-level) as function
of Q′, showing the size of the uncertainty associated to the non-pQCD cor-
rection applied. Results are shown as a function of Q′ with αS = 0.12018.
Jets are built from partons or truth particles and satisfy p

(jet)
T > 40 GeV and

|η(jet)| < 2.8; all events satisfy p
(leading jet)
T > 60 GeV.
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CHAPTER 6

Data Measurement of R3/2

Events used to measure the inclusive three- to two-jet ratio were recorded

by the ATLAS detector in 2010 at a centre-of-mass energy of 7 TeV. This data

is divided in nine data-taking periods, commonly referred to in alphabetical

order as periods A through I. Each period corresponds to slightly different run-

ning conditions as the LHC luminosity was increased and the ATLAS systems

became better understood.

This chapter first describes the selection criteria for events used in the

measurement of the inclusive three- to two-jet production ratio, followed by a

description of the unfolding process used to correct the reconstructed results

to the particle-level. The last section of this chapter details the different

systematic uncertainties affecting the measurement of the ratio from data.

6.1 Event Selection

Events used for the analysis first need to be filtered to remove any data

collected while parts of the detector or the collider were not operating under

nominal conditions. In order to avoid jet reconstruction inefficiencies and

pile-up contamination within these events, primary vertex and jet selection

criteria are also applied. These event and jet selection criteria are detailed in

section 6.1.1. All events used in this analysis are also required to fulfil the

trigger selection requirements described in section 6.1.2.

6.1.1 Event & Jet Selection Criteria

The quality of data recorded by the ATLAS detector is continuously mon-

itored. All of the data used in this analysis has been validated by the ATLAS

data quality group, and a standard set of criteria is used to ensure that all
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detector subsystems were operating within normal parameters during data-

taking. The total integrated luminosity used for this analysis, after the appli-

cation of all data quality requirements, is approximately 37.6 pb−1.

Events used by the analysis include different amounts of pile-up depend-

ing on the data-taking period. Pile-up introduces additional softer collisions

in events, which can produce additional low energy jets and change the jet

multiplicity of the event. In order to reduce the effect of pile-up, only events

containing exactly one primary vertex with at least five associated tracks are

analyzed. Furthermore, only events containing at least one reconstructed jet

with transverse momentum greater than 60 GeV are used. This requirement

ensures that all events used in the analysis have a greater than 99% chance of

satisfying the lowest trigger criteria defined in section 6.1.2.

Only jets with transverse momentum of at least 40 GeV are counted in the

analysis, which guarantees that the jet reconstruction is fully efficient [63,64],

while avoiding large NLO theoretical uncertainties and minimizing statistical

uncertainties on the measurement. Jets are also required to be within the

pseudorapidity range |η| < 2.8 so as to reduce the NLO scale uncertainty,

which is the dominant NLO theoretical uncertainty. These requirements also

contribute to the reduction of pile-up uncertainty in the final measurement of

the strong coupling constant αS.

In addition to the general selection criteria described above, the following

jet quality requirements are only applied in data. They cannot be applied to

Monte-Carlo simulations as the jet variables involved are not properly mod-

elled. Reconstructed jets which are likely affected by energy spikes in the

hadronic end-cap calorimeter can be identified by either of the following re-

quirements:
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• Over 50% of the jet energy is deposited in the hadronic end-cap and the

liquid argon jet quality1 for the hadronic end-cap cells is greater than

0.5.

• The absolute value of the negative energy2 contribution is greater than

60 GeV.

These jets are labelled as bad and are excluded from the analysis. A jet with

over 95% of its energy originating from the electromagnetic calorimeter and

a liquid argon jet quality greater than 0.8 is likely affected by coherent noise

in the electromagnetic calorimeters, and is therefore also classified as a bad

jet. Finally, another class of bad jets, likely resulting from past collisions and

cosmic backgrounds, is identified by any of the following criteria

• The jet time, computed from the weighted cells’ time, is more than 25

ns away from the event time.

• More than 95% of the jet energy is deposited in the electromagnetic

calorimeter, the jet charged fraction3 is less than 0.05 and the jet |η| is

less than 2.0.

• Less than 5% of the jet energy is deposited in the electromagnetic calorime-

ter and the jet |η| is greater or equal to 2.0.

1 Liquid argon jet quality variable is the fractional number of liquid argon
cells in the jet with Q-factor above a specific threshold. The Q-factor mea-
sures the difference between the predicted and measured pulse shape used to
reconstruct the cell energy.

2 Anomalies in the analog-to-digital conversion systems can cause the mea-
surement of a calorimeter cell’s energy to be negative.

3 The jet charged fraction is defined as the ratio of the sum of the transverse
momentum of the tracks associated to the jet divided by the calibrated jet’s
transverse momentum.
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• The fraction of the jet energy deposited in a single calorimeter layer is

greater than 0.99 and the jet |η| is less than 2.0.

Another category of jets is known as ugly jets. Such jets are built from

energy deposits in regions where the energy measurement is not accurate.

A jet is therefore labelled as ugly if more than 50% of its energy (at the

electromagnetic scale) comes from the transition region between the tile and

end-cap calorimeters, or if more than 50% of its energy comes from dead cells

(with cell correction based on neighbouring cells and assuming the same energy

density). Ugly jets, like bad jets, are ignored during the analysis; however the

event can still be accepted if two or more of the remaining jets satisfy all of

the kinematic and quality cuts.

6.1.2 Trigger Selection

As described in section 3.2.4, several trigger chains, representing different

sets of criteria, are used during data-taking to select events to be recorded.

Trigger chains are designed to record specific types of events and their efficiency

can vary depending on the type of event investigated. Not accounting for these

inefficiencies can lead to a misrepresentation of the relative probability that

different types of processes occur in nature. Only events recorded by single-jet

triggers are used in this analysis. The efficiency of each trigger selection is

studied, and one single-jet trigger chain is chosen for each Q′ bin according to

criteria described in the remainder of this section.

During data taking periods A through F, only the first level (L1) of the

trigger selection process was rejecting events. During the later periods G

through I, rejection based on the second trigger level (L2) was enabled. Ta-

ble 6–1 lists the single-jet trigger items enabled for each data-taking period.

The ATLAS naming scheme for the single-jet trigger items include the item’s

level (L1 or L2) and the energy threshold of the reconstructed jet in GeV.

73



A L1 J55 item therefore requires a jet with energy equal to or greater than

55 GeV to be found by the level-1 algorithms. However, the jet reconstruction

processes of the first and second levels of the trigger are not as elaborate as the

offline4 jet reconstruction described in section 4.3.2. Jet energies are therefore

commonly underestimated by the ATLAS trigger systems. It is therefore cru-

cial to estimate a trigger item’s efficiency with respect to offline reconstructed

jets.

Table 6–1: Trigger items considered for the analysis, for each data-taking
period. The ‘&’ symbol represents the logical ‘and’ of two conditions. The
NoAlg suffix in the last L2 item indicates that no L2 algorithm was used in
the corresponding trigger chain.

Data-taking periods

A-F G-I

L1 J10 L1 J10 & L2 J25

L1 J15 L1 J15 & L2 J30

L1 J30 L1 J30 & L2 J45

L1 J55 L1 J55 & L2 J70

L1 J75 L1 J75 & L2 J90

L1 J95 L1 J95 & L2 L1J95 NoAlg

Throughout the analysis, only events which have greater than 99% prob-

ability of satisfying a trigger chain’s set of criteria are used. To ensure this,

the trigger efficiencies are computed from data for each trigger chain listed in

table 6–1 and for each data-taking period. These efficiencies are computed

using a bootstrapping technique. This technique consists in calculating the rel-

ative trigger efficiency of each single-jet trigger chain using a reference sample

obtained from another single-jet trigger chain with lower transverse jet mo-

mentum (pT ) threshold. The L1 J10 and L1 J10 & L2 J25 trigger items are

4 Offline, as opposed to online or trigger, algorithms are run on data after
it has been recorded to permanent storage.
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the ones with the lowest energy thresholds considered in the analysis. The

relative trigger efficiency of these two trigger items is therefore computed us-

ing events satisfying the L1 J5 and L1 J5 & L2 J15 respectively. The absolute

trigger efficiencies of the L1 J5 and L1 J5 & L2 J15 trigger items are mea-

sured using events satisfying a minimum bias5 trigger item. The absolute

trigger efficiency of each trigger item is obtained by multiplying its measured

relative efficiency with the absolute trigger efficiency of the trigger item used

to produce the reference sample.

In order to compute a trigger item’s efficiency, we first apply all data

quality, vertex and jet requirements discussed in section 6.1.1 to the reference

sample. The trigger efficiency is then defined as the total number of events

satisfying the item’s criteria, without applying a prescale factor, divided by

the total number of events in the reference sample.

The efficiencies are computed for the inclusive two- and three-jet samples

as a function of Q′. The threshold beyond which a trigger item is deemed fully

efficient is defined as the minimum Q′ value above which the absolute trigger

efficiency is greater than 99% for all bins. This threshold could be different for

the inclusive two- and three-jet samples. The actual threshold used to define

a trigger item in both samples is therefore the greater of the two. This ensures

that for each bin in Q′, the ratio distribution is obtained using only events

that satisfy a trigger chain with a trigger efficiency greater than 99%.

The widths of the Q′ bins used in this analysis are chosen to maximize

the sensitivity of the inclusive ratio to αS, while minimizing the statistical

uncertainty in each bin. The number of events in each bin depends on the

5 Minimum bias trigger items randomly select events showing evidence that
a collision occurred.
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trigger chosen to select the events, which in turn depends on the measured

full-efficiency threshold of each trigger. However, the exact value of Q′ for

which a particular trigger item is measured to be fully efficient varies as a

function of the width of the bins used. Therefore, an iterative approach is

used to determine the optimal bin widths used in this analysis.

For each Q′ bin, the trigger chain with the lowest prescale which is fully

efficient is used to select events in that bin. Therefore, only one trigger is used

to select events per bin and per data period. The trigger used to select events

in each bin is documented in table 6–2.

Events and jets surviving the selection process described in sections 6.1.1

and 6.1.2 are used to measure the inclusive three- to two-jet production ratio.

To do so, the number of events featuring three or more jets (N events
Njets≥3) is divided

by the number of events with two or more jet (N events
Njets≥3) for each Q′ bin. Since

the trigger selection and reconstruction process are fully efficient for all events

considered, and since only one trigger is used to select all events per bin and

per data-taking period, the inclusive three- to two-jet ratio can be calculated

in each bin i as

Ri
3/2 =

σi
Njets≥3

σi
Njets≥2

=

(

N events, i
Njets≥3

)/

Lε
(

N events, i
Njets≥2

)/

Lε
=

N events, i
Njets≥3

N events, i
Njets≥2

, (6.1)

where L is the integrated luminosity of all the data, and ε is the efficiency at

selecting an event with two or more jets. The calculated luminosity associated

with each trigger item is therefore not required to perform this measurement

of the inclusive three- to two-jet production ratio.
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Table 6–2: Trigger item(s) used to select events in each bin of Q′ for each ATLAS data-taking period of 2010.

Q′ bin center (GeV)

Period 110 135 165 205 255 305 360 425 505 625 850 1250

A L1 J15

B L1 J15

C L1 J15

D L1 J15

E L1 J15 L1 J30

F L1 J15 L1 J30 L1 J55

G L1 J15 & L2 j30 L1 J30 & L2 j45 L1 J55 & L2 j70 L1 J75 & L2 j90 L1 J95 & L2 L1J95 NoAlg

H L1 J15 & L2 j30 L1 J30 & L2 j45 L1 J55 & L2 j70 L1 J75 & L2 j90 L1 J95 & L2 L1J95 NoAlg

I L1 J15 & L2 j30 L1 J30 & L2 j45 L1 J55 & L2 j70 L1 J75 & L2 j90 L1 J95 & L2 L1J95 NoAlg
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6.2 Unfolding of Detector Effects in Data

In order to compare the measured inclusive three- to two-jet production

ratio to NLO predictions described in chapter 5, detector effects must be un-

folded from the reconstructed data results to obtain a measurement of the ratio

at the particle-level.

The unfolding of reconstructed data measurements attempts to correct for

all detector effects, in order to infer a particle-level measurement of the inclu-

sive ratio distribution. However, unlike jet calibration corrections described

in section 4.3.2, the process is entirely specific to the present analysis and

is applied to the inclusive ratio distribution as opposed to individual jets in

each event. Indeed, an unfolding correction factor is computed for each bin of

the measured inclusive ratio distribution using the Alpgen+Herwig/Jimmy

Monte-Carlo data samples listed in section 4.2. The unfolding correction factor

for each Q′ bin Cunfolding(Q
′) is computed as

Cunfolding(Q
′) =

Rparticle
3/2 (Q′)

Rreconstructed
3/2 (Q′)

, (6.2)

where Rreconstructed
3/2 (Q′) and Rparticle

3/2 (Q′) are the inclusive three- to two-jet ra-

tio computed from reconstructed and particle- (or truth-) jets respectively.

As described in section 4.3.2, particle-jets are built directly from the Monte-

Carlo particle or truth information, ignoring any detector effects. To compute

the unfolding factor, all analysis-specific selection criteria described in section

6.1.1 are applied to reconstructed jets, while only momentum and pseudora-

pidity requirements are imposed on particle-jets. Unfolding factors computed

with the previously described procedure are shown in figure 6–1(a) to yield

correction factors of less than ∼ 5% in all Q′ bins. To unfold the data results
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Figure 6–1: (a) Data unfolding correction factor as a function of Q′. Results
are obtained from Alpgen+Herwig/Jimmy Monte-Carlo samples and only
include statistical uncertainties. (b) Comparison of three- to two-jet produc-
tion ratio measurement before and after unfolding to the particle-level. The
reconstructed level distribution only includes statistical uncertainty from the
data, while particle-level results also include statistical uncertainty contribu-
tions from the unfolding factors. All analysis cuts described in section 6.1 are
applied to reconstructed jets, only pT and η cuts are applied to particle-jets.

to the particle-level, the reconstructed ratio is multiplied bin-by-bin with the

corresponding unfolding factors6 .

The calculations of the unfolding factors do not account for the presence

of pile-up effects in the measured quantities. Uncertainties on the unfolding

factors due to pile-up effects and Monte-Carlo modelling (i.e. the choice of

generator, parton showering and hadronization algorithms), are detailed in

section 6.2.1. The final unfolded ratio measurement is shown in figure 6–1(b),

and individual Q′ bin values are tabulated in table 6–3, providing detailed

uncertainty contributions from each source described in sections 6.2.1 and 6.3.

6 Note that this approach is mathematically equivalent to unfolding the
inclusive two- and three-jet cross-section distributions independently and di-
viding both to calculate the three- to two-jet cross-section ratio.
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Table 6–3: Detailed uncertainty contributions to the inclusive ratio computed
from ATLAS 2010 data. All the results are unfolded to the particle-level.
Results are tabulated as a function of Q′ and are computed with all analysis
cuts described in section 6.1 applied.

Q′ range Unfolded Sources of uncertainty

(GeV) R3/2 Data statistics Alpgen statistics Trigger Modelling

100-120 0.180 +0.006
−0.006

+0.007
−0.007 ±0.003 ±0.005

120-150 0.268 +0.009
−0.009

+0.008
−0.008 ±0.004 ±0.003

150-180 0.367 +0.008
−0.008

+0.010
−0.010 ±0.005 ±0.001

180-230 0.422 +0.011
−0.011

+0.010
−0.010 ±0.006 ±0.015

230-280 0.487 +0.007
−0.007

+0.011
−0.011 ±0.007 ±0.005

280-330 0.539 +0.007
−0.007

+0.012
−0.012 ±0.008 ±0.005

330-390 0.555 +0.003
−0.003

+0.011
−0.011 ±0.008 ±0.019

390-460 0.575 +0.004
−0.004

+0.010
−0.010 ±0.008 ±0.011

460-550 0.592 +0.006
−0.006

+0.010
−0.010 ±0.008 ±0.005

550-700 0.595 +0.010
−0.010

+0.011
−0.011 ±0.008 ±0.014

700-1000 0.634 +0.020
−0.020

+0.019
−0.019 ±0.009 ±0.007

1000-1500 0.660 +0.064
−0.059

+0.036
−0.036 ±0.009 ±0.046

Q′ range Sources of uncertainty

(GeV) JES JER η resolution Pile-up Jet quality

100-120 ±0.005 ±0.005 ±0.001 ±0.007 ±0.001

120-150 ±0.004 ±0.009 ±0.002 ±0.009 ±0.000

150-180 ±0.005 ±0.006 ±0.002 ±0.016 ±0.000

180-230 ±0.003 ±0.007 ±0.002 ±0.003 ±0.000

230-280 ±0.014 ±0.004 ±0.001 ±0.006 ±0.000

280-330 ±0.003 ±0.011 ±0.001 ±0.004 ±0.000

330-390 ±0.002 ±0.003 ±0.001 ±0.014 ±0.000

390-460 ±0.002 ±0.007 ±0.001 ±0.011 ±0.000

460-550 ±0.007 ±0.009 ±0.001 ±0.010 ±0.000

550-700 ±0.007 ±0.009 ±0.001 ±0.011 ±0.000

700-1000 ±0.011 ±0.012 ±0.004 ±0.044 ±0.001

1000-1500 ±0.021 ±0.051 ±0.001 ±0.078 ±0.026

6.2.1 Uncertainties on Data Unfolding

The previously described unfolding technique relies on the assumption

that simulated detector effects closely resemble those found in data. However,
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varying pile-up effects present in data are not modelled in the unfolding pro-

cedure. This effect is, however, greatly reduced due to the primary vertex

and jet selection cuts detailed in section 6.1.1. Therefore, rather than unfold-

ing pile-up effects directly, we estimate an uncertainty on the reconstructed

Monte-Carlo sample due to the presence of pile-up in data.

To estimate the uncertainty due to pile-up effects, the inclusive three- to

two-jet ratio is computed from both in time and bunch train pile-up Monte-

Carlo samples described in section 4.2. We compare results from each pile-up

sample with the pile-up-free Alpgen+Herwig/Jimmy sample and take the

largest fluctuation in each bin as a symmetric uncertainty on the reconstructed

ratio. The individual ratio computed for each Monte-Carlo configuration and

the resulting uncertainty on the unfolded measurement of the inclusive ratio

are shown in figures 6–2(a) and (b) respectively. These figures indicate that

the overall uncertainty due to pile-up is at most 2% for Q′ < 700 GeV and up

to ∼ 12% over the last two Q′ bins (700 < Q′ < 1500), in large part due to

statistical limitations of Monte-Carlo simulations in that energy range.

The unfolding correction factor described in equation 6.2 is computed

entirely from Monte-Carlo simulations. Different event generators, showering

and hadronization algorithms can result in different predictions of the inclu-

sive three- to two-jet ratio. An uncertainty on the unfolded data due to the

choice of models and parameters used in simulations is therefore estimated. To

do so, the data ratio is unfolded using several Monte-Carlo simulated samples

generated with different tools and parameters. The Alpgen+Pythia Monte-

Carlo simulated sample is used to estimate the difference in unfolding due to

the choice of parton shower algorithms, while Pythia AMBT1 and Pythia

Perugia 2010 samples are used to estimate the difference between the full

81



 [GeV/c] Q’
200 400 600 800 1000 1200 1400

Q
’

3/
2

R

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No pile-up

In-time pile-up

Bunch-train pile-up

2010 Data
ATLAS Preliminary

Reconstructed-level

 [GeV/c] Q’
200 400 600 800 1000 1200 1400

U
nc

er
ta

in
ty

 / 
V

al
ue

 

0.9

1

1.1
ATLAS Preliminary200 400 600 800 1000 1200 1400

Q
’

3/
2

R

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Uncertainties:

Data statistics 

Pile-up

2010 Data

Particle-level

(a) (b)

Figure 6–2: (a) Inclusive ratio as a function of Q′ computed from Alp-
gen+Herwig/Jimmy Monte-Carlo simulated samples with different pile-up
configurations. (b) Unfolded data to particle-level with unfolded pile-up and
statistical uncertainties. All analysis cuts described in section 6.1.1 are applied
to reconstructed jets.

and partial matrix element calculations with different underlying event con-

tributions. Figure 6–3(a) shows the unfolding correction factors obtained in

each case. Results show that unfolding correction factors from all simulations

agree within statistical uncertainty. Moreover, unfolding factor corrections are

smaller than 5% for the entire Q′ range and for all Monte-Carlo simulations.

For each Q′ bin the maximum difference between the ratio unfolded using

the Alpgen+Herwig/Jimmy sample and the ratio unfolded with any other

simulation is computed and taken as a symmetric uncertainty on the unfolded

data ratio. The resulting uncertainty on the unfolded data ratio is generally

less than ∼ 4% with the exception of the highest energy bin which features an

uncertainty of ∼ 7%, as shown in figure 6–3(b).

Since the unfolding correction factor is nearly constant across all bins and

within statistical and modelling uncertainty of unity, the unfolding procedure

does not bias the data toward a specific αS(MZ) value.
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Figure 6–3: (a) Data unfolding factor Cunfolding(Q
′) computed from Alp-

gen+Herwig/Jimmy, Alpgen+Pythia and Pythia with two different
underlying event tunes. (b) Three- to two-jet cross-section ratio unfolded to
the particle-level, showing the size of the uncertainty associated to the choice of
Monte-Carlo models to perform the unfolding. Results are shown as a function
of Q′ and all analysis cuts described in section 6.1 are applied.

6.3 Uncertainties on R3/2 Measurement

6.3.1 Statistical Uncertainties

The statistical uncertainty on the measurement of the inclusive ratio is ob-

tained bin-by-bin by combining the statistical uncertainties on the two-jet and

three-jet distributions. When the same data or simulation sample is used for

both the numerator and denominator of the ratio, the statistical uncertainties

are combined using Bayesian statistical methods [75, 76]. Otherwise the sam-

ples are assumed to be independent and both uncertainties are propagated to

the ratio using standard error propagation techniques based on partial deriva-

tives. Statistical uncertainties arise from both the data, and Monte-Carlo

simulations used during the unfolding process. The resulting uncertainties on

the unfolded three- to two-jet cross-section ratio are tabulated in table 6–3 for

each source of statistical uncertainty.
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6.3.2 Trigger Selection Efficiency

As described in section 6.1.2, for a trigger item to be used in a specific

Q′ bin, it must be more than 99% efficient at selecting events for that specific

bin. The statistical uncertainty on each trigger item’s full-efficiency threshold

was determined to be significantly less than 1%. It follows that since only one

trigger item is used to select events per bin per data collection period, the

uncertainty due to trigger selection is conservatively estimated to be 1% for

each bin of the two- and three-jet distributions computed from data. This un-

certainty is propagated through the unfolding process to the unfolded inclusive

ratio measurement, as tabulated in table 6–3.

6.3.3 Jet Energy Scale Uncertainty

Jet energy scale corrections described in section 4.3.2 are applied to re-

constructed jets in both real and simulated data. Moreover, the same JES

correction scheme is used in both cases. The overall uncertainty due to JES

effects on the unfolded inclusive three- to two-jet production ratio must there-

fore account for the correlation between the data and Monte-Carlo samples

used. A toy Monte-Carlo approach is used where the transverse momentum

of each jet is varied by an amount proportional to the individual jet’s JES un-

certainty [68]. The same proportionality factor is used for all the jets in both

the data and Alpgen+Herwig/Jimmy Monte-Carlo sample used during the

unfolding process described in section 6.2. The unfolded inclusive three- to

two-jet production ratio is computed this way four hundred times, each time

generating a random JES proportionality factor according to a standard nor-

mal distribution7 . The resulting inclusive ratio values from all iterations are

7 A Gaussian distribution of width equal to one and mean of zero
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then fitted to a Gaussian distribution for each Q′ bin. The overall JES uncer-

tainty on the unfolded ratio is computed as the sum of the standard deviation

of the fit and the difference between the mean of the fit and the unfolded ratio’s

central value for each Q′ bin. The resulting uncertainties on the unfolded ratio

are less than 3.5% throughout the energy range studied as shown in figure 6–4.

Detailed JES uncertainties on the unfolded ratio are tabulated in table 6–3.
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Figure 6–4: Jet energy scale uncertainty propagated to the unfolded inclusive
three- to two-jet cross-section ratio. Results are shown as a function of Q′ and
are obtained from the ATLAS 2010 data set with all analysis cuts described
in section 6.1 applied.

6.3.4 Jet Energy and Angular Resolutions

Resolution effects, like JES effects, are present in reconstructed quantities

computed from both data and Monte-Carlo samples. However, the resolution

effects are not correlated between the data and simulations. Similarly to the

JES uncertainty calculations, the jet energy resolution (JER) or angular res-

olution uncertainties are computed using a toy Monte-Carlo approach. This

technique varies the transverse momentum or pseudo-rapidity of each jet by an

amount proportional to the corresponding resolution. The variation amount is

randomly generated for each jet based on a Gaussian distribution whose stan-

dard deviation is equal to the individual jet’s resolution. The same technique

85



is applied to both data and Monte-Carlo samples with different random num-

ber generator seeds. The resulting inclusive ratio from the modified data is

unfolded using the correspondingly modified Monte-Carlo samples, following

the same approach as described in section 6.2. This procedure is repeated two

hundred times, each time with unique random numbers. The unfolded ratio

values obtained are fitted to a Gaussian distribution for each Q′ bin. The

overall resolution uncertainties on the unfolded ratio are computed for each

bin as the sum of the standard deviation of the fit and the difference between

the mean of the fit and the unfolded ratio’s central value.

The jet energy resolution [63, 77] is a function of transverse momentum

and pseudo-rapidity of the jets. The jet energy resolution varies between 4%

and 14%. As the analysis is completely independent of azimuthal coordinates,

only pseudo-rapidity resolution effects are considered for angular resolution

uncertainty calculations. The conservative value of 0.1 is used as the η resolu-

tion, which is the maximum η granularity of the electro-magnetic calorimeter

and of the first two layers of the hadronic calorimeter [78, 79]. The resulting

uncertainties on the unfolded ratio due to JER effect are generally between

∼ 0.5% and ∼ 4% with the exception of the last bin at ∼ 8%, while angu-

lar resolution effects result in negligible uncertainties, as shown in figure 6–5.

Both detailed JER and angular resolution uncertainties on the unfolded ratio

are tabulated in table 6–3.

6.3.5 Jet Quality Requirements

Since jet quality variables are not properly modelled in simulations, the

uncertainty due to the jet quality requirements described in section 6.1.1 is

directly estimated from data. To do so, the analysis is re-done allowing bad

and/or ugly jets to be used. Figure 6–6(a) shows the relative change in the

results obtained with each configuration of jet quality requirements. These
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Figure 6–5: Jet energy resolution (a) and angular resolution (b) uncertainties
propagated to the unfolded inclusive three- to two-jet cross-section ratio. Re-
sults are shown as a function of Q′ and are obtained from the ATLAS 2010
data set with all analysis cuts described in section 6.1 applied.

results show that the overall effect of including bad and/or ugly jets is at most

∼ 4% in the highest energy bin and negligible in all others. The maximum

shift in each bin observed in figure 6–6(a) is taken as a symmetric relative un-

certainty on the inclusive ratio computed from data due to jet quality require-

ments. This uncertainty is propagated to the particle-level and the resulting

unfolded jet quality uncertainty is shown in figure 6–6(b). These uncertainties

on the unfolded ratio are listed in table 6–3.
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Figure 6–6: (a) Ratio of R3/2(Q
′) computed with different jet quality criteria

over that computed with the default set of criteria, i.e. no bad or ugly jets
allowed. (b) Inclusive three- to two-jet cross-section ratio with statistical and
jet quality uncertainties unfolded to particle level. Results are shown as a
function of Q′ and are obtained from the ATLAS 2010 data set with all analysis
cuts described in sections 6.1.1 applied.
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CHAPTER 7

Strong Coupling Measurement

This chapter describes the measurement of the strong coupling constant

by comparing the theoretical predictions of the inclusive three- to two-jet pro-

duction cross-section ratio described in chapter 5, to its measurement detailed

in chapter 6. Comparisons of the data measurement and theoretical predic-

tions of the ratio are presented in section 7.1, while the fitting technique is

described in section 7.2. Finally, the strong coupling measurement results are

presented in section 7.3.

7.1 Comparison of R3/2 Measurement to Theoretical Predictions

The particle-level inclusive three- to two-jet production cross-section ratio

distributions, obtained from the ATLAS 2010 data and NLO calculations, are

compared in figure 7–1. The uncertainties presented include all sources listed in

table 7–1, whose values are tabulated in tables 5–1 and 6–3. Figures 7–1(a) and

(b) respectively display the ratio’s theoretical predictions for αS(MZ) = 0.110

and αS(MZ) = 0.130, however similar results are also computed for all the

αS(MZ) values within that range, in increments of 0.0011 . The ratio mea-

surements are shown to be mostly within the 0.110 ≤ αS(MZ) ≤ 0.130 range

of the theoretical predictions for all Q′ bins. Results not within that range are

close enough for a fitting technique to extrapolate a strong coupling measure-

ment.

1 PDF sets matching the αS(MZ) values 0.110, 0.111, 0.112, . . . , 0.130 are
provided by the MSTW group.
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Figure 7–1: Comparison of the inclusive three- to two-jet production cross-
section ratio measurement with NLO predictions for (a) αS = 0.110 and (b)
αS = 0.130. The error band represents the combination of all statistical and
systematic uncertainties on the data measurement, while the error bars repre-
sent the combined statistical, theoretical and systematic uncertainties on the
theoretical predictions. All results are calculated at the particle-level, and all
uncertainties described in chapters 5 and 6 are included. Results are shown
as a function of Q′ and are obtained from the ATLAS 2010 data set with all
analysis cuts described in sections 6.1 applied.

7.2 Measurement Technique

The strong coupling constant is measured by finding the αS(MZ) value

which would yield the best theoretical description of the measured inclusive

three- to two-jet production cross-section ratio. All systematic uncertainties on

both predicted and measured ratio distributions, and which are not statistical

in nature, exhibit correlation between Q′ bins, as indicated in table 7–1. The

αS(MZ) measurement technique must therefore account for these correlations.

The approach used to measure the strong coupling constant is a Hessian

[80] least squares fit. This method, previously used by the ZEUS and H1

collaborations for PDF analyzes [80], uses a chi-squared (χ2) function that

takes into account correlated sources of uncertainties. This function is defined
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Table 7–1: List of all sources of uncertainties considered in the analysis, and
whether they are treated as correlated between Q′ bins.

Type of Uncertainty Correlated

D
at
a
M
ea
su
re
m
en
t

Data Statistics No
Trigger Selection Yes
Jet Energy Scale Yes
Jet Energy Resolution Yes
Angular Resolution Yes
Jet Quality Yes
Unfolding Correction Jet Energy Scale Yes

Jet Energy Resolution Yes
Angular resolution Yes
Pile-up Yes
Monte-Carlo Modelling Yes
Alpgen Statistics No

T
h
eo
re
ti
ca
l

P
re
d
ic
ti
on

s NLOJet++ Statistics No
Scale Yes
PDF Yes
Non-pQCD
correction factor

Alpgen Statistics No
Monte-Carlo Modelling Yes

as

χ2 =
∑

i

[

R
(theory)
3/2 (αS(MZ), i)−R

(measured)
3/2 (i) +

∑

λ sλ∆
(correlated)
iλ

]2

∑

λ′

[

∆
(uncorrelated)
i,λ′

]2 +
∑

λ

s2λ,

(7.1)

where R
(measured)
3/2 (i) is the measured inclusive three- to two-jet production

cross-section ratio for the i-th Q′ bin, and R
(theory)
3/2 (αS(MZ), i) is the theoreti-

cal prediction of the ratio in the i-th bin as a function of αS(MZ). The symbols

∆
(uncorrelated)
iλ′ and ∆

(correlated)
iλ are the i-th bin’s uncorrelated and correlated un-

certainties from sources λ′ and λ, respectively. The sλ parameters are indepen-

dent variables (nuisance parameters) associated with each source of correlated

uncertainty, and are defined to have a unit variance and a mean of zero. In

order to obtain continuous theoretical distributions R
(theory)
3/2 (αS(MZ), i) as a

function of αS(MZ) in each Q′ bin, a spline interpolation is used. Figure 7–2
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shows examples of such interpolations and the resulting continuous functions

for different Q′ bins.

The least squares fit is performed by minimizing the chi-squared value

with respect to αs(MZ) and the free parameters sλ. Allowing the sλ parameters

to fluctuate effectively allows both the data and theoretical predictions to vary,

collectively, within the bounds of their correlated systematic uncertainties.

The αS(MZ) and sλ configuration corresponding to the minimal chi-squared

value yields the most consistent fit in all Q′ bins. An uncertainty of one

standard deviation on the resulting best-fit’s αS(MZ) is defined as an increase

of one unit in the chi-squared function, with respect to its minimum value.

Since the theoretical scale uncertainty can be highly asymmetric in most

Q′ bins, it cannot be included in the previously described procedure. To

estimate the scale uncertainty on the best-fit’s αS(MZ) value, the least squares

fit is recomputed while shifting the theoretical predictions of each bin by its

positive and negative theoretical scale uncertainties. The difference between

the resulting αS(MZ) value and the best-fit’s αS(MZ) value is used as scale

uncertainty on the final result.

7.3 Results

The least squares method was applied to each individual bin of the in-

clusive three- to two-jet production cross-section ratio, as well as to all bins

simultaneously. The resulting measurements of the strong coupling are tab-

ulated in table 7–2. The simultaneous fit of all Q′ bins yields an αS(MZ)

measurement of 0.111+0.009
−0.008, with a χ2/d.o.f. of 5.3/10. Taking into account

the contribution from the scale uncertainty, the final result of this analysis is

0.111+0.016
−0.012. The nuisance parameters sλ obtained from the fitting procedure

are tabulated in appendix A, and are all within statistical uncertainty of zero,
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Figure 7–2: Inclusive ratio of three- to two-jet differential cross-sections as
a function of αs(MZ) calculated at NLO and corrected for non-perturbative
effects, for three bins of Q′. The points represent the results of the calculations
and the solid line shows the spline interpolation used in the least squares fit.
Note that the statistical uncertainty is smaller than the size of the markers.

indicating a good agreement between theoretical predictions and measure-

ments of the ratio. Estimates of uncertainty contributions from each source of

uncertainty are provided in table 7–3. These estimates are computed as the

square root of the quadratic difference between the total uncertainty calculated

while letting all nuisance parameters vary and the uncertainty obtained while

fixing a specific nuisance parameter to its best fitted value. Results indicate

that the largest sources of uncertainty are the NLO scale and non-perturbative

corrections of theoretical predictions, while all measurement uncertainties are

comparatively much smaller. Moreover, all non-negligible measurement un-

certainties are similar in magnitude due to the use of a ratio of jet production

cross-sections.

Figure 7–3 compares the ATLAS 2010 data measurements at particle-

level of the inclusive three- to two-jet production cross-section ratio to the
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Table 7–2: Best fitted αs(MZ) values and uncertainties obtained from the least
squares fit of each Q′ bin, as well as for all bins simultaneously.

Q′ range αs(MZ) Total Fit Scale

(GeV) uncertainty uncertainty uncertainty

100-120 0.128 +0.023
−0.019

+0.020
−0.017

+0.011
−0.007

120-150 0.108 +0.029
−0.011

+0.018
−0.010

+0.023
−0.004

150-180 0.112 +0.027
−0.013

+0.020
−0.010

+0.018
−0.009

180-230 0.113 +0.035
−0.018

+0.022
−0.013

+0.027
−0.012

230-280 0.111 +0.033
−0.013

+0.021
−0.011

+0.025
−0.007

280-330 0.119 +0.021
−0.015

+0.016
−0.012

+0.014
−0.008

330-390 0.115 +0.025
−0.021

+0.020
−0.019

+0.016
−0.009

390-460 0.112 +0.024
−0.030

+0.018
−0.028

+0.016
−0.012

460-550 0.113 +0.032
−0.018

+0.020
−0.011

+0.024
−0.014

550-700 0.109 +0.032
−0.014

+0.023
−0.011

+0.022
−0.008

700-1000 0.113 +0.028
−0.019

+0.022
−0.016

+0.019
−0.011

1000-1500 0.129 +0.011
−0.040

+0.008
−0.038

+0.007
−0.011

100-1500 0.111 +0.016
−0.012

+0.009
−0.008

+0.013
−0.009

NLOJet++ predictions computed using the MSTW 2008 NLO PDF set at

the best fitted value of αs(MZ) = 0.111. Both distributions agree within un-

certainty for the entire kinematic range. The final result of this analysis and

the individual αS(MZ) measurements in each bin are in statistical agreement

with the accepted world average of αS(MZ) = 0.1184± 0.0007 [12]. Moreover,

all results are found to be in statistical agreement with similar CDF [18] and

DØ [13] measurements of αS(MZ) = 0.1178+0.0081
−0.0095(sys.) ± 0.0001(stat.) and

αS(MZ) = 0.1161+0.0041
−0.0048 respectively. Figure 7–4 compares the strong coupling

measurement from this analysis with past measurements used in the calcula-

tion of the world average αS value, and results from CDF and DØ.
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Figure 7–3: Inclusive jet ratio computed as a function of Q′ from ATLAS 2010
data and NLOJet++ simulations with the MSTW 2008 NLO PDF set at
the αS(MZ) values of 0.111, corresponding to the best fit measurement of the
strong coupling constant. Both distributions are shown at the particle-level
and include all uncertainties previously discussed. All analysis cuts described
in section 6.1 are applied.

The αS(MZ) results showed in Table 7–2 can be evolved to αS(Q
′) for

each Q′ bin using the two-loop approximate solution to the RGE2 [11]. The

resulting distribution is shown in figure 7–5. Results show good agreement

between the DØ inclusive jet fit [13], ZEUS [14] and H1 [15] αS measurements,

and the RGE predictions evaluated at this analysis’ measured αS(MZ) value of

0.111+0.016
−0.012. Results from this analysis are therefore consistent with the RGE

predictions up to a renormalization scale of 1.5 TeV.

2 This two-loop approximation is described in section 2.1.3. It is the same
approximation used internally by LHAPDF and NLOJet++.
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αS(MZ) = 0.111+0.016
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Table 7–3: Uncertainty contribution estimates on best fitted αs(MZ) values
for each Q′ bin, as well as for all bins simultaneously.

Q′ range αs(MZ) Total Total Total Trigger JES JER

(GeV) uncorrelated correlated

100-120 0.128 +0.023
−0.019 ±0.010 +0.017

−0.014
+0.002
−0.001

+0.005
−0.005

+0.001
−0.004

120-150 0.108 +0.029
−0.011 ±0.006 +0.017

−0.008
+0.002
−0.001

+0.003
−0.002

+0.004
−0.002

150-180 0.112 +0.027
−0.013 ±0.005 +0.019

−0.008
+0.002
−0.001

+0.002
−0.000

+0.003
−0.002

180-230 0.113 +0.035
−0.018 ±0.006 +0.022

−0.012
+0.003
−0.002

+0.004
−0.005

+0.002
−0.002

230-280 0.111 +0.033
−0.013 ±0.005 +0.020

−0.010
+0.002
−0.001

+0.000
−0.002

+0.006
−0.004

280-330 0.119 +0.021
−0.015 ±0.005 +0.015

−0.011
+0.002
−0.002

+0.003
−0.002

+0.001
−0.002

330-390 0.115 +0.025
−0.021 ±0.005 +0.019

−0.018
+0.002
−0.005

+0.006
−0.033

+0.002
−0.000

390-460 0.112 +0.024
−0.030 ±0.004 +0.018

−0.028
+0.003
−0.000

+0.005
−0.009

+0.000
−0.003

460-550 0.113 +0.032
−0.018 ±0.006 +0.019

−0.010
+0.002
−0.002

+0.003
−0.002

+0.001
−0.002

550-700 0.109 +0.032
−0.014 ±0.005 +0.022

−0.009
+0.003
−0.002

+0.002
−0.005

+0.002
−0.002

700-1000 0.113 +0.028
−0.019 ±0.010 +0.019

−0.012
+0.001
−0.000

+0.005
−0.003

+0.003
−0.003

1000-1500 0.129 +0.011
−0.040 ±0.022 +0.021

−0.031
+0.001
−0.003

+0.007
−0.011

+0.004
−0.011

100-1500 0.111 +0.016
−0.012 ±0.002 +0.009

−0.008
+0.002
−0.001

+0.000
−0.001

+0.002
−0.002

Q′ range η Res Pile-up Monte-Carlo Jet PDF Non-pert. Scale

(GeV) modelling quality correction

100-120 +0.007
−0.006

+0.000
−0.000

+0.004
−0.005

+0.002
−0.000

+0.002
−0.000

+0.012
−0.011

+0.011
−0.007

120-150 +0.007
−0.004

+0.000
−0.000

+0.006
−0.003

+0.000
−0.000

+0.001
−0.000

+0.013
−0.006

+0.023
−0.004

150-180 +0.004
−0.004

+0.000
−0.000

+0.008
−0.004

+0.000
−0.000

+0.000
−0.000

+0.015
−0.006

+0.018
−0.009

180-230 +0.003
−0.004

+0.002
−0.002

+0.002
−0.002

+0.000
−0.000

+0.002
−0.002

+0.018
−0.010

+0.027
−0.012

230-280 +0.000
−0.002

+0.000
−0.000

+0.002
−0.001

+0.000
−0.000

+0.000
−0.000

+0.017
−0.008

+0.025
−0.007

280-330 +0.006
−0.004

+0.000
−0.000

+0.001
−0.002

+0.000
−0.000

+0.001
−0.002

+0.011
−0.009

+0.014
−0.008

330-390 +0.004
−0.036

+0.001
−0.000

+0.003
−0.008

+0.001
−0.000

+0.001
−0.004

+0.014
−0.017

+0.016
−0.009

390-460 +0.003
−0.009

+0.000
−0.000

+0.004
−0.001

+0.000
−0.000

+0.002
−0.001

+0.015
−0.027

+0.016
−0.012

460-550 +0.005
−0.004

+0.000
−0.000

+0.003
−0.002

+0.001
−0.000

+0.002
−0.001

+0.016
−0.009

+0.024
−0.014

550-700 +0.003
−0.004

+0.000
−0.000

+0.004
−0.002

+0.000
−0.000

+0.002
−0.001

+0.019
−0.008

+0.022
−0.008

700-1000 +0.009
−0.006

+0.002
−0.000

+0.007
−0.007

+0.002
−0.000

+0.000
−0.000

+0.009
−0.007

+0.019
−0.011

1000-1500 +0.012
−0.018

+0.002
−0.004

+0.004
−0.018

+0.004
−0.008

+0.000
−0.000

+0.002
−0.000

+0.007
−0.011

100-1500 +0.009
−0.003

+0.000
−0.000

+0.000
−0.000

+0.000
−0.000

+0.000
−0.000

+0.008
−0.007

+0.013
−0.009
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Figure 7–5: Strong coupling αS measurements from jet production at DØ, H1
and ZEUS, as well as ATLAS R3/2. Result are shown as a function of renormal-
ization scale µR. The renormalization scale is parametrized as the leading jet
pT for DØ, ZEUS and H1, and by Q′ (see eq. (5.6)) for ATLAS. Results show
good agreement between both sets of measurements and predictions obtained
from the RGE two-loop solution [11] evaluated at this analysis’ measured av-
erage αS(MZ) value of 0.111+0.016

−0.012 and the predicted running at the world av-
erage value of 0.1184±0.0007. The plot also compares the agreement between
predictions of the RGE evaluated at this analysis’ measured αS(MZ) value,
CDF and DØ measured values of 0.1178+0.0081

−0.0095 and αS(MZ) = 0.1161+0.0041
−0.0048

respectively.
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CHAPTER 8

Summary, Conclusions and Outlook

A first measurement of the QCD strong coupling αS(MZ) was performed

at a centre-of-mass energy of 7 TeV using data collected by the ATLAS de-

tector in 2010. This data set represents an integrated luminosity of 37.6 pb−1.

This also constitutes the first measurement of the strong coupling constant

using a ratio of jet multiplicity cross-sections at a hadron collider. Good

agreement was found between NLO predictions and data measurements of the

inclusive three- to two-jet differential cross-section ratio as a function of the

Q′ observable.

The strong coupling αS(MZ) was measured at NLO pQCD precision for

several Q′ values and the results were found to agree with the world average, as

well as with past measurements performed at hadron colliders and based on jet

final states. The overall uncertainty on the measurement is dominated by NLO

theoretical scale uncertainties, as well as Monte-Carlo modelling uncertainties

arising in data unfolding and non-perturbative QCD corrections. As a result,

the overall uncertainty is significantly larger than measurements made by the

CDF and DØ collaborations. Due to the reduced dependence of the ratio on

PDFs, this analysis is able to extend for the first time the renormalization scale

range studied from 209 GeV to 1.5 TeV. This analysis therefore provides a test

of pQCD and of the energy dependence of the strong coupling as predicted

by the RGE. Results are shown to be consistent with the theory of pQCD,

including its description of the running of the coupling, at this unprecedented

energy regime.
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Further tuning of the Monte-Carlo simulations to the LHC conditions

and the constant improvements to NLO prediction tools will reduce uncertain-

ties associated with data unfolding and non-perturbative effects corrections to

NLO predictions. Larger data samples are also becoming available and will

allow for much smaller binning of the hard scale, improving the resolution on

the shape of the three- to two-jet cross-section ratio and of the running of

the coupling. The increased statistics will also lead to improvements on the

jet energy scale and resolution determination. All of these improvements will

in turn contribute to the overall reduction of uncertainty on the strong cou-

pling measurement. NLO calculations of inclusive four-jet cross-sections, soon

available, will allow the calculation of the four- to three-jet cross-section ratio,

which could also be used to investigate the running of the strong coupling

constant. This continued effort to improve our measurement of the strong

coupling constant at higher energies is essential to understand and validate

the theory QCD at the new energy frontier achieved by the LHC.
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Appendix A - Nuisance Parameters in αS Fit

Table A–1: Nuisance parameters used to obtain the best fit of αS(MZ) for
each Q′ bin, as well as all bins combined.

Q′ bin range Fit parameters
(GeV) strigger spile−up sjet quality

100-120 1.05× 10−4 ± 1.00 −2.06× 10−4 ± 1.00 −1.27× 10−4 ± 1.00

120-150 2.81× 10−5 ± 1.00 3.03× 10−5 ± 1.00 6.58× 10−6 ± 1.00

150-180 −9.38× 10−5 ± 1.00 −2.44× 10−5 ± 1.00 −5.72× 10−7 ± 1.00

180-230 −2.59× 10−5 ± 1.00 −9.09× 10−6 ± 1.00 −1.31× 10−6 ± 1.00

230-280 4.86× 10−6 ± 1.00 5.97× 10−7 ± 1.00 3.48× 10−7 ± 1.00

280-330 −5.49× 10−6 ± 1.00 −4.70× 10−5 ± 1.00 −7.67× 10−6 ± 1.00

330-390 −4.45× 10−7 ± 1.41 −5.98× 10−8 ± 0.79 −1.70× 10−8 ± 1.41

390-460 −4.42× 10−5 ± 1.00 −3.01× 10−5 ± 1.00 6.95× 10−7 ± 1.00

460-550 −7.53× 10−5 ± 1.00 1.29× 10−6 ± 1.00 4.74× 10−7 ± 1.00

550-700 1.16× 10−5 ± 1.00 6.92× 10−5 ± 1.00 4.06× 10−6 ± 1.00

700-1000 2.14× 10−5 ± 1.00 −2.18× 10−4 ± 1.00 −8.36× 10−5 ± 1.00

1000-1500 2.34× 10−5 ± 1.00 2.86× 10−5 ± 1.00 −3.41× 10−6 ± 1.00

100-1500 1.55× 10−2 ± 0.98 −4.57× 10−2 ± 0.99 −1.41× 10−1 ± 0.98
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Table A–2: Nuisance parameters used to obtain the best fit of αS(MZ) for
each Q′ bin, as well as all bins combined. (continued)

Q′ bin range Fit parameters
(GeV) sJES sJER sη Res.

100-120 1.25× 10−4 ± 1.00 4.99× 10−5 ± 1.00 7.44× 10−5 ± 1.00

120-150 −9.53× 10−7 ± 1.00 −5.99× 10−5 ± 1.00 5.63× 10−5 ± 1.00

150-180 −1.71× 10−5 ± 1.00 −1.25× 10−4 ± 1.00 −1.40× 10−4 ± 1.00

180-230 −1.25× 10−4 ± 1.00 −5.86× 10−5 ± 1.00 −2.03× 10−4 ± 1.00

230-280 3.55× 10−6 ± 1.00 −5.58× 10−6 ± 1.00 3.09× 10−6 ± 1.00

280-330 −3.99× 10−5 ± 1.00 −5.49× 10−6 ± 1.00 1.25× 10−5 ± 1.00

330-390 −1.10× 10−6 ± 0.78 −1.74× 10−7 ± 1.41 −2.27× 10−7 ± 0.79

390-460 1.82× 10−4 ± 1.00 3.07× 10−5 ± 1.00 2.37× 10−4 ± 1.00

460-550 7.48× 10−6 ± 1.00 1.14× 10−5 ± 1.00 1.50× 10−5 ± 1.00

550-700 −1.73× 10−5 ± 1.00 −1.27× 10−5 ± 1.00 −1.43× 10−5 ± 1.00

700-1000 1.24× 10−4 ± 1.00 3.85× 10−4 ± 1.00 −3.91× 10−4 ± 1.00

1000-1500 −2.25× 10−5 ± 1.00 −1.56× 10−5 ± 1.00 −6.63× 10−5 ± 1.00

100-1500 −3.37× 10−1 ± 0.69 −9.51× 10−2 ± 0.81 −5.22× 10−1 ± 0.81

Q′ bin range Fit parameters
(GeV) sMonte−Carlo model sPDF snon−pert model

100-120 −2.22× 10−4 ± 1.00 5.46× 10−5 ± 1.00 −8.06× 10−5 ± 1.00

120-150 −4.02× 10−5 ± 1.00 −2.95× 10−5 ± 1.00 −7.57× 10−7 ± 1.00

150-180 −2.94× 10−4 ± 1.00 5.92× 10−5 ± 1.00 4.62× 10−4 ± 1.00

180-230 −8.68× 10−5 ± 1.00 1.48× 10−5 ± 1.00 1.54× 10−4 ± 1.00

230-280 4.70× 10−6 ± 1.00 2.84× 10−5 ± 1.00 6.28× 10−6 ± 1.00

280-330 1.46× 10−4 ± 1.00 3.65× 10−5 ± 1.00 −2.59× 10−5 ± 1.00

330-390 −8.00× 10−7 ± 0.79 2.58× 10−7 ± 1.41 2.47× 10−6 ± 0.75

390-460 −2.47× 10−4 ± 1.00 1.83× 10−4 ± 1.00 8.30× 10−6 ± 1.00

460-550 1.65× 10−5 ± 1.00 3.15× 10−6 ± 1.00 2.33× 10−5 ± 1.00

550-700 1.51× 10−5 ± 1.00 1.18× 10−5 ± 1.00 2.00× 10−5 ± 1.00

700-1000 2.17× 10−5 ± 1.00 −9.07× 10−5 ± 1.00 3.75× 10−4 ± 1.00

1000-1500 2.35× 10−4 ± 1.00 1.09× 10−4 ± 1.00 1.53× 10−4 ± 1.00

100-1500 1.87× 10−2 ± 0.59 9.25× 10−3 ± 0.99 −3.56× 10−2 ± 0.71
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KEY TO ABBREVIATIONS

ATLAS: A Toroidal LHC ApparatuS

EF: Event Filter (third) level of ATLAS trigger system

EM: Electromagnetic

HLT: High Level Trigger

JES: Jet Energy Scale

L1: Level-1 of ATLAS trigger system

L2: Level-2 of ATLAS trigger system

LHC: Large Hadron Collider

LO: Leading Order

NLO: Next-to-Leading Order

PDF: Parton Distribution Function

pQCD: Perturbative Quantum Chromodynamics

QCD: Quantum Chromodynamics

RGE: Renormalization Group Equation
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